WorldWideScience

Sample records for high-velocity si iii

  1. Thermal SiO as a probe of high velocity motions in regions of star formation

    International Nuclear Information System (INIS)

    Downes, D.; Genzel, R.; Hjalmarson, A.; Nyman, L.A.; Roennaeng, B.

    1982-01-01

    New observations of the v = 0, J = = 2→1 line of SiO at 86.8 GHz show a close association of the thermal SiO emission and infrared and maser sources in regions of star formation. In addition to SiO emission with low velocity dispersion (Δν -1 ), we report the first detection of high velocity (''plateau'') emission toward W49 and W51. The low velocity SiO component may come from the core of the molecular cloud which contains the infrared and maser sources. The ''plateau'' may indicate mass clusters. In Orion KL, the positional centroid of the high velocity SiO emission (Vertical BarΔνVertical Bar> or =20 km s -1 ) is near that of the component we identify as the ''18 km s -1 flow''. However, the centriods of the blue- and redshifted wings are displaced from each other by a few arcseconds, to the NW and NE of the position of the 18 km s -1 component. The mass-loss rates of the high velocity flow and the 18 km s -1 flow are similar

  2. High Velocity Gas Gun

    Science.gov (United States)

    1988-01-01

    A video tape related to orbital debris research is presented. The video tape covers the process of loading a High Velocity Gas Gun and firing it into a mounted metal plate. The process is then repeated in slow motion.

  3. On the line intensity ratios of prominent Si II, Si III, and Si IV multiplets

    International Nuclear Information System (INIS)

    Djenize, S.; Sreckovic, A.; Bukvic, S.

    2010-01-01

    Line intensities of singly, doubly and triply ionized silicon (Si II, Si III, and Si IV, respectively) belonging to the prominent higher multiplets, are of interest in laboratory and astrophysical plasma diagnostics. We measured these line intensities in the emission spectra of pulsed helium discharge. The Si II line intensity ratios in the 3s3p 22 D-3s 2 4p 2 P o , 3s 2 3d 2 D-3s 2 4f 2 F o , and 3s 2 4p 2 P o -3s 2 4d 2 D transitions, the Si III line intensity ratios in the 3s3d 3 D-3s4p 3 P o , 3s4p 3 P o -3s4d 3 D, 3s4p 3 P o -3s5s 3 S, 3s4s 3 S-3s4p 3 P o , and 3s4f 3 F o -3s5g 3 G transitions, and the Si IV line intensity ratios in the 4p 2 P o -4d 2 D and 4p 2 P o -5s 2 S transitions were obtained in a helium plasma at an electron temperature of about 17,000 ± 2000 K. Line shapes were recorded using a spectrograph and an ICCD camera as a highly-sensitive detection system. The silicon atoms were evaporated from a Pyrex discharge tube designed for the purpose. They represent impurities in the optically thin helium plasma at the silicon ionic wavelengths investigated. The line intensity ratios obtained were compared with those available in the literature, and with values calculated on the basis of available transition probabilities. The experimental data corresponded well with line intensity ratios calculated using the transition probabilities obtained from a Multi Configuration Hartree-Fock approximation for Si III and Si IV spectra. We recommend corrections of some Si II transition probabilities.

  4. Development of III-V/Si Multijunction Space Photovoltaics

    Data.gov (United States)

    National Aeronautics and Space Administration — High substrate costs, as well as weight, typically play a major role in the high costs of multijunction space solar cell production and deployment. III-V/Si...

  5. Prospects of III-nitride optoelectronics grown on Si

    International Nuclear Information System (INIS)

    Zhu, D; Wallis, D J; Humphreys, C J

    2013-01-01

    The use of III-nitride-based light-emitting diodes (LEDs) is now widespread in applications such as indicator lamps, display panels, backlighting for liquid-crystal display TVs and computer screens, traffic lights, etc. To meet the huge market demand and lower the manufacturing cost, the LED industry is moving fast from 2 inch to 4 inch and recently to 6 inch wafer sizes. Although Al 2 O 3 (sapphire) and SiC remain the dominant substrate materials for the epitaxy of nitride LEDs, the use of large Si substrates attracts great interest because Si wafers are readily available in large diameters at low cost. In addition, such wafers are compatible with existing processing lines for 6 inch and larger wafers commonly used in the electronics industry. During the last decade, much exciting progress has been achieved in improving the performance of GaN-on-Si devices. In this contribution, the status and prospects of III-nitride optoelectronics grown on Si substrates are reviewed. The issues involved in the growth of GaN-based LED structures on Si and possible solutions are outlined, together with a brief introduction to some novel in situ and ex situ monitoring/characterization tools, which are especially useful for the growth of GaN-on-Si structures. (review article)

  6. Research progress of III-V laser bonding to Si

    Science.gov (United States)

    Bo, Ren; Yan, Hou; Yanan, Liang

    2016-12-01

    The vigorous development of silicon photonics makes a silicon-based light source essential for optoelectronics' integration. Bonding of III-V/Si hybrid laser has developed rapidly in the last ten years. In the tireless efforts of researchers, we are privileged to see these bonding methods, such as direct bonding, medium adhesive bonding and low temperature eutectic bonding. They have been developed and applied to the research and fabrication of III-V/Si hybrid lasers. Some research groups have made remarkable progress. Tanabe Katsuaki of Tokyo University successfully implemented a silicon-based InAs/GaAs quantum dot laser with direct bonding method in 2012. They have bonded the InAs/GaAs quantum dot laser to the silicon substrate and the silicon ridge waveguide, respectively. The threshold current of the device is as low as 200 A/cm2. Stevan Stanković and Sui Shaoshuai successfully produced a variety of hybrid III-V/Si laser with the method of BCB bonding, respectively. BCB has high light transmittance and it can provide high bonding strength. Researchers of Tokyo University and Peking University have realized III-V/Si hybrid lasers with metal bonding method. We describe the progress in the fabrication of III-V/Si hybrid lasers with bonding methods by various research groups in recent years. The advantages and disadvantages of these methods are presented. We also introduce the progress of the growth of III-V epitaxial layer on silicon substrate, which is also a promising method to realize silicon-based light source. I hope that readers can have a general understanding of this field from this article and we can attract more researchers to focus on the study in this field.

  7. Hybrid III-V-on-Si Vertical Cavity laser for Optical Interconnects

    DEFF Research Database (Denmark)

    Park, Gyeong Cheol; Semenova, Elizaveta; Chung, Il-Sug

    2013-01-01

    Combining a III-V active material onto the Si platform is an attractive approach for silicon photonics light source. We have developed fabrication methods for novel III-V on Si vertical cavity lasers.......Combining a III-V active material onto the Si platform is an attractive approach for silicon photonics light source. We have developed fabrication methods for novel III-V on Si vertical cavity lasers....

  8. Southern high-velocity stars

    International Nuclear Information System (INIS)

    Augensen, H.J.; Buscombe, W.

    1978-01-01

    Using the model of the Galaxy presented by Eggen, Lynden-Bell and Sandage (1962), plane galactic orbits have been calculated for 800 southern high-velocity stars which possess parallax, proper motion, and radial velocity data. The stars with trigonometric parallaxes were selected from Buscombe and Morris (1958), supplemented by more recent spectroscopic data. Photometric parallaxes from infrared color indices were used for bright red giants studied by Eggen (1970), and for red dwarfs for which Rodgers and Eggen (1974) determined radial velocities. A color-color diagram based on published values of (U-B) and (B-V) for most of these stars is shown. (Auth.)

  9. High velocity impact experiment (HVIE)

    Energy Technology Data Exchange (ETDEWEB)

    Toor, A.; Donich, T.; Carter, P.

    1998-02-01

    The HVIE space project was conceived as a way to measure the absolute EOS for approximately 10 materials at pressures up to {approximately}30 Mb with order-of-magnitude higher accuracy than obtainable in any comparable experiment conducted on earth. The experiment configuration is such that each of the 10 materials interacts with all of the others thereby producing one-hundred independent, simultaneous EOS experiments The materials will be selected to provide critical information to weapons designers, National Ignition Facility target designers and planetary and geophysical scientists. In addition, HVIE will provide important scientific information to other communities, including the Ballistic Missile Defense Organization and the lethality and vulnerability community. The basic HVIE concept is to place two probes in counter rotating, highly elliptical orbits and collide them at high velocity (20 km/s) at 100 km altitude above the earth. The low altitude of the experiment will provide quick debris strip-out of orbit due to atmospheric drag. The preliminary conceptual evaluation of the HVIE has found no show stoppers. The design has been very easy to keep within the lift capabilities of commonly available rides to low earth orbit including the space shuttle. The cost of approximately 69 million dollars for 100 EOS experiment that will yield the much needed high accuracy, absolute measurement data is a bargain!

  10. III-V/Si wafer bonding using transparent, conductive oxide interlayers

    Energy Technology Data Exchange (ETDEWEB)

    Tamboli, Adele C., E-mail: Adele.Tamboli@nrel.gov; Hest, Maikel F. A. M. van; Steiner, Myles A.; Essig, Stephanie; Norman, Andrew G.; Bosco, Nick; Stradins, Paul [National Center for Photovoltaics, National Renewable Energy Laboratory, 15013 Denver West Pkwy, Golden, Colorado 80401 (United States); Perl, Emmett E. [Department of Electrical and Computer Engineering, University of California, Santa Barbara, California 93106-9560 (United States)

    2015-06-29

    We present a method for low temperature plasma-activated direct wafer bonding of III-V materials to Si using a transparent, conductive indium zinc oxide interlayer. The transparent, conductive oxide (TCO) layer provides excellent optical transmission as well as electrical conduction, suggesting suitability for Si/III-V hybrid devices including Si-based tandem solar cells. For bonding temperatures ranging from 100 °C to 350 °C, Ohmic behavior is observed in the sample stacks, with specific contact resistivity below 1 Ω cm{sup 2} for samples bonded at 200 °C. Optical absorption measurements show minimal parasitic light absorption, which is limited by the III-V interlayers necessary for Ohmic contact formation to TCOs. These results are promising for Ga{sub 0.5}In{sub 0.5}P/Si tandem solar cells operating at 1 sun or low concentration conditions.

  11. SiC substrate defects and III-N heteroepitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Poust, B D [Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095 (United States); Koga, T S [Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095 (United States); Sandhu, R [Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095 (United States); Heying, B [Northrop Grumman Space Technology, Space and Electronics Group, Redondo Beach, CA 90278 (United States); Hsing, R [Northrop Grumman Space Technology, Space and Electronics Group, Redondo Beach, CA 90278 (United States); Wojtowicz, M [Northrop Grumman Space Technology, Space and Electronics Group, Redondo Beach, CA 90278 (United States); Khan, A [Department of Electrical Engineering, University of South Carolina, Columbia, SC (United States); Goorsky, M S [Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095 (United States)

    2003-05-21

    This study addressed how defects in SiC substrates influence the crystallographic properties of AlGaN/GaN layers deposited by metallorganic vapour phase epitaxy and by molecular beam epitaxy. We employed double crystal reflection x-ray topography using symmetric (0008) and (00012) reflections with CuK{alpha} radiation ({lambda} = 1.54 A) to image dislocations, micropipes, and low angle boundaries in SiC substrates. Lattice strain near the core of a micropipe defect was estimated to be of the order of 10{sup -7}. The substrates investigated exhibited radial patterns of strain and, primarily, of tilt of the order of tens of arcsec. After deposition of the AlGaN and GaN layers, DCXRT images were generated from the substrate (0008) or (00012) and GaN epitaxial layer (0004) reflections. Full-width at half-maximum values ranging from {approx}100 to 300 arcsec were typical of the GaN reflections, while those of the 4H-SiC reflections were {approx}20-70 arcsec. Micropipes, tilt boundaries, and inclusions in the SiC were shown to produce structural defects in the GaN layers. A clear correlation between SiC substrate defects and GaN defects has been established.

  12. SiC substrate defects and III-N heteroepitaxy

    International Nuclear Information System (INIS)

    Poust, B D; Koga, T S; Sandhu, R; Heying, B; Hsing, R; Wojtowicz, M; Khan, A; Goorsky, M S

    2003-01-01

    This study addressed how defects in SiC substrates influence the crystallographic properties of AlGaN/GaN layers deposited by metallorganic vapour phase epitaxy and by molecular beam epitaxy. We employed double crystal reflection x-ray topography using symmetric (0008) and (00012) reflections with CuKα radiation (λ = 1.54 A) to image dislocations, micropipes, and low angle boundaries in SiC substrates. Lattice strain near the core of a micropipe defect was estimated to be of the order of 10 -7 . The substrates investigated exhibited radial patterns of strain and, primarily, of tilt of the order of tens of arcsec. After deposition of the AlGaN and GaN layers, DCXRT images were generated from the substrate (0008) or (00012) and GaN epitaxial layer (0004) reflections. Full-width at half-maximum values ranging from ∼100 to 300 arcsec were typical of the GaN reflections, while those of the 4H-SiC reflections were ∼20-70 arcsec. Micropipes, tilt boundaries, and inclusions in the SiC were shown to produce structural defects in the GaN layers. A clear correlation between SiC substrate defects and GaN defects has been established

  13. Suspended HfO2 photonic crystal slab on III-nitride/Si platform

    International Nuclear Information System (INIS)

    Wang, Yongjin; Feng, Jiao; Cao, Ziping; Zhu, Hongbo

    2014-01-01

    We present here the fabrication of suspended hafnium oxide (HfO 2 ) photonic crystal slab on a III-nitride/Si platform. The calculations are performed to model the suspended HfO 2 photonic crystal slab. Aluminum nitride (AlN) film is employed as the sacrificial layer to form air gap. Photonic crystal patterns are defined by electron beam lithography and transferred into HfO 2 film, and suspended HfO 2 photonic crystal slab is achieved on a III-nitride/Si platform through wet-etching of AlN layer in the alkaline solution. The method is promising for the fabrication of suspended HfO 2 nanostructures incorporating into a III-nitride/Si platform, or acting as the template for epitaxial growth of III-nitride materials. (orig.)

  14. Metastable structure formation during high velocity grinding

    International Nuclear Information System (INIS)

    Samarin, A.N.; Klyuev, M.M.

    1984-01-01

    Metastable structures in surface layers of samples are; investigated during force high-velocity abrasive grinding. Samples of martensitic (40Kh13), austenitic (12Kh18N10T), ferritic (05Kh23Yu5) steels and some alloys, in particular KhN77TYuR (EhI437B), were grinded for one pass at treatment depth from 0.17 up to 2.6 mm. It is established that processes of homogenizing, recrystallization and coagulation are; developed during force high-velocity grinding along with polymorphic transformations in the zone of thermomechanical effect, that leads to changes of physical and mechanical properties of the surface

  15. Association behaviour of 241Am(III) on SiO2(amorphous) and SiO2(quartz) colloids

    International Nuclear Information System (INIS)

    Degueldre, C.; Wernli, B.

    1993-01-01

    SiO 2 colloids have been identified as a potential vector for enhancing radionuclide transport in granitic groundwater and in concrete pore water. The sorption behaviour of 241 Am(III) on SiO 2 colloids was studied as a function of americium concentration pH (5-12), colloid concentration, ionic strength, temperature and SiO 2 allotropic species. The Am(III) sorption mechanism on amorphous silica is different from that on quartz. For SiO 2(amorphous) solution, the variation of log K p (ml g -1 ) with pH is linear (pH=5-9) with a slope of +1 indicating a one proton exchange mechanism. The colloid concentration (ppm) affects the sorption and log K p 3.7-0.67 log [SiO 2 ] (pH = 6). K p increases insignificantly when the ionic strength decreases. It shows no significant variation, however, with the Am concentration. On amorphous silica, the Am(III) sorption is driven by proton exchange from the silanol groups. For SiO 2 (quartz), log K p is constant over a large range of quartz concentration in suspension and the variation of log K p with pH is about linear (pH = 5-12), with a slope of 0.28, indicating a more complex exchange mechanism. Reactions taking into account the interaction of positive Am(OH) w (3-w)+ species on to the negatively charged quartz surface are suggested. (author)

  16. HIGH-VELOCITY LINE FORMING REGIONS IN THE TYPE Ia SUPERNOVA 2009ig

    International Nuclear Information System (INIS)

    Marion, G. H.; Foley, Ryan J.; Challis, Peter; Kirshner, Robert P.; Vinko, Jozsef; Wheeler, J. Craig; Silverman, Jeffrey M.; Hsiao, Eric Y.; Brown, Peter J.; Filippenko, Alexei V.; Garnavich, Peter; Landsman, Wayne B.; Parrent, Jerod T.; Pritchard, Tyler A.; Roming, Peter W. A.; Wang, Xiaofeng

    2013-01-01

    We report measurements and analysis of high-velocity (HVF) (>20,000 km s –1 ) and photospheric absorption features in a series of spectra of the Type Ia supernova (SN) 2009ig obtained between –14 days and +13 days with respect to the time of maximum B-band luminosity (B-max). We identify lines of Si II, Si III, S II, Ca II, and Fe II that produce both HVF and photospheric-velocity (PVF) absorption features. SN 2009ig is unusual for the large number of lines with detectable HVF in the spectra, but the light-curve parameters correspond to a slightly overluminous but unexceptional SN Ia (M B = –19.46 mag and Δm 15 (B) = 0.90 mag). Similarly, the Si II λ6355 velocity at the time of B-max is greater than 'normal' for an SN Ia, but it is not extreme (v Si = 13,400 km s –1 ). The –14 days and –13 days spectra clearly resolve HVF from Si II λ6355 as separate absorptions from a detached line forming region. At these very early phases, detached HVF are prevalent in all lines. From –12 days to –6 days, HVF and PVF are detected simultaneously, and the two line forming regions maintain a constant separation of about 8000 km s –1 . After –6 days all absorption features are PVF. The observations of SN 2009ig provide a complete picture of the transition from HVF to PVF. Most SNe Ia show evidence for HVF from multiple lines in spectra obtained before –10 days, and we compare the spectra of SN 2009ig to observations of other SNe. We show that each of the unusual line profiles for Si II λ6355 found in early-time spectra of SNe Ia correlate to a specific phase in a common development sequence from HVF to PVF

  17. (C III lambda 1909/Si III lambda 1892) ratio as a diagnostic for planetary nebulae and symbiotic stars

    International Nuclear Information System (INIS)

    Feibelman, W.A.; Aller, L.H.; California Univ., Los Angeles)

    1987-01-01

    Suitable IUE archival material on planetary nebulae has been examined to determine the log R /F(lambda 1909 C III)/F(lambda 1892 Si III)/ as a discriminant for distinguishing planetary nebulae from symbiotic stars and related objects. The mean value of log R for 73 galactic planetaries is 1.4, while that of extragalactic planetaries appears to be slightly lower, and that for symbiotics is 0.3. The lower value of log R for symbiotics is easily understood as a consequence of their higher densities. A plot of log R versus N-epsilon indicates that 80 percent of the planetaries fall into the range of log R between 1.2 and 1.8, but some of the peculiar and bipolar nebulae fall below log R = 1.2. The corresponding N(C++)/N(Si++) ionic ratio varies over a large range. 53 references

  18. Complex C: A Low-Metallicity, High-Velocity Cloud Plunging into the Milky Way

    Science.gov (United States)

    Tripp, Todd M.; Wakker, Bart P.; Jenkins, Edward B.; Bowers, C. W.; Danks, A. C.; Green, R. F.; Heap, S. R.; Joseph, C. L.; Kaiser, M. E.; Linsky, J. L.; Woodgate, B. E.

    2003-06-01

    We present evidence that high-velocity cloud (HVC) complex C is a low-metallicity gas cloud that is plunging toward the disk and beginning to interact with the ambient gas that surrounds the Milky Way. This evidence begins with a new high-resolution (7 km s-1 FWHM) echelle spectrum of 3C 351 obtained with the Space Telescope Imaging Spectrograph (STIS). 3C 351 lies behind the low-latitude edge of complex C, and the new spectrum provides accurate measurements of O I, Si II, Al II, Fe II, and Si III absorption lines at the velocity of complex C; N I, S II, Si IV, and C IV are not detected at 3 σ significance in complex C proper. However, Si IV and C IV as well as O I, Al II, Si II and Si III absorption lines are clearly present at somewhat higher velocities associated with a ``high-velocity ridge'' (HVR) of 21 cm emission. This high-velocity ridge has a similar morphology to and is roughly centered on complex C proper. The similarities of the absorption-line ratios in the HVR and complex C suggest that these structures are intimately related. In complex C proper we find [O/H]=-0.76+0.23-0.21. For other species the measured column densities indicate that ionization corrections are important. We use collisional and photoionization models to derive ionization corrections; in both models we find that the overall metallicity Z=0.1-0.3 Zsolar in complex C proper, but nitrogen must be underabundant. The iron abundance indicates that the complex C contains very little dust. The size and density implied by the ionization models indicate that the absorbing gas is not gravitationally confined. The gas could be pressure confined by an external medium, but alternatively we may be viewing the leading edge of the HVC, which is ablating and dissipating as it plunges into the Milky Way. O VI column densities observed with the Far Ultraviolet Spectroscopic Explorer (FUSE) toward nine QSOs/AGNs behind complex C support this conclusion: N(O VI) is highest near 3C 351, and the O VI/H I

  19. Non-LTE equivalent widths for Si II, III and IV

    International Nuclear Information System (INIS)

    Becker, S.R.; Butler, K.

    1990-01-01

    Equivalent widths for a set of Si II, III and IV lines reliable for the determination of temperatures in the B star parameter range are given. They are calculated on a fine grid of LTE line blanketed model atmospheres and lie in the wavelength region from 4070 A to 5070 A

  20. III-V/Si Tandem Cells Utilizing Interdigitated Back Contact Si Cells and Varying Terminal Configurations: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Schnabel, Manuel; Klein, Talysa R.; Jain, Nikhil; Essig, Stephanie; Schulte-Huxel, Henning; Warren, Emily; van Hest, Maikel F. A. M.; Geisz, John; Stradins, Paul; Tamboli, Adele; Rienacker, Michael; Merkle, Agnes; Schmidt, Jan; Brendel, Rolf; Peibst, Robby

    2017-07-11

    Solar cells made from bulk crystalline silicon (c-Si) dominate the market, but laboratory efficiencies have stagnated because the current record efficiency of 26.3% is already very close to the theoretical limit of 29.4% for a single-junction c-Si cell. In order to substantially boost the efficiency of Si solar cells we have been developing stacked III-V/Si tandem cells, recently attaining efficiencies above 32% in four-terminal configuration. In this contribution, we use state-of-the-art III-V cells coupled with equivalent circuit simulations to compare four-terminal (4T) to three- and two-terminal (3T, 2T) operation. Equivalent circuit simulations are used to show that tandem cells can be operated just as efficiently using three terminals as with four terminals. However, care must be taken not to overestimate 3T efficiency, as the two circuits used to extract current interact, and a method is described to accurately determine this efficiency. Experimentally, a 4T GaInP/Si tandem cell utilizing an interdigitated back contact cell is shown, exhibiting a 4T efficiency of 31.5% and a 2T efficiency of 28.1%. In 3T configuration, it is used to verify the finding from simulation that 3T efficiency is overestimated when interactions between the two circuits are neglected. Considering these, a 3T efficiency approaching the 4T efficiency is found, showing that 3T operation is efficient, and an outlook on fully integrated high-efficiency 3T and 2T tandem cells is given.

  1. High-velocity frictional properties of gabbro

    Science.gov (United States)

    Tsutsumi, Akito; Shimamoto, Toshihiko

    High-velocity friction experiments have been performed on a pair of hollow-cylindrical specimens of gabbro initially at room temperature, at slip rates from 7.5 mm/s to 1.8 m/s, with total circumferential displacements of 125 to 174 m, and at normal stresses to 5 MPa, using a rotary-shear high-speed friction testing machine. Steady-state friction increases slightly with increasing slip rate at slip rates to about 100 mm/s (velocity strengthening) and it decreases markedly with increasing slip rate at higher velocities (velocity weakening). Steady-state friction in the velocity weakening regime is lower for the non-melting case than the frictional melting case, due perhaps to severe thermal fracturing. A very large peak friction is always recognized upon the initiation of visible frictional melting, presumably owing to the welding of fault surfaces upon the solidification of melt patches. Frictional properties thus change dramatically with increasing displacement at high velocities, and such a non-linear effect must be incorporated into the analysis of earthquake initiation processes.

  2. Consideration of wear rates at high velocity

    Science.gov (United States)

    Hale, Chad S.

    The development of the research presented here is one in which high velocity relative sliding motion between two bodies in contact has been considered. Overall, the wear environment is truly three-dimensional. The attempt to characterize three-dimensional wear was not economically feasible because it must be analyzed at the micro-mechanical level to get results. Thus, an engineering approximation was carried out. This approximation was based on a metallographic study identifying the need to include viscoplasticity constitutive material models, coefficient of friction, relationships between the normal load and velocity, and the need to understand wave propagation. A sled test run at the Holloman High Speed Test Track (HHSTT) was considered for the determination of high velocity wear rates. In order to adequately characterize high velocity wear, it was necessary to formulate a numerical model that contained all of the physical events present. The experimental results of a VascoMax 300 maraging steel slipper sliding on an AISI 1080 steel rail during a January 2008 sled test mission were analyzed. During this rocket sled test, the slipper traveled 5,816 meters in 8.14 seconds and reached a maximum velocity of 1,530 m/s. This type of environment was never considered previously in terms of wear evaluation. Each of the features of the metallography were obtained through micro-mechanical experimental techniques. The byproduct of this analysis is that it is now possible to formulate a model that contains viscoplasticity, asperity collisions, temperature and frictional features. Based on the observations of the metallographic analysis, these necessary features have been included in the numerical model, which makes use of a time-dynamic program which follows the movement of a slipper during its experimental test run. The resulting velocity and pressure functions of time have been implemented in the explicit finite element code, ABAQUS. Two-dimensional, plane strain models

  3. III-Vs on Si for photonic applications-A monolithic approach

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhechao, E-mail: Zhechao.Wang@intec.ugent.be [School of ICT, Royal Institute of Technology, Electrum 229, Isafjordsgatan 22, 164 40 Kista (Sweden); Junesand, Carl; Metaferia, Wondwosen; Hu, Chen; Wosinski, Lech [School of ICT, Royal Institute of Technology, Electrum 229, Isafjordsgatan 22, 164 40 Kista (Sweden); Lourdudoss, Sebastian, E-mail: slo@kth.se [School of ICT, Royal Institute of Technology, Electrum 229, Isafjordsgatan 22, 164 40 Kista (Sweden)

    2012-10-01

    Highlights: Black-Right-Pointing-Pointer Monolithic evanescently coupled silicon laser (MECSL) structure treated. Black-Right-Pointing-Pointer Optical mode profiles and thermal resistivity of MECSL optimized by simulation. Black-Right-Pointing-Pointer MECSL through epitaxial lateral overgrowth (ELOG) of InP on Si exemplified. Black-Right-Pointing-Pointer Passive waveguide in MECSL also acts as the defect filtering mask in ELOG. Black-Right-Pointing-Pointer Growth of dislocation free thin InP layer on Si by ELOG for MECSL demonstrated. - Abstract: Epitaxial lateral overgrowth (ELOG) technology is demonstrated as a viable technology to realize monolithic integration of III-Vs on silicon. As an alternative to wafer-to-wafer bonding and die-to-wafer bonding, ELOG provides an attractive platform for fabricating discrete and integrated components in high volume at low cost. A possible route for monolithic integration of III-Vs on silicon for silicon photonics is exemplified by the case of a monolithic evanescently coupled silicon laser (MECSL) by combining InP on Si/SiO{sub 2} through ELOG. Passive waveguide in MECSL also acts as the defect filtering mask in ELOG. The structural design of a monolithic evanescently coupled silicon laser (MECSL) and its thermal resistivity are established through simulations. Material studies to realize the above laser through ELOG are undertaken by studying appropriate ELOG pattern designs to achieve InP on narrow regions of silicon. We show that defect-free InP can be obtained on SiO{sub 2} as the first step which paves the way for realizing active photonic devices on Si/SiO{sub 2} waveguides, e.g. an MECSL.

  4. Low Thermal Budget Fabrication of III-V Quantum Nanostructures on Si Substrates

    International Nuclear Information System (INIS)

    Bietti, S; Somaschini, C; Sanguinetti, S; Koguchi, N; Isella, G; Chrastina, D; Fedorov, A

    2010-01-01

    We show the possibility to integrate high quality III-V quantum nanostructures tunable in shape and emission energy on Si-Ge Virtual Substrate. Strong photoemission is observed, also at room temperature, from two different kind of GaAs quantum nanostructures fabricated on Silicon substrate. Due to the low thermal budget of the procedure used for the fabrication of the active layer, Droplet Epitaxy is to be considered an excellent candidate for implementation of optoelectronic devices on CMOS circuits.

  5. An Evaluation of High Velocity Wear

    Science.gov (United States)

    2007-03-01

    171 lb/yrd) performing tests investigating hypersonic environments, aircraft ejection seats and munitions and aerodynamic related effects. The...John Wiley and Sons. 22. Ryder, J. T., Wittenauer, J. P., & Mendez, D. J. (1996). Physical Characterization of SiO2 Aerogel Phase II Final Report

  6. Structural features and electronic properties of group-III-, group-IV-, and group-V-doped Si nanocrystallites

    International Nuclear Information System (INIS)

    Ramos, L E; Degoli, Elena; Cantele, G; Ossicini, Stefano; Ninno, D; Furthmueller, J; Bechstedt, F

    2007-01-01

    We investigate the incorporation of group-III (B and Al), group-IV (C and Ge), and group-V (N and P) impurities in Si nanocrystallites. The structural features and electronic properties of doped Si nanocrystallites, which are faceted or spherical-like, are studied by means of an ab initio pseudopotential method including spin polarization. Jahn-Teller distortions occur in the neighborhood of the impurity sites and the bond lengths show a dependence on size and shape of the nanocrystallites. We find that the acceptor (group-III) and donor (group-V) levels become deep as the nanocrystallites become small. The energy difference between the spin-up and spin-down levels of group-III and group-V impurities decreases as the size of the Si nanocrystallite increases and tends to the value calculated for Si bulk. Doping with carbon introduces an impurity-related level in the energy gap of the Si nanocrystallites

  7. Optical analysis of a III-V-nanowire-array-on-Si dual junction solar cell.

    Science.gov (United States)

    Chen, Yang; Höhn, Oliver; Tucher, Nico; Pistol, Mats-Erik; Anttu, Nicklas

    2017-08-07

    A tandem solar cell consisting of a III-V nanowire subcell on top of a planar Si subcell is a promising candidate for next generation photovoltaics due to the potential for high efficiency. However, for success with such applications, the geometry of the system must be optimized for absorption of sunlight. Here, we consider this absorption through optics modeling. Similarly, as for a bulk dual-junction tandem system on a silicon bottom cell, a bandgap of approximately 1.7 eV is optimum for the nanowire top cell. First, we consider a simplified system of bare, uncoated III-V nanowires on the silicon substrate and optimize the absorption in the nanowires. We find that an optimum absorption in 2000 nm long nanowires is reached for a dense array of approximately 15 nanowires per square micrometer. However, when we coat such an array with a conformal indium tin oxide (ITO) top contact layer, a substantial absorption loss occurs in the ITO. This ITO could absorb 37% of the low energy photons intended for the silicon subcell. By moving to a design with a 50 nm thick, planarized ITO top layer, we can reduce this ITO absorption to 5%. However, such a planarized design introduces additional reflection losses. We show that these reflection losses can be reduced with a 100 nm thick SiO 2 anti-reflection coating on top of the ITO layer. When we at the same time include a Si 3 N 4 layer with a thickness of 90 nm on the silicon surface between the nanowires, we can reduce the average reflection loss of the silicon cell from 17% to 4%. Finally, we show that different approximate models for the absorption in the silicon substrate can lead to a 15% variation in the estimated photocurrent density in the silicon subcell.

  8. Narrow-linewidth Si/III-V lasers: A study of laser dynamics and nonlinear effects

    Science.gov (United States)

    Vilenchik, Yaakov Yasha

    Narrow-linewidth lasers play an important role in a wide variety of applications, from sensing and spectroscopy to optical communication and on-chip clocks. Current narrow-linewidth systems are usually implemented in doped fibers and are big, expensive, and power-hungry. Semiconductor lasers compete favorably in size, cost, and power consumption, but their linewidth is historically limited to the sub-MHz regime. However, it has been recently demonstrated that a new design paradigm, in which the optical energy is stored away from the active region in a composite high-Q resonator, has the potential to dramatically improve the coherence of the laser. This work explores this design paradigm, as applied on the hybrid Si/III-V platform. It demonstrates a record sub-KHz white-noise-floor linewidth. It further shows, both theoretically and experimentally, that this strategy practically eliminates Henry's linewidth enhancement by positioning a damped relaxation resonance at frequencies as low as 70 MHz, yielding truly quantum limited devices at frequencies of interest. In addition to this empirical contribution, this work explores the limits of performance of this platform. Here, the effect of two-photon-absorption and free-carrier-absorption are analyzed, using modified rate equations and Langevin force approach. The analysis predicts that as the intra-cavity field intensity builds up in the high-Q resonator, non-linear effects cause a new domain of performance-limiting factors. Steady-state behavior, laser dynamics, and frequency noise performance are examined in the context of this unique platform, pointing at the importance of nonlinear effects. This work offers a theoretical model predicting laser performance in light of nonlinear effects, obtaining a good agreement with experimental results from fabricated high-Q Si/III-V lasers. In addition to demonstrating unprecedented semiconductor laser performance, this work establishes a first attempt to predict and demonstrate

  9. SIMULATIONS OF HIGH-VELOCITY CLOUDS. I. HYDRODYNAMICS AND HIGH-VELOCITY HIGH IONS

    International Nuclear Information System (INIS)

    Kwak, Kyujin; Henley, David B.; Shelton, Robin L.

    2011-01-01

    We present hydrodynamic simulations of high-velocity clouds (HVCs) traveling through the hot, tenuous medium in the Galactic halo. A suite of models was created using the FLASH hydrodynamics code, sampling various cloud sizes, densities, and velocities. In all cases, the cloud-halo interaction ablates material from the clouds. The ablated material falls behind the clouds where it mixes with the ambient medium to produce intermediate-temperature gas, some of which radiatively cools to less than 10,000 K. Using a non-equilibrium ionization algorithm, we track the ionization levels of carbon, nitrogen, and oxygen in the gas throughout the simulation period. We present observation-related predictions, including the expected H I and high ion (C IV, N V, and O VI) column densities on sightlines through the clouds as functions of evolutionary time and off-center distance. The predicted column densities overlap those observed for Complex C. The observations are best matched by clouds that have interacted with the Galactic environment for tens to hundreds of megayears. Given the large distances across which the clouds would travel during such time, our results are consistent with Complex C having an extragalactic origin. The destruction of HVCs is also of interest; the smallest cloud (initial mass ∼ 120 M sun ) lost most of its mass during the simulation period (60 Myr), while the largest cloud (initial mass ∼ 4 x 10 5 M sun ) remained largely intact, although deformed, during its simulation period (240 Myr).

  10. Hydration of a low-alkali CEM III/B–SiO2 cement (LAC)

    International Nuclear Information System (INIS)

    Lothenbach, Barbara; Le Saout, Gwenn; Ben Haha, Mohsen; Figi, Renato; Wieland, Erich

    2012-01-01

    The hydration of a low-alkali cement based on CEM III/B blended with 10 wt.% of nanosilica has been studied. The nanosilica reacted within the first days and 90% of the slag reacted within 3.5 years. C-S-H (Ca/Si ∼ 1.2, Al/Si ∼ 0.12), calcite, hydrotalcite, ettringite and possibly strätlingite were the main hydrates. The pore water composition revealed ten times lower alkali concentrations than in Portland cements. Reducing conditions (HS − ) and a pH value of 12.2 were observed. Between 1 month and 3.5 years of hydration more hydrates were formed due to the ongoing slag reaction but no significant differences in the composition of the pore solution or solid phase assemblage were observed. On the basis of thermodynamic calculations it is predicted that siliceous hydrogarnet could form in the long-term and, in the presence of siliceous hydrogarnet, also thaumasite. Nevertheless, even after 3.5 year hydration, neither siliceous hydrogarnet nor thaumasite have been observed.

  11. HIGH VELOCITY THERMAL GUN FOR SURFACE PREPARATION AND TREATMENT

    Directory of Open Access Journals (Sweden)

    I.A. Gorlach

    2012-01-01

    Full Text Available Many surface preparation and treatment processes utilise compressed air to propel particles against surfaces in order to clean and treat them. The effectiveness of the processes depends on the velocity of the particles, which in turn depends on the pressure of the compressed air. This paper describes a thermal gun built on the principles of High Velocity Air Fuel (HVAF and High Velocity Oxy Fuel (HVOF processes. The designed apparatus can be used for abrasive blasting, coating of surfaces, cutting of rocks, removing rubber from mining equipment, cleaning of contaminations etc.

  12. Superconducting spoke cavities for high-velocity applications

    Energy Technology Data Exchange (ETDEWEB)

    Hopper, Christopher S. [Old Dominion U.; Delayen, Jean R. [Old Dominion U., JLAB

    2013-10-01

    To date, superconducting spoke cavities have been designed, developed, and tested for particle velocities up to {beta}{sub 0}~0.6, but there is a growing interest in possible applications of multispoke cavities for high-velocity applications. We have explored the design parameter space for low-frequency, high-velocity, double-spoke superconducting cavities in order to determine how each design parameter affects the electromagnetic properties, in particular the surface electromagnetic fields and the shunt impedance. We present detailed design for cavities operating at 325 and 352 MHz and optimized for {beta}{sub 0}~=0.82 and 1.

  13. Luminescence and circularly polarized luminescence of macrocyclic Eu(III) and Tb(III) complexes embedded in xerogel and sol-gel SiO2 glasses

    International Nuclear Information System (INIS)

    Morita, M.; Rau, D.; Kai, T.

    2002-01-01

    Luminescence, time-resolved luminescence, circularly polarized luminescence (CPL) and decay profiles of Ln(III)(15-crownether-5) (Ln=Ce, Sm, Eu, Tb) and Tb(III)-(R),(S)-cyclen derivative complexes doped in xerogel and sol-gel silica glasses are measured at temperatures down to 10 K to characterize luminescence properties and the electronic structure in the excited states. Luminescence spectral profiles and calculation of crystal field parameters (B 0 (2) ,B 2 (2) ) in the 5 D 0 → 7 F J (J=1,2) transition give evidence of the fact that the pentagonal and planar structure of Eu(III) (15-crownether-5) does hold in xerogel and sol-gel glasses prepared at temperatures below 100 deg. C. As annealing temperatures are increased from 80 deg. C to 750 deg. C, Eu(III) complexes in sol-gel glasses are found to decompose gradually to SiO 2 :Eu 3+ . Tb(III)-(R) and (S)-cyclen derivative complexes in xerogel reveal at room temperature and 10 K sharp CPL spectra with luminescence dissymmetry factors g lum =-0.1 and 0.1, respectively. These complexes doped in sol-gel glasses represent luminescence characteristics of rare earth ions encapsulated in the nano-porous host

  14. Distances, metallicities and origins of high-velocity clouds

    NARCIS (Netherlands)

    van Woerden, H; Wakker, BP; Peletier, RF; Schwarz, UJ; KraanKorteweg, RC; Henning, PA; Andernach, H

    2000-01-01

    A review is given of distances of high-velocity clouds (HVCs) derived from absorption-line measurements, and of the metallicities of HVCs. Chain A definitely lies in the Galactic halo, between 2.5 and 7 kpc above the plane. The distance limits available for other HVCs allow a variety of locations:

  15. On the origin of high-velocity runaway stars

    NARCIS (Netherlands)

    Gvaramadze, V.V.; Gualandris, A.; Portegies Zwart, S.

    2009-01-01

    We explore the hypothesis that some high-velocity runaway stars attain their peculiar velocities in the course of exchange encounters between hard massive binaries and a very massive star (either an ordinary 50-100 M-circle dot star or a more massive one, formed through runaway mergers of ordinary

  16. Electrically driven hybrid Si/III-V Fabry-Pérot lasers based on adiabatic mode transformers.

    Science.gov (United States)

    Ben Bakir, B; Descos, A; Olivier, N; Bordel, D; Grosse, P; Augendre, E; Fulbert, L; Fedeli, J M

    2011-05-23

    We report the first demonstration of an electrically driven hybrid silicon/III-V laser based on adiabatic mode transformers. The hybrid structure is formed by two vertically superimposed waveguides separated by a 100-nm-thick SiO2 layer. The top waveguide, fabricated in an InP/InGaAsP-based heterostructure, serves to provide optical gain. The bottom Si-waveguides system, which supports all optical functions, is constituted by two tapered rib-waveguides (mode transformers), two distributed Bragg reflectors (DBRs) and a surface-grating coupler. The supermodes of this hybrid structure are controlled by an appropriate design of the tapers located at the edges of the gain region. In the middle part of the device almost all the field resides in the III-V waveguide so that the optical mode experiences maximal gain, while in regions near the III-V facets, mode transformers ensure an efficient transfer of the power flow towards Si-waveguides. The investigated device operates under quasi-continuous wave regime. The room temperature threshold current is 100 mA, the side-mode suppression ratio is as high as 20 dB, and the fiber-coupled output power is ~7 mW.

  17. Analysis of the Si(111) surface prepared in chemical vapor ambient for subsequent III-V heteroepitaxy

    International Nuclear Information System (INIS)

    Zhao, W.; Steidl, M.; Paszuk, A.; Brückner, S.; Dobrich, A.; Supplie, O.; Kleinschmidt, P.; Hannappel, T.

    2017-01-01

    Highlights: • We investigate the Si(111) surface prepared in CVD ambient at 1000 °C in 950 mbar H_2. • UHV-based XPS, LEED, STM and FTIR as well as ambient AFM are applied. • After processing the Si(111) surface is free of contamination and atomically flat. • The surface exhibits a (1 × 1) reconstruction and monohydride termination. • Wet-chemical pretreatment and homoepitaxy are required for a regular step structure. - Abstract: For well-defined heteroepitaxial growth of III-V epilayers on Si(111) substrates the atomic structure of the silicon surface is an essential element. Here, we study the preparation of the Si(111) surface in H_2-based chemical vapor ambient as well as its atomic structure after contamination-free transfer to ultrahigh vacuum (UHV). Applying complementary UHV-based techniques, we derive a complete picture of the atomic surface structure and its chemical composition. X-ray photoelectron spectroscopy measurements after high-temperature annealing confirm a Si surface free of any traces of oxygen or other impurities. The annealing in H_2 ambient leads to a monohydride surface termination, as verified by Fourier-transform infrared spectroscopy. Scanning tunneling microscopy confirms a well ordered, atomically smooth surface, which is (1 × 1) reconstructed, in agreement with low energy electron diffraction patterns. Atomic force microscopy reveals a significant influence of homoepitaxy and wet-chemical pretreatment on the surface morphology. Our findings show that wet-chemical pretreatment followed by high-temperature annealing leads to contamination-free, atomically flat Si(111) surfaces, which are ideally suited for subsequent III-V heteroepitaxy.

  18. Analysis of the Si(111) surface prepared in chemical vapor ambient for subsequent III-V heteroepitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, W.; Steidl, M.; Paszuk, A. [Technische Universität Ilmenau, Institut für Physik, 98693 Ilmenau (Germany); Brückner, S. [Technische Universität Ilmenau, Institut für Physik, 98693 Ilmenau (Germany); Helmholtz-Zentrum Berlin, Institut für Solare Brennstoffe, 14109 Berlin (Germany); Dobrich, A. [Technische Universität Ilmenau, Institut für Physik, 98693 Ilmenau (Germany); Supplie, O. [Technische Universität Ilmenau, Institut für Physik, 98693 Ilmenau (Germany); Helmholtz-Zentrum Berlin, Institut für Solare Brennstoffe, 14109 Berlin (Germany); Kleinschmidt, P. [Technische Universität Ilmenau, Institut für Physik, 98693 Ilmenau (Germany); Hannappel, T., E-mail: thomas.hannappel@tu-ilmenau.de [Technische Universität Ilmenau, Institut für Physik, 98693 Ilmenau (Germany); Helmholtz-Zentrum Berlin, Institut für Solare Brennstoffe, 14109 Berlin (Germany)

    2017-01-15

    Highlights: • We investigate the Si(111) surface prepared in CVD ambient at 1000 °C in 950 mbar H{sub 2}. • UHV-based XPS, LEED, STM and FTIR as well as ambient AFM are applied. • After processing the Si(111) surface is free of contamination and atomically flat. • The surface exhibits a (1 × 1) reconstruction and monohydride termination. • Wet-chemical pretreatment and homoepitaxy are required for a regular step structure. - Abstract: For well-defined heteroepitaxial growth of III-V epilayers on Si(111) substrates the atomic structure of the silicon surface is an essential element. Here, we study the preparation of the Si(111) surface in H{sub 2}-based chemical vapor ambient as well as its atomic structure after contamination-free transfer to ultrahigh vacuum (UHV). Applying complementary UHV-based techniques, we derive a complete picture of the atomic surface structure and its chemical composition. X-ray photoelectron spectroscopy measurements after high-temperature annealing confirm a Si surface free of any traces of oxygen or other impurities. The annealing in H{sub 2} ambient leads to a monohydride surface termination, as verified by Fourier-transform infrared spectroscopy. Scanning tunneling microscopy confirms a well ordered, atomically smooth surface, which is (1 × 1) reconstructed, in agreement with low energy electron diffraction patterns. Atomic force microscopy reveals a significant influence of homoepitaxy and wet-chemical pretreatment on the surface morphology. Our findings show that wet-chemical pretreatment followed by high-temperature annealing leads to contamination-free, atomically flat Si(111) surfaces, which are ideally suited for subsequent III-V heteroepitaxy.

  19. An HST/COS legacy survey of high-velocity ultraviolet absorption in the Milky Way's circumgalactic medium and the Local Group

    Science.gov (United States)

    Richter, P.; Nuza, S. E.; Fox, A. J.; Wakker, B. P.; Lehner, N.; Ben Bekhti, N.; Fechner, C.; Wendt, M.; Howk, J. C.; Muzahid, S.; Ganguly, R.; Charlton, J. C.

    2017-11-01

    Context. The Milky Way is surrounded by large amounts of diffuse gaseous matter that connects the stellar body of our Galaxy with its large-scale Local Group (LG) environment. Aims: To characterize the absorption properties of this circumgalactic medium (CGM) and its relation to the LG we present the so-far largest survey of metal absorption in Galactic high-velocity clouds (HVCs) using archival ultraviolet (UV) spectra of extragalactic background sources. The UV data are obtained with the Cosmic Origins Spectrograph (COS) onboard the Hubble Space Telescope (HST) and are supplemented by 21 cm radio observations of neutral hydrogen. Methods: Along 270 sightlines we measure metal absorption in the lines of Si II, Si III, C II, and C iv and associated H I 21 cm emission in HVCs in the velocity range | vLSR | = 100-500 km s-1. With this unprecedented large HVC sample we were able to improve the statistics on HVC covering fractions, ionization conditions, small-scale structure, CGM mass, and inflow rate. For the first time, we determine robustly the angular two point correlation function of the high-velocity absorbers, systematically analyze antipodal sightlines on the celestial sphere, and compare the HVC absorption characteristics with that of damped Lyman α absorbers (DLAs) and constrained cosmological simulations of the LG (CLUES project). Results: The overall sky-covering fraction of high-velocity absorption is 77 ± 6 percent for the most sensitive ion in our survey, Si III, and for column densities log N(Si III)≥ 12.1. This value is 4-5 times higher than the covering fraction of 21 cm neutral hydrogen emission at log N(H I)≥ 18.7 along the same lines of sight, demonstrating that the Milky Way's CGM is multi-phase and predominantly ionized. The measured equivalent-width ratios of Si II, Si III, C II, and C iv are inhomogeneously distributed on large and small angular scales, suggesting a complex spatial distribution of multi-phase gas that surrounds the

  20. Simple Motor Control Concept Results High Efficiency at High Velocities

    Science.gov (United States)

    Starin, Scott; Engel, Chris

    2013-09-01

    The need for high velocity motors in space applications for reaction wheels and detectors has stressed the limits of Brushless Permanent Magnet Motors (BPMM). Due to inherent hysteresis core losses, conventional BPMMs try to balance the need for torque verses hysteresis losses. Cong-less motors have significantly less hysteresis losses but suffer from lower efficiencies. Additionally, the inherent low inductance in cog-less motors result in high ripple currents or high switching frequencies, which lowers overall efficiency and increases performance demands on the control electronics.However, using a somewhat forgotten but fully qualified technology of Isotropic Magnet Motors (IMM), extremely high velocities may be achieved at low power input using conventional drive electronics. This paper will discuss the trade study efforts and empirical test data on a 34,000 RPM IMM.

  1. High-velocity runaway stars from three-body encounters

    Science.gov (United States)

    Gvaramadze, V. V.; Gualandris, A.; Portegies Zwart, S.

    2010-01-01

    We performed numerical simulations of dynamical encounters between hard, massive binaries and a very massive star (VMS; formed through runaway mergers of ordinary stars in the dense core of a young massive star cluster) to explore the hypothesis that this dynamical process could be responsible for the origin of high-velocity (≥ 200 - 400 km s-1) early or late B-type stars. We estimated the typical velocities produced in encounters between very tight massive binaries and VMSs (of mass of ≥ 200 M⊙) and found that about 3 - 4% of all encounters produce velocities ≥ 400 km s-1, while in about 2% of encounters the escapers attain velocities exceeding the Milky Ways's escape velocity. We therefore argue that the origin of high-velocity (≥ 200 - 400 km s-1) runaway stars and at least some so-called hypervelocity stars could be associated with dynamical encounters between the tightest massive binaries and VMSs formed in the cores of star clusters. We also simulated dynamical encounters between tight massive binaries and single ordinary 50 - 100 M⊙ stars. We found that from 1 to ≃ 4% of these encounters can produce runaway stars with velocities of ≥ 300 - 400 km s-1 (typical of the bound population of high-velocity halo B-type stars) and occasionally (in less than 1% of encounters) produce hypervelocity (≥ 700 km s-1) late B-type escapers.

  2. Silicon-photonics light source realized by III-V/Si grating-mirror laser

    DEFF Research Database (Denmark)

    Chung, Il-Sug; Mørk, Jesper

    2010-01-01

    waveguide are made in the Si layer of a silicon-on-insulator wafer by using Si-electronics-compatible processing. The HCG works as a highly-reflective mirror for vertical resonance and at the same time routes light to the in-plane output waveguide. Numerical simulations show superior performance compared...... to existing silicon light sources....

  3. Vertical group III-V nanowires on si, heterostructures, flexible arrays and fabrication

    Science.gov (United States)

    Wang, Deli; Soci, Cesare; Bao, Xinyu; Wei, Wei; Jing, Yi; Sun, Ke

    2015-01-13

    Embodiments of the invention provide a method for direct heteroepitaxial growth of vertical III-V semiconductor nanowires on a silicon substrate. The silicon substrate is etched to substantially completely remove native oxide. It is promptly placed in a reaction chamber. The substrate is heated and maintained at a growth temperature. Group III-V precursors are flowed for a growth time. Preferred embodiment vertical Group III-V nanowires on silicon have a core-shell structure, which provides a radial homojunction or heterojunction. A doped nanowire core is surrounded by a shell with complementary doping. Such can provide high optical absorption due to the long optical path in the axial direction of the vertical nanowires, while reducing considerably the distance over which carriers must diffuse before being collected in the radial direction. Alloy composition can also be varied. Radial and axial homojunctions and heterojunctions can be realized. Embodiments provide for flexible Group III-V nanowire structures. An array of Group III-V nanowire structures is embedded in polymer. A fabrication method forms the vertical nanowires on a substrate, e.g., a silicon substrate. Preferably, the nanowires are formed by the preferred methods for fabrication of Group III-V nanowires on silicon. Devices can be formed with core/shell and core/multi-shell nanowires and the devices are released from the substrate upon which the nanowires were formed to create a flexible structure that includes an array of vertical nanowires embedded in polymer.

  4. Decision making in high-velocity environments: implications for healthcare.

    Science.gov (United States)

    Stepanovich, P L; Uhrig, J D

    1999-01-01

    Healthcare can be considered a high-velocity environment and, as such, can benefit from research conducted in other industries regarding strategic decision making. Strategic planning is not only relevant to firms in high-velocity environments, but is also important for high performance and survival. Specifically, decision-making speed seems to be instrumental in differentiating between high and low performers; fast decision makers outperform slow decision makers. This article outlines the differences between fast and slow decision makers, identifies five paralyses that can slow decision making in healthcare, and outlines the role of a planning department in circumventing these paralyses. Executives can use the proposed planning structure to improve both the speed and quality of strategic decisions. The structure uses planning facilitators to avoid the following five paralyses: 1. Analysis. Decision makers can no longer afford the luxury of lengthy, detailed analysis but must develop real-time systems that provide appropriate, timely information. 2. Alternatives. Many alternatives (beyond the traditional two or three) need to be considered and the alternatives must be evaluated simultaneously. 3. Group Think. Decision makers must avoid limited mind-sets and autocratic leadership styles by seeking out independent, knowledgeable counselors. 4. Process. Decision makers need to resolve conflicts through "consensus with qualification," as opposed to waiting for everyone to come on board. 5. Separation. Successful implementation requires a structured process that cuts across disciplines and levels.

  5. MAGNETIZED GAS IN THE SMITH HIGH VELOCITY CLOUD

    International Nuclear Information System (INIS)

    Hill, Alex S.; McClure-Griffiths, Naomi M.; Mao, S. A.; Benjamin, Robert A.; Lockman, Felix J.

    2013-01-01

    We report the first detection of magnetic fields associated with the Smith High Velocity Cloud. We use a catalog of Faraday rotation measures toward extragalactic radio sources behind the Smith Cloud, new H I observations from the Robert C. Byrd Green Bank Telescope, and a spectroscopic map of Hα from the Wisconsin H-Alpha Mapper Northern Sky Survey. There are enhancements in rotation measure (RM) of ≈100 rad m –2 which are generally well correlated with decelerated Hα emission. We estimate a lower limit on the line-of-sight component of the field of ≈8 μG along a decelerated filament; this is a lower limit due to our assumptions about the geometry. No RM excess is evident in sightlines dominated by H I or Hα at the velocity of the Smith Cloud. The smooth Hα morphology of the emission at the Smith Cloud velocity suggests photoionization by the Galactic ionizing radiation field as the dominant ionization mechanism, while the filamentary morphology and high (≈1 Rayleigh) Hα intensity of the lower-velocity magnetized ionized gas suggests an ionization process associated with shocks due to interaction with the Galactic interstellar medium. The presence of the magnetic field may contribute to the survival of high velocity clouds like the Smith Cloud as they move from the Galactic halo to the disk. We expect these data to provide a test for magnetohydrodynamic simulations of infalling gas

  6. Modeling Three-Terminal III-V/Si Tandem Solar Cells: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Warren, Emily L.; Deceglie, Michael G.; Stradins, Paul; Tamboli, Adele C.

    2017-06-27

    Three-terminal (3T) tandem cells fabricated by combining an interdigitated back contact (IBC) Si device with a wider bandgap top cell have the potential to provide a robust operating mechanism to efficiently capture the solar spectrum without the need to current match sub-cells or fabricate complicated metal interconnects between cells. Here we develop a two dimensional device physics model to study the behavior of IBC Si solar cells operated in a 3T configuration. We investigate how different cell designs impact device performance and discuss the analysis protocol used to understand and optimize power produced from a single junction, 3T device.

  7. Indication of the Hanle Effect by Comparing the Scattering Polarization Observed by CLASP in the Ly α and Si iii 120.65 nm Lines

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, R.; Kubo, M.; Kano, R.; Narukage, N.; Bando, T.; Katsukawa, Y.; Giono, G.; Suematsu, Y.; Hara, H. [National Astronomical Observatory of Japan, National Institutes of Natural Science, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Bueno, J. Trujillo [Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife (Spain); Uitenbroek, H. [National Solar Observatory, 3665 Discovery Drive, Boulder, CO 80303 (United States); Tsuneta, S.; Ishikawa, S.; Shimizu, T.; Sakao, T. [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo, Sagamihara, Kanagawa 252-5210 (Japan); Goto, M. [National Institute for Fusion Science, National Institutes of Natural Sciences, Toki, Gifu 509-5292 (Japan); Winebarger, A.; Kobayashi, K. [NASA Marshall Space Flight Center, ZP 13, Huntsville, AL 35812 (United States); Cirtain, J. [University of Virginia, Department of Astronomy, 530 McCormick Road, Charlottesville, VA 22904 (United States); Champey, P. [University of Alabama in Huntsville, 301 Sparkman Drive, Huntsville, AL 35899 (United States); and others

    2017-05-20

    The Chromospheric Lyman-Alpha Spectro-Polarimeter is a sounding rocket experiment that has provided the first successful measurement of the linear polarization produced by scattering processes in the hydrogen Ly α line (121.57 nm) radiation of the solar disk. In this paper, we report that the Si iii line at 120.65 nm also shows scattering polarization and we compare the scattering polarization signals observed in the Ly α and Si iii lines in order to search for observational signatures of the Hanle effect. We focus on four selected bright structures and investigate how the U / I spatial variations vary between the Ly α wing, the Ly α core, and the Si iii line as a function of the total unsigned photospheric magnetic flux estimated from Solar Dynamics Observatory /Helioseismic and Magnetic Imager observations. In an internetwork region, the Ly α core shows an antisymmetric spatial variation across the selected bright structure, but it does not show it in other more magnetized regions. In the Si iii line, the spatial variation of U / I deviates from the above-mentioned antisymmetric shape as the total unsigned photospheric magnetic flux increases. A plausible explanation of this difference is the operation of the Hanle effect. We argue that diagnostic techniques based on the scattering polarization observed simultaneously in two spectral lines with very different sensitivities to the Hanle effect, like Ly α and Si iii, are of great potential interest for exploring the magnetism of the upper solar chromosphere and transition region.

  8. High-velocity winds from a dwarf nova during outburst

    Science.gov (United States)

    Cordova, F. A.; Mason, K. O.

    1982-01-01

    An ultraviolet spectrum of the dwarf nova TW Vir during an optical outburst shows shortward-shifted absorption features with edge velocities as high as 4800 km/s, about the escape velocity of a white dwarf. A comparison of this spectrum with the UV spectra of other cataclysmic variables suggests that mass loss is evident only for systems with relatively high luminosities (more than about 10 solar luminosities) and low inclination angles with respect to the observer's line of sight. The mass loss rate for cataclysmic variables is of order 10 to the -11th solar mass per yr; this is from 0.01 to 0.001 of the mass accretion rate onto the compact star in the binary. The mass loss may occur by a mechanism similar to that invoked for early-type stars, i.e., radiation absorbed in the lines accelerates the accreting gas to the high velocities observed.

  9. RESPONSE OF STRUCTURES TO HIGH VELOCITY IMPACTS: A GENERALIZED ALGORITHM

    Directory of Open Access Journals (Sweden)

    Aversh'ev Anatoliy Sergeevich

    2012-10-01

    Full Text Available In this paper, a high velocity impact produced by a spherical striker and a target are considered; different stages of loading and unloading, target deformations and propagation of non-stationary wave surfaces within the target are analyzed. The problem of the strike modeling and subsequent deformations is solved by using not only the equations of mechanics of deformable rigid bodies, but also fluid mechanics equations. The target material is simulated by means of an ideal "plastic gas". Modeling results and theoretical calculations are compared to the experimental results. The crater depth, its correlation with the striker diameter, values of the pressure and deformations of the target underneath the contact area are determined as the main characteristics of dynamic interaction.

  10. Influences of the Air in Metal Powder High Velocity Compaction

    Directory of Open Access Journals (Sweden)

    Liu Jun

    2017-01-01

    Full Text Available During the process of metal powder high velocity impact compaction, the air is compressed sharply and portion remains in the compacts. In order to study the Influences, a discrete density volleyball accumulation model for aluminium powder was established with the use of ABAQUS. Study found that the powder porosity air obstruct the pressing process because remaining air reduced strength and density of the compacts in the current high-speed pressing (V≤100m/s. When speed further increased (V≥100m/s, the temperature of the air increased sharply, and was even much higher than the melting point of the material. When aluminium powder was compressed at a speed of 200m/s, temperatures of air could reach 2033 K, far higher than the melting point of 877 K. Increased density of powders was a result of local softening and even melt adhesive while air between particles with high temperature and pressure flowed past.

  11. Development of a high velocity rain erosion test method

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Dong Teak; Jin, Doo Han [Korea University of Technology and Education, Cheonan (Korea, Republic of); Kang, Hyung [Agency for Defense Development, Daejeon (Korea, Republic of)

    2009-07-01

    The nose of a missile, flying through raining region with a supersonic speed, is subjected to the rain erosion because the nose is made of a brittle ceramic material. A simple yet very effective rain erosion test method is developed. The sabot assembly similar to the hypodermic syringe carries specific amount of water is launched by a low pressure air gun. After the stopper stop the sabot assembly by impact, the steel plunger continues moving toward to squeeze the silicon rubber in front. The pressurized silicon rubber then is squeezed through the orifice in front of the sabot at high velocity, thus, accelerates the water droplet to higher velocity. The droplet velocity up to 800m/s is successfully attained using a low pressure air gun. The ceramic specimen assembly is placed in front of the high speed water droplet and the rain erosion damage on the surface of the specimen is observed.

  12. Supernovae-generated high-velocity compact clouds

    Science.gov (United States)

    Yalinewich, A.; Beniamini, P.

    2018-05-01

    Context. A previous study claimed the discovery of an intermediate-mass black hole (IMBH). This hypothetical black hole was invoked in order to explain the high-velocity dispersion in one of several dense molecular clouds near the Galactic center. The same study considered the possibility that this cloud was due to a supernova explosion, but disqualified this scenario because no X-rays were detected. Aims: We here check whether a supernova explosion could have produced that cloud, and whether this explanation is more likely than an IMBH. More specifically, we wish to determine whether a supernova inside a dense molecular cloud would emit in the X-rays. Methods: We have approached this problem from two different directions. First, we performed an analytic calculation to determine the cooling rate by thermal bremsstrahlung and compared this time to the lifetime of the cloud. Second, we estimated the creation rate of these dense clouds in the central molecular zone (CMZ) region near the Galactic center, where they were observed. Based on this rate, we can place lower bounds on the total mass of IMBHs and clouds and compare this to the masses of the components of the CMZ. Results: We find that the cooling time of the supernova remnant inside a molecular cloud is shorter than its dynamical time. This means that the temperature in such a remnant would be much lower than that of a typical supernova remnant. At such a low temperature, the remnant is not expected to emit in the X-rays. We also find that to explain the rate at which such dense clouds are created requires fine-tuning the number of IMBHs. Conclusions: We find the supernova model to be a more likely explanation for the formation of high-velocity compact clouds than an IMBH.

  13. Displacement of group III, IV, V, and VI impurities in Si by the analyzing beam

    International Nuclear Information System (INIS)

    Wiggers, L.W.; Saris, F.W.

    1978-01-01

    By means of 2MeV He + backscattering and 1.5 MeV H + backscattering and nuclear reaction analysis in combination with the channeling technique displacement of impurity atoms in Si from substitutional into non-substitutional positions under bombardment is studied. In this paper the authors report on the displacement of Ga, Ge, P, As, Sb, Bi, Se, and Te in Si single crystals. It appears that displacement of impurity atoms is not an exception but almost a rule. The only element for which an effect was not found was Ge. Values for the displacement rate were derived and appeared to be, with the exception for Ge, all of the same order of magnitude. (Auth.)

  14. Treatment of open tibial fracture with bone defect caused by high velocity missiles: A case report

    Directory of Open Access Journals (Sweden)

    Golubović Zoran

    2013-01-01

    Full Text Available Introduction .Tibia fracture caused by high velocity missiles is mostly comminuted and followed by bone defect which makes their healing process extremely difficult and prone to numerous complications. Case Outline. A 34-year-old male was wounded at close range by a semi-automatic gun missile. He was wounded in the distal area of the left tibia and suffered a massive defect of the bone and soft tissue. After the primary treatment of the wound, the fracture was stabilized with an external fixator type Mitkovic, with convergent orientation of the pins. The wound in the medial region of the tibia was closed with the secondary stitch, whereas the wound in the lateral area was closed with the skin transplant after Thiersch. Due to massive bone defect in the area of the rifle-missile wound six months after injury, a medical team placed a reconstructive external skeletal fixator type Mitkovic and performed corticotomy in the proximal metaphyseal area of the tibia. By the method of bone transport (distractive osteogenesis, the bone defect of the tibia was replaced. After the fracture healing seven months from the secondary surgery, the fixator was removed and the patient was referred to physical therapy. Conclusion. Surgical treatment of wounds, external fixation, performing necessary debridement, adequate antibiotic treatment and soft and bone tissue reconstruction are essential in achieving good results in patients with the open tibial fracture with bone defect caused by high velocity missiles. Reconstruction of bone defect can be successfully treated by reconstructive external fixator Mitkovic. [Projekat Ministarstva nauke Republike Srbije, br. III 41017 i br. III 41004

  15. Formation of silicon Oxide nano thickness on Si (III) with the assistance of Cs

    International Nuclear Information System (INIS)

    Bahari, A.; Bagheri, M.

    2006-01-01

    : The possibility of controlling the growth of a uniform ultra thin oxide on silicon via oxygen dosing at low temperatures, would be a great interest for the projected further development of nano electronics. One way to achieve this is to be able to control the conversion of chemically adsorbed oxygen and retained at room temperature into oxide during subsequent heating. Oxygen is chemisorbed at room temperature on Si(111) surface to saturation ( >100 L O 2 ), and the experimental chamber is then evacuated. This leaves adsorbed oxygen as atomically inserted on Si surface which sits on the back bonds. This surface is then used as a base for further processing which in one case consists of annealing to 600- 700 d eg C and subsequent exposures equivalent to the first step. This is repeated again. As the focus of this work, a series of experiments are done with adsorbed Cs, which assists in retaining oxygen and in transforming the adsorbed oxygen into oxide upon heating. It was found that the oxide formed on the surface at low coverage clusters. Without any external influence, the clusters may be made to coalesce upon further oxygen adsorption at room temperature, and annealing terminates as a continuous monolayer of amorphous oxide on top of a well-ordered silicon substrate. This configuration is inert to further uptake of oxygen. A higher oxide thickness could be obtained with Cs. Also in this case, the oxide growth saturates in an inert oxide Iayer

  16. High velocity electromagnetic particle launcher for aerosol production studies

    International Nuclear Information System (INIS)

    Benson, D.A.; Rader, D.J.

    1986-05-01

    This report describes the development of a new device for study of metal combustion, breakup and production of aerosols in a high velocity environment. Metal wires are heated and electromagnetically launched with this device to produce molten metal droplets moving at velocities ranging up to about Mach 1. Such tests are presently intended to simulate the behavior of metal streamers ejected from a high-explosive detonation. A numerical model of the launcher performance in terms of sample properties, sample geometry and pulser electrical parameters is presented which can be used as a tool for design of specific test conditions. Results from several tests showing the range of sample velocities accessible with this device are described and compared with the model. Photographic measurements showing the behavior of tungsten and zirconium metal droplets are presented. Estimates of the Weber breakup and drag on the droplets, as well as calculations of the droplet trajectories, are described. Such studies may ultimately be useful in assessing environmental hazards in the handling and storage of devices containing metallic plutonium

  17. On the origin of high-velocity runaway stars

    Science.gov (United States)

    Gvaramadze, Vasilii V.; Gualandris, Alessia; Portegies Zwart, Simon

    2009-06-01

    We explore the hypothesis that some high-velocity runaway stars attain their peculiar velocities in the course of exchange encounters between hard massive binaries and a very massive star (either an ordinary 50-100Msolar star or a more massive one, formed through runaway mergers of ordinary stars in the core of a young massive star cluster). In this process, one of the binary components becomes gravitationally bound to the very massive star, while the second one is ejected, sometimes with a high speed. We performed three-body scattering experiments and found that early B-type stars (the progenitors of the majority of neutron stars) can be ejected with velocities of >~200-400kms-1 (typical of pulsars), while 3-4Msolar stars can attain velocities of >~300-400kms-1 (typical of the bound population of halo late B-type stars). We also found that the ejected stars can occasionally attain velocities exceeding the Milky Ways's escape velocity.

  18. Comparative Study of Catalytic Oxidation of Ethanol to Acetaldehyde Using Fe(III Dispersed on Sb2O5 Grafted on SiO2 and on Untreated SiO2 Surfaces

    Directory of Open Access Journals (Sweden)

    Benvenutti Edilson V.

    1998-01-01

    Full Text Available Fe(III was supported on Sb(V oxide grafted on the silica gel surface and directly on the silica gel surface using ion-exchange and impregnation processes producing Fe/Sb/SiO2 and Fe/SiO2, respectively. The catalytic conversion of ethanol to acetaldehyde was much more efficient using Fe/Sb/SiO2 than Fe/SiO2 as catalyst. This higher efficiency of the former catalyst takes into account two aspects: a the new phase FeSbO4 formed when Fe/Sb/SiO2 is heat treated and, b it is higher dispersion on the matrix.

  19. Experimental and numerical studies of high-velocity impact fragmentation

    Energy Technology Data Exchange (ETDEWEB)

    Kipp, M.E.; Grady, D.E.; Swegle, J.W.

    1993-08-01

    Developments are reported in both experimental and numerical capabilities for characterizing the debris spray produced in penetration events. We have performed a series of high-velocity experiments specifically designed to examine the fragmentation of the projectile during impact. High-strength, well-characterized steel spheres (6.35 mm diameter) were launched with a two-stage light-gas gun to velocities in the range of 3 to 5 km/s. Normal impact with PMMA plates, thicknesses of 0.6 to 11 mm, applied impulsive loads of various amplitudes and durations to the steel sphere. Multiple flash radiography diagnostics and recovery techniques were used to assess size, velocity, trajectory and statistics of the impact-induced fragment debris. Damage modes to the primary target plate (plastic) and to a secondary target plate (aluminum) were also evaluated. Dynamic fragmentation theories, based on energy-balance principles, were used to evaluate local material deformation and fracture state information from CTH, a three-dimensional Eulerian solid dynamics shock wave propagation code. The local fragment characterization of the material defines a weighted fragment size distribution, and the sum of these distributions provides a composite particle size distribution for the steel sphere. The calculated axial and radial velocity changes agree well with experimental data, and the calculated fragment sizes are in qualitative agreement with the radiographic data. A secondary effort involved the experimental and computational analyses of normal and oblique copper ball impacts on steel target plates. High-resolution radiography and witness plate diagnostics provided impact motion and statistical fragment size data. CTH simulations were performed to test computational models and numerical methods.

  20. Chromospheric oscillations observed with OSO 8. III. Average phase spectra for Si II

    International Nuclear Information System (INIS)

    White, O.R.; Athay, R.G.

    1979-01-01

    Time series of intensity and Doppler-shift fluctuations in the Si II emission lines lambda816.93 and lambda817.45 are Fourier analyzed to determine the frequency variation of phase differences between intensity and velocity and between these two lines formed 300 km apart in the middle chromosphere. Average phase spectra show that oscillations between 2 and 9 mHz in the two lines have time delays from 35 to 40 s, which is consistent with the upward propagation of sound wave at 8.6-7.5 km s -1 . In this same frequency band near 3 mHz, maximum brightness leads maximum blueshift by 60 0 . At frequencies above 11 mHz where the power spectrum is flat, the phase differences are uncertain, but approximately 65% of the cases indicate upward propagation. At these higher frequencies, the phase lead between intensity and blue Doppler shift ranges from 0 0 to 180 0 with an average value of 90 0 . However, the phase estimates in this upper band are corrupted by both aliasing and randomness inherent to the measured signals. Phase differences in the two narrow spectral features seen at 10.5 and 27 mHz in the power spectra are shown to be consistent with properties expected for aliases of the wheel rotation rate of the spacecraft wheel section

  1. Fault gouge rheology under confined, high-velocity conditions

    Science.gov (United States)

    Reches, Z.; Madden, A. S.; Chen, X.

    2012-12-01

    We recently developed the experimental capability to investigate the shear properties of fine-grain gouge under confined conditions and high-velocity. The experimental system includes a rotary apparatus that can apply large displacements of tens of meters, slip velocity of 0.001- 2.0 m/s, and normal stress of 35 MPa (Reches and Lockner, 2010). The key new component is a Confined ROtary Cell (CROC) that can shear a gouge layer either dry or under pore-pressure. The pore pressure is controlled by two syringe pumps. CROC includes a ring-shape gouge chamber of 62.5 mm inner diameter, 81.25 mm outer diameter, and up to 3 mm thick gouge sample. The lower, rotating part of CROC contains the sample chamber, and the upper, stationary part includes the loading, hollow cylinder and setting for temperature, and dilation measurements, and pore-pressure control. Each side of the gouge chamber has two pairs of industrial, spring-energized, self-lubricating, teflon-graphite seals, built for particle media and can work at temperature up to 250 ded C. The space between each of the two sets of seals is pressurized by nitrogen. This design generates 'zero-differential pressure' on the inner seal (which is in contact with the gouge powder), and prevents gouge leaks. For the preliminary dry experiments, we used ~2.0 mm thick layers of room-dry kaolinite powder. Total displacements were on the order of meters and normal stress up to 4 MPa. The initial shear was accommodated by multiple internal slip surfaces within the kaolinite layer accommodated as oriented Riedel shear structures. Later, the shear was localized within a thin, plate-parallel Y-surface. The kaolinite layer was compacted at a quasi-asymptotic rate, and displayed a steady-state friction coefficient of ~ 0.5 with no clear dependence on slip velocity up to 0.15 m/s. Further experiments with loose quartz sand (grain size ~ 125 micron) included both dry runs and pore-pressure (distilled water) controlled runs. The sand was

  2. Towards III-V solar cells on Si: Improvement in the crystalline quality of Ge-on-Si virtual substrates through low porosity porous silicon buffer layer and annealing

    International Nuclear Information System (INIS)

    Calabrese, Gabriele; Baricordi, Stefano; Bernardoni, Paolo; Fin, Samuele; Guidi, Vincenzo; Vincenzi, Donato

    2014-01-01

    A comparison between the crystalline quality of Ge grown on bulk Si and on a low porosity porous Si (pSi) buffer layer using low energy plasma enhanced chemical vapor deposition is reported. Omega/2Theta coupled scans around the Ge and Si (004) diffraction peaks show a reduction of the Ge full-width at half maximum (FWHM) of 22.4% in presence of the pSi buffer layer, indicating it is effective in improving the epilayer crystalline quality. At the same time atomic force microscopy analysis shows an increase in root means square roughness for Ge grown on pSi from 38.5 nm to 48.0 nm, as a consequence of the larger surface roughness of pSi compared to bulk Si. The effect of 20 minutes vacuum annealing at 580°C is also investigated. The annealing leads to a FWHM reduction of 23% for Ge grown on Si and of 36.5% for Ge on pSi, resulting in a FWHM of 101 arcsec in the latter case. At the same time, the RMS roughness is reduced of 8.8% and of 46.5% for Ge grown on bulk Si and on pSi, respectively. The biggest improvement in the crystalline quality of Ge grown on pSi with respect to Ge grown on bulk Si observed after annealing is a consequence of the simultaneous reorganization of the Ge epilayer and the buffer layer driven by energy minimization. A low porosity buffer layer can thus be used for the growth of low defect density Ge on Si virtual substrates for the successive integration of III-V multijunction solar cells on Si. The suggested approach is simple and fast –thus allowing for high throughput-, moreover is cost effective and fully compatible with subsequent wafer processing. Finally it does not introduce new chemicals in the solar cell fabrication process and can be scaled to large area silicon wafers

  3. Reduction of bonding resistance of two-terminal III-V/Si tandem solar cells fabricated using smart-stack technology

    Science.gov (United States)

    Baba, Masaaki; Makita, Kikuo; Mizuno, Hidenori; Takato, Hidetaka; Sugaya, Takeyoshi; Yamada, Noboru

    2017-12-01

    This paper describes a method that remarkably reduces the bonding resistance of mechanically stacked two-terminal GaAs/Si and InGaP/Si tandem solar cells, where the top and bottom cells are bonded using a Pd nanoparticle array. A transparent conductive oxide (TCO) layer, which partially covers the surface of the Si bottom cell below the electrodes of the III-V top cell, significantly enhances the fill factor (FF) and cell conversion efficiency. The partial TCO layer reduces the bonding resistance and thus, increases the FF and efficiency of InGaP/Si by factors of 1.20 and 1.11, respectively. Eventually, the efficiency exceeds 15%. Minimizing the optical losses at the bonding interfaces of the TCO layer is important in the fabrication of high-efficiency solar cells. To help facilitate this, the optical losses in the tandem solar cells are thoroughly characterized through optical simulations and experimental verifications.

