WorldWideScience

Sample records for high-temperature solid electrolytes

  1. High-temperature solid electrolyte interphases (SEI) in graphite electrodes

    Science.gov (United States)

    Rodrigues, Marco-Tulio F.; Sayed, Farheen N.; Gullapalli, Hemtej; Ajayan, Pulickel M.

    2018-03-01

    Thermal fragility of the solid electrolyte interphase (SEI) is a major source of performance decay in graphite anodes, and efforts to overcome the issues offered by extreme environments to Li-ion batteries have had limited success. Here, we demonstrate that the SEI can be extensively reinforced by carrying the formation cycles at elevated temperatures. Under these conditions, decomposition of the ionic liquid present in the electrolyte favored the formation of a thicker and more protective layer. Cells in which the solid electrolyte interphase was cast at 90 °C were significantly less prone to self-discharge when exposed to high temperature, with no obvious damages to the formed SEI. This additional resilience was accomplished at the expense of rate capability, as charge transfer became growingly inefficient in these systems. At slower rates, however, cells that underwent SEI formation at 90 °C presented superior performances, as a result of improved Li+ transport through the SEI, and optimal wetting of graphite by the electrolyte. This work analyzes different graphite hosts and ionic liquids, showing that this effect is more pervasive than anticipated, and offering the unique perspective that, for certain systems, temperature can actually be an asset for passivation.

  2. Complex hydrides as room-temperature solid electrolytes for rechargeable batteries

    DEFF Research Database (Denmark)

    Jongh, P. E. de; Blanchard, D.; Matsuo, M.

    2016-01-01

    A central goal in current battery research is to increase the safety and energy density of Li-ion batteries. Electrolytes nowadays typically consist of lithium salts dissolved in organic solvents. Solid electrolytes could facilitate safer batteries with higher capacities, as they are compatible...... electrolytes, discussing in detail LiBH4, strategies towards for fast room-temperature ionic conductors, alternative compounds, and first explorations of implementation of these electrolytes in all-solid-state batteries....

  3. Composite electrolyte with proton conductivity for low-temperature solid oxide fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Raza, Rizwan, E-mail: razahussaini786@gmail.com [Department of Physics, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Department of Energy Technology, Royal Institute of Technology, KTH, Stockholm 10044 (Sweden); Ahmed, Akhlaq; Akram, Nadeem; Saleem, Muhammad; Niaz Akhtar, Majid; Ajmal Khan, M.; Abbas, Ghazanfar; Alvi, Farah; Yasir Rafique, M. [Department of Physics, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Sherazi, Tauqir A. [Department of Chemistry, COMSATS Institute of Information Technology, Abbotabad 22060 (Pakistan); Shakir, Imran [Sustainable Energy Technologies (SET) center, College of Engineering, King Saud University, PO-BOX 800, Riyadh 11421 (Saudi Arabia); Mohsin, Munazza [Department of Physics, Lahore College for Women University, Lahore, 54000 (Pakistan); Javed, Muhammad Sufyan [Department of Physics, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Department of Applied Physics, Chongqing University, Chongqing 400044 (China); Zhu, Bin, E-mail: binzhu@kth.se, E-mail: zhubin@hubu.edu.cn [Department of Energy Technology, Royal Institute of Technology, KTH, Stockholm 10044 (Sweden); Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Faculty of Physics and Electronic Science/Faculty of Computer and Information, Hubei University, Wuhan, Hubei 430062 (China)

    2015-11-02

    In the present work, cost-effective nanocomposite electrolyte (Ba-SDC) oxide is developed for efficient low-temperature solid oxide fuel cells (LTSOFCs). Analysis has shown that dual phase conduction of O{sup −2} (oxygen ions) and H{sup +} (protons) plays a significant role in the development of advanced LTSOFCs. Comparatively high proton ion conductivity (0.19 s/cm) for LTSOFCs was achieved at low temperature (460 °C). In this article, the ionic conduction behaviour of LTSOFCs is explained by carrying out electrochemical impedance spectroscopy measurements. Further, the phase and structure analysis are investigated by X-ray diffraction and scanning electron microscopy techniques. Finally, we achieved an ionic transport number of the composite electrolyte for LTSOFCs as high as 0.95 and energy and power density of 90% and 550 mW/cm{sup 2}, respectively, after sintering the composite electrolyte at 800 °C for 4 h, which is promising. Our current effort toward the development of an efficient, green, low-temperature solid oxide fuel cell with the incorporation of high proton conductivity composite electrolyte may open frontiers in the fields of energy and fuel cell technology.

  4. Composite electrolyte with proton conductivity for low-temperature solid oxide fuel cell

    Science.gov (United States)

    Raza, Rizwan; Ahmed, Akhlaq; Akram, Nadeem; Saleem, Muhammad; Niaz Akhtar, Majid; Sherazi, Tauqir A.; Ajmal Khan, M.; Abbas, Ghazanfar; Shakir, Imran; Mohsin, Munazza; Alvi, Farah; Javed, Muhammad Sufyan; Yasir Rafique, M.; Zhu, Bin

    2015-11-01

    In the present work, cost-effective nanocomposite electrolyte (Ba-SDC) oxide is developed for efficient low-temperature solid oxide fuel cells (LTSOFCs). Analysis has shown that dual phase conduction of O-2 (oxygen ions) and H+ (protons) plays a significant role in the development of advanced LTSOFCs. Comparatively high proton ion conductivity (0.19 s/cm) for LTSOFCs was achieved at low temperature (460 °C). In this article, the ionic conduction behaviour of LTSOFCs is explained by carrying out electrochemical impedance spectroscopy measurements. Further, the phase and structure analysis are investigated by X-ray diffraction and scanning electron microscopy techniques. Finally, we achieved an ionic transport number of the composite electrolyte for LTSOFCs as high as 0.95 and energy and power density of 90% and 550 mW/cm2, respectively, after sintering the composite electrolyte at 800 °C for 4 h, which is promising. Our current effort toward the development of an efficient, green, low-temperature solid oxide fuel cell with the incorporation of high proton conductivity composite electrolyte may open frontiers in the fields of energy and fuel cell technology.

  5. Microwave assisted sintering of gadolinium doped barium cerate electrolyte for intermediate temperature solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Arumugam Senthil, E-mail: senthu.ramp@gmail.com [Department of Physics, PSG College of Technology, Coimbatore, 641 004, Tamilnadu (India); Balaji, Ramamoorthy [Department of Physics, PSG College of Technology, Coimbatore, 641 004, Tamilnadu (India); Jayakumar, Srinivasalu [Department of Physics, PSG Institute of Technology and Applied Research, Coimbatore, 641 062, Tamilnadu (India); Pradeep, Chandran [Department of Physics, Indian Institute of Technology, Madras, 600 036, Tamilnadu (India)

    2016-10-01

    In Solid Oxide Fuel Cell (SOFC), electrolyte plays a vital role to increase the energy conversion efficiency. The main hurdle of such electrolyte in fuel cell is its higher operating temperature (1000 °C) which results in design limitation and higher fabrication cost. In order to reduce the operating temperature of SOFC, a suitable electrolyte has been prepared through co-precipitation method followed by microwave sintering of solid ceramic. The calcination temperature for the as-prepared powder was identified using Differential Scanning Calorimetry. The crystal structure of the sample was found to exhibit its orthorhombic perovskite structure. The particle size was determined using High-Resolution Transmission Electron Microscope with uniform in shape and size, match with XRD results and confirmed from structural analysis. Thus, the sample prepared via co-precipitation method and the solid ceramic sintered through microwave can be a promising electrolyte for fuel cells operated at intermediate temperature. - Highlights: • To synthesis the composite electrolyte by chemical method and sinter using microwave. • To reduce the operating temperature of electrolyte for high ionic conductivity in SOFC's. • To study the phase purity and to develop nanocomposite at reduced temperature.

  6. Electrolytes for solid oxide fuel cells

    Science.gov (United States)

    Fergus, Jeffrey W.

    The high operating temperature of solid oxide fuel cells (SOFCs), as compared to polymer electrolyte membrane fuel cells (PEMFCs), improves tolerance to impurities in the fuel, but also creates challenges in the development of suitable materials for the various fuel cell components. In response to these challenges, intermediate temperature solid oxide fuel cells (IT-SOFCs) are being developed to reduce high-temperature material requirements, which will extend useful lifetime, improve durability and reduce cost, while maintaining good fuel flexibility. A major challenge in reducing the operating temperature of SOFCs is the development of solid electrolyte materials with sufficient conductivity to maintain acceptably low ohmic losses during operation. In this paper, solid electrolytes being developed for solid oxide fuel cells, including zirconia-, ceria- and lanthanum gallate-based materials, are reviewed and compared. The focus is on the conductivity, but other issues, such as compatibility with electrode materials, are also discussed.

  7. Electrolytes for solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Fergus, Jeffrey W. [Auburn University, Materials Research and Education Center, 275 Wilmore Laboratories, Auburn, AL 36849 (United States)

    2006-11-08

    The high operating temperature of solid oxide fuel cells (SOFCs), as compared to polymer electrolyte membrane fuel cells (PEMFCs), improves tolerance to impurities in the fuel, but also creates challenges in the development of suitable materials for the various fuel cell components. In response to these challenges, intermediate temperature solid oxide fuel cells (IT-SOFCs) are being developed to reduce high-temperature material requirements, which will extend useful lifetime, improve durability and reduce cost, while maintaining good fuel flexibility. A major challenge in reducing the operating temperature of SOFCs is the development of solid electrolyte materials with sufficient conductivity to maintain acceptably low ohmic losses during operation. In this paper, solid electrolytes being developed for solid oxide fuel cells, including zirconia-, ceria- and lanthanum gallate-based materials, are reviewed and compared. The focus is on the conductivity, but other issues, such as compatibility with electrode materials, are also discussed. (author)

  8. Low temperature solid oxide electrolytes (LT-SOE): A review

    Science.gov (United States)

    Singh, B.; Ghosh, S.; Aich, S.; Roy, B.

    2017-01-01

    Low temperature solid oxide fuel cell (LT-SOFC) can be a source of power for vehicles, online grid, and at the same time reduce system cost, offer high reliability, and fast start-up. A huge amount of research work, as evident from the literature has been conducted for the enhancement of the ionic conductivity of LT electrolytes in the last few years. The basic conduction mechanisms, advantages and disadvantages of different LT oxide ion conducting electrolytes {BIMEVOX systems, bilayer systems including doped cerium oxide/stabilised bismuth oxide and YSZ/DCO}, mixed ion conducting electrolytes {doped cerium oxides/alkali metal carbonate composites}, and proton conducting electrolytes {doped and undoped BaCeO3, BaZrO3, etc.} are discussed here based on the recent research articles. Effect of various material aspects (composition, doping, layer thickness, etc.), fabrication methods (to achieve different microstructures and particle size), design related strategies (interlayer, sintering aid etc.), characterization temperature & environment on the conductivity of the electrolytes and performance of the fuel cells made from these electrolytes are shown in tabular form and discussed. The conductivity of the electrolytes and performance of the corresponding fuel cells are compared. Other applications of the electrolytes are mentioned. A few considerations regarding the future prospects are pointed.

  9. Rapid Thermal Annealing of Cathode-Garnet Interface toward High-Temperature Solid State Batteries.

    Science.gov (United States)

    Liu, Boyang; Fu, Kun; Gong, Yunhui; Yang, Chunpeng; Yao, Yonggang; Wang, Yanbin; Wang, Chengwei; Kuang, Yudi; Pastel, Glenn; Xie, Hua; Wachsman, Eric D; Hu, Liangbing

    2017-08-09

    High-temperature batteries require the battery components to be thermally stable and function properly at high temperatures. Conventional batteries have high-temperature safety issues such as thermal runaway, which are mainly attributed to the properties of liquid organic electrolytes such as low boiling points and high flammability. In this work, we demonstrate a truly all-solid-state high-temperature battery using a thermally stable garnet solid-state electrolyte, a lithium metal anode, and a V 2 O 5 cathode, which can operate well at 100 °C. To address the high interfacial resistance between the solid electrolyte and cathode, a rapid thermal annealing method was developed to melt the cathode and form a continuous contact. The resulting interfacial resistance of the solid electrolyte and V 2 O 5 cathode was significantly decreased from 2.5 × 10 4 to 71 Ω·cm 2 at room temperature and from 170 to 31 Ω·cm 2 at 100 °C. Additionally, the diffusion resistance in the V 2 O 5 cathode significantly decreased as well. The demonstrated high-temperature solid-state full cell has an interfacial resistance of 45 Ω·cm 2 and 97% Coulombic efficiency cycling at 100 °C. This work provides a strategy to develop high-temperature all-solid-state batteries using garnet solid electrolytes and successfully addresses the high contact resistance between the V 2 O 5 cathode and garnet solid electrolyte without compromising battery safety or performance.

  10. High temperature fuel cell with ceria-based solid electrolyte

    International Nuclear Information System (INIS)

    Arai, H.; Eguchi, K.; Yahiro, H.; Baba, Y.

    1987-01-01

    Cation-doped ceria is investigated as an electrolyte for the solid oxide fuel cell. As for application to the fuel cells, the electrolyte are desired to have high ionic conductivity in deriving a large electrical power. A series of cation-doped ceria has higher ionic conductivity than zirconia-based oxides. In the present study, the basic electrochemical properties of cation-doped ceria were studied in relation to the application of fuel cells. The performance of fuel cell with yttria-doped ceria electrolyte was evaluated. Ceria-based oxides were prepared by calcination of oxide mixtures of the components or calcination of co-precipitated hydroxide mixtures from the metal nitrate solution. The oxide mixtures thus obtained were sintered at 1650 0 C for 15 hr in air into disks. Ionic transference number, t/sub i/, was estimated from emf of oxygen concentration cell. Electrical conductivities were measured by dc-4 probe method by varying the oxygen partial pressure. The fuel cell was operated by oxygen and hydrogen

  11. Self-propagating high-temperature synthesis of La(Sr)Ga(Mg)O3-δ for electrolyte of solid oxide fuel cells

    International Nuclear Information System (INIS)

    Ishikawa, Hiroyuki; Enoki, Makiko; Ishihara, Tatsumi; Akiyama, Tomohiro

    2007-01-01

    This paper describes self-propagating high-temperature synthesis (SHS) of an electrolyte for solid oxide fuel (SOFC), in comparison to a conventional solid-state reaction method (SRM). Doped-lanthanum gallate: La 0.9 Sr 0.1 Ga 0.8 Mg 0.2 O 3-δ (LSGM9182) and LSGM9173 as the SOFC electrolyte, was prepared by the SHS and sintered at different temperatures, for measuring the electrical conductivity of the sintered LSGM and the power generating performance at 1073 K, in comparison to the SRM. In the SHS, the LSGM powders with smaller size were obtained and easily sintered at the 100 K-lower temperature, 1673 K, than in the SRM. Most significantly, the electrical conductivity of the sintered LSGM9182 was as high as 0.11 S cm -1 and its maximum power density was a value of 245 mW cm -2 in the cell configuration of Ni/LSGM9182 (0.501 mm in thickness)/Sm 0.5 Sr 0.5 CoO 3 . The conclusion was that the proposed SHS-sintering method with many benefits of minimizing the energy requirement and the processing time in the production, easing temperature restriction for the sintering, and improving the electrolyte performance up to a conventional level is practicable for producing the LSGM-electrolyte of SOFC at an intermediate-temperature application

  12. Solid electrolyte fuel cells

    Science.gov (United States)

    Isaacs, H. S.

    Progress in the development of functioning solid electrolyte fuel cells is summarized. The solid electrolyte cells perform at 1000 C, a temperature elevated enough to indicate high efficiencies are available, especially if the cell is combined with a steam generator/turbine system. The system is noted to be sulfur tolerant, so coal containing significant amounts of sulfur is expected to yield satisfactory performances with low parasitic losses for gasification and purification. Solid oxide systems are electrically reversible, and are usable in both fuel cell and electrolysis modes. Employing zirconium and yttrium in the electrolyte provides component stability with time, a feature not present with other fuel cells. The chemical reactions producing the cell current are reviewed, along with materials choices for the cathodes, anodes, and interconnections.

  13. Synthesis and characterization of novel electrolyte materials for intermediate temperature solid oxide fuel cells

    International Nuclear Information System (INIS)

    Chaubey, Nityanand; Chattopadhyaya, M.C.; Wani, B.N.; Bharadwaj, S.R.

    2008-01-01

    The high operating temperature of SOFCs using zirconia based electrolyte have several restrictions on materials used as interconnect and sealing and also requires use of expensive ceramics. Lowering the operating temperature of SOFCs to 600-800 deg C will enable to use cheaper materials and reduce the cost of fabrication while keeping the high power density. Lanthanide gallates are considered to be very promising solid electrolytes for intermediate temperature (600-800 deg C) solid oxide fuel cells (IT-SOFCs) due to their high ionic conductivity at lower temperatures. Phase purity of this material is a concern for the researchers for a long time. These materials are prepared at very high temperature (∼1400 deg C), since it is known that at around 1100 deg C, solubilities of Sr and Mg in LaGaO 3 were close to zero. Hence in the present work perovskite oxides of Ln 1-x Sr x Ga 1-y Mg y O 3-δ (Ln= Sm, Gd and x = 0.10, y=0.20) have been prepared by different methods i.e. solid state reaction, gel combustion and co-precipitation methods

  14. Self-propagating high-temperature synthesis of La(Sr)Ga(Mg)O{sub 3-{delta}} for electrolyte of solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, Hiroyuki [Center for Advanced Research of Energy Conversion Materials, Hokkaido University, Sapporo 060-8628 (Japan); Enoki, Makiko [Department of Applied Chemistry, Faculty of Engineering, Kyusyu University, Fukuoka 812-8581 (Japan); Ishihara, Tatsumi [Department of Applied Chemistry, Faculty of Engineering, Kyusyu University, Fukuoka 812-8581 (Japan); Akiyama, Tomohiro [Center for Advanced Research of Energy Conversion Materials, Hokkaido University, Sapporo 060-8628 (Japan)]. E-mail: takiyama@eng.hokudai.ac.jp

    2007-03-14

    This paper describes self-propagating high-temperature synthesis (SHS) of an electrolyte for solid oxide fuel (SOFC), in comparison to a conventional solid-state reaction method (SRM). Doped-lanthanum gallate: La{sub 0.9}Sr{sub 0.1}Ga{sub 0.8}Mg{sub 0.2}O{sub 3-{delta}} (LSGM9182) and LSGM9173 as the SOFC electrolyte, was prepared by the SHS and sintered at different temperatures, for measuring the electrical conductivity of the sintered LSGM and the power generating performance at 1073 K, in comparison to the SRM. In the SHS, the LSGM powders with smaller size were obtained and easily sintered at the 100 K-lower temperature, 1673 K, than in the SRM. Most significantly, the electrical conductivity of the sintered LSGM9182 was as high as 0.11 S cm{sup -1} and its maximum power density was a value of 245 mW cm{sup -2} in the cell configuration of Ni/LSGM9182 (0.501 mm in thickness)/Sm{sub 0.5}Sr{sub 0.5}CoO{sub 3}. The conclusion was that the proposed SHS-sintering method with many benefits of minimizing the energy requirement and the processing time in the production, easing temperature restriction for the sintering, and improving the electrolyte performance up to a conventional level is practicable for producing the LSGM-electrolyte of SOFC at an intermediate-temperature application.

  15. Galvanic high temperature cell with solid negative electrode and an electrolyte melt. Galvanische Hochtemperaturzelle mit fester negativer Elektrode und einem Schmelzelektrolyten

    Energy Technology Data Exchange (ETDEWEB)

    Kappus, W; Borger, W

    1987-01-08

    The purpose of the invention is to make an electrolyte melt available for high temperature cells (e.g. LiFeS cells), which guarantees ion transport and also acts as a separator. The invention starts from the fact that binary melts of the LiCl/KCl type are only liquid (i.e. without solid components) at a certain temperature at certain concentrations. With suitable mixing conditions, which apart from a eutectic composition, are mainly on the side of one of the two components, one can ensure that this component is present in the solid phase. In this way, a solid framework of LiCl, for example, is formed between the electrode plates in situ as a separator, in the pores of which the excess melt (e.g. LiCl/KCl) can carry out ion conduction. The volumetric ratio of the electrolyte melt in which liquid and solid phases are present at the working temperature of the cell should preferably be in the range of 2:1 to 1:2.

  16. Demonstration of high efficiency intermediate-temperature solid oxide fuel cell based on lanthanum gallate electrolyte

    International Nuclear Information System (INIS)

    Inagaki, Toru; Nishiwaki, Futoshi; Kanou, Jirou; Yamasaki, Satoru; Hosoi, Kei; Miyazawa, Takashi; Yamada, Masaharu; Komada, Norikazu

    2006-01-01

    The Kansai Electric Power Co., Inc. (KEPCO) and Mitsubishi Materials Corporation (MMC) have been jointly developing intermediate-temperature solid oxide fuel cells (SOFCs). The operation temperatures between 600 and 800 o C were set as the target, which enable SOFC to use less expensive metallic separators for cell-stacking and to carry out internal reforming of hydrocarbon fuels. The electrolyte-supported planar-type cells were fabricated using highly conductive lanthanum gallate-based electrolyte, La(Sr)Ga(Mg,Co)O 3-δ , Ni-(CeO 2 ) 1-x (SmO 1.5 ) x cermet anode, and Sm(Sr)CoO 3-δ cathode. The 1 kW-class power generation modules were fabricated using a seal-less stack of the cells and metallic separators. The 1 kW-class prototype power generation system with the module was developed with the high performance cell, which showed the thermally self-sustainability. The system included an SOFC module, a dc-ac inverter, a desulfurizer, and a heat recovery unit. It provided stable ac power output of 1 kW with the electrical efficiency of 45% LHV based on ac output by using city gas as a fuel, which was considered to be excellent for such a small power generation system. And the hot water of 90 o C was obtained using high temperature off-gas from SOFC

  17. Demonstration of high efficiency intermediate-temperature solid oxide fuel cell based on lanthanum gallate electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Inagaki, Toru [Kansai Electric Power Co. Inc., Energy Use R and D Center, 11-20 Nakoji 3-chome, Amagasaki, Hyogo 661-0974 (Japan)]. E-mail: inagaki@rdd.kepco.co.jp; Nishiwaki, Futoshi [Kansai Electric Power Co. Inc., Energy Use R and D Center, 11-20 Nakoji 3-chome, Amagasaki, Hyogo 661-0974 (Japan); Kanou, Jirou [Kansai Electric Power Co. Inc., Energy Use R and D Center, 11-20 Nakoji 3-chome, Amagasaki, Hyogo 661-0974 (Japan); Yamasaki, Satoru [Kansai Electric Power Co. Inc., Energy Use R and D Center, 11-20 Nakoji 3-chome, Amagasaki, Hyogo 661-0974 (Japan); Hosoi, Kei [Mitsubishi Materials Corporation, Central Research Institute, 1002-14 Mukohyama, Naka-machi, Naka-gun, Ibaraki 311-0102 (Japan); Miyazawa, Takashi [Mitsubishi Materials Corporation, Central Research Institute, 1002-14 Mukohyama, Naka-machi, Naka-gun, Ibaraki 311-0102 (Japan); Yamada, Masaharu [Mitsubishi Materials Corporation, Central Research Institute, 1002-14 Mukohyama, Naka-machi, Naka-gun, Ibaraki 311-0102 (Japan); Komada, Norikazu [Mitsubishi Materials Corporation, Central Research Institute, 1002-14 Mukohyama, Naka-machi, Naka-gun, Ibaraki 311-0102 (Japan)

    2006-02-09

    The Kansai Electric Power Co., Inc. (KEPCO) and Mitsubishi Materials Corporation (MMC) have been jointly developing intermediate-temperature solid oxide fuel cells (SOFCs). The operation temperatures between 600 and 800 {sup o}C were set as the target, which enable SOFC to use less expensive metallic separators for cell-stacking and to carry out internal reforming of hydrocarbon fuels. The electrolyte-supported planar-type cells were fabricated using highly conductive lanthanum gallate-based electrolyte, La(Sr)Ga(Mg,Co)O{sub 3-{delta}}, Ni-(CeO{sub 2}){sub 1-x}(SmO{sub 1.5}) {sub x} cermet anode, and Sm(Sr)CoO{sub 3-{delta}} cathode. The 1 kW-class power generation modules were fabricated using a seal-less stack of the cells and metallic separators. The 1 kW-class prototype power generation system with the module was developed with the high performance cell, which showed the thermally self-sustainability. The system included an SOFC module, a dc-ac inverter, a desulfurizer, and a heat recovery unit. It provided stable ac power output of 1 kW with the electrical efficiency of 45% LHV based on ac output by using city gas as a fuel, which was considered to be excellent for such a small power generation system. And the hot water of 90 {sup o}C was obtained using high temperature off-gas from SOFC.

  18. Solid composite electrolytes for lithium batteries

    Science.gov (United States)

    Kumar, Binod; Scanlon, Jr., Lawrence G.

    2000-01-01

    Solid composite electrolytes are provided for use in lithium batteries which exhibit moderate to high ionic conductivity at ambient temperatures and low activation energies. In one embodiment, a ceramic-ceramic composite electrolyte is provided containing lithium nitride and lithium phosphate. The ceramic-ceramic composite is also preferably annealed and exhibits an activation energy of about 0.1 eV.

  19. Carbonate-linked poly(ethylene oxide) polymer electrolytes towards high performance solid state lithium batteries

    International Nuclear Information System (INIS)

    He, Weisheng; Cui, Zili; Liu, Xiaochen; Cui, Yanyan; Chai, Jingchao; Zhou, Xinhong; Liu, Zhihong; Cui, Guanglei

    2017-01-01

    The classic poly(ethylene oxide) (PEO) based solid polymer electrolyte suffers from poor ionic conductivity of ambient temperature, low lithium ion transference number and relatively narrow electrochemical window (<4.0 V vs. Li + /Li). Herein, the carbonate-linked PEO solid polymer such as poly(diethylene glycol carbonate) (PDEC) and poly(triethylene glycol carbonate) (PTEC) were explored to find out the feasibility of resolving above issues. It was proven that the optimized ionic conductivity of PTEC based electrolyte reached up to 1.12 × 10 −5 S cm −1 at 25 °C with a decent lithium ion transference number of 0.39 and a wide electrochemical window about 4.5 V vs. Li + /Li. In addition, the PTEC based Li/LiFePO 4 cell could be reversibly charged and discharged at 0.05 C-rates at ambient temperature. Moreover, the higher voltage Li/LiFe 0.2 Mn 0.8 PO 4 cell (cutoff voltage 4.35 V) possessed considerable rate capability and excellent cycling performance even at ambient temperature. Therefore, these carbonate-linked PEO electrolytes were demonstrated to be fascinating candidates for the next generation solid state lithium batteries simultaneously with high energy and high safety.

  20. About the Compatibility between High Voltage Spinel Cathode Materials and Solid Oxide Electrolytes as a Function of Temperature.

    Science.gov (United States)

    Miara, Lincoln; Windmüller, Anna; Tsai, Chih-Long; Richards, William D; Ma, Qianli; Uhlenbruck, Sven; Guillon, Olivier; Ceder, Gerbrand

    2016-10-12

    The reactivity of mixtures of high voltage spinel cathode materials Li 2 NiMn 3 O 8 , Li 2 FeMn 3 O 8 , and LiCoMnO 4 cosintered with Li 1.5 Al 0.5 Ti 1.5 (PO 4 ) 3 and Li 6.6 La 3 Zr 1.6 Ta 0.4 O 12 electrolytes is studied by thermal analysis using X-ray-diffraction and differential thermoanalysis and thermogravimetry coupled with mass spectrometry. The results are compared with predicted decomposition reactions from first-principles calculations. Decomposition of the mixtures begins at 600 °C, significantly lower than the decomposition temperature of any component, especially the electrolytes. For the cathode + Li 6.6 La 3 Zr 1.6 Ta 0.4 O 12 mixtures, lithium and oxygen from the electrolyte react with the cathodes to form highly stable Li 2 MnO 3 and then decompose to form stable and often insulating phases such as La 2 Zr 2 O 7 , La 2 O 3 , La 3 TaO 7 , TiO 2 , and LaMnO 3 which are likely to increase the interfacial impedance of a cathode composite. The decomposition reactions are identified with high fidelity by first-principles calculations. For the cathode + Li 1.5 Al 0.5 Ti 1.5 (PO 4 ) 3 mixtures, the Mn tends to oxidize to MnO 2 or Mn 2 O 3 , supplying lithium to the electrolyte for the formation of Li 3 PO 4 and metal phosphates such as AlPO 4 and LiMPO 4 (M = Mn, Ni). The results indicate that high temperature cosintering to form dense cathode composites between spinel cathodes and oxide electrolytes will produce high impedance interfacial products, complicating solid state battery manufacturing.

  1. Investigation of a nanoconfined, ceramic composite, solid polymer electrolyte

    International Nuclear Information System (INIS)

    Jayasekara, Indumini; Poyner, Mark; Teeters, Dale

    2017-01-01

    The challenges for further development of lithium rechargeable batteries are finding electrolyte materials that are safe, have mechanical and thermal stability and have sufficiently high ionic conduction. Polymer electrolytes have many of these advantages, but suffer with low ionic conduction. This study involves the use of anodic aluminum oxide (AAO) membranes having nanochannels filled with polymer electrolyte to make composite solid electrolytes having ionic conductivity several orders of magnitude higher (10 −4 Ω ‐1 cm −1 ) than non-confined polymer. SEM, ac impedance spectroscopy, temperature dependence studies, XRD, ATR- FTIR and DSC studies were done in order to characterize and understand the behavior of nanoconfined polymer electrolytes. The composite polymer electrolyte was found to be more amorphous with polymer chains aligned in the direction of the nanochannels, which is felt to promote ion conduction. The electrolyte systems, confined in nanoporous membranes, can be used as electrolytes for the fabrication of a room temperature all solid state battery.

  2. Electrolyte bi-layering strategy to improve the performance of an intermediate temperature solid oxide fuel cell: A review

    Science.gov (United States)

    Shri Prakash, B.; Pavitra, R.; Senthil Kumar, S.; Aruna, S. T.

    2018-03-01

    Lowering of operation temperature has become one of the primary goals of solid oxide fuel (SOFC) research as reduced temperature improves the prospects for widespread commercialization of this energy system. Reduced operational temperature also mitigates the issues associated with high temperature SOFCs and paves way not only for the large scale stationary power generation but also makes SOFCs viable for portable and transport applications. However, there are issues with electrolyte and cathode materials at low temperatures, individually as well as in association with other components, which makes the performance of the SOFCs less satisfactory than expected at lowered temperatures. Bi-layering of electrolytes and impregnation of cathodes have emerged as two important strategies to overcome these issues and achieve higher performance at low temperatures. This review article provides the perspective on the strategy of bi-layering of electrolyte to achieve the desired high performance from SOFC at low to intermediate temperatures.

  3. Solid state electrolyte systems

    Energy Technology Data Exchange (ETDEWEB)

    Pederson, L.R.; Armstrong, B.L.; Armstrong, T.R. [Pacific Northwest Lab., Richland, WA (United States)] [and others

    1997-12-01

    Lanthanum gallates are a new family of solid electrolytes that exhibit high ionic conductivity and are stable to high temperatures. Compositions have been developed that are as much as a factor of two more conductive than yttria-stabilized zirconia at a given temperature, through partial replacement of lanthanum by calcium, strontium, and/or barium and through partial replacement of gallium by magnesium. Oxide powders were prepared using combustion synthesis techniques developed in this laboratory; these were sintered to >95% of theoretical density and consisted of a single crystalline phase. Electrical conductivities, electron and ion transference numbers, thermal expansion, and phase behavior were evaluated as a function of temperature and oxygen partial pressure. A key advantage of the use of lanthanum gallate electrolytes in solid oxide fuel cells is that the temperature of operation may be lowered to perhaps 800 C, yet provide approximately the same power density as zirconia-based cells operating at 1000 C. Ceramic electrolytes that conduct both oxygen ions and electrons are potentially useful to passively separate pure oxygen from an air source at low cost. In such materials, an oxygen ion flux in one direction is charge-compensated by an opposing electron flux. The authors have examined a wide range of mixed ion and electron conducting perovskite ceramics in the system La{sub 1{minus}x}M{sub x}Co{sub 1{minus}y{minus}z}Fe{sub y}N{sub z}O{sub 3{minus}{delta}}, where M = Sr, Ca, and Ba, and N = Pr, Mn, Ni, Cu, Ti, and Al, as well as mixed conducting brownmillerite ceramics, and have characterized oxygen permeation behavior, defect chemistry, structural and phase stability, and performance as cathodes.

  4. NiF2/NaF:CaF2/Ca Solid-State High-Temperature Battery Cells

    Science.gov (United States)

    West, William; Whitacre, Jay; DelCastillo, Linda

    2009-01-01

    Experiments and theoretical study have demonstrated the promise of all-solid-state, high-temperature electrochemical battery cells based on NiF2 as the active cathode material, CaF2 doped with NaF as the electrolyte material, and Ca as the active anode material. These and other all-solid-state cells have been investigated in a continuing effort to develop batteries for instruments that must operate in environments much hotter than can be withstood by ordinary commercially available batteries. Batteries of this type are needed for exploration of Venus (where the mean surface temperature is about 450 C), and could be used on Earth for such applications as measuring physical and chemical conditions in geothermal wells and oil wells. All-solid-state high-temperature power cells are sought as alternatives to other high-temperature power cells based, variously, on molten anodes and cathodes or molten eutectic salt electrolytes. Among the all-solid-state predecessors of the present NiF2/NaF:CaF2/Ca cells are those described in "Solid-State High-Temperature Power Cells" (NPO-44396), NASA Tech Briefs, Vol. 32, No. 5 (May 2008), page 40. In those cells, the active cathode material is FeS2, the electrolyte material is a crystalline solid solution of equimolar amounts of Li3PO4 and LiSiO4, and the active anode material is Li contained within an alloy that remains solid in the intended high operational temperature range.

  5. Solid electrolytes

    Science.gov (United States)

    Abraham, Kuzhikalail M.; Alamgir, Mohamed

    1993-06-15

    This invention pertains to Li ion (Li.sup.+) conductive solid polymer electrolytes composed of solvates of Li salts immobilized (encapsulated) in a solid organic polymer matrix. In particular, this invention relates to solid polymer electrolytes derived by immobilizing complexes (solvates) formed between a Li salt such as LiAsF.sub.6, LiCF.sub.3 SO.sub.3 or LiClO.sub.4 and a mixture of aprotic organic solvents having high dielectric constants such as ethylene carbonate (EC) (dielectric constant=89.6) and propylene carbonate (PC) (dielectric constant=64.4) in a polymer matrix such as polyacrylonitrile, poly(tetraethylene glycol diacrylate), or poly(vinyl pyrrolidinone).

  6. High temperature mechanical properties of zirconia tapes used for electrolyte supported solid oxide fuel cells

    Science.gov (United States)

    Fleischhauer, Felix; Bermejo, Raul; Danzer, Robert; Mai, Andreas; Graule, Thomas; Kuebler, Jakob

    2015-01-01

    Solid-Oxide-Fuel-Cell systems are efficient devices to convert the chemical energy stored in fuels into electricity. The functionality of the cell is related to the structural integrity of the ceramic electrolyte, since its failure can lead to drastic performance losses. The mechanical property which is of most interest is the strength distribution at all relevant temperatures and how it is affected with time due to the environment. This study investigates the impact of the temperature on the strength and the fracture toughness of different zirconia electrolytes as well as the change of the elastic constants. 3YSZ and 6ScSZ materials are characterised regarding the influence of sub critical crack growth (SCCG) as one of the main lifetime limiting effects for ceramics at elevated temperatures. In addition, the reliability of different zirconia tapes is assessed with respect to temperature and SCCG. It was found that the strength is only influenced by temperature through the change in fracture toughness. SCCG has a large influence on the strength and the lifetime for intermediate temperature, while its impact becomes limited at temperatures higher than 650 °C. In this context the tetragonal 3YSZ and 6ScSZ behave quite different than the cubic 10Sc1CeSZ, so that at 850 °C it can be regarded as competitive compared to the tetragonal compounds.

  7. Dextran based highly conductive hydrogel polysulfide electrolyte for efficient quasi-solid-state quantum dot-sensitized solar cells

    International Nuclear Information System (INIS)

    Chen, Hong-Yan; Lin, Ling; Yu, Xiao-Yun; Qiu, Kang-Qiang; Lü, Xian-Yong; Kuang, Dai-Bin; Su, Cheng-Yong

    2013-01-01

    Highlights: ► Dextran based hydrogel is first used to prepare quasi-solid-state polysulfide electrolyte for quantum dot-sensitized solar cells. ► The ion conductivity of hydrogel electrolyte shows almost the same value as the liquid electrolyte. ► The liquid state at elevated temperature of hydrogel electrolyte allows for a good contact between electrolyte and CdS/CdSe co-sensitized TiO 2 photoanode. ► The hydrogel electrolyte based cell exhibits slightly lower power conversion efficiency than that of liquid electrolyte based cell. ► The dynamic electron transfer mechanism in hydrogel electrolyte based cell is examined in detail by EIS and CIMPS/IMVS. -- Abstract: Highly conductive hydrogel polysulfide electrolyte is first fabricated using dextran as gelator and used as quasi-solid-state electrolyte for quantum dot-sensitized solar cells (QDSSCs). The hydrogel electrolyte with gelator concentration of 15 wt% shows almost the same conductivity as the liquid one. Moreover, its liquid state at elevated temperature allow for the well penetration into the pores in electrodeposited CdS/CdSe co-sensitized TiO 2 photoanode. This gel electrolyte based QDSSC exhibits power conversion efficiency (η) of 3.23% under AG 1.5 G one sun (100 mW cm −2 ) illumination, slightly lower than that of liquid electrolyte based cell (3.69%). The dynamic electron transfer mechanism of the gel and liquid electrolyte based QDSSC are examined by electrochemical impedance spectroscopy (EIS) and controlled intensity modulated photocurrent/photovoltage spectroscopy (CIMPS/IMVS). It is found that the electron transport in gel electrolyte based cell is much faster than the liquid electrolyte based cell but it tends to recombine more easily than the latter. However, these differences fade away with increasing the light intensity, showing declining electron collection efficiency at higher light intensity illumination. As a result, a conversion efficiency of 4.58% is obtained for the gel

  8. Highly Quantitative Electrochemical Characterization of Non-Aqueous Electrolytes & Solid Electrolyte Interphases

    Energy Technology Data Exchange (ETDEWEB)

    Sergiy V. Sazhin; Kevin L. Gering; Mason K. Harrup; Harry W. Rollins

    2012-10-01

    The methods to measure solid electrolyte interphase (SEI) electrochemical properties and SEI formation capability of non-aqueous electrolyte solutions are not adequately addressed in the literature. And yet, there is a strong demand in new electrolyte generations that promote stabilized SEIs and have an influence to resolve safety, calendar life and other limitations of Li-ion batteries. To fill this gap, in situ electrochemical approach with new descriptive criteria for highly quantitative characterization of SEI and electrolytes is proposed. These criteria are: SEI formation capacity, SEI corrosion rate, SEI maintenance rate, and SEI kinetic stability. These criteria are associated with battery parameters like irreversible capacity, self-discharge, shelf-life, power, etc. Therefore, they are especially useful for electrolyte development and standard fast screening, allowing a skillful approach to narrow down the search for the best electrolyte. The characterization protocol also allows retrieving information on interfacial resistance for SEI layers and the electrochemical window of electrolytes, the other important metrics of characterization. The method validation was done on electrolyte blends containing phosphazenes, developed at Idaho National Laboratory, as 1.2M LiPF6 [80 % EC-MEC (2:8) (v/v) + 20% Phosphazene variety] (v/v), which were targeted for safer electrolyte variations.

