WorldWideScience

Sample records for high-temperature synthesis shs

  1. Preparation of Al-Ti-B grain refiner by SHS technology[Self-propagating High-temperature Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Nikitin, V.I.; Wanqi, J.I.E.; Kandalova, E.G.; Makarenko, A.G.; Yong, L.

    2000-02-01

    Since the discovery of the grain refinement effect of aluminum by titanium, especially with the existence of B or C in 1950, grain refiners are widely accepted in industry for microstructure control of aluminum alloys. Research on this topic is to obtain the highest grain refinement efficiency with the lowest possible addition of master alloy. It is widely accepted that the morphology and size of TiAl{sub 3} particles, which are known as heterogeneous nucleation centers, are important factors deterring the grain refinement efficiency. Fine TiAl{sub 3} particles are favorable. The grain refinement process shows a heredity phenomenon, which means that structural information from initial materials transfers through a melt to the final product. It is important to find the connection between microstructural parameters of the master alloy and the final product. To improve the quality of Al-Ti-B master alloys for the use as a grain refiner, a new method based on SHS (self-propagating high-temperature synthesis) technology has been developed in Samara State Technical University to produce the master alloys. SHS, as a new method for preparation of materials, was first utilized by Merzhanov in 1967. This method uses the energy from highly exothermic reactions to sustain the chemical reaction in a combustion wave. The advantages of SHS include simplicity, low energy requirement, and higher product purity. Because SHS reactions can take place between elemental reactants, it is easy to control product composition. The purposes of this investigation were to fabricate an SHS Al-5%Ti-1%B master alloy, to analyze its structure and to test its grain refining performance.

  2. Self propagating high temperature synthesis (SHS) of the Fe(TiMo)C master alloy using ferroalloys

    International Nuclear Information System (INIS)

    Erauskin, J. I.; Sargyan, A.; Arana, J. L.

    2009-01-01

    Titanium monocarbide TiC is very hard, stable both at high and low temperatures and relatively easy to synthesize from its constituent elements by SHS. Nevertheless, it is difficult to use, as alloying element, in the reinforcement of steels manufactured by liquid metallurgy due to its low wettability by molten steel. To achieve this purpose and due to its better wettability, it is more appropriate to use a master alloy formed by the complex carbide (TiMo)C bonded in Fe. The simplest and most economic way to fabricate such a master alloy Fe(TiMo)C is, again, by SHS, with the added advantage that it can be manufactured using the commercial ferroalloys FeTi and FeMo instead of the individual elements Fe, Ti and Mo. In this work, we describe such a process as well as the characteristics of the master alloy obtained. (Author) 13 refs

  3. Silicon carbide production by Self-Propagating High Temperature (SHS) technique

    International Nuclear Information System (INIS)

    Lima, Eduardo de Souza; Schneider, Pedro Luiz; Mattoso, Irani Guedes; Costa, Carlos Roberto Correia da; Louro, Luis Henrique Leme

    1997-01-01

    Samples of silicon carbide (SiC) were synthesized from a mixture of silicon and carbon powders, using the Self-Propagating High Temperature Synthesis (SHS) technique. Three mixtures were tried, using silicon particles of the same average size but carbon particles of different average sizes. The method tried is characterized by an ignition temperature of 1450 deg C and the short duration of the synthesis ( 2-3 min). The samples were characterized by X-ray diffraction and scattering electron microscopy. (author)

  4. SHS synthesis of Si-SiC composite powders using Mg and reactants from industrial waste

    Science.gov (United States)

    Chanadee, Tawat

    2017-11-01

    Si-SiC composite powders were synthesized by self-propagating high-temperature synthesis (SHS) using reactants of fly ash-based silica, sawdust-based activated carbon, and magnesium. Fly ash-based silica and sawdust-based activated carbon were prepared from coal mining fly ash and Para rubber-wood sawdust, respectively. The work investigated the effects of the synthesis atmosphere (air and Ar) on the phase and morphology of the SHS products. The SHS product was leached by a two-step acid leaching processes, to obtain the Si-SiC composite powder. The SHS product and SHS product after leaching were characterized by X-ray diffractometry, scanning electron microscopy and energy dispersive X-ray spectrometry. The results indicated that the SHS product synthesized in air consisted of Si, SiC, MgO, and intermediate phases (SiO2, Mg, Mg2SiO4, Mg2Si), whereas the SHS product synthesized in Ar consisted of Si, SiC, MgO and a little Mg2SiO4. The SiC content in the leached-SHS product was higher when Ar was used as the synthesis atmosphere. As well as affecting the purity, the synthesis atmospheres also affected the average crystalline sizes of the products. The crystalline size of the product synthesized in Ar was smaller than that of the product synthesized in air. All of the results showed that fly ash and sawdust could be effective waste-material reactants for the synthesis of Si-SiC composite powders.

  5. Self-propagating high temperature synthesis and magnetic

    Indian Academy of Sciences (India)

    Ni–Zn ferrite powders were synthesized by self-propagating high temperature synthesis (SHS) method. X-ray diffraction, TEM and vibrating sample magnetometry (VSM) were used to characterize the phase composition, microstructure and magnetic properties of the combustion products. The effect of the combustion ...

  6. Self-propagating high-temperature synthesis of nonstoichiometric wuestite

    Energy Technology Data Exchange (ETDEWEB)

    Hiramoto, Maki [Graduate School of Engineering, Hokkaido University, Sapporo 060-8628 (Japan); Okinaka, Noriyuki [Center for Advanced Research of Energy and Materials, Faculty of Engineering, Hokkaido University, Sapporo 060-8628 (Japan); Akiyama, Tomohiro, E-mail: takiyama@eng.hokudai.ac.jp [Center for Advanced Research of Energy and Materials, Faculty of Engineering, Hokkaido University, Sapporo 060-8628 (Japan)

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer The manuscript describes an SHS method of producing Fe{sub x}O. Black-Right-Pointing-Pointer Focus on the effects of nonstoichiometric Fe content and diluent addition on the phase of the SHS product. Black-Right-Pointing-Pointer Without the NaCl diluent, the lattice parameter of SHS Fe{sub 0.947}O corresponded to the theoretical lattice parameter. Black-Right-Pointing-Pointer Nonstoichiometric compounds of Fe{sub x}O (0.942 {<=} x {<=} 0.952) were obtained through SHS without additional external heating. - Abstract: This paper describes the self-propagating high-temperature synthesis (SHS) of nonstoichiometric Fe{sub x}O (x = 0.833-1), with particular focus on the effects of nonstoichiometric Fe content and diluent addition on the phase of the SHS product. In the SHS process, the raw materials Fe, NaClO{sub 4} (oxidizer), and NaCl (diluent) were thoroughly mixed in the desired ratio by ball milling, and the lower surfaces of the disk-shaped green compacts were subsequently electrically ignited to produce Fe{sub x}O through the propagation of the sustainable exothermic reaction. X-ray diffraction analysis showed that the SHS products comprised double phases of Fe{sub x}O and Fe{sub 3}O{sub 4}. The peaks of products with 0.947 {<=} x {<=} 1.00 shifted to lower angles in comparison to those of the product with x = 0.833 attributed to the lattice parameter distortion of the crystal structure because of the Fe defects. In the presence of the NaCl diluent, the raw materials were converted to high-purity Fe{sub x}O powders during the SHS process. Without the NaCl diluent, the lattice parameter of SHS Fe{sub 0.947}O corresponded to the theoretical lattice parameter. Nonstoichiometric compounds of Fe{sub x}O (0.942 {<=} x {<=} 0.952) were obtained through SHS without additional external heating.

  7. Self-sustained high-temperature reactions : Initiation, propagation and synthesis

    NARCIS (Netherlands)

    Martinez Pacheco, M.

    2007-01-01

    Self-Propagating High-Temperature Synthesis (SHS), also called combustion synthesis is an exothermic and self-sustained reaction between the constituents, which has assumed significance for the production of ceramics and ceramic-metallic materials (cermets), because it is a very rapid processing

  8. Fabrication of Titanium Diboride-Cu Composite by Self-High Temperature Synthesis plus Quick Press

    Institute of Scientific and Technical Information of China (English)

    Jinyong ZHANG; Zhengyi FU; Weimin WANG

    2005-01-01

    Titanium diboride based composites, good candidates for contact materials, have high hardness, Young's modulus,high temperature stability, and excellent electrical, thermal conductivity. However a good interface of TiB2/Cu is very difficult to achieve for oxidation of TiB2. To avoid this oxidation behavior, the in situ combusting synthesis technology, SHS, was used to prepare TiB2/Cu composite. Thecharacters of Ti-B-xCu SHS were studied in detail,such as combustion temperature, products phases and grain size. Based on the experimental results a proper technology way of self-high temperature synthesis plus quick press (SHS/QP) was determined and compact TiB2/Cu composites with relative density over than 97 pct of the theoretical were fabricated by this method. The properties and microstructures of these TiB2 based composites were also investigated.

  9. An Investigation of Porous Structure of TiNi-Based SHS-Materials Produced at Different Initial Synthesis Temperatures

    Science.gov (United States)

    Khodorenko, V. N.; Anikeev, S. G.; Kokorev, O. V.; Yasenchuk, Yu. F.; Gunther, V. É.

    2018-02-01

    An investigation of structural characteristics and behavior of TiNi-based pore-permeable materials manufactured by the methods of selfpropagating high-temperature synthesis (SHS) at the initial synthesis temperatures T = 400 and 600°C is performed. It is shown that depending on the temperature regime, the resulting structure and properties of the material can differ. It is found out that the SHS-material produced at the initial synthesis temperature T = 400°C possesses the largest number of micropores in the pore wall surface structure due to a high phase inhomogeneity of the alloy. The regime of structure optimization of the resulting materials is described and the main stages of formation of the pore wall microporous surfaces are revealed. It is demonstrated that after optimization of the surface structure of a TiNi-based fine-pore alloy by its chemical etching, the fraction of micropores measuring in size less than 50 nm increased from 59 to 68%, while the number of pores larger than 1 μm increased twofold from 11 to 22%. In addition, peculiar features of interaction between certain cell cultures with the surface of the SHS-material manufactured at different initial synthesis temperatures are revealed. It is found out that the dynamics of the cell material integration depends on the pore wall surface morphology and dimensions of macropores.

  10. Production of advanced materials by methods of self-propagating high-temperature synthesis

    CERN Document Server

    Tavadze, Giorgi F

    2013-01-01

    This translation from the original Russian book outlines the production of a variety of materials by methods of self-propagating high-temperature synthesis (SHS). The types of materials discussed include: hard, refractory, corrosion and wear-resistant materials, as well as other advanced and speciality materials. The authors address the issue of optimal parameters for SHS reactions occurring during processes involving a preliminary metallothermic reduction stage, and they calculate this using thermodynamic approaches. In order to confirm the effectiveness of this approach, the authors describe experiments focussing on the synthesis of elemental crysalline boron, boron carbides and nitrides. Other parts of this brief include theoretical and experimental results on single-stage production of hard alloys on the basis of titanium and zirconium borides, as well as macrokinetics of degassing and compaciton of SHS-products.This brief is suitable for academics, as well as those working in industrial manufacturing com...

  11. Synthesis of titanium carbide from wood by self-propagating high temperature synthesis

    Directory of Open Access Journals (Sweden)

    Sutham Niyomwas

    2010-05-01

    Full Text Available Titanium carbide (TiC particles were obtained in situ by a self-propagating high temperature synthesis (SHS of wooddust with TiO2 and Mg. The reaction was carried out in a SHS reactor under static argon gas at the pressure of 0.5 MPa. Thestandard Gibbs energy minimization method was used to calculate the equilibrium composition of the reacting species. Theeffects of increasing Mg mole ratio to the precursor mixture of TiO2 and wood dusts were investigated. XRD and SEManalyses indicate a complete reaction of the precursors to yield TiC-MgO as a product composite. The synthesized compositeswere leached with 0.1M HCl acid solution to obtain TiC particles as final products.

  12. Mechanical alloying and self-propagating high-temperature synthesis of stable icosahedral quasicrystals

    International Nuclear Information System (INIS)

    Bokhonov, B.B.

    2008-01-01

    The phase evolution of the mechanically alloyed ternary 63%Al + 25%Cu + 12%Fe and 65%Al + 20%Cu + 15%Fe powder mixtures with milling time has been studied by X-ray diffraction method. It was found that an icosahedral quasicrystalline phase was formed directly during high-energy ball milling of the Al-Cu-Fe mixtures. The X-ray and scanning electron microscopic investigations demonstrated the possibility to use self-propagating high-temperature synthesis (SHS) in combination with preliminary mechanical activation for the synthesis of stable icosahedral quasicrystals. The typical morphology of the Al 63 Cu 25 Fe 12 icosahedral quasicrystals formed in the SHS process is a pentagonal dodecahedron with a size of 3-5 mm. The phase composition of the SHS products depends on the time of preliminary mechanical activation. The content of cubic intermetallic phase in SHS products increases with the time of preliminary mechanical activation of the 63%Al + 25%Cu + 12%Fe powder mixtures

  13. Application of Self-Propagating High Temperature Synthesis to the Fabrication of Actinide Bearing Nitride and Other Ceramic Nuclear Fuels

    International Nuclear Information System (INIS)

    Moore, John J.; Reigel, Marissa M.; Donohoue, Collin D.

    2009-01-01

    The project uses an exothermic combustion synthesis reaction, termed self-propagating high-temperature synthesis (SHS), to produce high quality, reproducible nitride fuels and other ceramic type nuclear fuels (cercers and cermets, etc.) in conjunction with the fabrication of transmutation fuels. The major research objective of the project is determining the fundamental SHS processing parameters by first using manganese as a surrogate for americium to produce dense Zr-Mn-N ceramic compounds. These fundamental principles will then be transferred to the production of dense Zr-Am-N ceramic materials. A further research objective in the research program is generating fundamental SHS processing data to the synthesis of (i) Pu-Am-Zr-N and (ii) U-Pu-Am-N ceramic fuels. In this case, Ce will be used as the surrogate for Pu, Mn as the surrogate for Am, and depleted uranium as the surrogate for U. Once sufficient fundamental data has been determined for these surrogate systems, the information will be transferred to Idaho National Laboratory (INL) for synthesis of Zr-Am-N, Pu-Am-Zr-N and U-Pu-Am-N ceramic fuels. The high vapor pressures of americium (Am) and americium nitride (AmN) are cause for concern in producing nitride ceramic nuclear fuel that contains Am. Along with the problem of Am retention during the sintering phases of current processing methods, are additional concerns of producing a consistent product of desirable homogeneity, density and porosity. Similar difficulties have been experienced during the laboratory scale process development stage of producing metal alloys containing Am wherein compact powder sintering methods had to be abandoned. Therefore, there is an urgent need to develop a low-temperature or low-heat fuel fabrication process for the synthesis of Am-containing ceramic fuels. Self-propagating high temperature synthesis (SHS), also called combustion synthesis, offers such an alternative process for the synthesis of Am nitride fuels. Although SHS

  14. Synthesis of nano-sized amorphous boron powders through active dilution self-propagating high-temperature synthesis method

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jilin [The State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China); Gu, Yunle [School of Material Science and Engineering, Wuhan Institute of Technology, Wuhan 430073 (China); Li, Zili [The State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China); Wang, Weimin, E-mail: wangwm@hotmail.com [The State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China); Fu, Zhengyi [The State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China)

    2013-06-01

    Graphical abstract: Nano-sized amorphous boron powders were synthesized by active dilution self-propagating high-temperature synthesis (SHS) method. The effects of endothermic reaction rate, the possible chemical reaction mechanism and active dilution model for synthesis of the product were also discussed. Highlights: ► Nano-sized amorphous boron powders were synthesized by active dilution self-propagating high-temperature synthesis method. ► The morphology, particle size and purity of the samples could be effectively controlled via changing the endothermic rate. ► The diluter KBH{sub 4} played an important role in active dilution synthesis of amorphous nano-sized boron powders. ► The active dilution method could be further popularized and become a common approach to prepare various inorganic materials. - Abstract: Nano-sized amorphous boron powders were synthesized by active dilution self-propagating high-temperature synthesis (SHS) method at temperatures ranging from 700 °C to 850 °C in a SHS furnace using Mg, B{sub 2}O{sub 3} and KBH{sub 4} as raw materials. Samples were characterized by X-ray powder diffraction (XRD), Laser particle size analyzer, Fourier transform infrared spectra (FTIR), X-ray energy dispersive spectroscopy (EDX), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and high-resolution transmission TEM (HRTEM). The boron powders demonstrated an average particle size of 50 nm with a purity of 95.64 wt.%. The diluter KBH{sub 4} played an important role in the active dilution synthesis of amorphous nano-sized boron powders. The effects of endothermic reaction rate, the possible chemical reaction mechanism and active dilution model for synthesis of the product were also discussed.

  15. Synthesis of nano-sized amorphous boron powders through active dilution self-propagating high-temperature synthesis method

    International Nuclear Information System (INIS)

    Wang, Jilin; Gu, Yunle; Li, Zili; Wang, Weimin; Fu, Zhengyi

    2013-01-01

    Graphical abstract: Nano-sized amorphous boron powders were synthesized by active dilution self-propagating high-temperature synthesis (SHS) method. The effects of endothermic reaction rate, the possible chemical reaction mechanism and active dilution model for synthesis of the product were also discussed. Highlights: ► Nano-sized amorphous boron powders were synthesized by active dilution self-propagating high-temperature synthesis method. ► The morphology, particle size and purity of the samples could be effectively controlled via changing the endothermic rate. ► The diluter KBH 4 played an important role in active dilution synthesis of amorphous nano-sized boron powders. ► The active dilution method could be further popularized and become a common approach to prepare various inorganic materials. - Abstract: Nano-sized amorphous boron powders were synthesized by active dilution self-propagating high-temperature synthesis (SHS) method at temperatures ranging from 700 °C to 850 °C in a SHS furnace using Mg, B 2 O 3 and KBH 4 as raw materials. Samples were characterized by X-ray powder diffraction (XRD), Laser particle size analyzer, Fourier transform infrared spectra (FTIR), X-ray energy dispersive spectroscopy (EDX), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and high-resolution transmission TEM (HRTEM). The boron powders demonstrated an average particle size of 50 nm with a purity of 95.64 wt.%. The diluter KBH 4 played an important role in the active dilution synthesis of amorphous nano-sized boron powders. The effects of endothermic reaction rate, the possible chemical reaction mechanism and active dilution model for synthesis of the product were also discussed

  16. Characterization of ceramics and intermetallics fabricated by self-propagating high-temperature synthesis

    International Nuclear Information System (INIS)

    Hurst, J.B.

    1989-05-01

    Three efforts aimed at investigating the process of self-propagating high temperature synthesis (SHS) for the fabrication of structural ceramics and intermetallics are summarized. Of special interest was the influence of processing variables such as exothermic dopants, gravity, and green state morphology in materials produced by SHS. In the first effort directed toward the fabrication of SiC, exothermic dopants of yttrium and zirconium were added to SiO2 or SiO2 + NiO plus carbon powder mix and processed by SHS. This approach was unsuccessful since it did not produce the desired product of crystalline SiC. In the second effort, the influence of gravity was investigated by examining Ni-Al microstructures which were produced by SHS combustion waves traveling with and opposite the gravity direction. Although final composition and total porosities of the combusted Ni-Al compounds were found to be gravity independent, larger pores were created in those specimens which were combusted opposite to the gravity force direction. Finally, it was found that green microstructure has a significant effect on the appearance of the combusted piece. Severe pressing laminations were observed to arrest the combustion front for TiC samples

  17. Immobilization of simulated radioactive soil waste containing cerium by self-propagating high-temperature synthesis

    Science.gov (United States)

    Mao, Xianhe; Qin, Zhigui; Yuan, Xiaoning; Wang, Chunming; Cai, Xinan; Zhao, Weixia; Zhao, Kang; Yang, Ping; Fan, Xiaoling

    2013-11-01

    A simulated radioactive soil waste containing cerium as an imitator element has been immobilized by a thermite self-propagating high-temperature synthesis (SHS) process. The compositions, structures, and element leaching rates of products with different cerium contents have been characterized. To investigate the influence of iron on the chemical stability of the immobilized products, leaching tests of samples with different iron contents with different leaching solutions were carried out. The results showed that the imitator element cerium mainly forms the crystalline phases CeAl11O18 and Ce2SiO5. The leaching rate of cerium over a period of 28 days was 10-5-10-6 g/(m2 day). Iron in the reactants, the reaction products, and the environment has no significant effect on the chemical stability of the immobilized SHS products.

  18. Immobilization of simulated radioactive soil waste containing cerium by self-propagating high-temperature synthesis

    International Nuclear Information System (INIS)

    Mao, Xianhe; Qin, Zhigui; Yuan, Xiaoning; Wang, Chunming; Cai, Xinan; Zhao, Weixia; Zhao, Kang; Yang, Ping; Fan, Xiaoling

    2013-01-01

    A simulated radioactive soil waste containing cerium as an imitator element has been immobilized by a thermite self-propagating high-temperature synthesis (SHS) process. The compositions, structures, and element leaching rates of products with different cerium contents have been characterized. To investigate the influence of iron on the chemical stability of the immobilized products, leaching tests of samples with different iron contents with different leaching solutions were carried out. The results showed that the imitator element cerium mainly forms the crystalline phases CeAl 11 O 18 and Ce 2 SiO 5 . The leaching rate of cerium over a period of 28 days was 10 −5 –10 −6 g/(m 2 day). Iron in the reactants, the reaction products, and the environment has no significant effect on the chemical stability of the immobilized SHS products

  19. Fabrication of intermetallic NiAl by self-propagating high-temperature synthesis reaction using aluminium nanopowder under high pressure

    CERN Document Server

    Dong Shu Shan; Cheng Hai Yong; Yang Hai Bin; Zou Guang Tian

    2002-01-01

    By using aluminium nanopowder prepared by wire electrical explosion, pure monophase NiAl compound with fine crystallites (<=10 mu m) and good densification (98% of the theoretical green density) was successfully fabricated by means of self-propagating high-temperature synthesis (SHS) under a high pressure of 50 MPa. Investigation shows that, due to the physical and chemical characteristics of the nanoparticles, the SHS reaction mode and mechanism are distinct from those when using conventional coarse-grained reactants. The SHS reaction process depends on the thermal conditions related to pressure and can occur at a dramatically low temperature of 308 sup o C, which cannot be expected in conventional SHS reaction. With increasing pressure, the SHS explosive ignition temperature (T sub i sub g) of forming NiAl decreases due to thermal and kinetic effects.

  20. Preparation of MoB and MoB-MoSi2 composites by combustion synthesis in SHS mode

    International Nuclear Information System (INIS)

    Yeh, C.L.; Hsu, W.S.

    2007-01-01

    Combustion synthesis in the mode of self-propagating high-temperature synthesis (SHS) was carried out in the Mo-B and Mo-B-Si systems for the preparation of molybdenum boride MoB and the composite of MoB-MoSi 2 from elemental powder compacts. Under a preheating temperature above 150 deg. C , the reaction of Mo with boron in the sample compact of Mo:B = 1:1 is characterized by a planar combustion front propagating in a self-sustaining and steady manner. As the preheating temperature or sample compaction density increased, combustion temperature was found to increase and the propagation rate of the combustion front was correspondingly enhanced. Moreover, the XRD analysis provides evidence of yielding nearly single-phase α-MoB from the Mo-B sample at equiatomic stoichiometry. In the synthesis of MoB-MoSi 2 composites, the starting stoichiometry of the Mo-B-Si powder compact was varied so as to produce the final composites containing 20-80 mol% MoB. It was also found the increase of flame-front velocity and combustion temperature with increasing MoB content formed in the composite. The composition analysis by XRD shows excellent conversion from the Mo-B-Si powder compact to the MoB-MoSi 2 composite through the SHS reaction; that is, in addition to a small amount of Mo 5 Si 3 , the as-synthesized composite is composed entirely of MoB and MoSi 2

  1. Optimization of self-propagating high-temperature synthesis using a halogen fluoride as an igniter for reagents

    Science.gov (United States)

    Gaidar, S. M.; Karelina, M. Yu.; Zhigarev, V. D.

    2016-12-01

    The minimum quantity of the high-activity chemical reagent (HACR) that is required for the initiation of self-propagating high-temperature synthesis (SHS) is determined. The experimental results show that 1-1.3 mg ClF3 (gravity flow from a dosing device), BrF3 on the end of a filling knife, or a few ClF2 + SbF6 - crystals are sufficient for the initiation of titanium-boron or titanium-carbon high-energy powder charge compositions. Since the quantity of HACR required for SHS initiation is very small, the chemical method of initiation can be used for the development of a mobile ignition device for estimating the ignition of various SHS charge compositions under laboratory conditions and for application in standard reactors.

  2. A self-propagation high-temperature synthesis and annealing route to synthesis of wave-like boron nitride nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jilin; Zhang, Laiping [School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, Hubei, 430073 (China); Gu, Yunle, E-mail: ncm@mail.wit.edu.cn [School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, Hubei, 430073 (China); Pan, Xinye; Zhao, Guowei; Zhang, Zhanhui [School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, Hubei, 430073 (China)

    2013-03-15

    Highlights: ► Large quantities of wave-like BN nanotubes were synthesized by SHS-annealing method. ► The catalytic boron-containing porous precursor was produced by self-propagation high-temperature synthesis method. ► Three growth models were proposed to explain the growth mechanism of the wave-like BN nanotubes. - Abstract: Large quantities of boron nitride (BN) nanotubes were synthesized by annealing a catalytic boron-containing porous precursor in flowing NH{sub 3} gas at 1180 °C. The porous precursor was prepared by self-propagation high-temperature synthesis (SHS) method at 800 °C using Mg, B{sub 2}O{sub 3} and amorphous boron powder (α-B) as the starting materials. The porous precursor played an important role in large quantities synthesis of BN nanotubes. The as-synthesized product was characterized by X-ray diffractometer (XRD), Fourier transform infrared spectrometer (FTIR), Raman, Scanning electron microscopy (SEM), X-ray energy dispersive spectroscopy (EDS), Transmission electron microscopy (TEM) and High-resolution transmission electron microscopy (HRTEM). Characterization results indicated that the BN nanotubes displayed wave-like inner structures with diameters in the range of 50–300 nm and average lengths of more than 10 μm. The possible growth mechanism of the BN nanotubes was also discussed.

  3. ZrC Ceramics Prepared by Self-propagating High-temperature Synthesis/Single Action Pressing

    Directory of Open Access Journals (Sweden)

    CHENG Yong

    2017-01-01

    Full Text Available ZrC ceramics were prepared by mechanical axial compression of self-propagating high-temperature synthesis/single action pressing (SHS/SAP.The effects of pressure on microstructure and densification of the products,as well as the relationship between displacement/variation of the load curve and SHS reaction,were studied.The structure and properties of the products were investigated by XRD and SEM.In addition,the density was measured by the drain away liquid method.Meanwhile,universal testing machine was used to record the displacement and load curve alternations.The results indicate that products are mainly composed of ZrC phase,the process of exhaust are accelerated as the increasing of pressure as well,leading to the smaller size of porosity and crystal particles.Density manifested as an increasing pattern by the elevated pressure with no longer change at 80MPa.Due to the strong attenuation of pressure at the peak of temperature,the density of the production is only 65.7% in 120MPa.The end point of the SHS reaction and the plastic time of the products can be monitored by displacement and load curve.The results provide evidence for the application of self-propagating high-temperature synthesis/pseudo-hot isostatic pressing to further improve the density of ceramics.

  4. Self-propagating high-temperature synthesis of TiC-WC composite materials

    International Nuclear Information System (INIS)

    Mas-Guindal, M.J.; Contreras, L.; Turrillas, X.; Vaughan, G.B.M.; Kvick, A.; Rodriguez, M.A.

    2006-01-01

    TiC-WC composites have been obtained in situ by self-propagating high-temperature synthesis (SHS) from a mixture of compacted powders of elemental titanium, tungsten and graphite. The Rietveld method has proved to be a useful tool to quantify the different phases in the reaction and calculate the cell parameters of the solid solution found in the products. The reaction has also been followed in real time by X-ray diffraction at the European Synchrotron Radiation Facility (ESRF ID-11 Materials Science Beamline). The mechanism of the reaction is discussed in terms of the diffusion of liquid titanium to yield titanium carbide with a solid solution of tungsten. The microstructures of the materials obtained by this method are presented

  5. Hydrophilic Graphene Preparation from Gallic Acid Modified Graphene Oxide in Magnesium Self-Propagating High Temperature Synthesis Process

    Science.gov (United States)

    Cao, Lei; Li, Zhenhuan; Su, Kunmei; Cheng, Bowen

    2016-10-01

    Hydrophilic graphene sheets were synthesized from a mixture of magnesium and gallic acid (GA) modified graphene oxide (GO) in a self-propagating high-temperature synthesis (SHS) process, and hydrophilic graphene sheets displayed the higher C/O ratio (16.36), outstanding conductivity (~88900 S/m) and excellent water-solubility. GO sheets were connected together by GA, and GA was captured to darn GO structure defects through the formation of hydrogen bonds and ester bonds. In SHS process, the most oxygen ions of GO reacted with magnesium to prevent the escape of carbon dioxide and carbon monoxide to from the structure defects associated with vacancies, and GA could take place the high-temperature carbonization, during which a large-area graphene sheets formed with a part of the structure defects being repaired. When only GO was reduced by magnesium in SHS process, and the reduced GO (rGO) exhibited the smaller sheets, the lower C/O ratio (15.26), the weaker conductivity (4200 S/m) and the poor water-solubility because rGO inevitably left behind carbon vacancies and topological defects. Therefore, the larger sheet, less edge defects and free structure defects associated with vacancies play a key role for graphene sheets good dispersion in water.

  6. Effects of process parameters on tungsten boride production from WO{sub 3} by self propagating high temperature synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Yazici, Sertac [Metallurgical and Materials Engineering Department, Istanbul Technical University, Maslak, Istanbul 34469 (Turkey); Derin, Bora, E-mail: bderin@itu.edu.tr [Metallurgical and Materials Engineering Department, Istanbul Technical University, Maslak, Istanbul 34469 (Turkey)

    2013-01-01

    Highlights: Black-Right-Pointing-Pointer We produced tungsten boride compounds by SHS method. Black-Right-Pointing-Pointer Mg containing byproducts were leached out by using a hot aqueous HCl media. Black-Right-Pointing-Pointer The ratio of W{sub 2}B{sub 5}/WB was found to be {approx}2.0 containing minor phases of W{sub 2}B and W. - Abstract: In the present study, the production parameters of tungsten boride compounds by self-propagating high-temperature synthesis (SHS) method and following leaching process were investigated. In the SHS stage, the products consisting of tungsten borides, magnesium oxide, magnesium borate, and also minor compounds were obtained by using different initial molar ratios of WO{sub 3}, Mg and B{sub 2}O{sub 3} as starting materials. In the leaching step, Mg containing byproducts, i.e. MgO and Mg{sub 3}B{sub 2}O{sub 6}, existed in the selected SHS product synthesized at 1:8:2.5 initial molar ratio of WO{sub 3}:Mg:B{sub 2}O{sub 3} were leached out by using aqueous HCl solution to obtain clean tungsten boride compounds at different experimental parameters which are time, acid concentration and temperature. The acid leaching experiments of the SHS product showed that optimum leaching conditions could be achieved by using 5.8 M HCl at 1/10 S/L ratio and the temperature of 80 Degree-Sign C for 60 min.

  7. An assessment of the process of Self-propagating High-Temperature Synthesis for the fabrication of porous copper composite

    International Nuclear Information System (INIS)

    Moloodi, A.; Raiszadeh, R.; Vahdati-Khaki, J.; Babakhani, A.

    2009-01-01

    The present article describes the process of Self-propagating High-temperature Synthesis (SHS) that is employed for fabricating open cell copper-alumina composite foam. This foam was fabricated by the reactions between the powders of CuO, Al and C. The gas released during these reactions as well as the initial porosity of the green powder compact were suggested to be the sources of the produced pores. Further, the effect of C content and the precursor compressing pressure on the porosity content and morphology of the SHS product was determined. Optical microscopy (OM), scanning electron microscopy (SEM), and X-ray diffraction (XRD) were utilized to characterize the porous samples. The optimum weight fractions for blending the initial powders were determined to be 84 wt.% CuO, 9.5 wt.% Al, and 6.5 wt.% C, and the SHS reaction was sustainable only if the initial compacting pressure of the powders was between 100 and 300 MPa.

  8. SHS-produced intermetallides as catalysts for hydrocarbons synthesis from CO and H{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Eliseev, O.L.; Kazantsev, R.V.; Davydov, P.E.; Lapidus, A.L. [Russian Academy of Sciences, Moscow (Russian Federation). N.D. Zelinsky Institute of Organic Chemistry; Borshch, V.N.; Pugacheva, E.V. [Russian Academy of Sciences, Chernogolovka (Russian Federation). Inst. of Structural Macrokinetics and Materials Science

    2012-07-01

    Raney-type polymetallic alloys were prepared by Self-Propagating High-Temperature Synthesis followed by alkaline treating. Surface morphology and composition of were studied using XRD, BET, SEM and EMPA techniques. The samples were tested in Fischer-Tropsch synthesis demonstrated rather high activity and very high selectivity to heavy paraffins. High selectivity to C{sub 5+} hydrocarbons is attributed to high thermal conductivity of alloys which prevents hot spots formation and therefore suppresses formation of methane and light hydrocarbons. Selectivity can be further improved by adding some d-metals in catalyst composition. Promotion with La seems to be particularly suitable for lowering methane formation while doping with Ni enhances methane yield greatly. (orig.)

  9. High temperature synthesis of ceramic composition by directed reaction of molten titanium or zirconium with boron carbide

    International Nuclear Information System (INIS)

    Johnson, W.B.

    1990-01-01

    Alternative methods of producing ceramics and ceramic composites include sintering, hot pressing and more recently hot isostatic pressing (HIP) and self-propagating high temperature synthesis (SHS). Though each of these techniques has its advantages, each suffers from several restrictions as well. Sintering may require long times at high temperatures and for most materials requires sintering aids to get full density. These additives can, and generally do, change (often degrade) the properties of the ceramic. Hot pressing and hot isostatic pressing are convenient methods to quickly prepare samples of some materials to full density, but generally are expensive and may damage some types of reinforcements during densification. This paper focuses on the preparation and processing of composites prepared by the directed reaction of molten titanium or zirconium with boron carbide. Advantages and disadvantages of this approach when compared to traditional methods are discussed, with reference to specific examples. Examples of microstructure are properties of these materials are reported

  10. Self-propagating high-temperature synthesis of Sr-doped LaMnO3 perovskite as oxidation catalyst

    International Nuclear Information System (INIS)

    Hirano, T.; Purwanto, H.; Watanabe, T.; Akiyama, T.

    2007-01-01

    Sr-doped LaMnO 3 perovskite oxide has been focused on as one of the alternative catalysts to precious metals such as platinum that are used for cleaning automotive emission gas. The conventional Solid-state reaction method is a popular productive process for perovskite oxide, however, it is time and energy consuming process because it requires repeated prolonged heat treatment at high temperatures. Therefore, the purposes of this work are to produce Sr-doped LaMnO 3 perovskite by using Self-propagating high-temperature synthesis (SHS) and experimentally examine the oxidation catalytic activity of the product for cleaning automotive emission gas. In the SHS, powders of La 2 O 3 , SrCO 3 , Mn and NaClO 4 were well mixed at the desired ratio and poured in a graphite crucible, where at one end it was ignited by using an electrically heated carbon foil. The wave of exothermic reaction due to oxidation of manganese propagated to the other end in a short time. The obtained products were characterized by means of XRD, FE-SEM, BET and particle size distribution analysis and then evaluated via catalytic oxidation tests by using propane in a fixed bed reactor at several temperatures. From the XRD analysis, the products had the desired composition of La 1-x Sr x MnO 3 (x = 0, 0.1, 0.2 and 0.4) perovskite, in which the replacing ratio x of La and Sr in the products was easily controlled by changing the mixing ratio of raw materials. The catalytic activity test showed that the samples exhibited good catalytic activity for propane oxidation over 200 deg. C , although the products had a relatively small surface area. SHS showed the potential for the production of a relatively inexpensive catalytic converter

  11. Selection of Compositions in Ti-Cr-C-Steel, Ti-B, Ti-B-Me Systems and Establishing Synthesis Parameters for Obtaining Product by “SHS-Electrical Rolling”

    Science.gov (United States)

    Aslamazashvili, Zurab; Tavadze, Giorgi; Chikhradze, Mikheil; Namicheishvili, Teimuraz; Melashvili, Zaqaria

    2017-12-01

    For the production materials by the proposed Self-propagating High-Temperature Synthesis (SHS) - Electric Rolling method, there are no limitations in the length of the material and the width only depends on the length of rolls. The innovation method enables to carry out the process in nonstop regime, which is possible by merging energy consuming SHS method and Electrical Rolling. For realizing the process it is mandatory and sufficient, that initial components, after initiation by thermal pulse, could interaction with the heat emission, which itself ensures the self-propagation of synthesis front in lieu of heat transfer in the whole sample. Just after that process, the rolls instantly start rotation with the set speed to ensure the motion of material. This speed should be equal to the speed of propagation of synthesis front. The synthesized product in hot plastic condition is delivered to the rolls in nonstop regime, simultaneously, providing the current in deformation zone in order to compensate the energy loses. As a result by using the innovation SHS -Electrical Rolling technology we obtain long dimensional metal-ceramic product. In the presented paper optimal compositions of SHS chasms were selected in Ti-Cr-C-Steel, Ti-B and Ti-B-Me systems. For the selection of the compounds the thermodynamic analysis has been carried out which enabled to determine adiabatic temperature of synthesis theoretically and to determine balanced concentrations of synthesized product at synthesis temperature. Thermodynamic analysis also gave possibility to determine optimal compositions of chasms and define the conditions, which are important for correct realization of synthesis process. For obtaining non porous materials and product by SHS-Electrical Rolling, it is necessary to select synthesis and compacting parameters correctly. These parameters are the pressure and the time. In Ti-Cr-C-Steel, Ti-B and Ti-B-Me systems the high quality (nonporous or low porosity values are defined

  12. Self-propagating high-temperature synthesis of La(Sr)Ga(Mg)O3-δ for electrolyte of solid oxide fuel cells

    International Nuclear Information System (INIS)

    Ishikawa, Hiroyuki; Enoki, Makiko; Ishihara, Tatsumi; Akiyama, Tomohiro

    2007-01-01

    This paper describes self-propagating high-temperature synthesis (SHS) of an electrolyte for solid oxide fuel (SOFC), in comparison to a conventional solid-state reaction method (SRM). Doped-lanthanum gallate: La 0.9 Sr 0.1 Ga 0.8 Mg 0.2 O 3-δ (LSGM9182) and LSGM9173 as the SOFC electrolyte, was prepared by the SHS and sintered at different temperatures, for measuring the electrical conductivity of the sintered LSGM and the power generating performance at 1073 K, in comparison to the SRM. In the SHS, the LSGM powders with smaller size were obtained and easily sintered at the 100 K-lower temperature, 1673 K, than in the SRM. Most significantly, the electrical conductivity of the sintered LSGM9182 was as high as 0.11 S cm -1 and its maximum power density was a value of 245 mW cm -2 in the cell configuration of Ni/LSGM9182 (0.501 mm in thickness)/Sm 0.5 Sr 0.5 CoO 3 . The conclusion was that the proposed SHS-sintering method with many benefits of minimizing the energy requirement and the processing time in the production, easing temperature restriction for the sintering, and improving the electrolyte performance up to a conventional level is practicable for producing the LSGM-electrolyte of SOFC at an intermediate-temperature application

  13. Single Crystal Synthesis and STM Studies of High Temperature Superconductors

    Science.gov (United States)

    Barrientos, Alfonso

    1997-01-01

    This is a final report for the work initiated in September of 1994 under the grant NAG8-1085 - NASA/OMU, on the fabrication of bulk and single crystal synthesis, specific heat measuring and STM studies of high temperature superconductors. Efforts were made to fabricate bulk and single crystals of mercury based superconducting material. A systematic thermal analysis on the precursors for the corresponding oxides and carbonates were carried out to synthesized bulk samples. Bulk material was used as seed in an attempt to grow single crystals by a two-step self flux process. On the other hand bulk samples were characterized by x-ray diffraction, electrical resistivity and magnetic susceptibility, We studied the specific heat behavior in the range from 80 to 300 K. Some preliminary attempts were made to study the atomic morphology of our samples. As part of our efforts we built an ac susceptibility apparatus for measuring the transition temperature of our sintered samples.

  14. Shock-induced synthesis of high temperature superconducting materials

    Science.gov (United States)

    Ginley, D.S.; Graham, R.A.; Morosin, B.; Venturini, E.L.

    1987-06-18

    It has now been determined that the unique features of the high pressure shock method, especially the shock-induced chemical synthesis technique, are fully applicable to high temperature superconducting materials. Extraordinarily high yields are achievable in accordance with this invention, e.g., generally in the range from about 20% to about 99%, often in the range from about 50% to about 90%, lower and higher yields, of course, also being possible. The method of this invention involves the application of a controlled high pressure shock compression pulse which can be produced in any conventional manner, e.g., by detonation of a high explosive material, the impact of a high speed projectile or the effect of intense pulsed radiation sources such as lasers or electron beams. Examples and a discussion are presented.

  15. High temperature bismuth cuprate superconductors synthesis and characterization

    International Nuclear Information System (INIS)

    Mansori, M.; Satre, P.; Breandon, C.; Roubin, M.; Sebaoun, A.

    1993-01-01

    High temperature superconductor phases synthesis by coprecipitation in alkaline solution is reported. (Bi 1.6 Pb 0.4 )Sr 2 Ca 1 Cu 2 O 8+x and (Bi 1.6 Pb 0.4 )Sr 2 Ca 2 Cu 3 O 10+y noted (2212) and (2223) have been prepared and studied. From aqueous nitrate solutions of Bi, Pb, Sr, Ca and Cu and oxalic acid aqueous solution as well as ethylene glycol, using an organic base (the triethylamine), the pH was increased up to the path of the precipitation zone (pH = 10.5-11.2). This method assures a good granulometric homogeneity of powders. Thermal analysis and characterization of the different components produced during the synthesis have been studied by DTA (differential thermal analysis)- TGA (thermogravimetric analysis), X-ray diffraction at different temperatures and by Infrared spectroscopy with a Fourier transformation. The measurements of magnetic susceptibility for the 2212 (with and without lead) and 2223 (with lead) phases have permitted us to observe the critical temperatures of 84 K, 87 K and 114 K. (author). 29 refs., 2 figs., 4 tabs

  16. Experimental and Numerical Studies on Self-Propagating High-Temperature Synthesis of Ta5Si3 Intermetallics

    Directory of Open Access Journals (Sweden)

    Chun-Liang Yeh

    2015-09-01

    Full Text Available Formation of Ta5Si3 by self-propagating high-temperature synthesis (SHS from elemental powder compacts of Ta:Si = 5:3 was experimentally and numerically studied. Experimental evidence showed that the increase of either sample density or preheating temperature led to the increase of combustion wave velocity and reaction temperature. The apparent activation energy, Ea ≈ 108 kJ/mol, was determined for the synthesis reaction. Based upon numerical simulation, the Arrhenius factor of the rate function, K0 = 2.5 × 107 s−1, was obtained for the 5Ta + 3Si combustion system. In addition, the influence of sample density on combustion wave kinetics was correlated with the effective thermal conductivity (keff of the powder compact. By adopting 0.005 ≤ keff/kbulk ≤ 0.016 in the computation model, the calculated combustion velocity and temperature were in good agreement with experimental data of the samples with compaction densities between 35% and 45% theoretical maximum density (TMD.

  17. Self-propagating high-temperature synthesis of La(Sr)Ga(Mg)O{sub 3-{delta}} for electrolyte of solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, Hiroyuki [Center for Advanced Research of Energy Conversion Materials, Hokkaido University, Sapporo 060-8628 (Japan); Enoki, Makiko [Department of Applied Chemistry, Faculty of Engineering, Kyusyu University, Fukuoka 812-8581 (Japan); Ishihara, Tatsumi [Department of Applied Chemistry, Faculty of Engineering, Kyusyu University, Fukuoka 812-8581 (Japan); Akiyama, Tomohiro [Center for Advanced Research of Energy Conversion Materials, Hokkaido University, Sapporo 060-8628 (Japan)]. E-mail: takiyama@eng.hokudai.ac.jp

    2007-03-14

    This paper describes self-propagating high-temperature synthesis (SHS) of an electrolyte for solid oxide fuel (SOFC), in comparison to a conventional solid-state reaction method (SRM). Doped-lanthanum gallate: La{sub 0.9}Sr{sub 0.1}Ga{sub 0.8}Mg{sub 0.2}O{sub 3-{delta}} (LSGM9182) and LSGM9173 as the SOFC electrolyte, was prepared by the SHS and sintered at different temperatures, for measuring the electrical conductivity of the sintered LSGM and the power generating performance at 1073 K, in comparison to the SRM. In the SHS, the LSGM powders with smaller size were obtained and easily sintered at the 100 K-lower temperature, 1673 K, than in the SRM. Most significantly, the electrical conductivity of the sintered LSGM9182 was as high as 0.11 S cm{sup -1} and its maximum power density was a value of 245 mW cm{sup -2} in the cell configuration of Ni/LSGM9182 (0.501 mm in thickness)/Sm{sub 0.5}Sr{sub 0.5}CoO{sub 3}. The conclusion was that the proposed SHS-sintering method with many benefits of minimizing the energy requirement and the processing time in the production, easing temperature restriction for the sintering, and improving the electrolyte performance up to a conventional level is practicable for producing the LSGM-electrolyte of SOFC at an intermediate-temperature application.

  18. Enrichment of W2B5 from WO3 and B2O3 by Double SHS Method

    Directory of Open Access Journals (Sweden)

    Bora DERIN

    2018-02-01

    Full Text Available A second self-propagating high-temperature synthesis (SHS was carried out to enrich the W2B5 content in the SHS product containing a mixture of various tungsten boride compounds. In the experiment, the process called Double-SHS (D-SHS was conducted in two steps. In the first SHS reaction, an initial molar composition ratio of WO3:B2O3:Mg mixture was selected as 1:3:8. The product was then hot-leached with hydrochloric acid to eliminate MgO and Mg3B2O6 phases. The leached product, consisting of 72.6 wt.% W2B5, 16.1 wt.% WB, 8.4 wt.% W2B, and 2.9 wt.% W, was again reacted with the Mg and B2O3 mixture by second SHS. After another acid leaching step, W2B5 content in the D-SHS product was found to be 98.2 wt.%. The study showed that D-SHS is an effective method for boron enrichment in the tungsten compounds.DOI: http://dx.doi.org/10.5755/j01.ms.24.1.17834

  19. Alcohol synthesis in a high-temperature slurry reactor

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, G.W.; Marquez, M.A.; McCutchen, M.S. [North Carolina State Univ., Raleigh, NC (United States)

    1995-12-31

    The overall objective of this contract is to develop improved process and catalyst technology for producing higher alcohols from synthesis gas or its derivatives. Recent research has been focused on developing a slurry reactor that can operate at temperatures up to about 400{degrees}C and on evaluating the so-called {open_quotes}high pressure{close_quotes} methanol synthesis catalyst using this reactor. A laboratory stirred autoclave reactor has been developed that is capable of operating at temperatures up to 400{degrees}C and pressures of at least 170 atm. The overhead system on the reactor is designed so that the temperature of the gas leaving the system can be closely controlled. An external liquid-level detector is installed on the gas/liquid separator and a pump is used to return condensed slurry liquid from the separator to the reactor. In order to ensure that gas/liquid mass transfer does not influence the observed reaction rate, it was necessary to feed the synthesis gas below the level of the agitator. The performance of a commercial {open_quotes}high pressure {close_quotes} methanol synthesis catalyst, the so-called {open_quotes}zinc chromite{close_quotes} catalyst, has been characterized over a range of temperature from 275 to 400{degrees}C, a range of pressure from 70 to 170 atm., a range of H{sub 2}/CO ratios from 0.5 to 2.0 and a range of space velocities from 2500 to 10,000 sL/kg.(catalyst),hr. Towards the lower end of the temperature range, methanol was the only significant product.

  20. Product engineering by high-temperature flame synthesis

    DEFF Research Database (Denmark)

    Johannessen, Tue; Johansen, Johnny; Mosleh, Majid

    product gas can be applied directly in additional product engineering concepts. A brief overview of on-going product developments and product engineering projects is outlined below. These projects, which are all founded on flame synthesis of nano-structured materials, include: • Preparation of catalyzed...... hardware by direct deposition of catalysts on process equipment • Modifications of the substrate surfaces to obtain good adhesion during flame-coating • Formation of membrane layers by gas-phase deposition of nano-particles • Catalyst deposition in micro-reactors for rapid catalyst screening...

  1. Development of coating technology for nuclear fuel by self-propagating high temperature synthesis

    International Nuclear Information System (INIS)

    Choi, Y.; Kim, Bong G.; Lee, Y. W.

    1997-01-01

    This paper presents experimental results of the preparation of silicon carbide and graphite layers on a nuclear fuel from silane and propane gases by a conventional chemical vapor deposition and combustion synthesis technologies. The direct reaction between silicon and pyrolytic carbon in a high temperature releases sufficient amount of energy to make a synthesis self-sustaining under the preheating of about 1200 deg C. During this high temperature process, lamellar structure with isotropic carbon synthesis. A full characterization of phase composition and final morphology of the coated layers by X-ray diffraction, SEM and AES is presented. (author). 6 refs., 1 tab., 11 figs

  2. SHS-desintegration

    International Nuclear Information System (INIS)

    Merzhanov, A.G.; Stolin, A.M.; Majzeliya, A.V.

    1995-01-01

    A possibility of hot disintegration of SHS product is demonstrated using titanium carbide production as an example. It is shown that SHS-disintegration features a higher yield of small fractions. It is possible to decrease significant by the capacity of disintegrators using the SHS disintegration technique proposed in this paper and to enhance the degree of powder dispersion. 5 refs.; 2 figs.; 1 tab

  3. Thermodynamic and lattice parameter calculation of TiC x produced from Al-Ti-C powders by laser igniting self-propagating high-temperature synthesis

    International Nuclear Information System (INIS)

    Li, Y.X.; Hu, J.D.; Wang, H.Y.; Guo, Z.X.; Chumakov, A.N.

    2007-01-01

    TiC x has been formed by self-propagating high-temperature synthesis (SHS) from elemental powder mixtures with a range of C/Ti ratios. The combusting behavior of the powder mixtures was investigated. The effect of the processing variables on the lattice parameter and the composition of TiC were examined. The results show that lattice parameters of TiC x increase with the increase of C/Ti ratio. The variation of Gibbs free energy in Al-Ti-C system was studied based on the thermodynamics theory. The results show that TiC and Al 3 Ti phases are easier to form than Al 4 C 3 phase

  4. In situ synthesis of TiB2-TiC particulates locally reinforced medium carbon steel-matrix composites via the SHS reaction of Ni-Ti-B4C system during casting

    International Nuclear Information System (INIS)

    Wang, H.Y.; Huang, L.; Jiang, Q.C.

    2005-01-01

    The fabrication of medium carbon steel-matrix composites locally reinforced with in situ TiB 2 -TiC particulates using self-propagating high-temperature synthesis (SHS) reaction of Ni-Ti-B 4 C system during casting was investigated. X-ray diffraction (XRD) results reveal that the exotherm of 1042 deg. C initiated by heat release of the solid state reaction in the differential thermal analysis (DTA) curve is an incomplete reaction in Ni-Ti-B 4 C system. As-cast microstructures of the in situ processed composites reveal a relatively uniform distribution of TiB 2 -TiC particulates in the locally reinforced regions. Furthermore, the particulate size and micro-porosity in the locally reinforced regions are significantly decreased with the increasing of the Ni content in the preforms. For a Ni content of 30 and 40 wt.%, near fully dense composites locally reinforced with in situ TiB 2 and TiC particulates can be fabricated. Although most of fine TiB 2 and TiC particulates which form by the reaction-precipitation mechanism during SHS reaction are present in the locally reinforced region, some large particulates which form by the nucleation-growth mechanism during solidification are entrapped inside the Fe-rich region located in the reinforcing region or inside the matrix region nearby the interface between matrix and reinforcing region. The hardness of the reinforcing region in the composite is significantly higher than that of the unreinforced medium carbon steel. Furthermore, the hardness values of the composites synthesized from 30 to 40 wt.% Ni-Ti-B 4 C systems are higher than those of the composites synthesized from 10 to 20 wt.% Ni-Ti-B 4 C systems

  5. THERMAL STABILITY OF Al-Cu-Fe QUASICRYSTALS PREPARED BY SHS METHOD

    OpenAIRE

    Pavel Novák; Alena Michalcová; Milena Voděrová; Ivo Marek; Dalibor Vojtěch

    2013-01-01

    Quasicrystal-containing materials are usually prepared by rapid solidification of the melt (e.g. by melt spinning) or mechanical alloying. In this work, the method using exothermic reactions between compressed metallic powders called SHS (Self-propagating High-temperature Synthesis) was tested. The microstructure and phase composition of the product was described in dependence on cooling regime from the reaction temperature. Thermal stability of prepared Al-Cu-Fe quasicrystals was studied by...

  6. Effect of C particle size on the mechanism of self-propagation high-temperature synthesis in the Ni-Ti-C system

    International Nuclear Information System (INIS)

    Yang, Y.F.; Wang, H.Y.; Wang, J.G.; Jiang, Q.C.

    2011-01-01

    Highlights: → We investigated the effect of C particle size on the self-propagating high temperature reaction mechanism. → Coarse C particle size (>38 μm) resulted in the formation of prior TiC x layer between Ti and C. → Prior TiC x layer control the whole reaction of Ni-Ti-C and domain the reaction kinetics. → The selection of C particle size is the most important factor to fabricate TiC/Ni composite using Ti, C and Ni mixtures. - Abstract: Effect of C particle size on the mechanism of self-propagation high-temperature synthesis (SHS) in the Ni-Ti-C system was investigated. Fine C particle resulted in a traditional mechanism of dissolution-precipitation while coarse C particle made the reaction be controlled by a mechanism of the diffusion of C through the TiC x layer. The whole process can be described: C atoms diffusing through the TiC x layer dissolved into the Ni-Ti liquid and TiC were formed once the liquid became supersaturated. Simultaneously, the heat generated from the TiC formation made the unstable TiC x layer break up. However, with the spread of Ti-Ni liquid, a new TiC x layer was formed again at the interface between spreading liquid and C particle. This process cannot stop until all the C particles are consumed completely.

  7. The flavoprotein Tah18-dependent NO synthesis confers high-temperature stress tolerance on yeast cells

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, Akira; Kawahara, Nobuhiro [Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192 (Japan); Takagi, Hiroshi, E-mail: hiro@bs.naist.jp [Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192 (Japan)

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer NO is produced from L-arginine in response to elevated temperature in yeast. Black-Right-Pointing-Pointer Tah18 was first identified as the yeast protein involved in NO synthesis. Black-Right-Pointing-Pointer Tah18-dependent NO synthesis confers tolerance to high-temperature on yeast cells. -- Abstract: Nitric oxide (NO) is a ubiquitous signaling molecule involved in the regulation of a large number of cellular functions. In the unicellular eukaryote yeast, NO may be involved in stress response pathways, but its role is poorly understood due to the lack of mammalian NO synthase (NOS) orthologues. Previously, we have proposed the oxidative stress-induced L-arginine synthesis and its physiological role under stress conditions in yeast Saccharomyces cerevisiae. Here, our experimental results indicated that increased conversion of L-proline into L-arginine led to NO production in response to elevated temperature. We also showed that the flavoprotein Tah18, which was previously reported to transfer electrons to the Fe-S cluster protein Dre2, was involved in NO synthesis in yeast. Gene knockdown analysis demonstrated that Tah18-dependent NO synthesis confers high-temperature stress tolerance on yeast cells. As it appears that such a unique cell protection mechanism is specific to yeasts and fungi, it represents a promising target for antifungal activity.

  8. The flavoprotein Tah18-dependent NO synthesis confers high-temperature stress tolerance on yeast cells

    International Nuclear Information System (INIS)

    Nishimura, Akira; Kawahara, Nobuhiro; Takagi, Hiroshi

    2013-01-01

    Highlights: ► NO is produced from L-arginine in response to elevated temperature in yeast. ► Tah18 was first identified as the yeast protein involved in NO synthesis. ► Tah18-dependent NO synthesis confers tolerance to high-temperature on yeast cells. -- Abstract: Nitric oxide (NO) is a ubiquitous signaling molecule involved in the regulation of a large number of cellular functions. In the unicellular eukaryote yeast, NO may be involved in stress response pathways, but its role is poorly understood due to the lack of mammalian NO synthase (NOS) orthologues. Previously, we have proposed the oxidative stress-induced L-arginine synthesis and its physiological role under stress conditions in yeast Saccharomyces cerevisiae. Here, our experimental results indicated that increased conversion of L-proline into L-arginine led to NO production in response to elevated temperature. We also showed that the flavoprotein Tah18, which was previously reported to transfer electrons to the Fe–S cluster protein Dre2, was involved in NO synthesis in yeast. Gene knockdown analysis demonstrated that Tah18-dependent NO synthesis confers high-temperature stress tolerance on yeast cells. As it appears that such a unique cell protection mechanism is specific to yeasts and fungi, it represents a promising target for antifungal activity.

  9. Synchrotron diffraction studies of TiC/FeTi cermets obtained by SHS

    International Nuclear Information System (INIS)

    Contreras, L.; Turrillas, X.; Mas-Guindal, M.J.; Vaughan, G.B.M.; Kvick, A.; Rodriguez, M.A.

    2005-01-01

    TiC/FeTi composites have been obtained in situ by Self-propagating High-temperature Synthesis (SHS) of an intimate mixture of compacted powders of elemental carbon, titanium and iron. The reaction has been followed in real time by X-ray diffraction at the ESRF. The mechanism of the reaction is discussed in terms of the formation of a liquid phase corresponding to the eutectic of the Fe/Ti system prior to the TiC synthesis. Temperatures of reaction have been estimated by correlating thermal expansion coefficients with diffraction peaks shifts. The microstructures obtained by this method, suitable for cutting tools and wear resistant applications, are presented

  10. Thermochemistry of some binary lead and transition metal compounds by high temperature direct synthesis calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Meschel, S.V., E-mail: meschel@jfi.uchicago.edu [Illinois Institute of Technology,Thermal Processing Technology Center, 10 W. 32nd Street, Chicago, Illinois 60615 (United States); Gordon Center for Integrated Science, 929 E. 57th Street, Chicago, Illinois 60637 (United States); Nash, P. [Illinois Institute of Technology,Thermal Processing Technology Center, 10 W. 32nd Street, Chicago, Illinois 60615 (United States); Chen, X.Q.; Wei, P. [Materials processing Modeling Division, Shenyang National Laboratory for Materials Science, Institute of Metals Research, 72 Wenhua Road, Shenyang City (China)

    2015-06-05

    Highlights: • Studied binary lead-transition metal alloys by high temperature calorimetry. • Determined the enthalpies of formation of 8 alloys. • Compared the measurements with predictions by the model of Miedema and by the ab initio method. - Abstract: The standard enthalpies of formation of some binary lead and transition metal compounds have been measured by high temperature direct synthesis calorimetry. The reported results are: Pb{sub 3}Sc{sub 5}(−61.3 ± 2.9); PbTi{sub 4}(−16.6 ± 2.4); Pb{sub 3}Y{sub 5}(−64.8 ± 3.6); Pb{sub 3}Zr{sub 5}(−50.6 ± 3.1); PbNb{sub 3}(−10.4 ± 3.4); PbRh(−16.5 ± 3.3); PbPd{sub 3}(−29.6 ± 3.1); PbPt(−34.7 ± 3.3) kJ/mole of atoms. We will compare our results with previously published measurements. We will also compare the experimental measurements with enthalpies of formation of transition metal compounds with elements in the same vertical column in the periodic table. We will compare our measurements with predicted values on the basis of the semi empirical model of Miedema and coworkers and with ab initio values when available.

  11. Synthesis and high temperature stability of amorphous Si(B)CN-MWCNT composite nanowires

    Science.gov (United States)

    Bhandavat, Romil; Singh, Gurpreet

    2012-02-01

    We demonstrate synthesis of a hybrid nanowire structure consisting of an amorphous polymer-derived silicon boron-carbonitride (Si-B-C-N) shell with a multiwalled carbon nanotube core. This was achieved through a novel process involving preparation of a boron-modified liquid polymeric precursor through a reaction of trimethyl borate and polyureasilazane under atmospheric conditions; followed by conversion of polymer to glass-ceramic on carbon nanotube surfaces through controlled heating. Chemical structure of the polymer was studied by liquid-NMR while evolution of various ceramic phases was studied by Raman spectroscopy, solid-NMR, Fourier transform infrared and X-ray photoelectron spectroscopy. Electron microscopy and X-ray diffraction confirms presence of amorphous Si(B)CN coating on individual nanotubes for all specimen processed below 1400 degree C. Thermogravimetric analysis, followed by TEM revealed high temperature stability of the carbon nanotube core in flowing air up to 1300 degree C.

  12. Thermal stability of Al-Cu-Fe quasicrystals prepared by SHS method

    Directory of Open Access Journals (Sweden)

    Pavel Novak

    2013-02-01

    Full Text Available Quasicrystal-containing materials are usually prepared by rapid solidification of the melt (e.g. by melt spinning or mechanical alloying. In this work, the method using exothermic reactions between compressed metallic powders called SHS (Self-propagating High-temperature Synthesis was tested. The microstructure and phase composition of the product was described in dependence on cooling regime from the reaction temperature. Thermal stability of prepared Al-Cu-Fe quasicrystals was studied by annealing at the temperatures of 300 and 500 °C.

  13. Effect of Heating Rate on the Formation of Intermetallics during SHS Process

    Czech Academy of Sciences Publication Activity Database

    Novák, P.; Michalcová, A.; Školáková, A.; Průša, F.; Kříž, J.; Marek, I.; Kubatík, Tomáš František; Karlík, M.; Haušild, P.; Kopeček, Jaromír

    2015-01-01

    Roč. 128, č. 4 (2015), s. 561-563 ISSN 0587-4246. [International Symposium on Physics of Materials (ISPMA13)/13./. Prague, 31.08.2014-04.09.2014] R&D Projects: GA ČR(CZ) GA14-03044S Institutional support: RVO:61389021 ; RVO:68378271 Keywords : Self-propagating high-temperature synthesis (SHS) * Differential thermal analysis Subject RIV: JK - Corrosion ; Surface Treatment of Materials Impact factor: 0.525, year: 2015 http://przyrbwn.icm.edu.pl/APP/PDF/128/a128z4p22.pdf

  14. THERMAL STABILITY OF Al-Cu-Fe QUASICRYSTALS PREPARED BY SHS METHOD

    Directory of Open Access Journals (Sweden)

    Pavel Novák

    2013-04-01

    Full Text Available Quasicrystal-containing materials are usually prepared by rapid solidification of the melt (e.g. by melt spinning or mechanical alloying. In this work, the method using exothermic reactions between compressed metallic powders called SHS (Self-propagating High-temperature Synthesis was tested. The microstructure and phase composition of the product was described in dependence on cooling regime from the reaction temperature. Thermal stability of prepared Al-Cu-Fe quasicrystals was studied by annealing at the temperatures of 300 and 500 °C.

  15. Carbon Isotope Systematics in Mineral-Catalyzed Hydrothermal Organic Synthesis Processes at High Temperature and Pressures

    Science.gov (United States)

    Fu, Qi; Socki, R. A.; Niles, Paul B.