  4. Integral Field Spectroscopy of Markarian 273: Mapping High-Velocity Gas Flows and an Off-Nucleus Seyfert 2 Nebula.

    Science.gov (United States)

    Colina; Arribas; Borne

    1999-12-10

    Integral field optical spectroscopy with the INTEGRAL fiber-based system is used to map the extended ionized regions and gas flows in Mrk 273, one of the closest ultraluminous infrared galaxies. The Hbeta and [O iii] lambda5007 maps show the presence of two distinct regions separated by 4&arcsec; (3.1 kpc) along position angle (P.A.) 240 degrees. The northeastern region coincides with the optical nucleus of the galaxy and shows the spectral characteristics of LINERs. The southwestern region is dominated by [O iii] emission and is classified as a Seyfert 2. Therefore, in the optical, Mrk 273 is an ultraluminous infrared galaxy with a LINER nucleus and an extended off-nucleus Seyfert 2 nebula. The kinematics of the [O iii] ionized gas shows (1) the presence of highly disturbed gas in the regions around the LINER nucleus, (2) a high-velocity gas flow with a peak-to-peak amplitude of 2.4x103 km s-1, and (3) quiescent gas in the outer regions (at 3 kpc). We hypothesize that the high-velocity flow is the starburst-driven superwind generated in an optically obscured nuclear starburst and that the quiescent gas is directly ionized by a nuclear source, similar to the ionization cones typically seen in Seyfert galaxies.

  5. Tannin-immobilized mesoporous silica bead (BT-SiO{sub 2}) as an effective adsorbent of Cr(III) in aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Huang Xin [Department of Biomass Chemistry and Engineering, Sichuan University, Chengdu 610065 (China); Liao Xuepin, E-mail: xpliao@scu.edu.cn [Department of Biomass Chemistry and Engineering, Sichuan University, Chengdu 610065 (China); Shi Bi [National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065 (China)

    2010-01-15

    This study describes a new approach for the preparation of tannin-immobilized adsorbent by using mesoporous silica bead as the supporting matrix. Bayberry tannin-immobilized mesoporous silica bead (BT-SiO{sub 2}) was characterized by powder X-ray diffraction to verify the crystallinity, field-emission scanning electron microscopy to observe the surface morphology, and surface area and porosity analyzer to measure the mesoporous porous structure. Subsequently, the adsorption experiments to Cr(III) were applied to evaluate the adsorption performances of BT-SiO{sub 2}. It was found that the adsorption of Cr(III) onto BT-SiO{sub 2} was pH-dependent, and the maximum adsorption capacity was obtained in the pH range of 5.0-5.5. The adsorption capacity was 1.30 mmol g{sup -1} at 303 K and pH 5.5 when the initial concentration of Cr(III) was 2.0 mmol L{sup -1}. Based on proton nuclear magnetic resonance (HNMR) analyses, the adsorption mechanism of Cr(III) on BT-SiO{sub 2} was proved to be a chelating interaction. The adsorption kinetic data can be well described using pseudo-first-order model and the equilibrium data can be well fitted by the Langmuir isothermal model. Importantly, no bayberry tannin was leached out during the adsorption process and BT-SiO{sub 2} can simultaneously remove coexisting metal ions from aqueous solutions. In conclusion, this study provides a new strategy for the preparation of tannin-immobilized adsorbents that are highly effective in removal of heavy metals from aqueous solutions.

  6. Tannin-immobilized mesoporous silica bead (BT-SiO2) as an effective adsorbent of Cr(III) in aqueous solutions

    International Nuclear Information System (INIS)

    Huang Xin; Liao Xuepin; Shi Bi

    2010-01-01

    This study describes a new approach for the preparation of tannin-immobilized adsorbent by using mesoporous silica bead as the supporting matrix. Bayberry tannin-immobilized mesoporous silica bead (BT-SiO 2 ) was characterized by powder X-ray diffraction to verify the crystallinity, field-emission scanning electron microscopy to observe the surface morphology, and surface area and porosity analyzer to measure the mesoporous porous structure. Subsequently, the adsorption experiments to Cr(III) were applied to evaluate the adsorption performances of BT-SiO 2 . It was found that the adsorption of Cr(III) onto BT-SiO 2 was pH-dependent, and the maximum adsorption capacity was obtained in the pH range of 5.0-5.5. The adsorption capacity was 1.30 mmol g -1 at 303 K and pH 5.5 when the initial concentration of Cr(III) was 2.0 mmol L -1 . Based on proton nuclear magnetic resonance (HNMR) analyses, the adsorption mechanism of Cr(III) on BT-SiO 2 was proved to be a chelating interaction. The adsorption kinetic data can be well described using pseudo-first-order model and the equilibrium data can be well fitted by the Langmuir isothermal model. Importantly, no bayberry tannin was leached out during the adsorption process and BT-SiO 2 can simultaneously remove coexisting metal ions from aqueous solutions. In conclusion, this study provides a new strategy for the preparation of tannin-immobilized adsorbents that are highly effective in removal of heavy metals from aqueous solutions.

  7. Evidence for mass loss at moderate to high velocity in Be stars

    International Nuclear Information System (INIS)

    Snow, T.P. Jr.; Marlborough, J.M.

    1976-01-01

    Ultraviolet spectra of intermediate resolution have been obtained with Copernicus of 12 objects classified as Be or shell stars, and 19 additional early B dwarfs. Some of these spectra show marked asymmetries in certain resonance lines, especially the Si iv doublet at 1400 A, indicating the presence in some cases of outflowing material with maximum velocities of nearly 1000 km s -1 . Direct evidence for mass loss at these velocities is seen for the first time in dwarf stars as late as B1.5; the only objects later than B0.5 which show this effect are Be or shell stars. Among the stars considered there is a correlation between the presence of mass-loss effects and projected rotational velocity, suggesting that the ultraviolet flux from B1-B2 dwarfs is sufficient to drive high-velocity stellar winds only if rotation effects reduce the effective gravity near the equator. The mass loss rate for one of the most active Be stars, 59 Cyg, is crudely estimated to be 10 -10 --10 -9 M/sub sun/ yr -1 . The data are suggestive that the extended atmospheres associated with Be star phenomena may be formed by mass ejection

  8. Evidence for mass loss at moderate to high velocity in Be stars

    Science.gov (United States)

    Snow, T. P., Jr.; Marlborough, J. M.

    1976-01-01

    Ultraviolet spectra of intermediate resolution have been obtained with Copernicus for 12 objects classified as Be or shell stars and for 19 additional early B dwarfs. Some of these spectra show marked asymmetries in certain resonance lines, especially the Si IV doublet at 1400 A, indicating the presence in some cases of outflowing material with maximum velocities of nearly 1000 km/s. Direct evidence for mass loss at these velocities is seen for the first time in dwarf stars as late as B1.5; the only objects later than B0.5 which show this effect are Be or shell stars. Among the stars considered, there is a correlation between the presence of mass-loss effects and projected rotational velocity, suggesting that the ultraviolet flux from B1-B2 dwarfs is sufficient to drive high-velocity stellar winds only if rotational effects reduce the effective gravity near the equator. The mass-loss rate for one of the most active Be stars, 59 Cyg, is crudely estimated to be one billionth or one ten-billionth of a solar mass per year. The data suggest that the extended atmospheres associated with Be-star phenomena may be formed by mass ejection.

  9. The dependence of C IV broad absorption line properties on accompanying Si IV and Al III absorption: relating quasar-wind ionization levels, kinematics, and column densities

    Energy Technology Data Exchange (ETDEWEB)

    Filiz Ak, N.; Brandt, W. N.; Schneider, D. P.; Trump, J. R. [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Hall, P. B. [Department of Physics and Astronomy, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3 (Canada); Anderson, S. F. [Astronomy Department, University of Washington, Seattle, WA 98195 (United States); Hamann, F. [Department of Astronomy, University of Florida, Gainesville, FL 32611-2055 (United States); Myers, Adam D. [Department of Physics and Astronomy, University of Wyoming, Laramie, WY 82071 (United States); Pâris, I. [Departamento de Astronomía, Universidad de Chile, Casilla 36-D, Santiago (Chile); Petitjean, P. [Institut d' Astrophysique de Paris, Universite Paris 6, F-75014 Paris (France); Ross, Nicholas P. [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Shen, Yue [Carnegie Observatories, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); York, Don, E-mail: nfilizak@astro.psu.edu [Department of Astronomy and Astrophysics, The University of Chicago, Chicago, IL 60637 (United States)

    2014-08-20

    We consider how the profile and multi-year variability properties of a large sample of C IV Broad Absorption Line (BAL) troughs change when BALs from Si IV and/or Al III are present at corresponding velocities, indicating that the line of sight intercepts at least some lower ionization gas. We derive a number of observational results for C IV BALs separated according to the presence or absence of accompanying lower ionization transitions, including measurements of composite profile shapes, equivalent width (EW), characteristic velocities, composite variation profiles, and EW variability. We also measure the correlations between EW and fractional-EW variability for C IV, Si IV, and Al III. Our measurements reveal the basic correlated changes between ionization level, kinematics, and column density expected in accretion-disk wind models; e.g., lines of sight including lower ionization material generally show deeper and broader C IV troughs that have smaller minimum velocities and that are less variable. Many C IV BALs with no accompanying Si IV or Al III BALs may have only mild or no saturation.

  10. A fresnoite-structure-related mixed valent titanium(III/IV) chlorosilicate, Ba{sub 3}Ti{sub 2}Si{sub 4}O{sub 14}Cl: A flux crystal growth route to Ti(III) containing oxides

    Energy Technology Data Exchange (ETDEWEB)

    Abeysinghe, Dileka; Smith, Mark D.; Loye, Hans-Conrad zur, E-mail: zurloye@mailbox.sc.edu

    2017-06-15

    Single crystals of mixed valent barium titanium(III/IV) chlorosilicate, Ba{sub 3}Ti{sub 2}Si{sub 4}O{sub 14}Cl{sub 0.91}O{sub 0.09}, were grown in a high temperature molten chloride flux involving an in situ reduction step. The fresnoite structure related Ba{sub 3}Ti{sub 2}Si{sub 4}O{sub 14}Cl{sub 0.91}O{sub 0.09} crystallizes in the tetragonal space group P4/mbm with lattice parameters of a=8.6717(2) Å, c=18.6492(5) Å. The title compound exhibits a 3D structure consisting of 2D layers of fused Ti{sub 2}O{sub 9} and Si{sub 4}O{sub 12} groups and 2D layers of fused Ti{sub 2}O{sub 9}Cl{sub 2} and Si{sub 2}O{sub 7} groups that are linked via barium atoms. The in situ reduction of Ti(IV) to Ti(III) is achieved via the addition of metallic Mg to the flux to function as the reducing agent. The temperature dependence of the magnetic susceptibility shows simple paramagnetism above 100 K. There is a discontinuity in the susceptibility data below 100 K, which might be due to a structural change that takes place resulting in charge ordering. - Graphical abstract: The fresnoite structure related novel reduced barium titanium chlorosilicate, Ba{sub 3}Ti{sub 2}Si{sub 4}O{sub 14}Cl{sub 0.91}O{sub 0.09}, were synthesized via flux method. An in situ reduction of Ti(IV) to Ti(III) achieved using Mg metal. The 3D structure consists 2D layers of fused Ti{sub 2}O{sub 9} and Si{sub 4}O{sub 12} and 2D layers of fused Ti{sub 2}O{sub 9}Cl{sub 2} and Si{sub 2}O{sub 7} connected via barium atoms. Compound shows simple paramagnetism above 100 K. - Highlights: • The fresnoite related Ba{sub 3}Ti{sub 2}Si{sub 4}O{sub 14}Cl{sub 0.91}O{sub 0.09} were grown via molten flux method. • The in situ reduction of Ti(IV) to Ti(III) is achieved using metallic Mg. • 2D layers of Ti{sub 2}O{sub 9} and Si{sub 4}O{sub 12} and Ti{sub 2}O{sub 9}Cl{sub 2} and Si{sub 2}O{sub 7} connect via Ba atoms. • The magnetic susceptibility shows simple paramagnetism above 100 K.

  11. Electron-beam-induced reactivation of Si dopants in hydrogenated two-dimensional AlGaAs heterostructures: a possible new route for III-V nanostructure fabrication

    International Nuclear Information System (INIS)

    Kurowski, Ludovic; Bernard, Dorothee; Constant, Eugene; Decoster, Didier

    2004-01-01

    Hydrogen incorporation in n-type Si-doped GaAs epilayers is a well-known process which leads to the neutralization of the active Si impurities with the formation of SiH complexes. Recently, we have shown that SiH complex dissociation and, consequently, Si-dopant reactivation could occur when the epilayers are exposed to an electron beam. Two epilayers have been studied: the first is a 0.35 μm thick hydrogenated Si-doped GaAs epilayer and the second is Si planar-doped AlGaAs/GaAs/InGaAs heterostructures. Firstly, Hall effect measurements have been carried out on the epilayers exposed, after RF hydrogen plasma exposition, to increasing electron doses with different injection energies. For the 2D heterostructures, we have observed that the free carrier density N s does not vary significantly for weak electron densities. This reactivation presents a threshold value, contrary to the 0.35 μm epilayer in which N s varies quite linearly. It will be shown that such phenomena might be attributed to the filling of surface states as the dopants are progressively reactivated. Then, using a high spatial resolution electron beam lithography system, nanometric conductive patterns have been fabricated starting from hydrogenated epilayers. Electric measurements have been performed and the results obtained show that about 15 nm spatial resolution could be expected. In conclusion, taking into account this spatial resolution, the high spatial contrast of conductivity which could be expected due to the existence of an electron dose threshold, and the high mobility of the AlGaAs/GaAs/InGaAs heterostructure, the effects described in this paper could open a new way for the fabrication of III-V 1D or 2D mesoscopic structures for electronic or optoelectronic applications

  12. High velocity properties of the dynamic frictional force between ductile metals

    International Nuclear Information System (INIS)

    Hammerberg, James Edward; Hollan, Brad L.; Germann, Timothy C.; Ravelo, Ramon J.

    2010-01-01

    The high velocity properties of the tangential frictional force between ductile metal interfaces seen in large-scale NonEquilibrium Molecular Dynamics (NEMD) simulations are characterized by interesting scaling behavior. In many cases a power law decrease in the frictional force with increasing velocity is observed at high velocities. We discuss the velocity dependence of the high velocity branch of the tangential force in terms of structural transformation and ultimate transition, at the highest velocities, to confined fluid behavior characterized by a critical strain rate. The particular case of an Al/Al interface is discussed.

  13. Cognate xenoliths in Mt. Etna lavas: witnesses of the high-velocity body beneath the volcano

    Science.gov (United States)

    Corsaro, Rosa Anna; Rotolo, Silvio Giuseppe; Cocina, Ornella; Tumbarello, Gianvito

    2014-01-01

    Various xenoliths have been found in lavas of the 1763 ("La Montagnola"), 2001, and 2002-03 eruptions at Mt. Etna whose petrographic evidence and mineral chemistry exclude a mantle origin and clearly point to a cognate nature. Consequently, cognate xenoliths might represent a proxy to infer the nature of the high-velocity body (HVB) imaged beneath the volcano by seismic tomography. Petrography allows us to group the cognate xenoliths as follows: i) gabbros with amphibole and amphibole-bearing mela-gabbros, ii) olivine-bearing leuco-gabbros, iii) leuco-gabbros with amphibole, and iv) Plg-rich leuco gabbros. Geobarometry estimates the crystallization pressure of the cognate xenoliths between 1.9 and 4.1 kbar. The bulk density of the cognate xenoliths varies from 2.6 to 3.0 g/cm3. P wave velocities (V P ), calculated in relation to xenolith density, range from 4.9 to 6.1 km/s. The integration of mineralogical, compositional, geobarometric data, and density-dependent V P with recent literature data on 3D V P seismic tomography enabled us to formulate the first hypothesis about the nature of the HVB which, in the depth range of 3-13 km b.s.l., is likely made of intrusive gabbroic rocks. These are believed to have formed at the "solidification front", a marginal zone that encompasses a deep region (>5 km b.s.l.) of Mt. Etna's plumbing system, within which magma crystallization takes place. The intrusive rocks were afterwards fragmented and transported as cognate xenoliths by the volatile-rich and fast-ascending magmas of the 1763 "La Montagnola", 2001 and 2002-03 eruptions.

  14. Influence of Group-III-metal and Ag adsorption on the Ge growth on Si(111) and its vicinal surface

    Energy Technology Data Exchange (ETDEWEB)

    Speckmann, Moritz

    2011-12-15

    In the framework of this thesis the surfactant-mediated heteroepitaxial growth of Ge on different Si surfaces has been investigated by means of low-energy electron microscopy, low-energy electron diffraction, spot-profile analysing low-energy electron diffraction, X-ray standing waves, grazing-incidence X-ray diffraction, x-ray photoemission electron microscopy, X-ray photoemission spectroscopy, scanning tunneling microscopy, scanning electron microscopy, transmission electron microscopy, and density functional theory calculations. As surfactants gallium, indium, and silver were used. The adsorption of Ga or In on the intrinsically faceted Si(112) surface leads to a smoothing of the surface and the formation of (N x 1) reconstructions, where a mixture of building blocks of different sizes is always present. For both adsorbates the overall periodicity on the surface is strongly dependent on the deposition temperature and the coverage. For the experimental conditions chosen here, the periodicities are in the range of 5.2{<=}N{<=}6.5 and 3.4{<=}N{<=}3.7 for Ga and In, respectively. The (N x 1) unit cells of Ga/Si(112) and In/Si(112) are found to consist of adsorbate atoms on terrace and step-edge sites, forming two atomic chains along the [110] direction. In the Ga-induced structures two Ga-vacancies per unit cell (one in the terrace and one in the step-edge site) are found and a continuous vacancy line on the surface is formed. In the In/Si(112) structure only one vacancy per unit cell in the step-edge site exists and, thus, a continuous adsorbate chain on the terrace sites is present. The adsorption of Ga or In on Si(112) strongly influences the subsequent Ge growth. Ge deposition on the Ga-terminated Si(112) surface leads to the formation of Ge nanowires, which are elongated along the Ga chains and reach lengths of up to 2000 nm for a growth temperature of 600 C. On In-covered Si(112), both small dash-like Ge islands and triangularly shaped islands are found, where

  15. Management of High-Velocity Injuries of the Head and Neck.

    Science.gov (United States)

    Majors, Jacob S; Brennan, Joseph; Holt, G Richard

    2017-11-01

    Trauma centers must prepare to manage high-velocity injuries resulting from a mass casualty incidents as global terrorism becomes a greater concern and an increasing risk. The most recent conflicts in Iraq and Afghanistan have significantly improved understanding of battlefield trauma and how to appropriately address these injures. This article applies combat surgery experience to civilian situations, outlines the physiology and kinetics of high-velocity injuries, and reviews applicable triage and management strategies. Published by Elsevier Inc.

  16. RE-VISIT OF HST FUV OBSERVATIONS OF THE HOT-JUPITER SYSTEM HD 209458: NO Si iii DETECTION AND THE NEED FOR COS TRANSIT OBSERVATIONS

    International Nuclear Information System (INIS)

    Ballester, G. E.; Ben-Jaffel, L.

    2015-01-01

    The discovery of O i atoms and C ii ions in the upper atmosphere of HD 209458b, made with the Hubble Space Telescope Imaging Spectrograph (STIS) using the G140L grating, showed that these heavy species fill an area comparable to the planet’s Roche lobe. The derived ∼10% transit absorption depths require super-thermal processes and/or supersolar abundances. From subsequent Cosmic Origins Spectrograph (COS) observations, C ii absorption was reported with tentative velocity signatures, and absorption by Si iii ions was also claimed in disagreement with a negative STIS G140L detection. Here, we revisit the COS data set showing a severe limitation in the published results from having contrasted the in-transit spectrum against a stellar spectrum averaged from separate observations, at planetary phases 0.27, 0.72, and 0.49. We find variable stellar Si iii and C ii emissions that were significantly depressed not only during transit but also at phase 0.27 compared to phases 0.72 and 0.49. Their respective off-transit 7.5% and 3.1% flux variations are large compared to their reported 8.2 ± 1.4% and 7.8 ± 1.3% transit absorptions. Significant variations also appear in the stellar line shapes, questioning reported velocity signatures. We furthermore present archive STIS G140M transit data consistent with no Si iii absorption, with a negative result of 1.7 ± 18.7 including ∼15% variability. Silicon may still be present at lower ionization states, in parallel with the recent detection of extended magnesium, as Mg i atoms. In this frame, the firm detection of O i and C ii implying solar or supersolar abundances contradicts the recent inference of potential 20–125× subsolar metallicity for HD 209458b

  17. RE-VISIT OF HST FUV OBSERVATIONS OF THE HOT-JUPITER SYSTEM HD 209458: NO Si iii DETECTION AND THE NEED FOR COS TRANSIT OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Ballester, G. E. [University of Arizona, Dept. of Planetary Sciences, Lunar and Planetary Laboratory, 1541 E University Blvd., Tucson, AZ 85721-0063 (United States); Ben-Jaffel, L., E-mail: gilda@lpl.arizona.edu, E-mail: bjaffel@iap.fr [UPMC Univ. Paris 06, UMR7095, Institut d’Astrophysique de Paris, F-75014 Paris (France)

    2015-05-10

    The discovery of O i atoms and C ii ions in the upper atmosphere of HD 209458b, made with the Hubble Space Telescope Imaging Spectrograph (STIS) using the G140L grating, showed that these heavy species fill an area comparable to the planet’s Roche lobe. The derived ∼10% transit absorption depths require super-thermal processes and/or supersolar abundances. From subsequent Cosmic Origins Spectrograph (COS) observations, C ii absorption was reported with tentative velocity signatures, and absorption by Si iii ions was also claimed in disagreement with a negative STIS G140L detection. Here, we revisit the COS data set showing a severe limitation in the published results from having contrasted the in-transit spectrum against a stellar spectrum averaged from separate observations, at planetary phases 0.27, 0.72, and 0.49. We find variable stellar Si iii and C ii emissions that were significantly depressed not only during transit but also at phase 0.27 compared to phases 0.72 and 0.49. Their respective off-transit 7.5% and 3.1% flux variations are large compared to their reported 8.2 ± 1.4% and 7.8 ± 1.3% transit absorptions. Significant variations also appear in the stellar line shapes, questioning reported velocity signatures. We furthermore present archive STIS G140M transit data consistent with no Si iii absorption, with a negative result of 1.7 ± 18.7 including ∼15% variability. Silicon may still be present at lower ionization states, in parallel with the recent detection of extended magnesium, as Mg i atoms. In this frame, the firm detection of O i and C ii implying solar or supersolar abundances contradicts the recent inference of potential 20–125× subsolar metallicity for HD 209458b.

  18. Application of High-Velocity Oxygen-Fuel (HVOF Spraying to the Fabrication of Yb-Silicate Environmental Barrier Coatings

    Directory of Open Access Journals (Sweden)

    Emine Bakan

    2017-04-01

    Full Text Available From the literature, it is known that due to their glass formation tendency, it is not possible to deposit fully-crystalline silicate coatings when the conventional atmospheric plasma spraying (APS process is employed. In APS, rapid quenching of the sprayed material on the substrate facilitates the amorphous deposit formation, which shrinks when exposed to heat and forms pores and/or cracks. This paper explores the feasibility of using a high-velocity oxygen-fuel (HVOF process for the cost-effective fabrication of dense, stoichiometric, and crystalline Yb2Si2O7 environmental barrier coatings. We report our findings on the HVOF process optimization and its resultant influence on the microstructure development and crystallinity of the Yb2Si2O7 coatings. The results reveal that partially crystalline, dense, and vertical crack-free EBCs can be produced by the HVOF technique. However, the furnace thermal cycling results revealed that the bonding of the Yb2Si2O7 layer to the Silicon bond coat needs to be improved.

  19. High-Throughput Multiple Dies-to-Wafer Bonding Technology and III/V-on-Si Hybrid Lasers for Heterogeneous Integration of Optoelectronic Integrated Circuits

    Directory of Open Access Journals (Sweden)

    Xianshu eLuo

    2015-04-01

    Full Text Available Integrated optical light source on silicon is one of the key building blocks for optical interconnect technology. Great research efforts have been devoting worldwide to explore various approaches to integrate optical light source onto the silicon substrate. The achievements so far include the successful demonstration of III/V-on-Si hybrid lasers through III/V-gain material to silicon wafer bonding technology. However, for potential large-scale integration, leveraging on mature silicon complementary metal oxide semiconductor (CMOS fabrication technology and infrastructure, more effective bonding scheme with high bonding yield is in great demand considering manufacturing needs. In this paper, we propose and demonstrate a high-throughput multiple dies-to-wafer (D2W bonding technology which is then applied for the demonstration of hybrid silicon lasers. By temporarily bonding III/V dies to a handle silicon wafer for simultaneous batch processing, it is expected to bond unlimited III/V dies to silicon device wafer with high yield. As proof-of-concept, more than 100 III/V dies bonding to 200 mm silicon wafer is demonstrated. The high performance of the bonding interface is examined with various characterization techniques. Repeatable demonstrations of 16-III/V-die bonding to pre-patterned 200 mm silicon wafers have been performed for various hybrid silicon lasers, in which device library including Fabry-Perot (FP laser, lateral-coupled distributed feedback (LC-DFB laser with side wall grating, and mode-locked laser (MLL. From these results, the presented multiple D2W bonding technology can be a key enabler towards the large-scale heterogeneous integration of optoelectronic integrated circuits (H-OEIC.

  20. Significantly improved surface morphology of N-polar GaN film grown on SiC substrate by the optimization of V/III ratio

    Science.gov (United States)

    Deng, Gaoqiang; Zhang, Yuantao; Yu, Ye; Yan, Long; Li, Pengchong; Han, Xu; Chen, Liang; Zhao, Degang; Du, Guotong

    2018-04-01

    In this paper, N-polar GaN films with different V/III ratios were grown on vicinal C-face SiC substrates by metalorganic chemical vapor deposition. During the growth of N-polar GaN film, the V/III ratio was controlled by adjusting the molar flow rate of ammonia while keeping the trimethylgallium flow rate unchanged. The influence of the V/III ratio on the surface morphology of N-polar GaN film has been studied. We find that the surface root mean square roughness of N-polar GaN film over an area of 20 × 20 μm2 can be reduced from 8.13 to 2.78 nm by optimization of the V/III ratio. Then, using the same growth conditions, N-polar InGaN/GaN multiple quantum wells (MQWs) light-emitting diodes (LEDs) were grown on the rough and the smooth N-polar GaN templates, respectively. Compared with the LED grown on the rough N-polar GaN template, dramatically improved interface sharpness and luminescence uniformity of the InGaN/GaN MQWs are achieved for the LED grown on the smooth N-polar GaN template.

  1. Theoretical Research Progress in High-Velocity/Hypervelocity Impact on Semi-Infinite Targets

    Directory of Open Access Journals (Sweden)

    Yunhou Sun

    2015-01-01

    Full Text Available With the hypervelocity kinetic weapon and hypersonic cruise missiles research projects being carried out, the damage mechanism for high-velocity/hypervelocity projectile impact on semi-infinite targets has become the research keystone in impact dynamics. Theoretical research progress in high-velocity/hypervelocity impact on semi-infinite targets was reviewed in this paper. The evaluation methods for critical velocity of high-velocity and hypervelocity impact were summarized. The crater shape, crater scaling laws and empirical formulae, and simplified analysis models of crater parameters for spherical projectiles impact on semi-infinite targets were reviewed, so were the long rod penetration state differentiation, penetration depth calculation models for the semifluid, and deformed long rod projectiles. Finally, some research proposals were given for further study.

  2. Unsupervised Learning Through Randomized Algorithms for High-Volume High-Velocity Data (ULTRA-HV).

    Energy Technology Data Exchange (ETDEWEB)

    Pinar, Ali [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kolda, Tamara G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Carlberg, Kevin Thomas [Wake Forest Univ., Winston-Salem, MA (United States); Ballard, Grey [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mahoney, Michael [Univ. of California, Berkeley, CA (United States)

    2018-01-01

    Through long-term investments in computing, algorithms, facilities, and instrumentation, DOE is an established leader in massive-scale, high-fidelity simulations, as well as science-leading experimentation. In both cases, DOE is generating more data than it can analyze and the problem is intensifying quickly. The need for advanced algorithms that can automatically convert the abundance of data into a wealth of useful information by discovering hidden structures is well recognized. Such efforts however, are hindered by the massive volume of the data and its high velocity. Here, the challenge is developing unsupervised learning methods to discover hidden structure in high-volume, high-velocity data.

  3. Genesis of Co/SiO2 catalysts : XAS study at the cobalt L-III,L- II absorption edges

    NARCIS (Netherlands)

    Bazin, D.; Kovacs, I.; Guczi, L.; Parent, P.; Laffon, C.; De Groot, F.; Ducreux, O.; Lynch, J.

    2000-01-01

    Silica-supported cobalt catalysts have been investigated by soft X-ray absorption techniques. Soft X-ray absorption spectra were collected at the Co LII,III edge during in situ reduction of calcined samples in a stream of hydrogen in the temperature range between 300 and 650°C. Using reference

  4. AN EXTREME HIGH-VELOCITY BIPOLAR OUTFLOW IN THE PRE-PLANETARY NEBULA IRAS 08005-2356

    Energy Technology Data Exchange (ETDEWEB)

    Sahai, R. [Jet Propulsion Laboratory, California Institute of Technology, MS 183-900, Pasadena, CA 91109 (United States); Patel, N. A., E-mail: raghvendra.sahai@jpl.nasa.gov [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States)

    2015-09-01

    We report interferometric mapping of the bipolar pre-planetary nebula IRAS 08005-2356 (I 08005) with an angular resolution of ∼1″–5″, using the Submillimeter Array, in the {sup 12}CO J = 2–1, 3–2, {sup 13}CO J = 2–1, and SiO J = 5–4 (v = 0) lines. Single-dish observations, using the SMT 10 m, were made in these lines as well as in the CO J = 4–3 and SiO J = 6–5 (v = 0) lines. The line profiles are very broad, showing the presence of a massive (>0.1 M{sub ⊙}), extreme high velocity outflow (V ∼ 200 km s{sup −1}) directed along the nebular symmetry axis derived from the Hubble Space Telescope imaging of this object. The outflow's scalar momentum far exceeds that available from radiation pressure of the central post-AGB star, and it may be launched from an accretion disk around a main-sequence companion. We provide indirect evidence for such a disk from its previously published, broad Hα emission profile, which we propose results from Lyβ emission generated in the disk followed by Raman-scattering in the innermost regions of a fast, neutral wind.

  5. Galactic hail: the origin of the high-velocity cloud complex C

    NARCIS (Netherlands)

    Fraternali, F.; Marasco, A.; Armillotta, L.; Marinacci, F.

    High-velocity clouds consist of cold gas that appears to be raining down from the halo to the disc of the Milky Way. Over the past 50 years, two competing scenarios have attributed their origin either to gas accretion from outside the Galaxy or to circulation of gas from the Galactic disc powered by

  6. DISTRIBUTION AND ORIGIN OF HIGH-VELOCITY CLOUDS .3. CLOUDS, COMPLEXES AND POPULATIONS

    NARCIS (Netherlands)

    WAKKER, BP; VANWOERDEN, H

    1991-01-01

    We present the first complete catalogue of high-velocity clouds (HVCs), followed by a classification of these clouds into complexes and populations. The catalogue will form the basis for comparisons with theoretical models. The study described here yields the following conclusions: (1) Differential

  7. High Velocity Oxidation and Hot Corrosion Resistance of Some ODS Alloys

    Science.gov (United States)

    Lowell, C. E.; Deadmore, D. L.

    1977-01-01

    Several oxide dispersion strengthened (ODS) alloys were tested for cyclic, high velocity, oxidation, and hot corrosion resistance. These results were compared to the resistance of an advanced, NiCrAl coated superalloy. An ODS FeCrAl were identified as having sufficient oxidation and hot corrosion resistance to allow potential use in an aircraft gas turbine without coating.

  8. Towards large size substrates for III-V co-integration made by direct wafer bonding on Si

    Directory of Open Access Journals (Sweden)

    N. Daix

    2014-08-01

    Full Text Available We report the first demonstration of 200 mm InGaAs-on-insulator (InGaAs-o-I fabricated by the direct wafer bonding technique with a donor wafer made of III-V heteroepitaxial structure grown on 200 mm silicon wafer. The measured threading dislocation density of the In0.53Ga0.47As (InGaAs active layer is equal to 3.5 × 109 cm−2, and it does not degrade after the bonding and the layer transfer steps. The surface roughness of the InGaAs layer can be improved by chemical-mechanical-polishing step, reaching values as low as 0.4 nm root-mean-square. The electron Hall mobility in 450 nm thick InGaAs-o-I layer reaches values of up to 6000 cm2/Vs, and working pseudo-MOS transistors are demonstrated with an extracted electron mobility in the range of 2000–3000 cm2/Vs. Finally, the fabrication of an InGaAs-o-I substrate with the active layer as thin as 90 nm is achieved with a Buried Oxide of 50 nm. These results open the way to very large scale production of III-V-o-I advanced substrates for future CMOS technology nodes.

  9. Towards large size substrates for III-V co-integration made by direct wafer bonding on Si

    Energy Technology Data Exchange (ETDEWEB)

    Daix, N., E-mail: dai@zurich.ibm.com; Uccelli, E.; Czornomaz, L.; Caimi, D.; Rossel, C.; Sousa, M.; Siegwart, H.; Marchiori, C.; Fompeyrine, J. [IBM Research - Zürich, Säumerstrasse 4, CH-8803 Rüschlikon (Switzerland); Hartmann, J. M. [CEA, LETI 17, rue des Martyrs, F-38054 Grenoble (France); Shiu, K.-T.; Cheng, C.-W.; Krishnan, M.; Lofaro, M.; Kobayashi, M.; Sadana, D. [IBM T. J. Watson Research Center, 1101 Kitchawan Rd., Route 134 Yorktown Heights, New York 10598 (United States)

    2014-08-01

    We report the first demonstration of 200 mm InGaAs-on-insulator (InGaAs-o-I) fabricated by the direct wafer bonding technique with a donor wafer made of III-V heteroepitaxial structure grown on 200 mm silicon wafer. The measured threading dislocation density of the In{sub 0.53}Ga{sub 0.47}As (InGaAs) active layer is equal to 3.5 × 10{sup 9} cm{sup −2}, and it does not degrade after the bonding and the layer transfer steps. The surface roughness of the InGaAs layer can be improved by chemical-mechanical-polishing step, reaching values as low as 0.4 nm root-mean-square. The electron Hall mobility in 450 nm thick InGaAs-o-I layer reaches values of up to 6000 cm{sup 2}/Vs, and working pseudo-MOS transistors are demonstrated with an extracted electron mobility in the range of 2000–3000 cm{sup 2}/Vs. Finally, the fabrication of an InGaAs-o-I substrate with the active layer as thin as 90 nm is achieved with a Buried Oxide of 50 nm. These results open the way to very large scale production of III-V-o-I advanced substrates for future CMOS technology nodes.

  10. Towards large size substrates for III-V co-integration made by direct wafer bonding on Si

    Science.gov (United States)

    Daix, N.; Uccelli, E.; Czornomaz, L.; Caimi, D.; Rossel, C.; Sousa, M.; Siegwart, H.; Marchiori, C.; Hartmann, J. M.; Shiu, K.-T.; Cheng, C.-W.; Krishnan, M.; Lofaro, M.; Kobayashi, M.; Sadana, D.; Fompeyrine, J.

    2014-08-01

    We report the first demonstration of 200 mm InGaAs-on-insulator (InGaAs-o-I) fabricated by the direct wafer bonding technique with a donor wafer made of III-V heteroepitaxial structure grown on 200 mm silicon wafer. The measured threading dislocation density of the In0.53Ga0.47As (InGaAs) active layer is equal to 3.5 × 109 cm-2, and it does not degrade after the bonding and the layer transfer steps. The surface roughness of the InGaAs layer can be improved by chemical-mechanical-polishing step, reaching values as low as 0.4 nm root-mean-square. The electron Hall mobility in 450 nm thick InGaAs-o-I layer reaches values of up to 6000 cm2/Vs, and working pseudo-MOS transistors are demonstrated with an extracted electron mobility in the range of 2000-3000 cm2/Vs. Finally, the fabrication of an InGaAs-o-I substrate with the active layer as thin as 90 nm is achieved with a Buried Oxide of 50 nm. These results open the way to very large scale production of III-V-o-I advanced substrates for future CMOS technology nodes.

  11. Structure of tris(trimethylsilylcyclopentadienyl)uranium(III), [(CH3)3SiC5H43U

    International Nuclear Information System (INIS)

    Brennan, J.; Andersen, R.A.; Zalkin, A.

    1986-02-01

    Crystals of [(CH 3 ) 3 SiC 5 H 4 ] 3 U are orthorhombic, Pbca, with a = 22.630(8), b = 29.177(10) and c = 8.428(3) A at 23 0 C. For Z = 8 the calculated density is 1.551 g/cm 3 . The structure was refined by full-matrix least-squares to a conventional R factor of 0.041 [2251 data, F 2 > 2 sigma(F 2 )]. The uranium atom is bonded to the three cyclopentadienyl rings in a pentahapto fashion and is in the plane of the ring centroids. The U to ring distances are 2.54, 2.47 and 2.51 A, and the average U-C distance is 2.78 +- 0.04 A. 7 refs., 1 fig., 3 tabs

  12. The growth of III-V nitrides heterostructure on Si substrate by plasma-assisted molecular beam epitaxy

    International Nuclear Information System (INIS)

    Beh, K.P.; Yam, F.K.; Chin, C.W.; Tneh, S.S.; Hassan, Z.

    2010-01-01

    This paper reports the growth of InGaN/GaN/AlN epitaxial layer on Si(1 1 1) substrate by utilizing plasma-assisted molecular beam epitaxy (PA-MBE) system. The as-grown film was characterized using high-resolution X-ray diffraction (HR-XRD) and photoluminescence (PL). High work function metals, iridium and gold were deposited on the film as metal contacts and their electrical characteristics at pre- and post-annealing were studied. The structural quality of this film is comparative to the values reported in the literature, and the indium molar fraction is 0.57 by employing Vegard's law. The relatively low yellow band emission signifies the grown film is of high quality. For metal contact studies it was found that the post-annealed sample for 5 min shows good conductivity as compared to the other samples.

  13. The efficiency of ceramic-faced metal targets at high-velocity impact

    Science.gov (United States)

    Tolkachev, V. F.; Konyaev, A. A.; Pakhnutova, N. V.

    2017-11-01

    The paper represents experimental results and engineering evaluation concerning the efficiency of composite materials to be used as an additional protection during the high- velocity interaction of a tungsten rod with a target in the velocity range of 1...5 km/s. The main parameter that characterizes the high-velocity interaction of a projectile with a layered target is the penetration depth. Experimental data, numerical simulation and engineering evaluation by modified models are used to determine the penetration depth. Boron carbide, aluminum oxide, and aluminum nickelide are applied as a front surface of targets. Based on experimental data and numerical simulation, the main characteristics of ceramics are determined, which allows composite materials to be effectively used as additional elements of protection.

  14. Hydrogen distribution in a containment with a high-velocity hydrogen-steam source

    International Nuclear Information System (INIS)

    Bloom, G.R.; Muhlestein, L.D.; Postma, A.K.; Claybrook, S.W.

    1982-09-01

    Hydrogen mixing and distribution tests are reported for a modeled high velocity hydrogen-steam release from a postulated small pipe break or release from a pressurizer relief tank rupture disk into the lower compartment of an Ice Condenser Plant. The tests, which in most cases used helium as a simulant for hydrogen, demonstrated that the lower compartment gas was well mixed for both hydrogen release conditions used. The gas concentration differences between any spatial locations were less than 3 volume percent during the hydrogen/steam release period and were reduced to less than 0.5 volume percent within 20 minutes after termination of the hydrogen source. The high velocity hydrogen/steam jet provided the dominant mixing mechanism; however, natural convection and forced air recirculation played important roles in providing a well mixed atmosphere following termination of the hydrogen source. 5 figures, 4 tables

  15. Towards high velocity deformation characterisation of metals and composites using Digital Image Correlation

    DEFF Research Database (Denmark)

    Eriksen, Rasmus Normann Wilken; Berggreen, Christian; Boyd, S.W

    2010-01-01

    images and then extracting deformation data using Digital Image Correlation (DIC) from tensile testing in the intermediate strain rate regime available with the test machines. Three different materials, aluminium alloy 1050, S235 steel and glass fibre reinforced plastic (GFRP) were tested at different......Characterisation of materials subject to high velocity deformation is necessary as many materials behave differently under such conditions. It is particularly important for accurate numerical simulation of high strain rate events. High velocity servo-hydraulic test machines have enabled material...... testing in the strain rate regime from 1 – 500 ε/s. The range is much lower than that experienced under ballistic, shock or impact loads, nevertheless it is a useful starting point for the application of optical techniques. The present study examines the possibility of using high speed cameras to capture...

  16. Rotational explanation of the high-velocity meolecular emission from the Orion Molecular Cloud

    International Nuclear Information System (INIS)

    Clark, F.O.; Biretta, J.A.; Martin, H.M.

    1979-01-01

    The high-velocity molecular emission of the Orion Molecular Cloud has been sampled using the J/sub N/=2 2 --1 1 rotational spectral line of the SO molecule. The resulting profile, including the high-velocity wings, has been reproduced using only known large-scale properties of the gas and applications of the results of published theoretical calculations. No new physical mechanism is required; observed rotation and conservation of angular momentum are sufficient to reproduce the line profile. The resulting physical state appears to be consistent with all known physical properties. This solution is not unique, but indicates the strengths and weaknesses of such a model for interpretation of Orion as well as the similarities of alternative explanations

  17. Treatment Protocol for High Velocity/High Energy Gunshot Injuries to the Face

    Science.gov (United States)

    Peled, Micha; Leiser, Yoav; Emodi, Omri; Krausz, Amir

    2011-01-01

    Major causes of facial combat injuries include blasts, high-velocity/high-energy missiles, and low-velocity missiles. High-velocity bullets fired from assault rifles encompass special ballistic properties, creating a transient cavitation space with a small entrance wound and a much larger exit wound. There is no dispute regarding the fact that primary emergency treatment of ballistic injuries to the face commences in accordance with the current advanced trauma life support (ATLS) recommendations; the main areas in which disputes do exist concern the question of the timing, sequence, and modes of surgical treatment. The aim of the present study is to present the treatment outcome of high-velocity/high-energy gunshot injuries to the face, using a protocol based on the experience of a single level I trauma center. A group of 23 injured combat soldiers who sustained bullet and shrapnel injuries to the maxillofacial region during a 3-week regional military conflict were evaluated in this study. Nine patients met the inclusion criteria (high-velocity/high-energy injuries) and were included in the study. According to our protocol, upon arrival patients underwent endotracheal intubation and were hemodynamically stabilized in the shock-trauma unit and underwent total-body computed tomography with 3-D reconstruction of the head and neck and computed tomography angiography. All patients underwent maxillofacial surgery upon the day of arrival according to the protocol we present. In view of our treatment outcomes, results, and low complication rates, we conclude that strict adherence to a well-founded and structured treatment protocol based on clinical experience is mandatory in providing efficient, appropriate, and successful treatment to a relatively large group of patients who sustain various degrees of maxillofacial injuries during a short period of time. PMID:23449809

  18. Auditory velocity discrimination in the horizontal plane at very high velocities.

    Science.gov (United States)

    Frissen, Ilja; Féron, François-Xavier; Guastavino, Catherine

    2014-10-01

    We determined velocity discrimination thresholds and Weber fractions for sounds revolving around the listener at very high velocities. Sounds used were a broadband white noise and two harmonic sounds with fundamental frequencies of 330 Hz and 1760 Hz. Experiment 1 used velocities ranging between 288°/s and 720°/s in an acoustically treated room and Experiment 2 used velocities between 288°/s and 576°/s in a highly reverberant hall. A third experiment addressed potential confounds in the first two experiments. The results show that people can reliably discriminate velocity at very high velocities and that both thresholds and Weber fractions decrease as velocity increases. These results violate Weber's law but are consistent with the empirical trend observed in the literature. While thresholds for the noise and 330 Hz harmonic stimulus were similar, those for the 1760 Hz harmonic stimulus were substantially higher. There were no reliable differences in velocity discrimination between the two acoustical environments, suggesting that auditory motion perception at high velocities is robust against the effects of reverberation. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. A survey of high-velocity H I in the Cetus region

    International Nuclear Information System (INIS)

    Cohen, R.J.

    1982-01-01

    The region 02sup(h) 16sup(m) 0 0 surrounding the Cohen and Davies complex of high-velocity clouds has been surveyed in the 21-cm line of H I using the Jodrell Bank MK II radio telescope (beamwidth 31 x 34 arcmin). The high-velocity cloud complex was sampled every 2sup(m) in right ascension and every 0 0 .5 in declination. The observations cover a velocity range of 2100 km s -1 with a resolution of 7.3 km s -1 and an rms noise level of 0.025 K. No HVCs were found outside the velocity range -400 to +100 km s -1 . The data are presented on microfiche as a set of contour maps showing 21-cm line temperature as a function of declination and radial velocity at constant values of right ascension. Discussion is centred on the very-high-velocity clouds at velocities of -360 to -190 km s -1 . It is concluded that they are probably debris from the tidal interaction between our Galaxy and the Magellanic Clouds. (author)

  20. Survey of high-velocity molecular gas in the vicinity of Herbig-Haro objects. I

    International Nuclear Information System (INIS)

    Edwards, S.; Snell, R.L.

    1983-01-01

    A survey of high-velocity molecular gas toward 49 Herbig-Haro objects is presented. Observations of the 12 CO J = 1-0 transition obtained with the 14 m telescope of the Five College Radio Astronomy Observatory reveal three new spatially extended high-velocity molecular outflows. One is in the NGC 1333 region near HH 12, and two are in the NGC 7129 region, the first near LkHα 234 and the second near a far-infrared source. The relationship between optical Herbin-Haro emission knots and large-scale motions of the ambient molecular material is investigated, and the properties of high-velocity molecular outflows in the vicinity of Herbig-Haro objects are discussed. Of 11 energetic outflows in the vicinity of Herbig-Haro objects, eight are found in four pairs separated by 0.2-1.0 pc. We estimate that energetic outflows characterized by mass loss rates > or =10 -7 M/sub sun/ yr -1 occur for at least 10 4 yr once in the lifetime of all stars with masses greater than 1M/sub sun/

  1. Influence of Particle Size Distribution on the Morphology and Cavitation Resistance of High-Velocity Oxygen Fuel Coatings

    Science.gov (United States)

    Silveira, L. L.; Sucharski, G. B.; Pukasiewicz, A. G. M.; Paredes, R. S. C.

    2018-02-01

    The cavitation wear process is one of the major wear mechanisms in turbines and rotors of hydroelectric power plants in Brazil. An effective way to increase the cavitation resistance is the use of coatings, applied by thermal spraying. The high-velocity oxy-fuel process (HVOF) is one of the most used thermal spraying processes, and it is widely adopted for applying coatings for protection against wear and in maintenance components. A FeCrMnSiB experimental alloy was deposited onto SAE 1020 substrate by HVOF process, in order to evaluate the influence of the powder particle size range on the morphology and cavitation resistance of the coatings. The morphology of the coatings showed an increase in oxide content with powder size reduction. The increase in the powder particle size reduced the wettability of the particles, observed by the increase in the quantity of non-melted particles. Higher particle size distribution led to an increase in erosion rate, due to higher presence of non-melted particles in the coatings and consequently reduction of splats adhesion. The cavitation damage was perceived mainly by the mechanism of lamellae detachment; however, part of the damage was also absorbed by strain hardening due to the γ-ɛ martensitic transformation.

  2. Influence of Particle Size Distribution on the Morphology and Cavitation Resistance of High-Velocity Oxygen Fuel Coatings

    Science.gov (United States)

    Silveira, L. L.; Sucharski, G. B.; Pukasiewicz, A. G. M.; Paredes, R. S. C.

    2018-04-01

    The cavitation wear process is one of the major wear mechanisms in turbines and rotors of hydroelectric power plants in Brazil. An effective way to increase the cavitation resistance is the use of coatings, applied by thermal spraying. The high-velocity oxy-fuel process (HVOF) is one of the most used thermal spraying processes, and it is widely adopted for applying coatings for protection against wear and in maintenance components. A FeCrMnSiB experimental alloy was deposited onto SAE 1020 substrate by HVOF process, in order to evaluate the influence of the powder particle size range on the morphology and cavitation resistance of the coatings. The morphology of the coatings showed an increase in oxide content with powder size reduction. The increase in the powder particle size reduced the wettability of the particles, observed by the increase in the quantity of non-melted particles. Higher particle size distribution led to an increase in erosion rate, due to higher presence of non-melted particles in the coatings and consequently reduction of splats adhesion. The cavitation damage was perceived mainly by the mechanism of lamellae detachment; however, part of the damage was also absorbed by strain hardening due to the γ- ɛ martensitic transformation.

  3. “Direct modulation of a hybrid III-V/Si DFB laser with MRR filtering for 22.5-Gb/s error-free dispersion-uncompensated transmission over 2.5-km SSMF

    DEFF Research Database (Denmark)

    Cristofori, Valentina; Da Ros, Francesco; Ding, Yunhong

    2016-01-01

    Error-free and penalty-free transmission over 2.5 km SSMF of a 22.5 Gb/s data signal from a directly modulated hybrid III-V/Si DFB laser is achieved by enhancing the dispersion tolerance using a silicon micro-ring resonator....

  4. Inductively coupled plasma etching of III-V antimonides in BCl3/SiCl4 etch chemistry

    International Nuclear Information System (INIS)

    Swaminathan, K.; Janardhanan, P.E.; Sulima, O.V.

    2008-01-01

    Inductively coupled plasma etching of GaSb using BCl 3 /SiCl 4 etch chemistry has been investigated. The etch rates were studied as a function of bias power, inductively coupled plasma source power, plasma chemistry and chamber pressure. The etched surfaces remain smooth and stoichiometric over the entire range of plasma conditions investigated. The knowledge gained in etching GaSb was applied to etching AlGaAsSb and InGaAsSb in order to fabricate heterojunction phototransistors. As expected, InGaAsSb etch rate was much lower compared to the corresponding value for GaSb, mainly due to the relatively low volatility of indium chlorides. For a wide range of plasma conditions, the selectivity between GaSb and AlGaAsSb was close to unity, which is desirable for fabricating etched mirrors and gratings for Sb-based mid-infrared laser diodes. The surface roughness and the etch profile were examined for the etched GaSb, AlGaAsSb and InGaAsSb samples using scanning electron microscope. The high etch rates achieved (∼ 4 μm/min) facilitated deep etching of GaSb. A single layer, soft mask (AZ-4903 photoresist) was used to etch GaSb, with etch depth ∼ 90 μm. The deep dry etching of GaSb has many important applications including etching substrate windows for backside-illuminated photodetectors for the mid-infrared wavelength range

  5. THE APACHE POINT OBSERVATORY GALACTIC EVOLUTION EXPERIMENT: FIRST DETECTION OF HIGH-VELOCITY MILKY WAY BAR STARS

    Energy Technology Data Exchange (ETDEWEB)

    Nidever, David L.; Zasowski, Gail; Majewski, Steven R.; Beaton, Rachael L.; Wilson, John C.; Skrutskie, Michael F.; O' Connell, Robert W. [Department of Astronomy, University of Virginia, Charlottesville, VA 22904-4325 (United States); Bird, Jonathan; Schoenrich, Ralph; Johnson, Jennifer A.; Sellgren, Kris [Department of Astronomy and the Center for Cosmology and Astro-Particle Physics, The Ohio State University, Columbus, OH 43210 (United States); Robin, Annie C.; Schultheis, Mathias [Institut Utinam, CNRS UMR 6213, OSU THETA, Universite de Franche-Comte, 41bis avenue de l' Observatoire, F-25000 Besancon (France); Martinez-Valpuesta, Inma; Gerhard, Ortwin [Max-Planck-Institut fuer Extraterrestrische Physik, Giessenbachstrasse, D-85748 Garching (Germany); Shetrone, Matthew [McDonald Observatory, University of Texas at Austin, Fort Davis, TX 79734 (United States); Schiavon, Ricardo P. [Gemini Observatory, 670 North A' Ohoku Place, Hilo, HI 96720 (United States); Weiner, Benjamin [Steward Observatory, 933 North Cherry Street, University of Arizona, Tucson, AZ 85721 (United States); Schneider, Donald P. [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); Allende Prieto, Carlos, E-mail: dln5q@virginia.edu [Instituto de Astrofisica de Canarias, E-38205 La Laguna, Tenerife (Spain); and others

    2012-08-20

    Commissioning observations with the Apache Point Observatory Galactic Evolution Experiment (APOGEE), part of the Sloan Digital Sky Survey III, have produced radial velocities (RVs) for {approx}4700 K/M-giant stars in the Milky Way (MW) bulge. These high-resolution (R {approx} 22, 500), high-S/N (>100 per resolution element), near-infrared (NIR; 1.51-1.70 {mu}m) spectra provide accurate RVs ({epsilon}{sub V} {approx} 0.2 km s{sup -1}) for the sample of stars in 18 Galactic bulge fields spanning -1 Degree-Sign -32 Degree-Sign . This represents the largest NIR high-resolution spectroscopic sample of giant stars ever assembled in this region of the Galaxy. A cold ({sigma}{sub V} {approx} 30 km s{sup -1}), high-velocity peak (V{sub GSR} Almost-Equal-To +200 km s{sup -1}) is found to comprise a significant fraction ({approx}10%) of stars in many of these fields. These high RVs have not been detected in previous MW surveys and are not expected for a simple, circularly rotating disk. Preliminary distance estimates rule out an origin from the background Sagittarius tidal stream or a new stream in the MW disk. Comparison to various Galactic models suggests that these high RVs are best explained by stars in orbits of the Galactic bar potential, although some observational features remain unexplained.

  6. High Velocity Jet Noise Source Location and Reduction. Task 3 - Experimental Investigation of Suppression Principles Volume III - Suppressor Concepts Optimization

    Science.gov (United States)

    1978-12-01

    High Pressure Turbine Rotor 27000 F Inlet Temperature, Cruise 0 Compressor Discharge Temperature, 1150" F Max imum Installed Engine Performance...44.44.44 t It 00 rn ~ ~ ~ ~ ~ ~ -(V a/ý) ISo 1’, I +¢ 00 _____ _ ___ ___ a -- , W Go .4 W N O4-4 -. 4) 0 .4 .4 4. . ooz---------- ’.4105 ii (VSI %/,0...I 160 ,onic- " X Ixx I󈧄 150- 160 32 Chute’I 150 J79, Vi = 2157 J79, Vj - 2159 0Model, Vi 2155 140- 160 0 32 Chute + Ejector ISO 50 80 125 200

  7. High-velocity penetrating thoracic trauma with suspected cardiac involvement in a combat support hospital

    International Nuclear Information System (INIS)

    Dominguez, F.; Gentlesk, P.J.; Eckart, R.E.; Beekley, A.C.; Huffer, L.L.

    2011-01-01

    The most common cardiac injuries in the United States are blunt trauma from motor vehicle accidents or low-velocity trauma from stabbings. During military conflict, high-velocity injuries, including gunshot wounds (GSW) and fragment injury from improvised explosive devices (IED), are relatively more common. This is a retrospective review of cases with high-velocity penetrating injury and suspected myocardial involvement during a 6-month period in Baghdad, Iraq, at a United States Army hospital during Operation Iraqi Freedom. Eleven cases survived to admission (GSW in 5, IED in 6). The mean age of the all-male cohort was 27 years (range, 3-54 years). Eight of the 11 patients (73%) were victims of polytrauma. The entrance involved the right ventricle (n=3), right atrium (n=2), left ventricle (n=1), or mediastinum and pericardial reflections (n=5). Echocardiography was performed in all 11 patients. In 7 patients, no foreign body was identifiable, and in 2 patients the foreign body was identified within the pericardial fat pad. Three patients were identified as having a suspected ventricular septal defect, ranging in size from 2 to 8 mm. The most common electrocardiographic abnormality was atrioventricular block and right bundle branch block. In 4 patients, the management of the chest injury was nonsurgical, and in 1 patient the treatment was a chest tube only. Four of the patients underwent median sternotomy, 1 underwent emergent lateral thoracotomy, and 1 underwent an infradiaphragmatic approach. This case series is too small to draw definitive conclusions; however, a multidisciplinary approach to high-velocity injuries with potential for cardiac involvement augments preoperative assessment for myocardial injury and may allow selective nonoperative management. (author)

  8. Penetration of Liquid Jets into a High-velocity Air Stream

    Science.gov (United States)

    Chelko, Louis J

    1950-01-01

    Data are presented showing the penetration characteristics of liquid jets directed approximately perpendicular to a high-velocity air stream for jet-nozzle-throat diameters from 0.0135 to 0.0625 inch, air stream densities from 0.0805 to 0.1365 pound per cubic foot, liquid jet velocities from 168.1 to 229.0 feet per second and a liquid jet density of approximately 62 pounds per cubic foot. The data were analyzed and a correlation was developed that permitted the determination of the penetration length of the liquid jet for any operation condition within the range of variables investigated.

  9. Deposition of magnetite particles from high velocity water onto isothermal tubes

    International Nuclear Information System (INIS)

    Burrill, K.A.

    1977-02-01

    The deposition rate of magnetite particles from a high velocity water slurry onto isothermal metal tubes was measured. The effects of velocity (5 to 100 m/s), slurry concentration (200 to 1000 mg Fe/kg H 2 O), temperature (25 0 to 90 0 C), pH (4 to 10 at 25 0 C), and tube material (nickel, Zircaloy-4) on deposition rate were studied. The data are interpreted in terms of two steps in series for deposition: a mass transfer step followed by a deposition or inertial coasting step. Mass transfer of particles through the bulk water phase apparently limits the deposition of particles at high Reynolds number

  10. Measurements of low density, high velocity flow by electron beam fluorescence technique

    International Nuclear Information System (INIS)

    Soga, Takeo; Takanishi, Masaya; Yasuhara, Michiru

    1981-01-01

    A low density chamber with an electron gun system was made for the measurements of low density, high velocity (high Mach number) flow. This apparatus is a continuous running facility. The number density and the rotational temperature in the underexpanding free jet of nitrogen were measured along the axis of the jet by the electron beam fluorescence technique. The measurements were carried out from the vicinity of the exit of the jet to far downstream of the first Mach disk. Rotational nonequilibrium phenomena were observed in the hypersonic flow field as well as in the shock wave (Mach disk). (author)

  11. Cool C-shocks and high-velocity flows in molecular clouds

    International Nuclear Information System (INIS)

    Smith, M.D.; Brand, P.W.J.L.

    1990-01-01

    C-shocks can be driven through dense clouds when the neutrals and magnetic field interact weakly due to a paucity of ions. We develop a method for calculating C-shock properties with the aim of interpreting the observed high-velocity molecular hydrogen. A high Mach number approximation, corresponding to low temperatures, is employed. Under strong cooling conditions the flow is continuous even though a subsonic region may be present downstream. Analytic expressions for the maximum temperature, dissociation fraction, self-ionization level and J-shock transition are derived. (author)

  12. High velocity molecular gas near Herbig-Haro objects HH 7--11

    International Nuclear Information System (INIS)

    Snell, R.L.; Edwards, S.

    1981-01-01

    Observations of the J = 2-1 and J = 1-0 transitions of 12 CO and 13 CO reveal the presence of high velocity molecular gas associated with a low luminosity infrared source in the vicinity of the Herbig-Haro objects HH 7--11. The blueshifted and redshifted wings show peak intensities spatially separated by 1X5 (0.2 pc), suggesting an energetic bipolar outflow of gas from a young low mass star. The mass loss rate implied by these observations is 8 x 10 -6 M/sub sun/ yr -1

  13. Aerosol formation from high-velocity uranium drops: Comparison of number and mass distributions. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Rader, D.J.; Benson, D.A.

    1995-05-01

    This report presents the results of an experimental study of the aerosol produced by the combustion of high-velocity molten-uranium droplets produced by the simultaneous heating and electromagnetic launch of uranium wires. These tests are intended to simulate the reduction of high-velocity fragments into aerosol in high-explosive detonations or reactor accidents involving nuclear materials. As reported earlier, the resulting aerosol consists mainly of web-like chain agglomerates. A condensation nucleus counter was used to investigate the decay of the total particle concentration due to coagulation and losses. Number size distributions based on mobility equivalent diameter obtained soon after launch with a Differential Mobility Particle Sizer showed lognormal distributions with an initial count median diameter (CMD) of 0.3 {mu}m and a geometric standard deviation, {sigma}{sub g} of about 2; the CMD was found to increase and {sigma}{sub g} decrease with time due to coagulation. Mass size distributions based on aerodynamic diameter were obtained for the first time with a Microorifice Uniform Deposit Impactor, which showed lognormal distributions with mass median aerodynamic diameters of about 0.5 {mu}m and an aerodynamic geometric standard deviation of about 2. Approximate methods for converting between number and mass distributions and between mobility and aerodynamic equivalent diameters are presented.

  14. HIGH-VELOCITY RESISTANCE EXERCISE PROTOCOLS IN OLDER WOMEN: EFFECTS ON CARDIOVASCULAR RESPONSE

    Directory of Open Access Journals (Sweden)

    Rodrigo P. da Silva

    2007-12-01

    Full Text Available Acute cardiovascular responses to different high-velocity resistance exercise protocols were compared in untrained older women. Twelve apparently healthy volunteers (62.6 ± 2.9 y performed three different protocols in the bench press (BP. All protocols involved three sets of 10 repetitions performed with a 10RM load and 2 minutes of rest between sets. The continuous protocol (CP involved ten repetitions with no pause between repetitions. The discontinuous protocols were performed with a pause of five (DP5 or 15 (DP15 seconds between the fifth and sixth repetitions. Heart rate (HR, systolic blood pressure (SBP, rate pressure product (RPP, Rating of Perceived Exertion (RPE, and blood lactate (BLa were assessed at baseline and at the end of all exercise sets. Factorial ANOVA was used to compare the cardiovascular response among different protocols. Compared to baseline, HR and RPP were significantly (p < 0.05 higher after the third set in all protocols. HR and RPP were significantly (p < 0.05 lower in DP5 and DP15 compared with CP for the BP exercise. Compared to baseline, RPE increased significantly (p < 0.05 with each subsequent set in all protocols. Blood lactate concentration during DP5 and DP15 was significantly lower than CP. It appears that discontinuous high-velocity resistance exercise has a lower cardiovascular demand than continuous resistance exercise in older women

  15. Aerosol formation from high-velocity uranium drops: Comparison of number and mass distributions. Final report

    International Nuclear Information System (INIS)

    Rader, D.J.; Benson, D.A.

    1995-05-01

    This report presents the results of an experimental study of the aerosol produced by the combustion of high-velocity molten-uranium droplets produced by the simultaneous heating and electromagnetic launch of uranium wires. These tests are intended to simulate the reduction of high-velocity fragments into aerosol in high-explosive detonations or reactor accidents involving nuclear materials. As reported earlier, the resulting aerosol consists mainly of web-like chain agglomerates. A condensation nucleus counter was used to investigate the decay of the total particle concentration due to coagulation and losses. Number size distributions based on mobility equivalent diameter obtained soon after launch with a Differential Mobility Particle Sizer showed lognormal distributions with an initial count median diameter (CMD) of 0.3 μm and a geometric standard deviation, σ g of about 2; the CMD was found to increase and σ g decrease with time due to coagulation. Mass size distributions based on aerodynamic diameter were obtained for the first time with a Microorifice Uniform Deposit Impactor, which showed lognormal distributions with mass median aerodynamic diameters of about 0.5 μm and an aerodynamic geometric standard deviation of about 2. Approximate methods for converting between number and mass distributions and between mobility and aerodynamic equivalent diameters are presented

  16. PTF 12gzk—A rapidly declining, high-velocity type Ic radio supernova

    Energy Technology Data Exchange (ETDEWEB)

    Horesh, Assaf; Kulkarni, Shrinivas R. [Cahill Center for Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Corsi, Alessandra [Department of Physics, The George Washington University, 725 21st Street, NW, Washington, DC 20052 (United States); Frail, Dale A. [National Radio Astronomy Observatory, P.O. Box 0, Socorro, NM 87801 (United States); Cenko, S. Bradley [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Ben-Ami, Sagi; Gal-Yam, Avishay; Yaron, Ofer; Arcavi, Iair; Ofek, Eran O. [Department of Particle Physics and Astrophysics, The Weizmann Institute of Science, Rehovot 76100 (Israel); Kasliwal, Mansi M. [Carnegie Institution for Science, Department of Terrestrial Magnetism, 5241 Broad Branch Road, Washington, DC 20008 (United States)

    2013-11-20

    Only a few cases of Type Ic supernovae (SNe) with high-velocity ejecta (≥0.2 c) have been discovered and studied. Here, we present our analysis of radio and X-ray observations of the Type Ic SN PTF 12gzk. The radio emission declined less than 10 days after explosion, suggesting SN ejecta expanding at high velocity (∼0.3 c). The radio data also indicate that the density of the circumstellar material (CSM) around the supernova is lower by a factor of ∼10 than the CSM around normal Type Ic SNe. PTF 12gzk may therefore be an intermediate event between a 'normal' SN Ic and a gamma-ray-burst-SN-like event. Our observations of this rapidly declining radio SN at a distance of 58 Mpc demonstrates the potential to detect many additional radio SNe, given the new capabilities of the Very Large Array (improved sensitivity and dynamic scheduling), which are currently missed, leading to a biased view of radio SNe Ic. Early optical discovery followed by rapid radio observations would provide a full description of the ejecta velocity distribution and CSM densities around stripped massive star explosions as well as strong clues about the nature of their progenitor stars.

  17. PTF 12gzk—A rapidly declining, high-velocity type Ic radio supernova

    International Nuclear Information System (INIS)

    Horesh, Assaf; Kulkarni, Shrinivas R.; Corsi, Alessandra; Frail, Dale A.; Cenko, S. Bradley; Ben-Ami, Sagi; Gal-Yam, Avishay; Yaron, Ofer; Arcavi, Iair; Ofek, Eran O.; Kasliwal, Mansi M.

    2013-01-01

    Only a few cases of Type Ic supernovae (SNe) with high-velocity ejecta (≥0.2 c) have been discovered and studied. Here, we present our analysis of radio and X-ray observations of the Type Ic SN PTF 12gzk. The radio emission declined less than 10 days after explosion, suggesting SN ejecta expanding at high velocity (∼0.3 c). The radio data also indicate that the density of the circumstellar material (CSM) around the supernova is lower by a factor of ∼10 than the CSM around normal Type Ic SNe. PTF 12gzk may therefore be an intermediate event between a 'normal' SN Ic and a gamma-ray-burst-SN-like event. Our observations of this rapidly declining radio SN at a distance of 58 Mpc demonstrates the potential to detect many additional radio SNe, given the new capabilities of the Very Large Array (improved sensitivity and dynamic scheduling), which are currently missed, leading to a biased view of radio SNe Ic. Early optical discovery followed by rapid radio observations would provide a full description of the ejecta velocity distribution and CSM densities around stripped massive star explosions as well as strong clues about the nature of their progenitor stars.

  18. Spectral characteristics of aurorae connected with high-velocity flows of the solar wind from coronal holes

    International Nuclear Information System (INIS)

    Khviyuzova, T.A.; Leont'ev, S.V.

    1997-01-01

    Bright electron aurorae almost always followed by red lower edge occur when the Earth is being passed by high-velocity flows from coronal holes within the auroral range at the night meridian. In contrast to other types of the solar wind the high-velocity flows from coronal holes do not cause the occurrence of A type red polar aurorae, that is, the spectrum of electrons pouring into the Earth atmosphere in these cases is shifted towards higher energies

  19. A study of human liver ferritin and chicken liver and spleen using Moessbauer spectroscopy with high velocity resolution

    Energy Technology Data Exchange (ETDEWEB)

    Oshtrakh, M. I., E-mail: oshtrakh@mail.utnet.ru [Ural State Technical University-UPI, Faculty of Physical Techniques and Devices for Quality Control (Russian Federation); Milder, O. B.; Semionkin, V. A. [Ural State Technical University-UPI, Faculty of Experimental Physics (Russian Federation)

    2008-01-15

    Lyophilized samples of human liver ferritin and chicken liver and spleen were measured at room temperature using Moessbauer spectroscopy with high velocity resolution. An increase in the velocity resolution of Moessbauer spectroscopy permitted us to increase accuracy and decrease experimental error in determining the hyperfine parameters of human liver ferritin and chicken liver and spleen. Moessbauer spectroscopy with high velocity resolution may be very useful for revealing small differences in hyperfine parameters during biomedical research.

  20. Atomic beam formed by the vaporization of a high velocity pellet

    International Nuclear Information System (INIS)

    Foster, C.A.; Hendricks, C.D.

    1974-01-01

    A description of an atomic beam formed by vaporizing an electrostatically accelerated high velocity pellet is given. Uniformly sized droplets of neon will be formed by the mechanical disintegration of liquid jet and frozen by adiabatic vaporization in vacuum. The pellets produced will be charged and accelerated by contacting a needle held at high potential. The accelerated pellets will be vaporized forming a pulse of mono-energetic atoms. The advantages are that a wide range of energies will be possible. The beam will be mono-energetic. The beam is inheretly pulsed, allowing a detailed time of flight velocity distribution measurement. The beam will have a high instantaneous intensity. The beam will be able to operate into an ultra high vacuum chamber

  1. Microstructure Characterization of WCCo-Mo Based Coatings Produced Using High Velocity Oxygen Fuel

    Directory of Open Access Journals (Sweden)

    Serkan Islak

    2015-12-01

    Full Text Available The present study has been carried out in order to investigate the microstructural properties of WCCo-Mo composite coatings deposited onto a SAE 4140 steel substrate by high velocity oxygen fuel (HVOF thermal spray. For this purpose, the Mo quantity added to the WCCo was changed as 10, 20, 30 and 40 wt. % percents. The coatings are compared in terms of their phase composition, microstructure and hardness. Phase compound and microstructure of coating layers were examined using X-ray diffractometer (XRD and scanning electron microscope (SEM. XRD results showed that WCCo-Mo composite coatings were mainly composed of WC, W2C, Co3W3C, Mo2C, MoO2, Mo and Co phases. The average hardness of the coatings increased with increasing Mo content.

  2. Diagnostic of N2(A) concentration in high velocity nitrogen afterglow at atmospheric pressure

    Science.gov (United States)

    Pointu, Anne-Marie; Mintusov, Evgeny

    2009-10-01

    An optical emission diagnostic was used to measure N2(A) concentration in a high velocity (1000 cm/s) N2 flowing afterglow of corona discharge at atmospheric pressure, used for biological decontamination. Introducing impurities of NO (measured at different axial distances and for different values of NO injected flow. Moreover, it has been demonstrated that N2(A) creation comes from N+N+N2 atom recombination with a global rate around 2e-33 cm^6/s, a result which agrees with literature, as well as N2(A) loss mechanisms were confirmed to go via quenching with O and N atoms. The order of magnitude of obtained N2(A) concentration, about 1e11 cm-3, coincides with the results of direct measurement (by Vegard-Kaplan band), using a spectrometer of better resolution.

  3. High-velocity facial gunshot wounds: multidisciplinary care from prehospital to discharge.

    Science.gov (United States)

    Sinnott, J D; Morris, G; Medland, P J; Porter, K

    2016-01-28

    A case is presented in which a high velocity rifle (shotgun) was fired into the inferior part of a patient's face in an attempted suicide causing widespread trauma to the inferior and left side of the patient's face. He presented to his general practitioner where an ambulance was called. The patient is followed from prehospital care (air ambulance) to resuscitation in accident and emergency and through the first stages of reconstructive surgery. The article focuses on the multidisciplinary approach to the patient's prehospital care and initial resuscitation at a major trauma centre. CT reconstruction images of the patient's skull allow visualisation of the extent of bone damage at presentation. Medical photography allows visualisation of the extent of the initial damage and shows how reconstructive surgery was undertaken early and in progressive stages. A literature review was performed allowing discussion of the current evidence and best practice in the management of facial gunshot wounds. 2016 BMJ Publishing Group Ltd.

  4. Simulation of High Velocity Impact on Composite Structures - Model Implementation and Validation

    Science.gov (United States)

    Schueler, Dominik; Toso-Pentecôte, Nathalie; Voggenreiter, Heinz

    2016-08-01

    High velocity impact on composite aircraft structures leads to the formation of flexural waves that can cause severe damage to the structure. Damage and failure can occur within the plies and/or in the resin rich interface layers between adjacent plies. In the present paper a modelling methodology is documented that captures intra- and inter-laminar damage and their interrelations by use of shell element layers representing sub-laminates that are connected with cohesive interface layers to simulate delamination. This approach allows the simulation of large structures while still capturing the governing damage mechanisms and their interactions. The paper describes numerical algorithms for the implementation of a Ladevèze continuum damage model for the ply and methods to derive input parameters for the cohesive zone model. By comparison with experimental results from gas gun impact tests the potential and limitations of the modelling approach are discussed.

  5. Development of high velocity gas gun with a new trigger system-numerical analysis

    Science.gov (United States)

    Husin, Z.; Homma, H.

    2018-02-01

    In development of high performance armor vests, we need to carry out well controlled experiments using bullet speed of more than 900 m/sec. After reviewing trigger systems used for high velocity gas guns, this research intends to develop a new trigger system, which can realize precise and reproducible impact tests at impact velocity of more than 900 m/sec. A new trigger system developed here is called a projectile trap. A projectile trap is placed between a reservoir and a barrel. A projectile trap has two functions of a sealing disk and triggering. Polyamidimide is selected for the trap material and dimensions of the projectile trap are determined by numerical analysis for several levels of launching pressure to change the projectile velocity. Numerical analysis results show that projectile trap designed here can operate reasonably and stresses caused during launching operation are less than material strength. It means a projectile trap can be reused for the next shooting.