  9. Hydrogen production through high-temperature electrolysis in a solid oxide cell

    International Nuclear Information System (INIS)

    Herring, J.St.; Lessing, P.; O'Brien, J.E.; Stoots, C.; Hartvigsen, J.; Elangovan, S.

    2004-01-01

    An experimental research programme is being conducted by the INEEL and Ceramatec, Inc., to test the high-temperature, electrolytic production of hydrogen from steam using a solid oxide cell. The research team is designing and testing solid oxide cells for operation in the electrolysis mode, producing hydrogen rising a high-temperature heat and electrical energy. The high-temperature heat and the electrical power would be supplied simultaneously by a high-temperature nuclear reactor. Operation at high temperature reduces the electrical energy requirement for electrolysis and also increases the thermal efficiency of the power-generating cycle. The high-temperature electrolysis process will utilize heat from a specialized secondary loop carrying a steam/hydrogen mixture. It is expected that, through the combination of a high-temperature reactor and high-temperature electrolysis, the process will achieve an overall thermal conversion efficiency of 40 to 50%o while avoiding the challenging chemistry and corrosion issues associated with the thermochemical processes. Planar solid oxide cell technology is being utilised because it has the best potential for high efficiency due to minimized voltage and current losses. These losses also decrease with increasing temperature. Initial testing has determined the performance of single 'button' cells. Subsequent testing will investigate the performance of multiple-cell stacks operating in the electrolysis mode. Testing is being performed both at Ceramatec and at INEEL. The first cells to be tested were single cells based on existing materials and fabrication technology developed at Ceramatec for production of solid oxide fuel cells. These cells use a relatively thick (∼ 175 μm) electrolyte of yttria- or scandia-stabilised zirconia, with nickel-zirconia cermet anodes and strontium-doped lanthanum manganite cathodes. Additional custom cells with lanthanum gallate electrolyte have been developed and tested. Results to date have

  10. Design of high quality doped CeO2 solid electrolytes with nanohetero structure

    International Nuclear Information System (INIS)

    Mori, T.; Ou, D.R.; Ye, F.; Drennan, J.

    2006-01-01

    Doped cerium (CeO 2 ) compounds are fluorite related oxides which show oxide ionic conductivity higher than yttria-stabilized zirconia in oxidizing atmosphere. As a consequence of this, a considerable interest has been shown in application of these materials for low (400-650 o C) temperature operation of solid oxide fuel cells (SOFCs). In this paper, our experimental data about the influence of microstructure at the atomic level on electrochemical properties were reviewed in order to develop high quality doped CeO 2 electrolytes in fuel cell applications. Using this data in the present paper, our original idea for a design of nanodomain structure in doped CeO 2 electrolytes was suggested. The nanosized powders and dense sintered bodies of M doped CeO 2 (M:Sm,Gd,La,Y,Yb, and Dy) compounds were fabricated. Also nanostructural features in these specimens were introduced for conclusion of relationship between electrolytic properties and domain structure in doped CeO 2 . It is essential that the electrolytic properties in doped CeO 2 solid electrolytes reflect in changes of microstructure even down to the atomic scale. Accordingly, a combined approach of nanostructure fabrication, electrical measurement and structure characterization was required to develop superior quality doped CeO 2 electrolytes in the fuel cells. (author)

  11. Recent progress in sulfide-based solid electrolytes for Li-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Liu, D., E-mail: liu.dongqiang@ireq.ca; Zhu, W.; Feng, Z.; Guerfi, A.; Vijh, A.; Zaghib, K.

    2016-11-15

    Graphical abstract: Li{sub 2}S-GeS{sub 2}-P{sub 2}S{sub 5} ternary diagram showing various sulphide compounds as solid electrolytes for Li-ion batteries. - Highlights: • Recent progress of sulfide-based solid electrolytes is described from point of view of structure. • Thio-LISICON type electrolytes exhibited high ionic conductivity due to their bcc sublattice and unique Li{sup +} diffusion pathway. • “Mixed-anion effect” is also an effective way to modify the energy landscape as well as the ionic conductivity. - Abstract: Sulfide-based ionic conductors are one of most attractive solid electrolyte candidates for all-solid-state batteries. In this review, recent progress of sulfide-based solid electrolytes is described from point of view of structure. In particular, lithium thio-phosphates such as Li{sub 7}P{sub 3}S{sub 11}, Li{sub 10}GeP{sub 2}S{sub 12} and Li{sub 11}Si{sub 2}PS{sub 12} etc. exhibit extremely high ionic conductivity of over 10{sup −2} S cm{sup −1} at room temperature, even higher than those of commercial organic carbonate electrolytes. The relationship between structure and unprecedented high ionic conductivity is delineated; some potential drawbacks of these electrolytes are also outlined.

  12. Internal-reference solid-electrolyte oxygen sensor

    International Nuclear Information System (INIS)

    Haaland, D.M.

    1977-01-01

    A new solid-electrolyte oxygen sensor has been developed that eliminates the conventional oxygen reference in previous solid-electrolyte oxygen sensor designs and is, therefore, ideally suited as an insertion device for remote oxygen monitoring applications. It is constructed with two cells of stabilized zirconia sealed into a small unit using a new high-temperature platinum-zirconia seal. One electrochemical cell monitors the ratio of oxygen partial pressures inside and outside the sensor while the other solid-electrolyte cell is used for quantitative electrochemical pumping of oxygen. The internal oxygen reference is generated by initially pumping all oxygen out of the known internal volume of the sensor and then quantitatively pumping oxygen back in until oxygen partial pressures are equal inside and out. This information is used with the ideal gas law to calculate oxygen partial pressures. Tests were conducted from 400 to 1000 0 C in mixtures of oxygen and nitrogen spanning approximately 0.2 to 21 percent oxygen concentration range. Sensors with sputtered platinum and porous platinum paste electrodes were compared

  13. Electrolyte for batteries with regenerative solid electrolyte interface

    Science.gov (United States)

    Xiao, Jie; Lu, Dongping; Shao, Yuyan; Bennett, Wendy D.; Graff, Gordon L.; Liu, Jun; Zhang, Ji-Guang

    2017-08-01

    An energy storage device comprising: an anode; and a solute-containing electrolyte composition wherein the solute concentration in the electrolyte composition is sufficiently high to form a regenerative solid electrolyte interface layer on a surface of the anode only during charging of the energy storage device, wherein the regenerative layer comprises at least one solute or solvated solute from the electrolyte composition.

  14. Chemical Passivation of Li(exp +)-Conducting Solid Electrolytes

    Science.gov (United States)

    West, William; Whitacre, Jay; Lim, James

    2008-01-01

    Plates of a solid electrolyte that exhibits high conductivity for positive lithium ions can now be passivated to prevent them from reacting with metallic lithium. Such passivation could enable the construction and operation of high-performance, long-life lithium-based rechargeable electrochemical cells containing metallic lithium anodes. The advantage of this approach, in comparison with a possible alternative approach utilizing lithium-ion graphitic anodes, is that metallic lithium anodes could afford significantly greater energy-storage densities. A major impediment to the development of such cells has been the fact that the available solid electrolytes having the requisite high Li(exp +)-ion conductivity are too highly chemically reactive with metallic lithium to be useful, while those solid electrolytes that do not react excessively with metallic lithium have conductivities too low to be useful. The present passivation method exploits the best features of both extremes of the solid-electrolyte spectrum. The basic idea is to coat a higher-conductivity, higher-reactivity solid electrolyte with a lower-conductivity, lower-reactivity solid electrolyte. One can then safely deposit metallic lithium in contact with the lower-reactivity solid electrolyte without incurring the undesired chemical reactions. The thickness of the lower-reactivity electrolyte must be great enough to afford the desired passivation but not so great as to contribute excessively to the electrical resistance of the cell. The feasibility of this method was demonstrated in experiments on plates of a commercial high-performance solid Li(exp +)- conducting electrolyte. Lithium phosphorous oxynitride (LiPON) was the solid electrolyte used for passivation. LiPON-coated solid-electrolyte plates were found to support electrochemical plating and stripping of Li metal. The electrical resistance contributed by the LiPON layers were found to be small relative to overall cell impedances.

  15. Thermostable gel polymer electrolyte based on succinonitrile and ionic liquid for high-performance solid-state supercapacitors

    Science.gov (United States)

    Pandey, Gaind P.; Liu, Tao; Hancock, Cody; Li, Yonghui; Sun, Xiuzhi Susan; Li, Jun

    2016-10-01

    A flexible, free-standing, thermostable gel polymer electrolyte based on plastic crystalline succinonitrile (SN) and ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate (BMImBF4) entrapped in copolymer poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP) is prepared and optimized for application in solvent-free solid-state supercapacitors. The synthesized gel polymer electrolyte exhibits a high ionic conductivity over a wide temperature range (from ∼5 × 10-4 S cm-1 at -30 °C up to ∼1.5 × 10-2 S cm-1 at 80 °C) with good electrochemical stability window (-2.9 to 2.5 V). Thermal studies confirm that the SN containing gel polymer electrolyte remains stable in the same gel phase over a wide temperature range from -30 to 90 °C. The electric double layer capacitors (EDLCs) have been fabricated using activated carbon as active materials and new gel polymer electrolytes. Electrochemical performance of the EDLCs is assessed through cyclic voltammetry, galvanostatic charge-discharge cycling and impedance spectroscopy. The EDLC cells with the proper SN-containing gel polymer electrolyte has been found to give high specific capacitance 176 F g-1 at 0.18 A g-1 and 138 F g-1 at 8 A g-1. These solid-state EDLC cells show good cycling stability and the capability to retain ∼80% of the initial capacitance after 10,000 cycles.

  16. New Solid Polymer Electrolytes for Improved Lithium Batteries

    Science.gov (United States)

    Hehemann, David G.

    2002-01-01

    The objective of this work was to identify, synthesize and incorporate into a working prototype, next-generation solid polymer electrolytes, that allow our pre-existing solid-state lithium battery to function better under extreme conditions. We have synthesized polymer electrolytes in which emphasis was placed on the temperature-dependent performance of these candidate electrolytes. This project was designed to produce and integrate novel polymer electrolytes into a lightweight thin-film battery that could easily be scaled up for mass production and adapted to different applications.

  17. Temperature dependence of electrochemical properties of cross-linked poly(ethylene oxide)–lithium bis(trifluoromethanesulfonyl)imide–N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide solid polymer electrolytes for lithium batteries

    International Nuclear Information System (INIS)

    Wetjen, Morten; Kim, Guk-Tae; Joost, Mario; Winter, Martin; Passerini, Stefano

    2013-01-01

    Highlights: ► Solid-state electrolyte for lithium batteries. ► Polymer electrolyte with improved mechanical properties by cross-linking. ► Enhanced performance of polymer electrolytes using water- and air-stable ionic liquids as co-salts. ► Polymer electrolyte with high rate capability at moderate temperatures. - Abstract: An advanced electrochemical characterization of cross-linked ternary solid polymer electrolytes (SPEs), prepared by a solvent-free hot-pressing process, is reported. Ionic conductivity, electrochemical stability window and limiting current measurements were performed as a function of the temperature by using both potentiodynamic and galvanostatic techniques. Additionally, the lithium cycleability was evaluated with respect to its dependence on both the operating temperature and the current density by using a new multi-rate Li-stripping-plating procedure. The results clearly indicate the beneficial effect of higher operating temperatures on the rate-capability, without major degradation of the electrochemical stability of the SPE. All-solid-state lithium metal polymer batteries (LMPBs), comprising a lithium metal anode, the cross-linked ternary solid polymer electrolyte and a LiFePO 4 composite cathode, were manufactured and investigated in terms of the interdependencies of the delivered capacity, operating temperature and discharge rate. The results prove quite exceptional delivered capacities both at medium current densities at ambient temperatures and even more impressive capacities above 160 mAh g −1 at high discharge rates (1 C) and temperatures above 60 °C.

  18. The temperature influence against conductivity of solid state electrolyte of (CuI)0,5(β-Al2O3)0,5

    International Nuclear Information System (INIS)

    Purwanto, -P; Kartini, -E; Purnama, Safei

    2004-01-01

    The solid electrolyte (CuI) 0,5 (β-Al 2 O 3 ) 0,5 has been prepared by a solid state reaction, by mixing of CuI with β-Al 2 O 3 powders. The mixture was compacted and heated at the temperature 300 o C for 3 hours. The conductivity values of (CuI) 0,5 (β-Al 2 O 3 ) 0,5 increased with the temperature and frequency. The x ray diffraction peaks of the solid electrolyte (CuI) 0,5 (β-Al 2 O 3 ) 0,5 are dominated by the peaks of CuI than the peaks of β-Al 2 O 3 . The activation energy of the solid electrolyte is relatively stable, with the range from 0.09 eV to 0.13 eV. The conductivities solid electrolyte (CuI) 0,5 (β-Al 2 O 3 ) 0,5 at room temperature and at 300 o C are 1.48 x 10 -5 S/cm and 8.33 x 10 -4 S/cm, respectively

  19. Design and Characterisation of Solid Electrolytes for All-Solid-State Lithium Batteries

    DEFF Research Database (Denmark)

    Sveinbjörnsson, Dadi Þorsteinn

    The development of all-solid-state lithium batteries, in which the currently used liquid electrolytes are substituted for solid electrolyte materials, could lead to safer batteries offering higher energy densities and longer cycle lifetimes. Designing suitable solid electrolytes with sufficient...... chemical and electrochemical stability, high lithium ion conduction and negligible electronic conduction remains a challenge. The highly lithium ion conducting LiBH4-LiI solid solution is a promising solid electrolyte material. Solid solutions with a LiI content of 6.25%-50% were synthesised by planetary......-rich microstructures during ball milling is found to significantly influence the conductivity of the samples. The long-range diffusion of lithium ions was measured using quasi-elastic neutron scattering. The solid solutions are found to exhibit two-dimensional conduction in the hexagonal plane of the crystal structure...

  20. Intermediate temperature solid oxide fuel cell based on lanthanum gallate electrolyte

    Science.gov (United States)

    Inagaki, Toru; Nishiwaki, Futoshi; Yamasaki, Satoru; Akbay, Taner; Hosoi, Kei

    The Kansai Electric Power Co. Inc. (KEPCO) and Mitsubishi Materials Corporation (MMC) have been developing intermediate temperature solid oxide fuel cells (IT-SOFCs) which are operable at a temperature range between 600 and 800 °C. There are some significant features in IT-SOFC of KEPCO-MMC: (1) highly conductive lanthanum gallate-based oxide is adopted as an electrolyte to realize high-performance disk-type electrolyte-supported cells; (2) the cell-stacks with seal-less structure using metallic separators allow residual fuel to burn around the stack and the combustion heat is utilized for thermally self-sustainable operation; (3) the separators have flexible arms by which separate compressive forces can be applied for manifold parts and interconnection parts. We are currently participating in the project by New Energy and Industrial Technology Development Organization (NEDO) to develop 10 kW-class combined heat and power (CHP) systems. In FY2006, a 10 kW-class module was developed, with which the electrical efficiency of 50%HHV was obtained based on DC 12.6 kW. In the first quarter of FY2007, the 10 kW-class CHP system using the module gave the electrical efficiency of 41%HHV on AC 10 kW and the overall efficiency of 82%HHV when exhaust heat was recovered as 60 °C hot water. Currently, the operation has been accumulated for about 2500 h to evaluate the long-term stability of the system.

  1. Intermediate temperature solid oxide fuel cell based on lanthanum gallate electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Inagaki, Toru; Nishiwaki, Futoshi; Yamasaki, Satoru [The Kansai Electric Power Co. Inc., Energy Use R and D Center, 11-20 Nakoji 3-choume, Amagasaki, Hyogo 661-0974 (Japan); Akbay, Taner; Hosoi, Kei [Mitsubishi Materials Corporation, Corporate Technology and Development Division, 1002-14 Mukohyama, Naka, Ibaraki 311-0102 (Japan)

    2008-07-01

    The Kansai Electric Power Co. Inc. (KEPCO) and Mitsubishi Materials Corporation (MMC) have been developing intermediate temperature solid oxide fuel cells (IT-SOFCs) which are operable at a temperature range between 600 and 800 C. There are some significant features in IT-SOFC of KEPCO-MMC: (1) highly conductive lanthanum gallate-based oxide is adopted as an electrolyte to realize high-performance disk-type electrolyte-supported cells; (2) the cell-stacks with seal-less structure using metallic separators allow residual fuel to burn around the stack and the combustion heat is utilized for thermally self-sustainable operation; (3) the separators have flexible arms by which separate compressive forces can be applied for manifold parts and interconnection parts. We are currently participating in the project by New Energy and Industrial Technology Development Organization (NEDO) to develop 10 kW-class combined heat and power (CHP) systems. In FY2006, a 10 kW-class module was developed, with which the electrical efficiency of 50%HHV was obtained based on DC 12.6 kW. In the first quarter of FY2007, the 10 kW-class CHP system using the module gave the electrical efficiency of 41%HHV on AC 10 kW and the overall efficiency of 82%HHV when exhaust heat was recovered as 60 C hot water. Currently, the operation has been accumulated for about 2500 h to evaluate the long-term stability of the system. (author)

  2. Electrochemical Synthesis of Ammonia in Solid Electrolyte Cells

    Directory of Open Access Journals (Sweden)

    Ioannis eGaragounis

    2014-01-01

    Full Text Available Developed in the early 1900's, the Haber-Bosch synthesis is the dominant NH3 synthesis process. Parallel to catalyst optimization, current research efforts are also focused on the investigation of new methods for ammonia synthesis, including the electrochemical synthesis with the use of solid electrolyte cells. Since the first report on Solid State Ammonia Synthesis (SSAS, more than 30 solid electrolyte materials were tested and at least 15 catalysts were used as working electrodes. Thus far, the highest rate of ammonia formation reported is 1.13×10−8 mol s−1 cm−2, obtained at 80°C with a Nafion solid electrolyte and a mixed oxide, SmFe0.7Cu0.1Ni0.2O3, cathode. At high temperatures (>500oC the maximum rate was 9.5*10-9 mol s−1 cm−2 using Ce0.8Y0.2O2-δ -[Ca3(PO42 -K3PO4] as electrolyte and Ag-Pd as cathode. In this paper, the advantages and the disadvantages of SSAS vs the conventional process and the requirements that must be met in order to promote the electrochemical process into an industrial level, are discussed.

  3. Electrochemical Synthesis of Ammonia in Solid Electrolyte Cells

    International Nuclear Information System (INIS)

    Garagounis, Ioannis; Kyriakou, Vasileios; Skodra, Aglaia; Vasileiou, Eirini; Stoukides, Michael

    2014-01-01

    Developed in the early 1900s, the “Haber–Bosch” synthesis is the dominant NH 3 synthesis process. Parallel to catalyst optimization, current research efforts are also focused on the investigation of new methods for ammonia synthesis, including the electrochemical synthesis with the use of solid electrolyte cells. Since the first report on Solid State Ammonia Synthesis (SSAS), more than 30 solid electrolyte materials were tested and at least 15 catalysts were used as working electrodes. Thus far, the highest rate of ammonia formation reported is 1.13 × 10 -8 mol s -1 cm -2 , obtained at 80°C with a Nafion solid electrolyte and a mixed oxide, SmFe 0.7 Cu 0.1 Ni 0.2 O 3 , cathode. At high temperatures (>500°C), the maximum rate was 9.5 × 10 −9 mol s -1 cm -2 using Ce 0.8 Y 0.2 O 2-δ –[Ca 3 (PO 4 ) 2 –K 3 PO 4 ] as electrolyte and Ag–Pd as cathode. In this paper, the advantages and the disadvantages of SSAS vs. the conventional process and the requirements that must be met in order to promote the electrochemical process into an industrial level are discussed.

  4. Solid electrolytes general principles, characterization, materials, applications

    CERN Document Server

    Hagenmuller, Paul

    1978-01-01

    Solid Electrolytes: General Principles, Characterization, Materials, Applications presents specific theories and experimental methods in the field of superionic conductors. It discusses that high ionic conductivity in solids requires specific structural and energetic conditions. It addresses the problems involved in the study and use of solid electrolytes. Some of the topics covered in the book are the introduction to the theory of solid electrolytes; macroscopic evidence for liquid nature; structural models; kinetic models; crystal structures and fast ionic conduction; interstitial motion in

  5. Solid electrolyte for solid-state batteries: Have lithium-ion batteries reached their technical limit?

    Energy Technology Data Exchange (ETDEWEB)

    Kartini, Evvy [Center for Science and Technology of Advanced Materials – National Nuclear Energy Agency, Kawasan Puspiptek Serpong, Tangerang Selatan15314, Banten (Indonesia); Manawan, Maykel [Post Graduate Program of Materials Science, University of Indonesia, Jl.Salemba Raya No.4, Jakarta 10430 (Indonesia)

    2016-02-08

    , promise the potential to replace organic liquid electrolytes and thereby improve the safety of next-generation high-energy batteries. Li{sub 3}PO{sub 4} has been proved to be a good candidate for solid electrolyte, due to its easy in preparation, low cost, high melting temperature and good compatibility with the electrode materials. In the present work, Li{sub 3}PO{sub 4} has been prepared by wet chemical reaction, a simple method with the advantage of recycling a waste product H{sub 3}PO{sub 4}. The crystal structure has been characterized by both neutron and x-ray diffraction. The use of neutron scattering plays important role on observing the light atoms such as lithium ion. The x-ray diffraction results showed the crystal structure of orthorhombic phase P m n 21 (31), that belongs to the β-Li{sub 3}PO{sub 4}, with the lattice parameters are a = 6.123872, b = 5.250211, c = 4.876378. The conductivity of β-Li{sub 3}PO{sub 4} was around 10{sup −8} S/cm. Furthermore, the future application of the solid electrolyte layer in lithium ion battery will also be considered. It is concluded that the used of local resources on producing the solid electrolyte Li{sub 3}PO{sub 4} for lithium ion battery will give more added values to the researches and national industry.

  6. Solid electrolyte for solid-state batteries: Have lithium-ion batteries reached their technical limit?

    International Nuclear Information System (INIS)

    Kartini, Evvy; Manawan, Maykel

    2016-01-01

    , promise the potential to replace organic liquid electrolytes and thereby improve the safety of next-generation high-energy batteries. Li 3 PO 4 has been proved to be a good candidate for solid electrolyte, due to its easy in preparation, low cost, high melting temperature and good compatibility with the electrode materials. In the present work, Li 3 PO 4 has been prepared by wet chemical reaction, a simple method with the advantage of recycling a waste product H 3 PO 4 . The crystal structure has been characterized by both neutron and x-ray diffraction. The use of neutron scattering plays important role on observing the light atoms such as lithium ion. The x-ray diffraction results showed the crystal structure of orthorhombic phase P m n 21 (31), that belongs to the β-Li 3 PO 4 , with the lattice parameters are a = 6.123872, b = 5.250211, c = 4.876378. The conductivity of β-Li 3 PO 4 was around 10 −8 S/cm. Furthermore, the future application of the solid electrolyte layer in lithium ion battery will also be considered. It is concluded that the used of local resources on producing the solid electrolyte Li 3 PO 4 for lithium ion battery will give more added values to the researches and national industry

  7. Solid electrolyte for solid-state batteries: Have lithium-ion batteries reached their technical limit?

    Science.gov (United States)

    Kartini, Evvy; Manawan, Maykel

    2016-02-01

    , promise the potential to replace organic liquid electrolytes and thereby improve the safety of next-generation high-energy batteries. Li3PO4 has been proved to be a good candidate for solid electrolyte, due to its easy in preparation, low cost, high melting temperature and good compatibility with the electrode materials. In the present work, Li3PO4 has been prepared by wet chemical reaction, a simple method with the advantage of recycling a waste product H3PO4. The crystal structure has been characterized by both neutron and x-ray diffraction. The use of neutron scattering plays important role on observing the light atoms such as lithium ion. The x-ray diffraction results showed the crystal structure of orthorhombic phase P m n 21 (31), that belongs to the β-Li3PO4, with the lattice parameters are a = 6.123872, b = 5.250211, c = 4.876378. The conductivity of β-Li3PO4 was around 10-8 S/cm. Furthermore, the future application of the solid electrolyte layer in lithium ion battery will also be considered. It is concluded that the used of local resources on producing the solid electrolyte Li3PO4 for lithium ion battery will give more added values to the researches and national industry.

  8. Ceramic solid electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Goodenough, John B. [Center for Materials Science and Engineering, University of Texas at Austin, Austin, TX (United States)

    1997-02-15

    Strategies for the design of ceramic solid electrolytes are reviewed. Problems associated with stoichiometric and doped compounds are compared. In the illustration of design principles, emphasis is given to oxide-ion electrolytes for use in solid-oxide fuel cells, oxygen pumps, and oxygen sensors

  9. 3D-Printing Electrolytes for Solid-State Batteries.

    Science.gov (United States)

    McOwen, Dennis W; Xu, Shaomao; Gong, Yunhui; Wen, Yang; Godbey, Griffin L; Gritton, Jack E; Hamann, Tanner R; Dai, Jiaqi; Hitz, Gregory T; Hu, Liangbing; Wachsman, Eric D

    2018-05-01

    Solid-state batteries have many enticing advantages in terms of safety and stability, but the solid electrolytes upon which these batteries are based typically lead to high cell resistance. Both components of the resistance (interfacial, due to poor contact with electrolytes, and bulk, due to a thick electrolyte) are a result of the rudimentary manufacturing capabilities that exist for solid-state electrolytes. In general, solid electrolytes are studied as flat pellets with planar interfaces, which minimizes interfacial contact area. Here, multiple ink formulations are developed that enable 3D printing of unique solid electrolyte microstructures with varying properties. These inks are used to 3D-print a variety of patterns, which are then sintered to reveal thin, nonplanar, intricate architectures composed only of Li 7 La 3 Zr 2 O 12 solid electrolyte. Using these 3D-printing ink formulations to further study and optimize electrolyte structure could lead to solid-state batteries with dramatically lower full cell resistance and higher energy and power density. In addition, the reported ink compositions could be used as a model recipe for other solid electrolyte or ceramic inks, perhaps enabling 3D printing in related fields. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Electrochemical Synthesis of Ammonia in Solid Electrolyte Cells

    Energy Technology Data Exchange (ETDEWEB)

    Garagounis, Ioannis; Kyriakou, Vasileios [Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki (Greece); Chemical Processes and Energy Resources Institute, Center for Research and Technology Hellas, Thessaloniki (Greece); Skodra, Aglaia [Chemical Processes and Energy Resources Institute, Center for Research and Technology Hellas, Thessaloniki (Greece); Vasileiou, Eirini; Stoukides, Michael, E-mail: stoukidi@cperi.certh.gr [Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki (Greece); Chemical Processes and Energy Resources Institute, Center for Research and Technology Hellas, Thessaloniki (Greece)

    2014-01-17

    Developed in the early 1900s, the “Haber–Bosch” synthesis is the dominant NH{sub 3} synthesis process. Parallel to catalyst optimization, current research efforts are also focused on the investigation of new methods for ammonia synthesis, including the electrochemical synthesis with the use of solid electrolyte cells. Since the first report on Solid State Ammonia Synthesis (SSAS), more than 30 solid electrolyte materials were tested and at least 15 catalysts were used as working electrodes. Thus far, the highest rate of ammonia formation reported is 1.13 × 10{sup -8} mol s{sup -1} cm{sup -2}, obtained at 80°C with a Nafion solid electrolyte and a mixed oxide, SmFe{sub 0.7}Cu{sub 0.1}Ni{sub 0.2}O{sub 3}, cathode. At high temperatures (>500°C), the maximum rate was 9.5 × 10{sup −9} mol s{sup -1} cm{sup -2} using Ce{sub 0.8}Y{sub 0.2}O{sub 2-δ}–[Ca{sub 3}(PO{sub 4}){sub 2}–K{sub 3}PO{sub 4}] as electrolyte and Ag–Pd as cathode. In this paper, the advantages and the disadvantages of SSAS vs. the conventional process and the requirements that must be met in order to promote the electrochemical process into an industrial level are discussed.

  11. Development of Sulfide Solid Electrolytes and Interface Formation Processes for Bulk-Type All-Solid-State Li and Na Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Akitoshi, E-mail: hayashi@chem.osakafu-u.ac.jp [Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Sakai, Osaka (Japan); Sakuda, Atsushi [Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Sakai, Osaka (Japan); Department of Energy and Environment, Research Institute of Electrochemical Energy, National Institute of Advanced Industrial Science and Technology (AIST), Ikeda, Osaka (Japan); Tatsumisago, Masahiro [Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Sakai, Osaka (Japan)

    2016-07-15

    All-solid-state batteries with inorganic solid electrolytes (SEs) are recognized as an ultimate goal of rechargeable batteries because of their high safety, versatile geometry, and good cycle life. Compared with thin-film batteries, increasing the reversible capacity of bulk-type all-solid-state batteries using electrode active material particles is difficult because contact areas at solid–solid interfaces between the electrode and electrolyte particles are limited. Sulfide SEs have several advantages of high conductivity, wide electrochemical window, and appropriate mechanical properties, such as formability, processability, and elastic modulus. Sulfide electrolyte with Li{sub 7}P{sub 3}S{sub 11} crystal has a high Li{sup +} ion conductivity of 1.7 × 10{sup −2} S cm{sup −1} at 25°C. It is far beyond the Li{sup +} ion conductivity of conventional organic liquid electrolytes. The Na{sup +} ion conductivity of 7.4 × 10{sup −4} S cm{sup −1} is achieved for Na{sub 3.06}P{sub 0.94}Si{sub 0.06}S{sub 4} with cubic structure. Moreover, formation of favorable solid–solid interfaces between electrode and electrolyte is important for realizing solid-state batteries. Sulfide electrolytes have better formability than oxide electrolytes. Consequently, a dense electrolyte separator and closely attached interfaces with active material particles are achieved via “room-temperature sintering” of sulfides merely by cold pressing without heat treatment. Elastic moduli for sulfide electrolytes are smaller than that of oxide electrolytes, and Na{sub 2}S–P{sub 2}S{sub 5} glass electrolytes have smaller Young’s modulus than Li{sub 2}S–P{sub 2}S{sub 5} electrolytes. Cross-sectional SEM observations for a positive electrode layer reveal that sulfide electrolyte coating on active material particles increases interface areas even with a minimum volume of electrolyte, indicating that the energy density of bulk-type solid-state batteries is enhanced. Both surface coating

  12. Integrated Interface Strategy toward Room Temperature Solid-State Lithium Batteries.

    Science.gov (United States)

    Ju, Jiangwei; Wang, Yantao; Chen, Bingbing; Ma, Jun; Dong, Shanmu; Chai, Jingchao; Qu, Hongtao; Cui, Longfei; Wu, Xiuxiu; Cui, Guanglei

    2018-04-25

    Solid-state lithium batteries have drawn wide attention to address the safety issues of power batteries. However, the development of solid-state lithium batteries is substantially limited by the poor electrochemical performances originating from the rigid interface between solid electrodes and solid-state electrolytes. In this work, a composite of poly(vinyl carbonate) and Li 10 SnP 2 S 12 solid-state electrolyte is fabricated successfully via in situ polymerization to improve the rigid interface issues. The composite electrolyte presents a considerable room temperature conductivity of 0.2 mS cm -1 , an electrochemical window exceeding 4.5 V, and a Li + transport number of 0.6. It is demonstrated that solid-state lithium metal battery of LiFe 0.2 Mn 0.8 PO 4 (LFMP)/composite electrolyte/Li can deliver a high capacity of 130 mA h g -1 with considerable capacity retention of 88% and Coulombic efficiency of exceeding 99% after 140 cycles at the rate of 0.5 C at room temperature. The superior electrochemical performance can be ascribed to the good compatibility of the composite electrolyte with Li metal and the integrated compatible interface between solid electrodes and the composite electrolyte engineered by in situ polymerization, which leads to a significant interfacial impedance decrease from 1292 to 213 Ω cm 2 in solid-state Li-Li symmetrical cells. This work provides vital reference for improving the interface compatibility for room temperature solid-state lithium batteries.

  13. The effects of functional ionic liquid on properties of solid polymer electrolyte

    International Nuclear Information System (INIS)

    An Yongxin; Cheng Xinqun; Zuo Pengjian; Liao Lixia; Yin Geping

    2011-01-01

    Highlights: → The functional ionic liquid(IL)-polymer electrolytes were successfully prepared. → The ionic conductivity of PEO electrolytes was raised to above 10-4 S.cm-1 at room temperature by functional IL. → The cells using functional IL-PEO electrolyte show higher reversible capacity and long cycle life. - Abstract: Polyethylene oxide (PEO) based solid state electrolytes have been thought as promising electrolytes to replace the organic liquid electrolyte for lithium ion batteries. But the lower ionic conductivities at room temperature restrict their application. In this paper, functional ionic liquid and polymer mixed electrolytes are prepared from N-methyoxymethyl-N-methylpiperidinium bis(trifluoromethanesulfonyl)imide (PP1.1O1TFSI) and polyethylene oxide. The PP1.1O1TFSI, a kind of room-temperature molten salt, was added to the conventional P(EO) 20 LiTFSI polymer electrolyte and resulted in a significant improvement of the ionic conductivity at room temperature. LiFePO 4 /Li and Li 4 Ti 5 O 12 /Li cells using this kind of electrolyte show high reversible capacity and stable cycle performance.

  14. High-performance electrodes for reduced temperature solid oxide fuel cells with doped lanthanum gallate electrolyte. II. La(Sr)CoO 3 cathode

    Science.gov (United States)

    Inagaki, Toru; Miura, Kazuhiro; Yoshida, Hiroyuki; Maric, Radenka; Ohara, Satoshi; Zhang, Xinge; Mukai, Kazuo; Fukui, Takehisa

    The reduced temperature solid oxide fuel cell (SOFC) with 0.5 mm thick La 0.9Sr 0.1Ga 0.8Mg 0.2O 3- α (LSGM) electrolyte, La 0.6Sr 0.4CoO 3- δ (LSCo) cathode, and Ni-(CeO 2) 0.8(SmO 1.5) 0.2 (SDC) cermet anode showed an excellent initial performance, and high maximum power density, 0.47 W/cm 2, at 800°C. The results were comparable to those for the conventional SOFC with yttria-stabilized zirconia (YSZ) electrolyte, La(Sr)MnO 3-YSZ cathode and Ni-YSZ cermet anode at 1000°C. Using an LSCo powder prepared by spray pyrolysis, and selecting appropriate sintering temperatures, the lowest cathodic polarization of about 25 mV at 300 mA/cm 2 was measured for a cathode prepared by sintering at 1000°C. Life time cell test results, however, showed that the polarization of the LSCo cathode increased with operating time. From EPMA results, this behavior was considered to be related to the interdiffusion of the elements at the cathode/electrolyte interface. Calcination of LSCo powder could be a possible way to suppress this interdiffusion at the interface.

  15. Review on solid electrolytes for all-solid-state lithium-ion batteries

    Science.gov (United States)

    Zheng, Feng; Kotobuki, Masashi; Song, Shufeng; Lai, Man On; Lu, Li

    2018-06-01

    All-solid-state (ASS) lithium-ion battery has attracted great attention due to its high safety and increased energy density. One of key components in the ASS battery (ASSB) is solid electrolyte that determines performance of the ASSB. Many types of solid electrolytes have been investigated in great detail in the past years, including NASICON-type, garnet-type, perovskite-type, LISICON-type, LiPON-type, Li3N-type, sulfide-type, argyrodite-type, anti-perovskite-type and many more. This paper aims to provide comprehensive reviews on some typical types of key solid electrolytes and some ASSBs, and on gaps that should be resolved.

  16. Long-Term Degradation Testing of High-Temperature Electrolytic Cells

    Energy Technology Data Exchange (ETDEWEB)

    C.M. Stoots; J.E. O' Brien; J.S. Herring; G.K. Housley; D.G. Milobar; M.S. Sohal

    2009-08-01

    The Idaho National Laboratory (INL) has been researching the application of solid-oxide electrolysis cell for large-scale hydrogen production from steam over a temperature range of 800 to 900ºC. The INL has been testing various solid oxide cell designs to characterize their electrolytic performance operating in the electrolysis mode for hydrogen production. Some results presented in this report were obtained from cells, with an active area of 16 cm2 per cell. The electrolysis cells are electrode-supported, with ~10 µm thick yttria-stabilized zirconia (YSZ) electrolytes, ~1400 µm thick nickel-YSZ steam-hydrogen electrodes, and manganite (LSM) air-oxygen electrodes. The experiments were performed over a range of steam inlet mole fractions (0.1 to 0.6), gas flow rates, and current densities (0 to 0.6 A/cm2). Steam consumption rates associated with electrolysis were measured directly using inlet and outlet dewpoint instrumentation. On a molar basis, the steam consumption rate is equal to the hydrogen production rate. Cell performance was evaluated by performing DC potential sweeps at 800, 850, and 900°C. The voltage-current characteristics are presented, along with values of area-specific resistance as a function of current density. Long-term cell performance is also assessed to evaluate cell degradation. Details of the custom single-cell test apparatus developed for these experiments are also presented. NASA, in conjunction with the University of Toledo, has developed a new cell concept with the goals of reduced weight and high power density. This report presents results of the INL's testing of this new solid oxide cell design as an electrolyzer. Gas composition, operating voltage, and other parameters were varied during testing. Results to date show the NASA cell to be a promising design for both high power-to-weight fuel cell and electrolyzer applications.

  17. Long-Term Degradation Testing of High-Temperature Electrolytic Cells

    International Nuclear Information System (INIS)

    Stoots, C.M.; O'Brien, J.E.; Herring, J.S.; Housley, G.K.; Milobar, D.G.; Sohal, M.S.