    2011-01-01

    Observation of methane in the Martian atmosphere has been reported by different detection techniques. Reduction of CO2 and/or CO during serpentization by mineral surface catalyzed Fischer-Tropsch Type (FTT) synthesis may be one possible process responsible for methane generation on Mars. With the evidence a recent study has discovered for serpentinization in deeply buried carbon rich sediments, and more showing extensive water-rock interaction in Martian history, it seems likely that abiotic methane generation via serpentinization reactions may have been common on Mars. Experiments involving mineral-catalyzed hydrothermal organic synthesis processes were conducted at 750 C and 5.5 Kbars. Alkanes, alcohols and carboxylic acids were identified as organic compounds. No "isotopic reversal" of delta C-13 values was observed for alkanes or carboxylic acids, suggesting a different reaction pathway than polymerization. Alcohols were proposed as intermediaries formed on mineral surfaces at experimental conditions. Carbon isotope data were used in this study to unravel the reaction pathways of abiotic formation of organic compounds in hydrothermal systems at high temperatures and pressures. They are instrumental in constraining the origin and evolution history of organic compounds on Mars and other planets.

  16. Room temperature synthesis and high temperature frictional study of silver vanadate nanorods.

    Science.gov (United States)

    Singh, D P; Polychronopoulou, K; Rebholz, C; Aouadi, S M

    2010-08-13

    We report the room temperature (RT) synthesis of silver vanadate nanorods (consisting of mainly beta-AgV O(3)) by a simple wet chemical route and their frictional study at high temperatures (HT). The sudden mixing of ammonium vanadate with silver nitrate solution under constant magnetic stirring resulted in a pale yellow coloured precipitate. Structural/microstructural characterization of the precipitate through x-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed the high yield and homogeneous formation of silver vanadate nanorods. The length of the nanorods was 20-40 microm and the thickness 100-600 nm. The pH variation with respect to time was thoroughly studied to understand the formation mechanism of the silver vanadate nanorods. This synthesis process neither demands HT, surfactants nor long reaction time. The silver vanadate nanomaterial showed good lubrication behaviour at HT (700 degrees C) and the friction coefficient was between 0.2 and 0.3. HT-XRD revealed that AgV O(3) completely transformed into silver vanadium oxide (Ag(2)V(4)O(11)) and silver with an increase in temperature from RT to 700 degrees C.

  17. Room temperature synthesis and high temperature frictional study of silver vanadate nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Singh, D P; Aouadi, S M [Department of Physics, Southern Illinois University, Carbondale-62901 (United States); Polychronopoulou, K [Department of Chemistry, University of Cyprus, Nicosia, 1678 (Cyprus); Rebholz, C, E-mail: dineshpsingh@gmail.com, E-mail: saouadi@physics.siu.edu [Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, 1678 (Cyprus)

    2010-08-13

    We report the room temperature (RT) synthesis of silver vanadate nanorods (consisting of mainly {beta}-AgV O{sub 3}) by a simple wet chemical route and their frictional study at high temperatures (HT). The sudden mixing of ammonium vanadate with silver nitrate solution under constant magnetic stirring resulted in a pale yellow coloured precipitate. Structural/microstructural characterization of the precipitate through x-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed the high yield and homogeneous formation of silver vanadate nanorods. The length of the nanorods was 20-40 {mu}m and the thickness 100-600 nm. The pH variation with respect to time was thoroughly studied to understand the formation mechanism of the silver vanadate nanorods. This synthesis process neither demands HT, surfactants nor long reaction time. The silver vanadate nanomaterial showed good lubrication behaviour at HT (700 deg. C) and the friction coefficient was between 0.2 and 0.3. HT-XRD revealed that AgV O{sub 3} completely transformed into silver vanadium oxide (Ag{sub 2}V{sub 4}O{sub 11}) and silver with an increase in temperature from RT to 700 deg. C.

  18. Preparation of Al-Ti-B grain refiner by SHS technology

    International Nuclear Information System (INIS)

    Nikitin, V.I.; Wanqi, J.I.E.; Kandalova, E.G.; Makarenko, A.G.; Yong, L.

    2000-01-01

    Since the discovery of the grain refinement effect of aluminum by titanium, especially with the existence of B or C in 1950, grain refiners are widely accepted in industry for microstructure control of aluminum alloys. Research on this topic is to obtain the highest grain refinement efficiency with the lowest possible addition of master alloy. It is widely accepted that the morphology and size of TiAl 3 particles, which are known as heterogeneous nucleation centers, are important factors deterring the grain refinement efficiency. Fine TiAl 3 particles are favorable. The grain refinement process shows a heredity phenomenon, which means that structural information from initial materials transfers through a melt to the final product. It is important to find the connection between microstructural parameters of the master alloy and the final product. To improve the quality of Al-Ti-B master alloys for the use as a grain refiner, a new method based on SHS (self-propagating high-temperature synthesis) technology has been developed in Samara State Technical University to produce the master alloys. SHS, as a new method for preparation of materials, was first utilized by Merzhanov in 1967. This method uses the energy from highly exothermic reactions to sustain the chemical reaction in a combustion wave. The advantages of SHS include simplicity, low energy requirement, and higher product purity. Because SHS reactions can take place between elemental reactants, it is easy to control product composition. The purposes of this investigation were to fabricate an SHS Al-5%Ti-1%B master alloy, to analyze its structure and to test its grain refining performance

  19. Obtención de Si3N4 mediante SHS

    Directory of Open Access Journals (Sweden)

    Rodríguez, M. A.

    2003-04-01

    Full Text Available In the present paper results obtained during synthesis of Silicon Nitride by Self-propagating High-temperature Synthesis (SHS are shown. Self-propagating High-temperature Synthesis is based on the high enthalpy of certain reactions able to be self-sustained. One of the most important advantages of the method is its very low energy consumption. The synthesis is carried out with a mixture of silicon powder with some additions of diluents and other synthesis aids (ammonium salts. The influence of the mixture composition on reaction parameters and characteristics of the obtained products has been studied. The use of new synthesis aids has been also studied in order to decrease the environmental impact of the process. Microstructural study, XRD and reaction parameters are shown. Finally a mechanism of Silicon Nitride synthesis is proposed.En el presente trabajo se presentan los resultados obtenidos en el estudio de las reacciones de Síntesis Autopropagada a Alta Temperatura (Self-propagating High-temperature Synthesis, SHS de Nitruro de Silicio. La síntesis autopropagada a alta temperatura consiste básicamente en la generación de reacciones altamente exotérmicas capaces de automantenerse. Se puede considerar como principal ventaja del método el ahorro energético que supone. La síntesis se realiza sobre una mezcla inicial de silicio metálico sobre la cual se realizan adiciones de diluyente y otros aditivos (sales amónicas que afectan al desarrollo de la reacción. Se ha estudiado la influencia que en este sistema pueden tener las proporciones de las distintas incorporaciones en la mezcla, tanto en el material resultante como en las condiciones de reacción. Igualmente se ha estudiado la posibilidad de utilización de nuevos aditivos que puedan minimizar el impacto medio ambiental. Se presentan los estudios microestructurales del material obtenido, la identificación cristalográfica de las fases presentes así como los comportamientos de los

  20. Synthesis and characterization of actinide metal compounds formed by combustion

    International Nuclear Information System (INIS)

    Behrens, R.G.; King, M.A.

    1985-01-01

    This paper briefly describes the results of attempts to synthesize arsenides, phosphides, and antimonides of uranium and thorium using Self-Propagating High-Temperature Synthesis (SHS) techniques. This paper first summarizes the chemistry and thermodynamics of these chemical systems, describes SHS synthesis techniques, and then describes the results of the syntheses using data from powder x-ray diffraction, metallographic, and electron microprobe analyses

  1. The thermochemical behavior of some binary shape memory alloys by high temperature direct synthesis calorimetry

    International Nuclear Information System (INIS)

    Meschel, S.V.; Pavlu, J.; Nash, P.

    2011-01-01

    Research highlights: → We studied 14 shape memory alloys. → The enthalpies of formation and structure characteristics are summarized. → Theoretical predictions by ab initio calculations compare better with experimental measurements than Miedema's semi empirical model. - Abstract: The standard enthalpies of formation of some shape memory alloys have been measured by high temperature direct synthesis calorimetry at 1373 K. The following results (in kJ/mol of atoms) are reported: CoCr (-0.3 ± 2.9); CuMn (-3.7 ± 3.2); Cu 3 Sn (-10.4 ± 3.1); Fe 2 Tb (-5.5 ± 2.4); Fe 2 Dy (-1.6 ± 2.9); Fe 17 Tb 2 (-2.1 ± 3.1); Fe 17 Dy 2 (-5.3 ± 1.7); FePd 3 (-16.0 ± 2.7); FePt (-23.0 ± 1.9); FePt 3 (-20.7 ± 2.3); NiMn (-24.9 ± 2.6); TiNi (-32.7 ± 1.0); TiPd (-60.3 ± 2.5). The results are compared with some earlier experimental values obtained by calorimetry and by EMF technique. They are also compared with predicted values on the basis of the semi empirical model of Miedema and co-workers and with ab initio calculations when available. We will also assess the available information regarding the structures of these alloys.

  2. Microstructure evolution of Mo–Si–Al system during self-propagation high-temperature synthesis

    International Nuclear Information System (INIS)

    Jia, Lei; Xie, Hui; Lu, Zhen-lin; Zhang, Chao

    2013-01-01

    Highlights: ► Phase transformation subsequence of the reaction system was given by a sketch. ► Transformation of MoSi 2 to Mo(Si, Al) 2 phase was observed by XRD analysis. ► Variation of diffraction peaks was discussed by lattice parameters calculation. -- Abstract: The microstructure and phase constitution of Mo(Si 1−x , Al x ) 2 alloys (x = 0.03, 0.1 and 0.4) prepared by self-propagation high-temperature synthesis is first investigated using SEM, EDS and XRD analysis. Then the lattice parameters and adiabatic temperature are calculated. Based on the above experimental and calculated results, the variation mechanism of diffraction peaks and phase transformation subsequence of the Mo–MoO 3 –Si–Al powders is discussed. Results show that, when the self-propagation reaction is over, there are a homogeneous Mo–Si–Al alloy melt and a fused Al 2 O 3 with lower density at top. Subsequently, MoSi 2 or Mo(Si, Al) 2 phase nucleates and grows as a primary phase in the Mo–Si–Al alloy melts, and then Al, Si substances are generated from the intergranular residual Al–Si liquid according to Al–Si binary phase diagram. The Al increase in the starting powder mixtures leads to the Al concentration increase in the Mo–Si–Al alloy melt. Consequently, MoSi 2 is transformed to Mo(Si, Al) 2 to phase in which Si is replaced by Al atoms and Al substance in the intergranular zones increased accordingly

  3. Self propagating high temperature synthesis of mixed carbide and boride powder systems for cutting tools manufacturing

    International Nuclear Information System (INIS)

    Vallauri, D.; Cola, P.L. de; Piscone, F.; Amato, I.

    2001-01-01

    TiC-TiB 2 composites have been produced via SHS technique starting from low cost raw materials like TiO 2 , B 4 C, Mg. The influence of the diluent phase (Mg, TiC) content on combustion temperature has been investigated. The use of magnesium as the reductant phase allowed acid leaching of the undesired oxide product (MgO), leaving pure hard materials with fine particle size suitable to be employed in cutting tools manufacturing through cold pressing and sintering route. The densification has shown to be strongly dependent on the wetting additions. The influence of the metal binder and wetting additions on the sintering process has been investigated. A characterization of the obtained materials was performed by the point of view of cutting tools life (hardness, toughness, strength). (author)

  4. Mechanically activated self-propagated high-temperature synthesis of nanometer-structured MgB2

    International Nuclear Information System (INIS)

    Radev, D.D.; Marinov, M.; Tumbalev, V.; Radev, I.; Konstantinov, L.

    2005-01-01

    Nanometer-sized MgB 2 was prepared via a two-step modification of the mechanically activated self-propagated high-temperature synthesis. The experimental conditions and some structural and phase characteristics of the synthesized product are reported. It is shown that a single-phase material can be prepared after 2 h of intense mechanical treatment of the starting magnesium and boron powders and a synthesis induced at a current-pulse density of 30 A cm -2 . The average size of MgB 2 particles synthesized in this way is 70-80 nm. It is also shown that using the same reagents and the 'classic' high-temperature interaction at 850 deg C with a protective atmosphere of pure Ar, mean particle size of the MgB 2 obtained is 50 μm

  5. Thermodynamic approach to the synthesis of silicon carbide using tetramethylsilane as the precursor at high temperature

    Science.gov (United States)

    Jeong, Seong-Min; Kim, Kyung-Hun; Yoon, Young Joon; Lee, Myung-Hyun; Seo, Won-Seon

    2012-10-01

    Tetramethylsilane (TMS) is commonly used as a precursor in the production of SiC(β) films at relatively low temperatures. However, because TMS contains much more C than Si, it is difficult to produce solid phase SiC at high temperatures. In an attempt to develop a more efficient TMS-based SiC(α) process, computational thermodynamic simulations were performed under various temperatures, working pressures and TMS/H2 ratios. The findings indicate that each solid phase has a different dependency on the H2 concentration. Consequently, a high H2 concentration results in the formation of a single, solid phase SiC region at high temperatures. Finally, TMS appears to be useful as a precursor for the high temperature production of SiC(α).

  6. On immobilization of high-level waste in an Y–Al garnet-based cermet matrix in SHS conditions

    OpenAIRE

    Konovalov, E.E.; Lastov, A.I.; Nerozin, N.A.

    2015-01-01

    A method of high-level waste (HLW) radionuclide immobilization in a long-life matrix based on Y–Al garnet, a material highly chemically resistant to natural environments, has been developed for the ultimate HLW isolation from the environment. Model systems containing Ce, Nd, Sm, Zr, Mo, 238U, and 241Am were used in the study as simulators of HLW radionuclides. An energy-saving technology of self-propagating high-temperature synthesis (SHS) was employed to synthesize the matrix material with f...

  7. Mechanically activated SHS reaction in the Fe-Al system: in-situ time resolved diffraction using synchrotron radiation

    International Nuclear Information System (INIS)

    Gaffet, E.; Charlot, F.; Klein, D.; Bernard, F.; Niepce, J.C.

    1998-01-01

    The mechanical activation self propagating high temperature synthesis (M.A.S.H.S.) processing is a new way to produce nanocrystalline iron aluminide intermetallic compounds. This process is maily the combination of two steps; in the one hand, a mechanical activation where the Fe - Al powder mixture was milled during a short time at given energy and frequency of shocks and in the other hand, a self propagating high temperature synthesis (S.H.S.) reaction, for which the exothermicity of the Fe + Al reaction is used. This fast propagated MASHS reaction has been in-situ investigated using the time resolved X-ray diffraction (TRXRD) using a X-ray synchrotron beam and an infrared thermography camera, allowing the coupling of the materials structure and the temperature field. The effects of the initial mean compositions, of the milling conditions as well as of the compaction parameters on the MASHS reaction are reported. (orig.)

  8. ACBC to Balcite: Bioinspired Synthesis of a Highly Substituted High-Temperature Phase from an Amorphous Precursor

    Energy Technology Data Exchange (ETDEWEB)

    Whittaker, Michael L.; Joester, Derk (NWU)

    2017-04-28

    Energy-efficient synthesis of materials locked in compositional and structural states far from equilibrium remains a challenging goal, yet biomineralizing organisms routinely assemble such materials with sophisticated designs and advanced functional properties, often using amorphous precursors. However, incorporation of organics limits the useful temperature range of these materials. Herein, the bioinspired synthesis of a highly supersaturated calcite (Ca0.5Ba0.5CO3) called balcite is reported, at mild conditions and using an amorphous calcium–barium carbonate (ACBC) (Ca1- x Ba x CO3·1.2H2O) precursor. Balcite not only contains 50 times more barium than the solubility limit in calcite but also displays the rotational disorder on carbonate sites that is typical for high-temperature calcite. It is significantly harder (30%) and less stiff than calcite, and retains these properties after heating to elevated temperatures. Analysis of balcite local order suggests that it may require the formation of the ACBC precursor and could therefore be an example of nonclassical nucleation. These findings demonstrate that amorphous precursor pathways are powerfully enabling and provide unprecedented access to materials far from equilibrium, including high-temperature modifications by room-temperature synthesis.

  9. Preparation of high temperature superconductor ceramics using cuban reactives. Optimization of the synthesis method

    International Nuclear Information System (INIS)

    Leyva Fabelo, A.; Cruz, C.; Aragon, B.; Suarez, J.C.; Mora, M.

    1991-01-01

    Results of the crystallographic characterization of a group of Cuban Products, which are evaluated to be employed in HTSC fabrication are presented in this paper. The first results on the synthesis of HTSC (RBa 2 Cu 3 0 7δ , R= Y, La, Nd) using Cuban reactives, are presented. The so called 'solid state reaction method of synthesis' was optimized, obtaining a critical temperature of more than 93 k

  10. Synthesis of high-temperature viscosity stabilizer used in drilling fluid

    Science.gov (United States)

    Zhang, Yanna; Luo, Huaidong; Shi, Libao; Huang, Hongjun

    2018-02-01

    Abstract For a well performance drilling fluid, when it operates in deep wells under high temperature, the most important property required is the thermal stability. The drilling fluid properties under high temperature can be controlled by proper selection of viscosity stabilizer, which can capture oxygen to protect polymer agent in the drilling fluid. In this paper a viscosity stabilizer PB-854 is described, which was synthesized by 4-phenoxybutyl bromide, paraformaldehyde, and phloroglucinol using etherification method and condensation reaction. We studied the effect of catalyst dosage, temperature, time, and stirring rate on the synthetic yield. Under this condition: molar ratio of 2-tert-Butylphenol, paraformaldehyde and phloroglucinol of 2:1:2.5, reacting temperature of 100 °C, stirring rate of 100 r min-1, and mass content of catalyst of 15 %, char yield of 5-bromine-3-tert-butyl salicylaldehyde reached 86 %. Under this condition: molar ratio of 5-bromine-3-tert-butyl salicylaldehyde and phloroglucinol of 4, reacting temperature of 60 °C, reacting time of 30 min, volume content of sulphuric acid of 80 %, char yield of the target product viscosity stabilizer PB-854 is 86%. Finally, in this paper, infrared spectroscopy is adopted to analyse the structure of the synthetic product PB-854.The improvement in the stability of drilling fluid was further shown after adding the viscosity stabilizer in the common polymer drilling fluid under high temperature conditions of 120 °C ˜ 180 °C. The results show significant change in terms of fluid stability in the presence of this new stabilizer as it provides better stability.

  11. Synthesis and thermal properties of a novel high temperature alkyl-center-trisphenolic-based phthalonitrile polymer

    International Nuclear Information System (INIS)

    Sheng, Haitong; Peng, Xuegang; Guo, Hui; Yu, Xiaoyan; Tang, Chengchun; Qu, Xiongwei; Zhang, Qingxin

    2013-01-01

    A novel alkyl-center-trisphenolic-based high-temperature phthalonitrile monomer, namely, 1,1,1-tris-[4-(3,4-dicyanophenoxy)phenyl]ethane (TDPE), was synthesized from 1,1,1-tris-(4-hydroxyphenyl)ethane (THPE) via a facile nucleophilic displacement of a nitro-substituent from 4-nitrophthalonitrile (NPN). The structure of TDPE monomer was characterized by Fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance spectroscopy ( 1 H and 13 C NMR), elemental analysis (EA). Curing behaviors of TDPE with 4-(aminophenoxy)phthalonitrile (APPH) were recorded by differential scanning calorimetric (DSC) and it showed a large processing window (122 °C) which is favorable to processing TDPE polymers. The structure of TDPE polymer was discussed and the thermal stabilities of TDPE polymer were evaluated by thermogravimetric analysis (TGA). The TDPE polymer exhibits excellent thermal stability, and mechanism of thermal decompositions was explored. Dynamic mechanical analysis (DMA) revealed that the TDPE polymer has high storage modulus and high glass transition temperature (T g > 380 °C). - Highlights: • A novel high-temperature phthalonitrile polymer was synthesized. • Polymerization mechanism was explored. • The polymer shows excellent thermal stability. • Outstanding mechanical properties was achieved: storage modulus = 3.7 GPa, T g > 380 °C. • Thermal decomposition mechanism was discussed

  12. STUDY OF GRINDING PROCESS OF TITANIUM CARBIDE PRODUCED WITH SELF-PROPAGATING HIGH TEMPERATURE SYNTHESIS (SPHTS)

    International Nuclear Information System (INIS)

    Kovziridze, Z.; Tabatadze, G.; Donadze, G.; Lezhava, A.; Gventsadze, D.

    2006-01-01

    It is stated that the specific character of SPHTS-preparations of TiC_x consists in crystal lattice strength reflecting the condition of synthesis in ''burning wave''. The use of roentgenographic and other methods of analysis allows to estimate the effect of the conditions of synthesis, causing carbon sublattice defect on grinding intensity of TiC_x phases. Study of the kinetics of vibro-grinding of TiC_x-phases in ethanol and benzene medium allows to establish high grinding intensity of the phases close to stoichiometry and the possibility of high depresion powderds (S_s_p H'' 4.5-6 m"2/g). (author)

  13. Numerical investigation of high temperature synthesis gas premixed combustion via ANSYS Fluent

    Directory of Open Access Journals (Sweden)

    Pashchenko Dmitry

    2018-01-01

    Full Text Available A numerical model of the synthesis gas pre-mixed combustion is developed. The research was carried out via ANSYS Fluent software. Verification of the numerical results was carried out using experimental data. A visual comparison of the flame contours that obtained by the synthesis gas combustion for Re = 600; 800; 1000 was performed. A comparison of the wall temperature of the combustion chamber, obtained with the help of the developed model, with the results of a physical experiment was also presented. For all cases, good convergence of the results is observed. It is established that a change in the temperature of the syngas/air mixture at the inlet to the combustion chamber does not significantly affect the temperature of the combustion products due to the dissipation of the H2O and CO2 molecules. The obtained results are of practical importance for the design of heat engineering plants with thermochemical heat recovery.

  14. Synthesis of Hafnium-Based Ceramic Materials for Ultra-High Temperature Aerospace Applications

    Science.gov (United States)

    Johnson, Sylvia; Feldman, Jay

    2004-01-01

    This project involved the synthesis of hafnium (Hf)-based ceramic powders and Hf-based precursor solutions that were suitable for preparation of Hf-based ceramics. The Hf-based ceramic materials of interest in this project were hafnium carbide (with nominal composition HE) and hafnium dioxide (HfO2). The materials were prepared at Georgia Institute of Technology and then supplied to research collaborators Dr. Sylvia Johnson and Dr. Jay Feldman) at NASA Ames Research Center.

  15. Synthesis and characterization of strontium carboxylates at room temperature and at high temperature in autoclave vessels

    DEFF Research Database (Denmark)

    Christgau, Stephan; Ståhl, Kenny; Andersen, Jens Enevold Thaulov

    2006-01-01

    A novel method was developed for synthesis of strontium coordination compounds in high yields. The synthesis proceeded along three pathways that provided strontium salts in high purity and high yields, close to 100%, as confirmed by flame atomic absorption spectroscopy (FAAS) and powder x......-ray crystallography. Optimum conditions were found at T = 120-1400C, a base-to-acid ratio of 1.2 and 15 min. of reaction-time in an autoclave vessel. Large crystals were readily obtained within a time period of hours. The crystal structures of strontium D-glutamate hexahydrate (I) and strontium di-(hydrogen L......-glutamate) pentahydrate (II) were confirmed by X-ray powder diffraction at 295 K and Rietveld refinements (I: Space group P212121, Z=4, a=7.3519(2), b=8.7616(2), c=20.2627(5) Å, and II: Space group P21, Z=2, a=8.7243(1), b=7.2635(1), c=14.6840(2) Å, β=100.5414(7) °). Synthesis at room temperature provided four additional...

  16. In situ synthesis of zero-valent silver nanoparticles in polymethylmethacrylate under high temperature

    International Nuclear Information System (INIS)

    Xiong Yuanlu; Luo Guoqiang; Chen Cheng; Yuan Huan; Shen Qiang; Li Meijuan

    2012-01-01

    In this work, the silver nanoparticles were synthesized in polymethylmethacrylate (PMMA) matrix under high temperature with polyvinylpyrrolidone (PVP) as additional stabilizer and N,N-dimethylformamide (DMF) as reaction medium. The UV-vis spectroscopy and transmission electron microscopy (TEM) were adopted to investigate the growth and shape conversion of Ag nanoparticles with the lacking of additional Ag source. The results showed that the stable zero-valent Ag in PMMA was obtained successfully. Two types of Ag nanoparticles, single-crystal and twinned ones, could form in the initial period. While the twinned ones will gradually disappear along with the reaction processed, the single-crystal ones could survive and slowly grow by consuming the Ag atoms which were etched form twinned ones. The single-crystal ones will take shape conversion from sphere to nanocube with nearly the same particle size after the total disappearance of twinned ones. The size and shape of Ag nanoparticles can be well controlled by reaction time. The high viscosity PMMA matrix plays the important role of controlling the growth of the Ag nanoparticles, and the PVP takes the responsibility of the shape conversion.

  17. Time-resolved XRD study of TiC-TiB2 composites obtained by SHS

    International Nuclear Information System (INIS)

    Contreras, L.; Turrillas, X.; Vaughan, G.B.M.; Kvick, A.; Rodriguez, M.A.

    2004-01-01

    Composites of TiC and TiB 2 were prepared by self-propagating high-temperature synthesis (SHS). Two routes were attempted; from the elements and from a mixture of anatase, boron oxide, graphite and magnesium. The reactions were monitored in situ by synchrotron X-ray diffraction (λ = 0.26102 A). The powder mixtures were compacted as cylindrical pellets and upon ignition diffraction patterns were collected every 65 ms with a CCD camera. TiC was the first phase to form, followed by TiB 2 . The reactions take place in time scales of 0.1 s. The temperature profile for the first route was established from the peak position and the known thermal expansion coefficients. The microstructure of the final products was different: particles of 10 μm for the first and submicron for the second. The viability of the second route to produce ceramic powders in a cheaper way was confirmed

  18. Immobilization of actinides in stable mineral type and ceramic materials (high temperature synthesis)

    Energy Technology Data Exchange (ETDEWEB)

    Starkov, O.; Konovalov, E.

    1996-05-01

    Alternative vitrification technologies are being developed in the world for the immobilization of high radioactive waste in materials with improved thermodynamic stability, as well as improved chemical and thermal stability and stability to radiation. Oxides, synthesized in the form of analogs to rock-forming minerals and ceramics, are among those materials that have highly stable properties and are compatible with the environment. In choosing the appropriate material, we need to be guided by its geometric stability, the minimal number of cations in the structure of the material and the presence of structural elements in the mineral that are isomorphs of uranium and thorium, actinoids found in nature. Rare earth elements, yttrium, zirconium and calcium are therefore suitable. The minerals listed in the table (with the exception of the zircon) are pegatites by origin, i.e. they are formed towards the end of the magma crystallization of silicates form the residual melt, enriched with Ta, Nb, Ti, Zr, Ce, Y, U and Th. Uranium and thorium in the form of isomorphic admixtures form part of the lattice of the mineral. These minerals, which are rather simple in composition and structure and are formed under high temperatures, may be viewed as natural physio-chemical systems that are stable and long-lived in natural environments. The similarity of the properties of actinoids and lanthanoids plays an important role in the geochemistry of uranium and thorium; however, uranium (IV) is closer to the {open_quotes}heavy{close_quotes} group of lanthanoids (the yttrium group) while thorium (IV) is closer to the {open_quotes}light{close_quotes} group (the cerium group). That is why rare earth minerals contain uranium and thorium in the form of isomorphic admixtures.

  19. Room temperature synthesis of high temperature stable lanthanum phosphate–yttria nano composite

    International Nuclear Information System (INIS)

    Sankar, Sasidharan; Raj, Athira N.; Jyothi, C.K.; Warrier, K.G.K.; Padmanabhan, P.V.A.

    2012-01-01

    Graphical abstract: A facile aqueous sol–gel route involving precipitation–peptization mechanism followed by electrostatic stabilization is used for synthesizing nanocrystalline composite containing lanthanum phosphate and yttria. Highlights: ► A novel lanthanum phosphate–Y 2 O 3 nano composite is synthesized for the first time using a modified facile sol gel process. ► The composite becomes crystalline at 600 °C and X-ray diffraction pattern is indexed for monoclinic LaPO 4 and cubic yttria. ► The composite synthesized was tested up to 1300 °C and no reaction between the phases of the constituents is observed with the morphologies of the phases being retained. -- Abstract: A facile aqueous sol–gel route involving precipitation–peptization mechanism followed by electrostatic stabilization is used for synthesizing nanocrystalline composite containing lanthanum phosphate and yttria. Lanthanum phosphate (80 wt%)–yttria (20 wt%) nano composite (LaPO 4 –20%Y 2 O 3 ), has an average particle size of ∼70 nm after heat treatment of precursor at 600 °C. TG–DTA analysis reveals that stable phase of the composite is formed on heating the precursor at 600 °C. The TEM images of the composite show rod shape morphology of LaPO 4 in which yttria is acquiring near spherical shape. Phase identification of the composite as well as the phase stability up to 1300 °C was carried out using X-ray diffraction technique. With the phases being stable at higher temperatures, the composite synthesized should be a potential material for high temperature applications like thermal barrier coatings and metal melting applications.

  20. Propagation and diffusion-limited extinction of nonadiabatic heterogeneous flame in the SHS process

    International Nuclear Information System (INIS)

    Makino, Atsushi

    1994-01-01

    Nonadiabatic heterogeneous flame propagation and extinction in self-propagating high-temperature synthesis (SHS) are analyzed based on a premixed mode of propagation for the bulk flame supported by the nonpremixed reaction of dispersed nonmetals in the liquid metal. The formulation allows for volumetric heat loss throughout the bulk flame, finite-rate Arrhenius reaction at the particle surface, and temperature-sensitive Arrhenius mass diffusion in the liquid. Results show that, subsequent to melting of the metal, the flame structure consists of a relatively thin diffusion-consumption/convection zone followed by a relatively thick convection-loss zone, that the flame propagation rate decreases with increasing heat loss, that at a critical heat-loss rate the flame extinguishes as indicated by the characteristic turning-point behavior, that the surface reaction is diffusion limited such that the nonlinear, temperature-sensitive nature of the system is actually a consequence of the Arrhenius mass diffusion, and that extinction is sensitively affected by the mixture ratio, the degree of dilution, the initial temperature of the compact, and the size of the nonmetal particles. An explicit expression is derived for the normalized mass burning rate, which exhibits the characteristic turning point and shows that extinction occurs when this value is reduced to e -1/2 , which is the same as that for the nonadiabatic gaseous premixed flame. It is further shown that the theoretical results agree well with available experimental data, indicating that the present formulation captures the essential features of the nonadiabatic heterogeneous SHS processes and its potential for extension to describe other SHS phenomena

  1. Burning velocity of the heterogeneous flame propagation in the SHS process expressed in explicit form

    International Nuclear Information System (INIS)

    Makino, A.; Law, C.K.

    1995-01-01

    The combustion behavior of the self-propagating high-temperature synthesis (SHS) process has been the subject of many analytical and experimental investigations. Recently, a theory based on spray combustion was proposed for the SHS flame structure and propagation. In contrast to previous studies based on the homogeneous premixed flame, this theory accounts for the premixed-mode of propagation of the bulk flame and the non-premixed reaction of the dispersed nonmetal (or higher melting-point metal) particles which supports the bulk flame. Finite-rate reaction at the particle surface and the temperature-dependent, Arrhenius nature of mass diffusion are both incorporated. The heterogeneous nature of the theory has satisfactorily captured the effects of particle size on the flame propagation speed. The final solution of Makino and Law was obtained numerically and hence presented parametrically. The authors have since then derived an approximate analytical expression for the burning velocity, which explicitly displays the functional dependence of the burning velocity on the various system parameters. This result is presented herein. Applicability of this expression is examined by comparing it with the numerical results for Ti-C, Ti-B, Zr-B, Hf-B, and Co-Ti systems. A fair degree of agreement has been shown as far as the general trend and approximate magnitude are concerned

  2. A novel method for direct fabrication of ferromolybdenum using molybdenite via self-propagation high temperature synthesis

    International Nuclear Information System (INIS)

    Golmakani, M.H.; Vahdati khaki, J.; Babakhani, A.

    2017-01-01

    Direct production of ferromolybdenum from molybdenite (MoS 2 ), in the presence of lime as a desulfurizing reagent using combustion synthesis process is investigated. Thermodynamic calculations and measurement of the adiabatic temperature of the reaction denoted that the process is in agreement with the Merzhanov criterion for self-sustaining processes. The experimental results indicated a relatively complete separation between the molten metal droplets and the co-existing slag. The slag and metal phases were characterized by X-ray diffraction, electron microscopy and wet chemical analysis techniques. It was found that sulfur is mainly distributed into the slag in the form of solid calcium sulfide (CaS). The Lack of calcium oxide in the slag indicated a complete desulfurization reaction between lime and the sulfur in molybdenum sulfide. Characterization of the molted metal revealed that only two phases namely Fe 3 Mo 3 C and Fe 3 Mo exist in the melt. Mass balance calculations showed an Iron-molybdenum recovery greater than 85%. Analyses of the phases indicated that a significant amount of Fe 3 Mo 3 C phase (60–70 wt%) is present in ferromolybdenum molten droplets even though the raw materials were low in carbon. Chemical analysis and microstructural studies of the raw materials and the products showed that carbon is not present in sufficient quantities to produce this amount of Fe 3 Mo 3 C; therefore the structure of this phase should contain a high concentration of carbon vacancies. The deviation of Fe 3 Mo 3 C 1-x peaks in X-ray diffraction pattern compared to its standard reference peaks and a calculated 0.02% decrease in the lattice parameter of this phase are evidence of the presence of these carbon vacancies. - Highlights: • A new SHS method for direct fabrication of ferromolybdenum from MoS 2 is introduced. • Addition of CaO as an effective desulfurizing agent has been investigated. • Removing the oxidative roasting process, and sulfur gas emission

  3. A novel method for direct fabrication of ferromolybdenum using molybdenite via self-propagation high temperature synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Golmakani, M.H.; Vahdati khaki, J., E-mail: vahdati@um.ac.ir; Babakhani, A.

    2017-06-15

    Direct production of ferromolybdenum from molybdenite (MoS{sub 2}), in the presence of lime as a desulfurizing reagent using combustion synthesis process is investigated. Thermodynamic calculations and measurement of the adiabatic temperature of the reaction denoted that the process is in agreement with the Merzhanov criterion for self-sustaining processes. The experimental results indicated a relatively complete separation between the molten metal droplets and the co-existing slag. The slag and metal phases were characterized by X-ray diffraction, electron microscopy and wet chemical analysis techniques. It was found that sulfur is mainly distributed into the slag in the form of solid calcium sulfide (CaS). The Lack of calcium oxide in the slag indicated a complete desulfurization reaction between lime and the sulfur in molybdenum sulfide. Characterization of the molted metal revealed that only two phases namely Fe{sub 3}Mo{sub 3}C and Fe{sub 3}Mo exist in the melt. Mass balance calculations showed an Iron-molybdenum recovery greater than 85%. Analyses of the phases indicated that a significant amount of Fe{sub 3}Mo{sub 3}C phase (60–70 wt%) is present in ferromolybdenum molten droplets even though the raw materials were low in carbon. Chemical analysis and microstructural studies of the raw materials and the products showed that carbon is not present in sufficient quantities to produce this amount of Fe{sub 3}Mo{sub 3}C; therefore the structure of this phase should contain a high concentration of carbon vacancies. The deviation of Fe{sub 3}Mo{sub 3}C{sub 1-x} peaks in X-ray diffraction pattern compared to its standard reference peaks and a calculated 0.02% decrease in the lattice parameter of this phase are evidence of the presence of these carbon vacancies. - Highlights: • A new SHS method for direct fabrication of ferromolybdenum from MoS{sub 2} is introduced. • Addition of CaO as an effective desulfurizing agent has been investigated. • Removing the

  4. Single-source-precursor Synthesis and High-temperature Behavior of SiC Ceramics Containing Boron

    Science.gov (United States)

    Gui, Miaomiao; Fang, Yunhui; Yu, Zhaoju

    2014-12-01

    In this paper, a hyperbranched polyborocarbosilane (HPBCS) was prepared by a one-pot synthesis with Cl2Si(CH3)CH2Cl, Cl3SiCH2Cl and BCl3 as the starting materials. The obtained HPBCS was characterized by GPC, FT-IR and NMR, and was confirmed to have hyperbranched structures. The thermal property of the resulting HPBCS was investigated by TGA. The ceramic yield of the HPBCS is about 84% and that of the counterpart hyperbranched hydridopolycarbosilane is only 45%, indicating that the introduction of boron into the preceramic polymer significantly improved the ceramic yield. With the polymer-derived ceramic route, the final ceramics were annealed at 1800 °C in argon atmosphere for 2 h in order to characterize the microstructure and to evaluate the high-temperature behavior. The final ceramic microstructure was studied by XRD and SEM, indicating that the introduction of boron dramatically inhibits SiC crystallization. The boron-containing SiC ceramic shows excellent high-temperature behavior against decomposition and crystallization at 1800 °C.

  5. Application of self-propagation high-temperature synthesis for immobilization of hard radioactive wastes in ceramet materials

    International Nuclear Information System (INIS)

    Ilyin, E.; Pashkeev, I.; Senin, A.; Gerasimova, N.

    2001-01-01

    The possibility of self-propagating high-temperature synthesis (SPHTS) application for an immobilization of solid high level wastes (HLW) in cermet materials is considered. The schemes of multilayer cermet blocks formation are offered. Such blocks consist of a ceramet core with immobilized HLW and a protective cover - ceramet without HLW. The influence of the base components form (pure Ti and Si, ferrotitanium and ferrosilicon), metallic components (Ni, Cu, Cr, Fe, ferrochromium) and nonmetallic components (SiO 2 , Al 2 O 3 , TiO 2 ) on burning rate and cover ceramet structure is investigated in compositions on a basis of Ti+B, Ti+Si, Ti+C systems. Model samples of multilayer cermet blocks are manufactured using of HLW simulators. (authors)

  6. Synthesis and studies of Y-Ba-Cu-O high temperature superconductor prepared by sol-gel method

    International Nuclear Information System (INIS)

    Grigoryan, S.G.; Manukyan, A.L.; Hayrapetyan, A.G.; Arzumanyan, A.M.; Rashidyan, L.H.; Mkrtichyan, N.Y.; Mkrtchyan, A.A.; Kurginyan, K.A.; Trozyan, A.H.; Vardanyan, R.S.

    2004-01-01

    The method of preparation of Y-Ba-Cu-O high temperature superconducting materials by sol-gel processing technique both for powders and thin films are described. All these methods are based on using yttrium alkoxides as precursors, which are not ready available reagents, besides the majority of these methods use copper alkoxides, which show low solubility in organic solvents, moreover they are very sensitive to hydrolysis in air. The new method of preparation of Y-Ba-Cu-O ceramic materials by sol-gel processing technique based on new and convenient precursors stable in air, having high compatibility with each other is offered. Basic scientific and technological issues related to the synthesis of bulk materials, their structure and electrical conductivity are discussed

  7. Changes in the pattern of protein synthesis of prosopis chilensis induced by high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Medina, C.; Cardemil, L. (Univ. de Chile, Santiago (USA))

    1989-04-01

    Seeds of Prosopis chilensis, a leguminous tree from semi-arid regions of Central Chile, were germinated at temperatures of 25-30-35-40-45 and 50{degree}C. Germination was 100% between 25 and 40{degree}C, being faster at 35{degree}C. The best temperature for root growth was also 35{degree}C. There was not germination at 50{degree}C. However, seedlings coming from seeds germinated at 35{degree}C were capable of growing at higher temperatures of 45 and 50{degree}C. Pattern of protein synthesis was followed in roots incubated with {sup 35}S-methionine at increasing temperatures between 35 and 50{degree}C. SDS-PAGE of the proteins followed by fluorography shows that at temperatures above 35{degree}C, new protein bands appear while others become thicker. Most of the protein bands have decreased at 50{degree}C, with the exception of the new bands. A band of 70 KD, that is present at 35{degree}C, is more prominent at 50{degree}C. These proteins may have an important role in the thermotolerance of Prosopis chilensis to stressing temperatures.

  8. Changes in the pattern of protein synthesis of prosopis chilensis induced by high temperatures

    International Nuclear Information System (INIS)

    Medina, C.; Cardemil, L.

    1989-01-01

    Seeds of Prosopis chilensis, a leguminous tree from semi-arid regions of Central Chile, were germinated at temperatures of 25-30-35-40-45 and 50 degree C. Germination was 100% between 25 and 40 degree C, being faster at 35 degree C. The best temperature for root growth was also 35 degree C. There was not germination at 50 degree C. However, seedlings coming from seeds germinated at 35 degree C were capable of growing at higher temperatures of 45 and 50 degree C. Pattern of protein synthesis was followed in roots incubated with 35 S-methionine at increasing temperatures between 35 and 50 degree C. SDS-PAGE of the proteins followed by fluorography shows that at temperatures above 35 degree C, new protein bands appear while others become thicker. Most of the protein bands have decreased at 50 degree C, with the exception of the new bands. A band of 70 KD, that is present at 35 degree C, is more prominent at 50 degree C. These proteins may have an important role in the thermotolerance of Prosopis chilensis to stressing temperatures

  9. Synthesis of high-temperature superconducting oxides and chemical alloying in Cu-O planes

    International Nuclear Information System (INIS)

    Tarascon, J.M.; Barboux, P.; Bagley, B.G.; Green, L.H.; Mckinnon, W.R.; Hull, G.W.

    1988-01-01

    Some methods for synthesis permitting to fabricate dense superconducting ceramics are considered. The Zole-Hell method is the most perspective one among them. Effect of oxygen content in a sample and copper substitution for nickel and zinc on structural, transition and superconducting properties of samples of the La-Sr-Cu-O(1) and Y-Ba-Cu-O(2) systems is studied. Copper substitution is established to suppress superconductivity in system 1 and to decrease T c in system 2, and this effect doesn't depend on the fact whether the substituting 3d-metal is magnetic (nickel) or diamagnetic (zinc). Detailed study of YBa 2 Cu 3 O 7-y properties as a function of oxygen content has shown that superconductivty in this composition can be suppressed as a result of oxygen removal and it can be reduced with its interoduction. The possibility to prepare nonalloyed La 2 CuO 4 in superconducting state as a result of plasma treatment comprises a scientific interest. 27 refs.; 5 figs.; 1 tab

  10. High-temperature superconducting oxide synthesis and the chemical doping of the Cu-O planes

    International Nuclear Information System (INIS)

    Tarascon, J.M.; Barboux, P.; Bagley, B.G.; Greene, L.H.; McKinnon, W.R.; Hull, G.W.

    1987-01-01

    Different synthesis techniques for the preparation of dense superconducting ceramics are discussed, and a sol-gel process is shown to be very promising. The effect of oxygen content, and the effect of substitution of Ni and Zn for copper, on the structural, transport and superconducting properties of the La-Sr-Cu-O and Y-Ba-Cu-O systems are presented. The authors find that substitution on the copper sites destroys T/sub c/ in the La-Sr-Cu-O system and decreases it in the Y-Ba-Cu-O system, and this effect is insensitive as to whether the 3d metal is magnetic (Ni) or diamagnetic (Zn). A detailed study of the YBa/sub 2/Cu/sub 3/O/sub 7-y/ system as a function of oxygen content (y) shows that superconductivity can be destroyed in these materials by the removal of oxygen and restored by reinjecting oxygen; either thermally at 500 0 C or at temperatures (80 0 C) compatible with device processing by means of a novel plasma oxidation process. Of scientific interest, the plasma process induces bulk superconductivity in the undoped La/sub 2/CuO/sub 4/

  11. High-temperature Ionization-induced Synthesis of Biologically Relevant Molecules in the Protosolar Nebula

    Science.gov (United States)

    Bekaert, David V.; Derenne, Sylvie; Tissandier, Laurent; Marrocchi, Yves; Charnoz, Sebastien; Anquetil, Christelle; Marty, Bernard

    2018-06-01

    Biologically relevant molecules (hereafter biomolecules) have been commonly observed in extraterrestrial samples, but the mechanisms accounting for their synthesis in space are not well understood. While electron-driven production of organic solids from gas mixtures reminiscent of the photosphere of the protosolar nebula (PSN; i.e., dominated by CO–N2–H2) successfully reproduced key specific features of the chondritic insoluble organic matter (e.g., elementary and isotopic signatures of chondritic noble gases), the molecular diversity of organic materials has never been investigated. Here, we report that a large range of biomolecules detected in meteorites and comets can be synthesized under conditions typical of the irradiated gas phase of the PSN at temperatures = 800 K. Our results suggest that organic materials—including biomolecules—produced within the photosphere would have been widely dispersed in the protoplanetary disk through turbulent diffusion, providing a mechanism for the distribution of organic meteoritic precursors prior to any thermal/photoprocessing and subsequent modification by secondary parent body processes. Using a numerical model of dust transport in a turbulent disk, we propose that organic materials produced in the photosphere of the disk would likely be associated with small dust particles, which are coupled to the motion of gas within the disk and therefore preferentially lofted into the upper layers of the disk where organosynthesis occurs.

  12. Formulation and catalytic performance of MOF-derived Fe@C/Al composites for high temperature Fischer–Tropsch synthesis

    KAUST Repository

    Oar-Arteta, Lide; Valero-Romero, Marí a José ; Wezendonk, Tim; Kapteijn, Freek; Gascon, Jorge

    2017-01-01

    High productivity towards C-2-C-4 olefins together with high catalyst stability are key for optimum operation in high temperature Fischer-Tropsch synthesis (HT-FTS). Here, we report the fabrication of Fe@C/Al composites that combine both the outstanding catalytic properties of the Fe-BTC MOF-derived Fe catalyst and the excellent mechanical resistance and textural properties provided by the inorganic AlOOH binder. The addition of AlOOH to Fe-BTC followed by pyrolysis in N-2 atmosphere at 500 degrees C results in composites with a large mesoporosity, a high Fe/Fe3O4 ratio, 10-35 nm average Fe crystallite size and coordinatively unsaturated Al3+ sites. In catalytic terms, the addition of AlOOH binder gives rise to enhanced C-2-C-4 selectivity and catalyst mechanical stability in HT-FTS, but at high Al contents the activity decreases. Altogether, the productivity of these Fe@C/Al composites is well above most known Fe catalysts for this process.

  13. Fabrication of FeAl Intermetallic Foams by Tartaric Acid-Assisted Self-Propagating High-Temperature Synthesis

    Directory of Open Access Journals (Sweden)

    Krzysztof Karczewski

    2018-04-01

    Full Text Available Iron aluminides are intermetallics with interesting applications in porous form thanks to their mechanical and corrosion resistance properties. However, making porous forms of these materials is not easy due to their high melting points. We formed FeAl foams by elemental iron and aluminum powders sintering with tartaric acid additive. Tartaric acid worked as an in situ gas-releasing agent during the self-propagating high-temperature synthesis of FeAl intermetallic alloy, which was confirmed by X-ray diffraction measurements. The porosity of the formed foams was up to 36 ± 4%. In the core of the sample, the average equivalent circle diameter was found to be 47 ± 20 µm, while on the surface, it was 35 ± 16 µm; thus, the spread of the pore size was smaller than reported previously. To investigate functional applications of the formed FeAl foam, the pressure drop of air during penetration of the foam was examined. It was found that increased porosity of the material increased the flow of the air through the metallic foam.

  14. Production of porous sintered materials using wastes of manufacturing engineering in self-propagating high-temperature synthesis

    Directory of Open Access Journals (Sweden)

    Y. S. Povstyana

    2016-06-01

    Full Text Available The increasing amount of wastes produced by the manufacturing engineering, as well as their physical and mechanical properties and restorability provide a search for sphere of their application. The actual problem of modern science is the utilization of wastes and using them in further production that will minimize their harmful impact on the environment and reduce the cost of expensive raw materials. Wastes are ideally suitable for the manufacture of porous permeable materials (filters. Powder metallurgy allows obtaining products with controlled filtration, physical and mechanical properties. Such materials are good filters for regeneration of technical liquids, oils, cooling fluids, sewage etc. The article analyzes the methods and technologies for the manufacture of porous ceramic materials and a new technology for their manufacture, which is based on use of mill scale and natural mineral – saponite as the main components. Compression technology provides products at low pressures and sintering by passing high-temperature synthesis. The proposed technology is characterized by low cost and good physical and mechanical properties of the product that gives a reason to use them for filtering and regeneration of technical liquids.

  15. Formulation and catalytic performance of MOF-derived Fe@C/Al composites for high temperature Fischer–Tropsch synthesis

    KAUST Repository

    Oar-Arteta, Lide

    2017-11-15

    High productivity towards C-2-C-4 olefins together with high catalyst stability are key for optimum operation in high temperature Fischer-Tropsch synthesis (HT-FTS). Here, we report the fabrication of Fe@C/Al composites that combine both the outstanding catalytic properties of the Fe-BTC MOF-derived Fe catalyst and the excellent mechanical resistance and textural properties provided by the inorganic AlOOH binder. The addition of AlOOH to Fe-BTC followed by pyrolysis in N-2 atmosphere at 500 degrees C results in composites with a large mesoporosity, a high Fe/Fe3O4 ratio, 10-35 nm average Fe crystallite size and coordinatively unsaturated Al3+ sites. In catalytic terms, the addition of AlOOH binder gives rise to enhanced C-2-C-4 selectivity and catalyst mechanical stability in HT-FTS, but at high Al contents the activity decreases. Altogether, the productivity of these Fe@C/Al composites is well above most known Fe catalysts for this process.

  16. Standard enthalpies of formation of some Lanthanide–Cobalt binary alloys by high temperature direct synthesis calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Meschel, S.V., E-mail: meschel@jfi.uchicago.edu [Illinois Institute of Technology, Thermal Processing Technology Center, 10 W. 32nd Street, Chicago, IL (United States); University of Chicago, Gordon Center of Interactive Science, 929 E 57th Street, Chicago, IL 60637 (United States); Nash, P. [Illinois Institute of Technology, Thermal Processing Technology Center, 10 W. 32nd Street, Chicago, IL (United States); Gao, Q.N.; Wang, J.C.; Du, Y. [Central South University, State Key Laboratory of Powder Metallurgy, Changsha, Hunan 410083 (China)

    2013-11-25

    Highlights: •Studied binary Lanthanide–Cobalt intermetallic alloys by high temperature calorimetry. •Determined the enthalpies of formation of 16 magnetostrictive alloys. •Compared the experimental measurements with theoretical predictions by two different models. -- Abstract: The standard enthalpies of formation of intermetallic compounds of some Lanthanide–Cobalt systems have been measured by high temperature direct synthesis calorimetry at 1373 ± 2 K. The following results in kJ/mol of atoms are reported: CeCo{sub 5}(−9.4 ± 3.3); Ce{sub 2}Co{sub 17}(−6.8 ± 3.2); PrCo{sub 5}(−10.5 ± 2.4); Pr{sub 2}Co{sub 17}(−6.8 ± 3.6); NdCo{sub 5}(−12.7 ± 2.6); Nd{sub 2}Co{sub 17}(−6.6 ± 2.7); SmCo{sub 5}(−12.2 ± 1.8); Sm{sub 2}Co{sub 17}(−7.2 ± 2.5); GdCo{sub 5}(−10.0 ± 2.4); Tb{sub 2}Co{sub 17}(−7.7 ± 2.9); Dy{sub 2}Co{sub 17}(−8.1 ± 2.9); HoCo{sub 3}(−17.5 ± 2.2); ErCo{sub 3}(−19.7 ± 3.3); TmCo{sub 3}(−22.9 ± 3.0); LuCo{sub 3}(−23.0 ± 2.6). The measurements are compared with values from the literature and with predicted values of the semi empirical model of Miedema and Coworkers. We also compare the measurements with predicted values by ab initio calculations. We will present a systematic picture of how the enthalpies of formation may be related to the atomic number of the Lanthanide element (LA). We will also compare the thermochemical behavior of the Fe, Co and Ni binary alloys with Lanthanide elements.

  17. Influence of compaction pressure on the morphology and phase evolution of porous NiTi alloy prepared by SHS technique

    Directory of Open Access Journals (Sweden)

    Sirikul Wisutmethangoon

    2008-08-01

    Full Text Available The influence of compaction pressure on the pore morphology of porous NiTi shape memory alloys (SMAs fabricated by self-propagating high-temperature synthesis (SHS was investigated. The compaction pressure has a significant effect on the combustion temperature and pore morphology. The porous NiTi (SMAs thus obtained have the porosity of product in the range of 37.4-57.9 vol.%. The open porosity ratios were observed to be greater than 88%, which indicatesthat porous NiTi (SMAs are suitable for biomedical applications. In addition, the predominant phases in the porous product are B2(NiTi and B19’(NiTi with small amounts of secondary phases, NiTi2 and Ni4Ti3.

  18. Effect of Cr content on the SHS reaction of Cr-Ti-C system

    International Nuclear Information System (INIS)

    Zhang, W.N.; Wang, H.Y.; Wang, P.J.; Zhang, J.; He, L.; Jiang, Q.C.

    2008-01-01

    The effect of Cr content on the self-propagating high temperature synthesis (SHS) reaction of Cr-Ti-C system has been investigated in this research. The thermodynamics calculation indicates that the TiC possesses higher thermodynamic stability than the Cr 23 C 6 , Cr 7 C 3 and Cr 3 C 2 phases, and the formation of TiC is the most exothermic. Additionally, the adiabatic combustion temperature (T ad ) decreases with the increase of Cr content except for the phase transition regions. The XRD result shows that the type of products synthesized by SHS changes that a higher Cr content corresponds to higher chromium carbide. When Cr content is 10 wt.%, only solid solution (Ti,Cr)C ss is formed in the products. When Cr content increases to 20 wt.%, besides (Ti,Cr)C ss , the Cr 7 C 3 phase is also detected. With the Cr content further increasing to 30 and 40 wt.%, the products consist of (Ti,Cr)C ss , Cr 23 C 6 , Cr 7 C 3 and Cr, and therefore, much higher chromium carbide is synthesized. When Cr content reaches 50 wt.%, however, the Cr 7 C 3 disappears and the final products become (Ti,Cr)C ss , Cr 23 C 6 and Cr. Moreover, when Cr content increases from 10 to 20 wt.%, the lattice parameter of (Ti,Cr)C ss decreases, while it increases when the Cr content ranges from 20 to 50 wt.%. Furthermore, the microstructure shows that the TiC particulate size decreases from ∼8 to ∼2 μm with the increase of Cr content from 10 to 50 wt.%, and the morphology shape of TiC particulate becomes more and more spherical

  19. Comparison of Reactive and Non-Reactive Spark Plasma Sintering Routes for the Fabrication of Monolithic and Composite Ultra High Temperature Ceramics (UHTC Materials

    Directory of Open Access Journals (Sweden)

    Roberto Orrù

    2013-04-01

    Full Text Available A wider utilization of ultra high temperature ceramics (UHTC materials strongly depends on the availability of efficient techniques for their fabrication as dense bodies. Based on recent results reported in the literature, it is possible to state that Spark Plasma Sintering (SPS technology offers a useful contribution in this direction. Along these lines, the use of two different SPS-based processing routes for the preparation of massive UHTCs is examined in this work. One method, the so-called reactive SPS (R-SPS, consists of the synthesis and densification of the material in a single step. Alternatively, the ceramic powders are first synthesized by Self-propagating High-temperature Synthesis (SHS and then sintered by SPS. The obtained results evidenced that R-SPS method is preferable for the preparation of dense monolithic products, while the sintering of SHS powders requires relatively milder conditions when considering binary composites. The different kinetic mechanisms involved during R-SPS of the monolithic and composite systems, i.e., combustion-like or gradual solid-diffusion, respectively, provides a possible explanation. An important role is also played by the SHS process, particularly for the preparation of composite powders, since stronger interfaces are established between the ceramic constituents formed in situ, thus favoring diffusion processes during the subsequent SPS step.

  20. OpenSHS: Open Smart Home Simulator

    Directory of Open Access Journals (Sweden)

    Nasser Alshammari

    2017-05-01

    Full Text Available This paper develops a new hybrid, open-source, cross-platform 3D smart home simulator, OpenSHS, for dataset generation. OpenSHS offers an opportunity for researchers in the field of the Internet of Things (IoT and machine learning to test and evaluate their models. Following a hybrid approach, OpenSHS combines advantages from both interactive and model-based approaches. This approach reduces the time and efforts required to generate simulated smart home datasets. We have designed a replication algorithm for extending and expanding a dataset. A small sample dataset produced, by OpenSHS, can be extended without affecting the logical order of the events. The replication provides a solution for generating large representative smart home datasets. We have built an extensible library of smart devices that facilitates the simulation of current and future smart home environments. Our tool divides the dataset generation process into three distinct phases: first design: the researcher designs the initial virtual environment by building the home, importing smart devices and creating contexts; second, simulation: the participant simulates his/her context-specific events; and third, aggregation: the researcher applies the replication algorithm to generate the final dataset. We conducted a study to assess the ease of use of our tool on the System Usability Scale (SUS.

  1. OpenSHS: Open Smart Home Simulator.

    Science.gov (United States)

    Alshammari, Nasser; Alshammari, Talal; Sedky, Mohamed; Champion, Justin; Bauer, Carolin

    2017-05-02

    This paper develops a new hybrid, open-source, cross-platform 3D smart home simulator, OpenSHS, for dataset generation. OpenSHS offers an opportunity for researchers in the field of the Internet of Things (IoT) and machine learning to test and evaluate their models. Following a hybrid approach, OpenSHS combines advantages from both interactive and model-based approaches. This approach reduces the time and efforts required to generate simulated smart home datasets. We have designed a replication algorithm for extending and expanding a dataset. A small sample dataset produced, by OpenSHS, can be extended without affecting the logical order of the events. The replication provides a solution for generating large representative smart home datasets. We have built an extensible library of smart devices that facilitates the simulation of current and future smart home environments. Our tool divides the dataset generation process into three distinct phases: first design: the researcher designs the initial virtual environment by building the home, importing smart devices and creating contexts; second, simulation: the participant simulates his/her context-specific events; and third, aggregation: the researcher applies the replication algorithm to generate the final dataset. We conducted a study to assess the ease of use of our tool on the System Usability Scale (SUS).

  2. Synthesis and analysis of Mo-Si-B based coatings for high temperature oxidation protection of ceramic materials

    Science.gov (United States)

    Ritt, Patrick J.

    The use of Ni-based superalloys in turbine engines has all but been exhausted, with operating temperatures nearing the melting point of these materials. The use of ceramics in turbine engines, particularly ceramic matrix composites such as SiC/C and SiC/SiC, is of interest due to their low density and attractive mechanical properties at elevated temperatures. The same materials are also in consideration for leading edges on hypersonic vehicles. However, SiC-based composites degrade in high temperature environments with low partial pressures of oxygen due to active oxidation, as well as high temperature environments containing water or sand. The need for a protective external coating for SiC-based composites in service is obvious. To date, no coating investigated for SiC/C or SiC/SiC has been proven to be resistant to oxidation and corrosion at intermediate and high temperatures, as well as in environments deficient in oxygen. The Mo-Si-B coating shows great promise in this area, having been proven resistant to attack from oxidation at extreme temperatures, from water vapor and from calcia-magnesia-aluminosilicate (CMAS). The adaptation of the Mo-Si-B coating for ceramic materials is presented in detail here. Evaluation of the coating under a range of oxidation conditions as well as simulated re-entry conditions confirms the efficacy of the Mo-Si-B based coating as protection from catastrophic failure. The key to the oxidation and corrosion resistance is a robust external aluminoborosilica glass layer that forms and flows quickly to cover the substrate, even under the extreme simulated re-entry conditions. Suppression of active oxidation of SiC, which may occur during atmospheric re-entry and hypersonic flight trajectories, has also been examined. In order to adapt the Mo-Si-B based coating to low partial pressures of oxygen and elevated temperatures, controlled amounts of Al were added to the Mo-Si-B based coating. The resulting coating decreased the inward

  3. Preparation of Fe-Al Intermetallic / TiC-Al2O3 Ceramic Composites from Ilmenite by SHS

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Fe-Al intermetallic/TiC-Al2O3 ceramic composites were successfully prepared by self-propagating high-temperature synthesis (SHS) from natural ilmenite, aluminium and carbon as the raw materials. The effects of carbon sources, preheating time and heat treatment temperature on synthesis process and products were investigated in detail, and the reaction process of the FeTiO3-Al-C system was also discussed.It is shown that the temperature and velocity of the combustion wave are higher when graphite is used as the carbon source, which can reflect the effect of the carbon source structure on the combustion synthesis;Prolonging the preheating time or heat treatment temperature is beneficial to the formation of the ordered intermetallics; The temperature and velocity of the combustion wave arc improved, but the disordered alloys are difficult to eliminate with the preheating time prolonged. The compound powders mainly containing ordered Fe3Al intermetallic can be prepared through heat treatment at 750 ℃.

  4. Direct recovery of boiler residue by combustion synthesis.

    Science.gov (United States)

    Nourbaghaee, Homan; Ghaderi Hamidi, Ahmad; Pourabdoli, Mahdi

    2018-04-01

    Boiler residue (BR) of thermal power plants is one of the important secondary sources for vanadium production. In this research, the aluminothermic self-propagating high-temperature synthesis (SHS) was used for recovering the transition metals of BR for the first time. The effects of extra aluminum as reducing agent and flux to aluminum ratio (CaO/Al) were studied and the efficiency of recovery and presence of impurities were measured. Aluminothermic reduction of vanadium and other metals was carried out successfully by SHS without any foreign heat source. Vanadium, iron, and nickel principally were reduced and gone into metallic master alloy as SHS product. High levels of efficiency (>80%) were achieved and the results showed that SHS has a great potential to be an industrial process for BR recovery. SHS produced two useful products. Metallic master alloy and fused glass slag that is applicable for ceramic industries. SHS can also neutralize the environmental threats of BR by a one step process. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Facile synthesis of iron oxides/reduced graphene oxide composites: application for electromagnetic wave absorption at high temperature.

    Science.gov (United States)

    Zhang, Lili; Yu, Xinxin; Hu, Hongrui; Li, Yang; Wu, Mingzai; Wang, Zhongzhu; Li, Guang; Sun, Zhaoqi; Chen, Changle

    2015-03-19

    Iron oxides/reduced graphene oxide composites were synthesized by facile thermochemical reactions of graphite oxide and FeSO4 · 7H2O. By adjusting reaction temperature, α-Fe2O3/reduced graphene oxide and Fe3O4/reduced graphene oxide composites can be obtained conveniently. Graphene oxide and reduced graphene oxide sheets were demonstrated to regulate the phase transition from α-Fe2O3 to Fe3O4 via γ-Fe2O3, which was reported for the first time. The hydroxyl groups attached on the graphene oxide sheets and H2 gas generated during the annealing of graphene oxide are believed to play an important role during these phase transformations. These samples showed good electromagnetic wave absorption performance due to their electromagnetic complementary effect. These samples possess much better electromagnetic wave absorption properties than the mixture of separately prepared Fe3O4 with rGO, suggesting the crucial role of synthetic method in determining the product properties. Also, these samples perform much better than commercial absorbers. Most importantly, the great stability of these composites is highly advantageous for applications as electromagnetic wave absorption materials at high temperatures.