  6. Introducing a novel gravitation-based high-velocity compaction analysis method for pharmaceutical powders.

    Science.gov (United States)

    Tanner, Timo; Antikainen, Osmo; Ehlers, Henrik; Yliruusi, Jouko

    2017-06-30

    With modern tableting machines large amounts of tablets are produced with high output. Consequently, methods to examine powder compression in a high-velocity setting are in demand. In the present study, a novel gravitation-based method was developed to examine powder compression. A steel bar is dropped on a punch to compress microcrystalline cellulose and starch samples inside the die. The distance of the bar is being read by a high-accuracy laser displacement sensor which provides a reliable distance-time plot for the bar movement. In-die height and density of the compact can be seen directly from this data, which can be examined further to obtain information on velocity, acceleration and energy distribution during compression. The energy consumed in compact formation could also be seen. Despite the high vertical compression speed, the method was proven to be cost-efficient, accurate and reproducible. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. LP 400-22, A Very Low Mass and High-Velocity White Dwarf

    Science.gov (United States)

    Kawka, Adela; Vennes, Stephane; Oswalt, Terry D.; Smith, J. Allyn; Silvestri, Nicole M.

    2006-01-01

    We report the identification of LP 400-22 (WD 2234+222) as a very low mass and high-velocity white dwarf. The ultraviolet GALEX and optical photometric colors and a spectral line analysis of LP 400-22 show this star to have an effective temperature of 11,080+/-140 K and a surface gravity of log g = 6.32 +/-0.08. Therefore, this is a helium-core white dwarf with a mass of 0.17 M,. The tangential velocity of this white dwarf is 414+/-43 km/s, making it one of the fastest moving white dwarfs known. We discuss probable evolutionary scenarios for this remarkable object.

  8. Combustion of a high-velocity hydrogen microjet effluxing in air

    Science.gov (United States)

    Kozlov, V. V.; Grek, G. R.; Korobeinichev, O. P.; Litvinenko, Yu. A.; Shmakov, A. G.

    2016-09-01

    This study is devoted to experimental investigation of hydrogen-combustion modes and the structure of a diffusion flame formed at a high-velocity efflux of hydrogen in air through round apertures of various diameters. The efflux-velocity range of the hydrogen jet and the diameters of nozzle apertures at which the flame is divided in two zones with laminar and turbulent flow are found. The zone with the laminar flow is a stabilizer of combustion of the flame as a whole, and in the zone with the turbulent flow the intense mixing of fuel with an oxidizer takes place. Combustion in these two zones can occur independently from each other, but the steadiest mode is observed only at the existence of the flame in the laminar-flow zone. The knowledge obtained makes it possible to understand more deeply the features of modes of microjet combustion of hydrogen promising for various combustion devices.

  9. The deposition of magnetite particles from high velocity water onto isothermal tubes

    International Nuclear Information System (INIS)

    Burrill, K.A.

    1977-02-01

    The deposition rate of magnetite particles from a high velocity water slurry onto isothermal metal tubes was measured. The effects of velocity (5 to 100 m/s), slurry concentration (200 to 1000 mg Fe/kg H 2 O), temperature (25 to 90 deg C), pH (4 to 10 at 25 deg C), and tube material (nickel, Zircaloy-4) on deposition rate were studied. The data are interpreteω in terms of two steps in series for deposition: a mass transfer step followed by a deposition or ''inertial coasting'' step. Mass transfer of particles through the bulk water phase apparently limits the deposition of particles at high Reynolds number (10 5 ). (author)

  10. Minimally-invasive treatment of high velocity intra-articular fractures of the distal tibia.

    LENUS (Irish Health Repository)

    Leonard, M

    2012-02-01

    The pilon fracture is a complex injury. The purpose of this study was to evaluate the outcome of minimally invasive techniques in management of these injuries. This was a prospective study of closed AO type C2 and C3 fractures managed by early (<36 hours) minimally invasive surgical intervention and physiotherapist led rehabilitation. Thirty patients with 32 intra-articular distal tibial fractures were treated by the senior surgeon (GK). Our aim was to record the outcome and all complications with a minimum two year follow-up. There were two superficial wound infections. One patient developed a non-union which required a formal open procedure. Another patient was symptomatic from a palpable plate inferiorly. An excellent AOFAS result was obtained in 83% (20\\/24) of the patients. Early minimally invasive reduction and fixation of complex high velocity pilon fractures gave very satisfactory results at a minimum of two years follow-up.

  11. St 2-22 - Another Symbiotic Star with High-Velocity Bipolar Jets

    Science.gov (United States)

    Tomov, T.; Zamanov, R.; Gałan, C.; Pietrukowicz, P.

    2017-09-01

    We report the detection of high-velocity components in the wings of Hα emission line in spectra of symbiotic binary star St 2-22 obtained in 2005. This finding encouraged us to start the present investigation in order to show that this poorly-studied object is a jet-producing system. We have used high-resolution optical and low-resolution near-infrared spectra, as well as available optical and infrared photometry, to evaluate some physical parameters of the St 2-22 components and characteristics of the jets. We confirm that St 2-22 is a S-type symbiotic star. Our results demonstrate that an unnoticed outburst, similar to those in classical symbiotic systems, occurred in the first half of 2005. During the outburst, collimated bipolar jets were ejected by the hot component of St 2-22 with an average velocity of about 1700 km/s.

  12. High-Velocity Impact Behaviour of Prestressed Composite Plates under Bird Strike Loading

    Directory of Open Access Journals (Sweden)

    Sebastian Heimbs

    2012-01-01

    Full Text Available An experimental and numerical analysis of the response of laminated composite plates under high-velocity impact loads of soft body gelatine projectiles (artificial birds is presented. The plates are exposed to tensile and compressive preloads before impact in order to cover realistic loading conditions of representative aeronautic structures under foreign object impact. The modelling methodology for the composite material, delamination interfaces, impact projectile, and preload using the commercial finite element code Abaqus are presented in detail. Finally, the influence of prestress and of different delamination modelling approaches on the impact response is discussed and a comparison to experimental test data is given. Tensile and compressive preloading was found to have an influence on the damage pattern. Although this general behaviour could be predicted well by the simulations, further numerical challenges for improved bird strike simulation accuracy are highlighted.

  13. Optimization and Characterization of High Velocity Oxy-fuel Sprayed Coatings: Techniques, Materials, and Applications

    Directory of Open Access Journals (Sweden)

    Maria Oksa

    2011-09-01

    Full Text Available In this work High Velocity Oxy-fuel (HVOF thermal spray techniques, spraying process optimization, and characterization of coatings are reviewed. Different variants of the technology are described and the main differences in spray conditions in terms of particle kinetics and thermal energy are rationalized. Methods and tools for controlling the spray process are presented as well as their use in optimizing the coating process. It will be shown how the differences from the starting powder to the final coating formation affect the coating microstructure and performance. Typical properties of HVOF sprayed coatings and coating performance is described. Also development of testing methods used for the evaluation of coating properties and current status of standardization is presented. Short discussion of typical applications is done.

  14. A systematic search for dwarf counterparts to ultra compact high velocity clouds

    Science.gov (United States)

    Bennet, Paul; Sand, David J.; Crnojevic, Denija; Strader, Jay

    2015-01-01

    Observations of the Universe on scales smaller than typical, massive galaxies challenge the standard Lambda Cold Dark Matter paradigm for structure formation. It is thus imperative to discover and characterize the faintest dwarf galaxy systems, not just within the Local Group, but in relatively isolated environments as well in order to properly connect them with models of structure formation. Here we report on a systematic search of public ultraviolet and optical archives for dwarf galaxy counterparts to so-called Ultra Compact High Velocity Clouds (UCHVCs), which are compact, isolated HI sources recently found in the Galactic Arecibo L-band Feed Array-HI (GALFA-HI) and Arecibo Legacy Fast ALFA (ALFALFA-HI) surveys. Our search has uncovered at least three strong dwarf galaxy candidates, and we present their inferred star formation rate and structural properties here.

  15. Moessbauer spectroscopy with a high velocity resolution: advances in biomedical, pharmaceutical, cosmochemical and nano technological research

    International Nuclear Information System (INIS)

    Oshtrakha, M.I.; Semionkina, V.A.

    2011-01-01

    Full text: Velocity resolution is a term denoted the smallest velocity step (2V/2 n ) in velocity driving system of Moessbauer spectrometer and velocity step for the one point in Moessbauer spectrum. Velocity resolution coefficient 1/2 n in velocity driving system is constant and velocity resolution value depends on velocity range (2V) only while velocity resolution in Moessbauer spectrum may be the same or less. Moessbauer spectroscopy with a high velocity resolution is a new method to measure precision high quality spectra. It is well known that one of the main parts of Moessbauer spectrometer is velocity driving system. Usual spectrometers are used sinusoidal or triangular velocity reference signal and 256 or 512 channels to form velocity signal. Such velocity driving system provides spectra measurement with a low velocity resolution (2 n =256 or 512 channels) with possibility to decrease measurement time and reach needed signal/noise ratio by spectra folding on the direct and reverse motion. However, these driving systems do not provide a low systematic error for velocity signal while folding increases integral velocity error due to different velocity errors on the direct and reverse motions. These problems can be neglected if a high precision is not required for spectra measurement. Nevertheless, further development of Moessbauer spectroscopy may be related to increase in precision and quality of spectra measurement with less instrumental (systematic) velocity error and to increase in velocity resolution for both spectrometer and spectrum. A new velocity driving system was developed for Moessbauer spectrometer SM- 2201. This system uses saw-tooth shape velocity reference signal and 2 n =4096 channels to form velocity signal. On the basis of SM-2201 and liquid nitrogen cryostat with moving absorber and temperature variation in the range of 295-85 K a new automated precision Moessbauer spectrometric system with a high velocity resolution was created

  16. Study of the fragmentation of astrophysical interest molecules (CnHm) induced by high velocity collision

    International Nuclear Information System (INIS)

    Tuna, Th.

    2008-07-01

    This work shows the study of atom-molecule collision processes in the high velocity domain (v=4,5 a.u). The molecules concerned by this work are small unsaturated hydrocarbons C 1-4 H and C 3 H 2 . Molecules are accelerated with the Tandem accelerator in Orsay and their fragmentation is analyzed by the 4π, 100% efficient detector, AGAT. Thanks to a shape analysis of the current signal from the silicon detectors in association with the well known grid method, we are able to measure all the fragmentation channels of the incident molecule. These dissociation measurements have been introduced in the modelization of two objects of the interstellar medium in which a lot of hydrocarbon molecules have been observed (TMC1, horse-head nebula). We have extended our branching ratios obtained by high velocity collision to other electronic processes included in the chemical database like photodissociation and dissociative recombination. This procedure is feasible under an assumption of the statistical point of view of the molecular fragmentation. The deviations following our modification are very small in the modelization of TMC1 but significant in the photodissociation region. The first part is dedicated to the description of the experimental setting that has enabled us to study the fragmentation of C n H m molecules: the Orsay's Tandem accelerator and the Agat detector. The second part deals with negative ion sources and particularly with the Sahat source that is based on electronic impact and has shown good features for the production of anions and correct stability for its use with accelerators. The third part is dedicated to the experimental results in terms of cross-sections, number of fragments and branching ratios, associated to the various collisional processes. The last part presents an application of our measurement of fragmentation data to astro-chemistry. In this field, the simulation codes of the inter-stellar medium require databases of chemical reactions that

  17. Numerical simulation of a high velocity impact on fiber reinforced materials

    International Nuclear Information System (INIS)

    Thoma, Klaus; Vinckier, David

    1994-01-01

    Whereas the calculation of a high velocity impact on isotropical materials can be done on a routine basis, the simulation of the impact and penetration process into nonisotropical materials such as reinforced concrete or fiber reinforced materials still is a research task.We present the calculation of an impact of a metallic fragment on a modern protective wall structure. Such lightweight protective walls typically consist of two layers, a first outer layer made out of a material with high hardness and a backing layer. The materials for the backing layer are preferably fiber reinforced materials. Such types of walls offer a protection against fragments in a wide velocity range.For our calculations we used a non-linear finite element Lagrange code with explicit time integration. To be able to simulate the high velocity penetration process with a continuous erosion of the impacting metallic fragment, we used our newly developed contact algorithm with eroding surfaces. This contact algorithm is vectorized to a high degree and especially robust as it was developed to work for a wide range of contact-impact problems. To model the behavior of the fiber reinforced material under the highly dynamic loads, we present a material model which initially was developed to calculate the crash behavior (automotive applications) of modern high strength fiber-matrix systems. The model can describe the failure and the postfailure behavior up to complete material crushing.A detailed simulation shows the impact of a metallic fragment with a velocity of 750ms -1 on a protective wall with two layers, the deformation and erosion of fragment and wall material and the failure of the fiber reinforced material. ((orig.))

  18. Modeling of liquid ceramic precursor droplets in a high velocity oxy-fuel flame jet

    International Nuclear Information System (INIS)

    Basu, Saptarshi; Cetegen, Baki M.

    2008-01-01

    Production of coatings by high velocity oxy-fuel (HVOF) flame jet processing of liquid precursor droplets can be an attractive alternative method to plasma processing. This article concerns modeling of the thermophysical processes in liquid ceramic precursor droplets injected into an HVOF flame jet. The model consists of several sub-models that include aerodynamic droplet break-up, heat and mass transfer within individual droplets exposed to the HVOF environment and precipitation of ceramic precursors. A parametric study is presented for the initial droplet size, concentration of the dissolved salts and the external temperature and velocity field of the HVOF jet to explore processing conditions and injection parameters that lead to different precipitate morphologies. It is found that the high velocity of the jet induces shear break-up into several μm diameter droplets. This leads to better entrainment and rapid heat-up in the HVOF jet. Upon processing, small droplets (<5 μm) are predicted to undergo volumetric precipitation and form solid particles prior to impact at the deposit location. Droplets larger than 5 μm are predicted to form hollow or precursor containing shells similar to those processed in a DC arc plasma. However, it is found that the lower temperature of the HVOF jet compared to plasma results in slower vaporization and solute mass diffusion time inside the droplet, leading to comparatively thicker shells. These shell-type morphologies may further experience internal pressurization, resulting in possibly shattering and secondary atomization of the trapped liquid. The consequences of these different particle states on the coating microstructure are also discussed in this article

  19. SPECTROSCOPIC OBSERVATIONS OF SN 2012fr: A LUMINOUS, NORMAL TYPE Ia SUPERNOVA WITH EARLY HIGH-VELOCITY FEATURES AND A LATE VELOCITY PLATEAU

    International Nuclear Information System (INIS)

    Childress, M. J.; Scalzo, R. A.; Sim, S. A.; Tucker, B. E.; Yuan, F.; Schmidt, B. P.; Cenko, S. B.; Filippenko, A. V.; Silverman, J. M.; Contreras, C.; Hsiao, E. Y.; Phillips, M.; Morrell, N.; Jha, S. W.; McCully, C.; Anderson, J. P.; De Jaeger, T.; Forster, F.; Benetti, S.; Bufano, F.

    2013-01-01

    We present 65 optical spectra of the Type Ia SN 2012fr, 33 of which were obtained before maximum light. At early times, SN 2012fr shows clear evidence of a high-velocity feature (HVF) in the Si II λ6355 line that can be cleanly decoupled from the lower velocity ''photospheric'' component. This Si II λ6355 HVF fades by phase –5; subsequently, the photospheric component exhibits a very narrow velocity width and remains at a nearly constant velocity of ∼12,000 km s –1 until at least five weeks after maximum brightness. The Ca II infrared triplet exhibits similar evidence for both a photospheric component at v ≈ 12,000 km s –1 with narrow line width and long velocity plateau, as well as an HVF beginning at v ≈ 31,000 km s –1 two weeks before maximum. SN 2012fr resides on the border between the ''shallow silicon'' and ''core-normal'' subclasses in the Branch et al. classification scheme, and on the border between normal and high-velocity Type Ia supernovae (SNe Ia) in the Wang et al. system. Though it is a clear member of the ''low velocity gradient'' group of SNe Ia and exhibits a very slow light-curve decline, it shows key dissimilarities with the overluminous SN 1991T or SN 1999aa subclasses of SNe Ia. SN 2012fr represents a well-observed SN Ia at the luminous end of the normal SN Ia distribution and a key transitional event between nominal spectroscopic subclasses of SNe Ia.

  20. Practical routes to (SiH₃)₃P: applications in group IV semiconductor activation and in group III-V molecular synthesis.

    Science.gov (United States)

    Tice, Jesse B; Chizmeshya, A V G; Tolle, J; D' Costa, V R; Menendez, J; Kouvetakis, J

    2010-05-21

    The (SiH₃)₃P hydride is introduced as a practical source for n-doping of group IV semiconductors and as a highly-reactive delivery agent of -(SiH₃)₂P functionalities in exploratory synthesis. In contrast to earlier methods, the compound is produced here in high purity quantitative yields via a new single-step method based on reactions of SiH₃Br and (Me₃Sn)₃P, circumventing the need for toxic and unstable starting materials. As an initial demonstration of its utility we synthesized monosubstituted Me₂M-P(SiH₃)₂ (M = Al, Ga, In) derivatives of Me₃M containing the (SiH₃)₂P ligand for the first time, in analogy to the known Me₂M-P(SiMe₃)₂ counterparts. A dimeric structure of Me₂M-P(SiH₃)₂ is proposed on the basis of spectroscopic characterizations and quantum chemical simulations. Next, in the context of materials synthesis, the (SiH₃)₃P compound was used to dope germanium for the first time by building a prototype p(++)Si(100)/i-Ge/n-Ge photodiode structure. The resultant n-type Ge layers contained active carrier concentrations of 3-4 × 10¹⁹ atoms cm⁻³ as determined by spectroscopic ellipsometry and confirmed by SIMS. Strain analysis using high resolution XRD yielded a Si content of 4 × 10²⁰ atoms cm⁻³ in agreement with SIMS and within the range expected for incorporating Si₃P type units into the diamond cubic Ge matrix. Extensive characterizations for structure, morphology and crystallinity indicate that the Si co-dopant plays essentially a passive role and does not compromise the device quality of the host material nor does it fundamentally alter its optical properties.

  1. Facile and efficient synthesis of the surface tantalum hydride (≡SiO)2TaIIIH and tris-siloxy tantalum (≡SiO)3TaIII starting from novel tantalum surface species (≡SiO)TaMe4 and (≡SiO)2TaMe 3

    KAUST Repository

    Chen, Yin

    2014-03-10

    By grafting of TaMe5 (1) on the surface of silica partially dehydroxylated at 500 C (silica500), a mixture of (≡SiO)TaMe4 (2a; major, 65 ± 5%) and (≡SiO) 2TaMe3 (2b; minor, 35 ± 5%) was produced, which has been characterized by microanalysis, IR, and SS NMR (1H, 13C, 1H-13C HETCOR, proton double and triple quantum). After grafting, these surface organometallic compounds are more stable than the precursor TaMe5. Treatment of 2a,b with water and H 2 resulted in the formation of methane in amount of 3.6 ± 0.2 and 3.4 ± 0.2 mol/grafted Ta, respectively. 2a,b react with H2 (800 mbar) to form (≡SiO)2TaH. After (≡SiO) 2TaH was heated to 500 C under hydrogen or vacuum, [(≡SiO) 3Ta][≡SiH] was produced, and the structure was confirmed by IR, NMR, and EXAFS. Considering the difficulty of the previous preparation method, these syntheses represent a facile and convenient way to prepare tantalum surface species (≡SiO)2TaH and (≡SiO)3Ta via the intermediate of the new surface organometallic precursors: (≡SiO)TaMe4/(≡SiO)2TaMe3. (≡SiO)2TaH and (≡SiO)3Ta exhibit equal reactivities in alkane metathesis and ethylene polymerization in comparison to those in previous reports. © 2014 American Chemical Society.

  2. Facile and efficient synthesis of the surface tantalum hydride (≡SiO)2TaIIIH and tris-siloxy tantalum (≡SiO)3TaIII starting from novel tantalum surface species (≡SiO)TaMe4 and (≡SiO)2TaMe 3

    KAUST Repository

    Chen, Yin; Ould-Chikh, Samy; Abou-Hamad, Edy; Callens, Emmanuel; Mohandas, Janet Chakkamadathil; Khalid, Syed M.; Basset, Jean-Marie

    2014-01-01

    By grafting of TaMe5 (1) on the surface of silica partially dehydroxylated at 500 C (silica500), a mixture of (≡SiO)TaMe4 (2a; major, 65 ± 5%) and (≡SiO) 2TaMe3 (2b; minor, 35 ± 5%) was produced, which has been characterized by microanalysis, IR, and SS NMR (1H, 13C, 1H-13C HETCOR, proton double and triple quantum). After grafting, these surface organometallic compounds are more stable than the precursor TaMe5. Treatment of 2a,b with water and H 2 resulted in the formation of methane in amount of 3.6 ± 0.2 and 3.4 ± 0.2 mol/grafted Ta, respectively. 2a,b react with H2 (800 mbar) to form (≡SiO)2TaH. After (≡SiO) 2TaH was heated to 500 C under hydrogen or vacuum, [(≡SiO) 3Ta][≡SiH] was produced, and the structure was confirmed by IR, NMR, and EXAFS. Considering the difficulty of the previous preparation method, these syntheses represent a facile and convenient way to prepare tantalum surface species (≡SiO)2TaH and (≡SiO)3Ta via the intermediate of the new surface organometallic precursors: (≡SiO)TaMe4/(≡SiO)2TaMe3. (≡SiO)2TaH and (≡SiO)3Ta exhibit equal reactivities in alkane metathesis and ethylene polymerization in comparison to those in previous reports. © 2014 American Chemical Society.

  3. Joint Manipulation: Toward a General Theory of High-Velocity, Low-Amplitude Thrust Techniques.

    Science.gov (United States)

    Harwich, Andrew S

    2017-12-01

    The objective of this study was to describe the initial stage of a generalized theory of high-velocity, low-amplitude thrust (HVLAT) techniques for joint manipulation. This study examined the movements described by authors from the fields of osteopathy, chiropractic, and physical therapy to produce joint cavitation in both the metacarpophalangeal (MCP) joint and the cervical spine apophysial joint. This study qualitatively compared the kinetics, the similarities, and the differences between MCP cavitation and cervical facet joint cavitation. A qualitative vector analysis of forces and movements was undertaken by constructing computer-generated, simplified graphical models of the MCP joint and a typical cervical apophysial joint and imposing the motions dictated by the clinical technique. Comparing the path to cavitation of 2 modes of HVLAT for the MCP joint, namely, distraction and hyperflexion, it was found that the hyperflexion method requires an axis of rotation, the hinge axis, which is also required for cervical HVLAT. These results show that there is an analogue of cervical HVLAT in one of the MCP joint HVLATs. The study demonstrated that in a theoretical model, the path to joint cavitation is the same for asymmetric separation of the joint surfaces in the cervical spine and the MCP joints.

  4. Searching for Dark Matter Annihilation in the Smith High-Velocity Cloud

    Science.gov (United States)

    Drlica-Wagner, Alex; Gomez-Vargas, German A.; Hewitt, John W.; Linden, Tim; Tibaldo, Luigi

    2014-01-01

    Recent observations suggest that some high-velocity clouds may be confined by massive dark matter halos. In particular, the proximity and proposed dark matter content of the Smith Cloud make it a tempting target for the indirect detection of dark matter annihilation. We argue that the Smith Cloud may be a better target than some Milky Way dwarf spheroidal satellite galaxies and use gamma-ray observations from the Fermi Large Area Telescope to search for a dark matter annihilation signal. No significant gamma-ray excess is found coincident with the Smith Cloud, and we set strong limits on the dark matter annihilation cross section assuming a spatially extended dark matter profile consistent with dynamical modeling of the Smith Cloud. Notably, these limits exclude the canonical thermal relic cross section (approximately 3 x 10 (sup -26) cubic centimeters per second) for dark matter masses less than or approximately 30 gigaelectronvolts annihilating via the B/B- bar oscillation or tau/antitau channels for certain assumptions of the dark matter density profile; however, uncertainties in the dark matter content of the Smith Cloud may significantly weaken these constraints.

  5. Hydromagnetic Rayleigh endash Taylor instability in high-velocity gas-puff implosions

    International Nuclear Information System (INIS)

    Roderick, N.F.; Peterkin, R.E. Jr.; Hussey, T.W.; Spielman, R.B.; Douglas, M.R.; Deeney, C.

    1998-01-01

    Experiments using the Saturn pulsed power generator have produced high-velocity z-pinch plasma implosions with velocities over 100 cm/μs using both annular and uniform-fill gas injection initial conditions. Both types of implosion show evidence of the hydromagnetic Rayleigh endash Taylor instability with the uniform-fill plasmas producing a more spatially uniform pinch. Two-dimensional magnetohydrodynamic simulations including unsteady flow of gas from a nozzle into the diode region have been used to investigate these implosions. The instability develops from the nonuniform gas flow field that forms as the gas expands from the injection nozzle. Instability growth is limited to the narrow unstable region of the current sheath. For the annular puff the unstable region breaks through the inner edge of the annulus increasing nonlinear growth as mass ejected from the bubble regions is not replenished by accretion. This higher growth leads to bubble thinning and disruption producing greater nonuniformity at pinch for the annular puff. The uniform puff provides gas to replenish bubble mass loss until just before pinch resulting in less bubble thinning and a more uniform pinch. copyright 1998 American Institute of Physics

  6. High-velocity Penetration of Concrete Targets with Three Types of Projectiles: Experiments and Analysis

    Directory of Open Access Journals (Sweden)

    Shuang Zhang

    Full Text Available Abstract This study conducted high-velocity penetration experiments using conventional ogive-nose, double-ogive-nose, and grooved-tapered projectiles of approximately 2.5 kg and initial velocities between 1000 and 1360 m/s to penetrate or perforate concrete targets with unconfined compressive strengths of nominally 40MPa. The penetration performance data of these three types of projectiles with two different types of materials (i.e., AerMet100 and DT300 were obtained. The crater depth model considering both the projectile mass and the initial velocity was proposed based on the test results and a theoretical analysis. The penetration ability and the trajectory stability of these three projectile types were compared and analyzed accordingly. The results showed that, under these experimental conditions, the effects of these two different kinds of projectile materials on the penetration depth and mass erosion rate of projectile were not obvious. The existing models could not reflect the crater depths for projectiles of greater weights or higher velocities, whereas the new model established in this study was reliable. The double-ogive-nose has a certain effect of drag reduction. Thus, the double-ogive-nose projectile has a higher penetration ability than the conventional ogive-nose projectile. Meanwhile, the grooved-tapered projectile has a better trajectory stability, because the convex parts of tapered shank generated the restoring moment to stabilize the trajectory.

  7. Scaling invariance of spherical projectile fragmentation upon high-velocity impact on a thin continuous shield

    Energy Technology Data Exchange (ETDEWEB)

    Myagkov, N. N., E-mail: nn-myagkov@mail.ru [Russian Academy of Sciences, Institute of Applied Mechanics (Russian Federation)

    2017-01-15

    The problem of aluminum projectile fragmentation upon high-velocity impact on a thin aluminum shield is considered. A distinctive feature of this description is that the fragmentation has been numerically simulated using the complete system of equations of deformed solid mechanics by a method of smoothed particle hydrodynamics in three-dimensional setting. The transition from damage to fragmentation is analyzed and scaling relations are derived in terms of the impact velocity (V), ratio of shield thickness to projectile diameter (h/D), and ultimate strength (σ{sub p}) in the criterion of projectile and shield fracture. Analysis shows that the critical impact velocity V{sub c} (separating the damage and fragmentation regions) is a power function of σ{sub p} and h/D. In the supercritical region (V > V{sub c}), the weight-average fragment mass asymptotically tends to a power function of the impact velocity with exponent independent of h/D and σ{sub p}. Mean cumulative fragment mass distributions at the critical point are scale-invariant with respect to parameters h/D and σ{sub p}. Average masses of the largest fragments are also scale-invariant at V > V{sub c}, but only with respect to variable parameter σ{sub p}.

  8. Rebound mechanics of micrometre-scale, spherical particles in high-velocity impacts.

    Science.gov (United States)

    Yildirim, Baran; Yang, Hankang; Gouldstone, Andrew; Müftü, Sinan

    2017-08-01

    The impact mechanics of micrometre-scale metal particles with flat metal surfaces is investigated for high-velocity impacts ranging from 50 m s -1 to more than 1 km s -1 , where impact causes predominantly plastic deformation. A material model that includes high strain rate and temperature effects on the yield stress, heat generation due to plasticity, material damage due to excessive plastic strain and heat transfer is used in the numerical analysis. The coefficient of restitution e is predicted by the classical work using elastic-plastic deformation analysis with quasi-static impact mechanics to be proportional to [Formula: see text] and [Formula: see text] for the low and moderate impact velocities that span the ranges of 0-10 and 10-100 m s -1 , respectively. In the elastic-plastic and fully plastic deformation regimes the particle rebound is attributed to the elastic spring-back that initiates at the particle-substrate interface. At higher impact velocities (0.1-1 km s -1 ) e is shown to be proportional to approximately [Formula: see text]. In this deeply plastic deformation regime various deformation modes that depend on plastic flow of the material including the time lag between the rebound instances of the top and bottom points of particle and the lateral spreading of the particle are identified. In this deformation regime, the elastic spring-back initiates subsurface, in the substrate.

  9. Experimental and analytical study of high velocity impact on Kevlar/Epoxy composite plates

    Science.gov (United States)

    Sikarwar, Rahul S.; Velmurugan, Raman; Madhu, Velmuri

    2012-12-01

    In the present study, impact behavior of Kevlar/Epoxy composite plates has been carried out experimentally by considering different thicknesses and lay-up sequences and compared with analytical results. The effect of thickness, lay-up sequence on energy absorbing capacity has been studied for high velocity impact. Four lay-up sequences and four thickness values have been considered. Initial velocities and residual velocities are measured experimentally to calculate the energy absorbing capacity of laminates. Residual velocity of projectile and energy absorbed by laminates are calculated analytically. The results obtained from analytical study are found to be in good agreement with experimental results. It is observed from the study that 0/90 lay-up sequence is most effective for impact resistance. Delamination area is maximum on the back side of the plate for all thickness values and lay-up sequences. The delamination area on the back is maximum for 0/90/45/-45 laminates compared to other lay-up sequences.

  10. Cleansing technique using high-velocity steam-air micromist jet spray.

    Science.gov (United States)

    Fukuda, Koichi; Ishihara, Masayuki; Murakami, Kaoru; Nakamura, Shingo; Sato, Yoko; Kuwabara, Masahiro; Fujita, Masanori; Kiyosawa, Tomoharu; Yokoe, Hidetaka

    2017-10-01

    Application of a high-velocity steam-air micromist jet spray (HVS-AMJS; micromist average diameter: 2.4 μm) for cleansing the skin is proposed. Low-pressure steam is mixed with compressed air (pH 6.5) in a nozzle, and then sprayed at a pressure of ≦0.25 MPa and a velocity of ≧0.34 m/s on the skin or surface of material located approximately 5-10 cm from the nozzle. The temperature on the sprayed surface and water flow rate could be controlled between 42 °C and 46 °C and at approximately 50 mL/min, respectively. Compared with ultrasonic cleansing with tap water and rubbing with only tap water, the HVS-AMJS successfully removed fluorescent lotion covering pieces of wood and significantly reduced both the number of coliforms and the total viable counts on pieces of wood and gauze. Furthermore, the HVS-AMJS effectively removed oily ink from the skin of hairless rats, and temporarily elevated the skin temperature and blood flow, indicating massage effects. The striking characteristics of this cleansing technique using HVS-AMJS are not only its ability to remove microbes and residue without using any chemicals or detergents but also its massage effects.

  11. High-velocity low-amplitude manipulation (thrust and athletic performance: a systematic review

    Directory of Open Access Journals (Sweden)

    Mikhail Santos Cerqueira

    Full Text Available Abstract Introduction: The high demand level in sports has encouraged the search for strategies to increase the yield. In this context, manual therapy through high-velocity low-amplitude (thrust has been employed in many sports. Despite the adhesion of manual therapists in clinical practice, there were no systematic reviews on this topic. Objective: To evaluate the effects of thrust on the performance of athletes in relation to the outcomes hand-grip strength, jump height and running speed. Methods: The databases used in the search were MEDLINE / PUBMED, LILACS, CINAHL, PEDro, WEB OF SCIENCE, CENTRAL and SCOPUS, and Randomized controlled trials were included, whose participants were professionals or recreational athletes and had thrust as intervention. The methodological quality of the studies was assessed using the PEDro scale of 10 points. Intervention effects were determined by the mean difference and confidence interval. The data analysis was done in the descriptive form due to the heterogeneity found among studies. Results: Five trials were included with a total of 95 individuals. The methodological quality of studies was low, with an average value of 5.6 on the PEDro scale. It was found two articles for each outcome, but in none of them was presented differences between the experimental and control groups considering the confidence interval. Conclusion: The current evidence is insufficient to determine the use or nonuse the MAVBA in sports in order to improve performance.

  12. Remote Numerical Simulations of the Interaction of High Velocity Clouds with Random Magnetic Fields

    Science.gov (United States)

    Santillan, Alfredo; Hernandez--Cervantes, Liliana; Gonzalez--Ponce, Alejandro; Kim, Jongsoo

    The numerical simulations associated with the interaction of High Velocity Clouds (HVC) with the Magnetized Galactic Interstellar Medium (ISM) are a powerful tool to describe the evolution of the interaction of these objects in our Galaxy. In this work we present a new project referred to as Theoretical Virtual i Observatories. It is oriented toward to perform numerical simulations in real time through a Web page. This is a powerful astrophysical computational tool that consists of an intuitive graphical user interface (GUI) and a database produced by numerical calculations. In this Website the user can make use of the existing numerical simulations from the database or run a new simulation introducing initial conditions such as temperatures, densities, velocities, and magnetic field intensities for both the ISM and HVC. The prototype is programmed using Linux, Apache, MySQL, and PHP (LAMP), based on the open source philosophy. All simulations were performed with the MHD code ZEUS-3D, which solves the ideal MHD equations by finite differences on a fixed Eulerian mesh. Finally, we present typical results that can be obtained with this tool.

  13. High-Velocity Ly(Alpha) Emission from SMR 1987A

    Science.gov (United States)

    Michael, Eli; McCray, Richard; Borkowski, Kazimierz J.; Pun, Chu S. J.; Sonneborn, George

    1998-01-01

    The high-velocity Ly(Alpha) emission from SN 1987A observed with the Space Telescope Imaging Spectrograph (STIS) evidently comes from a reverse shock formed where the outer envelope of SN 1987A strikes ionized gas inside the inner circumstellar ring. The observations can be explained by a simple kinematic model, in which the Ly(Alpha) emission comes from hydrogen atoms with radial velocity approximately 15,000 km s(exp -1) crossing a reverse shock in the shape of a slightly prolate ellipsoid with equatorial radius 4.8 x 10(exp 17) cm or approximately 80% of the distance to the inner surface of the inner ring. N v double Lambda 1239, 1243 emission, if present, has a net luminosity approximately less than 30% times that of the Ly(Alpha) emission. Future STIS observations should enable us to predict the time of impact with the inner ring and to determine unambiguously whether or not N v emission is present. These observations will offer a unique opportunity to probe the structure of SN 1987A's circumstellar environment and the hydrodynamics and kinetics of very fast shocks.

  14. In vitro performance of ceramic coatings obtained by high velocity oxy-fuel spray.

    Science.gov (United States)

    Melero, H; Garcia-Giralt, N; Fernández, J; Díez-Pérez, A; Guilemany, J M

    2014-01-01

    Hydroxyapatite coatings obtained by plasma-spraying have been used for many years to improve biological performance of bone implants, but several studies have drawn attention to the problems arising from high temperatures and the lack of mechanical properties. In this study, plasma-spraying is substituted by high velocity oxy-fuel (HVOF) spray, with lower temperatures reached, and TiO2 is added in low amounts to hydroxyapatite in order to improve the mechanical properties. Four conditions have been tested to evaluate which are those with better biological properties. Viability and proliferation tests, as well as differentiation assays and morphology observation, are performed with human osteoblast cultures onto the studied coatings. The hydroxyapatite-TiO2 coatings maintain good cell viability and proliferation, especially the cases with higher amorphous phase amount and specific surface, and promote excellent differentiation, with a higher ALP amount for these cases than for polystyrene controls. Observation by SEM corroborates this excellent behaviour. In conclusion, these coatings are a good alternative to those used industrially, and an interesting issue would be improving biological behaviour of the worst cases, which in turn show the better mechanical properties.

  15. THE FIRST DISTANCE CONSTRAINT ON THE RENEGADE HIGH-VELOCITY CLOUD COMPLEX WD

    Energy Technology Data Exchange (ETDEWEB)

    Peek, J. E. G.; Roman-Duval, Julia; Tumlinson, Jason [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Bordoloi, Rongmon [MIT-Kavli Center for Astrophysics and Space Research, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Sana, Hugues [Institute of Astronomy, KU Leuven, Celestijnenlaan 200 D, B-3001 Leuven (Belgium); Zheng, Yong [Department of Astronomy, Columbia University, New York, NY 10027 (United States)

    2016-09-10

    We present medium-resolution, near-ultraviolet Very Large Telescope/FLAMES observations of the star USNO-A0600-15865535. We adapt a standard method of stellar typing to our measurement of the shape of the Balmer ϵ absorption line to demonstrate that USNO-A0600-15865535 is a blue horizontal branch star, residing in the lower stellar halo at a distance of 4.4 kpc from the Sun. We measure the H and K lines of singly ionized calcium and find two isolated velocity components, one originating in the disk, and one associated with the high-velocity cloud complex WD. This detection demonstrated that complex WD is closer than ∼4.4 kpc and is the first distance constraint on the +100 km s{sup −1} Galactic complex of clouds. We find that complex WD is not in corotation with the Galactic disk, which has been assumed for decades. We examine a number of scenarios and find that the most likely scenario is that complex WD was ejected from the solar neighborhood and is only a few kiloparsecs from the Sun.

  16. Fragmentation of neutral carbon clusters formed by high velocity atomic collision

    International Nuclear Information System (INIS)

    Martinet, G.

    2004-05-01

    The aim of this work is to understand the fragmentation of small neutral carbon clusters formed by high velocity atomic collision on atomic gas. In this experiment, the main way of deexcitation of neutral clusters formed by electron capture with ionic species is the fragmentation. To measure the channels of fragmentation, a new detection tool based on shape analysis of current pulse delivered by semiconductor detectors has been developed. For the first time, all branching ratios of neutral carbon clusters are measured in an unambiguous way for clusters size up to 10 atoms. The measurements have been compared to a statistical model in microcanonical ensemble (Microcanonical Metropolis Monte Carlo). In this model, various structural properties of carbon clusters are required. These data have been calculated with Density Functional Theory (DFT-B3LYP) to find the geometries of the clusters and then with Coupled Clusters (CCSD(T)) formalism to obtain dissociation energies and other quantities needed to compute fragmentation calculations. The experimental branching ratios have been compared to the fragmentation model which has allowed to find an energy distribution deposited in the collision. Finally, specific cluster effect has been found namely a large population of excited states. This behaviour is completely different of the atomic carbon case for which the electron capture in the ground states predominates. (author)

  17. Searching for dark matter annihilation in the Smith high-velocity cloud

    International Nuclear Information System (INIS)

    Drlica-Wagner, Alex; Gómez-Vargas, Germán A.; Hewitt, John W.; Linden, Tim; Tibaldo, Luigi

    2014-01-01

    Recent observations suggest that some high-velocity clouds may be confined by massive dark matter halos. In particular, the proximity and proposed dark matter content of the Smith Cloud make it a tempting target for the indirect detection of dark matter annihilation. We argue that the Smith Cloud may be a better target than some Milky Way dwarf spheroidal satellite galaxies and use γ-ray observations from the Fermi Large Area Telescope to search for a dark matter annihilation signal. No significant γ-ray excess is found coincident with the Smith Cloud, and we set strong limits on the dark matter annihilation cross section assuming a spatially extended dark matter profile consistent with dynamical modeling of the Smith Cloud. Notably, these limits exclude the canonical thermal relic cross section (∼ 3 × 10 –26 cm 3 s –1 ) for dark matter masses ≲ 30 GeV annihilating via the b b-bar or τ + τ – channels for certain assumptions of the dark matter density profile; however, uncertainties in the dark matter content of the Smith Cloud may significantly weaken these constraints.

  18. Kinematics of Local, High-Velocity K dwarfs in the SUPERBLINK Proper Motion Catalog

    Science.gov (United States)

    Kim, Bokyoung; Lepine, Sebastien

    2018-01-01

    We present a study of the kinematics of 345,480 K stars within 2 kpc of the Sun, based on data from the SUPERBLINK catalog of stars with high proper motions (> 40 mas/yr), combined with data from the 2MASS survey and from the first GAIA release, which together yields proper motions accurate to ~2 mas/yr. All K dwarfs were selected based on their G-K colors, and photometric distances were estimated from a re-calibrated color-magnitude relationship for K dwarfs. We plot transverse velocities VT in various directions on the sky, to examine the local distribution of K dwarfs in velocity space. We have also obtained radial velocity information for a subsample of 10,128 stars, from RAVE and SDSS DR12, which we use to construct spatial velocity (U, V, W) plots. About a third (123,350) of the stars are high-velocity K dwarfs, with motions consistent with the local Galactic halo population. Our kinematic analysis suggests that their velocity-space distribution is very uniform, and we find no evidence of substructure that might arise, e.g., from local streams or moving groups.

  19. A High-velocity Cloud Impact Forming a Supershell in the Milky Way

    Science.gov (United States)

    Park, Geumsook; Koo, Bon-Chul; Kang, Ji-hyun; Gibson, Steven J.; Peek, J. E. G.; Douglas, Kevin A.; Korpela, Eric J.; Heiles, Carl E.

    2016-08-01

    Neutral atomic hydrogen (H I) gas in interstellar space is largely organized into filaments, loops, and shells, the most prominent of which are “supershells.” These gigantic structures, which require ≳ 3× {10}52 erg to form, are generally thought to be produced by either the explosion of multiple supernovae (SNe) in OB associations or, alternatively, by the impact of high-velocity clouds (HVCs) falling into the Galactic disk. Here, we report the detection of a kiloparsec (kpc)-size supershell in the outskirts of the Milky Way with the compact HVC 040 + 01-282 (hereafter, CHVC040) at its geometrical center using the “Inner-Galaxy Arecibo L-band Feed Array” H I 21 cm survey data. The morphological and physical properties of both objects suggest that CHVC040, which is either a fragment of a nearby disrupted galaxy or a cloud that originated from an intergalactic accreting flow, collided with the disk ˜5 Myr ago to form the supershell. Our results show that some compact HVCs can survive their trip through the Galactic halo and inject energy and momentum into the Milky Way disk.

  20. Searching for dark matter annihilation in the Smith high-velocity cloud

    Energy Technology Data Exchange (ETDEWEB)

    Drlica-Wagner, Alex [Center for Particle Astrophysics, Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Gómez-Vargas, Germán A. [Departamento de Fisíca, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Santiago (Chile); Hewitt, John W. [CRESST, University of Maryland, Baltimore County, Baltimore, MD 21250 (United States); Linden, Tim [The Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637 (United States); Tibaldo, Luigi [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States)

    2014-07-20

    Recent observations suggest that some high-velocity clouds may be confined by massive dark matter halos. In particular, the proximity and proposed dark matter content of the Smith Cloud make it a tempting target for the indirect detection of dark matter annihilation. We argue that the Smith Cloud may be a better target than some Milky Way dwarf spheroidal satellite galaxies and use γ-ray observations from the Fermi Large Area Telescope to search for a dark matter annihilation signal. No significant γ-ray excess is found coincident with the Smith Cloud, and we set strong limits on the dark matter annihilation cross section assuming a spatially extended dark matter profile consistent with dynamical modeling of the Smith Cloud. Notably, these limits exclude the canonical thermal relic cross section (∼ 3 × 10{sup –26} cm{sup 3} s{sup –1}) for dark matter masses ≲ 30 GeV annihilating via the b b-bar or τ{sup +}τ{sup –} channels for certain assumptions of the dark matter density profile; however, uncertainties in the dark matter content of the Smith Cloud may significantly weaken these constraints.

  1. Numerical Material Model for Composite Laminates in High-Velocity Impact Simulation

    Directory of Open Access Journals (Sweden)

    Tao Liu

    Full Text Available Abstract A numerical material model for composite laminate, was developed and integrated into the nonlinear dynamic explicit finite element programs as a material user subroutine. This model coupling nonlinear state of equation (EOS, was a macro-mechanics model, which was used to simulate the major mechanical behaviors of composite laminate under high-velocity impact conditions. The basic theoretical framework of the developed material model was introduced. An inverse flyer plate simulation was conducted, which demonstrated the advantage of the developed model in characterizing the nonlinear shock response. The developed model and its implementation were validated through a classic ballistic impact issue, i.e. projectile impacting on Kevlar29/Phenolic laminate. The failure modes and ballistic limit velocity were analyzed, and a good agreement was achieved when comparing with the analytical and experimental results. The computational capacity of this model, for Kevlar/Epoxy laminates with different architectures, i.e. plain-woven and cross-plied laminates, was further evaluated and the residual velocity curves and damage cone were accurately predicted.

  2. Integrity of high-velocity water slug generated by an impacting technique

    Science.gov (United States)

    Dehkhoda, Sevda; Bourne, Neil

    2013-06-01

    A pulsed water jet is a series of discrete water slugs travelling at high velocity. Immediately after striking a target, these slugs apply high-intensity, short-duration transient stress known as the water hammer pressure, followed by low-intensity, long-duration stationary stress at the stagnation pressure. The magnitude and duration of the water hammer and stagnation pressures are controlled by the size and quality of the water slugs. The use of water jets for rock cutting in mining operations is a centuries-old technology; however, practical methods for producing high-energy water slugs repeatedly have proven difficult. This can be partly due to the fact that the geometrical properties of a jet and so its effectiveness in creating damage is controlled and influenced by the method that is employed to generate the water slugs. This paper investigates the integrity of a single water slug produced using an impacting technique where a hammer strikes a piston, resting on top of a water-filled chamber. The coherence of the generated water pulse was of concern in this study. If repeated shock reflections within the chamber were transmitted or were carried into the internal geometry of nozzle, the emerging jet could pulsate. The impact impulse of the formed water jet was measured in a Kel-F target material using an embedded PVDF (Polyvinylidene fluoride) shock gauge. The recorded stress waveform was then used to study the quality and endurance of the water pulse stream as it travelled through air.

  3. Production of a high-velocity water slug using an impacting technique

    Science.gov (United States)

    Dehkhoda, S.; Bourne, N. K.

    2014-02-01

    A pulsed water jet consists of a series of discrete water slugs travelling at high velocity. Immediately after striking a target, these slugs apply high-intensity, short-duration transient stress pulses reaching an amplitude known as the water hammer pressure, followed by low-intensity, long-duration stationary stress at a lower stagnation pressure. The magnitude and duration of the water hammer and stagnation pressures are controlled by the size and quality of the water slugs. The use of water jets for rock cutting in mining operations is a centuries-old technology; however, practical methods for producing high-energy water slugs repeatedly have proven difficult. This can be partly due to the fact that the geometrical properties of a jet and so its effectiveness in creating damage is controlled and influenced by the method that is employed to generate the water slugs. This paper investigates the quality of a single water slug produced using an impacting technique where a hammer strikes a piston, resting on top of a water-filled chamber. The coherence and integrity of the jet core was of concern in this study. The impact impulse of the formed water jet was measured in a Kel-F target material using an embedded PVDF (Polyvinylidene fluoride) shock gauge. The recorded stress waveform was then used to determine the unity and endurance of the water slug stream once travelled through air.

  4. Magnetic Circuit Design and Multiphysics Analysis of a Novel MR Damper for Applications under High Velocity

    Directory of Open Access Journals (Sweden)

    Jiajia Zheng

    2014-02-01

    Full Text Available A novel magnetorheological (MR damper with a multistage piston and independent input currents is designed and analyzed. The equivalent magnetic circuit model is investigated along with the relation between magnetic induction density in the working gap and input currents of the electromagnetic coils. Finite element method (FEM is used to analyze the distribution of magnetic field through the MR fluid region. Considering the real situation, coupling equations are presented to analyze the electromagnetic-thermal-flow coupling problems. Software COMSOL is used to analyze the multiphysics, that is, electromagnetic, thermal dynamic, and fluid mechanic. A measurement index involving total damping force, dynamic range, and induction time needed for magnetic coil is put forward to evaluate the performance of the novel multistage MR damper. The simulation results show that it is promising for applications under high velocity and works better when more electromagnetic coils are applied with input currents separately. Besides, in order to reduce energy consumption, it is recommended to apply more electromagnetic coils with relative low currents based on the analysis of pressure drop along the annular gap.

  5. Stability analysis of confined V-shaped flames in high-velocity streams.

    Science.gov (United States)

    El-Rabii, Hazem; Joulin, Guy; Kazakov, Kirill A

    2010-06-01

    The problem of linear stability of confined V-shaped flames with arbitrary gas expansion is addressed. Using the on-shell description of flame dynamics, a general equation governing propagation of disturbances of an anchored flame is obtained. This equation is solved analytically for V-flames anchored in high-velocity channel streams. It is demonstrated that dynamics of the flame disturbances in this case is controlled by the memory effects associated with vorticity generated by the perturbed flame. The perturbation growth rate spectrum is determined, and explicit analytical expressions for the eigenfunctions are given. It is found that the piecewise linear V structure is unstable for all values of the gas expansion coefficient. Despite the linearity of the basic pattern, however, evolutions of the V-flame disturbances are completely different from those found for freely propagating planar flames or open anchored flames. The obtained results reveal strong influence of the basic flow and the channel walls on the stability properties of confined V-flames.

  6. The effects of loaded and unloaded high-velocity resistance training on functional fitness among community-dwelling older adults.

    Science.gov (United States)

    Glenn, Jordan M; Gray, Michelle; Binns, Ashley

    2015-11-01

    Physical function declines up to 4% per year after the age of 65. High-velocity training is important for maintaining muscular power and ultimately, physical function; however, whether performing high-velocity training without external resistance increases functional fitness among older adults remains unclear. The purpose of this investigation was to evaluate loaded and unloaded high-velocity training on lower body muscular power and functional fitness in older adults. Fifty-seven community-dwelling older adults (n = 16 males, n = 41 females) participated in this study. Inclusion criteria comprised ≥65 years of age, ≥24 on the Mini-mental state examination and no falls within past year. Two groups completed a 20-week high-velocity training intervention. The non-weighted group (UNLOAD, n = 27) performed the protocol without external load while the intervention group (LOAD, n = 30) used external loads via exercise machines. Functional fitness was assessed using the Short Physical Performance Battery (SPPB), Senior Fitness Test (SFT), hand-grip and lower body power measures. Multivariate ANOVA revealed that both groups had significant improvements for average (17.21%) and peak (9.26%) lower body power, along with the SFT arm curl (16.94%), chair stand (20.10%) and 8 ft. up-and-go (15.67%). Improvements were also noticed for SPPB 8 ft. walk (25.21%). However, improvements for all functional fitness measures were independent of training group. Unloaded high-velocity training increased functional fitness and power the same as loaded training. The ability of high-velocity movements to elicit gains in functional fitness without external loads may help health professionals develop fitness programs when time/space is limiting factor. © The Author 2015. Published by Oxford University Press on behalf of the British Geriatrics Society. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. AXAOTHER XL -- A spreadsheet for determining doses for incidents caused by tornadoes or high-velocity straight winds

    International Nuclear Information System (INIS)

    Simpkins, A.A.

    1996-09-01

    AXAOTHER XL is an Excel Spreadsheet used to determine dose to the maximally exposed offsite individual during high-velocity straight winds or tornado conditions. Both individual and population doses may be considered. Potential exposure pathways are inhalation and plume shine. For high-velocity straight winds the spreadsheet has the capability to determine the downwind relative air concentration, however for the tornado conditions, the user must enter the relative air concentration. Theoretical models are discussed and hand calculations are performed to ensure proper application of methodologies. A section has also been included that contains user instructions for the spreadsheet

  8. Evolution of the 1963 Vajont landslide (Northern Italy) from low and high velocity friction experiments

    Science.gov (United States)

    Ferri, F.; di Toro, G.; Hirose, T.; Han, R.; Noda, H.; Shimamoto, T.; Pennacchioni, G.

    2009-04-01

    The final slip at about 30 m/s of the Vajont landslide (Northern Italy) on 9th October 1963 was preceded by a long creeping phase which was monitored over about three years. Creep was localized in cm-thick clay-rich (50% Ca-montmorillonite + smectite + illite + vermiculite, 40% calcite and 10% quartz) gouge layers. The velocity results in thermoviscoplastic model of the landslide (Veveakis et al., 2007) suggested that during creep, compaction and frictional heating released water from the clay-rich layer and, by increasing the pore-pressure in the slipping zone, determined the final collapse of the landslide. Here we investigated the frictional evolution of the clay-rich layers and the transition towards the final collapse. Experiments were carried out on the clayey gouge from the slipping zone at atmospheric humidity conditions ("dry") and in the presence of excess water ("saturated"). High velocity friction experiments were performed in a rotary shear apparatus at 1 MPa normal stress (about the normal stress at the sliding surface of the Vajont landslide), velocity v from 0.006 m/s to 1.31 m/s and displacements up to 34 m. The 1 mm-thick clayey gouges were sandwiched between marble cylindrical specimens (24.95 mm in diameter) and confined by Teflon rings to avoid gouge expulsion during the experiments. The fluid release during the experiments was monitored with a humidity sensor. Low velocity friction experiments were performed in a biaxial apparatus at 5 MPa normal stress, v from 1.0 10E-7 m/s to 1.0 10E-4 m/s (within the range at which the slide became critical, 2.0 10E-7 m/s, Veveakis et al., 2007) and displacements up to 0.02 m. In dry experiments, friction is 0.43-0.47 at v Vajont clays), and decreases to 0.03-0.05 at v > 0.006 m/s. At dry conditions, dilatancy was observed for v > 0.7 m/s suggesting fault pressurization by water release due to smectite-to-illite decomposition. Decomposition occurred at temperatures above 300°C, as confirmed by the

  9. Energy Productivity of the High Velocity Algae Raceway Integrated Design (ARID-HV)

    Energy Technology Data Exchange (ETDEWEB)

    Attalah, Said; Waller, Peter M.; Khawam, George; Ryan, Randy D.; Huesemann, Michael H.

    2015-06-03

    The original Algae Raceway Integrated Design (ARID) raceway was an effective method to increase algae culture temperature in open raceways. However, the energy input was high and flow mixing was poor. Thus, the High Velocity Algae Raceway Integrated Design (ARID-HV) raceway was developed to reduce energy input requirements and improve flow mixing in a serpentine flow path. A prototype ARID-HV system was installed in Tucson, Arizona. Based on algae growth simulation and hydraulic analysis, an optimal ARID-HV raceway was designed, and the electrical energy input requirement (kWh ha-1 d-1) was calculated. An algae growth model was used to compare the productivity of ARIDHV and conventional raceways. The model uses a pond surface energy balance to calculate water temperature as a function of environmental parameters. Algae growth and biomass loss are calculated based on rate constants during day and night, respectively. A 10 year simulation of DOE strain 1412 (Chlorella sorokiniana) showed that the ARID-HV raceway had significantly higher production than a conventional raceway for all months of the year in Tucson, Arizona. It should be noted that this difference is species and climate specific and is not observed in other climates and with other algae species. The algae growth model results and electrical energy input evaluation were used to compare the energy productivity (algae production rate/energy input) of the ARID-HV and conventional raceways for Chlorella sorokiniana in Tucson, Arizona. The energy productivity of the ARID-HV raceway was significantly greater than the energy productivity of a conventional raceway for all months of the year.

  10. Search for auroral belt Eparallel fields with high-velocity barium ion injections

    International Nuclear Information System (INIS)

    Heppner, J.P.; Ledley, B.G.; Miller, M.L.; Marionni, P.A.; Pongratz, M.B.; Slater, D.W.; Hallinan, T.J.; Rees, D.

    1989-01-01

    Four high-velocity shaped charge Ba + injections were conducted from two Black Brant-10 rockets at collision-free altitudes (770-975 km) over northern Alaska (L = 7.4-10.6) in April 1984 under active auroral and magnetic disturbance (Kp 4+ and 5) conditions. The motions of the Ba + pencil beams from these injections were accurately triangulated to altitudes ranging from 9,000 to 14,000 km from multistation image observations. Well-defined initial conditions and improved software for predicting the unperturbed. E = 0, trajectories in the presence of convection, E perpendicular , fields permitted an accurate detection of changes in the motion which could be attributed to E parallel fields. Large (> 1 keV) potential changes that might be anticipated from double-layer or V-, U- and S-shaped potential structures were not encountered even though the Ba + rays were clearly located on auroral arc flux tubes on at least several occasions and were at various times in close proximity to auroral flux tubes for many minutes. Abnormally intense E perpendicular fields that might also indicate that the above potential structures were also not observed. Transient accelerations and/or decelerations involving magnetic field-aligned energy changes ≤ 375 eV were, however, encountered by each of the seven principal Ba + rays tracked to high altitudes. Acceleration events were only slightly more frequent than deceleration events. Interpretation, taking into account limits on the duration of the events and simultaneous auroral conditions, favors explanation in terms of propagating waves, soliton trains, or other pulse forms provided that the propagation is primarily field-aligned

  11. Building America Case Study: High-Velocity Small-Diameter Duct System, Pittsburgh, Pennsylvania

    Energy Technology Data Exchange (ETDEWEB)

    2017-04-01

    This study tests the performance of a variable airflow small-diameter duct heating, ventilation, and air conditioning (HVAC) system in a new construction unoccupied low-load test house in Pittsburgh, Pennsylvania. The duct system was installed entirely in conditioned space and was operated from the winter through summer seasons. Measurements were collected on the in-room temperatures and energy consumed by the air handler and heat pump unit. Operation modes with three different volumes of airflow were compared to determine the ideal airflow scenario that maximizes room-to-room thermal uniformity while minimizing fan energy consumption. Black felt infrared imagery was used as a measure of diffuser throw and in-room air mixing. Measured results indicate the small-diameter, high velocity airflow system can provide comfort under some conditions. Solar heat gains resulted in southern rooms drifting beyond acceptable temperature limits. Insufficient airflow to some bedrooms also resulted in periods of potential discomfort. Homebuilders or HVAC contractors can use these results to assess whether this space conditioning strategy is an attractive alternative to a traditional duct system. The team performed a cost analysis of two duct system configurations: (1) a conventional diameter and velocity duct system, and (2) the small-diameter duct system. This work applies to both new and retrofit homes that have achieved a low heating and cooling density either by energy conservation or by operation in a mild climate with few heating or cooling degree days. Guidance is provided on cost trade-offs between the conventional duct system and the small-diameter duct system.

  12. High-energy radiation from collisions of high-velocity clouds and the Galactic disc

    Science.gov (United States)

    del Valle, Maria V.; Müller, A. L.; Romero, G. E.

    2018-04-01

    High-velocity clouds (HVCs) are interstellar clouds of atomic hydrogen that do not follow normal Galactic rotation and have velocities of a several hundred kilometres per second. A considerable number of these clouds are falling down towards the Galactic disc. HVCs form large and massive complexes, so if they collide with the disc a great amount of energy would be released into the interstellar medium. The cloud-disc interaction produces two shocks: one propagates through the cloud and the other through the disc. The properties of these shocks depend mainly on the cloud velocity and the disc-cloud density ratio. In this work, we study the conditions necessary for these shocks to accelerate particles by diffusive shock acceleration and we study the non-thermal radiation that is produced. We analyse particle acceleration in both the cloud and disc shocks. Solving a time-dependent two-dimensional transport equation for both relativistic electrons and protons, we obtain particle distributions and non-thermal spectral energy distributions. In a shocked cloud, significant synchrotron radio emission is produced along with soft gamma rays. In the case of acceleration in the shocked disc, the non-thermal radiation is stronger; the gamma rays, of leptonic origin, might be detectable with current instruments. A large number of protons are injected into the Galactic interstellar medium, and locally exceed the cosmic ray background. We conclude that under adequate conditions the contribution from HVC-disc collisions to the galactic population of relativistic particles and the associated extended non-thermal radiation might be important.

  13. Compaction of Ti–6Al–4V powder using high velocity compaction technique

    International Nuclear Information System (INIS)

    Khan, Dil Faraz; Yin, Haiqing; Li, He; Qu, Xuanhui; Khan, Matiullah; Ali, Shujaat; Iqbal, M. Zubair

    2013-01-01

    Highlights: • We compacted Ti–6Al–4V powder by HVC technique. • As impact force rises up, the green density of the compacts increases gradually. • At impact force 1.857 kN relative sintered density of the compacts reaches 99.88%. • Spring back of the green compact’s decreases gradually with increasing impact force. • Mechanical properties of the samples increases with increasing impact force. - Abstract: High velocity compaction technique was applied to the compaction of pre-alloyed, hydride–dehydride Ti–6Al–4V powder. The powder was pressed in single stroke with a compaction speed of 7.10–8.70 ms −1 . When the speed was 8.70 ms −1 , the relative density of the compacts reaches up to 85.89% with a green density of 3.831 g cm −3 . The green samples were sintered at 1300 °C in Ar-gas atmosphere. Scanning electron microscope (SEM) was used to examine the surface of the sintered samples. Density and mechanical properties such as Vickers micro hardness and bending strength of the powder samples were investigated. Experimental results indicated that with the increase in impact force, the density and mechanical properties of the compacts increased. The sintered compacts exhibited a maximum relative density of 99.88% with a sintered density of 4.415 g cm −3 , hardness of 364–483 HV and the bending strength in the range of 103–126.78 MPa. The springback of the compacts decreased with increasing impact force

  14. The effects of varying resistance-training loads on intermediate- and high-velocity-specific adaptations.

    Science.gov (United States)

    Jones, K; Bishop, P; Hunter, G; Fleisig, G

    2001-08-01

    The purpose of this study was to compare changes in velocity-specific adaptations in moderately resistance-trained athletes who trained with either low or high resistances. The study used tests of sport-specific skills across an intermediate- to high-velocity spectrum. Thirty NCAA Division I baseball players were randomly assigned to either a low-resistance (40-60% 1 repetition maximum [1RM]) training group or a high-resistance (70-90% 1RM) training group. Both of the training groups intended to maximallv accelerate each repetition during the concentric phase (IMCA). The 10 weeks of training consisted of 4 training sessions a week using basic core exercises. Peak force, velocity, and power were evaluated during set angle and depth jumps as well as weighted jumps using 30 and 50% 1RM. Squat 1RMs were also tested. Although no interactions for any of the jump tests were found, trends supported the hypothesis of velocity-specific training. Percentage gains suggest that the combined use of heavier training loads (70-90% 1RM) and IMCA tend to increase peak force in the lower-body leg and hip extensors. Trends also show that the combined use of lighter training loads (40-60% 1RM) and IMCA tend to increase peak power and peak velocity in the lower-body leg and hip extensors. The high-resistance group improved squats more than the low-resistance group (p training loads and IMCA to increase 1RM strength in the lower bodies of resistance-trained athletes.

  15. HIGH-RESOLUTION OBSERVATIONS AND THE PHYSICS OF HIGH-VELOCITY CLOUD A0

    International Nuclear Information System (INIS)

    Verschuur, Gerrit L.

    2013-01-01

    The neutral hydrogen structure of high-velocity cloud A0 (at about –180 km s –1 ) has been mapped with a 9.'1 resolution. Gaussian decomposition of the profiles is used to separately map families of components defined by similarities in center velocities and line widths. About 70% of the H I gas is in the form of a narrow, twisted filament whose typical line widths are of the order of 24 km s –1 . Many bright features with narrow line widths of the order of 6 km s –1 , clouds, are located in and near the filament. A third category with properties between those of the filament and clouds appears in the data. The clouds are not always co-located with the broader line width filament emission as seen projected on the sky. Under the assumption that magnetic fields underlie the presence of the filament, a theorem is developed for its stability in terms of a toroidal magnetic field generated by the flow of gas along field lines. It is suggested that the axial magnetic field strength may be derived from the excess line width of the H I emission over and above that due to kinetic temperature by invoking the role of Alfvén waves that create what is in essence a form of magnetic turbulence. At a distance of 200 pc the axial and the derived toroidal magnetic field strengths in the filament are then about 6 μG while for the clouds they are about 4 μG. The dependence of the derived field strength on distance is discussed.

  16. Evolution of star-bearing molecular clouds: the high-velocity HCO+ flow in NGC 2071

    International Nuclear Information System (INIS)

    Wootten, A.; Loren, R.B.; Sandqvist, A.; Friberg, P.; Hjalmarson, Aa.

    1984-01-01

    The J = 1-0 and J = 302 lines of HCO + and H 13 CO + have been observed in the molecular cloud NGC 2071, where they map the dense portions of a bidirectional molecular flow. The high resolution (42'') of our observations has enabled us to determine the distribution of mass, momentum , and energy in the flow as a function of projected distance from the cluster. Both momentum and energy diminish with distance from the central cluster of infrared sources. The highest velocities at a given intensity in this dense flow occur in a limited region coincident with an infrared cluster and the densest part of the molecular cloud. Higher resolution (33'') CO and 13 CO observations reveal that the extreme velocities in the flow occur in regions displaced on opposite sides of the cluster, suggesting that the flow only becomes visible in molecular line emission at distances approx.0.1 pc from its supposed source. Lower velocity material containing most of the mass of the flow is found over larger regions, as expected if the flow has decelerated as it has evolved. Assuming conservation of momentum, the historical rate of momentum injection is found to have been roughly constant over a period of 10 4 years, suggesting a constancy of the average luminosity of the central cluster over that time. The J = 3--2 HCO + profile does not show the absorption which is a prominent feature of the J = 1--0 profile, and the J = 3--2 line appears to be a useful probe of conditions specific to the dense cores of clouds. The high velocity HCO + emission correlates very well with spatial and velocity events of molecular hydrogen emission. The abundance of HCO + [X(HCO + )approx.10 -8 ], and by inference the electron density, is similar in material at all velocities

  17. A Discovery of a Compact High Velocity Cloud-Galactic Supershell System

    Science.gov (United States)

    Park, Geumsook; Koo, Bon-Chul; Kang, Ji-hyun; Gibson, Steven J.; Peek, Joshua Eli Goldston; Douglas, Kevin A.; Korpela, Eric J.; Heiles, Carl E.

    2017-01-01

    High velocity clouds (HVCs) are neutral hydrogen (HI) gas clouds having very different radial velocities from those of the Galactic disk material. While some large HVC complexes are known to be gas streams tidally stripped from satellite galaxies of the Milky Way, there are relatively isolated and small angular-sized HVCs, so called “compact HVCs (CHVCs)”, the origin of which remains controversial. There are about 300 known CHVCs in the Milky Way, and many of them show a head-tail structure, implying a ram pressure interaction with the diffuse Galactic halo gas. It is, however, not clear whether CHVCs are completely dissipated in the Galactic halo to feed the multi-phase circumgalactic medium or they can survive their trip through the halo and collide with the Galactic disk. The colliding CHVCs may leave a gigantic trail in the disk, and it had been suggested that some of HI supershells that require ≧ 3 x 1052 erg may be produced by the collision of such HVCs.Here we report the detection of a kiloparsec (kpc)-size supershell in the outskirts of the Milky Way with the compact HVC 040+01-282 (hereafter, CHVC040) at its geometrical center using the “Inner-Galaxy Arecibo L-band Feed Array” HI 21 cm survey data. The morphological and physical properties of both objects suggest that CHVC040, which is either a fragment of a nearby disrupted galaxy or a cloud that originated from an intergalactic accreting flow, collided with the disk ˜5 Myr ago to form the supershell. Our results show that some compact HVCs can survive their trip through the Galactic halo and inject energy and momentum into the Milky Way disk.

  18. Modelling and Simulation of Tensile Fracture in High Velocity Compacted Metal Powder

    International Nuclear Information System (INIS)

    Jonsen, P.; Haeggblad, H.-A.

    2007-01-01

    In cold uniaxial powder compaction, powder is formed into a desired shape with rigid tools and a die. After pressing, but before sintering, the compacted powder is called green body. A critical property in the metal powder pressing process is the mechanical properties of the green body. Beyond a green body free from defects, desired properties are high strength and uniform density. High velocity compaction (HVC) using a hydraulic operated hammer is a production method to form powder utilizing a shock wave. Pre-alloyed water atomised iron powder has been HVC-formed into circular discs with high densities. The diametral compression test also called the Brazilian disc test is an established method to measure tensile strength in low strength material like e.g. rock, concrete, polymers and ceramics. During the test a thin disc is compressed across the diameter to failure. The compression induces a tensile stress perpendicular to the compressed diameter. In this study the test have been used to study crack initiation and the tensile fracture process of HVC-formed metal powder discs with a relative density of 99%. A fictitious crack model controlled by a stress versus crack-width relationship is utilized to model green body cracking. Tensile strength is used as a failure condition and limits the stress in the fracture interface. The softening rate of the model is obtained from the corresponding rate of the dissipated energy. The deformation of the powder material is modelled with an elastic-plastic Cap model. The characteristics of the tensile fracture development of the central crack in a diametrically loaded specimen is numerically studied with a three dimensional finite element simulation. Results from the finite element simulation of the diametral compression test shows that it is possible to simulate fracturing of HVC-formed powder. Results from the simulation agree reasonably with experiments

  19. Mechanically Stacked Dual-Junction and Triple-Junction III-V/Si-IBC Cells with Efficiencies Exceeding 31.5% and 35.4%: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Schnabel, Manuel [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Tamboli, Adele C [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Warren, Emily L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Schulte-Huxel, Henning [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Klein, Talysa [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Van Hest, Marinus F [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Geisz, John F [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Stradins, Paul [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Steiner, Myles A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Rienaecker, Michael [Institute for Solar Energy Research Hamelin (ISFH); Merkle, Agnes [Institute for Solar Energy Research Hamelin (ISFH); Kajari-Schroeder, S. [Institute for Solar Energy Research Hamelin (ISFH); Niepelt, Raphael [Institute for Solar Energy Research Hamelin (ISFH); Schmidt, Jan [Institute for Solar Energy Research Hamelin (ISFH); Leibniz Universitat Hannover; Brendel, Rolf [Institute for Solar Energy Research Hamelin (ISFH); Leibniz Universitat Hannover; Peibst, Robby [Institute for Solar Energy Research Hamelin (ISFH); Leibniz Universitat Hannover

    2017-10-02

    Despite steady advancements in the efficiency of crystalline Silicon (c-Si) photovoltaics (PV) within the last decades, the theoretical efficiency limit of 29.4 percent depicts an insurmountable barrier for silicon-based single-junction solar cells. Combining the Si cell with a second absorber material on top in a dual junction tandem or triple junction solar cell is an attractive option to surpass this limit significantly. We demonstrate a mechanically stacked GaInP/Si dual-junction cell with an in-house measured efficiency of 31.5 percent and a GaInP/GaAs/Si triple-junction cell with a certified efficiency of 35.4 percent.

  20. High velocity missile injuries of the liver | Ogwang | East and Central ...

    African Journals Online (AJOL)

    Fourteen patients sustained gun shot wounds while one was injured by a bomb blast fragment. Ages ranged from 2 to 33 years (mean 24.4 years). Two patients sustained liver injury alone while the rest had other associated visceral injuries as well. Grade I, II and III liver injuries were seen in 7, 5 and 2 patients respectively.

  1. TOPICAL REVIEW Warm spraying—a novel coating process based on high-velocity impact of solid particles

    Directory of Open Access Journals (Sweden)

    Seiji Kuroda et al

    2008-01-01

    Full Text Available In recent years, coating processes based on the impact of high-velocity solid particles such as cold spraying and aerosol deposition have been developed and attracting much industrial attention. A novel coating process called 'warm spraying' has been developed, in which coatings are formed by the high-velocity impact of solid powder particles heated to appropriate temperatures below the melting point of the powder material. The advantages of such process are as follows: (1 the critical velocity needed to form a coating can be significantly lowered by heating, (2 the degradation of feedstock powder such as oxidation can be significantly controlled compared with conventional thermal spraying where powder is molten, and (3 various coating structures can be realized from porous to dense ones by controlling the temperature and velocity of the particles. The principles and characteristics of this new process are discussed in light of other existing spray processes such as high-velocity oxy-fuel spraying and cold spraying. The gas dynamics of particle heating and acceleration by the spraying apparatus as well as the high-velocity impact phenomena of powder particles are discussed in detail. Several examples of depositing heat sensitive materials such as titanium, metallic glass, WC–Co cermet and polymers are described with potential industrial applications.

  2. CUTLASS HF radar observations of high-velocity E-region echoes

    Directory of Open Access Journals (Sweden)

    M. V. Uspensky

    Full Text Available A short event of high-velocity E-region echo observations by the Pykkvibaer HF radar is analysed to study echo parameters and the echo relation to the Farley-Buneman plasma instability. The echoes were detected in several beams aligned closely to the magnetic L-shell direction. Two echo groups were identified: one group corresponded to the classical type 1 echoes with velocities close to the nominal ion-acoustic speed of 400 ms1 , while the other group had significantly larger velocities, of the order of 700 ms1 . The mutual relationship between the echo power, Doppler velocity, spectral width and elevation angles for these two groups was studied. Plotting of echo parameters versus slant range showed that all ~700 ms1 echoes originated from larger heights and distances of 500–700 km, while all ~400 ms1 echoes came from lower heights and from farther distances; 700–1000 km. We argue that both observed groups of echoes occurred due to the Farley-Buneman plasma instability excited by strong ( ~70 mVm1 and uniformly distributed electric fields. We show that the echo velocities for the two groups were different because the echoes were received from different heights. Such a separation of echo heights occurred due to the differing amounts of ionospheric refraction at short and large ranges. Thus, the ionospheric refraction and related altitude modulation of ionospheric parameters are the most important factors to consider, when various characteristics of E-region decametre irregularities are derived from HF radar measurements.

    Key words. Ionosphere (ionospheric irregularities; plasma waves and instabilities; polar ionosphere

  3. ULTRA-COMPACT HIGH VELOCITY CLOUDS AS MINIHALOS AND DWARF GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Faerman, Yakov; Sternberg, Amiel [Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Ramat Aviv 69978 (Israel); McKee, Christopher F., E-mail: yakovfae@post.tau.ac.il [Department of Physics and Department of Astronomy, University of California at Berkeley, Berkeley, CA 94720 (United States)

    2013-11-10

    We present dark matter minihalo models for the Ultra-Compact, High-Velocity H I Clouds (UCHVCs) recently discovered in the 21 cm ALFALFA survey. We assume gravitational confinement of 10{sup 4} K H I gas by flat-cored dark-matter subhalos within the Local Group. We show that for flat cores, typical (median) tidally stripped cosmological subhalos at redshift z = 0 have dark-matter masses of ∼10{sup 7} M{sub ☉} within the central 300 pc (independent of total halo mass), consistent with the 'Strigari mass scale' observed in low-luminosity dwarf galaxies. Flat-cored subhalos also resolve the mass discrepancy between simulated and observed satellites around the Milky Way. For the UCHVCs, we calculate the photoionization-limited hydrostatic gas profiles for any distance-dependent total observed H I mass and predict the associated (projected) H I half-mass radii, assuming the clouds are embedded in distant (d ∼> 300 kpc) and unstripped subhalos. For a typical UCHVC (0.9 Jy km s{sup –1}), we predict physical H I half-mass radii of 0.18 to 0.35 kpc (or angular sizes of 0.'6 to 2.'1) for distances ranging from 300 kpc to 2 Mpc. As a consistency check, we model the gas-rich dwarf galaxy Leo T, for which there is a well-resolved H I column density profile and a known distance (420 kpc). For Leo T, we find that a subhalo with M{sub 300} = 8 (± 0.2) × 10{sup 6} M{sub ☉} best fits the observed H I profile. We derive an upper limit of P{sub HIM} ∼< 150 cm{sup –3} K for the pressure of any enveloping hot intergalactic medium gas at the distance of Leo T. Our analysis suggests that some of the UCHVCs may in fact constitute a population of 21 cm-selected but optically faint dwarf galaxies in the Local Group.