    2009-01-01

    The Idaho National Laboratory (INL) has been researching the application of solid-oxide electrolysis cell for large-scale hydrogen production from steam over a temperature range of 800 to 900 C. The INL has been testing various solid oxide cell designs to characterize their electrolytic performance operating in the electrolysis mode for hydrogen production. Some results presented in this report were obtained from cells, with an active area of 16 cm2 per cell. The electrolysis cells are electrode-supported, with ∼10 ∼m thick yttria-stabilized zirconia (YSZ) electrolytes, ∼1400 (micro)m thick nickel-YSZ steam-hydrogen electrodes, and manganite (LSM) air-oxygen electrodes. The experiments were performed over a range of steam inlet mole fractions (0.1 to 0.6), gas flow rates, and current densities (0 to 0.6 A/cm2). Steam consumption rates associated with electrolysis were measured directly using inlet and outlet dewpoint instrumentation. On a molar basis, the steam consumption rate is equal to the hydrogen production rate. Cell performance was evaluated by performing DC potential sweeps at 800, 850, and 900 C. The voltage-current characteristics are presented, along with values of area-specific resistance as a function of current density. Long-term cell performance is also assessed to evaluate cell degradation. Details of the custom single-cell test apparatus developed for these experiments are also presented. NASA, in conjunction with the University of Toledo, has developed a new cell concept with the goals of reduced weight and high power density. This report presents results of the INL's testing of this new solid oxide cell design as an electrolyzer. Gas composition, operating voltage, and other parameters were varied during testing. Results to date show the NASA cell to be a promising design for both high power-to-weight fuel cell and electrolyzer applications.

  18. Cross-Linked Solid Polymer Electrolyte for All-Solid-State Rechargeable Lithium Batteries

    International Nuclear Information System (INIS)

    Ben youcef, Hicham; Garcia-Calvo, Oihane; Lago, Nerea; Devaraj, Shanmukaraj; Armand, Michel

    2016-01-01

    Semi-interpenetrated network Solid Polymer Electrolytes (SPEs) were fabricated by UV-induced cross-linking of poly(ethyleneglycol) diacrylate (PEGDA) and divinylbenzene (DVB) within a poly(ethyleneoxide) (PEO) matrix (M v = 5 × 10 6 g mol −1 ), comprising lithium bis(trifluoromethanesulfonyl)imide salt (LiTFSI), at a molar ratio of EO:Li ∼ 30:1. The influence of the DVB content on the final SPE properties was investigated in detail. An increase of DVB concentration resulted in self-standing polymer electrolytes. The DVB cross-linker incorporation was found to decrease the crystallinity of the PEO matrix from 34% to 23%, with a decrease in the melting temperature (T m ) of the membrane from 50 °C to 34 °C. Moreover, the influence of the DVB concentration on the ionic conductivity was determined for polymer electrolytes with 0, 10, 20 and 45% DVB from room temperature (RT) to 80 °C. The resulting SPEs showed a high electrochemical stability of 4.3 V as well as practical conductivity values exceeding 10 −4 S cm −1 at 70 °C. Cycling performance of these semi-interpenetrated SPE’s have been shown with a Li metal polymer battery and all solid -state Li sulphur battery.

  19. Stable solid state reference electrodes for high temperature water chemistry

    International Nuclear Information System (INIS)

    Jayaweera, P.; Millett, P.J.

    1995-01-01

    A solid state electrode capable of providing a stable reference potential under a wide range of temperatures and chemical conditions has been demonstrated. The electrode consists of a zirconia or yttria-stabilized zirconia tube packed with an inorganic polymer electrolyte and a silver/silver chloride sensing element. The sensing element is maintained near room temperature by a passive cooling heat sink. The electrode stability was demonstrated by testing it in high temperature (280 C) aqueous solutions over extended periods of time. This reference electrode is useful in many applications, particularly for monitoring the chemistry in nuclear and fossil power plants

  20. Solid-state graft copolymer electrolytes for lithium battery applications.

    Science.gov (United States)

    Hu, Qichao; Caputo, Antonio; Sadoway, Donald R

    2013-08-12

    Battery safety has been a very important research area over the past decade. Commercially available lithium ion batteries employ low flash point (battery costs and can malfunction which can lead to battery malfunction and explosions, thus endangering human life. Increases in petroleum prices lead to a huge demand for safe, electric hybrid vehicles that are more economically viable to operate as oil prices continue to rise. Existing organic based electrolytes used in lithium ion batteries are not applicable to high temperature automotive applications. A safer alternative to organic electrolytes is solid polymer electrolytes. This work will highlight the synthesis for a graft copolymer electrolyte (GCE) poly(oxyethylene) methacrylate (POEM) to a block with a lower glass transition temperature (Tg) poly(oxyethylene) acrylate (POEA). The conduction mechanism has been discussed and it has been demonstrated the relationship between polymer segmental motion and ionic conductivity indeed has a Vogel-Tammann-Fulcher (VTF) dependence. Batteries containing commercially available LP30 organic (LiPF6 in ethylene carbonate (EC):dimethyl carbonate (DMC) at a 1:1 ratio) and GCE were cycled at ambient temperature. It was found that at ambient temperature, the batteries containing GCE showed a greater overpotential when compared to LP30 electrolyte. However at temperatures greater than 60 °C, the GCE cell exhibited much lower overpotential due to fast polymer electrolyte conductivity and nearly the full theoretical specific capacity of 170 mAh/g was accessed.

  1. Development of oxygen sensors using zirconia solid electrolyte for fuel rods

    International Nuclear Information System (INIS)

    Hiura, Nobuo; Endou, Yasuichi; Yamaura, Takayuki; Matui, Yoshinori; Niimi, Motoji; Hoshiya, Taiji; Kobiyama, Mamoru; Motohashi, Yoshinobu

    1999-01-01

    The oxygen potential in oxide fuel pellet is an important parameter to understand behavior of high burn up fuel and its integrity. Zirconia solid electrolyte which is durable under irradiation and high temperature is considered as candidate material for the oxygen potential. Combined use of solid electrolyte and Ni/NiO as a solid standard electrode will realize small size oxygen sensor which can be easily loaded in the fuel rod. Prototypes of the oxygen sensor made of these materials were irradiated with neutrons the Japan Materials Testing Reactor (JMTR), and characteristics of electromotive force (EMF) by sensors were examined under irradiation. For a prototype using zirconia solid electrolyte stabilized by Y 2 O 3 (YSZ), measured EMF under irradiation was nearly equivalent to the value under unirradiated condition, and very stable within a range of neutron fluence (E>1 MeV) up to 1.52 x 10 23 m -2 and for the time of 600 h. However, the measured EMFs were slightly smaller than the theoretical values. The reason for this decrease of the EMF was thought as due to insufficient adhesion forces between solid electrolyte and standard electrode. After modification of the sensor to increase adhesion force, EMF was measured again under irradiation. The results showed improvement of the characteristics of the sensor in which measured EMFs were almost equivalent to the theoretical values. (author)

  2. Moessbauer studies of microscopic disorder in solid electrolytes

    International Nuclear Information System (INIS)

    Pasternak, M.

    1987-01-01

    We implement for the first time Moessbauer spectroscopy (MS) to investigate short-range properties of disorder in solid electrolytes. MS in 129 I and 119 Sn was carried out in RbAg 4 I 5 and as impurity in Ag 2 Se, respectively. Measurements were performed both in the superionic and the normal phases. It is shown that localized cation hopping is an inherent feature of the α-AgI-type solid electrolytes. In RbAg 4 I 5 , at temperatures far below T c , a small fraction of Ag is still locally mobile and at T>T c , its concentration increases exponentially. A strong linear temperature dependence of the point-charge electric field gradient is observed and explained in terms of local hopping. With 119 Sn in Ag 2 Se we observe the onset of 'local melting' of the Ag surroundingt the SnSe 4 cluster at 50 K below the bulk superionic phase transition. The characteristic features of MS related to microscopic studies of solid electrolytes are fully described. (orig.)

  3. Kinetics of aging of metastable solid electrolytes based on zirconium dioxide

    International Nuclear Information System (INIS)

    Vlasov, A.N.; Inozemtsev, M.V.

    1985-01-01

    Kinetics of aging of metastable solid electrolytes on the base of zirconium dioxide stabilized with 8-10 mol.%of yttrium, holmium, and scandium oxides has been studied within the 1200-1373 K temperature range. Kinetic equations describibg behaviour of electric conductivity of two-phase solid electrolytes within a wide temperature interval have been suggested. It has been established that at the initial stage of ageing in cubic solid solution two processes proceed independently of one another: growth of a number of new phase centres and of a volume of new phase centres. At large times growth of a number of new phase centres stops, and kinetics of electrolyte aging is defined only by the growth kinetics of a volume of new phase inclusions

  4. Lithium carbon batteries with solid polymer electrolyte; Accumulateur lithium carbone a electrolyte solide polymere

    Energy Technology Data Exchange (ETDEWEB)

    Andrieu, X.; Boudin, F. [Alcatel Alsthom Recherche, 91 - Marcoussis (France)

    1996-12-31

    The lithium carbon batteries studied in this paper use plasticized polymer electrolytes made with passive polymer matrix swollen by a liquid electrolyte with a high ionic conductivity (> 10{sup -3} S/cm at 25 deg. C). The polymers used to prepare the gels are polyacrylonitrile (PAN) and vinylidene poly-fluoride (PVdF). The electrochemical and physical properties of these materials are analyzed according to their composition. The behaviour of solid electrolytes with different materials of lithium ion insertion (graphite and LiNiO{sub 2}) are studied and compared to liquid electrolytes. The parameters taken into account are the reversible and irreversible capacities, the cycling performance and the admissible current densities. Finally, complete lithium ion batteries with gelled electrolytes were manufactured and tested. (J.S.) 2 refs.

  5. Lithium carbon batteries with solid polymer electrolyte; Accumulateur lithium carbone a electrolyte solide polymere

    Energy Technology Data Exchange (ETDEWEB)

    Andrieu, X; Boudin, F [Alcatel Alsthom Recherche, 91 - Marcoussis (France)

    1997-12-31

    The lithium carbon batteries studied in this paper use plasticized polymer electrolytes made with passive polymer matrix swollen by a liquid electrolyte with a high ionic conductivity (> 10{sup -3} S/cm at 25 deg. C). The polymers used to prepare the gels are polyacrylonitrile (PAN) and vinylidene poly-fluoride (PVdF). The electrochemical and physical properties of these materials are analyzed according to their composition. The behaviour of solid electrolytes with different materials of lithium ion insertion (graphite and LiNiO{sub 2}) are studied and compared to liquid electrolytes. The parameters taken into account are the reversible and irreversible capacities, the cycling performance and the admissible current densities. Finally, complete lithium ion batteries with gelled electrolytes were manufactured and tested. (J.S.) 2 refs.

  6. Achievement report for 1st phase (fiscal 1974-80) Sunshine Program research and development - Hydrogen energy. Research on fuel cell (Research on high-temperature solid electrolyte fuel cell); 1974-1980 nendo suiso energy seika hokokusho. Nenryo denchi no kenkyu (koon kotai denkaishitsu nenryo denchi no kenkyu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1981-03-01

    Relative to the research and development of technologies for fabricating, and assessing, materials for the constitution of high-temperature solid electrolyte fuel cells, stabilized zirconia solid electrolyte fuel cell manufacturing technologies are developed by use of thin film formation techniques such as high-frequency sputtering, plasma CVD (chemical vapor deposition), and the thermolysis of organic zirconia compound coating. As the result, it is found that high-frequency sputtering produces thin film which is satisfying in terms of cost efficiency. Furthermore, it is found that defects in solid electrolytic thin film formed by the high-frequency sputtering method, that is, pinholes and cracks, will be remedied when the coating thermolysis method is jointly applied. In the research on fuel cell power systems, column-type high-temperature solid electrolyte fuel cells are built, and a power generation test is conducted. The test is successfully completed when the output of a fuel cell of the 9-column module structure gradually increases until a maximum output of 110W is achieved. (NEDO)

  7. Electrode-electrolyte BIMEVOX system for moderate temperature oxygen separation

    Energy Technology Data Exchange (ETDEWEB)

    Boivin, J.C.; Pirovano, C.; Nowogrocki, G.; Mairesse, G. [Laboratoire de Cristallochimie et Physicochimie du Solide, URA CNRS 452, USTL-ENSCL BP 108, 59652 Villeneuve d`Ascq (France); Labrune, Ph.; Lagrange, G. [Centre de recherches Claude Delorme, Air Liquide, Jouy en Josas (France)

    1998-12-01

    Electrochemical separation of oxygen from air is a promising application for oxide conductor solid electrolytes. However, several important specifications are required in order to obtain an efficient separation device. First of all, the electrolyte material must exhibit a high conductivity at moderate temperature. From this point of view, a new family of materials called BIMEVOX ideally fulfils this condition. Secondly, a typical separation device must comport two electrodes on opposite faces of the electrolyte. These electrodes must act as electronic collectors but also, at the cathodic side, as an oxygen dissociation catalyst. BIMEVOX electrolytes exhibit ionic conductivity values that can allow work at temperature below 500C. The classical electrode approach, like in solid oxide fuel cells, consists in using a specific mixed oxide, for instance strontium lanthanum manganite or cobaltite. However, the lower the temperature, the lower the efficiency of these electrodes which quickly appears as the limiting factor. In previous work on bismuth lead oxide electrolytes, we proposed a new approach that consists of using the surface of the bismuth-based electrolyte itself as the catalyst, the electron collection being then performed by a co-sintered metallic grid. This `in-situ` electrode system provides many advantages, particularly it eliminates the problem of the chemical compatibility between electrode and electrolyte materials. Taking into account the presence of both catalytic vanadium and bismuth cations in BIMEVOX, we checked under these conditions the separation of oxygen from air for different electrolytes (BICOVOX, BICUVOX, BIZNVOX) at various temperatures in the range 430-600C. For instance, using a BICOVOX pellet with a gold grid inserted on each side makes it possible to separate oxygen with nearly 100% efficiency for current density values up to 1000 mA/cm{sup -2}. For higher intensity values, the faradic efficiency progressively but reversibly decreases

  8. Temperature dependent dielectric properties and ion transportation in solid polymer electrolyte for lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Sengwa, R. J., E-mail: rjsengwa@rediffmail.com; Dhatarwal, Priyanka, E-mail: dhatarwalpriyanka@gmail.com; Choudhary, Shobhna, E-mail: shobhnachoudhary@rediffmail.com [Dielectric Research Laboratory, Department of Physics, Jai Narain Vyas University, Jodhpur – 342 005 (India)

    2016-05-06

    Solid polymer electrolyte (SPE) film consisted of poly(ethylene oxide) (PEO) and poly(methyl methacrylate) (PMMA) blend matrix with lithium tetrafluroborate (LiBF{sub 4}) as dopant ionic salt and poly(ethylene glycol) (PEG) as plasticizer has been prepared by solution casting method followed by melt pressing. Dielectric properties and ionic conductivity of the SPE film at different temperatures have been determined by dielectric relaxation spectroscopy. It has been observed that the dc ionic conductivity of the SPE film increases with increase of temperature and also the decrease of relaxation time. The temperature dependent relaxation time and ionic conductivity values of the electrolyte are governed by the Arrhenius relation. Correlation observed between dc conductivity and relaxation time confirms that ion transportation occurs with polymer chain segmental dynamics through hopping mechanism. The room temperature ionic conductivity is found to be 4 × 10{sup −6} S cm{sup −1} which suggests the suitability of the SPE film for rechargeable lithium batteries.

  9. A zwitterionic gel electrolyte for efficient solid-state supercapacitors

    Science.gov (United States)

    Peng, Xu; Liu, Huili; Yin, Qin; Wu, Junchi; Chen, Pengzuo; Zhang, Guangzhao; Liu, Guangming; Wu, Changzheng; Xie, Yi

    2016-01-01

    Gel electrolytes have attracted increasing attention for solid-state supercapacitors. An ideal gel electrolyte usually requires a combination of advantages of high ion migration rate, reasonable mechanical strength and robust water retention ability at the solid state for ensuring excellent work durability. Here we report a zwitterionic gel electrolyte that successfully brings the synergic advantages of robust water retention ability and ion migration channels, manifesting in superior electrochemical performance. When applying the zwitterionic gel electrolyte, our graphene-based solid-state supercapacitor reaches a volume capacitance of 300.8 F cm−3 at 0.8 A cm−3 with a rate capacity of only 14.9% capacitance loss as the current density increases from 0.8 to 20 A cm−3, representing the best value among the previously reported graphene-based solid-state supercapacitors, to the best of our knowledge. We anticipate that zwitterionic gel electrolyte may be developed as a gel electrolyte in solid-state supercapacitors. PMID:27225484

  10. Recent advances in solid polymer electrolytes for lithium batteries

    Institute of Scientific and Technical Information of China (English)

    Qingqing Zhang; Kai Liu; Fei Ding; Xingjiang Liu

    2017-01-01

    Solid polymer electrolytes are light-weight,flexible,and non-flammable and provide a feasible solution to the safety issues facing lithium-ion batteries through the replacement of organic liquid electrolytes.Substantial research efforts have been devoted to achieving the next generation of solid-state polymer lithium batteries.Herein,we provide a review of the development of solid polymer electrolytes and provide comprehensive insights into emerging developments.In particular,we discuss the different molecular structures of the solid polymer matrices,including polyether,polyester,polyacrylonitrile,and polysiloxane,and their interfacial compatibility with lithium,as well as the factors that govern the properties of the polymer electrolytes.The discussion aims to give perspective to allow the strategic design of state-of-the-art solid polymer electrolytes,and we hope it will provide clear guidance for the exploration of high-performance lithium batteries.

  11. The electrochemical reduction processes of solid compounds in high temperature molten salts.

    Science.gov (United States)

    Xiao, Wei; Wang, Dihua

    2014-05-21

    Solid electrode processes fall in the central focus of electrochemistry due to their broad-based applications in electrochemical energy storage/conversion devices, sensors and electrochemical preparation. The electrolytic production of metals, alloys, semiconductors and oxides via the electrochemical reduction of solid compounds (especially solid oxides) in high temperature molten salts has been well demonstrated to be an effective and environmentally friendly process for refractory metal extraction, functional materials preparation as well as spent fuel reprocessing. The (electro)chemical reduction of solid compounds under cathodic polarizations generally accompanies a variety of changes at the cathode/melt electrochemical interface which result in diverse electrolytic products with different compositions, morphologies and microstructures. This report summarizes various (electro)chemical reactions taking place at the compound cathode/melt interface during the electrochemical reduction of solid compounds in molten salts, which mainly include: (1) the direct electro-deoxidation of solid oxides; (2) the deposition of the active metal together with the electrochemical reduction of solid oxides; (3) the electro-inclusion of cations from molten salts; (4) the dissolution-electrodeposition process, and (5) the electron hopping process and carbon deposition with the utilization of carbon-based anodes. The implications of the forenamed cathodic reactions on the energy efficiency, chemical compositions and microstructures of the electrolytic products are also discussed. We hope that a comprehensive understanding of the cathodic processes during the electrochemical reduction of solid compounds in molten salts could form a basis for developing a clean, energy efficient and affordable production process for advanced/engineering materials.

  12. Preparation of thoria calcia solid electrolytes

    International Nuclear Information System (INIS)

    Muccillo, R.

    1982-01-01

    The experimental procedures for the preparation of thoria-calcia solid electrolytes are described. Cold-pressed specimens pre-sintered at 1400 0 C and sintered at 2000 0 C have been used for thermally stimulated depolarization currents measurements in the temperature range 100 K - 300 K as well as for ionic conductivity measurements in the temperature range RT - 900 K. The detection of a relaxation peak probably due to the reorientation of the Ca'' sub(Th) - V sup(..) sub(O) complex shows that solid solution has been attained. Preliminary results of electrical conductivity are also reported. (Author) [pt

  13. Polarization behavior of lithium electrode in polymetric solid electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, Yoshiharu (Dept. of Applied Chemistry and Chemical Engineering, Faculty of Engineering, Yamaguchi Univ., Ube (Japan)); Morita, Masayuki (Dept. of Applied Chemistry and Chemical Engineering, Faculty of Engineering, Yamaguchi Univ., Ube (Japan)); Tsutsumi, Hiromori (Dept. of Applied Chemistry and Chemical Engineering, Faculty of Engineering, Yamaguchi Univ., Ube (Japan))

    1993-04-15

    Complexes of novel polymer matrices and lithium salts have been prepared as polymeric solid electrolytes for lithium batteries. Poly(ethylene oxide)-grafted poly(methylmethacrylate) (PEO-PMMA) and poly(methylsiloxane) (PMS) were used as the matrices. The conductance behavior of the complexes and the basic polarization characteristics of the lithium electrode in the polymeric electrolytes were studied. As high conductivities as 10[sup -3] S cm[sup -1] were obtained at room temperature for the PMMA-based electrolytes containing some liquid plasticizer. Limiting current densities of 3 to 5 mA cm[sup -2] were observed for the anodic and cathodic polarization of the lithium electrode. The transport number of Li[sup +] was approximately unity in 'single-ion type' PMS-based electrolyte, in which the polarization curve of the lithium electrode showed no current hysteresis. (orig.)

  14. Development of solid electrolytes for water electrolysis at higher temperature

    Energy Technology Data Exchange (ETDEWEB)

    Linkous, C.A. [Florida Solar Energy Center, Cocoa, FL (United States)

    1996-10-01

    This report describes efforts in developing new solid polymer electrolytes that will enable operation of proton exchange membrane electrolyzers at higher temperatures than are currently possible. Several ionomers have been prepared from polyetheretherketone (PEEK), polyethersulfone (PES), and polyphenylquinoxaline (PPQ) by employing various sulfonation procedures. By controlling the extent of sulfonation, a range of proton conductivities could be achieved, whose upper limit actually exceeded that of commercially available perfluoralkyl sulfonates. Thermoconductimetric analysis of samples at various degrees of sulfonation showed an inverse relationship between conductivity and maximum operating temperature. This was attributed to the dual effect of adding sulfonate groups to the polymer: more acid groups produce more protons for increased conductivity, but they also increase water uptake, which mechanically weakens the membrane. This situation was exacerbated by the limited acidity of the aromatic sulfonic acids (pK{sub A} {approx} 2-3). The possibility of using partial fluorination to raise the acid dissociation constant is discussed.

  15. POLYMER ELECTROLYTE MEMBRANE FUEL CELLS

    DEFF Research Database (Denmark)

    2001-01-01

    A method for preparing polybenzimidazole or polybenzimidazole blend membranes and fabricating gas diffusion electrodes and membrane-electrode assemblies is provided for a high temperature polymer electrolyte membrane fuel cell. Blend polymer electrolyte membranes based on PBI and various...... thermoplastic polymers for high temperature polymer electrolyte fuel cells have also been developed. Miscible blends are used for solution casting of polymer membranes (solid electrolytes). High conductivity and enhanced mechanical strength were obtained for the blend polymer solid electrolytes....... With the thermally resistant polymer, e.g., polybenzimidazole or a mixture of polybenzimidazole and other thermoplastics as binder, the carbon-supported noble metal catalyst is tape-cast onto a hydrophobic supporting substrate. When doped with an acid mixture, electrodes are assembled with an acid doped solid...

  16. Solid polymer electrolyte lithium batteries

    Science.gov (United States)

    Alamgir, Mohamed; Abraham, Kuzhikalail M.

    1993-01-01

    This invention pertains to Lithium batteries using Li ion (Li.sup.+) conductive solid polymer electrolytes composed of solvates of Li salts immobilized in a solid organic polymer matrix. In particular, this invention relates to Li batteries using solid polymer electrolytes derived by immobilizing solvates formed between a Li salt and an aprotic organic solvent (or mixture of such solvents) in poly(vinyl chloride).

  17. Interaction between cobalt-containing materials and solid electrolyte on the basis of lanthanum gallate

    International Nuclear Information System (INIS)

    Bronin, D.I.; Kuzin, B.L.; Sokolova, Yu.V.; Polyakova, N.V.

    2000-01-01

    High-temperature interaction of solid electrolyte La 0.88 Sr 0.12 Mg 0.18 Ga 0.82 O 3-α with material of oxygen electrode La 0.7 Sr 0.3 CoO 3-δ (LSC) and with Co 3 O 4 and its influence on electrochemical activity of oxygen electrodes made of LSO and Pt were studied using the methods of X-ray microanalysis, conductometry and impedance-spectroscopy. It was ascertained that the surface of the solid electrolyte contacting LSC or Co 3 O 4 at a temperature of 1100 Deg C and higher is enriched by cobalt. Electric conductivity of the electrolyte layer modified by cobalt is noticeably higher than that of the initial one. Electrochemical activity of oxygen electrodes made of LSC is 1-2 ordered higher than the one characteristic of platinum electrode [ru

  18. Lithium-ion transport in inorganic solid state electrolyte

    International Nuclear Information System (INIS)

    Gao Jian; Li Hong; Zhao Yu-Sheng; Shi Si-Qi

    2016-01-01

    An overview of ion transport in lithium-ion inorganic solid state electrolytes is presented, aimed at exploring and designing better electrolyte materials. Ionic conductivity is one of the most important indices of the performance of inorganic solid state electrolytes. The general definition of solid state electrolytes is presented in terms of their role in a working cell (to convey ions while isolate electrons), and the history of solid electrolyte development is briefly summarized. Ways of using the available theoretical models and experimental methods to characterize lithium-ion transport in solid state electrolytes are systematically introduced. Then the various factors that affect ionic conductivity are itemized, including mainly structural disorder, composite materials and interface effects between a solid electrolyte and an electrode. Finally, strategies for future material systems, for synthesis and characterization methods, and for theory and calculation are proposed, aiming to help accelerate the design and development of new solid electrolytes. (topical review)

  19. High-performance electrodes for reduced temperature solid oxide fuel cells with doped lanthanum gallate electrolyte. Pt. 2. La(Sr)CoO{sub 3} cathode

    Energy Technology Data Exchange (ETDEWEB)

    Inagaki, Toru; Yoshida, Hiroyuki [The Kansai Electric Power, Hyogo (Japan); Miura, Kazuhiro [Kanden Kakou, Hyogo (Japan); Maric, Radenka; Ohara, Satoshi; Zhang, Xinge; Mukai, Kazuo; Fukui, Takehisa [Japan Fine Ceramics Center, Nagoya (Japan)

    2000-03-01

    The reduced temperature solid oxide fuel cell (SOFC) with 0.5 mm thick La{sub 0.9}Sr{sub 0.1}Ga{sub 0.8}Mg{sub 0.2}O{sub 3-{alpha}} (LSGM) electrolyte, La{sub 0.6}Sr{sub 0.4}CoO{sub 3-{delta}} (LSCo) cathode, and Ni-(CeO{sub 2}){sub 0.8}(SmO{sub 1.5}){sub 0.2} (SDC) cermet anode showed an excellent initial performance, and high maximum power density, 0.47 W/cm{sup 2}, at 800 C. The results were comparable to those for the conventional SOFC with yttria-stabilized zirconia (YSZ) electrolyte, La(Sr)MnO{sub 3}-YSZ cathode and Ni-YSZ cermet anode at 1000 C. Using an LSCo powder prepared by spray pyrolysis, and selecting appropriate sintering temperatures, the lowest cathodic polarization of about 25 mV at 300 mA/cm{sup 2} was measured for a cathode prepared by sintering at 1000 C. Life time cell test results, however, showed that the polarization of the LSCo cathode increased with operating time. From EPMA results, this behavior was considered to be related to the interdiffusion of the elements at the cathode/electrolyte interface. Calcination of LSCo powder could be a possible way to suppress this interdiffusion at the interface. (orig.)

  20. Internal shorting and fuel loss of a low temperature solid oxide fuel cell with SDC electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xinge; Robertson, Mark; Deces-Petit, Cyrille; Qu, Wei; Kesler, Olivera; Maric, Radenka; Ghosh, Dave [Institute for Fuel Cell Innovation, National Research Council Canada, 4250 Wesbrook Mall, Vancouver, BC V6T 1W5 (Canada)

    2007-02-10

    A solid oxide fuel cell with Sm{sub 0.2}Ce{sub 0.8}O{sub 1.9} (SDC) electrolyte of 10 {mu}m in thickness and Ni-SDC anode of 15 {mu}m in thickness on a 0.8 mm thick Ni-YSZ cermet substrate was fabricated by tape casting, screen printing and co-firing. A composite cathode, 75 wt.% Sm{sub 0.5}Sr{sub 0.5}CoO{sub 3} (SSCo) + 25 wt.% SDC, approximately 50 {mu}m in thickness, was printed on the co-fired half-cell, and sintered at 950 C. The cell showed a high electrochemical performance at temperatures ranging from 500 to 650 C. Peak power density of 545 mW cm{sup -2} at 600 C was obtained. However, the cell exhibited severe internal shorting due to the mixed conductivity of the SDC electrolyte. Both the amount of water collected from the anode outlet and the open circuit voltage (OCV) indicated that the internal shorting current could reach 0.85 A cm{sup -2} or more at 600 C. Zr content inclusions were found at the surface and in the cross-section of the SDC electrolyte, which could be one of the reasons for reduced OCV and oxygen ionic conductivity. Fuel loss due to internal shorting of the thin SDC electrolyte cell becomes a significant concern when it is used in applications requiring high fuel utilization and electrical efficiency. (author)

  1. Novel Organic-Inorganic Hybrid Electrolyte to Enable LiFePO4 Quasi-Solid-State Li-Ion Batteries Performed Highly around Room Temperature.

    Science.gov (United States)

    Tan, Rui; Gao, Rongtan; Zhao, Yan; Zhang, Mingjian; Xu, Junyi; Yang, Jinlong; Pan, Feng

    2016-11-16

    A novel type of organic-inorganic hybrid polymer electrolytes with high electrochemical performances around room temperature is formed by hybrid of nanofillers, Y-type oligomer, polyoxyethylene and Li-salt (PBA-Li), of which the T g and T m are significantly lowered by blended heterogeneous polyethers and embedded nanofillers with benefit of the dipole modification to achieve the high Li-ion migration due to more free-volume space. The quasi-solid-state Li-ion batteries based on the LiFePO 4 /15PBA-Li/Li-metal cells present remarkable reversible capacities (133 and 165 mAh g -1 @0.2 C at 30 and 45 °C, respectively), good rate ability and stable cycle performance (141.9 mAh g -1 @0.2 C at 30 °C after 150 cycles).

  2. Ultraflexible and tailorable all-solid-state supercapacitors using polyacrylamide-based hydrogel electrolyte with high ionic conductivity.

    Science.gov (United States)

    Li, Huili; Lv, Tian; Li, Ning; Yao, Yao; Liu, Kai; Chen, Tao

    2017-11-30

    Hydrogels with high ionic conductivity consisting of a cross-linked polymer network swollen in water are very promising to be used as an electrolyte for all-solid-state supercapacitors. However, there are rather few flexible supercapacitors using ionic conducting hydrogel electrolytes reported to date. In this work, highly flexible and ionic conducting polyacrylamide hydrogels were synthesized through a simple approach. On using the ionic hydrogels as the electrolyte, the resulting supercapacitors not only exhibited a high specific capacitance but also showed a long self-discharge time (over 10 hours to the half of original open-circuit voltage) and a low leakage current. These newly-developed all-solid-state supercapacitors can be bent, knot, and kneaded for 5000 cycles without performance decay, suggesting excellent flexibility and mechanical stability. These all-solid-state supercapacitors can also be easily tailored into strip-like supercapacitors without a short circuit, which provides an efficient approach to fabricate wearable energy storage devices.

  3. PREPARATION AND CHARACTERIZATION OF SOLID ELECTROLYTES: FUEL CELL APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Rambabu Bobba; Josef Hormes; T. Wang; Jaymes A. Baker; Donald G. Prier; Tommy Rockwood; Dinesha Hawkins; Saleem Hasan; V. Rayanki

    1997-12-31

    The intent of this project with Federal Energy Technology Center (FETC)/Morgantown Energy Technology Center (METC) is to develop research infrastructure conductive to Fuel Cell research at Southern University and A and M College, Baton Route. A state of the art research laboratory (James Hall No.123 and No.114) for energy conversion and storage devices was developed during this project duration. The Solid State Ionics laboratory is now fully equipped with materials research instruments: Arbin Battery Cycling and testing (8 channel) unit, Electrochemical Analyzer (EG and G PAR Model 273 and Solartron AC impedance analyzer), Fuel Cell test station (Globe Tech), Differential Scanning Calorimeter (DSC-10), Thermogravimetric Analyzer (TGA), Scanning Tunneling Microscope (STM), UV-VIS-NIR Absorption Spectrometer, Fluorescence Spectrometer, FT-IR Spectrometer, Extended X-ray Absorption Fine Structure (EXAFS) measurement capability at Center for Advanced Microstructure and Devices (CAMD- a multimillion dollar DOE facility), Glove Box, gas hood chamber, high temperature furnaces, hydraulic press and several high performance computers. IN particular, a high temperature furnace (Thermodyne 6000 furnace) and a high temperature oven were acquired through this project funds. The PI Dr. R Bobba has acquired additional funds from federal agencies include NSF-Academic Research Infrastructure program and other DOE sites. They have extensively used the multimillion dollar DOE facility ''Center'' for Advanced Microstructures and Devices (CAMD) for electrochemical research. The students were heavily involved in the experimental EXAFS measurements and made use of their DCM beamline for EXAFS research. The primary objective was to provide hands on experience to the selected African American undergraduate and graduate students in experimental energy research.The goal was to develop research skills and involve them in the Preparation and Characterization of Solid

  4. Solid polymer electrolyte composite membrane comprising plasma etched porous support

    Science.gov (United States)

    Liu, Han; LaConti, Anthony B.

    2010-10-05

    A solid polymer electrolyte composite membrane and method of manufacturing the same. According to one embodiment, the composite membrane comprises a rigid, non-electrically-conducting support, the support preferably being a sheet of polyimide having a thickness of about 7.5 to 15 microns. The support has a plurality of cylindrical pores extending perpendicularly between opposing top and bottom surfaces of the support. The pores, which preferably have a diameter of about 0.1 to 5 microns, are made by plasma etching and preferably are arranged in a defined pattern, for example, with fewer pores located in areas of high membrane stress and more pores located in areas of low membrane stress. The pores are filled with a first solid polymer electrolyte, such as a perfluorosulfonic acid (PFSA) polymer. A second solid polymer electrolyte, which may be the same as or different than the first solid polymer electrolyte, may be deposited over the top and/or bottom of the first solid polymer electrolyte.

  5. Solid polymer electrolyte composite membrane comprising laser micromachined porous support

    Science.gov (United States)

    Liu, Han [Waltham, MA; LaConti, Anthony B [Lynnfield, MA; Mittelsteadt, Cortney K [Natick, MA; McCallum, Thomas J [Ashland, MA

    2011-01-11

    A solid polymer electrolyte composite membrane and method of manufacturing the same. According to one embodiment, the composite membrane comprises a rigid, non-electrically-conducting support, the support preferably being a sheet of polyimide having a thickness of about 7.5 to 15 microns. The support has a plurality of cylindrical pores extending perpendicularly between opposing top and bottom surfaces of the support. The pores, which preferably have a diameter of about 5 microns, are made by laser micromachining and preferably are arranged in a defined pattern, for example, with fewer pores located in areas of high membrane stress and more pores located in areas of low membrane stress. The pores are filled with a first solid polymer electrolyte, such as a perfluorosulfonic acid (PFSA) polymer. A second solid polymer electrolyte, which may be the same as or different than the first solid polymer electrolyte, may be deposited over the top and/or bottom of the first solid polymer electrolyte.

  6. Kinetics of aging of metastable, zirconium-dioxide-based solid electrolytes

    International Nuclear Information System (INIS)

    Vlasov, A.N.; Inozemtsev, M.V.

    1985-01-01

    The kinetics of aging of zirconium-dioxide-based metastable solid oxide electrolytes stabilized with 8 to 10 mole % of yttrium, holmium, or scandium oxide were studied over the temperature range from 1200 to 1373 0 K. Kinetic equations were proposed which describe the conduction behavior of two-phase solid electrolytes in a wide time range. The processes were found to occur independently at the initial stage of aging in the cubic solution, viz., an increase in the number of nuclei of the new phase, and a growth in volume of nuclei of the new phase. After a long time the former process ceases, and the kinetics of aging of the electrolyte only are determined by the kinetics of volume growth of the inclusions of new phase. The time-dependent behavior of two-phase solid solutions is discussed theoretically and examined experimentally

  7. Stable lithium electrodeposition in liquid and nanoporous solid electrolytes

    KAUST Repository

    Lu, Yingying

    2014-08-10

    Rechargeable lithium, sodium and aluminium metal-based batteries are among the most versatile platforms for high-energy, cost-effective electrochemical energy storage. Non-uniform metal deposition and dendrite formation on the negative electrode during repeated cycles of charge and discharge are major hurdles to commercialization of energy-storage devices based on each of these chemistries. A long-held view is that unstable electrodeposition is a consequence of inherent characteristics of these metals and their inability to form uniform electrodeposits on surfaces with inevitable defects. We report on electrodeposition of lithium in simple liquid electrolytes and in nanoporous solids infused with liquid electrolytes. We find that simple liquid electrolytes reinforced with halogenated salt blends exhibit stable long-term cycling at room temperature, often with no signs of deposition instabilities over hundreds of cycles of charge and discharge and thousands of operating hours. We rationalize these observations with the help of surface energy data for the electrolyte/lithium interface and impedance analysis of the interface during different stages of cell operation. Our findings provide support for an important recent theoretical prediction that the surface mobility of lithium is significantly enhanced in the presence of lithium halide salts. Our results also show that a high electrolyte modulus is unnecessary for stable electrodeposition of lithium.

  8. Lanthanum gallate and ceria composite as electrolyte for solid oxide fuel cells

    International Nuclear Information System (INIS)

    Li Shuai; Li Zhicheng; Bergman, Bill

    2010-01-01

    The composite of doped lanthanum gallate (La 0.9 Sr 0.1 Ga 0.8 Mg 0.2 O 2.85 , LSGM) and doped ceria (Ce 0.8 Sm 0.2 O 1.9 , CSO) was investigated as an electrolyte for solid oxide fuel cell (SOFC). The LSGM-CSO composite was examined by X-ray diffraction (XRD) and impedance spectroscopy. It was found that the sintered LSGM-CSO composite contains mainly fluorite CeO 2 phase and a minority impurity phase, Sm 3 Ga 5 O 12 . The LSGM-CSO composite electrolyte shows a small grain boundary response in the impedance spectroscopy as compared to LSGM and CSO pellets. The composite electrolyte exhibits the highest conductivity in the temperature range of 250-600 o C, compared to LSGM and CSO. The LSGM-CSO composite can be expected to be an attractive intermediate temperature electrolyte material for solid oxide fuel cells.