  6. Sol–gel synthesis of highly TiO2 aerogel photocatalyst via high temperature supercritical drying

    Directory of Open Access Journals (Sweden)

    Rebah Moussaoui

    2017-09-01

    Full Text Available Nanocrystalline powders of TiO2 xerogel and aerogel were prepared by using acid-modified sol–gel approach. For TiO2 aerogel material (TA, the solvent was high temperature supercritically extracted at 300 °C and 100 bars. However, the TiO2 xerogel material (TX was dried at 200 °C and ambient pressure. The effects of the drying processes on the crystalline structure, phase transformation and grain growth were determined by Raman spectroscopy, SAED and X-ray diffraction (XRD analyses using Rietveld refinement method. The TiO2 aerogel was composed of anatase crystalline structure. The TiO2 xerogel material was composed of anatase, brookite and small amount of amorphous phase with anatase as dominant phase. The TX sample still contains a relatively high concentration of carbon than that of TA, indicating the amorphous character of TiO2 xerogel. These materials were applied as catalyst for the degradation of indigo carmine in aqueous medium. Photo-degradation ability of TA and TX was compared to the TiO2 commercial Degussa P25. The photo-catalytic results showed that the degradation efficiency was in the order TA > P25 > TX. The photo-degradation of indigo carmine followed pseudo first order reaction kinetics.

  7. Synthesis of Ni-YSZ cermet for an electrode of high temperature electrolysis by high energy ball milling

    International Nuclear Information System (INIS)

    Hong, H.S.; Chae, U.S.; Park, K.M.; Choo, S.T.

    2005-01-01

    Ni/YSZ composites for a cathode that can be used in high temperature electrolysis were prepared by ball milling of Ni and YSZ powder. Ball milling was performed in a dry process and in ethanol. The microstructure and electrical conductivity of the composites were examined by XRD, SEM, TEM and a 4-point probe. XRD patterns for both the dry and wet ball-milled powders showed that the composites were composed of crystalline Ni and YSZ particles. The patterns did not change with increases in the milling time up to 48 h. Dry-milling slightly increased the average particle size compared to starting Ni particles, but little change in the particle size was observed with the increase in milling time. On the other hand, the wet-milling reduced the average size and the increasing milling time induced a further decrease in the particle size. After cold-pressing and annealing at 900 C for 2 h, the dry-milled powder exhibited high stability against Ni sintering so that the particle size changed little, but the particle size increased in the wet-milled powder. The electrical conductivity increased after sintering at 900 C. Particles from the dry and wet process became denser and contacted closer after sintering, providing better electron migration paths. (orig.)

  8. Experimental Studies on the Synthesis and Performance of Boron-containing High Temperature Resistant Resin Modified by Hydroxylated Tung Oil

    Science.gov (United States)

    Zhang, J. X.; Y Ren, Z.; Zheng, G.; Wang, H. F.; Jiang, L.; Fu, Y.; Yang, W. Q.; He, H. H.

    2017-12-01

    In this work, hydroxylated tung oil (HTO) modified high temperature resistant resin containing boron and benzoxazine was synthesized. HTO and ethylenediamine was used to toughen the boron phenolic resin with specific reaction. The structure of product was studied by Fourier-transform infrared spectroscopy(FTIR), and the heat resistance was tested by Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis(TGA). The results indicated that the conjugated triene structure of HTO was involved in the crosslinking of the heating curing progress, and in addition, the open-loop polymerization reaction of benzoxazine resin during heating can effectively reduce the curing temperature of the resin and reduce the release of small molecule volatiles, which is advantageous to follow-up processing. DSC data showed that the initial decomposition temperature of the resin is 350-400 °C, the carbon residue rate under 800 °C was 65%. It indicated that the resin has better heat resistance than normal boron phenolic resin. The resin can be used as an excellent ablative material and anti-friction material and has a huge application market in many fields.

  9. Computer modeling of the process of self-propagating high-temperature synthesis in thin system Ni-Al

    International Nuclear Information System (INIS)

    Poletayev, G.M.; Starostenkov, M.D.; Denisova, N.F.; Skakov, M.K.

    2004-01-01

    Full text: The process of synthesis of thermal phases of the system Ni-Al is studied through the method of molecular dynamics. As the object of investigation was chosen two-dimensional crystal, that corresponds to atomic packing laying at the plane of volumetric fcc crystal. Clean Ni was taken as a matrix crystal. A particle of clean Al is packed in the center of matrix block. Beyond the bounds of calculated block crystal packing is repeated with the help of periodical border conditions. The interaction between different pairs of atoms is set by pair potential function of Morse, considering interatomic bonding of the point of the sixth coordinate sphere. The allocation of speeds of atomic function in the system is set through the Boltzmann factor, depending the temperature. When the bicrystal is represented by the ideal atom packing and there are no vacancies , the process of structural adjustment is only observed at the temperature, that is higher than melting point. At that, structural adjustment is observed in circular mechanism of atom allocation, also through the border between phases of clean Ni and Al. As a result, Al particle is transformed, at the border between metals, fields of positional disorder and embryos of intermetallide phases NiAl 2 , Ni 2 Al, Ni 3 Al. The introduction of of free volume through the creation of vacancies significantly lowers the temperature of the beginning of the synthesis process of intermetallide phases. The greatest decrease in temperature to the point of 300 K happens, when the vacancies are located in Ni field of bicrystal, the beginning of the thermo-activation is directly connected with the distance from interphase borders. As the process of thermo-activation continues, vacancies located in Ni matrix right up to seventh neighborhood relatively the border bicrystal. During thermo-activation Al particles enter the field and activate the synthesis process

  10. Flash pyrolysis at high temperature of ligno-cellulosic biomass and its components - production of synthesis gas

    International Nuclear Information System (INIS)

    Couhert, C.

    2007-11-01

    Pyrolysis is the first stage of any thermal treatment of biomass and governs the formation of synthesis gas for the production of electricity, hydrogen or liquid fuels. The objective of this work is to establish a link between the composition of a biomass and its pyrolysis gas. We study experimental flash pyrolysis and fix the conditions in which quantities of gas are maximal, while aiming at a regime without heat and mass transfer limitations (particles about 100 μm): temperature of 950 C and residence time of about 2 s. Then we try to predict gas yields of any biomass according to its composition, applicable in this situation where thermodynamic equilibrium is not reached. We show that an additivity law does not allow correlating gas yields of a biomass with fractions of cellulose, hemi-cellulose and lignin contained in this biomass. Several explanations are suggested and examined: difference of pyrolytic behaviour of the same compound according to the biomass from which it is extracted, interactions between compounds and influence of mineral matter. With the aim of industrial application, we study pyrolysis of millimetric and centimetric size particles, and make a numerical simulation of the reactions of pyrolysis gases reforming. This simulation shows that the choice of biomass affects the quantities of synthesis gas obtained. (author)

  11. Thermodynamically Controlled High-Pressure High-Temperature Synthesis of Crystalline Fluorinated sp 3 -Carbon Networks

    Energy Technology Data Exchange (ETDEWEB)

    Klier, Kamil; Landskron, Kai

    2015-11-19

    We report the feasibility of the thermodynamically controlled synthesis of crystalline sp3-carbon networks. We show that there is a critical pressure below which decomposition of the carbon network is favored and above which the carbon network is stable. Based on advanced, highly accurate quantum mechanical calculations using the all-electron full-potential linearized augmented plane-wave method (FP-LAPW) and the Birch–Murnaghan equation of state, this critical pressure is 26.5 GPa (viz. table of contents graphic). Such pressures are experimentally readily accessible and afford thermodynamic control for suppression of decomposition reactions. The present results further suggest that a general pattern of pressure-directed control exists for many isolobal conversions of sp2 to sp3 allotropes, relating not only to fluorocarbon chemistry but also extending to inorganic and solid-state materials science.

  12. Self-propagating high temperature synthesis as a method of determination of formation heat of refractory compounds

    International Nuclear Information System (INIS)

    Maslov, V.M.; Neganov, A.S.; Borovinskaya, I.P.; Merzhanov, A.G.

    1978-01-01

    Determination possibility of formation heats of refractory compounds in the process of direct synthesis from elements in a special calorimeter in the combustion regime is studied. Determined are formation heats of carbides - ZrCsub(0.92), Hf Csub(0.93), TaCsub(0.86), borides - ZrB 2 , HfB 2 NbB, NbB 2 , TaB, TaB 2 , MoB and silicides - ZrSi, ZrSi 2 , MoSi 2 . The results of chemical and x-ray phase analyses of the synthesized compounds are also given. Total error of formation heat determination methods does not surpass 2.0%

  13. The High-Temperature Synthesis of the Nanoscaled White-Light Phosphors Applied in the White-Light LEDs

    Directory of Open Access Journals (Sweden)

    Hao-Ying Lu

    2015-01-01

    Full Text Available The white-light phosphors consisting of Dy3+ doped YPO4 and Dy3+ doped YP1-XVXO4 were prepared by the chemical coprecipitation method. After the 1200°C thermal treatment in the air atmosphere, the white-light phosphors with particle sizes around 90 nm can be obtained. In order to reduce the average particle size of phosphors, the alkaline washing method was applied to the original synthesis process, which reduces the particle sizes to 65 nm. From the PLE spectra, four absorption peaks locating at 325, 352, 366, and 390 nm can be observed in the YPO4-based phosphors. These peaks appear due to the following electron transitions: 6H15/2→4K15/2, 6H15/2→4M15/2+6P7/2, 6H15/2→4I11/2, and 6H15/2→4M19/2. Besides, the emission peaks of wavelengths 484 nm and 576 nm can be observed in the PL spectra. In order to obtain the white-light phosphors, the vanadium ions were applied to substitute the phosphorus ions to compose the YP1-XVXO4 phosphors. From the PL spectra, the strongest PL intensity can be obtained with 30% vanadium ions. As the concentration of vanadium ions increases to 40%, the phosphors with the CIE coordinates locating at the white-light area can be obtained.

  14. Self-propagating high-temperature synthesis of LaMO{sub 3} perovskite-type oxide using heteronuclearcyano metal complex precursors

    Energy Technology Data Exchange (ETDEWEB)

    Sánchez-Rodríguez, Daniel, E-mail: daniel.sanchez@udg.edu [GRMT, Department of Physics, University of Girona, Campus Montilivi, Edif.PII, E17071 Girona, Catalonia (Spain); Wada, Hiroki; Yamaguchi, Syuhei [Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Matsuyama 790-8577 (Japan); Farjas, Jordi [GRMT, Department of Physics, University of Girona, Campus Montilivi, Edif.PII, E17071 Girona, Catalonia (Spain); Yahiro, Hidenori, E-mail: yahiro.hidenori.me@ehime-u.ac.jp [Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Matsuyama 790-8577 (Japan)

    2015-11-15

    The decomposition of La[Fe(CN){sub 6}]·5H{sub 2}O and La[Co(CN){sub 6}]·5H{sub 2}O under different atmospheres has been analyzed by thermogravimetry (TG) and differential thermal analysis (DTA). In addition, the decomposition temperature at different sample locations was monitored for sample masses around 2 g of La[Fe(CN){sub 6}]·5H{sub 2}O and La[Co(CN){sub 6}]·5H{sub 2}O, when they were calcined for 1 h at temperatures ranging from 200 to 400 °C in a controlled gas-flow system. Results showed that, the large enough of the cyano complex precursors undergo combustion when they are decomposed under oxygen atmosphere. X-ray diffraction results revealed that perovskite-type oxides crystallize due to the overheating of the process. As a result, it has been possible to produce LaFeO{sub 3} and LaCoO{sub 3} perovskite-type oxide powders by SHS under oxygen atmosphere using La[Fe(CN){sub 6}]·5H{sub 2}O and La[Co(CN){sub 6}]·5H{sub 2}O as a precursor. The effect of the ignition temperature has been investigated. The specific surface area of the perovskite-type oxides produced via SHS using heteronuclearcyano metal complex as a precursor is significantly higher than that of other LaMO{sub 3} produced using the same technique but obtained from other type of precursors. - Highlights: • The decomposition of La[Fe(CN){sub 6}] and La[Co(CN){sub 6}] precursors was analyzed. • The combustion process proceeded under oxygen when sample was large enough. • Perovskite oxides via SHS from the cyano complex precursors were synthesized. • LaMO{sub 3} perovskite oxides via SHS was obtained with high specific surface area.

  15. Mineralizer-assisted high-pressure high-temperature synthesis and characterization of novel phosphorus nitride imides and luminescent alkaline earth metal (oxo)nitridophosphates

    International Nuclear Information System (INIS)

    Marchuk, Alexey

    2016-01-01

    The main objectives of this thesis were the synthesis, identification and structural characterization of new alkaline earth metal (oxo)nitridophopshates and phosphorus nitrides. Furthermore, luminescence properties of the resulting materials should be investigated and a connection between these properties and the respective structures should be established. For this purpose, a range of synthesis strategies was employed, including conventional solid-state syntheses in silica ampoules and high-pressure high-temperature syntheses using the multianvil technique. The emphasis of the synthetic part of this thesis lies on the development of new synthetic strategies in order to increase crystallinity of alkaline earth metal (oxo)nitridophosphates and thus accelerate their structure determination. This involves the selection of a suitable mineralizer and the investigation of its interaction with the respective starting materials. In addition, the analytical methods applied in this thesis in order to identify and characterize the compounds are just as essential as the synthesis strategies. X-ray diffraction on single crystals and on powders was carried out as the main analytical method while being supported by quantitative and qualitative 1 H and 31 P solid-state NMR measurements, FTIR and energy-dispersive X-ray (EDX) spectroscopy, as well as electron microscopy methods including both imaging and diffraction techniques. Implied by the large number of novel structures investigated, theoretical studies including topological analysis, calculations of lattice energies and bond-valence sums also played a major role in this thesis. Optical analysis methods such as reflectance spectroscopy, luminescence microscopy and photoluminescence measurements helped to determine the luminescence properties of some of the presented compounds.

  16. Supersymmetry at high temperatures

    International Nuclear Information System (INIS)

    Das, A.; Kaku, M.

    1978-01-01

    We investigate the properties of Green's functions in a spontaneously broken supersymmetric model at high temperatures. We show that, even at high temperatures, we do not get restoration of supersymmetry, at least in the one-loop approximation

  17. Major groove binding track residues of the connection subdomain of human immunodeficiency virus type 1 reverse transcriptase enhance cDNA synthesis at high temperatures.

    Science.gov (United States)

    Matamoros, Tania; Barrioluengo, Verónica; Abia, David; Menéndez-Arias, Luis

    2013-12-23

    At high temperatures, RNA denaturation can improve the efficiency and specificity of reverse transcription. Refined structures and molecular models of HIV-1 reverse transcriptases (RTs) from phylogenetically distant clades (i.e., group M subtype B and group O) revealed a major interaction between the template-primer and the Arg³⁵⁸-Gly³⁵⁹-Ala³⁶⁰ triad in the large subunit of HIV-1M/B RT. However, fewer contacts were predicted for the equivalent Lys³⁵⁸-Ala³⁵⁹-Ser³⁶⁰ triad of HIV-1O RT and the nucleic acid. An engineered HIV-1O K358R/A359G/S360A RT showed increased cDNA synthesis efficiency above 68 °C, as determined by qualitative and quantitative reverse transcription polymerase chain reactions. In comparison with wild-type HIV-1O RT, the mutant enzyme showed higher thermal stability but retained wild-type RNase H activity. Mutations that increased the accuracy of HIV-1M/B RTs were tested in combination with the K358R/A359G/S360A triple mutation. Some of them (e.g., F61A, K65R, K65R/V75I, and V148I) had a negative effect on reverse transcription efficiency above 65 °C. RTs with improved DNA binding affinities also showed higher cDNA synthesis efficiencies at elevated temperatures. Two of the most thermostable RTs (i.e., mutants T69SSG/K358R/A359G/S360A and K358R/A359G/S360A/E478Q) showed moderately increased fidelity in forward mutation assays. Our results demonstrate that the triad of Arg³⁵⁸, Gly³⁵⁹, and Ala³⁶⁰ in the major groove binding track of HIV-1 RT is a major target for RT stabilization, and most relevant for improving reverse transcription efficiency at high temperatures.

  18. High-temperature synthesis of highly hydrothermal stable mesoporous silica and Fe-SiO2 using ionic liquid as a template

    International Nuclear Information System (INIS)

    Liu, Hong; Wang, Mengyang; Hu, Hongjiu; Liang, Yuguang; Wang, Yong; Cao, Weiran; Wang, Xiaohong

    2011-01-01

    Mesoporous silicas and Fe-SiO 2 with worm-like structures have been synthesized using a room temperature ionic liquid, 1-hexadecane-3-methylimidazolium bromide, as a template at a high aging temperature (150-190 o C) with the assistance of NaF. The hydrothermal stability of mesoporous silica was effectively improved by increasing the aging temperature and adding NaF to the synthesis gel. High hydrothermally stable mesoporous silica was obtained after being aged at 190 o C in the presence of NaF, which endured the hydrothermal treatment in boiling water at least for 10 d or steam treatment at 600 o C for 6 h. The ultra hydrothermal stability could be attributed to its high degree of polymerization of silicate. Furthermore, highly hydrothermal stable mesoporous Fe-SiO 2 has been synthesized, which still remained its mesostructure after being hydrothermally treated at 100 o C for 12 d or steam-treated at 600 o C for 6 h. -- Graphical abstract: Worm-like mesoporous silica and Fe-SiO 2 with high hydrothermal stability have been synthesized using ionic liquid 1-hexadecane-3-methylimidazolium bromide as a template under the assistance of NaF at high temperature. Display Omitted Research highlights: → Increasing aging temperature improved the hydrothermal stability of materials. →Addition of NaF enhanced the polymerization degree of silicates. → Mesoporous SiO 2 and Fe-SiO 2 obtained have remarkable hydrothermal stability.

  19. pH dependent green synthesis of gold nanoparticles by completely C6-carboxylated curdlan under high temperature and various pH conditions.

    Science.gov (United States)

    Qiu, Wen-Yi; Wang, Kai; Wang, Yao-Yao; Ding, Zhi-Chao; Wu, Li-Xia; Cai, Wu-Dan; Yan, Jing-Kun

    2018-01-01

    A C6-carboxylated curdlan (C6-Cc) obtained from 4-acetamido-TEMPO-mediated oxidation of curdlan was used both as a reducing and stabilizing agent for green synthesis of pH-responsive AuNPs, which was carried out by controlling the pH of the C6-Cc solution at a high temperature (100°C). C6-Cc presented a semi-flexible random coil chain in the aqueous medium at pH 5.5 and became more expanded and rigid in alkaline conditions (pH 7.1-12.0), though the primary chemical structure of C6-Cc was virtually unchanged with the pH variation. The AuNPs prepared with C6-Cc at various pHs were characterized by various instrumental measurements. The shapes and sizes of AuNPs were found to be strongly dependent on the pH of the C6-Cc solution. The C6-Cc-decorated AuNPs exhibited a more well-dispersed spherical morphology with smaller particle sizes under alkaline conditions (pH 7.1-12.0). Through this study, a facile, simple, and green method has been demonstrated for preparation of stimuli-sensitive AuNPs using biocompatible polyanionic polysaccharides. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Synthesis of Metal-Oxide/Carbon-Fiber Heterostructures and Their Properties for Organic Dye Removal and High-Temperature CO2 Adsorption

    Science.gov (United States)

    Shao, Liangzhi; Nie, Shibin; Shao, Xiankun; Zhang, LinLin; Li, Benxia

    2018-03-01

    One-dimensional metal-oxide/carbon-fiber (MO/CF) heterostructures were prepared by a facile two-step method using the natural cotton as a carbon source the low-cost commercial metal salts as precursors. The metal oxide nanostructures were first grown on the cotton fibers by a solution chemical deposition, and the metal-oxide/cotton heterostructures were then calcined and carbonized in nitrogen atmosphere. Three typical MO/CF heterostructures of TiO2/CF, ZnO/CF, and Fe2O3/CF were prepared and characterized. The loading amount of the metal oxide nanostructures on carbon fibers can be tuned by controlling the concentration of metal salt in the chemical deposition process. Finally, the performance of the as-obtained MO/CF heterostructures for organic dye removal from water was tested by the photocatalytic degradation under a simulated sunlight, and their properties of high-temperature CO2 adsorption were predicted by the temperature programmed desorption. The present study would provide a desirable strategy for the synthesis of MO/CF heterostructures for various applications.

  1. Self-propagating high-temperature synthesis flammable range and dominant parameters for synthesizing several ceramics and intermetallic compounds under heat-loss condition

    International Nuclear Information System (INIS)

    Makino, Atsushi

    1996-01-01

    Extensive comparisons have been conducted between experimental and theoretical results for the nonadiabatic self-propagating high-temperature synthesis combustion characteristics of many solid-solid systems subjected to volumetric heat loss. The nonadiabatic flame propagation theory--which describes the premixed mode of bulk flame propagation supported by the nonpremixed reaction of dispersed nonmetal (or higher-melting point metal) particles in the liquid metal, with finite-rate reaction at the particle surface and temperature-sensitive Arrhenius-type condensed-phase mass diffusivity--is used to compare with experimental results with heat loss. Systems examined are ceramics (TiC, TiB 2 , and ZrB 2 ) and intermetallic compounds (NiAl, TiCo, and TiNi). By using a consistent set of physicochemical parameters for these systems, satisfactory quantitative agreement is demonstrated for the flammable range (defined in terms of the mixture ratio, degree of dilution, particle size, and/or compact diameter)

  2. Functional Properties of Porous Ti-48.0 at.% Ni Shape Memory Alloy Produced by Self-Propagating High-Temperature Synthesis

    Science.gov (United States)

    Resnina, Natalia; Belyaev, Sergey; Voronkov, Andrew

    2018-03-01

    The functional behavior of the porous shape memory alloy produced by self-propagating high-temperature synthesis from the Ti-48.0 at.% Ni powder mixture was studied. It was found that a large unelastic strain recovered on unloading and it was not attributed to the pseudoelasticity effect. A decrease in deformation temperatures did not influence the value of strain that recovered on unloading, while the effective modulus decreased from 1.9 to 1.44 GPa. It was found that the porous Ti-48.0 at.% Ni alloy revealed the one-way shape memory effect, where the maximum recoverable strain was 5%. The porous Ti-48.0 at.% Ni alloy demonstrated the transformation plasticity and the shape memory effects on cooling and heating under a stress. An increase in stress did not influence the shape memory effect value, which was equal to 1%. It was shown that the functional properties of the porous alloy were determined by the TiNi phase consisted of the two volumes Ti49.3Ni50.7 and Ti50Ni50 where the martensitic transformation occurred at different temperatures. The results of the study showed that the existence of the Ti49.3Ni50.7 volumes in the porous Ti-48.0 at.% Ni alloy improved the functional properties of the alloy.

  3. Optimization of the Technological Synthesis of Refractory Compounds

    Science.gov (United States)

    Gaidar, S. M.; Karelina, M. Yu.; Prikhod'ko, V. M.; Volkov, A. A.

    2017-12-01

    The results of experimental studies, which are related to the regulation of the fractional composition of refractory compounds by roll milling in using controlled roll opening and unbalanced peripheral speeds of rollers, are reported. The content of prepared fine, middle, and coarse fractions is within 50-80%; in this case, the milling time of synthesis products is less than the time of ball milling by an order of magnitude. The application of roll milling for refining the products of self-propagating high-temperature synthesis can be most efficient in using together with heat-generating reactor to solve the main problem of self-propagating synthesis (SHS), which is a problem for recent several decades (the problem is the creation of intense automated production of refractory compounds in using continuous manufacturing cycle within a energotechnological system with the recovery of a great quantity of heat released during SHS).

  4. High temperature battery. Hochtemperaturbatterie

    Energy Technology Data Exchange (ETDEWEB)

    Bulling, M.

    1992-06-04

    To prevent heat losses of a high temperature battery, it is proposed to make the incoming current leads in the area of their penetration through the double-walled insulating housing as thermal throttle, particularly spiral ones.

  5. High temperature refrigerator

    International Nuclear Information System (INIS)

    Steyert, W.A. Jr.

    1978-01-01

    A high temperature magnetic refrigerator is described which uses a Stirling-like cycle in which rotating magnetic working material is heated in zero field and adiabatically magnetized, cooled in high field, then adiabatically demagnetized. During this cycle the working material is in heat exchange with a pumped fluid which absorbs heat from a low temperature heat source and deposits heat in a high temperature reservoir. The magnetic refrigeration cycle operates at an efficiency 70% of Carnot

  6. High temperature niobium alloys

    International Nuclear Information System (INIS)

    Wojcik, C.C.

    1991-01-01

    Niobium alloys are currently being used in various high temperature applications such as rocket propulsion, turbine engines and lighting systems. This paper presents an overview of the various commercial niobium alloys, including basic manufacturing processes, properties and applications. Current activities for new applications include powder metallurgy, coating development and fabrication of advanced porous structures for lithium cooled heat pipes

  7. High temperature storage loop :

    Energy Technology Data Exchange (ETDEWEB)

    Gill, David Dennis; Kolb, William J.

    2013-07-01

    A three year plan for thermal energy storage (TES) research was created at Sandia National Laboratories in the spring of 2012. This plan included a strategic goal of providing test capability for Sandia and for the nation in which to evaluate high temperature storage (>650ÀC) technology. The plan was to scope, design, and build a flow loop that would be compatible with a multitude of high temperature heat transfer/storage fluids. The High Temperature Storage Loop (HTSL) would be reconfigurable so that it was useful for not only storage testing, but also for high temperature receiver testing and high efficiency power cycle testing as well. In that way, HTSL was part of a much larger strategy for Sandia to provide a research and testing platform that would be integral for the evaluation of individual technologies funded under the SunShot program. DOEs SunShot program seeks to reduce the price of solar technologies to 6/kWhr to be cost competitive with carbon-based fuels. The HTSL project sought to provide evaluation capability for these SunShot supported technologies. This report includes the scoping, design, and budgetary costing aspects of this effort

  8. High Temperature Electrolysis

    DEFF Research Database (Denmark)

    Elder, Rachael; Cumming, Denis; Mogensen, Mogens Bjerg

    2015-01-01

    High temperature electrolysis of carbon dioxide, or co-electrolysis of carbon dioxide and steam, has a great potential for carbon dioxide utilisation. A solid oxide electrolysis cell (SOEC), operating between 500 and 900. °C, is used to reduce carbon dioxide to carbon monoxide. If steam is also i...

  9. Chinese Pediatrician Attitudes and Practices Regarding Child Exposure to Secondhand Smoke (SHS) and Clinical Efforts against SHS Exposure

    Science.gov (United States)

    Huang, Kaiyong; Abdullah, Abu S.; Huo, Haiying; Liao, Jing; Yang, Li; Zhang, Zhiyong; Chen, Hailian; Nong, Guangmin; Winickoff, Jonathan P.

    2015-01-01

    Background: Secondhand Smoke (SHS) exposure is a leading cause of childhood illness and premature death. Pediatricians play an important role in helping parents to quit smoking and reducing children’s SHS exposure. This study examined Chinese pediatricians’ attitudes and practices regarding children’s exposure to SHS and clinical efforts against SHS exposure. Methods: A cross-sectional survey of pediatricians was conducted in thirteen conveniently selected hospitals in southern China, during September to December 2013. Five hundred and four pediatricians completed self-administered questionnaires with a response rate of 92%. χ2 tests were used to compare categorical variables differences between smokers and non-smokers and other categorical variables. Results: Pediatricians thought that the key barriers to encouraging parents to quit smoking were: lack of professional training (94%), lack of time (84%), resistance to discussions about smoking (77%). 94% of the pediatricians agreed that smoking in enclosed public places should be prohibited and more than 70% agreed that smoking should not be allowed in any indoor places and in cars. Most of the pediatricians thought that their current knowledge on helping people to quit smoking and SHS exposure reduction counseling was insufficient. Conclusions: Many Chinese pediatricians did not have adequate knowledge about smoking and SHS, and many lacked confidence about giving cessation or SHS exposure reduction counseling to smoking parents. Lack of professional training and time were the most important barriers to help parents quit smoking among the Chinese pediatricians. Intensified efforts are called for to provide the necessary professional training and increase pediatricians’ participation in the training. PMID:26006117

  10. Chinese Pediatrician Attitudes and Practices Regarding Child Exposure to Secondhand Smoke (SHS and Clinical Efforts against SHS Exposure

    Directory of Open Access Journals (Sweden)

    Kaiyong Huang

    2015-05-01

    Full Text Available Background: Secondhand Smoke (SHS exposure is a leading cause of childhood illness and premature death. Pediatricians play an important role in helping parents to quit smoking and reducing children’s SHS exposure. This study examined Chinese pediatricians’ attitudes and practices regarding children’s exposure to SHS and clinical efforts against SHS exposure. Methods: A cross-sectional survey of pediatricians was conducted in thirteen conveniently selected hospitals in southern China, during September to December 2013. Five hundred and four pediatricians completed self-administered questionnaires with a response rate of 92%. χ2 tests were used to compare categorical variables differences between smokers and non-smokers and other categorical variables. Results: Pediatricians thought that the key barriers to encouraging parents to quit smoking were: lack of professional training (94%, lack of time (84%, resistance to discussions about smoking (77%. 94% of the pediatricians agreed that smoking in enclosed public places should be prohibited and more than 70% agreed that smoking should not be allowed in any indoor places and in cars. Most of the pediatricians thought that their current knowledge on helping people to quit smoking and SHS exposure reduction counseling was insufficient. Conclusions: Many Chinese pediatricians did not have adequate knowledge about smoking and SHS, and many lacked confidence about giving cessation or SHS exposure reduction counseling to smoking parents. Lack of professional training and time were the most important barriers to help parents quit smoking among the Chinese pediatricians. Intensified efforts are called for to provide the necessary professional training and increase pediatricians’ participation in the training.

  11. Purification of gas and liquid media by metal-ceramic SHS-filters

    OpenAIRE

    Geyneman, A. A.; Goncharov, V. D.; Novoselov, A. L.; Shchetinkina, N. Yu.

    2007-01-01

    Industrial samples of fine filters of gas and liquid media from mechanical microparticles have been developed. Porous permeable cermets obtained by self-propagating high-temperature synthesis are the basis of filters

  12. High-temperature superconductivity

    International Nuclear Information System (INIS)

    Ginzburg, V.L.

    1987-07-01

    After a short account of the history of experimental studies on superconductivity, the microscopic theory of superconductivity, the calculation of the control temperature and its possible maximum value are presented. An explanation of the mechanism of superconductivity in recently discovered superconducting metal oxide ceramics and the perspectives for the realization of new high-temperature superconducting materials are discussed. 56 refs, 2 figs, 3 tabs

  13. High temperature materials

    International Nuclear Information System (INIS)

    2003-01-01

    The aim of this workshop is to share the needs of high temperature and nuclear fuel materials for future nuclear systems, to take stock of the status of researches in this domain and to propose some cooperation works between the different research organisations. The future nuclear systems are the very high temperature (850 to 1200 deg. C) gas cooled reactors (GCR) and the molten salt reactors (MSR). These systems include not only the reactor but also the fabrication and reprocessing of the spent fuel. This document brings together the transparencies of 13 communications among the 25 given at the workshop: 1) characteristics and needs of future systems: specifications, materials and fuel needs for fast spectrum GCR and very high temperature GCR; 2) high temperature materials out of neutron flux: thermal barriers: materials, resistance, lifetimes; nickel-base metal alloys: status of knowledge, mechanical behaviour, possible applications; corrosion linked with the gas coolant: knowledge and problems to be solved; super-alloys for turbines: alloys for blades and discs; corrosion linked with MSR: knowledge and problems to be solved; 3) materials for reactor core structure: nuclear graphite and carbon; fuel assembly structure materials of the GCR with fast neutron spectrum: status of knowledge and ceramics and cermets needs; silicon carbide as fuel confinement material, study of irradiation induced defects; migration of fission products, I and Cs in SiC; 4) materials for hydrogen production: status of the knowledge and needs for the thermochemical cycle; 5) technologies: GCR components and the associated material needs: compact exchangers, pumps, turbines; MSR components: valves, exchangers, pumps. (J.S.)

  14. The TackSHS project - a collaborative H2020 project

    Directory of Open Access Journals (Sweden)

    Esteve Fernandez

    2016-03-01

    Full Text Available TackSHS is a new research project funded by the European Union’s Horizon 2020 Research and Innovation Programme. It aims to improve our understanding of second-hand tobacco smoke and e-cigarette emissions and find ways of tackling the health burden caused by exposure to them. Within a fast changing environment, the project will try to elucidate the comprehensive impact that SHS and e-cigarette aerosols have on respiratory health of the European population and how health impacts vary according to socio-economic parameters with particular emphasis on specific vulnerable groups such as patients suffering from chronic lung diseases.

  15. High temperature superconductors

    CERN Document Server

    Paranthaman, Parans

    2010-01-01

    This essential reference provides the most comprehensive presentation of the state of the art in the field of high temperature superconductors. This growing field of research and applications is currently being supported by numerous governmental and industrial initiatives in the United States, Asia and Europe to overcome grid energy distribution issues. The technology is particularly intended for densely populated areas. It is now being commercialized for power-delivery devices, such as power transmission lines and cables, motors and generators. Applications in electric utilities include current limiters, long transmission lines and energy-storage devices that will help industries avoid dips in electric power.

  16. High temperature radioisotope capsule

    International Nuclear Information System (INIS)

    Bradshaw, G.B.

    1976-01-01

    A high temperature radioisotope capsule made up of three concentric cylinders, with the isotope fuel located within the innermost cylinder is described. The innermost cylinder has hemispherical ends and is constructed of a tantalum alloy. The intermediate cylinder is made of a molybdenum alloy and is capable of withstanding the pressure generated by the alpha particle decay of the fuel. The outer cylinder is made of a platinum alloy of high resistance to corrosion. A gas separates the innermost cylinder from the intermediate cylinder and the intermediate cylinder from the outer cylinder

  17. High temperature reaction kinetics

    International Nuclear Information System (INIS)

    Jonah, C.D.; Beno, M.F.; Mulac, W.A.; Bartels, D.

    1985-01-01

    During the last year the dependence of the apparent rate of OD + CO on water pressure was measured at 305, 570, 865 and 1223 K. An explanation was found and tested for the H 2 O dependence of the apparent rate of OH(OD) + CO at high temperatures. The isotope effect for OH(D) with CO was determined over the temperature range 330 K to 1225 K. The reason for the water dependence of the rate of OH(OD) + CO near room temperatures has been investigated but no clear explanation has been found. 1 figure

  18. The Effect of Gravity on the Combustion Synthesis of Porous Biomaterials

    Science.gov (United States)

    Castillo, M.; Zhang, X.; Moore, J. J.; Schowengerdt, F. D.; Ayers, R. A.

    2003-01-01

    Production of highly porous composite materials by traditional materials processing is limited by difficult processing techniques. This work investigates the use of self propagating high temperature (combustion) synthesis (SHS) to create porous tricalcium phosphate (Ca3(PO4)2), TiB-Ti, and NiTi in low and microgravity. Combustion synthesis provides the ability to use set processing parameters to engineer the required porous structure suitable for bone repair or replacement. The processing parameters include green density, particle size, gasifying agents, composition, and gravity. The advantage of the TiB-Ti system is the high level of porosity achieved together with a modulus that can be controlled by both composition (TiB-Ti) and porosity. At the same time, NiTi exhibits shape memory properties. SHS of biomaterials allows the engineering of required porosity coupled with resorbtion properties and specific mechanical properties into the composite materials to allow for a better biomaterial.

  19. High temperature thermometric phosphors

    Science.gov (United States)

    Allison, Stephen W.; Cates, Michael R.; Boatner, Lynn A.; Gillies, George T.

    1999-03-23

    A high temperature phosphor consists essentially of a material having the general formula LuPO.sub.4 :Dy.sub.(x),Eu.sub.y) wherein: 0.1 wt %.ltoreq.x.ltoreq.20 wt % and 0.1 wt %.ltoreq.y.ltoreq.20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopent. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions.

  20. Facile synthesis of high-temperature (1000 °C) phase-stable rice-like anatase TiO{sub 2} nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Lizhen [Capital Normal University, Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry (China); Chen, Qirong [Beijing Center for Physical and Chemical Analysis (BCPCA) (China); Liu, Xiuyun; Wang, Miaomiao; Meng, Xiangfu, E-mail: xfmeng@cnu.edu.cn [Capital Normal University, Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry (China)

    2015-05-15

    High-temperature phase-stable rice-like anatase TiO{sub 2} nanocrystals were synthesized by one-pot solvothermal method using soluble titania xerogel and isopropyl alcohol (IPA) as the precursor and the solvent, respectively. Sample characterization was carried out by powder X-ray diffraction, high-resolution transmission electron microscopy, field emission scanning electron microscope, X-ray photoelectron spectroscopy, and N{sub 2} adsorption–desorption isotherms. The results showed that TiO{sub 2} nanocrystals had rice-like shapes with an average size of 5 nm in width and 35 nm in length. The BET surface area was 153 m{sup 2}/g. Unexpectedly, the rice-like TiO{sub 2} nanocrystals exhibited high-temperature phase stability, which could remain as pure anatase phase after calcinations at 1000 °C. Growth mechanism investigation revealed that the IPA solvent played a key role in nucleation and growth of rice-like anatase TiO{sub 2} nanocrystals. The photodegradation of rhodamine B demonstrated that rice-like anatase TiO{sub 2} nanocrystals exhibited enhanced photocatalytic activity under visible light irradiation.

  1. Facile synthesis of high-temperature (1000 °C) phase-stable rice-like anatase TiO2 nanocrystals

    Science.gov (United States)

    Lv, Lizhen; Chen, Qirong; Liu, Xiuyun; Wang, Miaomiao; Meng, Xiangfu

    2015-05-01

    High-temperature phase-stable rice-like anatase TiO2 nanocrystals were synthesized by one-pot solvothermal method using soluble titania xerogel and isopropyl alcohol (IPA) as the precursor and the solvent, respectively. Sample characterization was carried out by powder X-ray diffraction, high-resolution transmission electron microscopy, field emission scanning electron microscope, X-ray photoelectron spectroscopy, and N2 adsorption-desorption isotherms. The results showed that TiO2 nanocrystals had rice-like shapes with an average size of 5 nm in width and 35 nm in length. The BET surface area was 153 m2/g. Unexpectedly, the rice-like TiO2 nanocrystals exhibited high-temperature phase stability, which could remain as pure anatase phase after calcinations at 1000 °C. Growth mechanism investigation revealed that the IPA solvent played a key role in nucleation and growth of rice-like anatase TiO2 nanocrystals. The photodegradation of rhodamine B demonstrated that rice-like anatase TiO2 nanocrystals exhibited enhanced photocatalytic activity under visible light irradiation.

  2. Synthesis of high quality graphene on capped (1 1 1) Cu thin films obtained by high temperature secondary grain growth on c-plane sapphire substrates

    Science.gov (United States)

    Kim, Youngwoo; Moyen, Eric; Yi, Hemian; Avila, José; Chen, Chaoyu; Asensio, Maria C.; Lee, Young Hee; Pribat, Didier

    2018-07-01

    We propose a novel growth technique, in which graphene is synthesized on capped Cu thin films deposited on c-plane sapphire. The cap is another sapphire plate which is just laid upon the Cu thin film, in direct contact with it. Thanks to this ‘contact cap’, Cu evaporation can be suppressed at high temperature and the 400 nm-thick Cu films can be annealed above 1000 °C, resulting in (1 1 1)-oriented grains of millimeter size. Following this high temperature annealing, graphene is grown by chemical vapor deposition during the same pump-down operation, without removing the contact cap. The orientation and doping type of the as-grown graphene were first studied, using low energy electron diffraction, as well as high resolution angle-resolved photoemission spectroscopy. In particular, the orientation relationships between the graphene and copper thin film with respect to the sapphire substrate were precisely determined. We find that the graphene sheets exhibit a minimal rotational disorder, with ~90% of the grains aligned along the copper high symmetry direction. Detailed transport measurements were also performed using field-effect transistor structures. Carrier mobility values as high as 8460 cm2 V‑1 s‑1 have been measured on top gate transistors fabricated directly on the sapphire substrate, by etching the Cu film from underneath the graphene sheets. This is by far the best carrier mobility value obtained to date for graphene sheets synthesized on a thin film-type metal substrate.

  3. Ion-Exchange-Induced Selective Etching for the Synthesis of Amino-Functionalized Hollow Mesoporous Silica for Elevated-High-Temperature Fuel Cells

    DEFF Research Database (Denmark)

    Zhang, Jin; Liu, Jian; Lu, Shanfu

    2017-01-01

    is verified through a successful synthesis of hollow mesoporous silica. After infiltration with phosphotungstic acid (PWA), PWA–NH2–HMS nanoparticles are dispersed in the poly(ether sulfone)–polyvinylpyrrolidone (PES–PVP) matrix, forming a hybrid PWA–NH2–HMS/PES–PVP nanocomposite membrane. The resultant...

  4. High temperature structural silicides

    International Nuclear Information System (INIS)

    Petrovic, J.J.

    1997-01-01

    Structural silicides have important high temperature applications in oxidizing and aggressive environments. Most prominent are MoSi 2 -based materials, which are borderline ceramic-intermetallic compounds. MoSi 2 single crystals exhibit macroscopic compressive ductility at temperatures below room temperature in some orientations. Polycrystalline MoSi 2 possesses elevated temperature creep behavior which is highly sensitive to grain size. MoSi 2 -Si 3 N 4 composites show an important combination of oxidation resistance, creep resistance, and low temperature fracture toughness. Current potential applications of MoSi 2 -based materials include furnace heating elements, molten metal lances, industrial gas burners, aerospace turbine engine components, diesel engine glow plugs, and materials for glass processing

  5. High temperature materials characterization

    Science.gov (United States)

    Workman, Gary L.

    1990-01-01

    A lab facility for measuring elastic moduli up to 1700 C was constructed and delivered. It was shown that the ultrasonic method can be used to determine elastic constants of materials from room temperature to their melting points. The ease in coupling high frequency acoustic energy is still a difficult task. Even now, new coupling materials and higher power ultrasonic pulsers are being suggested. The surface was only scratched in terms of showing the full capabilities of either technique used, especially since there is such a large learning curve in developing proper methodologies to take measurements into the high temperature region. The laser acoustic system does not seem to have sufficient precision at this time to replace the normal buffer rod methodology.

  6. High temperature metallic recuperator

    Science.gov (United States)

    Ward, M. E.; Solmon, N. G.; Smeltzer, C. E.

    1981-06-01

    An industrial 4.5 MM Btu/hr axial counterflow recuperator, fabricated to deliver 1600 F combustion air, was designed to handle rapid cyclic loading, a long life, acceptable costs, and a low maintenance requirement. A cost benefit anlysis of a high temperature waste heat recovery system utilizing the recurperator and components capable of 1600 F combustion air preheat shows that this system would have a payback period of less than two years. Fifteen companies and industrial associations were interviewed and expressed great interest in recuperation in large energy consuming industries. Determination of long term environmental effects on candidate recuperator tubing alloys was completed. Alloys found to be acceptable in the 2200 F flue gas environment of a steel billet reheat furnace, were identified.

  7. Cardiorespiratory response to exercise of nonsmokers occupationally exposed to second hand smoke (SHS

    Directory of Open Access Journals (Sweden)

    Anastasios Mantzoros

    2017-01-01

    Chronic occupational SHS exposure among non-smokers deteriorates CR exercise performance increasing risk of developing SHS associated diseases. Smoking ban legislation should be enforced but also inclusive of all workplaces eliminating the existing violation of labor and human rights.

  8. Transcriptomic study to understand thermal adaptation in a high temperature-tolerant strain of Pyropia haitanensis.

    Science.gov (United States)

    Wang, Wenlei; Teng, Fei; Lin, Yinghui; Ji, Dehua; Xu, Yan; Chen, Changsheng; Xie, Chaotian

    2018-01-01

    Pyropia haitanensis, a high-yield commercial seaweed in China, is currently undergoing increasing levels of high-temperature stress due to gradual global warming. The mechanisms of plant responses to high temperature stress vary with not only plant type but also the degree and duration of high temperature. To understand the mechanism underlying thermal tolerance in P. haitanensis, gene expression and regulation in response to short- and long-term temperature stresses (SHS and LHS) was investigated by performing genome-wide high-throughput transcriptomic sequencing for a high temperature tolerant strain (HTT). A total of 14,164 differential expression genes were identified to be high temperature-responsive in at least one time point by high-temperature treatment, representing 41.10% of the total number of unigenes. The present data indicated a decrease in the photosynthetic and energy metabolic rates in HTT to reduce unnecessary energy consumption, which in turn facilitated in the rapid establishment of acclimatory homeostasis in its transcriptome during SHS. On the other hand, an increase in energy consumption and antioxidant substance activity was observed with LHS, which apparently facilitates in the development of resistance against severe oxidative stress. Meanwhile, ubiquitin-mediated proteolysis, brassinosteroids, and heat shock proteins also play a vital role in HTT. The effects of SHS and LHS on the mechanism of HTT to resist heat stress were relatively different. The findings may facilitate further studies on gene discovery and the molecular mechanisms underlying high-temperature tolerance in P. haitanensis, as well as allow improvement of breeding schemes for high temperature-tolerant macroalgae that can resist global warming.

  9. High temperature materials and mechanisms

    CERN Document Server

    2014-01-01

    The use of high-temperature materials in current and future applications, including silicone materials for handling hot foods and metal alloys for developing high-speed aircraft and spacecraft systems, has generated a growing interest in high-temperature technologies. High Temperature Materials and Mechanisms explores a broad range of issues related to high-temperature materials and mechanisms that operate in harsh conditions. While some applications involve the use of materials at high temperatures, others require materials processed at high temperatures for use at room temperature. High-temperature materials must also be resistant to related causes of damage, such as oxidation and corrosion, which are accelerated with increased temperatures. This book examines high-temperature materials and mechanisms from many angles. It covers the topics of processes, materials characterization methods, and the nondestructive evaluation and health monitoring of high-temperature materials and structures. It describes the ...

  10. High temperature interface superconductivity

    International Nuclear Information System (INIS)

    Gozar, A.; Bozovic, I.

    2016-01-01

    Highlight: • This review article covers the topic of high temperature interface superconductivity. • New materials and techniques used for achieving interface superconductivity are discussed. • We emphasize the role played by the differences in structure and electronic properties at the interface with respect to the bulk of the constituents. - Abstract: High-T_c superconductivity at interfaces has a history of more than a couple of decades. In this review we focus our attention on copper-oxide based heterostructures and multi-layers. We first discuss the technique, atomic layer-by-layer molecular beam epitaxy (ALL-MBE) engineering, that enabled High-T_c Interface Superconductivity (HT-IS), and the challenges associated with the realization of high quality interfaces. Then we turn our attention to the experiments which shed light on the structure and properties of interfacial layers, allowing comparison to those of single-phase films and bulk crystals. Both ‘passive’ hetero-structures as well as surface-induced effects by external gating are discussed. We conclude by comparing HT-IS in cuprates and in other classes of materials, especially Fe-based superconductors, and by examining the grand challenges currently laying ahead for the field.

  11. High-temperature uncertainty

    International Nuclear Information System (INIS)

    Timusk, T.

    2005-01-01

    Recent experiments reveal that the mechanism responsible for the superconducting properties of cuprate materials is even more mysterious than we thought. Two decades ago, Georg Bednorz and Alex Mueller of IBM's research laboratory in Zurich rocked the world of physics when they discovered a material that lost all resistance to electrical current at the record temperature of 36 K. Until then, superconductivity was thought to be a strictly low-temperature phenomenon that required costly refrigeration. Moreover, the IBM discovery - for which Bednorz and Mueller were awarded the 1987 Nobel Prize for Physics - was made in a ceramic copper-oxide material that nobody expected to be particularly special. Proposed applications for these 'cuprates' abounded. High-temperature superconductivity, particularly if it could be extended to room temperature, offered the promise of levitating trains, ultra-efficient power cables, and even supercomputers based on superconducting quantum interference devices. But these applications have been slow to materialize. Moreover, almost 20 years on, the physics behind this strange state of matter remains a mystery. (U.K.)

  12. Statistika i karakter spoljne trgovine Kraljevine SHS 1919-1929.

    Directory of Open Access Journals (Sweden)

    Ivan M. Becić

    2015-08-01

    Full Text Available Active trade balance was one of the most important factors of financial policy of the Kingdom of Serbs Croats and Slovenes. It was supposed to contribute to the stability of the domestic currency. This intention could not be achived until 1924 since the recovery of the economy of the Kingdom from the great casualties and material hardship in the First World War. In following years, the foreign trade balance was active, except in exceptional drought years of 1927 and 1928. The main items of export were agricultural products alongside with raw materials and semi-finished products. On the other hand, the main items of imports were manufactured goods, materials for the textile industry, different machinery and tools. Great importance for the import into the Kingdom of SHS were on its neighbours. In 1929 they accounted around 38.2% of import, while as the destination of the Yugoslav exports were absolutely dominant with 69.16%. The discrepancy between foreign trade and foreign policy of the Kingdom of SHS was obvious. Although the main Yugoslav ally at the time, France has participated in trade with only a few percent. It was similar practice with another Great War ally: Great Britain. Wider economic relations with Czechoslovakia were hindered by lack of Czech interest to purchase goods from the Kingdom of SHS. On the other hand, the most important partners were Italy, which showed huge belligerence against new Yugoslavian state, and have a strained political relations with Kingdom of SHS throughout the 1920s and Austria and Germany, both bitter enemies form the First World War.

  13. High temperature pipeline design

    Energy Technology Data Exchange (ETDEWEB)

    Greenslade, J.G. [Colt Engineering, Calgary, AB (Canada). Pipelines Dept.; Nixon, J.F. [Nixon Geotech Ltd., Calgary, AB (Canada); Dyck, D.W. [Stress Tech Engineering Inc., Calgary, AB (Canada)

    2004-07-01

    It is impractical to transport bitumen and heavy oil by pipelines at ambient temperature unless diluents are added to reduce the viscosity. A diluted bitumen pipeline is commonly referred to as a dilbit pipeline. The diluent routinely used is natural gas condensate. Since natural gas condensate is limited in supply, it must be recovered and reused at high cost. This paper presented an alternative to the use of diluent to reduce the viscosity of heavy oil or bitumen. The following two basic design issues for a hot bitumen (hotbit) pipeline were presented: (1) modelling the restart problem, and, (2) establishing the maximum practical operating temperature. The transient behaviour during restart of a high temperature pipeline carrying viscous fluids was modelled using the concept of flow capacity. Although the design conditions were hypothetical, they could be encountered in the Athabasca oilsands. It was shown that environmental disturbances occur when the fluid is cooled during shut down because the ground temperature near the pipeline rises. This can change growing conditions, even near deeply buried insulated pipelines. Axial thermal loads also constrain the design and operation of a buried pipeline as higher operating temperatures are considered. As such, strain based design provides the opportunity to design for higher operating temperature than allowable stress based design methods. Expansion loops can partially relieve the thermal stress at a given temperature. As the design temperature increase, there is a point at which above grade pipelines become attractive options, although the materials and welding procedures must be suitable for low temperature service. 3 refs., 1 tab., 10 figs.

  14. Two RNAs or DNAs May Artificially Fuse Together at a Short Homologous Sequence (SHS) during Reverse Transcription or Polymerase Chain Reactions, and Thus Reporting an SHS-Containing Chimeric RNA Requires Extra Caution

    Science.gov (United States)

    Xie, Bingkun; Yang, Wei; Ouyang, Yongchang; Chen, Lichan; Jiang, Hesheng; Liao, Yuying; Liao, D. Joshua

    2016-01-01

    Tens of thousands of chimeric RNAs have been reported. Most of them contain a short homologous sequence (SHS) at the joining site of the two partner genes but are not associated with a fusion gene. We hypothesize that many of these chimeras may be technical artifacts derived from SHS-caused mis-priming in reverse transcription (RT) or polymerase chain reactions (PCR). We cloned six chimeric complementary DNAs (cDNAs) formed by human mitochondrial (mt) 16S rRNA sequences at an SHS, which were similar to several expression sequence tags (ESTs).These chimeras, which could not be detected with cDNA protection assay, were likely formed because some regions of the 16S rRNA are reversely complementary to another region to form an SHS, which allows the downstream sequence to loop back and anneal at the SHS to prime the synthesis of its complementary strand, yielding a palindromic sequence that can form a hairpin-like structure.We identified a 16S rRNA that ended at the 4th nucleotide(nt) of the mt-tRNA-leu was dominant and thus should be the wild type. We also cloned a mouse Bcl2-Nek9 chimeric cDNA that contained a 5-nt unmatchable sequence between the two partners, contained two copies of the reverse primer in the same direction but did not contain the forward primer, making it unclear how this Bcl2-Nek9 was formed and amplified. Moreover, a cDNA was amplified because one primer has 4 nts matched to the template, suggesting that there may be many more artificial cDNAs than we have realized, because the nuclear and mt genomes have many more 4-nt than 5-nt or longer homologues. Altogether, the chimeric cDNAs we cloned are good examples suggesting that many cDNAs may be artifacts due to SHS-caused mis-priming and thus greater caution should be taken when new sequence is obtained from a technique involving DNA polymerization. PMID:27148738

  15. Fabrication of Au-Pd Core-shell Nanoparticles using Au Thin-Film Dewetting at High Temperature and Chemical Synthesis Methods

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min-Gyu; Lee, Hye-Jung; Oh, Yong-Jun [Hanbat National Univ., Daejeon (Korea, Republic of)

    2016-07-15

    Au-Pd bimetallic nanoparticles (NPs) have received a lot of attention in the fields of catalysts and hydrogen sensors. In this study, Au-Pd core-shell NP arrays were successfully fabricated using two steps: formation of the ordered array of Au NPs cores via solid-state dewetting of a Au thin film on a topographic silica substrate, and Pd shell formation via chemical synthesis using two different surfactants (CTAB and CTAC). Using the CTAB surfactant in particular, a 2-D composite structure comprised of an ordered array of Au-Pd NPs, with smaller Pd NPs on the nanoscopic gaps between the Au-Pd NPs, could be formed. This structure is expected to have potential application in resistance-base hydrogen sensors.

  16. Advances in high temperature chemistry

    CERN Document Server

    Eyring, Leroy

    1969-01-01

    Advances in High Temperature Chemistry, Volume 2 covers the advances in the knowledge of the high temperature behavior of materials and the complex and unfamiliar characteristics of matter at high temperature. The book discusses the dissociation energies and free energy functions of gaseous monoxides; the matrix-isolation technique applied to high temperature molecules; and the main features, the techniques for the production, detection, and diagnosis, and the applications of molecular beams in high temperatures. The text also describes the chemical research in streaming thermal plasmas, as w

  17. Ion-Exchange-Induced Selective Etching for the Synthesis of Amino-Functionalized Hollow Mesoporous Silica for Elevated-High-Temperature Fuel Cells.

    Science.gov (United States)

    Zhang, Jin; Liu, Jian; Lu, Shanfu; Zhu, Haijin; Aili, David; De Marco, Roland; Xiang, Yan; Forsyth, Maria; Li, Qingfeng; Jiang, San Ping

    2017-09-20

    As differentiated from conventional synthetic processes, amino-functionalized hollow mesoporous silica (NH 2 -HMS) has been synthesized using a new and facile strategy of ion-exchange-induced selective etching of amino-functionalized mesoporous silica (NH 2 -meso-silica) by an alkaline solution. Nuclear magnetic resonance (NMR) spectroscopy and in situ time-resolved small-angle X-ray scattering (SAXS) reveal that ion-exchange-induced selective etching arises from the gradient distribution of OH - in the NH 2 -meso-silica nanospheres. Moreover, the ion-exchange-induced selective etching mechanism is verified through a successful synthesis of hollow mesoporous silica. After infiltration with phosphotungstic acid (PWA), PWA-NH 2 -HMS nanoparticles are dispersed in the poly(ether sulfone)-polyvinylpyrrolidone (PES-PVP) matrix, forming a hybrid PWA-NH 2 -HMS/PES-PVP nanocomposite membrane. The resultant nanocomposite membrane with an optimum loading of 10 wt % of PWA-NH 2 -HMS showed an enhanced proton conductivity of 0.175 S cm -1 and peak power density of 420 mW cm -2 at 180 °C under anhydrous conditions. Excellent durability of the hybrid composite membrane fuel cell has been demonstrated at 200 °C. The results of this study demonstrated the potential of the facile synthetic strategy in the fabrication of NH 2 -HMS with controlled mesoporous structure for application in nanocomposite membranes as a technology platform for elevated-temperature proton exchange membrane fuel cells.

  18. Impact of High-Temperature, High-Pressure Synthesis Conditions on the Formation of the Grain Structure and Strength Properties of Intermetallic Ni3Al

    Science.gov (United States)

    Ovcharenko, V. E.; Ivanov, K. V.; Boyangin, E. N.; Krylova, T. A.; Pshenichnikov, A. P.

    2018-01-01

    The impact of the preliminary load on 3Ni+Al powder mixture and the impact of the duration of the delay in application of compacting pressure to synthesis product under the conditions of continuous heating of the mixture up to its self-ignition on the grain size and strength properties of the synthesized Ni3Al intermetallide material have been studied. The grain structure of the intermetallide synthesized under pressure was studied by means of metallography, transmission electron microscopy and EBSD analysis, with the dependence of ultimate tensile strength on the grain size in the synthesized intermetallide having been investigated at room temperature and at temperatures up to 1000°C. It is shown that an increase in the pressure preliminarily applied to the initial mixture compact results in reduced grain size of the final intermetallide, whereas an increase in pre-compaction time makes the grain size increased. A decrease in the grain size increases the ultimate tensile strength of the intermetallide. The maximum value of the ultimate tensile strength in the observed anomalous temperature dependence of this strength exhibits a shift by 200°C toward higher temperatures, and the ultimate strength of the synthesized intermetallide at 1000°C increases roughly two-fold.

  19. High-Temperature Piezoelectric Sensing

    Directory of Open Access Journals (Sweden)

    Xiaoning Jiang

    2013-12-01

    Full Text Available Piezoelectric sensing is of increasing interest for high-temperature applications in aerospace, automotive, power plants and material processing due to its low cost, compact sensor size and simple signal conditioning, in comparison with other high-temperature sensing techniques. This paper presented an overview of high-temperature piezoelectric sensing techniques. Firstly, different types of high-temperature piezoelectric single crystals, electrode materials, and their pros and cons are discussed. Secondly, recent work on high-temperature piezoelectric sensors including accelerometer, surface acoustic wave sensor, ultrasound transducer, acoustic emission sensor, gas sensor, and pressure sensor for temperatures up to 1,250 °C were reviewed. Finally, discussions of existing challenges and future work for high-temperature piezoelectric sensing are presented.

  20. High Temperature Superconductor Resonator Detectors

    Data.gov (United States)

    National Aeronautics and Space Administration — High Temperature Superconductor (HTS) infrared detectors were studied for years but never matured sufficiently for infusion into instruments. Several recent...

  1. Rural Electrification Program in Indonesia: Comparing SEHEN and SHS Program

    Directory of Open Access Journals (Sweden)

    Maxensius Tri Sambodo

    2015-07-01

    Full Text Available In 2014, the Indonesian government has targets to obtain 80% of electrification ratio and 98.9% of rural electrification ratio. Extending the grid and off-grid connection has been done to obtain the targets. This paper aims to compare two main programs on rural electrification namely Super Extra Energy Saving (Super Ekstra Hemat Energi, SEHEN that is belong to PLN (state owned company in electricity and the Solar Home System (SHS that is financed by the Ministry of Energy and Mineral Resources (MEMR. Indonesia has started the rural electrification program in the late 1950s, but how to provide electricity in a sustainable ways both organizationally and institutionally still become a big challenge. The experiences from East Nusa Tenggara provinces showed that both SEHEN and SHS can instantly improve electrification ratio, but government needs to synchronize the technical, administrative, and financial aspect from the two programs. Without any improvements in designing the program, we argue that the existing program is not sustainable.

  2. Advanced High Temperature Structural Seals

    Science.gov (United States)

    Newquist, Charles W.; Verzemnieks, Juris; Keller, Peter C.; Rorabaugh, Michael; Shorey, Mark

    2002-10-01

    This program addresses the development of high temperature structural seals for control surfaces for a new generation of small reusable launch vehicles. Successful development will contribute significantly to the mission goal of reducing launch cost for small, 200 to 300 pound payloads. Development of high temperature seals is mission enabling. For instance, ineffective control surface seals can result in high temperature (3100 F) flows in the elevon area exceeding structural material limits. Longer sealing life will allow use for many missions before replacement, contributing to the reduction of hardware, operation and launch costs.

  3. Ceramic Materials in a Ti–C–Co–Ca3(PO42–Ag–Mg System Obtained by MA SHS for the Deposition of Biomedical Coatings

    Directory of Open Access Journals (Sweden)

    Artem Potanin

    2017-09-01

    Full Text Available This study aimed to obtain biocompatible ceramic materials in a Ti–C–Co–Ca3(PO42–Ag–Mg system by the combustion mode of mechanically activated (MA reaction mixtures. The influence of the MA time on the reaction ability capability of the mixtures, on their structural and chemical homogeneity, on the combustion parameters and structural-phase conversions in the combustion wave, as well as on the structure and phase composition of the electrode materials has been researched. It was found that the intense treatment of powder mixtures causes plastic deformation of components, the formation of lamellar composite granules, a reduction in the sizes of coherent scattering regions, and also the formation of minor amounts of products. The influence of the activation duration of the ignition temperature and heat release during the combustion of the reaction mixtures was studied. By the method of quenching the combustion front, it was demonstrated that in a combustion wave, chemical transformations occur within the lamellar structures formed during the process of mechanoactivation. It was shown that in the combustion wave, parallel chemical reactions of Ti with C as well as Ti with Co and Ca3(PO42 occur, with a Ti–Co-based melt forming the reaction surface. Ceramic electrodes with different contents of Ag and Mg were synthesized by force self-propagating high-temperature synthesis (SHS-pressing technology using the MA mixtures. The microstructure of the materials consisted of round-shaped grains of nonstoichiometric titanium carbide TiCx grains, intermetallic matrix (TiCo, TiCo2, CoTiP, inclusions of Ca and Mg oxides, and grains of the Ag-based solid solution. An increased content of Ag and Mg in the composition of the electrodes, as well as an increased MA duration, leads to an enlargement of the inclusions of the Ag-containing phase size and deterioration in the uniformity of their distribution.

  4. High Temperature AL-Nanocrystal Alloy Synthesis

    National Research Council Canada - National Science Library

    Perepezko, J

    2001-01-01

    Aluminum-rich metallic glasses containing transition metals and rare earth elements have been found to yield finely mixed microstructures of Al nanocrystals embedded in an amorphous matrix and exhibit...

  5. High temperature superconductor accelerator magnets

    NARCIS (Netherlands)

    van Nugteren, J.

    2016-01-01

    For future particle accelerators bending dipoles are considered with magnetic fields exceeding 20T. This can only be achieved using high temperature superconductors (HTS). These exhibit different properties from classical low temperature superconductors and still require significant research and

  6. High Temperature Materials Laboratory (HTML)

    Data.gov (United States)

    Federal Laboratory Consortium — The six user centers in the High Temperature Materials Laboratory (HTML), a DOE User Facility, are dedicated to solving materials problems that limit the efficiency...

  7. High temperature corrosion of metals

    International Nuclear Information System (INIS)

    Quadakkers, W.J.; Schuster, H.; Ennis, P.J.