  4. Ultra-compact high velocity clouds in the ALFALFA HI survey: Candidate Local Group galaxies?

    Science.gov (United States)

    Adams, Elizabeth Ann Kovenz

    The increased sensitivity and spatial resolution of the ALFALFA HI survey has resulted in the detection of ultra-compact high velocity clouds (UCHVCs). These objects are good candidates to represent low mass gas-rich galaxies in the Local Group and Local Volume with stellar populations that are too faint to be detected in extant optical surveys. This idea is referred to as the "minihalo hypothesis". We identify the UCHVCs within the ALFALFA dataset via the use of a 3D matched filtering signal identification algorithm. UCHVCs are selected based on a compact size ( 120 km s-1) and isolation. Within the 40% complete ALFALFA survey (alpha.40), 59 UCHVCs are identified; 19 are in a most-isolated subset and are the best galaxy candidates. Due to the presence of large HVC complexes in the fall sky, most notably the Magellanic Stream, the association of UCHVCs with existing structure cannot be ruled out. In the spring sky, the spatial and kinematic distribution of the UCHVCs is consistent with simulations of dark matter halos within the Local Group. In addition, the HI properties of the UCHVCs (if placed at 1 Mpc) are consistent with both theoretical and observational predictions for low mass gas-rich galaxies. Importantly, the HI properties of the UCHVCs are consistent with those of two recently discovered low mass gas-rich galaxies in the Local Group and Local Volume, Leo T and Leo P. Detailed follow-up observations are key for addressing the minihalo hypothesis. High resolution HI observations can constrain the environment of a UCHVC and offer evidence for a hosting dark matter halo through evidence of rotation support and comparison to theoretical models. Observations of one UCHVC at high resolution (15'') reveal the presence of a clumpy HI distribution, similar to both low mass galaxies and circumgalactic compact HVCs. An extended envelope containing ˜50% of the HI flux is resolved out by the array configuration; observations at lower spatial resolution can recover

  5. A Comprehensive Pitting Study of High Velocity Oxygen Fuel Inconel 625 Coating by Using Electrochemical Testing Techniques

    Science.gov (United States)

    Niaz, Akbar; Khan, Sajid Ullah

    2016-01-01

    In the present work, Inconel 625 was coated on a mild steel substrate using a high velocity oxygen fuel coating process. The pitting propensity of the coating was tested by using open circuit potential versus time, potentiodynamic polarization, electrochemical potentiokinetic reactivation, and scanning electrochemical microscopy. The pitting propensity of the coating was compared with bulk Inconel 625 alloy. The results confirmed that there were regions of different electrochemical activities on the coating which have caused pitting corrosion.

  6. Anomalous resistivity due to low-frequency turbulence. [of collisionless plasma with limited acceleration of high velocity runaway electrons

    Science.gov (United States)

    Rowland, H. L.; Palmadesso, P. J.

    1983-01-01

    Large amplitude ion cyclotron waves have been observed on auroral field lines. In the presence of an electric field parallel to the ambient magnetic field these waves prevent the acceleration of the bulk of the plasma electrons leading to the formation of a runaway tail. It is shown that low-frequency turbulence can also limit the acceleration of high-velocity runaway electrons via pitch angle scattering at the anomalous Doppler resonance.

  7. Building America Case Study: Standard- Versus High-Velocity Air Distribution in High-Performance Townhomes, Denver, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    A. Poerschke, R. Beach, T. Begg

    2017-06-01

    IBACOS investigated the performance of a small-diameter high-velocity heat pump system compared to a conventional system in a new construction triplex townhouse. A ductless heat pump system also was installed for comparison, but the homebuyer backed out because of aesthetic concerns about that system. In total, two buildings, having identical solar orientation and comprised of six townhomes, were monitored for comfort and energy performance.

  8. Formation of Ti(III) and Ti(IV) states in Ti{sub 3}O{sub 5} nano- and microfibers obtained from hydrothermal annealing of C-doped TiO{sub 2} on Si

    Energy Technology Data Exchange (ETDEWEB)

    Stem, Nair, E-mail: nairstem@hotmail.com [Laboratório de Sistemas Integráveis (LSI), Escola Politécnica, Universidade de São Paulo, Av. Prof. Luciano Gualberto 158, 05508900 São Paulo, SP (Brazil); Souza, Michele L.; Araújo de Faria, Dalva Lúcia Araújo [Laboratório de Espectroscopia Molecular (LEM), Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508900 São Paulo, SP (Brazil); Santos Filho, Sebastião G. dos [Laboratório de Sistemas Integráveis (LSI), Escola Politécnica, Universidade de São Paulo, Av. Prof. Luciano Gualberto 158, 05508900 São Paulo, SP (Brazil)

    2014-05-02

    In this work, it is investigated the formation of Ti(III) and Ti(IV) states at the surface and in the bulk of the Ti{sub 3}O{sub 5} material grown as meshes of nano- and micro-fibers obtained from hydrothermal annealing of C-doped TiO{sub 2} on Si. The topography and distribution of the fibers in the meshes were characterized by atomic force microscopy. When the fiber distribution was more compact, a higher photoluminescence signal at 850 nm (1.46 eV) was obtained, indicating the presence of a higher number of defects corresponding to the Ti(III) sites. From X-ray photoelectron spectroscopy, it was obtained a Ti(III)/Ti(IV) ratio much lower than the expected value for the Ti{sub 3}O{sub 5} phase (2 Ti(III): 1 Ti(IV)). The discrepancy was mainly attributed to the reaction of surface Ti(III) states of the Ti{sub 3}O{sub 5} fibers with water during the hydrothermal annealing, resulting in surface Ti(IV) with -OH radicals. On the other hand, X-ray photoelectron spectroscopy also indicated that substitutional and interstitial carbon atoms coexist, elemental carbon exists in the samples due to the co-deposition process and, as a result, the carbon inside of the TiO{sub 2} rutile lattice is acting as one of the precursors for the formation of Ti{sub 3}O{sub 5}. - Highlights: • Ti(III) states are detected inside of Ti{sub 3}O{sub 5} nano- and microfibers. • Ti(IV) states are predominantly detected on the surface of Ti{sub 3}O{sub 5} nano- and microfibers. • Photoluminescence at 850 nm for Ti{sub 3}O{sub 5} is due to defects associated to Ti(III). • Rutile possibly changes to C2/m Ti{sub 3}O{sub 5} during the hydrothermal annealing of C-doped TiO{sub 2}.

  9. Simulated potential for enhanced performance of mechanically stacked hybrid III-V/Si tandem photovoltaic modules using DC-DC converters

    Science.gov (United States)

    MacAlpine, Sara; Bobela, David C.; Kurtz, Sarah; Lumb, Matthew P.; Schmieder, Kenneth J.; Moore, James E.; Walters, Robert J.; Alberi, Kirstin

    2017-10-01

    This work examines a tandem module design with GaInP2 mechanically stacked on top of crystalline Si, using a detailed photovoltaic (PV) system model to simulate four-terminal (4T) unconstrained and two-terminal voltage-matched (2T VM) parallel architectures. Module-level power electronics is proposed for the 2T VM module design to enhance its performance over the breadth of temperatures experienced by a typical PV installation. Annual, hourly simulations of various scenarios indicate that this design can reduce annual energy losses to ˜0.5% relative to the 4T module configuration. Consideration is given to both performance and practical design for building or ground mount installations, emphasizing compatibility with existing standard Si modules.

  10. Mineral-solution equilibria—III. The system Na 2OAl 2O 3SiO 2H 2OHCl

    Science.gov (United States)

    Popp, Robert K.; Frantz, John D.

    1980-07-01

    Chemical equilibrium between sodium-aluminum silicate minerals and chloride bearing fluid has been experimentally determined in the range 500-700°C at 1 kbar, using rapid-quench hydrothermal methods and two modifications of the Ag + AgCl acid buffer technique. The temperature dependence of the thermodynamic equilibrium constant ( K) for the reaction NaAlSi 3O 8 + HCl o = NaCl o + 1/2Al 2SiO 5, + 5/2SiO 2 + 1/2H 2O Albite Andalusite Qtz. K = (a NaCl o) /(a H 2O ) 1/2/(a HCl o) can be described by the following equation: log k = -4.437 + 5205.6/ T( K) The data from this study are consistent with experimental results reported by MONTOYA and HEMLEY (1975) for lower temperature equilibria defined by the assemblages albite + paragonite + quartz + fluid and paragonite + andalusite + quartz + fluid. Values of the equilibrium constants for the above reactions were used to estimate the difference in Gibbs free energy of formation between NaCl o and HCl o in the range 400-700°C and 1-2 kbar. Similar calculations using data from phase equilibrium studies reported in the literature were made to determine the difference in Gibbs free energy of formation between KCl o and HCl o. These data permit modelling of the chemical interaction between muscovite + kspar + paragonite + albite + quartz assemblages and chloride-bearing hydrothermal fluids.

  11. Abrupt GaP/Si hetero-interface using bistepped Si buffer

    Energy Technology Data Exchange (ETDEWEB)

    Ping Wang, Y., E-mail: yanping.wang@insa-rennes.fr; Kuyyalil, J.; Nguyen Thanh, T.; Almosni, S.; Bernard, R.; Tremblay, R.; Da Silva, M.; Létoublon, A.; Rohel, T.; Tavernier, K.; Le Corre, A.; Cornet, C.; Durand, O. [UMR FOTON, CNRS, INSA Rennes, Rennes F-35708 (France); Stodolna, J.; Ponchet, A. [CEMES-CNRS, Université de Toulouse, 29 rue Jeanne Marvig, BP 94347, 31055 Toulouse Cedex 04 (France); Bahri, M.; Largeau, L.; Patriarche, G. [Laboratoire de Photonique et Nanostructures, CNRS UPR 20, Route de Nozay, Marcoussis 91460 (France); Magen, C. [LMA, INA-ARAID, and Departamento de Física de la Materia Condensada, Universidad de Zaragoza, 50018 Zaragoza (Spain)

    2015-11-09

    We evidence the influence of the quality of the starting Si surface on the III-V/Si interface abruptness and on the formation of defects during the growth of III-V/Si heterogeneous crystal, using high resolution transmission electron microscopy and scanning transmission electron microscopy. GaP layers were grown by molecular beam epitaxy on vicinal Si (001). The strong effect of the Si substrate chemical preparation is first demonstrated by studying structural properties of both Si homoepitaxial layer and GaP/Si heterostructure. It is then shown that choosing adequate chemical preparation conditions and subsequent III-V regrowth conditions enables the quasi-suppression of micro-twins in the epilayer. Finally, the abruptness of GaP/Si interface is found to be very sensitive to the Si chemical preparation and is improved by the use of a bistepped Si buffer prior to III-V overgrowth.

  12. Abrupt GaP/Si hetero-interface using bistepped Si buffer

    International Nuclear Information System (INIS)

    Ping Wang, Y.; Kuyyalil, J.; Nguyen Thanh, T.; Almosni, S.; Bernard, R.; Tremblay, R.; Da Silva, M.; Létoublon, A.; Rohel, T.; Tavernier, K.; Le Corre, A.; Cornet, C.; Durand, O.; Stodolna, J.; Ponchet, A.; Bahri, M.; Largeau, L.; Patriarche, G.; Magen, C.

    2015-01-01

    We evidence the influence of the quality of the starting Si surface on the III-V/Si interface abruptness and on the formation of defects during the growth of III-V/Si heterogeneous crystal, using high resolution transmission electron microscopy and scanning transmission electron microscopy. GaP layers were grown by molecular beam epitaxy on vicinal Si (001). The strong effect of the Si substrate chemical preparation is first demonstrated by studying structural properties of both Si homoepitaxial layer and GaP/Si heterostructure. It is then shown that choosing adequate chemical preparation conditions and subsequent III-V regrowth conditions enables the quasi-suppression of micro-twins in the epilayer. Finally, the abruptness of GaP/Si interface is found to be very sensitive to the Si chemical preparation and is improved by the use of a bistepped Si buffer prior to III-V overgrowth

  13. ALMA Observations of the Water Fountain Pre-Planetary Nebula IRAS 16342-3814: High-Velocity Bipolar Jets and an Expanding Torus.

    Science.gov (United States)

    Sahai, R; Vlemmings, W H T; Gledhill, T; Sánchez Contreras, C; Lagadec, E; Nyman, L-Å; Quintana-Lacaci, G

    2017-01-20

    We have mapped 12 CO J=3-2 and other molecular lines from the "water-fountain" bipolar pre-planetary nebula (PPN) IRAS 16342-3814 with [Formula: see text] resolution using ALMA. We find (i) two very high-speed knotty, jet-like molecular outflows, (ii) a central high-density (> few × 10 6 cm -3 ), expanding torus of diameter 1300 AU, and (iii) the circumstellar envelope of the progenitor AGB, generated by a sudden, very large increase in the mass-loss rate to > 3.5 × 10 -4 M ⊙ yr -1 in the past ~455 yr. Strong continuum emission at 0.89 mm from a central source (690 mJy), if due to thermally-emitting dust, implies a substantial mass (0.017 M ⊙ ) of very large (~mm-sized) grains. The measured expansion ages of the above structural components imply that the torus (age~160 yr) and the younger high-velocity outflow (age~110 yr) were formed soon after the sharp increase in the AGB mass-loss rate. Assuming a binary model for the jets in IRAS 16342, the high momentum rate for the dominant jet-outflow in IRAS 16342 implies a high minimum accretion rate, ruling out standard Bondi-Hoyle-Lyttleton wind accretion and wind Roche lobe overflow (RLOF) models with white-dwarf or main-sequence companions. Most likely, enhanced RLOF from the primary or accretion modes operating within common envelope evolution are needed.

  14. Deformations on Hole and Projectile Surfaces Caused By High Velocity Friction During Ballistic Impact

    Science.gov (United States)

    Karamış, M. B.

    2018-01-01

    In this study, the deformations caused by the ballistic impact on the MM composites and on projectile surfaces are examined. The hole section and grain deformation of unreinforced targets are also examined after impact. The relatively high complexity of impact problems is caused by the large number of intervening parameters like relative velocity of projectile and target, shape of colliding objects, relative stiffness and masses, time-dependent surface of contact, geometry and boundary conditions and material characteristics. The material used in this investigation are 2024 and 7075 aluminum alloys as matrix reinforced with SiC and Al2O3 particles. The matrix materials are extensively used in defense applications due to its favorable ballistic properties, moderate strength, high corrosion resistance and super plastic potential. Two different composites were produced; one by casting and the other by lamination. The ballistic tests of the composite targets were carried out according to NIJ Standard-0101.04, Temperature 21 °C, RH=65% with 7.62 mm projectiles. The bullet weight was 9.6 g and their muzzle velocities were in the range of 770-800 m/s. The projectiles consisted of a steel core, copper jacket and lead material. The composite targets were positioned 15 m from the rifle. The interaction between projectiles and the target hole created after impact were examined by light microscopy and photography. Different damage and failure mechanisms such as petalling, cracking, spalling, dishing, etc., were observed on the target body. On the other hand, dramatic wear and damages on the projectile surface were also observed. The targets were supported with Al-5083 backing blocks having 40 mm thickness.

  15. A COMPACT HIGH VELOCITY CLOUD NEAR THE MAGELLANIC STREAM: METALLICITY AND SMALL-SCALE STRUCTURE

    Energy Technology Data Exchange (ETDEWEB)

    Kumari, Nimisha [Ecole Polytechnique, Route de Saclay, F-91128 Palaiseau (France); Fox, Andrew J.; Tumlinson, Jason; Thom, Christopher; Ely, Justin [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Westmeier, Tobias [ICRAR, The University of Western Australia, 35 Stirling Highway, Crawley WA 6009 (Australia)

    2015-02-10

    The Magellanic Stream (MS) is a well-resolved gaseous tail originating from the Magellanic Clouds. Studies of its physical properties and chemical composition are needed to understand its role in Galactic evolution. We investigate the properties of a compact HVC (CHVC 224.0-83.4-197) lying close on the sky to the MS to determine whether it is physically connected to the Stream and to examine its internal structure. Our study is based on analysis of HST/COS spectra of three QSOs (Ton S210, B0120-28, and B0117-2837) all of which pass through this single cloud at small angular separation (≲0.°72), allowing us to compare physical conditions on small spatial scales. No significant variation is detected in the ionization structure from one part of the cloud to the other. Using Cloudy photoionization models, toward Ton S210 we derive elemental abundances of [C/H] = –1.21 ± 0.11, [Si/H] = –1.16 ± 0.11, [Al/H] = –1.19 ± 0.17, and [O/H] = –1.12 ± 0.22, which agree within 0.09 dex. The CHVC abundances match the 0.1 solar abundances measured along the main body of the Stream. This suggests that the CHVC (and by extension the extended network of filaments to which it belongs) has an origin in the MS. It may represent a fragment that has been removed from the Stream as it interacts with the gaseous Galactic halo.

  16. High velocity collisions between large dust aggregates at the limit for growing planetesimals

    Science.gov (United States)

    Wurm, G.; Teiser, J.; Paraskov, G.

    2007-08-01

    Planetesimals are km-size bodies supposed to be formed in protoplanetary disks as planetary precursors [1]. The most widely considered mechanism for their formation is based on mutual collisions of smaller bodies, a process which starts with the aggregation of (sub)-micron size dust particles. In the absence of events that lithify the growing dust aggregates, only the surface forces between dust particles provide adhesion and internal strength of the objects. It has been assumed that this might be a disadvantage as dust aggregates are readily destroyed by rather weak collisions. In fact, experimental research on dust aggregation showed that for collisions in the m/s range (sub)-mm size dust aggregates impacting a larger body do show a transition from sticking to rebound and/or fragmentation in collisions and no growth occurs at the large velocities [2, 3]. This seemed to be incompatible with typical collision velocities of small dust aggregates with m-size bodies which are expected to be on the order 50 m/s in protoplanetary disks [4]. We recently found that the experimental results cannot be scaled from m/s to tens of m/s collisions. In contrast to the assumptions and somewhat counterintuitive, it is the fragility of dust aggregates that allows growth at higher collision velocities. In impact experiments Wurm et al. [5] showed that between 13 m/s and 25 m/s a larger compact (target) body consisting of micron-size SiO2 dust particles accreted 50 % of the mass of a 1 cm dust projectile consisting of the same dust. For slower impacts the projectile only rebounded or fragmented slightly.

  17. GaAsPN-based PIN solar cells MBE-grown on GaP substrates: toward the III-V/Si tandem solar cell

    Science.gov (United States)

    Da Silva, M.; Almosni, S.; Cornet, C.; Létoublon, A.; Levallois, C.; Rale, P.; Lombez, L.; Guillemoles, J.-F.; Durand, O.

    2015-03-01

    GaAsPN semiconductors are promising material for the elaboration of high efficiencies tandem solar cells on silicon substrates. GaAsPN diluted nitride alloy is studied as the top junction material due to its perfect lattice matching with the Si substrate and its ideal bandgap energy allowing a perfect current matching with the Si bottom cell. We review our recent progress in materials development of the GaAsPN alloy and our recent studies of some of the different building blocks toward the elaboration of a PIN solar cell. A lattice matched (with a GaP(001) substrate, as a first step toward the elaboration on a Si substrate) 1μm-thick GaAsPN alloy has been grown by MBE. After a post-growth annealing step, this alloy displays a strong absorption around 1.8-1.9 eV, and efficient photoluminescence at room temperature suitable for the elaboration of the targeted solar cell top junction. Early stage GaAsPN PIN solar cells prototypes have been grown on GaP (001) substrates, with 2 different absorber thicknesses (1μm and 0.3μm). The external quantum efficiencies and the I-V curves show that carriers have been extracted from the GaAsPN alloy absorbers, with an open-circuit voltage of 1.18 V, while displaying low short circuit currents meaning that the GaAsPN structural properties needs a further optimization. A better carrier extraction has been observed with the absorber displaying the smallest thickness, which is coherent with a low carriers diffusion length in our GaAsPN compound. Considering all the pathways for improvement, the efficiency obtained under AM1.5G is however promising.

  18. Plane-wave and common-translation-factor treatments of He2++H collisions at high velocities

    International Nuclear Information System (INIS)

    Errea, L.F.; Harel, C.; Jouin, H.; Maidagan, J.M.; Mendez, L.; Pons, B.; Riera, A.

    1992-01-01

    We complement previous work that showed that the molecular approach, modified with plane-wave translation factors, is able to reproduce the fall of charge-exchange cross sections in He 2+ +H collisions, by presenting the molecular data, and studying the corresponding mechanism. We test the accuracy of simplifications of the method that have been employed in the literature, and that lead to very simple calculations. We show that the common-translation-factor method is also successful at high nuclear velocities, provided that sufficiently excited states are included in the basis; moreover, it yields a simple picture of the mechanism and a description of ionization processes at high velocities

  19. A Heterobimetallic Complex With an Unsupported Uranium(III)-Aluminum(I) Bond: (CpSiMe3)3U-AlCp* (Cp* = C5Me5)

    Energy Technology Data Exchange (ETDEWEB)

    Minasian, Stefan; Krinsky Ph.D., Jamin; Williams, Valerie; Arnold Ph.D., John

    2008-07-23

    The discovery of molecular metal-metal bonds has been of fundamental importance to the understanding of chemical bonding. For the actinides, examples of unsupported metal-metal bonds are relatively uncommon, consisting of Cp{sub 3}U-SnPh{sub 3}, and several actinide-transition metal complexes. Traditionally, bonding in the f-elements has been described as electrostatic; however, elucidating the degree of covalency is a subject of recent research. In carbon monoxide complexes of the trivalent uranium metallocenes, decreased {nu}{sub CO} values relative to free CO suggest that the U(III) atom acts as a {pi}-donor. Ephritikhine and coworkers have demonstrated that {pi}-accepting ligands can differentiate trivalent lanthanide and actinide ions, an effect that renders this chemistry of interest in the context of nuclear waste separation technology.

  20. Experimental Investigation of Multi-layer Insulation Effect on Damage of Stuffed Shield by High-velocity Impact

    Directory of Open Access Journals (Sweden)

    GUAN Gong-shun

    2016-09-01

    Full Text Available The stuffed shield with multi-layer insulation(MLI was designed by improving on Al Whipple shield, and a series of high-velocity impact tests were practiced with a two-stage light gas gun facility at vacuum environment. The damage model of the stuffed shield with different MLI location by Al-sphere projectile impacting was obtained. The effect of MLI on damage of the stuffed shield by high-velocity impact was studied. The results indicate when the MLI is located at front side of the first Al-plate, the protection performance of the stuffed shield is improved with the larger perforation diameter of the first Al-plate and more impact kinetic energy dissipation of the projectile. When MLI is arranged at back side of the first Al-plate, the expansion of the secondary debris cloud from projectile impacting the first Al-plate is restrained, it is not good to improve the protection performance of the stuffed shield. When MLI is arranged at front side of the stuffed wall, the perforation size of the stuffed wall increases; when MLI is arranged at front side of the rear wall, the distribution range of crater on the rear wall decreases.

  1. Turbulence, dynamic similarity and scale effects in high-velocity free-surface flows above a stepped chute

    Science.gov (United States)

    Felder, Stefan; Chanson, Hubert

    2009-07-01

    In high-velocity free-surface flows, air entrainment is common through the interface, and intense interactions take place between turbulent structures and entrained bubbles. Two-phase flow properties were measured herein in high-velocity open channel flows above a stepped chute. Detailed turbulence measurements were conducted in a large-size facility, and a comparative analysis was applied to test the validity of the Froude and Reynolds similarities. The results showed consistently that the Froude similitude was not satisfied using a 2:1 geometric scaling ratio. Lesser number of entrained bubbles and comparatively greater bubble sizes were observed at the smaller Reynolds numbers, as well as lower turbulence levels and larger turbulent length and time scales. The results implied that small-size models did underestimate the rate of energy dissipation and the aeration efficiency of prototype stepped spillways for similar flow conditions. Similarly a Reynolds similitude was tested. The results showed also some significant scale effects. However a number of self-similar relationships remained invariant under changes of scale and confirmed the analysis of Chanson and Carosi (Exp Fluids 42:385-401, 2007). The finding is significant because self-similarity may provide a picture general enough to be used to characterise the air-water flow field in large prototype channels.

  2. SiNx-induced intermixing in AlInGaAs/InP quantum well through interdiffusion of group III atoms

    International Nuclear Information System (INIS)

    Lee, Ko-Hsin; Thomas, Kevin; Gocalinska, Agnieszka; Manganaro, Marina; Corbett, Brian; Pelucchi, Emanuele; Peters, Frank H.

    2012-01-01

    We analyze the composition profiles within intermixed and non-intermixed AlInGaAs-based multiple quantum wells structures by secondary ion mass spectrometry and observe that the band gap blue shift is mainly attributed to the interdiffusion of In and Ga atoms between the quantum wells and the barriers. Based on these results, several AlInGaAs-based single quantum well (SQW) structures with various compressive strain (CS) levels were grown and their photoluminescence spectra were investigated after the intermixing process involving the encapsulation of thin SiN x dielectric films on the surface followed by rapid thermal annealing. In addition to the annealing temperature, we report that the band gap shift can be also enhanced by increasing the CS level in the SQW. For instance, at an annealing temperature of 850 °C, the photoluminescence blue shift is found to reach more than 110 nm for the sample with 1.2%-CS SQW, but only 35 nm with 0.4%-CS SQW. We expect that this relatively larger atomic compositional gradient of In (and Ga) between the compressively strained quantum well and the barrier can facilitate the atomic interdiffusion and it thus leads to the larger band gap shift.

  3. Inductively coupled plasma etching of III-V antimonides in BCl{sub 3}/SiCl{sub 4} etch chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Swaminathan, K. [Department of Electrical and Computer Engineering, University of Delaware, Newark, Delaware 19716 (United States)], E-mail: swaminak@ece.osu.edu; Janardhanan, P.E.; Sulima, O.V. [Department of Electrical and Computer Engineering, University of Delaware, Newark, Delaware 19716 (United States)

    2008-10-01

    Inductively coupled plasma etching of GaSb using BCl{sub 3}/SiCl{sub 4} etch chemistry has been investigated. The etch rates were studied as a function of bias power, inductively coupled plasma source power, plasma chemistry and chamber pressure. The etched surfaces remain smooth and stoichiometric over the entire range of plasma conditions investigated. The knowledge gained in etching GaSb was applied to etching AlGaAsSb and InGaAsSb in order to fabricate heterojunction phototransistors. As expected, InGaAsSb etch rate was much lower compared to the corresponding value for GaSb, mainly due to the relatively low volatility of indium chlorides. For a wide range of plasma conditions, the selectivity between GaSb and AlGaAsSb was close to unity, which is desirable for fabricating etched mirrors and gratings for Sb-based mid-infrared laser diodes. The surface roughness and the etch profile were examined for the etched GaSb, AlGaAsSb and InGaAsSb samples using scanning electron microscope. The high etch rates achieved ({approx} 4 {mu}m/min) facilitated deep etching of GaSb. A single layer, soft mask (AZ-4903 photoresist) was used to etch GaSb, with etch depth {approx} 90 {mu}m. The deep dry etching of GaSb has many important applications including etching substrate windows for backside-illuminated photodetectors for the mid-infrared wavelength range.

  4. Quantifying the Effects of the Influence of a Tungsten Long-rod Projectile into Confined Ceramics at High-velocity Impact

    National Research Council Canada - National Science Library

    Gorsich, Tara J; Templeton, Douglas W

    2008-01-01

    .... The finite element simulations were performed using Elastic Plastic Impact Code (EPIC) [Johnson (2006)], which simulates the failure and particle breakup of the target once the long-rod penetrator strikes at high-velocity impact...

  5. High-Pressure Shock Compression of Solids VIII The Science and Technology of High-Velocity Impact

    CERN Document Server

    Chhabildas, Lalit C; Horie, Yasuyuki

    2005-01-01

    Research in the field of shock physics and ballistic impact has always been intimately tied to progress in development of facilities for accelerating projectiles to high velocity and instrumentation for recording impact phenomena. The chapters of this book, written by leading US and European experts, cover a broad range of topics and address researchers concerned with questions of material behaviour under impulsive loading and the equations of state of matter, as well as the design of suitable instrumentation such as gas guns and high-speed diagnostics. Applications include high-speed impact dynamics, the inner composition of planets, syntheses of new materials and materials processing. Among the more technologically-oriented applications treated is the testing of the flight characteristics of aeroballistic models and the assessment of impacts in the aerospace industry.

  6. High velocity missile-related colorectal injuries: In-theatre application of injury scores and their effects on ostomy rates.

    Science.gov (United States)

    Kaymak, Şahin; Ünlü, Aytekin; Harlak, Ali; Ersöz, Nail; Şenocak, Rahman; Coşkun, Ali Kağan; Zeybek, Nazif; Lapsekili, Emin; Kozak, Orhan

    2016-03-01

    Treatment of colorectal injuries (CRIs) remains a significant cause of morbidity and mortality. The aim of the present study was to analyze treatment trends of Turkish surgeons and effects of the American Association for the Surgery of Trauma (AAST), Injury Severity (ISS), and Penetrating Abdominal Trauma Index (PATI) scoring systems on decision-making processes and clinical outcomes. Data regarding high velocity missile (HVM)-related CRIs were retrospectively gathered. Four patient groups were included: Group 1 (stoma), Group 2 (no stoma in primary surgery), Group 2a (conversion to stoma in secondary surgery), and Group 2b (remaining Group 2 patients). Groups 1, 2, 2a, and 2b included 39 (66%), 20 (34%), 6 (30%), and 14 (70%) casualties, respectively. Ostomies were performed in casualties with significantly higher AAST scores (pcolon/rectum injury scores.

  7. Titanium K-Shell X-Ray Production from High Velocity Wire Arrays Implosions on the 20-MA Z Accelerator

    International Nuclear Information System (INIS)

    Apruzese, J.P.; Beg, F.N.; Clark, R.C.; Coverdale, C.A.; Davis, J.; Deeney, C.; Douglas, M.R.; Nash, T.J.; Ruiz-Comacho, J.; Spielman, R.B.; Struve, K.W.; Thornhill, J.W.; Whitney, K.G.

    1999-01-01

    The advent of the 20-MA Z accelerator [R.B. Spielman, C. Deeney, G.A. Chandler, et al., Phys. Plasmas 5, 2105, (1997)] has enabled implosions of large diameter, high-wire-number arrays of titanium to begin testing Z-pinch K-shell scaling theories. The 2-cm long titanium arrays, which were mounted on a 40-mm diameter, produced between 75±15 to 125±20 kJ of K-shell x-rays. Mass scans indicate that, as predicted, higher velocity implosions in the series produced higher x-ray yields. Spectroscopic analyses indicate that these high velocity implosions achieved peak electron temperatures from 2.7±0.1 to 3.2±0.2 keV and obtained a K-shell emission mass participation of up to 12%

  8. Optimizing pulse shaping and zooming for acceleration to high velocities and fusion neutron production on the Nike laser

    Science.gov (United States)

    Karasik, Max; Weaver, J. L.; Aglitskiy, Y.; Zalesak, S. T.; Velikovich, A. L.; Oh, J.; Obenschain, S. P.; Arikawa, Y.; Watari, T.

    2010-11-01

    We will present results from follow-on experiments to the record-high velocities of 1000 km/s achieved on Nike [Karasik et al., Phys. Plasmas 17, 056317 (2010) ], in which highly accelerated planar foils of deuterated polystyrene were made to collide with a witness foil to produce extreme shock pressures and result in heating of matter to thermonuclear temperatures. Still higher velocities and higher target densities are required for impact fast ignition. The aim of these experiments is shaping the driving pulse to minimize shock heating of the accelerated target and using the focal zoom capability of Nike to achieve higher densities and velocities. Spectroscopic measurements of electron temperature achieved upon impact will complement the neutron time-of-flight ion temperature measurement. Work is supported by US DOE and Office of Naval Research.

  9. Use of zooming and pulseshaping for acceleration to high velocities and fusion neutron production on the Nike laser

    Science.gov (United States)

    Karasik, Max; Weaver, J. L.; Aglitskiy, Y.; Kehne, D. M.; Zalesak, S. T.; Velikovich, A. L.; Oh, J.; Obenschain, S. P.; Arikawa, Y.

    2011-10-01

    We will present results from follow-on experiments to the record-high velocities of 1000 km/s achieved on Nike [Karasik et al, Phys. Plasmas 17, 056317(2010)], in which highly accelerated planar foils of deuterated polystyrene were made to collide with a witness foil to produce ~ 1 Gbar shock pressures and result in heating of matter to thermonuclear temperatures. Still higher velocities and higher target densities are required for impact fast ignition. The aim of these experiments is using the focal zoom capability of Nike and shaping the driving pulse to minimize shock heating of the accelerated target to achieve higher densities and velocities. In-flight target density is inferred from target heating upon collision via DD neutron time-of-flight ion temperature measurement. Work is supported by US DOE (NNSA) and Office of Naval Research. SAIC

  10. A study of the condensation of a high-velocity vapor jet on a coflowing turbulent liquid jet

    Science.gov (United States)

    Ovsiannikov, V. A.; Levin, A. A.

    A method for the experimental determination of the local value of the heat transfer coefficient under conditions of jet condensation is proposed which employs a heat balance expression in differential form. The method is used in an experimental study of the heat transfer characteristics of the condensation of a high-velocity coaxial jet of a slightly superheated (3 percent) steam on a coflowing cylindrical turbulent water jet. In the experiment, the relative velocities reach hundreds of m/s; the temperature nonequilibrium of the phases is high, as is the steam flow mass density during the initial contact; heat transfer between the phases is significant. The results can be used as the basis for determining experimental criterial dependences for jet condensation.

  11. Application of TiC reinforced Fe-based coatings by means of High Velocity Air Fuel Spraying

    Science.gov (United States)

    Bobzin, K.; Öte, M.; Knoch, M. A.; Liao, X.; Sommer, J.

    2017-03-01

    In the field of hydraulic applications, different development trends can cause problems for coatings currently used as wear and corrosion protection for piston rods. Aqueous hydraulic fluids and rising raw material prices necessitate the search for alternatives to conventional coatings like galvanic hard chrome or High Velocity Oxygen Fuel (HVOF)-sprayed WC/Co coatings. In a previous study, Fe/TiC coatings sprayed by a HVOF-process, were identified to be promising coating systems for wear and corrosion protection in hydraulic systems. In this feasibility study, the novel High Velocity Air Fuel (HVAF)-process, a modification of the HVOF-process, is investigated using the same feedstock material, which means the powder is not optimized for the HVAF-process. The asserted benefits of the HVAF-process are higher particle velocities and lower process temperatures, which can result in a lower porosity and oxidation of the coating. Further benefits of the HVAF process are claimed to be lower process costs and higher deposition rates. In this study, the focus is set on to the applicability of Fe/TiC coatings by HVAF in general. The Fe/TiC HVAF coating could be produced, successfully. The HVAF- and HVOF-coatings, produced with the same powder, were investigated using micro-hardness, porosity, wear and corrosion tests. A similar wear coefficient and micro-hardness for both processes could be achieved. Furthermore the propane/hydrogen proportion of the HVAF process and its influence on the coating thickness and the porosity was investigated.

  12. A CATALOG OF ULTRA-COMPACT HIGH VELOCITY CLOUDS FROM THE ALFALFA SURVEY: LOCAL GROUP GALAXY CANDIDATES?

    International Nuclear Information System (INIS)

    Adams, Elizabeth A. K.; Giovanelli, Riccardo; Haynes, Martha P.

    2013-01-01

    We present a catalog of 59 ultra-compact high velocity clouds (UCHVCs) extracted from the 40% complete ALFALFA HI-line survey. The ALFALFA UCHVCs have median flux densities of 1.34 Jy km s –1 , median angular diameters of 10', and median velocity widths of 23 km s –1 . We show that the full UCHVC population cannot easily be associated with known populations of high velocity clouds. Of the 59 clouds presented here, only 11 are also present in the compact cloud catalog extracted from the commensal GALFA-HI survey, demonstrating the utility of this separate dataset and analysis. Based on their sky distribution and observed properties, we infer that the ALFALFA UCHVCs are consistent with the hypothesis that they may be very low mass galaxies within the Local Volume. In that case, most of their baryons would be in the form of gas, and because of their low stellar content, they remain unidentified by extant optical surveys. At distances of ∼1 Mpc, the UCHVCs have neutral hydrogen (H I) masses of ∼10 5 -10 6 M ☉ , H I diameters of ∼2-3 kpc, and indicative dynamical masses within the H I extent of ∼10 7 -10 8 M ☉ , similar to the Local Group ultra-faint dwarf Leo T. The recent ALFALFA discovery of the star-forming, metal-poor, low mass galaxy Leo P demonstrates that this hypothesis is true in at least one case. In the case of the individual UCHVCs presented here, confirmation of their extragalactic nature will require further work, such as the identification of an optical counterpart to constrain their distance.

  13. A CATALOG OF ULTRA-COMPACT HIGH VELOCITY CLOUDS FROM THE ALFALFA SURVEY: LOCAL GROUP GALAXY CANDIDATES?

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Elizabeth A. K.; Giovanelli, Riccardo; Haynes, Martha P., E-mail: betsey@astro.cornell.edu, E-mail: riccardo@astro.cornell.edu, E-mail: haynes@astro.cornell.edu [Center for Radiophysics and Space Research, Space Sciences Building, Cornell University, Ithaca, NY 14853 (United States)

    2013-05-01

    We present a catalog of 59 ultra-compact high velocity clouds (UCHVCs) extracted from the 40% complete ALFALFA HI-line survey. The ALFALFA UCHVCs have median flux densities of 1.34 Jy km s{sup -1}, median angular diameters of 10', and median velocity widths of 23 km s{sup -1}. We show that the full UCHVC population cannot easily be associated with known populations of high velocity clouds. Of the 59 clouds presented here, only 11 are also present in the compact cloud catalog extracted from the commensal GALFA-HI survey, demonstrating the utility of this separate dataset and analysis. Based on their sky distribution and observed properties, we infer that the ALFALFA UCHVCs are consistent with the hypothesis that they may be very low mass galaxies within the Local Volume. In that case, most of their baryons would be in the form of gas, and because of their low stellar content, they remain unidentified by extant optical surveys. At distances of {approx}1 Mpc, the UCHVCs have neutral hydrogen (H I) masses of {approx}10{sup 5}-10{sup 6} M{sub Sun }, H I diameters of {approx}2-3 kpc, and indicative dynamical masses within the H I extent of {approx}10{sup 7}-10{sup 8} M{sub Sun }, similar to the Local Group ultra-faint dwarf Leo T. The recent ALFALFA discovery of the star-forming, metal-poor, low mass galaxy Leo P demonstrates that this hypothesis is true in at least one case. In the case of the individual UCHVCs presented here, confirmation of their extragalactic nature will require further work, such as the identification of an optical counterpart to constrain their distance.

  14. A new all-sky map of Galactic high-velocity clouds from the 21-cm HI4PI survey

    Science.gov (United States)

    Westmeier, Tobias

    2018-02-01

    High-velocity clouds (HVCs) are neutral or ionized gas clouds in the vicinity of the Milky Way that are characterized by high radial velocities inconsistent with participation in the regular rotation of the Galactic disc. Previous attempts to create a homogeneous all-sky H I map of HVCs have been hampered by a combination of poor angular resolution, limited surface brightness sensitivity and suboptimal sampling. Here, a new and improved H I map of Galactic HVCs based on the all-sky HI4PI survey is presented. The new map is fully sampled and provides significantly better angular resolution (16.2 versus 36 arcmin) and column density sensitivity (2.3 versus 3.7 × 1018 cm-2 at the native resolution) than the previously available LAB survey. The new HVC map resolves many of the major HVC complexes in the sky into an intricate network of narrow H I filaments and clumps that were not previously resolved by the LAB survey. The resulting sky coverage fraction of high-velocity H I emission above a column density level of 2 × 1018 cm-2 is approximately 15 per cent, which reduces to about 13 per cent when the Magellanic Clouds and other non-HVC emission are removed. The differential sky coverage fraction as a function of column density obeys a truncated power law with an exponent of -0.93 and a turnover point at about 5 × 1019 cm-2. H I column density and velocity maps of the HVC sky are made publicly available as FITS images for scientific use by the community.

  15. Seismic Technology Adapted to Analyzing and Developing Geothermal Systems Below Surface-Exposed High-Velocity Rocks Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Hardage, Bob A. [Univ. of Texas, Austin, TX (United States). Bureau of Economic Geology; DeAngelo, Michael V. [Univ. of Texas, Austin, TX (United States). Bureau of Economic Geology; Ermolaeva, Elena [Univ. of Texas, Austin, TX (United States). Bureau of Economic Geology; Hardage, Bob A. [Univ. of Texas, Austin, TX (United States). Bureau of Economic Geology; Remington, Randy [Univ. of Texas, Austin, TX (United States). Bureau of Economic Geology; Sava, Diana [Univ. of Texas, Austin, TX (United States). Bureau of Economic Geology; Wagner, Donald [Univ. of Texas, Austin, TX (United States). Bureau of Economic Geology; Wei, Shuijion [Univ. of Texas, Austin, TX (United States). Bureau of Economic Geology

    2013-02-01

    The objective of our research was to develop and demonstrate seismic data-acquisition and data-processing technologies that allow geothermal prospects below high-velocity rock outcrops to be evaluated. To do this, we acquired a 3-component seismic test line across an area of exposed high-velocity rocks in Brewster County, Texas, where there is high heat flow and surface conditions mimic those found at numerous geothermal prospects. Seismic contractors have not succeeded in creating good-quality seismic data in this area for companies who have acquired data for oil and gas exploitation purposes. Our test profile traversed an area where high-velocity rocks and low-velocity sediment were exposed on the surface in alternating patterns that repeated along the test line. We verified that these surface conditions cause non-ending reverberations of Love waves, Rayleigh waves, and shallow critical refractions to travel across the earth surface between the boundaries of the fast-velocity and slow-velocity material exposed on the surface. These reverberating surface waves form the high level of noise in this area that does not allow reflections from deep interfaces to be seen and utilized. Our data-acquisition method of deploying a box array of closely spaced geophones allowed us to recognize and evaluate these surface-wave noise modes regardless of the azimuth direction to the surface anomaly that backscattered the waves and caused them to return to the test-line profile. With this knowledge of the surface-wave noise, we were able to process these test-line data to create P-P and SH-SH images that were superior to those produced by a skilled seismic data-processing contractor. Compared to the P-P data acquired along the test line, the SH-SH data provided a better detection of faults and could be used to trace these faults upward to the boundaries of exposed surface rocks. We expanded our comparison of the relative value of S-wave and P-wave seismic data for geothermal

  16. The influence of slip velocity and temperature on permeability during and after high-velocity fault slip

    Science.gov (United States)

    Tanikawa, W.; Mukoyoshi, H.; Tadai, O.; Hirose, T.; Lin, W.

    2011-12-01

    Fluid transport properties in fault zones play an important role in dynamic processes during large earthquakes. If the permeability in a fault zone is low, high pore-fluid pressures caused by thermal pressurization (Sibson, 1973) or shear-induced compaction (Blanpied et al., 1992) can lead to an apparent reduction of fault strength. Changes in porosity and permeability of fault rocks within a fault zone during earthquakes and the subsequent progressive recovery of these properties may have a large influence on earthquake recurrence (Sleep and Blanpied, 1992). A rotary shear apparatus was used to investigate changes of fluid transport properties in a fault zone by real-time measurement of gas flow rates during and after shearing of hollow sandstone and granite cylinders at various slip rates. Our apparatus measures permeability parallel to the slip plane in both the slip zone and wall rocks. In all cases, permeability decreased rapidly with an increase of friction, but recovered soon after slip, reaching a steady state within several tens of minutes. The rate of reduction of permeability increased with increasing slip velocity. Permeability did not recover to pre-slip levels after low-velocity tests but recovered to exceed them after high-velocity tests. Frictional heating of gases at the slip surface increased gas viscosity, which increased gas flow rate to produce an apparent permeability increase. The irreversible permeability changes of the low-velocity tests were caused by gouge formation due to wearing and smoothing of the slip surface. The increase of permeability after high-velocity tests was caused by mesoscale fracturing in response to rapid temperature rise. Changes of pore fluid viscosity contributed more to changes of flow rate than did permeability changes caused by shear deformation, although test results from different rocks and pore fluids might be different. References Blanpied, M.L., Lockner, D.A., Byerlee, J.D., 1992. An earthquake mechanism

  17. Observations of high-velocity molecular gas near Herbig-Haro objects: HH 24--27 and HH 1--2

    International Nuclear Information System (INIS)

    Snell, R.L.; Edwards, S.

    1982-01-01

    High-velocity CO has been detected in the vicinity of the Herbig-Haro objects HH 24--27. These observations indicate that there are two sources of high-velocity outflow; one centered on an infrared source near HH 26, and the second centered roughly 2' south of HH 24. The redshifted and blueshifted wings in both sources are spatially separated suggesting that the high-velocity gas is due to energetic bipolar outflow from young stars embedded in the molecular cloud. The association of Herbig-Haro objects with regions of high-velocity gas suggests a common origin for both in the interaction of a stellar wind with the ambient molecular cloud. The mass loss rates implied by our observations, assuming that the rate of mass loss has been constant throughout the dynamical lifetime of the bipolar lobes, are roughly 10 -6 M/sub sun/ yr -1 for both sources. We have also searched for high-velocity gas near HH 1--2 but found no evidence for mass outflow in this region

  18. Burst Speed of Wild Fishes under High-Velocity Flow Conditions Using Stamina Tunnel with Natural Guidance System in River

    Science.gov (United States)

    Izumi, Mattashi; Yamamoto, Yasuyuki; Yataya, Kenichi; Kamiyama, Kohhei

    Swimming experiments were conducted on wild fishes in a natural guidance system stamina tunnel (cylindrical pipe) installed in a fishway of a local river under high-velocity flow conditions (tunnel flow velocity : 211 to 279 cm·s-1). In this study, the swimming characteristics of fishes were observed. The results show that (1) the swimming speeds of Tribolodon hakonensis (Japanese dace), Phoxinus lagowshi steindachneri (Japanese fat-minnow), Plecoglossus altivelis (Ayu), and Zacco platypus (Pale chub) were in proportion to their body length under identical water flow velocity conditions; (2) the maximum burst speed of Japanese dace and Japanese fat-minnow (measuring 4 to 6 cm in length) was 262 to 319 cm·s-1 under high flow velocity conditions (225 to 230 cm·s-1), while the maximum burst speed of Ayu and Pale chub (measuring 5 cm to 12 cm in length) was 308 to 355 cm·s-1 under high flow velocity conditions (264 to 273 cm·s-1) ; (3) the 50cm-maximum swimming speed of swimming fishes was 1.07 times faster than the pipe-swimming speed; (4) the faster the flow velocity, the shorter the swimming distance became.

  19. Structure and performance of anisotropic nanocrystalline Nd-Fe-B magnets fabricated by high-velocity compaction followed by deformation

    Science.gov (United States)

    Zhao, L. Z.; Deng, X. X.; Yu, H. Y.; Guan, H. J.; Li, X. Q.; Xiao, Z. Y.; Liu, Z. W.; Greneche, J. M.

    2017-12-01

    High-velocity compaction (HVC) has been proposed as an effective approach for the fabrication of nanocrystalline Nd-Fe-B magnets. In this work, the effect of powder size on the density of HVCed magnets has been studied and the anisotropic nanocrystalline Nd-Fe-B magnets were prepared by HVC followed by hot deformation (HD). It is found that a proper particle size range is beneficial to high density. The investigations on the microstructure, magnetic domain structure, and hyperfine structure, indicate that the deformed grain structure and the magnetic domain structure with uniform paramagnetic grain boundary phase give good magnetic properties of HVC + HDed magnets. These magnets also have good mechanical and anti-corrosion properties. The results indicate that HVC is not only a near-net-shape, room temperature and binder-free process but is also able to maintain uniform nanostructure and to achieve good magnetic properties in both isotropic and anisotropic magnets. As a result, HVC can be employed as an ideal alternative process for bonding or hot pressing for the conventional MQI, MQII and MQIII magnets.

  20. Seismic site-response characterization of high-velocity sites using advanced geophysical techniques: application to the NAGRA-Net

    Science.gov (United States)

    Poggi, V.; Burjanek, J.; Michel, C.; Fäh, D.

    2017-08-01

    The Swiss Seismological Service (SED) has recently finalised the installation of ten new seismological broadband stations in northern Switzerland. The project was led in cooperation with the National Cooperative for the Disposal of Radioactive Waste (Nagra) and Swissnuclear to monitor micro seismicity at potential locations of nuclear-waste repositories. To further improve the quality and usability of the seismic recordings, an extensive characterization of the sites surrounding the installation area was performed following a standardised investigation protocol. State-of-the-art geophysical techniques have been used, including advanced active and passive seismic methods. The results of all analyses converged to the definition of a set of best-representative 1-D velocity profiles for each site, which are the input for the computation of engineering soil proxies (traveltime averaged velocity and quarter-wavelength parameters) and numerical amplification models. Computed site response is then validated through comparison with empirical site amplification, which is currently available for any station connected to the Swiss seismic networks. With the goal of a high-sensitivity network, most of the NAGRA stations have been installed on stiff-soil sites of rather high seismic velocity. Seismic characterization of such sites has always been considered challenging, due to lack of relevant velocity contrast and the large wavelengths required to investigate the frequency range of engineering interest. We describe how ambient vibration techniques can successfully be applied in these particular conditions, providing practical recommendations for best practice in seismic site characterization of high-velocity sites.

  1. Evaluation of a Candidate Trace Contaminant Control Subsystem Architecture: The High Velocity, Low Aspect Ratio (HVLA) Adsorption Process

    Science.gov (United States)

    Kayatin, Matthew J.; Perry, Jay L.

    2017-01-01

    Traditional gas-phase trace contaminant control adsorption process flow is constrained as required to maintain high contaminant single-pass adsorption efficiency. Specifically, the bed superficial velocity is controlled to limit the adsorption mass-transfer zone length relative to the physical adsorption bed; this is aided by traditional high-aspect ratio bed design. Through operation in this manner, most contaminants, including those with relatively high potential energy are readily adsorbed. A consequence of this operational approach, however, is a limited available operational flow margin. By considering a paradigm shift in adsorption architecture design and operations, in which flows of high superficial velocity are treated by low-aspect ratio sorbent beds, the range of well-adsorbed contaminants becomes limited, but the process flow is increased such that contaminant leaks or emerging contaminants of interest may be effectively controlled. To this end, the high velocity, low aspect ratio (HVLA) adsorption process architecture was demonstrated against a trace contaminant load representative of the International Space Station atmosphere. Two HVLA concept packaging designs (linear flow and radial flow) were tested. The performance of each design was evaluated and compared against computer simulation. Utilizing the HVLA process, long and sustained control of heavy organic contaminants was demonstrated.

  2. Survivability of bare, individual Bacillus subtilis spores to high-velocity surface impact: Implications for microbial transfer through space

    Science.gov (United States)

    Barney, Brandon L.; Pratt, Sara N.; Austin, Daniel E.

    2016-06-01

    Laboratory experiments show that endospores of Bacillus subtilis survive impact against a solid surface at velocities as high as 299 ±28 m/s. During impact, spores experience and survive accelerations of at least 1010 m/s2. The spores were introduced into a vacuum chamber using an electrospray source and accelerated to a narrow velocity distribution by entrainment in a differentially pumped gas flow. Different velocity ranges were studied by modifying the gas flow parameters. The spores were electrically charged, allowing direct measurement of the velocity of each spore as it passed through an image charge detector prior to surface impact. Spores impacted a glass surface and were collected for subsequent analysis by culturing. Most spores survived impact at all measured velocities. These experiments differ fundamentally from other studies that show either shock or impact survivability of bacteria embedded within or on the surface of a projectile. Bacteria in the present experiments undergo a single interaction with a solid surface at the full impact velocity, in the absence of any other effects such as cushioning due to microbe agglomerations, deceleration due to air or vapor, or transfer of impact shock through solid or liquid media. During these full-velocity impact events, the spores experience extremely high decelerations. This study is the first reported instance of accelerations of this magnitude experienced during a bacteria impact event. These results are discussed in the context of potential transfer of viable microbes in space and other scenarios involving surface impacts at high velocities.

  3. Isotropic and anisotropic nanocrystalline NdFeB bulk magnets prepared by binder-free high-velocity compaction technique

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Xiangxing [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Liu, Zhongwu, E-mail: zwliu@scut.edu.cn [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Yu, Hongya [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Xiao, Zhiyu [School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640 (China); Zhang, Guoqing [Science and Technology on Advanced High Temperature Structural Materials Laboratory, Beijing Institute of Aeronautical Materials, Beijing 100095 (China)

    2015-09-15

    NdFeB powders were consolidated into nanocrystalline bulk magnets by a near-net-shape process of high-velocity compaction (HVC) at room temperature with no binder employed. The nanostructure can be maintained after compaction. The compacted magnets with relatively high density can inherit the coercivity of the starting powders. The mechanical strength of the HVCed magnet after heat treatment is comparable to that of the conventional bonded NdFeB magnets. The anisotropic magnet has also been prepared by hot deformation using HVCed magnet as the precursor. The remanence value along the pressing direction increased from 0.64 to 0.95 T and maximum energy product (BH){sub max} increased from 65 to 120 kJ/m{sup 3} after hot deformation. The processing–structure–properties relationships for both isotropic and anisotropic magnets are discussed. - Highlights: • HVC is a feasible binder-free approach for preparing NdFeB magnets. • The compacted magnets can inherit the coercivity of the starting powders. • The magnets post heat treatment have compression strength higher than bonded magnets. • The approach of HVC is a potential pre-process for anisotropic NdFeB bulk magnets.

  4. Isotropic and anisotropic nanocrystalline NdFeB bulk magnets prepared by binder-free high-velocity compaction technique

    International Nuclear Information System (INIS)

    Deng, Xiangxing; Liu, Zhongwu; Yu, Hongya; Xiao, Zhiyu; Zhang, Guoqing

    2015-01-01

    NdFeB powders were consolidated into nanocrystalline bulk magnets by a near-net-shape process of high-velocity compaction (HVC) at room temperature with no binder employed. The nanostructure can be maintained after compaction. The compacted magnets with relatively high density can inherit the coercivity of the starting powders. The mechanical strength of the HVCed magnet after heat treatment is comparable to that of the conventional bonded NdFeB magnets. The anisotropic magnet has also been prepared by hot deformation using HVCed magnet as the precursor. The remanence value along the pressing direction increased from 0.64 to 0.95 T and maximum energy product (BH) max increased from 65 to 120 kJ/m 3 after hot deformation. The processing–structure–properties relationships for both isotropic and anisotropic magnets are discussed. - Highlights: • HVC is a feasible binder-free approach for preparing NdFeB magnets. • The compacted magnets can inherit the coercivity of the starting powders. • The magnets post heat treatment have compression strength higher than bonded magnets. • The approach of HVC is a potential pre-process for anisotropic NdFeB bulk magnets

  5. High-velocity DC-VPS for diffusion and protecting barrier layers in solid oxide fuel cells (SOFCs)

    Science.gov (United States)

    Henne, R. H.; Franco, T.; Ruckdäschel, R.

    2006-12-01

    High-temperature fuel cells of the solid oxide fuel cell (SOFC) type as direct converter of chemical into electrical energy show a high potential for reducing considerably the specific energy consumption in different application fields. Of particular interest are advanced lightweight planar cells for electricity supply units in cars and other mobile systems. Such cells, in one new design, consist mainly of metallic parts, for example, of ferrite steels. These cells shall operate in the temperature range of 700 to 800 °C where oxidation and diffusion processes can be of detrimental effect on cell performance for long-term operation. Problems arise in particular by diffusion of chromium species from the interconnect or the cell containment into the electrolyte/cathode interface forming insulating phases and by the mutual diffusion of substrate and anode material, for example, iron and chromium from the ferrite into the anode and nickel from the anode into the ferrite, which in both cases reduces performance and system lifetime. Additional intermediate layers of perovskite-type material, (e.g., doped LaCrO3) applied with high-velocity direct-current vacuum plasma spraying (DC-VPS) can reduce such effects considerably if they are stable and of high electronic conductivity.

  6. Teaching and Assessment of High-Velocity, Low-Amplitude Techniques for the Spine in Predoctoral Medical Education.

    Science.gov (United States)

    Channell, Millicent King

    2016-09-01

    Although national didactic criteria have been set for predoctoral education and assessment in osteopathic manipulative treatment, there is no criterion standard for teaching methods and assessments of osteopathic manipulative treatment competence in colleges of osteopathic medicine. This issue is more pressing with the creation of the single graduate medical education accreditation system by the American Osteopathic Association and Accreditation Council for Graduate Medical Education, which introduced the creation of "osteopathic recognition" for residencies that want to incorporate osteopathic principles and practice into their programs. Residencies with osteopathic recognition may include both osteopathic and allopathic graduates. Increased standardization at the predoctoral level, however, is recommended as osteopathic principles and practice training applications are expanded. The objectives of this article are to review the standards for teaching osteopathic medical students high-velocity, low-amplitude (HVLA) techniques for the spine; to review and discuss the methods used to assess medical students' proficiency in using HVLA; and to propose baseline standards for teaching and assessing HVLA techniques among medical students.

  7. Building America Case Study: Standard- Versus High-Velocity Air Distribution in High-Performance Townhomes, Denver, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    2017-06-09

    IBACOS investigated the performance of a small-diameter high velocity heat pump system compared to a conventional system in a new construction triplex townhouse. A ductless heat pump system also was installed for comparison, but the homebuyer backed out because of aesthetic concerns about that system. In total, two buildings, having identical solar orientation and comprised of six townhomes, were monitored for comfort and energy performance. Results show that the small-diameter system provides more uniform temperatures from floor to floor in the three-story townhome. No clear energy consumption benefit was observed from either system. The builder is continuing to explore the small-diameter system as its new standard system to provide better comfort and indoor air quality. The homebuilder also explored the possibility of shifting its townhome product to meet the U.S. Department of Energy Challenge Home National Program Requirements. Ultimately, the builder decided that adoption of these practices would be too disruptive midstream in the construction cycle. However, the townhomes met the ENERGY STAR Version 3.0 program requirements.

  8. Damage characterization of E-glass and C-glass fibre polymer composites after high velocity impact

    Science.gov (United States)

    Razali, N.; Sultan, M. T. H.; Cardona, F.; Jawaid, M.

    2017-12-01

    The purpose of this work is to identify impact damage on glass fibre reinforced polymer composite structures after high velocity impact. In this research, Type C-glass (600 g/m2) and Type E-glass (600 g/m2) were used to fabricate Glass Fibre-Reinforced Polymer composites (GFRP) plates. The panels were fabricated using a vacuum bagging and hot bounder method. Single stage gas gun (SSGG) was used to do the testing and data acquisition system was used to collect the damage data. Different types of bullets and different pressure levels were used for the experiment. The obtained results showed that the C-glass type of GFRP experienced more damage in comparison to E-glass type of materials based on the amount of energy absorbed on impact and the size of the damage area. All specimens underwent a partial fibre breakage but the laminates were not fully penetrated by the bullets. This indicated that both types of materials have high impact resistance even though the applied pressures of the gas gun were on the high range. We concluded that within the material specifications of the laminates including the type of glass fibre reinforcement and the thickness of the panels, those composite materials are safe to be applied in structural and body armour applications as an alternative to more expensive materials such as Kevlar and type S-glass fibre based panels.

  9. A modified compressible smoothed particle hydrodynamics method and its application on the numerical simulation of low and high velocity impacts

    International Nuclear Information System (INIS)

    Amanifard, N.; Haghighat Namini, V.

    2012-01-01

    In this study a Modified Compressible Smoothed Particle Hydrodynamics method is introduced which is applicable in problems involving shock wave structures and elastic-plastic deformations of solids. As a matter of fact, algorithm of the method is based on an approach which descritizes the momentum equation into three parts and solves each part separately and calculates their effects on the velocity field and displacement of particles. The most exclusive feature of the method is exactly removing artificial viscosity of the formulations and representing good compatibility with other reasonable numerical methods without any rigorous numerical fractures or tensile instabilities while Modified Compressible Smoothed Particle Hydrodynamics does not use any extra modifications. Two types of problems involving elastic-plastic deformations and shock waves are presented here to demonstrate the capability of Modified Compressible Smoothed Particle Hydrodynamics in simulation of such problems and its ability to capture shock. The problems that are proposed here are low and high velocity impacts between aluminum projectiles and semi infinite aluminum beams. Elastic-perfectly plastic model is chosen for constitutive model of the aluminum and the results of simulations are compared with other reasonable studies in these cases.

  10. The effect of reported high-velocity small raindrops on inferred drop size distributions and derived power laws

    Directory of Open Access Journals (Sweden)

    H. Leijnse

    2010-07-01

    Full Text Available It has recently been shown that at high rainfall intensities, small raindrops may fall with much larger velocities than would be expected from their diameters. These were argued to be fragments of recently broken-up larger drops. In this paper we quantify the effect of this phenomenon on raindrop size distribution measurements from a Joss-Waldvogel disdrometer, a 2-D Video Distrometer, and a vertically-pointing Doppler radar. Probability distributions of fall velocities have been parameterized, where the parameters are functions of both rainfall intensity and drop size. These parameterizations have been used to correct Joss-Waldvogel disdrometer measurements for this phenomenon. The effect of these corrections on fitted scaled drop size distributions are apparent but not major. Fitted gamma distributions for three different types of rainfall have been used to simulate drop size measurements. The effect of the high-velocity small drops is shown to be minor. Especially for the purpose of remote sensing of rainfall using radar, microwave links, or optical links, the errors caused by using the slightly different retrieval relations will be masked completely by other error sources.

  11. A Microchannel Inlet to Reduce High-Velocity Impact Fragmentation of Molecules in Orbital and Fly-by Mass Spectrometers

    Science.gov (United States)

    Turner, Brandon; Anupriya, Anupriya; Sevy, Eric; Austin, Daniel E.

    2017-10-01

    Closed source neutral mass spectrometers are often used on flyby missions to characterize the molecular components of planetary exospheres. In a typical closed source, neutrals are thermalized as they deflect off the walls within a spherical antechamber prior to ionization and mass analysis. However, the high kinetic energy of each molecule as it impacts the chamber can lead to fragmentation before the ionization region is reached. Due to this fragmentation, the original composition of the molecule can be altered, leading to ambiguous identification.Even knowing the fragmentation pathways that occur may not allow deconvolution of data to give the correct composition. Only stable, volatile fragments will be observed in the subsequent mass spectrometer and different organic compounds likely give similar fragmentation products. Simply detecting these products will not lead to unambiguous identication of the precursor molecules. Here, we present a hardware solution to this problem—an inlet that reduces the fragmentation of molecules that impact at high velocities.We present a microchannel inlet that reduces the impact fragmentation by allowing the molecules to dissipate kinetic energy faster than their respective dissociation lifetimes. Preliminary calculations indicate that impact-induced fragmentation will be reduced up to three orders of magnitude compared with conventional closed sources by using this inlet. The benefits of such an inlet apply to any orbital or flyby velocity. The microchannel inlet enables detection of semi-volatile molecules that were previously undetectable due to impact fragmentation.

  12. EXTREMELY BROAD RADIO RECOMBINATION MASER LINES TOWARD THE HIGH-VELOCITY IONIZED JET IN CEPHEUS A HW2

    International Nuclear Information System (INIS)

    Jimenez-Serra, I.; Patel, N.; Martin-Pintado, J.; Baez-Rubio, A.; Thum, C.

    2011-01-01

    We present the first detection of the H40α, H34α, and H31α radio recombination lines (RRLs) at millimeter wavelengths toward the high-velocity ionized jet in the Cepheus A HW2 star-forming region. From our single-dish and interferometric observations, we find that the measured RRLs show extremely broad asymmetric line profiles with zero-intensity line widths of ∼1100 km s -1 . From the line widths, we estimate a terminal velocity for the ionized gas in the jet of ≥500 km s -1 , consistent with that obtained from the proper motions of the HW2 radio jet. The total integrated line-to-continuum flux ratios of the H40α, H34α, and H31α lines are 43, 229, and 280 km s -1 , clearly deviating from LTE predictions. These ratios are very similar to those observed for the RRL masers toward MWC349A, suggesting that the intensities of the RRLs toward HW2 are affected by maser emission. Our radiative transfer modeling of the RRLs shows that their asymmetric profiles could be explained by maser emission arising from a bi-conical radio jet with a semi-opening angle of 18 deg., electron density distribution varying as r -2.11 , and turbulent and expanding wind velocities of 60 and 500 km s -1 .

  13. HIGH-VELOCITY MOLECULAR OUTFLOW IN CO J = 7-6 EMISSION FROM THE ORION HOT CORE

    International Nuclear Information System (INIS)

    Furuya, Ray S.; Shinnaga, Hiroko

    2009-01-01

    Using the Caltech Submillimeter Observatory 10.4 m telescope, we performed sensitive mapping observations of 12 CO J = 7-6 emission at 807 GHz toward Orion IRc2. The image has an angular resolution of 10'', which is the highest angular resolution data toward the Orion Hot Core published for this transition. In addition, thanks to the on-the-fly mapping technique, the fidelity of the new image is rather high, particularly in comparison with previous images. We have succeeded in mapping the northwest-southeast high-velocity molecular outflow, whose terminal velocity is shifted by ∼70-85 km s -1 with respect to the systemic velocity of the cloud. This yields an extremely short dynamical time scale of ∼900 years. The estimated outflow mass loss rate shows an extraordinarily high value, on the order of 10 -3 M sun yr -1 . Assuming that the outflow is driven by Orion IRc2, our result agrees with the picture so far obtained for a 20 M sun (proto)star in the process of formation.

  14. Comparative characteristic and erosion behavior of NiCr coatings deposited by various high-velocity oxyfuel spray processes

    Science.gov (United States)

    Sidhu, Hazoor Singh; Sidhu, Buta Singh; Prakash, S.

    2006-12-01

    The purpose of this study is to analyze and compare the mechanical properties and microstructure details at the interface of high-velocity oxyfuel (HVOF)-sprayed NiCr-coated boiler tube steels, namely ASTM-SA-210 grade A1, ASTM-SA213-T-11, and ASTM-SA213-T-22. Coatings were developed by two different techniques, and in these techniques liquefied petroleum gas was used as the fuel gas. First, the coatings were characterized by metallographic, scanning electron microscopy/energy-dispersive x-ray analysis, x-ray diffraction, surface roughness, and microhardness, and then were subjected to erosion testing. An attempt has been made to describe the transformations taking place during thermal spraying. It is concluded that the HVOF wire spraying process offers a technically viable and cost-effective alternative to HVOF powder spraying process for applications in an energy generation power plant with a point view of life enhancement and to minimize the tube failures because it gives a coating having better resistance to erosion.

  15. PRESENT-DAY GALACTIC EVOLUTION: LOW-METALLICITY, WARM, IONIZED GAS INFLOW ASSOCIATED WITH HIGH-VELOCITY CLOUD COMPLEX A

    Energy Technology Data Exchange (ETDEWEB)

    Barger, K. A.; Haffner, L. M.; Wakker, B. P.; Hill, Alex S. [Department of Astronomy, University of Wisconsin-Madison, Madison, WI 53706 (United States); Madsen, G. J. [Sydney Institute for Astronomy, School of Physics, University of Sydney, NSW 2006 (Australia); Duncan, A. K., E-mail: kbarger@astro.wisc.edu, E-mail: haffner@astro.wisc.edu, E-mail: Alex.Hill@csiro.au, E-mail: wakker@astro.wisc.edu, E-mail: greg.madsen@sydney.edu.au [Rose-Hulman Institute of Technology, Terre Haute, IN 47803 (United States)

    2012-12-20

    The high-velocity cloud Complex A is a probe of the physical conditions in the Galactic halo. The kinematics, morphology, distance, and metallicity of Complex A indicate that it represents new material that is accreting onto the Galaxy. We present Wisconsin H{alpha} Mapper kinematically resolved observations of Complex A over the velocity range of -250 to -50 km s{sup -1} in the local standard of rest reference frame. These observations include the first full H{alpha} intensity map of Complex A across (l, b) = (124 Degree-Sign , 18 Degree-Sign ) to (171 Degree-Sign , 53 Degree-Sign ) and deep targeted observations in H{alpha}, [S II] {lambda}6716, [N II] {lambda}6584, and [O I] {lambda}6300 toward regions with high H I column densities, background quasars, and stars. The H{alpha} data imply that the masses of neutral and ionized material in the cloud are similar, both being greater than 10{sup 6} M{sub Sun }. We find that the Bland-Hawthorn and Maloney model for the intensity of the ionizing radiation near the Milky Way is consistent with the known distance of the high-latitude part of Complex A and an assumed cloud geometry that puts the lower-latitude parts of the cloud at a distance of 7-8 kpc. This compatibility implies a 5% ionizing photon escape fraction from the Galactic disk. We also provide the nitrogen and sulfur upper abundance solutions for a series of temperatures, metallicities, and cloud configurations for purely photoionized gas; these solutions are consistent with the sub-solar abundances found by previous studies, especially for temperatures above 10{sup 4} K or for gas with a high fraction of singly ionized nitrogen and sulfur.

  16. Friction and wear properties of high-velocity oxygen fuel sprayed WC-17Co coating under rotational fretting conditions

    Science.gov (United States)

    Luo, Jun; Cai, Zhenbing; Mo, Jiliang; Peng, Jinfang; Zhu, Minhao

    2016-05-01

    Rotational fretting which exist in many engineering applications has incurred enormous economic loss. Thus, accessible methods are urgently needed to alleviate or eliminate damage by rotational fretting. Surface engineering is an effective approach that is successfully adopted to enhance the ability of components to resist the fretting damage. In this paper, using a high-velocity oxygen fuel sprayed (HVOF) technique WC-17Co coating is deposited on an LZ50 steel surface to study its properties through Vickers hardness testing, scanning electric microscope (SEM), energy dispersive X-ray spectroscopy (EDX), and X-ray diffractrometry (XRD). Rotational fretting wear tests are conducted under normal load varied from 10 N to 50 N, and angular displacement amplitudes vary from 0.125° to 1°. Wear scars are examined using SEM, EDX, optical microscopy (OM), and surface topography. The experimental results reveal that the WC-17Co coating adjusted the boundary between the partial slip regime (PSR) and the slip regime (SR) to the direction of smaller amplitude displacement. As a result, the coefficients of friction are consistently lower than the substrate's coefficients of friction both in the PSR and SR. The damage to the coating in the PSR is very slight. In the SR, the coating exhibits higher debris removal efficiency and load-carrying capacity. The bulge is not found for the coating due to the coating's higher hardness to restrain plastic flow. This research could provide experimental bases for promoting industrial application of WC-17Co coating in prevention of rotational fretting wear.

  17. Spatially Extended and High-Velocity Dispersion Molecular Component in Spiral Galaxies: Single-Dish Versus Interferometric Observations

    Science.gov (United States)

    Caldú-Primo, Anahi; Schruba, Andreas; Walter, Fabian; Leroy, Adam; Bolatto, Alberto D.; Vogel, Stuart

    2015-02-01

    Recent studies of the molecular medium in nearby galaxies have provided mounting evidence that the molecular gas can exist in two phases: one that is clumpy and organized as molecular clouds and another one that is more diffuse. This last component has a higher velocity dispersion than the clumpy one. In order to investigate these two molecular components further, we compare the fluxes and line widths of CO in NGC 4736 and NGC 5055, two nearby spiral galaxies for which high-quality interferometric as well as single-dish data sets are available. Our analysis leads to two main results: (1) employing three different methods, we determine the flux recovery of the interferometer as compared to the single-dish to be within a range of 35%-74% for NGC 4736 and 81%-92% for NGC 5055, and (2) when focusing on high (S/N ≥ 5) lines of sight (LOSs), the single-dish line widths are larger by ˜(40 ± 20)% than the ones derived from interferometric data, which is in agreement with stacking all LOSs. These results point to a molecular gas component that is distributed over spatial scales larger than 30″(˜1 kpc), and is therefore filtered out by the interferometer. The available observations do not allow us to distinguish between a truly diffuse gas morphology and a uniform distribution of small clouds that are separated by less than the synthesized beam size (˜3″ or ˜100 pc), as they would both be invisible for the interferometer. This high velocity dispersion component has a dispersion similar to what is found in the atomic medium, as traced through observations of the H i line.

  18. Spatially extended and high-velocity dispersion molecular component in spiral galaxies: Single-dish versus interferometric observations

    International Nuclear Information System (INIS)

    Caldú-Primo, Anahi; Walter, Fabian; Schruba, Andreas; Leroy, Adam; Bolatto, Alberto D.; Vogel, Stuart

    2015-01-01

    Recent studies of the molecular medium in nearby galaxies have provided mounting evidence that the molecular gas can exist in two phases: one that is clumpy and organized as molecular clouds and another one that is more diffuse. This last component has a higher velocity dispersion than the clumpy one. In order to investigate these two molecular components further, we compare the fluxes and line widths of CO in NGC 4736 and NGC 5055, two nearby spiral galaxies for which high-quality interferometric as well as single-dish data sets are available. Our analysis leads to two main results: (1) employing three different methods, we determine the flux recovery of the interferometer as compared to the single-dish to be within a range of 35%–74% for NGC 4736 and 81%–92% for NGC 5055, and (2) when focusing on high (S/N ≥ 5) lines of sight (LOSs), the single-dish line widths are larger by ∼(40 ± 20)% than the ones derived from interferometric data, which is in agreement with stacking all LOSs. These results point to a molecular gas component that is distributed over spatial scales larger than 30″(∼1 kpc), and is therefore filtered out by the interferometer. The available observations do not allow us to distinguish between a truly diffuse gas morphology and a uniform distribution of small clouds that are separated by less than the synthesized beam size (∼3″ or ∼100 pc), as they would both be invisible for the interferometer. This high velocity dispersion component has a dispersion similar to what is found in the atomic medium, as traced through observations of the H i line.

  19. Dogs with hearth diseases causing turbulent high-velocity blood flow have changes in patelet function and von Willebrand factor multimer distribution

    DEFF Research Database (Denmark)

    Tarnow, Inge; Kristensen, Annemarie Thuri; Olsen, Lisbeth Høier

    2005-01-01

    The purpose of this prospective study was to investigate platelet function using in vitro tests based on both high and low shear rates and von Willebrand factor (vWf) multimeric composition in dogs with cardiac disease and turbulent high-velocity blood flow. Client-owned asymptomatic, untreated d...