  9. In-situ Plasticized Cross-linked Polymer Composite Electrolyte Enhanced with Lithium-ion Conducting Nanofibers for Ambient All-Solid-State Lithium-ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Chaoyi; Zhu, Pei; Jia, Hao; Zhu, Jiadeng; Selvan, R. Kalai; Li, Ya; Dong, Xia; Du, Zhuang; Angunawela, Indunil; Wu, Nianqiang; Dirican, Mahmut

    2018-04-29

    Solid electrolytes have been gaining attention recently for the development of next-generation Li-ion batteries due to the substantial improvements in stability and safety. Among various types of solid electrolytes, composite solid electrolytes (CSEs) exhibit both high ionic conductivity and excellent interfacial contact with the electrodes. Incorporating active nanofibers into the polymer matrix demonstrates an effective method to fabricate CSEs. However, current CSEs based on traditional poly(ethylene oxide) (PEO) polymer suffer from the poor ionic conductivity of PEO and agglomeration effect of inorganic fillers at high concentrations, which limit further improvements in Li+ conductivity and electrochemical stability. Herein, we synthesize a novel PEO based cross-linked polymer (CLP) as the polymer matrix with naturally amorphous structure and high room-temperature ionic conductivity of 2.40 × 10-4 S cm-1. Li0.3La0.557TiO3 (LLTO) nanofibers incorporated composite solid electrolytes (L-CLPCSE) exhibit enhanced ionic conductivity without showing filler agglomeration. The high content of Li-conductive nanofibers improves the mechanical strength, ensures the conductive networks, and increases the total Li+ conductivity to 3.31 × 10-4 S cm-1. The all-solid-state Li|LiFePO4 batteries with L-CLPCSE are able to deliver attractive specific capacity of 147 mAh g-1 at room temperature, and no evident dendrite is found at the anode/electrolyte interface after 100 cycles.

  10. Lithiated and sulphonated poly(ether ether ketone) solid state electrolyte films for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, K.-F.; Su, S.-H., E-mail: minimono42@gmail.com

    2013-10-01

    Poly(ether ether ketone) (PEEK) films have been synthesised and used as solid-state electrolytes for supercapacitors. In order to increase their ion conductivity, the PEEK films were sulphonated by sulphuric acid, and various amounts of LiClO{sub 4} were added. The solid-state electrolyte films were characterised by Fourier transform infrared spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and thermogravimetric analysis. The ionic conductivities of the electrolyte films were analysed by performing electrochemical impedance spectroscopy. The obtained electrolyte films can be sandwiched or directly coated on activated carbon electrodes to form solid-state supercapacitors. The electrochemical characteristics of these supercapacitors were investigated by performing cyclic voltammetry and charge–discharge tests. Under an optimal content of LiClO{sub 4}, the supercapacitor can provide a capacitance as high as 190 F/g. After 1000 cycles, the supercapacitors show almost no capacitance fading, indicating high stability of the solid-state electrolyte films. - Highlights: • Poly(ether ether ketone) (PEEK) films have been used as solid-state electrolytes. • LiClO4 addition can efficiently improve the ionic conductivity. • Supercapacitors using PEEK electrolyte films deliver high capacitance.

  11. Lithiated and sulphonated poly(ether ether ketone) solid state electrolyte films for supercapacitors

    International Nuclear Information System (INIS)

    Chiu, K.-F.; Su, S.-H.

    2013-01-01

    Poly(ether ether ketone) (PEEK) films have been synthesised and used as solid-state electrolytes for supercapacitors. In order to increase their ion conductivity, the PEEK films were sulphonated by sulphuric acid, and various amounts of LiClO 4 were added. The solid-state electrolyte films were characterised by Fourier transform infrared spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and thermogravimetric analysis. The ionic conductivities of the electrolyte films were analysed by performing electrochemical impedance spectroscopy. The obtained electrolyte films can be sandwiched or directly coated on activated carbon electrodes to form solid-state supercapacitors. The electrochemical characteristics of these supercapacitors were investigated by performing cyclic voltammetry and charge–discharge tests. Under an optimal content of LiClO 4 , the supercapacitor can provide a capacitance as high as 190 F/g. After 1000 cycles, the supercapacitors show almost no capacitance fading, indicating high stability of the solid-state electrolyte films. - Highlights: • Poly(ether ether ketone) (PEEK) films have been used as solid-state electrolytes. • LiClO4 addition can efficiently improve the ionic conductivity. • Supercapacitors using PEEK electrolyte films deliver high capacitance

  12. Facilely solving cathode/electrolyte interfacial issue for high-voltage lithium ion batteries by constructing an effective solid electrolyte interface film

    International Nuclear Information System (INIS)

    Xu, Jingjing; Xia, Qingbo; Chen, Fangyuan; Liu, Tao; Li, Li; Cheng, Xueyuan; Lu, Wei; Wu, Xiaodong

    2016-01-01

    The cathode/electrolyte interface stability is the key factor for the cyclic performance and the safety performance of lithium ion batteries. Suppression of consuming key elements in the electrode materials is essential in this concern. In this purpose, we investigate a facile strategy to solve interfacial issue for high-voltage lithium ion batteries by adding an oxidable fluorinated phosphate, Bis(2,2,2-trifluoroethyl) Phosphite (BTFEP), as a sacrificial additive in electrolyte. We demonstrate that BTFEP additive could be oxidized at slightly above 4.28 V which is a relatively lower voltage than that of solvents, and the oxidative products facilitate in-situ forming a stable solid electrolyte interphase (SEI) film on the cathode surface. The results manifest the SEI film validly restrains the generation of HF and the interfacial side reaction between high-voltage charged LiNi 0.5 Mn 1.5 O 4 (LNMO) and electrolyte, hence, the dissolution of Mn and Ni is effectively suppressed. Finally, the cyclic performance of LNMO after 200 cycles was remarkably improved from 68.4% in blank electrolyte to 95% in 1 wt% BTFEP-adding electrolyte.

  13. Rational coating of Li7P3S11 solid electrolyte on MoS2 electrode for all-solid-state lithium ion batteries

    Science.gov (United States)

    Xu, R. C.; Wang, X. L.; Zhang, S. Z.; Xia, Y.; Xia, X. H.; Wu, J. B.; Tu, J. P.

    2018-01-01

    Large interfacial resistance between electrode and electrolyte limits the development of high-performance all-solid-state batteries. Herein we report a uniform coating of Li7P3S11 solid electrolyte on MoS2 to form a MoS2/Li7P3S11 composite electrode for all-solid-state lithium ion batteries. The as-synthesized Li7P3S11 processes a high ionic of 2.0 mS cm-1 at room temperature. Due to homogeneous union and reduced interfacial resistance, the assembled all-solid-state batteries with the MoS2/Li7P3S11 composite electrode exhibit higher reversible capacity of 547.1 mAh g-1 at 0.1 C and better cycling stability than the counterpart based on untreated MoS2. Our study provides a new reference for design/fabrication of advanced electrode materials for high-performance all-solid-state batteries.

  14. Lanthanum gallate and ceria composite as electrolyte for solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Li Shuai, E-mail: shuail@kth.s [Department of Materials Science and Engineering, School of Industrial Engineering and Management, Royal Institute of Technology, SE 10044 Stockholm (Sweden); Li Zhicheng [School of Materials Science and Engineering, Central South University, 410083 Changsha, Hunan (China); Bergman, Bill [Department of Materials Science and Engineering, School of Industrial Engineering and Management, Royal Institute of Technology, SE 10044 Stockholm (Sweden)

    2010-03-04

    The composite of doped lanthanum gallate (La{sub 0.9}Sr{sub 0.1}Ga{sub 0.8}Mg{sub 0.2}O{sub 2.85}, LSGM) and doped ceria (Ce{sub 0.8}Sm{sub 0.2}O{sub 1.9}, CSO) was investigated as an electrolyte for solid oxide fuel cell (SOFC). The LSGM-CSO composite was examined by X-ray diffraction (XRD) and impedance spectroscopy. It was found that the sintered LSGM-CSO composite contains mainly fluorite CeO{sub 2} phase and a minority impurity phase, Sm{sub 3}Ga{sub 5}O{sub 12}. The LSGM-CSO composite electrolyte shows a small grain boundary response in the impedance spectroscopy as compared to LSGM and CSO pellets. The composite electrolyte exhibits the highest conductivity in the temperature range of 250-600 {sup o}C, compared to LSGM and CSO. The LSGM-CSO composite can be expected to be an attractive intermediate temperature electrolyte material for solid oxide fuel cells.

  15. Solid polymer electrolytes

    Science.gov (United States)

    Abraham, Kuzhikalail M.; Alamgir, Mohamed; Choe, Hyoun S.

    1995-01-01

    This invention relates to Li ion (Li.sup.+) conductive solid polymer electrolytes composed of poly(vinyl sulfone) and lithium salts, and their use in all-solid-state rechargeable lithium ion batteries. The lithium salts comprise low lattice energy lithium salts such as LiN(CF.sub.3 SO.sub.2).sub.2, LiAsF.sub.6, and LiClO.sub.4.

  16. Development of Lithium Stuffed Garnet-Type Oxide Solid Electrolytes with High Ionic Conductivity for Application to All-Solid-State Batteries

    Directory of Open Access Journals (Sweden)

    Ryoji Inada

    2016-07-01

    Full Text Available All-solid-state lithium-ion battery (LiB is expected as one of the next generation energy storage devices because of their high energy density, high safety and excellent cycle stability. Although oxide-based solid electrolyte materials have rather lower conductivity and poor deformability than sulfide-based one, they have other advantages such as their chemical stability and easiness for handling. Among the various oxide-based SEs, lithium stuffed garnet-type oxide with the formula of Li7La3Zr2O12 (LLZ have been widely studied because of their high conductivity above 10-4 Scm-1 at room temperature, excellent thermal performance and stability against Li metal anode.Here, we present our recent progress for the development of garnet-type solid electrolytes with high conductivity by simultaneous substitution of Ta5+ into Zr4+ site and Ba2+ into La3+ site in LLZ. Li+ concentration was fixed to 6.5 per chemical formulae, so that the formulae of our Li garnet-type oxide is expressed as Li6.5La3-xBaxZr1.5-xTa0.5+xO12 (LLBZT and Ba contents x are changed from 0 to 0.3. As results, all LLBZT samples have cubic garnet structure without containing any secondary phases. The lattice parameters of LLBZT decrease with increasing Ba2+ contents x < 0.10 while increase with x from 0.10 to 0.30, possibly due to the simultaneous change of Ba2+ and Ta5+ substitution levels. Relative densities of LLBZT are in the range between 89% and 93% and not influenced so much by the compositions. From AC impedance spectroscopy measurements, the total (bulk + grain conductivity at 27ºC of LLBZT shows its maximum value of 8.34 x 10-4 S cm-1 at x = 0.10, which is slightly higher than the conductivity (= 7.94 x 10-4 S cm-1 of LLZT without substituting Ba (x = 0. Activation energy of the conductivity tends to become lower by Ba substation, while excess Ba substitution degrades the conductivity in LLBZT. LLBZT has wide electrochemical potential window of 0-6 V vs. Li+/Li and

  17. Electrolytes for Use in High Energy Lithium-ion Batteries with Wide Operating Temperature Range

    Science.gov (United States)

    Smart, Marshall C.; Ratnakumar, B. V.; West, W. C.; Whitcanack, L. D.; Huang, C.; Soler, J.; Krause, F. C.

    2012-01-01

    Met programmatic milestones for program. Demonstrated improved performance with wide operating temperature electrolytes containing ester co-solvents (i.e., methyl butyrate) containing electrolyte additives in A123 prototype cells: Previously demonstrated excellent low temperature performance, including 11C rates at -30 C and the ability to perform well down to -60 C. Excellent cycle life at room temperature has been displayed, with over 5,000 cycles being demonstrated. Good high temperature cycle life performance has also been achieved. Demonstrated improved performance with methyl propionate-containing electrolytes in large capacity prototype cells: Demonstrated the wide operating temperature range capability in large cells (12 Ah), successfully scaling up technology from 0.25 Ah size cells. Demonstrated improved performance at low temperature and good cycle life at 40 C with methyl propionate-based electrolyte containing increasing FEC content and the use of LiBOB as an additive. Utilized three-electrode cells to investigate the electrochemical characteristics of high voltage systems coupled with wide operating temperature range electrolytes: From Tafel polarization measurements on each electrode, it is evident the NMC-based cathode displays poor lithium kinetics (being the limiting electrode). The MB-based formulations containing LiBOB delivered the best rate capability at low temperature, which is attributed to improved cathode kinetics. Whereas, the use of lithium oxalate as an additive lead to the highest reversible capacity and lower irreversible losses.

  18. Multi-layer thin-film electrolytes for metal supported solid oxide fuel cells

    Science.gov (United States)

    Haydn, Markus; Ortner, Kai; Franco, Thomas; Uhlenbruck, Sven; Menzler, Norbert H.; Stöver, Detlev; Bräuer, Günter; Venskutonis, Andreas; Sigl, Lorenz S.; Buchkremer, Hans-Peter; Vaßen, Robert

    2014-06-01

    A key to the development of metal-supported solid oxide fuel cells (MSCs) is the manufacturing of gas-tight thin-film electrolytes, which separate the cathode from the anode. This paper focuses the electrolyte manufacturing on the basis of 8YSZ (8 mol.-% Y2O3 stabilized ZrO2). The electrolyte layers are applied by a physical vapor deposition (PVD) gas flow sputtering (GFS) process. The gas-tightness of the electrolyte is significantly improved when sequential oxidic and metallic thin-film multi-layers are deposited, which interrupt the columnar grain structure of single-layer electrolytes. Such electrolytes with two or eight oxide/metal layers and a total thickness of about 4 μm obtain leakage rates of less than 3 × 10-4 hPa dm3 s-1 cm-2 (Δp: 100 hPa) at room temperature and therefore fulfill the gas tightness requirements. They are also highly tolerant with respect to surface flaws and particulate impurities which can be present on the graded anode underground. MSC cell tests with double-layer and multilayer electrolytes feature high power densities more than 1.4 W cm-2 at 850 °C and underline the high potential of MSC cells.

  19. Materials system for intermediate temperature solid oxide fuel cells based on doped lanthanum-gallate electrolyte

    Science.gov (United States)

    Gong, Wenquan

    2005-07-01

    The objective of this work was to identify a materials system for intermediate temperature solid oxide fuel cells (IT-SOFCs). Towards this goal, alternating current complex impedance spectroscopy was employed as a tool to study electrode polarization effects in symmetrical cells employing strontium and magnesium doped lanthanum gallate (LSGM) electrolyte. Several cathode materials were investigated including strontium doped lanthanum manganite (LSM), Strontium and iron doped lanthanum cobaltate (LSCF), LSM-LSGM, and LSCF-LSGM composites. Investigated Anode materials included nickel-gadolinium or lanthanum doped cerium oxide (Ni-GDC, or Ni-LDC) composites. The ohmic and the polarization resistances of the symmetrical cells were obtained as a function of temperature, time, thickness, and the composition of the electrodes. Based on these studies, the single phase LSM electrode had the highest polarization resistance among the cathode materials. The mixed-conducting LSCF electrode had polarization resistance orders of magnitude lower than that of the LSM-LSGM composite electrodes. Although incorporating LSGM in the LSCF electrode did not reduce the cell polarization resistance significantly, it could reduce the thermal expansion coefficient mismatch between the LSCF electrodes and LSGM electrolyte. Moreover, the polarization resistance of the LSCF electrode decreased asymptotically as the electrode thickness was increased thus suggesting that the electrode thickness needed not be thicker than this asymptotic limit. On the anode side of the IT-SOFC, Ni reacted with LSGM electrolyte, and lanthanum diffusion occurred from the LSGM electrolyte to the GDC barrier layer, which was between the LSGM electrolyte and the Ni-composite anode. However, LDC served as an effective barrier layer. Ni-LDC (70 v% Ni) anode had the largest polarization resistance, while all other anode materials, i.e. Ni-LDC (50 v% Ni), Ni-GDC (70 v% NO, and Ni-GDC (50 v% Ni), had similar polarization

  20. Fabrication of All-Solid-State Lithium-Ion Cells Using Three-Dimensionally Structured Solid Electrolyte Li7La3Zr2O12 Pellets

    International Nuclear Information System (INIS)

    Shoji, Mao; Munakata, Hirokazu; Kanamura, Kiyoshi

    2016-01-01

    All-solid-state lithium-ion batteries using Li + -ion conducting ceramic electrolytes have been focused on as attractive future batteries for electric vehicles and renewable energy conversion systems because high safety can be realized due to non-flammability of ceramic electrolytes. In addition, a higher volumetric energy density than that of current lithium-ion batteries is expected since the all-solid-state lithium-ion batteries can be made in bipolar cell configurations. However, the special ideas and techniques based on ceramic processing are required to construct the electrochemical interface for all-solid-state lithium-ion batteries since the battery development has been done so far based on liquid electrolyte system over 100 years. As one of the promising approaches to develop practical all-solid-state batteries, we have been focusing on three-dimensionally (3D) structured cell configurations such as an interdigitated combination of 3D pillars of cathode and anode, which can be realized by using solid electrolyte membranes with hole-array structures. The application of such kinds of 3D structures effectively increases the interface between solid electrode and solid electrolyte per unit volume, lowering the internal resistance of all-solid-state lithium-ion batteries. In this study, Li 6.25 Al 0.25 La 3 Zr 2 O 12 (LLZAl), which is a Al-doped Li 7 La 3 Zr 2 O 12 (LLZ) with Li + -ion conductivity of ~10 –4 S ⋅cm −1 at room temperature and high stability against lithium-metal, was used as a solid electrolyte, and its pellets with 700 μm depth holes in 700 μm × 700 μm area were fabricated to construct 3D-structured all-solid-state batteries with LiCoO 2 /LLZAl/lithium-metal configuration. It is expected that the LiCoO 2 –LLZAl interface is formed by point-to-point contact even when the LLZAl pellet with 3D hole-array structure is applied. Therefore, Li 3 BO 3 , which is a mechanically soft solid electrolyte with a low melting point at around 700

  1. Alkaline solid polymer electrolytes and their application to rechargeable batteries; Electrolytes solides polymeres alcalins application aux generateurs electrochimiques rechargeables

    Energy Technology Data Exchange (ETDEWEB)

    Guinot, S

    1996-03-15

    A new family of solid polymer electrolytes (SPE) based on polyoxyethylene (POE), KOH and water is investigated in view of its use in rechargeable batteries. After a short review on rechargeable batteries, the preparation of various electrolyte compositions is described. Their characterization by differential scanning calorimetry (DSC), thermogravimetric analysis, X-ray diffraction and microscopy confirm a multi-phasic structure. Conductivity measurements give values up to 10 sup -3 S cm sup -1 at room temperature. Their use in cells with nickel as negative electrode and cadmium or zinc as positive electrode has been tested; cycling possibility has been shown to be satisfactory. (C.B.) 113 refs.

  2. Effect of proton-conduction in electrolyte on electric efficiency of multi-stage solid oxide fuel cells

    Science.gov (United States)

    Matsuzaki, Yoshio; Tachikawa, Yuya; Somekawa, Takaaki; Hatae, Toru; Matsumoto, Hiroshige; Taniguchi, Shunsuke; Sasaki, Kazunari

    2015-07-01

    Solid oxide fuel cells (SOFCs) are promising electrochemical devices that enable the highest fuel-to-electricity conversion efficiencies under high operating temperatures. The concept of multi-stage electrochemical oxidation using SOFCs has been proposed and studied over the past several decades for further improving the electrical efficiency. However, the improvement is limited by fuel dilution downstream of the fuel flow. Therefore, evolved technologies are required to achieve considerably higher electrical efficiencies. Here we present an innovative concept for a critically-high fuel-to-electricity conversion efficiency of up to 85% based on the lower heating value (LHV), in which a high-temperature multi-stage electrochemical oxidation is combined with a proton-conducting solid electrolyte. Switching a solid electrolyte material from a conventional oxide-ion conducting material to a proton-conducting material under the high-temperature multi-stage electrochemical oxidation mechanism has proven to be highly advantageous for the electrical efficiency. The DC efficiency of 85% (LHV) corresponds to a net AC efficiency of approximately 76% (LHV), where the net AC efficiency refers to the transmission-end AC efficiency. This evolved concept will yield a considerably higher efficiency with a much smaller generation capacity than the state-of-the-art several tens-of-MW-class most advanced combined cycle (MACC).

  3. High Temperature Polymer Electrolyte Fuel Cells

    DEFF Research Database (Denmark)

    Fleige, Michael

    This thesis presents the development and application of electrochemical half-cell setups to study the catalytic reactions taking place in High Temperature Polymer Electrolyte Fuel Cells (HTPEM-FCs): (i) a pressurized electrochemical cell with integrated magnetically coupled rotating disk electrode...... oxidation of ethanol is in principle a promising concept to supply HTPEM-FCs with a sustainable and on large scale available fuel (ethanol from biomass). However, the intermediate temperature tests in the GDE setup show that even on Pt-based catalysts the reaction rates become first significant...... at potentials, which approach the usual cathode potentials of HTPEM-FCs. Therefore, it seems that H3PO4-based fuel cells are not much suited to efficiently convert ethanol in accordance with findings in earlier research papers. Given that HTPEM-FCs can tolerate CO containing reformate gas, focusing research...

  4. Development status of oxygen solid electrolyte sensors in HLMC in respect to monoblock reactor facilities

    International Nuclear Information System (INIS)

    Martynov, P.N.; Askhadullin, R.Sh.; Storozhenko, A.N.; Shelemet'ev, V.M.; Sadovnichij, R.P.; Ivanov, I.I.

    2014-01-01

    The results of developing sensors on the base of solid electrolytes to control oxygen in lead and lead-bismuth coolants are considered. It is found out that ceramic detecting elements on the base of solid electrolytes from oxide ceramics are able to work a long time in conditions of high temperatures and thermal shocks in molten metals (in gases). They show stable conducting and mechanical properties, thermal resistance, low gas permeability. Using considered detecting elements different sensors, including ones for monoblock reactors and facilities, are developed and manufactured. The given sensors can be used for both continuous and periodical oxygen control in heavy liquid metal coolants [ru

  5. MultiLayer solid electrolyte for lithium thin film batteries

    Science.gov (United States)

    Lee, Se -Hee; Tracy, C. Edwin; Pitts, John Roland; Liu, Ping

    2015-07-28

    A lithium metal thin-film battery composite structure is provided that includes a combination of a thin, stable, solid electrolyte layer [18] such as Lipon, designed in use to be in contact with a lithium metal anode layer; and a rapid-deposit solid electrolyte layer [16] such as LiAlF.sub.4 in contact with the thin, stable, solid electrolyte layer [18]. Batteries made up of or containing these structures are more efficient to produce than other lithium metal batteries that use only a single solid electrolyte. They are also more resistant to stress and strain than batteries made using layers of only the stable, solid electrolyte materials. Furthermore, lithium anode batteries as disclosed herein are useful as rechargeable batteries.

  6. Phosphorus Enrichment as a New Composition in the Solid Electrolyte Interphase of High-Voltage Cathodes and Its Effects on Battery Cycling

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Pengfei; Zheng, Jianming; Kuppan, Saravanan; Li, Qiuyan; Lv, Dongping; Xiao, Jie; Chen, Guoying; Zhang, Jiguang; Wang, Chong M.

    2015-11-10

    Immersion of a solid into liquid often leads to the modification of both the structure and chemistry of surface of the solid, which subsequently affects the chemical and physical properties of the system. For the case of the rechargeable lithium ion battery, such a surface modification is termed as solid electrolyte interphase (SEI) layer, which has been perceived to play critical role for the stable operation of the batteries. However, the structure and chemical composition of SEI layer and its spatial distribution and dependence on the battery operating condition remain unclear. By using aberration corrected scanning transmission electron microscopy coupled with ultra-high sensitive energy dispersive x-ray spectroscopy, we probed the structure and chemistry of SEI layer on several high voltage cathodes. We show that layer-structured cathodes, when cycled at a high cut off voltage, can form a P-rich SEI layer on their surface, which is a direct evidence of Li-salt (LiPF6) decomposition. Our systematical investigations indicate such cathode/Li-salt side reaction shows strong dependence on structure of the cathode materials, operating voltage and temperature, indicating the feasibility of SEI engineering. These findings provide us valuable insights into the complex interface between the high-voltage cathode and the electrolyte.

  7. Lithium-ion batteries having conformal solid electrolyte layers

    Science.gov (United States)

    Kim, Gi-Heon; Jung, Yoon Seok

    2014-05-27

    Hybrid solid-liquid electrolyte lithium-ion battery devices are disclosed. Certain devices comprise anodes and cathodes conformally coated with an electron insulating and lithium ion conductive solid electrolyte layer.

  8. How Solid-Electrolyte Interphase Forms in Aqueous Electrolytes.

    Science.gov (United States)

    Suo, Liumin; Oh, Dahyun; Lin, Yuxiao; Zhuo, Zengqing; Borodin, Oleg; Gao, Tao; Wang, Fei; Kushima, Akihiro; Wang, Ziqiang; Kim, Ho-Cheol; Qi, Yue; Yang, Wanli; Pan, Feng; Li, Ju; Xu, Kang; Wang, Chunsheng

    2017-12-27

    Solid-electrolyte interphase (SEI) is the key component that enables all advanced electrochemical devices, the best representative of which is Li-ion battery (LIB). It kinetically stabilizes electrolytes at potentials far beyond their thermodynamic stability limits, so that cell reactions could proceed reversibly. Its ad hoc chemistry and formation mechanism has been a topic under intensive investigation since the first commercialization of LIB 25 years ago. Traditionally SEI can only be formed in nonaqueous electrolytes. However, recent efforts successfully transplanted this concept into aqueous media, leading to significant expansion in the electrochemical stability window of aqueous electrolytes from 1.23 V to beyond 4.0 V. This not only made it possible to construct a series of high voltage/energy density aqueous LIBs with unprecedented safety, but also brought high flexibility and even "open configurations" that have been hitherto unavailable for any LIB chemistries. While this new class of aqueous electrolytes has been successfully demonstrated to support diversified battery chemistries, the chemistry and formation mechanism of the key component, an aqueous SEI, has remained virtually unknown. In this work, combining various spectroscopic, electrochemical and computational techniques, we rigorously examined this new interphase, and comprehensively characterized its chemical composition, microstructure and stability in battery environment. A dynamic picture obtained reveals how a dense and protective interphase forms on anode surface under competitive decompositions of salt anion, dissolved ambient gases and water molecule. By establishing basic laws governing the successful formation of an aqueous SEI, the in-depth understanding presented in this work will assist the efforts in tailor-designing better interphases that enable more energetic chemistries operating farther away from equilibria in aqueous media.

  9. Solid electrolyte batteries and fast ion conducting glasses, factors affecting a proposed merger

    Energy Technology Data Exchange (ETDEWEB)

    Uhlmann, D R; Tuller, H L; Button, D P; Valez, M [Massachusetts Inst. of Tech., Cambridge (USA). Dept. of Materials Science and Engineering

    1983-01-01

    The present paper is concerned with advanced battery systems employing glass as a solid electrolyte. After an initial discussion of battery systems employing solid electrolytes, and of the attractive features offered by glass electrolytes, consideration is given to batteries fabricated with such electrolytes and to their performance characteristics. Subsequent discussion is directed to the two principal characteristics of glasses which are critical to their use as solid electrolytes - viz., their electrical conductivity and resistance to corrosive attack. The present state of knowledge in each of these areas is summarized, with particular focus on glasses with exceptionally high ionic conductivities - so-called fast ion conductors or FIC's.

  10. Atomic layer deposition of lithium phosphates as solid-state electrolytes for all-solid-state microbatteries

    International Nuclear Information System (INIS)

    Wang, Biqiong; Liu, Jian; Sun, Qian; Li, Ruying; Sun, Xueliang; Sham, Tsun-Kong

    2014-01-01

    Atomic layer deposition (ALD) has been shown as a powerful technique to build three-dimensional (3D) all-solid-state microbattery, because of its unique advantages in fabricating uniform and pinhole-free thin films in 3D structures. The development of solid-state electrolyte by ALD is a crucial step to achieve the fabrication of 3D all-solid-state microbattery by ALD. In this work, lithium phosphate solid-state electrolytes were grown by ALD at four different temperatures (250, 275, 300, and 325 °C) using two precursors (lithium tert-butoxide and trimethylphosphate). A linear dependence of film thickness on ALD cycle number was observed and uniform growth was achieved at all four temperatures. The growth rate was 0.57, 0.66, 0.69, and 0.72 Å/cycle at deposition temperatures of 250, 275, 300, and 325 °C, respectively. Furthermore, x-ray photoelectron spectroscopy confirmed the compositions and chemical structures of lithium phosphates deposited by ALD. Moreover, the lithium phosphate thin films deposited at 300 °C presented the highest ionic conductivity of 1.73 × 10 −8 S cm −1 at 323 K with ∼0.51 eV activation energy based on the electrochemical impedance spectroscopy. The ionic conductivity was calculated to be 3.3 × 10 −8 S cm −1 at 26 °C (299 K). (paper)

  11. High elastic modulus polymer electrolytes suitable for preventing thermal runaway in lithium batteries

    Science.gov (United States)

    Mullin, Scott; Panday, Ashoutosh; Balsara, Nitash Pervez; Singh, Mohit; Eitouni, Hany Basam; Gomez, Enrique Daniel

    2014-04-22

    A polymer that combines high ionic conductivity with the structural properties required for Li electrode stability is useful as a solid phase electrolyte for high energy density, high cycle life batteries that do not suffer from failures due to side reactions and dendrite growth on the Li electrodes, and other potential applications. The polymer electrolyte includes a linear block copolymer having a conductive linear polymer block with a molecular weight of at least 5000 Daltons, a structural linear polymer block with an elastic modulus in excess of 1.times.10.sup.7 Pa and an ionic conductivity of at least 1.times.10.sup.-5 Scm.sup.-1. The electrolyte is made under dry conditions to achieve the noted characteristics. In another aspect, the electrolyte exhibits a conductivity drop when the temperature of electrolyte increases over a threshold temperature, thereby providing a shutoff mechanism for preventing thermal runaway in lithium battery cells.

  12. Novel chemically cross-linked solid state electrolyte for dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Yin Xiong; Tan Weiwei; Xiang Wangchun; Lin Yuan; Zhang Jingbo; Xiao Xurui; Li Xueping; Zhou Xiaowen; Fang Shibi

    2010-01-01

    Poly(vinylpyridine-co-ethylene glycol methyl ether methacrylate) (P(VP-co-MEOMA)) and α,ω-diiodo poly(ethylene oxide-co-propylene oxide) (I[(EO) 0.8 -co-(PO) 0.2 ] y I) were synthesized and used as chemically cross-linked precursors of the electrolyte for dye-sensitized solar cells. Meanwhile, α-iodo poly(ethylene oxide-co-propylene oxide) methyl ether (CH 3 O[(EO) 0.8 -co-(PO) 0.2 ] x I) was synthesized and added into the electrolyte as an internal plasticizer. Novel polymer electrolyte resulting from chemically cross-linked precursors was obtained by the quaterisation at 90 o C for 30 min. The characteristics for this kind of electrolyte were investigated by means of ionic conductivity, thermogravimetric and photocurrent-voltage. The ambient ionic conductivity was significantly enhanced to 2.3 x 10 -4 S cm -1 after introducing plasticizer, modified-ionic liquid. The weight loss of the solid state electrolyte at 200 o C was 1.8%, and its decomposition temperature was 287 o C. Solid state dye-sensitized solar cell based on chemically cross-linked electrolyte presented an overall conversion efficiency of 2.35% under AM1.5 irradiation (100 mW cm -2 ). The as-fabricated device maintained 88% of its initial performance at room temperature even without sealing for 30 days, showing a good stability.

  13. Wide-Temperature Electrolytes for Lithium-Ion Batteries.

    Science.gov (United States)

    Li, Qiuyan; Jiao, Shuhong; Luo, Langli; Ding, Michael S; Zheng, Jianming; Cartmell, Samuel S; Wang, Chong-Min; Xu, Kang; Zhang, Ji-Guang; Xu, Wu

    2017-06-07

    Formulating electrolytes with solvents of low freezing points and high dielectric constants is a direct approach to extend the service-temperature range of lithium (Li)-ion batteries (LIBs). In this study, we report such wide-temperature electrolyte formulations by optimizing the ethylene carbonate (EC) content in the ternary solvent system of EC, propylene carbonate (PC), and ethyl methyl carbonate (EMC) with LiPF 6 salt and CsPF 6 additive. An extended service-temperature range from -40 to 60 °C was obtained in LIBs with lithium nickel cobalt aluminum oxide (LiNi 0.80 Co 0.15 Al 0.05 O 2 , NCA) as cathode and graphite as anode. The discharge capacities at low temperatures and the cycle life at room temperature and elevated temperatures were systematically investigated together with the ionic conductivity and phase-transition behaviors. The most promising electrolyte formulation was identified as 1.0 M LiPF 6 in EC-PC-EMC (1:1:8 by wt) with 0.05 M CsPF 6 , which was demonstrated in both coin cells of graphite∥NCA and 1 Ah pouch cells of graphite∥LiNi 1/3 Mn 1/3 Co 1/3 O 2 . This optimized electrolyte enables excellent wide-temperature performances, as evidenced by the high capacity retention (68%) at -40 °C and C/5 rate, significantly higher than that (20%) of the conventional LIB electrolyte, and the nearly identical stable cycle life as the conventional LIB electrolyte at room temperature and elevated temperatures up to 60 °C.

  14. High-performance membrane-electrode assembly with an optimal polytetrafluoroethylene content for high-temperature polymer electrolyte membrane fuel cells

    DEFF Research Database (Denmark)

    Jeong, Gisu; Kim, MinJoong; Han, Junyoung

    2016-01-01

    Although high-temperature polymer electrolyte membrane fuel cells (HT-PEMFCs) have a high carbon monoxide tolerance and allow for efficient water management, their practical applications are limited due to their lower performance than conventional low-temperature PEMFCs. Herein, we present a high......-performance membrane-electrode assembly (MEA) with an optimal polytetrafluoroethylene (PTFE) content for HT-PEMFCs. Low or excess PTFE content in the electrode leads to an inefficient electrolyte distribution or severe catalyst agglomeration, respectively, which hinder the formation of triple phase boundaries...

  15. The Influence of Operation Temperature of the Characteristic of Sulfonated Polyether-Ether Ketone Electrolyte Membrane

    International Nuclear Information System (INIS)

    Sri Handayani; Eniya Listiani Dewi

    2008-01-01

    Recently, high temperature Direct Methanol Fuel Cell (DMFC) has been receiving great attention, because provide faster reaction kinetic, the enhance electrode kinetics, reduced size and reduce Pt-based catalyst poisoning by CO. But at high temperature, it will decrease the membrane performance i.e. low proton conductivity affected by humidification and high methanol crossover as happening to Nafion-117 membrane (commercial membrane). To solve this problems, sulfonated polyether-ether ketone and composite (silica additive) as electrolyte membrane at high temperature DMFC was tried to use. In this research, sPEEK with sulfonation degree (SD) 47 % and 68 % and addition silica 3 wt % were used as electrolyte membranes. Proton conductivity and methanol permeability of these membranes were measured at various temperatures (25, 50, 90 and 140 C ). Proton conductivity of membranes were measured by standard bridge impedance spectroscopy (LCR-meter, HIOKI 3522-50) and it was found about 0.01-0.04 S/cm. Methanol permeability of membranes were investigated by diffusion cell and gave the result about 10 - 6 - 10 - 7cm 2 /s. The best sPEEK membrane was sPEEK membrane with SD 68 % and the addition of silica 3 wt%, signed by highest selectivity value (ratio proton conductivity to methanol permeability). Therefore, electrolyte membrane based sulfonated polyether-ether ketone (SD 68 %) with silica could be used at high temperature which give promising as solid electrolyte membrane in application high temperature DMFC. (author)

  16. Fermi Potential across Working Solid Oxide Cells with Zirconia or Ceria Electrolytes

    DEFF Research Database (Denmark)

    Jacobsen, Torben; Chatzichristodoulou, Christodoulos; Mogensen, Mogens Bjerg

    2014-01-01

    A solid electrolyte will always possess a finite electronic conductivity, in particular electrolytes like doped ceria that easily get reduced and become mixed ionic and electronic conductors. This given rise too high leak currents through the solid oxide cell (SOC). Especially, problems have been...... driving the O2-ions is not the Fermi potential, which is the potential of the electrons, but the Galvani potential (or inner potential) (1). The concepts of potentials describing the electrical situation of a solid electrolyte is shown i Fig. 1, and an example of the Fermi potential (π) and Galvani...

  17. Application of sol gel spin coated yttria-stabilized zirconia layers for the improvement of solid oxide fuel cell electrolytes produced by atmospheric plasma spraying

    Energy Technology Data Exchange (ETDEWEB)

    Rose, Lars [University of British Columbia, Department of Materials Engineering, 309-6350 Stores Road, Vancouver, British Columbia, V6T 1Z4 (Canada); National Research Council, Institute for Fuel Cell Innovation, 4250 Wesbrook Mall, Vancouver, British Columbia, V6T 1W5 (Canada); Kesler, Olivera [National Research Council, Institute for Fuel Cell Innovation, 4250 Wesbrook Mall, Vancouver, British Columbia, V6T 1W5 (Canada); University of British Columbia, Department of Mechanical Engineering, 2054-6250 Applied Science Lane, Vancouver, British Columbia, V6T 1Z4 (Canada); Tang, Zhaolin; Burgess, Alan [Northwest Mettech Corp., 467 Mountain Hwy, North Vancouver, British Columbia, V7J 2L3 (Canada)

    2007-05-15

    Due to its high thermal stability and purely oxide ionic conductivity, yttria-stabilized zirconia (YSZ) is the most commonly used electrolyte material for solid oxide fuel cells (SOFCs). Standard electrolyte fabrication techniques for planar SOFCs involve wet ceramic techniques such as tape-casting or screen printing, requiring sintering steps at temperatures above 1300 C. Plasma spraying (PS) may provide a more rapid and cost efficient method to produce SOFCs without sintering. High-temperature sintering requires long processing times and can lead to oxidation of metal alloys used as mechanical supports, or to detrimental interreactions between the electrolyte and adjacent electrode layers. This study investigates the use of spin coated sol gel derived YSZ precursor solutions to fill the pores present in plasma sprayed YSZ layers, and to enhance the surface area for reaction at the electrolyte-cathode interface, without the use of high-temperature firing steps. The effects of different plasma conditions and sol concentrations and solid loadings on the gas permeability and fuel cell performance have been investigated. (author)

  18. Electrochemical performance of all-solid-state lithium batteries using inorganic lithium garnets particulate reinforced PEO/LiClO4 electrolyte

    International Nuclear Information System (INIS)

    Cheng, Samson Ho-Sum; He, Kang-Qiang; Liu, Ying; Zha, Jun-Wei; Kamruzzaman, Md; Ma, Robin Lok-Wang; Dang, Zhi-Min; Li, Robert K.Y.; Chung, C.Y.