    1988-08-01

    This paper covers three main topics: 1. high temperature oxidation of metals and alloys, 2. corrosion in sulfur containing environments and 3. structural changes caused by corrosion. The following 21 subjects are discussed: Influence of implanted yttrium and lanthanum on the oxidation behaviour of beta-NiA1; influence of reactive elements on the adherence and protective properties of alumina scales; problems related to the application of very fine markers in studying the mechanism of thin scale formation; oxidation behaviour of chromia forming Co-Cr-Al alloys with or without reactive element additions; growth and properties of chromia-scales on high-temperature alloys; quantification of the depletion zone in high temperature alloys after oxidation in process gas; effects of HC1 and of N2 in the oxidation of Fe-20Cr; investigation under nuclear safety aspects of Zircaloy-4 oxidation kinetics at high temperatures in air; on the sulfide corrosion of metallic materials; high temperature sulfide corrosion of Mn, Nb and Nb-Si alloys; corrosion behaviour or NiCrAl-based alloys in air and air-SO2 gas mixtures; sulfidation of cobalt at high temperatures; preoxidation for sulfidation protection; fireside corrosion and application of additives in electric utility boilers; transport properties of scales with complex defect structures; observations of whiskers and pyramids during high temperature corrosion of iron in SO2; corrosion and creep of alloy 800H under simulated coal gasification conditions; microstructural changes of HK 40 cast alloy caused by exploitation in tubes in steam reformer installation; microstructural changes during exposure in corrosive environments and their effect on mechanical properties; coatings against carburization; mathematical modeling of carbon diffusion and carbide precipitation in Ni-Cr-based alloys. (MM)

  8. XRD, SEM and infrared study into the intercalation of sodium hexadecyl sulfate (SHS) into hydrocalumite.

    Science.gov (United States)

    Zhang, Ping; Wang, Tianqi; Zhang, Longlong; Wu, Daishe; Frost, Ray L

    2015-12-05

    Hydrocalumite (CaAl-LDH-Cl) interacted with a natural anionic surfactant, sodium hexadecyl sulfate (SHS), was performed using an intercalation method. To understand the intercalation behavior and characterize the resulting products, powder X-ray diffraction (XRD), scan electron microscopy (SEM) and mid-infrared (MIR) spectroscopy combined with near-infrared (NIR) spectroscopy technique were used. The XRD analysis indicated that SHS was intercalated into CaAl-LDH-Cl successfully, resulting in an expansion of the interlayer (from 0.78 nm to 2.74 nm). The bands of C-H stretching vibrations of SHS were observed in the near-infrared spectra, which indicated that the resulting products were indeed CaAl-LDH-SHS. In addition, the bands of water stretching vibrations and OH groups shifted to higher wavenumbers when SHS was intercalated into CaAl-LDH-Cl interlayer space. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Highly efficient high temperature electrolysis

    DEFF Research Database (Denmark)

    Hauch, Anne; Ebbesen, Sune; Jensen, Søren Højgaard

    2008-01-01

    High temperature electrolysis of water and steam may provide an efficient, cost effective and environmentally friendly production of H-2 Using electricity produced from sustainable, non-fossil energy sources. To achieve cost competitive electrolysis cells that are both high performing i.e. minimum...... internal resistance of the cell, and long-term stable, it is critical to develop electrode materials that are optimal for steam electrolysis. In this article electrolysis cells for electrolysis of water or steam at temperatures above 200 degrees C for production of H-2 are reviewed. High temperature...... electrolysis is favourable from a thermodynamic point of view, because a part of the required energy can be supplied as thermal heat, and the activation barrier is lowered increasing the H-2 production rate. Only two types of cells operating at high temperature (above 200 degrees C) have been described...

  10. High-temperature metallography setup

    International Nuclear Information System (INIS)

    Blumenfeld, M.; Shmarjahu, D.; Elfassy, S.

    1979-06-01

    A high-temperature metallography setup is presented. In this setup the observation of processes such as that of copper recrystallization was made possible, and the structure of metals such as uranium could be revealed. A brief historical review of part of the research works that have been done with the help of high temperature metallographical observation technique since the beginning of this century is included. Detailed description of metallographical specimen preparation technique and theoretical criteria based on the rate of evaporation of materials present on the polished surface of the specimens are given

  11. High temperature corrosion in gasifiers

    Directory of Open Access Journals (Sweden)

    Bakker Wate

    2004-01-01

    Full Text Available Several commercial scale coal gasification combined cycle power plants have been built and successfully operated during the last 5-10 years. Supporting research on materials of construction has been carried out for the last 20 years by EPRI and others. Emphasis was on metallic alloys for heat exchangers and other components in contact with hot corrosive gases at high temperatures. In this paper major high temperature corrosion mechanisms, materials performance in presently operating gasifiers and future research needs will be discussed.

  12. Pulsed cathodoluminescence and Raman spectra of MoS{sub 2} and WS{sub 2} nanocrystals and their combination MoS{sub 2}/WS{sub 2} produced by self-propagating high-temperature synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Bozheyev, Farabi, E-mail: farabi.bozheyev@gmail.com [Institute of High Technology Physics, National Research Tomsk Polytechnic University, 30 Lenin Ave., 634050 Tomsk (Russian Federation); National Nanolaboratory, al-Farabi Kazakh National University, 71 al-Farabi Ave., 050000 Almaty (Kazakhstan); Nazarbayev University Research and Innovation System, 53 Kabanbay Batyr St., 010000 Astana (Kazakhstan); Valiev, Damir [Institute of High Technology Physics, National Research Tomsk Polytechnic University, 30 Lenin Ave., 634050 Tomsk (Russian Federation); Nemkayeva, Renata [National Nanolaboratory, al-Farabi Kazakh National University, 71 al-Farabi Ave., 050000 Almaty (Kazakhstan)

    2016-02-29

    Molybdenum and tungsten disulfide nanoplates were produced by self-propagating high-temperature synthesis in argon atmosphere. This method provides an easy way to produce MoS{sub 2} and WS{sub 2} from nanoplates up to single- and several layers. The Raman peak intensities corresponding to in-plane E{sup 1}{sub 2g} and out-of-plane A{sub 1g} vibration modes and their shifts strongly depend on the thicknesses of the MoS{sub 2} and WS{sub 2} platelets indicating size-dependent scaling laws and properties. An electron beam irradiation of MoS{sub 2} and WS{sub 2} powders leads to an occurrence of pulsed cathodoluminescence (PCL) spectra at 575 nm (2.15 eV) and 550 nm (2.25 eV) characteristic to their intrinsic band gaps. For the combination of MoS{sub 2} and WS{sub 2} nanopowders, a PCL shoulder at 430 nm (2.88 eV) was observed, which is explained by the radiative electron-hole recombination at the MoS{sub 2}/WS{sub 2} grain boundaries. The luminescence decay kinetics of the MoS{sub 2}/WS{sub 2} nanoplates appears to be slower than for individual MoS{sub 2} and WS{sub 2} platelets due to a spatial separation of electrons and holes at MoS{sub 2}/WS{sub 2} junction resulting in extension of recombination time.

  13. High-temperature plasma physics

    International Nuclear Information System (INIS)

    Furth, H.P.

    1988-03-01

    Both magnetic and inertial confinement research are entering the plasma parameter range of fusion reactor interest. This paper reviews the individual and common technical problems of these two approaches to the generation of thermonuclear plasmas, and describes some related applications of high-temperature plasma physics

  14. High Temperature Superconductor Machine Prototype

    DEFF Research Database (Denmark)

    Mijatovic, Nenad; Jensen, Bogi Bech; Træholt, Chresten

    2011-01-01

    A versatile testing platform for a High Temperature Superconductor (HTS) machine has been constructed. The stationary HTS field winding can carry up to 10 coils and it is operated at a temperature of 77K. The rotating armature is at room temperature. Test results and performance for the HTS field...

  15. High Temperature Transparent Furnace Development

    Science.gov (United States)

    Bates, Stephen C.

    1997-01-01

    This report describes the use of novel techniques for heat containment that could be used to build a high temperature transparent furnace. The primary objective of the work was to experimentally demonstrate transparent furnace operation at 1200 C. Secondary objectives were to understand furnace operation and furnace component specification to enable the design and construction of a low power prototype furnace for delivery to NASA in a follow-up project. The basic approach of the research was to couple high temperature component design with simple concept demonstration experiments that modify a commercially available transparent furnace rated at lower temperature. A detailed energy balance of the operating transparent furnace was performed, calculating heat losses through the furnace components as a result of conduction, radiation, and convection. The transparent furnace shells and furnace components were redesigned to permit furnace operation at at least 1200 C. Techniques were developed that are expected to lead to significantly improved heat containment compared with current transparent furnaces. The design of a thermal profile in a multizone high temperature transparent furnace design was also addressed. Experiments were performed to verify the energy balance analysis, to demonstrate some of the major furnace improvement techniques developed, and to demonstrate the overall feasibility of a high temperature transparent furnace. The important objective of the research was achieved: to demonstrate the feasibility of operating a transparent furnace at 1200 C.

  16. High temperature electronic gain device

    International Nuclear Information System (INIS)

    McCormick, J.B.; Depp, S.W.; Hamilton, D.J.; Kerwin, W.J.

    1979-01-01

    An integrated thermionic device suitable for use in high temperature, high radiation environments is described. Cathode and control electrodes are deposited on a first substrate facing an anode on a second substrate. The substrates are sealed to a refractory wall and evacuated to form an integrated triode vacuum tube

  17. Containment of high temperature plasmas

    International Nuclear Information System (INIS)

    Bass, R.W.; Ferguson, H.R.P.; Fletcher, H. Jr.; Gardner, J.; Harrison, B.K.; Larsen, K.M.

    1973-01-01

    Apparatus is described for confining a high temperature plasma which comprises: 1) envelope means shaped to form a toroidal hollow chamber containing a plasma, 2) magnetic field line generating means for confining the plasma in a smooth toroidal shape without cusps. (R.L.)

  18. Chemistry of high temperature superconductors

    CERN Document Server

    1991-01-01

    This review volume contains the most up-to-date articles on the chemical aspects of high temperature oxide superconductors. These articles are written by some of the leading scientists in the field and includes a comprehensive list of references. This is an essential volume for researchers working in the fields of ceramics, materials science and chemistry.

  19. Properties of high temperature SQUIDS

    International Nuclear Information System (INIS)

    Falco, C.M.; Wu, C.T.

    1978-01-01

    A review is given of the present status of weak links and dc and rf biased SQUIDs made with high temperature superconductors. A method for producing reliable, reproducible devices using Nb 3 Sn is outlined, and comments are made on directions future work should take

  20. High temperature component life assessment

    CERN Document Server

    Webster, G A

    1994-01-01

    The aim of this book is to investigate and explain the rapid advances in the characterization of high temperature crack growth behaviour which have been made in recent years, with reference to industrial applications. Complicated mathematics has been minimized with the emphasis placed instead on finding solutions using simplified procedures without the need for complex numerical analysis.

  1. Solar Home System (SHS) in rural Bangladesh: Ornamentation or fact of development?

    International Nuclear Information System (INIS)

    Rahman, Syed M.; Ahmad, Mokbul M.

    2013-01-01

    Energy requirement has been growing every day due to higher population growth, and consequently higher consumption. About one third of rural households of Bangladesh are connected to the grid. To meet the gap, solar energy has been treated as a feasible option for people in rural areas where grid connections are not available. A good number of organizations have been working together to provide Solar Home System (SHS) in rural Bangladesh. There is little evidence that supply of small scale energy supports significant rural development. This paper aims at understanding how increased energy access through SHS in rural Bangladesh contributes towards rural development. Recent published literatures on SHS in Bangladesh have been studied to get insight into the technical, financial, and operational as well as economic and social issues. Later the findings have been critically analyzed with respect to selected indicators of rural development. The study identified that increased access to energy through SHS in rural Bangladesh provides mostly recreational and leisure benefits with the so called ‘social status’; income generation is negligible while support for education is average. - Highlights: • No specific proof is there to conclude that SHS has contributed to development. • SHS's contribution to income generation and employment is not significant. • SHS is mostly used for entertainment and to uplift the so called ‘social status’

  2. Ceramics for high temperature applications

    International Nuclear Information System (INIS)

    Mocellin, A.

    1977-01-01

    Problems related to materials, their fabrication, properties, handling, improvements are examined. Silicium nitride and silicium carbide are obtained by vacuum hot-pressing, reaction sintering and chemical vapour deposition. Micrographs are shown. Mechanical properties i.e. room and high temperature strength, creep resistance fracture mechanics and fatigue resistance. Recent developments of pressureless sintered Si C and the Si-Al-O-N quaternary system are mentioned

  3. High-temperature geothermal cableheads

    Science.gov (United States)

    Coquat, J. A.; Eifert, R. W.

    1981-11-01

    Two high temperature, corrosion resistant logging cable heads which use metal seals and a stable fluid to achieve proper electrical terminations and cable sonde interfacings are described. A tensile bar provides a calibrated yield point, and a cone assembly anchors the cable armor to the head. Electrical problems of the sort generally ascribable to the cable sonde interface were absent during demonstration hostile environment loggings in which these cable heads were used.

  4. Summary: High Temperature Downhole Motor

    Energy Technology Data Exchange (ETDEWEB)

    Raymond, David W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-10-01

    Directional drilling can be used to enable multi-lateral completions from a single well pad to improve well productivity and decrease environmental impact. Downhole rotation is typically developed with a motor in the Bottom Hole Assembly (BHA) that develops drilling power (speed and torque) necessary to drive rock reduction mechanisms (i.e., the bit) apart from the rotation developed by the surface rig. Historically, wellbore deviation has been introduced by a “bent-sub,” located in the BHA, that introduces a small angular deviation, typically less than 3 degrees, to allow the bit to drill off-axis with orientation of the BHA controlled at the surface. The development of a high temperature downhole motor would allow reliable use of bent subs for geothermal directional drilling. Sandia National Laboratories is pursuing the development of a high temperature motor that will operate on either drilling fluid (water-based mud) or compressed air to enable drilling high temperature, high strength, fractured rock. The project consists of designing a power section based upon geothermal drilling requirements; modeling and analysis of potential solutions; and design, development and testing of prototype hardware to validate the concept. Drilling costs contribute substantially to geothermal electricity production costs. The present development will result in more reliable access to deep, hot geothermal resources and allow preferential wellbore trajectories to be achieved. This will enable development of geothermal wells with multi-lateral completions resulting in improved geothermal resource recovery, decreased environmental impact and enhanced well construction economics.

  5. High temperature fusion reactor design

    International Nuclear Information System (INIS)

    Harkness, S.D.; dePaz, J.F.; Gohar, M.Y.; Stevens, H.C.

    1979-01-01

    Fusion energy may have unique advantages over other systems as a source for high temperature process heat. A conceptual design of a blanket for a 7 m tokamak reactor has been developed that is capable of producing 1100 0 C process heat at a pressure of approximately 10 atmospheres. The design is based on the use of a falling bed of MgO spheres as the high temperature heat transfer system. By preheating the spheres with energy taken from the low temperature tritium breeding part of the blanket, 1086 MW of energy can be generated at 1100 0 C from a system that produces 3000 MW of total energy while sustaining a tritium breeding ratio of 1.07. The tritium breeding is accomplished using Li 2 O modules both in front of (6 cm thick) and behind (50 cm thick) the high temperature ducts. Steam is used as the first wall and front tritium breeding module coolant while helium is used in the rear tritium breeding region. The system produces 600 MW of net electricity for use on the grid

  6. Preparation of molybdenum borides by combustion synthesis involving solid-phase displacement reactions

    International Nuclear Information System (INIS)

    Yeh, C.L.; Hsu, W.S.

    2008-01-01

    Preparation of molybdenum borides of five different phases in the Mo-B binary system (including Mo 2 B, MoB, MoB 2 , Mo 2 B 5 , and MoB 4 ) was performed by self-propagating high-temperature synthesis (SHS) with two kinds of the reactant samples. When elemental powder compacts with an exact stoichiometry corresponding to the boride phase were employed, self-sustaining reaction was only achieved in the sample with Mo:B = 1:1 and nearly single-phase MoB was yielded. Therefore, the other four boride compounds were prepared from the reactant compacts composed of MoO 3 , Mo, and B powders, within which the displacement reaction of MoO 3 with boron was involved in combustion synthesis. Experimental evidence shows that the extent of displacement reaction in the overall reaction has a significant impact on sustainability of the synthesis reaction, combustion temperature, reaction front velocity, and composition of the end product. An increase in the solid-phase displacement reaction taking place during the SHS process contributes more heat flux to the synthesis reaction, thus resulting in the increase of combustion temperature and enhancement of the reaction front velocity. Based upon the XRD analysis, formation of Mo 2 B, MoB 2 , and Mo 2 B 5 as the dominant boride phase in the end product was successful through the SHS reaction with powder compacts under appropriate stoichiometries between MoO 3 , Mo, and B. However, a poor conversion was observed in the synthesis of MoB 4 . The powder compact prepared for the production of MoB 4 yielded mostly Mo 2 B 5

  7. In Situ XRD Studies of ZnO/GaN Mixtures at High Pressure and High Temperature: Synthesis of Zn-Rich (Ga1-xZnx)(N1-xOx) Photocatalysts

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, J.A.; Chen, H.; Wang, L.; Bai, J.; Hanson, J.C.; Warren, J.B.; Muckerman, J.T.; Fujita, E.

    2010-02-04

    The high-pressure, high-temperature conditions for the synthesis of Zn-rich (Ga{sub 1-x}Zn{sub x})(N{sub 1-x}O{sub x}) solid solutions from mixtures of ZnO/GaN were explored using synchrotron-based in situ time-resolved X-ray diffraction (XRD). Following a new synthetic path, (Ga{sub 1-x}Zn{sub x})(N{sub 1-x}O{sub x}) solid solutions with a Zn content up to 75% were prepared for the first time. The structures of the (Ga{sub 1-x}Zn{sub x})(N{sub 1-x}O{sub x}) solid solutions were characterized by XRD and X-ray absorption fine structure (XAFS) analyses and were in excellent agreement with the predictions of density functional calculations. These materials adopt a wurtzite crystal structure with metal-N or metal-O bond distances in the range of 1.95-1.98 {angstrom}. Although the (Ga{sub 1-x}Zn{sub x})(N{sub 1-x}O{sub x}) solid solutions seem to be stable over the full range of compositions, no ideal solid solution formation was observed. In all cases, the lattice parameters were larger than those of ideal solid solutions. The variation of the lattice parameter c showed an upward double bowing curve, as was predicted by theoretical calculations. Also, no ideal behavior was observed in the electronic properties of the (Ga{sub 1-x}Zn{sub x})(N{sub 1-x}O{sub x}) solid solutions. X-ray absorption spectra at the Zn and Ga K-edges of the (Ga{sub 1-x}Zn{sub x})(N{sub 1-x}O{sub x}) systems showed significant electronic perturbations with respect to ZnO and GaN. The synthesized (Ga{sub 1-x}Zn{sub x})(N{sub 1-x}O{sub x}) solid solution with a Zn content of 50% displayed the ability to absorb visible light well above 500 nm. This material has a great potential for splitting water under visible light irradiation. The availability of (Ga{sub 1-x}Zn{sub x})(N{sub 1-x}O{sub x}) solid solutions with a high Zn content opens the door to fully explore the application of these materials in photocatalysis.

  8. In Situ XRD Studies of ZnO/GaN Mixtures at High Pressure and High Temperature: Synthesis of Zn-Rich (Ga1-xZnx)(N1-xOx) Photocatalysts

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H.; Wang, L; Bai, J; Hanson, J; Warren, J; Muckerman, J; Fujita, E; Rodriguez, J

    2010-01-01

    The high-pressure, high-temperature conditions for the synthesis of Zn-rich (Ga{sub 1-x}Zn{sub x})(N{sub 1-x}O{sub x}) solid solutions from mixtures of ZnO/GaN were explored using synchrotron-based in situ time-resolved X-ray diffraction (XRD). Following a new synthetic path, (Ga{sub 1-x}Zn{sub x})(N{sub 1-x}O{sub x}) solid solutions with a Zn content up to {approx}75% were prepared for the first time. The structures of the (Ga{sub 1-x}Zn{sub x})(N{sub 1-x}O{sub x}) solid solutions were characterized by XRD and X-ray absorption fine structure (XAFS) analyses and were in excellent agreement with the predictions of density functional calculations. These materials adopt a wurtzite crystal structure with metal-N or metal-O bond distances in the range of 1.95-1.98 {angstrom}. Although the (Ga{sub 1-x}Zn{sub x})(N{sub 1-x}O{sub x}) solid solutions seem to be stable over the full range of compositions, no ideal solid solution formation was observed. In all cases, the lattice parameters were larger than those of ideal solid solutions. The variation of the lattice parameter c showed an upward double bowing curve, as was predicted by theoretical calculations. Also, no ideal behavior was observed in the electronic properties of the (Ga{sub 1-x}Zn{sub x})(N{sub 1-x}O{sub x}) solid solutions. X-ray absorption spectra at the Zn and Ga K-edges of the (Ga{sub 1-x}Zn{sub x})(N{sub 1-x}O{sub x}) systems showed significant electronic perturbations with respect to ZnO and GaN. The synthesized (Ga{sub 1-x}Zn{sub x})(N{sub 1-x}O{sub x}) solid solution with a Zn content of 50% displayed the ability to absorb visible light well above 500 nm. This material has a great potential for splitting water under visible light irradiation. The availability of (Ga{sub 1-x}Zn{sub x})(N{sub 1-x}O{sub x}) solid solutions with a high Zn content opens the door to fully explore the application of these materials in photocatalysis.

  9. Passivation of high temperature superconductors

    Science.gov (United States)

    Vasquez, Richard P. (Inventor)

    1991-01-01

    The surface of high temperature superconductors such as YBa2Cu3O(7-x) are passivated by reacting the native Y, Ba and Cu metal ions with an anion such as sulfate or oxalate to form a surface film that is impervious to water and has a solubility in water of no more than 10(exp -3) M. The passivating treatment is preferably conducted by immersing the surface in dilute aqueous acid solution since more soluble species dissolve into the solution. The treatment does not degrade the superconducting properties of the bulk material.

  10. High temperature structural sandwich panels

    Science.gov (United States)

    Papakonstantinou, Christos G.

    High strength composites are being used for making lightweight structural panels that are being employed in aerospace, naval and automotive structures. Recently, there is renewed interest in use of these panels. The major problem of most commercial available sandwich panels is the fire resistance. A recently developed inorganic matrix is investigated for use in cases where fire and high temperature resistance are necessary. The focus of this dissertation is the development of a fireproof composite structural system. Sandwich panels made with polysialate matrices have an excellent potential for use in applications where exposure to high temperatures or fire is a concern. Commercial available sandwich panels will soften and lose nearly all of their compressive strength temperatures lower than 400°C. This dissertation consists of the state of the art, the experimental investigation and the analytical modeling. The state of the art covers the performance of existing high temperature composites, sandwich panels and reinforced concrete beams strengthened with Fiber Reinforced Polymers (FRP). The experimental part consists of four major components: (i) Development of a fireproof syntactic foam with maximum specific strength, (ii) Development of a lightweight syntactic foam based on polystyrene spheres, (iii) Development of the composite system for the skins. The variables are the skin thickness, modulus of elasticity of skin and high temperature resistance, and (iv) Experimental evaluation of the flexural behavior of sandwich panels. Analytical modeling consists of a model for the flexural behavior of lightweight sandwich panels, and a model for deflection calculations of reinforced concrete beams strengthened with FRP subjected to fatigue loading. The experimental and analytical results show that sandwich panels made with polysialate matrices and ceramic spheres do not lose their load bearing capability during severe fire exposure, where temperatures reach several

  11. "Green" High-Temperature Polymers

    Science.gov (United States)

    Meador, Michael A.

    1998-01-01

    PMR-15 is a processable, high-temperature polymer developed at the NASA Lewis Research Center in the 1970's principally for aeropropulsion applications. Use of fiber-reinforced polymer matrix composites in these applications can lead to substantial weight savings, thereby leading to improved fuel economy, increased passenger and payload capacity, and better maneuverability. PMR-15 is used fairly extensively in military and commercial aircraft engines components seeing service temperatures as high as 500 F (260 C), such as the outer bypass duct for the F-404 engine. The current world-wide market for PMR-15 materials (resins, adhesives, and composites) is on the order of $6 to 10 million annually.

  12. CONFINEMENT OF HIGH TEMPERATURE PLASMA

    Science.gov (United States)

    Koenig, H.R.

    1963-05-01

    The confinement of a high temperature plasma in a stellarator in which the magnetic confinement has tended to shift the plasma from the center of the curved, U-shaped end loops is described. Magnetic means are provided for counteracting this tendency of the plasma to be shifted away from the center of the end loops, and in one embodiment this magnetic means is a longitudinally extending magnetic field such as is provided by two sets of parallel conductors bent to follow the U-shaped curvature of the end loops and energized oppositely on the inside and outside of this curvature. (AEC)

  13. High temperature divertor plasma operation

    International Nuclear Information System (INIS)

    Ohyabu, Nobuyoshi.

    1991-02-01

    High temperature divertor plasma operation has been proposed, which is expected to enhance the core energy confinement and eliminates the heat removal problem. In this approach, the heat flux is guided through divertor channel to a remote area with a large target surface, resulting in low heat load on the target plate. This allows pumping of the particles escaping from the core and hence maintaining of the high divertor temperature, which is comparable to the core temperature. The energy confinement is then determined by the diffusion coefficient of the core plasma, which has been observed to be much lower than the thermal diffusivity. (author)

  14. High temperature superconductors and method

    International Nuclear Information System (INIS)

    Ruvalds, J.J.

    1977-01-01

    This invention comprises a superconductive compound having the formula: Ni/sub 1-x/M/sub x/Z/sub y/ wherein M is a metal which will destroy the magnetic character of nickel (preferably copper, silver or gold); Z is hydrogen or deuterium; x is 0.1 to 0.9; and y, correspondingly, 0.9 to 0.1, and method of conducting electric current with no resistance at relatively high temperature of T>1 0 K comprising a conductor consisting essentially of the superconducting compound noted above

  15. High temperature thermoelectric energy conversion

    International Nuclear Information System (INIS)

    Wood, C.

    1986-01-01

    Considerable advances were made in the late '50's and early early '60's in the theory and development of materials for high-temperature thermoelectric energy conversion. This early work culminated in a variety of materials, spanning a range of temperatures, with the product of the figure of merit, Z, and temperature, T, i.e., the dimensionless figure of merit, ZT, of the order of one. This experimental limitation appeared to be universal and led a number of investigators to explore the possibility that a ZT - also represents a theoretical limitation. It was found not to be so

  16. High Temperature coatings based on β-NiAI

    Energy Technology Data Exchange (ETDEWEB)

    Severs, Kevin [Iowa State Univ., Ames, IA (United States)

    2012-01-01

    High temperature alloys are reviewed, focusing on current superalloys and their coatings. The synthesis, characerization, and oxidation performance of a NiAl–TiB2 composite are explained. A novel coating process for Mo–Ni–Al alloys for improved oxidation performance is examined. The cyclic oxidation performance of coated and uncoated Mo–Ni–Al alloys is discussed.

  17. Studies of high temperature superconductors

    International Nuclear Information System (INIS)

    Narlikar, A.

    1989-01-01

    The high temperature superconductors (HTSCs) discovered are from the family of ceramic oxides. Their large scale utilization in electrical utilities and in microelectronic devices are the frontal challenges which can perhaps be effectively met only through consolidated efforts and expertise of a multidisciplinary nature. During the last two years the growth of the new field has occurred on an international scale and perhaps has been more rapid than in most other fields. There has been an extraordinary rush of data and results which are continually being published as short texts dispersed in many excellent journals, some of which were started to ensure rapid publication exclusively in this field. As a result, the literature on HTSCs has indeed become so massive and so diffuse that it is becoming increasingly difficult to keep abreast with the important and reliable facets of this fast-growing field. This provided the motivation to evolve a process whereby both professional investigators and students can have ready access to up-to- date in-depth accounts of major technical advances happening in this field. The present series Studies of High Temperature Superconductors has been launched to, at least in part, fulfill this need

  18. High temperature PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jianlu; Xie, Zhong; Zhang, Jiujun; Tang, Yanghua; Song, Chaojie; Navessin, Titichai; Shi, Zhiqing; Song, Datong; Wang, Haijiang; Wilkinson, David P.; Liu, Zhong-Sheng; Holdcroft, Steven [Institute for Fuel Cell Innovation, National Research Council Canada, Vancouver, BC (Canada V6T 1W5)

    2006-10-06

    There are several compelling technological and commercial reasons for operating H{sub 2}/air PEM fuel cells at temperatures above 100{sup o}C. Rates of electrochemical kinetics are enhanced, water management and cooling is simplified, useful waste heat can be recovered, and lower quality reformed hydrogen may be used as the fuel. This review paper provides a concise review of high temperature PEM fuel cells (HT-PEMFCs) from the perspective of HT-specific materials, designs, and testing/diagnostics. The review describes the motivation for HT-PEMFC development, the technology gaps, and recent advances. HT-membrane development accounts for {approx}90% of the published research in the field of HT-PEMFCs. Despite this, the status of membrane development for high temperature/low humidity operation is less than satisfactory. A weakness in the development of HT-PEMFC technology is the deficiency in HT-specific fuel cell architectures, test station designs, and testing protocols, and an understanding of the underlying fundamental principles behind these areas. The development of HT-specific PEMFC designs is of key importance that may help mitigate issues of membrane dehydration and MEA degradation. (author)

  19. NSTX High Temperature Sensor Systems

    International Nuclear Information System (INIS)

    McCormack, B.; Kugel, H.W.; Goranson, P.; Kaita, R.

    1999-01-01

    The design of the more than 300 in-vessel sensor systems for the National Spherical Torus Experiment (NSTX) has encountered several challenging fusion reactor diagnostic issues involving high temperatures and space constraints. This has resulted in unique miniature, high temperature in-vessel sensor systems mounted in small spaces behind plasma facing armor tiles, and they are prototypical of possible high power reactor first-wall applications. In the Center Stack, Divertor, Passive Plate, and vessel wall regions, the small magnetic sensors, large magnetic sensors, flux loops, Rogowski Coils, thermocouples, and Langmuir Probes are qualified for 600 degrees C operation. This rating will accommodate both peak rear-face graphite tile temperatures during operations and the 350 degrees C bake-out conditions. Similar sensor systems including flux loops, on other vacuum vessel regions are qualified for 350 degrees C operation. Cabling from the sensors embedded in the graphite tiles follows narrow routes to exit the vessel. The detailed sensor design and installation methods of these diagnostic systems developed for high-powered ST operation are discussed

  20. SHS合成TiC粉对铁基涂层显微组织和硬度的影响%Effect of SHS TiC Reinforced Fe on Microstructure and Hardness of Composite Coatings on Steel

    Institute of Scientific and Technical Information of China (English)

    温芳; 林涛; 刘祥庆; 郭志猛

    2011-01-01

    以钛粉、石墨粉为原料通过自蔓延高温(SHS)合成TiC,通过破碎、筛分制得不同粒度的TiC.以此TiC为硬质相、以铁基合金粉为粘结相通过真空熔覆方法,制得TiC/Fe基耐磨涂层.研究了TiC不同含量、粒度对涂层的微观组织、硬度的影响,并与添加传统微米级TiC的涂层进行了比较.结果表明:当TiC粒度一定时,随着TiC含量的增加,耐磨涂层的硬度略有增加,达到62HRC;当TiC的加入量一定时,随着TIC的粒度增大,耐磨涂层的硬度基本不变,保持在63HRC左右.在涂层组织中,SHS方法制得的硬质相TiC在涂层中分布均匀,且TiC颗粒和铁基粘结相的界面结合好,这将对涂层的耐磨性起到很好的作用.%Titanium carbide were produced by self-propagating high temperature synthesis, which were composed of titanium powder and graphite powder. Then different sizes of TiC were obtained by broken and screening in order to as a hard phase. In addition, a TiC/Fe surface composite,consising of SHS titanium carbide and cast iron ,was produced by Vacluum cladding process. The effect of different content and size of Tic particles on microstructure and hardness was studied. And the it was checked againsted the coating which was added with traditional nano Tic particles. Results show that when the quality fraction of TiC particles is constant ,the smaller the particles size,the higher hardness. The highest hardness can be reached to 62 HRC. When the size of TiC particles is unchanged, with the increase of quality fraction of TiC particles, the hardness hardly increases and maintains at ahout 63 HRC. TiC particles uniform distribute in composite coating . The composite coating and the master-steel has good interfacial boning. That is benefical to the wear resistance of coating.

  1. HIgh Temperature Photocatalysis over Semiconductors

    Science.gov (United States)

    Westrich, Thomas A.

    Due in large part to in prevalence of solar energy, increasing demand of energy production (from all sources), and the uncertain future of petroleum energy feedstocks, solar energy harvesting and other photochemical systems will play a major role in the developing energy market. This dissertation focuses on a novel photochemical reaction process: high temperature photocatalysis (i.e., photocatalysis conducted above ambient temperatures, T ≥ 100°C). The overarching hypothesis of this process is that photo-generated charge carriers are able to constructively participate in thermo-catalytic chemical reactions, thereby increasing catalytic rates at one temperature, or maintaining catalytic rates at lower temperatures. The photocatalytic oxidation of carbon deposits in an operational hydrocarbon reformer is one envisioned application of high temperature photocatalysis. Carbon build-up during hydrocarbon reforming results in catalyst deactivation, in the worst cases, this was shown to happen in a period of minutes with a liquid hydrocarbon. In the presence of steam, oxygen, and above-ambient temperatures, carbonaceous deposits were photocatalytically oxidized over very long periods (t ≥ 24 hours). This initial experiment exemplified the necessity of a fundamental assessment of high temperature photocatalytic activity. Fundamental understanding of the mechanisms that affect photocatalytic activity as a function of temperatures was achieved using an ethylene photocatalytic oxidation probe reaction. Maximum ethylene photocatalytic oxidation rates were observed between 100 °C and 200 °C; the maximum photocatalytic rates were approximately a factor of 2 larger than photocatalytic rates at ambient temperatures. The loss of photocatalytic activity at temperatures above 200 °C is due to a non-radiative multi-phonon recombination mechanism. Further, it was shown that the fundamental rate of recombination (as a function of temperature) can be effectively modeled as a

  2. The impact of SHS exposure on health status and exacerbations among patients with COPD

    Directory of Open Access Journals (Sweden)

    Mark D Eisner

    2009-05-01

    Full Text Available Mark D Eisner1,3, Carlos Iribarren3, Edward H Yelin2, Stephen Sidney3, Patricia P Katz2, Gabriela Sanchez3, Paul D Blanc11Division of Occupational and Environmental Medicine and Division of Pulmonary and Critical Care Medicine; 2Institute for Health Policy Studies, Department of Medicine, University of California, San Francisco, CA, USA; 3Division of Research, Kaiser Permanente, Oakland, CA, USAAbstract: Secondhand smoke (SHS is a major contributor to indoor air pollution. Because it contains respiratory irritants, it may adversely influence the clinical course of persons with chronic obstructive pulmonary disease (COPD. We used data from nonsmoking members of the FLOW cohort of COPD (n = 809 to elucidate the impact of SHS exposure on health status and exacerbations (requiring emergency department visits or hospitalization. SHS exposure was measured by a validated survey instrument (hours of exposure during the past week. Physical health status was measured by the SF-12 Physical Component Summary Score and disease-specific health-related quality of life (HRQL by the Airways Questionnaire 20-R. Health care utilization for COPD was determined from Kaiser Permanente Northern California computerized databases. Compared to no SHS exposure, higher level SHS exposure was associated with poorer physical health status (mean score decrement −1.78 points; 95% confidence interval [CI] −3.48 to −0.074 points after controlling for potential confounders. Higher level SHS exposure was also related to poorer disease-specific HRQL (mean score increment 0.63; 95% CI 0.016 to 1.25 and less distance walked during the Six-Minute Walk test (mean decrement −50 feet; 95% CI −102 to 1.9. Both lower level and higher level SHS exposure was related to increased risk of emergency department (ED visits (hazard ratio [HR] 1.40; 95% CI 0.96 to 2.05 and HR 1.41; 95% CI 0.94 to 2.13. Lower level and higher level SHS exposure were associated with a greater risk of

  3. The high-temperature reactor

    International Nuclear Information System (INIS)

    Kirchner, U.

    1991-01-01

    The book deals with the development of the German high-temperature reactor (pebble-bed), the design of a prototype plant and its (at least provisional) shut-down in 1989. While there is a lot of material on the HTR's competitor, the fast breeder, literature is very incomplete on HTRs. The author describes HTR's history as a development which was characterised by structural divergencies but not effectively steered and monitored. There was no project-oriented 'community' such as there was for the fast breeder. Also, the new technology was difficult to control there were situations where no one quite knew what was going on. The technical conditions however were not taken as facts but as a basis for interpretation, wishes and reservations. The HTR gives an opportunity to consider the conditions under which large technical projects can be carried out today. (orig.) [de

  4. High temperature creep of vanadium

    International Nuclear Information System (INIS)

    Juhasz, A.; Kovacs, I.

    1978-01-01

    The creep behaviour of polycrystalline vanadium of 99.7% purity has been investigated in the temperature range 790-880 0 C in a high temperature microscope. It was found that the creep properties depend strongly on the history of the sample. To take this fact into account some additional properties such as the dependence of the yield stress and the microhardness on the pre-annealing treatment have also been studied. Samples used in creep measurements were selected on the basis of their microhardness. The activation energy of creep depends on the microhardness and on the creep temperature. In samples annealed at 1250 0 C for one hour (HV=160 kgf mm -2 ) the rate of creep is controlled by vacancy diffusion in the temperature range 820-880 0 C with an activation energy of 78+-8 kcal mol -1 . (Auth.)

  5. High temperature industrial heat pumps

    Energy Technology Data Exchange (ETDEWEB)

    Berghmans, J. (Louvain Univ., Heverlee (Belgium). Inst. Mechanica)

    1990-01-01

    The present report intends to describe the state of the art of high temperature industrial heat pumps. A description is given of present systems on the market. In addition the research and development efforts on this subject are described. Compression (open as well as closed cycle) systems, as well as absorption heat pumps (including transformers), are considered. This state of the art description is based upon literature studies performed by a team of researchers from the Katholieke Universiteit Leuven, Belgium. The research team also analysed the economics of heat pumps of different types under the present economic conditions. The heat pumps are compared with conventional heating systems. This analysis was performed in order to evaluate the present condition of the heat pump in the European industry.

  6. Faraday imaging at high temperatures

    Science.gov (United States)

    Hackel, Lloyd A.; Reichert, Patrick

    1997-01-01

    A Faraday filter rejects background light from self-luminous thermal objects, but transmits laser light at the passband wavelength, thus providing an ultra-narrow optical bandpass filter. The filter preserves images so a camera looking through a Faraday filter at a hot target illuminated by a laser will not see the thermal radiation but will see the laser radiation. Faraday filters are useful for monitoring or inspecting the uranium separator chamber in an atomic vapor laser isotope separation process. Other uses include viewing welds, furnaces, plasma jets, combustion chambers, and other high temperature objects. These filters are can be produced at many discrete wavelengths. A Faraday filter consists of a pair of crossed polarizers on either side of a heated vapor cell mounted inside a solenoid.

  7. Faraday imaging at high temperatures

    International Nuclear Information System (INIS)

    Hackel, L.A.; Reichert, P.

    1997-01-01

    A Faraday filter rejects background light from self-luminous thermal objects, but transmits laser light at the passband wavelength, thus providing an ultra-narrow optical bandpass filter. The filter preserves images so a camera looking through a Faraday filter at a hot target illuminated by a laser will not see the thermal radiation but will see the laser radiation. Faraday filters are useful for monitoring or inspecting the uranium separator chamber in an atomic vapor laser isotope separation process. Other uses include viewing welds, furnaces, plasma jets, combustion chambers, and other high temperature objects. These filters are can be produced at many discrete wavelengths. A Faraday filter consists of a pair of crossed polarizers on either side of a heated vapor cell mounted inside a solenoid. 3 figs

  8. Modern high-temperature superconductivity

    International Nuclear Information System (INIS)

    Ching Wu Chu

    1988-01-01

    Ever since the discovery of superconductivity in 1911, its unusual scientific challenge and great technological potential have been recognized. For the past three-quarters of a century, superconductivity has done well on the science front. This is because sueprconductivity is interesting not only just in its own right but also in its ability to act as a probe to many exciting nonsuperconducting phenomena. For instance, it has continued to provide bases for vigorous activities in condensed matter science. Among the more recent examples are heavy-fermion systems and organic superconductors. During this same period of time, superconductivity has also performed admirably in the applied area. Many ideas have been conceived and tested, making use of the unique characteristics of superconductivity - zero resistivity, quantum interference phenomena, and the Meissner effect. In fact, it was not until late January 1987 that it became possible to achieve superconductivity with the mere use of liquid nitrogen - which is plentiful, cheap, efficient, and easy to handle - following the discovery of supercondictivity above 90 K in Y-Ba-Cu-O, the first genuine quaternary superconductor. Superconductivity above 90 K poses scientific and technological challenges not previously encountered: no existing theories can adequately describe superconductivity above 40 K and no known techniques can economically process the materials for full-scale applications. In this paper, therefore, the author recalls a few events leading to the discovery of the new class of quaternary compounds with a superconducting transition temperature T c in the 90 K range, describes the current experimental status of high-temperature superconductivity and, finally, discusses the prospect of very-high-temperature superconductivity, i.e., with a T c substantially higher than 100 K. 97 refs., 7 figs

  9. High temperature incineration. Densification of granules from high temperature incineration

    International Nuclear Information System (INIS)

    Voorde, N. van de; Claes, J.; Taeymans, A.; Hennart, D.; Gijbels, J.; Balleux, W.; Geenen, G.; Vangeel, J.

    1982-01-01

    The incineration system of radioactive waste discussed in this report, is an ''integral'' system, which directly transforms a definite mixture of burnable and unburnable radioactive waste in a final product with a sufficient insolubility to be safely disposed of. At the same time, a significant volume reduction occurs by this treatment. The essential part of the system is a high temperature incinerator. The construction of this oven started in 1974, and while different tests with simulated inactive or very low-level active waste were carried out, the whole system was progressively and continuously extended and adapted, ending finally in an installation with completely remote control, enclosed in an alpha-tight room. In this report, a whole description of the plant and of its auxiliary installations will be given; then the already gained experimental results will be summarized. Finally, the planning for industrial operation will be briefly outlined. An extended test with radioactive waste, which was carried out in March 1981, will be discussed in the appendix

  10. A self-assembly SHS approach to form silicon carbide nanofibres

    International Nuclear Information System (INIS)

    Huczko, A; Osica, M; Rutkowska, A; Bystrzejewski, M; Lange, H; Cudzilo, S

    2007-01-01

    β-SiC nanofibres were efficiently produced using the thermal-explosion mode of self-propagating high-temperature synthesis from elemental Si and poly(tetrafluoroethylene) powder mixtures combusted under different operational parameters. The averaged combustion temperatures were evaluated using emission spectroscopy to be above 2000 K. The solid products were characterized by scanning and transmission electron microscopy, chemical analysis, and x-ray diffraction. Under optimum conditions the conversion of starting elemental Si into products exceeded 90%. To obtain pure (about 90%) SiC nanofibres the solid products were processed by wet chemistry

  11. High temperature superconductor current leads

    International Nuclear Information System (INIS)

    Zeimetz, B.; Liu, H.K.; Dou, S.X.

    1996-01-01

    Full text: The use of superconductors in high electrical current applications (magnets, transformers, generators etc.) usually requires cooling with liquid Helium, which is very expensive. The superconductor itself produces no heat, and the design of Helium dewars is very advanced. Therefore most of the heat loss, i.e. Helium consumption, comes from the current lead which connects the superconductor with its power source at room temperature. The current lead usually consists of a pair of thick copper wires. The discovery of the High Temperature Superconductors makes it possible to replace a part of the copper with superconducting material. This drastically reduces the heat losses because a) the superconductor generates no resistive heat and b) it is a very poor thermal conductor compared with the copper. In this work silver-sheathed superconducting tapes are used as current lead components. The work comprises both the production of the tapes and the overall design of the leads, in order to a) maximize the current capacity ('critical current') of the superconductor, b) minimize the thermal conductivity of the silver clad, and c) optimize the cooling conditions

  12. Container floor at high temperatures

    International Nuclear Information System (INIS)

    Reutler, H.; Klapperich, H.J.; Mueller-Frank, U.

    1978-01-01

    The invention describes a floor for container which is stressed at high, changing temperatures and is intended for use in gas-cooled nuclear reactors. Due to the downward cooling gas flow in these types of reactor, the reactor floor is subjected to considerable dimensional changes during switching on and off. In the heating stage, the whole graphite structure of the reactor core and floor expands. In order to avoid arising constraining forces, sufficiently large expansion spaces must be allowed for furthermore restoring forces must be present to close the gaps again in the cooling phase. These restoring forces must be permanently present to prevent loosening of the core cuits amongst one another and thus uncontrollable relative movement. Spring elements are not suitable due to fast fatigue as a result of high temperatures and radiation exposure. It is suggested to have the floor elements supported on rollers whose rolling planes are downwards inclined to a fixed point for support. The construction is described in detail by means of drawings. (GL) [de

  13. High Temperature Superconductor Accelerator Magnets

    CERN Document Server

    AUTHOR|(CDS)2079328; de Rijk, Gijs; Dhalle, Marc

    2016-11-10

    For future particle accelerators bending dipoles are considered with magnetic fields exceeding $20T$. This can only be achieved using high temperature superconductors (HTS). These exhibit different properties from classical low temperature superconductors and still require significant research and development before they can be applied in a practical accelerator magnet. In order to study HTS in detail, a five tesla demonstrator magnet named Feather-M2 is designed and constructed. The magnet is based on ReBCO coated conductor, which is assembled into a $10kA$ class Roebel cable. A new and optimized Aligned Block layout is used, which takes advantage of the anisotropy of the conductor. This is achieved by providing local alignment of the Roebel cable in the coil windings with the magnetic field lines. A new Network Model capable of analyzing transient electro-magnetic and thermal phenomena in coated conductor cables and coils is developed. This model is necessary to solve critical issues in coated conductor ac...

  14. High Temperature Superconducting Underground Cable

    International Nuclear Information System (INIS)

    Farrell, Roger A.

    2010-01-01

    The purpose of this Project was to design, build, install and demonstrate the technical feasibility of an underground high temperature superconducting (HTS) power cable installed between two utility substations. In the first phase two HTS cables, 320 m and 30 m in length, were constructed using 1st generation BSCCO wire. The two 34.5 kV, 800 Arms, 48 MVA sections were connected together using a superconducting joint in an underground vault. In the second phase the 30 m BSCCO cable was replaced by one constructed with 2nd generation YBCO wire. 2nd generation wire is needed for commercialization because of inherent cost and performance benefits. Primary objectives of the Project were to build and operate an HTS cable system which demonstrates significant progress towards commercial progress and addresses real world utility concerns such as installation, maintenance, reliability and compatibility with the existing grid. Four key technical areas addressed were the HTS cable and terminations (where the cable connects to the grid), cryogenic refrigeration system, underground cable-to-cable joint (needed for replacement of cable sections) and cost-effective 2nd generation HTS wire. This was the worlds first installation and operation of an HTS cable underground, between two utility substations as well as the first to demonstrate a cable-to-cable joint, remote monitoring system and 2nd generation HTS.

  15. High-temperature axion potential

    International Nuclear Information System (INIS)

    Dowrick, N.J.; McDougall, N.A.

    1989-01-01

    We investigate the possibility of new terms in the high-temperature axion potential arising from the dynamical nature of the axion field and from higher-order corrections to the θ dependence in the free energy of the quark-gluon plasma. We find that the dynamical nature of the axion field does not affect the potential but that the higher-order effects lead to new terms in the potential which are larger than the term previously considered. However, neither the magnitude nor the sign of the potential can be calculated by a perturbative expansion of the free energy since the coupling is too large. We show that a change in the magnitude of the potential does not significantly affect the bound on the axion decay constant but that the sign of the potential is of crucial importance. By investigating the formal properties of the functional integral within the instanton dilute-gas approximation, we find that the sign of the potential does not change and that the minimum remains at θ=0. We conclude that the standard calculation of the axion energy today is not significantly modified by this investigation

  16. Creep of high temperature composites

    International Nuclear Information System (INIS)

    Sadananda, K.; Feng, C.R.

    1993-01-01

    High temperature creep deformation of composites is examined. Creep of composites depends on the interplay of many factors. One of the basic issues in the design of the creep resistant composites is the ability to predict their creep behavior from the knowledge of the creep behavior of the individual components. In this report, the existing theoretical models based on continuum mechanics principles are reviewed. These models are evaluated using extensive experimental data on molydisilicide-silicon carbide composites obtained by the authors. The analysis shows that the rule of mixture based on isostrain and isostress provides two limiting bounds wherein all other theoretical predictions fall. For molydisilicide composites, the creep is predominantly governed by the creep of the majority phase, i.e. the matrix with fibers deforming elastically. The role of back stresses both on creep rates and activation energies are shown to be minimum. Kinetics of creep in MoSi 2 is shown to be controlled by the process of dislocation glide with climb involving the diffusion of Mo atoms

  17. Secondhand smoke (SHS) exposures: workplace exposures, related perceptions of SHS risk, and reactions to smoking in catering workers in smoking and nonsmoking premises.

    Science.gov (United States)

    Lu, Sandy Qiuying; Fielding, Richard; Hedley, Anthony J; Wong, Lai-Chin; Lai, Hak Kan; Wong, C M; Repace, James L; McGhee, Sarah M

    2011-05-01

    Smoke-free workplace legislation often exempts certain venues. Do smoking (exempted) and nonsmoking (nonexempted) catering premises' workers in Hong Kong report different perceptions of risk from and reactions to nearby smoking as well as actual exposure to secondhand smoke (SHS)? In a cross-sectional survey of 204 nonsmoking catering workers, those from 67 premises where smoking is allowed were compared with workers from 36 nonsmoking premises in Hong Kong on measures of perceptions of risk and behavioral responses to self-reported SHS exposure, plus independent exposure assessment using urinary cotinine. Self-reported workplace SHS exposure prevalence was 57% (95% CI = 49%-65%) in premises prohibiting and 100% (95% CI = 92%-100%) in premises permitting smoking (p < .001). Workers in smoking-permitted premises perceived workplace air quality as poorer (odds ratio [OR] = 9.3, 95% CI = 4.2-20.9) with higher associated risks (OR = 3.7, 95% CI = 1.6-8.6) than workers in smoking-prohibited premises. Workers in smoking-prohibited premises were more bothered by (OR = 0.2, 95% CI = 0.1-0.5) and took more protective action to avoid SHS (OR = 0.2, 95% CI = 0.1-0.4) than workers in smoking-permitted premises. Nonwork exposure was negatively associated with being always bothered by nearby smoking (OR = 0.3, 95% CI = 0.1-0.9), discouraging nearby smoking (OR = 0.5, 95% CI = 0.2-1.1), and discouraging home smoking (OR = 0.4, 95% CI = 0.2-0.9). Urinary cotinine levels were inversely related to workers' avoidance behavior but positively related to their perceived exposure-related risks. Different workplace smoking restrictions predicted actual SHS exposure, exposure-related risk perception, and protective behaviors. Workers from smoking-permitted premises perceived greater SHS exposure-related risks but were more tolerant of these than workers in smoking-prohibited premises. This tolerance might indirectly increase both work and nonwork exposures.

  18. Recent Contributions of Air- and Biomarkers to the Control of Secondhand Smoke (SHS): A Review

    Science.gov (United States)

    Prignot, Jacques J.

    2011-01-01

    Since the publication of the US Surgeon General Reports in 1996 and 2006 and the report of the California Environmental Protection Agency in 1999, many reports have appeared on the contribution of air and biomarkers to different facets of the secondhand smoke (SHS) issue, which are the targets of this review. These recent studies have allowed earlier epidemiological surveys to be biologically validated, and their plausibility demonstrated, quantified the levels of exposure to SHS before the bans in various environments, showed the deficiencies of mechanical control methods and of partial bans and the frequently correct implementation of the efficient total bans. More stringent regulation remains necessary in the public domain (workplaces, hospitality venues, transport sector, etc.) in many countries. Personal voluntary protection efforts against SHS are also needed in the private domain (homes, private cars). The effects of SHS on the cardiovascular, respiratory and neuropsychic systems, on pregnancy and fertility, on cancers and on SHS genotoxicity are confirmed through experimental human studies and through the relationship between markers and prevalence of disease or of markers of disease risk. PMID:21556172

  19. Recent Contributions of Air- and Biomarkers to the Control of Secondhand Smoke (SHS: A Review

    Directory of Open Access Journals (Sweden)

    Jacques J. Prignot

    2011-03-01

    Full Text Available Since the publication of the US Surgeon General Reports in 1996 and 2006 and the report of the California Environmental Protection Agency in 1999, many reports have appeared on the contribution of air and biomarkers to different facets of the secondhand smoke (SHS issue, which are the targets of this review. These recent studies have allowed earlier epidemiological surveys to be biologically validated, and their plausibility demonstrated, quantified the levels of exposure to SHS before the bans in various environments, showed the deficiencies of mechanical control methods and of partial bans and the frequently correct implementation of the efficient total bans. More stringent regulation remains necessary in the public domain (workplaces, hospitality venues, transport sector, etc. in many countries. Personal voluntary protection efforts against SHS are also needed in the private domain (homes, private cars. The effects of SHS on the cardiovascular, respiratory and neuropsychic systems, on pregnancy and fertility, on cancers and on SHS genotoxicity are confirmed through experimental human studies and through the relationship between markers and prevalence of disease or of markers of disease risk.

  20. High Temperature Chemistry at NASA: Hot Topics

    Science.gov (United States)

    Jacobson, Nathan S.

    2014-01-01

    High Temperature issues in aircraft engines Hot section: Ni and Co based Superalloys Oxidation and Corrosion (Durability) at high temperatures. Thermal protection system (TPS) and RCC (Reinforced Carbon-Carbon) on the Space Shuttle Orbiter. High temperatures in other worlds: Planets close to their stars.

  1. High temperature turbine engine structure

    Energy Technology Data Exchange (ETDEWEB)

    Carruthers, W.D.; Boyd, G.L.

    1993-07-20

    A hybrid ceramic/metallic gas turbine is described comprising; a housing defining an inlet, an outlet, and a flow path communicating the inlet with the outlet for conveying a flow of fluid through the housing, a rotor member journaled by the housing in the flow path, the rotor member including a compressor rotor portion rotatively inducting ambient air via the inlet and delivering this air pressurized to the flow path downstream of the compressor rotor, a combustor disposed in the flow path downstream of the compressor receiving the pressurized air along with a supply of fuel to maintain combustion providing a flow of high temperature pressurized combustion products in the flow path downstream thereof, the rotor member including a turbine rotor portion disposed in the flow path downstream of the combustor and rotatively expanding the combustion products toward ambient for flow from the turbine engine via the outlet, the turbine rotor portion providing shaft power driving the compressor rotor portion and an output shaft portion of the rotor member, a disk-like metallic housing portion journaling the rotor member to define a rotational axis therefore, and a disk-like annular ceramic turbine shroud member bounding the flow path downstream of the combustor and circumscribing the turbine rotor portion to define a running clearance therewith, the disk-like ceramic turbine shroud member having a reference axis coaxial with the rotational axis and being spaced axially from the metallic housing portion in mutually parallel concentric relation therewith and a plurality of spacers disposed between ceramic disk-like shroud member and the metallic disk-like housing portion and circumferentially spaced apart, each of the spacers having a first and second end portion having an end surface adjacent the shroud member and the housing portion respectively, the end surfaces having a cylindrical curvature extending transversely relative to the shroud member and the housing portion.

  2. Fabrication of Ni-Al/diamond composite based on layered and gradient structures of SHS system

    Directory of Open Access Journals (Sweden)

    Lu Jiafeng

    2017-01-01

    Full Text Available In this paper layered and gradient structures of Ni-Al SHS system were adopted to manufacture Ni-Al/diamond composites. The effect of the layered and the diamond mesh gradient structures of Ni-Al/diamond on the SHS process and the microstructure of the composites were investigated. It is found that with the increasing of the number of layers, the combustion wave velocity is decreased. The combustion wave velocity for diamond mesh size gradient structure of Ni-Al SHS is faster than that for the layered structure. A well bonding can be formed between diamond and the matrix in layered and gradient structure Ni-Al/diamond composites due to the melt of Ni-Cr brazing alloy.

  3. Crystal structure and magnetic properties of Y{sub 2}(Cu{sub 1−x}Mg{sub x}){sub 2}O{sub 5} obtained by SHS method

    Energy Technology Data Exchange (ETDEWEB)

    Gebrel, Z., E-mail: z_gebrel@yahoo.com; Blanusa, J.; Kusigerski, V.; Spasojevic, V.; Mrakovic, A.; Perovic, M.; Alqat, A.

    2014-01-05

    Highlights: • Y{sub 2}(Cu{sub 1−x}Mg{sub x}){sub 2}O{sub 5} solid solutions were synthesized for the first time by SHS method. • Ferromagnetic interactions are weakened by the induced structure changes. • Metamagnetism of the Y{sub 2}Cu{sub 2}O{sub 5} is preserved up to 15% of Mg concentration. • Significant influence of finite-size Cu–O chains is observed at low temperatures. -- Abstract: The single-phase polycrystalline samples of Y{sub 2}(Cu{sub 1−x}Mg{sub x}){sub 2}O{sub 5}, x = 0.0, 0.05, 0.15 were successfully synthesized by a modified self-propagating high temperature synthesis. Effects of Mg{sup +2} substitution for Cu{sup +2} in metamagnetic Y{sub 2}Cu{sub 2}O{sub 5} on its crystal structure and magnetic properties have been analyzed by X-ray diffraction and magnetic measurements performed within 2–300 K range. Mg doping was found to introduce small distortions in the main intradimmer superexchange paths so that ferromagnetic correlations decrease with Mg concentration. More significant impact of Cu substitution was found on the low temperature magnetism due to the breaking of infinite Cu–O chains. The formation of finite size chains introduces low temperature paramagnetic contribution and reduction in Néel temperature. Overall results give a strong indication that the antiferromagnetic ordering as well as metamagnetism persists up to the 15% of the Mg concentration.

  4. High temperature vapors science and technology

    CERN Document Server

    Hastie, John

    2012-01-01

    High Temperature Vapors: Science and Technology focuses on the relationship of the basic science of high-temperature vapors to some areas of discernible practical importance in modern science and technology. The major high-temperature problem areas selected for discussion include chemical vapor transport and deposition; the vapor phase aspects of corrosion, combustion, and energy systems; and extraterrestrial high-temperature species. This book is comprised of seven chapters and begins with an introduction to the nature of the high-temperature vapor state, the scope and literature of high-temp

  5. High concentration agglomerate dynamics at high temperatures.

    Science.gov (United States)

    Heine, M C; Pratsinis, S E

    2006-11-21

    The dynamics of agglomerate aerosols are investigated at high solids concentrations that are typical in industrial scale manufacture of fine particles (precursor mole fraction larger than 10 mol %). In particular, formation and growth of fumed silica at such concentrations by chemical reaction, coagulation, and sintering is simulated at nonisothermal conditions and compared to limited experimental data and commercial product specifications. Using recent chemical kinetics for silica formation by SiCl4 hydrolysis and neglecting aerosol polydispersity, the evolution of the diameter of primary particles (specific surface area, SSA), hard- and soft-agglomerates, along with agglomerate effective volume fraction (volume occupied by agglomerate) is investigated. Classic Smoluchowski theory is fundamentally limited for description of soft-agglomerate Brownian coagulation at high solids concentrations. In fact, these high concentrations affect little the primary particle diameter (or SSA) but dominate the soft-agglomerate diameter, structure, and volume fraction, leading to gelation consistent with experimental data. This indicates that restructuring and fragmentation should affect product particle characteristics during high-temperature synthesis of nanostructured particles at high concentrations in aerosol flow reactors.

  6. EFFECT OF ULTRASOUND ACTIVATION OF SHS-CHARGE ON THE FINAL PRODUCT

    Directory of Open Access Journals (Sweden)

    V. V. Klubovich

    2016-01-01

    Full Text Available The paper describes the effect of ultrasound activation of dolomite, which is used for producing refractory material by the SHS method, on the final product. X-ray investigation has demonstrated that ultrasound activation of the initial charge brings about changes in the phase composition of the synthesized product.

  7. Deep Trek High Temperature Electronics Project

    Energy Technology Data Exchange (ETDEWEB)

    Bruce Ohme

    2007-07-31

    This report summarizes technical progress achieved during the cooperative research agreement between Honeywell and U.S. Department of Energy to develop high-temperature electronics. Objects of this development included Silicon-on-Insulator (SOI) wafer process development for high temperature, supporting design tools and libraries, and high temperature integrated circuit component development including FPGA, EEPROM, high-resolution A-to-D converter, and a precision amplifier.

  8. High temperature thermoelectric properties of Ca3Co4O9+δ by auto-combustion synthesis and spark plasma sintering

    DEFF Research Database (Denmark)

    Wu, NingYu; Holgate, Tim; Van Nong, Ngo

    2014-01-01

    A rapid method for the synthesis of Ca3Co4O9+δpowder is introduced. The procedure is a modification of the conventional citric-nitrate sol–gelmethod where an auto-combustion process is initiated by a controlled thermal oxidation–reduction reaction. The resulting powders inherit theadvantages...

  9. High temperature phase equilibria and phase diagrams

    CERN Document Server

    Kuo, Chu-Kun; Yan, Dong-Sheng

    2013-01-01

    High temperature phase equilibria studies play an increasingly important role in materials science and engineering. It is especially significant in the research into the properties of the material and the ways in which they can be improved. This is achieved by observing equilibrium and by examining the phase relationships at high temperature. The study of high temperature phase diagrams of nonmetallic systems began in the early 1900s when silica and mineral systems containing silica were focussed upon. Since then technical ceramics emerged and more emphasis has been placed on high temperature

  10. Development of High Temperature Solid Lubricant Coatings

    National Research Council Canada - National Science Library

    Bhattacharya, Rabi

    1999-01-01

    ... environment. To test this approach, UES and Cleveland State University have conducted experiments to form cesium oxythiotungstate, a high temperature lubricant, on Inconel 718 surface from composite coatings...

  11. Advances in high temperature chemistry 1

    CERN Document Server

    Eyring, Leroy

    2013-01-01

    Advances in High Temperature Chemistry, Volume 1 describes the complexities and special and changing characteristics of high temperature chemistry. After providing a brief definition of high temperature chemistry, this nine-chapter book goes on describing the experiments and calculations of diatomic transition metal molecules, as well as the advances in applied wave mechanics that may contribute to an understanding of the bonding, structure, and spectra of the molecules of high temperature interest. The next chapter provides a summary of gaseous ternary compounds of the alkali metals used in

  12. High temperature mechanical properties of iron aluminides

    International Nuclear Information System (INIS)

    Morris, D. G.; Munoz-Morris, M. A.

    2001-01-01

    Considerable attention has been given to the iron aluminide family of intermetallics over the past years since they offer considerable potential as engineering materials for intermediate to high temperature applications, particularly in cases where extreme oxidation or corrosion resistance is required. Despite efforts at alloy development, however, high temperature strength remains low and creep resistance poor. Reasons for the poor high-temperature strength of iron aluminides will be discussed, based on the ordered crystal structure, the dislocation structure found in the materials, and the mechanisms of dislocation pinning operating. Alternative ways of improving high temperature strength by microstructural modification and the inclusion of second phase particles will also be considered. (Author)

  13. The magnetic properties of strontium hexaferrites with La-Cu substitution prepared by SHS method

    International Nuclear Information System (INIS)

    Qiao Liang; You Lishun; Zheng Jingwu; Jiang Liqiang; Sheng Jiawei

    2007-01-01

    La-Cu substituted strontium hexaferrites with the chemical composition of Sr 1- x La x Fe 12- x Cu x O 19 were prepared by self-propagating high-temperature synthesis. The effects of La-Cu substitution on the microstructure and magnetic properties of Sr-ferrites were studied. The XRD results show that all the samples are single SrM-type phase for x 1- x La x Fe 12- x Cu x O 19 are remarkably improved for x 2+ by La 3+ in the Sr-layer makes the Cu 2+ preferably substitutes the Fe 3+ in 4f 2 sites is predicted to be associated with the improvement of the magnetic properties of La-Cu substituted samples

  14. Evaluation of high temperature pressure sensors

    International Nuclear Information System (INIS)

    Choi, In-Mook; Woo, Sam-Yong; Kim, Yong-Kyu

    2011-01-01

    It is becoming more important to measure the pressure in high temperature environments in many industrial fields. However, there is no appropriate evaluation system and compensation method for high temperature pressure sensors since most pressure standards have been established at room temperature. In order to evaluate the high temperature pressure sensors used in harsh environments, such as high temperatures above 250 deg. C, a specialized system has been constructed and evaluated in this study. The pressure standard established at room temperature is connected to a high temperature pressure sensor through a chiller. The sensor can be evaluated in conditions of changing standard pressures at constant temperatures and of changing temperatures at constant pressures. According to the evaluation conditions, two compensation methods are proposed to eliminate deviation due to sensitivity changes and nonlinear behaviors except thermal hysteresis.