  20. On the possibility of high-velocity tidal sterams as dynamic barriers to longshore sediment transport: evidence from the continental shelf off the Gulf of Kutch, India

    Digital Repository Service at National Institute of Oceanography (India)

    Nair, R.R.; Hashimi, N.H.; Rao, V.P

    and clay minerals. The distinct differences have resulted because the high-velocity (2 to 2.5 knots) tidal stream at the gulf mouth acts as a dynamic barrier inhibiting sediment transport across the month. Differences in the distribution of sand size...

  1. An investigation of coseismic OSL / TL time zeroing of quartz gouge based on low- to high-velocity friction experiments

    Science.gov (United States)

    Akasegawa, K.; Oohashi, K.; Hasebe, N.; Miura, K.

    2016-12-01

    To determine an age of coseismic event of an active fault, we generally examine crosscutting relationship between faults and overlying strata by trenching. However, we could not apply this method in case there are no overlying young strata in the vicinity of the fault zones. The alternative is a dating of fault zone materials whose age experienced resetting with seismic fault slip (for example, the ESR method;. Ikeya et al,1982; the OSL and TL methods). The idea behinds to the OSL (optically stimulated luminescence) and TL (thermoluminescence) dating methods for a determination of paleo-earthquake event is the accumulated natural radiation damage becomes to zero (time zeroing) by the frictional heating and grinding. However, physical and geological conditions required to induce time zeroing is not well understood because there is only few experimental investigations under the limited conditions (Hiraga et al,2004;. Kim et al, 2014) . In this study, we conduct low- to high-velocity friction experiments using quartz gouge under various experimental conditions (e.g., normal stress, displacement, moisture content) to establish an empirical relationship and physical and geological conditions of coseismic OSL time zeroing. In this experiment, we carry out the friction experiments using quartz in Tsushigawa granite taken from the east wall of the Nojima fault Ogura trench site, which was excavated in 2015. Samples were taken from the most distant position from the fault in the trench site. The samples were clashed using a mortar and sieved to a grain size of treatment. The residual is user for the friction experiments after having known radiation dose using an artificial gamma-ray source. In this presentation, we show results of the friction experiments and dating of the quartz gouge and discuss physical and geological conditions of OSL time zeroing. References Okumura, T., and Shitaoka, Y., 2011. Engineering Geology of Japan, No. 1, 5-17. Hiraga, S., Yoshimoto, A., and

  2. Changes in Lean Mass and Serum Myostatin with Habitual Protein Intake and High-Velocity Resistance Training.

    Science.gov (United States)

    Binns, A; Gray, M; Henson, A C; Fort, I L

    2017-01-01

    Examine the associations between dietary protein intake, lean mass (LM), and serum myostatin (Mstn) levels among community-dwelling older adults participating in a 20-week high-velocity resistance training (HVRT) program. This longitudinal study consisted of 33 community-dwelling, older adults (mean age 77.0 years, SD = 6.4); all of which obtained physician clearance prior to study participation. Twenty-five females and eight males were randomized to a control (CON) or HVRT group. Anthropometric measures were obtained via dual energy x-ray absorptiometry (DXA) and peripheral venous blood draw used for serum myostatin analysis. Exercise was performed twice per week for 20 consecutive weeks. Food intake estimation with a diet history questionnaire (DHQ) was used for protein intake comparison to the recommended dietary allowance (RDA). All measures were recorded both prior to and following study participation. Altogether, protein was consumed in amounts more generous (1.01 ± 0.47 g·kg-1·d-1) than that of the RDA (0.8 g·kg-1·d-1). As a result of significant LM differences among men and women (p myostatin was greater among females (6681.8 ± 3155.0 pg·mL-1) than males (5560.0 ± 2946.1 pg·mL-1); however, these values were not significantly different (p = 0.39). Combined, protein consumption and serum myostatin did not significantly influence LM among males (p = 0.09) or females (p = 0.71). Irrespective of training group, significant changes were not exhibited in dietary intake patterns, LM, or serum myostatin. Contrary to the proposed hypothesis, results suggest protein consumption and circulating serum myostatin levels did not significantly influence LM among older adults. Although HVRT positively impacts LM, neither exercise group displayed significant changes in LM. Therefore, further research is needed examining dietary intake, exercise modality, and myostatin downregulation as non-pharmacological approaches to combating sarcopenia.

  3. Design Optimization of Liquid Fueled High Velocity Oxy- Fuel Thermal Spraying Technique for Durable Coating for Fossil Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Choudhuri, Ahsan [Univ. of Texas, El Paso, TX (United States); Love, Norman [Univ. of Texas, El Paso, TX (United States)

    2016-11-04

    High-velocity oxy–fuel (HVOF) thermal spraying was developed in 1930 and has been commercially available for twenty-five years. HVOF thermal spraying has several benefits over the more conventional plasma spray technique including a faster deposition rate which leads to quicker turn-around, with more durable coatings and higher bond strength, hardness and wear resistance due to a homogeneous distribution of the sprayed particles. HVOF thermal spraying is frequently used in engineering to deposit cermets, metallic alloys, composites and polymers, to enhance product life and performance. HVOF thermal spraying system is a highly promising technique for applying durable coatings on structural materials for corrosive and high temperature environments in advanced ultra-supercritical coal- fired (AUSC) boilers, steam turbines and gas turbines. HVOF thermal spraying is the preferred method for producing coatings with low porosity and high adhesion. HVOF thermal spray process has been shown to be one of the most efficient techniques to deposit high performance coatings at moderate cost. Variables affecting the deposit formation and coating properties include hardware characteristics such as nozzle geometry and spraying distance and process parameters such as equivalence ratio, gas flow density, and powder feedstock. In the spray process, the powder particles experience very high speeds combined with fast heating to the powder material melting point or above. This high temperature causes evaporation of the powder, dissolution, and phase transformations. Due to the complex nature of the HVOF technique, the control and optimization of the process is difficult. In general, good coating quality with suitable properties and required performance for specific applications is the goal in producing thermal spray coatings. In order to reach this goal, a deeper understanding of the spray process as a whole is needed. Although many researchers studied commercial HVOF thermal spray

  4. Phase Stability and Thermal Conductivity of Composite Environmental Barrier Coatings on SiC/SiC Ceramic Matrix Composites

    Science.gov (United States)

    Benkel, Samantha; Zhu, Dongming

    2011-01-01

    Advanced environmental barrier coatings are being developed to protect SiC/SiC ceramic matrix composites in harsh combustion environments. The current coating development emphasis has been placed on the significantly improved cyclic durability and combustion environment stability in high-heat-flux and high velocity gas turbine engine environments. Environmental barrier coating systems based on hafnia (HfO2) and ytterbium silicate, HfO2-Si nano-composite bond coat systems have been processed and their stability and thermal conductivity behavior have been evaluated in simulated turbine environments. The incorporation of Silicon Carbide Nanotubes (SiCNT) into high stability (HfO2) and/or HfO2-silicon composite bond coats, along with ZrO2, HfO2 and rare earth silicate composite top coat systems, showed promise as excellent environmental barriers to protect the SiC/SiC ceramic matrix composites.

  5. Magnetic properties of iron oxide-based nanoparticles: Study using Mössbauer spectroscopy with a high velocity resolution and magnetization measurements

    Energy Technology Data Exchange (ETDEWEB)

    Ushakov, M.V. [Institute of Physics and Technology, Ural Federal University, Ekaterinburg 620002 (Russian Federation); Oshtrakh, M.I., E-mail: oshtrakh@gmail.com [Institute of Physics and Technology, Ural Federal University, Ekaterinburg 620002 (Russian Federation); Felner, I. [Racah Institute of Physics, The Hebrew University, Jerusalem (Israel); Semenova, A.S.; Kellerman, D.G. [Institute of Solid State Chemistry, Ural Branch, Russian Academy of Sciences, Ekaterinburg 620990 (Russian Federation); Šepelák, V. [Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Semionkin, V.A. [Institute of Physics and Technology, Ural Federal University, Ekaterinburg 620002 (Russian Federation); Morais, P.C. [School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601 (China); Universidade de Brasília, Instituto de Física, DF, Brasília 70910-900 (Brazil)

    2017-06-01

    We review the results of the study of magnetite, maghemite and nickel ferrite nanoparticles (NPs), applying for magnetic fluids, using Mössbauer spectroscopy with a high velocity resolution and magnetization measurements. The Mössbauer spectra of these NPs were fitted using a large number of magnetic sextets reflecting NPs complicity. The presence of polar molecules at the magnetite surface in magnetic fluid increases the NPs magnetic moment and the median hyperfine magnetic field. However, surface coating of maghemite NPs with dimeracptosuccinic acid decreases the median hyperfine magnetic field. An example of nickel ferrite NPs demonstrated a new physical model based on distribution of Ni{sup 2+} in the local microenvironment of Fe{sup 3+} which can explain a large number of magnetic sextets in the Mössbauer spectra measured with a high velocity resolution.

  6. Failure analysis of thermally cycled columnar thermal barrier coatings produced by high-velocity-air fuel and axial-suspension-plasma spraying: A design perspective

    Czech Academy of Sciences Publication Activity Database

    Ganvir, A.; Vaidhyanathan, V.; Markocsan, N.; Gupta, M.; Pala, Zdeněk; Lukáč, František

    2018-01-01

    Roč. 44, č. 3 (2018), s. 3161-3172 ISSN 0272-8842 Institutional support: RVO:61389021 Keywords : Columnar Thermal Barrier Coatings * Axial Suspension Plasma spraying * Thermal Cyclic Fatigue * High Velocity Air Fuel Spraying Subject RIV: JK - Corrosion ; Surface Treatment of Materials OBOR OECD: Coating and films Impact factor: 2.986, year: 2016 https://www.sciencedirect.com/science/article/pii/S0272884217325403

  7. DETECTION OF CA II ABSORPTION BY A HIGH-VELOCITY CLOUD IN THE DIRECTION OF THE QUASAR PKS 0837-120

    NARCIS (Netherlands)

    ROBERTSON, JG; SCHWARZ, UJ; VANWOERDEN, H; MURRAY, JD; MORTON, DC; HULSBOSCH, ANM

    1991-01-01

    We present optical absorption spectroscopy of the Ca II K and H lines along the sight line to the quasar PKS 0837-120, which lies in the direction of a high-velocity cloud (HVC) detected in H I 21-cm emission at V(LSR) = + 105 km s-1. Our data show Ca II absorption due to the HVC as well as a lower

  8. Characterization of microstructure and surface properties of hybrid coatings of WC-CoCr prepared by laser heat treatment and high velocity oxygen fuel spraying

    International Nuclear Information System (INIS)

    Zhang Shihong; Cho, Tong-Yul; Yoon, Jae-Hong; Fang, Wei; Song, Ki-O; Li Mingxi; Joo, Yun-Kon; Lee, Chan Gyu

    2008-01-01

    The microstructure and microhardness of high velocity oxygen fuel-sprayed WC-CoCr coatings were comparatively studied both before and after laser heat treatment of the coatings. Optical microscopy, scanning electron microscopy, X-ray diffraction and microhardness testing were applied to investigate the microstructure, phase composition, porosity and microhardness. The results indicate that WC is still present, and W 2 C has appeared, while neither cobalt nor σ-CrCo is detectable. Co 4 W 2 C has appeared in the high velocity oxygen fuel-sprayed coating after laser heat treatment as compared to the coating before laser treatment. The relative content of the W 2 C has not increased with laser treatment, but the laser treatment has essentially eliminated the porosity almost entirely, providing a more homogeneous and densified microstructure. The laser heat treatment has effected the formation of a denser compact coating on the substrate. After laser heat treatment, the thickness of the coating has decreased from 300 μm to 225 μm. This corresponds to an average porosity in the high velocity oxygen fuel-sprayed coating that is approximately five times greater than that in the subsequently laser heat-treated coating. The laser treatment has also resulted in an increased hardness of the coating near the surface, where the average value increased from Hv 0.2 = 1262.4 in the coating before laser heat treatment to Hv 0.2 = 1818.7 after laser heat treatment

  9. SI Notes.

    Science.gov (United States)

    Nelson, Robert A.

    1983-01-01

    Discusses legislation related to SI (International Systems of Units) in the United States. Indicates that although SI metric units have been officially recognized by law in the United States, U.S. Customary Units have never received a statutory basis. (JN)

  10. Richard III

    DEFF Research Database (Denmark)

    Lauridsen, Palle Schantz

    2017-01-01

    Kort analyse af Shakespeares Richard III med fokus på, hvordan denne skurk fremstilles, så tilskuere (og læsere) langt henad vejen kan føle sympati med ham. Med paralleller til Netflix-serien "House of Cards"......Kort analyse af Shakespeares Richard III med fokus på, hvordan denne skurk fremstilles, så tilskuere (og læsere) langt henad vejen kan føle sympati med ham. Med paralleller til Netflix-serien "House of Cards"...

  11. PARDISEKO III

    International Nuclear Information System (INIS)

    Jordan, H.; Sack, C.

    1975-05-01

    This report gives a detailed description of the latest version of the PARDISEKO code, PARDISEKO III, with particular emphasis on the numerical and programming methods employed. The physical model and its relation to nuclear safety as well as a description and the results of confirming experiments are treated in detail in the Karlsruhe Nuclear Research Centre report KFK-1989. (orig.) [de

  12. MATTER MIXING IN ASPHERICAL CORE-COLLAPSE SUPERNOVAE: A SEARCH FOR POSSIBLE CONDITIONS FOR CONVEYING {sup 56}Ni INTO HIGH VELOCITY REGIONS

    Energy Technology Data Exchange (ETDEWEB)

    Ono, Masaomi; Nagataki, Shigehiro; Ito, Hirotaka; Lee, Shiu-Hang; Mao, Jirong; Tolstov, Alexey [Astrophysical Big Bang Laboratory, RIKEN, Saitama 351-0198 (Japan); Hashimoto, Masa-aki, E-mail: masaomi.ono@riken.jp [Department of Physics, Kyushu University, Fukuoka 812-8581 (Japan)

    2013-08-20

    We perform two-dimensional axisymmetric hydrodynamic simulations of matter mixing in aspherical core-collapse supernova explosions of a 16.3 M{sub Sun} star with a compact hydrogen envelope. Observations of SN 1987A have provided evidence that {sup 56}Ni synthesized by explosive nucleosynthesis is mixed into fast moving matter ({approx}>3500 km s{sup -1}) in the exploding star. In order to clarify the key conditions for reproducing such high velocity of {sup 56}Ni, we revisit matter mixing in aspherical core-collapse supernova explosions. Explosions are initiated artificially by injecting thermal and kinetic energies around the interface between the iron core and the silicon-rich layer. Perturbations of 5% or 30% amplitude in the radial velocities are introduced at several points in time. We find that no high velocity {sup 56}Ni can be obtained if we consider bipolar explosions with perturbations (5% amplitude) of pre-supernova origins. If large perturbations (30% amplitude) are introduced or exist due to some unknown mechanism in a later phase just before the shock wave reaches the hydrogen envelope, {sup 56}Ni with a velocity of 3000 km s{sup -1} can be obtained. Aspherical explosions that are asymmetric across the equatorial plane with clumpy structures in the initial shock waves are investigated. We find that the clump sizes affect the penetration of {sup 56}Ni. Finally, we report that an aspherical explosion model that is asymmetric across the equatorial plane with multiple perturbations of pre-supernova origins can cause the penetration of {sup 56}Ni clumps into fast moving matter of 3000 km s{sup -1}. We show that both aspherical explosions with clumpy structures and perturbations of pre-supernova origins may be necessary to reproduce the observed high velocity of {sup 56}Ni. To confirm this, more robust three-dimensional simulations are required.

  13. MATTER MIXING IN ASPHERICAL CORE-COLLAPSE SUPERNOVAE: A SEARCH FOR POSSIBLE CONDITIONS FOR CONVEYING 56Ni INTO HIGH VELOCITY REGIONS

    International Nuclear Information System (INIS)

    Ono, Masaomi; Nagataki, Shigehiro; Ito, Hirotaka; Lee, Shiu-Hang; Mao, Jirong; Tolstov, Alexey; Hashimoto, Masa-aki

    2013-01-01

    We perform two-dimensional axisymmetric hydrodynamic simulations of matter mixing in aspherical core-collapse supernova explosions of a 16.3 M ☉ star with a compact hydrogen envelope. Observations of SN 1987A have provided evidence that 56 Ni synthesized by explosive nucleosynthesis is mixed into fast moving matter (∼>3500 km s –1 ) in the exploding star. In order to clarify the key conditions for reproducing such high velocity of 56 Ni, we revisit matter mixing in aspherical core-collapse supernova explosions. Explosions are initiated artificially by injecting thermal and kinetic energies around the interface between the iron core and the silicon-rich layer. Perturbations of 5% or 30% amplitude in the radial velocities are introduced at several points in time. We find that no high velocity 56 Ni can be obtained if we consider bipolar explosions with perturbations (5% amplitude) of pre-supernova origins. If large perturbations (30% amplitude) are introduced or exist due to some unknown mechanism in a later phase just before the shock wave reaches the hydrogen envelope, 56 Ni with a velocity of 3000 km s –1 can be obtained. Aspherical explosions that are asymmetric across the equatorial plane with clumpy structures in the initial shock waves are investigated. We find that the clump sizes affect the penetration of 56 Ni. Finally, we report that an aspherical explosion model that is asymmetric across the equatorial plane with multiple perturbations of pre-supernova origins can cause the penetration of 56 Ni clumps into fast moving matter of 3000 km s –1 . We show that both aspherical explosions with clumpy structures and perturbations of pre-supernova origins may be necessary to reproduce the observed high velocity of 56 Ni. To confirm this, more robust three-dimensional simulations are required

  14. High-velocity-oxidation performance of metal-chromium-aluminum (MCrAl), cermet, and modified aluminide coatings on IN-100 and type VIA alloys at 1093 C

    Science.gov (United States)

    Deadmore, D. L.

    1974-01-01

    Cermet, MCrAl, and modified aluminide types of coatings applied to IN-100 and NASA-TRW-VIA alloy specimens were cyclically oxidation tested in a high velocity (Mach 1) gas flame at 1093 C. Several coating compositions of each type were evaluated for oxidation resistance. The modified aluminide coating, Pt-Al, applied to alloy 6A proved to be the best, providing oxidation protection to approximately 750 hours based on weight change measurements. The second best, a CoCrAlY coating applied to 6A, provided protection to 450 hours. The third best was a cermet + aluminide coating on 6A with a protection time to 385 hours.

  15. Fermilab III

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    The total ongoing plans for Fermilab are wrapped up in the Fermilab III scheme, centrepiece of which is the proposal for a new Main Injector. The Laboratory has been awarded a $200,000 Illinois grant which will be used to initiate environmental assessment and engineering design of the Main Injector, while a state review panel recommended that the project should also benefit from $2 million of funding

  16. Fermilab III

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1990-09-15

    The total ongoing plans for Fermilab are wrapped up in the Fermilab III scheme, centrepiece of which is the proposal for a new Main Injector. The Laboratory has been awarded a $200,000 Illinois grant which will be used to initiate environmental assessment and engineering design of the Main Injector, while a state review panel recommended that the project should also benefit from $2 million of funding.

  17. Preparation of MMC structures consisting of carbonfibre/aluminium prepregs by using the high velocity flame spraying; Herstellen von Halbzeugen aus kohlenstoffaserverstaerkten Aluminiumprepregs mit dem Hochgeschwindigkeitsflammspritzen

    Energy Technology Data Exchange (ETDEWEB)

    Wielage, B.; Rahm, J. [Lehrstuhl fuer Verbundwerkstoffe, TU Chemnitz-Zwickau, Chemnitz (Germany)

    1994-12-01

    The application of the thermal spraying process is a new way to produce carbon fibre reinforced Al-Matrix composites. Spreaded fibre rovings are enveloped in the matrix material with high velocity flame spraying. The advantage of the thermal spraying process is based in the low times for contacting between carbon fibres and liquid matrix material. Chemical reactions on the interface fibre/matrix, which are caused the decreasing of the fibre tensile strange, can be excluded. The thermal sprayed prepregs are compressed to MMC by hot pressing process. This longfibre reinforced composites are used to increase for instance casted components of motors. The aim of this research is the estimation of possibility to applicate the high velocity flame process for prepreg manufacturing. (orig.) [Deutsch] Die Anwendung des thermischen Spritzens zur Herstellung C/langfaserverstaerkter Al-Matrix Verbundwerkstoffe mittels Prepregtechnik beschreitet einen neuartigen Verfahrensweg. Zu Fasergelegen aufgespreizte Rovings werden durch Flamm- oder Hochgeschwindigkeitsflammspritzen mit dem Matrixmetall eingehuellt. Der Vorteil des thermischen Spritzens liegt in den geringen Kontaktzeiten der C-Fasern mit dem schmelzfluessigen Matrixmetall. Chemische Reaktionen zwischen Fasern und der Matrix, die zur Karbidbildung und Reduzierung der Verbundfestigkeit fuehren, koennen auch beim Verwenden von C-Fasern ohne Barriereschicht weitgehend ausgeschlossen werden. Die so hergestellten Prepregs koennen z.B. durch Heisspressen zu MMC kompaktiert werden, und als Halbzeuge (Inserts) Gussbauteile in hochbelasteten Bereichen partiell verstaerken. Die im Rahmen der Veroeffentlichung dargestellten Untersuchungen haben die kritische Beurteilung der Ergebnisse des HVOF-Spritzverfahrens zur Herstellung von C/Faser/Aluminiumprepregs zum Ziel. (orig.)

  18. Advanced Environmental Barrier Coating Development for SiC/SiC Ceramic Matrix Composites: NASA's Perspectives

    Science.gov (United States)

    Zhu, Dongming

    2016-01-01

    This presentation reviews NASA environmental barrier coating (EBC) system development programs and the coating materials evolutions for protecting the SiC/SiC Ceramic Matrix Composites in order to meet the next generation engine performance requirements. The presentation focuses on several generations of NASA EBC systems, EBC-CMC component system technologies for SiC/SiC ceramic matrix composite combustors and turbine airfoils, highlighting the temperature capability and durability improvements in simulated engine high heat flux, high pressure, high velocity, and with mechanical creep and fatigue loading conditions. The current EBC development emphasis is placed on advanced NASA 2700F candidate environmental barrier coating systems for SiC/SiC CMCs, their performance benefits and design limitations in long-term operation and combustion environments. Major technical barriers in developing environmental barrier coating systems, the coating integrations with next generation CMCs having the improved environmental stability, erosion-impact resistance, and long-term fatigue-environment system durability performance are described. The research and development opportunities for advanced turbine airfoil environmental barrier coating systems by utilizing improved compositions, state-of-the-art processing methods, and simulated environment testing and durability modeling are discussed.

  19. Nitric acid oxidation of Si (NAOS) method for low temperature fabrication of SiO{sub 2}/Si and SiO{sub 2}/SiC structures

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, H., E-mail: koba771@ybb.ne.jp [Institute of Scientific and Industrial Research, Osaka University, and CREST, Japan Science and Technology Agency, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Imamura, K.; Kim, W.-B.; Im, S.-S.; Asuha [Institute of Scientific and Industrial Research, Osaka University, and CREST, Japan Science and Technology Agency, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan)

    2010-07-15

    We have developed low temperature formation methods of SiO{sub 2}/Si and SiO{sub 2}/SiC structures by use of nitric acid, i.e., nitric acid oxidation of Si (or SiC) (NAOS) methods. By use of the azeotropic NAOS method (i.e., immersion in 68 wt% HNO{sub 3} aqueous solutions at 120 deg. C), an ultrathin (i.e., 1.3-1.4 nm) SiO{sub 2} layer with a low leakage current density can be formed on Si. The leakage current density can be further decreased by post-metallization anneal (PMA) at 200 deg. C in hydrogen atmosphere, and consequently the leakage current density at the gate bias voltage of 1 V becomes 1/4-1/20 of that of an ultrathin (i.e., 1.5 nm) thermal oxide layer usually formed at temperatures between 800 and 900 deg. C. The low leakage current density is attributable to (i) low interface state density, (ii) low SiO{sub 2} gap-state density, and (iii) high band discontinuity energy at the SiO{sub 2}/Si interface arising from the high atomic density of the NAOS SiO{sub 2} layer. For the formation of a relatively thick (i.e., {>=}10 nm) SiO{sub 2} layer, we have developed the two-step NAOS method in which the initial and subsequent oxidation is performed by immersion in {approx}40 wt% HNO{sub 3} and azeotropic HNO{sub 3} aqueous solutions, respectively. In this case, the SiO{sub 2} formation rate does not depend on the Si surface orientation. Using the two-step NAOS method, a uniform thickness SiO{sub 2} layer can be formed even on the rough surface of poly-crystalline Si thin films. The atomic density of the two-step NAOS SiO{sub 2} layer is slightly higher than that for thermal oxide. When PMA at 250 deg. C in hydrogen is performed on the two-step NAOS SiO{sub 2} layer, the current-voltage and capacitance-voltage characteristics become as good as those for thermal oxide formed at 900 deg. C. A relatively thick (i.e., {>=}10 nm) SiO{sub 2} layer can also be formed on SiC at 120 deg. C by use of the two-step NAOS method. With no treatment before the NAOS method

  20. Characterization and electrochemical properties of Ni(Si)/Ni5Si2 multiphase coatings prepared by HVOF spraying

    Science.gov (United States)

    Verdian, M. M.; Raeissi, K.; Salehi, M.

    2012-11-01

    Ni(Si)/Ni5Si2 powders were produced by mechanical alloying (MA) of Ni-25 at.% Si powder mixture. Then, the as-milled powders were sprayed onto copper substrate using high velocity oxy-fuel (HVOF) process. The phase composition and microstructure of the coatings were examined by X-ray diffractometry and scanning electron microscopy. Polarization tests and electrochemical impedance spectroscopy (EIS) measurements were also employed to study corrosion performance of the coatings in 3.5% NaCl solution. The results showed that although single phase Ni3Si was formed during annealing of Ni(Si)/Ni5Si2 powders, but, only Ni(Si) and Ni5Si2 are present in HVOF coatings and no new phase has been formed during spraying. The coatings had microhardness up to 746 HV0.05. Further investigations showed the corrosion performance of multiphase coatings in 3.5% NaCl solution was better than that of copper substrate. The phase transitions during MA, HVOF and annealing processes were discussed in association with Ni-Si phase diagram and nature of each process.

  1. Measurement of the magnetic moment of the 21+ state of 72Zn via extension of the high-velocity transient-field method

    International Nuclear Information System (INIS)

    Fiori, E.

    2010-12-01

    Magnetic moments can provide deep insight for nuclear structure and of the wave function composition, particularly when the single particle character of the nucleus is dominating. For this reason, the magnetic moment of the first excited state of the radioactive neutron-rich 72 Zn was measured at the GANIL facility (Caen, France). The result of the experiment confirmed the trend predicted by the shell model calculations, even if the error on the measurement did not allow for a rigorous constraint of the theories. The measurement was performed using the transient field (TF) technique and the nuclei of interest were produced in a fragmentation reaction. Before this experiment, the high-velocity TF (HVTF) technique had been used only with projectile up to Z = 24. It was the first time that a magnetic moment of an heavy ion with Z > 24 was measured in the high velocity regime. To further develop the technique and to gather information about the hyperfine interaction between the polarized electrons and the nucleons, two experiments were performed at LNS (Catania, Italy). In this thesis the development of the high-velocity TF technique for the experiments on g(2 + ; 72 Zn) and field strength B TF (Kr, Ge) is presented. The analysis of the results and their interpretation is then discussed. It was demonstrated that the HVTF technique, combined with Coulomb excitation, can be used for the measurement of g-factors of very short-lived states, with lifetimes of the order of tens of ps and lower, of heavy ions (A ∼ 80) traveling with intermediate relativistic speeds, β ∼ 0.25. The standard TF technique at low velocities (a few percent of the speed of light) has been used for a long time to provide the strong magnetic field necessary for the measurement of g-factors of very short-lived states. The breakthrough of the present development is the different velocity regime of the higher mass projectile under which the experiment is carried out

  2. Dynamic behaviors of laser ablated Si particles

    International Nuclear Information System (INIS)

    Ohyanagi, T.; Murakami, K.; Miyashita, A.; Yoda, O.

    1995-01-01

    The dynamics of laser-ablated Si particles produced by laser ablation have been investigated by time-and-space resolved X-ray absorption spectroscopy in a time scale ranging from 0 ns to 120 ns with a time resolution of 10 ns. Neutral and charged particles are observed through all X-ray absorption spectra. Assignments of transitions from 2s and 2p initial states to higher Rydberg states of Si atom and ions are achieved, and we experimentally determine the L II,III absorption edges of neutral Si atom (Si 0 ) and Si + , Si 2+ , Si 3+ and Si 4+ ions. The main ablated particles are found to be Si atom and Si ions in the initial stage of 0 ns to 120 ns. The relative amounts depend strongly on times and laser energy densities. We find that the spatial distributions of particles produced by laser ablation are changed with supersonic helium gas bombardment, but no cluster formation takes place. This suggests that a higher-density region of helium gas is formed at the top of the plume of ablated particles, and free expansion of particles is restrained by this helium cloud, and that it takes more than 120 ns to form Si clusters. (author)

  3. IIIST1\\NTI-i\\III.

    African Journals Online (AJOL)

    guests in September 1914. (1) Major-General Sir Lothian Nicholson. KCB, CMG, and Major H 1. MacMullen, MC, History of the East Lancashire Regiment in the Great. War 1914-1918, Littlebury. Bros, Ltd. Liverpool,. 1936. p 114. Ti\\.~TI(~S-1\\ IIIST ••III. ~SI Til VI~V. I..•f :01 i\\. f~•• 10III.SOIl ~IIII~ 1~lt. The study of military tactics ...

  4. Improvement of the Oxidation Resistance of CoNiCrAlY Bond Coats Sprayed by High Velocity Oxygen-Fuel onto Nickel Superalloy Substrate

    Directory of Open Access Journals (Sweden)

    Alessio Fossati

    2010-11-01

    Full Text Available CoNiCrAlY powders with similar granulometry and chemical composition, but different starting reactivity toward oxygen, were sprayed onto superalloy substrates by High Velocity Oxygen-Fuel producing coatings of similar thicknesses. After spraying, samples were maintained at 1,273 K in air for different test periods of up to 5,000 hours. Morphological, microstructural, compositional and electrochemical analyses were performed on the coated samples in order to assess the high temperature oxidation resistance provided by the two different powders. The powder with higher starting reactivity towards oxygen improves the oxidation resistance of the coated samples by producing thinner and more adherent thermally grown oxide layers.

  5. Helicopter In-flight Resuscitation with Freeze-dried Plasma of a Patient with a High-velocity Gunshot Wound to the Neck in Afghanistan - A Case Report.

    Science.gov (United States)

    Gellerfors, Mikael; Linde, Joacim; Gryth, Dan

    2015-10-01

    Massive hemorrhage with coagulopathy is one of the leading causes of preventable death in the battlefield. The development of freeze-dried plasma (FDP) allows for early treatment with coagulation-optimizing resuscitation fluid in the prehospital setting. This report describes the first prehospital use of FDP in a patient with carotid artery injury due to a high-velocity gunshot wound (HVGSW) to the neck. It also describes in-flight constitution and administration of FDP in a Medevac Helicopter. Early administration of FDP may contribute to hemodynamic stabilization and reduction in trauma-induced coagulopathy and acidosis. However, large-scale studies are needed to define the prehospital use of FDP and other blood products.

  6. Slurry Erosion Behavior of F6NM Stainless Steel and High-Velocity Oxygen Fuel-Sprayed WC-10Co-4Cr Coating

    Science.gov (United States)

    Cui, S. Y.; Miao, Q.; Liang, W. P.; Huang, B. Z.; Ding, Z.; Chen, B. W.

    2017-02-01

    WC-10Co-4Cr coating was applied to the surface of F6NM stainless steel by high-velocity oxygen-fuel spraying. The slurry erosion behavior of the matrix and coating was examined at different rotational speeds using a self-made machine. This experiment effectively simulates real slurry erosion in an environment with high silt load. At low velocity (<6 m/s), the main failure mechanism was cavitation. Small bubbles acted as an air cushion, obstructing direct contact between sand and the matrix surface. However, at velocity above 9 m/s, abrasive wear was the dominant failure mechanism. The results indicate that WC-10Co-4Cr coating significantly improved the slurry resistance at higher velocity, because it created a thin and dense WC coating on the surface.

  7. Mikrostruktur dan Karakterisasi Sifat Mekanik Lapisan Cr3C2-NiAl-Al2O3 Hasil Deposisi Dengan Menggunakan High Velocity Oxygen Fuel Thermal Spray Coating

    Directory of Open Access Journals (Sweden)

    Edy Riyanto

    2012-03-01

    Full Text Available Surface coating processing of industrial component with thermal spray coatings have been applied in many industrial fields. Ceramic matrix composite coating which consists of Cr3C2-Al2O3-NiAl had been carried out to obtain layers of material that has superior mechanical properties to enhance component performance. Deposition of CMC with High Velocity Oxygen Fuel (HVOF thermal spray coating has been employed. This study aims to determine the effect of powder particle size on the microstructure, surface roughness and hardness of the layer, by varying the NiAl powder particle size. Test results show NiAl powder particle size has an influence on the mechanical properties of CMC coating. Hardness of coating increases and surface roughness values of coating decrease with smaller NiAl particle size.  

  8. Study of the rhizobacterium Azospirillum brasilense Sp245 using Mössbauer spectroscopy with a high velocity resolution: Implication for the analysis of ferritin-like iron cores

    Science.gov (United States)

    Alenkina, I. V.; Oshtrakh, M. I.; Tugarova, A. V.; Biró, B.; Semionkin, V. A.; Kamnev, A. A.

    2014-09-01

    The results of a comparative study of two samples of the rhizobacterium Azospirillum brasilense (strain Sp245) prepared in different conditions and of human liver ferritin using Mössbauer spectroscopy with a high velocity resolution demonstrated the presence of ferritin-like iron (i.e. iron similar to that found in ferritin-like proteins) in the bacterium. Mössbauer spectra of these samples were fitted in two ways: as a rough approximation using a one quadrupole doublet fit (the homogeneous iron core model) and using a superposition of quadrupole doublets (the heterogeneous iron core model). Both results demonstrated differences in the Mössbauer parameters for mammalian ferritin and for bacterial ferritin-like iron. Moreover, some differences in the Mössbauer parameters were observed between the two samples of A. brasilense Sp245 related to the differences in their preparation conditions.

  9. Revision of the Li13Si4 structure.

    Science.gov (United States)

    Zeilinger, Michael; Fässler, Thomas F

    2013-11-06

    Besides Li17Si4, Li16.42Si4, and Li15Si4, another lithium-rich representative in the Li-Si system is the phase Li13Si4 (trideca-lithium tetra-silicide), the structure of which has been determined previously [Frank et al. (1975 ▶). Z. Naturforsch. Teil B, 30, 10-13]. A careful analysis of X-ray diffraction patterns of Li13Si4 revealed discrepancies between experimentally observed and calculated Bragg positions. Therefore, we redetermined the structure of Li13Si4 on the basis of single-crystal X-ray diffraction data. Compared to the previous structure report, decisive differences are (i) the introduction of a split position for one Li site [occupancy ratio 0.838 (7):0.162 (7)], (ii) the anisotropic refinement of atomic displacement parameters for all atoms, and (iii) a high accuracy of atom positions and unit-cell parameters. The asymmetric unit of Li13Si4 contains two Si and seven Li atoms. Except for one Li atom situated on a site with symmetry 2/m, all other atoms are on mirror planes. The structure consists of isolated Si atoms as well as Si-Si dumbbells surrounded by Li atoms. Each Si atom is either 12- or 13-coordinated. The isolated Si atoms are situated in the ab plane at z = 0 and are strictly separated from the Si-Si dumbbells at z = 0.5.

  10. Hybrid III-V/SOI Resonant Cavity Photodetector

    DEFF Research Database (Denmark)

    Learkthanakhachon, Supannee; Taghizadeh, Alireza; Park, Gyeong Cheol

    2016-01-01

    A hybrid III-V/SOI resonant cavity photo detector has been demonstrated, which comprises an InP grating reflectorand a Si grating reflector. It can selectively detects an incident light with 1.54-µm wavelength and TM polarization.......A hybrid III-V/SOI resonant cavity photo detector has been demonstrated, which comprises an InP grating reflectorand a Si grating reflector. It can selectively detects an incident light with 1.54-µm wavelength and TM polarization....

  11. Preparation of Mn(III)-Porphyrin-Immobilized Fe{sub 3}O{sub 4}@SiO{sub 2} Mesoparticles and Their Use in Heterogeneous Catalysis of Styrene Epoxidation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jun Yeol; Lee, Kyung Yeon; Kim, Sun Dol; Lee, Suk Joong [Dept. of Chemistry, Research Institute for Natural Sciences, Korea University, Seoul (Korea, Republic of)

    2015-07-15

    They show high stability over their homogeneous counterparts. However, traditional heterogeneous catalysts tend to be less selective for fine chemical synthesis because they usually require high operation temperature and have the nonuniformity of active sites. To overcome these problems, an emerging strategy for preparing heterogeneous catalytic systems with better selectivity and milder reaction condition comprises the immobilization of homogeneous catalysts on organic polymers and inorganic supports. We have designed and synthesized novel Mn(III)-porphyrin-immobilized core-shell magnetic mesoparticles that heterogeneously catalyze styrene to styrene oxide with remarkably high activity compared with its homogeneous counterpart. These magnetic heterogeneous catalysts can be readily separated from the reaction mixture by magnetic manipulation and used for subsequent reactions multiple times without dramatic loss of activity. This immobilization of catalysts on magnetic supports promises a great potential toward the development of new class of oxidation catalysts, and the modification of catalysts to extend their lifetime is in progress.

  12. Effect of III/V ratio on the polarity of AlN and GaN layers grown in the metal rich growth regime on Si(111) by plasma assisted molecular beam epitaxy

    International Nuclear Information System (INIS)

    Agrawal, Manvi; Dharmarasu, Nethaji; Radhakrishnan, K.; Pramana, Stevin Snellius

    2015-01-01

    Wet chemical etching, reflection high energy electron diffraction, scanning electron microscope and convergent beam electron diffraction have been employed to study the polarities of AlN and the subsequently grown GaN as a function of metal flux in the metal rich growth regime. Both AlN and GaN exhibited metal polarity in the intermediate growth conditions. However, in the droplet growth regime, the polarity of AlN and GaN were N polar and Ga polar, respectively. It was observed that Ga polar GaN could be obtained on both Al and N polar AlN. AlGaN/GaN high electron mobility transistor (HEMT) heterostructure exhibiting hall mobility of 900 cm 2 V -1 s -1 and sheet carrier density of 1.2 × 10 13 cm -2 was demonstrated using N polar AlN which confirmed Ga polarity of GaN. Al metal flux was likely to play an important role in controlling the polarity of AlN and determining the polarity of the subsequent GaN grown on Si(111) by plasma assisted molecular beam epitaxy (PA-MBE). (author)

  13. Effect of the post heat treatment on the sliding wear resistance of a nickel base coating deposited by high velocity oxyl-fuel (HVOF)

    International Nuclear Information System (INIS)

    Cadenas, P.; Rodriguez, M.; Staia, M. H.

    2007-01-01

    In the present research, a nickel base coating was deposited on an AISI 1020 substrate by using high velocity oxy-fuel technique (HVOF). The coating was subsequently post heat-treated by means of an oxyacetylene flame. For the conditions evaluated in the present study, it was found that the CTT coating coating has 1,15 better wear resistance for the smaller level of the applied load and nearly 50 times for the highest level of the applied load when compared to the STT coatings. These results have been attributed to a better distribution of the hard phases, better cohesion between particles and an increase in hardness, as consequence of the post heat treatment process. A severe wear regime was found for all the samples since the wear rates presented values which were higher tan 1.10''-5 mm''3/m. For the CT T coatings, the wear mechanisms was mainly due to the adhesion and oxidation phenomena, meanwhile for the steel counterpart mechanisms such oxidation, grooving and three body abrasion were observed. (Author) 22 refs

  14. Fragmentation of neutral carbon clusters formed by high velocity atomic collision; Fragmentation d'agregats de carbone neutres formes par collision atomique a haute vitesse

    Energy Technology Data Exchange (ETDEWEB)

    Martinet, G

    2004-05-01

    The aim of this work is to understand the fragmentation of small neutral carbon clusters formed by high velocity atomic collision on atomic gas. In this experiment, the main way of deexcitation of neutral clusters formed by electron capture with ionic species is the fragmentation. To measure the channels of fragmentation, a new detection tool based on shape analysis of current pulse delivered by semiconductor detectors has been developed. For the first time, all branching ratios of neutral carbon clusters are measured in an unambiguous way for clusters size up to 10 atoms. The measurements have been compared to a statistical model in microcanonical ensemble (Microcanonical Metropolis Monte Carlo). In this model, various structural properties of carbon clusters are required. These data have been calculated with Density Functional Theory (DFT-B3LYP) to find the geometries of the clusters and then with Coupled Clusters (CCSD(T)) formalism to obtain dissociation energies and other quantities needed to compute fragmentation calculations. The experimental branching ratios have been compared to the fragmentation model which has allowed to find an energy distribution deposited in the collision. Finally, specific cluster effect has been found namely a large population of excited states. This behaviour is completely different of the atomic carbon case for which the electron capture in the ground states predominates. (author)

  15. Composite coating containing WC/12Co cermet and Fe-based metallic glass deposited by high-velocity oxygen fuel spraying

    International Nuclear Information System (INIS)

    Terajima, Takeshi; Takeuchi, Fumiya; Nakata, Kazuhiro; Adachi, Shinichiro; Nakashima, Koji; Igarashi, Takanori

    2010-01-01

    A composite coating containing WC/12Co cermet and Fe 43 Cr 16 Mo 16 C 15 B 10 metallic glass was successfully deposited onto type 304 stainless steel by high-velocity oxygen fuel (HVOF) spraying, and the microstructure and tribological properties were investigated. The microstructure of the coating was characterized by scanning electron microscopy/electron probe micro-analysis (SEM/EPMA) and X-ray diffractometry (XRD). The hardness, adhesion strength and tribological properties of the coating were tested with a Vickers hardness tester, tensile tester and reciprocating wear tester, respectively. The composite coating, in which flattened WC/12Co was embedded in amorphous Fe 43 Cr 16 Mo 16 C 15 B 10 layers, exhibited high hardness, good wear resistance and a low friction coefficient compared to the monolithic coating. The addition of 8% WC/12Co to the Fe 43 Cr 16 Mo 16 C 15 B 10 matrix increased the cross-sectional hardness from 660 to 870 HV and reduced the friction coefficient from 0.65 to 0.5. WC/12Co reinforcement plays an important role in improving the tribological properties of the Fe 43 Cr 16 Mo 16 C 15 B 10 coating.

  16. Comparison of in vitro behavior of as-sprayed, alkaline-treated and collagen-treated bioceramic coatings obtained by high velocity oxy-fuel spray

    Energy Technology Data Exchange (ETDEWEB)

    Melero, H., E-mail: hortensia.melero.correas@gmail.com [Thermal Spray Centre, Universitat de Barcelona, Martí i Franqués, 1, 08028 Barcelona (Spain); Garcia-Giralt, N. [URFOA, IMIM (Institut Hospital del Mar d’Investigacions Mèdiques), RETICEF, Doctor Aiguader, 80, 08003 Barcelona (Spain); Fernández, J. [Thermal Spray Centre, Universitat de Barcelona, Martí i Franqués, 1, 08028 Barcelona (Spain); Díez-Pérez, A. [URFOA, IMIM (Institut Hospital del Mar d’Investigacions Mèdiques), RETICEF, Doctor Aiguader, 80, 08003 Barcelona (Spain); Servei de Medicina Interna, Hospital del Mar, Barcelona (Spain); Guilemany, J.M. [Thermal Spray Centre, Universitat de Barcelona, Martí i Franqués, 1, 08028 Barcelona (Spain)

    2014-07-01

    Hydroxyapatite (HAp)–TiO{sub 2} samples obtained using high velocity oxy-fuel spray (HVOF), that had previously shown excellent mechanical behaviour, were innovatively surface treated in order to improve their biological performance. The chosen treatments were an alkaline treatment to increase –OH radicals density on the surface (especially on TiO{sub 2} zones), and a collagen treatment to bond collagen fibrils to the –OH radicals present in hydroxyapatite. These coatings were analysed using scanning electron microscopy, energy-dispersive X-ray spectroscopy and infrared spectroscopy, and tested for human osteoblast biocompatibility and functionality. In the case of the alkaline treatment, although the –OH radicals density did not increase compared to the as-sprayed coatings, a nanostructured layer of sodium hydroxycarbonate precipitated on the surface, thus improving biological behaviour due to the nanoroughness effect. For the collagen-treated samples, collagen fibrils appeared well-adhered to the surface, and in vitro cell culture tests showed that these surfaces were much more conducive to cell adhesion and differentiation than the as-sprayed and alkaline-treated samples. These results pointed to collagen treatment as a very promising method to improve bioactivity of HAp–TiO{sub 2} thermal-sprayed coatings.

  17. New evaluation method of crack growth in SiC/SiC composites using interface elements

    International Nuclear Information System (INIS)

    Serizawa, H.; Ando, M.; Lewinsohn, C.A.; Murakawa, H.

    2000-01-01

    Crack propagation behavior in SiC/SiC composites was analyzed using a new computer simulation method that included time-dependent interface elements. The simulation method was used to describe the time-dependent crack growth in SiC/SiC composites under four-point bending of single-edge-notched beam bend-bars. Two methods were used to simulate time-dependent crack growth in SiC/SiC composites due to fiber creep. In one method, the creep property was introduced into the interface elements by the general method of finite element method (FEM) analysis. In the second method, a new technique making the best use of the potential function was used to represent crack closure tractions due to creeping fibers. The stage-II slow crack growth of a general creep deformation was simulated by both methods. Additionally, stage-III crack growth and the transition from stage-II to stage-III could be simulated by the new method. The new method has the potential to completely simulate time-dependent crack growth behavior in SiC/SiC composites due to fiber creep

  18. Revision of the Li13Si4 structure

    Directory of Open Access Journals (Sweden)

    Thomas F. Fässler

    2013-12-01

    Full Text Available Besides Li17Si4, Li16.42Si4, and Li15Si4, another lithium-rich representative in the Li–Si system is the phase Li13Si4 (tridecalithium tetrasilicide, the structure of which has been determined previously [Frank et al. (1975. Z. Naturforsch. Teil B, 30, 10–13]. A careful analysis of X-ray diffraction patterns of Li13Si4 revealed discrepancies between experimentally observed and calculated Bragg positions. Therefore, we redetermined the structure of Li13Si4 on the basis of single-crystal X-ray diffraction data. Compared to the previous structure report, decisive differences are (i the introduction of a split position for one Li site [occupancy ratio 0.838 (7:0.162 (7], (ii the anisotropic refinement of atomic displacement parameters for all atoms, and (iii a high accuracy of atom positions and unit-cell parameters. The asymmetric unit of Li13Si4 contains two Si and seven Li atoms. Except for one Li atom situated on a site with symmetry 2/m, all other atoms are on mirror planes. The structure consists of isolated Si atoms as well as Si–Si dumbbells surrounded by Li atoms. Each Si atom is either 12- or 13-coordinated. The isolated Si atoms are situated in the ab plane at z = 0 and are strictly separated from the Si–Si dumbbells at z = 0.5.

  19. Surface passivation technology for III-V semiconductor nanoelectronics

    International Nuclear Information System (INIS)

    Hasegawa, Hideki; Akazawa, Masamichi

    2008-01-01

    The present status and key issues of surface passivation technology for III-V surfaces are discussed in view of applications to emerging novel III-V nanoelectronics. First, necessities of passivation and currently available surface passivation technologies for GaAs, InGaAs and AlGaAs are reviewed. Then, the principle of the Si interface control layer (ICL)-based passivation scheme by the authors' group is introduced and its basic characterization is presented. Ths Si ICL is a molecular beam epitaxy (MBE)-grown ultrathin Si layer inserted between III-V semiconductor and passivation dielectric. Finally, applications of the Si ICL method to passivation of GaAs nanowires and GaAs nanowire transistors and to realization of pinning-free high-k dielectric/GaAs MOS gate stacks are presented

  20. Effects of Cervical High-Velocity Low-Amplitude Techniques on Range of Motion, Strength Performance, and Cardiovascular Outcomes: A Review.

    Science.gov (United States)

    Galindez-Ibarbengoetxea, Xabier; Setuain, Igor; Andersen, Lars L; Ramírez-Velez, Robinson; González-Izal, Miriam; Jauregi, Andoni; Izquierdo, Mikel

    2017-09-01

    Cervical high-velocity low-amplitude (HVLA) manipulation technique is among the oldest and most frequently used chiropractic manual therapy, but the physiologic and biomechanics effects were not completely clear. This review aims to describe the effects of cervical HVLA manipulation techniques on range of motion, strength, and cardiovascular performance. A systematic search was conducted of the electronic databases from January 2000 to August 2016: PubMed (n = 131), ScienceDirect (n = 101), Scopus (n = 991), PEDro (n = 33), CINAHL (n = 884), and SciELO (n = 5). Two independent reviewers conducted the screening process to determine article eligibility. The intervention that included randomized controlled trials was thrust, or HVLA, manipulative therapy directed to the cervical spine. Methodological quality was assessed using the Cochrane risk-of-bias tool. The initial search rendered 2145 articles. After screening titles and abstracts, 11 articles remained for full-text review. The review shows that cervical HVLA manipulation treatment results in a large effect size (d > 0.80) on increasing cervical range of motion and mouth opening. In patients with lateral epicondylalgia, cervical HVLA manipulation resulted in increased pain-free handgrip strength, with large effect sizes (1.44 and 0.78, respectively). Finally, in subjects with hypertension the blood pressure seemed to decrease after cervical HVLA manipulation. Higher quality studies are needed to develop a stronger evidence-based foundation for HVLA manipulation techniques as a treatment for cervical conditions.

  1. THE EVOLUTION OF GAS CLOUDS FALLING IN THE MAGNETIZED GALACTIC HALO: HIGH-VELOCITY CLOUDS (HVCs) ORIGINATED IN THE GALACTIC FOUNTAIN

    International Nuclear Information System (INIS)

    Kwak, Kyujin; Shelton, Robin L.; Raley, Elizabeth A.

    2009-01-01

    In the Galactic fountain scenario, supernovae and/or stellar winds propel material into the Galactic halo. As the material cools, it condenses into clouds. By using FLASH three-dimensional magnetohydrodynamic simulations, we model and study the dynamical evolution of these gas clouds after they form and begin to fall toward the Galactic plane. In our simulations, we assume that the gas clouds form at a height of z = 5 kpc above the Galactic midplane, then begin to fall from rest. We investigate how the cloud's evolution, dynamics, and interaction with the interstellar medium (ISM) are affected by the initial mass of the cloud. We find that clouds with sufficiently large initial densities (n ≥ 0.1 H atoms cm -3 ) accelerate sufficiently and maintain sufficiently large column densities as to be observed and identified as high-velocity clouds (HVCs) even if the ISM is weakly magnetized (1.3 μG). However, the ISM can provide noticeable resistance to the motion of a low-density cloud (n ≤ 0.01 H atoms cm -3 ) thus making it more probable that a low-density cloud will attain the speed of an intermediate-velocity cloud rather than the speed of an HVC. We also investigate the effects of various possible magnetic field configurations. As expected, the ISM's resistance is greatest when the magnetic field is strong and perpendicular to the motion of the cloud. The trajectory of the cloud is guided by the magnetic field lines in cases where the magnetic field is oriented diagonal to the Galactic plane. The model cloud simulations show that the interactions between the cloud and the ISM can be understood via analogy to the shock tube problem which involves shock and rarefaction waves. We also discuss accelerated ambient gas, streamers of material ablated from the clouds, and the cloud's evolution from a sphere-shaped to a disk- or cigar-shaped object.

  2. Hubble Space Telescope Imaging of the Ultra-compact High Velocity Cloud AGC 226067: A Stripped Remnant in the Virgo Cluster

    Energy Technology Data Exchange (ETDEWEB)

    Sand, D. J.; Crnojević, D. [Texas Tech University, Physics and Astronomy Department, Box 41051, Lubbock, TX 79409-1051 (United States); Seth, A. C. [Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112 (United States); Spekkens, K. [Royal Military College of Canada, Department of Physics, P.O. Box 17000, Station Forces, Kingston, Ontario, K7K 7B4 (Canada); Strader, J. [Center for Data Intensive and Time Domain Astronomy, Department of Physics and Astronomy, Michigan State University, 567 Wilson Road, East Lansing, MI 48824 (United States); Adams, E. A. K. [ASTRON, Netherlands Institute for Radio Astronomy, Postbus 2, 7900 AA Dwingeloo (Netherlands); Caldwell, N.; Randall, S. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Guhathakurta, P. [UCO/Lick Observatory, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 (United States); Kenney, J. [Yale University Astronomy Department, P.O. Box 208101, New Haven, CT 06520-8101 (United States); Simon, J. D. [Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Toloba, E. [Department of Physics, University of the Pacific, 3601 Pacific Avenue, Stockton, CA 95211 (United States); Willman, B., E-mail: david.sand@ttu.edu [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States)

    2017-07-10

    We analyze the optical counterpart to the ultra-compact high velocity cloud AGC 226067, utilizing imaging taken with the Advanced Camera for Surveys (ACS) on the Hubble Space Telescope . The color–magnitude diagram of the main body of AGC 226067 reveals an exclusively young stellar population, with an age of ∼7–50 Myr, and is consistent with a metallicity of [Fe/H] ∼ −0.3 as previous work has measured via H ii region spectroscopy. Additionally, the color–magnitude diagram is consistent with a distance of D ≈ 17 Mpc, suggesting an association with the Virgo cluster. A secondary stellar system located ∼1.′6 (∼8 kpc) away in projection has a similar stellar population. The lack of an old red giant branch (≳5 Gyr) is contrasted with a serendipitously discovered Virgo dwarf in the ACS field of view (Dw J122147+132853), and the total diffuse light from AGC 226067 is consistent with the luminosity function of the resolved ∼7–50 Myr stellar population. The main body of AGC 226067 has a M {sub V} = −11.3 ± 0.3, or M {sub stars} = 5.4 ± 1.3 × 10{sup 4} M {sub ⊙} given the stellar population. We searched 20 deg{sup 2} of imaging data adjacent to AGC 226067 in the Virgo Cluster, and found two similar stellar systems dominated by a blue stellar population, far from any massive galaxy counterpart—if this population has star-formation properties that are similar to those of AGC 226067, it implies ∼0.1 M {sub ⊙} yr{sup −1} in Virgo intracluster star formation. Given its unusual stellar population, AGC 226067 is likely a stripped remnant and is plausibly the result of compressed gas from the ram pressure stripped M86 subgroup (∼350 kpc away in projection) as it falls into the Virgo Cluster.

  3. Mechanical Properties and Real-Time Damage Evaluations of Environmental Barrier Coated SiC/SiC CMCs Subjected to Tensile Loading Under Thermal Gradients

    Science.gov (United States)

    Appleby, Matthew; Zhu, Dongming; Morscher, Gregory

    2015-01-01

    SiC/SiC ceramic matrix composites (CMCs) require new state-of-the art environmental barrier coatings (EBCs) to withstand increased temperature requirements and high velocity combustion corrosive combustion gasses. The present work compares the response of coated and uncoated SiC/SiC CMC substrates subjected to simulated engine environments followed by high temperature mechanical testing to asses retained properties and damage mechanisms. Our focus is to explore the capabilities of electrical resistance (ER) measurements as an NDE technique for testing of retained properties under combined high heat-flux and mechanical loading conditions. Furthermore, Acoustic Emission (AE) measurements and Digital Image Correlation (DIC) were performed to determine material damage onset and accumulation.

  4. Creep, Fatigue and Fracture Behavior of Environmental Barrier Coating and SiC-SiC Ceramic Matrix Composite Systems: The Role of Environment Effects

    Science.gov (United States)

    Zhu, Dongming; Ghosn, Louis J.

    2015-01-01

    Advanced environmental barrier coating (EBC) systems for low emission SiCSiC CMC combustors and turbine airfoils have been developed to meet next generation engine emission and performance goals. This presentation will highlight the developments of NASAs current EBC system technologies for SiC-SiC ceramic matrix composite combustors and turbine airfoils, their performance evaluation and modeling progress towards improving the engine SiCSiC component temperature capability and long-term durability. Our emphasis has also been placed on the fundamental aspects of the EBC-CMC creep and fatigue behaviors, and their interactions with turbine engine oxidizing and moisture environments. The EBC-CMC environmental degradation and failure modes, under various simulated engine testing environments, in particular involving high heat flux, high pressure, high velocity combustion conditions, will be discussed aiming at quantifying the protective coating functions, performance and durability, and in conjunction with damage mechanics and fracture mechanics approaches.

  5. GaN growth via HVPE on SiC/Si substrates: growth mechanisms

    Science.gov (United States)

    Sharofidinov, Sh Sh; Redkov, A. V.; Osipov, A. V.; Kukushkin, S. A.

    2017-11-01

    The article focuses on the study of GaN thin film growth via chloride epitaxy on SiC/Si hybrid substrate. SiC buffer layer was grown by a method of substitution of atoms, which allows one to reduce impact of mechanical stress therein on subsequent growth of III-nitride films. It is shown, that change in GaN growth conditions leads to change in its growth mechanism. Three mechanisms: epitaxial, spiral and stepwise growth are considered and mechanical stresses are estimated via Raman spectroscopy.

  6. Si cycling in a forest biogeosystem - the importance of transient state biogenic Si pools

    Science.gov (United States)

    Sommer, M.; Jochheim, H.; Höhn, A.; Breuer, J.; Zagorski, Z.; Busse, J.; Barkusky, D.; Meier, K.; Puppe, D.; Wanner, M.; Kaczorek, D.

    2013-07-01

    The relevance of biological Si cycling for dissolved silica (DSi) export from terrestrial biogeosystems is still in debate. Even in systems showing a high content of weatherable minerals, like Cambisols on volcanic tuff, biogenic Si (BSi) might contribute > 50% to DSi (Gerard et al., 2008). However, the number of biogeosystem studies is rather limited for generalized conclusions. To cover one end of controlling factors on DSi, i.e., weatherable minerals content, we studied a forested site with absolute quartz dominance (> 95%). Here we hypothesise minimal effects of chemical weathering of silicates on DSi. During a four year observation period (05/2007-04/2011), we quantified (i) internal and external Si fluxes of a temperate-humid biogeosystem (beech, 120 yr) by BIOME-BGC (version ZALF), (ii) related Si budgets, and (iii) Si pools in soil and beech, chemically as well as by SEM-EDX. For the first time two compartments of biogenic Si in soils were analysed, i.e., phytogenic and zoogenic Si pool (testate amoebae). We quantified an average Si plant uptake of 35 kg Si ha-1 yr-1 - most of which is recycled to the soil by litterfall - and calculated an annual biosilicification from idiosomic testate amoebae of 17 kg Si ha-1. The comparatively high DSi concentrations (6 mg L-1) and DSi exports (12 kg Si ha-1 yr-1) could not be explained by chemical weathering of feldspars or quartz dissolution. Instead, dissolution of a relictic, phytogenic Si pool seems to be the main process for the DSi observed. We identified canopy closure accompanied by a disappearance of grasses as well as the selective extraction of pine trees 30 yr ago as the most probable control for the phenomena observed. From our results we concluded the biogeosystem to be in a transient state in terms of Si cycling.

  7. Si cycling in a forest biogeosystem – the importance of transient state biogenic Si pools

    Directory of Open Access Journals (Sweden)

    M. Sommer

    2013-07-01

    Full Text Available The relevance of biological Si cycling for dissolved silica (DSi export from terrestrial biogeosystems is still in debate. Even in systems showing a high content of weatherable minerals, like Cambisols on volcanic tuff, biogenic Si (BSi might contribute > 50% to DSi (Gerard et al., 2008. However, the number of biogeosystem studies is rather limited for generalized conclusions. To cover one end of controlling factors on DSi, i.e., weatherable minerals content, we studied a forested site with absolute quartz dominance (> 95%. Here we hypothesise minimal effects of chemical weathering of silicates on DSi. During a four year observation period (05/2007–04/2011, we quantified (i internal and external Si fluxes of a temperate-humid biogeosystem (beech, 120 yr by BIOME-BGC (version ZALF, (ii related Si budgets, and (iii Si pools in soil and beech, chemically as well as by SEM-EDX. For the first time two compartments of biogenic Si in soils were analysed, i.e., phytogenic and zoogenic Si pool (testate amoebae. We quantified an average Si plant uptake of 35 kg Si ha−1 yr−1 – most of which is recycled to the soil by litterfall – and calculated an annual biosilicification from idiosomic testate amoebae of 17 kg Si ha−1. The comparatively high DSi concentrations (6 mg L−1 and DSi exports (12 kg Si ha−1 yr−1 could not be explained by chemical weathering of feldspars or quartz dissolution. Instead, dissolution of a relictic, phytogenic Si pool seems to be the main process for the DSi observed. We identified canopy closure accompanied by a disappearance of grasses as well as the selective extraction of pine trees 30 yr ago as the most probable control for the phenomena observed. From our results we concluded the biogeosystem to be in a transient state in terms of Si cycling.

  8. Looking for Galaxies in All the Right Places: A Search for Stellar Populations in ALFALFA’s Ultra-compact High Velocity Clouds

    Science.gov (United States)

    Janesh, William; Rhode, Katherine L.; Salzer, John J.; Janowiecki, Steven; Adams, Elizabeth; Haynes, Martha P.; Giovanelli, Riccardo; Cannon, John M.

    2018-01-01

    Nearby gas-rich dwarf galaxies are excellent laboratories for investigating the baryonic feedback processes that govern star formation and galaxy evolution in galaxies at the extreme end of the mass function. Detecting and studying such objects may help resolve the well-known tension between cosmological model predictions for low-mass dark matter halos and observations. The ALFALFA neutral hydrogen (Hi) survey has detected a sample of isolated ultra-compact high-velocity Hi clouds (UCHVCs) with kinematic properties that make them likely members of the Local Volume, but that have no optical counterparts in existing optical surveys. This UCHVC sample possesses Hi properties (at 1 Mpc, Hi masses of ~105-106 M⊙, Hi diameters of ~2-3 kpc, and dynamical masses of ~107-108 M⊙) similar to other known ultra-faint dwarf galaxies like Leo T. Following the discovery of Leo P, an extremely metal-poor, gas-rich star-forming dwarf galaxy associated with an ALFALFA UCHVC, we have initiated a campaign to obtain deep optical imaging of 56 UCHVCs using the wide field-of-view, high-resolution ODI camera on the WIYN 3.5-m telescope. Here we present a brief overview of our campaign to search for resolved stellar populations associated with the UCHVCs in our optical images, and initial results from our survey.After creating a stellar catalog from the pipeline-reduced and stacked ODI g- and i-band images, we apply a color-magnitude filter tuned for old, metal-poor stellar populations to select red giant branch stars at distances between 250 kpc and 2 Mpc. The spatial distribution of the stars selected by the filter is then smoothed, and overdensities in the fields are identified. Of the 22 targets analyzed to date, seven have associated stellar populations detected at a high confidence (92% to 99.9% significance). The detected objects have a range of distances (from 350 kpc to 1.6 Mpc) and have optical properties similar to those of ultra-faint dwarf galaxies. These objects have

  9. Antithrombin III blood test

    Science.gov (United States)

    ... medlineplus.gov/ency/article/003661.htm Antithrombin III blood test To use the sharing features on this page, ... a protein that helps control blood clotting. A blood test can determine the amount of AT III present ...

  10. High-Velocity Cloud Complex H and Weaver's "Jet": Two candidate dwarf satellite galaxies for which dark matter halo models indicate distances of ~27 kpc and ~108 kpc

    Science.gov (United States)

    Simonson, S. Christian

    2018-04-01

    Two anomalous-velocity H I features, High-Velocity Cloud Complex H (HVC H) (Blitz et al. 1999), and Weaver's "jet" (Weaver 1974), appear to be good candidates for dwarf satellites. In this work they are modeled as H I disks in dark matter halos that move in 3D orbits in the combined time-dependent gravitational fields of the Milky Way and M31. As they orbit in the Local Group they develop tidal distortions and produce debris. The current l,b,V appearance of the tidal features as they approach the Milky Way indicate distances of 27 ± 9 kpc for HVC H and 108 ± 36 kpc for Weaver's "jet". As these are within the distances to known Milky Way satellites, finding stellar components would be of interest for the star formation history of the Milky Way. This work uses recent Hubble Space Telescope results on M31 (van der Marel et al. 2012) to calculate the center-of-mass (COM) locations and the dark matter mass distributions of the Milky-Way—M31 system since the Big Bang. Time-dependent COM orbits of the satellites have been computed in 3D, along with rings of test particles representing their disks. Tidal effects that develop on these rings have been compared with published 21-cm line data from Lockman (2003) and Simonson (1975). For HVC H at l = 130.5°, b = +1.5°, V = -200 km/s, the dark matter mass (in solar masses) is estimated as 5.2 ± 3.5E8. The previously estimated H I mass is 6.4E6, or 1.2% of the newly derived satellite mass. For Weaver's "jet", which covers 2° by 7° at l = 197.3°, b = +2.1°, V = -30 to -87 km/s, the dark matter mass is estimated as 1.8 ± 0.6E9. The H I mass is 1.8 ± 1.1E8, or 6% to 12% of the satellite mass. In the case of HVC H, owing to its disk angle of 45°, tidal debris is thrown upward. This would presumably contribute to a halo star stream. In the case of Weaver's "jet", the streamer represents accreting material for the disk. I am grateful to Leo Blitz for bringing Lockman's work on HVC H to my attention and for many helpful

  11. Environmental Barrier Coating Development for SiC/SiC Ceramic Matrix Composites: Recent Advances and Future Directions

    Science.gov (United States)

    Zhu, Dongming

    2016-01-01

    This presentation briefly reviews the SiC/SiC major environmental and environment-fatigue degradations encountered in simulated turbine combustion environments, and thus NASA environmental barrier coating system evolution for protecting the SiC/SiC Ceramic Matrix Composites for meeting the engine performance requirements. The presentation will review several generations of NASA EBC materials systems, EBC-CMC component system technologies for SiC/SiC ceramic matrix composite combustors and turbine airfoils, highlighting the temperature capability and durability improvements in simulated engine high heat flux, high pressure, high velocity, and with mechanical creep and fatigue loading conditions. This paper will also focus on the performance requirements and design considerations of environmental barrier coatings for next generation turbine engine applications. The current development emphasis is placed on advanced NASA candidate environmental barrier coating systems for SiC/SiC CMCs, their performance benefits and design limitations in long-term operation and combustion environments. The efforts have been also directed to developing prime-reliant, self-healing 2700F EBC bond coat; and high stability, lower thermal conductivity, and durable EBC top coats. Major technical barriers in developing environmental barrier coating systems, the coating integrations with next generation CMCs having the improved environmental stability, erosion-impact resistance, and long-term fatigue-environment system durability performance will be described. The research and development opportunities for turbine engine environmental barrier coating systems by utilizing improved compositions, state-of-the-art processing methods, and simulated environment testing and durability modeling will be briefly discussed.

  12. Ordering at Si(111)/o-Si and Si(111)/SiO2 Interfaces

    DEFF Research Database (Denmark)

    Robinson, I. K.; Waskiewicz, W. K.; Tung, R. T.

    1986-01-01

    X-ray diffraction has been used to measure the intensity profile of the two-dimensional rods of scattering from a single interface buried inside a bulk material. In both Si(111)/a-Si and Si(111)/SiO2 examples there are features in the perpendicular-momentum-transfer dependence which are not expec...... are not expected from an ideal sharp interface. The diffraction profiles are explained by models with partially ordered layers extending into the amorphous region. In the Si(111)/a-Si case there is clear evidence of stacking faults which are attributed to residual 7×7 reconstruction....

  13. Characterization on impact damage resistance of CF/PEEK laminates under low and high velocity impact tests; Teisoku/kosoku shogeki shiken ni yoru CF/PEEK no taishogeki sonshosei no hyoka

    Energy Technology Data Exchange (ETDEWEB)

    Morita, H; Hamamoto, A [Ishikawajima-Harima Heavy Industries Co. Ltd., Tokyo (Japan); Adachi, T; Nishimori, K; Matsumoto, H [Tokyo Institute of Technology, Tokyo (Japan)

    1995-04-15

    Experiments were conducted to learn the impact damage on jet engine CFRP components for sucking birds or others. A great mass low velocity collision experiment using a falling weight and a small mass high velocity collision experiment using an air gun were conducted. The damages inflicted upon CF/PEEK (polyetheretherketone) laminates in the respective experiments were compared with each other by using the ultrasonic flaw detection method (C-Scan). There was a linear relationship in both experiments between the projected damaged area DA measured by C-Scan and the impact energy IE, enabling the relative evaluation of impact-withstanding damage characteristics by using the DA/IE ratios. DA/IE in the high velocity impact was higher than that in the low velocity impact, but the DA/IE ratio between the high velocity impact and the low velocity impact remained approximately the same, not dependent on the fiber orientation. The lamination parameter {beta} defined on the basis of the difference in-plane rigidity between the layers constituting the laminate is proportional to DA/IE, with {beta} enabling the generalized numerical expression of the impact of the fiber orientation upon the impact-withstanding damage characteristics. 9 refs., 5 figs., 2 tabs.

  14. 300C/15 kW power converter with AlGaN/GaN-Si MOS-HFETs for electric propulsion systems, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Capitalizing on a strong expertise in III-Nitride epitaxy, GaN-Si power device designs, and wide-bandgap power electronics, researchers at GeneSiC Semiconductor...

  15. Keck-I MOSFIRE spectroscopy of compact star-forming galaxies at z ≳ 2: high velocity dispersions in progenitors of compact quiescent galaxies

    International Nuclear Information System (INIS)

    Barro, Guillermo; Koo, David C.; Faber, Sandra M.; Guo, Yicheng; Toloba, Elisa; Fang, Jerome J.; Trump, Jonathan R.; Dekel, Avishai; Kassin, Susan A.; Koekemoer, Anton M.; Kocevski, Dale D.; Van der Wel, Arjen; Pérez-González, Pablo G.; Pacifici, Camilla; Simons, Raymond; Campbell, Randy D.; Goodrich, Bob; Kassis, Marc; Ceverino, Daniel; Finkelstein, Steven L.

    2014-01-01

    We present Keck-I MOSFIRE near-infrared spectroscopy for a sample of 13 compact star-forming galaxies (SFGs) at redshift 2 ≤ z ≤ 2.5 with star formation rates of SFR ∼ 100 M ☉ yr –1 and masses of log(M/M ☉ ) ∼10.8. Their high integrated gas velocity dispersions of σ int =230 −30 +40 km s –1 , as measured from emission lines of Hα and [O III], and the resultant M * -σ int relation and M * -M dyn all match well to those of compact quiescent galaxies at z ∼ 2, as measured from stellar absorption lines. Since log(M * /M dyn ) =–0.06 ± 0.2 dex, these compact SFGs appear to be dynamically relaxed and evolved, i.e., depleted in gas and dark matter (<13 −13 +17 %), and present larger σ int than their non-compact SFG counterparts at the same epoch. Without infusion of external gas, depletion timescales are short, less than ∼300 Myr. This discovery adds another link to our new dynamical chain of evidence that compact SFGs at z ≳ 2 are already losing gas to become the immediate progenitors of compact quiescent galaxies by z ∼ 2.

  16. Keck-I MOSFIRE spectroscopy of compact star-forming galaxies at z ≳ 2: high velocity dispersions in progenitors of compact quiescent galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Barro, Guillermo; Koo, David C.; Faber, Sandra M.; Guo, Yicheng; Toloba, Elisa; Fang, Jerome J. [University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 (United States); Trump, Jonathan R. [Pennsylvania State University, University Park, State College, PA 16802 (United States); Dekel, Avishai [Racah Institute of Physics, The Hebrew University, Jerusalem 91904 (Israel); Kassin, Susan A.; Koekemoer, Anton M. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Kocevski, Dale D. [University of Kentucky, Lexington, KY 40506 (United States); Van der Wel, Arjen [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Pérez-González, Pablo G. [Universidad Complutense de Madrid, Avda. de Sneca, 2 Ciudad Universitaria, E-28040 Madrid (Spain); Pacifici, Camilla [Yonsei University Observatory, Yonsei University 50, Yonsei-ro, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Simons, Raymond [Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218-2683 (United States); Campbell, Randy D.; Goodrich, Bob; Kassis, Marc [W. M. Keck Observatory, California Association for Research in Astronomy, 65-1120 Mamalahoa Highway, Kamuela, HI 96743 (United States); Ceverino, Daniel [Universidad Autonoma de Madrid, Ciudad Universitaria de Cantoblanco, E-28049 Madrid (Spain); Finkelstein, Steven L. [The University of Texas at Austin, Austin, TX 78712 (United States); and others

    2014-11-10

    We present Keck-I MOSFIRE near-infrared spectroscopy for a sample of 13 compact star-forming galaxies (SFGs) at redshift 2 ≤ z ≤ 2.5 with star formation rates of SFR ∼ 100 M {sub ☉} yr{sup –1} and masses of log(M/M {sub ☉}) ∼10.8. Their high integrated gas velocity dispersions of σ{sub int} =230{sub −30}{sup +40} km s{sup –1}, as measured from emission lines of Hα and [O III], and the resultant M {sub *}-σ{sub int} relation and M {sub *}-M {sub dyn} all match well to those of compact quiescent galaxies at z ∼ 2, as measured from stellar absorption lines. Since log(M {sub *}/M {sub dyn}) =–0.06 ± 0.2 dex, these compact SFGs appear to be dynamically relaxed and evolved, i.e., depleted in gas and dark matter (<13{sub −13}{sup +17}%), and present larger σ{sub int} than their non-compact SFG counterparts at the same epoch. Without infusion of external gas, depletion timescales are short, less than ∼300 Myr. This discovery adds another link to our new dynamical chain of evidence that compact SFGs at z ≳ 2 are already losing gas to become the immediate progenitors of compact quiescent galaxies by z ∼ 2.

  17. Film Cooled Recession of SiC/SiC Ceramic Matrix Composites: Test Development, CFD Modeling and Experimental Observations

    Science.gov (United States)

    Zhu, Dongming; Sakowski, Barbara A.; Fisher, Caleb

    2014-01-01

    SiCSiC ceramic matrix composites (CMCs) systems will play a crucial role in next generation turbine engines for hot-section component applications because of their ability to significantly increase engine operating temperatures, reduce engine weight and cooling requirements. However, the environmental stability of Si-based ceramics in high pressure, high velocity turbine engine combustion environment is of major concern. The water vapor containing combustion gas leads to accelerated oxidation and corrosion of the SiC based ceramics due to the water vapor reactions with silica (SiO2) scales forming non-protective volatile hydroxide species, resulting in recession of the ceramic components. Although environmental barrier coatings are being developed to help protect the CMC components, there is a need to better understand the fundamental recession behavior of in more realistic cooled engine component environments.In this paper, we describe a comprehensive film cooled high pressure burner rig based testing approach, by using standardized film cooled SiCSiC disc test specimen configurations. The SiCSiC specimens were designed for implementing the burner rig testing in turbine engine relevant combustion environments, obtaining generic film cooled recession rate data under the combustion water vapor conditions, and helping developing the Computational Fluid Dynamics (CFD) film cooled models and performing model validation. Factors affecting the film cooled recession such as temperature, water vapor concentration, combustion gas velocity, and pressure are particularly investigated and modeled, and compared with impingement cooling only recession data in similar combustion flow environments. The experimental and modeling work will help predict the SiCSiC CMC recession behavior, and developing durable CMC systems in complex turbine engine operating conditions.