    2017-01-01

    All-solid-state batteries are proposed to have ultimate safety and higher power and energy densities over conventional lithium ion batteries with liquid electrolytes. The Li ion conductivity and interfacial resistance between electrolyte and electrodes are the major bottleneck of the development of all-solid-state batteries for practical uses. Here, we reported a novel composite electrolyte which is composed of uniform distributed Li ion conducting Li 6.4 La 3 Zr 1.4 Ta 0.6 O 12 (LLZTO) fillers in PEO/LiClO 4 matrix. The EO:Li + ratio of 15:1 is being used to achieve lower interfacial resistance between electrolyte and electrodes through the melting process. The composite electrolyte is fabricated by simple solution casting method, which is more advantageous comparing with high temperature sintering or sol-gel method used in the fabrication of ceramic electrolytes. The composite electrolyte exhibits good Li ion conductivity of 4.8 × 10 −4 Scm −1 at 60 °C and excellent interfacial stability against Li metal. The all-solid-state lithium battery using this composite electrolyte shows a specific capacity of 140mAhg −1 and an unprecedentedly high capacity retention of 83% after 500 cycles at 60 °C and the rate of 1C. It is concluded that good electrode/electrolyte interfacial stability and contact as well as fast Li ion conductivity obtained by the addition of active garnet particulates to PEO/LiClO 4 matrix are essential criteria for good charge/discharge performance of all-solid-state lithium batteries.

  19. Fabrication of thin yttria-stabilized-zirconia dense electrolyte layers by inkjet printing for high performing solid oxide fuel cells

    DEFF Research Database (Denmark)

    Esposito, Vincenzo; Gadea, Christophe; Hjelm, Johan

    2015-01-01

    In this work, we present how a low-cost HP Deskjet 1000 inkjet printer was used to fabricate a 1.2 mm thin, dense and gas tight 16 cm2 solid oxide fuel cells (SOFC) electrolyte. The electrolyte was printed using an ink made of highly diluted (

  20. The conductivity and stability of polymer composite solid electrolyte upon addition of graphene

    Science.gov (United States)

    Hamid, Farzana Abd.; Salleh, Fauzani Md.; Mohamed, Nor Sabirin

    2017-12-01

    The effect of graphene composition on the conductivity and stability of polymer composite solid electrolyte was studied. These polymer composite solid electrolytes were synthesized by sol gel method and prepared via the solution-casting technique. The compositions of graphene were varied between 10 wt% to 70 wt%. The changes in the functional group of polymer composite after the addition of graphene were characterized by Fourier Transform InfraRed spectroscopy. Electrochemical impedance spectroscopy was conducted at ambient temperature in the frequency range of 10 Hz to 1 MHz to study the conductivity of the polymer composite. The highest conductivity was obtained at 60 wt% graphene with the value of 2.85×10-4 Scm-1. Sample without the addition of graphene showed the lowest conductivity value of 1.77×10-7 Scm-1 and acts as an insulator. The high conductivity at 60 wt% graphene loading is related to dehydration of cellulose. This is supported by the FTIR spectrum where the absorption peaks of C-O stretching vibrations of polymer composite is weakened and the hydroxyl group is slightly shifted compared to the FTIR spectrum without the addition of graphene. Linear sweep voltammetry results demonstrated that the polymer composite solid electrolyte exhibited electrochemical stability up to 3.2 V.

  1. Stability of the solid electrolyte Li{sub 3}OBr to common battery solvents

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, D.J. [Department of Engineering Technology, College of Engineering and Engineering Technology, Northern Illinois University, 301B Still Gym, DeKalb, IL 60115 (United States); Hubaud, A.A. [Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439-4837 (United States); Vaughey, J.T., E-mail: vaughey@anl.gov [Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439-4837 (United States)

    2014-01-01

    Graphical abstract: The stability of the anti-perovskite phase Li{sub 3}OBr has been assessed in a variety of battery solvents. - Highlights: • Lithium stable solid electrolyte Li{sub 3}OBr unstable to polar organic solvents. • Solvation with no dissolution destroys long-range structure. • Ion exchange with protons observed. - Abstract: Recently a new class of solid lithium ion conductors was reported based on the anti-perovskite structure, notably Li{sub 3}OCl and Li{sub 3}OBr. For many beyond lithium-ion battery uses, the solid electrolyte is envisioned to be in direct contact with liquid electrolytes and lithium metal. In this study we evaluated the stability of the Li{sub 3}OBr phase against common battery solvents electrolytes, including diethylcarbonate (DEC) and dimethylcarbonate (DMC), as well as a LiPF{sub 6} containing commercial electrolyte. In contact with battery-grade organic solvents, Li{sub 3}OBr was typically found to be insoluble but lost its crystallinity and reacted with available protons and in some cases with the solvent. A low temperature heat treatment was able to restore crystallinity of the samples; however evidence of proton ion exchange was conserved.

  2. Solid polymer electrolyte composite membrane comprising a porous support and a solid polymer electrolyte including a dispersed reduced noble metal or noble metal oxide

    Science.gov (United States)

    Liu, Han; Mittelsteadt, Cortney K; Norman, Timothy J; Griffith, Arthur E; LaConti, Anthony B

    2015-02-24

    A solid polymer electrolyte composite membrane and method of manufacturing the same. According to one embodiment, the composite membrane comprises a thin, rigid, dimensionally-stable, non-electrically-conducting support, the support having a plurality of cylindrical, straight-through pores extending perpendicularly between opposing top and bottom surfaces of the support. The pores are unevenly distributed, with some or no pores located along the periphery and more pores located centrally. The pores are completely filled with a solid polymer electrolyte, the solid polymer electrolyte including a dispersed reduced noble metal or noble metal oxide. The solid polymer electrolyte may also be deposited over the top and/or bottom surfaces of the support.

  3. Ion transport property studies on PEO-PVP blended solid polymer electrolyte membranes

    International Nuclear Information System (INIS)

    Chandra, Angesh; Agrawal, R C; Mahipal, Y K

    2009-01-01

    The ion transport property studies on Ag + ion conducting PEO-PVP blended solid polymer electrolyte (SPE) membranes, (1 - x)[90PEO : 10AgNO 3 ] : xPVP, where x = 0, 1, 2, 3, 5, 7, 10 (wt%), are reported. SPE films were caste using a novel hot-press technique instead of the traditional solution cast method. The conventional solid polymeric electrolyte (SPE) film, (90PEO : 10AgNO 3 ), also prepared by the hot-press method and identified as the highest conducting composition at room temperature on the basis of PEO-AgNO 3 -salt concentration dependent conductivity studies, was used as the first-phase polymer electrolyte host into which PVP were dispersed as second-phase dispersoid. A two-fold conductivity enhancement from that of the PEO host could be achieved at room temperature for PVP blended SPE film composition: 98(90PEO : 10AgNO 3 ) : 2PVP. This has been referred to as optimum conducting composition (OCC). The formation of SPE membranes and material characterizations were done with the help of the XRD and DSC techniques. The ion transport mechanism in this SPE OCC has been characterized with the help of basic ionic parameters, namely ionic conductivity (σ), ionic mobility (μ), mobile ion concentration (n) and ionic transference number (t ion ). Solid-state polymeric batteries were fabricated using OCC as electrolyte and the cell-potential discharge characteristics were studied under different load conditions.

  4. Polybenzimidazoles based on high temperature polymer electrolyte fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Linares Leon, Jose Joaquin; Camargo, Ana Paula M.; Ashino, Natalia M.; Morgado, Daniella L.; Frollini, Elisabeth; Paganin, Valdecir A.; Gonzalez, Ernesto Rafael [Universidade de Sao Paulo (IQSC/USP), Sao Carlos, SP (Brazil); Bajo, Justo Lobato [University of Castilla-La Mancha, Ciudad Real (Spain). Dept. of Chemical Engineering

    2010-07-01

    This work presents an interesting approach in order to enhance the performance of Polymer Electrolyte Membrane Fuel Cells (PEMFC) by means of an increase in the operational temperature. For this, two polymeric materials, Poly(2,5-bibenzimidazole) (ABPBI) and Poly[2,2'-(m-phenyl en)-5,5' bib enzimidazol] (PBI), impregnated with phosphoric acid have been utilized. These have shown excellent properties, such as thermal stability above 500 deg C, reasonably high conductivity when impregnated with H{sub 3}PO{sub 4} and a low permeability to alcohols compared to Nafion. Preliminary fuel cells measurements on hydrogen based Polymer Electrolyte Membrane Fuel Cell (PEMFC) displayed an interestingly reasonable good fuel cell performance, a quite reduced loss when the hydrogen stream was polluted with carbon monoxide, and finally, when the system was tested with an ethanol/water (E/W) fuel, it displayed quite promising results that allows placing this system as an attractive option in order to increase the cell performance and deal with the typical limitations of low temperature Nafion-based PEMFC. (author)

  5. Concept of polymer alloy electrolytes: towards room temperature operation of lithium-polymer batteries

    International Nuclear Information System (INIS)

    Noda, Kazuhiro; Yasuda, Toshikazu; Nishi, Yoshio

    2004-01-01

    Polymer alloy technique is very powerful tool to tune the ionic conductivity and mechanical strength of polymer electrolyte. A semi-interpenetrating polymer network (semi-IPN) polymer alloy electrolyte, composed of non-cross-linkable siloxane-based polymer and cross-linked 3D network polymer, was prepared. Such polymer alloy electrolyte has quite high ionic conductivity (more than 10 -4 Scm -1 at 25 o C and 10 -5 Scm -1 at -10 o C) and mechanical strength as a separator film with a wide electrochemical stability window. A lithium metal/semi-IPN polymer alloy solid state electrolyte/LiCoO 2 cell demonstrated promising cycle performance with room temperature operation of the energy density of 300Wh/L and better rate performance than conventional PEO based lithium polymer battery ever reported

  6. SmBaCoCuO5+x as cathode material based on GDC electrolyte for intermediate-temperature solid oxide fuel cells

    International Nuclear Information System (INIS)

    Lue Shiquan; Long, Guohui; Ji Yuan; Meng Xiangwei; Zhao Hongyuan; Sun Cuicui

    2011-01-01

    Research highlights: → We synthesize a new kind of layered perovskite SmBaCoCuO 5+x (SBCCO) as a cathode material of a solid oxide fuel cell. → There are some reports on the performance of cathodes in proton-conducting SOFCs based on BaCe 0.8 Sm 0.2 O 3-δ electrolyte. → However, to the best of our knowledge, the performance of SBCCO cathodes in oxygen-ion conducting SOFCs has not been reported to date. → In this work, the ceramic powder SBCCO is examined as a cathode for IT-SOFCs based on Ce 0.9 Gd 0.1 O 1.95 (GDC) electrolyte. - Abstract: The performance of SmBaCoCuO 5+x (SBCCO) cathode has been investigated for their potential utilization in intermediate-temperature solid oxide fuel cells (IT-SOFCs). The powder X-ray diffraction (XRD), thermal expansion and electrochemical performance on Ce 0.9 Gd 0.1 O 1.95 (GDC) electrolyte are evaluated. XRD results show that there is no chemical reaction between SBCCO cathode and GDC electrolyte when the temperature is below 950 o C. The thermal expansion coefficient (TEC) value of SBCCO is 15.53 x 10 -6 K -1 , which is ∼23% lower than the TEC of the SmBaCo 2 O 5+x (SBCO) sample. The electrochemical impedance spectra reveals that SBCCO symmetrical half-cells by sintering at 950 deg. C has the best electrochemical performance and the area specific resistance (ASR) of SBCCO cathode is as low as 0.086 Ω cm 2 at 800 o C. An electrolyte-supported fuel cell generates good performance with the maximum power density of 517 mW cm -2 at 800 deg. C in H 2 . Preliminary results indicate that SBCCO is promising as a cathode for IT-SOFCs.

  7. Recent Developments of All-Solid-State Lithium Secondary Batteries with Sulfide Inorganic Electrolytes.

    Science.gov (United States)

    Xu, Ruochen; Zhang, Shengzhao; Wang, Xiuli; Xia, Yan; Xia, Xinhui; Wu, Jianbo; Gu, Changdong; Tu, Jiangping

    2018-04-20

    Due to the increasing demand of security and energy density, all-solid-state lithium ion batteries have become the promising next-generation energy storage devices to replace the traditional liquid batteries with flammable organic electrolytes. In this Minireview, we focus on the recent developments of sulfide inorganic electrolytes for all-solid-state batteries. The challenges of assembling bulk-type all-solid-state batteries for industrialization are discussed, including low ionic conductivity of the present sulfide electrolytes, high interfacial resistance and poor compatibility between electrolytes and electrodes. Many efforts have been focused on the solutions for these issues. Although some progresses have been achieved, it is still far away from practical application. The perspectives for future research on all-solid-state lithium ion batteries are presented. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Functional Polymer Electrolytes for Multidimensional All-Solid-State Lithium Batteries

    OpenAIRE

    Sun, Bing

    2015-01-01

    Pressing demands for high power and high energy densities in novel electrical energy storage units have caused reconsiderations regarding both the choice of battery chemistry and design. Practical concerns originating in the conventional use of flammable liquid electrolytes have renewed the interests of using solvent-free polymer electrolytes (SPEs) as solid ionic conductors for safer batteries. In this thesis work, SPEs developed from two polymer host structures, polyethers and polycarbonate...

  9. Some regularities in aging of solid oxide electrolytes ZrO2+Y2O3

    International Nuclear Information System (INIS)

    Vlasov, A.N.

    1983-01-01

    A study was made on the temperature effect on the rate and depth of aging of solid oxide electrolytes ZrO 2 +Y 2 O 3 and ZrO 2 +Ho 2 O 3 , stabilized by 10-15 mol.% R 2 O 3 following isothermal hold-up during 2000-3000 h in the 725-1550 deg C range in oxidizing medium. It was shown that solid electrolyte aging proceeds only at temperatures below a certain boundary value. The depth of complete aging at that increases with the R 2 O 3 concentration and a temperature decrease. The aging rate depends substantially on both temperature and concentration of a stabilizing addition. A decrease in the electric conductivity with time is accompanied by an increase in the conductivity activation energy

  10. High temperature polymer electrolyte membrane fuel cells: Approaches, status, and perspectives

    DEFF Research Database (Denmark)

    This book is a comprehensive review of high-temperature polymer electrolyte membrane fuel cells (PEMFCs). PEMFCs are the preferred fuel cells for a variety of applications such as automobiles, cogeneration of heat and power units, emergency power and portable electronics. The first 5 chapters...... of and motivated extensive research activity in the field. The last 11 chapters summarize the state-of-the-art of technological development of high temperature-PEMFCs based on acid doped PBI membranes including catalysts, electrodes, MEAs, bipolar plates, modelling, stacking, diagnostics and applications....

  11. Bioinspired Ultrastrong Solid Electrolytes with Fast Proton Conduction along 2D Channels.

    Science.gov (United States)

    He, Guangwei; Xu, Mingzhao; Zhao, Jing; Jiang, Shengtao; Wang, Shaofei; Li, Zhen; He, Xueyi; Huang, Tong; Cao, Moyuan; Wu, Hong; Guiver, Michael D; Jiang, Zhongyi

    2017-07-01

    Solid electrolytes have attracted much attention due to their great prospects in a number of energy- and environment-related applications including fuel cells. Fast ion transport and superior mechanical properties of solid electrolytes are both of critical significance for these devices to operate with high efficiency and long-term stability. To address a common tradeoff relationship between ionic conductivity and mechanical properties, electrolyte membranes with proton-conducting 2D channels and nacre-inspired architecture are reported. An unprecedented combination of high proton conductivity (326 mS cm -1 at 80 °C) and superior mechanical properties (tensile strength of 250 MPa) are achieved due to the integration of exceptionally continuous 2D channels and nacre-inspired brick-and-mortar architecture into one materials system. Moreover, the membrane exhibits higher power density than Nafion 212 membrane, but with a comparative weight of only ≈0.1, indicating potential savings in system weight and cost. Considering the extraordinary properties and independent tunability of ion conduction and mechanical properties, this bioinspired approach may pave the way for the design of next-generation high-performance solid electrolytes with nacre-like architecture. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. All-solid-state lithium-sulfur battery based on a nanoconfined LiBH4 electrolyte

    DEFF Research Database (Denmark)

    Das, Supti; Ngene, Peter; Norby, Poul

    2016-01-01

    In this work we characterize all-solid-state lithium-sulfur batteries based on nano-confined LiBH4 in mesoporous silica as solid electrolytes. The nano-confined LiBH4 has fast ionic lithium conductivity at room temperature, 0.1 mScm-1, negligible electronic conductivity and its cationic transport...... number (t+ = 0.96), close to unity, demonstrates a purely cationic conductor. The electrolyte has an excellent stability against lithium metal. The behavior of the batteries is studied by cyclic voltammetry and repeated charge/discharge cycles in galvanostatic conditions. The batteries show very good...

  13. About Error in Measuring Oxygen Concentration by Solid-Electrolyte Sensors

    Directory of Open Access Journals (Sweden)

    V. I. Nazarov

    2008-01-01

    Full Text Available The paper evaluates additional errors while measuring oxygen concentration in a gas mixture by a solid-electrolyte cell. Experimental dependences of additional errors caused by changes in temperature in a sensor zone, discharge of gas mixture supplied to a sensor zone, partial pressure in the gas mixture and fluctuations in oxygen concentrations in the air.

  14. Flexible poly(ethylene carbonate)/garnet composite solid electrolyte reinforced by poly(vinylidene fluoride-hexafluoropropylene) for lithium metal batteries

    Science.gov (United States)

    He, Zijian; Chen, Long; Zhang, Bochen; Liu, Yongchang; Fan, Li-Zhen

    2018-07-01

    Solid-state electrolytes with high ionic conductivities, great flexibility, and easy processability are needed for high-performance solid-state rechargeable lithium batteries. In this work, we synthesize nanosized cubic Li6.25Al0.25La3Zr2O12 (LLZO) by solution combustion method and develop a flexible garnet-based composite solid electrolyte composed of LLZO, poly(ethylene carbonate) (PEC), poly(vinylidene fluoride-hexafluoropropylene) (P(VdF-HFP) and lithium bis(fluorosulfonyl)imide (LiFSI)). In the flexible composite solid electrolytes, LLZO nanoparticles, as ceramic matrix, have a positive effect on ionic conductivities and lithium ion transference number (tLi+). PEC, as a fast ion-conducting polymer, possesses high tLi+ inherently. P(VdF-HFP), as a binder, can strengthen mechanical properties. Consequently, the as-prepared composite solid electrolyte demonstrates high tLi+ (0.82) and superb thermal stability (remaining LLZO matrix after burning). All-solid-state LiFePO4|Li cells assembled with the flexible composite solid electrolyte deliver a high initial discharge specific capacity of 121.4 mAh g-1 and good cycling stability at 55 °C.

  15. Fabrication of All-Solid-State Lithium-Ion Cells Using Three-Dimensionally Structured Solid Electrolyte Li{sub 7}La{sub 3}Zr{sub 2}O{sub 12} Pellets

    Energy Technology Data Exchange (ETDEWEB)

    Shoji, Mao; Munakata, Hirokazu; Kanamura, Kiyoshi, E-mail: kanamura@tmu.ac.jp [Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, Tokyo (Japan)

    2016-08-30

    All-solid-state lithium-ion batteries using Li{sup +}-ion conducting ceramic electrolytes have been focused on as attractive future batteries for electric vehicles and renewable energy conversion systems because high safety can be realized due to non-flammability of ceramic electrolytes. In addition, a higher volumetric energy density than that of current lithium-ion batteries is expected since the all-solid-state lithium-ion batteries can be made in bipolar cell configurations. However, the special ideas and techniques based on ceramic processing are required to construct the electrochemical interface for all-solid-state lithium-ion batteries since the battery development has been done so far based on liquid electrolyte system over 100 years. As one of the promising approaches to develop practical all-solid-state batteries, we have been focusing on three-dimensionally (3D) structured cell configurations such as an interdigitated combination of 3D pillars of cathode and anode, which can be realized by using solid electrolyte membranes with hole-array structures. The application of such kinds of 3D structures effectively increases the interface between solid electrode and solid electrolyte per unit volume, lowering the internal resistance of all-solid-state lithium-ion batteries. In this study, Li{sub 6.25}Al{sub 0.25}La{sub 3}Zr{sub 2}O{sub 12} (LLZAl), which is a Al-doped Li{sub 7}La{sub 3}Zr{sub 2}O{sub 12} (LLZ) with Li{sup +}-ion conductivity of ~10{sup –4} S ⋅cm{sup −1} at room temperature and high stability against lithium-metal, was used as a solid electrolyte, and its pellets with 700 μm depth holes in 700 μm × 700 μm area were fabricated to construct 3D-structured all-solid-state batteries with LiCoO{sub 2}/LLZAl/lithium-metal configuration. It is expected that the LiCoO{sub 2}–LLZAl interface is formed by point-to-point contact even when the LLZAl pellet with 3D hole-array structure is applied. Therefore, Li{sub 3}BO{sub 3}, which is a

  16. CONDUCTIVITY STUDIES OF (PEO +KHCO3 SOLID ELECTROLYTE SYSTEM AND ITS APPLICATION AS AN ELECTROCHEMICAL CELL

    Directory of Open Access Journals (Sweden)

    K. VIJAY KUMAR

    2010-06-01

    Full Text Available Solid polymer electrolyte system, polyethylene oxide (PEO complexed with potassium bicarbonate (KHCO3 salt was prepared by solution-cast technique. Several experimental techniques such as infrared radiation (IR, differential scanning calorimeter (DSC, and composition dependence conductivity, temperature dependence conductivity in the temperature range of 308–368 K and transport number measurements were employed to characterize this polymer electrolyte system. The conductivity of the (PEO+KHCO3 electrolyte was found to be about 3 times larger than that of pure PEO at room temperature. The transference data indicated that the charge transport in these polymer electrolyte systems is predominantly due to K+ ions. Using this polymer electrolyte an electrochemical cell with configuration K+/(PEO+KHCO3/(I2+C+electrolyte was fabricated and its discharge characteristics are studied. A number of other cell parameters associated with the cell were evaluated and are reported in this paper.

  17. Electrode Design for Low Temperature Direct-Hydrocarbon Solid Oxide Fuel Cells

    Science.gov (United States)

    Chen, Fanglin (Inventor); Zhao, Fei (Inventor); Liu, Qiang (Inventor)

    2015-01-01

    In certain embodiments of the present disclosure, a solid oxide fuel cell is described. The solid oxide fuel cell includes a hierarchically porous cathode support having an impregnated cobaltite cathode deposited thereon, an electrolyte, and an anode support. The anode support includes hydrocarbon oxidation catalyst deposited thereon, wherein the cathode support, electrolyte, and anode support are joined together and wherein the solid oxide fuel cell operates a temperature of 600.degree. C. or less.

  18. Electrode design for low temperature direct-hydrocarbon solid oxide fuel cells

    Science.gov (United States)

    Chen, Fanglin; Zhao, Fei; Liu, Qiang

    2015-10-06

    In certain embodiments of the present disclosure, a solid oxide fuel cell is described. The solid oxide fuel cell includes a hierarchically porous cathode support having an impregnated cobaltite cathode deposited thereon, an electrolyte, and an anode support. The anode support includes hydrocarbon oxidation catalyst deposited thereon, wherein the cathode support, electrolyte, and anode support are joined together and wherein the solid oxide fuel cell operates a temperature of 600.degree. C. or less.

  19. Materials Development for All-Solid-State Battery Electrolytes

    Science.gov (United States)

    Wang, Weimin

    Solid electrolytes in all solid-state batteries, provide higher attainable energy density and improved safety. Ideal solid electrolytes require high ionic conductivity, a high elastic modulus to prevent dendrite growth, chemical compatibility with electrodes, and ease of fabrication into thin films. Although various materials types, including polymers, ceramics, and composites, are under intense investigation, unifying design principles have not been identified. In this thesis, we study the key ion transport mechanisms in relation to the structural characteristics of polymers and glassy solids, and apply derived material design strategies to develop polymer-silica hybrid materials with improved electrolyte performance characteristics. Poly(ethylene) oxide-based solid electrolytes containing ceramic nanoparticles are attractive alternatives to liquid electrolytes for high-energy density Li batteries. We compare the effect of Li1.3Al0.3Ti 1.7(PO4)3 active nanoparticles, passive TiO 2 nanoparticles and fumed silica. Up to two orders of magnitude enhancement in ionic conductivity is observed for composites with active nanoparticles, attributed to cation migration through a percolating interphase region that develops around the active nanoparticles, even at low nanoparticle loading. We investigate the structural origin of elastic properties and ionic migration mechanisms in sodium borosilicate and sodium borogermanate glass electrolyte system. A new statistical thermodynamic reaction equilibrium model is used in combination with data from nuclear magnetic resonance and Brillouin light scattering measurements to determine network structural unit fractions. The highly coordinated structural units are found to be predominantly responsible for effective mechanical load transmission, by establishing three-dimensional covalent connectivity. A strong correlation exists between bulk modulus and the activation energy for ion conduction. We describe the activated process in

  20. All-Solid-State Lithium-Sulfur Battery based on a nanoconfined LiBH 4 Electrolyte

    NARCIS (Netherlands)

    Das, Supti; Ngene, Peter; Norby, Poul; Vegge, Tejs; de Jongh, P.E.; Blanchard, Didier

    2016-01-01

    In this work we characterize all-solid-state lithium-sulfur batteries based on nano-confined LiBH4in mesoporous silica as solid electrolytes. The nano-confined LiBH4has fast ionic lithium conductivity at room temperature, 0.1 mScm-1, negligible electronic conductivity and its cationic transport

  1. Interactions between lanthanum gallate based solid electrolyte and ceria

    Energy Technology Data Exchange (ETDEWEB)

    Hrovat, M.; Ahmad-Khanlou, A.; Samardzija, Z.; Holc, J.

    1999-10-01

    Possible interactions between La{sub 0.9}Sr{sub 0.1}Ga{sub 0.8}Mg{sub 0.2}O{sub 2.85} and Gd{sub 2}O{sub 3}-doped CeO{sub 2} (solid electrolyte and anode binding materials, respectively, for solid oxide fuel cells (SOFC)) at 1,300 C were studied with diffusion couples and fired powder mixtures. The SrLaGa{sub 3}O{sub 7} compound was detected and its formation was attributed to the diffusion of La{sub 2}O{sub 3} from La{sub 0.9}Sr{sub 0.1}Ga{sub 0.8}Mg{sub 0.2}O{sub 2.85} into Ce{sub 1{minus}x}La{sub x}O{sub 2{minus}x/2} solid solution. As the resistivity of SrLaGa{sub 3}O{sub 7} is rather high, around 1 M{center_dot}ohm at 800 C, its presence in the solid electrolyte/anode interface could significantly increase the internal resistivity of an SOFC.

  2. Three-dimensional ionic conduction in the strained electrolytes of solid oxide fuel cells

    International Nuclear Information System (INIS)

    Han, Yupei; Zou, Minda; Lv, Weiqiang; He, Weidong; Mao, Yiwu; Wang, Wei

    2016-01-01

    Flexible power sources including fuel cells and batteries are the key to realizing flexible electronic devices with pronounced foldability. To understand the bending effects in these devices, theoretical analysis on three-dimensional (3-D) lattice bending is necessary. In this report, we derive a 3-D analytical model to analyze the effects of electrolyte crystal bending on ionic conductivity in flexible solid-state batteries/fuel cells. By employing solid oxide fuel cells as a materials' platform, the intrinsic parameters of bent electrolyte materials, including lattice constant, Young's modulus, and Poisson ratio, are evaluated. Our work facilitates the rational design of highly efficient flexible electrolytes for high-performance flexible device applications.

  3. Electrode-Impregnable and Cross-Linkable Poly(ethylene oxide)-Poly(propylene oxide)-Poly(ethylene oxide) Triblock Polymer Electrolytes with High Ionic Conductivity and a Large Voltage Window for Flexible Solid-State Supercapacitors.

    Science.gov (United States)

    Han, Jae Hee; Lee, Jang Yong; Suh, Dong Hack; Hong, Young Taik; Kim, Tae-Ho

    2017-10-04

    We present cross-linkable precursor-type gel polymer electrolytes (GPEs) that have large ionic liquid uptake capability, can easily penetrate electrodes, have high ion conductivity, and are mechanically strong as high-performance, flexible all-solid-state supercapacitors (SC). Our polymer precursors feature a hydrophilic-hydrophobic poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) triblock main-chain structure and trifunctional silane end groups that can be multi-cross-linked with each other through a sol-gel process. The cross-linked solid-state electrolyte film with moderate IL content (200 wt %) shows a well-balanced combination of excellent ionic conductivity (5.0 × 10 -3 S cm -1 ) and good mechanical stability (maximum strain = 194%). Moreover, our polymer electrolytes have various advantages including high thermal stability (decomposition temperature > 330 °C) and the capability to impregnate electrodes to form an excellent electrode-electrolyte interface due to the very low viscosity of the precursors. By assembling our GPE-impregnated electrodes and solid-state GPE film, we demonstrate an all-solid-state SC that can operate at 3 V and provides an improved specific capacitance (112.3 F g -1 at 0.1 A g -1 ), better rate capability (64% capacity retention until 20 A g -1 ), and excellent cycle stability (95% capacitance decay over 10 000 charge/discharge cycles) compared with those of a reference SC using a conventional PEO electrolyte. Finally, flexible SCs with a high energy density (22.6 W h kg -1 at 1 A g -1 ) and an excellent flexibility (>93% capacitance retention after 5000 bending cycles) can successfully be obtained.

  4. Study of gadolinia-doped ceria solid electrolyte surface by XPS

    International Nuclear Information System (INIS)

    Datta, Pradyot; Majewski, Peter; Aldinger, Fritz

    2009-01-01

    Gadolinia-doped ceria (CGO) is an important material to be used as electrolyte for solid oxide fuel cell for intermediate temperature operation. Ceria doped with 10 mol% gadolinia (Ce 0.9 Gd 0.1 O 1.95 ) was prepared by conventional solid state synthesis and found to be single phase by room temperature X-ray diffraction (XRD). The chemical states of the surface of the prepared sample were analyzed by X-ray photoelectron spectroscopy (XPS). Though Gd was present in its characteristic chemical state, Ce was found in both Ce 4+ and Ce 3+ states. Presence of Ce 3+ state was ascribed to the differential yield of oxygen atoms in the sputtering process

  5. Boron cross-linked graphene oxide/polyvinyl alcohol nanocomposite gel electrolyte for flexible solid-state electric double layer capacitor with high performance

    International Nuclear Information System (INIS)

    Huang, Yi-Fu; Wu, Peng-Fei; Zhang, Ming-Qiu; Ruan, Wen-Hong; Giannelis, Emmanuel P.

    2014-01-01

    Highlights: • Gel electrolyte is prepared and used in electric double layer capacitor. • Insertion of boron crosslinks into GO agglomerates opens channels for ion migration. • Solid supercapacitors show excellent specific capacitance and cycle stability. • Nanocomposite electrolyte shows better thermal stability and mechanical properties. - Abstract: A new family of boron cross-linked graphene oxide/polyvinyl alcohol (GO-B-PVA) nanocomposite gels is prepared by freeze-thaw/boron cross-linking method. Then the gel electrolytes saturated with KOH solution are assembled into electric double layer capacitors (EDLCs). Structure, thermal and mechanical properties of GO-B-PVA are explored. The electrochemical properties of EDLCs using GO-B-PVA/KOH are investigated, and compared with those using GO-PVA/KOH gel or KOH solution electrolyte. FTIR shows that boron cross-links are introduced into GO-PVA, while the boronic structure inserted into agglomerated GO sheets is demonstrated by DMA analysis. The synergy effect of the GO and the boron crosslinking benefits for ionic conductivity due to unblocking ion channels, and for improvement of thermal stability and mechanical properties of the electrolytes. Higher specific capacitance and better cycle stability of EDLCs are obtained by using the GO-B-PVA/KOH electrolyte, especially the one at higher GO content. The nanocomposite gel electrolytes with excellent electrochemical properties and solid-like character are candidates for the industrial application in high-performance flexible solid-state EDLCs

  6. Development of solid electrolytes for water electrolysis at intermediate temperatures. Task 3 report; Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Linkous, C.A.; Anderson, R.; Kopitzke, R.W.

    1995-12-01

    This project is an attempt to synthesize and fabricate proton exchange membranes for hydrogen production via water electrolysis that can take advantage of the better kinetic and thermodynamic conditions that exist at higher temperatures. Current PEM technology is limited to the 125--150 C range. Based on previous work evaluating thermohydrolytic stability, some 5 families of polymers were chosen as viable candidates: polyether ketones, polyether sulfones, fluorinated polyimides, polybenzimidazoles, and polyphenyl quinoxalines. Several of these have been converted into ionomers via sulfonation and fashioned into membranes for evaluation. In particular, the sulfonated polyetheretherketone, or SPEEK, was tested for water uptake, thermo-conductimetric analysis, and performance as the solid electrolyte material in an electrolysis cell. Results comparable to commercial perfluorocarbon sulfonates were obtained.

  7. Ionic conductivity in polyethylene-b-poly(ethylene oxide)/lithium perchlorate solid polymer electrolytes

    International Nuclear Information System (INIS)

    Guilherme, L.A.; Borges, R.S.; Moraes, E. Mara S.; Silva, G. Goulart; Pimenta, M.A.; Marletta, A.; Silva, R.A.

    2007-01-01

    The ionic conductivity and phase arrangement of solid polymeric electrolytes based on the block copolymer polyethylene-b-poly(ethylene oxide) (PE-b-PEO) and LiClO 4 have been investigated. One set of electrolytes was prepared from copolymers with 75% of PEO units and another set was based on a blend of copolymer with 50% PEO units and homopolymers. The differential scanning calorimetry (DSC) results, for electrolytes based on the copolymer with 75% of PEO units, were dominated by the PEO phase. The PEO block crystallinity dropped and the glass transition increased with salt addition due to the coordination of the cation by PEO oxygen. The conductivity for copolymers 75% PEO-based electrolyte with 15 wt% of salt was higher than 10 -5 S/cm at room temperature and reached to 10 -3 S/cm at 100 deg. C on a heating measurement. The blend of PE-b-PEO (50% PEO)/PEO/PE showed a complex thermal behavior with decoupled melting of the blocks and the homopolymers. Upon salt addition the endotherms associated with PEO domains disappeared and the PE crystals remained untouched. The conductivity results were limited at 100 deg. C to values close to 10 -4 S/cm and at room temperature values close to 3 x 10 -6 S/cm were obtained for the 15 wt% salt electrolyte. Raman study showed that the ionic association of the highly concentrated blend electrolytes at room temperature is not significant. Therefore, the lower values of conductivity in the case of the blend with 50% PEO can be assigned to the higher content of PE domains leading to a morphology with lower connectivity for ionic conduction both in the crystalline and melted state of the PE domains

  8. Accessing the bottleneck in all-solid state batteries, lithium-ion transport over the solid-electrolyte-electrode interface

    NARCIS (Netherlands)

    Yu, C.; Ganapathy, S.; van Eck, Ernst R H; Wang, H.; Basak, S.; Li, Z.; Wagemaker, M.

    2017-01-01

    Solid-state batteries potentially offer increased lithium-ion battery energy density and safety as required for large-scale production of electrical vehicles. One of the key challenges toward high-performance solid-state batteries is the large impedance posed by the electrode-electrolyte

  9. Response behaviour of oxygen sensing solid electrolytes

    NARCIS (Netherlands)

    Winnubst, Aloysius J.A.; Scharenborg, A.H.A.; Burggraaf, A.J.

    1985-01-01

    The response time (t r) after a step change in oxygen partial pressure was investigated for some solid electrolytes used in Nernst type oxygen sensors. The electrolyte as well as the (porous) electrode material affect the value oft r. Stabilized Bi2O3 materials exhibit slower response rates (largert

  10. Synthesis, characterization and electrical properties of solid electrolyte for solid oxide fuel cell; Preparacao, caracterizacao e propriedades eletricas de eletrolito solido para celula a combustivel de oxido solido

    Energy Technology Data Exchange (ETDEWEB)

    Berton, Marco Antonio Coelho; Garcia, Carlos Mario; Matos, Jeferson Hrenechen [Instituto de Tecnologia para o Desenvolvimento (LACTEC), Curitiba, PR (Brazil)], Emails: felsky@latec.org.br, garcia@latec.org.br, jeferson.h@latec.org.br

    2010-04-15

    Solid electrolytes of BaCe{sub 08}Gd{sub O29} were prepared by the polymeric precursor method. X-ray diffraction data shows a single phase with orthorhombic crystalline structure. The densification process was followed by scanning electronic microscopy and apparent density measurements. The apparent density was developed for different temperatures of sintering, reaching > 96% for sintered temperature of 1550 {sup 0}C deg . The electrochemical impedance analysis was development in the temperature of 400-700 deg C, in air atmosphere at 700 deg C a value of 30,6 mS.cm{sup -1} was obtained. The results of conductivity have confirmed the gadolinium doped barium cerate has a great potential for use as solid electrolyte for intermediate temperature solid oxide fuel cell, at experimental controlled conditions. (author)

  11. Development and Characterization of Temperature-resistant Polymer Electrolytes

    DEFF Research Database (Denmark)

    Qingfeng, Li; Hjuler, Hans Aage; Bjerrum, Niels

    1999-01-01

    Acid-doped PBI polymer electrolyte membranes have been developed and characterized for fuel cell applications at temperatures up to 200°C. Electric conductivity as high as 0.13 S/cm is obtained at 160°C at high doping levels. The water osmotic drag coefficient of the polymer electrolyte is found...

  12. Solid ionic: these unusual materials applications in high-energy-density

    International Nuclear Information System (INIS)

    Shriver, D.F.; Farrington, G.C.