  15. Yttrium silicate as an oxidation protection layer for C/C-SiC materials. Synthesis, electrophoretic deposition and high temperature oxidation; Yttriumsilikat als Oxidationsschutzschicht fuer C/C-SiC-Werkstoffe. Synthese, elektrophoretische Abscheidung und Hochtemperaturoxidation

    Energy Technology Data Exchange (ETDEWEB)

    Grosse-Brauckmann, Jana

    2012-07-01

    Carbon fibre reinforced carbon composites are promising materials for high temperature applications. They exhibit excellent thermal shock resistance and nearly constant mechanical strength. A serious draw-back of this material is their poor resistivity towards oxidation at temperatures above 400 C. To make use of the very good thermal stability the material needs an outer oxidation protection coating. Silicon carbide has been successfully employed at temperatures up to 1300 C. To increase the application range towards higher temperatures an outer environmental barrier coating is needed. In the present work yttrium silicates were used to complement the silicon carbide coated carbon fibre reinforced carbon material. Both stable compounds in the quasi-binary system Y{sub 2}O{sub 3}-SiO{sub 2}, yttrium orthosilicate (Y{sub 2}SiO{sub 5}) and yttrium pyrosilicate (Y{sub 2}Si{sub 2}O{sub 7}), were separately applied to the test samples via electrophoretic deposition. Suitable suspensions were prepared in butanone with iodine as charging agent to adjust conductivity and particle charge. Galvanostatic deposition obeys a linear growth law for the selected deposition times. Alternatively the feasibility of direct electrophoretic deposition from an yttrium silicate precursor sol was tested. Emphasis was put on the development of a suitable sol-system based on alkoxide precursors. Samples coated either with Y{sub 2}SiO{sub 5} or Y{sub 2}Si{sub 2}O{sub 7} were investigated using thermogravimetric high temperature oxidation in the temperature range from 1450 C to 1650 C, respectively. The coated samples exhibited very good oxidation resistance up to temperatures of 1600 C, while the performance was reduced at 1650 C to a few hours. All samples showed a parabolic mass increase with time indicating a diffusion limited process governing the oxidation kinetics. The cross sections of the samples show a sharp border between the SiO{sub 2} that crystallizes to cristobalite and the

  16. Quantum electrodynamics at high temperature. 2

    International Nuclear Information System (INIS)

    Alvarez-Estrada, R.F.

    1988-01-01

    The photon sector of QED in d = 3 spatial dimensions is analyzed at high temperature thereby generalizing nontrivially a previous study for d = 1. The imaginary time formalism and an improved renormalized perturbation theory which incorporates second order Debye screening are used. General results are presented for the leading high temperature contributions to all renormalized connected photon Green's functions for fixed external momenta (much smaller than the temperature) to all orders in the improved perturbation theory. Those leading contributions are ultraviolet finite, infrared convergent and gauge invariant, and display an interesting form of dimensional reduction at high temperature. A new path integral representations is given for the high temperature partition function with an external photon source, which is shown to generate all leading high temperature Green's functions mentioned above, and, so, it displays neatly the kind of dimensional reduction which makes QED to become simpler at high temperature. This limiting partition function corresponds to an imaginary time dependent electron positron field interacting with an electromagnetic field at zero imaginary time, and it depends on the renormalized electron mass and electric charge, the second order contribution to the usual renormalization constant Z 3 and a new mass term, which is associated to the photon field with vanishing Lorentz index. The new mass term corresponds to a finite number of diagrams in the high temperature improved perturbation theory and carriers ultraviolet divergences which are compensated for by other contributions (so that the leading high temperature Green's functions referred to above are ultraviolet finite). The dominant high temperature contributions to the renormalized thermodynamic potential to all perturbative orders: i) are given in terms of the above leading high-temperature contributions to the photon Green's functions (except for a few diagrams of low order in the

  17. Flash pyrolysis at high temperature of ligno-cellulosic biomass and its components - production of synthesis gas; Pyrolyse flash a haute temperature de la biomasse ligno-cellulosique et de ses composes - production de gaz de synthese

    Energy Technology Data Exchange (ETDEWEB)

    Couhert, C

    2007-11-15

    Pyrolysis is the first stage of any thermal treatment of biomass and governs the formation of synthesis gas for the production of electricity, hydrogen or liquid fuels. The objective of this work is to establish a link between the composition of a biomass and its pyrolysis gas. We study experimental flash pyrolysis and fix the conditions in which quantities of gas are maximal, while aiming at a regime without heat and mass transfer limitations (particles about 100 {mu}m): temperature of 950 C and residence time of about 2 s. Then we try to predict gas yields of any biomass according to its composition, applicable in this situation where thermodynamic equilibrium is not reached. We show that an additivity law does not allow correlating gas yields of a biomass with fractions of cellulose, hemi-cellulose and lignin contained in this biomass. Several explanations are suggested and examined: difference of pyrolytic behaviour of the same compound according to the biomass from which it is extracted, interactions between compounds and influence of mineral matter. With the aim of industrial application, we study pyrolysis of millimetric and centimetric size particles, and make a numerical simulation of the reactions of pyrolysis gases reforming. This simulation shows that the choice of biomass affects the quantities of synthesis gas obtained. (author)

  18. Materials corrosion and protection at high temperatures

    International Nuclear Information System (INIS)

    Balbaud, F.; Desgranges, Clara; Martinelli, Laure; Rouillard, Fabien; Duhamel, Cecile; Marchetti, Loic; Perrin, Stephane; Molins, Regine; Chevalier, S.; Heintz, O.; David, N.; Fiorani, J.M.; Vilasi, M.; Wouters, Y.; Galerie, A.; Mangelinck, D.; Viguier, B.; Monceau, D.; Soustelle, M.; Pijolat, M.; Favergeon, J.; Brancherie, D.; Moulin, G.; Dawi, K.; Wolski, K.; Barnier, V.; Rebillat, F.; Lavigne, O.; Brossard, J.M.; Ropital, F.; Mougin, J.

    2011-01-01

    This book was made from the lectures given in 2010 at the thematic school on 'materials corrosion and protection at high temperatures'. It gathers the contributions from scientists and engineers coming from various communities and presents a state-of-the-art of the scientific and technological developments concerning the behaviour of materials at high temperature, in aggressive environments and in various domains (aerospace, nuclear, energy valorization, and chemical industries). It supplies pedagogical tools to grasp high temperature corrosion thanks to the understanding of oxidation mechanisms. It proposes some protection solutions for materials and structures. Content: 1 - corrosion costs; macro-economical and metallurgical approach; 2 - basic concepts of thermo-chemistry; 3 - introduction to the Calphad (calculation of phase diagrams) method; 4 - use of the thermodynamic tool: application to pack-cementation; 5 - elements of crystallography and of real solids description; 6 - diffusion in solids; 7 - notions of mechanics inside crystals; 8 - high temperature corrosion: phenomena, models, simulations; 9 - pseudo-stationary regime in heterogeneous kinetics; 10 - nucleation, growth and kinetic models; 11 - test experiments in heterogeneous kinetics; 12 - mechanical aspects of metal/oxide systems; 13 - coupling phenomena in high temperature oxidation; 14 - other corrosion types; 15 - methods of oxidized surfaces analysis at micro- and nano-scales; 16 - use of SIMS in the study of high temperature corrosion of metals and alloys; 17 - oxidation of ceramics and of ceramic matrix composite materials; 18 - protective coatings against corrosion and oxidation; 19 - high temperature corrosion in the 4. generation of nuclear reactor systems; 20 - heat exchangers corrosion in municipal waste energy valorization facilities; 21 - high temperature corrosion in oil refining and petrochemistry; 22 - high temperature corrosion in new energies industry. (J.S.)

  19. High temperature alloys and ceramic heat exchanger

    International Nuclear Information System (INIS)

    Okamoto, Masaharu

    1984-04-01

    From the standpoint of energy saving, the future operating temperatures of process heat and gas turbine plants will become higher. For this purpose, ceramics is the most promissing candidate material in strength for application to high-temperature heat exchangers. This report deals with a servey of characteristics of several high-temperature metallic materials and ceramics as temperature-resistant materials; including a servey of the state-of-the-art of ceramic heat exchanger technologies developed outside of Japan, and a study of their application to the intermediate heat exchanger of VHTR (a very-high-temperature gas-cooled reactor). (author)

  20. High-temperature peridotites - lithospheric or asthenospheric?

    International Nuclear Information System (INIS)

    Hops, J.J.; Gurney, J.J.

    1990-01-01

    High-temperature peridotites by definition yield equilibration temperatures greater than 1100 degrees C. On the basis of temperature and pressure calculations, these high-temperature peridotites are amongst the deepest samples entrained by kimberlites on route to the surface. Conflicting models proposing either a lithospheric or asthenospheric origin for the high-temperature peridotites have been suggested. A detailed study of these xenoliths from a single locality, the Jagersfontein kimberlite in the Orange Free State, has been completed as a means of resolving this controversy. 10 refs., 2 figs

  1. High temperature resistant cermet and ceramic compositions

    Science.gov (United States)

    Phillips, W. M. (Inventor)

    1978-01-01

    Cermet compositions having high temperature oxidation resistance, high hardness and high abrasion and wear resistance, and particularly adapted for production of high temperature resistant cermet insulator bodies are presented. The compositions are comprised of a sintered body of particles of a high temperature resistant metal or metal alloy, preferably molybdenum or tungsten particles, dispersed in and bonded to a solid solution formed of aluminum oxide and silicon nitride, and particularly a ternary solid solution formed of a mixture of aluminum oxide, silicon nitride and aluminum nitride. Also disclosed are novel ceramic compositions comprising a sintered solid solution of aluminum oxide, silicon nitride and aluminum nitride.

  2. High temperature oxidation behavior of ODS steels

    Science.gov (United States)

    Kaito, T.; Narita, T.; Ukai, S.; Matsuda, Y.

    2004-08-01

    Oxide dispersion strengthened (ODS) steels are being developing for application as advanced fast reactor cladding and fusion blanket materials, in order to allow increased operation temperature. Oxidation testing of ODS steel was conducted under a controlled dry air atmosphere to evaluate the high temperature oxidation behavior. This showed that 9Cr-ODS martensitic steels and 12Cr-ODS ferritic steels have superior high temperature oxidation resistance compared to 11 mass% Cr PNC-FMS and 17 mass% Cr ferritic stainless steel. This high temperature resistance is attributed to earlier formation of the protective α-Cr 2O 3 on the outer surface of ODS steels.

  3. Symposium on high temperature and materials chemistry

    International Nuclear Information System (INIS)

    1989-10-01

    This volume contains the written proceedings of the Symposium on High Temperature and Materials Chemistry held in Berkeley, California on October 24--25, 1989. The Symposium was sponsored by the Materials and Chemical Sciences Division of Lawrence Berkeley Laboratory and by the College of Chemistry of the University of California at Berkeley to discuss directions, trends, and accomplishments in the field of high temperature and materials chemistry. Its purpose was to provide a snapshot of high temperature and materials chemistry and, in so doing, to define status and directions

  4. Symposium on high temperature and materials chemistry

    Energy Technology Data Exchange (ETDEWEB)

    1989-10-01

    This volume contains the written proceedings of the Symposium on High Temperature and Materials Chemistry held in Berkeley, California on October 24--25, 1989. The Symposium was sponsored by the Materials and Chemical Sciences Division of Lawrence Berkeley Laboratory and by the College of Chemistry of the University of California at Berkeley to discuss directions, trends, and accomplishments in the field of high temperature and materials chemistry. Its purpose was to provide a snapshot of high temperature and materials chemistry and, in so doing, to define status and directions.

  5. Ceramic synthesis of 0.08BiGaO3-0.90BaTiO3-0.02LiNbO3 under high pressure and high temperature

    Science.gov (United States)

    Hui, Jin; Yong, Li; Mou-Sheng, Song; Lin, Chen; Xiao-Peng, Jia; Hong-An, Ma

    2016-07-01

    In this paper, the preparation of 0.08BiGaO3-0.90BaTiO3-0.02LiNbO3 is investigated at pressure 3.8 GPa and temperature 1100-1200 °C. Experimental results indicate that not only is the sintered rate more effective, but also the sintered temperature is lower under high pressure and high temperature than those of under normal pressure. It is thought that the adscititious pressure plays the key role in this process, which is discussed in detail. The composition and the structure of the as-prepared samples are recorded by XRD patterns. The result shows that the phases of BaTiO3, BaBiO2.77, and Ba2Bi4Ti5O18 with piezoelectric ceramic performance generate in the sintered samples. Furthermore, the surface morphology characteristics of the typical samples are also investigated using a scanning electron microscope. It indicates that the grain size and surface structure of the samples are closely related to the sintering temperature and sintering time. It is hoped that this study can provide a new train of thought for the preparation of lead-free piezoelectric ceramics with excellent performance. Project supported by the National Natural Science Foundation of China (Grant No. 51172089), the Natural Science Foundation of Education Department of Guizhou Province, China (Grant Nos. KY [2013]183 and LH [2015]7232), and the Research Fund for the Doctoral Program of Tongren University, China (Grant No. DS1302).

  6. Hydrogen production from fusion reactors coupled with high temperature electrolysis

    International Nuclear Information System (INIS)

    Fillo, J.A.; Powell, J.R.; Steinberg, M.

    The decreasing availability of fossil fuels emphasizes the need to develop systems which will produce synthetic fuel to substitute for and complement the natural supply. An important first step in the synthesis of liquid and gaseous fuels is the production of hydrogen. Thermonuclear fusion offers an inexhaustible source of energy for the production of hydrogen from water. Processes which may be considered for this purpose include electrolysis, thermochemical decomposition or thermochemical-electrochemical hybrid cycles. Preliminary studies at Brookhaven indicate that high temperature electrolysis has the highest potential efficiency for production of hydrogen from fusion. Depending on design electric generation efficiencies of approximately 40 to 60 percent and hydrogen production efficiencies of approximately 50 to 70 percent are projected for fusion reactors using high temperature blankets

  7. Experimental investigation on AC unit integrated with sensible heat storage (SHS)

    Science.gov (United States)

    Aziz, N. A.; Amin, N. A. M.; Majid, M. S. A.; Hussin, A.; Zhubir, S.

    2017-10-01

    The growth in population and economy has increases the energy demand and raises the concerns over the sustainable energy source. Towards the sustainable development, energy efficiency in buildings has become a prime objective. In this paper, the integration of thermal energy storage was studied. This paper presents an experimental investigation on the performance of an air conditioning unit integrated with sensible heat storage (SHS) system. The results were compared to the conventional AC systems in the terms of average electricity usage, indoor temperature and the relative humidity inside the experimented room (cabin container). Results show that the integration of water tank as an SHS reduces the electricity usage by 5%, while the integration of well-insulated water tank saves up to 8% of the electricity consumption.

  8. Successful PV SHS project in developing countries? barriers and way foreword

    International Nuclear Information System (INIS)

    Villers, T. de; Watchueng, S.; Shanker, A.; Rambaud-Measson, D.

    2004-01-01

    The implementation of a solar home system (SHS) programme in developing countries is complex and its success is dependant on many factors that are usually difficult to handle. The objective of this paper is to address financial and organisational aspects barriers and measures to PV programme implementation drawn from two specific projects in West Africa. Technical aspects on quality control and monitoring are also discussed. (authors)

  9. High Temperature Electrostrictive Ceramics, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — TRS Technologies proposes to develop high temperature electrostrictors from bismuth-based ferroelectrics. These materials will exhibit high strain and low loss in...

  10. High Temperature Superconductor Bolometers for Planetary Science

    Data.gov (United States)

    National Aeronautics and Space Administration — This work is a design study of an instrument optimized for JPL's novel high temperature superconductor bolometers. The work involves designing an imaging...

  11. Resonance integral calculations for high temperature reactors

    International Nuclear Information System (INIS)

    Blake, J.P.H.

    1960-02-01

    Methods of calculation of resonance integrals of finite dilution and temperature are given for both, homogeneous and heterogeneous geometries, together with results obtained from these methods as applied to the design of high temperature reactors. (author)

  12. Some theories of high temperature superconductivity

    International Nuclear Information System (INIS)

    Cohen, M.L.

    1990-01-01

    In this paper a brief review is given of some historical aspects of theoretical research on superconductivity including a discussion of BCS theory and some theoretical proposals for mechanisms which can cause superconductivity at high temperatures

  13. Panel report on high temperature ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Nolet, T C [ed.

    1979-01-01

    Fundamental research is reported concerning high temperature ceramics for application in turbines, engines, batteries, gasifiers, MHD, fuel cells, heat exchangers, and hot wall combustors. Ceramics microstructure and behavior are included. (FS)

  14. Novel High Temperature Strain Gauge, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced high-temperature sensor technology and bonding methods are of great interests in designing and developing advanced future aircraft. Current state-of-the-art...

  15. High temperature superconductors and other superfluids

    CERN Document Server

    Alexandrov, A S

    2017-01-01

    Written by eminent researchers in the field, this text describes the theory of superconductivity and superfluidity starting from liquid helium and a charged Bose-gas. It also discusses the modern bipolaron theory of strongly coupled superconductors, which explains the basic physical properties of high-temperature superconductors. This book will be of interest to fourth year graduate and postgraduate students, specialist libraries, information centres and chemists working in high-temperature superconductivity.

  16. PLA recycling by hydrolysis at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Cristina, Annesini Maria; Rosaria, Augelletti; Sara, Frattari, E-mail: sara.frattari@uniroma1.it; Fausto, Gironi [Department of Chemical Engineering Materials Environment, University of Rome “La Sapienza”, Via Eudossiana 18– 00184 Roma (Italy)

    2016-05-18

    In this work the process of PLA hydrolysis at high temperature was studied, in order to evaluate the possibility of chemical recycling of this polymer bio-based. In particular, the possibility to obtain the monomer of lactic acid from PLA degradation was investigated. The results of some preliminary tests, performed in a laboratory batch reactor at high temperature, are presented: the experimental results show that the complete degradation of PLA can be obtained in relatively low reaction times.

  17. High-temperature materials and structural ceramics

    International Nuclear Information System (INIS)

    1990-01-01

    This report gives a survey of research work in the area of high-temperature materials and structural ceramics of the KFA (Juelich Nuclear Research Center). The following topics are treated: (1) For energy facilities: ODS materials for gas turbine blades and heat exchangers; assessment of the remaining life of main steam pipes, material characterization and material stress limits for First-Wall components; metallic and graphitic materials for high-temperature reactors. (2) For process engineering plants: composites for reformer tubes and cracking tubes; ceramic/ceramic joints and metal/ceramic and metal/metal joints; Composites and alloys for rolling bearing and sliding systems up to application temperatures of 1000deg C; high-temperature corrosion of metal and ceramic material; porous ceramic high-temperature filters and moulding coat-mix techniques; electrically conducting ceramic material (superconductors, fuel cells, solid electrolytes); high-temperature light sources (high-temperature chemistry); oil vapor engines with caramic components; ODS materials for components in diesel engines and vehicle gas turbines. (MM) [de

  18. On high temperature strength of carbon steels

    International Nuclear Information System (INIS)

    Ichinose, Hiroyuki; Tamura, Manabu; Kanero, Takahiro; Ihara, Yoshihito

    1977-01-01

    In the steels for high temperature use, the oxidation resistance is regarded as important, but carbon steels show enough oxidation resistance to be used continuously at the temperature up to 500 deg. C if the strength is left out of consideration, and up to 450 deg. C even when the strength is taken into account. Moreover, the production is easy, the workability and weldability are good, and the price is cheap in carbon steels as compared with alloy steels. In the boilers for large thermal power stations, 0.15-0.30% C steels are used for reheater tubes, main feed water tubes, steam headers, wall water tubes, economizer tubes, bypass pipings and others, and they account for 70% of all steel materials used for the boilers of 350 MW class and 30% in 1000 MW class. The JIS standard for the carbon steels for high temperature use and the related standards in foreign countries are shown. The high temperature strength of carbon steels changes according to the trace elements, melting and heat treatment as well as the main compositions of C, Si and Mn. Al and N affect the high temperature strength largely. The characteristics of carbon steels after the heating for hours, the factors controlling the microstructure and high temperature strength, and the measures to improve the high temperature strength of carbon steels are explained. (Kako, I.)

  19. High temperature nuclear heat for isothermal reformer

    International Nuclear Information System (INIS)

    Epstein, M.

    2000-01-01

    High temperature nuclear heat can be used to operate a reformer with various feedstock materials. The product synthesis gas can be used not only as a source for hydrogen and as a feedstock for many essential chemical industries, such as ammonia and other products, but also for methanol and synthetic fuels. It can also be burnt directly in a combustion chamber of a gas turbine in an efficient combined cycle and generate electricity. In addition, it can be used as fuel for fuel cells. The reforming reaction is endothermic and the contribution of the nuclear energy to the calorific value of the final product (synthesis gas) is about 25%, compared to the calorific value of the feedstock reactants. If the feedstock is from fossil origin, the nuclear energy contributes to a substantial reduction in CO 2 emission to the atmosphere. The catalytic steam reforming of natural gas is the most common process. However, other feedstock materials, such as biogas, landfill gas and CO 2 -contaminated natural gas, can be reformed as well, either directly or with the addition of steam. The industrial steam reformers are generally fixed bed reactors, and their performance is strongly affected by the heat transfer from the furnace to the catalyst tubes. In top-fired as well as side-fired industrial configurations of steam reformers, the radiation is the main mechanism of heat transfer and convection heat transfer is negligible. The flames and the furnace gas constitute the main sources of the heat. In the nuclear reformers developed primarily in Germany, in connection with the EVA-ADAM project (closed cycle), the nuclear heat is transferred from the nuclear reactor coolant gas by convection, using a heating jacket around the reformer tubes. In this presentation it is proposed that the helium in a secondary loop, used to cool the nuclear reactor, will be employed to evaporate intermediate medium, such as sodium, zinc and aluminum chloride. Then, the vapors of the medium material transfer

  20. Investigations into High Temperature Components and Packaging

    Energy Technology Data Exchange (ETDEWEB)

    Marlino, L.D.; Seiber, L.E.; Scudiere, M.B.; M.S. Chinthavali, M.S.; McCluskey, F.P.

    2007-12-31

    The purpose of this report is to document the work that was performed at the Oak Ridge National Laboratory (ORNL) in support of the development of high temperature power electronics and components with monies remaining from the Semikron High Temperature Inverter Project managed by the National Energy Technology Laboratory (NETL). High temperature electronic components are needed to allow inverters to operate in more extreme operating conditions as required in advanced traction drive applications. The trend to try to eliminate secondary cooling loops and utilize the internal combustion (IC) cooling system, which operates with approximately 105 C water/ethylene glycol coolant at the output of the radiator, is necessary to further reduce vehicle costs and weight. The activity documented in this report includes development and testing of high temperature components, activities in support of high temperature testing, an assessment of several component packaging methods, and how elevated operating temperatures would impact their reliability. This report is organized with testing of new high temperature capacitors in Section 2 and testing of new 150 C junction temperature trench insulated gate bipolar transistor (IGBTs) in Section 3. Section 4 addresses some operational OPAL-GT information, which was necessary for developing module level tests. Section 5 summarizes calibration of equipment needed for the high temperature testing. Section 6 details some additional work that was funded on silicon carbide (SiC) device testing for high temperature use, and Section 7 is the complete text of a report funded from this effort summarizing packaging methods and their reliability issues for use in high temperature power electronics. Components were tested to evaluate the performance characteristics of the component at different operating temperatures. The temperature of the component is determined by the ambient temperature (i.e., temperature surrounding the device) plus the

  1. NOVEL CERAMIC MEMBRANE FOR HIGH TEMPERATURE CARBON DIOXIDE SEPARATION; SEMIANNUAL

    International Nuclear Information System (INIS)

    Jerry Y.S. Lin; Jun-ichi Ida

    2001-01-01

    This project is aimed at demonstrating technical feasibility for a lithium zirconate based dense ceramic membrane for separation of carbon dioxide from flue gas at high temperature. The research work conducted in this reporting period was focused on several fundamental issues of lithium zirconate important to the development of the dense inorganic membrane. These fundamental issues include material synthesis of lithium zirconate, phases and microstructure of lithium zirconate and structure change of lithium zirconate during sorption/desorption process. The results show difficulty to prepare the dense ceramic membrane from pure lithium zirconate, but indicate a possibility to prepare the dense inorganic membrane for carbon dioxide separation from a composite lithium zirconate

  2. Raman spectroscopy in high temperature chemistry

    International Nuclear Information System (INIS)

    Drake, M.C.; Rosenblatt, G.M.

    1979-01-01

    Raman spectroscopy (largely because of advances in laser and detector technology) is assuming a rapidly expanding role in many areas of research. This paper reviews the contribution of Raman spectroscopy in high temperature chemistry including molecular spectroscopy on static systems and gas diagnostic measurements on reactive systems. An important aspect of high temperature chemistry has been the identification and study of the new, and often unusual, gaseous molecules which form at high temperatures. Particularly important is the investigation of vibrational-rotational energy levels and electronic states which determine thermodynamic properties and describe chemical bonding. Some advantages and disadvantages of high temperature Raman spectrosocpy for molecular studies on static systems are compared: (1) Raman vs infrared; (2) gas-phase vs condensed in matries; and (3) atmospheric pressure Raman vs low pressure techniques, including mass spectroscopy, matrix isolation, and molecular beams. Raman studies on molecular properties of gases, melts, and surfaces are presented with emphasis on work not covered in previous reviews of high temperature and matrix isolation Raman spectroscopy

  3. Raman spectroscopy in high temperature chemistry

    International Nuclear Information System (INIS)

    Drake, M.C.; Rosenblatt, G.M.

    1979-01-01

    Raman spectroscopy (largely because of advances in laser and detector technology) is assuming a rapidly expanding role in many areas of research. This paper reviews the contribution of Raman spectroscopy in high temperature chemistry including molecular spectroscopy on static systems and gas diagnostic measurements on reactive systems. An important aspect of high temperature chemistry has been the identification and study of the new, and often unusual, gaseous molecules which form at high temperatures. Particularly important is the investigation of vibrational-rotational energy levels and electronic states which determine thermodynamic properties and describe chemical bonding. Some advantages and disadvantages of high temperature Raman spectrosocpy for molecular studies on static systems are compared: (1) Raman vs infrared; (2) gas-phase vs condensed in matrices; and (3) atmospheric pressure Raman vs low pressure techniques, including mass spectroscopy, matrix isolation, and molecular beams. Raman studies on molecular properties of gases, melts, and surfaces are presented with emphasis on work not covered in previous reviews of high temperature and matrix isolation Raman spectroscopy

  4. Sandia_HighTemperatureComponentEvaluation_2015

    Energy Technology Data Exchange (ETDEWEB)

    Cashion, Avery T. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-03-01

    The objective of this project is to perform independent evaluation of high temperature components to determine their suitability for use in high temperature geothermal tools. Development of high temperature components has been increasing rapidly due to demand from the high temperature oil and gas exploration and aerospace industries. Many of these new components are at the late prototype or first production stage of development and could benefit from third party evaluation of functionality and lifetime at elevated temperatures. In addition to independent testing of new components, this project recognizes that there is a paucity of commercial-off-the-shelf COTS components rated for geothermal temperatures. As such, high-temperature circuit designers often must dedicate considerable time and resources to determine if a component exists that they may be able to knead performance out of to meet their requirements. This project aids tool developers by characterization of select COTS component performances beyond published temperature specifications. The process for selecting components includes public announcements of project intent (e.g., FedBizOps), direct discussions with candidate manufacturers,and coordination with other DOE funded programs.

  5. Nuclear fuels for very high temperature applications

    International Nuclear Information System (INIS)

    Lundberg, L.B.; Hobbins, R.R.

    1992-01-01

    The success of the development of nuclear thermal propulsion devices and thermionic space nuclear power generation systems depends on the successful utilization of nuclear fuel materials at temperatures in the range 2000 to 3500 K. Problems associated with the utilization of uranium bearing fuel materials at these very high temperatures while maintaining them in the solid state for the required operating times are addressed. The critical issues addressed include evaporation, melting, reactor neutron spectrum, high temperature chemical stability, fabrication, fission induced swelling, fission product release, high temperature creep, thermal shock resistance, and fuel density, both mass and fissile atom. Candidate fuel materials for this temperature range are based on UO 2 or uranium carbides. Evaporation suppression, such as a sealed cladding, is required for either fuel base. Nuclear performance data needed for design are sparse for all candidate fuel forms in this temperature range, especially at the higher temperatures

  6. Application of High Temperature Superconductors to Accelerators

    CERN Document Server

    Ballarino, A

    2000-01-01

    Since the discovery of high temperature superconductivity, a large effort has been made by the scientific community to investigate this field towards a possible application of the new oxide superconductors to different devices like SMES, magnetic bearings, flywheels energy storage, magnetic shielding, transmission cables, fault current limiters, etc. However, all present day large scale applications using superconductivity in accelerator technology are based on conventional materials operating at liquid helium temperatures. Poor mechanical properties, low critical current density and sensitivity to the magnetic field at high temperature are the key parameters whose improvement is essential for a large scale application of high temperature superconductors to such devices. Current leads, used for transferring currents from the power converters, working at room temperature, into the liquid helium environment, where the magnets are operating, represent an immediate application of the emerging technology of high t...

  7. Ultra-high temperature direct propulsion

    International Nuclear Information System (INIS)

    Araj, K.J.; Slovik, G.; Powell, J.R.; Ludewig, H.

    1987-01-01

    Potential advantages of ultra-high exhaust temperature (3000 K - 4000 K) direct propulsion nuclear rockets are explored. Modifications to the Particle Bed Reactor (PBR) to achieve these temperatures are described. Benefits of ultra-high temperature propulsion are discussed for two missions - orbit transfer (ΔV = 5546 m/s) and interplanetary exploration (ΔV = 20000 m/s). For such missions ultra-high temperatures appear to be worth the additional complexity. Thrust levels are reduced substantially for a given power level, due to the higher enthalpy caused by partial disassociation of the hydrogen propellant. Though technically challenging, it appears potentially feasible to achieve such ultra high temperatures using the PBR

  8. High temperature high vacuum creep testing facilities

    International Nuclear Information System (INIS)

    Matta, M.K.

    1985-01-01

    Creep is the term used to describe time-dependent plastic flow of metals under conditions of constant load or stress at constant high temperature. Creep has an important considerations for materials operating under stresses at high temperatures for long time such as cladding materials, pressure vessels, steam turbines, boilers,...etc. These two creep machines measures the creep of materials and alloys at high temperature under high vacuum at constant stress. By the two chart recorders attached to the system one could register time and temperature versus strain during the test . This report consists of three chapters, chapter I is the introduction, chapter II is the technical description of the creep machines while chapter III discuss some experimental data on the creep behaviour. Of helium implanted stainless steel. 13 fig., 3 tab

  9. High Temperature, Wireless Seismometer Sensor for Venus

    Science.gov (United States)

    Ponchak, George E.; Scardelletti, Maximilian C.; Taylor, Brandt; Beard, Steve; Meredith, Roger D.; Beheim, Glenn M.; Hunter Gary W.; Kiefer, Walter S.

    2012-01-01

    Space agency mission plans state the need to measure the seismic activity on Venus. Because of the high temperature on Venus (462? C average surface temperature) and the difficulty in placing and wiring multiple sensors using robots, a high temperature, wireless sensor using a wide bandgap semiconductor is an attractive option. This paper presents the description and proof of concept measurements of a high temperature, wireless seismometer sensor for Venus. A variation in inductance of a coil caused by the movement of an aluminum probe held in the coil and attached to a balanced leaf-spring seismometer causes a variation of 700 Hz in the transmitted signal from the oscillator/sensor system at 426? C. This result indicates that the concept may be used on Venus.

  10. Fusion blanket high-temperature heat transfer

    International Nuclear Information System (INIS)

    Fillo, J.A.

    1983-01-01

    Deep penetration of 14 MeV neutrons makes two-temperature region blankets feasible. A relatively low-temperature (approx. 300 0 C) metallic structure is the vacuum/coolant pressure boundary, while the interior of the blanket, which is a simple packed bed of nonstructural material, operates at very high temperatures (>1000 0 C). The water-cooled shell structure is thermally insulated from the steam-cooled interior. High-temperature steam can dramatically increase the efficiency of electric power generation, as well as produce hydrogen and oxygen-based synthetic fuels at high-efficiency

  11. Brazing, high temperature brazing and diffusion welding

    International Nuclear Information System (INIS)

    1989-01-01

    Brazing and high temperature brazing is a major joining technology within the economically important fields of energy technology, aerospace and automotive engineering, that play a leading role for technical development everywhere in the world. Moreover diffusion welding has gained a strong position especially in advanced technologies due to its specific advantages. Topics of the conference are: 1. high-temperature brazing in application; 2. basis of brazing technology; 3. brazing of light metals; 4. nondestructive testing; 5. diffusion welding; 6. brazing of hard metals and other hard materials; and 7. ceramic-metal brazing. 28 of 20 lectures and 20 posters were recorded separately for the database ENERGY. (orig./MM) [de

  12. Materials for high-temperature fuel cells

    CERN Document Server

    Jiang, San Ping; Lu, Max

    2013-01-01

    There are a large number of books available on fuel cells; however, the majority are on specific types of fuel cells such as solid oxide fuel cells, proton exchange membrane fuel cells, or on specific technical aspects of fuel cells, e.g., the system or stack engineering. Thus, there is a need for a book focused on materials requirements in fuel cells. Key Materials in High-Temperature Fuel Cells is a concise source of the most important and key materials and catalysts in high-temperature fuel cells with emphasis on the most important solid oxide fuel cells. A related book will cover key mater

  13. Melt processed high-temperature superconductors

    CERN Document Server

    1993-01-01

    The achievement of large critical currents is critical to the applications of high-temperature superconductors. Recent developments have shown that melt processing is suitable for producing high J c oxide superconductors. Using magnetic forces between such high J c oxide superconductors and magnets, a person could be levitated.This book has grown largely out of research works on melt processing of high-temperature superconductors conducted at ISTEC Superconductivity Research Laboratory. The chapters build on melt processing, microstructural characterization, fundamentals of flux pinning, criti

  14. Close-Spaced High Temperature Knudsen Flow.

    Science.gov (United States)

    1986-07-15

    radiant heat source assembly was substituted for the brazed molybdenum one in order to achieve higher radiant heater temperatures . 2.1.4 Experimental...at very high temperature , and ground flat. The molybdenum is then chemically etched to the desired depth using an etchant which does not affect...RiB6 295 -CLSE PCED HIGH TEMPERATURE KNUDSEN FLOU(U) RASOR I AiASSOCIATES INC SUNNYVALE CA J 8 MCVEY 15 JUL 86 NSR-224 AFOSR-TR-87-1258 F49628-83-C

  15. Initial stages of high temperature metal oxidation

    International Nuclear Information System (INIS)

    Yang, C.Y.; O'Grady, W.E.

    1981-01-01

    The application of XPS and UPS to the study of the initial stages of high temperature (> 350 0 C) electrochemical oxidation of iron and nickel is discussed. In the high temperature experiments, iron and nickel electrodes were electrochemically oxidized in contact with a solid oxide electrolyte in the uhv system. The great advantages of this technique are that the oxygen activity at the interface may be precisely controlled and the ability to run the reactions in uhv allows the simultaneous observation of the reactions by XPS

  16. Processing of high-temperature superconductors at high strain rates

    International Nuclear Information System (INIS)

    Mamalis, A.G.; Pantazsopoulos, G.; Manolakos, D.E.; Szalay, A.

    2000-01-01

    This new book provides, for the first time, a systematic, unified presentation of all steps in the processing of high-temperature superconductor materials, ranging from synthesis of various systems to fabrication and industrial applications. Also covered are characterization techniques and current directions in research and development. The authors are leading specialists who bring to this new book their many years of experience in research, education and industrial engineering work in superconductor materials. This book is primarily focused on the bulk-fabrication techniques of high-temperature ceramic superconducting components, especially on the combination of dynamic powder-consolidation and subsequent deformation processing. The properties of these ceramics, which are difficult-to-form materials by applying conventional techniques, are combined for the net-shape manufacturing of such components for the construction of HTS deviceshor e llipsis. However, very important topics such as superconducting structures, chemical synthesis, film fabrication and characterization techniques are also reviewedhor e llipsis to provide a complete, comprehensive view of superconductors engineering

  17. Are micro-benefits negligible? The implications of the rapid expansion of Solar Home Systems (SHS) in rural Bangladesh for sustainable development

    Energy Technology Data Exchange (ETDEWEB)

    Komatsu, Satoru, E-mail: skomatsu@hiroshima-u.ac.jp [Graduate School for International Development and Cooperation, Hiroshima University, 1-5-1 Kagamiyama, Higashi-hiroshima, Hiroshima 739-8529 (Japan); Kaneko, Shinji, E-mail: kshinji@hiroshima-u.ac.jp [Graduate School for International Development and Cooperation, Hiroshima University, 1-5-1 Kagamiyama, Higashi-hiroshima, Hiroshima 739-8529 (Japan); Ghosh, Partha Pratim, E-mail: partha1975@gmail.com [Arc Bangladesh (Bangladesh)

    2011-07-15

    This paper examines the multiple benefits of the adoption of Solar Home Systems (SHS) and discusses the dissemination potential for sustainable rural livelihoods in developing countries. Based on a household survey conducted in rural Bangladesh, we first identify the impact of SHS on the reduction in energy costs and compare purchasing costs. We then examine household lifestyle changes following the adoption of SHS. Finally, we consider several price-reduction scenarios to examine the potential demand for SHS and to evaluate its future dissemination potential. The results of the analysis indicate that households with SHS successfully reduce their consumption of kerosene and dependency on rechargeable batteries, with the cost reductions accounting for some 20-30% of monthly expenditures on SHS. Moreover, most households with SHS can enjoy its benefits, including electric lighting, watching television, and the ease of mobile phone recharging at home. Further, the price reduction can make possible potential demand in more than 60% of households without SHS, while additional price reductions promote the purchase of even larger SHS packages. This study concludes that even though the scale of single SHS is small, the micro-benefits for each household and the dissemination potential are substantial. - Research Highlights: > Price reductions on Solar Home Systems potentially generate demand. > Solar Home Systems enable a reduction in energy costs and improvements in lifestyle. > The micro-benefits for households and the dissemination potential are substantial.

  18. Are micro-benefits negligible? The implications of the rapid expansion of Solar Home Systems (SHS) in rural Bangladesh for sustainable development

    International Nuclear Information System (INIS)

    Komatsu, Satoru; Kaneko, Shinji; Ghosh, Partha Pratim

    2011-01-01

    This paper examines the multiple benefits of the adoption of Solar Home Systems (SHS) and discusses the dissemination potential for sustainable rural livelihoods in developing countries. Based on a household survey conducted in rural Bangladesh, we first identify the impact of SHS on the reduction in energy costs and compare purchasing costs. We then examine household lifestyle changes following the adoption of SHS. Finally, we consider several price-reduction scenarios to examine the potential demand for SHS and to evaluate its future dissemination potential. The results of the analysis indicate that households with SHS successfully reduce their consumption of kerosene and dependency on rechargeable batteries, with the cost reductions accounting for some 20-30% of monthly expenditures on SHS. Moreover, most households with SHS can enjoy its benefits, including electric lighting, watching television, and the ease of mobile phone recharging at home. Further, the price reduction can make possible potential demand in more than 60% of households without SHS, while additional price reductions promote the purchase of even larger SHS packages. This study concludes that even though the scale of single SHS is small, the micro-benefits for each household and the dissemination potential are substantial. - Research Highlights: → Price reductions on Solar Home Systems potentially generate demand. → Solar Home Systems enable a reduction in energy costs and improvements in lifestyle. → The micro-benefits for households and the dissemination potential are substantial.

  19. Dynamics of Gauge Fields at High Temperature

    NARCIS (Netherlands)

    Nauta, B.J.

    2000-01-01

    An effective description of dynamical Bose fields is provided by the classical (high-temperature) limit of thermal field theory. The main subject of this thesis is to improve the ensuing classical field theory, that is, to include the dominant quantum corrections and to add counter terms for the

  20. High temperature oxidation resistant cermet compositions

    Science.gov (United States)

    Phillips, W. M. (Inventor)

    1976-01-01

    Cermet compositions are designed to provide high temperature resistant refractory coatings on stainless steel or molybdenum substrates. A ceramic mixture of chromium oxide and aluminum oxide form a coating of chromium oxide as an oxidation barrier around the metal particles, to provide oxidation resistance for the metal particles.

  1. Technology development for high temperature logging tools

    Energy Technology Data Exchange (ETDEWEB)

    Veneruso, A.F.; Coquat, J.A.

    1979-01-01

    A set of prototype, high temperature logging tools (temperature, pressure and flow) were tested successfully to temperatures up to 275/sup 0/C in a Union geothermal well during November 1978 as part of the Geothermal Logging Instrumentation Development Program. This program is being conducted by Sandia Laboratories for the Department of Energy's Division of Geothermal Energy. The progress and plans of this industry based program to develop and apply the high temperature instrumentation technology needed to make reliable geothermal borehole measurements are described. Specifically, this program is upgrading existing sondes for improved high temperature performance, as well as applying new materials (elastomers, polymers, metals and ceramics) and developing component technology such as high temperature cables, cableheads and electronics to make borehole measurements such as formation temperature, flow rate, high resolution pressure and fracture mapping. In order to satisfy critical existing needs, the near term goal is for operation up to 275/sup 0/C and 7000 psi by the end of FY80. The long term goal is for operation up to 350/sup 0/C and 20,000 psi by the end of FY84.

  2. Dense high-temperature plasma transport processes

    International Nuclear Information System (INIS)

    Giniyatova, Sh.G.

    2002-01-01

    In this work the transport processes in dense high-temperature semiclassical plasma are studied on the base of the kinetic equation, where the semiclassical potential was used, in its collision integral. The coefficient of plasma electrical conductivity, viscosity and thermal conductivity were received. There were compared with the other authors' results. The Grad's method was used obtaining of viscosity and thermal coefficients. (author)

  3. Nuclear and quark matter at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Biro, Tamas S. [H.A.S. Wigner Research Centre for Physics, Budapest (Hungary); Jakovac, Antal [Roland Eotvos University, Budapest (Hungary); Schram, Zsolt [University of Debrecen, Institute for Theoretical Physics, Debrecen (Hungary)

    2017-03-15

    We review important ideas on nuclear and quark matter description on the basis of high-temperature field theory concepts, like resummation, dimensional reduction, interaction scale separation and spectral function modification in media. Statistical and thermodynamical concepts are spotted in the light of these methods concentrating on the -partially still open- problems of the hadronization process. (orig.)

  4. High temperature brazing of reactor materials

    International Nuclear Information System (INIS)

    Orlov, A.V.; Nechaev, V.A.; Rybkin, B.V.; Ponimash, I.D.

    1990-01-01

    Application of high-temperature brazing for joining products of such materials as molybdenum, tungsten, zirconium, beryllium, magnesium, nickel and aluminium alloys, graphite ceramics etc. is described. Brazing materials composition and brazed joints properties are presented. A satisfactory strength of brazed joints is detected under reactor operation temperatures and coolant and irradiation effect

  5. The discovery of high temperature superconductivity

    International Nuclear Information System (INIS)

    Muller, K. A.; Bednorz, J.G.

    1988-01-01

    This article recalls the different stages which led to the display of high temperature superconductivity for Ba, La, Cu, O and the following avalanche of discoveries for other oxides; the numerous theoretical models which tentatively explain the current experimental results are also reviewed. 30 refs

  6. The discovery of high temperature superconductivity

    International Nuclear Information System (INIS)

    Muller, K.A.; Bednorz, J.G.

    1988-01-01

    This article recalls the different stages which led to the display of high temperature superconductivity for Ba La Cu O, and the following avalanche of discoveries for other oxides; the numerous theoretical models which tentatively explain the current experimental results are also reviewed [fr

  7. High temperature applications of nuclear energy

    International Nuclear Information System (INIS)

    1994-08-01

    The meeting was organized to review industry/user needs designs, status of technology and the associated economics for high temperature applications. It was attended by approximately 100 participants from nine countries. The participants presented 17 papers. A separate abstract was prepared for each of these papers. Refs, figs and tabs

  8. Potential applications of high temperature helium

    International Nuclear Information System (INIS)

    Schleicher, R.W. Jr.; Kennedy, A.J.

    1992-09-01

    This paper discusses the DOE MHTGR-SC program's recent activity to improve the economics of the MHTGR without sacrificing safety performance and two potential applications of high temperature helium, the MHTGR gas turbine plant and a process heat application for methanol production from coal

  9. Ion filter for high temperature cleaning

    International Nuclear Information System (INIS)

    Kutomi, Yasuhiro; Nakamori, Masaharu.

    1994-01-01

    A porous ceramic pipe mainly comprising alumina is used as a base pipe, and then crud and radioactive ion adsorbing materials in high temperature and high pressure water mainly comprising a FeTiO 3 compound are flame-coated on the outer surface thereof to a film thickness of about 100 to 300μ m as an aimed value by an acetylene flame-coating method. The flame-coated FeTiO 3 layer is also porous, so that high temperature and high pressure water to be cleaned can pass through from the inside to the outside of the pipe. Cruds can be removed and radioactive ions can be adsorbed during passage. Since all the operations can be conducted at high temperature and high pressure state, cooling is no more necessary for the high temperature and high pressure water to be cleaned, heat efficiency of the plant can be improved and a cooling facility can be saved. Further, since the flame-coating of FeTiO 3 to the porous ceramic pipe can be conducted extremely easily compared with production of a sintering product, cost for the production of filter elements can be saved remarkably. (T.M.)

  10. HYFIRE: fusion-high temperature electrolysis system

    International Nuclear Information System (INIS)

    Fillo, J.A.; Powell, J.R.; Steinberg, M.; Benenati, R.; Dang, V.D.; Horn, F.; Isaacs, H.; Lazareth, O.; Makowitz, H.; Usher, J.

    1980-01-01

    The Brookhaven National Laboratory (BNL) is carrying out a comprehensive conceptual design study called HYFIRE of a commercial fusion Tokamak reactor, high-temperature electrolysis system. The study is placing particular emphasis on the adaptability of the STARFIRE power reactor to a synfuel application. The HYFIRE blanket must perform three functions: (a) provide high-temperature (approx. 1400 0 C) process steam at moderate pressures (in the range of 10 to 30 atm) to the high-temperature electrolysis (HTE) units; (b) provide high-temperature (approx. 700 to 800 0 C) heat to a thermal power cycle for generation of electricity to the HTE units; and (c) breed enough tritium to sustain the D-T fuel cycle. In addition to thermal energy for the decomposition of steam into its constitutents, H 2 and O 2 , electrical input is required. Power cycle efficiencies of approx. 40% require He cooling for steam superheat. Fourteen hundred degree steam coupled with 40% power cycle efficiency results in a process efficiency (conversion of fusion energy to hydrogen chemical energy) of 50%

  11. High Temperature Corrosion in Biomass Incineration Plants

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Maahn, Ernst emanuel; Gotthjælp, K.

    1997-01-01

    The aim of the project is to study the role of ash deposits in high temperature corrosion of superheater materials in biomass and refuse fire combined heat and power plants. The project has included the two main activities: a) A chemical characterisation of ash deposits collected from a major...

  12. Thermoelastic properties of minerals at high temperature

    Indian Academy of Sciences (India)

    In our present study, we have investigated the thermophysical properties of two minerals (pyrope-rich garnet and MgAl2O4) under high temperatures and calculated the second-order elastic constant () and bulk modulus (T) of the above minerals, in two cases first by taking Anderson–Gruneisen parameter (T) as ...

  13. High-temperature granulites and supercontinents

    Directory of Open Access Journals (Sweden)

    J.L.R. Touret

    2016-01-01

    Full Text Available The formation of continents involves a combination of magmatic and metamorphic processes. These processes become indistinguishable at the crust-mantle interface, where the pressure-temperature (P-T conditions of (ultra high-temperature granulites and magmatic rocks are similar. Continents grow laterally, by magmatic activity above oceanic subduction zones (high-pressure metamorphic setting, and vertically by accumulation of mantle-derived magmas at the base of the crust (high-temperature metamorphic setting. Both events are separated from each other in time; the vertical accretion postdating lateral growth by several tens of millions of years. Fluid inclusion data indicate that during the high-temperature metamorphic episode the granulite lower crust is invaded by large amounts of low H2O-activity fluids including high-density CO2 and concentrated saline solutions (brines. These fluids are expelled from the lower crust to higher crustal levels at the end of the high-grade metamorphic event. The final amalgamation of supercontinents corresponds to episodes of ultra-high temperature metamorphism involving large-scale accumulation of these low-water activity fluids in the lower crust. This accumulation causes tectonic instability, which together with the heat input from the sub-continental lithospheric mantle, leads to the disruption of supercontinents. Thus, the fragmentation of a supercontinent is already programmed at the time of its amalgamation.

  14. Theory of high temperature plasmas. Final report

    International Nuclear Information System (INIS)

    Davidson, R.C.; Liu, C.S.

    1977-01-01

    This is a report on the technical progress in our analytic studies of high-temperature fusion plasmas. We also emphasize that the research summarized here makes extensive use of computational methods and therefore forms a strong interface with our numerical modeling program which is discussed later in the report

  15. Fabrication of steel matrix composites locally reinforced with different ratios of TiC/TiB2 particulates using SHS reactions of Ni-Ti-B4C and Ni-Ti-B4C-C systems during casting

    International Nuclear Information System (INIS)

    Yang Yafeng; Wang Huiyuan; Liang Yunhong; Zhao Ruyi; Jiang Qichuan

    2007-01-01

    Steel matrix composites locally reinforced with different molar ratios of in situ TiC/TiB 2 particulates (2:1, 1:1 and 1:2, respectively) have been fabricated successfully utilizing the self-propagating high-temperature synthesis (SHS) reactions of Ni-Ti-B 4 C and Ni-Ti-B 4 C-C systems during casting. Differential thermal analysis (DTA) and X-ray diffraction (XRD) results reveal that the exothermic reactions of the Ni-Ti-B 4 C and Ni-Ti-B 4 C-C systems proceed in such a way that Ni initially reacts with B 4 C and Ti to form Ni 2 B and Ti 2 Ni compounds, respectively, with heat evolution at 1037 deg. C; Subsequently, the external heat and the evolved heat from these exothermic reactions promote the reactions forming TiC and TiB 2 at 1133 deg. C. In the composites reinforced with 1:2 molar ratio of TiC/TiB 2 , almost all TiB 2 grains have clubbed structures, while TiC grains exhibit near-spherical morphologies. Furthermore, TiB 2 grain sizes decrease, with the increase of TiC content. In particular, in the composites reinforced with 2:1 molar ratio of TiC/TiB 2 , it is difficult to find the clubbed TiB 2 grains. Macro-pores and blowholes are absent in the local reinforcing region of the composites reinforced with 1:1 and 1:2 molar ratios of TiC/TiB 2 , while a few macro-pores can be observed in the composite reinforced with 2:1 molar ratio of TiC/TiB 2 . Moreover, the densities of the composites reinforced with 1:1 and 1:2 molar ratios of TiC/TiB 2 are higher than that of the composite reinforced with 2:1 molar ratio of TiC/TiB 2 . The composite reinforced with 1:2 molar ratio of TiC/TiB 2 has the highest hardness and the best wear resistance

  16. High Temperature Materials Interim Data Qualification Report

    International Nuclear Information System (INIS)

    Lybeck, Nancy

    2010-01-01

    Projects for the very high temperature reactor (VHTR) Technology Development Office provide data in support of Nuclear Regulatory Commission licensing of the VHTR. Fuel and materials to be used in the reactor are tested and characterized to quantify performance in high temperature and high fluence environments. The VHTR program has established the NGNP Data Management and Analysis System (NDMAS) to ensure that VHTR data are qualified for use, stored in a readily accessible electronic form, and analyzed to extract useful results. This document focuses on the first NDMAS objective. It describes the High Temperature Materials characterization data stream, the processing of these data within NDMAS, and reports the interim FY2010 qualification status of the data. Data qualification activities within NDMAS for specific types of data are determined by the data qualification category assigned by the data generator. The High Temperature Materials data are being collected under NQA-1 guidelines, and will be qualified data. For NQA-1 qualified data, the qualification activities include: (1) capture testing, to confirm that the data stored within NDMAS are identical to the raw data supplied, (2) accuracy testing to confirm that the data are an accurate representation of the system or object being measured, and (3) documenting that the data were collected under an NQA-1 or equivalent Quality Assurance program. Currently, data from two test series within the High Temperature Materials data stream have been entered into the NDMAS vault: (1) Tensile Tests for Sm (i.e., Allowable Stress) Confirmatory Testing - 1,403,994 records have been inserted into the NDMAS database. Capture testing is in process. (2) Creep-Fatigue Testing to Support Determination of Creep-Fatigue Interaction Diagram - 918,854 records have been processed and inserted into the NDMAS database. Capture testing is in process.

  17. High-temperature bulk acoustic wave sensors

    International Nuclear Information System (INIS)

    Fritze, Holger

    2011-01-01

    Piezoelectric crystals like langasite (La 3 Ga 5 SiO 14 , LGS) and gallium orthophosphate (GaPO 4 ) exhibit piezoelectrically excited bulk acoustic waves at temperatures of up to at least 1450 °C and 900 °C, respectively. Consequently, resonant sensors based on those materials enable new sensing approaches. Thereby, resonant high-temperature microbalances are of particular interest. They correlate very small mass changes during film deposition onto resonators or gas composition-dependent stoichiometry changes of thin films already deposited onto the resonators with the resonance frequency shift of such devices. Consequently, the objective of the work is to review the high-temperature properties, the operation limits and the measurement principles of such resonators. The electromechanical properties of high-temperature bulk acoustic wave resonators such as mechanical stiffness, piezoelectric and dielectric constant, effective viscosity and electrical conductivity are described using a one-dimensional physical model and determined accurately up to temperatures as close as possible to their ultimate limit. Insights from defect chemical models are correlated with the electromechanical properties of the resonators. Thereby, crucial properties for stable operation as a sensor under harsh conditions are identified to be the formation of oxygen vacancies and the bulk conductivity. Operation limits concerning temperature, oxygen partial pressure and water vapor pressure are given. Further, application-relevant aspects such as temperature coefficients, temperature compensation and mass sensitivity are evaluated. In addition, approximations are introduced which make the exact model handy for routine data evaluation. An equivalent electrical circuit for high-temperature resonator devices is derived based on the one-dimensional physical model. Low- and high-temperature approximations are introduced. Thereby, the structure of the equivalent circuit corresponds to the

  18. High-temperature bulk acoustic wave sensors

    Science.gov (United States)

    Fritze, Holger

    2011-01-01

    Piezoelectric crystals like langasite (La3Ga5SiO14, LGS) and gallium orthophosphate (GaPO4) exhibit piezoelectrically excited bulk acoustic waves at temperatures of up to at least 1450 °C and 900 °C, respectively. Consequently, resonant sensors based on those materials enable new sensing approaches. Thereby, resonant high-temperature microbalances are of particular interest. They correlate very small mass changes during film deposition onto resonators or gas composition-dependent stoichiometry changes of thin films already deposited onto the resonators with the resonance frequency shift of such devices. Consequently, the objective of the work is to review the high-temperature properties, the operation limits and the measurement principles of such resonators. The electromechanical properties of high-temperature bulk acoustic wave resonators such as mechanical stiffness, piezoelectric and dielectric constant, effective viscosity and electrical conductivity are described using a one-dimensional physical model and determined accurately up to temperatures as close as possible to their ultimate limit. Insights from defect chemical models are correlated with the electromechanical properties of the resonators. Thereby, crucial properties for stable operation as a sensor under harsh conditions are identified to be the formation of oxygen vacancies and the bulk conductivity. Operation limits concerning temperature, oxygen partial pressure and water vapor pressure are given. Further, application-relevant aspects such as temperature coefficients, temperature compensation and mass sensitivity are evaluated. In addition, approximations are introduced which make the exact model handy for routine data evaluation. An equivalent electrical circuit for high-temperature resonator devices is derived based on the one-dimensional physical model. Low- and high-temperature approximations are introduced. Thereby, the structure of the equivalent circuit corresponds to the Butterworth

  19. Preparation and Characterization of Amorphous B Powders by Salt-Assisted SHS Technique

    Directory of Open Access Journals (Sweden)

    Yujing Ou

    2015-01-01

    Full Text Available To use the salt-assisted SHS technique to prepare B powders was proposed. Calculation results found that the adiabatic combustion temperature of the B2O3-Mg reaction system was 2604 K, higher than the 1800 K criterion of self-propagating temperature, which meant that the SHS application was feasible. When 0, 10%, 20%, 30%, 40%, 50%, and 60% NaCl content were added, the adiabatic combustion temperature of the reaction system decreased linearly. When 60% NaCl content was added, the adiabatic combustion temperature was 1799 K (lower than 1800 K, unsuitable for self-propagating reaction, which was consistent with the experimental results. Through scanning electron microscope (SEM, energy disperse spectroscopy (EDS, and particle size analysis, the influence of different addition of NaCl on the morphology, average particle size, and purity of prepared B powder was investigated. EDS and chemical analysis indicated that the purity of prepared B powder was over 96% and the average particle size was within the range of 0.4~0.8 μm when the content of NaCl was 50%. The analysis of X-ray diffraction (XRD and selected area electron diffraction (SAED proved that the prepared B powder was amorphous.

  20. Production of monoclonal antibodies for Avian Metapneumovirus (SHS-BR-121 isolated in Brazil

    Directory of Open Access Journals (Sweden)

    LT Coswig

    2007-12-01

    Full Text Available Avian Metapneumovirus (aMPV, also called Turkey Rhinotracheitis Virus (TRTV, is an upper respiratory tract infection of turkeys, chickens and other avian species. Five monoclonal antibodies (MAbs were created against the Brazilian isolate (SHS-BR-121 of aMPV, MAbs 1A5B8; 1C1C4; 2C2E9 and 2A4C3 of IgG1 and MAb 1C1F8 of IgG2a. Four Mabs (1A5B8; 1C1C4; 2C2E9 and 2A4C3 showed neutralizing activity and three (1A5B8; 1C1C4 and 2A4C3 inhibited cellular fusion in vitro. These MAbs were used to investigate antigenic relationship among three strains (SHS-BR-121, STG 854/88 and TRT 1439/91 of aMPV subtypes A and B using cross-neutralization test. The results confirm that the monoclonal antibodies described can be used as a valuable tool in the epizootiological and serological studies, and also for the specific diagnosis of the subtypes in the infection for Avian Metapneumovirus.

  1. High temperature gas cooled nuclear reactor

    International Nuclear Information System (INIS)

    Hosegood, S.B.; Lockett, G.E.

    1975-01-01

    For high-temperature gas cooled reactors it is considered advantageous to design the core so that the moderator blocks can be removed and replaced by some means of standpipes normally situated in the top of the reactor vessel. An arrangement is here described to facilitate these operations. The blocks have end faces shaped as irregular hexagons with three long sides of equal length and three short sides also of equal length, one short side being located between each pair of adjacent long sides, and the long sides being inclined towards one another at 60 0 . The block defines a number of coolant channels located parallel to its sides. Application of the arrangement to a high temperature gas-cooled reactor with refuelling standpipes is described. The standpipes are located in the top of the reactor vessel above the tops of the columns and are disposed coaxially above the hexagonal channels, with diameters that allow the passage of the blocks. (U.K.)

  2. Metallic Membranes for High Temperature Hydrogen Separation

    DEFF Research Database (Denmark)

    Ma, Y.H.; Catalano, Jacopo; Guazzone, Federico

    2013-01-01

    membrane fabrication methods have matured over the last decades, and the deposition of very thin films (1–5 µm) of Pd over porous ceramics or modified porous metal supports is quite common. The H2 permeances and the selectivities achieved at 400–500 °C were in the order of 50–100 Nm3/m/h/bar0.5 and greater......Composite palladium membranes have extensively been studied in laboratories and, more recently, in small pilot industrial applications for the high temperature separation of hydrogen from reactant mixtures such as water-gas shift (WGS) reaction or methane steam reforming (MSR). Composite Pd...... than 1000, respectively. This chapter describes in detail composite Pd-based membrane preparation methods, which consist of the grading of the support and the deposition of the dense metal layer, their performances, and their applications in catalytic membrane reactors (CMRs) at high temperatures (400...

  3. High temperature phase transitions without infrared divergences

    International Nuclear Information System (INIS)

    Tetradis, N.; Wetterich, C.

    1993-09-01

    The most commonly used method for the study of high temperature phase transitions is based on the perturbative evaluation of the temperature dependent effective potential. This method becomes unreliable in the case of a second order or weakly first order phase transition, due to the appearance of infrared divergences. These divergences can be controlled through the method of the effective average action which employs renormalization group ideas. We report on the study of the high temperature phase transition for the N-component φ 4 theory. A detailed quantitative picture of the second order phase transition is presented, including the critical exponents for the behaviour in the vicinity of the critical temperature. An independent check of the results is obtained in the large N limit, and contact with the perturbative approach is established through the study of the Schwinger-Dyson equations. (orig.)

  4. High temperature aircraft research furnace facilities

    Science.gov (United States)

    Smith, James E., Jr.; Cashon, John L.

    1992-01-01

    Focus is on the design, fabrication, and development of the High Temperature Aircraft Research Furnace Facilities (HTARFF). The HTARFF was developed to process electrically conductive materials with high melting points in a low gravity environment. The basic principle of operation is to accurately translate a high temperature arc-plasma gas front as it orbits around a cylindrical sample, thereby making it possible to precisely traverse the entire surface of a sample. The furnace utilizes the gas-tungsten-arc-welding (GTAW) process, also commonly referred to as Tungsten-Inert-Gas (TIG). The HTARFF was developed to further research efforts in the areas of directional solidification, float-zone processing, welding in a low-gravity environment, and segregation effects in metals. The furnace is intended for use aboard the NASA-JSC Reduced Gravity Program KC-135A Aircraft.

  5. Scale hierarchy in high-temperature QCD

    CERN Document Server

    Akerlund, Oscar

    2013-01-01

    Because of asymptotic freedom, QCD becomes weakly interacting at high temperature: this is the reason for the transition to a deconfined phase in Yang-Mills theory at temperature $T_c$. At high temperature $T \\gg T_c$, the smallness of the running coupling $g$ induces a hierachy betwen the "hard", "soft" and "ultrasoft" energy scales $T$, $g T$ and $g^2 T$. This hierarchy allows for a very successful effective treatment where the "hard" and the "soft" modes are successively integrated out. However, it is not clear how high a temperature is necessary to achieve such a scale hierarchy. By numerical simulations, we show that the required temperatures are extremely high. Thus, the quantitative success of the effective theory down to temperatures of a few $T_c$ appears surprising a posteriori.

  6. High Temperature Phenomena in Shock Waves

    CERN Document Server

    2012-01-01

    The high temperatures generated in gases by shock waves give rise to physical and chemical phenomena such as molecular vibrational excitation, dissociation, ionization, chemical reactions and inherently related radiation. In continuum regime, these processes start from the wave front, so that generally the gaseous media behind shock waves may be in a thermodynamic and chemical non-equilibrium state. This book presents the state of knowledge of these phenomena. Thus, the thermodynamic properties of high temperature gases, including the plasma state are described, as well as the kinetics of the various chemical phenomena cited above. Numerous results of measurement and computation of vibrational relaxation times, dissociation and reaction rate constants are given, and various ionization and radiative mechanisms and processes are presented. The coupling between these different phenomena is taken into account as well as their interaction with the flow-field. Particular points such as the case of rarefied flows an...