  18. The modification of siRNA with 3' cholesterol to increase nuclease protection and suppression of native mRNA by select siRNA polyplexes.

    Science.gov (United States)

    Ambardekar, Vishakha V; Han, Huai-Yun; Varney, Michelle L; Vinogradov, Serguei V; Singh, Rakesh K; Vetro, Joseph A

    2011-02-01

    Polymer-siRNA complexes (siRNA polyplexes) are being actively developed to improve the therapeutic application of siRNA. A major limitation for many siRNA polyplexes, however, is insufficient mRNA suppression. Given that modifying the sense strand of siRNA with 3' cholesterol (chol-siRNA) increases the activity of free nuclease-resistant siRNA in vitro and in vivo, we hypothesized that complexation of chol-siRNA can increase mRNA suppression by siRNA polyplexes. In this study, the characteristics and siRNA activity of self assembled polyplexes formed with chol-siRNA or unmodified siRNA were compared using three types of conventional, positively charged polymers: (i) biodegradable, cross-linked nanogels (BDNG) (ii) graft copolymers (PEI-PEG), and (iii) linear block copolymers (PLL10-PEG, and PLL50-PEG). Chol-siRNA did not alter complex formation or the resistance of polyplexes to siRNA displacement by heparin but increased nuclease protection by BDNG, PLL10-PEG, and PLL50-PEG polyplexes over polyplexes with unmodified siRNA. Chol-CYPB siRNA increased suppression of native CYPB mRNA in mammary microvascular endothelial cells (MVEC) by BDNG polyplexes (35%) and PLL10-PEG polyplexes (69%) over comparable CYPB siRNA polyplexes but had no effect on PEI-PEG or PLL50-PEG polyplexes. Overall, these results indicate that complexation of chol-siRNA increases nuclease protection and mRNA suppression by select siRNA polyplexes. These results also suggest that polycationic block length is an important factor in increasing mRNA suppression by PLL-PEG chol-siRNA polyplexes in mammary MVEC. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. The Modification of siRNA with 3′ Cholesterol to Increase Nuclease Protection and Suppression of Native mRNA by Select siRNA Polyplexes

    Science.gov (United States)

    Ambardekar, Vishakha V.; Han, Huai-Yun; Varney, Michelle L.; Vinogradov, Serguei V.; Singh, Rakesh K.; Vetro, Joseph A.

    2010-01-01

    Polymer-siRNA complexes (siRNA polyplexes) are being actively developed to improve the therapeutic application of siRNA. A major limitation for many siRNA polyplexes, however, is insufficient mRNA suppression. Given that modifying the sense strand of siRNA with 3′ cholesterol (chol-siRNA) increases the activity of free nuclease-resistant siRNA in vitro and in vivo, we hypothesized that complexation of chol-siRNA can increase mRNA suppression by siRNA polyplexes. In this study, the characteristics and siRNA activity of self assembled polyplexes formed with chol-siRNA or unmodified siRNA were compared using three types of conventional, positively charged polymers: (i) biodegradable, cross-linked nanogels (BDNG) (ii) graft copolymers (PEI-PEG), and (iii) linear block copolymers (PLL10-PEG, and PLL50-PEG). Chol-siRNA did not alter complex formation or the resistance of polyplexes to siRNA displacement by heparin but increased nuclease protection by BDNG, PLL10-PEG, and PLL50-PEG polyplexes over polyplexes with unmodified siRNA. Chol-CYPB siRNA increased suppression of native CYPB mRNA in mammary microvascular endothelial cells (MVEC) by BDNG polyplexes (35%) and PLL10-PEG polyplexes (69%) over comparable CYPB siRNA polyplexes but had no effect on PEI-PEG or PLL50-PEG polyplexes. Overall, these results indicate that complexation of chol-siRNA increases nuclease protection and mRNA suppression by select siRNA polyplexes. These results also suggest that polycationic block length is an important factor in increasing mRNA suppression by PLL-PEG chol-siRNA polyplexes in mammary MVEC. PMID:21047680

  20. Temperature dependence of ordered GeSi island growth on patterned Si (001) substrates

    International Nuclear Information System (INIS)

    ZhongZhenyang; Chen Peixuan; Jiang Zuimin; Bauer, Guenther

    2008-01-01

    Statistical information on GeSi islands grown on two-dimensionally pit-patterned Si substrates at different temperatures is presented. Three growth regimes on patterned substrates are identified: (i) kinetically limited growth at low growth temperatures, (ii) ordered island growth in an intermediate temperature range, and (iii) stochastic island growth within pits at high temperatures. A qualitative model based on growth kinetics is proposed to explain these phenomena. It can serve as a guidance to realize optimum growth conditions for ordered islands on patterned substrates

  1. Theoretical assessment of the electro-optical features of the group III nitrides (B{sub 12}N{sub 12}, Al{sub 12}N{sub 12} and Ga{sub 12}N{sub 12}) and group IV carbides (C{sub 24}, Si{sub 12}C{sub 12} and Ge{sub 12}C{sub 12}) nanoclusters encapsulated with alkali metals (Li, Na and K)

    Energy Technology Data Exchange (ETDEWEB)

    Tahmasebi, Elham [Chemistry Department, Faculty of Science, Lorestan University, Khorram Abad, Lorestan (Iran, Islamic Republic of); Shakerzadeh, Ehsan, E-mail: e.shakerzadeh@scu.ac.ir [Chemistry Department, Faculty of Science, Shahid Chamran University, Ahvaz (Iran, Islamic Republic of); Biglari, Zeinab [Chemistry Department, Faculty of Science, Lorestan University, Khorram Abad, Lorestan (Iran, Islamic Republic of)

    2016-02-15

    Graphical abstract: - Highlights: • Encapsulation of Li, Na and K narrow the HOMO–LUMO gaps of the clusters. • The group III nitrides nanoclusters strongly interacted with the alkali metals. • First hyperpolarizabilities remarkably enhance for B{sub 12}N{sub 12} encapsulated with Na/K. - Abstract: Density functional theory (DFT) calculations have been carried out to study the influence of alkali metals (Li, Na and K) encapsulation within the group III nitrides (B{sub 12}N{sub 12}, Al{sub 12}N{sub 12} and Ga{sub 12}N{sub 12}) and the group IV carbides (C{sub 24}, Si{sub 12}C{sub 12}and Ge{sub 12}C{sub 12}) nanoclusters. The encapsulation of Li, Na and K atoms is found to narrow the HOMO–LUMO gaps of the considered clusters. The electronic properties of these clusters, especially the group III nitrides nanoclusters, are strongly sensitive to interaction with the alkali metals. Moreover it is observed that the encapsulation of alkali metals enhances the first hyperpolarizabilities of B{sub 12}N{sub 12} nanocluster. Surprisingly, due to the alkali metals encapsulation within B{sub 12}N{sub 12} nanocluster, the first hyperpolarizability values are remarkably increased to 8505.49 and 122,503.76 a.u. for Na@B{sub 12}N{sub 12} and K@B{sub 12}N{sub 12}, respectively. Also the TD-DFT calculations at both CAM-B3LYP/6-311+G(d) and PBE0/6-311+G(d) levels of theory are also performed to investigate the origin of first hyperpolarizabilities.

  2. Metallothionein (MT)-III

    DEFF Research Database (Denmark)

    Carrasco, J; Giralt, M; Molinero, A

    1999-01-01

    Metallothionein-III is a low molecular weight, heavy-metal binding protein expressed mainly in the central nervous system. First identified as a growth inhibitory factor (GIF) of rat cortical neurons in vitro, it has subsequently been shown to be a member of the metallothionein (MT) gene family...... injected rats. The specificity of the antibody was also demonstrated in immunocytochemical studies by the elimination of the immunostaining by preincubation of the antibody with brain (but not liver) extracts, and by the results obtained in MT-III null mice. The antibody was used to characterize...... the putative differences between the rat brain MT isoforms, namely MT-I+II and MT-III, in the freeze lesion model of brain damage, and for developing an ELISA for MT-III suitable for brain samples. In the normal rat brain, MT-III was mostly present primarily in astrocytes. However, lectin staining indicated...

  3. DX centers in III-V semiconductors under hydrostatic pressure

    International Nuclear Information System (INIS)

    Wolk, J.A.

    1992-11-01

    DX centers are deep level defects found in some III-V semiconductors. They have persistent photoconductivity and large difference between thermal and optical ionization energies. Hydrostatic pressure was used to study microstructure of these defects. A new local vibrational mode (LVM) was observed in hydrostatically stressed, Si-doped GaAs. Corresponding infrared absorption peak is distinct from the Si Ga shallow donor LVM peak, which is the only other LVM peak observed in our samples, and is assigned to the Si DX center. Analysis of the relative intensities of the Si DX LVM and the Si shallow donor LVM peaks, combined with Hall effect and resistivity indicate that the Si DX center is negatively charged. Frequency of this new mode provides clues to the structure of this defect. A pressure induced deep donor level in S-doped InP was also discovered which has the properties of a DX center. Pressure at which the new defect becomes more stable than the shallow donor is 82 kbar. Optical ionization energy and energy dependence of the optical absorption cross section was measured for this new effect. Capture barrier from the conduction band into the DX state were also determined. That DX centers can be formed in InP by pressure suggests that DX states should be common in n-type III-V semiconductors. A method is suggested for predicting under what conditions these defects will be the most stable form of the donor impurity

  4. Si cycling in a forest biogeosystem - the importance of anthropogenic perturbation and induced transient state of biogenic Si pools

    Science.gov (United States)

    Sommer, M.; Jochheim, H.; Höhn, A.; Breuer, J.; Zagorski, Z.; Busse, J.; Barkusky, D.; Puppe, D.; Wanner, M.; Kaczorek, D.

    2012-12-01

    The relevance of biological Si cycling for dissolved silica (DSi) export from terrestrial biogeosystems is still in debate. Even in systems showing a high content of weatherable minerals, like Cambisols on volcanic tuff, biogenic Si (BSi) might contribute > 50% to total DSi (Gerard et~al., 2008). However, the actual number of biogeosystem studies is rather limited for generalised conclusions. To cover one end of controlling factors on DSi - weatherable minerals content - we studied a~forested site with absolute quartz dominance (> 95%). Hence, we hypothesise minimal effects of chemical weathering of silicates on DSi. During a~four year observation period (May 2007-April 2011) we quantified (i) internal and external Si fluxes of a temperate-humid biogeosystem (beech, 120 yr) by BIOME-BGC (vers. ZALF), (ii) related Si budgets, and, (iii) Si pools in soil and beech, chemically as well as by SEM-EDX. For the first time both compartments of biogenic Si in soils were analysed, i.e. phytogenic and zoogenic Si pool (testate amoebae). We quantified an average Si plant uptake of 35 kg Si ha-1 yr-1 - most of which is recycled to the soil by litterfall - and calculated an annual biosilicification from idiosomic testate amoebae of 17 kg Si ha-1. High DSi concentrations (6 mg l-1) and DSi exports (12 kg Si ha-1 yr-1) could not be explained by chemical weathering of feldspars or quartz dissolution. Instead, dissolution of a relictic phytolith Si pool seems to be the main process for the DSi observed. We identified forest management, i.e. selective extraction of pine trees 20 yr ago followed by a disappearance of grasses, as the most probable control for the phenomena observed and hypothesised the biogeosystem to be in a transient state in terms of Si cycling.

  5. NNDSS - Table III. Tuberculosis

    Data.gov (United States)

    U.S. Department of Health & Human Services — NNDSS - Table III. Tuberculosis - 2018.This Table includes total number of cases reported in the United States, by region and by states, in accordance with the...

  6. NNDSS - Table III. Tuberculosis

    Data.gov (United States)

    U.S. Department of Health & Human Services — NNDSS - Table III. Tuberculosis - 2017.This Table includes total number of cases reported in the United States, by region and by states, in accordance with the...

  7. Workshop 96. Part III

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    Part III of the proceedings contain 155 contributions in various fields of science and technology including nuclear engineering, environmental science, and biomedical engineering. Out of these, 10 were selected to be inputted in INIS. (P.A.).

  8. Workshop 96. Part III

    International Nuclear Information System (INIS)

    1995-12-01

    Part III of the proceedings contain 155 contributions in various fields of science and technology including nuclear engineering, environmental science, and biomedical engineering. Out of these, 10 were selected to be inputted in INIS. (P.A.)

  9. Selective Epitaxy of InP on Si and Rectification in Graphene/InP/Si Hybrid Structure.

    Science.gov (United States)

    Niu, Gang; Capellini, Giovanni; Hatami, Fariba; Di Bartolomeo, Antonio; Niermann, Tore; Hussein, Emad Hameed; Schubert, Markus Andreas; Krause, Hans-Michael; Zaumseil, Peter; Skibitzki, Oliver; Lupina, Grzegorz; Masselink, William Ted; Lehmann, Michael; Xie, Ya-Hong; Schroeder, Thomas

    2016-10-12

    The epitaxial integration of highly heterogeneous material systems with silicon (Si) is a central topic in (opto-)electronics owing to device applications. InP could open new avenues for the realization of novel devices such as high-mobility transistors in next-generation CMOS or efficient lasers in Si photonics circuitry. However, the InP/Si heteroepitaxy is highly challenging due to the lattice (∼8%), thermal expansion mismatch (∼84%), and the different lattice symmetries. Here, we demonstrate the growth of InP nanocrystals showing high structural quality and excellent optoelectronic properties on Si. Our CMOS-compatible innovative approach exploits the selective epitaxy of InP nanocrystals on Si nanometric seeds obtained by the opening of lattice-arranged Si nanotips embedded in a SiO 2 matrix. A graphene/InP/Si-tip heterostructure was realized on obtained materials, revealing rectifying behavior and promising photodetection. This work presents a significant advance toward the monolithic integration of graphene/III-V based hybrid devices onto the mainstream Si technology platform.

  10. Monolithic integration of AlGaInP laser diodes on SiGe/Si substrates by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Kwon, O.; Boeckl, J. J.; Lee, M. L.; Pitera, A. J.; Fitzgerald, E. A.; Ringel, S. A.

    2006-01-01

    Room temperature operation of visible AlGaInP laser diodes epitaxially integrated on Si was demonstrated. Compressively strained laser heterostructures were grown by molecular beam epitaxy (MBE) on low dislocation density SiGe/Si substrates, where the threading dislocation density of the top relaxed Ge layers was measured in the range of 2x10 6 cm -2 . A threshold current density of J th ∼1.65 kA/cm 2 for the as-cleaved, gain-guided AlGaInP laser grown on SiGe/Si was obtained at the peak emission wavelength of 680 nm under pulsed mode current injection. These results show that not only can high quality AlGaInP materials grown by MBE be achieved on Si via relaxed SiGe interlayers, but the prototype demonstration of laser diode operation on Si illustrates that very defect sensitive optoelectronics in the III-P system can indeed be integrated with Si substrates by heteroepitaxial methods

  11. Hopping conduction on PPy/SiO2 nanocomposites obtained via in situ emulsion polymerization

    NARCIS (Netherlands)

    Rubinger, C.P.L.; Costa, L.C.; Carvalho Esteves, de A.C.; Barros-Timmons, A.M.M.V.

    2008-01-01

    This work describes the preparation and electrical characterization of conducting polypyrrole (PPy) and silica nanocomposites. Four samples were investigated: (i) pure PPy, (ii) PPy-covered SiO2 spherical nanoparticles, (iii) PPy-covered SiO2 spherical nanoparticles modified with

  12. Innovative SiC/SiC composite for nuclear applications

    International Nuclear Information System (INIS)

    Chaffron, L.; Sauder, C.; Lorrette, C.; Briottet, L.; Michaux, A.; Gelebart, L.; Coupe, A.; Zabiego, M.; Le Flem, M.; Seran, J. L.

    2013-01-01

    Among various refractory materials, SiC/SiC ceramic matrix composites (CMC) are of prime interest for fusion and advanced fission energy applications, due to their excellent irradiation tolerance and safety features (low activation, low tritium permeability,K). Initially developed as fuel cladding materials for the Fourth generation Gas cooled Fast Reactor (GFR), this material has been recently envisaged by CEA for different core structures of Sodium Fast Reactor (SFR) which combines fast neutrons and high temperature (500 deg.C). Regarding fuel cladding generic application, in the case of GFR, the first challenge facing this project is to demonstrate the feasibility of a fuel operating under very harsh conditions that are (i) temperatures of structures up to 700 deg.C in nominal and over 1600 deg.C in accidental conditions, (ii) irradiation damage higher than 60 dpa SiC , (iii) neutronic transparency, which disqualifies conventional refractory metals as structural core materials, (iv) mechanical behavior that guarantees in most circumstances the integrity of the first barrier (e.g.: ε> 0.5%), which excludes monolithic ceramics and therefore encourages the development of new types of fibrous composites SiC/SiC adapted to the fast reactor conditions. No existing material being capable to match all these requirements, CEA has launched an ambitious program of development of an advanced material satisfying the specifications [1]. This project, that implies many laboratories, inside and outside CEA, has permitted to obtain a very high quality compound that meets most of the challenging requirements. We present hereinafter few recent results obtained regarding the development of the composite. One of the most relevant challenges was to make a gas-tight composite up to the ultimate rupture. Indeed, multi-cracking of the matrix is the counterpart of the damageable behavior observed in these amazing compounds. Among different solutions envisaged, an innovative one has been

  13. Comparative study of the iron cores in human liver ferritin, its pharmaceutical models and ferritin in chicken liver and spleen tissues using Moessbauer spectroscopy with a high velocity resolution

    Energy Technology Data Exchange (ETDEWEB)

    Alenkina, I.V.; Semionkin, V.A. [Faculty of Physical Techniques and Devices for Quality Control, Ural Federal University, Ekaterinburg (Russian Federation); Faculty of Experimental Physics, Ural Federal University, Ekaterinburg (Russian Federation); Oshtrakh, M.I. [Faculty of Physical Techniques and Devices for Quality Control, Ural Federal University, Ekaterinburg (Russian Federation); Klepova, Yu.V.; Sadovnikov, N.V. [Faculty of Physiology and Biotechnology, Ural State Agricultural Academy, Ekaterinburg, (Russian Federation); Dubiel, S.M. [Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Krakow (Poland)

    2011-07-01

    Full text: Application of the Moessbauer spectroscopy with a high velocity resolution (4096 channels) for a study of iron-containing biological species is of great interest. Improving the velocity resolution allows to reveal small variations in the electronic structure of iron, and to obtain hyperfine parameters with smaller instrumental (systematic) errors in comparison with measurements performed in 512 channels or less. It also allows a more reliable fitting of complex Moessbauer spectra. In the present study the Moessbauer spectroscopy with the high velocity resolution was used for a comparative analysis of ferritin and its pharmaceutically important models as well as iron storage proteins in a chicken liver and a spleen. The ferritin, an iron storage protein, consists of a nanosized polynuclear iron core formed by a ferrihydrite surrounded by a protein shell. Iron-polysaccharide complexes contain {beta}-FeOOH iron cores coated with various polysaccharides. The Moessbauer spectra of the ferritin and commercial products Imferon, MaltoferR and Ferrum Lek as well as those of the chicken liver and spleen tissues were measured with the high velocity resolution at 295 and 90 K. They were fitted using two models: (1) with a homogeneous iron core (an approximation using one quadrupole doublet), and (2) with a heterogeneous iron core (an approximation using several quadrupole doublets). The model (1) can be used as the first approximation fit to visualize small variations in the hyperfine parameters. Using this model, differences in the Moessbauer hyperfine parameters were obtained in both 295 and 90 K Moessbauer spectra. However, this model was considered as a rough approximation because the measured Moessbauer spectra had non-Lorentzian line shapes. Therefore, the spectra of the ferritin, Imferon, MaltoferR and Ferrum Lek as well as those of the liver and spleen tissues were fitted again using the model (2) in which a different number of the quadrupole doublets was

  14. SI units in radiology

    Energy Technology Data Exchange (ETDEWEB)

    Iyer, P S [Bhabha Atomic Research Centre, Bombay (India). Div. of Radiation Protection

    1978-11-01

    The proposal of the International Commission on Radiation Units and Measurements that the special units of radiation and radioactivity-roentgen, rad, rem and curie-be replaced by the International System (SI) of Units has been accepted by international bodies. This paper reviews the resons for introducing the new units and their features. The relation between the special units and the corresponding SI units is discussed with examples. In spite of anticipated difficulties, the commission recommends a smooth and efficient changeover to the SI units in ten years.

  15. Fusion Power Demonstration III

    International Nuclear Information System (INIS)

    Lee, J.D.

    1985-07-01

    This is the third in the series of reports covering the Fusion Power Demonstration (FPD) design study. This volume considers the FPD-III configuration that incorporates an octopole end plug. As compared with the quadrupole end-plugged designs of FPD-I and FPD-II, this octopole configuration reduces the number of end cell magnets and shortens the minimum ignition length of the central cell. The end-cell plasma length is also reduced, which in turn reduces the size and cost of the end cell magnets and shielding. As a contiuation in the series of documents covering the FPD, this report does not stand alone as a design description of FPD-III. Design details of FPD-III subsystems that do not differ significantly from those of the FPD-II configuration are not duplicated in this report

  16. III-V microelectronics

    CERN Document Server

    Nougier, JP

    1991-01-01

    As is well known, Silicon widely dominates the market of semiconductor devices and circuits, and in particular is well suited for Ultra Large Scale Integration processes. However, a number of III-V compound semiconductor devices and circuits have recently been built, and the contributions in this volume are devoted to those types of materials, which offer a number of interesting properties. Taking into account the great variety of problems encountered and of their mutual correlations when fabricating a circuit or even a device, most of the aspects of III-V microelectronics, from fundamental p

  17. Microstructure and Mechanical Property of SiCf/SiC and Cf/SiC Composites

    International Nuclear Information System (INIS)

    Lee, S P; Cho, K S; Lee, H U; Lee, J K; Bae, D S; Byun, J H

    2011-01-01

    The mechanical properties of SiC based composites reinforced with different types of fabrics have been investigated, in conjunction with the detailed analyses of their microstructures. The thermal shock properties of SiC f /SiC composites were also examined. All composites showed a dense morphology in the matrix region. Carbon coated PW-SiC f /SiC composites had a good fracture energy, even if their strength was lower than that of PW-C f /SiC composites. SiC f /SiC composites represented a great reduction of flexural strength at the thermal shock temperature difference of 300 deg. C.

  18. Consideration of Wear Rates at High Velocity

    Science.gov (United States)

    2010-03-01

    materials, Type 304 stainless steel, molybdenum, vanadium, SAE 4140 steel, and tantalum, were evaluated at 835, 1200, and 2500 ft/s. Track conditions...the exception that the pin was replaced by a restrained spherical rider (ball). The 6.35 mm diameter balls were made of SAE 1095 steel and the disk was... SAE 1020 steel. Sliding velocity and applied load ranged from 0.254–33.5 m/s and 745 MPa–1.76 GPa, respectively. Figure 1.8 shows the effect of

  19. Summary of Session III

    International Nuclear Information System (INIS)

    Furman, M.A.

    2002-01-01

    This is a summary of the talks presented in Session III ''Simulations of Electron-Cloud Build Up'' of the Mini-Workshop on Electron-Cloud Simulations for Proton and Positron Beams ECLOUD-02, held at CERN, 15-18 April 2002

  20. III-V-on-silicon solar cells reaching 33% photoconversion efficiency in two-terminal configuration

    Science.gov (United States)

    Cariou, Romain; Benick, Jan; Feldmann, Frank; Höhn, Oliver; Hauser, Hubert; Beutel, Paul; Razek, Nasser; Wimplinger, Markus; Bläsi, Benedikt; Lackner, David; Hermle, Martin; Siefer, Gerald; Glunz, Stefan W.; Bett, Andreas W.; Dimroth, Frank

    2018-04-01

    Silicon dominates the photovoltaic industry but the conversion efficiency of silicon single-junction solar cells is intrinsically constrained to 29.4%, and practically limited to around 27%. It is possible to overcome this limit by combining silicon with high-bandgap materials, such as III-V semiconductors, in a multi-junction device. Significant challenges associated with this material combination have hindered the development of highly efficient III-V/Si solar cells. Here, we demonstrate a III-V/Si cell reaching similar performances to standard III-V/Ge triple-junction solar cells. This device is fabricated using wafer bonding to permanently join a GaInP/GaAs top cell with a silicon bottom cell. The key issues of III-V/Si interface recombination and silicon's weak absorption are addressed using poly-silicon/SiOx passivating contacts and a novel rear-side diffraction grating for the silicon bottom cell. With these combined features, we demonstrate a two-terminal GaInP/GaAs//Si solar cell reaching a 1-sun AM1.5G conversion efficiency of 33.3%.

  1. Interfacial characterization of CVI-SiC/SiC composites

    International Nuclear Information System (INIS)

    Yang, W.; Kohyama, A.; Noda, T.; Katoh, Y.; Hinoki, T.; Araki, H.; Yu, J.

    2002-01-01

    The mechanical properties of the interfaces of two families of chemical vapor infiltration SiC/SiC composites, advanced Tyranno-SA and Hi-Nicalon fibers reinforced SiC/SiC composites with various carbon and SiC/C interlayers, were investigated by single fiber push-out/push-back tests. Interfacial debonding and fibers sliding mainly occurred adjacent to the first carbon layer on the fibers. The interfacial debonding strengths and frictional stresses for both Tyranno-SA/SiC and Hi-Nicalon/SiC composites were correlated with the first carbon layer thickness. Tyranno-SA/SiC composites exhibited much larger interfacial frictional stresses compared to Hi-Nicalon/SiC composites. This was assumed to be mainly contributed by the rather rough surface of the Tyranno-SA fiber

  2. Sub-barrier fusion of Si+Si systems

    Science.gov (United States)

    Colucci, G.; Montagnoli, G.; Stefanini, A. M.; Bourgin, D.; Čolović, P.; Corradi, L.; Courtin, S.; Faggian, M.; Fioretto, E.; Galtarossa, F.; Goasduff, A.; Haas, F.; Mazzocco, M.; Scarlassara, F.; Stefanini, C.; Strano, E.; Urbani, M.; Szilner, S.; Zhang, G. L.

    2017-11-01

    The near- and sub-barrier fusion excitation function has been measured for the system 30Si+30Si at the Laboratori Nazionali di Legnaro of INFN, using the 30Si beam of the XTU Tandem accelerator in the energy range 47 - 90 MeV. A set-up based on a beam electrostatic deflector was used for detecting fusion evaporation residues. The measured cross sections have been compared to previous data on 28Si+28Si and Coupled Channels (CC) calculations have been performed using M3Y+repulsion and Woods-Saxon potentials, where the lowlying 2+ and 3- excitations have been included. A weak imaginary potential was found to be necessary to reproduce the low energy 28Si+28Si data. This probably simulates the effect of the oblate deformation of this nucleus. On the contrary, 30Si is a spherical nucleus, 30Si+30Si is nicely fit by CC calculations and no imaginary potential is needed. For this system, no maximum shows up for the astrophysical S-factor so that we have no evidence for hindrance, as confirmed by the comparison with CC calculations. The logarithmic derivative of the two symmetric systems highlights their different low energy trend. A difference can also be noted in the two barrier distributions, where the high-energy peak present in 28Si+28Si is not observed for 30Si+30Si, probably due to the weaker couplings in last case.

  3. Sub-barrier fusion of Si+Si systems

    Directory of Open Access Journals (Sweden)

    Colucci G.

    2017-01-01

    Full Text Available The near- and sub-barrier fusion excitation function has been measured for the system 30Si+30Si at the Laboratori Nazionali di Legnaro of INFN, using the 30Si beam of the XTU Tandem accelerator in the energy range 47 - 90 MeV. A set-up based on a beam electrostatic deflector was used for detecting fusion evaporation residues. The measured cross sections have been compared to previous data on 28Si+28Si and Coupled Channels (CC calculations have been performed using M3Y+repulsion and Woods-Saxon potentials, where the lowlying 2+ and 3− excitations have been included. A weak imaginary potential was found to be necessary to reproduce the low energy 28Si+28Si data. This probably simulates the effect of the oblate deformation of this nucleus. On the contrary, 30Si is a spherical nucleus, 30Si+30Si is nicely fit by CC calculations and no imaginary potential is needed. For this system, no maximum shows up for the astrophysical S-factor so that we have no evidence for hindrance, as confirmed by the comparison with CC calculations. The logarithmic derivative of the two symmetric systems highlights their different low energy trend. A difference can also be noted in the two barrier distributions, where the high-energy peak present in 28Si+28Si is not observed for 30Si+30Si, probably due to the weaker couplings in last case.

  4. Cobalt(III) complex

    Indian Academy of Sciences (India)

    Administrator

    e, 40 µM complex, 10 hrs after dissolution, f, 40 µM complex, after irradiation dose 15 Gy. and H-atoms result in reduction of Co(III) to Co. (II). 6. It is interesting to see in complex containing multiple ligands what is the fate of electron adduct species formed by electron addition. Reduction to. Co(II) and intramolecular transfer ...

  5. Calculus III essentials

    CERN Document Server

    REA, Editors of

    2012-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Calculus III includes vector analysis, real valued functions, partial differentiation, multiple integrations, vector fields, and infinite series.

  6. Very Broad [O III] λλ4959, 5007 Emission from the NGC 4472 Globular Cluster RZ 2109 and Implications for the Mass of Its Black Hole X-Ray Source

    Science.gov (United States)

    Zepf, Stephen E.; Stern, Daniel; Maccarone, Thomas J.; Kundu, Arunav; Kamionkowski, Marc; Rhode, Katherine L.; Salzer, John J.; Ciardullo, Robin; Gronwall, Caryl

    2008-08-01

    We present Keck LRIS spectroscopy of the black hole-hosting globular cluster RZ 2109 in the Virgo elliptical galaxy NGC 4472. We find that this object has extraordinarily broad [O III] λ5007 and [O III] λ4959 emission lines, with velocity widths of approximately 2000 km s-1. This result has significant implications for the nature of this accreting black hole system and the mass of the globular cluster black hole. We show that the broad [O III] λ5007 emission must arise from material driven at high velocity from the black hole system. This is because the volume available near the black hole is too small by many orders of magnitude to have enough [O III]-emitting atoms to account for the observed L([O III] λ5007) at high velocities, even if this volume is filled with oxygen at the critical density for [O III] λ5007. The Balmer emission is also weak, indicating the observed [O III] is not due to shocks. We therefore conclude that the [O III] λλ4959, 5007 is produced by photoionization of material driven across the cluster. The only known way to drive significant material at high velocity is for a system accreting mass near or above its Eddington limit, which indicates a stellar-mass black hole. Since it is dynamically implausible to form an accreting stellar-mass black hole system in a globular cluster with an intermediate-mass black hole (IMBH), it appears this massive globular cluster does not have an IMBH. We discuss further tests of this conclusion, and its implications for the MBH - Mstellar and MBH - σ relations. Based on observations made at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  7. Protection by high velocity thermal spraying coatings on thick walled permanent and interim store components for the diminution of repairs, corrosion and costs 'SHARK'. Overview at the end of the project

    International Nuclear Information System (INIS)

    Behrens, Sabine; Hassel, Thomas; Bach, Friedrich-Wilhelm

    2012-01-01

    The corrosion protection of the internal space of thick-walled interim and permanent storage facility components, such as Castor copyright containers, are ensured nowadays by a galvanic nickel layer. The method has proved itself and protects the base material of the containers at the underwater loading in the Nuclear power station from a corrosive attack. Although, the galvanic nickel plating is a relatively time consuming method, it lasts for several days for each container, and is with a layer thickness of 1,000 μm also expensive. To develop an alternative, faster and more economical method, a BMBF research project named - 'SHARK - protection by high velocity thermal spraying layers on thick-walled permanent and interim store components for the diminution of repairs, corrosion and costs' in cooperation between Siempelkamp Nukleartechnik GmbH and the Institute of Materials Science of the Leibniz University of Hanover was established to investigate the suitability of the high velocity oxy fuel spraying technology (HVOF) for the corrosion protective coating of thickwalled interim and permanent storage facility components. Since the permanent storage depot components are manufactured from cast iron with globular graphite, this material was exclusively used as a base material in this project. The evaluation of the economical features of the application of different nickel base spraying materials on cast iron substratum was in focus, as well as the scientific characterization of the coating systems with regard to the corrosion protective properties. Furthermore, the feasibility of the transfer of the laboratory results on a large industrial setup as well as a general suitability of the coating process for a required repair procedure was to be investigated. The preliminary examination program identified chromium containing spraying materials as successful. Results of the preliminary examination program have been used for investigations with the CASOIK demonstration

  8. Photoluminescence of Er-doped Si-SiO2 and Al-Si-SiO2 sputtered thin films

    International Nuclear Information System (INIS)

    Rozo, C.; Fonseca, L.F.; Jaque, D.; Sole, J.Garcia

    2008-01-01

    Er-doped Si-SiO 2 and Al-Si-SiO 2 films have been deposited by rf-sputtering being annealed afterwards. Annealing behavior of the Er 3+ : 4 I 13/2 → 4 I 15/2 emission of Er-doped Si-SiO 2 yields a maximum intensity for annealing at 700-800 deg. C. 4 I 13/2 → 4 I 15/2 peak emission for Er-doped Al-Si-SiO 2 at 1525 nm is shifted from that for Er-doped Si-SiO 2 at 1530 nm and the bandwidth increases from 29 to 42 nm. 4 I 13/2 → 4 I 15/2 emission decays present a fast decaying component related to Er ions coupled to Si nanoparticles, defects, or other ions, and a slow decaying component related to isolated Er ions. Excitation wavelength dependence and excitation power dependence for the 4 I 13/2 → 4 I 15/2 emission correspond with energy transfer from Si nanoparticles. Populating of the 4 I 11/2 level in Er-doped Si-SiO 2 involves branching and energy transfer upconversion involving two or more Er ions. Addition of Al reduces the populating of this level to an energy transfer upconversion involving two ions

  9. Silicon-Based Integration of Groups III, IV, V Chemical Vapor Depositions in High-Quality Photodiodes

    NARCIS (Netherlands)

    Sammak, A.

    2012-01-01

    Heterogeneous integration of III-V semiconductors with silicon (Si) technology is an interesting approach to utilize the advantages of both high-speed photonic and electronic properties. The work presented in this thesis is initiated by this major goal of merging III-V semiconductor technology with

  10. SiCloud

    DEFF Research Database (Denmark)

    Jiang, Cathy Y.; Devore, Peter T.S.; Lonappan, Cejo Konuparamban

    2017-01-01

    The silicon photonics industry is projected to be a multibillion dollar industry driven by the growth of data centers. In this work, we present an interactive online tool for silicon photonics. Silicon Photonics Cloud (SiCCloud.org) is an easy to use instructional tool for optical properties...

  11. SI: The Stellar Imager

    Science.gov (United States)

    Carpenter, Kenneth G.; Schrijver, Carolus J.; Karovska, Margarita

    2006-01-01

    The ultra-sharp images of the Stellar Imager (SI) will revolutionize our view of many dynamic astrophysical processes: The 0.1 milliarcsec resolution of this deep-space telescope will transform point sources into extended sources, and simple snapshots into spellbinding evolving views. SI s science focuses on the role of magnetism in the Universe, particularly on magnetic activity on the surfaces of stars like the Sun. SI s prime goal is to enable long-term forecasting of solar activity and the space weather that it drives in support of the Living With a Star program in the Exploration Era by imaging a sample of magnetically active stars with enough resolution to map their evolving dynamo patterns and their internal flows. By exploring the Universe at ultra-high resolution, SI will also revolutionize our understanding of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magnetohydrodynamically controlled structures and processes in the Universe.

  12. U-Mo/Al-Si interaction: Influence of Si concentration

    International Nuclear Information System (INIS)

    Allenou, J.; Palancher, H.; Iltis, X.; Cornen, M.; Tougait, O.; Tucoulou, R.; Welcomme, E.; Martin, Ph.; Valot, C.; Charollais, F.; Anselmet, M.C.; Lemoine, P.

    2010-01-01

    Within the framework of the development of low enriched nuclear fuels for research reactors, U-Mo/Al is the most promising option that has however to be optimised. Indeed at the U-Mo/Al interfaces between U-Mo particles and the Al matrix, an interaction layer grows under irradiation inducing an unacceptable fuel swelling. Adding silicon in limited content into the Al matrix has clearly improved the in-pile fuel behaviour. This breakthrough is attributed to an U-Mo/Al-Si protective layer around U-Mo particles appeared during fuel manufacturing. In this work, the evolution of the microstructure and composition of this protective layer with increasing Si concentrations in the Al matrix has been investigated. Conclusions are based on the characterization at the micrometer scale (X-ray diffraction and energy dispersive spectroscopy) of U-Mo7/Al-Si diffusion couples obtained by thermal annealing at 450 deg. C. Two types of interaction layers have been evidenced depending on the Si content in the Al-Si alloy: the threshold value is found at about 5 wt.% but obviously evolves with temperature. It has been shown that for Si concentrations ranging from 2 to 10 wt.%, the U-Mo7/Al-Si interaction is bi-layered and the Si-rich part is located close to the Al-Si for low Si concentrations (below 5 wt.%) and close to the U-Mo for higher Si concentrations. For Si weight fraction in the Al alloy lower than 5 wt.%, the Si-rich sub-layer (close to Al-Si) consists of U(Al, Si) 3 + UMo 2 Al 20 , when the other sub-layer (close to U-Mo) is silicon free and made of UAl 3 and U 6 Mo 4 Al 43 . For Si weight concentrations above 5 wt.%, the Si-rich part becomes U 3 (Si, Al) 5 + U(Al, Si) 3 (close to U-Mo) and the other sub-layer (close to Al-Si) consists of U(Al, Si) 3 + UMo 2 Al 20 . On the basis of these results and of a literature survey, a scheme is proposed to explain the formation of different types of ILs between U-Mo and Al-Si alloys (i.e. different protective layers).

  13. Efficient construction of an inverted minimal H1 promoter driven siRNA expression cassette: facilitation of promoter and siRNA sequence exchange.

    Directory of Open Access Journals (Sweden)

    Hoorig Nassanian

    2007-08-01

    Full Text Available RNA interference (RNAi, mediated by small interfering RNA (siRNA, is an effective method used to silence gene expression at the post-transcriptional level. Upon introduction into target cells, siRNAs incorporate into the RNA-induced silencing complex (RISC. The antisense strand of the siRNA duplex then "guides" the RISC to the homologous mRNA, leading to target degradation and gene silencing. In recent years, various vector-based siRNA expression systems have been developed which utilize opposing polymerase III promoters to independently drive expression of the sense and antisense strands of the siRNA duplex from the same template.We show here the use of a ligase chain reaction (LCR to develop a new vector system called pInv-H1 in which a DNA sequence encoding a specific siRNA is placed between two inverted minimal human H1 promoters (approximately 100 bp each. Expression of functional siRNAs from this construct has led to efficient silencing of both reporter and endogenous genes. Furthermore, the inverted H1 promoter-siRNA expression cassette was used to generate a retrovirus vector capable of transducing and silencing expression of the targeted protein by>80% in target cells.The unique design of this construct allows for the efficient exchange of siRNA sequences by the directional cloning of short oligonucleotides via asymmetric restriction sites. This provides a convenient way to test the functionality of different siRNA sequences. Delivery of the siRNA cassette by retroviral transduction suggests that a single copy of the siRNA expression cassette efficiently knocks down gene expression at the protein level. We note that this vector system can potentially be used to generate a random siRNA library. The flexibility of the ligase chain reaction suggests that additional control elements can easily be introduced into this siRNA expression cassette.

  14. Nonvolatile field effect transistors based on protons and Si/SiO2Si structures

    International Nuclear Information System (INIS)

    Warren, W.L.; Vanheusden, K.; Fleetwood, D.M.; Schwank, J.R.; Winokur, P.S.; Knoll, M.G.; Devine, R.A.B.

    1997-01-01

    Recently, the authors have demonstrated that annealing Si/SiO 2 /Si structures in a hydrogen containing ambient introduces mobile H + ions into the buried SiO 2 layer. Changes in the H + spatial distribution within the SiO 2 layer were electrically monitored by current-voltage (I-V) measurements. The ability to directly probe reversible protonic motion in Si/SiO 2 /Si structures makes this an exemplar system to explore the physics and chemistry of hydrogen in the technologically relevant Si/SiO 2 structure. In this work, they illustrate that this effect can be used as the basis for a programmable nonvolatile field effect transistor (NVFET) memory that may compete with other Si-based memory devices. The power of this novel device is its simplicity; it is based upon standard Si/SiO 2 /Si technology and forming gas annealing, a common treatment used in integrated circuit processing. They also briefly discuss the effects of radiation on its retention properties

  15. Microstructure and Wear Behavior of FeCoCrNiMo0.2 High Entropy Coatings Prepared by Air Plasma Spray and the High Velocity Oxy-Fuel Spray Processes

    Directory of Open Access Journals (Sweden)

    Tianchen Li

    2017-09-01

    Full Text Available In the present research, the spherical FeCoCrNiMo0.2 high entropy alloy (HEA powders with a single FCC solid solution structure were prepared by gas atomization. Subsequently, the FeCoCrNiMo0.2 coatings with a different content of oxide inclusions were prepared by air plasma spraying (APS and high-velocity oxy-fuel spraying (HVOF, respectively. The microstructure, phase composition, mechanical properties, and tribological behaviors of these HEA coatings were investigated. The results showed that both HEA coatings showed a typical lamellar structure with low porosity. Besides the primary FCC phase, a mixture of Fe2O3, Fe3O4, and AB2O4 (A = Fe, Co, Ni, and B = Fe, Cr was identified as the oxide inclusions. The oxide content of the APS coating and HVOF coating was calculated to be 47.0% and 12.7%, respectively. The wear resistance of the APS coating was approximately one order of magnitude higher than that of the HVOF coating. It was mainly attributed to the self-lubricated effect caused by the oxide films. The mass loss of the APS coating was mainly ascribed to the breakaway of the oxide film, while the main wear mechanism of the HVOF coating was the abrasive wear.

  16. Comparative analysis of the heme iron electronic structure and stereochemistry in tetrameric rabbit hemoglobin and monomeric soybean leghemoglobin a using Mössbauer spectroscopy with a high velocity resolution

    Science.gov (United States)

    Alenkina, I. V.; Kumar, A.; Berkovsky, A. L.; Oshtrakh, M. I.

    2018-02-01

    A comparative study of tetrameric rabbit hemoglobin and monomeric soybean leghemoglobin a in the oxy- and deoxy-forms was carried out using 57Fe Mössbauer spectroscopy with a high velocity resolution in order to analyze the heme iron electronic structure and stereochemistry in relation to the Mössbauer hyperfine parameters. The Mössbauer spectra of tetrameric rabbit hemoglobin in both forms were fitted using two quadrupole doublets related to the 57Fe in ɑ- and β-subunits. In contrast, the Mössbauer spectra of monomeric soybean leghemoglobin a were fitted using: (i) two quadrupole doublets for the oxy-form related to two conformational states of the distal His E7 imidazole ring and different hydrogen bonding of oxygen molecule in the oxy-form and (ii) using three quadrupole doublets for deoxy-form related to three conformational states of the proximal His F8 imidazole ring. Small variations of Mössbauer hyperfine parameters related to small differences in the heme iron electronic structure and stereochemistry in tetrameric rabbit hemoglobin and monomeric soybean leghemoglobin a are discussed.

  17. Gd-Ni-Si system

    International Nuclear Information System (INIS)

    Bodak, O.I.; Shvets, A.F.

    1983-01-01

    By X-ray phase analysis method isothermal cross section of phase diagram of the Gd-Ni-Si system at 870 K is studied. The existence of nine previously known compounds (GdNisub(6.72)Sisub(6.28), GdNi 10 Si 2 , GdNi 5 Si 3 , GdNi 4 Si, GdNi 2 Si 2 , GdNiSi 3 , GdNiSi 2 , Gd 3 Ni 6 Si 2 and GdNiSi) is confirmed and three new compounds (GdNisub(0.2)Sisub(1.8), Gdsub(2)Nisub(1-0.8)Sisub(1-1.2), Gd 5 NiSi 4 ) are found. On the base of Gd 2 Si 3 compound up to 0.15 at. Ni fractions, an interstitial solid solution is formed up to 0.25 at Ni fractions dissolution continues of substitution type. The Gd-Ni-Si system is similar to the Y-Ni-Si system

  18. Si-to-Si wafer bonding using evaporated glass

    DEFF Research Database (Denmark)

    Reus, Roger De; Lindahl, M.

    1997-01-01

    Anodic bonding of Si to Si four inch wafers using evaporated glass was performed in air at temperatures ranging from 300°C to 450°C. Although annealing of Si/glass structures around 340°C for 15 minutes eliminates stress, the bonded wafer pairs exhibit compressive stress. Pull testing revealed...

  19. Oblique roughness replication in strained SiGe/Si multilayers

    NARCIS (Netherlands)

    Holy, V.; Darhuber, A.A.; Stangl, J.; Bauer, G.; Nützel, J.-F.; Abstreiter, G.

    1998-01-01

    The replication of the interface roughness in SiGe/Si multilayers grown on miscut Si(001) substrates has been studied by means of x-ray reflectivity reciprocal space mapping. The interface profiles were found to be highly correlated and the direction of the maximal replication was inclined with

  20. Applications of Si/SiGe heterostructures to CMOS devices

    International Nuclear Information System (INIS)

    Sidek, R.M.

    1999-03-01

    For more than two decades, advances in MOSFETs used in CMOS VLSI applications have been made through scaling to ever smaller dimensions for higher packing density, faster circuit speed and lower power dissipation. As scaling now approaches nanometer regime, the challenge for further scaling becomes greater in terms of technology as well as device reliability. This work presents an alternative approach whereby non-selectively grown Si/SiGe heterostructure system is used to improve device performance or to relax the technological challenge. SiGe is considered to be of great potential because of its promising properties and its compatibility with Si, the present mainstream material in microelectronics. The advantages of introducing strained SiGe in CMOS technology are examined through two types of device structure. A novel structure has been fabricated in which strained SiGe is incorporated in the source/drain of P-MOSFETs. Several advantages of the Si/SiGe source/drain P-MOSFETs over Si devices are experimentally, demonstrated for the first time. These include reduction in off-state leakage and punchthrough susceptibility, degradation of parasitic bipolar transistor (PBT) action, suppression of CMOS latchup and suppression of PBT-induced breakdown. The improvements due to the Si/SiGe heterojunction are supported by numerical simulations. The second device structure makes use of Si/SiGe heterostructure as a buried channel to enhance the hole mobility of P-MOSFETs. The increase in the hole mobility will benefit the circuit speed and device packing density. Novel fabrication processes have been developed to integrate non-selective Si/SiGe MBE layers into self-aligned PMOS and CMOS processes based on Si substrate. Low temperature processes have been employed including the use of low-pressure chemical vapor deposition oxide and plasma anodic oxide. Low field mobilities, μ 0 are extracted from the transfer characteristics, Id-Vg of SiGe channel P-MOSFETs with various Ge

  1. Electronic states at Si-SiO2 interface introduced by implantation of Si in thermal SiO2

    International Nuclear Information System (INIS)

    Kalnitsky, A.; Poindexter, E.H.; Caplan, P.J.

    1990-01-01

    Interface traps due to excess Si introduced into the Si-SiO 2 system by ion implantation are investigated. Implanted oxides are shown to have interface traps at or slightly above the Si conduction band edge with densities proportional to the density of off-stoichiometric Si at the Si-SiO 2 interface. Diluted oxygen annealing is shown to result in physical separation of interface traps and equilibrium substrate electrons, demonstrating that ''interface'' states are located within a 0.5 nm thick layer of SiO 2 . Possible charge trapping mechanisms are discussed and the effect of these traps on MOS transistor characteristics is described using a sheet charge model. (author)

  2. Enhanced direct-gap light emission from Si-capped n+-Ge epitaxial layers on Si after post-growth rapid cyclic annealing: impact of non-radiative interface recombination toward Ge/Si double heterostructure lasers.

    Science.gov (United States)

    Higashitarumizu, Naoki; Ishikawa, Yasuhiko

    2017-09-04

    Enhanced direct-gap light emission is reported for Si-capped n + -Ge layers on Si after post-growth rapid cyclic annealing (RCA), and impact of non-radiative recombination (NRR) at the Ge/Si interface is discussed toward Ge/Si double heterostructure (DH) lasers. P-doped n + -Ge layer (1 × 10 19 cm -3 , 400 nm) is grown on Si by ultra-high vacuum chemical vapor deposition, followed by a growth of Si capping layer (5 nm) to form a Si/Ge/Si DH structure. Post-growth RCA to eliminate defects in Ge is performed in N 2 at temperatures between 900°C and 780°C, where the annealing time is minimized to be 5 s in each RCA cycle to prevent an out-diffusion of P dopants from the Ge surface. Direct-gap photoluminescence (PL) intensity at 1.6 µm increases with the RCA cycles up to 40, although the threading dislocation density in Ge is not reduced after 3 cycles in the present condition. The PL enhancement is ascribed to the suppression of NRR at the Ge/Si interface, where an intermixed SiGe alloy is formed. For Ge/Si DH lasers, NRR at the Ge/Si interface is found to have a significant impact on the threshold current density Jth. In order to achieve Jth on the order of 1 kA/cm 2 , similar to III-V lasers, the interface recombination velocity S is required below 10 3 cm/s in spite of S as large as 10 5 cm/s at the ordinary defect-rich Ge/Si interface.

  3. An automatic micro-sequential injection bead injection lab-on-valve (muSI-BI-LOV) assembly for speciation analysis of ultra trace levels of Cr(III) and Cr(VI) incorporating on-line chemical reduction and employing detection by electrothermal atomic absorption spectrometry (ETAAS)

    DEFF Research Database (Denmark)

    Long, Xiangbao; Miró, Manuel; Hansen, Elo Harald

    2005-01-01

    and determination of trace levels of Cr(III) and Cr(VI) in environmental samples. The method was validated by determination of chromium species in CRM and NIST standard reference materials, and by spike recoveries of surface waters. Statistical comparison of means between experimental results and the total chromium...... certified values for the CRM and NIST materials revealed the non-existence of significant differences at a 95% confidence level....

  4. Design of readout electronics for BES III online dose rate monitoring and protection system

    International Nuclear Information System (INIS)

    Yang Shiming; Gong Guanghua; Shao Beibei; Li Jin

    2006-01-01

    To protect the beam pipe of BES III, Si PIN diodes will be used as detectors to monitor the dose rate level near the IP area. Analog to digital conversion is selected to read out the current signals of Si PIN diodes. Several low current amplifying and measuring methods are compared, mainly describing the theory of operation, software and hardware design and performance of the A/D conversion circuit. (authors)

  5. Semiconductor nanocrystals formed in SiO2 by ion implantation

    International Nuclear Information System (INIS)

    Zhu, J.G.; White, C.W.; Budai, J.D.; Withrow, S.P.; Chen, Y.

    1994-11-01

    Nanocrystals of group IV (Si, Ge and SiGe), III-V (GaAs), and II-VI (CdSe) semiconductor materials have been fabricated inside SiO 2 by ion implantation and subsequent thermal annealing. The microstructure of these nanocrystalline semiconductor materials has been studied by transmission electron microscopy (TEM). The nanocrystals form in near-spherical shape with random crystal orientations in amorphous SiO 2 . Extensive studies on the nanocrystal size distributions have been carried out for the Ge nanocrystals by changing the implantation doses and the annealing temperatures. Remarkable roughening of the nanocrystals occurs when the annealing temperature is raised over the melting temperature of the implanted semiconductor material. Strong red photoluminescence peaked around 1.67 eV has been achieved in samples with Si nanocrystals in SiO 2

  6. Reliability implications of defects in high temperature annealed Si/SiO2/Si structures

    International Nuclear Information System (INIS)

    Warren, W.L.; Fleetwood, D.M.; Shaneyfelt, M.R.; Winokur, P.S.; Devine, R.A.B.; Mathiot, D.; Wilson, I.H.; Xu, J.B.

    1994-01-01

    High-temperature post-oxidation annealing of poly-Si/SiO 2 /Si structures such as metal-oxide-semiconductor capacitors and metal-oxide-semiconductor field effect transistors is known to result in enhanced radiation sensitivity, increased 1/f noise, and low field breakdown. The authors have studied the origins of these effects from a spectroscopic standpoint using electron paramagnetic resonance (EPR) and atomic force microscopy. One result of high temperature annealing is the generation of three types of paramagnetic defect centers, two of which are associated with the oxide close to the Si/SiO 2 interface (oxygen-vacancy centers) and the third with the bulk Si substrate (oxygen-related donors). In all three cases, the origin of the defects may be attributed to out-diffusion of O from the SiO 2 network into the Si substrate with associated reduction of the oxide. The authors present a straightforward model for the interfacial region which assumes the driving force for O out-diffusion is the chemical potential difference of the O in the two phases (SiO 2 and the Si substrate). Experimental evidence is provided to show that enhanced hole trapping and interface-trap and border-trap generation in irradiated high-temperature annealed Si/SiO 2 /Si systems are all related either directly, or indirectly, to the presence of oxygen vacancies

  7. Hole spin coherence in a Ge/Si heterostructure nanowire

    DEFF Research Database (Denmark)

    Higginbotham, Andrew P; Larsen, Thorvald Wadum; Yao, Jun

    2014-01-01

    Relaxation and dephasing of hole spins are measured in a gate-defined Ge/Si nanowire double quantum dot using a fast pulsed-gate method and dispersive readout. An inhomogeneous dephasing time T2(*)≈ 0.18 μs exceeds corresponding measurements in III-V semiconductors by more than an order of magnit......Relaxation and dephasing of hole spins are measured in a gate-defined Ge/Si nanowire double quantum dot using a fast pulsed-gate method and dispersive readout. An inhomogeneous dephasing time T2(*)≈ 0.18 μs exceeds corresponding measurements in III-V semiconductors by more than an order...

  8. Strained Si/SiGe MOS transistor model

    Directory of Open Access Journals (Sweden)

    Tatjana Pešić-Brđanin

    2009-06-01

    Full Text Available In this paper we describe a new model of surfacechannel strained-Si/SiGe MOSFET based on the extension of non-quasi-static (NQS circuit model previously derived for bulk-Si devices. Basic equations of the NQS model have been modified to account for the new physical parameters of strained-Si and relaxed-SiGe layers. From the comparisons with measurements, it is shown that a modified NQS MOS including steady-state self heating can accurately predict DC characteristics of Strained Silicon MOSFETs.

  9. Collecting the Missing Piece of the Puzzle: The Wind Temperatures of Arcturus (K2 III) and Aldeberan (K5 III)

    Science.gov (United States)

    Harper, Graham

    2017-08-01

    Unravelling the poorly understood processes that drive mass loss from red giant stars requires that we empirically constrain the intimately coupled momentum and energy balance. Hubble high spectral resolution observations of wind scattered line profiles, from neutral and singly ionized species, have provided measures of wind acceleration, turbulence, terminal speeds, and mass-loss rates. These wind properties inform us about the force-momentum balance, however, the spectra have not yielded measures of the much needed wind temperatures, which constrain the energy balance.We proposed to remedy this omission with STIS E140H observations of the Si III 1206 Ang. resonance emission line for two of the best studied red giants: Arcturus (alpha Boo: K2 III) and Aldebaran (alpha Tau: K5 III), both of which have detailed semi-empirical wind velocity models. The relative optical depths of wind scattered absorption in Si III 1206 Ang., O I 1303 Ang. triplet., C II 1335 Ang., and existing Mg II h & k and Fe II profiles give the wind temperatures through the thermally controlled ionization balance. The new temperature constraints will be used to test existing semi-empirical models by comparision with multi-frequency JVLA radio fluxes, and also to constrain the flux-tube geometry and wave energy spectrum of magnetic wave-driven winds.

  10. III-V/Active-Silicon Integration for Low-Cost High-Performance Concentrator Photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Ringel, Steven [The Ohio State Univ., Columbus, OH (United States); Carlin, John A [The Ohio State Univ., Columbus, OH (United States); Grassman, Tyler [The Ohio State Univ., Columbus, OH (United States)

    2018-04-17

    This FPACE project was motivated by the need to establish the foundational pathway to achieve concentrator solar cell efficiencies greater than 50%. At such an efficiency, DOE modeling projected that a III-V CPV module cost of $0.50/W or better could be achieved. Therefore, the goal of this project was to investigate, develop and advance a III-V/Si mulitjunction (MJ) CPV technology that can simultaneously address the primary cost barrier for III-V MJ solar cells while enabling nearly ideal MJ bandgap profiles that can yield efficiencies in excess of 50% under concentrated sunlight. The proposed methodology was based on use of our recently developed GaAsP metamorphic graded buffer as a pathway to integrate unique GaAsP and Ga-rich GaInP middle and top junctions having bandgaps that are adjustable between 1.45 – 1.65 eV and 1.9 – 2.1 eV, respectively, with an underlying, 1.1 eV active Si subcell/substrate. With this design, the Si can be an active component sub-cell due to the semi-transparent nature of the GaAsP buffer with respect to Si as well as a low-cost alternative substrate that is amenable to scaling with existing Si foundry infrastructure, providing a reduction in materials cost and a low cost path to manufacturing at scale. By backside bonding of a SiGe, a path to exceed 50% efficiency is possible. Throughout the course of this effort, an expansive range of new understanding was achieved that has stimulated worldwide efforts in III-V/Si PV R&D that spanned materials development, metamorphic device optimization, and complete III-V/Si monolithic integration. Highlights include the demonstration of the first ideal GaP/Si interfaces grown by industry-standard MOCVD processes, the first high performance metamorphic tunnel junctions designed for III-V/Si integration, record performance of specific metamorphic sub-cell designs, the first fully integrated GaInP/GaAsP/Si double (1.7 eV/1.1 eV) and triple (1.95 eV/1.5 eV/1.1 eV) junction solar cells, the first

  11. High-performance a -Si/c-Si heterojunction photoelectrodes for photoelectrochemical oxygen and hydrogen evolution

    KAUST Repository

    Wang, Hsin Ping; Sun, Ke; Noh, Sun Young; Kargar, Alireza; Tsai, Meng Lin; Huang, Ming Yi; Wang, Deli; He, Jr-Hau

    2015-01-01

    Amorphous Si (a-Si)/crystalline Si (c-Si) heterojunction (SiHJ) can serve as highly efficient and robust photoelectrodes for solar fuel generation. Low carrier recombination in the photoelectrodes leads to high photocurrents and photovoltages

  12. Irradiation effect on Nite-SiC/SiC composites

    International Nuclear Information System (INIS)

    Hinoki, T.; Choi, Y.B.; Kohyama, A.; Ozawa, K.

    2007-01-01

    Full text of publication follows: Silicon carbide (SiC) and SiC composites are significantly attractive materials for nuclear application in particular due to exceptional low radioactivity, excellent high temperature mechanical properties and chemical stability. Despite of the excellent potential of SiC/SiC composites, the prospect of industrialization has not been clear mainly due to the low productivity and the high material cost. Chemical vapor infiltration (CVI) method can produce the excellent SiC/SiC composites with highly crystalline and excellent mechanical properties. It has been reported that the high purity SiC/SiC composites reinforced with highly crystalline fibers and fabricated by CVI method is very stable to neutron irradiation. However the production cost is high and it is difficult to fabricate thick and dense composites by CVI method. The novel processing called Nano-powder Infiltration and Transient Eutectic Phase (NITE) Processing has been developed based on the liquid phase sintering (LPS) process modification. The NITE processing can achieve both the excellent material quality and the low processing cost. The productivity of the processing is also excellent, and various kinds of shape and size of SiC/SiC composites can be produced by the NITE processing. The NITE processing can form highly crystalline matrix, which is requirement for nuclear application. The objective of this work is to understand irradiation effect of the NITESiC/SiC composites. The SiC/SiC composites used were reinforced with high purity SiC fibers, Tyranno TM SA and fabricated by the NITE method. The NITE-SiC/SiC composite bars and reference monolithic SiC bars fabricated by CVI and NITE were irradiated at up to 1.0 dpa and 600-1000 deg. C at JMTR, Japan. Mechanical properties of non-irradiated and irradiated NITESiC/ SiC composites bars were evaluated by tensile tests. Monolithic SiC bars were evaluated by flexural tests. The fracture surface was examined by SEM. Ultimate

  13. Carbon redistribution and precipitation in high temperature ion-implanted strained Si/SiGe/Si multi-layered structures

    DEFF Research Database (Denmark)

    Gaiduk, Peter; Hansen, John Lundsgaard; Nylandsted Larsen, Arne

    2014-01-01

    Graphical abstract Carbon depth profiles after high temperature implantation in strained Si/SiGe/Si multilayered system and induced structural defects.......Graphical abstract Carbon depth profiles after high temperature implantation in strained Si/SiGe/Si multilayered system and induced structural defects....

  14. Pseudo Class III malocclusion

    Directory of Open Access Journals (Sweden)

    Fadia M. Al-Hummayani

    2016-04-01

    Full Text Available The treatment of deep anterior crossbite is technically challenging due to the difficulty of placing traditional brackets with fixed appliances. This case report represents a none traditional treatment modality to treat deep anterior crossbite in an adult pseudo class III malocclusion complicated by severely retruded, supraerupted upper and lower incisors. Treatment was carried out in 2 phases. Phase I treatment was performed by removable appliance “modified Hawley appliance with inverted labial bow,” some modifications were carried out to it to suit the presented case. Positive overbite and overjet was accomplished in one month, in this phase with minimal forces exerted on the lower incisors. Whereas, phase II treatment was performed with fixed appliances (braces to align teeth and have proper over bite and overjet and to close posterior open bite, this phase was accomplished within 11 month.

  15. Ammonium diphosphitoindate(III

    Directory of Open Access Journals (Sweden)

    Farida Hamchaoui

    2013-04-01

    Full Text Available The crystal structure of the title compound, NH4[In(HPO32], is built up from InIII cations (site symmetry 3m. adopting an octahedral environment and two different phosphite anions (each with site symmetry 3m. exhibiting a triangular–pyramidal geometry. Each InO6 octahedron shares its six apices with hydrogen phosphite groups. Reciprocally, each HPO3 group shares all its O atoms with three different metal cations, leading to [In(HPO32]− layers which propagate in the ab plane. The ammonium cation likewise has site symmetry 3m.. In the structure, the cations are located between the [In(HPO32]− layers of the host framework. The sheets are held together by hydrogen bonds formed between the NH4+ cations and the O atoms of the framework.

  16. Fast ejendom III

    DEFF Research Database (Denmark)

    Munk-Hansen, Carsten

    Bogen er det tredje bind af tre planlagte bind om fast ejendom: I Overdragelsen, II Bolighandlen og III Ejerbeføjelsen. Fremstillingens giver et grundigt overblik over centrale områder af en omfattende regulering af fast ejendom, med angivelse af litteratur, hvor læseren kan søge yderligere...... oplysning. En ejer af fast ejendom er på særdeles mange områder begrænset i sin råden sammenlignet med ejeren af et formuegode i almindelighed. Fremstillingen tager udgangspunkt i ejerens perspektiv (fremfor samfundets eller myndighedernes). Både den privatretlige og offentligretlige regulering behandles......, eksempelvis ejendomsdannelsen, servitutter, naboretten, hævd, zoneinddelingen, den fysiske planlægning, beskyttelse af natur, beskyttelse af kultur, forurening fra fast ejendom, erstatning for forurening, jordforurening, ekspropriation, byggeri og adgang til fast ejendom....

  17. Optimization of the silicon subcell for III-V on silicon multijunction solar cells: Key differences with conventional silicon technology

    Science.gov (United States)

    García-Tabarés, Elisa; Martín, Diego; García, Iván; Lelièvre, Jean François; Rey-Stolle, Ignacio

    2012-10-01

    Dual-junction solar cells formed by a GaAsP or GaInP top cell and a silicon (Si) bottom cell seem to be attractive candidates to materialize the long sought-for integration of III-V materials on Si for photovoltaic (PV) applications. Such integration would offer a cost breakthrough for PV technology, unifying the low cost of Si and the efficiency potential of III-V multijunction solar cells. The optimization of the Si solar cells properties in flat-plate PV technology is well-known; nevertheless, it has been proven that the behavior of Si substrates is different when processed in an MOVPE reactor In this study, we analyze several factors influencing the bottom subcell performance, namely, 1) the emitter formation as a result of phosphorus diffusion; 2) the passivation quality provided by the GaP nucleation layer; and 3) the process impact on the bottom subcell PV properties.

  18. GaN nanorods and LED structures grown on patterned Si and AlN/Si substrates by selective area growth

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shunfeng; Fuendling, Soenke; Soekmen, Uensal; Neumann, Richard; Merzsch, Stephan; Peiner, Erwin; Wehmann, Hergo-Heinrich; Waag, Andreas [Institut fuer Halbleitertechnik, TU Braunschweig (Germany); Hinze, Peter; Weimann, Thomas [Physikalisch-Technische Bundesanstalt (PTB), Braunschweig (Germany); Jahn, Uwe; Trampert, Achim; Riechert, Henning [Paul-Drude-Institut fuer Festkoerperelektronik, Berlin (Germany)

    2010-07-15

    GaN nanorods (NRs) show promising applications in high-efficiency light emitting diodes, monolithic white light emission and optical interconnection due to their superior properties. In this work, we performed GaN nanostructures growth by pre-patterning the Si and AlN/Si substrates. The pattern was transferred to Si and AlN/Si substrates by photolithography and inductively-coupled plasma etching. GaN NRs were grown on these templates by metal-organic vapour phase epitaxy (MOVPE). GaN grown on Si pillar templates show a truncated pyramidal structure. Transmission electron microscopy measurements demonstrated clearly that the threading dislocations bend to the side facets of the GaN nanostructures and terminate. GaN growth can also be observed on the sidewalls and bottom surface between the Si pillars. A simple phenomenological model is proposed to explain the GaN nanostructure growth on Si pillar templates. Based on this model, we developed another growth method, by which we grow GaN rod structures on pre-patterned AlN/Si templates. By in-situ nitridation and decreasing of the V/III ratio, we found that GaN rods only grew on the patterned AlN/Si dots with an aspect ratio of about 1.5 - 2. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. Mixing of III-V compound semiconductor superlattices

    International Nuclear Information System (INIS)

    Mei, Ping.

    1989-01-01

    In this work, the methods as well as mechanisms of III-V compound superlattice mixing are discussed, with particular attention on the AlGaAs based superlattice system. Comparative studies of ion-induced mixing showed two distinct effects resulting from ion implantation followed by a thermal anneal; i.e. collisional mixing and impurity induced mixing. It was found that Ga and As ion induced mixing are mainly due to the collisional effect, where the extent of the mixing can be estimated theoretically, with the parameters of ion mass, incident energy and the implant dose. The impurity effect was dominant for Si, Ge, Be, Zn and Te. Quantitative studies of impurity induced mixing have been conducted on samples doped with Si or Te during the growth process. It was discovered that Si induced AlGaAs superlattice mixing yielded an activation energy of approximately 4 eV for the Al diffusion coefficient with a high power law dependence of the prefactor on the Si concentration. In the Te doped AlGaAs superlattice the Al diffusion coefficient exhibited an activation energy of ∼3.0 eV, with a prefactor approximately proportional to the Te concentration. These results are of importance in examining the current diffusion models. Zn and Si induced InP/InGaAs superlattice mixing are examined. It was found that Zn predominantly induces cation interdiffusion, while Si induces comparable cation and anion interdiffusion. In addition, widely dispersed Zn rich islands form with Zn residing in the InP layers in the form of Zn 3 P 2 . With unstrained starting material, the layer bandgap disparity increases due to mixing induced strain, while in the Si diffused sample the mixed region would be expected to exhibit bandgaps intermediate between those of the original layers. Semiconductor superlattice mixing shows technological potential for optoelectronic device fabrication

  20. Electrosynthesis of Ti5Si3, Ti5Si3/TiC, and Ti5Si3/Ti3SiC2 from Ti-Bearing Blast Furnace Slag in Molten CaCl2

    Science.gov (United States)

    Li, Shangshu; Zou, Xingli; Zheng, Kai; Lu, Xionggang; Chen, Chaoyi; Li, Xin; Xu, Qian; Zhou, Zhongfu

    2018-04-01

    Ti5Si3, Ti5Si3/TiC, and Ti5Si3/Ti3SiC2 have been electrochemically synthesized from the Ti-bearing blast furnace slag/TiO2 and/or C mixture precursors at a cell voltage of 3.8 V and 1223 K to 1273 K (950 °C to 1000 °C) in molten CaCl2. The pressed porous mixture pellets were used as the cathode, and a solid oxide oxygen-ion-conducting membrane (SOM)-based anode was used as the anode. The phase composition and morphologies of the cathodic products were systematically characterized. The final products possess a porous nodular microstructure due to the interconnection of particles. The variations of impurity elements, i.e., Ca, Mg, and Al, have been analyzed, and the result shows that Ca and Mg can be almost completely removed; however, Al cannot be easily removed from the pellet due to the formation of Ti-Al alloys during the electroreduction process. The electroreduction process has also been investigated by the layer-depended phase composition analysis of the dipped/partially reduced pellets to understand the detailed reaction process. The results indicate that the electroreduction process of the Ti-bearing blast furnace slag/TiO2 and/or C mixture precursors can be typically divided into four periods, i.e., (i) the decomposition of initial Ca(Mg,Al)(Si,Al)2O6, (ii) the reduction of Ti/Si-containing intermediate phases, (iii) the removal of impurity elements, and (iv) the formation of Ti5Si3, TiC, and Ti3SiC2. It is suggested that the SOM-based anode process has great potential to be used for the direct and facile preparation of Ti alloys and composites from cheap Ti-containing ores.

  1. HIVsirDB: a database of HIV inhibiting siRNAs.

    Directory of Open Access Journals (Sweden)

    Atul Tyagi

    Full Text Available Human immunodeficiency virus (HIV is responsible for millions of deaths every year. The current treatment involves the use of multiple antiretroviral agents that may harm patients due to their toxic nature. RNA interference (RNAi is a potent candidate for the future treatment of HIV, uses short interfering RNA (siRNA/shRNA for silencing HIV genes. In this study, attempts have been made to create a database HIVsirDB of siRNAs responsible for silencing HIV genes.HIVsirDB is a manually curated database of HIV inhibiting siRNAs that provides comprehensive information about each siRNA or shRNA. Information was collected and compiled from literature and public resources. This database contains around 750 siRNAs that includes 75 partially complementary siRNAs differing by one or more bases with the target sites and over 100 escape mutant sequences. HIVsirDB structure contains sixteen fields including siRNA sequence, HIV strain, targeted genome region, efficacy and conservation of target sequences. In order to facilitate user, many tools have been integrated in this database that includes; i siRNAmap for mapping siRNAs on target sequence, ii HIVsirblast for BLAST search against database, iii siRNAalign for aligning siRNAs.HIVsirDB is a freely accessible database of siRNAs which can silence or degrade HIV genes. It covers 26 types of HIV strains and 28 cell types. This database will be very useful for developing models for predicting efficacy of HIV inhibiting siRNAs. In summary this is a useful resource for researchers working in the field of siRNA based HIV therapy. HIVsirDB database is accessible at http://crdd.osdd.net/raghava/hivsir/.

  2. Semiconducting III-V compounds

    CERN Document Server

    Hilsum, C; Henisch, Heinz R

    1961-01-01

    Semiconducting III-V Compounds deals with the properties of III-V compounds as a family of semiconducting crystals and relates these compounds to the monatomic semiconductors silicon and germanium. Emphasis is placed on physical processes that are peculiar to III-V compounds, particularly those that combine boron, aluminum, gallium, and indium with phosphorus, arsenic, and antimony (for example, indium antimonide, indium arsenide, gallium antimonide, and gallium arsenide).Comprised of eight chapters, this book begins with an assessment of the crystal structure and binding of III-V compounds, f

  3. Synthesis and characterization of laminated Si/SiC composites

    Science.gov (United States)

    Naga, Salma M.; Kenawy, Sayed H.; Awaad, Mohamed; Abd El-Wahab, Hamada S.; Greil, Peter; Abadir, Magdi F.

    2012-01-01

    Laminated Si/SiC ceramics were synthesized from porous preforms of biogenous carbon impregnated with Si slurry at a temperature of 1500 °C for 2 h. Due to the capillarity infiltration with Si, both intrinsic micro- and macrostructure in the carbon preform were retained within the final ceramics. The SEM micrographs indicate that the final material exhibits a distinguished laminar structure with successive Si/SiC layers. The produced composites show weight gain of ≈5% after heat treatment in air at 1300 °C for 50 h. The produced bodies could be used as high temperature gas filters as indicated from the permeability results. PMID:25685404

  4. Structure of MnSi on SiC(0001)

    Science.gov (United States)

    Meynell, S. A.; Spitzig, A.; Edwards, B.; Robertson, M. D.; Kalliecharan, D.; Kreplak, L.; Monchesky, T. L.

    2016-11-01

    We report on the growth and magnetoresistance of MnSi films grown on SiC(0001) by molecular beam epitaxy. The growth resulted in a textured MnSi(111) film with a predominantly [1 1 ¯0 ] MnSi (111 )∥[11 2 ¯0 ] SiC(0001) epitaxial relationship, as demonstrated by transmission electron microscopy, reflection high energy electron diffraction, and atomic force microscopy. The 500 ∘C temperature required to crystallize the film leads to a dewetting of the MnSi layer. Although the sign of the lattice mismatch suggested the films would be under compressive stress, the films acquire an in-plane tensile strain likely driven by the difference in thermal expansion coefficients between the film and substrate during annealing. As a result, the magnetoresistive response demonstrates that the films possess a hard-axis out-of-plane magnetocrystalline anisotropy.

  5. Synthesis and characterization of laminated Si/SiC composites

    Directory of Open Access Journals (Sweden)

    Salma M. Naga

    2013-01-01

    Full Text Available Laminated Si/SiC ceramics were synthesized from porous preforms of biogenous carbon impregnated with Si slurry at a temperature of 1500 °C for 2 h. Due to the capillarity infiltration with Si, both intrinsic micro- and macrostructure in the carbon preform were retained within the final ceramics. The SEM micrographs indicate that the final material exhibits a distinguished laminar structure with successive Si/SiC layers. The produced composites show weight gain of ≈5% after heat treatment in air at 1300 °C for 50 h. The produced bodies could be used as high temperature gas filters as indicated from the permeability results.

  6. Nanocrystalline Si pathway induced unipolar resistive switching behavior from annealed Si-rich SiNx/SiNy multilayers

    International Nuclear Information System (INIS)

    Jiang, Xiaofan; Ma, Zhongyuan; Yang, Huafeng; Yu, Jie; Wang, Wen; Zhang, Wenping; Li, Wei; Xu, Jun; Xu, Ling; Chen, Kunji; Huang, Xinfan; Feng, Duan

    2014-01-01

    Adding a resistive switching functionality to a silicon microelectronic chip is a new challenge in materials research. Here, we demonstrate that unipolar and electrode-independent resistive switching effects can be realized in the annealed Si-rich SiN x /SiN y multilayers with high on/off ratio of 10 9 . High resolution transmission electron microscopy reveals that for the high resistance state broken pathways composed of discrete nanocrystalline silicon (nc-Si) exist in the Si nitride multilayers. While for the low resistance state the discrete nc-Si regions is connected, forming continuous nc-Si pathways. Based on the analysis of the temperature dependent I-V characteristics and HRTEM photos, we found that the break-and-bridge evolution of nc-Si pathway is the origin of resistive switching memory behavior. Our findings provide insights into the mechanism of the resistive switching behavior in nc-Si films, opening a way for it to be utilized as a material in Si-based memories.