    1985-01-01

    The idea that ions can diffuse as rapidly in a solid as in an aqueous salt solution may seem strange to many chemists. But a variety of solids with high ionic conductivities are known. Compounds have been discovered that conduct anions (including F - and O 2- ) and cations (including monovalent, divalent, and trivalent cations). These substances range from hard, refractory materials, such as sodium β-alumina, through softer compounds, such as silver iodide (AgI) to the very soft polymer electrolytes. They include compounds that are stoichiometric (AgI), nonstoichiometric (sodium β-alumina), or doped (calcia-stabilized zirconia). A variety of names have been applied to these materials: among them, solid electrolytes, superionic conductors, and fast-ion conductors. Fast-ion transport in solids is a lively area of study in solid-state chemistry and physics. High-conductivity solid electrolytes have revolutionized conventional concepts of ionic compounds, and their potential uses range from high-energy-density battery and fuel-cell electrolytes to chemical sensors and from lasers to phosphors. Devices using solid electrolytes are already available commercially-oxygen detectors for automotive pollution-control systems employ solid O 2- electrolytes, and solid-state batteries using solid electrolytes are employed in heart pacemakers

  13. Diffusion welding of ZrO2 solid electrolyte cells

    International Nuclear Information System (INIS)

    Schaefer, W.; Schmidberger, R.

    1980-01-01

    Zirconia based solid-electrolyte-cells can be applied as electrolysis-cells or fuel cells at high temperatures. Scaling up to technical aggregates must be realized by a gastight electrical series-connection of many tubular single cells. A suitable process for connecting single cells is diffusion welding. Starting materials were sintered zirconia-tubes (16 mm diameter, 10 mm length) and gastight interconnecting rings (16 mm diameter, 0.5-2mm length) from gold, platinum or electrically conducting mixed oxides. ZrO 2 -tubes and interconnecting rings were mounted in alternating sequence and diffusion welded under axial pressure at high temperatures. From economic reasons noble metals cannot be used for technical aggregates. The developments were therefore concentrated on the connection with mixed oxides. Optimized welding parameters are: 1400-1500 0 C welding temperature, 2 hours welding time and an axial pressure of approximately 1 Nmm 2 . Up to now gastight tubes consisting of 20 single cells were preparated by diffusion-welding in one step. The process will be further developed for the production of 50-cell-tubes with a total length of about 60 cm. (orig.) [de

  14. Thermal battery. [solid metal halide electrolytes with enhanced electrical conductance after a phase transition

    Science.gov (United States)

    Carlsten, R.W.; Nissen, D.A.

    1973-03-06

    The patent describes an improved thermal battery whose novel design eliminates various disadvantages of previous such devices. Its major features include a halide cathode, a solid metal halide electrolyte which has a substantially greater electrical conductance after a phase transition at some temperature, and a means for heating its electrochemical cells to activation temperature.

  15. Electrical and morphological analysis of chitosan:AgTf solid electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Aziz, Shujahadeen B., E-mail: shujaadeen78@yahoo.com [School of Physics, Faculty of Science and Science Education, University of Sulaimani, Kurdistan Regional Government, Sulaimani (Iraq); Abidin, Zul Hazrin Z. [Centre for Ionics University of Malaya (CIUM), Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2014-04-01

    Solution cast technique is employed to prepare solid polymer electrolyte films based on chitosan (host polymer) and silver triflate (AgCF{sub 3}SO{sub 3}, doping salt) using (1%) acetic acid as a common solvent. The effect of salt concentration on both EP and bulk materials dielectric properties has been analyzed. Physically the original relationship between the bulk dielectric constant and DC conductivity has been interpreted. It is demonstrated that the dielectric constant and dielectric loss values decrease at higher temperatures due to the reduction of silver ions. Scanning electron microscopy (SEM) and energy dispersive analysis of X-ray (EDAX) indicate the presence of metallic silver particles. The ac conductivity spectra shows three distinct regions and obeys the Jonscher's power law at high frequency regions. The temperature dependence of frequency exponent (s) shows the crossover from CBH model to SP model. - Highlights: • A strong relationship exists between DC conductivity and dielectric constant. • The decrease of ε′ and ε″ is due to the reduction of silver ions (Ag{sup +} → Ag{sup o}). • The morphological results reveal the formation of silver particles. • The AC conduction models can be applicable for ion conducting polymer electrolytes.

  16. NiO-YSZ cermets supported low temperature solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xinge; Robertson, Mark; Deces-Petit, Cyrille; Xie, Yongsong; Hui, Rob; Yick, Sing; Styles, Edward; Roller, Justin; Kesler, Olivera; Maric, Radenka; Ghosh, Dave [Institute for Fuel Cell Innovation, National Research Council Canada, 3250 East Mall, Vancouver, BC (Canada V6T 1W5)

    2006-10-20

    Solid oxide fuel cells with thin electrolyte of two types, Sm{sub 0.2}Ce{sub 0.8}O{sub 1.9} (SDC) (15{mu}m) single-layer and 8mol% Yttria stabilized zirconia (YSZ) (5{mu}m)+SDC (15{mu}m) bi-layer on NiO-YSZ cermet substrates were fabricated by screen printing and co-firing. A Sm{sub 0.5}Sr{sub 0.5}CoO{sub 3} cathode was printed, and in situ sintered during a cell performance test. The SDC single-layer electrolyte cell showed high electrochemical performance at low temperature, with a 1180mWcm{sup -2} peak power density at 650{sup o}C. The YSZ+SDC bi-layer electrolyte cell generated 340mWcm{sup -2} peak power density at 650{sup o}C, and showed good performance at 700-800{sup o}C, with an open circuit voltage close to theoretical value. Many high Zr-content micro-islands were found on the SDC electrolyte surface prior to the cathode preparation. The influence of co-firing temperature and thin film preparation methods on the Zr-islands' appearance was investigated. (author)

  17. Heat and mass transfer analysis intermediate temperature solid oxide fuel cells (IT-SOFC)

    International Nuclear Information System (INIS)

    Timurkutluk, B.; Mat, M. M.; Kaplan, Y.

    2007-01-01

    Solid oxide fuel cells (SOFCs) have been considered as next generation energy conversion system due to their high efficiency, clean and quite operation with fuel flexibility. To date, yittria stabilized zirconia (YSZ) electrolytes have been mainly used for SOFC applications at high temperatures around 1000 degree C because of their high ionic conductivity, chemical stability and good mechanical properties. However, such a high temperature is undesirable for fuel cell operations in the viewpoint of stability. Moreover, high operation temperature necessitates high cost interconnect and seal materials. Thus, the reduction in the operation temperature of SOFCs is one of the key issues in the aspects of the cost reduction and the long term operation without degradation as well as commercialization of the SOFC systems. With the reducing temperature, not only low cost stainless steels and glass materials can be used as interconnect and sealing materials respectively but the manufacturing technology will also extend. Therefore, the design of complex geometrical SOFC component will also be possible. One way to reduce the operation temperature of SOFC is use of an alternative electrolyte material to YSZ showing acceptable properties at intermediate temperatures (600-800 degree C). As being one of IT-SOFC electrolyte materials, gadolinium doped ceria (GDC) has been taken great deals. In this study, a mathematical model for mass and heat transfer for a single cell GDC electrolyte SOFC system was developed and numerical solutions were evaluated. In order to verify the mathematical model, set of experiments were performed by taking species from four different samples randomly and five various temperature measurements. The numerical results reasonably agree with experimental data

  18. Lowering the platinum loading of high temperature polymer electrolyte membrane fuel cells with acid doped polybenzimidazole membranes

    DEFF Research Database (Denmark)

    Fernandez, Santiago Martin; Li, Qingfeng; Jensen, Jens Oluf

    2015-01-01

    Membrane electrode assemblies (MEAs) with ultra-low Pt loading electrodes were prepared for high temperature polymer electrolyte membrane fuel cells (HT-PEMFCs) based on acid doped polybenzimidazole. With no electrode binders or ionomers, the triple phase boundary of the catalyst layer was establ......Membrane electrode assemblies (MEAs) with ultra-low Pt loading electrodes were prepared for high temperature polymer electrolyte membrane fuel cells (HT-PEMFCs) based on acid doped polybenzimidazole. With no electrode binders or ionomers, the triple phase boundary of the catalyst layer...

  19. A New All-Solid-State Hyperbranched Star Polymer Electrolyte for Lithium Ion Batteries: Synthesis and Electrochemical Properties

    International Nuclear Information System (INIS)

    Wang, Ailian; Xu, Hao; Zhou, Qian; Liu, Xu; Li, Zhengyao; Gao, Rui; Wu, Na; Guo, Yuguo; Li, Huayi; Zhang, Liaoyun

    2016-01-01

    Highlights: • A new hyperbranched multi-arm star polymer was successfully synthesized. • The star polymer electrolyte has good thermal stability and forming-film property. • The ion conductivity electrolyte can reach 8.3 × 10"−"5 S cm"−"1 at room temperature. • The star polymer electrolyte has wide electrochemical windows of 4.7 V. - Abstract: A new hyperbranched multi-arm star polymer with hyperbranched polystyrene (HBPS) as core and polymethyl methacrylate-block-poly(ethylene glycol) methyl ether methacrylate(PMMA-b-PPEGMA) as arms was firstly synthesized by atom transfer radical polymerization. The obtained hyperbranched multi-arm star polymer (HBPS-(PMMA-b-PPEGMA)_x) exhibited good thermal stability with a thermal decomposition temperature of 372 °C. The transparent, free-standing, flexible polymer electrolyte film of the blending of HBPS-(PMMA-b-PPEGMA)_x and lithium bis(trifluoromethanesulfonyl) imide (LiTFSI) was successfully fabricated by a solution casting method. The ionic conductivity of the hyperbranched star polymer electrolyte with a molar ratio of [EO]/[Li] of 30 could reach 8.3 × 10"−"5 S cm"−"1 at 30 °C (with the content of PPEGMA of 83.7%), and 2.0 × 10"−"4 S cm"−"1 at 80 °C (with the content of PPEGMA of 51.6%). The effect of the concentration of lithium salts on ionic conductivity was also investigated. The obtained all-solid-state polymer electrolyte possessed a wide electrochemical stability window of 4.7 V (vs. Li"+/Li), and a lithium-ion transference number (t_L_i"+) up to 0.31. The interfacial impedance of the fabricated LiÔöépolymer electrolyteÔöéLi symmetric cell based on hyperbranched star multi-arm polymer electrolyte exhibited good interfacial compatibility between all-solid-state polymer electrolyte and electrodes. The excellent properties of the hyperbranched star polymer electrolyte made it attractive as solid-state polymer electrolyte for lithium-ion batteries.

  20. Solid Oxide Fuel Cell Based Upon Colloidal Deposition of Thin Films for Lower Temperature Operation (Preprint)

    National Research Council Canada - National Science Library

    Reitz, T. L; Xiao, H

    2006-01-01

    In order to reduce the operating temperature of solid oxide fuel cells (SOFCs), anode-supported cells incorporating thin film electrolytes in conjunction with anode/electrolyte and cathode/electrolyte interlayers were studied...

  1. Facile synthesis of Li2S-P2S5 glass-ceramics electrolyte with micron range particles for all-solid-state batteries via a low-temperature solution technique (LTST)

    Science.gov (United States)

    Choi, Sunho; Lee, Sewook; Park, Jongyeop; Nichols, William T.; Shin, Dongwook

    2018-06-01

    A lithium ion conductive 75Li2Sṡ25P2S5 glass-ceramics electrolyte is, for the first time, successfully synthesized via a new low-temperature solution technique (LTST) and compared to the conventional mechanical-milling technique. Both samples are composed of the highly lithium ion conductive thio-LISICON III analog phase. Due to the uniform dispersion of reactants in an organic liquid, the use of LTST produced significantly smaller and more uniform particle sizes (2.2 ± 1.68 μm) resulting in a 6.5 times higher specific surface area compared to the mechanically-milled sample. A pronounced enhancement of both the rate capability and cyclability is demonstrated for the LTST solid electrolyte sample due to the more intimate contact with the LiCoO2 active material. Furthermore, the LTST sample shows excellent electrochemical stability throughout the potential range of -1 to 5 V. These results suggest that the proposed technique using the optimized LTST process is promising for the preparation of 75Li2Sṡ25P2S5 solid electrolytes for use in advanced Li-ion batteries.

  2. PEO nanocomposite polymer electrolyte for solid state symmetric

    Indian Academy of Sciences (India)

    Physical and electrochemical properties of polyethylene oxide (PEO)-based nanocomposite solid polymer electrolytes (NPEs) were investigated for symmetric capacitor applications. Nanosize fillers, i.e., Al2O3 and SiO2 incorporated polymer electrolyte exhibited higher ionic conductivity than those with filler-free composites ...

  3. Chemical characterization of solid polymer electrolyte membrane surfaces in LiFePO4 half-cells

    Science.gov (United States)

    Kyu, Thein; He, Ruixuan; Peng, Fang; Dunn, William E.; Kyu's Group Team, Dr.

    High temperature (60 °C) capacity retention of succinonitrile plasticized solid polymer electrolyte membrane (PEM) in a LiFePO4 half-cell was investigated with or without lithium bis(oxalato)borate (LiBOB) modification. Various symmetric cells and half-cells were studied under different thermal and electrochemical conditions. At room temperature cycling, the unmodified PEM in the half-cell appeared stable up to 50 cycles tested. Upon cycling at 60 °C, the capacity decays rapidly and concurrently the cell resistance increased. The chemical compositions of the solid PEM surfaces on both cathode and anode sides were analyzed. New IR bands (including those belonged to amide) were discerned on the unmodified PEM surface of the Li electrode side at 60 °C suggestive of side reaction, but no new bands develop during room temperature cycling. To our astonishment, the side reaction was effectively suppressed upon LiBOB addition (0.4 wt%) into the PEM, contributing to increased high temperature capacity retention at 60°C. Plausible mechanisms of capacity fading and improved cycling performance due to LiBOB modification are discussed.

  4. Solid electrolyte material manufacturable by polymer processing methods

    Science.gov (United States)

    Singh, Mohit; Gur, Ilan; Eitouni, Hany Basam; Balsara, Nitash Pervez

    2012-09-18

    The present invention relates generally to electrolyte materials. According to an embodiment, the present invention provides for a solid polymer electrolyte material that is ionically conductive, mechanically robust, and can be formed into desirable shapes using conventional polymer processing methods. An exemplary polymer electrolyte material has an elastic modulus in excess of 1.times.10.sup.6 Pa at 90 degrees C. and is characterized by an ionic conductivity of at least 1.times.10.sup.-5 Scm-1 at 90 degrees C. An exemplary material can be characterized by a two domain or three domain material system. An exemplary material can include material components made of diblock polymers or triblock polymers. Many uses are contemplated for the solid polymer electrolyte materials. For example, the present invention can be applied to improve Li-based batteries by means of enabling higher energy density, better thermal and environmental stability, lower rates of self-discharge, enhanced safety, lower manufacturing costs, and novel form factors.

  5. Solid oxide fuel cells with bi-layered electrolyte structure

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xinge; Robertson, Mark; Deces-Petit, Cyrille; Xie, Yongsong; Hui, Rob; Qu, Wei; Kesler, Olivera; Maric, Radenka; Ghosh, Dave [Institute for Fuel Cell Innovation, National Research Council Canada, 4250 Wesbrook Mall, Vancouver, B.C. V6T 1W5 (Canada)

    2008-01-10

    In this work, we have developed solid oxide fuel cells with a bi-layered electrolyte of 2 {mu}m SSZ and 4 {mu}m SDC using tape casting, screen printing, and co-firing processes. The cell reached power densities of 0.54 W cm{sup -2} at 650 C and 0.85 W cm{sup -2} at 700 C, with open circuit voltage (OCV) values larger than 1.02 V. The electrical leaking between anode and cathode through an SDC electrolyte has been blocked in the bi-layered electrolyte structure. However, both the electrolyte resistance (R{sub el}) and electrode polarization resistance (R{sub p,a+c}) increased in comparison to cells with single-layered SDC electrolytes. The formation of a solid solution of (Ce, Zr)O{sub 2-x} during sintering process and the flaws in the bi-layered electrolyte structure seem to be the main causes for the increase in the R{sub el} value (0.32 {omega} cm{sup 2}) at 650 C, which is almost one order of magnitude higher than the calculated value. (author)

  6. Impedance spectroscopy of ceramic solid electrolytes

    International Nuclear Information System (INIS)

    Muccillo, R.; Cosentino, I.C.; Florio, D.Z. de; Franca, Y.V.

    1996-01-01

    The Impedance Spectroscopy (IS) technique has been used to the study of Th O 2 :Y 2 O 3 , Zr O 2 :La 2 O 3 and Zr O 2 :Y 2 O 3 solid electrolytes. The results show that solid solution has been attained, grain boundaries act as oxygen-ion blockers, and the importance of the IS technique to study phase transformation in ceramics. (author)

  7. Solid state double layer capacitor based on a polyether polymer electrolyte blend and nanostructured carbon black electrode composites

    Energy Technology Data Exchange (ETDEWEB)

    Lavall, Rodrigo L.; Borges, Raquel S.; Calado, Hallen D.R.; Welter, Cezar; Trigueiro, Joao P.C.; Silva, Glaura G. [Departamento de Quimica, Instituto de Ciencias Exatas, Universidade Federal de Minas Gerais, CEP 31270-901, Belo Horizonte (Brazil); Rieumont, Jacques [Departamento de Quimica, Instituto de Ciencias Exatas, Universidade Federal de Minas Gerais, CEP 31270-901, Belo Horizonte (Brazil); Facultad de Quimica, Universidad de La Habana, Habana 10400 (Cuba); Neves, Bernardo R.A. [Departamento de Fisica, Instituto de Ciencias Exatas, Universidade Federal de Minas Gerais, CEP 31270-901, Belo Horizonte (Brazil)

    2008-03-01

    An all solid double layer capacitor was assembled by using poly(ethylene oxide)/poly(propylene glycol)-b-poly(ethylene glycol)-b-poly(propylene glycol)-bis(2-aminopropyl ether) blend (PEO-NPPP) and LiClO{sub 4} as polymer electrolyte layer and PEO-NPPP-carbon black (CB) as electrode film. High molecular weight PEO and the block copolymer NPPP with molecular mass of 2000 Da were employed, which means that the design is safe from the point of view of solvent or plasticizer leakage and thus, a separator is not necessary. Highly conductive with large surface area nanostructured carbon black was dispersed in the polymer blend to produce the electrode composite. The electrolyte and electrode multilayers prepared by spray were studied by differential scanning calorimetry, atomic force microscopy (AFM) and impedance spectroscopy. The ionic conductivity as a function of temperature was fitted with the Williams-Landel-Ferry equation, which indicates a conductivity mechanism typical of solid polymer electrolyte. AFM images of the nanocomposite electrode showed carbon black particles of approximately 60 nm in size well distributed in a semicrystalline and porous polymer blend coating. The solid double layer capacitor with 10 wt.% CB was designed with final thickness of approximately 130 {mu}m and delivered a capacitance of 17 F g{sup -1} with a cyclability of more than 1000 cycles. These characteristics make possible the construction of a miniature device in complete solid state which will avoid electrolyte leakage and present a performance superior to other similar electric double layer capacitors (EDLCs) presented in literature, as assessed in specific capacitance by total carbon mass. (author)

  8. Solid polymer electrolyte water electrolysis system development. [to generate oxygen for manned space station applications

    Science.gov (United States)

    1975-01-01

    Solid polymer electrolyte technology used in a water electrolysis system (WES) to generate oxygen and hydrogen for manned space station applications was investigated. A four-man rated, low pressure breadboard water electrolysis system with the necessary instrumentation and controls was fabricated and tested. A six man rated, high pressure, high temperature, advanced preprototype WES was developed. This configuration included the design and development of an advanced water electrolysis module, capable of operation at 400 psig and 200 F, and a dynamic phase separator/pump in place of a passive phase separator design. Evaluation of this system demonstrated the goal of safe, unattended automated operation at high pressure and high temperature with an accumulated gas generation time of over 1000 hours.

  9. Practical high temperature (80 °C) storage study of industrially manufactured Li-ion batteries with varying electrolytes

    Science.gov (United States)

    Genieser, R.; Loveridge, M.; Bhagat, R.

    2018-05-01

    A previous study is focused on high temperature cycling of industrially manufactured Li-ion pouch cells (NMC-111/Graphite) with different electrolytes at 80 °C [JPS 373 (2018) 172-183]. Within this article the same test set-up is used, with cells stored for 30 days at different open circuit potentials and various electrolytes instead of electrochemical cycling. The most pronounced cell degradation (capacity fade and resistance increase) happens at high potentials. However appropriate electrolyte formulations are able to suppress ageing conditions by forming passivating surface films on both electrodes. Compared with electrochemical cycling at 80 °C, cells with enhanced electrolytes only show a slight resistance increase during storage and the capacity fade is much lower. Additionally it is shown for the first time, that the resistance is decreasing and capacity is regained once these cells are cycled again at room temperature. This is not the case for electrolytes without additives or just vinylene carbonate (VC) as an additive. It is further shown that the resistance increase of cells with the other electrolytes is accompanied by a reduction of the cell volume during further cycling. This behaviour is likely related to the reduction of CO2 at the anode to form additional SEI layer components.

  10. Cross-linking of polymer and ionic liquid as high-performance gel electrolyte for flexible solid-state supercapacitors

    International Nuclear Information System (INIS)

    Zhong, Xiongwei; Tang, Jun; Cao, Lujie; Kong, Weiguang; Sun, Zheng; Cheng, Hua; Lu, Zhouguang; Pan, Hui; Xu, Baomin

    2017-01-01

    Highlights: •A facile method to prepare gel polymer electrolyte with high conductivity is proposed. •A flexible symmetric capacitor based on the prepared GPE shows ultra-flexibility. •The capacitor with high voltage can power up a 3.0 V LED even bended to a angle of 180°. -- Abstract: It is highly desirable to develop flexible solid-state electrochemical double-layer capacitors (EDLCs) with non-liquid electrolyte. However, it is still a great challenge to prepare gel polymer electrolyte (GPE) possessing high ionic conductivity and good mechanical property. In this work, a simple and novel method to improve the conductivity and mechanical properties of GPE film for their applications as electrolyte and separator in EDLC is presented. The GPE film is prepared by cross-linking ionic liquid (IL) with poly (ethylene oxide) (PEO) and benzophenone (Bp) followed by ultraviolet (UV) irradiation. Then, a non-woven cellulose separator (FPC) is used to absorb the GPE. By tuning the mass ratio (n) between IL and PEO, the flexible EDLC cooperated with low-cost active carbon and the electrolyte film with n = 10 has a high capacitance of 70.84 F∙g −1 , a wide and stable electrochemical window of 3.5 V, an energy density of 30.13 Wh∙kg −1 and a power density of 874.8 W∙kg −1 at a current density of 1 A∙g −1 , which can drive a 3.0 V light-emitting diode (LED). Importantly, the excellent performance of the flexible and low-cost EDLC can be maintained at a bending angle up to 180°, indicating the ultra-flexibility. It is expected that the IL-PEO-FPC electrolyte film is a promising candidate of GPE for flexible devices and energy storage systems.

  11. Electrochemical testing of suspension plasma sprayed solid oxide fuel cell electrolytes

    Science.gov (United States)

    Waldbillig, D.; Kesler, O.

    Electrochemical performance of metal-supported plasma sprayed (PS) solid oxide fuel cells (SOFCs) was tested for three nominal electrolyte thicknesses and three electrolyte fabrication conditions to determine the effects of electrolyte thickness and microstructure on open circuit voltage (OCV) and series resistance (R s). The measured OCV values were approximately 90% of the Nernst voltages, and electrolyte area specific resistances below 0.1 Ω cm 2 were obtained at 750 °C for electrolyte thicknesses below 20 μm. Least-squares fitting was used to estimate the contributions to R s of the YSZ bulk material, its microstructure, and the contact resistance between the current collectors and the cells. It was found that the 96% dense electrolyte layers produced from high plasma gas flow rate conditions had the lowest permeation rates, the highest OCV values, and the smallest electrolyte-related voltage losses. Optimal electrolyte thicknesses were determined for each electrolyte microstructure that would result in the lowest combination of OCV loss and voltage loss due to series resistance for operating voltages of 0.8 V and 0.7 V.

  12. Stable lithium electrodeposition in liquid and nanoporous solid electrolytes

    KAUST Repository

    Lu, Yingying; Tu, Zhengyuan; Archer, Lynden A.

    2014-01-01

    of these metals and their inability to form uniform electrodeposits on surfaces with inevitable defects. We report on electrodeposition of lithium in simple liquid electrolytes and in nanoporous solids infused with liquid electrolytes. We find that simple liquid

  13. Wide-Temperature Electrolytes for Lithium-Ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Li, Qiuyan; Jiao, Shuhong; Luo, Langli; Ding, Michael S.; Zheng, Jianming; Cartmell, Samuel S.; Wang, Chong-Min; Xu, Kang; Zhang, Ji-Guang; Xu, Wu

    2017-05-26

    Formulating electrolytes with solvents of low freezing points and high dielectric constants is a direct approach to extend the service temperature range of lithium (Li)-ion batteries (LIBs), for which propylene carbonate (PC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC), methyl butyrate (MB) are excellent candidates. In this work, we report such low temperature electrolyte formulations by optimizing the content of ethylene carbonate (EC) in the EC-PC-EMC ternary solvent system with LiPF6 salt and CsPF6 additive. An extended service temperature range from 40°C to 60°C was obtained in LIBs with lithium nickel cobalt aluminum mixed oxide (LiNi0.80Co0.15Al0.05O2, NCA) as cathode and graphite as anode. The discharge capacities at low temperatures and the cycle life at room and elevated temperatures were systematically investigated in association with the ionic conductivity and phase transition behaviors. The most promising electrolyte formulation was identified as 1.0 M LiPF6 in EC-PC-EMC (1:1:8 by wt.) with 0.05 M CsPF6, which was demonstrated in both coin cells of graphite||NCA and 1 Ah pouch cells of graphite||LiNi1/3Mn1/3Co1/3O2. This optimized electrolyte enables excellent wide-temperature performances, as evidenced by the 68% capacity retention at 40C and C/5 rate, and nearly identical stable cycle life at room and elevated temperatures up to 60C.

  14. Electrochemical performance of lithium-ion capacitors evaluated under high temperature and high voltage stress using redox stable electrolytes and additives

    Science.gov (United States)

    Boltersdorf, Jonathan; Delp, Samuel A.; Yan, Jin; Cao, Ben; Zheng, Jim P.; Jow, T. Richard; Read, Jeffrey A.

    2018-01-01

    Lithium-ion capacitors (LICs) were investigated for high power, moderate energy density applications for operation in extreme environments with prolonged cycle-life performance. The LICs were assembled as three-layered pouch cells in an asymmetric configuration employing Faradaic pre-lithiated hard carbon anodes and non-Faradaic ion adsorption-desorption activated carbon (AC) cathodes. The capacity retention was measured under high stress conditions, while the design factor explored was electrolyte formulation using a set of carbonates and electrolyte additives, with a focus on their stability. The LIC cells were evaluated using critical performance tests under the following high stress conditions: long-term voltage floating-cycling stability at room temperature (2.2-3.8 V), high temperature storage at 3.8 V, and charge voltages up to 4.4 V. The rate performance of different electrolytes and additives was measured after the initial LIC cell formation for a 1C-10C rate. The presence of vinylene carbonate (VC) and tris (trimethylsilyl) phosphate (TMSP) were found to be essential to the improved electrochemical performance of the LIC cells under all testing conditions.

  15. Cathode and electrolyte materials for solid oxide fuel cells and ion transport membranes

    Science.gov (United States)

    Jacobson, Allan J; Wang, Shuangyan; Kim, Gun Tae

    2014-01-28

    Novel cathode, electrolyte and oxygen separation materials are disclosed that operate at intermediate temperatures for use in solid oxide fuel cells and ion transport membranes based on oxides with perovskite related structures and an ordered arrangement of A site cations. The materials have significantly faster oxygen kinetics than in corresponding disordered perovskites.

  16. Boron cross-linked graphene oxide/polyvinyl alcohol nanocomposite gel electrolyte for flexible solid-state electric double layer capacitor with high performance

    KAUST Repository

    Huang, Yi-Fu; Wu, Peng-Fei; Zhang, Ming-Qiu; Ruan, Wen-Hong; Giannelis, Emmanuel P.

    2014-01-01

    A new family of boron cross-linked graphene oxide/polyvinyl alcohol (GO-B-PVA) nanocomposite gels is prepared by freeze-thaw/boron cross-linking method. Then the gel electrolytes saturated with KOH solution are assembled into electric double layer capacitors (EDLCs). Structure, thermal and mechanical properties of GO-B-PVA are explored. The electrochemical properties of EDLCs using GO-B-PVA/KOH are investigated, and compared with those using GO-PVA/KOH gel or KOH solution electrolyte. FTIR shows that boron cross-links are introduced into GO-PVA, while the boronic structure inserted into agglomerated GO sheets is demonstrated by DMA analysis. The synergy effect of the GO and the boron crosslinking benefits for ionic conductivity due to unblocking ion channels, and for improvement of thermal stability and mechanical properties of the electrolytes. Higher specific capacitance and better cycle stability of EDLCs are obtained by using the GO-B-PVA/KOH electrolyte, especially the one at higher GO content. The nanocomposite gel electrolytes with excellent electrochemical properties and solid-like character are candidates for the industrial application in high-performance flexible solid-state EDLCs. © 2014 Elsevier Ltd.

  17. Boron cross-linked graphene oxide/polyvinyl alcohol nanocomposite gel electrolyte for flexible solid-state electric double layer capacitor with high performance

    KAUST Repository

    Huang, Yi-Fu

    2014-06-01

    A new family of boron cross-linked graphene oxide/polyvinyl alcohol (GO-B-PVA) nanocomposite gels is prepared by freeze-thaw/boron cross-linking method. Then the gel electrolytes saturated with KOH solution are assembled into electric double layer capacitors (EDLCs). Structure, thermal and mechanical properties of GO-B-PVA are explored. The electrochemical properties of EDLCs using GO-B-PVA/KOH are investigated, and compared with those using GO-PVA/KOH gel or KOH solution electrolyte. FTIR shows that boron cross-links are introduced into GO-PVA, while the boronic structure inserted into agglomerated GO sheets is demonstrated by DMA analysis. The synergy effect of the GO and the boron crosslinking benefits for ionic conductivity due to unblocking ion channels, and for improvement of thermal stability and mechanical properties of the electrolytes. Higher specific capacitance and better cycle stability of EDLCs are obtained by using the GO-B-PVA/KOH electrolyte, especially the one at higher GO content. The nanocomposite gel electrolytes with excellent electrochemical properties and solid-like character are candidates for the industrial application in high-performance flexible solid-state EDLCs. © 2014 Elsevier Ltd.

  18. Oxygen reduction on carbon supported platinum catalysts in high temperature polymer electrolytes

    DEFF Research Database (Denmark)

    Qingfeng, Li; Hjuler, Hans Aage; Bjerrum, Niels

    2000-01-01

    Oxygen reduction on carbon supported platinum catalysts has been investigated in H3PO4, H3PO4-doped Nafion and polybenzimidazole (PBI) polymer electrolytes in a temperature range up to 190 degrees C. Compared with pure H3PO4, the combination of H3PO4 and polymer electrolytes can significantly...... membrane fuel cell based on H3PO4-doped PBI for operation at temperatures between 150 and 200 degrees C. (C) 2000 Elsevier Science Ltd. All rights reserved....

  19. Strategies for Lowering Solid Oxide Fuel Cells Operating Temperature

    Directory of Open Access Journals (Sweden)

    Albert Tarancón

    2009-11-01

    Full Text Available Lowering the operating temperature of solid oxide fuel cells (SOFCs to the intermediate range (500–700 ºC has become one of the main SOFC research goals. High operating temperatures put numerous requirements on materials selection and on secondary units, limiting the commercial development of SOFCs. The present review first focuses on the main effects of reducing the operating temperature in terms of materials stability, thermo-mechanical mismatch, thermal management and efficiency. After a brief survey of the state-of-the-art materials for SOFCs, attention is focused on emerging oxide-ionic conductors with high conductivity in the intermediate range of temperatures with an introductory section on materials technology for reducing the electrolyte thickness. Finally, recent advances in cathode materials based on layered mixed ionic-electronic conductors are highlighted because the decreasing temperature converts the cathode into the major source of electrical losses for the whole SOFC system. It is concluded that the introduction of alternative materials that would enable solid oxide fuel cells to operate in the intermediate range of temperatures would have a major impact on the commercialization of fuel cell technology.

  20. Bilayer electrolyte-anode for solid oxide fuel cell; Obtencao de bicamadas eletrolito-anodo para pilhas a combustivel de oxido solido

    Energy Technology Data Exchange (ETDEWEB)

    Crochemore, G.B.; Marcomini, R.F.; Souza, D.P.F. de [Universidade Federal de Sao Carlos (GEMM/UFSCAR), Sao Carlos, SP (Brazil). Programa de Pos Graduacao em Ciencia e Engenharia de Materiais], Email: dulcina@ufscar.br; Rabelo, A.A. [Universidade Federal do Para (UFPA), Belem, PA (Brazil). Fac. de Engenharia de Materiais

    2010-07-01

    Solid oxide fuel cell is a high efficient device hence it plays a very important role in the hydrogen economy. However, the cell operation temperature must be lower than 800 deg C, what is attainable for thin Yttria stabilized zirconia (YSZ) electrolytes. The tape casting process is the most used technique because it allows a very fine tuning of the tape thickness. In this work it were investigated the processing conditions for obtaining electrolyte-anode (YSZ/ YSZ-NiO) bilayers with no lamination after the sintering process. (author)

  1. Fuel cells with solid polymer electrolyte and their application on vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Fateev, V.

    1996-04-01

    In Russia, solid polymer electrolyte MF-4-SK has been developed for fuel cells. This electrolyte is based on perfluorinated polymer with functional sulfogroups. Investigations on electrolyte properties and electrocatalysts have been carried out.

  2. High-Performance All-Solid-State Na-S Battery Enabled by Casting-Annealing Technology.

    Science.gov (United States)

    Fan, Xiulin; Yue, Jie; Han, Fudong; Chen, Ji; Deng, Tao; Zhou, Xiuquan; Hou, Singyuk; Wang, Chunsheng

    2018-04-24

    Room-temperature all-solid-state Na-S batteries (ASNSBs) using sulfide solid electrolytes are a promising next-generation battery technology due to the high energy, enhanced safety, and earth abundant resources of both sodium and sulfur. Currently, the sulfide electrolyte ASNSBs are fabricated by a simple cold-pressing process leaving with high residential stress. Even worse, the large volume change of S/Na 2 S during charge/discharge cycles induces additional stress, seriously weakening the less-contacted interfaces among the solid electrolyte, active materials, and the electron conductive agent that are formed in the cold-pressing process. The high and continuous increase of the interface resistance hindered its practical application. Herein, we significantly reduce the interface resistance and eliminate the residential stress in Na 2 S cathodes by fabricating Na 2 S-Na 3 PS 4 -CMK-3 nanocomposites using melting-casting followed by stress-release annealing-precipitation process. The casting-annealing process guarantees the close contact between the Na 3 PS 4 solid electrolyte and the CMK-3 mesoporous carbon in mixed ionic/electronic conductive matrix, while the in situ precipitated Na 2 S active species from the solid electrolyte during the annealing process guarantees the interfacial contact among these three subcomponents without residential stress, which greatly reduces the interfacial resistance and enhances the electrochemical performance. The in situ synthesized Na 2 S-Na 3 PS 4 -CMK-3 composite cathode delivers a stable and highly reversible capacity of 810 mAh/g at 50 mA/g for 50 cycles at 60 °C. The present casting-annealing strategy should provide opportunities for the advancement of mechanically robust and high-performance next-generation ASNSBs.

  3. Broad temperature adaptability of vanadium redox flow battery—Part 1: Electrolyte research

    International Nuclear Information System (INIS)

    Xiao, Shuibo; Yu, Lihong; Wu, Lantao; Liu, Le; Qiu, Xinping; Xi, Jingyu

    2016-01-01

    Highlights: • Impact of temperature (-35 °C-50 °C) on properties of VRFB electrolyte is studied. • V 2+ , V 3+ , V 3.5+ , V 4+ (VO 2+ ) and V 5+ (VO 2 + ) electrolytes are tested respectively. • V 2+ , V 3+ and V 3.5+ precipitates at low temperature can redissolve when temperature increases. • V 5+ precipitates at high temperature cannot redissolve when temperature decreases. • Conductivity and viscosity of the electrolytes are greatly affected by temperature. - Abstract: The broad temperature adaptability of vanadium redox flow battery (VRFB) is one of the key issues which affects the large-scale and safety application of VRFB. Typically, five types of vanadium electrolytes, namely V 2+ , V 3+ , V 3.5+ (V 3+ :VO 2+ = 1:1), V 4+ (VO 2+ ) and V 5+ (VO 2 + ), are the most common electrolytes' status existing in VRFB system. In this work, the physicochemical and electrochemical properties of these vanadium electrolytes are studied in detail at a broad temperature range (-35 °C–50 °C). The results show that all types of vanadium electrolytes are stable between -25 °C–30 °C. The temperature fluctuation will largely influence the conductivity and viscosity of the electrolytes. Besides, the electrochemical properties of the positive (VO 2+ ) and negative (V 3+ ) electrolytes are greatly affected by the temperature; and the charge transfer process fluctuates more greatly with the temperature variation than the charge diffusion process does. These results enable us to better and more comprehensively evaluate the performance of the electrolyte changing with the temperature, which will be beneficial for the rational choice of electrolyte for VRFB operation under various conditions.

  4. Truly quasi-solid-state lithium cells utilizing carbonate free polymer electrolytes on engineered LiFePO_4

    International Nuclear Information System (INIS)

    Nair, Jijeesh R.; Cíntora-Juárez, Daniel; Pérez-Vicente, Carlos; Tirado, José L.; Ahmad, Shahzada; Gerbaldi, Claudio

    2016-01-01

    Highlights: • Carbonate free truly quasi-solid-state polymer electrolytes for lithium batteries. • Simple and easy up scalable preparation by solvent free thermal curing. • LiFePO_4 cathode engineered by PEDOT:PSS interphase at the current collector. • Direct polymerization over the engineered electrode surface in one pot. • Stable lithium polymer cells operating in a wide temperature range. - Abstract: Stable and safe functioning of a Li-ion battery is the demand of modern generation. Herein, we are demonstrating the application of an in-situ free radical polymerisation process (thermal curing) to fabricate a polymer electrolyte that possesses mechanical robustness, high thermal stability, improved interfacial and ion transport characteristics along with stable cycling at ambient conditions. The polymer electrolyte is obtained by direct polymerization over the electrode surface in one pot starting from a reactive mixture comprising an ethylene oxide-based dimethacrylic oligomer (BDM), dimethyl polyethylene glycol (DPG) and lithium salt. Furthermore, an engineered cathode is used, comprising a LiFePO_4/PEDOT:PSS interface at the current collector that improves the material utilization at high rates and mitigates the corrosive effects of LiTFSI on aluminium current collector. The lithium cell resulting from the newly elaborated multiphase assembly of the composite cathode with the DPG-based carbonate-free polymer electrolyte film exhibits excellent reversibility upon prolonged cycling at ambient as well as elevated temperatures, which is found to be superior compared to previous reports on uncoated electrodes with polymer electrolytes.