  7. The metallurgy of high temperature alloys

    Science.gov (United States)

    Tien, J. K.; Purushothaman, S.

    1976-01-01

    Nickel-base, cobalt-base, and high nickel and chromium iron-base alloys are dissected, and their microstructural and chemical components are assessed with respect to the various functions expected of high temperature structural materials. These functions include the maintenance of mechanical integrity over the strain-rate spectrum from creep resistance through fatigue crack growth resistance, and such alloy stability expectations as microstructural coarsening resistance, phase instability resistance and oxidation and corrosion resistance. Special attention will be given to the perennial conflict and trade-off between strength, ductility and corrosion and oxidation resistance. The newest developments in the constitution of high temperature alloys will also be discussed, including aspects relating to materials conservation.

  8. High Temperature Studies of La-Monazite

    Science.gov (United States)

    2004-07-01

    Hay, E. Boakeye, M. D. Petry, Y. Berta, K. Von Lehmden, and J. Welch, " 5 A. Meldrum , L. A. Boatner, and R. C. Ewing, "Electron-Irradiation-Induced... Meldrum , L. A. Boatner, and R. C. Ewing, "A Comparison of Radiation Alumina-based Fiber for High Temperature Composite Reinforcement," Ceram. Eng... acid . The processing included procedures that allowed the La/P ratio to be controlled to be very close to the stoichiometric value of unity (within less

  9. Passivation Of High-Temperature Superconductors

    Science.gov (United States)

    Vasquez, Richard P.

    1991-01-01

    Surfaces of high-temperature superconductors passivated with native iodides, sulfides, or sulfates formed by chemical treatments after superconductors grown. Passivating compounds nearly insoluble in and unreactive with water and protect underlying superconductors from effects of moisture. Layers of cuprous iodide and of barium sulfate grown. Other candidate passivating surface films: iodides and sulfides of bismuth, strontium, and thallium. Other proposed techniques for formation of passivating layers include deposition and gas-phase reaction.

  10. High Temperature Perforating System for Geothermal Applications

    Energy Technology Data Exchange (ETDEWEB)

    Smart, Moises E. [Schlumberger Technology Corporation, Sugar Land, TX (United States)

    2017-02-28

    The objective of this project is to develop a perforating system consisting of all the explosive components and hardware, capable of reliable performance in high temperatures geothermal wells (>200 ºC). In this light we will focused on engineering development of these components, characterization of the explosive raw powder and developing the internal infrastructure to increase the production of the explosive from laboratory scale to industrial scale.

  11. Intermetallic-Based High-Temperature Materials

    Energy Technology Data Exchange (ETDEWEB)

    Sikka, V.K.

    1999-04-25

    The intermetallic-based alloys for high-temperature applications are introduced. General characteristics of intermetallics are followed by identification of nickel and iron aluminides as the most practical alloys for commercial applications. An overview of the alloy compositions, melting processes, and mechanical properties for nickel and iron aluminizes are presented. The current applications and commercial producers of nickel and iron aluminizes are given. A brief description of the future prospects of intermetallic-based alloys is also given.

  12. High temperature estimation through computer vision

    International Nuclear Information System (INIS)

    Segovia de los R, J.A.

    1996-01-01

    The form recognition process has between his purposes to conceive and to analyze the classification algorithms applied to the image representations, sounds or signals of any kind. In a process with a thermal plasma reactor in which cannot be employed conventional dispositives or methods for the measurement of the very high temperatures. The goal of this work was to determine these temperatures in an indirect way. (Author)

  13. Applications of high-temperature superconductivity

    International Nuclear Information System (INIS)

    Malozemoff, A.P.; Gallagher, W.J.; Schwall, R.E.

    1987-01-01

    The new high temperature superconductors open up possibilities for applications in magnets, power transmission, computer interconnections, Josephson devices and instrumentation, among many others. The success of these applications hinges on many interlocking factors, including critical current density, critical fields, allowable processing temperatures, mechanical properties and chemical stability. An analysis of some of these factors suggests which applications may be the easiest to realize and which may have the greatest potential

  14. High temperature materials; Materiaux a hautes temperatures

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    The aim of this workshop is to share the needs of high temperature and nuclear fuel materials for future nuclear systems, to take stock of the status of researches in this domain and to propose some cooperation works between the different research organisations. The future nuclear systems are the very high temperature (850 to 1200 deg. C) gas cooled reactors (GCR) and the molten salt reactors (MSR). These systems include not only the reactor but also the fabrication and reprocessing of the spent fuel. This document brings together the transparencies of 13 communications among the 25 given at the workshop: 1) characteristics and needs of future systems: specifications, materials and fuel needs for fast spectrum GCR and very high temperature GCR; 2) high temperature materials out of neutron flux: thermal barriers: materials, resistance, lifetimes; nickel-base metal alloys: status of knowledge, mechanical behaviour, possible applications; corrosion linked with the gas coolant: knowledge and problems to be solved; super-alloys for turbines: alloys for blades and discs; corrosion linked with MSR: knowledge and problems to be solved; 3) materials for reactor core structure: nuclear graphite and carbon; fuel assembly structure materials of the GCR with fast neutron spectrum: status of knowledge and ceramics and cermets needs; silicon carbide as fuel confinement material, study of irradiation induced defects; migration of fission products, I and Cs in SiC; 4) materials for hydrogen production: status of the knowledge and needs for the thermochemical cycle; 5) technologies: GCR components and the associated material needs: compact exchangers, pumps, turbines; MSR components: valves, exchangers, pumps. (J.S.)

  15. Modeling of concrete response at high temperature

    International Nuclear Information System (INIS)

    Pfeiffer, P.; Marchertas, A.

    1984-01-01

    A rate-type creep law is implemented into the computer code TEMP-STRESS for high temperature concrete analysis. The disposition of temperature, pore pressure and moisture for the particular structure in question is provided as input for the thermo-mechanical code. The loss of moisture from concrete also induces material shrinkage which is accounted for in the analytical model. Examples are given to illustrate the numerical results

  16. Viscoelastic creep of high-temperature concrete

    International Nuclear Information System (INIS)

    Pfeiffer, P.A.; Marchertas, A.H.; Bazant, Z.P.

    1985-01-01

    Presented in this report is the analytical model for analysis of high temperature creep response of concrete. The creep law used is linear (viscoelastic), the temperature and moisture effects on the creep rate and also aging are included. Both constant and transient temperature as well as constant and transient moisture conditions are considered. Examples are presented to correlate experimental data with parameters of the analytical model by the use of a finite element scheme

  17. High temperature reactor safety and environment

    International Nuclear Information System (INIS)

    Brisbois, J.; Charles, J.

    1975-01-01

    High-temperature reactors are endowed with favorable safety and environmental factors resulting from inherent design, main-component safety margins, and conventional safety systems. The combination of such characteristics, along with high yields, prove in addition, that such reactors are plagued with few problems, can be installed near users, and broaden the recourse to specific power, therefore fitting well within a natural environment [fr

  18. Establishment of Harrop, High-Temperature Viscometer

    Energy Technology Data Exchange (ETDEWEB)

    Schumacher, R.F.

    1999-11-05

    This report explains how the Harrop, High-Temperature Viscometer was installed, calibrated, and operated. This report includes assembly and alignment of the furnace, viscometer, and spindle, and explains the operation of the Brookfield Viscometer, the Harrop furnace, and the UDC furnace controller. Calibration data and the development of the spindle constant from NIST standard reference glasses is presented. A simple operational procedure is included.

  19. Corrosion Resistant Coatings for High Temperature Applications

    Energy Technology Data Exchange (ETDEWEB)

    Besman, T.M.; Cooley, K.M.; Haynes, J.A.; Lee, W.Y.; Vaubert, V.M.

    1998-12-01

    Efforts to increase efficiency of energy conversion devices have required their operation at ever higher temperatures. This will force the substitution of higher-temperature structural ceramics for lower temperature materials, largely metals. Yet, many of these ceramics will require protection from high temperature corrosion caused by combustion gases, atmospheric contaminants, or the operating medium. This paper discusses examples of the initial development of such coatings and materials for potential application in combustion, aluminum smelting, and other harsh environments.

  20. Apparatus for distilling dry solids. [high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Constant, M

    1873-09-09

    In the proposed system under the action of high temperature, the vapors commence to form, and on account of their density go toward the lower part of the retort, where they take the place of air; then they find the exit prepared for them and run out literally by their weight as they are formed and enter the coil where all that can are completely condensed into oil.

  1. Internal modes in high-temperature plasmas

    International Nuclear Information System (INIS)

    Crew, G.B.

    1983-02-01

    The linear stability of current-carrying toroidal plamsas is examined to determine the possibility of exciting global internal modes. The ideal magnetohydrodynamic (MHD) theory provides a useful framework for the analysis of these modes, which involve a kinking of the central portion of the plasma column. Non-ideal effects can also be important, and these are treated for high-temperature regimes where the plasma is collisionless

  2. High temperature tests for graphite materials

    OpenAIRE

    Zhmurikov, Evgenij

    2015-01-01

    This study was performed within the framework of the EURISOL for facilities SPIRAL-II (GANIL, France) and SPES (LNL, Italy), and aims to investigate the anticipated strength properties of fine-grained graphite at elevated temperatures. It appears that the major parameters that affect to the lifetime of a graphite target of this IP are the temperature and heating time. High temperature tests were conducted to simulate the heating under the influence of a beam of heavy particles by passing thro...

  3. HTGR fuel behavior at very high temperature

    International Nuclear Information System (INIS)

    Kashimura, Satoru; Ogawa, Touru; Fukuda, Kousaku; Iwamoto, Kazumi

    1986-03-01

    Fuel behavior at very high temperature simulating abnormal transient of the reactor operation and accidents have been investigated on TRISO coating LEU oxide particle fuels at JAERI. The test simulating the abnormal transient was carried out by irradiation of loose coated particles above 1600 deg C. The irradiation test indicated that particle failure was principally caused by kernel migration. For simulation of the core heat-up accident, two experiments of out-of-pile heating were made. Survival temperature limits were measured and fuel performance at very high temperature were investigated by the heatings. Study on the fuel behavior under reactivity initiated accident was made by NSRR(Nuclear Safety Research Reactor) pulse irradiation, where maximum temperature was higher than 2800 deg C. It was found in the pulse irradiation experiments that the coated particles incorporated in the compacts did not so severely fail unlike the loose coated particles at ultra high temperature above 2800 deg C. In the former particles UO 2 material at the center of the kernel vaporized, leaving a spherical void. (author)

  4. High-temperature flaw assessment procedure

    International Nuclear Information System (INIS)

    Ruggles, M.B.; Takahashi, Y.; Ainsworth, R.A.

    1989-08-01

    The current program represents a joint effort between the Electric Power Research Institute (EPRI) in the USA, the Central Research Institute of Electric Power Industry (CRIEPI) in Japan, and the Central Electricity Generating Board (CEGB) in the UK. The goal is to develop an interim high-temperature flaw assessment procedure for high-temperature reactor components. This is to be accomplished through exploratory experimental and analytical studies of high-temperature crack growth. The state-of-the-art assessment and the fracture mechanics database for both types 304 and 316 stainless steels, completed in 1988, serve as a foundation for the present work. Work in the three participating organizations is progressing roughly on schedule. Results to-date are presented in this document. Fundamental tests results are discussed in Section 2. Section 3 focuses on results of exploratory subcritical crack growth tests. Progress in subcritical crack growth modeling is reported in Section 4. Exploratory failure tests are outlined in Section 5. 21 refs., 70 figs., 7 tabs

  5. Positron annihilation studies on high temperature superconductors

    International Nuclear Information System (INIS)

    Sundar, C.S.; Bharathi, A.

    1991-01-01

    The results of positron annihilation measurements as a function of temperature, across Tc, in a variety of high temperature superconductors such as Y-Ba-Cu-O (Y1237), Y-Ba-Cu-O (Y1248), Bi-Sr-Ca-Cu-O, Tl-Ba-Ca-Cu-O, Ba-K-Bi-O and Nd-Ce-Cu-O are presented. It is shown that the variation of annihilation parameters in the superconducting state is correlated with the diposition of the positron density distribution with respect to the superconducting CuO planes. An increase in positron lifetime is observed below Tc when the positrons probe the CuO planes whereas a decrease in lifetime is observed when the positron density overlaps predominantly with the apical oxygen atom. With this correlation, the different temperature variation of annihilation parameters, seen in the various high temperature superconductors, is understood in terms of a local charge transfer from the planar oxygen atom to the apical oxygen atom. The significance of these results in the context of various theoretical models of high temperature superconductivity is discussed. In addition, the application of positron annihilation spectroscopy to the study of oxygen defects in the Y-Ba-Cu-O, Bi-Sr-Ca-Cu-O and Nd-Ce-Cu-O is presented. (author). 53 refs., 17 figs., 2 tabs

  6. High Temperature, High Power Piezoelectric Composite Transducers

    Science.gov (United States)

    Lee, Hyeong Jae; Zhang, Shujun; Bar-Cohen, Yoseph; Sherrit, StewarT.

    2014-01-01

    Piezoelectric composites are a class of functional materials consisting of piezoelectric active materials and non-piezoelectric passive polymers, mechanically attached together to form different connectivities. These composites have several advantages compared to conventional piezoelectric ceramics and polymers, including improved electromechanical properties, mechanical flexibility and the ability to tailor properties by using several different connectivity patterns. These advantages have led to the improvement of overall transducer performance, such as transducer sensitivity and bandwidth, resulting in rapid implementation of piezoelectric composites in medical imaging ultrasounds and other acoustic transducers. Recently, new piezoelectric composite transducers have been developed with optimized composite components that have improved thermal stability and mechanical quality factors, making them promising candidates for high temperature, high power transducer applications, such as therapeutic ultrasound, high power ultrasonic wirebonding, high temperature non-destructive testing, and downhole energy harvesting. This paper will present recent developments of piezoelectric composite technology for high temperature and high power applications. The concerns and limitations of using piezoelectric composites will also be discussed, and the expected future research directions will be outlined. PMID:25111242

  7. Deformation of high-temperature superconductors

    International Nuclear Information System (INIS)

    Goretta, K.C.; Routbort, J.L.; Miller, D.J.; Chen, N.; Dominguez-Rodriguez, A.; Jimenez-Melendo, M.; De Arellano-Lopez, A.R.

    1994-08-01

    Of the many families of high-temperature superconductors, only the properties of those discovered prior to 1989 - Y-Ba-Cu-O, Tl-Ba(Sr)-Ca-Cu-O, and Bi(Pb)-Sr-Ca-Cu-O - have been studied extensively. Deformation tests have been performed on YBa 2 Cu 3 O x (Y-123), YBa 2 Cu 4 O x (Y-124), TlBa 2 Ca 2 Cu 3 O x (Bi-2223). The tests have revealed that plasticity is generally limited in these compounds and that the rate-controlling diffusional kinetics for creep are very slow. Nevertheless, hot forming has proved to be quite successful for fabrication of bulk high-temperature superconductors, so long as deformation rates are low or large hydrostatic stresses are applied. Steady-state creep data have proved to be useful in designing optimal heat treatments for superconductors and in support of more-fundamental diffusion experiments. The high-temperature superconductors are highly complex oxides, and it is a challenge to understand their deformation responses. In this paper, results of interest and operant creep mechanisms will be reviewed

  8. Potentialities of high temperature reactors (HTR)

    International Nuclear Information System (INIS)

    Hittner, D.

    2001-01-01

    This articles reviews the assets of high temperature reactors concerning the amount of radioactive wastes produced. 2 factors favors HTR-type reactors: high thermal efficiency and high burn-ups. The high thermal efficiency is due to the high temperature of the coolant, in the case of the GT-MHR project (a cooperation between General Atomic, Minatom, Framatome, and Fuji Electric) designed to burn Russian military plutonium, the expected yield will be 47% with an outlet helium temperature of 850 Celsius degrees. The high temperature of the coolant favors a lot of uses of the heat generated by the reactor: urban heating, chemical processes, or desalination of sea water.The use of a HTR-type reactor in a co-generating way can value up to 90% of the energy produced. The high burn-up is due to the technology of HTR-type fuel that is based on encapsulation of fuel balls with heat-resisting materials. The nuclear fuel of Fort-Saint-Vrain unit (Usa) has reached values of burn-ups from 100.000 to 120.000 MWj/t. It is shown that the quantity of unloaded spent fuel can be divided by 4 for the same amount of electricity produced, in the case of the GT-MHR project in comparison with a light water reactor. (A.C.)

  9. Bimodular high temperature planar oxygen gas sensor

    Directory of Open Access Journals (Sweden)

    Xiangcheng eSun

    2014-08-01

    Full Text Available A bimodular planar O2 sensor was fabricated using NiO nanoparticles (NPs thin film coated yttria-stabilized zirconia (YSZ substrate. The thin film was prepared by radio frequency (r.f. magnetron sputtering of NiO on YSZ substrate, followed by high temperature sintering. The surface morphology of NiO nanoparticles film was characterized by atomic force microscopy (AFM and scanning electron microscopy (SEM. X-ray diffraction (XRD patterns of NiO NPs thin film before and after high temperature O2 sensing demonstrated that the sensing material possesses a good chemical and structure stability. The oxygen detection experiments were performed at 500 °C, 600 °C and 800 °C using the as-prepared bimodular O2 sensor under both potentiometric and resistance modules. For the potentiometric module, a linear relationship between electromotive force (EMF output of the sensor and the logarithm of O2 concentration was observed at each operating temperature, following the Nernst law. For the resistance module, the logarithm of electrical conductivity was proportional to the logarithm of oxygen concentration at each operating temperature, in good agreement with literature report. In addition, this bimodular sensor shows sensitive, reproducible and reversible response to oxygen under both sensing modules. Integration of two sensing modules into one sensor could greatly enrich the information output and would open a new venue in the development of high temperature gas sensors.

  10. Correlates of exposure to secondhand smoke (SHS) at home among non-smoking adults in Bangladesh: findings from the ITC Bangladesh survey.

    Science.gov (United States)

    Abdullah, Abu S; Driezen, Pete; Sansone, Genevieve; Nargis, Nigar; Hussain, Ghulam Akm; Quah, Anne Ck; Fong, Geoffrey T

    2014-07-16

    Exposure to secondhand smoke (SHS) is a serious global public health problem. Understanding the correlates of SHS exposure could guide the development of evidence based SHS exposure reduction interventions. The purpose of this study is to describe the pattern of and factors associated with SHS exposure among non-smoking adults in Bangladesh. Data come from adult non-smokers who participated in the second wave (2010) of the International Tobacco Control Policy (ITC) Evaluation Bangladesh Survey conducted in all six administrative divisions of Bangladesh. A structured questionnaire gathered information on participants' demographic characteristics, pattern of SHS exposure, SHS knowledge, and attitudes towards tobacco control. Exposure to SHS at home was defined as non-smokers who lived with at least one smoker in their household and who reported having no home smoking ban. The data were analyzed using chi-square tests and logistic regression procedures. The SHS exposure rate at home among the participants (N=2813) was 43%. Several sociodemographic and attitudinal factors were associated with SHS exposure. Logistic regression analyses identified eight predictors of SHS exposure: being female (OR=2.35), being aged 15-24 (OR=2.17), being recruited from Dhaka slums (OR=5.19) or non-tribal/non-border areas outside Dhaka (OR=2.19) or tribal/border area (OR=4.36), having lower education (1-8 years: OR=2.45; illiterate: OR=3.00, having higher monthly household income (5000 to non-smoking Bangladeshi adults are exposed to SHS at home. The findings suggest the need for comprehensive tobacco control measures that would improve public understanding about health hazards of SHS exposure at home and encourage educational initiatives to promote smoke-free homes. Interventions should deliver targeted messages to reach those in the low socioeconomic status group.

  11. Self-propagating high temperature synthesis and magnetic ...

    Indian Academy of Sciences (India)

    Unknown

    phase composition, microstructure and magnetic properties of the combustion products. The effect ... The size and shapes of the ... Figure 3 shows the effect of combustion temperature on ... ducts at 1200°C are too hard to be ground easily and.

  12. High Temperature Fluoride Salt Test Loop

    Energy Technology Data Exchange (ETDEWEB)

    Aaron, Adam M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cunningham, Richard Burns [Univ. of Tennessee, Knoxville, TN (United States); Fugate, David L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Holcomb, David Eugene [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kisner, Roger A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Peretz, Fred J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Robb, Kevin R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wilson, Dane F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yoder, Jr, Graydon L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-12-01

    Effective high-temperature thermal energy exchange and delivery at temperatures over 600°C has the potential of significant impact by reducing both the capital and operating cost of energy conversion and transport systems. It is one of the key technologies necessary for efficient hydrogen production and could potentially enhance efficiencies of high-temperature solar systems. Today, there are no standard commercially available high-performance heat transfer fluids above 600°C. High pressures associated with water and gaseous coolants (such as helium) at elevated temperatures impose limiting design conditions for the materials in most energy systems. Liquid salts offer high-temperature capabilities at low vapor pressures, good heat transport properties, and reasonable costs and are therefore leading candidate fluids for next-generation energy production. Liquid-fluoride-salt-cooled, graphite-moderated reactors, referred to as Fluoride Salt Reactors (FHRs), are specifically designed to exploit the excellent heat transfer properties of liquid fluoride salts while maximizing their thermal efficiency and minimizing cost. The FHR s outstanding heat transfer properties, combined with its fully passive safety, make this reactor the most technologically desirable nuclear power reactor class for next-generation energy production. Multiple FHR designs are presently being considered. These range from the Pebble Bed Advanced High Temperature Reactor (PB-AHTR) [1] design originally developed by UC-Berkeley to the Small Advanced High-Temperature Reactor (SmAHTR) and the large scale FHR both being developed at ORNL [2]. The value of high-temperature, molten-salt-cooled reactors is also recognized internationally, and Czechoslovakia, France, India, and China all have salt-cooled reactor development under way. The liquid salt experiment presently being developed uses the PB-AHTR as its focus. One core design of the PB-AHTR features multiple 20 cm diameter, 3.2 m long fuel channels

  13. Microstructural Evolution and Mechanical Behavior of High Temperature Solders: Effects of High Temperature Aging

    Science.gov (United States)

    Hasnine, M.; Tolla, B.; Vahora, N.

    2018-04-01

    This paper explores the effects of aging on the mechanical behavior, microstructure evolution and IMC formation on different surface finishes of two high temperature solders, Sn-5 wt.% Ag and Sn-5 wt.% Sb. High temperature aging showed significant degradation of Sn-5 wt.% Ag solder hardness (34%) while aging has little effect on Sn-5 wt.% Sb solder. Sn-5 wt.% Ag experienced rapid grain growth as well as the coarsening of particles during aging. Sn-5 wt.% Sb showed a stable microstructure due to solid solution strengthening and the stable nature of SnSb precipitates. The increase of intermetallic compound (IMC) thickness during aging follows a parabolic relationship with time. Regression analysis (time exponent, n) indicated that IMC growth kinetics is controlled by a diffusion mechanism. The results have important implications in the selection of high temperature solders used in high temperature applications.

  14. High temperature resistive phase transition in A15 high temperature superconductors

    International Nuclear Information System (INIS)

    Chu, C.W.; Huang, C.Y.; Schmidt, P.H.; Sugawara, K.

    1976-01-01

    Resistive measurements were made on A15 high temperature superconductors. Anomalies indicative of a phase transition were observed at 433 0 K in a single crystal Nb 3 Sn and at 485 0 K in an unbacked Nb 3 Ge sputtered thin film. Results are compared with the high temperature transmission electron diffraction studies of Nb 3 Ge films by Schmidt et al. A possible instability in the electron energy spectrum is discussed

  15. High temperature XRD of Cu2GeSe3

    International Nuclear Information System (INIS)

    Premkumar, D. S.; Malar, P.; Chetty, Raju; Mallik, Ramesh Chandra

    2015-01-01

    The Cu 2 GeSe 3 is prepared by solid state synthesis method. The high temperature XRD has been done at different temperature from 30 °C to 450 °C. The reitveld refinement confirms Cu 2 GeSe 3 phase and orthorhombic crystal structure. The lattice constants are increasing with increase in the temperature and their rate of increase with respect to temperature are used for finding the thermal expansion coefficient. The calculation of the linear and volume coefficient of thermal expansion is done from 30 °C to 400 °C. Decrease in the values of linear expansion coefficients with temperature are observed along a and c axis. Since thermal expansion coefficient is the consequence of the distortion of atoms in the lattice; this can be further used to find the minimum lattice thermal conductivity at given temperature

  16. High temperature creep-fatigue design

    International Nuclear Information System (INIS)

    Tavassoli, A. A. F.; Fournier, B.; Sauzay, M.

    2010-01-01

    Generation IV fission and future fusion reactors envisage development of more efficient high temperature concepts where materials performances are key to their success. This paper examines different types of high temperature creep-fatigue interactions and their implications on design rules for the structural materials retained in both programmes. More precisely, the paper examines current status of design rules for the stainless steel type 316L(N), the conventional Modified 9Cr-1Mo martensitic steel and the low activation Eurofer steel. Results obtained from extensive high temperature creep, fatigue and creep-fatigue tests performed on these materials and their welded joints are presented. These include sequential creep-fatigue and relaxation creep-fatigue tests with hold times in tension, in compression or in both. Effects of larger plastic deformations on fatigue properties are studied through cyclic creep tests or fatigue tests with extended hold time in creep. In most cases, mechanical test results are accompanied with microstructural and fractographic observations. In the case of martensitic steels, the effect of oxidation is examined by performing creep-fatigue tests on identical specimens in vacuum. Results obtained are analyzed and their implications on design allowable and creep-fatigue interaction diagrams are presented. While reasonable confidence is found in predicting creep-fatigue damage through existing code procedures for austenitic stainless steels, effects of cyclic softening and coarsening of microstructure of martensitic steels throughout the fatigue life on materials properties need to be taken into account for more precise damage calculations. In the long-term, development of ferritic/martensitic steels with stable microstructure, such as ODS steels, is proposed. (authors)

  17. High temperature superconductors applications in telecommunications

    International Nuclear Information System (INIS)

    Kumar, A.A.; Li, J.; Zhang, M.F.

    1994-01-01

    The purpose of this paper is twofold: to discuss high temperature superconductors with specific reference to their employment in telecommunications applications; and to discuss a few of the limitations of the normally employed two-fluid model. While the debate on the actual usage of high temperature superconductors in the design of electronic and telecommunications devices-obvious advantages versus practical difficulties-needs to be settled in the near future, it is of great interest to investigate the parameters and the assumptions that will be employed in such designs. This paper deals with the issue of providing the microwave design engineer with performance data for such superconducting waveguides. The values of conductivity and surface resistance, which are the primary determining factors of a waveguide performance, are computed based on the two-fluid model. A comparison between two models-a theoretical one in terms of microscopic parameters (termed Model A) and an experimental fit in terms of macroscopic parameters (termed Model B)-shows the limitations and the resulting ambiguities of the two-fluid model at high frequencies and at temperatures close to the transition temperature. The validity of the two-fluid model is then discussed. Our preliminary results show that the electrical transport description in the normal and superconducting phases as they are formulated in the two-fluid model needs to be modified to incorporate the new and special features of high temperature superconductors. Parameters describing the waveguide performance-conductivity, surface resistance and attenuation constant-will be computed. Potential applications in communications networks and large scale integrated circuits will be discussed. Some of the ongoing work will be reported. In particular, a brief proposal is made to investigate of the effects of electromagnetic interference and the concomitant notion of electromagnetic compatibility (EMI/EMC) of high T c superconductors

  18. High temperature superconductors applications in telecommunications

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, A.A.; Li, J.; Zhang, M.F. [Prairie View A& M Univ., Texas (United States)

    1994-12-31

    The purpose of this paper is twofold: to discuss high temperature superconductors with specific reference to their employment in telecommunications applications; and to discuss a few of the limitations of the normally employed two-fluid model. While the debate on the actual usage of high temperature superconductors in the design of electronic and telecommunications devices-obvious advantages versus practical difficulties-needs to be settled in the near future, it is of great interest to investigate the parameters and the assumptions that will be employed in such designs. This paper deals with the issue of providing the microwave design engineer with performance data for such superconducting waveguides. The values of conductivity and surface resistance, which are the primary determining factors of a waveguide performance, are computed based on the two-fluid model. A comparison between two models-a theoretical one in terms of microscopic parameters (termed Model A) and an experimental fit in terms of macroscopic parameters (termed Model B)-shows the limitations and the resulting ambiguities of the two-fluid model at high frequencies and at temperatures close to the transition temperature. The validity of the two-fluid model is then discussed. Our preliminary results show that the electrical transport description in the normal and superconducting phases as they are formulated in the two-fluid model needs to be modified to incorporate the new and special features of high temperature superconductors. Parameters describing the waveguide performance-conductivity, surface resistance and attenuation constant-will be computed. Potential applications in communications networks and large scale integrated circuits will be discussed. Some of the ongoing work will be reported. In particular, a brief proposal is made to investigate of the effects of electromagnetic interference and the concomitant notion of electromagnetic compatibility (EMI/EMC) of high T{sub c} superconductors.

  19. High temperature creep-fatigue design

    Energy Technology Data Exchange (ETDEWEB)

    Tavassoli, A. A. F.; Fournier, B.; Sauzay, M. [CEA Saclay, DEN DMN, F-91191 Gif Sur Yvette (France)

    2010-07-01

    Generation IV fission and future fusion reactors envisage development of more efficient high temperature concepts where materials performances are key to their success. This paper examines different types of high temperature creep-fatigue interactions and their implications on design rules for the structural materials retained in both programmes. More precisely, the paper examines current status of design rules for the stainless steel type 316L(N), the conventional Modified 9Cr-1Mo martensitic steel and the low activation Eurofer steel. Results obtained from extensive high temperature creep, fatigue and creep-fatigue tests performed on these materials and their welded joints are presented. These include sequential creep-fatigue and relaxation creep-fatigue tests with hold times in tension, in compression or in both. Effects of larger plastic deformations on fatigue properties are studied through cyclic creep tests or fatigue tests with extended hold time in creep. In most cases, mechanical test results are accompanied with microstructural and fractographic observations. In the case of martensitic steels, the effect of oxidation is examined by performing creep-fatigue tests on identical specimens in vacuum. Results obtained are analyzed and their implications on design allowable and creep-fatigue interaction diagrams are presented. While reasonable confidence is found in predicting creep-fatigue damage through existing code procedures for austenitic stainless steels, effects of cyclic softening and coarsening of microstructure of martensitic steels throughout the fatigue life on materials properties need to be taken into account for more precise damage calculations. In the long-term, development of ferritic/martensitic steels with stable microstructure, such as ODS steels, is proposed. (authors)

  20. High temperature sensors for exhaust diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Svenningstorp, Henrik

    2000-07-01

    One of the largest problems that we will have to deal with on this planet this millennium is to stop the pollution of our environment. In many of the ongoing works to reduce toxic emissions, gas sensors capable of enduring rough environments and high temperatures, would be a great tool. The different applications where sensors like this would be useful vary between everything from online measurement in the paper industry and food industry to measurement in the exhaust pipe of a car. In my project we have tested Schottky diodes and MlSiCFET sensor as gas sensors operating at high temperatures. The measurement condition in the exhaust pipe of a car is extremely tough, not only is the temperature high and the different gases quite harmful, there are also a lot of particles that can affect the sensors in an undesirable way. In my project we have been testing Schottky diodes and MlSiCFET sensors based on SiC as high temperature sensors, both in the laboratory with simulated exhaust and after a real engine. In this thesis we conclude that these sensors can work in the hostile environment of an engines exhaust. It is shown that when measuring in a gas mixture with a fixed I below one, where the I-value is controlled by the O{sub 2} concentration, a sensor with a catalytic gate metal as sensitive material respond more to the increased O{sub 2} concentration than the increased HC concentration when varying the two correspondingly. A number of different sensors have been tested in simulated exhaust towards NO{sub x}. It was shown that resistivity changes in the thin gate metal influenced the gas response. Tests have been performed where sensors were a part of a SCR system with promising results concerning NH{sub 3} sensitivity. With a working temperature of 300 deg C there is no contamination of the metal surface.

  1. Investigation of gadolinium monophosphide at high temperatures

    International Nuclear Information System (INIS)

    Gordienko, S.P.; Gol'nik, V.F.; Mironov, K.E.

    1982-01-01

    Gadolinium monophosphide has been studied in vacuum at high temperatures using mass-spectrometric, chemical, X-ray phase and derivatographical analyses. It is established that gadolinium monophosphide at 2080-2465 K dissociates into atomic gadolinium, phosphorus and, P 2 molecules. According to Vant-Hoff and Gibbs-Helmholtz equations standard enthalpy of atomization ΔHsub(at) deg (298)=1027.3 kJ/mol and of formation ΔHsub(f) deg (298)=313.8 kJ/mol of gadolinium monophosphide are determined

  2. Encapsulation of high temperature molten salts

    Science.gov (United States)

    Oxley, James D.; Mathur, Anoop Kumar

    2017-05-16

    The present disclosure relates to a method of encapsulating microcapsules containing relatively high temperature phase change materials and the microcapsules so produced. The microcapsules are coated with an inorganic binder, film former and an inorganic filler. The microcapsules may include a sacrificial layer that is disposed between the particle and the coating. The microcapsules may also include an inner coating layer, sacrificial layer and outer coating layer. The microcapsules are particularly useful for thermal energy storage in connection with, e.g., heat collected from concentrating solar collectors.

  3. High Temperature Materials Laboratory third annual report

    Energy Technology Data Exchange (ETDEWEB)

    Tennery, V.J.; Foust, F.M.

    1990-12-01

    The High Temperature Materials Laboratory has completed its third year of operation as a designated DOE User Facility at the Oak Ridge National Laboratory. Growth of the user program is evidenced by the number of outside institutions who have executed user agreements since the facility began operation in 1987. A total of 88 nonproprietary agreements (40 university and 48 industry) and 20 proprietary agreements (1 university, 19 industry) are now in effect. Sixty-eight nonproprietary research proposals (39 from university, 28 from industry, and 1 other government facility) and 8 proprietary proposals were considered during this reporting period. Research projects active in FY 1990 are summarized.

  4. High temperature aqueous stress corrosion testing device

    International Nuclear Information System (INIS)

    Bornstein, A.N.; Indig, M.E.

    1975-01-01

    A description is given of a device for stressing tensile samples contained within a high temperature, high pressure aqueous environment, thereby permitting determination of stress corrosion susceptibility of materials in a simple way. The stressing device couples an external piston to an internal tensile sample via a pull rod, with stresses being applied to the sample by pressurizing the piston. The device contains a fitting/seal arrangement including Teflon and weld seals which allow sealing of the internal system pressure and the external piston pressure. The fitting/seal arrangement allows free movement of the pull rod and the piston

  5. Sodium immersible high temperature microphone design description

    International Nuclear Information System (INIS)

    Gavin, A.P.; Anderson, T.T.; Janicek, J.J.

    1975-02-01

    Argonne National Laboratory has developed a rugged high-temperature (HT) microphone for use as a sodium-immersed acoustic monitor in Liquid Metal Fast Breeder Reactors (LMFBRs). Microphones of this design have been extensively tested in room temperature water, in air up to 1200 0 F, and in sodium up to 1200 0 F. They have been successfully installed and employed as acoustic monitors in several operating liquid metal systems. The design, construction sequence, calibration, and testing of these microphones are described. 6 references. (U.S.)

  6. Structural relationships in high temperature superconductors

    International Nuclear Information System (INIS)

    Schuller, I.K.; Segre, C.U.; Hinks, D.G.; Jorgensen, J.D.; Soderholm, L.; Beno, M.; Zhang, K.

    1987-09-01

    The recent discovery of two types of metallic copper oxide compounds which are superconducting to above 90 0 K has renewed interest in the search for new high temperature superconducting materials. It is significant that both classes of compounds, La/sub 2-x/Sr/sub x/CuO/sub 4-y/ and YBa 2 Cu 3 O/sub 7-δ/ are intimately related to the extensively studied perovskite family. Both compounds contain highly oxidized, covalently bonded Cu-O sublattices, however, they differ in geometry. In this paper we discuss the relationship of these features to the superconducting properties. 30 refs., 6 figs

  7. Experimental needs of high temperature concrete

    International Nuclear Information System (INIS)

    Chern, J.C.; Marchertas, A.H.

    1985-01-01

    The needs of experimental data on concrete structures under high temperature, ranging up to about 370 0 C for operating reactor conditions and to about 900 0 C and beyond for hypothetical accident conditions, are described. This information is required to supplement analytical methods which are being implemented into the finite element code TEMP-STRESS to treat reinforced concrete structures. Recommended research ranges from material properties of reinforced/prestressed concrete, direct testing of analytical models used in the computer codes, to investigations of certain aspects of concrete behavior, the phenomenology of which is not well understood. 10 refs

  8. Modeling forces in high-temperature superconductors

    International Nuclear Information System (INIS)

    Turner, L. R.; Foster, M. W.

    1997-01-01

    We have developed a simple model that uses computed shielding currents to determine the forces acting on a high-temperature superconductor (HTS). The model has been applied to measurements of the force between HTS and permanent magnets (PM). Results show the expected hysteretic variation of force as the HTS moves first toward and then away from a permanent magnet, including the reversal of the sign of the force. Optimization of the shielding currents is carried out through a simulated annealing algorithm in a C++ program that repeatedly calls a commercial electromagnetic software code. Agreement with measured forces is encouraging

  9. High temperature giant dipole and isoscalar resonances

    International Nuclear Information System (INIS)

    Navarro, J.; Barranco, M.; Garcias, F.; Suraud, E.

    1990-01-01

    We present a systematic study of the Giant Dipole Resonance (GDR) at high temperatures (T > ∼ 4 MeV) in the framework of a semi-classical approximation that uses the m 1 and m 3 RPA sum rules to estimate the GDR mean energy. We focus on the evolution with T of the collective nature of the GDR and of the L = 0,2,3 and 4 isoscalar resonances. We find that the GDR remains particularly collective at high T, suggesting that it might be possible to observe it experimentally even at temperatures close to the maximum one a nucleus can sustain

  10. Multichannel euv spectroscopy of high temperature plasmas

    International Nuclear Information System (INIS)

    Fonck, R.J.

    1983-11-01

    Spectroscopy of magnetically confined high temperature plasmas in the visible through x-ray spectral ranges deals primarily with the study of impurity line radiation or continuum radiation. Detailed knowledge of absolute intensities, temporal behavior, and spatial distributions of the emitted radiation is desired. As tokamak facilities become more complex, larger, and less accessible, there has been an increased emphasis on developing new instrumentation to provide such information in a minimum number of discharges. The availability of spatially-imaging detectors for use in the vacuum ultraviolet region (especially the intensified photodiode array) has generated the development of a variety of multichannel spectrometers for applications on tokamak facilities

  11. Secondhand smoke exposure (SHS) and health-related quality of life (HRQoL) in Chinese never smokers in Hong Kong.

    Science.gov (United States)

    Chen, Jing; Wang, Man-Ping; Wang, Xin; Viswanath, Kasisomayajula; Lam, Tai-Hing; Chan, Sophia S

    2015-09-02

    The evidence on the effect of secondhand smoke (SHS) on Health Related Quality of Life (HRQoL) is limited. We examined the relation between SHS and HRQoL among Chinese in Hong Kong. Adult never smokers from a probability sample of three cross-sectional waves (2010, 2012, 2013) of The Hong Kong Family and Health Information Trends Survey who completed the Cantonese-version of Short-Form 12 Health Survey Questionnaire (SF12v2) were included in the data analysis conducted in 2014. Models were used to examine associations of SHS with SF12 domains and summary scores of Physical (PCS12) and Mental Component (MCS12) with subgroups analysis by SHS locations. After adjustments, SHS was associated with lower scores on all SF12 domains except physical functioning. PCS12 (regress coefficient=-0.76, 95% CI -1.34 to -0.17) and MCS12 (regress coefficient=-1.35, 95% CI -2.06 to -0.64) were lower in those with SHS exposure than those non-exposed. Those exposed to SHS in outdoor public places had lower scores on most SF12 domains and PSC12 and MCS12. SHS exposure in one's home and workplace was associated with lower scores on role physical, body pain and role emotional while SHS exposure in friends' homes was additionally associated with lower social functioning and mental health scores. Lower MCS12 was associated with SHS exposure at all locations except one's home. Our study showed that SHS exposure, particularly in outdoor public places, was associated with decreased HRQoL. It can provide new evidence for stronger smoke-free policies on public places and promoting smoke-free homes. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  12. Production of monoclonal antibodies for Avian Metapneumovirus (SHS-BR-121) isolated in Brazil

    OpenAIRE

    Coswig,LT; Stach-Machado,DR; Arns,CW

    2007-01-01

    Avian Metapneumovirus (aMPV), also called Turkey Rhinotracheitis Virus (TRTV), is an upper respiratory tract infection of turkeys, chickens and other avian species. Five monoclonal antibodies (MAbs) were created against the Brazilian isolate (SHS-BR-121) of aMPV, MAbs 1A5B8; 1C1C4; 2C2E9 and 2A4C3 of IgG1 and MAb 1C1F8 of IgG2a. Four Mabs (1A5B8; 1C1C4; 2C2E9 and 2A4C3) showed neutralizing activity and three (1A5B8; 1C1C4 and 2A4C3) inhibited cellular fusion in vitro. These MAbs were used to ...

  13. Mechanical properties of concrete for power reactor at high temperatures

    International Nuclear Information System (INIS)

    Kawase, Kiyotaka; Tanaka, Hitoshi; Nakano, Masayuki

    1985-01-01

    The purpose of this study is to investigate the mechanical properties of concrete for power reactor at high temperature. This paper presents the creep behavior of concrete at high temperature and the cause by which a specified aggregate is broken at a specified high temperature. The creep coefficient at high temperature is smaller than that at ordinary temperature. (author)

  14. Materials for advanced high temperature reactors

    International Nuclear Information System (INIS)

    Graham, L.W.

    1977-01-01

    Materials are studied in advanced applications of high temperature reactors: helium gas turbine and process heat. Long term creep behavior and corrosion tests are conducted in simulated HTR helium up to 1000 deg C with impurities additions in the furnace atmosphere. Corrosion studies on AISI 321 steels at 800-1000 deg C have shown that the O 2 partial pressure is as low as 10 -24+-3 atm, Ni and Fe cannot be oxidised above about 500 and 600 deg C, Cr cease to oxidise at 800 to 900 deg C and Ti at 900 to 1000 deg C depending on alloy composition γ' strengthened superalloys must depend on a protective corrosion mechanism assisted by the presence of Ti and possibly Cr. Carburisation has been identified metallographically in several high temperature materials: Hastelloy X and M21Z. Alloy TZM appears to be inert in HTR Helium at 900 and 1000 deg C. In alloy 800 and Inconel 625 surface cracks initiation is suppressed but crack propagation is accelerated but this was not apparent in AISI steels, Hastelloy X or fine grain Inconel at 750 deg C

  15. High temperature cogeneration with thermionic burners

    International Nuclear Information System (INIS)

    Fitzpatrick, G.O.; Britt, E.J.; Dick, R.S.

    1981-01-01

    The thermionic cogeneration combustor was conceived to meet industrial requirements for high-temperature direct heat, typically in the form of gas at temperatures from 800 to 1900 K, while at the same time supplying electricity. The thermionic combustor is entirely self-contained, with heat from the combustion region absorbed by the emitters of thermionic converters to be converted to electric power and the high-temperature reject heat from the converters used to preheat the air used for combustion. Depending on the temperature of the process gas produced, energy savings of around 10% with respect to that used to produce the same amount of electricity and heat without cogeneration are possible with present technology, and savings of up to 20% may be possible with advanced converters. Possible thermionic combustor designs currently under investigation include a configuration in which heat is collected by heat pipes lining the periphery of the combustion region, and a fire-tube converter in which combustion occurs within the cylindrical emitter of each converter. Preliminary component tests of these designs have been encouraging

  16. High-temperature superconductors make major progress

    CERN Multimedia

    CERN Bulletin

    2014-01-01

    This month's Nature Materials featured an important breakthrough for high-temperature superconductors. A new method has been found for processing Bi-2212 high-temperature superconducting round wire in order to drastically increase its critical current density. The result confirms that this conductor is a serious candidate for future very-high-field magnets.   This image shows the cross-section of two Bi-2212 wires. The bottom wire has less leakage and void porosity due to a heat treatment done at an overpressure of 100 bar - about 100 times the pressure used to produce the top wire (image from [Nature Materials, Vol. 13 (2014), 10.1038/nmat3887]). The workhorse for building superconducting accelerator magnets has been, so far, the Niobium-Titanium (Nb-Ti) alloy superconductor. But with Nb-Ti having reached its full potential, other conductors must be used to operate in higher magnetic fields beyond those reached with the LHC magnets. Today, the intermetallic Niobium-Tin (Nb3Sn) is th...

  17. Development of Very High Temperature Reactor Technology

    International Nuclear Information System (INIS)

    Lee, Won Jae; Noh, J. M.; Kim, Y. H.

    2009-04-01

    For an efficient production of nuclear hydrogen, the VHTR (Very High Temperature Gas-cooled Reactor) of 950 .deg. C outlet temperature and the interfacing system for the hydrogen production are required. We have developed various evaluation technologies for the performance and safety of VHTR through the accomplishment of this project. First, to evaluate the performance of VHTR, a series of analyses has been performed such as core characteristics at 950 .deg. C, applicability of cooled-vessel, intermediate loop system and high temperature structural integrity. Through the analyses of major accidents such as HPCC and LPCC and the analysis of the risk/performance-informed method, VHTR safety evaluation has been also performed. In addition, various design analysis codes have been developed for a nuclear design, system loop design, system performance analysis, air-ingress accident analysis, fission product/tritium transport analysis, graphite structure seismic analysis and hydrogen explosion analysis, and they are being verified and validated through a lot of international collaborations

  18. High-temperature flaw assessment procedure

    International Nuclear Information System (INIS)

    Ruggles, M.B.; Takahashi, Y.; Ainsworth, R.A.

    1991-08-01

    Described is the background work performed jointly by the Electric Power Research Institute in the United States, the Central Research Institute of Electric Power Industry in Japan and Nuclear Electric plc in the United Kingdom with the purpose of developing a high-temperature flaw assessment procedure for reactor components. Existing creep-fatigue crack-growth models are reviewed, and the most promising methods are identified. Sources of material data are outlined, and results of the fundamental deformation and crack-growth tests are discussed. Results of subcritical crack-growth exploratory tests, creep-fatigue crack-growth tests under repeated thermal transient conditions, and exploratory failure tests are presented and contrasted with the analytical modeling. Crack-growth assessment methods are presented and applied to a typical liquid-metal reactor component. The research activities presented herein served as a foundation for the Flaw Assessment Guide for High-Temperature Reactor Components Subjected to Creep-Fatigue Loading published separately. 30 refs., 108 figs., 13 tabs

  19. High temperature embrittlement of metals by helium

    International Nuclear Information System (INIS)

    Schroeder, H.

    1983-01-01

    The present knowledge of the influence of helium on the high temperature mechanical properties of metals to be used as structural materials in fast fission and in future fusion reactors is reviewed. A wealth of experimental data has been obtained by many different experimental techniques, on many different alloys, and on different properties. This review is mostly concentrated on the behaviour of austenitic alloys -especially austenitic stainless steels, for which the data base is by far the largest - and gives only a few examples of special bcc alloys. The effect of the helium embrittlement on the different properties - tensile, fatigue and, with special emphasis, creep - is demonstrated by representative results. A comparison between data obtained from in-pile (-beam) experiments and from post-irradiation (-implantation) experiments, respectively, is presented. Theoretical models to describe the observed phenomena are briefly outlined and some suggestions are made for future work to resolve uncertainties and differences between our experimental knowledge and theoretical understanding of high temperature helium embrittlement. (author)

  20. Medium Deep High Temperature Heat Storage

    Science.gov (United States)

    Bär, Kristian; Rühaak, Wolfram; Schulte, Daniel; Welsch, Bastian; Chauhan, Swarup; Homuth, Sebastian; Sass, Ingo

    2015-04-01

    Heating of buildings requires more than 25 % of the total end energy consumption in Germany. Shallow geothermal systems for indirect use as well as shallow geothermal heat storage systems like aquifer thermal energy storage (ATES) or borehole thermal energy storage (BTES) typically provide low exergy heat. The temperature levels and ranges typically require a coupling with heat pumps. By storing hot water from solar panels or thermal power stations with temperatures of up to 110 °C a medium deep high temperature heat storage (MDHTS) can be operated on relatively high temperature levels of more than 45 °C. Storage depths of 500 m to 1,500 m below surface avoid conflicts with groundwater use for drinking water or other purposes. Permeability is typically also decreasing with greater depth; especially in the crystalline basement therefore conduction becomes the dominant heat transport process. Solar-thermal charging of a MDHTS is a very beneficial option for supplying heat in urban and rural systems. Feasibility and design criteria of different system configurations (depth, distance and number of BHE) are discussed. One system is designed to store and supply heat (300 kW) for an office building. The required boreholes are located in granodioritic bedrock. Resulting from this setup several challenges have to be addressed. The drilling and completion has to be planned carefully under consideration of the geological and tectonical situation at the specific site.

  1. Borehole Stability in High-Temperature Formations

    Science.gov (United States)

    Yan, Chuanliang; Deng, Jingen; Yu, Baohua; Li, Wenliang; Chen, Zijian; Hu, Lianbo; Li, Yang

    2014-11-01

    In oil and gas drilling or geothermal well drilling, the temperature difference between the drilling fluid and formation will lead to an apparent temperature change around the borehole, which will influence the stress state around the borehole and tend to cause borehole instability in high geothermal gradient formations. The thermal effect is usually not considered as a factor in most of the conventional borehole stability models. In this research, in order to solve the borehole instability in high-temperature formations, a calculation model of the temperature field around the borehole during drilling is established. The effects of drilling fluid circulation, drilling fluid density, and mud displacement on the temperature field are analyzed. Besides these effects, the effect of temperature change on the stress around the borehole is analyzed based on thermoelasticity theory. In addition, the relationships between temperature and strength of four types of rocks are respectively established based on experimental results, and thermal expansion coefficients are also tested. On this basis, a borehole stability model is established considering thermal effects and the effect of temperature change on borehole stability is also analyzed. The results show that the fracture pressure and collapse pressure will both increase as the temperature of borehole rises, and vice versa. The fracture pressure is more sensitive to temperature. Temperature has different effects on collapse pressures due to different lithological characters; however, the variation of fracture pressure is unrelated to lithology. The research results can provide a reference for the design of drilling fluid density in high-temperature wells.

  2. Computer code validation by high temperature chemistry

    International Nuclear Information System (INIS)

    Alexander, C.A.; Ogden, J.S.

    1988-01-01

    At least five of the computer codes utilized in analysis of severe fuel damage-type events are directly dependent upon or can be verified by high temperature chemistry. These codes are ORIGEN, CORSOR, CORCON, VICTORIA, and VANESA. With the exemption of CORCON and VANESA, it is necessary that verification experiments be performed on real irradiated fuel. For ORIGEN, the familiar knudsen effusion cell is the best choice and a small piece of known mass and known burn-up is selected and volatilized completely into the mass spectrometer. The mass spectrometer is used in the integral mode to integrate the entire signal from preselected radionuclides, and from this integrated signal the total mass of the respective nuclides can be determined. For CORSOR and VICTORIA, experiments with flowing high pressure hydrogen/steam must flow over the irradiated fuel and then enter the mass spectrometer. For these experiments, a high pressure-high temperature molecular beam inlet must be employed. Finally, in support of VANESA-CORCON, the very highest temperature and molten fuels must be contained and analyzed. Results from all types of experiments will be discussed and their applicability to present and future code development will also be covered

  3. Evaluation of high temperature capacitor dielectrics

    Science.gov (United States)

    Hammoud, Ahmad N.; Myers, Ira T.

    1992-01-01

    Experiments were carried out to evaluate four candidate materials for high temperature capacitor dielectric applications. The materials investigated were polybenzimidazole polymer and three aramid papers: Voltex 450, Nomex 410, and Nomex M 418, an aramid paper containing 50 percent mica. The samples were heat treated for six hours at 60 C and the direct current and 60 Hz alternating current breakdown voltages of both dry and impregnated samples were obtained in a temperature range of 20 to 250 C. The samples were also characterized in terms of their dielectric constant, dielectric loss, and conductivity over this temperature range with an electrical stress of 60 Hz, 50 V/mil present. Additional measurements are underway to determine the volume resistivity, thermal shrinkage, and weight loss of the materials. Preliminary data indicate that the heat treatment of the films slightly improves the dielectric properties with no influence on their breakdown behavior. Impregnation of the samples leads to significant increases in both alternating and direct current breakdown strength. The results are discussed and conclusions made concerning their suitability as high temperature capacitor dielectrics.

  4. Critical fields in high temperature superconductors

    International Nuclear Information System (INIS)

    Finnemore, D.K.

    1991-01-01

    An analysis of various methods to obtain the critical fields of the high temperature superconductors from experimental data is undertaken in order to find definitions of these variables that are consistent with the models used to define them. Characteristic critical fields of H c1 , H c2 and H c that occur in the Ginsburg-Landau theory are difficult to determine experimentally in the high temperature superconductors because there are additional physical phenomena that obscure the results. The lower critical field is difficult to measure because there are flux pinning and surface barrier effects to flux entry; the upper critical field is difficult because fluctuation effects are large at this phase boundary; the thermodynamic critical field is difficult because fluctuations make it difficult to know the field where the magnetization integral should be terminated. In addition to these critical fields there are at least two other cross-over fields. There is the so called irreversibility line where the vortices transform from a rigid flux line lattice to a fluid lattice and there is a second cross-over field associated with the transition from the fluctuation to the Abrikosov vortex regime. The presence of these new physical effects may require new vocabulary

  5. New Waste Calciner High Temperature Operation

    International Nuclear Information System (INIS)

    Swenson, M.C.

    2000-01-01

    A new Calciner flowsheet has been developed to process the sodium-bearing waste (SBW) in the INTEC Tank Farm. The new flowsheet increases the normal Calciner operating temperature from 500 C to 600 C. At the elevated temperature, sodium in the waste forms stable aluminates, instead of nitrates that melt at calcining temperatures. From March through May 2000, the new high-temperature flowsheet was tested in the New Waste Calcining Facility (NWCF) Calciner. Specific test criteria for various Calciner systems (feed, fuel, quench, off-gas, etc.) were established to evaluate the long-term operability of the high-temperature flowsheet. This report compares in detail the Calciner process data with the test criteria. The Calciner systems met or exceeded all test criteria. The new flowsheet is a visible, long-term method of calcining SBW. Implementation of the flowsheet will significantly increase the calcining rate of SBW and reduce the amount of calcine produced by reducing the amount of chemical additives to the Calciner. This will help meet the future waste processing milestones and regulatory needs such as emptying the Tank Farm

  6. High temperature cogeneration with thermionic burners

    Science.gov (United States)

    Fitzpatrick, G. O.; Britt, E. J.; Dick, R. S.

    The thermionic cogeneration combustor was conceived to meet industrial requirements for high-temperature direct heat, typically in the form of gas at temperatures from 800 to 1900 K, while at the same time supplying electricity. The thermionic combustor is entirely self-contained, with heat from the combustion region absorbed by the emitters of thermionic converters to be converted to electric power and the high-temperature reject heat from the converters used to preheat the air used for combustion. Depending on the temperature of the process gas produced, energy savings of around 10% with respect to that used to produce the same amount of electricity and heat without cogeneration are possible with present technology, and savings of up to 20% may be possible with advanced converters. Possible thermionic combustor designs currently under investigation include a configuration in which heat is collected by heat pipes lining the periphery of the combustion region, and a fire-tube converter in which combustion occurs within the cylindrical emitter of each converter. Preliminary component tests of these designs have been encouraging.

  7. Incorporating the user perspective into a proposed model for assessing success of SHS implementations

    Directory of Open Access Journals (Sweden)

    Hans Holtorf

    2015-10-01

    Full Text Available Modern energy can contribute to development in multiple ways while approximately 20% of world's populations do not yet have access to electricity. Solar Home Systems (SHSs consists of a PV module, a charge controller and a battery supply in the range of 100 Wh/d in Sunbelt countries. The question addressed in this paper is how SHS users approach success of their systems and how these user's views can be integrated in to an existing model of success. Information was obtained on the user's approach to their SHSs by participatory observation, interviews with users and by self-observation undertaken by the lead author while residing under SHS electricity supply conditions. It was found that success of SHSs from the users' point of view is related to the ability of these systems to reduce the burdens of supplying energy services to homesteads. SHSs can alleviate some energy supply burdens, and they can improve living conditions by enabling communication on multiple levels and by addressing convenience and safety concerns. However, SHSs do not contribute to the energy services which are indispensable for survival, nor to the thermal energy services required and desired in dwellings of Sunbelt countries. The elements of three of the four components of our previously proposed model of success have been verified and found to be appropriate, namely the user's self-set goals, their importance and SHSs' success factors. The locally appropriate, and scientifically satisfactory, measurement of the level of achievement of self-set goals, the fourth component of our model of success, remains an interesting area for future research.

  8. High temperature induced disruption of the cell wall integrity and structure in Pleurotus ostreatus mycelia.

    Science.gov (United States)

    Qiu, Zhiheng; Wu, Xiangli; Gao, Wei; Zhang, Jinxia; Huang, Chenyang

    2018-05-30

    Fungal cells are surrounded by a tight cell wall to protect them from harmful environmental conditions and to resist lysis. The synthesis and assembly determine the shape, structure, and integrity of the cell wall during the process of mycelial growth and development. High temperature is an important abiotic stress, which affects the synthesis and assembly of cell walls. In the present study, the chitin and β-1,3-glucan concentrations in the cell wall of Pleurotus ostreatus mycelia were changed after high-temperature treatment. Significantly higher chitin and β-1,3-glucan concentrations were detected at 36 °C than those incubated at 28 °C. With the increased temperature, many aberrant chitin deposition patches occurred, and the distribution of chitin in the cell wall was uneven. Moreover, high temperature disrupts the cell wall integrity, and P. ostreatus mycelia became hypersensitive to cell wall-perturbing agents at 36 °C. The cell wall structure tended to shrink or distorted after high temperature. The cell walls were observed to be thicker and looser by using transmission electron microscopy. High temperature can decrease the mannose content in the cell wall and increase the relative cell wall porosity. According to infrared absorption spectrum, high temperature broke or decreased the glycosidic linkages. Finally, P. ostreatus mycelial cell wall was easily degraded by lysing enzymes after high-temperature treatment. In other words, the cell wall destruction caused by high temperature may be a breakthrough for P. ostreatus to be easily infected by Trichoderma.

  9. Elasticity of fluorite at high temperatures

    Science.gov (United States)

    Eke, J.; Tennakoon, S.; Mookherjee, M.

    2017-12-01

    Fluorite (CaF2) is a simple halide with cubic space group symmetry (Fm-3m) and is often used as an internal pressure calibrant in moderate high-pressure/high-temperature experiments [1]. In order to gain insight into the elastic behavior of fluorite, we have conducted Resonant Ultrasound Spectroscopy (RUS) on a single crystal of fluorite with rectangular parallelepiped geometry. Using single crystal X-ray diffraction, we aligned the edges of the rectangular parallelepiped with [-1 1 1], [-1 1 -2], and [-1 -1 0] crystallographic directions. We conducted the RUS measurements up to 620 K. RUS spectra are influenced by the geometry, density, and the full elastic moduli tensor of the material. In our high-temperature RUS experiments, the geometry and density were constrained using thermal expansion from previous studies [2]. We determined the elasticity by minimizing the difference between observed resonance and calculated Eigen frequency using Rayleigh-Ritz method [3]. We found that at room temperature, the single crystal elastic moduli for fluorite are 170, 49, and 33 GPa for C11, C12, and C44 respectively. At room temperatures, the aggregate bulk modulus (K) is 90 GPa and the shear modulus (G) is 43 GPa. We note that the elastic moduli and sound wave velocities decrease linearly as a function of temperature with dVP /dT and dVS /dT being -9.6 ×10-4 and -5.0 ×10-4 km/s/K respectively. Our high-temperature RUS results are in good agreement with previous studies on fluorite using both Ultrasonic methods and Brillouin scattering [4,5]. Acknowledgement: This study is supported by US NSF awards EAR-1639552 and EAR-1634422. References: [1] Speziale, S., Duffy, T. S. 2002, Phys. Chem. Miner., 29, 465-472; [2] Roberts, R. B., White, G. K., 1986, J. Phys. C: Solid State Phys., 19, 7167-7172. [3] Migliori, A., Maynard, J. D., 2005, Rev. Sci. Instrum., 76, 121301. [4] Catlow, C. R. A., Comins, J. D., Germano, F. A., Harley, R. T., Hayes, W., 1978, J. Phys. C Solid State Phys

  10. Permanent magnets composed of high temperature superconductors

    Science.gov (United States)

    Weinstein, Roy; Chen, In-Gann; Liu, Jay; Lau, Kwong

    1991-01-01

    A study of persistent, trapped magnetic field has been pursued with high-temperature superconducting (HTS) materials. The main effort is to study the feasibility of utilization of HTS to fabricate magnets for various devices. The trapped field, when not in saturation, is proportional to the applied field. Thus, it should be possible to replicate complicated field configurations with melt-textured YBa2Cu3O7 (MT-Y123) material, bypassing the need for HTS wires. Presently, materials have been developed from which magnets of 1.5 T, at 77 K, can be fabricated. Much higher field is available at lower operating temperature. Stability of a few percent per year is readily attainable. Results of studies on prototype motors and minimagnets are reported.

  11. High temperature chemically resistant polymer concrete

    Science.gov (United States)

    Sugama, T.; Kukacka, L.E.

    High temperature chemically resistant, non-aqueous polymer concrete composites consist of about 12 to 20% by weight of a water-insoluble polymer binder. The binder is polymerized in situ from a liquid vinyl-type monomer or mixture of vinyl containing monomers such as triallylcyanurate, styrene, acrylonitrile, acrylamide, methacrylamide, methyl-methacrylate, trimethylolpropane trimethacrylate and divinyl benzene. About 5 to 40% by weight of a reactive inorganic filler selected from the group consisting of tricalcium silicate and dicalcium silicate and mixtures containing less than 2% free lime, and about 48 to 83% by weight of silica sand/ and a free radical initiator such as di-tert-butyl peroxide, azobisisobutyronitrile, benzoyl peroxide, lauryl peroxide, other orgaic peroxides and combinations to initiate polymerization of the monomer in the presence of the inorganic filers are used.

  12. Thermoelectric properties by high temperature annealing

    Science.gov (United States)

    Ren, Zhifeng (Inventor); Chen, Gang (Inventor); Kumar, Shankar (Inventor); Lee, Hohyun (Inventor)

    2009-01-01

    The present invention generally provides methods of improving thermoelectric properties of alloys by subjecting them to one or more high temperature annealing steps, performed at temperatures at which the alloys exhibit a mixed solid/liquid phase, followed by cooling steps. For example, in one aspect, such a method of the invention can include subjecting an alloy sample to a temperature that is sufficiently elevated to cause partial melting of at least some of the grains. The sample can then be cooled so as to solidify the melted grain portions such that each solidified grain portion exhibits an average chemical composition, characterized by a relative concentration of elements forming the alloy, that is different than that of the remainder of the grain.

  13. High temperature superconductivity space experiment (HTSSE)

    International Nuclear Information System (INIS)

    Nisenoff, M.; Gubser, D.V.; Wolf, S.A.; Ritter, J.C.; Price, G.