  7. Nanocrystalline Si pathway induced unipolar resistive switching behavior from annealed Si-rich SiNx/SiNy multilayers

    Science.gov (United States)

    Jiang, Xiaofan; Ma, Zhongyuan; Yang, Huafeng; Yu, Jie; Wang, Wen; Zhang, Wenping; Li, Wei; Xu, Jun; Xu, Ling; Chen, Kunji; Huang, Xinfan; Feng, Duan

    2014-09-01

    Adding a resistive switching functionality to a silicon microelectronic chip is a new challenge in materials research. Here, we demonstrate that unipolar and electrode-independent resistive switching effects can be realized in the annealed Si-rich SiNx/SiNy multilayers with high on/off ratio of 109. High resolution transmission electron microscopy reveals that for the high resistance state broken pathways composed of discrete nanocrystalline silicon (nc-Si) exist in the Si nitride multilayers. While for the low resistance state the discrete nc-Si regions is connected, forming continuous nc-Si pathways. Based on the analysis of the temperature dependent I-V characteristics and HRTEM photos, we found that the break-and-bridge evolution of nc-Si pathway is the origin of resistive switching memory behavior. Our findings provide insights into the mechanism of the resistive switching behavior in nc-Si films, opening a way for it to be utilized as a material in Si-based memories.

  8. Influence of hydrogenation and mechanical grinding on the structural and ferromagnetic properties of GdFeSi

    Energy Technology Data Exchange (ETDEWEB)

    Chevalier, Bernard; Duttine, Mathieu; Wattiaux, Alain [Universite de Bordeaux, CNRS ICMCB, Pessac (France)

    2016-08-01

    Hydrogen insertion into GdFeSi induces (i) a structural transition from a tetragonal CeFeSi-type to a tetragonal ZrCuSiAs-type, (ii) an anisotropic expansion of the unit cell parameters because the a parameter decreases, whereas the c parameter increases, and (iii) a decrease in Curie temperature from 121 to 20 K. On the contrary, an amorphous ferromagnet (T{sub C} = 65 K) is obtained by mechanical grinding of GdFeSi. The three compounds (GdFeSi, GdFeSiH, and amorphous GdFeSi) were investigated by {sup 57}Fe Moessbauer spectroscopy. At 4.2 K, this study has revealed that the magnetically ordered Gd substructure produces a small transferred hyperfine magnetic field at the {sup 57}Fe nucleus.

  9. Study of Si/Si, Si/SiO2, and metal-oxide-semiconductor (MOS) using positrons

    International Nuclear Information System (INIS)

    Leung, To Chi.

    1991-01-01

    A variable-energy positron beam is used to study Si/Si, Si/SiO 2 , and metal-oxide-semiconductor (MOS) structures. The capability of depth resolution and the remarkable sensitivity to defects have made the positron annihilation technique a unique tool in detecting open-volume defects in the newly innovated low temperature (300C) molecular-beam-epitaxy (MBE) Si/Si. These two features of the positron beam have further shown its potential role in the study of the Si/SiO 2 . Distinct annihilation characteristics has been observed at the interface and has been studied as a function of the sample growth conditions, annealing (in vacuum), and hydrogen exposure. The MOS structure provides an effective way to study the electrical properties of the Si/SiO 2 interface as a function of applied bias voltage. The annihilation characteristics show a large change as the device condition is changed from accumulation to inversion. The effect of forming gas (FG) anneal is studied using positron annihilation and the result is compared with capacitance-voltage (C-V) measurements. The reduction in the number of interface states is found correlated with the changes in the positron spectra. The present study shows the importance of the positron annihilation technique as a non-contact, non-destructive, and depth-sensitive characterization tool to study the Si-related systems, in particular, the Si/SiO 2 interface which is of crucial importance in semiconductor technology, and fundamental understanding of the defects responsible for degradation of the electrical properties

  10. Controlling the size of InAs quantum dots on Si1-xGex/Si(0 0 1) by metalorganic vapor-phase epitaxy

    International Nuclear Information System (INIS)

    Kawaguchi, Kenichi; Ebe, Hiroji; Ekawa, Mitsuru; Sugama, Akio; Arakawa, Yasuhiko

    2009-01-01

    The formation of III-V InAs quantum dots (QDs) on group-IV Si 1-x Ge x /Si(0 0 1) was investigated by metalorganic vapor-phase epitaxy. Two types of QDs, round-shaped QDs and giant QDs elongated in the [1 1 0] or [1,-1,0] direction, were observed in a growth condition of low V/III ratios. An increase in the V/III ratio and AsH 3 preflow during the cooling process was found to suppress the formation of giant QDs. It was considered that replacing the H-stabilized SiGe surface with the As-stabilized surface was necessary for increasing the QD nucleation. The size and density of InAs QDs on SiGe were controllable as well as that on III-V semiconductor buffer layers, and InAs QDs with a density as high as 5 x 10 10 cm -2 were obtained.

  11. Dark matter detection - III

    International Nuclear Information System (INIS)

    Zacek, Viktor

    2015-01-01

    The quest for the missing mass of the universe has become one of the big challenges of todays particle physics and cosmology. Astronomical observations show that only 1% of the matter of the Universe is luminous. Moreover there is now convincing evidence that 85% of all gravitationally observable matter in the Universe is of a new exotic kind, different from the 'ordinary' matter surrounding us. In a series of three lectures we discuss past, recent and future efforts made world- wide to detect and/or decipher the nature of Dark Matter. In Lecture I we review our present knowledge of the Dark Matter content of the Universe and how experimenters search for it's candidates; In Lecture II we discuss so-called 'direct detection' techniques which allow to search for scattering of galactic dark matter particles with detectors in deep-underground laboratories; we discuss the interpretation of experimental results and the challenges posed by different backgrounds; In Lecture III we take a look at the 'indirect detection' of the annihilation of dark matter candidates in astrophysical objects, such as our sun or the center of the Milky Way; In addition we will have a look at efforts to produce Dark Matter particles directly at accelerators and we shall close with a look at alternative nonparticle searches and future prospects. (author)

  12. Positron annihilation at the Si/SiO2 interface

    International Nuclear Information System (INIS)

    Leung, T.C.; Weinberg, Z.A.; Asoka-Kumar, P.; Nielsen, B.; Rubloff, G.W.; Lynn, K.G.

    1992-01-01

    Variable-energy positron annihilation depth-profiling has been applied to the study of the Si/SiO 2 interface in Al-gate metal-oxide-semiconductor (MOS) structures. For both n- and p-type silicon under conditions of negative gate bias, the positron annihilation S-factor characteristic of the interface (S int ) is substantially modified. Temperature and annealing behavior, combined with known MOS physics, suggest strongly that S int depends directly on holes at interface states or traps at the Si/SiO 2 interface

  13. Formation of Si/Ge/Si heterostructures with quantum dots

    International Nuclear Information System (INIS)

    Zinov'ev, V.A.; Dvurechenskij, A.V.; Novikov, P.L.

    2003-01-01

    It is present the Monte Carlo simulation of epitaxial embedding of faceted three-dimensional Ge islands (quantum dots) in a Si matrix. Under a Si flux these islands expand and undergo a shape change (from pyramidal to drop-like shape). The main expansion occurs at initial stage of embedding in Si (deposition of 1-2 monolayers). This change is controlled by surface diffusion. The shape of island can be preserved when one uses the higher Si fluxes. The reason of island conservation lies in blocking of Ge surface diffusion [ru

  14. Complexes of 4-chlorophenoxyacetates of Nd(III), Gd(III) and Ho(III)

    International Nuclear Information System (INIS)

    Ferenc, W.; Bernat, M; Gluchowska, H.W.; Sarzynski, J.

    2010-01-01

    The complexes of 4-chlorophenoxyacetates of Nd(III), Gd(III) and Ho(III) have been synthesized as polycrystalline hydrated solids, and characterized by elemental analysis, spectroscopy, magnetic studies and also by X-ray diffraction and thermogravimetric measurements. The analysed complexes have the following colours: violet for Nd(III), white for Gd(III) and cream for Ho(III) compounds. The carboxylate groups bind as bidentate chelating (Ho) or bridging ligands (Nd, Gd). On heating to 1173K in air the complexes decompose in several steps. At first, they dehydrate in one step to form anhydrous salts, that next decompose to the oxides of respective metals. The gaseous products of their thermal decomposition in nitrogen were also determined and the magnetic susceptibilities were measured over the temperature range of 76-303K and the magnetic moments were calculated. The results show that 4-chlorophenoxyacetates of Nd(III), Gd(III) and Ho(III) are high-spin complexes with weak ligand fields. The solubility value in water at 293K for analysed 4-chlorophenoxyacetates is in the order of 10 -4 mol/dm 3 . (author)

  15. N-Acetyl-2-Aminofluorene (AAF) Processing in Adult Rat Hepatocytes in Primary Culture Occurs by High-Affinity Low-Velocity and Low-Affinity High-Velocity AAF Metabolite-Forming Systems.

    Science.gov (United States)

    Koch, Katherine S; Moran, Tom; Shier, W Thomas; Leffert, Hyam L

    2018-05-01

    N-acetyl-2-aminofluorene (AAF) is a procarcinogen used widely in physiological investigations of chemical hepatocarcinogenesis. Its metabolic pathways have been described extensively, yet little is known about its biochemical processing, growth cycle expression, and pharmacological properties inside living hepatocytes-the principal cellular targets of this hepatocarcinogen. In this report, primary monolayer adult rat hepatocyte cultures and high specific-activity [ring G-3 H]-N-acetyl-2-aminofluorene were used to extend previous observations of metabolic activation of AAF by highly differentiated, proliferation-competent hepatocytes in long-term cultures. AAF metabolism proceeded by zero-order kinetics. Hepatocytes processed significant amounts of procarcinogen (≈12 μg AAF/106 cells/day). Five ring-hydroxylated and one deacetylated species of AAF were secreted into the culture media. Extracellular metabolite levels varied during the growth cycle (days 0-13), but their rank quantitative order was time invariant: 5-OH-AAF > 7-OH-AAF > 3-OH-AAF > N-OH-AAF > aminofluorene (AF) > 1-OH-AAF. Lineweaver-Burk analyses revealed two principal classes of metabolism: System I (high-affinity and low-velocity), Km[APPARENT] = 1.64 × 10-7  M and VMAX[APPARENT] = 0.1 nmol/106 cells/day and System II (low-affinity and high-velocity), Km[APPARENT] = 3.25 × 10-5  M and VMAX[APPARENT] = 1000 nmol/106 cells/day. A third system of metabolism of AAF to AF, with Km[APPARENT] and VMAX[APPARENT] constants of 9.6 × 10-5  M and 4.7 nmol/106 cells/day, was also observed. Evidence provided in this report and its companion paper suggests selective roles and intracellular locations for System I- and System II-mediated AAF metabolite formation during hepatocarcinogenesis, although some of the molecules and mechanisms responsible for multi-system processing remain to be fully defined.

  16. Three-Dimensional Hetero-Integration of Faceted GaN on Si Pillars for Efficient Light Energy Conversion Devices.

    Science.gov (United States)

    Kim, Dong Rip; Lee, Chi Hwan; Cho, In Sun; Jang, Hanmin; Jeon, Min Soo; Zheng, Xiaolin

    2017-07-25

    An important pathway for cost-effective light energy conversion devices, such as solar cells and light emitting diodes, is to integrate III-V (e.g., GaN) materials on Si substrates. Such integration first necessitates growth of high crystalline III-V materials on Si, which has been the focus of many studies. However, the integration also requires that the final III-V/Si structure has a high light energy conversion efficiency. To accomplish these twin goals, we use single-crystalline microsized Si pillars as a seed layer to first grow faceted Si structures, which are then used for the heteroepitaxial growth of faceted GaN films. These faceted GaN films on Si have high crystallinity, and their threading dislocation density is similar to that of GaN grown on sapphire. In addition, the final faceted GaN/Si structure has great light absorption and extraction characteristics, leading to improved performance for GaN-on-Si light energy conversion devices.

  17. PREFACE: Quantum Optics III

    Science.gov (United States)

    Orszag, M.; Retamal, J. C.; Saavedra, C.; Wallentowitz, S.

    2007-06-01

    All the 50 years of conscious pondering did not bring me nearer to an answer to the question `what is light quanta?'. Nowadays, every rascal believes, he knows it, however, he is mistaken. (A Einstein, 1951 in a letter to M Besso) Quantum optics has played a key role in physics in the last several decades. On the other hand, in these early decades of the information age, the flow of information is becoming more and more central to our daily life. Thus, the related fields of quantum information theory as well as Bose-Einstein condensation have acquired tremendous importance in the last couple of decades. In Quantum Optics III, a fusion of these fields appears in a natural way. Quantum Optics III was held in Pucón, Chile, in 27-30 of November, 2006. This beautiful location in the south of Chile is near the lake Villarrica and below the snow covered volcano of the same name. This fantastic environment contributed to a relaxed atmosphere, suitable for informal discussion and for the students to have a chance to meet the key figures in the field. The previous Quantum Optics conferences took place in Santiago, Chile (Quantum Optics I, 2000) and Cozumel, Mexico (Quantum Optics II, 2004). About 115 participants from 19 countries attended and participated in the meeting to discuss a wide variety of topics such as quantum-information processing, experiments related to non-linear optics and squeezing, various aspects of entanglement including its sudden death, correlated twin-photon experiments, light storage, decoherence-free subspaces, Bose-Einstein condensation, discrete Wigner functions and many more. There was a strong Latin-American participation from Argentina, Brazil, Chile, Colombia, Peru, Uruguay, Venezuela and Mexico, as well as from Europe, USA, China, and Australia. New experimental and theoretical results were presented at the conference. In Latin-America a quiet revolution has taken place in the last twenty years. Several groups working in quantum optics and

  18. 32Si dating of sediments

    International Nuclear Information System (INIS)

    Morgenstern, U.

    2006-01-01

    Useful tools for determining absolute ages of sediments deposited within the last c. 100 years include 210 Pb, 137 Cs, and bomb radiocarbon. Cosmogenic 32 Si, with a half life of c. 140 years, can be applied in the age range 30-1000 years and is ideally suited for this time period. Detection of 32 Si is, however, very difficult due to its extremely low natural specific activity, and the vast excess of stable silicon (i.e. low 32 Si/Si ratio). 23 refs

  19. Rare earth element abundances in presolar SiC

    Science.gov (United States)

    Ireland, T. R.; Ávila, J. N.; Lugaro, M.; Cristallo, S.; Holden, P.; Lanc, P.; Nittler, L.; Alexander, C. M. O'D.; Gyngard, F.; Amari, S.

    2018-01-01

    Individual isotope abundances of Ba, lanthanides of the rare earth element (REE) group, and Hf have been determined in bulk samples of fine-grained silicon carbide (SiC) from the Murchison CM2 chondrite. The analytical protocol involved secondary ion mass spectrometry with combined high mass resolution and energy filtering to exclude REE oxide isobars and Si-C-O clusters from the peaks of interest. Relative sensitivity factors were determined through analysis of NIST SRM reference glasses (610 and 612) as well as a trace-element enriched SiC ceramic. When normalised to chondrite abundances, the presolar SiC REE pattern shows significant deficits at Eu and Yb, which are the most volatile of the REE. The pattern is very similar to that observed for Group III refractory inclusions. The SiC abundances were also normalised to s-process model predictions for the envelope compositions of low-mass (1.5-3 M⊙) AGB stars with close-to-solar metallicities (Z = 0.014 and 0.02). The overall trace element abundances (excluding Eu and Yb) appear consistent with the predicted s-process patterns. The depletions of Eu and Yb suggest that these elements remained in the gas phase during the condensation of SiC. The lack of depletion in some other moderately refractory elements (like Ba), and the presence of volatile elements (e.g. Xe) indicates that these elements were incorporated into SiC by other mechanisms, most likely ion implantation.

  20. SiC/SiC Cladding Materials Properties Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Snead, Mary A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Katoh, Yutai [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Koyanagi, Takaaki [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Singh, Gyanender P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-08-01

    When a new class of material is considered for a nuclear core structure, the in-pile performance is usually assessed based on multi-physics modeling in coordination with experiments. This report aims to provide data for the mechanical and physical properties and environmental resistance of silicon carbide (SiC) fiber–reinforced SiC matrix (SiC/SiC) composites for use in modeling for their application as accidenttolerant fuel cladding for light water reactors (LWRs). The properties are specific for tube geometry, although many properties can be predicted from planar specimen data. This report presents various properties, including mechanical properties, thermal properties, chemical stability under normal and offnormal operation conditions, hermeticity, and irradiation resistance. Table S.1 summarizes those properties mainly for nuclear-grade SiC/SiC composites fabricated via chemical vapor infiltration (CVI). While most of the important properties are available, this work found that data for the in-pile hydrothermal corrosion resistance of SiC materials and for thermal properties of tube materials are lacking for evaluation of SiC-based cladding for LWR applications.

  1. Oscillations in the fusion of the Si + Si systems

    International Nuclear Information System (INIS)

    Aguilera R, E.F.; Kolata, J.J.; DeYoung, P.A.; Vega, J.J.

    1986-02-01

    Excitation functions for the yields of all the residual nuclei from the 28 Si + 28,30 and 30 Si + 30 Si reactions have been measured via the γ-ray technique for center of mass energies in the region within one and two times the Coulomb barrier.Thirteen elements were identified for the first reaction and ten for the other two. While no structure is shown by the data for the 28 + 28 Si reaction, we have found evidence for intermediate width structure in the 2α and the αpn channels in 28 Si + 30 Si and for broad structure in the total fusion cross sections for 30 Si + 30 Si. Calculations using a barrier penetration model with one free parameter reproduce the experimental results quite well. Evaporation model calculations indicate that the individual structure of the nuclei involved in the respective decay chains might have an important influence upon the deexcitation process at the energies relevant to our experiments. (Author)

  2. Joining of SiC ceramics and SiC/SiC composites

    Energy Technology Data Exchange (ETDEWEB)

    Rabin, B.H. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1996-08-01

    This project has successfully developed a practical and reliable method for fabricating SiC ceramic-ceramic joints. This joining method will permit the use of SiC-based ceramics in a variety of elevated temperature fossil energy applications. The technique is based on a reaction bonding approach that provides joint interlayers compatible with SiC, and excellent joint mechanical properties at temperatures exceeding 1000{degrees}C. Recent emphasis has been given to technology transfer activities, and several collaborative research efforts are in progress. Investigations are focusing on applying the joining method to sintered {alpha}-SiC and fiber-reinforced SiC/SiC composites for use in applications such as heat exchangers, radiant burners and gas turbine components.

  3. Tailoring of SiC nanoprecipitates formed in Si

    Energy Technology Data Exchange (ETDEWEB)

    Velisa, G., E-mail: gihan.velisa@cea.fr [CEA, DEN, Service de Recherches de Métallurgie Physique, Laboratoire JANNUS, F-91191 Gif-sur-Yvette (France); Horia Hulubei National Institute for Physics and Nuclear Engineering, P.O. Box MG-6, 077125 Magurele (Romania); Trocellier, P. [CEA, DEN, Service de Recherches de Métallurgie Physique, Laboratoire JANNUS, F-91191 Gif-sur-Yvette (France); Thomé, L. [Centre de Spectrométrie Nucléaire et de Spectrométrie de Masse, UMR8609, Bât. 108, 91405 Orsay (France); Vaubaillon, S. [CEA, INSTN, UEPTN, Laboratoire JANNUS, F-91191 Gif-sur-Yvette (France); Miro, S.; Serruys, Y.; Bordas, É. [CEA, DEN, Service de Recherches de Métallurgie Physique, Laboratoire JANNUS, F-91191 Gif-sur-Yvette (France); Meslin, E. [CEA, DEN, Service de Recherches de Métallurgie Physique, F-91191 Gif-sur-Yvette (France); Mylonas, S. [Centre de Spectrométrie Nucléaire et de Spectrométrie de Masse, UMR8609, Bât. 108, 91405 Orsay (France); Coulon, P.E. [Ecole Polytechnique, Laboratoire des Solides Irradiés, CEA/DSM/IRAMIS-CNRS, 91128 Palaiseau Cedex (France); Leprêtre, F.; Pilz, A.; Beck, L. [CEA, DEN, Service de Recherches de Métallurgie Physique, Laboratoire JANNUS, F-91191 Gif-sur-Yvette (France)

    2013-07-15

    The SiC synthesis through single-beam of C{sup +}, and simultaneous-dual-beam of C{sup +} and Si{sup +} ion implantations into a Si substrate heated at 550 °C has been studied by means of three complementary analytical techniques: nuclear reaction analysis (NRA), Raman, and transmission electron microscopy (TEM). It is shown that a broad distribution of SiC nanoprecipitates is directly formed after simultaneous-dual-beam (520-keV C{sup +} and 890-keV Si{sup +}) and single-beam (520-keV C{sup +}) ion implantations. Their shape appear as spherical (average size ∼4–5 nm) and they are in epitaxial relationship with the silicon matrix.

  4. Basel III D: Swiss Finish to Basel III

    OpenAIRE

    Christian M. McNamara; Natalia Tente; Andrew Metrick

    2014-01-01

    After the Basel Committee on Banking Supervision (BCBS) introduced the Basel III framework in 2010, individual countries confronted the question of how best to implement the framework given their unique circumstances. Switzerland, with a banking industry that is both heavily concentrated and very large relative to the size of its overall economy, faced a special challenge. It ultimately adopted what is sometimes referred to as the “Swiss Finish” to Basel III – enhanced requirements applicable...

  5. The influence of a Si cap on self-organized SiGe islands and the underlying wetting layer

    International Nuclear Information System (INIS)

    Brehm, M.; Grydlik, M.; Groiss, H.; Hackl, F.; Schaeffler, F.; Fromherz, T.; Bauer, G.

    2011-01-01

    For the prototypical SiGe/Si(001) Stranski-Krastanow (SK) growth system, the influence of intermixing caused by the deposition of a Si cap layer at temperatures T cap between 300 deg. C and 700 deg. C is studied both for the SiGe wetting layer (WL) and the SiGe islands. Systematic growth experiments were carried out with an ultrahigh resolution of down to 0.005 monolayers (ML) of deposited Ge. The properties of the samples were investigated via photoluminescence (PL) spectroscopy, atomic force microscopy (AFM), and transmission electron microscopy. We studied in detail the influence of T cap in the three main coverage regions of SiGe SK growth, which are (i) the WL build-up regime, (ii) the island nucleation regime, where most of the Ge is supplied via material transfer from the WL, and (iii) the saturation regime, where the WL thickness remains initially stable. At T cap = 300 deg. C, we found that both the WL and the island are essentially preserved in composition and shape, whereas at 500 deg. C the WL becomes heavily alloyed during capping, and at 700 deg. C the islands also become alloyed. At T cap = 500 deg. C we found enhanced WL intermixing in the presence of dome-shaped islands, whereas at T cap 700 deg. C the WL properties become dominated by the dissolution of pyramid-shaped islands upon capping. At Ge coverages above ≅6 ML, we found an unexpected thickening of the WL, almost independently of T cap . This finding suggests that the density and the volume of the dome-shaped islands have an upper limit, beyond which excess Ge from the external source again becomes incorporated into the WL. Finally, we compared PL spectra with AFM-based evaluations of the integral island volumes in order to determine in a straightforward manner the average composition of the SiGe islands.

  6. Outcome of tyrosinaemia type III.

    Science.gov (United States)

    Ellaway, C J; Holme, E; Standing, S; Preece, M A; Green, A; Ploechl, E; Ugarte, M; Trefz, F K; Leonard, J V

    2001-12-01

    Tyrosinaemia type III is a rare disorder caused by a deficiency of 4-hydroxyphenylpyruvate dioxygenase, the second enzyme in the catabolic pathway of tyrosine. The majority of the nine previously reported patients have presented with neurological symptoms after the neonatal period, while others detected by neonatal screening have been asymptomatic. All have had normal liver and renal function and none has skin or eye abnormalities. A further four patients with tyrosinaemia type III are described. It is not clear whether a strict low tyrosine diet alters the natural history of tyrosinaemia type III, although there remains a suspicion that treatment may be important, at least in infancy.

  7. Siloxides as supporting ligands in uranium(III)-mediated small-molecule activation

    Energy Technology Data Exchange (ETDEWEB)

    Mougel, Victor; Camp, Clement; Pecaut, Jacques; Mazzanti, Marinella [CEA-Grenoble (France). Lab. de Reconnaissance Ionique et Chimie de Coordination; Coperet, Christophe [ETH Zuerich (Switzerland). Lab. of Inorganic Chemistry; Maron, Laurent; Kefalidis, Christos E. [Toulouse Univ. (France). LPCNO, CNRS et INSA, UPS

    2012-12-03

    Siloxides support the reduction of small molecules with uranium complexes. The treatment of [U{N(SiMe_3)_2}{sub 3}] with HOSi(OtBu){sub 3} (3 equiv.) yielded a novel homoleptic uranium(III) siloxide complex 1, which acted as a two-electron reducing agent toward CS{sub 2} and CO{sub 2}. Uranium(III) siloxide complex 1 also reduced toluene to afford a diuranium inverted-sandwich complex. [German] Siloxide unterstuetzen die Reduktion kleiner Molekuele durch Uran-Komplexe. Die Behandlung von [U{N(SiMe_3)_2}{sub 3}] mit HOSi(OtBu){sub 3} (3 Aequiv.) liefert den neuartigen homoleptischen Uran(III)-Siloxid-Komplex 1, der als Zwei-Elektronen-Reduktionsmittel fuer CS{sub 2} und CO{sub 2} (siehe Schema) wirkt. Komplex 1 reduziert ausserdem Toluol und bildet einen invertierten Diuran-Sandwichkomplex.

  8. Thermodecomposition of lanthanides (III) and ytrium (III) glucoheptonates

    International Nuclear Information System (INIS)

    Giolito, J.

    1987-01-01

    The lanthanides (III) and yttrium (III) glucoheptonates as well the D-glucoheptono 1-4 lactone were studied using common analytical methods, elemental microanalysis of carbon and hydrogen, thermogravimetry and differential scanning calorimetry. These compounds were prepared from the reaction between the lanthanides (III) and yttrium (III) hydroxides and glucoheptonic acid aqueous solution obtained by means of the delta lactone hydrolysis of this acid. After stoichiometric reaction the compounds were precipitated by the addition of absolute ethanol, washed with the same solvent and dried in desiccator. Thermogravimetric the (TG) curves of the lanthanides glucoheptonates of the ceric group present thermal profiles with enough differences permitting an easy caracterization of each compound and the yttrium (III) glucoheptonate TG curve showed a great similarity with the erbium (III) compound TG curve. The differential scanning calometry (DSC) curves showed endothermic and exothermic peaks by their shape, height and position (temperature) permit an easy and rapid identification of each compound specially if DSC and TG curves were examined simultaneously. (author) [pt

  9. SI units in radiation protection

    International Nuclear Information System (INIS)

    Jain, V.K.; Soman, S.D.

    1978-01-01

    International System of Units abbreviated as SI units has been adopted by most of the countries of the world. Following this development, the implementation of SI units has become mandatory with a transition period of about ten years. Some of the journals have already adopted the SI units and any material sent for publication to them must use only these. International Commission on Radiation Units and Measurement (ICRU) published letters in several journals including Physics in Medicine and Biology, Health Physics, British Journal of Radiology, etc. outlining the latest recommendations on SI units to elicit the reactions of scientists in the general field of radiological sciences. Reactions to the letters were numerous as can be seen in the correspondence columns of these journals for the last few years and ranged from great misgivings and apprehension to support and appreciation. SI units have also been the subject of editorial comments in several journals. On the basis of a survey of this literature, it may be said that there was general agreement on the long term advantage of SI units inspite of some practical difficulties in their use particularly in the initial stages. This report presents a review of SI units in radiological sciences with a view to familiarize the users with the new units in terms of the old. A time table for the gradual changeover to the SI units is also outlined. (auth.)

  10. Oscillations in the fusion of the Si + Si systems; Oscilaciones en la fusion de sistemas de Si + Si

    Energy Technology Data Exchange (ETDEWEB)

    Aguilera R, E F; Kolata, J J; DeYoung, P A; Vega, J J [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    1986-02-15

    Excitation functions for the yields of all the residual nuclei from the {sup 28} Si + {sup 28,30} and {sup 30} Si + {sup 30} Si reactions have been measured via the {gamma}-ray technique for center of mass energies in the region within one and two times the Coulomb barrier.Thirteen elements were identified for the first reaction and ten for the other two. While no structure is shown by the data for the {sup 28} + {sup 28} Si reaction, we have found evidence for intermediate width structure in the 2{alpha} and the {alpha}pn channels in {sup 28} Si + {sup 30} Si and for broad structure in the total fusion cross sections for {sup 30} Si + {sup 30} Si. Calculations using a barrier penetration model with one free parameter reproduce the experimental results quite well. Evaporation model calculations indicate that the individual structure of the nuclei involved in the respective decay chains might have an important influence upon the deexcitation process at the energies relevant to our experiments. (Author)

  11. OPTIMAL SURGICAL MANAGEMENT OF HIGH VELOCITY POSTERIOR TIBIAL PLATEAU FRACTURE SUBLUXATIONS (DUPARC, REVISED CLASSIFICATION, GROUP – V: POSTERO - MEDIAL FRACTURE BY DIRECT, DORSAL APPROACH – A CHANGING TREND: A PROSPECTIVE STUDY

    Directory of Open Access Journals (Sweden)

    Pardhasaradhi

    2015-10-01

    series of 15 patients with complex tibial plateau injuries with associated posterior shear fractures. MATERIALS AND METHODS : This prospective study included 15 cases of patients with mean age of 30 years ( Age range 20 to 40 yr who sustained high velocity posterior tibial plateau fracture - subluxations with or without associated Bicondylar fractures ( Duparc, revised classification, Group – V: Postero - medial fracture and its associations. Surgical management includes by direct, dorsal approach and stabilisation with buttress plating and or also postero medial and or antero lateral approach as needed. The patients were followed up at six week, three month, six month and one year postoperatively and assessed using Oxford Knee Score and Lyshom Score. RESULTS:The mean OKS score was 40 (range 36 to 44 at the end of one year. The main clinical measures were early post - operative non weight bearing ROM, post - operative complication & functional outcome. The time to full weight bearing, t he rate of post - operative complications & functional outcome was significantly better as evident by over 94 % showing good to excellent OKS and Lyshom scores. CONCLUSION : Fractures of the postero - medial tibial plateau are challenging to treat, owing to the ir complexity and unfamiliar surgical approach. Several recent anatomic and biomechanical studies have shown that a locked plate placed from the lateral side of the proximal tibia does not capture and stabilise a typical posteromedial fragment. A direct po sterior (Medial Gastrocnemius or posterior medial approach for these unstable posterior medial tibial plateau subluxations (which are otherwise irreducible by conventional approaches and antiglide plate are usually needed to reduce the fractures anatomic ally, achieving absolute stability and mobilise early NWB, ROM of the knee joint to optimize the functional outcomes and minimise the complications, without the need for revision surgery

  12. Effect of silica surface coating on the luminescence lifetime and upconversion temperature sensing properties of semiconductor zinc oxide doped with gallium(III) and sensitized with rare earth ions Yb(III) and Tm(III).

    Science.gov (United States)

    Li, Yuemei; Li, Yongmei; Wang, Rui; Zheng, Wei

    2018-02-26

    Optical sensing of temperature by measurement of the ratio of the intensities of the 700 nm emission and the 800 nm emission of Ga(III)-doped ZnO (GZO) nanoparticles (NPs) and of GZO NPs coated with a silica shell are demonstrated at 980 nm excitation. It is found that the relative sensitivity of SiO 2 @Yb/Tm/GZO is 6.2% K -1 at a temperature of 693 K. This is ~3.4 times higher than that of Yb/Tm/GZO NPs. Obviously, the SiO 2 shell structure decreases the rate of the nonradiative decay. The decay time of the 800 nm emission of the Yb/Tm/GZO NPs (15 mol% Ga; 7 mol% Yb; 0.5 mol% Tm) displays a biexponential decay with a dominant decay time of 148 μs and a second decay time of ~412 μs. The lifetime of the Yb/Tm/GZO NPs at 293 K, and of the SiO 2 @Yb/Tm/GZO NPs are ~412 μs. Both the Yb/Tm/GZO and SiO 2 @Yb/Tm/GZO can be used up to 693 K. These results indicate that the SiO 2 shell on the Yb/Tm/GZO is beneficial in terms of sensitivity and resolution. Graphical abstract The enhancement the decay time and thermal sensitivity in the SiO 2 @Yb/Tm/GZO shell@core structure have been studied compared to the Ga(III)-doped Yb/Tm-doped ZnO (Yb/Tm/GZO). The SiO 2 @Yb/Tm/GZO have good thermal accuracy up to 693 °C.

  13. FACT facilitates chromatin transcription by RNA polymerases I and III

    DEFF Research Database (Denmark)

    Birch, Joanna L; Tan, Bertrand C-M; Panov, Kostya I

    2009-01-01

    Efficient transcription elongation from a chromatin template requires RNA polymerases (Pols) to negotiate nucleosomes. Our biochemical analyses demonstrate that RNA Pol I can transcribe through nucleosome templates and that this requires structural rearrangement of the nucleosomal core particle....... The subunits of the histone chaperone FACT (facilitates chromatin transcription), SSRP1 and Spt16, co-purify and co-immunoprecipitate with mammalian Pol I complexes. In cells, SSRP1 is detectable at the rRNA gene repeats. Crucially, siRNA-mediated repression of FACT subunit expression in cells results...... in a significant reduction in 47S pre-rRNA levels, whereas synthesis of the first 40 nt of the rRNA is not affected, implying that FACT is important for Pol I transcription elongation through chromatin. FACT also associates with RNA Pol III complexes, is present at the chromatin of genes transcribed by Pol III...

  14. Transformational III-V Electronics

    KAUST Repository

    Nour, Maha A.

    2014-01-01

    Flexible electronics using III-V materials for nano-electronics with high electron mobility and optoelectronics with direct band gap are attractive for many applications. This thesis describes a complementary metal oxide semiconductor (CMOS

  15. Complexes of lanthanum(III), cerium(III), samarium(III) and dysprosium(III) with substituted piperidines

    Energy Technology Data Exchange (ETDEWEB)

    Manhas, B S; Trikha, A K; Singh, H; Chander, M

    1983-11-01

    Complexes of the general formulae M/sub 2/Cl/sub 6/(L)/sub 3/.C/sub 2/H/sub 5/OH and M/sub 2/(NO/sub 3/)/sub 6/(L)/sub 2/.CH/sub 3/OH have been synthesised by the reactions of chlorides and nitrates of La(III), Ce(III), Sm(III) and Dy(III) with 2-methylpiperidine, 3-methylpiperidine and 4-methylpiperidine. These complexes have been characterised on the basis of their elemental analysis, and IR and electronic reflectance spectra. IR spectral data indicate the presence of coordinated ethanol and methanol molecules and bidentate nitrate groups. Coordination numbers of the metal ions vary from 5 to 8. 19 refs.

  16. Growth of GaN on SiC/Si substrates using AlN buffer layer by hot-mesh CVD

    International Nuclear Information System (INIS)

    Tamura, Kazuyuki; Kuroki, Yuichiro; Yasui, Kanji; Suemitsu, Maki; Ito, Takashi; Endou, Tetsuro; Nakazawa, Hideki; Narita, Yuzuru; Takata, Masasuke; Akahane, Tadashi

    2008-01-01

    GaN films were grown on SiC/Si (111) substrates by hot-mesh chemical vapor deposition (CVD) using ammonia (NH 3 ) and trimetylgallium (TMG) under low V/III source gas ratio (NH 3 /TMG = 80). The SiC layer was grown by a carbonization process on the Si substrates using propane (C 3 H 8 ). The AlN layer was deposited as a buffer layer using NH 3 and trimetylaluminum (TMA). GaN films were formed and grown by the reaction between NH x radicals, generated on a tungsten hot mesh, and the TMG molecules. The GaN films with the AlN buffer layer showed better crystallinity and stronger near-band-edge emission compared to those without the AlN layer

  17. Growth of GaN on SiC/Si substrates using AlN buffer layer by hot-mesh CVD

    Energy Technology Data Exchange (ETDEWEB)

    Tamura, Kazuyuki [Nagaoka University of Technology, Nagaoka 940-2188 (Japan)], E-mail: kazuyuki@stn.nagaokaut.ac.jp; Kuroki, Yuichiro; Yasui, Kanji [Nagaoka University of Technology, Nagaoka 940-2188 (Japan); Suemitsu, Maki; Ito, Takashi [Center of Interdisciplinary Research, Tohoku University, Sendai 980-8578 (Japan); Endou, Tetsuro [Research Institute of Electrical Communication, Tohoku University, Sendai 980-8577 (Japan); Nakazawa, Hideki [Faculty of Science and Technology, Hirosaki University, Hirosaki 036-8561 (Japan); Narita, Yuzuru [Center of Interdisciplinary Research, Tohoku University, Sendai 980-8578 (Japan); Takata, Masasuke; Akahane, Tadashi [Nagaoka University of Technology, Nagaoka 940-2188 (Japan)

    2008-01-15

    GaN films were grown on SiC/Si (111) substrates by hot-mesh chemical vapor deposition (CVD) using ammonia (NH{sub 3}) and trimetylgallium (TMG) under low V/III source gas ratio (NH{sub 3}/TMG = 80). The SiC layer was grown by a carbonization process on the Si substrates using propane (C{sub 3}H{sub 8}). The AlN layer was deposited as a buffer layer using NH{sub 3} and trimetylaluminum (TMA). GaN films were formed and grown by the reaction between NH{sub x} radicals, generated on a tungsten hot mesh, and the TMG molecules. The GaN films with the AlN buffer layer showed better crystallinity and stronger near-band-edge emission compared to those without the AlN layer.

  18. Celestine III and the North

    DEFF Research Database (Denmark)

    Nielsen, Torben Kjersgaard

    2008-01-01

    Artiklen gennemgår pave Cølestin IIIs forhold til de nordiske kongeriger i perioden 1191-1198. Artiklen viser, at paven, som i forskningen traditionelt år har stået i skyggen af sin berømte, energiske og især: yngre efterfølger, Innocens III, har været på forkant med udviklingen i de nordiske rig...

  19. Synthesis and structural property of Si nanosheets connected to Si nanowires using MnCl{sub 2}/Si powder source

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Erchao [Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johuku, Naka-ku, Hamamatsu, Shizuoka 432-8561 (Japan); Ueki, Akiko [Toyota Central R& D Labs., Inc., 41-1 Yokomichi, Nagakute, Aichi 480-1192 (Japan); Meng, Xiang [Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johuku, Naka-ku, Hamamatsu, Shizuoka 432-8561 (Japan); Suzuki, Hiroaki [Graduate School of Engineering, Shizuoka University, 3-5-1 Johuku, Naka-ku, Hamamatsu, Shizuoka 432-8561 (Japan); Itahara, Hiroshi [Toyota Central R& D Labs., Inc., 41-1 Yokomichi, Nagakute, Aichi 480-1192 (Japan); Tatsuoka, Hirokazu, E-mail: tatsuoka.hirokazu@shizuoka.ac.jp [Graduate School of Integrated Science and Technology, Shizuoka University, 3-5-1 Johuku, Naka-ku, Hamamatsu, Shizuoka 432-8561 (Japan)

    2016-08-15

    Graphical abstract: Si nanosheets connected to Si nanowires synthesized using a MnCl{sub 2}/Si powder source with an Au catalyst avoid the use of air-sensitive SiH{sub 4} or SiCl{sub 4}. It was evident from these structural features of the nanosheets (leaf blade) with nanowires (petiole) that the nanosheets were formed by the twin-plane reentrant-edge mechanism. The feature of the observed lattice fringes of the Si(111) nanosheets was clearly explained by the interference with the extra diffraction spots that arose due to the reciprocal lattice streaking effect. - Highlights: • New Si nanosheets connected to Si nanowires were synthesized using MnCl{sub 2}/Si powders. • The synthesis method has benefits in terms of avoiding air sensitive SiH{sub 4} or SiCl{sub 4}. • Structural property and electron diffraction of the Si nanosheets were clarified. • Odd lattice fringes of the Si nanosheets observed by HRTEM were clearly explained. - Abstract: Si nanosheets connected to Si nanowires were synthesized using a MnCl{sub 2}/Si powder source with an Au catalyst. The synthesis method has benefits in terms of avoiding conventionally used air-sensitive SiH{sub 4} or SiCl{sub 4}. The existence of the Si nanosheets connected to the Si<111> nanowires, like sprouts or leaves with petioles, was observed, and the surface of the nanosheets was Si{111}. The nanosheets were grown in the growth direction of <211> perpendicular to that of the Si nanowires. It was evident from these structural features of the nanosheets that the nanosheets were formed by the twin-plane reentrant-edge mechanism. The feature of the observed lattice fringes, which do not appear for Si bulk crystals, of the Si(111) nanosheets obtained by high resolution transmission electron microscopy was clearly explained due to the extra diffraction spots that arose by the reciprocal lattice streaking effect.

  20. A Ge/Si heterostructure nanowire-based double quantum dot with integrated charge sensor

    DEFF Research Database (Denmark)

    Hu, Yongjie; Churchill, Hugh; Reilly, David

    2007-01-01

    Coupled electron spins in semiconductor double quantum dots hold promise as the basis for solid-state qubits. To date, most experiments have used III-V materials, in which coherence is limited by hyperfine interactions. Ge/Si heterostructure nanowires seem ideally suited to overcome this limitati...

  1. High-throughput screening of effective siRNAs using luciferase-linked chimeric mRNA.

    Directory of Open Access Journals (Sweden)

    Shen Pang

    Full Text Available The use of siRNAs to knock down gene expression can potentially be an approach to treat various diseases. To avoid siRNA toxicity the less transcriptionally active H1 pol III promoter, rather than the U6 promoter, was proposed for siRNA expression. To identify highly efficacious siRNA sequences, extensive screening is required, since current computer programs may not render ideal results. Here, we used CCR5 gene silencing as a model to investigate a rapid and efficient screening approach. We constructed a chimeric luciferase-CCR5 gene for high-throughput screening of siRNA libraries. After screening approximately 900 shRNA clones, 12 siRNA sequences were identified. Sequence analysis demonstrated that most (11 of the 12 sequences of these siRNAs did not match those identified by available siRNA prediction algorithms. Significant inhibition of CCR5 in a T-lymphocyte cell line and primary T cells by these identified siRNAs was confirmed using the siRNA lentiviral vectors to infect these cells. The inhibition of CCR5 expression significantly protected cells from R5 HIV-1JRCSF infection. These results indicated that the high-throughput screening method allows efficient identification of siRNA sequences to inhibit the target genes at low levels of expression.

  2. Mechanics of patterned helical Si springs on Si substrate.

    Science.gov (United States)

    Liu, D L; Ye, D X; Khan, F; Tang, F; Lim, B K; Picu, R C; Wang, G C; Lu, T M

    2003-12-01

    The elastic response, including the spring constant, of individual Si helical-shape submicron springs, was measured using a tip-cantilever assembly attached to a conventional atomic force microscope. The isolated, four-turn Si springs were fabricated using oblique angle deposition with substrate rotation, also known as the glancing angle deposition, on a templated Si substrate. The response of the structures was modeled using finite elements, and it was shown that the conventional formulae for the spring constant required modifications before they could be used for the loading scheme used in the present experiment.

  3. Molecular beam epitaxy of InN nanowires on Si

    Science.gov (United States)

    Golam Sarwar, A. T. M.; Carnevale, Santino D.; Kent, Thomas F.; Laskar, Masihhur R.; May, Brelon J.; Myers, Roberto C.

    2015-10-01

    We report on a systematic growth study of the nucleation process of InN nanowires on Si(1 1 1) substrates using plasma assisted molecular beam epitaxy (PAMBE). Samples are grown with various substrate temperatures and III/V ratios. Scanning electron microscopy, X-ray diffraction spectroscopy, energy dispersive X-ray spectroscopy, and photoluminescence are carried out to map out the variation in structural and optical properties versus growth conditions. Statistical averages of areal density, height, and radius are mapped as a function of substrate temperature and III/V ratio. Three different morphological phases are identified on the growth surface: InN, α-In and β-In. Based on SEM image analysis of samples grown at different conditions, the formation mechanism of these phases is proposed. Finally, the growth phase diagram of PAMBE grown InN on Si under N-rich condition is presented, and tapered versus non-tapered growth conditions are identified. It is found that high growth temperature and low III/V ratio plays a critical role in the growth of non-tapered InN nanowires.

  4. Biomorphous SiSiC/Al-Si ceramic composites manufactured by squeeze casting: microstructure and mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Zollfrank, C.; Travitzky, N.; Sieber, H.; Greil, P. [Department of Materials Science, Glass and Ceramics, University of Erlangen-Nuernberg (Germany); Selchert, T. [Advanced Ceramics Group, Technical University of Hamburg-Harburg (Germany)

    2005-08-01

    SiSiC/Al-Si composites were fabricated by pressure-assisted infiltration of an Al-Si alloy into porous biocarbon preforms derived from the rattan palm. Al-Si alloy was found in the pore channels of the biomorphous SiSiC preform, whereas SiC and carbon were present in the struts. The formation of a detrimental Al{sub 4}C{sub 3}-phase was not observed in the composites. A bending strength of 200 MPa was measured. The fractured surfaces showed pull-out of the Al-alloy. (Abstract Copyright [2005], Wiley Periodicals, Inc.)

  5. SiC/GaN Based Optically Triggered MESFET for High Power Efficiency and High Radiation Resistance Solid State Switch Application for Actuator System

    Science.gov (United States)

    2016-06-23

    designed and nitrogen ion implantation has been performed followed by high temperature annealing . In 2016, the device electrical isolation has been...sputtering physical vapor deposition (PVD). The SiO2 layers were grown onto C-face and Si-face 4H-SiC substrates by different techniques such as wet ...forming the source and drain contact by ion implantation, (ii) the rapid thermal annealing processing, (iii) device isolation by using ion implantation

  6. Fabrication and Mechanical Properties of SiCw(p/SiC-Si Composites by Liquid Si Infiltration using Pyrolysed Rice Husks and SiC Powders as Precursors

    Directory of Open Access Journals (Sweden)

    Dan Zhu

    2014-03-01

    Full Text Available Dense silicon carbide (SiC matrix composites with SiC whiskers and particles as reinforcement were prepared by infiltrating molten Si at 1550 °C into porous preforms composed of pyrolysed rice husks (RHs and extra added SiC powder in different ratios. The Vickers hardness of the composites showed an increase from 18.6 to 21.3 GPa when the amount of SiC added in the preforms was 20% (w/w, and then decreased to 17.3 GPa with the increase of SiC added in the preforms up to 80% (w/w. The values of flexural strength of the composites initially decreased when 20% (w/w SiC was added in the preform and then increased to 587 MPa when the SiC concentration reached 80% (w/w. The refinement of SiC particle sizes and the improvement of the microstructure in particle distribution of the composites due to the addition of external SiC played an effective role in improving the mechanical properties of the composites.

  7. Low-temperature magnetotransport in Si/SiGe heterostructures on 300 mm Si wafers

    Science.gov (United States)

    Scappucci, Giordano; Yeoh, L.; Sabbagh, D.; Sammak, A.; Boter, J.; Droulers, G.; Kalhor, N.; Brousse, D.; Veldhorst, M.; Vandersypen, L. M. K.; Thomas, N.; Roberts, J.; Pillarisetty, R.; Amin, P.; George, H. C.; Singh, K. J.; Clarke, J. S.

    Undoped Si/SiGe heterostructures are a promising material stack for the development of spin qubits in silicon. To deploy a qubit into high volume manufacturing in a quantum computer requires stringent control over substrate uniformity and quality. Electron mobility and valley splitting are two key electrical metrics of substrate quality relevant for qubits. Here we present low-temperature magnetotransport measurements of strained Si quantum wells with mobilities in excess of 100000 cm2/Vs fabricated on 300 mm wafers within the framework of advanced semiconductor manufacturing. These results are benchmarked against the results obtained in Si quantum wells deposited on 100 mm Si wafers in an academic research environment. To ensure rapid progress in quantum wells quality we have implemented fast feedback loops from materials growth, to heterostructure FET fabrication, and low temperature characterisation. On this topic we will present recent progress in developing a cryogenic platform for high-throughput magnetotransport measurements.

  8. Effect of hydrogen on passivation quality of SiNx/Si-rich SiNx stacked layers deposited by catalytic chemical vapor deposition on c-Si wafers

    International Nuclear Information System (INIS)

    Thi, Trinh Cham; Koyama, Koichi; Ohdaira, Keisuke; Matsumura, Hideki

    2015-01-01

    We investigate the role of hydrogen content and fixed charges of catalytic chemical vapor deposited (Cat-CVD) SiN x /Si-rich SiN x stacked layers on the quality of crystalline silicon (c-Si) surface passivation. Calculated density of fixed charges is on the order of 10 12 cm −2 , which is high enough for effective field effect passivation. Hydrogen content in the films is also found to contribute significantly to improvement in passivation quality of the stacked layers. Furthermore, Si-rich SiN x films deposited with H 2 dilution show better passivation quality of SiN x /Si-rich SiN x stacked layers than those prepared without H 2 dilution. Effective minority carrier lifetime (τ eff ) in c-Si passivated by SiN x /Si-rich SiN x stacked layers is as high as 5.1 ms when H 2 is added during Si-rich SiN x deposition, which is much higher than the case of using Si-rich SiN x films prepared without H 2 dilution showing τ eff of 3.3 ms. - Highlights: • Passivation mechanism of Si-rich SiN x /SiN x stacked layers is investigated. • H atoms play important role in passivation quality of the stacked layer. • Addition of H 2 gas during Si-rich SiN x film deposition greatly enhances effective minority carrier lifetime (τ eff ). • For a Si-rich SiN x film with refractive index of 2.92, τ eff improves from 3.3 to 5.1 ms by H 2 addition

  9. Low dose irradiation performance of SiC interphase SiC/SiC composites

    International Nuclear Information System (INIS)

    Snead, L.L.; Lowden, R.A.; Strizak, J.; More, K.L.; Eatherly, W.S.; Bailey, J.; Williams, A.M.; Osborne, M.C.; Shinavski, R.J.

    1998-01-01

    Reduced oxygen Hi-Nicalon fiber reinforced composite SiC materials were densified with a chemically vapor infiltrated (CVI) silicon carbide (SiC) matrix and interphases of either 'porous' SiC or multilayer SiC and irradiated to a neutron fluence of 1.1 x 10 25 n m -2 (E>0.1 MeV) in the temperature range of 260 to 1060 C. The unirradiated properties of these composites are superior to previously studied ceramic grade Nicalon fiber reinforced/carbon interphase materials. Negligible reduction in the macroscopic matrix microcracking stress was observed after irradiation for the multilayer SiC interphase material and a slight reduction in matrix microcracking stress was observed for the composite with porous SiC interphase. The reduction in strength for the porous SiC interfacial material is greatest for the highest irradiation temperature. The ultimate fracture stress (in four point bending) following irradiation for the multilayer SiC and porous SiC interphase materials was reduced by 15% and 30%, respectively, which is an improvement over the 40% reduction suffered by irradiated ceramic grade Nicalon fiber materials fabricated in a similar fashion, though with a carbon interphase. The degradation of the mechanical properties of these composites is analyzed by comparison with the irradiation behavior of bare Hi-Nicalon fiber and Morton chemically vapor deposited (CVD) SiC. It is concluded that the degradation of these composites, as with the previous generation ceramic grade Nicalon fiber materials, is dominated by interfacial effects, though the overall degradation of fiber and hence composite is reduced for the newer low-oxygen fiber. (orig.)

  10. IUE observations of Si and C lines and comparison with non-LTE models

    Science.gov (United States)

    Kamp, L. W.

    1982-01-01

    Classical model atmosphere techniques are applied to analyze IUE spectra, and to determine abundances, effective temperatures and gravities. Measurements of the equivalent widths and other properties of the line profiles of 24 photospheric lines of Si II, Si III, Si IV, C II, C III and C IV are presented in the range of 1175-1725 A for seven B and two O stars. Observed line profiles are compared with theoretical profiles computed using non-LTE theory and models, and using line-blanketed model atmospheres. Agreement is reasonably good, although strong lines are calculated to be systematically stronger than those observed, while the reverse occurs for weak lines, and empirical profiles have smaller wings than theoretical profiles. It is concluded that the present theory of line formation when used with solar abundances, represents fairly well observed UV photospheric lines of silicon and carbon ions in the atmospheres of main sequence stars of types B5-O9.

  11. Progress in III-V materials technology

    Science.gov (United States)

    Grant, Ian R.

    2004-12-01

    Compound semiconductors, in the form of GaAs and InP have achieved major commercial significance in areas of application such as mobile communications, displays and telecoms and offer a versatility of function beyond the capabilities of Si. III-V compounds, and in particular GaAs, have since their early development been the subject of defence related interest. Support from this sector established the basic materials technologies and nurtured development up until their commercial breakthrough into consumer products. GaAs, for example, now provides essential components for mobile phones and CD / DVD players. An overview is presented of the crystal growth and processing methods used in the manufacture of these materials. Current state of the art characteristics on crystal form and quality are discussed, together with the evolution of single crystal growth techniques. Consideration is given to how these principal compounds together with the minor materials, InSb, GaSb and InAs are employed in diverse applications over a broad spectral range, together with information on markets and future perspectives.

  12. Careful stoichiometry monitoring and doping control during the tunneling interface growth of an n + InAs(Si)/p + GaSb(Si) Esaki diode

    Science.gov (United States)

    El Kazzi, S.; Alian, A.; Hsu, B.; Verhulst, A. S.; Walke, A.; Favia, P.; Douhard, B.; Lu, W.; del Alamo, J. A.; Collaert, N.; Merckling, C.

    2018-02-01

    In this work, we report on the growth of pseudomorphic and highly doped InAs(Si)/GaSb(Si) heterostructures on p-type (0 0 1)-oriented GaSb substrate and the fabrication and characterization of n+/p+ Esaki tunneling diodes. We particularly study the influence of the Molecular Beam Epitaxy shutter sequences on the structural and electrical characteristics of InAs(Si)/GaSb(Si) Esaki diodes structures. We use real time Reflection High Electron Diffraction analysis to monitor different interface stoichiometry at the tunneling interface. With Atomic Force Microscopy, X-ray diffraction and Transmission Electron Microscopy analyses, we demonstrate that an "InSb-like" interface leads to a sharp and defect-free interface exhibiting high quality InAs(Si) crystal growth contrary to the "GaAs-like" one. We then prove by means of Secondary Ion Mass Spectroscopy profiles that Si-diffusion at the interface allows the growth of highly Si-doped InAs/GaSb diodes without any III-V material deterioration. Finally, simulations are conducted to explain our electrical results where a high Band to Band Tunneling (BTBT) peak current density of Jp = 8 mA/μm2 is achieved.

  13. Grafted SiC nanocrystals

    DEFF Research Database (Denmark)

    Saini, Isha; Sharma, Annu; Dhiman, Rajnish

    2017-01-01

    ), raman spectroscopy and X-ray diffraction (XRD) measurements. UV–Visible absorption spectroscopy was used to study optical properties such as optical energy gap (Eg), Urbach's energy (Eu), refractive index (n), real (ε1) and imaginary (ε2) parts of dielectric constant of PVA as well as PVA......Polyvinyl alcohol (PVA) grafted SiC (PVA-g-SiC)/PVA nanocomposite was synthesized by incorporating PVA grafted silicon carbide (SiC) nanocrystals inside PVA matrix. In-depth structural characterization of resulting nanocomposite was carried out using fourier transform infrared spectroscopy (FTIR...

  14. Hydrogen passivation of polycrystalline Si thin film solar cells

    International Nuclear Information System (INIS)

    Gorka, Benjamin

    2010-01-01

    Hydrogen passivation is a key process step in the fabrication of polycrystalline Si (poly-Si) thin film solar cells. In this work a parallel plate rf plasma setup was used for the hydrogen passivation treatment. The main topics that have been investigated are (i) the role of plasma parameters (like hydrogen pressure, electrode gap and plasma power), (ii) the dynamics of the hydrogen treatment and (iii) passivation of poly-Si with different material properties. Passivation was characterized by measuring the open-circuit voltage V OC of poly-Si reference samples. Optimum passivation conditions were found by measurements of the breakdown voltage V brk of the plasma for different pressures p and electrode gaps d. For each pressure, the best passivation was achieved at a gap d that corresponded to the minimum in V brk . Plasma simulations were carried out, which indicate that best V OC corresponds to a minimum in ion energy. V OC was not improved by a larger H flux. Investigations of the passivation dynamic showed that a plasma treatment in the lower temperature range (≤400 C) is slow and takes several hours for the V OC to saturate. Fast passivation can be successfully achieved at elevated temperatures around 500 C to 600 C with a plateau time of 10 min. It was found that prolonged hydrogenation leads to a loss in V OC , which is less pronounced within the observed optimum temperature range (500 C-600 C). Electron beam evaporation has been investigated as an alternative method to fabricate poly-Si absorbers. The material properties have been tuned by alteration of substrate temperature T dep =200-700 C and were characterized by Raman, ESR and V OC measurements. Largest grains were obtained after solid phase crystallization (SPC) of a-Si, deposited in the temperature range of 300 C. The defect concentration of Si dangling bonds was lowered by passivation by about one order of magnitude. The lowest dangling bond concentration of 2.5.10 16 cm -3 after passivation was

  15. Radiation emission from wrinkled SiGe/SiGe nanostructure

    Czech Academy of Sciences Publication Activity Database

    Fedorchenko, Alexander I.; Cheng, H. H.; Sun, G.; Soref, R. A.

    2010-01-01

    Roč. 96, č. 11 (2010), s. 113104-113107 ISSN 0003-6951 Institutional research plan: CEZ:AV0Z20760514 Keywords : SiGe wrinkled nanostructures * si-based optical emitter * synchrotron radiation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.820, year: 2010 http://apl.aip.org/resource/1/applab/v96/i11/p113104_s1?isAuthorized=no

  16. Electrical properties of Si/Si1-xGex/Si inverted modulation doped structures

    International Nuclear Information System (INIS)

    Sadeghzadeh, M.A.

    1998-12-01

    This thesis is a report of experimental investigations of growth strategy and electrical properties of Si/Si 1-x Ge x /Si inverted Modulation Doped (MD) structures grown by solid source Molecular Beam Epitaxy (MBE). If the grown Si layer is B-doped at some distance (as spacer) before or after the alloy layer, this remote doping induces the formation of a quasi Two Dimensional Hole Gas (2-DHG) near to the inverted (SiGe on Si) or normal (Si on SiGe) heterointerfaces of the Si/Si 1-x Ge x /Si quantum well, respectively. The latter arrangement is the well known 'normal' MD structure but the former one is the so-called 'inverted' MD structure which is of great interest for Field Effect Transistor (FET) applications. A reproducible growth strategy was employed by the use of a thick (400nm) Si cap for inverted MD structures with Ge composition in the range of 16-23%. Boron segregation and cap surface charges are significant in these inverted structures with small ( 20nm) spacer layers, respectively. It was demonstrated by secondary ion mass spectroscopy (SIMS) that boron segregation, which causes a reduction in the effective spacer dimension, can be suppressed by growth interruption after boron doping. The enhancement in hole sheet density with increasing Si cap layer thickness, is attributed to a reduction in the influence of positive surface charges in these structures. Top-gated devices were fabricated using these structures and the hole sheet density could be varied by applying a voltage to the metal-semiconductor gate, and the maximum Hall mobility of 5550 cm 2 V -1 s -1 with 4.2x10 11 cm -2 was measured (at 1.6K) in these structures. Comparison of measured Hall mobility (at 4.2K) as a function of hole sheet density in normal and inverted MD structures implies that both 2-DHG confined at normal and/or inverted structures are subjected to very similar interface charge, roughness, and alloy scattering potentials. Low temperatures magnetotransport measurements (down to

  17. Treating respiratory viral diseases with chemically modified, second generation intranasal siRNAs.

    Science.gov (United States)

    Barik, Sailen

    2009-01-01

    Chemically synthesized short interfering RNA (siRNA) of pre-determined sequence has ushered a new era in the application of RNA interference (RNAi) against viral genes. We have paid particular attention to respiratory viruses that wreak heavy morbidity and mortality worldwide. The clinically significant ones include respiratory syncytial virus (RSV), parainfluenza virus (PIV) and influenza virus. As the infection by these viruses is clinically restricted to the respiratory tissues, mainly the lungs, the logical route for the application of the siRNA was also the same, i.e., via the nasal route. Following the initial success of intranasal siRNA against RSV, second-generation siRNAs were made against the viral polymerase large subunit (L) that were chemically modified and screened for improved stability, activity and pharmacokinetics. 2'-O-methyl (2'-O-Me) and 2'-deoxy-2'-fluoro (2'-F) substitutions in the ribose ring were incorporated in different positions of the sense and antisense strands and the resultant siRNAs were tested with various transfection reagents intranasally against RSV. Based on these results, we propose the following consensus for designing intranasal antiviral siRNAs: (i) modified 19-27 nt long double-stranded siRNAs are functional in the lung, (ii) excessive 2'-OMe and 2'-F modifications in either or both strands of these siRNAs reduce efficacy, and (iii) limited modifications in the sense strand are beneficial, although their precise efficacy may be position-dependent.

  18. Energy variable monoenergetic positron beam study of oxygen atoms in Czochralski grown Si

    International Nuclear Information System (INIS)

    Tanigawa, S.; Wei, L.; Tabuki, Y.; Nagai, R.; Takeda, E.

    1992-01-01

    A monoenergetic positron beam has been used to investigate the state of interstitial oxygen in Czochralski-grown Si with the coverage of SiO 2 (100 nm) and poly-Si (200 nm)/SiO 2 (100 nm), respectively. It was found that (i) the growth of SiO 2 gives rise to a strong Doppler broadening of positron annihilation radiations in the bulk of Si, (ii) such a broadening can be recovered to the original level by annealing at 450degC, by the removal of overlayers using chemical etching and long-term aging at room temperature, (iii) the film stress over the CZ-grown Si is responsible for the rearrangement of oxygen atoms in S and (iv) only tensile stress gives rise to the clustering of oxygen atoms. The observed broadening was assigned to arise from the positron trapping by oxygen interstitial clusters. It was concluded that film stress is responsible for the rearrangement of oxygen atoms in CZ-grown Si. (author)

  19. Antineoplastic Effects of siRNA against TMPRSS2-ERG Junction Oncogene in Prostate Cancer.

    Directory of Open Access Journals (Sweden)

    Giorgia Urbinati

    Full Text Available TMPRSS2-ERG junction oncogene is present in more than 50% of patients with prostate cancer and its expression is frequently associated with poor prognosis. Our aim is to achieve gene knockdown by siRNA TMPRSS2-ERG and then to assess the biological consequences of this inhibition. First, we designed siRNAs against the two TMPRSS2-ERG fusion variants (III and IV, most frequently identified in patients' biopsies. Two of the five siRNAs tested were found to efficiently inhibit mRNA of both TMPRSS2-ERG variants and to decrease ERG protein expression. Microarray analysis further confirmed ERG inhibition by both siRNAs TMPRSS2-ERG and revealed one common down-regulated gene, ADRA2A, involved in cell proliferation and migration. The siRNA against TMPRSS2-ERG fusion variant IV showed the highest anti-proliferative effects: Significantly decreased cell viability, increased cleaved caspase-3 and inhibited a cluster of anti-apoptotic proteins. To propose a concrete therapeutic approach, siRNA TMPRSS2-ERG IV was conjugated to squalene, which can self-organize as nanoparticles in water. The nanoparticles of siRNA TMPRSS2-ERG-squalene injected intravenously in SCID mice reduced growth of VCaP xenografted tumours, inhibited oncoprotein expression and partially restored differentiation (decrease in Ki67. In conclusion, this study offers a new prospect of treatment for prostate cancer based on siRNA-squalene nanoparticles targeting TMPRSS2-ERG junction oncogene.

  20. Improved nucleic acid descriptors for siRNA efficacy prediction.

    Science.gov (United States)

    Sciabola, Simone; Cao, Qing; Orozco, Modesto; Faustino, Ignacio; Stanton, Robert V

    2013-02-01

    Although considerable progress has been made recently in understanding how gene silencing is mediated by the RNAi pathway, the rational design of effective sequences is still a challenging task. In this article, we demonstrate that including three-dimensional descriptors improved the discrimination between active and inactive small interfering RNAs (siRNAs) in a statistical model. Five descriptor types were used: (i) nucleotide position along the siRNA sequence, (ii) nucleotide composition in terms of presence/absence of specific combinations of di- and trinucleotides, (iii) nucleotide interactions by means of a modified auto- and cross-covariance function, (iv) nucleotide thermodynamic stability derived by the nearest neighbor model representation and (v) nucleic acid structure flexibility. The duplex flexibility descriptors are derived from extended molecular dynamics simulations, which are able to describe the sequence-dependent elastic properties of RNA duplexes, even for non-standard oligonucleotides. The matrix of descriptors was analysed using three statistical packages in R (partial least squares, random forest, and support vector machine), and the most predictive model was implemented in a modeling tool we have made publicly available through SourceForge. Our implementation of new RNA descriptors coupled with appropriate statistical algorithms resulted in improved model performance for the selection of siRNA candidates when compared with publicly available siRNA prediction tools and previously published test sets. Additional validation studies based on in-house RNA interference projects confirmed the robustness of the scoring procedure in prospective studies.

  1. Spectrophotometric and pH-Metric Studies of Ce(III, Dy(III, Gd(III,Yb(III and Pr(III Metal Complexes with Rifampicin

    Directory of Open Access Journals (Sweden)

    A. N. Sonar

    2011-01-01

    Full Text Available The metal-ligand and proton-ligand stability constant of Ce(III, Dy(III, Gd(III,Yb(III and Pr(III metals with substituted heterocyclic drug (Rifampicin were determined at various ionic strength by pH metric titration. NaClO4 was used to maintain ionic strength of solution. The results obtained were extrapolated to the zero ionic strength using an equation with one individual parameter. The thermodynamic stability constant of the complexes were also calculated. The formation of complexes has been studied by Job’s method. The results obtained were of stability constants by pH metric method is confirmed by Job’s method.

  2. Cerium intermetallics with TiNiSi-type structure

    Energy Technology Data Exchange (ETDEWEB)

    Janka, Oliver; Niehaus, Oliver; Poettgen, Rainer [Muenster Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie; Chevalier, Bernard [Bordeaux Univ. CNRS (UPR 9048), Pessac (France). Inst. de Chimie de la Matiere Condensee de Bordeaux (ICMCB)

    2016-08-01

    Intermetallic compounds with the equiatomic composition CeTX that crystallize with the orthorhombic TiNiSi-type structure can be synthesized with electron-rich transition metals (T) and X = Zn, Al, Ga, Si, Ge, Sn, As, Sb, and Bi. The present review focusses on the crystal chemistry and chemical bonding of these CeTX phases and on their physical properties, {sup 119}Sn and {sup 121}Sb Moessbauer spectra, high-pressure effects, hydrogenation reactions and the formation of solid solutions in order to elucidate structure-property relationships. This paper is the final one of a series of four reviews on equiatomic intermetallic cerium compounds [Part I: Z. Naturforsch. 2015, 70b, 289; Part II: Z. Naturforsch. 2015, 70b, 695; Part III: Z. Naturforsch. 2016, 71b, 165].

  3. The essential function of B. subtilis RNase III is to silence foreign toxin genes.

    Directory of Open Access Journals (Sweden)

    Sylvain Durand

    Full Text Available RNase III-related enzymes play key roles in cleaving double-stranded RNA in many biological systems. Among the best-known are RNase III itself, involved in ribosomal RNA maturation and mRNA turnover in bacteria, and Drosha and Dicer, which play critical roles in the production of micro (mi-RNAs and small interfering (si-RNAs in eukaryotes. Although RNase III has important cellular functions in bacteria, its gene is generally not essential, with the remarkable exception of that of Bacillus subtilis. Here we show that the essential role of RNase III in this organism is to protect it from the expression of toxin genes borne by two prophages, Skin and SPβ, through antisense RNA. Thus, while a growing number of organisms that use RNase III or its homologs as part of a viral defense mechanism, B. subtilis requires RNase III for viral accommodation to the point where the presence of the enzyme is essential for cell survival. We identify txpA and yonT as the two toxin-encoding mRNAs of Skin and SPβ that are sensitive to RNase III. We further explore the mechanism of RNase III-mediated decay of the txpA mRNA when paired to its antisense RNA RatA, both in vivo and in vitro.

  4. Yb2Si2O7 Environmental Barrier Coatings Deposited by Various Thermal Spray Techniques: A Preliminary Comparative Study

    Science.gov (United States)

    Bakan, Emine; Marcano, Diana; Zhou, Dapeng; Sohn, Yoo Jung; Mauer, Georg; Vaßen, Robert

    2017-08-01

    Dense, crack-free, uniform, and well-adhered environmental barrier coatings (EBCs) are required to enhance the environmental durability of silicon (Si)-based ceramic matrix composites in high pressure, high gas velocity combustion atmospheres. This paper represents an assessment of different thermal spray techniques for the deposition of Yb2Si2O7 EBCs. The Yb2Si2O7 coatings were deposited by means of atmospheric plasma spraying (APS), high-velocity oxygen fuel spraying (HVOF), suspension plasma spraying (SPS), and very low-pressure plasma spraying (VLPPS) techniques. The initial feedstock, as well as the deposited coatings, were characterized and compared in terms of their phase composition. The as-sprayed amorphous content, microstructure, and porosity of the coatings were further analyzed. Based on this preliminary investigation, the HVOF process stood out from the other techniques as it enabled the production of vertical crack-free coatings with higher crystallinity in comparison with the APS and SPS techniques in atmospheric conditions. Nevertheless, VLPPS was found to be the preferred process for the deposition of Yb2Si2O7 coatings with desired characteristics in a controlled-atmosphere chamber.

  5. Total Ionizing Dose Effects of Si Vertical Diffused MOSFET with SiO2 and Si3N4/SiO2 Gate Dielectrics

    Directory of Open Access Journals (Sweden)

    Jiongjiong Mo

    2017-01-01

    Full Text Available The total ionizing dose irradiation effects are investigated in Si vertical diffused MOSFETs (VDMOSs with different gate dielectrics including single SiO2 layer and double Si3N4/SiO2 layer. Radiation-induced holes trapping is greater for single SiO2 layer than for double Si3N4/SiO2 layer. Dielectric oxidation temperature dependent TID effects are also studied. Holes trapping induced negative threshold voltage shift is smaller for SiO2 at lower oxidation temperature. Gate bias during irradiation leads to different VTH shift for different gate dielectrics. Single SiO2 layer shows the worst negative VTH at VG=0 V, while double Si3N4/SiO2 shows negative VTH shift at VG=-5 V, positive VTH shift at VG=10 V, and negligible VTH shift at VG=0 V.

  6. Non-LTE Analysis of Interstellar Line Spectra of SiO

    Science.gov (United States)

    Zhang, Ziwei; Stancil, Phillip C.

    2016-01-01

    SiO emission lines are important probes of chemical processes in diverse astrophysical environments. In circumstellar outflows of AGB stars, the production of silicate grains is preceded by SiO formation, making SiO a useful measure of Si depletion. SiO is also commonly observed in shocks associated with the outflows of young stellar objects, both low- and high-mass. To model SiO emission for non-LTE conditions requires collisional rate coefficients due to H2 impact which are currently unavailable. Unknown collisional rate coefficients are often estimated from known systems. For the case of SiO-H2, rate coefficients have previously been adapted from a different collider, He (Dayau & Balanca 2006), based on a reduced-mass scaling approach. Recently it has been suggested that scaling via the interaction potential well depth and the reduced masses of the collisional systems may be more reliable (Walker et al. 2014). Using the non-LTE spectral modeling package Radex (van der Tak et al. 2007), we construct diagnostic plots of SiO line ratios using SiO-H2 collisional rate coefficients based on (i) reduced-mass scaling from the LAMDA database, (ii) potential well-depth scaling, and (iii) a more comprehensive input with multiple colliders (H2, He and H). Our goal is to give a more rigorous approach to SiO line emission simulations to better understand Si chemistry, dust formation/destruction, and other astrophysical processes.This work was supported by NASA ATP grant NNX15AI61G.

  7. SiC Nanoparticles Toughened-SiC/MoSi2-SiC Multilayer Functionally Graded Oxidation Protective Coating for Carbon Materials at High Temperatures

    Science.gov (United States)

    Abdollahi, Alireza; Ehsani, Naser; Valefi, Zia; Khalifesoltani, Ali

    2017-05-01

    A SiC nanoparticle toughened-SiC/MoSi2-SiC functionally graded oxidation protective coating on graphite was prepared by reactive melt infiltration (RMI) at 1773 and 1873 K under argon atmosphere. The phase composition and anti-oxidation behavior of the coatings were investigated. The results show that the coating was composed of MoSi2, α-SiC and β-SiC. By the variations of Gibbs free energy (calculated by HSC Chemistry 6.0 software), it could be suggested that the SiC coating formed at low temperatures by solution-reprecipitation mechanism and at high temperatures by gas-phase reactions and solution-reprecipitation mechanisms simultaneously. SiC nanoparticles could improve the oxidation resistance of SiC/MoSi2-SiC multiphase coating. Addition of SiC nanoparticles increases toughness of the coating and prevents spreading of the oxygen diffusion channels in the coating during the oxidation test. The mass loss and oxidation rate of the SiC nanoparticle toughened-SiC/MoSi2-SiC-coated sample after 10-h oxidation at 1773 K were only 1.76% and 0.32 × 10-2 g/cm3/h, respectively.

  8. Ion implantation and annealing studies in III-V nitrides

    International Nuclear Information System (INIS)

    Zolper, J.C.; Pearton, S.J.

    1996-01-01

    Ion implantation doping and isolation is expected to play an enabling role for the realization of advanced III-Nitride based devices. In fact, implantation has already been used to demonstrate n- and p-type doping of GaN with Si and Mg or Ca, respectively, as well as to fabricate the first GaN junction field effect transistor. Although these initial implantation studies demonstrated the feasibility of this technique for the III-Nitride materials, further work is needed to realize its full potential. After reviewing some of the initial studies in this field, the authors present new results for improved annealing sequences and defect studies in GaN. First, sputtered AlN is shown by electrical characterization of Schottky and Ohmic contacts to be an effect encapsulant of GaN during the 1,100 C implant activation anneal. The AlN suppresses N-loss from the GaN surface and the formation of a degenerate n + -surface region that would prohibit Schottky barrier formation after the implant activation anneal. Second, they examine the nature of the defect generation and annealing sequence following implantation using both Rutherford Backscattering (RBS) and Hall characterization. They show that for a Si-dose of 1 x 10 16 cm -2 50% electrical donor activation is achieved despite a significant amount of residual implantation-induced damage in the material

  9. Making progress with PISC III

    International Nuclear Information System (INIS)

    Crutzen, S.; Nichols, R.; McDonald, N.