  5. Zirconium oxide based ceramic solid electrolytes for oxygen detection

    International Nuclear Information System (INIS)

    Caproni, Erica

    2007-01-01

    Taking advantage of the high thermal shock resistance of zirconia-magnesia ceramics and the high oxide ion conductivity of zirconia-yttria ceramics, composites of these ceramics were prepared by mixing, pressing and sintering different relative concentrations of ZrO 2 : 8.6 mol% MgO and ZrO 2 : 3 mol% Y 2 O 3 solid electrolytes. Microstructural analysis of the composites was carried out by X-ray diffraction and scanning electron microscopy analyses. The thermal behavior was studied by dilatometric analysis. The electrical behavior was evaluated by the impedance spectroscopy technique. An experimental setup was designed for measurement the electrical signal generated as a function of the amount of oxygen at high temperatures. The main results show that these composites are partially stabilized (monoclinic, cubic and tetragonal) and the thermal behavior is similar to that of ZrO 2 : 8.6 mol% MgO materials used in disposable high temperature oxygen sensors. Moreover, the results of analysis of impedance spectroscopy show that the electrical conductivity of zirconia:magnesia is improved with zirconia-yttria addition and that the electrical signal depends on the amount of oxygen at 1000 deg C, showing that the ceramic composites can be used in oxygen sensors. (author)

  6. Solid polymer electrolyte from phosphorylated chitosan

    Energy Technology Data Exchange (ETDEWEB)

    Fauzi, Iqbal, E-mail: arcana@chem.itb.ac.id; Arcana, I Made, E-mail: arcana@chem.itb.ac.id [Inorganic and Physical Chemistry Research Groups, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132 (Indonesia)

    2014-03-24

    Recently, the need of secondary battery application continues to increase. The secondary battery which using a liquid electrolyte was indicated had some weakness. A solid polymer electrolyte is an alternative electrolytes membrane which developed in order to replace the liquid electrolyte type. In the present study, the effect of phosphorylation on to polymer electrolyte membrane which synthesized from chitosan and lithium perchlorate salts was investigated. The effect of the component’s composition respectively on the properties of polymer electrolyte, was carried out by analyzed of it’s characterization such as functional groups, ion conductivity, and thermal properties. The mechanical properties i.e tensile resistance and the morphology structure of membrane surface were determined. The phosphorylation processing of polymer electrolyte membrane of chitosan and lithium perchlorate was conducted by immersing with phosphoric acid for 2 hours, and then irradiated on a microwave for 60 seconds. The degree of deacetylation of chitosan derived from shrimp shells was obtained around 75.4%. Relative molecular mass of chitosan was obtained by viscometry method is 796,792 g/mol. The ionic conductivity of chitosan membrane was increase from 6.33 × 10{sup −6} S/cm up to 6.01 × 10{sup −4} S/cm after adding by 15 % solution of lithium perchlorate. After phosphorylation, the ionic conductivity of phosphorylated lithium chitosan membrane was observed 1.37 × 10{sup −3} S/cm, while the tensile resistance of 40.2 MPa with a better thermal resistance. On the strength of electrolyte membrane properties, this polymer electrolyte membrane was suggested had one potential used for polymer electrolyte in field of lithium battery applications.

  7. Crystalline structure and microstructural characteristics of the cathode/electrolyte solid oxide half-cells

    International Nuclear Information System (INIS)

    Chiba, Rubens; Vargas, Reinaldo Azevedo; Andreoli, Marco; Santoro, Thais Aranha de Barros; Seo, Emilia Satoshi Miyamaru

    2009-01-01

    The solid oxide fuel cell (SOFC) is an electrochemical device generating of electric energy, constituted of cathode, electrolyte and anode; that together they form a unity cell. The study of the solid oxide half-cells consisting of cathode and electrolyte it is very important, in way that is the responsible interface for the reduction reaction of the oxygen. These half-cells are ceramic materials constituted of strontium-doped lanthanum manganite (LSM) for the cathode and yttria-stabilized zirconia (YSZ) for the electrolyte. In this work, two solid oxide half-cells have been manufactured, one constituted of LSM cathode thin film on YSZ electrolyte substrate (LSM - YSZ half-cell), and another constituted of LSM cathode and LSM/YSZ composite cathode thin films on YSZ electrolyte substrate (LSM - LSM/YSZ - YSZ half cell). The cathode/electrolyte solid oxide half-cells were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). The results have been presented with good adherence between cathode and electrolyte and, LSM and YSZ phases were identified. (author)

  8. Gradiently Polymerized Solid Electrolyte Meets with Micro/Nano-Structured Cathode Array.

    Science.gov (United States)

    Dong, Wei; Zeng, Xian-Xiang; Zhang, Xu-Dong; Li, Jin-Yi; Shi, Ji-Lei; Xiao, Yao; Shi, Yang; Wen, Rui; Yin, Ya-Xia; Wang, Tai-Shan; Wang, Chun-Ru; Guo, Yu-Guo

    2018-05-02

    The poor contact between the solid-state electrolyte and cathode materials leads to high interfacial resistance, severely limiting the rate capability of solid Li metal batteries. Herein, an integrative battery design is introduced with a gradiently polymerized solid electrolyte (GPSE), a micro-channel current collector array and nano-sized cathode particles. In-situ formed GPSE encapsulates cathode nanoparticles in the micro-channel with ductile inclusions to lower interfacial impedance, and the stiff surface layer of GPSE toward anode suppresses Li dendrites growth. Li metal batteries based on GPSE and Li-free hydrogenated V2O5 (V2O5-H) cathode exhibit an outstanding high-rate response of up to 5 C (the capacity ratio of 5 C / 1 C is 90.3%) and an ultralow capacity fade rate of 0.07% per cycle over 300 cycles. Other Li-containing cathodes as LiFePO4 and LiNi0.5Mn0.3Co0.2O2 can also operate effectively at 5 C and 2 C rate, respectively. Such an ingenious design may provide new insights into other solid metal batteries through interfacial engineering manipulation at micro and nano level.

  9. Novel thixotropic gel electrolytes based on dicationic bis-imidazolium salts for quasi-solid-state dye-sensitized solar cells

    Science.gov (United States)

    Kim, Jun Young; Kim, Tae Ho; Kim, Dong Young; Park, Nam-Gyu; Ahn, Kwang-Duk

    Novel thixotropic gel electrolytes have been successfully prepared by utilizing oligomeric poly(ethylene oxide) (PEO)-based bis-imidazolium diiodide salts and hydrophilic silica nanoparticles for application in quasi-solid-state dye-sensitized solar cells (DSSCs). The thixotropic gel-state of the ionic liquid-based composite electrolytes is confirmed by observing the typical hysteresis loop and temporary hydrogen bonding. On using the PEO-based composite electrolyte, a quasi-solid-state DSSC exhibited highly improved properties such as easy penetration of the electrolyte into the cell without leakage, long-term stability, high open-circuit voltage without the use of 4- tert-butylpyridine, and a high energy-conversion efficiency of 5.25% under AM 1.5 illumination (100 mW cm -2).

  10. Solid-state supercapacitors with ionic liquid based gel polymer electrolyte: Effect of lithium salt addition

    Science.gov (United States)

    Pandey, G. P.; Hashmi, S. A.

    2013-12-01

    Performance characteristics of the solid-state supercapacitors fabricated with ionic liquid (IL) incorporated gel polymer electrolyte and acid treated multiwalled carbon nanotube (MWCNT) electrodes have been studied. The effect of Li-salt (LiPF6) addition in the IL (1-ethyl-3-methylimidazolium tris(pentafluoroethyl) trifluorophosphate, EMImFAP) based gel electrolyte on the performance of supercapacitors has been specifically investigated. The LiPF6/IL/poly(vinylidine fluoride-co-hexafluoropropylene) (PVdF-HFP) gel electrolyte film possesses excellent electrochemical window of 4 V (from -2.0 to 2.0 V), high ionic conductivity ∼2.6 × 10-3 S cm-1 at 20 °C and high enough thermal stability. The comparative performance of supercapacitors employing electrolytes with and without lithium salt has been evaluated by impedance spectroscopy and cyclic voltammetric studies. The acid-treated MWCNT electrodes show specific capacitance of ∼127 F g-1 with IL/LiPF6 containing gel polymer electrolyte as compared to that with the gel polymer electrolyte without Li-salt, showing the value of ∼76 F g-1. The long cycling stability of the solid state supercapacitor based on the Li-salt containing gel polymer electrolyte confirms the electrochemical stability of the electrolyte.

  11. A solid state actuator based on polypyrrole (PPy) and a solid electrolyte NBR working in air

    Science.gov (United States)

    Cho, Misuk; Nam, Jaedo; Choi, Hyouk Ryeol; Koo, Jachoon; Lee, Youngkwan

    2005-05-01

    The solid polymer electrolyte based conducting polymer actuator was presented. In the preparation of acutuator module, an ionic liquid impregnated a synthetic rubber (NBR) and PPy were used as a solid polymer electrolyte and conducting polymer, respectively. An ionic liquid, 1-butyl-3-methylimidazolium bis (trifluoromethyl sulfonyl)imide (BMITFSI) is gradually dispersed into the NBR film and the conducting polymer, PPy was synthesized on the surface of NBR. The ionic conductivity of new type solid polymer electrolyte as a function of the immersion time was investigated. The cyclic voltammetry responsed and the redox switching dynamics of PEDOT in NBR matrix were studied. The displacement of the actuator was measured by laser beam.

  12. Designed synergetic effect of electrolyte additives to improve interfacial chemistry of MCMB electrode in propylene carbonate-based electrolyte for enhanced low and room temperature performance.

    Science.gov (United States)

    Wotango, Aselefech Sorsa; Su, Wei-Nien; Haregewoin, Atetegeb Meazah; Chen, Hung-Ming; Cheng, Ju-Hsiang; Lin, Ming-Hsien; Wang, Chia-Hsin; Hwang, Bing-Joe

    2018-05-09

    The performance of lithium ion batteries rapidly falls at lower temperatures due to decreasing conductivity of electrolytes and Solid Electrolyte Interphase (SEI) on graphite anode. Hence, it limits the practical use of lithium ion batteries at sub-zero temperatures and also affects the development of lithium ion batteries for widespread applications. The SEI formed on the graphite surface is very influential in determining the performance of the battery. Herein, a new electrolyte additive, 4-Chloromethyl-1,3,2-dioxathiolane-2-oxide (CMDO), is prepared to improve the properties of commonly used electrolyte constituents - ethylene carbonate (EC), and fluoroethylene carbonate (FEC). The formation of an efficient passivation layer in propylene carbonate (PC) -based electrolyte for MCMB electrode was investigated. The addition of CMDO resulted in a much less irreversible capacity loss and induces thin SEI formation. However, the combination of the three additives played a key role to enhance reversible capacity of MCMB electrode at lower or ambient temperature. The electrochemical measurement analysis showed that the SEI formed from a mixture of the three additives gave better intercalation-deintercalation of lithium ions.

  13. Process Developed for Generating Ceramic Interconnects With Low Sintering Temperatures for Solid Oxide Fuel Cells

    Science.gov (United States)

    Zhong, Zhi-Min; Goldsby, Jon C.

    2005-01-01

    Solid oxide fuel cells (SOFCs) have been considered as premium future power generation devices because they have demonstrated high energy-conversion efficiency, high power density, and extremely low pollution, and have the flexibility of using hydrocarbon fuel. The Solid-State Energy Conversion Alliance (SECA) initiative, supported by the U.S. Department of Energy and private industries, is leading the development and commercialization of SOFCs for low-cost stationary and automotive markets. The targeted power density for the initiative is rather low, so that the SECA SOFC can be operated at a relatively low temperature (approx. 700 C) and inexpensive metallic interconnects can be utilized in the SOFC stack. As only NASA can, the agency is investigating SOFCs for aerospace applications. Considerable high power density is required for the applications. As a result, the NASA SOFC will be operated at a high temperature (approx. 900 C) and ceramic interconnects will be employed. Lanthanum chromite-based materials have emerged as a leading candidate for the ceramic interconnects. The interconnects are expected to co-sinter with zirconia electrolyte to mitigate the interface electric resistance and to simplify the processing procedure. Lanthanum chromites made by the traditional method are sintered at 1500 C or above. They react with zirconia electrolytes (which typically sinter between 1300 and 1400 C) at the sintering temperature of lanthanum chromites. It has been envisioned that lanthanum chromites with lower sintering temperatures can be co-fired with zirconia electrolyte. Nonstoichiometric lanthanum chromites can be sintered at lower temperatures, but they are unstable and react with zirconia electrolyte during co-sintering. NASA Glenn Research Center s Ceramics Branch investigated a glycine nitrate process to generate fine powder of the lanthanum-chromite-based materials. By simultaneously doping calcium on the lanthanum site, and cobalt and aluminum on the

  14. Electrospinning of Ceramic Solid Electrolyte Nanowires for Lithium-Ion Batteries with Enhanced Ionic Conductivity

    Science.gov (United States)

    Yang, Ting

    Solid electrolytes have great potential to address the safety issues of Li-ion batteries, but better synthesis methods are still required for ceramics electrolytes such as lithium lanthanum titanate (LLTO) and lithium lanthanum zirconate (LLZO). Pellets made from ceramic nanopowders using conventional sintering can be porous due to the agglomeration of nanoparticles (NPs). Electrospinning is a simple and versatile technique for preparing oxide ceramic nanowires (NWs) and was used to prepare electrospun LLTO and LLZO NWs. Pellets prepared from the electrospun LLTO NWs had higher density, less void space, and higher Li+ conductivity compared to those comprised of LLTO prepared with conventional sol-gel methods, which demonstrated the potential that electrospinning can provide towards improving the properties of sol-gel derived ceramics. Cubic phase LLZO was stabilized at room temperature in the form of electrospun NWs without extrinsic dopants. Bulk LLZO with tetragonal structure was transformed to the cubic phase using particle size reduction via ball milling. Heating conditions that promoted particle coalescence and grain growth induced a transformation from the cubic to tetragonal phase in both types of nanostructured LLZO. Composite polymer solid electrolyte was fabricated using LLZO NWs as the filler and showed an improved ionic conductivity at room temperature. Nuclear magnetic resonance studies show that LLZO NWs partially modify the polymer matrix and create preferential pathways for Li+ conduction through the modified polymer regions. Doping did not have significant effect on improving the overall conductivity as the interfaces played a predominant role. By comparing fillers with different morphologies and intrinsic conductivities, it was found that both NW morphology and high intrinsic conductivity are desired.

  15. Surface-protected LiCoO2 with ultrathin solid oxide electrolyte film for high-voltage lithium ion batteries and lithium polymer batteries

    Science.gov (United States)

    Yang, Qi; Huang, Jie; Li, Yejing; Wang, Yi; Qiu, Jiliang; Zhang, Jienan; Yu, Huigen; Yu, Xiqian; Li, Hong; Chen, Liquan

    2018-06-01

    Surface modification of LiCoO2 with the ultrathin film of solid state electrolyte of Li1.4Al0.4Ti1.6(PO4)3 (LATP) has been realized by a new and facile solution-based method. The coated LiCoO2 reveals enhanced structural and electrochemical stability at high voltage (4.5 V vs Li+/Li) in half-cell with liquid electrolyte. Transmission electron microscopy (TEM) images show that a dense LATP coating layer is covered on the surface of LiCoO2 uniformly with thickness of less than 20 nm. The LATP coating layer is proven to be able to prevent the direct contact between the cathode and the electrolyte effectively and thus to suppress the side reactions of liquid electrolyte with LiCoO2 surface at high charging voltage. As a result, dissolution of Co3+ has been largely suppressed over prolonged cycling as indicated by the X-ray photoelectron spectroscopy (XPS) measurements. Due to this surface passivating feature, the electrochemical performance of 0.5 wt% LATP modified LiCoO2 has also been evaluated in an all solid lithium battery with poly(ethylene oxide)-based polymer electrolyte. The cell exhibits 93% discharge capacity retention of the initial discharge capacity after 50 cycles at the charging cut-off voltage of 4.2 V, suggesting that the LATP coating layer is effective to suppress the oxidation of PEO at high voltage.

  16. Improvement of ionic conductivity and performance of quasi-solid-state dye sensitized solar cell using PEO/PMMA gel electrolyte

    International Nuclear Information System (INIS)

    Aram, E.; Ehsani, M.; Khonakdar, H.A.

    2015-01-01

    Graphical abstract: Reduced interfacial resistance of a quasi-solid-state dye sensitized solar cell with PEO/PMMA blend gel electrolytes. - Highlights: • A new polymer gel electrolyte containing PEO/PMMA was developed for DSSCs. • Optimization of polymer gel electrolyte was done for dye sensitized solar cell. • The best ionic conductivity was found in PEO/PMMA blend with 10/90 w/w composition. • The DSSC with the PEO/PMMA based electrolyte showed good photovoltaic performance. • Significant stability improvement for quasi-solid state DSSC was obtained. - Abstract: Polymer blend gel electrolytes based on polyethylene oxide (PEO) and poly(methyl methacrylate) (PMMA) as host polymers with various weight ratios, LiI/I 2 as redox couple in electrolyte and 4-tert-butyl pyridine as additive were prepared by solution method. The introduction of PMMA in the PEO gel electrolyte reduced the degree of crystallinity of PEO, which was confirmed by differential scanning calorimetry (DSC). Complexation and ionic conductivity as a function of temperature were investigated with Fourier transform infrared and ionic conductometry, respectively. A good correlation was found between the degree of crystallinity and ionic conductivity. The reduction in crystallinity, governed by blending ratio, led to improvement of ionic conductivity. The best ionic conductivity was attained in PEO/PMMA blend with 10/90 w/w composition. The performance of a quasi-solid-state dye sensitized solar cell using the optimized polymer gel electrolyte was investigated. The optimized system of high ionic conductivity of 7 mS cm −1 , with fill factor of 0.59, short-circuit density of 11.11 mA cm −2 , open-circuit voltage of 0.75 V and the conversion efficiency of 4.9% under air mass 1.5 irradiation (100 mW cm −2 ) was obtained. The long-term stability of the dye-sensitized solar cell (DSSC) during 600 h was improved by using PEO/PMMA gel electrolyte relative to a liquid type electrolyte

  17. Improvement of ionic conductivity and performance of quasi-solid-state dye sensitized solar cell using PEO/PMMA gel electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Aram, E. [Iran Polymer and Petrochemical Institute, 14965/115 Tehran (Iran, Islamic Republic of); Ehsani, M., E-mail: m.ehsani@ippi.ac.ir [Iran Polymer and Petrochemical Institute, 14965/115 Tehran (Iran, Islamic Republic of); Khonakdar, H.A. [Iran Polymer and Petrochemical Institute, 14965/115 Tehran (Iran, Islamic Republic of); Leibniz Institute of Polymer Research, D-01067 Dresden (Germany)

    2015-09-10

    Graphical abstract: Reduced interfacial resistance of a quasi-solid-state dye sensitized solar cell with PEO/PMMA blend gel electrolytes. - Highlights: • A new polymer gel electrolyte containing PEO/PMMA was developed for DSSCs. • Optimization of polymer gel electrolyte was done for dye sensitized solar cell. • The best ionic conductivity was found in PEO/PMMA blend with 10/90 w/w composition. • The DSSC with the PEO/PMMA based electrolyte showed good photovoltaic performance. • Significant stability improvement for quasi-solid state DSSC was obtained. - Abstract: Polymer blend gel electrolytes based on polyethylene oxide (PEO) and poly(methyl methacrylate) (PMMA) as host polymers with various weight ratios, LiI/I{sub 2} as redox couple in electrolyte and 4-tert-butyl pyridine as additive were prepared by solution method. The introduction of PMMA in the PEO gel electrolyte reduced the degree of crystallinity of PEO, which was confirmed by differential scanning calorimetry (DSC). Complexation and ionic conductivity as a function of temperature were investigated with Fourier transform infrared and ionic conductometry, respectively. A good correlation was found between the degree of crystallinity and ionic conductivity. The reduction in crystallinity, governed by blending ratio, led to improvement of ionic conductivity. The best ionic conductivity was attained in PEO/PMMA blend with 10/90 w/w composition. The performance of a quasi-solid-state dye sensitized solar cell using the optimized polymer gel electrolyte was investigated. The optimized system of high ionic conductivity of 7 mS cm{sup −1}, with fill factor of 0.59, short-circuit density of 11.11 mA cm{sup −2}, open-circuit voltage of 0.75 V and the conversion efficiency of 4.9% under air mass 1.5 irradiation (100 mW cm{sup −2}) was obtained. The long-term stability of the dye-sensitized solar cell (DSSC) during 600 h was improved by using PEO/PMMA gel electrolyte relative to a liquid type

  18. Solid-State NMR Study of New Copolymers as Solid Polymer Electrolytes

    Directory of Open Access Journals (Sweden)

    Jean-Christophe Daigle

    2018-01-01

    Full Text Available We report the analysis of comb-like polymers by solid-state NMR. The polymers were previously evaluated as solid-polymer-electrolytes (SPE for lithium-polymer-metal batteries that have suitable ionic conductivity at 60 °C. We propose to develop a correlation between 13C solid-state NMR measurements and phase segregation. 13C solid-state NMR is a perfect tool for differentiating polymer phases with fast or slow motions. 7Li was used to monitor the motion of lithium ions in the polymer, and activation energies were calculated.

  19. Oxygen reduction on carbon supported platinum catalysts in high temperature polymer electrolytes

    DEFF Research Database (Denmark)

    Qingfeng, Li; Bergqvist, R. S.; Hjuler, H. A.

    1999-01-01

    Oxygen reduction on carbon supported platinum catalysts has been investigated in H3PO4, H3PO4-doped Nafion and PBI polymer electrolytes in a temperature range from 80 to 190°C. Compared with pure H3PO4, using the H3PO4 doped Nafion and PBI polymer electrolytes can significantly improve the oxygen...

  20. Cathode solid electrolyte interface’s function originated from salt type additives in lithium ion batteries

    International Nuclear Information System (INIS)

    Kaneko, Yu; Park, Juyeon; Yokotsuji, Hokuto; Odawara, Makoto; Takase, Hironari; Ue, Makoto; Lee, Maeng-Eun

    2016-01-01

    Highlights: • Our chemical analysis determines the important functional groups of cathode’s solid electrolyte interface originated from salt type additives. • Our quantum chemical calculation reveals the redox character of the additives and their candidate chemical components of the solid electrolyte interface. • Our molecular dynamics simulation reproduces the selective lithium ion translocation and protective layer formation as the solid electrolyte interface function. - Abstract: This is the study about the cathode’s solid electrolyte interface (SEI) formation mechanism of salt type additives (STAs) and its function. To address this issue, we performed several types of chemical analysis and computer simulation techniques. In order to reveal the redox nature and oxidative decomposition dynamics, the electrolyte (EL) solution dynamics by Quantum mechanics and Molecular mechanics (QM/MM) method was applied. The estimation of SEI chemical components agrees with our chemical analyses data and other group’s reports. The molecular dynamics simulation of sub micro second sampling indicates that the SEI phase induced from STAs functions as a lithium ion selective translocation media and protective coating layer against the degradation of the solvent molecules. The results give us an insight how to design additive’s chemical structure to improve longevity of the cell in the high voltage regime.

  1. Novel thixotropic gel electrolytes based on dicationic bis-imidazolium salts for quasi-solid-state dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jun Young [Department of Polymer Science and Engineering, SungKyunKwan University, Suwon, Kyunggi-do 440-746 (Korea); Functional Polymer Lab., Korea Institute of Science and Technology, Seoul 136-791 (Korea); Kim, Tae Ho [Department of Polymer Science and Engineering, SungKyunKwan University, Suwon, Kyunggi-do 440-746 (Korea); Kim, Dong Young; Park, Nam-Gyu [Energy Materials Research Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea); Ahn, Kwang-Duk [Functional Polymer Lab., Korea Institute of Science and Technology, Seoul 136-791 (Korea)

    2008-01-03

    Novel thixotropic gel electrolytes have been successfully prepared by utilizing oligomeric poly(ethylene oxide) (PEO)-based bis-imidazolium diiodide salts and hydrophilic silica nanoparticles for application in quasi-solid-state dye-sensitized solar cells (DSSCs). The thixotropic gel-state of the ionic liquid-based composite electrolytes is confirmed by observing the typical hysteresis loop and temporary hydrogen bonding. On using the PEO-based composite electrolyte, a quasi-solid-state DSSC exhibited highly improved properties such as easy penetration of the electrolyte into the cell without leakage, long-term stability, high open-circuit voltage without the use of 4-tert-butylpyridine, and a high energy-conversion efficiency of 5.25% under AM 1.5 illumination (100 mW cm{sup -2}). (author)

  2. Initial stages of high temperature metal oxidation

    International Nuclear Information System (INIS)

    Yang, C.Y.; O'Grady, W.E.

    1981-01-01

    The application of XPS and UPS to the study of the initial stages of high temperature (> 350 0 C) electrochemical oxidation of iron and nickel is discussed. In the high temperature experiments, iron and nickel electrodes were electrochemically oxidized in contact with a solid oxide electrolyte in the uhv system. The great advantages of this technique are that the oxygen activity at the interface may be precisely controlled and the ability to run the reactions in uhv allows the simultaneous observation of the reactions by XPS

  3. Screening possible solid electrolytes by calculating the conduction pathways using Bond Valence method

    Science.gov (United States)

    Gao, Jian; Chu, Geng; He, Meng; Zhang, Shu; Xiao, RuiJuan; Li, Hong; Chen, LiQuan

    2014-08-01

    Inorganic solid electrolytes have distinguished advantages in terms of safety and stability, and are promising to substitute for conventional organic liquid electrolytes. However, low ionic conductivity of typical candidates is the key problem. As connective diffusion path is the prerequisite for high performance, we screen for possible solid electrolytes from the 2004 International Centre for Diffraction Data (ICDD) database by calculating conduction pathways using Bond Valence (BV) method. There are 109846 inorganic crystals in the 2004 ICDD database, and 5295 of them contain lithium. Except for those with toxic, radioactive, rare, or variable valence elements, 1380 materials are candidates for solid electrolytes. The rationality of the BV method is approved by comparing the existing solid electrolytes' conduction pathways we had calculated with those from experiments or first principle calculations. The implication for doping and substitution, two important ways to improve the conductivity, is also discussed. Among them Li2CO3 is selected for a detailed comparison, and the pathway is reproduced well with that based on the density functional studies. To reveal the correlation between connectivity of pathways and conductivity, α/ γ-LiAlO2 and Li2CO3 are investigated by the impedance spectrum as an example, and many experimental and theoretical studies are in process to indicate the relationship between property and structure. The BV method can calculate one material within a few minutes, providing an efficient way to lock onto targets from abundant data, and to investigate the structure-property relationship systematically.

  4. Exceptional durability enhancement of PA/PBI based polymer electrolyte membrane fuel cells for high temperature operation at 200°C

    DEFF Research Database (Denmark)

    Aili, David; Zhang, Jin; Jakobsen, Mark Tonny Dalsgaard

    2016-01-01

    The incorporation of phosphotungstic acid functionalized mesoporous silica in phosphoric acid doped polybenzimidazole (PA/PBI) substantially enhances the durability of PA/PBI based polymer electrolyte membrane fuel cells for high temperature operation at 200°C.......The incorporation of phosphotungstic acid functionalized mesoporous silica in phosphoric acid doped polybenzimidazole (PA/PBI) substantially enhances the durability of PA/PBI based polymer electrolyte membrane fuel cells for high temperature operation at 200°C....

  5. Synthesis of POSS-based ionic conductors with low glass transition temperatures for efficient solid-state dye-sensitized solar cells.

    Science.gov (United States)

    Zhang, Wei; Wang, Zhong-Sheng

    2014-07-09

    Replacing liquid-state electrolytes with solid-state electrolytes has been proven to be an effective way to improve the durability of dye-sensitized solar cells (DSSCs). We report herein the synthesis of amorphous ionic conductors based on polyhedral oligomeric silsesquioxane (POSS) with low glass transition temperatures for solid-state DSSCs. As the ionic conductor is amorphous and in the elastomeric state at the operating temperature of DSSCs, good pore filling in the TiO2 film and good interfacial contact between the solid-state electrolyte and the TiO2 film can be guaranteed. When the POSS-based ionic conductor containing an allyl group is doped with only iodine as the solid-state electrolyte without any other additives, power conversion efficiency of 6.29% has been achieved with good long-term stability under one-sun soaking for 1000 h.

  6. Failure analysis of electrolyte-supported solid oxide fuel cells

    Science.gov (United States)

    Fleischhauer, Felix; Tiefenauer, Andreas; Graule, Thomas; Danzer, Robert; Mai, Andreas; Kuebler, Jakob

    2014-07-01

    For solid oxide fuel cells (SOFCs) one key aspect is the structural integrity of the cell and hence its thermo mechanical long term behaviour. The present study investigates the failure mechanisms and the actual causes for fracture of electrolyte supported SOFCs which were run using the current μ-CHP system of Hexis AG, Winterthur - Switzerland under lab conditions or at customer sites for up to 40,000 h. In a first step several operated stacks were demounted for post-mortem inspection, followed by a fractographic evaluation of the failed cells. The respective findings are then set into a larger picture including an analysis of the present stresses acting on the cell like thermal and residual stresses and the measurements regarding the temperature dependent electrolyte strength. For all investigated stacks, the mechanical failure of individual cells can be attributed to locally acting bending loads, which rise due to an inhomogeneous and uneven contact between the metallic interconnect and the cell.

  7. Evaluation of apatite silicates as solid oxide fuel cell electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Marrero-Lopez, D. [Dpto. de Fisica Aplicada I, Laboratorio de Materiales y Superficies (Unidad Asociada al C.S.I.C.), Universidad de Malaga, 29071 Malaga (Spain); Dpto. de Quimica Inorganica, Universidad de La Laguna, 38200 La Laguna, Tenerife (Spain); Martin-Sedeno, M.C.; Aranda, M.A.G. [Dpto. de Quimica Inorganica, Universidad Malaga, 29071 Malaga (Spain); Pena-Martinez, J. [Dpto. de Quimica Inorganica, Universidad de La Laguna, 38200 La Laguna, Tenerife (Spain); Instituto de Energias Renovables, Parque Tecnologico, Universidad de Castilla La Mancha, 02006 Albacete (Spain); Ruiz-Morales, J.C.; Nunez, P. [Dpto. de Quimica Inorganica, Universidad de La Laguna, 38200 La Laguna, Tenerife (Spain); Ramos-Barrado, J.R. [Dpto. de Fisica Aplicada I, Laboratorio de Materiales y Superficies (Unidad Asociada al C.S.I.C.), Universidad de Malaga, 29071 Malaga (Spain)

    2010-05-01

    Apatite-type silicates have been considered as promising electrolytes for Solid Oxide Fuel Cells (SOFC); however studies on the potential use of these materials in SOFC devices have received relatively little attention. The lanthanum silicate with composition La{sub 10}Si{sub 5.5}Al{sub 0.5}O{sub 26.75} has been evaluated as electrolyte with the electrode materials commonly used in SOFC, i.e. manganite, ferrite and cobaltite as cathode materials and NiO-CGO composite, chromium-manganite and Sr{sub 2}MgMoO{sub 6} as anode materials. Chemical compatibility, area-specific resistance and fuel cell studies have been performed. X-ray powder diffraction (XRPD) analysis did not reveal any trace of reaction products between the apatite electrolyte and most of the aforementioned electrode materials. However, the area-specific polarisation resistance (ASR) of these electrodes in contact with apatite electrolyte increased significantly with the sintering temperature, indicating reactivity at the electrolyte/electrode interface. On the other hand, the ASR values are significantly improved using a ceria buffer layer between the electrolyte and electrode materials to prevent reactivity. Maximum power densities of 195 and 65 mWcm{sup -2} were obtained at 850 and 700 C, respectively in H{sub 2} fuel, using an 1 mm-thick electrolyte, a NiO-Ce{sub 0.8}Gd{sub 0.2}O{sub 1.9} composite as anode and La{sub 0.6}Sr{sub 0.4}Co{sub 0.8}Fe{sub 0.2}O{sub 3-{delta}} as cathode materials. This fuel cell was tested for 100 h in 5%H{sub 2}-Ar atmosphere showing stable performance. (author)

  8. Elastic modulus and internal friction of SOFC electrolytes at high temperatures under controlled atmospheres

    Science.gov (United States)

    Kushi, Takuto; Sato, Kazuhisa; Unemoto, Atsushi; Hashimoto, Shinichi; Amezawa, Koji; Kawada, Tatsuya

    2011-10-01

    Mechanical properties such as Young's modulus, shear modulus, Poisson's ratio and internal friction of conventional electrolyte materials for solid oxide fuel cells, Zr0.85Y0.15 O1.93 (YSZ), Zr0.82Sc0.18O1.91 (ScSZ), Zr0.81Sc0.18Ce0.01O2-δ (ScCeSZ), Ce0.9Gd0.1O2-δ (GDC), La0.8Sr0.2Ga0.8Mg0.15Co0.05O3-δ (LSGMC), La0.8Sr0.2Ga0.8Mg0.2O3-δ (LSGM), were evaluated by a resonance method at temperatures from room temperature to 1273 K in various oxygen partial pressures. The Young's modulus of GDC gradually decreased with increasing temperature in oxidizing conditions. The Young's moduli of the series of zirconia and lanthanum gallate based materials drastically decreased in an intermediate temperature range and increased slightly with increasing temperature at higher temperatures. The Young's modulus of GDC considerably decreased above 823 K in reducing atmospheres in response to the change of oxygen nonstoichiometry. However, temperature dependences of the Young's moduli of ScCeSZ and LSGMC in reducing atmospheres did not show any significant differences with those in oxidizing atmospheres.

  9. Synthesis, processing and characterization of the solid oxide half-cells cathode/electrolyte of strontium-doped lanthanum manganite/Yttria-stabilized zirconia

    International Nuclear Information System (INIS)

    Chiba, Rubens

    2010-01-01

    The ceramic films of strontium-doped lanthanum manganite (LSM) and strontium doped lanthanum manganite/Yttria-stabilized zirconia (LSM/YSZ) are used as cathodes of the high temperature solid oxide fuel cells (HTSOFC). These porous ceramic films had been deposited on the YSZ dense ceramic substrate, used as electrolyte, structural component of the module, thus conferring a configuration of half-cell called auto-support. The study of the half-cell it is basic, therefore in the interface cathode/electrolyte occurs the oxygen reduction reaction, consequently influencing in the performance of the HTSOFC. In this direction, the present work contributes for the processing of thin films, using the wet powder spraying technique, adopted for the conformation of the ceramic films for allowing the attainment of porous layers with thicknesses varied in the order of micrometers. The LSM powders were synthesized by the citrate technique and the LSM/YSZ powders synthesized by the solid mixture technique. In the stage of formation were prepared organic suspensions of LSM and LSM/YSZ fed by gravity in a manual aerograph. For the formation of the YSZ substrate was used a hydraulic uniaxial press. The attainment of solid oxide half-cells cathode/electrolyte was possible of crystalline structures hexagonal for phase LSM and cubic for phase YSZ. The half-cells micrographs show that the YSZ substrate is dense, enough to be used as solid electrolyte, and the LSM and LSM/YSZ films are presented porous with approximately 30 μm of thickness and good adherence between the cathodes and the electrolyte. The presence of composite cathode between the LSM cathode and YSZ substrate, presented an increase in the electrochemical performance in the oxygen reduction reaction. (author)

  10. Room-Temperature-Cured Copolymers for Lithium Battery Gel Electrolytes

    Science.gov (United States)

    Meador, Mary Ann B.; Tigelaar, Dean M.

    2009-01-01

    Polyimide-PEO copolymers (PEO signifies polyethylene oxide) that have branched rod-coil molecular structures and that can be cured into film form at room temperature have been invented for use as gel electrolytes for lithium-ion electric-power cells. These copolymers offer an alternative to previously patented branched rod-coil polyimides that have been considered for use as polymer electrolytes and that must be cured at a temperature of 200 C. In order to obtain sufficient conductivity for lithium ions in practical applications at and below room temperature, it is necessary to imbibe such a polymer with a suitable carbonate solvent or ionic liquid, but the high-temperature cure makes it impossible to incorporate and retain such a liquid within the polymer molecular framework. By eliminating the high-temperature cure, the present invention makes it possible to incorporate the required liquid.

  11. Further Improvement and System Integration of High Temperature Polymer Electrolyte Membrane Fuel Cells

    DEFF Research Database (Denmark)

    Jensen, Jens Oluf; Li, Qingfeng

    Polymer electrolyte membrane fuel cell (PEMFC) technology based on Nafion membranes can operate at temperatures around 80°C. The new development in the field is high temperature PEMFC for operation above 100°C, which has been successfully demonstrated through the previous EC Joule III and the 5th......, and system integration of the high temperature PEMFC. The strategic developments of the FURIM are in three steps: (1) further improvement of the high temperature polymer membranes and related materials; (2) development of technological units including fuel cell stack, hydrocarbon reformer, afterburner...... and power management system, that are compatible with the HT-PEMFC; and (3) integration of the HT-PEMFC stack with these compatible subunits. The main goal of the project is a 2kWel HT-PEMFC stack operating in a temperature range of 120-220°C, with a single cell performance target of 0.7 A/cm² at a cell...

  12. A highly reversible room-temperature lithium metal battery based on crosslinked hairy nanoparticles.

    KAUST Repository

    Choudhury, Snehashis; Mangal, Rahul; Agrawal, Akanksha; Archer, Lynden A

    2015-01-01

    Rough electrodeposition, uncontrolled parasitic side-reactions with electrolytes and dendrite-induced short-circuits have hindered development of advanced energy storage technologies based on metallic lithium, sodium and aluminium electrodes. Solid polymer electrolytes and nanoparticle-polymer composites have shown promise as candidates to suppress lithium dendrite growth, but the challenge of simultaneously maintaining high mechanical strength and high ionic conductivity at room temperature has so far been unmet in these materials. Here we report a facile and scalable method of fabricating tough, freestanding membranes that combine the best attributes of solid polymers, nanocomposites and gel-polymer electrolytes. Hairy nanoparticles are employed as multifunctional nodes for polymer crosslinking, which produces mechanically robust membranes that are exceptionally effective in inhibiting dendrite growth in a lithium metal battery. The membranes are also reported to enable stable cycling of lithium batteries paired with conventional intercalating cathodes. Our findings appear to provide an important step towards room-temperature dendrite-free batteries.