    1991-01-01

    The Naval Research Laboratory (NRL) is exploring the feasibility of deploying high temperature superconductivity (HTS) devices and components in space. A variety of devices, primarily passive microwave and millimeter wave components, have been procured and will be integrated with a cryogenic refrigerator system and data acquisition system to form the space package, which will be launched late in 1992. This Space Experiment will demonstrate that this technology is sufficiently robust to survive the space environment and has the potential to significantly improved space communications systems. The devices for the initial launch (HTSSE-I) have been received by NRL and evaluated electrically, thermally and mechanically and will be integrated into the final space package early in 1991. In this paper the performance of the devices are summarized and some potential applications of HTS technology in space system are outlined

  14. Operational Modelling of High Temperature Electrolysis (HTE)

    International Nuclear Information System (INIS)

    Patrick Lovera; Franck Blein; Julien Vulliet

    2006-01-01

    Solid Oxide Fuel Cells (SOFC) and High Temperature Electrolysis (HTE) work on two opposite processes. The basic equations (Nernst equation, corrected by a term of over-voltage) are thus very similar, only a few signs are different. An operational model, based on measurable quantities, was finalized for HTE process, and adapted to SOFCs. The model is analytical, which requires some complementary assumptions (proportionality of over-tensions to the current density, linearization of the logarithmic term in Nernst equation). It allows determining hydrogen production by HTE using a limited number of parameters. At a given temperature, only one macroscopic parameter, related to over-voltages, is needed for adjusting the model to the experimental results (SOFC), in a wide range of hydrogen flow-rates. For a given cell, this parameter follows an Arrhenius law with a satisfactory precision. The prevision in HTE process is compared to the available experimental results. (authors)

  15. Creep resistant high temperature martensitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Hawk, Jeffrey A.; Jablonski, Paul D.; Cowen, Christopher J.

    2017-01-31

    The disclosure provides a creep resistant alloy having an overall composition comprised of iron, chromium, molybdenum, carbon, manganese, silicon, nickel, vanadium, niobium, nitrogen, tungsten, cobalt, tantalum, boron, copper, and potentially additional elements. In an embodiment, the creep resistant alloy has a molybdenum equivalent Mo(eq) from 1.475 to 1.700 wt. % and a quantity (C+N) from 0.145 to 0.205. The overall composition ameliorates sources of microstructural instability such as coarsening of M.sub.23C.sub.6carbides and MX precipitates, and mitigates or eliminates Laves and Z-phase formation. A creep resistant martensitic steel may be fabricated by preparing a melt comprised of the overall composition followed by at least austenizing and tempering. The creep resistant alloy exhibits improved high-temperature creep strength in the temperature environment of around 650.degree. C.

  16. Archaeal Viruses from High-Temperature Environments.

    Science.gov (United States)

    Munson-McGee, Jacob H; Snyder, Jamie C; Young, Mark J

    2018-02-27

    Archaeal viruses are some of the most enigmatic viruses known, due to the small number that have been characterized to date. The number of known archaeal viruses lags behind known bacteriophages by over an order of magnitude. Despite this, the high levels of genetic and morphological diversity that archaeal viruses display has attracted researchers for over 45 years. Extreme natural environments, such as acidic hot springs, are almost exclusively populated by Archaea and their viruses, making these attractive environments for the discovery and characterization of new viruses. The archaeal viruses from these environments have provided insights into archaeal biology, gene function, and viral evolution. This review focuses on advances from over four decades of archaeal virology, with a particular focus on archaeal viruses from high temperature environments, the existing challenges in understanding archaeal virus gene function, and approaches being taken to overcome these limitations.

  17. Archaeal Viruses from High-Temperature Environments

    Directory of Open Access Journals (Sweden)

    Jacob H. Munson-McGee

    2018-02-01

    Full Text Available Archaeal viruses are some of the most enigmatic viruses known, due to the small number that have been characterized to date. The number of known archaeal viruses lags behind known bacteriophages by over an order of magnitude. Despite this, the high levels of genetic and morphological diversity that archaeal viruses display has attracted researchers for over 45 years. Extreme natural environments, such as acidic hot springs, are almost exclusively populated by Archaea and their viruses, making these attractive environments for the discovery and characterization of new viruses. The archaeal viruses from these environments have provided insights into archaeal biology, gene function, and viral evolution. This review focuses on advances from over four decades of archaeal virology, with a particular focus on archaeal viruses from high temperature environments, the existing challenges in understanding archaeal virus gene function, and approaches being taken to overcome these limitations.

  18. High temperature experiment for accelerator inertial fusion

    International Nuclear Information System (INIS)

    Lee, E.P.

    1985-01-01

    The High Temperature Experiment (HTE) is intended to produce temperatures of 50-100 eV in solid density targets driven by heavy ion beams from a multiple beam induction linac. The fundamental variables (particle species, energy number of beamlets, current and pulse length) must be fixed to achieve the temperature at minimum cost, subject to criteria of technical feasibility and relevance to the development of a Fusion Driver. The conceptual design begins with an assumed (radiation-limited) target temperature and uses limitations due to particle range, beamlet perveance, and target disassembly to bound the allowable values of mass number (A) and energy (E). An accelerator model is then applied to determine the minimum length accelerator, which is a guide to total cost. The accelerator model takes into account limits on transportable charge, maximum gradient, core mass per linear meter, and head-to-tail momentum variation within a pulse

  19. Fast pyrolysis of biomass at high temperatures

    DEFF Research Database (Denmark)

    Trubetskaya, Anna

    This Ph.D. thesis describes experimental and modeling investigations of fast high temperature pyrolysis of biomass. Suspension firing of biomass is widely used for power generation and has been considered as an important step in reduction of greenhouse gas emissions by using less fossil fuels. Fast...... to investigate the effects of operating parameters and biomass types on yields of char and soot, their chemistry and morphology as well as their reactivity using thermogravimetric analysis. The experimental study was focused on the influence of a wide range of operating parameters including heat treatment...... alkali metals. In this study, potassium lean pinewood (0.06 wt. %) produced the highest soot yield (9 and 7 wt. %) at 1250 and 1400°C, whereas leached wheat straw with the higher potassium content (0.3 wt. %) generated the lowest soot yield (2 and 1 wt. %). Soot yields of wheat and alfalfa straw at both...

  20. High temperature superconductivity and cold fusion

    International Nuclear Information System (INIS)

    Rabinowitz, M.

    1990-01-01

    There are numerous historical and scientific parallels between high temperature superconductivity (HTSC) and the newly emerging field of cold fusion (CF). Just as the charge carrier effective mass plays an important role in SC, the deuteron effective mass may play a vital role in CF. A new theory including effects of proximity, electron shielding, and decreased effective mass of the fusing nuclei can account for the reported CF results. A quantum-gas model that covers the range from low temperature to superhigh temperature SC indicates an increased T c with reduced dimensionality. A reduced dimensionality effect may also enhance CF. A relation is shown between CF and the significant cluster-impact fusion experiments

  1. Pressure sensor for high-temperature liquids

    International Nuclear Information System (INIS)

    Forster, G.A.

    1978-01-01

    A pressure sensor for use in measuring pressures in liquid at high temperatures, especially such as liquid sodium or liquid potassium, comprises a soft diaphragm in contact with the liquid. The soft diaphragm is coupled mechanically to a stiff diaphragm. Pressure is measured by measuring the displacement of both diaphragms, typically by measuring the capacitance between the stiff diaphragm and a fixed plate when the stiff diaphragm is deflected in response to the measured pressure through mechanical coupling from the soft diaphragm. Absolute calibration is achieved by admitting gas under pressure to the region between diaphragms and to the region between the stiff diaphragm and the fixed plate, breaking the coupling between the soft and stiff diaphragms. The apparatus can be calibrated rapidly and absolutely

  2. Positron annihilation studies on high temperature superconductors

    International Nuclear Information System (INIS)

    Sundar, C.S.; Bharathi, A.

    1996-01-01

    A survey of the positron annihilation studies on high temperature superconductors (HTSC), with results drawn mainly from our work, is presented. These include results of the studies on the temperature dependence of positron lifetime across T c , which have been carried out in the whole gamut of oxide superconductors. These experimental results are discussed in conjunction with the results of theoretically calculated positron density distribution, and it is shown that the observed temperature dependence of lifetime is intimately linked to the probing of the Cu-O network by the positrons. Results on the investigation of oxygen defects, which play a crucial role in HTSC, are presented. The most significant contribution of positrons to HTSC relates to the investigation of Fermi surface and the results of these studies, drawn from literature, are indicated. Some of our recent results in other novel superconducting materials, viz., the fullerenes and borocarbides are also presented. (author). 69 refs., 15 figs

  3. Atomic processes in high temperature plasmas

    International Nuclear Information System (INIS)

    Hahn, Y.

    1990-03-01

    Much theoretical and experimental efforts have been expended in recent years to study those atomic processes which are specially relevant to understanding high temperature laboratory plasmas. For magnetically confined fusion plasmas, the temperature range of interest spans from the hundreds of eV at plasma edges to 10 keV at the center of the plasma, where most of the impurity ions are nearly fully ionized. These highly stripped ions interact strongly with electrons in the plasma, leading to further excitation and ionization of the ions, as well as electron capture. Radiations are emitted during these processes, which easily escape to plasma container walls, thus cooling the plasma. One of the dominant modes of radiation emission has been identified with dielectronic recombination. This paper reviews this work

  4. High-temperature brushless DC motor controller

    Science.gov (United States)

    Cieslewski, Crzegorz; Lindblom, Scott C.; Maldonado, Frank J.; Eckert, Michael Nathan

    2017-05-16

    A motor control system for deployment in high temperature environments includes a controller; a first half-bridge circuit that includes a first high-side switching element and a first low-side switching element; a second half-bridge circuit that includes a second high-side switching element and a second low-side switching element; and a third half-bridge circuit that includes a third high-side switching element and a third; low-side switching element. The motor controller is arranged to apply a pulse width modulation (PWM) scheme to switch the first half-bridge circuit, second half-bridge circuit, and third half-bridge circuit to power a motor.

  5. High temperature superconducting Maglev equipment on vehicle

    Science.gov (United States)

    Wang, S. Y.; Wang, J. S.; Ren, Z. Y.; Zhu, M.; Jiang, H.; Wang, X. R.; Shen, X. M.; Song, H. H.

    2003-04-01

    Onboard high temperature superconducting (HTS) Maglev equipment is a heart part of a HTS Maglev vehicle, which is composed of YBaCuO bulks and rectangle-shape liquid nitrogen vessel and used successfully in the first manned HTS Maglev test vehicle. Arrangement of YBaCuO bulks in liquid nitrogen vessel, structure of the vessel, levitation forces of a single vessel and two vessels, and total levitation force are reported. The first manned HTS Maglev test vehicle in the world has operated well more than one year after it was born on Dec. 31, 2000, and more than 23,000 passengers have taken the vehicle till now. Well operation of more than one year proves the reliability of the onboard HTS Maglev equipment.

  6. Spin Hall magnetoresistance at high temperatures

    International Nuclear Information System (INIS)

    Uchida, Ken-ichi; Qiu, Zhiyong; Kikkawa, Takashi; Iguchi, Ryo; Saitoh, Eiji

    2015-01-01

    The temperature dependence of spin Hall magnetoresistance (SMR) in Pt/Y 3 Fe 5 O 12 (YIG) bilayer films has been investigated in a high temperature range from room temperature to near the Curie temperature of YIG. The experimental results show that the magnitude of the magnetoresistance ratio induced by the SMR monotonically decreases with increasing the temperature and almost disappears near the Curie temperature. We found that, near the Curie temperature, the temperature dependence of the SMR in the Pt/YIG film is steeper than that of a magnetization curve of the YIG; the critical exponent of the magnetoresistance ratio is estimated to be 0.9. This critical behavior of the SMR is attributed mainly to the temperature dependence of the spin-mixing conductance at the Pt/YIG interface

  7. High Temperature Polymer Electrolyte Fuel Cells

    DEFF Research Database (Denmark)

    Fleige, Michael

    This thesis presents the development and application of electrochemical half-cell setups to study the catalytic reactions taking place in High Temperature Polymer Electrolyte Fuel Cells (HTPEM-FCs): (i) a pressurized electrochemical cell with integrated magnetically coupled rotating disk electrode...... oxidation of ethanol is in principle a promising concept to supply HTPEM-FCs with a sustainable and on large scale available fuel (ethanol from biomass). However, the intermediate temperature tests in the GDE setup show that even on Pt-based catalysts the reaction rates become first significant...... at potentials, which approach the usual cathode potentials of HTPEM-FCs. Therefore, it seems that H3PO4-based fuel cells are not much suited to efficiently convert ethanol in accordance with findings in earlier research papers. Given that HTPEM-FCs can tolerate CO containing reformate gas, focusing research...

  8. High Temperature Particle Filtration Technology; TOPICAL

    International Nuclear Information System (INIS)

    Besmann, T.M.

    2001-01-01

    High temperature filtration can serve to improve the economic, environmental, and energy performance of chemical processes. This project was designed to evaluate the stability of filtration materials in the environments of the production of dimethyldichlorosilane (DDS). In cooperation with Dow Corning, chemical environments for the fluidized bed reactor where silicon is converted to DDS and the incinerator where vents are cornbusted were characterized. At Oak Ridge National Laboratory (ORNL) an exposure system was developed that could simulate these two environments. Filter samples obtained from third parties were exposed to the environments for periods up to 1000 hours. Mechanical properties before and after exposure were determined by burst-testing rings of filter material. The results indicated that several types of filter materials would likely perform well in the fluid bed environment, and two materials would be good candidates for the incinerator environment

  9. High temperature superconducting YBCO microwave filters

    Science.gov (United States)

    Aghabagheri, S.; Rasti, M.; Mohammadizadeh, M. R.; Kameli, P.; Salamati, H.; Mohammadpour-Aghdam, K.; Faraji-Dana, R.

    2018-06-01

    Epitaxial thin films of YBCO high temperature superconductor are widely used in telecommunication technology such as microwave filter, antenna, coupler and etc., due to their lower surface resistance and lower microwave loss than their normal conductor counterparts. Thin films of YBCO were fabricated by PLD technique on LAO substrate. Transition temperature and width were 88 K and 3 K, respectively. A filter pattern was designed and implemented by wet photolithography method on the films. Characterization of the filter at 77 K has been compared with the simulation results and the results for a made gold filter. Both YBCO and gold filters show high microwave loss. For YBCO filter, the reason may be due to the improper contacts on the feedlines and for gold filter, low thickness of the gold film has caused the loss increased.

  10. Refractiry metal monocrystals in high temperature thermometry

    International Nuclear Information System (INIS)

    Kuritnyk, I.P.

    1988-01-01

    The regularities of changes in thermoelectric properties of refractory metals in a wide temperature range (300-2300 K) depending on their structural state and impurities, are generalized. It is found that the main reasons for changes in thermo-e.m.f. of refractory metals during their operation in various media are diffusion processes and local microvoltages appearing in nonhomogeneous thermoelectrodes. It is shown that microstructure formation and control of impurities in thermometric materials permit to improve considerably the metrologic parameters of thermal transformers. Tungsten and molybdenum with monocrystalline structure with their high stability of properties, easy to manufacture and opening new possibilities in high-temperature contact measurement are used in thermometry for the first time

  11. Preparation of silver doped high temperature superconductors

    International Nuclear Information System (INIS)

    Stavek, Jiri; Zapletal, Vladimir

    1989-01-01

    High temperature superconductors were prepared by the controlled double-jet precipitation to manipulate the chemical composition, composition gradients, average grain size, grain size distribution, and other factors which contribute to the actual properties and performance of HTSC. The cations (Y-Ba-Cu or Bi-Pb-Ca-Sr-Cu) and oxalic anions solutions were simultaneously separately introduced to the crystallizer with a stirred solution of gelatin under conditions where the temperature, excess of oxalic anions in solution, pH, reactant addition rate, and other reaction conditions were tightly controlled to prepare the high sinterability powder. To increase the sinterability of submicron particles of produced precursor, the silver ions were introduced at the end of the controlled double-jet precipitation. This approach improves the electrical and mechanical properties of produced HTSC specimens. The controlled double jet precipitation provides a viable technique for preparation of oxide superconductors and the process is amenable for scaling up

  12. Multilayer ultra-high-temperature ceramic coatings

    Science.gov (United States)

    Loehman, Ronald E [Albuquerque, NM; Corral, Erica L [Tucson, AZ

    2012-03-20

    A coated carbon-carbon composite material with multiple ceramic layers to provide oxidation protection from ultra-high-temperatures, where if the carbon-carbon composite material is uninhibited with B.sub.4C particles, then the first layer on the composite material is selected from ZrB.sub.2 and HfB.sub.2, onto which is coated a layer of SiC coated and if the carbon-carbon composite material is inhibited with B.sub.4C particles, then protection can be achieved with a layer of SiC and a layer of either ZrB.sub.2 and HfB.sub.2 in any order.

  13. Materials for high temperature reactor vessels

    International Nuclear Information System (INIS)

    Buenaventura Pouyfaucon, A.

    2004-01-01

    Within the 5th Euraton Framework Programme, a big effort is being made to promote and consolidate the development of the High Temperature Reactor (HTR). Empresarios Agrupados is participating in this project and among others, also forms part of the HTR-M project Materials for HTRs. This paper summarises the work carried out by Empresarios Agrupados regarding the material selection of the HTR Reactor Pressure Vessel (RPV). The possible candidate materials and the most promising ones are discussed. Design aspects such as the RPV sensitive zones and material damage mechanisms are considered. Finally, the applicability of the existing design Codes and Standards for the design of the HTR RPV is also discussed. (Author)

  14. FY16 ASME High Temperature Code Activities

    Energy Technology Data Exchange (ETDEWEB)

    Swindeman, M. J. [Chromtech Inc., Oak Ridge, TN (United States); Jetter, R. I. [R. I Jetter Consulting, Pebble Beach, CA (United States); Sham, T. -L. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-09-01

    One of the objectives of the ASME high temperature Code activities is to develop and validate both improvements and the basic features of Section III, Division 5, Subsection HB, Subpart B (HBB). The overall scope of this task is to develop a computer program to be used to assess whether or not a specific component under specified loading conditions will satisfy the elevated temperature design requirements for Class A components in Section III, Division 5, Subsection HB, Subpart B (HBB). There are many features and alternative paths of varying complexity in HBB. The initial focus of this task is a basic path through the various options for a single reference material, 316H stainless steel. However, the program will be structured for eventual incorporation all the features and permitted materials of HBB. Since this task has recently been initiated, this report focuses on the description of the initial path forward and an overall description of the approach to computer program development.

  15. High-Temperature Graphite/Phenolic Composite

    Science.gov (United States)

    Seal, Ellis C.; Bodepudi, Venu P.; Biggs, Robert W., Jr.; Cranston, John A.

    1995-01-01

    Graphite-fiber/phenolic-resin composite material retains relatively high strength and modulus of elasticity at temperatures as high as 1,000 degrees F. Costs only 5 to 20 percent as much as refractory materials. Fabrication composite includes curing process in which application of full autoclave pressure delayed until after phenolic resin gels. Curing process allows moisture to escape, so when composite subsequently heated in service, much less expansion of absorbed moisture and much less tendency toward delamination. Developed for nose cone of external fuel tank of Space Shuttle. Other potential aerospace applications for material include leading edges, parts of nozzles, parts of aircraft engines, and heat shields. Terrestrial and aerospace applications include structural firewalls and secondary structures in aircraft, spacecraft, and ships. Modified curing process adapted to composites of phenolic with other fiber reinforcements like glass or quartz. Useful as high-temperature circuit boards and electrical insulators.

  16. Robust high temperature oxygen sensor electrodes

    DEFF Research Database (Denmark)

    Lund, Anders

    Platinum is the most widely used material in high temperature oxygen sensor electrodes. However, platinum is expensive and the platinum electrode may, under certain conditions, suffer from poisoning, which is detrimental for an oxygen sensor. The objective of this thesis is to evaluate electrode...... materials as candidates for robust oxygen sensor electrodes. The present work focuses on characterising the electrochemical properties of a few electrode materials to understand which oxygen electrode processes are limiting for the response time of the sensor electrode. Three types of porous platinum......-Dansensor. The electrochemical properties of the electrodes were characterised by electrochemical impedance spectroscopy (EIS), and the structures were characterised by x-ray diffraction and electron microscopy. At an oxygen partial pressures of 0.2 bar, the response time of the sensor electrode was determined by oxygen...

  17. IAEA high temperature gas cooled reactor activities

    International Nuclear Information System (INIS)

    Kendall, J.M.

    2001-01-01

    IAEA activities on high temperature gas cooled reactors are conducted with the review and support of Member States, primarily through the International Working Group on Gas Cooled Reactors (IWGGCR). This paper summarises the results of the IAEA gas cooled reactor project activities in recent years along with ongoing current activities through a review of Co-ordinated Research Projects (CRPs), meetings and other international efforts. A series of three recently completed CRPs have addressed the key areas of reactor physics for LEU fuel, retention of fission products, and removal of post shutdown decay heat through passive heat transport mechanisms. These activities along with other completed and ongoing supporting CRPs and meetings are summarised with reference to detailed documentation of the results. (author)

  18. Toroidal microinstability studies of high temperature tokamaks

    International Nuclear Information System (INIS)

    Rewoldt, G.; Tang, W.M.

    1989-07-01

    Results from comprehensive kinetic microinstability calculations are presented showing the effects of toroidicity on the ion temperature gradient mode and its relationship to the trapped-electron mode in high-temperature tokamak plasmas. The corresponding particle and energy fluxes have also been computed. It is found that, although drift-type microinstabilities persist over a wide range of values of the ion temperature gradient parameter η i ≡ (dlnT i /dr)/(dlnn i /dr), the characteristic features of the dominant mode are those of the η i -type instability when η i > η ic ∼1.2 to 1.4 and of the trapped-electron mode when η i ic . 16 refs., 7 figs

  19. Test of high temperature fuel element, (1)

    International Nuclear Information System (INIS)

    Akino, Norio; Shiina, Yasuaki; Nekoya, Shin-ichi; Takizuka, Takakazu; Emori, Koichi

    1980-11-01

    Heat transfer experiment to measure the characteristics of a VHTR fuel in the same condition of the reactor core was carried out using HTGL (High Temperature Helium Gas Loop) and its test section. In this report, the details of the test section, related problems of construction and some typical results are described. The newly developed heater with graphite heat transfer surface was used as a simulated fuel element to determine the heat transfer characteristics. Following conclusions were obtained; (1) Reynolds number between turbulent and transitional region is about 2600. (2) Reynolds number between transitional and laminar region is about 4800. (3) The laminarization phenomena have not been observed and are hardly occurred in annular tubes comparing with round tube. (4) Measured Nusselt numbers agree to the established correlations in turbulent and laminar regions. (author)

  20. Alloy model for high temperature superconductors

    International Nuclear Information System (INIS)

    Weissmann, M.; Saul, A.

    1991-07-01

    An alloy model is proposed for the electronic structure of high temperature superconductors. It is based on the assumption that holes and extra electrons are localized in small copper oxygen clusters, that would be the components of such alloy. This model, when used together with quantum chemical calculations on small clusters, can explain the structure observed in the experimental densities of states of both hole and electron superconductors close to the Fermi energy. The main point is the strong dependence of the energy level distribution and composition on the number of electrons in a cluster. The alloy model also suggests a way to correlate Tc with the number of holes, or extra electrons, and the number of adequate clusters to locate them. (author). 21 refs, 4 figs, 1 tab

  1. Thermomechanics of composite structures under high temperatures

    CERN Document Server

    Dimitrienko, Yu I

    2016-01-01

    This pioneering book presents new models for the thermomechanical behavior of composite materials and structures taking into account internal physico-chemical transformations such as thermodecomposition, sublimation and melting at high temperatures (up to 3000 K). It is of great importance for the design of new thermostable materials and for the investigation of reliability and fire safety of composite structures. It also supports the investigation of interaction of composites with laser irradiation and the design of heat-shield systems. Structural methods are presented for calculating the effective mechanical and thermal properties of matrices, fibres and unidirectional, reinforced by dispersed particles and textile composites, in terms of properties of their constituent phases. Useful calculation methods are developed for characteristics such as the rate of thermomechanical erosion of composites under high-speed flow and the heat deformation of composites with account of chemical shrinkage. The author expan...

  2. Creep resistant high temperature martensitic steel

    Science.gov (United States)

    Hawk, Jeffrey A.; Jablonski, Paul D.; Cowen, Christopher J.

    2015-11-13

    The disclosure provides a creep resistant alloy having an overall composition comprised of iron, chromium, molybdenum, carbon, manganese, silicon, nickel, vanadium, niobium, nitrogen, tungsten, cobalt, tantalum, boron, and potentially additional elements. In an embodiment, the creep resistant alloy has a molybdenum equivalent Mo(eq) from 1.475 to 1.700 wt. % and a quantity (C+N) from 0.145 to 0.205. The overall composition ameliorates sources of microstructural instability such as coarsening of M.sub.23C.sub.6 carbides and MX precipitates, and mitigates or eliminates Laves and Z-phase formation. A creep resistant martensitic steel may be fabricated by preparing a melt comprised of the overall composition followed by at least austenizing and tempering. The creep resistant alloy exhibits improved high-temperature creep strength in the temperature environment of around 650.degree. C.

  3. High-temperature helium-loop facility

    International Nuclear Information System (INIS)

    Tokarz, R.D.

    1981-09-01

    The high-temperature helium loop is a facility for materials testing in ultrapure helium gas at high temperatures. The closed loop system is capable of recirculating high-purity helium or helium with controlled impurities. The gas loop maximum operating conditions are as follows: 300 psi pressure, 500 lb/h flow rate, and 2100 0 F temperature. The two test sections can accept samples up to 3.5 in. diameter and 5 ft long. The gas loop is fully instrumented to continuously monitor all parameters of loop operation as well as helium impurities. The loop is fully automated to operate continuously and requires only a daily servicing by a qualified operator to replenish recorder charts and helium makeup gas. Because of its versatility and high degree of parameter control, the helium loop is applicable to many types of materials research. This report describes the test apparatus, operating parameters, peripheral systems, and instrumentation system. The experimental capabilities and test conand presents the results that have been obtained. The study has been conducted using a four-phase approach. The first phase develops the solution to the steady-state radon-diffusion equation in one-dimensieered barriers; disposal charge analysis; analysis of spent fuel policy implementation; spent f water. Field measurements and observations are reported for each site. Analytical data and field measurements are presented in tables and maps. Uranium concentrations in the sediments which were above detection limits ranged from 0.10 t 51.2 ppM. The mean of the logarithms of the uranium concentrations was 0.53. A group of high uranium concentrations occurs near the junctions of quadrangles AB, AC, BB, a 200 mK. In case 2), x-ray studies of isotopic phase separation in 3 He-- 4 He bcc solids were carried out by B. A. Fraass

  4. Assessment of high-temperature battery systems

    Energy Technology Data Exchange (ETDEWEB)

    Sen, R K

    1989-02-01

    Three classes of high-temperature batteries are being developed internationally with transportation and stationary energy storage applications in mind: sodium/sulfur, lithium/metal sulfide, and sodium/metal chloride. Most attention is being given to the sodium/sulfur system. The Office of Energy Storage and Distribution (OESD) and the Office of Transportation Systems (OTS) of the US Department of Energy (DOE) are actively supporting the development of this battery system. It is anticipated that pilot-scale production facilities for sodium/sulfur batteries will be in operation in the next couple of years. The lithium/metal sulfide and the sodium/metal chloride systems are not receiving the same level of attention as the sodium/sulfur battery. Both of these systems are in an earlier stage of development than sodium/sulfur. OTS and OESD are supporting work on the lithium/iron sulfide battery in collaboration with the Electric Power Research Institute (EPRI); the work is being carried out at Argonne National Laboratory (ANL). The sodium/metal chloride battery, the newest member of the group, is being developed by a Consortium of South African and British companies. Very little DOE funds are presently allocated for research on this battery. The purpose of this assessment is to evaluate the present status of the three technologies and to identify for each technology a prioritized list of R and D issues. Finally, the assessment includes recommendations to DOE for a proposed high-temperature battery research and development program. 18 figs., 21 tabs.

  5. Health impacts of exposure to second hand smoke (SHS) amongst a highly exposed workforce: survey of London casino workers.

    Science.gov (United States)

    Pilkington, Paul A; Gray, Selena; Gilmore, Anna B

    2007-09-21

    Casino workers are exposed to high levels of secondhand smoke (SHS) at work, yet remain at risk of being excluded from smoke-free legislation around the world. If the prime motivation for smoke-free legislation is the protection of workers, then a workforce experiencing ill-health associated with SHS exposure should not be excluded from legislation. This study aimed to determine the prevalence of respiratory and sensory irritation symptoms among a sample of casino workers, to identify any association between the reporting of symptoms and exposure to SHS at work, and to compare the prevalence of symptoms with that in other workers exposed to SHS. A postal questionnaire survey of 1568 casino workers in London. Using multivariate analysis we identified predictors of respiratory and sensory irritation symptoms. 559 workers responded to the questionnaire (response of 36%). 91% of casino workers reported the presence of one or more sensory irritation symptoms in the previous four weeks, while the figure was 84% for respiratory symptoms. The presence of one or more sensory irritation symptoms was most strongly associated with reporting the highest exposure to SHS at work (OR 3.26; 1.72, 6.16). This was also true for reporting the presence of one or more respiratory irritation symptoms (OR 2.24; 1.34, 3.74). Prevalence of irritation symptoms in the casino workers was in general appreciably higher than that reported in studies of bar workers. Our research supports the need for comprehensive smoke-free legislation around the world, covering all indoor workplaces including casinos.

  6. Health impacts of exposure to second hand smoke (SHS amongst a highly exposed workforce: survey of London casino workers

    Directory of Open Access Journals (Sweden)

    Gilmore Anna B

    2007-09-01

    Full Text Available Abstract Background Casino workers are exposed to high levels of secondhand smoke (SHS at work, yet remain at risk of being excluded from smoke-free legislation around the world. If the prime motivation for smoke-free legislation is the protection of workers, then a workforce experiencing ill-health associated with SHS exposure should not be excluded from legislation. This study aimed to determine the prevalence of respiratory and sensory irritation symptoms among a sample of casino workers, to identify any association between the reporting of symptoms and exposure to SHS at work, and to compare the prevalence of symptoms with that in other workers exposed to SHS. Methods A postal questionnaire survey of 1568 casino workers in London. Using multivariate analysis we identified predictors of respiratory and sensory irritation symptoms. Results 559 workers responded to the questionnaire (response of 36%. 91% of casino workers reported the presence of one or more sensory irritation symptoms in the previous four weeks, while the figure was 84% for respiratory symptoms. The presence of one or more sensory irritation symptoms was most strongly associated with reporting the highest exposure to SHS at work (OR 3.26; 1.72, 6.16. This was also true for reporting the presence of one or more respiratory irritation symptoms (OR 2.24; 1.34, 3.74. Prevalence of irritation symptoms in the casino workers was in general appreciably higher than that reported in studies of bar workers. Conclusion Our research supports the need for comprehensive smoke-free legislation around the world, covering all indoor workplaces including casinos.

  7. High temperature ceramic-tubed reformer

    Science.gov (United States)

    Williams, Joseph J.; Rosenberg, Robert A.; McDonough, Lane J.

    1990-03-01

    The overall objective of the HiPHES project is to develop an advanced high-pressure heat exchanger for a convective steam/methane reformer. The HiPHES steam/methane reformer is a convective, shell and tube type, catalytic reactor. The use of ceramic tubes will allow reaction temperature higher than the current state-of-the-art outlet temperatures of about 1600 F using metal tubes. Higher reaction temperatures increase feedstock conversion to synthesis gas and reduce energy requirements compared to currently available radiant-box type reformers using metal tubes. Reforming of natural gas is the principal method used to produce synthesis gas (primarily hydrogen and carbon monoxide, H2 and CO) which is used to produce hydrogen (for refinery upgrading), methanol, as well as several other important materials. The HiPHES reformer development is an extension of Stone and Webster's efforts to develop a metal-tubed convective reformer integrated with a gas turbine cycle.

  8. High Temperature Integrated Thermoelectric Ststem and Materials

    Energy Technology Data Exchange (ETDEWEB)

    Mike S. H. Chu

    2011-06-06

    The final goal of this project is to produce, by the end of Phase II, an all ceramic high temperature thermoelectric module. Such a module design integrates oxide ceramic n-type, oxide ceramic p-type materials as thermoelectric legs and oxide ceramic conductive material as metalizing connection between n-type and p-type legs. The benefits of this all ceramic module are that it can function at higher temperatures (> 700 C), it is mechanically and functionally more reliable and it can be scaled up to production at lower cost. With this all ceramic module, millions of dollars in savings or in new opportunities recovering waste heat from high temperature processes could be made available. A very attractive application will be to convert exhaust heat from a vehicle to reusable electric energy by a thermoelectric generator (TEG). Phase I activities were focused on evaluating potential n-type and p-type oxide compositions as the thermoelectric legs. More than 40 oxide ceramic powder compositions were made and studied in the laboratory. The compositions were divided into 6 groups representing different material systems. Basic ceramic properties and thermoelectric properties of discs sintered from these powders were measured. Powders with different particles sizes were made to evaluate the effects of particle size reduction on thermoelectric properties. Several powders were submitted to a leading thermoelectric company for complete thermoelectric evaluation. Initial evaluation showed that when samples were sintered by conventional method, they had reasonable values of Seebeck coefficient but very low values of electrical conductivity. Therefore, their power factors (PF) and figure of merits (ZT) were too low to be useful for high temperature thermoelectric applications. An unconventional sintering method, Spark Plasma Sintering (SPS) was determined to produce better thermoelectric properties. Particle size reduction of powders also was found to have some positive benefits

  9. High-Temperature Shape Memory Polymers

    Science.gov (United States)

    Yoonessi, Mitra; Weiss, Robert A.

    2012-01-01

    physical conformation changes when exposed to an external stimulus, such as a change in temperature. Such materials have a permanent shape, but can be reshaped above a critical temperature and fixed into a temporary shape when cooled under stress to below the critical temperature. When reheated above the critical temperature (Tc, also sometimes called the triggering or switching temperature), the materials revert to the permanent shape. The current innovation involves a chemically treated (sulfonated, carboxylated, phosphonated, or other polar function group), high-temperature, semicrystalline thermoplastic poly(ether ether ketone) (Tg .140 C, Tm = 340 C) mix containing organometallic complexes (Zn++, Li+, or other metal, ammonium, or phosphonium salts), or high-temperature ionic liquids (e.g. hexafluorosilicate salt with 1-propyl-3- methyl imidazolium, Tm = 210 C) to form a network where dipolar or ionic interactions between the polymer and the low-molecular-weight or inorganic compound forms a complex that provides a physical crosslink. Hereafter, these compounds will be referred to as "additives". The polymer is semicrystalline, and the high-melt-point crystals provide a temporary crosslink that acts as a permanent crosslink just so long as the melting temperature is not exceeded. In this example case, the melting point is .340 C, and the shape memory critical temperature is between 150 and 250 C. PEEK is an engineering thermoplastic with a high Young fs modulus, nominally 3.6 GPa. An important aspect of the invention is the control of the PEEK functionalization (in this example, the sulfonation degree), and the thermal properties (i.e. melting point) of the additive, which determines the switching temperature. Because the compound is thermoplastic, it can be formed into the "permanent" shape by conventional plastics processing operations. In addition, the compound may be covalently cross - linked after forming the permanent shape by S-PEEK by applying ionizing

  10. Application of high temperature superconductors for fusion

    International Nuclear Information System (INIS)

    Fietz, W.H.; Heller, R.; Schlachter, S.I.; Goldacker, W.

    2011-01-01

    The use of High Temperature Superconductor (HTS) materials in future fusion machines can increase the efficiency drastically. For ITER, W7-X and JT-60SA the economic benefit of HTS current leads was recognized after a 70 kA HTS current lead demonstrator was designed, fabricated and successfully tested by Karlsruhe Institute of Technology (KIT, which is a merge of former Forschungszentrum Karlsruhe and University of Karlsruhe). For ITER, the Chinese Domestic Agency will provide the current leads as a part of the superconducting feeder system. KIT is in charge of design, construction and test of HTS current leads for W7-X and JT-60SA. For W7-X 14 current leads with a maximum current of 18.2 kA are required that are oriented with the room temperature end at the bottom. JT60-SA will need 26 current leads (20 leads - 20 kA and 6 leads - 25.7 kA) which are mounted in vertical, normal position. These current leads are based on BiSCCO HTS superconductors, demonstrating that HTS material is now state of the art for highly efficient current leads. With respect to future fusion reactors, it would be very promising to use HTS material not only in current leads but also in coils. This would allow a large increase of efficiency if the coils could be operated at temperatures ≥65 K. With such a high temperature it would be possible to omit the radiation shield of the coils, resulting in a less complex cryostat and a size reduction of the machine. In addition less refrigeration power is needed saving investment and operating costs. However, to come to an HTS fusion coil it is necessary to develop low ac loss HTS cables for currents well above 20 kA at high fields well above 10 T. The high field rules BiSCCO superconductors out at temperatures above 50 K, but RE-123 superconductors are promising. The development of a high current, high field RE-123 HTS fusion cable will not be targeted outside fusion community and has to be in the frame of a long term development programme for

  11. High-temperature superconducting conductors and cables

    International Nuclear Information System (INIS)

    Peterson, D.E.; Maley, M.P.; Boulaevskii, L.; Willis, J.O.; Coulter, J.Y.; Ullmann, J.L.; Cho, Jin; Fleshler, S.

    1996-01-01

    This is the final report of a 3-year LDRD project at LANL. High-temperature superconductivity (HTS) promises more efficient and powerful electrical devices such as motors, generators, and power transmission cables; however this depends on developing HTS conductors that sustain high current densities J c in high magnetic fields at temperatures near liq. N2's bp. Our early work concentrated on Cu oxides but at present, long wire and tape conductors can be best made from BSCCO compounds with high J c at low temperatures, but which are degraded severely at temperatures of interest. This problem is associated with thermally activated motion of magnetic flux lines in BSCCO. Reducing these dc losses at higher temperatures will require a high density of microscopic defects that will pin flux lines and inhibit their motion. Recently it was shown that optimum defects can be produced by small tracks formed by passage of energetic heavy ions. Such defects result when Bi is bombarded with high energy protons. The longer range of protons in matter suggests the possibility of application to tape conductors. AC losses are a major limitation in many applications of superconductivity such as power transmission. The improved pinning of flux lines reduces ac losses, but optimization also involves other factors. Measuring and characterizing these losses with respect to material parameters and conductor design is essential to successful development of ac devices

  12. Laser application in high temperature materials

    International Nuclear Information System (INIS)

    Ohse, R.W.

    1988-01-01

    The scope and priorities of laser application in materials science and technology are attracting widespread interest. After a brief discussion of the unique capabilities of laser application in the various fields of materials science, main emphasis is given on the three areas of materials processing, surface modification and alloying, and property measurements at high temperatures. In materials processing the operational regimes for surface hardening, drilling, welding and laser glazing are discussed. Surface modifications by laser melting, quenching and surface alloying, the formation of solid solutions, metastable phases and amorphous solids on the basis of rapid solidification, ion implantation and ion beam mixing are considered. The influence of solidification rates and interface velocities on the surface properties are given. The extension of property measurements up to and beyond the melting point of refractory materials into their critical region by a transient-type dynamic laser pulse heating technique is given for the three examples of vapour pressure measurement, density and heat capacity determination in the solid and liquid phases. A new approach, the laser autoclave technique, applying laser heating and x-ray shadow technique under autoclave conditions to acoustically levitated spheres will be presented. (author)

  13. High temperature deformation of silicon steel

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Calvillo, Pablo, E-mail: pablo.rodriguez@ctm.com.es [CTM - Technologic Centre, Materials Technology Area, Manresa, Cataluna (Spain); Department of Materials Science and Metallurgical Engineering, Universidad Politecnica de Cataluna, Barcelona (Spain); Houbaert, Yvan, E-mail: Yvan.Houbaert@UGent.be [Department of Materials Science and Engineering, University of Ghent (Belgium); Petrov, Roumen, E-mail: Roumen.Petrov@ugent.be [Department of Materials Science and Engineering, University of Ghent (Belgium); Kestens, Leo, E-mail: Leo.kestens@ugent.be [Department of Materials Science and Engineering, University of Ghent (Belgium); Colas, Rafael, E-mail: rafael.colas@uanl.edu.mx [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon (Mexico); Centro de Innovacion, Investigacion y Desarrollo en Ingenieria y Tecnologia, Universidad Autonoma de Nuevo Leon (Mexico)

    2012-10-15

    The microstructure and texture development during high temperature plane strain compression of 2% in weight silicon steel was studied. The tests were carried out at a constant strain rate of 5 s{sup -1} with reductions of 25, 35 and 75% at temperatures varying from 800 to 1100 Degree-Sign C. The changes in microstructure and texture were studied by means of scanning electron microscopy and electron backscattered diffraction. The microstructure close to the surface of the samples was equiaxed, which is attributed to the shear caused by friction, whereas that at the centre of the specimens was made of a mixture of elongated and fine equiaxed grains, the last ones attributed to the action of dynamic recovery followed by recrystallization. It was found that the volume fraction of these equiaxed grains augmented as reduction and temperature increased; a 0.7 volume fraction was accomplished with a 75% reduction at 1100 Degree-Sign C. The texture of the equiaxed and elongated grains was found to vary with the increase of deformation and temperature, as the {gamma}-fibre tends to disappear and the {alpha}-fibre to increase towards the higher temperature range. -- Highlights: Black-Right-Pointing-Pointer The plastic deformation of a silicon containing steel is studied by plane strain compression. Black-Right-Pointing-Pointer Equiaxed and elongated grains develop in different regions of the sample due to recrystallization. Black-Right-Pointing-Pointer Texture, by EBSD, is revealed to be similar in either type of grains.

  14. High temperature deformation of silicon steel

    International Nuclear Information System (INIS)

    Rodríguez-Calvillo, Pablo; Houbaert, Yvan; Petrov, Roumen; Kestens, Leo; Colás, Rafael

    2012-01-01

    The microstructure and texture development during high temperature plane strain compression of 2% in weight silicon steel was studied. The tests were carried out at a constant strain rate of 5 s −1 with reductions of 25, 35 and 75% at temperatures varying from 800 to 1100 °C. The changes in microstructure and texture were studied by means of scanning electron microscopy and electron backscattered diffraction. The microstructure close to the surface of the samples was equiaxed, which is attributed to the shear caused by friction, whereas that at the centre of the specimens was made of a mixture of elongated and fine equiaxed grains, the last ones attributed to the action of dynamic recovery followed by recrystallization. It was found that the volume fraction of these equiaxed grains augmented as reduction and temperature increased; a 0.7 volume fraction was accomplished with a 75% reduction at 1100 °C. The texture of the equiaxed and elongated grains was found to vary with the increase of deformation and temperature, as the γ-fibre tends to disappear and the α-fibre to increase towards the higher temperature range. -- Highlights: ► The plastic deformation of a silicon containing steel is studied by plane strain compression. ► Equiaxed and elongated grains develop in different regions of the sample due to recrystallization. ► Texture, by EBSD, is revealed to be similar in either type of grains.

  15. High-temperature superconducting current leads

    Science.gov (United States)

    Hull, J. R.

    1992-07-01

    The use of high-temperature superconductors (HTSs) for current leads to deliver power to devices at liquid helium temperature is near commercial realization. The use of HTSs in this application has the potential to reduce refrigeration requirements and helium boiloff to values significantly lower than the theoretical best achievable with conventional leads. Considerable advantage is achieved by operating these leads with an intermediate temperature heat sink. The HTS part of the lead can be made from pressed and sintered powder. Powder-in-tube fabrication is also possible, however, the normal metal part of the lead acts as a thermal short and cannot provide much stabilization without increasing the refrigeration required. Lead stability favors designs with low current density. Such leads can be manufactured with today's technology, and lower refrigeration results from the same allowable burnout time. Higher current densities result in lower boiloff for the same lead length, but bumout times can be very short. In comparing experiment to theory, the density of helium vapor needs to be accounted for in calculating the expected boiloff. For very low-loss leads, two-dimensional heat transfer and the state of the dewar near the leads may play a dominant role in lead performance.

  16. High-temperature x-ray camera

    Energy Technology Data Exchange (ETDEWEB)

    Il' inskii, A G; Romanova, A V; Prikhod' ko, N P

    1974-03-25

    A high-temperature x-ray chamber for taking x-ray photographs of flat horizontally set samples in a vacuum or gas medium is described. The chamber is fitted out with a water-cooled vacuum closed hull with a window letting the x-rays pass, a centering mechanism and a device for heating the samples. To widen its functional abilities the chamber is provided with a goniometric device, fixed immovably to the body foundation by means of two stands. Bearings are mounted to the stands; one of them is equipped with a screw wheel and an endless screw with a limb in the ring; a traverse to which a counter for the x-ray radiation is installed is attached to the shafts of both the bearings. The centering mechanism has a cooled metalic rod, which is connected through a spiral screw thread with the limb fixable by a fork. The position of the shaft of rotation of the counter is adjusted with the help of a nit, extended through the plug openings, positioned on the stands. The chamber can be applied for x-ray structural analyses.

  17. Electronic phase separation and high temperature superconductors

    International Nuclear Information System (INIS)

    Kivelson, S.A.

    1994-01-01

    The authors review the extensive evidence from model calculations that neutral holes in an antiferromagnet separate into hole-rich and hole-poor phases. All known solvable limits of models of holes in a Heisenberg antiferromagnet exhibit this behavior. The authors show that when the phase separation is frustrated by the introduction of long-range Coulomb interactions, the typical consequence is either a modulated (charge density wave) state or a superconducting phase. The authors then review some of the strong experimental evidence supporting an electronically-driven phase separation of the holes in the cuprate superconductors and the related Ni oxides. Finally, the authors argue that frustrated phase separation in these materials can account for many of the anomalous normal state properties of the high temperature superconductors and provide the mechanism of superconductivity. In particular, it is shown that the T-linear resistivity of the normal state is a paraconductivity associated with a novel composite pairing, although the ordered superconducting state is more conventional

  18. Energy storage via high temperature superconductivity (SMES)

    Energy Technology Data Exchange (ETDEWEB)

    Mikkonen, R. [Tampere Univ. of Technology (Finland)

    1998-10-01

    The technology concerning high temperature superconductors (HTS) is matured to enabling different kind of prototype applications including SMES. Nowadays when speaking about HTS systems, attention is focused on the operating temperature of 20-30 K, where the critical current and flux density are fairly close to 4.2 K values. In addition by defining the ratio of the energy content of a novel HTS magnetic system and the required power to keep the system at the desired temperature, the optimum settles to the above mentioned temperature range. In the frame of these viewpoints a 5 kJ HTS SMES system has been designed and tested at Tampere University of Technology with a coil manufactured by American Superconductor (AMSC). The HTS magnet has inside and outside diameters of 252 mm and 317 mm, respectively and axial length of 66 mm. It operates at 160 A and carries a total of 160 kA-turns to store the required amount of energy. The effective magnetic inductance is 0.4 H and the peak axial field is 1.7 T. The magnet is cooled to the operating temperature of 20 K with a two stage Gifford-McMahon type cryocooler with a cooling power of 60 W at 77 K and 8 W at 20 K. The magnetic system has been demonstrated to compensate a short term loss of power of a sensitive consumer

  19. High temperature superconductors at optimal doping

    Directory of Open Access Journals (Sweden)

    W. E. Pickett

    2006-09-01

    Full Text Available   Intensive study of the high temperature superconductors has been ongoing for two decades. A great deal of this effort has been devoted to the underdoped regime, where the new and difficult physics of the doped Mott insulator has met extra complications including bilayer coupling/splitting, shadow bands, and hot spots. While these complications continue to unfold, in this short overview the focus is moved to the region of actual high-Tc, that of optimal doping. The focus here also is not on the superconducting state itself, but primarily on the characteristics of the normal state from which the superconducting instability arises, and even these can be given only a broad-brush description. A reminder is given of two issues,(i why the “optimal Tc” varies,for n-layered systems it increases for n up to 3, then decreases for a given n, Tc increases according to the ‘basis’ atom in the order Bi, Tl, Hg (ii how does pressure, or a particular uniaxial strain, increase Tc when the zero-strain system is already optimally doped?

  20. Atomic processes in high temperature plasmas

    International Nuclear Information System (INIS)

    Hahn, Y.

    1991-07-01

    This is the final report on the project Atomic Processes in High Temperature Plasmas', which has been completed in June 30, 1991. The original contract started in 1978. The dielectronic recombination (DR) rate coefficients were calculated for ions with the number of electrons N = 1, 2, 3, 4, 5, 10, 11, and 12. The result was then used to construct a new and improved rate formula. Other important resonant processes, which are closely related to DR, were also studied to interpret experiments and to test the DR theory. The plasma field and the density effects on the rate coefficients was found to be important, and a consistent correction procedure is being developed. The available data on the DR rates and their accuracy do not yet fully meet the requirement for plasma modeling; there are serious gaps in the available data, and the currently adopted theoretical procedure needs improvements. Critical assessment of the current status of the DR problem is presented, and possible future work needed is summarized

  1. Research briefing on high-temperature superconductivity

    Science.gov (United States)

    1987-10-01

    The research briefing was prepared in response to the exciting developments in superconductivity in ceramic oxide materials announced earlier in 1987. The panel's specific charge was to examine not only the scientific opportunities in high-temperature superconductivity but also the barriers to commercial exploitation. While the base of experimental knowledge on the superconductors is growing rapidly, there is as yet no generally accepted theoretical explanation of their behavior. The fabrication and processing challenges presented by the materials suggest that the period or precommercial exploration for applications will probably extend for a decade or more. Near term prospects for applications include magnetic shielding, the voltage standard, superconducting quantum interference devices, infrared sensors, microwave devices, and analog signal processing. The panel also identified a number of longer-term prospects in high-field and large-scale applications, and in electronics. The United States' competitive position in the field is discussed, major scientific and technological objectives for research and development identified, and concludes with a series of recommendations.

  2. Chemical stability of high-temperature superconductors

    Science.gov (United States)

    Bansal, Narottam P.

    1992-01-01

    A review of the available studies on the chemical stability of the high temperature superconductors (HTS) in various environments was made. The La(1.8)Ba(0.2)CuO4 HTS is unstable in the presence of H2O, CO2, and CO. The YBa2Cu3O(7-x) superconductor is highly susceptible to degradation in different environments, especially water. The La(2-x)Ba(x)CuO4 and Bi-Sr-Ca-Cu-O HTS are relatively less reactive than the YBa2Cu3O(7-x). Processing of YBa2Cu3O(7-x) HTS in purified oxygen, rather than in air, using high purity noncarbon containing starting materials is recommended. Exposure of this HTS to the ambient atmosphere should also be avoided at all stages during processing and storage. Devices and components made out of these oxide superconductors would have to be protected with an impermeable coating of a polymer, glass, or metal to avoid deterioration during use.

  3. High temperature slagging incineration of hazardous waste

    International Nuclear Information System (INIS)

    Vanbrabant, R.; Van de Voorde, N.

    1987-01-01

    The SCK/CEN, as the treatment center for the low level radioactive waste in Belgium, develops appropriate treatment systems for different kinds of wastes. The technical concept of the high temperature slagging incineration system has been developed and improved. The construction of the first demonstration plant was initiated in 1974. Since then the system has been operated regularly and further developed with the view to industrial operations. Now it handles about 5 tons of waste in a week. The waste which is treated consists of low level beta/gamma and alpha-contaminated radioactive waste. Because of the special characteristics the system is thought to be an excellent incineration system for industrial hazardous waste as well. Recently the SCK/CEN has received the authorization to treat industrial hazardous waste in the same installation. Preliminary tests have been executed on special waste products, such as PCB-contaminated liquids, with excellent incineration results. Incineration efficiency up to 99.9999% could be obtained. The paper presents the state of the art of this original The SCK/CEN-technology and gives the results of the tests done with special hazard

  4. High temperature measurement of water vapor absorption

    Science.gov (United States)

    Keefer, Dennis; Lewis, J. W. L.; Eskridge, Richard

    1985-01-01

    An investigation was undertaken to measure the absorption coefficient, at a wavelength of 10.6 microns, for mixtures of water vapor and a diluent gas at high temperature and pressure. The experimental concept was to create the desired conditions of temperature and pressure in a laser absorption wave, similar to that which would be created in a laser propulsion system. A simplified numerical model was developed to predict the characteristics of the absorption wave and to estimate the laser intensity threshold for initiation. A non-intrusive method for temperature measurement utilizing optical laser-beam deflection (OLD) and optical spark breakdown produced by an excimer laser, was thoroughly investigated and found suitable for the non-equilibrium conditions expected in the wave. Experiments were performed to verify the temperature measurement technique, to screen possible materials for surface initiation of the laser absorption wave and to attempt to initiate an absorption wave using the 1.5 kW carbon dioxide laser. The OLD technique was proven for air and for argon, but spark breakdown could not be produced in helium. It was not possible to initiate a laser absorption wave in mixtures of water and helium or water and argon using the 1.5 kW laser, a result which was consistent with the model prediction.

  5. Nuclear graphite for high temperature reactors

    International Nuclear Information System (INIS)

    Marsden, B.J.

    2001-01-01

    The cores and reflectors in modern High Temperature Gas Cooled Reactors (HTRs) are constructed from graphite components. There are two main designs; the Pebble Bed design and the Prism design. In both of these designs the graphite not only acts as a moderator, but is also a major structural component that may provide channels for the fuel and coolant gas, channels for control and safety shut off devices and provide thermal and neutron shielding. In addition, graphite components may act as a heat sink or conduction path during reactor trips and transients. During reactor operation, many of the graphite component physical properties are significantly changed by irradiation. These changes lead to the generation of significant internal shrinkage stresses and thermal shut down stresses that could lead to component failure. In addition, if the graphite is irradiated to a very high irradiation dose, irradiation swelling can lead to a rapid reduction in modulus and strength, making the component friable.The irradiation behaviour of graphite is strongly dependent on its virgin microstructure, which is determined by the manufacturing route. Nevertheless, there are available, irradiation data on many obsolete graphites of known microstructures. There is also a well-developed physical understanding of the process of irradiation damage in graphite. This paper proposes a specification for graphite suitable for modern HTRs. (author)

  6. Development of high temperature strain gage, (5)

    International Nuclear Information System (INIS)

    Yuuki, Hiroshi; Kobayashi, Yukio; Kanai, Kenji; Yamaura, Yoshio

    1976-01-01

    Development and improvement of resistance wire type strain gages usable for experimental measurement of thermal strains generated at high temperature in various structures and equipments that consist of a Fast Breeder Reactor have been carried out, and various characteristics of the strain gages have been investigated. Based on the results obtained up to now, development and research of this time mainly aim to improve strain and fatigue characteristics. As the results, characteristics of strain gages with sensing elements of nichrome V are improved, specifically mechanical hysteresis is decreased, strain limit is increased, etc. Also, improvement is recognized in thermal output, and it becomes clear that dummy gages work effectively. However, a filling method of MgO and an inserting method of active-dummy elements are selected as primary objects to improve strain characteristics, and many hours are taken for these objects, so confirmations of characteristics of platinum-tungsten strain gages, strain sensing elements of which are troublesome to produce, have not been completely done, though the performance of the gages has been improved in several points. As to nichrome V strain gages, there is a fair prospect of obtaining ones, specifications of which are quite close to the goal, though problems in manufacturing technics remain for future. As to platinum-tungsten strain gages, it is expected that similar strain gages to nichrome V are obtainable by improvement in manufacturing of sensing elements. (auth.)

  7. Defect assessment procedures at high temperature

    International Nuclear Information System (INIS)

    Ainsworth, R.A.

    1991-01-01

    A comprehensive assessment procedure for the high-temperature response of structures is being produced. The procedure is referred to as R5 and is written as a series of step-by-step instructions in a number of volumes. This paper considers in detail those parts of R5 which address the behaviour of defects. The defect assessment procedures may be applied to defects found in service, postulated defects, or defects formed during operation as a result of creep-fatigue loading. In the last case, a method is described for deducing from endurance data the number of cycles to initiate a crack of a specified size. Under steady loading, the creep crack tip parameter C * is used to assess crack growth. Under cyclic loading, the creep crack growth during dwell periods is stiell governed by C * but crack growth due to cyclic excursions must also be included. This cyclic crack growth is described by an effective stress intensity factor range. A feature of the R5 defect assessment procedures in that they are based on simplified methods and approximate reference stress methods are described which enable C * in a component to be evaluated. It is shown by comparison with theoretical calculations and experimental data that reliable estimates of C * and the associated crack growth are obtained provided realistic creep strain rate date are used in the reference stress approximation. (orig./HP)

  8. Catalysis in high-temperature fuel cells.

    Science.gov (United States)

    Föger, K; Ahmed, K

    2005-02-17

    Catalysis plays a critical role in solid oxide fuel cell systems. The electrochemical reactions within the cell--oxygen dissociation on the cathode and electrochemical fuel combustion on the anode--are catalytic reactions. The fuels used in high-temperature fuel cells, for example, natural gas, propane, or liquid hydrocarbons, need to be preprocessed to a form suitable for conversion on the anode-sulfur removal and pre-reforming. The unconverted fuel (economic fuel utilization around 85%) is commonly combusted using a catalytic burner. Ceramic Fuel Cells Ltd. has developed anodes that in addition to having electrochemical activity also are reactive for internal steam reforming of methane. This can simplify fuel preprocessing, but its main advantage is thermal management of the fuel cell stack by endothermic heat removal. Using this approach, the objective of fuel preprocessing is to produce a methane-rich fuel stream but with all higher hydrocarbons removed. Sulfur removal can be achieved by absorption or hydro-desulfurization (HDS). Depending on the system configuration, hydrogen is also required for start-up and shutdown. Reactor operating parameters are strongly tied to fuel cell operational regimes, thus often limiting optimization of the catalytic reactors. In this paper we discuss operation of an authothermal reforming reactor for hydrogen generation for HDS and start-up/shutdown, and development of a pre-reformer for converting propane to a methane-rich fuel stream.

  9. Magnetic memory effects in high temperature superconductors

    International Nuclear Information System (INIS)

    Rockenbauer, A.

    1989-01-01

    Microwave absorption of high temperature oxide superconductors MBa 2 Cu 3 O 7 (M = Y, Er, Dy, Ho, Lu, Tm, Gd) at 77 K have been studied by ESR. In granular samples diamagnetic zero-field resonance and strong ESR baseline hysteresis have been observed: for increasing field sweep - a high, for decreasing one - a low, while in constant field the baseline approaches the middle position with kinetics typical of spin-glasses. The hysteresis amplitude, i.e. the deviation of high and low baselines, possesses maximum at zero field if the sample is cooled down in zero field. In case of field cooling both the diamagnetic resonance and hysteresis maximum are shifted as a function of relative direction of the fields where the samples are cooled and measured, respectively. The shift is caused by the remanent diamagnetism of trapped fluxons. The hysteresis critically depends on the modulation amplitude of magnetic field, and no hysteresis can be observed if the microwave absorption is detected without field modulation. By applying saw-tooth sweep the spin-glass can be driven between two extreme hysteresis states, and the ESR response is rectangular for large saw-tooth amplitude and linear - for small one, while for intermediate amplitudes the recording shows characteristic memory effects. The hysteresis memory is explained in terms of loop distribution of fluxons. In the single crystal the fluxon absorptions are also detected and the separation of fluxon lines can be related to the hysteresis in granular samples. (author)

  10. Methods for very high temperature design

    International Nuclear Information System (INIS)

    Blass, J.J.; Corum, J.M.; Chang, S.J.

    1989-01-01

    Design rules and procedures for high-temperature, gas-cooled reactor components are being formulated as an ASME Boiler and Pressure Vessel Code Case. A draft of the Case, patterned after Code Case N-47, and limited to Inconel 617 and temperatures of 982/degree/C (1800/degree/F) or less, will be completed in 1989 for consideration by relevant Code committees. The purpose of this paper is to provide a synopsis of the significant differences between the draft Case and N-47, and to provide more complete accounts of the development of allowable stress and stress rupture values and the development of isochronous stress vs strain curves, in both of which Oak Ridge National Laboratory (ORNL) played a principal role. The isochronous curves, which represent average behavior for many heats of Inconel 617, were based in part on a unified constitutive model developed at ORNL. Details are also provided of this model of inelastic deformation behavior, which does not distinguish between rate-dependent plasticity and time-dependent creep, along with comparisons between calculated and observed results of tests conducted on a typical heat of Inconel 617 by the General Electric Company for the Department of Energy. 4 refs., 15 figs., 1 tab

  11. Zircaloy behaviour in high temperature irradiated water

    International Nuclear Information System (INIS)

    Urbanic, V.F.

    1982-04-01

    The corrosion and hydriding of Zircaloy during irradiation in high temperature water is strongly dependent on the oxygen concentration of the water. Corrosion tests in the NRX and NRU research reactors using small samples have demonstrated the importance of water chemistry in maintaining Zircaloy corrosion and hydriding within acceptable limits. Zircaloy fuel cladding develops non-uniform, patch-type oxides during irradiation in hich temperature water containing dissolved oxygen. Results from examinations of prototype fuel cladding irradiated in the research reactors are presented to show how local variations in coolant flow, fast neutron flux, metallurgical structure and surface condition can influence the onset of non-uniform corrosion under these conditions. Destructive examinations of CANDU-PHW reactor fuel cladding have emphasized the importance of good chemistry control, especially the dissolved oxygen concentration of the water. When reactor coolants are maintained under normal reducing conditions at high pH (5 to 10 cm 3 D 2 /kg D 2 O; 2 /kg D 2 O; pH > 10 with LiOD), Zircaloy cladding develops non-uniform, patch-type oxides. These patch-type oxides tend to coalesce with time to form a thick, uniform oxide layer after extended exposure. Under reducing coolant conditions, Zircaloy cladding absorbs less than 200 mg D/kg Zr (approximately 2.5 mg/dm 2 equivalent hydrogen) in about 500 days. With oxygen in the coolant, deuterium absorption is considerably less despite the significant increase in corrosion under such conditions

  12. High-Temperature Shape Memory Alloys

    Science.gov (United States)

    Biffi, C. A.; Tuissi, A.

    2014-10-01

    In this paper, an experimental study of laser micro-processing on a Cu-Zr-based shape memory alloy (SMA), which is suitable for high-temperature (HT) applications, is discussed. A first evaluation of the interaction between a laser beam and Zr50Cu28Ni7Co15 HT SMA is highlighted. Single laser pulses at various levels of power and pulse duration were applied to evaluate their effect on the sample surfaces. Blind and through microholes were produced with sizes on the order of a few hundreds of microns; the results were characterized from the morphological viewpoint using a scanning electron microscope. The high beam quality allows the holes to be created with good circularity and little melted material around the hole periphery. An analysis of the chemical composition was performed using energy dispersive spectroscopy, revealing that compositional changes were limited, while important oxidation occurred on the hole surfaces. Additionally, laser micro-cutting tests were also proposed to evaluate the cut edge morphology and dimensions. The main result of this paper concerned the good behavior of the material upon interaction with the laser beam, which suggests that microfeatures can be successfully produced in this alloy.

  13. A high temperature reactor for ship propulsion

    International Nuclear Information System (INIS)

    Lobet, P.; Seigel, R.; Thompson, A.C.; Beadnell, R.M.; Beeley, P.A.