    1989-01-01

    The thirdphase of the Programme for the Inspection of Steel Components (PISC III) was begun in 1986 with the aim of assessing inspection capability and reliability for actual defects in full scale components under realistic nuclear power plant conditions. It is organized by the OECD Nuclear Energy Agency and the Ispra Joint Research Centre of the European Communities Commission. The objectives and status of each of the seven areas of PISC III are given. The areas are: real contaminated structures; full scale vessel tests; nozzles and dissimilar metal welds; austenitic steel testing; steam generator integrity testing; mathematical modelling of non-destructive examination; and human reliability studies. (U.K.)

  10. Graphics Gems III IBM version

    CERN Document Server

    Kirk, David

    1994-01-01

    This sequel to Graphics Gems (Academic Press, 1990), and Graphics Gems II (Academic Press, 1991) is a practical collection of computer graphics programming tools and techniques. Graphics Gems III contains a larger percentage of gems related to modeling and rendering, particularly lighting and shading. This new edition also covers image processing, numerical and programming techniques, modeling and transformations, 2D and 3D geometry and algorithms,ray tracing and radiosity, rendering, and more clever new tools and tricks for graphics programming. Volume III also includes a

  11. Growth of CNTs on Fe-Si catalyst prepared on Si and Al coated Si substrates

    International Nuclear Information System (INIS)

    Teng, F-Y; Ting, J-M; Sharma, Sahendra P; Liao, Kun-Hou

    2008-01-01

    In this paper we report the effect of Al interlayers on the growth characteristics of carbon nanotubes (CNTs) using as-deposited and plasma etched Fe-Si catalyst films as the catalysts. Al interlayers having various thicknesses ranging from 2 to 42 nm were deposited on Si substrates prior to the deposition of Fe-Si catalysts. It was found that the Al interlayer diffuses into the Fe-Si catalyst during the plasma etching prior to the CNT growth, leading to the swelling and amorphization of the catalyst. This allows enhanced carbon diffusion in the catalyst and therefore a faster growth rate of the resulting CNTs. It was also found that use of an Al interlayer having a thickness of ∼3 ± 1 nm is most effective. Due to the effectiveness of this, the normally required catalyst etching is no longer needed for the growth of CNTs

  12. Growth of CNTs on Fe-Si catalyst prepared on Si and Al coated Si substrates.

    Science.gov (United States)

    Teng, F-Y; Ting, Jyh-Ming; Sharma, Sahendra P; Liao, Kun-Hou

    2008-03-05

    In this paper we report the effect of Al interlayers on the growth characteristics of carbon nanotubes (CNTs) using as-deposited and plasma etched Fe-Si catalyst films as the catalysts. Al interlayers having various thicknesses ranging from 2 to 42 nm were deposited on Si substrates prior to the deposition of Fe-Si catalysts. It was found that the Al interlayer diffuses into the Fe-Si catalyst during the plasma etching prior to the CNT growth, leading to the swelling and amorphization of the catalyst. This allows enhanced carbon diffusion in the catalyst and therefore a faster growth rate of the resulting CNTs. It was also found that use of an Al interlayer having a thickness of ∼3 ± 1 nm is most effective. Due to the effectiveness of this, the normally required catalyst etching is no longer needed for the growth of CNTs.

  13. Locally measuring the adhesion of InP directly bonded on sub-100 nm patterned Si

    International Nuclear Information System (INIS)

    Pantzas, K; Patriarche, G; Beaudoin, G; Itawi, A; Sagnes, I; Talneau, A; Bourhis, E Le; Troadec, D

    2016-01-01

    A nano-scale analogue to the double cantilever experiment that combines instrumented nano-indentation and atomic force microscopy is used to precisely and locally measure the adhesion of InP bonded on sub-100 nm patterned Si using oxide-free or oxide-mediated bonding. Surface-bonding energies of 0.548 and 0.628 J m"−"2, respectively, are reported. These energies correspond in turn to 51% and 57% of the surface bonding energy measured in unpatterned regions on the same samples, i.e. the proportion of unetched Si surface in the patterned areas. The results show that bonding on patterned surfaces can be as robust as on unpatterned surfaces, provided care is taken with the post-patterning surface preparation process and, therefore, open the path towards innovative designs that include patterns embedded in the Si guiding layer of hybrid III-V/Si photonic integrated circuits. (paper)

  14. Si-Based Germanium Tin Semiconductor Lasers for Optoelectronic Applications

    Science.gov (United States)

    Al-Kabi, Sattar H. Sweilim

    Silicon-based materials and optoelectronic devices are of great interest as they could be monolithically integrated in the current Si complementary metal-oxide-semiconductor (CMOS) processes. The integration of optoelectronic components on the CMOS platform has long been limited due to the unavailability of Si-based laser sources. A Si-based monolithic laser is highly desirable for full integration of Si photonics chip. In this work, Si-based germanium-tin (GeSn) lasers have been demonstrated as direct bandgap group-IV laser sources. This opens a completely new avenue from the traditional III-V integration approach. In this work, the material and optical properties of GeSn alloys were comprehensively studied. The GeSn films were grown on Ge-buffered Si substrates in a reduced pressure chemical vapor deposition system with low-cost SnCl4 and GeH4 precursors. A systematic study was done for thin GeSn films (thickness 400 nm) with Sn composition 5 to 17.5%. The room temperature photoluminescence (PL) spectra were measured that showed a gradual shift of emission peaks towards longer wavelength as Sn composition increases. Strong PL intensity and low defect density indicated high material quality. Moreover, the PL study of n-doped samples showed bandgap narrowing compared to the unintentionally p-doped (boron) thin films with similar Sn compositions. Finally, optically pumped GeSn lasers on Si with broad wavelength coverage from 2 to 3 mum were demonstrated using high-quality GeSn films with Sn compositions up to 17.5%. The achieved maximum Sn composition of 17.5% broke the acknowledged Sn incorporation limit using similar deposition chemistry. The highest lasing temperature was measured at 180 K with an active layer thickness as thin as 270 nm. The unprecedented lasing performance is due to the achievement of high material quality and a robust fabrication process. The results reported in this work show a major advancement towards Si-based electrically pumped mid

  15. Organometallic neptunium(III) complexes.

    Science.gov (United States)

    Dutkiewicz, Michał S; Farnaby, Joy H; Apostolidis, Christos; Colineau, Eric; Walter, Olaf; Magnani, Nicola; Gardiner, Michael G; Love, Jason B; Kaltsoyannis, Nikolas; Caciuffo, Roberto; Arnold, Polly L

    2016-08-01

    Studies of transuranic organometallic complexes provide a particularly valuable insight into covalent contributions to the metal-ligand bonding, in which the subtle differences between the transuranium actinide ions and their lighter lanthanide counterparts are of fundamental importance for the effective remediation of nuclear waste. Unlike the organometallic chemistry of uranium, which has focused strongly on U(III) and has seen some spectacular advances, that of the transuranics is significantly technically more challenging and has remained dormant. In the case of neptunium, it is limited mainly to Np(IV). Here we report the synthesis of three new Np(III) organometallic compounds and the characterization of their molecular and electronic structures. These studies suggest that Np(III) complexes could act as single-molecule magnets, and that the lower oxidation state of Np(II) is chemically accessible. In comparison with lanthanide analogues, significant d- and f-electron contributions to key Np(III) orbitals are observed, which shows that fundamental neptunium organometallic chemistry can provide new insights into the behaviour of f-elements.

  16. Ion temperatures in TORTUR III

    International Nuclear Information System (INIS)

    Hendriks, F.B.

    1985-12-01

    Spatially resolved ion-energy distributions are presented for discharges in the TORTUR III tokamak. The measurements are performed in an active method, using a neutral hydrogen probing beam of 20-30 keV, to enhance charge-exchange processes along its path, as well as by the usual passive method. Ion temperatures can amount up to 1 keV

  17. SI units in engineering and technology

    CERN Document Server

    Qasim, S H

    2016-01-01

    SI Units in Engineering and Technology focuses on the use of the International System of Units-Systeme International d'Unités (SI). The publication first elaborates on the SI, derivation of important engineering units, and derived SI units in science and engineering. Discussions focus on applied mechanics in mechanical engineering, electrical and magnetic units, stress and pressure, work and energy, power and force, and magnitude of SI units. The text then examines SI units conversion tables and engineering data in SI units. Tables include details on the sectional properties of metals in SI units, physical properties of important molded plastics, important physical constants expressed in SI units, and temperature, area, volume, and mass conversion. Tables that show the mathematical constants, standard values expressed in SI units, and Tex count conversion are also presented. The publication is a dependable source of data for researchers interested in the use of the International System of Units-Systeme Inter...

  18. Modification effect of Ni-38 wt.%Si on Al-12 wt.%Si alloy

    International Nuclear Information System (INIS)

    Wu Yuying; Liu Xiangfa; Jiang Binggang; Huang Chuanzhen

    2009-01-01

    Modification effect of Ni-38 wt.%Si on the Al-12 wt.%Si alloy has been studied by differential scanning calorimeter, torsional oscillation viscometer and liquid X-ray diffraction experiments. It is found that there is a modification effect of Ni-38 wt.%Si on Al-12 wt.%Si alloy, i.e. primary Si can precipitate in the microstructure of Al-12 wt.%Si alloy when Ni and Si added in the form of Ni-38 wt.%Si, but not separately. Ni-38 wt.%Si alloy brings 'genetic materials' into the Al-Si melt, which makes the melt to form more ordering structure, promotes the primary Si precipitated. Moreover, the addition of Ni-38 wt.%Si, which decreases the solidification supercooling degree of Al-12 wt.%Si alloy, is identical to the effect of heterogeneous nuclei.

  19. Modification effect of Ni-38 wt.%Si on Al-12 wt.%Si alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wu Yuying [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Ji' nan 250061 (China)], E-mail: wyy532001@163.com; Liu Xiangfa [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Ji' nan 250061 (China); Shandong Binzhou Bohai Piston Co., Ltd., Binzhou 256602, Shandong (China); Jiang Binggang [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Ji' nan 250061 (China); Huang Chuanzhen [School of Mechanical Engineering, Shandong University, Jinan 250061 (China)

    2009-05-27

    Modification effect of Ni-38 wt.%Si on the Al-12 wt.%Si alloy has been studied by differential scanning calorimeter, torsional oscillation viscometer and liquid X-ray diffraction experiments. It is found that there is a modification effect of Ni-38 wt.%Si on Al-12 wt.%Si alloy, i.e. primary Si can precipitate in the microstructure of Al-12 wt.%Si alloy when Ni and Si added in the form of Ni-38 wt.%Si, but not separately. Ni-38 wt.%Si alloy brings 'genetic materials' into the Al-Si melt, which makes the melt to form more ordering structure, promotes the primary Si precipitated. Moreover, the addition of Ni-38 wt.%Si, which decreases the solidification supercooling degree of Al-12 wt.%Si alloy, is identical to the effect of heterogeneous nuclei.

  20. Construction and characterization of spherical Si solar cells combined with SiC electric power inverter

    Science.gov (United States)

    Oku, Takeo; Matsumoto, Taisuke; Hiramatsu, Kouichi; Yasuda, Masashi; Shimono, Akio; Takeda, Yoshikazu; Murozono, Mikio

    2015-02-01

    Spherical silicon (Si) photovoltaic solar cell systems combined with an electric power inverter using silicon carbide (SiC) field-effect transistor (FET) were constructed and characterized, which were compared with an ordinary Si-based converter. The SiC-FET devices were introduced in the direct current-alternating current (DC-AC) converter, which was connected with the solar panels. The spherical Si solar cells were used as the power sources, and the spherical Si panels are lighter and more flexible compared with the ordinary flat Si solar panels. Conversion efficiencies of the spherical Si solar cells were improved by using the SiC-FET.

  1. Electrochemical characteristics of nc-Si/SiC composite for anode electrode of lithium ion batteries

    International Nuclear Information System (INIS)

    Jeon, Bup Ju; Lee, Joong Kee

    2014-01-01

    Graphical abstract: Cycling performances and coulombic efficiencies of the nc-Si/SiC composite anodes at different CH 4 /SiH 4 mole ratios. -- Highlights: • Our work has focused on irreversible discharge capacity and capacity retention of nc-Si/SiC composite particles. • Particles comprised a mixed construction of nc-Si/SiC structure with dual phases. • The SiC phase acted as retarding media, leading to enhanced cycle stability. -- Abstract: nc-Si/SiC composite particles were prepared as an anode material for lithium ion batteries using a plasma jet with DC arc discharge. The composition of the nc-Si/SiC composite particles was controlled by setting the mole ratio of CH 4 and SiH 4 precursor gases. X-ray diffraction, TEM images, and Raman shift analyses revealed that the synthesized nc-Si/SiC composite particles comprised a construction of nano-nocaled structure with crystalline phases of active silicon, highly disordered amorphous carbon of graphite and crystalline phases of β-SiC. In the experimental range examined, the nc-Si/SiC composite particles showed good coulombic efficiency in comparison with particles high Si–Si bonding content due to the interplay of particles with a small proportion of carbon and the buffering effect against volume expansion by structural stabilization, and played a role as retarding media for the rapid electrochemical reactions of the SiC crystal against lithium

  2. Electrochemical characteristics of nc-Si/SiC composite for anode electrode of lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Bup Ju [Department of Energy Resources, Shinhan University, 233-1, Sangpae-dong, Dongducheon, Gyeonggi-do, 483-777 (Korea, Republic of); Lee, Joong Kee, E-mail: leejk@kist.re.kr [Advanced Energy Materials Processing Laboratory, Center for Energy Convergence Research, Green City Technology Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of)

    2014-03-25

    Graphical abstract: Cycling performances and coulombic efficiencies of the nc-Si/SiC composite anodes at different CH{sub 4}/SiH{sub 4} mole ratios. -- Highlights: • Our work has focused on irreversible discharge capacity and capacity retention of nc-Si/SiC composite particles. • Particles comprised a mixed construction of nc-Si/SiC structure with dual phases. • The SiC phase acted as retarding media, leading to enhanced cycle stability. -- Abstract: nc-Si/SiC composite particles were prepared as an anode material for lithium ion batteries using a plasma jet with DC arc discharge. The composition of the nc-Si/SiC composite particles was controlled by setting the mole ratio of CH{sub 4} and SiH{sub 4} precursor gases. X-ray diffraction, TEM images, and Raman shift analyses revealed that the synthesized nc-Si/SiC composite particles comprised a construction of nano-nocaled structure with crystalline phases of active silicon, highly disordered amorphous carbon of graphite and crystalline phases of β-SiC. In the experimental range examined, the nc-Si/SiC composite particles showed good coulombic efficiency in comparison with particles high Si–Si bonding content due to the interplay of particles with a small proportion of carbon and the buffering effect against volume expansion by structural stabilization, and played a role as retarding media for the rapid electrochemical reactions of the SiC crystal against lithium.

  3. Circumferential tensile test method for mechanical property evaluation of SiC/SiC tube

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Ju-Hyeon, E-mail: 15096018@mmm.muroran-it.ac.jp [Graduate School, Muroran Institute of Technology, 27-1, Muroran, Hokkaido (Japan); Kishimoto, Hirotatsu [Graduate School, Muroran Institute of Technology, 27-1, Muroran, Hokkaido (Japan); OASIS, Muroran Institute of Technology, 27-1, Muroran, Hokkaido (Japan); Park, Joon-soo [OASIS, Muroran Institute of Technology, 27-1, Muroran, Hokkaido (Japan); Nakazato, Naofumi [Graduate School, Muroran Institute of Technology, 27-1, Muroran, Hokkaido (Japan); Kohyama, Akira [OASIS, Muroran Institute of Technology, 27-1, Muroran, Hokkaido (Japan)

    2016-11-01

    Highlights: • NITE SiC/SiC cooling channel system to be a candidate of divertor system in future. • Hoop strength is one of the important factors for a tube. • This research studies the relationship between deformation and strain of SiC/SiC tube. - Abstract: SiC fiber reinforced/SiC matrix (SiC/SiC) composite is expected to be a candidate material for the first-wall, components in the blanket and divertor of fusion reactors in future. In such components, SiC/SiC composites need to be formed to be various shapes. SiC/SiC tubes has been expected to be employed for blanket and divertor after DEMO reactor, but there is not established mechanical investigation technique. Recent progress of SiC/SiC processing techniques is likely to realize strong, having gas tightness SiC/SiC tubes which will contribute for the development of fusion reactors. This research studies the relationship between deformation and strain of SiC/SiC tube using a circumferential tensile test method to establish a mechanical property investigation method of SiC/SiC tubes.

  4. Si, Ge and SiGe wires for sensor application

    International Nuclear Information System (INIS)

    Druzhinin, A.A.; Khoverko, Yu.M.; Ostrovskii, I.P.; Nichkalo, S.I.; Nikolaeva, A.A.; Konopko, L.A.; Stich, I.

    2011-01-01

    Resistance and magnetoresistance of Si, Ge and Si-Ge micro- and nanowires were studied in temperature range 4,2-300 K at magnetic fields up to 14 T. The wires diameters range from 200 nm to 20 μm. Ga-In gates were created to wires and ohmic I-U characteristics were observed in all temperature range. It was found high elastic strain for Ge nanowires (of about 0,7%) as well as high magnitude of magnetoresistance (of about 250% at 14 T), which was used to design multifunctional sensor of simultaneous measurements of strain and magnetic field intensity. (authors)

  5. Doping effect in Si nanocrystals

    Science.gov (United States)

    Li, Dongke; Xu, Jun; Zhang, Pei; Jiang, Yicheng; Chen, Kunji

    2018-06-01

    Intentional doping in semiconductors is a fundamental issue since it can control the conduction type and ability as well as modify the optical and electronic properties. To realize effective doping is the basis for developing semiconductor devices. However, by reducing the size of a semiconductor, like Si, to the nanometer scale, the doping effects become complicated due to the coupling between the quantum confinement effect and the surfaces and/or interfaces effect. In particular, by introducing phosphorus or boron impurities as dopants into material containing Si nanocrystals with a dot size of less than 10 nm, it exhibits different behaviors and influences on the physical properties from its bulk counterpart. Understanding the doping effects in Si nanocrystals is currently a challenge in order to further improve the performance of the next generation of nano-electronic and photonic devices. In this review, we present an overview of the latest theoretical studies and experimental results on dopant distributions and their effects on the electronic and optical properties of Si nanocrystals. In particular, the advanced characterization techniques on dopant distribution, the carrier transport process as well as the linear and nonlinear optical properties of doped Si nanocrystals, are systematically summarized.

  6. Microbial Reducibility of Fe(III Phases Associated with the Genesis of Iron Ore Caves in the Iron Quadrangle, Minas Gerais, Brazil

    Directory of Open Access Journals (Sweden)

    Ceth W. Parker

    2013-11-01

    Full Text Available The iron mining regions of Brazil contain thousands of “iron ore caves” (IOCs that form within Fe(III-rich deposits. The mechanisms by which these IOCs form remain unclear, but the reductive dissolution of Fe(III (hydroxides by Fe(III reducing bacteria (FeRB could provide a microbiological mechanism for their formation. We evaluated the susceptibility of Fe(III deposits associated with these caves to reduction by the FeRB Shewanella oneidensis MR-1 to test this hypothesis. Canga, an Fe(III-rich duricrust, contained poorly crystalline Fe(III phases that were more susceptible to reduction than the Fe(III (predominantly hematite associated with banded iron formation (BIF, iron ore, and mine spoil. In all cases, the addition of a humic acid analogue enhanced Fe(III reduction, presumably by shuttling electrons from S. oneidensis to Fe(III phases. The particle size and quartz-Si content of the solids appeared to exert control on the rate and extent of Fe(III reduction by S. oneidensis, with more bioreduction of Fe(III associated with solid phases containing more quartz. Our results provide evidence that IOCs may be formed by the activities of Fe(III reducing bacteria (FeRB, and the rate of this formation is dependent on the physicochemical and mineralogical characteristics of the Fe(III phases of the surrounding rock.

  7. Synthesis and characterization of La(III), Pr(III), Nd(III), Sm(III), Eu(III), Gd(III), Tb(III) and Dy(III) complexes of 2-acetylfuran-2-thenoylhydrazone

    International Nuclear Information System (INIS)

    Singh, B.; Singh, Praveen K.

    1998-01-01

    The reaction of 2-acetylfuran-2-thenoylhydrazone(afth) with Ln(III) trichlorides yields complexes of the type [Ln(afth)Cl 2 (H 2 O)(EtOH)]Cl, [Ln(III) = La, Pr, Nd, Sm, Eu, Gd, Tb and Dy]. The complexes have been characterized by molar conductance, magnetic susceptibility and TGA and DTA measurements, magnetic susceptibility and TGA and DTA measurements, FAB mass, infrared, proton NMR, electronic absorption and emission spectra. The terbium complex is found to be monomer from the FAB mass spectrum. The IR and NMR spectra suggest neutral tridentate behaviour of the Schiff base. A coordination number seven is proposed around the metal ions. Emission spectra suggest C 3v , symmetry around the metal ion with capped octahedron geometry for the europium complex. (author)

  8. An InP/Si heterojunction photodiode fabricated by self-aligned corrugated epitaxial lateral overgrowth

    International Nuclear Information System (INIS)

    Sun, Y. T.; Omanakuttan, G.; Lourdudoss, S.

    2015-01-01

    An n-InP/p-Si heterojunction photodiode fabricated by corrugated epitaxial lateral overgrowth (CELOG) method is presented. N-InP/p-Si heterojunction has been achieved from a suitable pattern containing circular shaped openings in a triangular lattice on the InP seed layer on p-Si substrate and subsequent CELOG of completely coalesced n-InP. To avoid current path through the seed layer in the final photodiode, semi-insulating InP:Fe was grown with adequate thickness prior to n-InP growth in a low pressure hydride vapor phase epitaxy reactor. The n-InP/p-Si heterointerface was analyzed by scanning electron microscopy and Raman spectroscopy. Room temperature cross-sectional photoluminescence (PL) mapping illustrates the defect reduction effect in InP grown on Si by CELOG method. The InP PL intensity measured above the InP/Si heterojunction is comparable to that of InP grown on a native planar substrate indicating low interface defect density of CELOG InP despite of 8% lattice mismatch with Si. The processed n-InP/p-Si heterojunction photodiodes show diode characteristics from the current-voltage (I-V) measurements with a dark current density of 0.324 mA/cm 2 at a reverse voltage of −1 V. Under the illumination of AM1.5 conditions, the InP/Si heterojunction photodiode exhibited photovoltaic effect with an open circuit voltage of 180 mV, a short circuit current density of 1.89 mA/cm 2 , an external quantum efficiency of 4.3%, and an internal quantum efficiency of 6.4%. This demonstration of epitaxially grown InP/Si heterojunction photodiode will open the door for low cost and high efficiency solar cells and photonic integration of III-Vs on silicon

  9. Reaction mechanisms at 4H-SiC/SiO2 interface during wet SiC oxidation

    Science.gov (United States)

    Akiyama, Toru; Hori, Shinsuke; Nakamura, Kohji; Ito, Tomonori; Kageshima, Hiroyuki; Uematsu, Masashi; Shiraishi, Kenji

    2018-04-01

    The reaction processes at the interface between SiC with 4H structure (4H-SiC) and SiO2 during wet oxidation are investigated by electronic structure calculations within the density functional theory. Our calculations for 4H-SiC/SiO2 interfaces with various orientations demonstrate characteristic features of the reaction depending on the crystal orientation of SiC: On the Si-face, the H2O molecule is stable in SiO2 and hardly reacts with the SiC substrate, while the O atom of H2O can form Si-O bonds at the C-face interface. Two OH groups are found to be at least necessary for forming new Si-O bonds at the Si-face interface, indicating that the oxidation rate on the Si-face is very low compared with that on the C-face. On the other hand, both the H2O molecule and the OH group are incorporated into the C-face interface, and the energy barrier for OH is similar to that for H2O. By comparing the calculated energy barriers for these reactants with the activation energies of oxide growth rate, we suggest the orientation-dependent rate-limiting processes during wet SiC oxidation.

  10. Analyses of the As doping of SiO{sub 2}/Si/SiO{sub 2} nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Ruffino, Francesco; Miritello, Maria [CNR-IMM MATIS, via S. Sofia 64, 95123 Catania (Italy); Tomasello, Mario Vincenzo [Scuola Superiore di Catania, via San Nullo 5/i, 95123 Catania (Italy); De Bastiani, Riccardo; Grimaldi, Maria Grazia [Dipartimento di Fisica ed Astronomia, Universita di Catania, via S. Sofia 64, 95123 Catania (Italy); CNR-IMM MATIS, via S. Sofia 64, 95123 Catania (Italy); Nicotra, Giuseppe; Spinella, Corrado [Consiglio Nazionale delle Ricerche-Istituto per la Microelettronica e Microsistemi (CNR-IMM), VIII Strada 5, 95121 Catania (Italy)

    2011-03-15

    We illustrate the behaviour of As when it is confined, by the implantation technique, in a SiO{sub 2}(70nm)/Si(30nm)/SiO{sub 2}(70nm) multilayer and its spatial redistribution when annealing processes are performed. By Rutherford backscattering spectrometry and Z-contrast transmission electron microscopy we found an As accumulation at the Si/SiO{sub 2} interfaces and at the Si grain boundaries with no segregation of the As in the Si layer. Such an effect is in agreement with a model that assumes a traps distribution in the Si in the first 2-3 nm above the SiO{sub 2}/Si interfaces and along the Si grain boundaries. The traps concentration at the Si/SiO{sub 2} interfaces was estimated in 10{sup 14} traps/cm{sup 2}. The outlined results can open perspectives on the doping properties of As in Si nanocrystals, whose applications in nanoelectronics and optoelectronics are widely investigated (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. Dynamics of Defects and Dopants in Complex Systems: Si and Oxide Surfaces and Interfaces

    Science.gov (United States)

    Kirichenko, Taras; Yu, Decai; Banarjee, Sanjay; Hwang, Gyeong

    2004-10-01

    Fabrication of forthcoming nanometer scale electronic devices faces many difficulties including formation of extremely shallow and highly doped junctions. At present, ultra-low-energy ion implantation followed by high-temperature thermal annealing is most widely used to fabricate such ultra-shallow junctions. In the process, a great challenge lies in achieving precise control of redistribution and electrical activation of dopant impurities. Native defects (such as vacancies and interstitials) generated during implantation are known to be mainly responsible for the TED and also influence significantly the electrical activation/deactivation. Defect-dopant dynamics is rather well understood in crystalline Si and SiO2. However, little is known about their diffusion and annihilation (or precipitation) at the surfaces and interfaces, despite its growing importance in determining junction profiles as device dimensions get smaller. In this talk, we will present our density functional theory calculation results on the atomic and electronic structure and dynamical behavior of native defects and dopant-defect complexes in disordered/strained Si and oxide systems, such as i) clean and absorbent-modified Si(100) surface and subsurface layers, ii) amorphous-crystalline Si interfaces and iii) amorphous SiO2/Si interfaces. The fundamental understanding and data is essential in developing a comprehensive kinetic model for junction formation, which would contribute greatly in improving current process technologies.

  12. High-dose MeV electron irradiation of Si-SiO2 structures implanted with high doses Si+

    Science.gov (United States)

    Kaschieva, S.; Angelov, Ch; Dmitriev, S. N.

    2018-03-01

    The influence was studied of 22-MeV electron irradiation on Si-SiO2 structures implanted with high-fluence Si+ ions. Our earlier works demonstrated that Si redistribution is observed in Si+-ion-implanted Si-SiO2 structures (after MeV electron irradiation) only in the case when ion implantation is carried out with a higher fluence (1016 cm-2). We focused our attention on the interaction of high-dose MeV electron irradiation (6.0×1016 cm-2) with n-Si-SiO2 structures implanted with Si+ ions (fluence 5.4×1016 cm-2 of the same order magnitude). The redistribution of both oxygen and silicon atoms in the implanted Si-SiO2 samples after MeV electron irradiation was studied by Rutherford back-scattering (RBS) spectroscopy in combination with a channeling technique (RBS/C). Our results demonstrated that the redistribution of oxygen and silicon atoms in the implanted samples reaches saturation after these high doses of MeV electron irradiation. The transformation of amorphous SiO2 surface into crystalline Si nanostructures (after MeV electron irradiation) was evidenced by atomic force microscopy (AFM). Silicon nanocrystals are formed on the SiO2 surface after MeV electron irradiation. The shape and number of the Si nanocrystals on the SiO2 surface depend on the MeV electron irradiation, while their size increases with the dose. The mean Si nanocrystals height is 16-20 nm after irradiation with MeV electrons at the dose of 6.0×1016 cm-2.

  13. α-, β-, and δ-Hydrogen Abstraction in the Thermolysis of Paramagnetic Vanadium(III) Dialkyl Complexes

    NARCIS (Netherlands)

    Hessen, Bart; Buijink, Jan-Karel F.; Meetsma, Auke; Teuben, Jan H.; Helgesson, Göran; Håkansson, Mikael; Jagner, Susan; Spek, Anthony L.

    1993-01-01

    Electron deficient paramagnetic vanadium(III) diakyls CpV(CH2CMe2R)2(PMe3) (14 electron, R = Me (2), Ph (3)) and CpV[CH(SiMe3)2]2 (12 electron, 4) have been synthesized. At ambient temperature 2 decomposes through α-hydrogen abstraction to produce, in the presence of dmpe

  14. Thermal shock properties of 2D-SiCf/SiC composites

    International Nuclear Information System (INIS)

    Lee, Sang Pill; Lee, Jin Kyung; Son, In Soo; Bae, Dong Su; Kohyama, Akira

    2012-01-01

    This paper dealt with the thermal shock properties of SiC f /SiC composites reinforced with two dimensional SiC fabrics. SiC f /SiC composites were fabricated by a liquid phase sintering process, using a commercial nano-size SiC powder and oxide additive materials. An Al 2 O 3 –Y 2 O 3 –SiO 2 powder mixture was used as a sintering additive for the consolidation of SiC matrix region. In this composite system, Tyranno SA SiC fabrics were also utilized as a reinforcing material. The thermal shock test for SiC f /SiC composites was carried out at the elevated temperature. Both mechanical strength and microstructure of SiC f /SiC composites were investigated by means of optical microscopy, SEM and three point bending test. SiC f /SiC composites represented a dense morphology with a porosity of about 8.2% and a flexural strength of about 160 MPs. The characterization of SiC f /SiC composites was greatly affected by the history of cyclic thermal shock. Especially, SiC f /SiC composites represented a reduction of flexural strength at the thermal shock temperature difference higher than 800 °C.

  15. Effect of cerium conversion of A3xx.x/SiCp composites surfaces on salt fog corrosion behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Pardo, A.; Merino, M.C.; Arrabal, R.; Viejo, F.; Carboneras, M.; Coy, A.E. [Departamento de Ciencia de Materiales, Facultad de Quimica, Universidad Complutense, 28040, Madrid (Spain); Merino, S. [Departamento de Tecnologia Industrial, Universidad Alfonso X El Sabio, 28691, Villanueva de la Canada, Madrid (Spain)

    2004-07-01

    A study of the effect of cerium conversion treatment on surface of four composites (A360/SiC/10p, A360/SiC/20p, A380/SiC/10p, A380/SiC/20p) on their salt fog corrosion behaviour was performed. The conversion treatment was carried out using thermal activated full immersion in Ce(III) aqueous solutions. The matrix of A360/SiC/xxp composites is virtually free of Cu while the A380/SiC/xxp matrix contains 1.39-1.44 wt.%Ni and 3.13-3.45 wt.%Cu. Conversion performance was evaluated in neutral salt fog environment according to ASTM B117. The kinetics of the corrosion process were studied on the basis of gravimetric tests. The influence of SiCp proportion and matrix composition was evaluated and the nature of corrosion products was analysed by SEM and low angle XRD before and after accelerated testing to determine the influence of microstructural changes on corrosion behaviour during exposure to the corrosive environment. The Ce(III) precipitates on the cathodic sites, mainly on the intermetallic compounds, decreased both the cathodic current density and the corrosion rate of the composites tested. The presence of Cu in the matrix composition increased the corrosion rate, due to the galvanic couple Al/Cu. (authors)

  16. High thermal conductivity SiC/SiC composites for fusion applications -- 2

    International Nuclear Information System (INIS)

    Kowbel, W.; Tsou, K.T.; Withers, J.C.; Youngblood, G.E.

    1998-01-01

    This report covers material presented at the IEA/Jupiter Joint International Workshop on SiC/SiC Composites for Fusion Structural Applications held in conjunction with ICFRM-8, Sendai, Japan, Oct. 23--24, 1997. An unirradiated SiC/SiC composite made with MER-developed CVR SiC fiber and a hybrid PIP/CVI SiC matrix exhibited room temperature transverse thermal conductivity of 45 W/mK. An unirradiated SiC/SiC composite made from C/C composite totally CVR-converted to a SiC/SiC composite exhibited transverse thermal conductivity values of 75 and 35 W/mK at 25 and 1000 C, respectively. Both types of SiC/SiC composites exhibited non-brittle failure in flexure testing

  17. 32Si dating of sediments

    International Nuclear Information System (INIS)

    Morgenstern, U.

    2004-01-01

    Brief explanation of the use of 32 Si in the dating of sediments. 32 Si , with a half-life of c.140 years, can be applied in the age range 30-1000 years. An appropriate dating tool for that time range is essential because it includes three very important epochs: the impact of human colonisation and industrialisation during the last 150 years, the Little Ice Age between about 1650 AD and 1850 AD, and the last part of the Medieval Climatic Optimum. 23 refs

  18. SI units in radiation protection

    International Nuclear Information System (INIS)

    Herrmann, D.

    1976-10-01

    In the field of radiation protection all hitherto used units for activity, activity concentrations, exposure, absorbed dose, and dose rates have to be replaced by SI units during the next years. For this purpose graphs and conversion tables are given as well as recommendations on unit combinations preferentially to be used. As to the dose equivalent, it is suggested to introduce a new special unit being 100 times greater than the rem, instead of maintaining the rem or using the gray for both absorbed dose and dose equivalent. Measures and time schedule relating to the gradual transition to SI units in measuring techniques, training, and publishing et cetera are explained. (author)

  19. Cavities at the Si projected range by high dose and energy Si ion implantation in Si

    International Nuclear Information System (INIS)

    Canino, M.; Regula, G.; Lancin, M.; Xu, M.; Pichaud, B.; Ntzoenzok, E.; Barthe, M.F.

    2009-01-01

    Two series of n-type Si samples α and β are implanted with Si ions at high dose (1 x 10 16 ) and high energies, 0.3 and 1.0 MeV, respectively. Both sort of samples are then implanted with 5 x 10 16 He cm -2 (at 10 or 50 keV) and eventually with B atoms. Some of the samples are annealed at temperatures ranging from 800 to 1000 deg. C to allow the thermal growth of He-cavities, located between sample surface and the projected range (R p ) of Si. After the triple ion implantation, which corresponds to defect engineering, samples were characterized by cross-section transmission electron microscopy (XTEM). Voids (or bubbles) are observed not only at the R p (He) on all annealed samples, but also at the R p (Si) on β samples implanted with He at 50 keV. The samples are also studied by positron annihilation spectroscopy (PAS) and the spectra confirm that as-implanted samples contain di-vacancies and that the annealed ones, even at high temperature have bigger open volumes, which are assumed to be the same voids observed by XTEM. It is demonstrated that a sole Si implantation at high energy and dose is efficient to create cavities which are thermally stable up to 1000 deg. C only in the presence of He.

  20. Analysis of Si/SiGe Heterostructure Solar Cell

    Directory of Open Access Journals (Sweden)

    Ashish Kumar Singh

    2014-01-01

    Full Text Available Sunlight is the largest source of carbon-neutral energy. Large amount of energy, about 4.3 × 1020 J/hr (Lewis, 2005, is radiated because of nuclear fusion reaction by sun, but it is unfortunate that it is not exploited to its maximum level. Various photovoltaic researches are ongoing to find low cost, and highly efficient solar cell to fulfil looming energy crisis around the globe. Thin film solar cell along with enhanced absorption property will be the best, so combination of SiGe alloy is considered. The paper presented here consists of a numerical model of Si/Si1-xGex heterostructure solar cell. The research has investigated characteristics such as short circuit current density (Jsc, generation rate (G, absorption coefficient (α, and open circuit voltage (Voc with optimal Ge concentration. The addition of Ge content to Si layer will affect the property of material and can be calculated with the use of Vegard’s law. Due to this, short circuit current density increases.

  1. Sorption of trace amounts of gallium (III) on iron (III) oxide

    Energy Technology Data Exchange (ETDEWEB)

    Music, S; Gessner, M; Wolf, R H.H. [Institut Rudjer Boskovic, Zagreb (Yugoslavia)

    1979-01-01

    The sorption of trace amounts of gallium(III) on iron(III) oxide has been studied as a function of pH. Optimum conditions have been found for the preconcentration of traces of gallium(III) by iron(III) oxide. The influence of surface active substances and of complexing agents on the sorption of trace amounts of gallium(III) on iron(III) oxide has been also studied.

  2. Sorption of trace amounts of gallium (III) on iron (III) oxide

    International Nuclear Information System (INIS)

    Music, S.; Gessner, M.; Wolf, R.H.H.

    1979-01-01

    The sorption of trace amounts of gallium(III) on iron(III) oxide has been studied as a function of pH. Optimum conditions have been found for the preconcentration of traces of gallium(III) by iron(III) oxide. The influence of surface active substances and of complexing agents on the sorption of trace amounts of gallium(III) on iron(III) oxide has been also studied. (orig.) [de

  3. The Negotiation of Basel III

    DEFF Research Database (Denmark)

    Just, Sine Nørholm

    2015-01-01

    While the Basel Accords of 1988 and 2004 (Basel I and Basel II) ostensibly set out to regulate bank risk at the international level, they were effectively in the grip of neoliberal beliefs in the self-regulating potential of free markets. In 2009–2011, the Basel Accords were revised once more wit...... agency, the empirical argument is substantiated through textual–intertextual analysis of the rhetorical circulation of affective signs in the Basel III negotiations....

  4. Firebird-III program description

    International Nuclear Information System (INIS)

    Lin, M.R.; Prawirosochardjo, S.; Rennick, D.F.; Wessman, E.; Blain, R.J.D.; Wilson, J.M.

    1979-09-01

    The FIREBIRD-III digital computer program is a general network code developed primarily for predicting the thermalhydraulic behaviour of CANDU power reactors during a postulated loss-of-coolant accident and the subsequent emergency coolant injection. Because of its flexibility, the code can also be used to solve a large variety of general two-phase flow problems. This report describes the thermalhydraulic models and the computation methods used in the program

  5. Mechatronic systems and materials III

    CERN Document Server

    Gosiewski, Zdzislaw

    2009-01-01

    This very interesting volume is divided into 24 sections; each of which covers, in detail, one aspect of the subject-matter: I. Industrial robots; II. Microrobotics; III. Mobile robots; IV. Teleoperation, telerobotics, teleoperated semi-autonomous systems; V. Sensors and actuators in mechatronics; VI. Control of mechatronic systems; VII. Analysis of vibration and deformation; VIII. Optimization, optimal design; IX. Integrated diagnostics; X. Failure analysis; XI. Tribology in mechatronic systems; XII. Analysis of signals; XIII. Measurement techniques; XIV. Multifunctional and smart materials;

  6. Revised SNAP III Training Manual

    Energy Technology Data Exchange (ETDEWEB)

    Moss, Calvin Elroy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gonzales, Samuel M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Myers, William L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Nelson, Mark Andrew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rothrock, Richard Brian [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Salazar, Samuel A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sorensen, Eric Byron [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sundby, Gary M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-11-21

    The Shielded Neutron Assay Probe (SNAP) technique was developed to determine the leakage neutron source strength of a radioactive object. The original system consisted of an EberlineTM Mini-scaler and discrete neutron detector. The system was operated by obtaining the count rate with the EberlineTM instrument, determining the absolute efficiency from a graph, and calculating the neutron source strength by hand. In 2003 the SNAP III, shown in Figure 1, was designed and built. It required the operator to position the SNAP, and then measure the source-to-detector and detectorto- reflector distances. Next the operator entered the distance measurements and started the data acquisition. The SNAP acquired the required count rate and then calculated and displayed the leakage neutron source strength (NSS). The original design of the SNAP III is described in SNAP III Training Manual (ER-TRN-PLN-0258, Rev. 0, January 2004, prepared by William Baird) This report describes some changes that have been made to the SNAP III. One important change is the addition of a LEMO connector to provide neutron detection output pulses for input to the MC-15. This feature is useful in active interrogation with a neutron generator because the MC-15 has the capability to only record data when it is not gated off by a pulse from the neutron generator. This avoids recording of a lot of data during the generator pulses that are not useful. Another change was the replacement of the infrared RS-232 serial communication output by a similar output via a 4-pin LEMO connector. The current document includes a more complete explanation of how to estimate the amount of moderation around a neutron-emitting source.

  7. Titanium gettering in Doublet III

    International Nuclear Information System (INIS)

    de Grassie, J.S.; Callis, R.; Campbell, G.

    1980-08-01

    The application of mild titanium gettering in the Doublet III tokamak has led to a significant improvement in the obtainable operating regimes and discharge parameters for all of the many plasma cross-sectional shapes studied. With gettering, low-Z impurities and radiated power are greatly reduced. The maximum line averaged electron density has increased 50% (anti n/sub e max/ approx. 1 x 10 20 /m 3 ), corresponding to a Murakami coefficient of nearly 6

  8. Improving Minuteman III Maintenance Concepts

    Science.gov (United States)

    2017-03-23

    the ground . Then figure out what your challenges are. We’ll have those” (Pappalardo, 2011). Another challenge facing the maintenance personnel...as assets aged as indicated by the pattern ‘B’ shown in Figure 2. With the increase in the mechanization of processes, more attention has been...concepts could be applied to the sustainment of the MM III as well as benefit its planned replacement, the Ground Based Strategic Deterrent (GBDS

  9. French participation to PISC III

    International Nuclear Information System (INIS)

    Birac, C.

    1994-06-01

    The PISC III programme was set up in 1986 after the conclusions of the PISC II programme. The main objective was assessment of ISI procedures on few particular components or materials. France with IPSN, CEA/DTA, DCN INDRET, EDF, FRAMATOME and INTERCONTROLE decided to have an important participation in several of the eight actions. This paper describes shortly the key points of this participation and the consequences in France. (authors). 10 figs., 1 tab

  10. X-ray characterization of Ge dots epitaxially grown on nanostructured Si islands on silicon-on-insulator substrates.

    Science.gov (United States)

    Zaumseil, Peter; Kozlowski, Grzegorz; Yamamoto, Yuji; Schubert, Markus Andreas; Schroeder, Thomas

    2013-08-01

    On the way to integrate lattice mismatched semiconductors on Si(001), the Ge/Si heterosystem was used as a case study for the concept of compliant substrate effects that offer the vision to be able to integrate defect-free alternative semiconductor structures on Si. Ge nanoclusters were selectively grown by chemical vapour deposition on Si nano-islands on silicon-on-insulator (SOI) substrates. The strain states of Ge clusters and Si islands were measured by grazing-incidence diffraction using a laboratory-based X-ray diffraction technique. A tensile strain of up to 0.5% was detected in the Si islands after direct Ge deposition. Using a thin (∼10 nm) SiGe buffer layer between Si and Ge the tensile strain increases to 1.8%. Transmission electron microscopy studies confirm the absence of a regular grid of misfit dislocations in such structures. This clear experimental evidence for the compliance of Si nano-islands on SOI substrates opens a new integration concept that is not only limited to Ge but also extendable to semiconductors like III-V and II-VI materials.

  11. Basel III and Asset Securitization

    Directory of Open Access Journals (Sweden)

    M. Mpundu

    2013-01-01

    Full Text Available Asset securitization via special purpose entities involves the process of transforming assets into securities that are issued to investors. These investors hold the rights to payments supported by the cash flows from an asset pool held by the said entity. In this paper, we discuss the mechanism by which low- and high-quality entities securitize low- and high-quality assets, respectively, into collateralized debt obligations. During the 2007–2009 financial crisis, asset securitization was seriously inhibited. In response to this, for instance, new Basel III capital and liquidity regulations were introduced. Here, we find that we can explicitly determine the transaction costs related to low-quality asset securitization. Also, in the case of dynamic and static multipliers, the effects of unexpected negative shocks such as rating downgrades on asset price and input, debt obligation price and output, and profit will be quantified. In this case, we note that Basel III has been designed to provide countercyclical capital buffers to negate procyclicality. Moreover, we will develop an illustrative example of low-quality asset securitization for subprime mortgages. Furthermore, numerical examples to illustrate the key results will be provided. In addition, connections between Basel III and asset securitization will be highlighted.

  12. Organometallic neptunium(III) complexes

    Science.gov (United States)

    Dutkiewicz, Michał S.; Farnaby, Joy H.; Apostolidis, Christos; Colineau, Eric; Walter, Olaf; Magnani, Nicola; Gardiner, Michael G.; Love, Jason B.; Kaltsoyannis, Nikolas; Caciuffo, Roberto; Arnold, Polly L.

    2016-08-01

    Studies of transuranic organometallic complexes provide a particularly valuable insight into covalent contributions to the metal-ligand bonding, in which the subtle differences between the transuranium actinide ions and their lighter lanthanide counterparts are of fundamental importance for the effective remediation of nuclear waste. Unlike the organometallic chemistry of uranium, which has focused strongly on UIII and has seen some spectacular advances, that of the transuranics is significantly technically more challenging and has remained dormant. In the case of neptunium, it is limited mainly to NpIV. Here we report the synthesis of three new NpIII organometallic compounds and the characterization of their molecular and electronic structures. These studies suggest that NpIII complexes could act as single-molecule magnets, and that the lower oxidation state of NpII is chemically accessible. In comparison with lanthanide analogues, significant d- and f-electron contributions to key NpIII orbitals are observed, which shows that fundamental neptunium organometallic chemistry can provide new insights into the behaviour of f-elements.

  13. Microscopic and macroscopic characterization of the charging effects in SiC/Si nanocrystals/SiC sandwiched structures

    International Nuclear Information System (INIS)

    Xu, Jie; Xu, Jun; Wang, Yuefei; Cao, Yunqing; Li, Wei; Yu, Linwei; Chen, Kunji

    2014-01-01

    Microscopic charge injection into the SiC/Si nanocrystals/SiC sandwiched structures through a biased conductive AFM tip is subsequently characterized by both electrostatic force microscopy and Kelvin probe force microscopy (KPFM). The charge injection and retention characteristics are found to be affected by not only the band offset at the Si nanocrystals/SiC interface but also the doping type of the Si substrate. On the other hand, capacitance–voltage (C–V) measurements investigate the macroscopic charging effect of the sandwiched structures with a thicker SiC capping layer, where the charges are injected from the Si substrates. The calculated macroscopic charging density is 3–4 times that of the microscopic one, and the possible reason is the underestimation of the microscopic charging density caused by the averaging effect and detection delay in the KPFM measurements. (paper)

  14. Pressureless sintering of dense Si3N4 and Si3N4/SiC composites with nitrate additives

    International Nuclear Information System (INIS)

    Kim, J.Y.; Iseki, Takayoshi; Yano, Toyohiko

    1996-01-01

    The effect of aluminum and yttrium nitrate additives on the densification of monolithic Si 3 N 4 and a Si 3 N 4 /SiC composite by pressureless sintering was compared with that of oxide additives. The surfaces of Si 3 N 4 particles milled with aluminum and yttrium nitrates, which were added as methanol solutions, were coated with a different layer containing Al and Y from that of Si 3 N 4 particles milled with oxide additives. Monolithic Si 3 N 4 could be sintered to 94% of theoretical density (TD) at 1,500 C with nitrate additives. The sintering temperature was about 100 C lower than the case with oxide additives. After pressureless sintering at 1,750 C for 2 h in N 2 , the bulk density of a Si 3 N 4 /20 wt% SiC composite reached 95% TD with nitrate additives

  15. Si-O-Si bond-angle distribution in vitreous silica from first-principles 29Si NMR analysis

    International Nuclear Information System (INIS)

    Mauri, Francesco; Pasquarello, Alfredo; Pfrommer, Bernd G.; Yoon, Young-Gui; Louie, Steven G.

    2000-01-01

    The correlation between 29 Si chemical shifts and Si-O-Si bond angles in SiO 2 is determined within density-functional theory for the full range of angles present in vitreous silica. This relation closely reproduces measured shifts of crystalline polymorphs. The knowledge of the correlation allows us to reliably extract from the experimental NMR spectrum the mean (151 degree sign ) and the standard deviation (11 degree sign ) of the Si-O-Si angular distribution of vitreous silica. In particular, we show that the Mozzi-Warren Si-O-Si angular distribution is not consistent with the NMR data. This analysis illustrates the potential of our approach for structural determinations of silicate glasses. (c) 2000 The American Physical Society

  16. SI units in biomedical dosimetry

    International Nuclear Information System (INIS)

    Liden, K.

    1975-01-01

    The International commission on radiation units and measurements (ICRU), during the period from 1953 to 1962 presented its definitions of the quantities absorbed dose, exposure, activity, and dose equivalent and the corresponding special units the rad, the roentgen, the curie, and the rem. At the same time an international practical system of units was developed, Le Systeme International d'Unites (SI). It was adopted by the 11th Conference Generale des Poids et Mesures (CGPM) in 1960 and is now officially introduced in almost all countries. The general implementation of the SI means difficulties for the future use of the special radiation units, because the numerical factors involved prevent their adoption as SI units. In view of this, and after having sampled the opinion in the radiological field, the ICRU prepared a Statement on Units in July, 1974 which was forwarded to the Comite International des Poids et Mesures (CIPM) and its Comite Consultatif des Unites (CCU) for consideration. As a result of this statement the CIPM has now proposed, that the 15rh CGPM adopt special names for two SI units, namely the becquerel, symbol Bq, for the unit of activity of radionuclides equal to the reciprocal second, s 1- , and the gray, symbol Gy, for the unit of absorbed dose equal to the joule per kilogram, J/kg. The 15th CGPM will consider this matter in May, 1975. (author)

  17. Growth of group III nitride films by pulsed electron beam deposition

    International Nuclear Information System (INIS)

    Ohta, J.; Sakurada, K.; Shih, F.-Y.; Kobayashi, A.; Fujioka, H.

    2009-01-01

    We have grown group III nitride films on Al 2 O 3 (0 0 0 1), 6H-SiC (0 0 0 1), and ZnO (0001-bar) substrates by pulsed electron beam deposition (PED) for the first time and investigated their characteristics. We found that c-plane AlN and GaN grow epitaxially on these substrates. It has been revealed that the growth of GaN on atomically flat 6H-SiC substrates starts with the three-dimensional mode and eventually changes into the two-dimensional mode. The GaN films exhibited strong near-band-edge emission in their room temperature photoluminescence spectra. We also found that the use of PED allows us to reduce the epitaxial growth temperature for GaN down to 200 deg. C. - Graphical abstract: We have grown group III nitride films by pulsed electron beam deposition (PED) and found that the films of group III nitrides grow epitaxially on 6H-SiC and Al 2 O 3 substrates. We also found that the use of PED allows us to reduce the epitaxial growth temperature for GaN down to 200 deg. C.

  18. Palladium transport in SiC

    International Nuclear Information System (INIS)

    Olivier, E.J.; Neethling, J.H.

    2012-01-01

    Highlights: ► We investigate the reaction of Pd with SiC at typical HTGR operating temperatures. ► The high temperature mobility of palladium silicides within polycrystalline SiC was studied. ► Corrosion of SiC by Pd was seen in all cases. ► The preferential corrosion and penetration of Pd along grain boundaries in SiC was found. ► The penetration and transport of palladium silicides in SiC along grain boundaries was found. - Abstract: This paper reports on a transmission electron microscopy (TEM) and scanning electron microscopy (SEM) study of Pd corroded SiC. The reaction of Pd with different types of SiC at typical HTGR operating temperatures was examined. In addition the high temperature mobility of palladium silicides within polycrystalline SiC was investigated. The results indicated corrosion of the SiC by Pd in all cases studied. The corrosion leads to the formation of palladium silicides within the SiC, with the predominant phase found being Pd 2 Si. Evidence for the preferential corrosion and penetration of Pd along grain boundaries in polycrystalline SiC was found. The penetration and transport, without significant corrosion, of palladium silicides into polycrystalline SiC along grain boundaries was also observed. Implications of the findings with reference to the use of Tri Isotropic particles in HTGRs will be discussed.

  19. Palladium transport in SiC

    Energy Technology Data Exchange (ETDEWEB)

    Olivier, E.J., E-mail: jolivier@nmmu.ac.za [Centre for High Resolution Transmission Electron Microscopy, Nelson Mandela Metropolitan University, Port Elizabeth (South Africa); Neethling, J.H. [Centre for High Resolution Transmission Electron Microscopy, Nelson Mandela Metropolitan University, Port Elizabeth (South Africa)

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer We investigate the reaction of Pd with SiC at typical HTGR operating temperatures. Black-Right-Pointing-Pointer The high temperature mobility of palladium silicides within polycrystalline SiC was studied. Black-Right-Pointing-Pointer Corrosion of SiC by Pd was seen in all cases. Black-Right-Pointing-Pointer The preferential corrosion and penetration of Pd along grain boundaries in SiC was found. Black-Right-Pointing-Pointer The penetration and transport of palladium silicides in SiC along grain boundaries was found. - Abstract: This paper reports on a transmission electron microscopy (TEM) and scanning electron microscopy (SEM) study of Pd corroded SiC. The reaction of Pd with different types of SiC at typical HTGR operating temperatures was examined. In addition the high temperature mobility of palladium silicides within polycrystalline SiC was investigated. The results indicated corrosion of the SiC by Pd in all cases studied. The corrosion leads to the formation of palladium silicides within the SiC, with the predominant phase found being Pd{sub 2}Si. Evidence for the preferential corrosion and penetration of Pd along grain boundaries in polycrystalline SiC was found. The penetration and transport, without significant corrosion, of palladium silicides into polycrystalline SiC along grain boundaries was also observed. Implications of the findings with reference to the use of Tri Isotropic particles in HTGRs will be discussed.

  20. Solar cells based on InP/GaP/Si structure

    Science.gov (United States)

    Kvitsiani, O.; Laperashvil, D.; Laperashvili, T.; Mikelashvili, V.

    2016-10-01

    Solar cells (SCs) based on III-V semiconductors are reviewed. Presented work emphases on the Solar Cells containing Quantum Dots (QDs) for next-generation photovoltaics. In this work the method of fabrication of InP QDs on III-V semiconductors is investigated. The original method of electrochemical deposition of metals: indium (In), gallium (Ga) and of alloys (InGa) on the surface of gallium phosphide (GaP), and mechanism of formation of InP QDs on GaP surface is presented. The possibilities of application of InP/GaP/Si structure as SC are discussed, and the challenges arising is also considered.

  1. Advanced Optoelectronic Devices based on Si Quantum Dots/Si Nanowires Hetero-structures

    International Nuclear Information System (INIS)

    Xu, J; Zhai, Y Y; Cao, Y Q; Chen, K J

    2017-01-01

    Si quantum dots are currently extensively studied since they can be used to develop many kinds of optoelectronic devices. In this report, we review the fabrication of Si quantum dots (Si QD) /Si nanowires (Si NWs) hetero-structures by deposition of Si QDs/SiO 2 or Si QDs/SiC multilayers on Si NWs arrays. The electroluminescence and photovoltaic devices based on the formed hetero-structures have been prepared and the improved performance is confirmed. It is also found that the surface recombination via the surface defects states on the Si NWs, especially the ones obtained by the long-time etching, may deteriorate the device properties though they exhibit the better anti-reflection characteristics. The possible surface passivation approaches are briefly discussed. (paper)

  2. On formation of silicon nanocrystals under annealing SiO2 layers implanted with Si ions

    International Nuclear Information System (INIS)

    Kachurin, G.A.; Yanovskaya, S.G.; Volodin, V.A.; Kesler, V.G.; Lejer, A.F.; Ruault, M.-O.

    2002-01-01

    Raman scattering, X-ray photoelectron spectroscopy, and photoluminescence have been used to study the formation of silicon nanocrystals in SiO 2 implanted with Si ions. Si clusters have been formed at once in the postimplanted layers, providing the excessive Si concentration more ∼ 3 at. %. Si segregation with Si-Si 4 bonds formation is enhanced as following annealing temperature increase, however, the Raman scattering by Si clusters diminishes. The effect is explained by a transformation of the chain-like Si clusters into compact phase nondimensional structures. Segregation of Si nanoprecipitates had ended about 1000 deg C, but the strong photoluminescence typical for Si nanocrystals manifested itself only after 1100 deg C [ru

  3. Study of type III ELMs in JET

    NARCIS (Netherlands)

    Sartori, R.; Saibene, G.; Horton, L. D.; Becoulet, M.; Budny, R.; Borba, D.; Chankin, A.; Conway, G. D.; Cordey, G.; McDonald, D.; Guenther, K.; von Hellermann, M. G.; Igithkanov, Y.; Loarte, A.; Lomas, P. J.; Pogutse, O.; Rapp, J.

    2004-01-01

    This paper presents the results of JET experiments aimed at studying the operational space of plasmas with a Type III ELMy edge, in terms of both local and global plasma parameters. In JET, the Type III ELMy regime has a wide operational space in the pedestal n(e)-T-e diagram, and Type III ELMs are

  4. Nanocatalytic growth of Si nanowires from Ni silicate coated SiC nanoparticles on Si solar cell.

    Science.gov (United States)

    Parida, Bhaskar; Choi, Jaeho; Ji, Hyung Yong; Park, Seungil; Lim, Gyoungho; Kim, Keunjoo

    2013-09-01

    We investigated the nanocatalytic growth of Si nanowires on the microtextured surface of crystalline Si solar cell. 3C-SiC nanoparticles have been used as the base for formation of Ni silicate layer in a catalytic reaction with the Si melt under H2 atmosphere at an annealing temperature of 1100 degrees C. The 10-nm thick Ni film was deposited after the SiC nanoparticles were coated on the microtextured surface of the Si solar cell by electron-beam evaporation. SiC nanoparticles form a eutectic alloy surface of Ni silicate and provide the base for Si supersaturation as well as the Ni-Si alloy layer on Si substrate surface. This bottom reaction mode for the solid-liquid-solid growth mechanism using a SiC nanoparticle base provides more stable growth of nanowires than the top reaction mode growth mechanism in the absence of SiC nanoparticles. Thermally excited Ni nanoparticle forms the eutectic alloy and provides collectively excited electrons at the alloy surface, which reduces the activation energy of the nanocatalytic reaction for formation of nanowires.

  5. Research on a Micro-Nano Si/SiGe/Si Double Heterojunction Electro-Optic Modulation Structure

    Directory of Open Access Journals (Sweden)

    Song Feng

    2018-01-01

    Full Text Available The electro-optic modulator is a very important device in silicon photonics, which is responsible for the conversion of optical signals and electrical signals. For the electro-optic modulator, the carrier density of waveguide region is one of the key parameters. The traditional method of increasing carrier density is to increase the external modulation voltage, but this way will increase the modulation loss and also is not conducive to photonics integration. This paper presents a micro-nano Si/SiGe/Si double heterojunction electro-optic modulation structure. Based on the band theory of single heterojunction, the barrier heights are quantitatively calculated, and the carrier concentrations of heterojunction barrier are analyzed. The band and carrier injection characteristics of the double heterostructure structure are simulated, respectively, and the correctness of the theoretical analysis is demonstrated. The micro-nano Si/SiGe/Si double heterojunction electro-optic modulation is designed and tested, and comparison of testing results between the micro-nano Si/SiGe/Si double heterojunction micro-ring electro-optic modulation and the micro-nano Silicon-On-Insulator (SOI micro-ring electro-optic modulation, Free Spectrum Range, 3 dB Bandwidth, Q value, extinction ratio, and other parameters of the micro-nano Si/SiGe/Si double heterojunction micro-ring electro-optic modulation are better than others, and the modulation voltage and the modulation loss are lower.

  6. Effect of Ti and Si interlayer materials on the joining of SiC ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Yang Il; Park, Jung Hwan; Kim, Hyun Gil; Park, Dong Jun; Park, Jeong Yong; Kim, Weon Ju [LWR Fuel Technology Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-08-15

    SiC-based ceramic composites are currently being considered for use in fuel cladding tubes in light-water reactors. The joining of SiC ceramics in a hermetic seal is required for the development of ceramic-based fuel cladding tubes. In this study, SiC monoliths were diffusion bonded using a Ti foil interlayer and additional Si powder. In the joining process, a very low uniaxial pressure of ∼0.1 MPa was applied, so the process is applicable for joining thin-walled long tubes. The joining strength depended strongly on the type of SiC material. Reaction-bonded SiC (RB-SiC) showed a higher joining strength than sintered SiC because the diffusion reaction of Si was promoted in the former. The joining strength of sintered SiC was increased by the addition of Si at the Ti interlayer to play the role of the free Si in RB-SiC. The maximum joint strength obtained under torsional stress was ∼100 MPa. The joint interface consisted of TiSi{sub 2}, Ti{sub 3}SiC{sub 2}, and SiC phases formed by a diffusion reaction of Ti and Si.

  7. Sparkle/PM3 for the modeling of europium(III), gadolinium(III), and terbium(III) complexes

    International Nuclear Information System (INIS)

    Freire, Ricardo O.; Rocha, Gerd B.; Simas, Alfredo M.

    2009-01-01

    The Sparkle/PM3 model is extended to europium(III), gadolinium(III), and terbium(III) complexes. The validation procedure was carried out using only high quality crystallographic structures, for a total of ninety-six Eu(III) complexes, seventy Gd(III) complexes, and forty-two Tb(III) complexes. The Sparkle/PM3 unsigned mean error, for all interatomic distances between the trivalent lanthanide ion and the ligand atoms of the first sphere of coordination, is: 0.080 A for Eu(III); 0.063 A for Gd(III); and 0.070 A for Tb(III). These figures are similar to the Sparkle/AM1 ones of 0.082 A, 0.061 A, and 0.068 A respectively, indicating they are all comparable parameterizations. Moreover, their accuracy is similar to what can be obtained by present-day ab initio effective core potential full geometry optimization calculations on such lanthanide complexes. Finally, we report a preliminary attempt to show that Sparkle/PM3 geometry predictions are reliable. For one of the Eu(III) complexes, BAFZEO, we created hundreds of different input geometries by randomly varying the distances and angles of the ligands to the central Eu(III) ion, which were all subsequently fully optimized. A significant trend was unveiled, indicating that more accurate local minima geometries cluster at lower total energies, thus reinforcing the validity of sparkle model calculations. (author)

  8. HERBIG-HARO OBJECTS IN THE LUPUS I AND III MOLECULAR CLOUDS

    International Nuclear Information System (INIS)

    Wang Hongchi; Henning, Thomas

    2009-01-01

    We performed a deep search for Herbig-Haro (HH) objects toward the Lupus I and III clouds, covering a sky area of ∼ 1 and ∼ 0.5 deg 2 , respectively. In total, 11 new HH objects, HH 981--991, are discovered. The HH objects both in Lupus I and in Lupus III tend to be concentrated in small areas. The HH objects detected in Lupus I are located in a region of radius 0.26 pc near the young star Sz 68. The abundance of HH objects shows that this region of the cloud is active in on-going star formation. HH objects in the Lup III cloud are concentrated in the central part of the cloud around the Herbig Ae/Be stars HR 5999 and 6000. HH 981 and 982 in Lupus I are probably driven by the young brown dwarf SSTc2d J154457.9-342340 which has a mass of 50 M J . HH 990 and 991 in Lup III align well with the HH 600 jet emanating from the low-mass star Par-Lup3-4, and are probably excited by this low-mass star of spectral type M5. High proper motions for HH 228 W, E, and E2 are measured, which confirms that they are excited by the young star Th 28. In contrast, HH 78 exhibits no measurable proper motion in the time span of 18 years, indicating that HH 78 is unlikely part of the HH 228 flow. The HH objects in Lup I and III are generally weak in terms of brightness and dimension in comparison to HH objects we detected with the same technique in the R CrA and Cha I clouds. Through a comparison with the survey results from the Spitzer c2d program, we find that our optical survey is more sensitive, in terms of detection rate, than the Spitzer IRAC survey to high-velocity outflows in the Lup I and III clouds.

  9. Europium (III) and americium (III) stability constants with humic acid

    International Nuclear Information System (INIS)

    Torres, R.A.; Choppin, G.R.

    1984-01-01

    The stability constants for tracer concentrations of Eu(III) and Am(III) complexes with a humic acid extracted from a lake-bottom sediment were measured using a solvent extraction system. The organic extractant was di(2-ethylhexyl)-phosphoric acid in toluene while the humate aqueous phase had a constant ionic strength of 0.1 M (NaClO 4 ). Aqueous humic acid concentrations were monitored by measuring uv-visible absorbances at approx.= 380 nm. The total carboxylate capacity of the humic acid was determined by direct potentiometric titration to be 3.86 +- 0.03 meq/g. The humic acid displayed typical characteristics of a polyelectrolyte - the apparent pKsub(a), as well as the calculated metal ion stability constants increased as the degree of ionization (α) increased. The binding data required a fit of two stability constants, β 1 and β 2 , such that for Eu, log β 1 = 8.86 α + 4.39, log β 2 = 3.55 α + 11.06 while for Am, log β 1 = 10.58 α + 3.84, log β 2 = 5.32 α + 10.42. With hydroxide, carbonate, and humate as competing ligands, the humate complex associated with the β 1 constant is calculated to be the dominant species for the trivalent actinides and lanthanides under conditions present in natural waters. (orig.)

  10. Mechanisms of aluminium-induced crystallization and layer exchange upon low-temperature annealing of amorphous Si/polycrystalline Al bilayers.

    Science.gov (United States)

    Wang, J Y; Wang, Z M; Jeurgens, L P H; Mittemeijer, E J

    2009-06-01

    Aluminium-induced crystallization (ALIC) of amorphous Si and subsequent layer exchange (ALILE) occur in amorphous-Si/polycrystalline-Al bilayers (a-Si/c-Al) upon annealing at temperatures as low as 165 degrees C and were studied by X-ray diffraction and Auger electron spectroscopic depth profiling. It follows that: (i) nucleation of Si crystallization is initiated at Al grain boundaries and not at the a-Si/c-Al interface; (ii) low-temperature annealing results in a large Si grain size in the continuous c-Si layer produced by ALILE. Thermodynamic model calculations show that: (i) Si can "wet" the Al grain boundaries due to the favourable a-Si/c-Al interface energy (as compared to the Al grain-boundary energy); (ii) the wetting-induced a-Si layer at the Al grain boundary can maintain its amorphous state only up to a critical thickness, beyond which nucleation of Si crystallization takes place; and (iii) a tiny driving force controls the kinetics of the layer exchange.

  11. Entrance channel excitations in the 28Si + 28Si reaction

    International Nuclear Information System (INIS)

    Decowski, P.; Gierlik, E.; Box, P.F.; Kamermans, R.; Nieuwenhuizen, G.J. van; Meijer, R.J.; Griffioen, K.A.; Wilschut, H.W.; Giorni, A.; Morand, C.; Demeyer, A.; Guinet, D.

    1991-01-01

    Velocity spectra of heavy ions produced in the 28 Si + 28 Si reaction at bombarding energies of 19.7 and 30 MeV/nucleon were measured and interpreted within the Q-optimum model extended by the inclusion of particle evaporation from excited fragments. Regions of forward angle spectra corresponding to the mutual excitation of the reaction partners with net mass transfer zero projected onto the Q-value variable show an enhancement at Q-values of -60 - -80 MeV (excitation energies of the reaction partners equal to 30 - 40 MeV). This energy range coincides with the region of 2ℎω - 3ℎω excitations characteristic for giant osciallations. This selective excitation, which occurs at a very early stage of the reaction (the cross section is the largest at very forward angles), provides an important doorway to other dissipative processes

  12. Recent results for Mark III

    International Nuclear Information System (INIS)

    Brient, J.C.

    1987-12-01

    This paper presents recent results from the Mark III detector at SPEAR, in the open charm sector. The first topic discussed is the reanalysis of the direct measurement of the D hadronic branching fractions, where a detailed study has been made of the Cabibbo suppressed and multi-π 0 's D decays backgrounds in the double tag sample. Next, the Dalitz plot analysis of the D decays to Kππ is presented, leading to the relative fractions of three-body versus pseudoscalarvector decays. 7 refs., 5 figs

  13. Charm physics at BES III

    International Nuclear Information System (INIS)

    Wang Yifang

    2011-01-01

    Since the discovery of J/Ψ and the τ lepton in 70's, the study of τ-charm physics became very active: several dedicated e + e - colliders were built and tremendous progress were obtained. In this paper, the main reasoning,the content and the characteristics of the τ-charm physics study are discussed, together with the scientific motivations and the latest results of the recently completed upgrade of the Beijing Electron-Positron Collider (BEPC II) and the new Beijing Spectrometer (BES III). (authors)

  14. The Mark III vertex chamber

    International Nuclear Information System (INIS)

    Adler, J.; Bolton, T.; Bunnell, K.

    1987-07-01

    The design and construction of the new Mark III vertex chamber is described. Initial tests with cosmic rays prove the ability of track reconstruction and yield triplet resolutions below 50 μm at 3 atm using argon/ethane (50:50). Also performed are studies using a prototype of a pressurized wire vertex chamber with 8 mm diameter straw geometry. Spatial resolution of 35mm was obtained using dimethyl ether (DME) at 1 atm and 30 μm using argon/ethane (50/50 mixture) at 4 atm. Preliminary studies indicate the DME to adversely affect such materials as aluminized Mylar and Delrin

  15. III-nitride based light emitting diodes and applications

    CERN Document Server

    Han, Jung; Amano, Hiroshi; Morkoç, Hadis

    2017-01-01

    The revised edition of this important book presents updated and expanded coverage of light emitting diodes (LEDs) based on heteroepitaxial GaN on Si substrates, and includes new chapters on tunnel junction LEDs, green/yellow LEDs, and ultraviolet LEDs. Over the last two decades, significant progress has been made in the growth, doping and processing technologies of III-nitride based semiconductors, leading to considerable expectations for nitride semiconductors across a wide range of applications. LEDs are already used in traffic signals, signage lighting, and automotive applications, with the ultimate goal of the global replacement of traditional incandescent and fluorescent lamps, thus reducing energy consumption and cutting down on carbon-dioxide emission. However, some critical issues must be addressed to allow the further improvements required for the large-scale realization of solid-state lighting, and this book aims to provide the readers with details of some contemporary issues on which the performanc...

  16. Photoelectrochemistry of III-V epitaxial layers and nanowires for solar energy conversion

    Science.gov (United States)

    Parameshwaran, Vijay; Enck, Ryan; Chung, Roy; Kelley, Stephen; Sampath, Anand; Reed, Meredith; Xu, Xiaoqing; Clemens, Bruce

    2017-05-01

    III-V materials, which exhibit high absorption coefficients and charge carrier mobility, are ideal templates for solar energy conversion applications. This work describes the photoelectrochemistry research in several IIIV/electrolyte junctions as an enabler for device design for solar chemical reactions. By designing lattice-matched epitaxial growth of InGaP and GaP on GaAs and Si, respectively, extended depletion region electrodes achieve photovoltages which provide an additional boost to the underlying substrate photovoltage. The InGaP/GaAs and GaP/Si electrodes drive hydrogen evolution currents under aqueous conditions. By using nanowires of InN and InP under carefully controlled growth conditions, current and capacitance measurements are obtained to reveal the nature of the nanowire-electrolyte interface and how light is translated into photocurrent for InP and a photovoltage in InN. The materials system is expanded into the III-V nitride semiconductors, in which it is shown that varying the morphology of GaN on silicon yields insights to how the interface and light conversion is modulated as a basis for future designs. Current extensions of this work address growth and tuning of the III-V nitride electrodes with doping and polarization engineering for efficient coupling to solar-driven chemical reactions, and rapid-throughput methods for III-V nanomaterials synthesis in this materials space.

  17. Generic technique to grow III-V semiconductor nanowires in a closed glass vessel

    Directory of Open Access Journals (Sweden)

    Kan Li

    2016-06-01

    Full Text Available Crystalline III-V semiconductor nanowires have great potential in fabrication of nanodevices for applications in nanoelectronics and optoelectronics, and for studies of novel physical phenomena. Sophisticated epitaxy techniques with precisely controlled growth conditions are often used to prepare high quality III-V nanowires. The growth process and cost of these experiments are therefore dedicated and very high. Here, we report a simple but generic method to synthesize III-V nanowires with high crystal quality. The technique employs a closed evacuated tube vessel with a small tube carrier containing a solid source of materials and another small tube carrier containing a growth substrate inside. The growth of nanowires is achieved after heating the closed vessel in a furnace to a preset high temperature and then cooling it down naturally to room temperature. The technique has been employed to grow InAs, GaAs, and GaSb nanowires on Si/SiO2 substrates. The as-grown nanowires are analyzed by SEM, TEM and Raman spectroscopy and the results show that the nanowires are high quality zincblende single crystals. No particular condition needs to be adjusted and controlled in the experiments. This technique provides a convenient way of synthesis of III-V semiconductor nanowires with high material quality for a wide range of applications.

  18. Microwave joining of SiC

    Energy Technology Data Exchange (ETDEWEB)

    Silberglitt, R.; Ahmad, I. [FM Technologies, Inc., Fairfax, VA (United States); Black, W.M. [George Mason Univ., Fairfax, VA (United States)] [and others

    1995-05-01

    The purpose of this work is to optimize the properties of SiC-SiC joints made using microwave energy. The current focus is on optimization of time-temperature profiles, production of SiC from chemical precursors, and design of new applicators for joining of long tubes.

  19. Oxide Structure Dependence of SiO2/SiOx/3C-SiC/n-Type Si Nonvolatile Resistive Memory on Memory Operation Characteristics

    Science.gov (United States)

    Yamaguchi, Yuichiro; Shouji, Masatsugu; Suda, Yoshiyuki

    2012-11-01

    We have investigated the dependence of the oxide layer structure of our previously proposed metal/SiO2/SiOx/3C-SiC/n-Si/metal metal-insulator-semiconductor (MIS) resistive memory device on the memory operation characteristics. The current-voltage (I-V) measurement and X-ray photoemission spectroscopy results suggest that SiOx defect states mainly caused by the oxidation of 3C-SiC at temperatures below 1000 °C are related to the hysteresis memory behavior in the I-V curve. By restricting the SiOx interface region, the number of switching cycles and the on/off current ratio are more enhanced. Compared with a memory device formed by one-step or two-step oxidation of 3C-SiC, a memory device formed by one-step oxidation of Si/3C-SiC exhibits a more restrictive SiOx interface with a more definitive SiO2 layer and higher memory performances for both the endurance switching cycle and on/off current ratio.

  20. Laser-controlled stress of Si nanocrystals in a free-standing Si /SiO2 superlattice

    Science.gov (United States)

    Khriachtchev, Leonid; Räsänen, Markku; Novikov, Sergei

    2006-01-01

    We report laser manipulations with stress at the nanoscale level. The continuous-wave Ar+ laser radiation melts Si nanocrystals in a free-standing Si /SiO2 superlattice. Silicon crystallization from the liquid phase leads to a compressive stress, which can be accurately tuned in the 3GPa range using laser annealing below the Si melting temperature and then recovered by laser annealing above the melting temperature. This allows investigations of various phenomena as a function of stress and makes a case of Si-nanocrystal memory with very long retention time, which can be written, erased, and read by optical means.