    2002-01-01

    The initial thermal hydraulic and physics design of a high temperature gas cooled reactor for ship propulsion is described. The choice of thermodynamic cycle and thermal power is made to suit the marine application. Several configurations of a Helium cooled, Graphite moderated reactor are then analysed using the WIMS and MONK codes from AEA Technology. Two geometries of fuel elements formed using micro spheres in prismatic blocks, and various arrangements of control rods and poison rods are examined. Reactivity calculations through life are made and a pattern of rod insertion to flatten the flux is proposed and analysed. Thermal hydraulic calculations are made to find maximum fuel temperature under high power with optimized flow distribution. Maximum temperature after loss of flow and temperatures in the reactor vessel are also computed. The temperatures are significantly below the known limits for the type of fuel proposed. It is concluded that the reactor can provide the required power and lifetime between refueling within likely space and weight constraints. (author)

  14. High-temperature Gas Reactor (HTGR)

    Science.gov (United States)

    Abedi, Sajad

    2011-05-01

    General Atomics (GA) has over 35 years experience in prismatic block High-temperature Gas Reactor (HTGR) technology design. During this period, the design has recently involved into a modular have been performed to demonstrate its versatility. This versatility is directly related to refractory TRISO coated - particle fuel that can contain any type of fuel. This paper summarized GA's fuel cycle studies individually and compares each based upon its cycle sustainability, proliferation-resistance capabilities, and other performance data against pressurized water reactor (PWR) fuel cycle data. Fuel cycle studies LEU-NV;commercial HEU-Th;commercial LEU-Th;weapons-grade plutonium consumption; and burning of LWR waste including plutonium and minor actinides in the MHR. results show that all commercial MHR options, with the exception of HEU-TH, are more sustainable than a PWR fuel cycle. With LEU-NV being the most sustainable commercial options. In addition, all commercial MHR options out perform the PWR with regards to its proliferation-resistance, with thorium fuel cycle having the best proliferation-resistance characteristics.

  15. The moon as a high temperature condensate.

    Science.gov (United States)

    Anderson, D. L.

    1973-01-01

    The accretion during condensation mechanism, if it occurs during the early over-luminous stage of the sun, can explain the differences in composition of the terrestrial planets and the moon. An important factor is the variation of pressure and temperature with distance from the sun, and in the case of the moon and captured satellites of other planets, with distance from the median plane. Current estimates of the temperature and pressure in the solar nebula suggest that condensation will not be complete in the vicinity of the terrestrial planets, and that depending on location, iron, magnesium silicates and the volatiles will be at least partially held in the gaseous phase and subject to separation from the dust by solar wind and magnetic effects associated with the transfer of angular momentum just before the sun joins the Main Sequence. Many of the properties of the moon, including the 'enrichment' in Ca, Al, Ti, U, Th, Ba, Sr and the REE and the 'depletion' in Fe, Rb, K, Na and other volatiles can be understood if the moon represents a high temperature condensate from the solar nebula.

  16. Diffusion and plasticity at high temperature

    Science.gov (United States)

    Philibert, J.

    1991-06-01

    High temperature plastic deformation requires atomic migration whatever the mechanism of deformation. The constitutive equations contain a diffusion coefficient and the deformation rate follows an Arrhenius law. This paper will only discuss the case of viscous creep in order to elucidate the nature of the diffusion processes and the expression of the diffusion coefficient involved in alloys or compounds. La déformation plastique à haute température met en jeu des migrations atomiques, quel que soit le mécanisme de déformation. Les lois de comportement contiennent donc un coefficient de diffusion et la vitesse de déformation obéit à une loi d'Arrhenius. Dans cet article, qui ne conceme qu'un seul type de déformation, lefluage visqueux, on s'efforce de préciser la nature des processus de diffusion et du coefficient de diffusion mis en jeu dans le cas des alliages et des composés.

  17. Nuclear shell effects at high temperatures

    International Nuclear Information System (INIS)

    Davidson, N.J.; Miller, H.G.

    1993-01-01

    In discussing the disappearance of nuclear shell effects at high temperatures, it is important to distinguish between the ''smearing out'' of the single-particle spectrum with increasing temperature and the vanishing of shell related structures in many-body quantities such as the excitation energy per nucleon. We propose a semiempirical method to obtain an upper bound on the temperature required to smooth the single-particle spectrum, and point out that shell effects in many-body parameters may persist above this temperature. We find that the temperature required to smear out the single-particle spectrum is approximately 1 MeV for heavy nuclei (A approx-gt 150) and about 3--4 MeV for light nuclei (A approx-lt 50), in reasonable agreement with the estimate of 41/πA 1/3 obtained from calculations with harmonic oscillator potentials. These temperatures correspond to many-body excitation energies of approximately 20 and 60 MeV, respectively

  18. High-temperature reactor in modular construction

    International Nuclear Information System (INIS)

    Mueller, F.U.; Reutler, H.; Ullrich, M.

    1981-01-01

    Together with other reactors of the same type a gas-cooled, small-sized high-temperature reactor is to be assembled into a plant with modular design. The reactor vessel can be withdrawn as a whole after shutdown, removal of the fuel element charge, disassembly of the control rods, and opening of the closure of the safety containment. All apertures for the inlet and outlet of the cooling gas are located in the ground plate of the reactor. The lower part of the reactor cavern serves as inlet space for the cool gas, while the heated gas is let in through a line of a heat sink, e.g. a heat exchanger. The ground plate is connected with the hot gas line or with an inserted hot gas collecting room by means of a simple plug connection which is released automatically when the reactor vessel is withdrawn. The cooling gas, which is put into circulation by a blower and led through special conducting systems, is also used for cooling the outer metal jacket of the hot gas line. A second design is described according to which the reactor and heat exchanger are superposed in a safety containment, such as applied for pressurized water-cooled nuclear reactors. (orig.) [de

  19. High Temperature Chemistry of Aromatic Hydrocarbons. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Scott, Lawrence T. [Boston College, Chestnut Hill, MA (United States). Merkert Chemistry Center, Dept. of Chemistry

    2017-05-15

    synthesis of C60 and other fullerenes depended critically on a knowledge of hydrocarbon reactions at high temperatures in the gas phase, and the research supported by this project enabled further advances in the realm of carbon-rich materials.

  20. A study on heat resistance of high temperature resistant coating

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Liping; Wang, Xueying; Zhang, Qibin; Qin, Yanlong; Lin, Zhu [Research Institute of Engineering Technology of CNPC, Tianjin (China)

    2005-04-15

    A high temperature resistant coating has been developed, which is mainly for heavy oil production pipes deserved the serious corrosion. The coating has excellent physical and mechanical performance and corrosion resistance at room and high temperature. In order to simulate the underground working condition of heavy oil pipes,the heat resistance of the high temperature resistant coating has been studied. The development and a study on the heat resistance of the DHT high temperature resistance coating have been introduced in this paper

  1. A study on heat resistance of high temperature resistant coating

    International Nuclear Information System (INIS)

    Zhang, Liping; Wang, Xueying; Zhang, Qibin; Qin, Yanlong; Lin, Zhu

    2005-01-01

    A high temperature resistant coating has been developed, which is mainly for heavy oil production pipes deserved the serious corrosion. The coating has excellent physical and mechanical performance and corrosion resistance at room and high temperature. In order to simulate the underground working condition of heavy oil pipes,the heat resistance of the high temperature resistant coating has been studied. The development and a study on the heat resistance of the DHT high temperature resistance coating have been introduced in this paper

  2. Hydrogen Production from Nuclear Energy via High Temperature Electrolysis

    International Nuclear Information System (INIS)

    James E. O'Brien; Carl M. Stoots; J. Stephen Herring; Grant L. Hawkes

    2006-01-01

    This paper presents the technical case for high-temperature nuclear hydrogen production. A general thermodynamic analysis of hydrogen production based on high-temperature thermal water splitting processes is presented. Specific details of hydrogen production based on high-temperature electrolysis are also provided, including results of recent experiments performed at the Idaho National Laboratory. Based on these results, high-temperature electrolysis appears to be a promising technology for efficient large-scale hydrogen production

  3. Financing of Solar Home Systems (SHS); Finanzierung von Solar Home Systemen. Erfahrungen aus der Praxis

    Energy Technology Data Exchange (ETDEWEB)

    Adelmann, P.; Rimpler, G.; Zimmermann, A. [Phocos AG, Ulm (Germany)

    2005-07-01

    In many cases Solar Systems are the cheapest option for rural electrification. Often the users spend every month a quite high amount of money for dry cell batteries, kerosene and candles to supply a radio or to have light. Problem is that the users can spend a certain amount every month, but they are not able to have the necessary investment for a SHS at one. Financing would be requires. There are different ways to finance the solar home systems. In some cases the user has to pay a fee for the service. In these cases the investor is the owner of the system. In other cases a microcredit is given to the user. His then the owner of the system and responsible for any losses in the system. An interesting model is a battery charging station. In this model it is possible for the user to become step by step owner of a solar system. Conclusion. Fee for service systems did not perform perfectly. Main reason is the missing responsibility of the user for any damage. Microcredits did perform well in several places in Asia. A interesting option for the future are battery charging stations. This model hashighest flexibility in financing. It can be adopted at any moment to the abilities of the user. (orig.)

  4. Effect of microstructure on the high temperature strength of nitride

    Indian Academy of Sciences (India)

    Effect of microstructure on the high temperature strength of nitride bonded silicon carbide composite. J Rakshit P K Das. Composites Volume ... The effect of these parameters on room temperature and high temperature strength of the composite up to 1300°C in ambient condition were studied. The high temperature flexural ...

  5. Very-high-temperature reactors for future use

    International Nuclear Information System (INIS)

    Kasten, P.R.

    1988-01-01

    Very-High-Temperature Reactors (VHTRs) show promise for economic generation of electricity and of high-temperature process heat. The key is the development of high-temperature materials which permit gas turbine VHTRs to generate electricity economically, at helium temperatures which can be used for fossil fuel conversion processes. 7 refs., 5 figs

  6. Very-high-temperature reactors for future use

    International Nuclear Information System (INIS)

    Kasten, P.R.

    1988-08-01

    Very-high-temperature reactors (VHTRs) show promise for economic generation of electricity and of high-temperature process heat. The key is the development of high-temperature materials which permit gas turbine VHTRs to generate electricity economically, at reactor coolant temperatures which can be used for fossil fuel conversion processes. 7 refs., 5 figs

  7. High-temperature discrete dislocation plasticity

    Science.gov (United States)

    Keralavarma, S. M.; Benzerga, A. A.

    2015-09-01

    A framework for solving problems of dislocation-mediated plasticity coupled with point-defect diffusion is presented. The dislocations are modeled as line singularities embedded in a linear elastic medium while the point defects are represented by a concentration field as in continuum diffusion theory. Plastic flow arises due to the collective motion of a large number of dislocations. Both conservative (glide) and nonconservative (diffusion-mediated climb) motions are accounted for. Time scale separation is contingent upon the existence of quasi-equilibrium dislocation configurations. A variational principle is used to derive the coupled governing equations for point-defect diffusion and dislocation climb. Superposition is used to obtain the mechanical fields in terms of the infinite-medium discrete dislocation fields and an image field that enforces the boundary conditions while the point-defect concentration is obtained by solving the stress-dependent diffusion equations on the same finite-element grid. Core-level boundary conditions for the concentration field are avoided by invoking an approximate, yet robust kinetic law. Aspects of the formulation are general but its implementation in a simple plane strain model enables the modeling of high-temperature phenomena such as creep, recovery and relaxation in crystalline materials. With emphasis laid on lattice vacancies, the creep response of planar single crystals in simple tension emerges as a natural outcome in the simulations. A large number of boundary-value problem solutions are obtained which depict transitions from diffusional to power-law creep, in keeping with long-standing phenomenological theories of creep. In addition, some unique experimental aspects of creep in small scale specimens are also reproduced in the simulations.

  8. HIGH-TEMPERATURE IONIZATION IN PROTOPLANETARY DISKS

    Energy Technology Data Exchange (ETDEWEB)

    Desch, Steven J. [School of Earth and Space Exploration, Arizona State University, P.O. Box 871404, Tempe, AZ 85287-1404 (United States); Turner, Neal J. [Jet Propulsion Laboratory, Mail Stop 169-506, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States)

    2015-10-01

    We calculate the abundances of electrons and ions in the hot (≳500 K), dusty parts of protoplanetary disks, treating for the first time the effects of thermionic and ion emission from the dust grains. High-temperature ionization modeling has involved simply assuming that alkali elements such as potassium occur as gas-phase atoms and are collisionally ionized following the Saha equation. We show that the Saha equation often does not hold, because free charges are produced by thermionic and ion emission and destroyed when they stick to grain surfaces. This means the ionization state depends not on the first ionization potential of the alkali atoms, but rather on the grains’ work functions. The charged species’ abundances typically rise abruptly above about 800 K, with little qualitative dependence on the work function, gas density, or dust-to-gas mass ratio. Applying our results, we find that protoplanetary disks’ dead zone, where high diffusivities stifle magnetorotational turbulence, has its inner edge located where the temperature exceeds a threshold value ≈1000 K. The threshold is set by ambipolar diffusion except at the highest densities, where it is set by Ohmic resistivity. We find that the disk gas can be diffusively loaded onto the stellar magnetosphere at temperatures below a similar threshold. We investigate whether the “short-circuit” instability of current sheets can operate in disks and find that it cannot, or works only in a narrow range of conditions; it appears not to be the chondrule formation mechanism. We also suggest that thermionic emission is important for determining the rate of Ohmic heating in hot Jupiters.

  9. WC-3015 alloy (high-temperature alloy)

    International Nuclear Information System (INIS)

    Anon.

    1974-01-01

    WC-3015 Nb alloy containing 28 to 30 Hf, 1 to 2 Zr, 13 to 16 W, 0 to 4 Ta, 0 to 5 Ti, 0.07 to 0.33 C, less than or equal to 0.02 N, less than or equal to 0.03 O, less than or equal to 0.001 H was developed for use at high temperature in oxidizing environments. Its composition can be tailored to meet specific requirements. When WC-3015 is exposed to O at elevated temperature, Hf and Nb oxidized preferentially and HfO 2 dissolves in Nb 2 O 5 to form 6HfO-Nb 2 O 5 . This complex oxide has a tight cubic lattice which resists the diffusion of O into the substrate. During 24-h exposure to air at 2400 0 F, the alloy oxidizes to a depth of approximately 0.035 in. with a surface recession of 0 to 0.004 in. Oxidation resistance of WC-3015 welds and base material can be further enhanced greatly by applying silicide coatings. WC-3015 alloy can be machined by conventional and electrical-discharge methods. It can be hot worked readily by extrusion, forging or rolling. Cold working can be used at room or elevated temperature. It can be welded by the electron-beam or Tig processes. Physical constants, typical mechanical properties at 75 to 2400 0 F, and effects of composition and heat treatment on tensile and stress-rupture properties of the alloy are tabulated

  10. High-temperature LDV seed particle development

    Science.gov (United States)

    Frish, Michael B.; Pierce, Vicky G.

    1989-05-01

    The feasibility of developing a method for making monodisperse, unagglomerated spherical particles greater than 50 nm in diameter was demonstrated. Carbonaceous particles were made by pyrolyzing ethylene with a pulsed CO2 laser, thereby creating a non-equilibrium mixture of carbon, hydrogen, hydrocarbon vapors, and unpyrolyzed ethylene. Via a complex series of reactions, the carbon and hydrocarbon vapors quickly condensed into the spherical particles. By cooling and dispersing them in a supersonic expansion immediately after their creation, the hot newly-formed spheres were prevented from colliding and coalescing, thus preventing the problem of agglomeration which as plagued other investigators studying laser-simulated particle formation. The cold particles could be left suspended in the residual gases indefinitely without agglomerating. Their uniform sizes and unagglomerated nature were visualized by collecting the particles on filters that were subsequently examined using electron microscopy. It was found the mean particle size can be coarsely controlled by varying the initial ethylene pressure, and can be finely controlled by varying the fluence (energy/unit area) with which the laser irradiates the gas. The motivating application for this research was to manufacture particles that could be used as laser Doppler velocimetry (LDV) seeds in high-temperature high-speed flows. Though the particles made in this program will not evaporate until heated to about 3000 K, and thus could serve as LDV seeds in some applications, they are not ideal when the hot atmosphere is also oxidizing. In that situation, ceramic materials would be preferable. Research performed elsewhere has demonstrated that selected ceramic materials can be manufactured by laser pyrolysis of appropriate supply gases. It is anticipated that, when the same gases are used in conjunction with the rapid cooling technique, unagglomerated spherical ceramic particles can be made with little difficulty. Such

  11. HIGH-TEMPERATURE IONIZATION IN PROTOPLANETARY DISKS

    International Nuclear Information System (INIS)

    Desch, Steven J.; Turner, Neal J.

    2015-01-01

    We calculate the abundances of electrons and ions in the hot (≳500 K), dusty parts of protoplanetary disks, treating for the first time the effects of thermionic and ion emission from the dust grains. High-temperature ionization modeling has involved simply assuming that alkali elements such as potassium occur as gas-phase atoms and are collisionally ionized following the Saha equation. We show that the Saha equation often does not hold, because free charges are produced by thermionic and ion emission and destroyed when they stick to grain surfaces. This means the ionization state depends not on the first ionization potential of the alkali atoms, but rather on the grains’ work functions. The charged species’ abundances typically rise abruptly above about 800 K, with little qualitative dependence on the work function, gas density, or dust-to-gas mass ratio. Applying our results, we find that protoplanetary disks’ dead zone, where high diffusivities stifle magnetorotational turbulence, has its inner edge located where the temperature exceeds a threshold value ≈1000 K. The threshold is set by ambipolar diffusion except at the highest densities, where it is set by Ohmic resistivity. We find that the disk gas can be diffusively loaded onto the stellar magnetosphere at temperatures below a similar threshold. We investigate whether the “short-circuit” instability of current sheets can operate in disks and find that it cannot, or works only in a narrow range of conditions; it appears not to be the chondrule formation mechanism. We also suggest that thermionic emission is important for determining the rate of Ohmic heating in hot Jupiters

  12. High-temperature spreading kinetics of metals

    Energy Technology Data Exchange (ETDEWEB)

    Rauch, N.

    2005-05-15

    In this PhD work a drop transfer setup combined with high speed photography has been used to analyze the spreading of Ag on polished polycrystalline Mo and single crystalline Mo (110) and (100) substrates. The objective of this work was to unveil the basic phenomena controlling spreading in metal-metal systems. The observed spreading kinetics were compared with current theories of low and high temperature spreading such as a molecular kinetic model and a fluid flow model. Analyses of the data reveal that the molecular model does describe the fastest velocity data well for all the investigated systems. Therefore, the energy which is dissipated during the spreading process is a dissipation at the triple line rather than dissipation due to the viscosity in the liquid. A comparison of the determined free activation energy for wetting of {delta}G95{approx}145kJ/mol with literature values allows the statement that the rate determining step seems to be a surface diffusion of the Ag atoms along the triple line. In order to investigate possible ridge formation, due to local atomic diffusion of atoms of the substrate at the triple during the spreading process, grooving experiments of the polycrystalline Mo were performed to calculate the surface diffusities that will control ridge evolution. The analyses of this work showed that a ridge formation at the fastest reported wetting velocities was not possible if there is no initial perturbation for a ridge. If there was an initial perturbation for a ridge the ridge had to be much smaller than 1 nm in order to be able to move with the liquid font. Therefore ridge formation does not influence the spreading kinetics for the studied system and the chosen conditions. SEM, AFM and TEM investigations of the triple line showed that ridge formation does also not occur at the end of the wetting experiment when the drop is close to equilibrium and the wetting velocity is slow. (orig.)

  13. Materials for High-Temperature Catalytic Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Ersson, Anders

    2003-04-01

    Catalytic combustion is an environmentally friendly technique to combust fuels in e.g. gas turbines. Introducing a catalyst into the combustion chamber of a gas turbine allows combustion outside the normal flammability limits. Hence, the adiabatic flame temperature may be lowered below the threshold temperature for thermal NO{sub X} formation while maintaining a stable combustion. However, several challenges are connected to the application of catalytic combustion in gas turbines. The first part of this thesis reviews the use of catalytic combustion in gas turbines. The influence of the fuel has been studied and compared over different catalyst materials. The material section is divided into two parts. The first concerns bimetallic palladium catalysts. These catalysts showed a more stable activity compared to their pure palladium counterparts for methane combustion. This was verified both by using an annular reactor at ambient pressure and a pilot-scale reactor at elevated pressures and flows closely resembling the ones found in a gas turbine combustor. The second part concerns high-temperature materials, which may be used either as active or washcoat materials. A novel group of materials for catalysis, i.e. garnets, has been synthesised and tested in combustion of methane, a low-heating value gas and diesel fuel. The garnets showed some interesting abilities especially for combustion of low-heating value, LHV, gas. Two other materials were also studied, i.e. spinels and hexa aluminates, both showed very promising thermal stability and the substituted hexa aluminates also showed a good catalytic activity. Finally, deactivation of the catalyst materials was studied. In this part the sulphur poisoning of palladium, platinum and the above-mentioned complex metal oxides has been studied for combustion of a LHV gas. Platinum and surprisingly the garnet were least deactivated. Palladium was severely affected for methane combustion while the other washcoat materials were

  14. Microstructural analysis of high-temperature superconductors

    International Nuclear Information System (INIS)

    Passing, H.

    1987-01-01

    At present, research concentrates on the composition YBa 2 Cu 3 O 7-δ , which, in the appropriate synthesis, shows a transition from the state of normal conductivity to superconductivity at a temperature of 91 K. An exact control of the oxygen content of the composition is necessary so that the super-conducting orthorhombic structure develops. Depending on the composition and the sintering temperature, it is possible to produce fine-grained and coarse-grained ceramics with a directed crystal structure. Under the light-optical microscope in polarized light, coarse-grained ceramics show twinning, which occurs during cooling down from the sintering temperature because of a phase change combined with a variation in volume. (orig./MM) [de

  15. Contribution to high-temperature chromatography and high-temperature-gas-chromatography-mass spectrometry of lipids

    International Nuclear Information System (INIS)

    Aichholz, R.

    1998-04-01

    This thesis describes the use of high temperature gas chromatography for the investigation of unusual triacylglycerols, cyanolipids and bees waxes. The used glass capillary columns were pretreated and coated with tailor made synthesized high temperature stable polysiloxane phases. The selective separation properties of the individual columns were tested with a synthetic lipid mixture. Suitable derivatization procedures for the gaschromatographic analyses of neutral lipids, containing multiple bonds as well as hydroxy-, epoxy-, and carboxyl groups, were developed and optimized. Therefore conjugated olefinic-, conjugated olefinic-acetylenic-, hydroxy-, epoxy-, and conjugated olefinic keto triacylglycerols in miscellaneous plant seed oils as well as hydroxy monoesters, diesters and hydroxy diesters in bees waxes could be analysed directly with high temperature gas chromatography for the first time. In order to elucidate the structures of separated lipid compounds, high temperature gas chromatography was coupled to mass spectrometry and tandem mass spectrometry, respectively. Comparable analytical systems are hitherto not commercial available. Therefore instrumental prerequisites for a comprehensive and detailed analysis of seed oils and bees waxes were established. In GC/MS commonly two ionization methods are used, electron impact ionization and chemical ionization. For the analysis of lipids the first is of limited use only. Due to intensive fragmentation only weak molecular ions are observed. In contrast, the chemical ionization yields in better results. Dominant quasi molecular ions enable an unambiguous determination of the molecular weight. Moreover, characteristic fragment ions provide important indications of certain structural features of the examined compounds. Nevertheless, in some cases the chromatographic resolution was insufficient in order to separate all compounds present in natural lipid mixtures. Owing to the selected detection with mass spectrometry

  16. New Oxide Materials for an Ultra High Temperature Environment

    Energy Technology Data Exchange (ETDEWEB)

    Perepezko, John H. [Univ. of Wisconsin, Madison, WI (United States). Dept. of Materials Science and Engineering

    2017-11-13

    In this project, a new oxide material, Hf6Ta2O17 has been successfully synthesized by the controlled oxidization of Hf-Ta alloys. This oxide exhibits good oxidation resistance, high temperature phase stability up to more than 2000°C, low thermal conductivity and thus could serve as a component or a coating material in an ultrahigh temperature environment. We have examined the microstructure evolution and phase formation sequence during the oxidation exposure of Hf-Ta alloys at 1500°C and identified that the oxidation of a Hf-26.7atomic %Ta alloy leads to the formation of a single phase adherent Hf6Ta2O17 with a complex atomic structure i.e. superstructure. The overall reactive diffusion pathway is consistent with the calculated Hf-Ta-O ternary phase diagram. Besides the synthesis of Hf6Ta2O17 superstructure by oxidizing Hf-Ta alloys, we have also developed a synthesis method based upon the reactive sintering of the correct ratios of mixed powders of HfO2 and Ta2O5 and verified the low thermal conductivity of Hf6Ta2O17 superstructure on these samples. We have completed a preliminary analysis of the oxidation kinetics for Hf6Ta2O17, which shows an initial parabolic oxidation kinetics.

  17. Structural behavior of reinforced concrete structures at high temperatures

    International Nuclear Information System (INIS)

    Yamazaki, N.; Yamazaki, M.; Mochida, T.; Mutoh, A.; Miyashita, T.; Ueda, M.; Hasegawa, T.; Sugiyama, K.; Hirakawa, K.; Kikuchi, R.; Hiramoto, M.; Saito, K.

    1995-01-01

    To establish a method to predict the behavior of reinforced concrete structures subjected simultaneously to high temperatures and external loads, this paper presents the results obtained in several series of tests carried out recently in Japan. This paper reports on the material properties of concrete and steel bars under high temperatures. It also considers the heat transfer properties of thick concrete walls under transient high temperatures, and the structural behavior of reinforced concrete beams subjected to high temperatures. In the tests, data up to 800 C were obtained for use in developing a computational method to estimate the non-linear behavior of reinforced concrete structures exposed to high temperatures. (orig.)

  18. Potential aerospace applications of high temperature superconductors

    Science.gov (United States)

    Selim, Raouf

    1994-01-01

    The recent discovery of High Temperature Superconductors (HTS) with superconducting transition temperature, T(sub c), above the boiling point of liquid nitrogen has opened the door for using these materials in new and practical applications. These materials have zero resistance to electric current, have the capability of carrying large currents and as such have the potential to be used in high magnetic field applications. One of the space applications that can use superconductors is electromagnetic launch of payloads to low-earth-orbit. An electromagnetic gun-type launcher can be used in small payload systems that are launched at very high velocity, while sled-type magnetically levitated launcher can be used to launch larger payloads at smaller velocities. Both types of launchers are being studied by NASA and the aerospace industry. The use of superconductors will be essential in any of these types of launchers in order to produce the large magnetic fields required to obtain large thrust forces. Low Temperature Superconductor (LTS) technology is mature enough and can be easily integrated in such systems. As for the HTS, many leading companies are currently producing HTS coils and magnets that potentially can be mass-produced for these launchers. It seems that designing and building a small-scale electromagnetic launcher is the next logical step toward seriously considering this method for launching payloads into low-earth-orbit. A second potential application is the use of HTS to build sensitive portable devices for the use in Non Destructive Evaluation (NDE). Superconducting Quantum Interference Devices (SQUID's) are the most sensitive instruments for measuring changes in magnetic flux. By using HTS in SQUID's, one will be able to design a portable unit that uses liquid nitrogen or a cryocooler pump to explore the use of gradiometers or magnetometers to detect deep cracks or corrosion in structures. A third use is the replacement of Infra-Red (IR) sensor leads on

  19. Fusion reactors-high temperature electrolysis (HTE)

    International Nuclear Information System (INIS)

    Fillo, J.A.

    1978-01-01

    Results of a study to identify and develop a reference design for synfuel production based on fusion reactors are given. The most promising option for hydrogen production was high-temperature electrolysis (HTE). The main findings of this study are: 1. HTE has the highest potential efficiency for production of synfuels from fusion; a fusion to hydrogen energy efficiency of about 70% appears possible with 1800 0 C HTE units and 60% power cycle efficiency; an efficiency of about 50% possible with 1400 0 C HTE units and 40% power cycle efficiency. 2. Relative to thermochemical or direct decomposition methods HTE technology is in a more advanced state of development, 3. Thermochemical or direct decomposition methods must have lower unit process or capital costs if they are to be more attractive than HTE. 4. While design efforts are required, HTE units offer the potential to be quickly run in reverse as fuel cells to produce electricity for restart of Tokamaks and/or provide spinning reserve for a grid system. 5. Because of the short timescale of the study, no detailed economic evaluation could be carried out.A comparison of costs could be made by employing certain assumptions. For example, if the fusion reactor-electrolyzer capital installation is $400/(KW(T) [$1000/KW(E) equivalent], the H 2 energy production cost for a high efficiency (about 70 %) fusion-HTE system is on the same order of magnitude as a coal based SNG plant based on 1976 dollars. 6. The present reference design indicates that a 2000 MW(th) fusion reactor could produce as much at 364 x 10 6 scf/day of hydrogen which is equivalent in heating value to 20,000 barrels/day of gasoline. This would fuel about 500,000 autos based on average driving patterns. 7. A factor of three reduction in coal feed (tons/day) could be achieved for syngas production if hydrogen from a fusion-HTE system were used to gasify coal, as compared to a conventional syngas plant using coal-derived hydrogen

  20. Analytic Models of High-Temperature Hohlraums

    International Nuclear Information System (INIS)

    Stygar, W.A.; Olson, R.E.; Spielman, R.B.; Leeper, R.J.

    2000-01-01

    A unified set of high-temperature-hohlraum models has been developed. For a simple hohlraum, P s = (A s +(1minusα W )A W +A H )σT R 4 + (4Vσ/c)(dT R r /dt) where P S is the total power radiated by the source, A s is the source area, A W is the area of the cavity wall excluding the source and holes in the wall, A H is the area of the holes, σ is the Stefan-Boltzmann constant, T R is the radiation brightness temperature, V is the hohlraum volume, and c is the speed of light. The wall albedo α W triple b ond (T W /T R ) 4 where T W is the brightness temperature of area A W . The net power radiated by the source P N = P S -A S σT R 4 , which suggests that for laser-driven hohlraums the conversion efficiency η CE be defined as P N /P LASER . The characteristic time required to change T R 4 in response to a change in P N is 4V/C((lminusα W )A W +A H ). Using this model, T R , α W , and η CE can be expressed in terms of quantities directly measurable in a hohlraum experiment. For a steady-state hohlraum that encloses a convex capsule, P N = {(1minusα W )A W +A H +((1minusα C )(A S +A W α W )A C /A T = )}σT RC 4 where α C is the capsule albedo, A C is the capsule area, A T triple b ond (A S +A W +A H ), and T RC is the brightness temperature of the radiation that drives the capsule. According to this relation, the capsule-coupling efficiency of the baseline National-Ignition-Facility (NIF) hohlraum is 15% higher than predicted by previous analytic expressions. A model of a hohlraum that encloses a z pinch is also presented

  1. Dual Phase Membrane for High Temperature CO2 Separation

    Energy Technology Data Exchange (ETDEWEB)

    Jerry Lin

    2007-06-30

    This project aimed at synthesis of a new inorganic dual-phase carbonate membrane for high temperature CO{sub 2} separation. Metal-carbonate dual-phase membranes were prepared by the direct infiltration method and the synthesis conditions were optimized. Permeation tests for CO{sub 2} and N{sub 2} from 450-750 C showed very low permeances of those two gases through the dual-phase membrane, which was expected due to the lack of ionization of those two particular gases. Permeance of the CO{sub 2} and O{sub 2} mixture was much higher, indicating that the gases do form an ionic species, CO{sub 3}{sup 2-}, enhancing transport through the membrane. However, at temperatures in excess of 650 C, the permeance of CO{sub 3}{sup 2-} decreased rapidly, while predictions showed that permeance should have continued to increase with temperature. XRD data obtained from used membrane indicated that lithium iron oxides formed on the support surface. This lithium iron oxide layer has a very low conductivity, which drastically reduces the flow of electrons to the CO{sub 2}/O{sub 2} gas mixture; thus limiting the formation of the ionic species required for transport through the membrane. These results indicated that the use of stainless steel supports in a high temperature oxidative environment can lead to decreased performance of the membranes. This revelation created the need for an oxidation resistant support, which could be gained by the use of a ceramic-type membrane. Work was extended to synthesize a new inorganic dual-phase carbonate membrane for high temperature CO{sub 2} separation. Helium permeance of the support before and after infiltration of molten carbonate are on the order of 10{sup -6} and 10{sup -10} moles/m{sup 2} {center_dot} Pa {center_dot} s respectively, indicating that the molten carbonate is able to sufficiently infiltrate the membrane. It was found that La{sub 0.6}Sr{sub 0.4}Co{sub 0.8}Fe{sub 0.2}O{sub 3-{delta}} (LSCF) was a suitable candidate for the support

  2. Mechanism of high-temperature resistant water-base mud

    Energy Technology Data Exchange (ETDEWEB)

    Luo, P

    1981-01-01

    Based on experiments, the causes and laws governing the changes in the performance of water-base mud under high temperature are analyzed, and the requisites and mechanism of treating agents resisting high temperature are discussed. Ways and means are sought for inhibiting, delaying and making use of the effect of high temperature on the performance of mud, while new ideas and systematic views have been expressed on the preparation of treating agents and set-up of a high temperature resistant water-base mud system. High temperature dispersion and high temperature surface inactivation of clay in the mud, as well as their effect and method of utilization are reviewed. Subjects also touched upon include degradation and cross-linking of the high-temperature resistant treating agents, their use and effect. Based on the above, the preparation of a water-base and system capable of resisting 180 to 250/sup 0/C is recommended.

  3. Glass precursor approach to high-temperature superconductors

    Science.gov (United States)

    Bansal, Narottam P.

    1992-01-01

    The available studies on the synthesis of high T sub c superconductors (HTS) via the glass precursor approach were reviewed. Melts of the Bi-Sr-Ca-Cu-O system as well as those doped with oxides of some other elements (Pb, Al, V, Te, Nb, etc.) could be quenched into glasses which, on further heat treatments under appropriate conditions, crystallized into the superconducting phase(s). The nature of the HTS phase(s) formed depends on the annealing temperature, time, atmosphere, and the cooling rate and also on the glass composition. Long term annealing was needed to obtain a large fraction of the 110 K phase. The high T sub c phase did not crystallize out directly from the glass matrix, but was preceded by the precipitation of other phases. The 110 K HTS was produced at high temperatures by reaction between the phases formed at lower temperatures resulting in multiphase material. The presence of a glass former such as B2O3 was necessary for the Y-Ba-Cu-O melt to form a glass on fast cooling. A discontinuous YBa2Cu3O(7-delta) HTS phase crystallized out on heat treatment of this glass. Attempts to prepare Tl-Ba-Ca-Cu-O system in the glassy state were not successful.

  4. Structural instabilities of high temperature alloys and their use in advanced high temperature gas cooled reactors

    International Nuclear Information System (INIS)

    Schuster, H.; Ennis, P.J.; Nickel, H.; Czyrska-Filemonowicz, A.

    1989-01-01

    High-temperature, iron-nickel and nickel based alloys are the candidate heat exchanger materials for advanced high temperature gas-cooled reactors supplying process heat for coal gasification, where operation temperatures can reach 850-950 deg. C and service lives of more than 100,000 h are necessary. In the present paper, typical examples of structural changes which occur in two representative alloys (Alloy 800 H, Fe-32Ni-20Cr and Alloy 617, Ni-22Cr-12Co-9Mo-1Al) during high temperature exposure will be given and the effects on the creep rupture properties discussed. At service temperatures, precipitation of carbides occurs which has a significant effect on the creep behaviour, especially in the early stages of creep when the precipitate particles are very fine. During coarsening of the carbides, carbides at grain boundaries restrict grain boundary sliding which retards the development of creep damage. In the service environments, enhanced carbide precipitation may occur due to the ingress of carbon from the environment (carburization). Although the creep rate is not adversely affected, the ductility of the carburized material at low and intermediate temperatures is very low. During simulated service exposures, the formation of surface corrosion scales, the precipitation of carbides and the formation of internal oxides below the surface leads to depletion of the matrix in the alloying elements involved in the corrosion processes. In thin-walled tubes the depletion of Cr due to Cr 2 O 3 formation on the surface can lead to a loss of creep strength. An additional depletion effect resulting from environmental-metal reactions is the loss of carbon (decarburization) which may occur in specific environments. The compositions of the cooling gases which decarburize the material have been determined; they are to be avoided during reactor operation

  5. Corrosion behaviour of high temperature alloys in the cooling gas of high temperature reactors

    International Nuclear Information System (INIS)

    Quadakkers, W.J.; Schuster, H.

    1989-01-01

    The reactive impurities in the primary cooling helium of advanced high temperature gas cooled reactors (HTGR) can cause oxidation, carburization or decarburization of the heat exchanging metallic components. By studies of the fundamental aspects of the corrosion mechanisms it became possible to define operating conditions under which the metallic construction materials show, from the viewpoint of technical application, acceptable corrosion behaviour. By extensive test programmes with exposure times of up to 30,000 hours, a data base has been obtained which allows a reliable extrapolation of the corrosion effects up to the envisaged service lives of the heat exchanging components. (author). 6 refs, 7 figs

  6. Stability of High Temperature Standard Platinum Resistance Thermometers at High Temperatures

    OpenAIRE

    Y. A. ABDELAZIZ; F. M. MEGAHED

    2010-01-01

    An investigation of the stability of high temperature standard platinum resistance thermometers HTSPRTs has been carried out for two different designs thermometers (with nominal resistance 0.25 Ω and 2.5 Ω) from two different suppliers. The thermometers were heated for more than 160 hours at temperatures above 960 0C using a vertical furnace with a ceramic block. A study was made of the influence of the heat treatment on the stability of the resistance at the triple point of water, and on the...

  7. FEM Modeling of the Relationship between the High-Temperature Hardness and High-Temperature, Quasi-Static Compression Experiment.

    Science.gov (United States)

    Zhang, Tao; Jiang, Feng; Yan, Lan; Xu, Xipeng

    2017-12-26

    The high-temperature hardness test has a wide range of applications, but lacks test standards. The purpose of this study is to develop a finite element method (FEM) model of the relationship between the high-temperature hardness and high-temperature, quasi-static compression experiment, which is a mature test technology with test standards. A high-temperature, quasi-static compression test and a high-temperature hardness test were carried out. The relationship between the high-temperature, quasi-static compression test results and the high-temperature hardness test results was built by the development of a high-temperature indentation finite element (FE) simulation. The simulated and experimental results of high-temperature hardness have been compared, verifying the accuracy of the high-temperature indentation FE simulation.The simulated results show that the high temperature hardness basically does not change with the change of load when the pile-up of material during indentation is ignored. The simulated and experimental results show that the decrease in hardness and thermal softening are consistent. The strain and stress of indentation were analyzed from the simulated contour. It was found that the strain increases with the increase of the test temperature, and the stress decreases with the increase of the test temperature.

  8. FEM Modeling of the Relationship between the High-Temperature Hardness and High-Temperature, Quasi-Static Compression Experiment

    Directory of Open Access Journals (Sweden)

    Tao Zhang

    2017-12-01

    Full Text Available The high-temperature hardness test has a wide range of applications, but lacks test standards. The purpose of this study is to develop a finite element method (FEM model of the relationship between the high-temperature hardness and high-temperature, quasi-static compression experiment, which is a mature test technology with test standards. A high-temperature, quasi-static compression test and a high-temperature hardness test were carried out. The relationship between the high-temperature, quasi-static compression test results and the high-temperature hardness test results was built by the development of a high-temperature indentation finite element (FE simulation. The simulated and experimental results of high-temperature hardness have been compared, verifying the accuracy of the high-temperature indentation FE simulation.The simulated results show that the high temperature hardness basically does not change with the change of load when the pile-up of material during indentation is ignored. The simulated and experimental results show that the decrease in hardness and thermal softening are consistent. The strain and stress of indentation were analyzed from the simulated contour. It was found that the strain increases with the increase of the test temperature, and the stress decreases with the increase of the test temperature.

  9. Scaling Studies for High Temperature Test Facility and Modular High Temperature Gas-Cooled Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Richard R. Schult; Paul D. Bayless; Richard W. Johnson; James R. Wolf; Brian Woods

    2012-02-01

    The Oregon State University (OSU) High Temperature Test Facility (HTTF) is an integral experimental facility that will be constructed on the OSU campus in Corvallis, Oregon. The HTTF project was initiated, by the U.S. Nuclear Regulatory Commission (NRC), on September 5, 2008 as Task 4 of the 5-year High Temperature Gas Reactor Cooperative Agreement via NRC Contract 04-08-138. Until August, 2010, when a DOE contract was initiated to fund additional capabilities for the HTTF project, all of the funding support for the HTTF was provided by the NRC via their cooperative agreement. The U.S. Department of Energy (DOE) began their involvement with the HTTF project in late 2009 via the Next Generation Nuclear Plant (NGNP) project. Because the NRC's interests in HTTF experiments were only centered on the depressurized conduction cooldown (DCC) scenario, NGNP involvement focused on expanding the experimental envelope of the HTTF to include steady-state operations and also the pressurized conduction cooldown (PCC).

  10. High Temperature Operational Experiences of Helium Experimental Loop

    International Nuclear Information System (INIS)

    Kim, Chan Soo; Hong, Sung-Deok; Kim, Eung-Seon; Kim, Min Hwan

    2015-01-01

    The development of high temperature components of VHTR is very important because of its higher operation temperature than that of a common light water reactor and high pressure industrial process. The development of high temperature components requires the large helium loop. Many countries have high temperature helium loops or a plan for its construction. Table 1 shows various international state-of-the-art of high temperature and high pressure gas loops. HELP performance test results show that there is no problem in operation of HELP at the very high temperature experimental condition. These experimental results also provide the basic information for very high temperature operation with bench-scale intermediate heat exchanger prototype in HELP. In the future, various heat exchanger tests will give us the experimental data for GAMMA+ validation about transient T/H behavior of the IHX prototype and the optimization of the working fluid in the intermediate loop

  11. Combustion synthesis as a novel approach in preparation of polycrystalline Y{sub 2}Cu{sub 2}O{sub 5}

    Energy Technology Data Exchange (ETDEWEB)

    Gebrel, Z., E-mail: z_gebrel@yahoo.com; Blanusa, J.; Spasojevic, V.; Kusigerski, V.; Mrakovic, A.; Alqat, A.; Perovic, M.

    2013-08-15

    Highlights: •Y{sub 2}Cu{sub 2}O{sub 5} was successfully synthesized by both the glycine–nitrate and SHS method. •The reduction of synthesis duration down to 12 h has been achieved. •The detailed crystal structure and magnetic analyses of obtained material are provided. -- Abstract: Polycrystalline samples of Y{sub 2}Cu{sub 2}O{sub 5} were for the first time sintered from precursors obtained by two combustion routes – the glycine–nitrate method (sample S1) and a modified self-propagating high-temperature synthesis (sample S2). The detailed X-ray diffraction analysis has confirmed that both samples are well crystallized and single phase, with the high crystallization degree and cation ordering within a Cu sublattice. Magnetic characterization has shown magnetic behavior typical of pure Y{sub 2}Cu{sub 2}O{sub 5}. The distinctive advantages of these new synthesis routes in comparison to the ceramic sintering are in simplification of the overall procedure as well as in a significant reduction of synthesis duration from several days down to 31 h (S1) or 12 h (S2)

  12. First high-temperature electronics products survey 2005.

    Energy Technology Data Exchange (ETDEWEB)

    Normann, Randy Allen

    2006-04-01

    On April 4-5, 2005, a High-Temperature Electronics Products Workshop was held. This workshop engaged a number of governmental and private industry organizations sharing a common interest in the development of commercially available, high-temperature electronics. One of the outcomes of this meeting was an agreement to conduct an industry survey of high-temperature applications. This report covers the basic results of this survey.

  13. 1981 Annual status report. High-temperature materials

    International Nuclear Information System (INIS)

    1981-01-01

    The high temperature materials programme is executed at the JRC, Petten Establishment and has for the 1980/83 programme period the objective to promote within the European Community the development of high temperature materials required for future energy technologies. A range of engineering studies is being carried out. A data bank storing factual data on alloys for high temperature applications is being developed and has reached the operational phase

  14. Study Progress of Physiological Responses in High Temperature Environment

    Science.gov (United States)

    Li, K.; Zheng, G. Z.; Bu, W. T.; Wang, Y. J.; Lu, Y. Z.

    2017-10-01

    Certain workers are exposed to high temperatures for a long time. Heat stress will result in a series of physiological responses, and cause adverse effects on the health and safety of workers. This paper summarizes the physiological changes of cardiovascular system, core temperature, skin temperature, water-electrolyte metabolism, alimentary system, neuroendocrine system, reaction time and thermal fatigue in high temperature environments. It can provide a theoretical guidance for labor safety in high temperature environment.

  15. 1982 Annual status report: high-temperature materials

    International Nuclear Information System (INIS)

    Van de Voorde, M.

    1983-01-01

    The High Temperature Materials Programme is executed at the JRC, Petten Establishment and has for the 1980/83 programme period the objective to promote within the European Community the development of high temperature materials required for future energy technologies. Materials and engineering studies include: corrosion with or without load, mechanical properties under static or dynamic loads, surface protection creep of tubular components in corrosive environments and high temperature materials data bank

  16. Innovative Health Monitoring Techniques for High Temperature Composites

    Data.gov (United States)

    National Aeronautics and Space Administration — High temperature composite materials, which include ceramic matrix composites (CMCs), carbon-carbon and polyimide composites, will be essential for future space...

  17. High temperature oxidation behavior of TiAl-based intermetallics

    International Nuclear Information System (INIS)

    Stroosnijder, M.F.; Sunderkoetter, J.D.; Haanappel, V.A.C.

    1996-01-01

    TiAl-based intermetallic compounds have attracted considerable interest as structural materials for high-temperature applications due to their low density and substantial mechanical strength at high temperatures. However, one major drawback hindering industrial application arises from the insufficient oxidation resistance at temperatures beyond 700 C. In the present contribution some general aspects of high temperature oxidation of TiAl-based intermetallics will be presented. This will be followed by a discussion of the influence of alloying elements, in particular niobium, and of the effect of nitrogen in the oxidizing environment on the high temperature oxidation behavior of such materials

  18. High Temperature Polymers for use in Fuel Cells

    Science.gov (United States)

    Peplowski, Katherine M.

    2004-01-01

    NASA Glenn Research Center (GRC) is currently working on polymers for fuel cell and lithium battery applications. The desire for more efficient, higher power density, and a lower environmental impact power sources has led to interest in proton exchanges membrane fuels cells (PEMFC) and lithium batteries. A PEMFC has many advantages as a power source. The fuel cell uses oxygen and hydrogen as reactants. The resulting products are electricity, heat, and water. The PEMFC consists of electrodes with a catalyst, and an electrolyte. The electrolyte is an ion-conducting polymer that transports protons from the anode to the cathode. Typically, a PEMFC is operated at a temperature of about 80 C. There is intense interest in developing a fuel cell membrane that can operate at higher temperatures in the range of 80 C- 120 C. Operating the he1 cell at higher temperatures increases the kinetics of the fuel cell reaction as well as decreasing the susceptibility of the catalyst to be poisoned by impurities. Currently, Nafion made by Dupont is the most widely used polymer membrane in PEMFC. Nafion does not function well above 80 C due to a significant decrease in the conductivity of the membrane from a loss of hydration. In addition to the loss of conductivity at high temperatures, the long term stability and relatively high cost of Nafion have stimulated many researches to find a substitute for Nafion. Lithium ion batteries are popular for use in portable electronic devices, such as laptop computers and mobile phones. The high power density of lithium batteries makes them ideal for the high power demand of today s advanced electronics. NASA is developing a solid polymer electrolyte that can be used for lithium batteries. Solid polymer electrolytes have many advantages over the current gel or liquid based systems that are used currently. Among these advantages are the potential for increased power density and design flexibility. Automobiles, computers, and cell phones require

  19. Inhibition of the receptor for advanced glycation end-products (RAGE) protects from secondhand smoke (SHS)-induced intrauterine growth restriction IUGR in mice.

    Science.gov (United States)

    Lewis, Joshua B; Mejia, Camilo; Jordan, Clinton; Monson, Troy D; Bodine, Jared S; Dunaway, Todd M; Egbert, Kaleb M; Lewis, Adam L; Wright, Tanner J; Ogden, K Connor; Broberg, Dallin S; Hall, Parker D; Nelson, Shawn M; Hirschi, Kelsey M; Reynolds, Paul R; Arroyo, Juan A

    2017-12-01

    Intrauterine growth restriction (IUGR) is a disease affecting 10% of all pregnancies. IUGR is associated with maternal, fetal, or placental abnormalities. Studies investigating the effects of secondhand smoke (SHS) exposure and IUGR are limited. The receptor for advanced glycation end-products (RAGE) is a pro-inflammatory transmembrane receptor increased by SHS in the placenta. We tested the hypothesis that inhibition of RAGE during SHS exposure protects from smoke-induced IUGR. C57BL/6 mice were exposed to SHS or SHS + semi-synthetic glycosaminoglycan ethers (SAGEs) known to inhibit RAGE signaling. Trophoblast cells were treated with cigarette smoke extract (CSE) with or without SAGEs in order to address the effects of RAGE inhibition during trophoblast invasion in vitro. SHS-treated mice demonstrated a significant reduction in fetal weight (7.35-fold, P ≤ 0.0001) and placental weight (1.13-fold, P ≤ 0.0001) compared with controls. Mice co-treated with SHS and SAGEs were protected from SHS-induced fetal weights decreases. SHS treatment of C57BL/6 mice activated placental extracellular signal-regulated kinase (ERK) (3.0-fold, P ≤ 0.05), JNK (2.4-fold, P ≤ 0.05) and p38 (2.1-fold, P ≤ 0.05) and the expression of inflammatory mediators including TNF-α (1.34-fold, P ≤ 0.05) and IL-1β (1.03-fold, P ≤ 0.05). SHS-mediated activation of these molecules was reduced to basal levels when SAGE was co-administered. Invasion of trophoblast cells decreased 92% (P < 0.002) when treated with CSE and CSE-mediated invasion was completely reversed by SAGEs. We conclude that RAGE inhibition protects against fetal weight loss during SHS-induced IUGR. These studies provide insight into tobacco-mediated IUGR development and clarify avenues that may be helpful in the alleviation of placental complications.

  20. High temperature heat exchange: nuclear process heat applications

    International Nuclear Information System (INIS)

    Vrable, D.L.

    1980-09-01

    The unique element of the HTGR system is the high-temperature operation and the need for heat exchanger equipment to transfer nuclear heat from the reactor to the process application. This paper discusses the potential applications of the HTGR in both synthetic fuel production and nuclear steel making and presents the design considerations for the high-temperature heat exchanger equipment

  1. Hydrogen production from high temperature electrolysis and fusion reactor

    International Nuclear Information System (INIS)

    Dang, V.D.; Steinberg, J.F.; Issacs, H.S.; Lazareth, O.; Powell, J.R.; Salzano, F.J.

    1978-01-01

    Production of hydrogen from high temperature electrolysis of steam coupled with a fusion reactor is studied. The process includes three major components: the fusion reactor, the high temperature electrolyzer and the power conversion cycle each of which is discussed in the paper. Detailed process design and analysis of the system is examined. A parametric study on the effect of process efficiency is presented

  2. Research On Bi-Based High-Temperature Superconductors

    Science.gov (United States)

    Banks, Curtis; Doane, George B., III; Golben, John

    1993-01-01

    Brief report describes effects of melt sintering on Bi-based high-temperature superconductor system, as well as use of vibrating-sample magnetometer to determine hysteresis curves at 77 K for partially melt-sintered samples. Also discussed is production of high-temperature superconducting thin films by laser ablation: such films potentially useful in detection of signals of very low power.

  3. Decay rate of the false vacuum at high temperatures

    International Nuclear Information System (INIS)

    Eboli, O.J.P.; Marques, G.C.

    1986-01-01

    We investigate, within the semiclassical approach, the high temperature behaviour of the decay rate (Γ) of the metastable vacuum in Field Theory. We exhibit some exactly soluble (1+1) and (3+1) dimensional examples and develop a formal expression for γ in the high temperature limit. (Author) [pt

  4. Light relativistic bound states in high temperature QCD

    International Nuclear Information System (INIS)

    Zahed, Ismail

    1991-01-01

    The nonperturbative structure of high temperature QCD is combined with generalized sum-rules arguments to analyse gauge invariant correlation functions in real time. It is shown that for a plausible choice of condensates, QCD at high temperature exhibits color singlet excitations as opposed to merely screened quarks and gluons. (author). 14 refs.; 2 figs

  5. The impact of high temperatures on foraging behaviour and body ...

    African Journals Online (AJOL)

    High temperatures can pose significant thermoregulation challenges for endotherms, and determining how individual species respond to high temperatures will be important for predicting the impact of global warming on wild populations. Animals can adjust their behaviour or physiology to cope with higher temperatures, ...

  6. Development of VHTR high temperature piping in KHI

    International Nuclear Information System (INIS)

    Suzuki, Nobuhiro; Takano, Shiro

    1981-01-01

    The high temperature pipings used for multi-purpose high temperature gas-cooled reactors are the internally insulated pipings for transporting high temperature, high pressure helium at 1000 deg C and 40 kgf/cm 2 , and the influences exerted by their performance as well as safety to the plants are very large. Kawasaki Heavy Industries, Ltd., has engaged in the development of the high temperature pipings for VHTRs for years. In this report, the progress of the development, the test carried out recently and the problems for future are described. KHI manufactured and is constructing a heater and internally insulated helium pipings for the large, high temperature structure testing loop constructed by Japan Atomic Energy Research Institute. The design concept for the high temperature pipings is to separate the temperature boundary and the pressure boundary, therefore, the double walled construction with internal heat insulation was adopted. The requirements for the high temperature pipings are to prevent natural convection, to prevent bypass flow, to minimize radiation heat transfer and to reduce heat leak through insulator supporters. The heat insulator is composed of two layers, metal laminate insulator and fiber insulator of alumina-silica. The present state of development of the high temperature pipings for VHTRs is reported. (Kako, I.)

  7. Generating high temperature tolerant transgenic plants: Achievements and challenges.

    Science.gov (United States)

    Grover, Anil; Mittal, Dheeraj; Negi, Manisha; Lavania, Dhruv

    2013-05-01

    Production of plants tolerant to high temperature stress is of immense significance in the light of global warming and climate change. Plant cells respond to high temperature stress by re-programming their genetic machinery for survival and reproduction. High temperature tolerance in transgenic plants has largely been achieved either by over-expressing heat shock protein genes or by altering levels of heat shock factors that regulate expression of heat shock and non-heat shock genes. Apart from heat shock factors, over-expression of other trans-acting factors like DREB2A, bZIP28 and WRKY proteins has proven useful in imparting high temperature tolerance. Besides these, elevating the genetic levels of proteins involved in osmotic adjustment, reactive oxygen species removal, saturation of membrane-associated lipids, photosynthetic reactions, production of polyamines and protein biosynthesis process have yielded positive results in equipping transgenic plants with high temperature tolerance. Cyclic nucleotide gated calcium channel proteins that regulate calcium influxes across the cell membrane have recently been shown to be the key players in induction of high temperature tolerance. The involvement of calmodulins and kinases in activation of heat shock factors has been implicated as an important event in governing high temperature tolerance. Unfilled gaps limiting the production of high temperature tolerant transgenic plants for field level cultivation are discussed. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  8. A mathematical model for transducer working at high temperature

    International Nuclear Information System (INIS)

    Fabre, J.P.

    1974-01-01

    A mathematical model is proposed for a lithium niobate piezoelectric transducer working at high temperature in liquid sodium. The model proposed suitably described the operation of the high temperature transducer presented; it allows the optimization of the efficiency and band-pass [fr

  9. Materials and coatings to resist high temperature oxidation and corrosion

    International Nuclear Information System (INIS)

    1977-01-01

    Object of the given papers are the oxidation and corrosion behaviour of several materials (such as stainless steels, iron-, or nickel-, or cobalt-base alloys, Si-based ceramics) used at high temperatures and various investigations on high-temperature protective coatings. (IHoe) [de

  10. A Hall probe technique for characterizing high-temperature superconductors

    International Nuclear Information System (INIS)

    Zhang, J.; Sheldon, P.; Ahrenkiel, R.K.

    1992-01-01

    Thin-film GaAs Hall probes were fabricated by molecular beam epitaxy technology. A contactless technique was developed to characterize thin-film, high-temperature superconducting (HTSC) materials. The Hall probes detected the ac magnetic flux penetration through the high-temperature superconducting materials. The Hall detector has advantages over the mutual inductance magnetic flux detector

  11. Smoke-free policies and non-smokers’ reactions to SHS exposure in small and medium enterprises

    Directory of Open Access Journals (Sweden)

    Calliopi Sivri

    2013-12-01

    Full Text Available Introduction: Non-smoker employees can significantly improve the existing smoke-free policies in the workplace by asserting their right for smoke-free air and confronting smoker colleagues. The aim of the study was to assess the psychological and social drivers of non-smokers' readiness to assert their right for smoke-free air in the workplace. Materials and Methods: Twenty-six small-and-medium enterprises (SME with diverse background were randomly selected, and 284 employees agreed to participate in the study. Our study focused on the responses of 85 non-smokers (M age = 34 years, SD = 7.98, 84.2% worked in indoor offices. A cross-sectional design was used and participants completed a structured anonymous questionnaire assessing background and demographic characteristics, and psychosocial predictors of assertiveness intentions. Results: Although more than half of non-smokers reported they were often/almost always bothered by exposure to SHS, roughly one third of them reported having asked their colleagues not to smoke at work. Regression analysis showed that the effects of distal predictors (i.e. annoyance due to SHS exposure were mediated by past behaviour, attitudes (protection motivation beliefs, social norms, and self-efficacy. Conclusions: Health beliefs related to SHS exposure, and concerns about workplace health and job performance, social norms and self-efficacy can increase the assertiveness of non-smokers in workplace settings. Related campaigns should focus on communicating normative messages and self-efficacy training to empower non-smoker employees to act assertively towards protecting their smoke-free rights.

  12. A novel SOI pressure sensor for high temperature application

    International Nuclear Information System (INIS)

    Li Sainan; Liang Ting; Wang Wei; Hong Yingping; Zheng Tingli; Xiong Jijun

    2015-01-01

    The silicon on insulator (SOI) high temperature pressure sensor is a novel pressure sensor with high-performance and high-quality. A structure of a SOI high-temperature pressure sensor is presented in this paper. The key factors including doping concentration and power are analyzed. The process of the sensor is designed with the critical process parameters set appropriately. The test result at room temperature and high temperature shows that nonlinear error below is 0.1%, and hysteresis is less than 0.5%. High temperature measuring results show that the sensor can be used for from room temperature to 350 °C in harsh environments. It offers a reference for the development of high temperature piezoresistive pressure sensors. (semiconductor devices)

  13. Stability of High Temperature Standard Platinum Resistance Thermometers at High Temperatures

    Directory of Open Access Journals (Sweden)

    Y. A. ABDELAZIZ

    2010-05-01

    Full Text Available An investigation of the stability of high temperature standard platinum resistance thermometers HTSPRTs has been carried out for two different designs thermometers (with nominal resistance 0.25 Ω and 2.5 Ω from two different suppliers. The thermometers were heated for more than 160 hours at temperatures above 960 0C using a vertical furnace with a ceramic block. A study was made of the influence of the heat treatment on the stability of the resistance at the triple point of water, and on the relative resistance W(Ga at the melting point of gallium. The thermometers showed a correlation between the drift note and the values of W(Ga. It was found also that the HTSPRT which has a sensor with strip shaped support and low nominal resistance is more stable than the HTSPRT which has a sensor in the form of a coil wound on silica cross. The 0.25 Ω thermometer has better stability @ 7x10-6 0C (at TPW after 40 hour. Factors affecting the stability and accuracy of HTSPRT also will be discussed.

  14. Preliminary Guideline for the High Temperature Structure Integrity Assessment Procedure Part II. High Temperature Structural Integrity Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Han; Kim, J. B.; Lee, H. Y.; Park, C. G.; Joo, Y. S.; Koo, G. H.; Kim, S. H

    2007-02-15

    A high temperature structural integrity assessment belongs to the Part II of a whole preliminary guideline for the high temperature structure. The main contents of this guideline are the evaluation procedures of the creep-fatigue crack initiation and growth in high temperature condition, the high temperature LBB evaluation procedure, and the inelastic evaluations of the welded joints in SFR structures. The methodologies for the proper inelastic analysis of an SFR structures in high temperatures are explained and the guidelines of inelastic analysis options using ANSYS and ABAQUS are suggested. In addition, user guidelines for the developed NONSTA code are included. This guidelines need to be continuously revised to improve the applicability to the design and analysis of the SFR structures.

  15. Effect of SHS conditions on microstructure of NiTi shape memory alloy

    Czech Academy of Sciences Publication Activity Database

    Novák, P.; Mejzliková, L.; Michalcová, A.; Čapek, J.; Beran, Přemysl; Vojtěch, D.

    2013-01-01

    Roč. 42, NOV 2013 (2013), s. 85-91 ISSN 0966-9795 R&D Projects: GA ČR GBP108/12/G043; GA MŠk(XE) LM2011019 Institutional support: RVO:61389005 Keywords : intermetallics * miscellaneous * phase identification * reaction synthesis * electron microscopy * scanning Subject RIV: JG - Metallurgy Impact factor: 2.119, year: 2013

  16. A summary of high-temperature electronics research and development

    International Nuclear Information System (INIS)

    Thome, F.V.; King, D.B.

    1991-01-01

    Current and future needs in automative, aircraft, space, military, and well logging industries require operation of electronics at higher temperatures than today's accepted limit of 395 K. Without the availability of high-temperature electronics, many systems must operate under derated conditions or must accept severe mass penalties required by coolant systems to maintain electronic temperatures below critical levels. This paper presents ongoing research and development in the electronics community to bring high-temperature electronics to commercial realization. Much of this work was recently reviewed at the First International High-Temperature Electronics Conference held 16--20 June 1991 in Albuquerque, New Mexico. 4 refs., 1 tab

  17. Design methods for high temperature power plant structures

    International Nuclear Information System (INIS)

    Townley, C.H.A.

    1984-01-01

    The subject is discussed under the headings: introduction (scope of paper - reviews of design methods and design criteria currently in use for both nuclear and fossil fuelled power plant; examples chosen are (a) BS 1113, representative of design codes employed for power station boiler plant; (b) ASME Code Case N47, which is being developed for high temperature nuclear reactors, especially the liquid metal fast breeder reactor); design codes for power station boilers; Code Case N47 (design in the absence of thermal shock and thermal fatigue; design against cyclic loading at high temperature; further research in support of high temperature design methods and criteria for LMFBRs); concluding remarks. (U.K.)

  18. High-temperature ductility of electro-deposited nickel

    Science.gov (United States)

    Dini, J. W.; Johnson, H. R.

    1977-01-01

    Work done during the past several months on high temperature ductility of electrodeposited nickel is summarized. Data are presented which show that earlier measurements made at NASA-Langley erred on the low side, that strain rate has a marked influence on high temperature ductility, and that codeposition of a small amount of manganese helps to improve high temperature ductility. Influences of a number of other factors on nickel properties were also investigated. They included plating solution temperature, current density, agitation, and elimination of the wetting agent from the plating solution. Repair of a large nozzle section by nickel plating is described.

  19. Effect of particle size of titanium and nickel on the synthesis of NiTi by TE-SHS

    Czech Academy of Sciences Publication Activity Database

    Novák, P.; Veselý, T.; Marek, I.; Dvořák, P.; Vojtěch, V.; Salvetr, P.; Karlík, M.; Haušild, P.; Kopeček, Jaromír

    2016-01-01

    Roč. 47, č. 2 (2016), s. 932-938 ISSN 1073-5615 R&D Projects: GA ČR(CZ) GA14-03044S Institutional support: RVO:68378271 Keywords : shape memory alloys * behavior * NiTi Subject RIV: JG - Metallurgy Impact factor: 1.642, year: 2016

  20. Different patterns of transcriptomic response to high temperature ...

    African Journals Online (AJOL)

    Jane

    2011-08-15

    Aug 15, 2011 ... The objectives of this study were: (i) to shed light on how genome doubling affects ... for 24 h with the same photoperiod and light intensity as control. After the high temperature ..... in photosynthesis. Photosynth. Res., 98: ...