  13. A highly reversible room-temperature lithium metal battery based on crosslinked hairy nanoparticles.

    KAUST Repository

    Choudhury, Snehashis

    2015-12-04

    Rough electrodeposition, uncontrolled parasitic side-reactions with electrolytes and dendrite-induced short-circuits have hindered development of advanced energy storage technologies based on metallic lithium, sodium and aluminium electrodes. Solid polymer electrolytes and nanoparticle-polymer composites have shown promise as candidates to suppress lithium dendrite growth, but the challenge of simultaneously maintaining high mechanical strength and high ionic conductivity at room temperature has so far been unmet in these materials. Here we report a facile and scalable method of fabricating tough, freestanding membranes that combine the best attributes of solid polymers, nanocomposites and gel-polymer electrolytes. Hairy nanoparticles are employed as multifunctional nodes for polymer crosslinking, which produces mechanically robust membranes that are exceptionally effective in inhibiting dendrite growth in a lithium metal battery. The membranes are also reported to enable stable cycling of lithium batteries paired with conventional intercalating cathodes. Our findings appear to provide an important step towards room-temperature dendrite-free batteries.

  14. All-solid-state Al-air batteries with polymer alkaline gel electrolyte

    Science.gov (United States)

    Zhang, Zhao; Zuo, Chuncheng; Liu, Zihui; Yu, Ying; Zuo, Yuxin; Song, Yu

    2014-04-01

    Aluminum-air (Al-air) battery is one of the most promising candidates for next-generation energy storage systems because of its high capacity and energy density, and abundance. The polyacrylic acid (PAA)-based alkaline gel electrolyte is used in all-solid-state Al-air batteries instead of aqueous electrolytes to prevent leakage. The optimal gel electrolyte exhibits an ionic conductivity of 460 mS cm-1, which is close to that of aqueous electrolytes. The Al-air battery peak capacity and energy density considering only Al can reach 1166 mAh g-1-Al and 1230 mWh g-1-Al, respectively, during constant current discharge. The battery prototype also exhibits a high power density of 91.13 mW cm-2. For the battery is a laminated structure, area densities of 29.2 mAh cm-2 and 30.8 mWh cm-2 are presented to appraise the performance of the whole cell. A novel design to inhibit anodic corrosion is proposed by separating the Al anode from the gel electrolyte when not in use, thereby effectively maintaining the available capacity of the battery.

  15. Materials and Components for Low Temperature Solid Oxide Fuel Cells – an Overview

    Directory of Open Access Journals (Sweden)

    D. Radhika

    2013-06-01

    Full Text Available This article summarizes the recent advancements made in the area of materials and components for low temperature solid oxide fuel cells (LT-SOFCs. LT-SOFC is a new trend in SOFCtechnology since high temperature SOFC puts very high demands on the materials and too expensive to match marketability. The current status of the electrolyte and electrode materials used in SOFCs, their specific features and the need for utilizing them for LT-SOFC are presented precisely in this review article. The section on electrolytes gives an overview of zirconia, lanthanum gallate and ceria based materials. Also, this review article explains the application of different anode, cathode and interconnect materials used for SOFC systems. SOFC can result in better performance with the application of liquid fuels such methanol and ethanol. As a whole, this review article discusses the novel materials suitable for operation of SOFC systems especially for low temperature operation.

  16. Anti-perovskite solid electrolyte compositions

    Science.gov (United States)

    Zhao, Yusheng; Daemen, Luc Louis

    2015-12-26

    Solid electrolyte antiperovskite compositions for batteries, capacitors, and other electrochemical devices have chemical formula Li.sub.3OA, Li.sub.(3-x)M.sub.x/2OA, Li.sub.(3-x)N.sub.x/3OA, or LiCOX.sub.zY.sub.(1-z), wherein M and N are divalent and trivalent metals respectively and wherein A is a halide or mixture of halides, and X and Y are halides.

  17. Nanoporous palladium anode for direct ethanol solid oxide fuel cells with nanoscale proton-conducting ceramic electrolyte

    Science.gov (United States)

    Li, Yong; Wong, Lai Mun; Xie, Hanlin; Wang, Shijie; Su, Pei-Chen

    2017-02-01

    In this work, we demonstrate the operation of micro-solid oxide fuel cells (μ-SOFCs) with nanoscale proton-conducting Y-BaZrO3 (BZY) electrolyte to avoid the fuel crossover problem for direct ethanol fuel cells (DEFCs). The μ-SOFCs are operated with the direct utilisation of ethanol vapour as a fuel and Pd as anode at the temperature range of 300-400 °C. The nanoporous Pd anode is achieved by DC sputtering at high Ar pressure of 80 mTorr. The Pd-anode/BYZ-electrolyte/Pt-cathode cell show peak power densities of 72.4 mW/cm2 using hydrogen and 15.3 mW/cm2 using ethanol at 400 °C. No obvious carbon deposition is seen from XPS analysis after fuel cell test with ethanol fuel.

  18. Transport Properties Of PbI2 Doped Silver Oxysalt Based Amorphous Solid Electrolytes

    Science.gov (United States)

    Shrisanjaykumar Jayswal, Manishkumar

    Solid electrolytes are a class of materials that conduct electricity by means of motion of ions like Ag+, Na+, Li +, Cu+, H+, F-, O -2 etc. in solid phase. The host materials include crystalline, polycrystalline, glasses, polymers and composites. Ion conducting glasses are one of the most sought after solid electrolytes that are useful in various electrochemical applications like solid state batteries, gas sensors, supercapacitors, electrochromic devices, to name a few. Since the discovery of fast silver ion transport in silver oxyhalide glasses at the end of the 1960s, many glasses showing large ionic conductivity up to 10-4 10-2 S/cm at room temperature have been developed, chiefly silver and copper ion conductors. The silver ion conducting glasses owe their high ionic conductivity mainly to stabilized alpha-AgI. AgI, as we know, undergoes a structural phase transition from wurtzite (beta phase) at room temperature to body centered cubic (alpha phase) structure at temperatures higher than 146 °C. The alpha-AgI possesses approximately six order of higher ionic conductivity than beta-AgI. The high ionic conductivity of alpha-AgI is attributed to its molten sublattice type of structure, which facilitates easy Ag+ ion migration, like a liquid. And hence, several attempts have been made to stabilize it at room temperature in crystalline as well as non-crystalline hosts like oxide and non-oxide glasses. Recently, in order to stabilize AgI in glasses, instead of directly doping it, indirect routes have also been explored. Where, a metal iodide salt along with silver oxide or silver phosphate is taken and an exchange reaction permitted by Hard and Soft, Acid and Base (HSAB) principle occurs between the two and AgI and metal oxide form in the glass forming melt. Work done in the present thesis has been organized in seven chapters as follows: Chapter 1: A review and background information of different solid electrolyte materials and their development is presented. Along

  19. Hydrogen production by electrochemical decomposition of formic acid via solid polymer electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Kilic, Ebru Oender [KOSGEB Bursa Business Development Center, Besevler Kucuk Sanayi Sitesi 16149 Nilufer/Bursa (Turkey); Koparal, Ali Savas; Oeguetveren, Uelker Bakir [Anadolu University, Iki Eylul Campus, Applied Research Center for Environmental Problems 26555 Eskisehir (Turkey); Anadolu University, Iki Eylul Campus, Department of Environmental Engineering, 26555 Eskisehir (Turkey)

    2009-01-15

    The aim of this work is to investigate the feasibility of simultaneous hydrogen production by electrochemical decomposition of formic acid via solid polymer electrolyte (SPE) in an electrochemical reactor. Titanium oxide coated with iridium oxide as anode and carbon fibre with Pt catalyst as cathode were used in the experiments. Effects of applied current density, flow rates and temperature of formic acid solution, concentration of supporting electrolyte and pH of the solution on performance of the process have been investigated. The effect of membrane thickness has also been examined. The results suggest that electrolysis using SPE is a promising method for the treatment of organic pollutants. Hydrogen with purity of 99.999% at ambient temperature by using carbon fibre cathode with Pt catalyst can be produced simultaneously and COD removal efficiency of 95% has been achieved not requiring any chemical addition and temperature increase. Also complete electrochemical oxidation of formic acid at the original pH to CO{sub 2} and H{sub 2}O without production of intermediate has been proved by HPLC analysis. (author)

  20. Polymerizable Ionic Liquid Crystals Comprising Polyoxometalate Clusters toward Inorganic-Organic Hybrid Solid Electrolytes

    Directory of Open Access Journals (Sweden)

    Takeru Ito

    2017-07-01

    Full Text Available Solid electrolytes are crucial materials for lithium-ion or fuel-cell battery technology due to their structural stability and easiness for handling. Emergence of high conductivity in solid electrolytes requires precise control of the composition and structure. A promising strategy toward highly-conductive solid electrolytes is employing a thermally-stable inorganic component and a structurally-flexible organic moiety to construct inorganic-organic hybrid materials. Ionic liquids as the organic component will be advantageous for the emergence of high conductivity, and polyoxometalate, such as heteropolyacids, are well-known as inorganic proton conductors. Here, newly-designed ionic liquid imidazolium cations, having a polymerizable methacryl group (denoted as MAImC1, were successfully hybridized with heteropolyanions of [PW12O40]3− (PW12 to form inorganic-organic hybrid monomers of MAImC1-PW12. The synthetic procedure of MAImC1-PW12 was a simple ion-exchange reaction, being generally applicable to several polyoxometalates, in principle. MAImC1-PW12 was obtained as single crystals, and its molecular and crystal structures were clearly revealed. Additionally, the hybrid monomer of MAImC1-PW12 was polymerized by a radical polymerization using AIBN as an initiator. Some of the resulting inorganic-organic hybrid polymers exhibited conductivity of 10−4 S·cm−1 order under humidified conditions at 313 K.

  1. A Rechargeable Li-Air Fuel Cell Battery Based on Garnet Solid Electrolytes.

    Science.gov (United States)

    Sun, Jiyang; Zhao, Ning; Li, Yiqiu; Guo, Xiangxin; Feng, Xuefei; Liu, Xiaosong; Liu, Zhi; Cui, Guanglei; Zheng, Hao; Gu, Lin; Li, Hong

    2017-01-24

    Non-aqueous Li-air batteries have been intensively studied in the past few years for their theoretically super-high energy density. However, they cannot operate properly in real air because they contain highly unstable and volatile electrolytes. Here, we report the fabrication of solid-state Li-air batteries using garnet (i.e., Li 6.4 La 3 Zr 1.4 Ta 0.6 O 12 , LLZTO) ceramic disks with high density and ionic conductivity as the electrolytes and composite cathodes consisting of garnet powder, Li salts (LiTFSI) and active carbon. These batteries run in real air based on the formation and decomposition at least partially of Li 2 CO 3 . Batteries with LiTFSI mixed with polyimide (PI:LiTFSI) as a binder show rechargeability at 200 °C with a specific capacity of 2184 mAh g -1 carbon at 20 μA cm -2 . Replacement of PI:LiTFSI with LiTFSI dissolved in polypropylene carbonate (PPC:LiTFSI) reduces interfacial resistance, and the resulting batteries show a greatly increased discharge capacity of approximately 20300 mAh g -1 carbon and cycle 50 times while maintaining a cutoff capacity of 1000 mAh g -1 carbon at 20 μA cm -2 and 80 °C. These results demonstrate that the use of LLZTO ceramic electrolytes enables operation of the Li-air battery in real air at medium temperatures, leading to a novel type of Li-air fuel cell battery for energy storage.

  2. Further Improvement and System Integration of High Temperature Polymer Electrolyte Membrane Fuel Cells

    DEFF Research Database (Denmark)

    Li, Qingfeng; Jensen, Jens Oluf

    The new development in the field of polymer electrolyte membrane fuel cell (PEMFC) is high temperature PEMFC for operation above 100°C, which has been successfully demonstrated through the previous EC Joule III and the 5th framework programme. New challenges are encountered, bottlenecks for the new...... technology have been identified, and new concepts and solutions have been provisionally identified. FURIM is directed at tackling these key issues by concentrating on the further materials development, compatible technologies, and system integration of the high temperature PEMFC. The strategic developments...... of the FURIM are in three steps: (1) further improvement of the high temperature polymer membranes and related materials; (2) development of technological units including fuel cell stack, hydrocarbon reformer and afterburner, that are compatible with the HT-PEMFC; and (3) integration of the HT-PEMFC stack...

  3. Polycarbonate-based polyurethane as a polymer electrolyte matrix for all-solid-state lithium batteries

    Science.gov (United States)

    Bao, Junjie; Shi, Gaojian; Tao, Can; Wang, Chao; Zhu, Chen; Cheng, Liang; Qian, Gang; Chen, Chunhua

    2018-06-01

    Four kinds of polycarbonate-based polyurethane with 8-14 wt% hard segments content are synthesized via reactions of polycarbonatediol, hexamethylene diisocyanate and diethylene glycol. The mechanical strength of the polyurethanes increase with the increase of hard segments content. Solid polymer electrolytes composed of the polycarbonate-based polyurethanes and LiTFSI exhibits fascinating characteristics for all-solid-state lithium batteries with a high ionic conductivity of 1.12 × 10-4 S cm-1 at 80 °C, an electrochemical stability window up to 4.5 V (vs. Li+/Li), excellent mechanical strength and superior interfacial stability against lithium metal. The all-solid-state batteries using LiFePO4 cathode can deliver high discharge capacities (161, 158, 134 and 93 mAh g-1 at varied rates of 0.2, 0.5, 1 and 2 C) at 80 °C and excellent cycling performance (with 91% capacity retention after 600 cycles at 1 C). All the results indicate that such a polyurethane-based solid polymer electrolyte can be a promising candidate for all-solid-state lithium batteries.

  4. HYFIRE: a tokamak/high-temperature electrolysis system

    International Nuclear Information System (INIS)

    Fillo, J.A.; Powell, J.P.; Benenati, R.; Varljen, T.C.; Chi, J.W.H.; Karbowski, J.S.

    1981-01-01

    The HYFIRE studies to date have investigated a number of technical approaches for using the thermal energy produced in a high-temperature Tokamak blanket to provide the electrical and thermal energy required to drive a high-temperature (> 1000 0 C) water electrolysis process. Current emphasis is on two design points, one consistent with electrolyzer peak inlet temperatures of 1400 0 C, which is an extrapolation of present experience, and one consistent with a peak electrolyzer temperature of 1100 0 C. This latter condition is based on current laboratory experience with high-temperature solid electrolyte fuel cells. Our major conclusion to date is that the technical integration of fusion and high-temperature electrolysis appears to be feasible and that overall hydrogen production efficiencies of 50 to 55% seem possible

  5. Low temperature electrochemical cells with sodium β″-alumina solid electrolyte (BASE)

    Science.gov (United States)

    Girija, T. C.; Virkar, Anil V.

    Cells of Daniell-type with copper-zinc electrochemical couples and sodium β″-alumina solid electrolyte (BASE) were constructed. The cathode consisted of copper in contact with its ions (Cu/Cu 2+) while zinc in contact with its ions (Zn/Zn 2+) constituted the anode. Dimethyl sulfoxide (DMSO) containing 1 M NaBF 4 was used as the liquid electrolyte. The configuration of the cell constructed can be written as follows: Zn(s)/ZnCl 2(DMSO)(0.1 M), NaBF 4(1 M)/BASE/NaBF 4(1 M), CuCl 2(DMSO)(0.1 M)/Cu(s). The cell was subjected to charge-discharge cycles at 100 °C. The BASE discs were found to be stable even after the cell was subjected to several electrochemical charge-discharge cycles. Cells were also constructed using BASE discs with porous BASE surface layers introduced to lower the interfacial resistance. Cells with surface modified BASE exhibited a lower resistance in comparison to those using unmodified BASE. XRD and SEM analyses indicated that no detectable degradation of BASE discs occurred after cell testing. Preliminary cell tests were also conducted with NaCF 3SO 3 in place of NaBF 4.

  6. High-temperature materials and structural ceramics

    International Nuclear Information System (INIS)

    1990-01-01

    This report gives a survey of research work in the area of high-temperature materials and structural ceramics of the KFA (Juelich Nuclear Research Center). The following topics are treated: (1) For energy facilities: ODS materials for gas turbine blades and heat exchangers; assessment of the remaining life of main steam pipes, material characterization and material stress limits for First-Wall components; metallic and graphitic materials for high-temperature reactors. (2) For process engineering plants: composites for reformer tubes and cracking tubes; ceramic/ceramic joints and metal/ceramic and metal/metal joints; Composites and alloys for rolling bearing and sliding systems up to application temperatures of 1000deg C; high-temperature corrosion of metal and ceramic material; porous ceramic high-temperature filters and moulding coat-mix techniques; electrically conducting ceramic material (superconductors, fuel cells, solid electrolytes); high-temperature light sources (high-temperature chemistry); oil vapor engines with caramic components; ODS materials for components in diesel engines and vehicle gas turbines. (MM) [de

  7. Ceramic membrane fuel cells based on solid proton electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Guangyao; Ma, Qianli; Peng, Ranran; Liu, Xingqin [USTC Lab. for Solid State Chemistry and Inorganic Membranes, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026 (China); Ma, Guilin [School of Chemistry and Chemical Engineering, Suzhou University, Suzhou 215123 (China)

    2007-04-15

    The development of solid oxide fuel cells (SOFCs) has reached its new stage characterized with thin electrolytes on porous electrode support, and the most important fabrication techniques developed in which almost all are concerned with inorganic membranes, and so can be named as ceramic membrane fuel cells (CMFCs). CMFCs based on proton electrolytes (CMFC-H) may exhibit more advantages than CMFCs based on oxygen-ion electrolytes (CMFC-O) in many respects, such as energy efficiency and avoiding carbon deposit. Ammonia fuelled CMFC with proton-conducting BaCe{sub 0.8}Gd{sub 0.2}O{sub 2.9} (BCGO) electrolyte (50 {mu}m in thickness) is reported in this works, which showed the open current voltage (OCV) values close to theoretical ones and rather high power density. And also, we have found that the well known super oxide ion conductor, La{sub 0.9}Sr{sub 0.1}Ga{sub 0.8}Mg{sub 0.2}O{sub 3-{alpha}} (LSGM), is a pure proton conductor in H{sub 2} and mixed proton and oxide ion conductor in wet air, while it is a pure oxide ion conductor in oxygen or dry air. To demonstrate the CMFC-H concept to get high performance fuel cells the techniques for thin membranes, chemical vapor deposition (CVD), particularly novel CVD techniques, should be given more attention because of their many advantages. (author)

  8. Solidification of liquid electrolyte with imidazole polymers for quasi-solid-state dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Wang Miao; Lin Yuan; Zhou Xiaowen; Xiao Xurui; Yang Lei; Feng Shujing; Li Xueping

    2008-01-01

    Quasi-solid-state electrolytes were prepared by employing the imidazole polymers to solidify the liquid electrolyte containing lithium iodide, iodine and ethylene carbonate (EC)/propylene carbonate (PC) mixed solvent. The ionic conductivity and diffusion behavior of triiodide in the quasi-solid-state electrolytes were examined in terms of the polymer content. Application of the quasi-solid-state electrolytes to the dye-sensitized solar cells, the maximum energy conversion efficiency of 7.6% (AM 1.5, 100 mW cm -2 ) was achieved. The dependence of the photovoltaic performance on the polymer content and on the different anions of the imidazole polymers was studied by electrochemical impedance spectroscopy and cyclic voltammetry. The results indicate the charge transfer behaviors occurred at nanocrystalline TiO 2 /electrolyte and Pt/electrolyte interface play an important role in influencing the photovoltaic performance of quasi-solid-state dye-sensitized solar cells

  9. Local Structure and Ionic Conduction at Interfaces of Electrode and Solid Electrolytes

    OpenAIRE

    Yamada, Hirotsohi; Oga, Yusuke; Saruwatari, Isamu; Moriguchi, Isamu

    2012-01-01

    All solid state batteries are attracting interests as next generation energy storage devices. However, little is known on interfaces between active materials and solid electrolytes, which may affect performance of the devices. In this study, interfacial phenomena between electrodes and solid electrolytes of all solid state batteries were investigated by using nano-composites of Li 2SiO 3-TiO 2, Li 2SiO 3-LiTiO 2, and Li 2SiO 3-FePO 4. Studies on ionic conductivity of these composites revealed...

  10. High temperature sealing method : induction brazing for SOFCs

    Energy Technology Data Exchange (ETDEWEB)

    Heo, Y.H.; Lee, S.B.; Song, R.H.; Shin, D.R. [Korea Inst. of Energy Research, Daejeon (Korea, Republic of); Lim, T.H. [Korea Inst. of Energy Research, Daejeon (Korea, Republic of). Advanced Fuel Cell Research Center

    2009-07-01

    This study examined the use of induction brazing as a high temperature sealing method for solid oxide fuel cells (SOFCs). Nickel-based brazing alloys were modified using reactive titanium-hydride (TiH2). The gas sealing properties of the induction brazing process on anode-supported tubular SOFCs and ferritic stainless steel were evaluated. Brazing alloys BNi-2 and BNi-4 were not wetted in a yttria-silica-zircon (YSZ) electrolyte. The brazing alloy with added TiH2 showed good wettability with the YSZ electrolyte as a result of the formation of a TiOX layer. Only the BNi-4 alloy joined with the YSZ electrolyte. An open circuit voltage (OCV) value was used to estimate the gas tightness of the brazed cell. It was concluded that the BNi-4 TiH2 modified alloy is a suitable sealing material for SOFCs operating in temperatures up to 750 degrees C.

  11. Structural and electrical properties of NASICON type solid electrolyte nanoscaled glass-ceramic powder by mechanical milling for thin film batteries.

    Science.gov (United States)

    Patil, Vaishali; Patil, Arun; Yoon, Seok-Jin; Choi, Ji-Won

    2013-05-01

    During last two decades, lithium-based glasses have been studied extensively as electrolytes for solid-state secondary batteries. For practical use, solid electrolyte must have high ionic conductivity as well as chemical, thermal and electrochemical stability. Recent progresses have focused on glass electrolytes due to advantages over crystalline solid. Glass electrolytes are generally classified into two types oxide glass and sulfide glass. Oxide glasses do not react with electrode materials and this chemical inertness is advantageous for cycle performances of battery. In this study, major effort has been focused on the improvement of the ion conductivity of nanosized LiAlTi(PO4)3 oxide electrolyte prepared by mechanical milling (MM) method. After heating at 1000 degrees C the material shows good crystallinity and ionic conductivity with low electronic conductivity. In LiTi2(PO4)3, Ti4+ ions are partially substituted by Al3+ ions by heat-treatment of Li20-Al2O3-TiO2-P2O5 glasses at 1000 degrees C for 10 h. The conductivity of this material is 1.09 x 10(-3) S/cm at room temp. The glass-ceramics show fast ion conduction and low E(a) value. It is suggested that high conductivity, easy fabrication and low cost make this glass-ceramics promising to be used as inorganic solid electrolyte for all-solid-state Li rechargeable batteries.

  12. Performance of a novel type of electrolyte-supported solid oxide fuel cell with honeycomb structure

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz-Morales, Juan Carlos; Savvin, Stanislav N.; Nunez, Pedro [Departmento de Quimica Inorganica, Universidad de La Laguna, 38200 Tenerife (Spain); Marrero-Lopez, David [Departamento de Fisica Aplicada I, Universidad de Malaga, 29071 Malaga (Spain); Pena-Martinez, Juan; Canales-Vazquez, Jesus [Instituto de Energias Renovables-Universidad de Castilla la Mancha, 02006 Albacete (Spain); Roa, Joan Josep; Segarra, Merce [DIOPMA, Departamento de Ciencia de los Materiales e Ing. Metalurgica, 08028 Barcelona (Spain)

    2010-01-15

    A novel design, alternative to the conventional electrolyte-supported solid oxide fuel cell (SOFC) is presented. In this new design, a honeycomb-electrolyte is fabricated from hexagonal cells, providing high mechanical strength to the whole structure and supporting the thin layer used as electrolyte of a SOFC. This new design allows a reduction of {proportional_to}70% of the electrolyte material and it renders modest performances over 320 mW cm{sup -2} but high volumetric power densities, i.e. 1.22 W cm{sup -3} under pure CH{sub 4} at 900 C, with a high OCV of 1.13 V, using the standard Ni-YSZ cermet as anode, Pt as cathode material and air as the oxidant gas. (author)

  13. Nafion/silane nanocomposite membranes for high temperature polymer electrolyte membrane fuel cell.

    Science.gov (United States)

    Ghi, Lee Jin; Park, Na Ri; Kim, Moon Sung; Rhee, Hee Woo

    2011-07-01

    The polymer electrolyte membrane fuel cell (PEMFC) has been studied actively for both potable and stationary applications because it can offer high power density and be used only hydrogen and oxygen as environment-friendly fuels. Nafion which is widely used has mechanical and chemical stabilities as well as high conductivity. However, there is a drawback that it can be useless at high temperatures (> or = 90 degrees C) because proton conducting mechanism cannot work above 100 degrees C due to dehydration of membrane. Therefore, PEMFC should be operated for long-term at high temperatures continuously. In this study, we developed nanocomposite membrane using stable properties of Nafion and phosphonic acid groups which made proton conducting mechanism without water. 3-Aminopropyl triethoxysilane (APTES) was used to replace sulfonic acid groups of Nafion and then its aminopropyl group was chemically modified to phosphonic acid groups. The nanocomposite membrane showed very high conductivity (approximately 0.02 S/cm at 110 degrees C, <30% RH).

  14. New diffusion mechanism for high temperature diffusion in solids

    International Nuclear Information System (INIS)

    Doan, N.V.; Adda, Y.

    1986-09-01

    A new atomic transport mechanism in solids at high temperatures has been discovered by Molecular Dynamics computer simulation. It can be described as a ring sequence of atomic replacements induced by unstable Frenkel pairs. This transport process takes place without stable defects, the atomic migration occurring indeed by simultaneous creation and migration of unstable defects. Starting from the analysis of this mechanism in different solids at high temperature (CaF 2 , Na, Ar) and in irradiated copper by subthreshold collisions, we discuss the role of this mechanism on various diffusion controlled phenomena and also on the atomic processes of defect creation

  15. Polybenzimidazole and sulfonated polyhedral oligosilsesquioxane composite membranes for high temperature polymer electrolyte membrane fuel cells

    DEFF Research Database (Denmark)

    Aili, David; Allward, Todd; Alfaro, Silvia Martinez

    2014-01-01

    Composite membranes based on poly(2,2′(m-phenylene)-5,5́bibenzimidazole) (PBI) and sulfonated polyhedral oligosilsesquioxane (S-POSS) with S-POSS contents of 5 and 10wt.% were prepared by solution casting as base materials for high temperature polymer electrolyte membrane fuel cells. With membranes...

  16. A new modified-serpentine flow field for application in high temperature polymer electrolyte fuel cell

    DEFF Research Database (Denmark)

    Singdeo, Debanand; Dey, Tapobrata; Gaikwad, Shrihari

    2017-01-01

    field design is proposed and its usefulness for the fuel cell applications are evaluated in a high-temperature polymer electrolyte fuel cell. The proposed geometry retains some of the features of serpentine flow field such as multiple bends, while modifications are made in its in-plane flow path...

  17. A Brief Description of High Temperature Solid Oxide Fuel Cell’s Operation, Materials, Design, Fabrication Technologies and Performance

    Directory of Open Access Journals (Sweden)

    Muneeb Irshad

    2016-03-01

    Full Text Available Today’s world needs highly efficient systems that can fulfill the growing demand for energy. One of the promising solutions is the fuel cell. Solid oxide fuel cell (SOFC is considered by many developed countries as an alternative solution of energy in near future. A lot of efforts have been made during last decade to make it commercial by reducing its cost and increasing its durability. Different materials, designs and fabrication technologies have been developed and tested to make it more cost effective and stable. This article is focused on the advancements made in the field of high temperature SOFC. High temperature SOFC does not need any precious catalyst for its operation, unlike in other types of fuel cell. Different conventional and innovative materials have been discussed along with properties and effects on the performance of SOFC’s components (electrolyte anode, cathode, interconnect and sealing materials. Advancements made in the field of cell and stack design are also explored along with hurdles coming in their fabrication and performance. This article also gives an overview of methods required for the fabrication of different components of SOFC. The flexibility of SOFC in terms fuel has also been discussed. Performance of the SOFC with varying combination of electrolyte, anode, cathode and fuel is also described in this article.

  18. Molecular motion in polymer electrolytes. An investigation of methods for improving the conductivity of solid polymer electrolytes

    International Nuclear Information System (INIS)

    Webster, Mark Ian

    2002-01-01

    Three methods were explored with a view to enhancing the ionic conductivity of polymer electrolytes; namely the addition of an inert, inorganic filler, the addition of a plasticizer and the incorporation of the electrolyte in the pores of silica matrices. There have been a number of reports, which suggest the addition of nanocrystalline oxides to polymer electrolytes increases the ionic conductivities by about a factor of two. In this thesis studies of the polymer electrolyte NaSCN.P(EO) 8 with added nanocrystalline alumina powder are reported which show no evidence of enhanced conductivity. The addition of a plasticizer to polymer electrolytes will increase the ionic conductivity. A detailed study was made of the polymer electrolytes LiT.P(EO) 10 and LiClO 4 .P(EO) 10 with added ethylene carbonate plasticizer. The conductivities showed an enhancement, however this disappeared on heating under vacuum. The present work suggests that the plasticised system is not thermodynamically stable and will limit the applications of the material. A series of samples were prepared from the polymer electrolyte LiT.P(EO) 8 and a range of porous silicas. The silicas were selected to give a wide range of pore size and included Zeolite Y, ZSM5, mesoporous silica and a range of porous glasses. This gave pore sizes from less than one nm to 50 nm. A variety of experiments, including X-ray diffraction, DSC and NMR, showed that the polymer electrolyte entered to pores of the silica. As a result the polymer was amorphous and the room temperature conductivity was enhanced. The high temperature conductivity was not increased above that for the pure electrolyte. The results suggest that this could be employed in applications, however would require higher conducting electrolytes to be of practical benefit. (author)

  19. Gel polymer electrolyte lithium-ion cells with improved low temperature performance

    Energy Technology Data Exchange (ETDEWEB)

    Smart, M.C.; Ratnakumar, B.V.; Behar, A.; Whitcanack, L.D. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Yu, J.-S. [LG Chem/Research Park, P.O. Box 61Yu Song, Science Town, Daejon (Korea); Alamgir, M. [Compact Power, Inc., 1857 Technology Drive, Troy, MI 48083 (United States)

    2007-03-20

    For a number of NASA's future planetary and terrestrial applications, high energy density rechargeable lithium batteries that can operate at very low temperature are desired. In the pursuit of developing Li-ion batteries with improved low temperature performance, we have also focused on assessing the viability of using gel polymer systems, due to their desirable form factor and enhanced safety characteristics. In the present study we have evaluated three classes of promising liquid low-temperature electrolytes that have been impregnated into gel polymer electrolyte carbon-LiMn{sub 2}O{sub 4}-based Li-ion cells (manufactured by LG Chem. Inc.), consisting of: (a) binary EC + EMC mixtures with very low EC-content (10%), (b) quaternary carbonate mixtures with low EC-content (16-20%), and (c) ternary electrolytes with very low EC-content (10%) and high proportions of ester co-solvents (i.e., 80%). These electrolytes have been compared with a baseline formulation (i.e., 1.0 M LiPF{sub 6} in EC + DEC + DMC (1:1:1%, v/v/v), where EC, ethylene carbonate, DEC, diethyl carbonate, and DMC, dimethyl carbonate). We have performed a number of characterization tests on these cells, including: determining the rate capacity as a function of temperature (with preceding charge at room temperature and also at low temperature), the cycle life performance (both 100% DOD and 30% DOD low earth orbit cycling), the pulse capability, and the impedance characteristics at different temperatures. We have obtained excellent performance at low temperatures with ester-based electrolytes, including the demonstration of >80% of the room temperature capacity at -60 C using a C/20 discharge rate with cells containing 1.0 M LiPF{sub 6} in EC + EMC + MB (1:1:8%, v/v/v) (MB, methyl butyrate) and 1.0 M LiPF{sub 6} in EC + EMC + EB (1:1:8%, v/v/v) (EB, ethyl butyrate) electrolytes. In addition, cells containing the ester-based electrolytes were observed to support 5C pulses at -40 C, while still

  20. Low temperature solid oxide fuel cells with proton-conducting Y:BaZrO{sub 3} electrolyte on porous anodic aluminum oxide substrate

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Seungbum [School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); School of Mechanical and Aerospace Engineering, Seoul National University, Daehak-dong, Gwanak-gu, Seoul 151–742 (Korea, Republic of); Su, Pei-Chen [School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Ji, Sanghoon [Graduate School of Convergence Science and Technology, Seoul National University, Daehak-dong, Gwanak-gu, Seoul 151–742 (Korea, Republic of); Cha, Suk Won, E-mail: swcha@snu.ac.kr [School of Mechanical and Aerospace Engineering, Seoul National University, Daehak-dong, Gwanak-gu, Seoul 151–742 (Korea, Republic of)

    2013-10-01

    This paper presents the architecture of a nano thin-film yttrium-doped barium zirconate (BYZ) solid-oxide fuel cell that uses nanoporous anodic aluminum oxide (AAO) as a supporting and gas-permeable substrate. The anode was fabricated by sputtering 300 nm platinum thin film that partially covered the AAO surface pores, followed by an additional conformal platinum coating to tune the pore size by atomic layer deposition. Two different nano-porous anode structures with a pore size of 10 nm or 50 nm were deposited. Proton-conducting BYZ ceramic electrolyte with increasing thicknesses of 300, 600, and 900 nm was deposited on top of the platinum anode by pulsed laser deposition, followed by a 200 nm layer of porous Pt sputtered on BYZ electrolyte as a cathode. The open circuit voltage (OCV) of the fuel cells was characterized at 250 °C with 1:1 volumetric stoichiometry of a methanol/water vapor mixture as the fuel. The OCVs were 0.17 V with a 900 nm-thick BYZ electrolyte on 50 nm pores and 0.3 V with a 600 nm-thick BYZ electrolyte on 10 nm pores, respectively, but it increased to 0.8 V for a 900 nm-thick BYZ electrolyte on 10 nm pores, indicating that increasing the film thickness and decreasing a surface pore size help to reduce the number of electrolyte pinholes and the gas leakage through the electrolyte. A maximum power density of 5.6 mW/cm{sup 2} at 250 °C was obtained from the fuel cell with 900 nm of BYZ electrolyte using methanol vapor as a fuel. - Highlights: • A low temperature ceramic fuel cell on nano-porous substrate was demonstrated. • A thin-film yttrium doped barium zirconate (BYZ) was deposited as an electrolyte. • An open circuit voltage (OCV) was measured to verify the BYZ film quality. • An OCV increased by increasing BYZ film thickness and decreasing pore size of anode. • The current–voltage performance was measured using vaporized methanol fuel at 250 °C.

  1. Performance of intermediate temperature (600-800 °C) solid oxide fuel cell based on Sr and Mg doped lanthanum-gallate electrolyte

    Science.gov (United States)

    Gong, Wenquan; Gopalan, Srikanth; Pal, Uday B.

    The solid electrolyte chosen for this investigation was La 0.9Sr 0.1Ga 0.8Mg 0.2O 3 (LSGM). To select appropriate electrode materials from a group of possible candidate materials, AC complex impedance spectroscopy studies were conducted between 600 and 800 °C on symmetrical cells that employed the LSGM electrolyte. Based on the results of the investigation, LSGM electrolyte supported solid oxide fuel cells (SOFCs) were fabricated with La 0.6Sr 0.4Co 0.8Fe 0.2O 3-La 0.9Sr 0.1Ga 0.8Mg 0.2O 3 (LSCF-LSGM) composite cathode and nickel-Ce 0.6La 0.4O 2 (Ni-LDC) composite anode having a barrier layer of Ce 0.6La 0.4O 2 (LDC) between the LSGM electrolyte and the Ni-LDC anode. Electrical performances of these cells were determined and the electrode polarization behavior as a function of cell current was modeled between 600 and 800 °C.

  2. Control and experimental characterization of a methanol reformer for a 350 W high temperature polymer electrolyte membrane fuel cell system

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen; Sahlin, Simon Lennart

    2013-01-01

    is the water and methanol mixture fuel flow and the burner fuel/air ratio and combined flow. An experimental setup is presented capable of testing the methanol reformer used in the Serenergy H3 350 Mobile Battery Charger; a high temperature polymer electrolyte membrane (HTPEM) fuel cell system......This work presents a control strategy for controlling the methanol reformer temperature of a 350 W high temperature polymer electrolyte membrane fuel cell system, by using a cascade control structure for reliable system operation. The primary states affecting the methanol catalyst bed temperature....... The experimental system consists of a fuel evaporator utilizing the high temperature waste gas from the cathode air cooled 45 cell HTPEM fuel cell stack. The fuel cells used are BASF P1000 MEAs which use phosphoric acid doped polybenzimidazole membranes. The resulting reformate gas output of the reformer system...

  3. Formation of Reversible Solid Electrolyte Interface on Graphite Surface from Concentrated Electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Dongping; Tao, Jinhui; Yan, Pengfei; Henderson, Wesley A.; Li, Qiuyan; Shao, Yuyan; Helm, Monte L.; Borodin, Oleg; Graff, Gordon L.; Polzin, Bryant; Wang, Chong-Min; Engelhard, Mark; Zhang, Ji-Guang; De Yoreo, James J.; Liu, Jun; Xiao, Jie

    2017-02-10

    Interfacial phenomena have always been key determinants for the performance of energy storage technologies. The solid electrolyte interfacial (SEI) layer, pervasive on the surfaces of battery electrodes for numerous chemical couples, directly affects the ion transport, charge transfer and lifespan of the entire energy system. Almost all SEI layers, however, are unstable resulting in the continuous consumption of the electrolyte. Typically, this leads to the accumulation of degradation products on/restructuring of the electrode surface and thus increased cell impedance, which largely limits the long-term operation of the electrochemical reactions. Herein, a completely new SEI formation mechanism has been discovered, in which the electrolyte components reversibly self-assemble into a protective surface coating on a graphite electrode upon changing the potential. In contrast to the established wisdom regarding the necessity of employing the solvent ethylene carbonate (EC) to form a protective SEI layer on graphite, a wide range of EC-free electrolytes are demonstrated for the reversible intercalation/deintercalation of Li+ cations within a graphite lattice, thereby providing tremendous flexibility in electrolyte tailoring for battery couples. This novel finding is broadly applicable and provides guidance for how to control interfacial reactions through the relationship between ion aggregation and solvent decomposition at polarized interfaces.

  4. A Li-Garnet composite ceramic electrolyte and its solid-state Li-S battery

    Science.gov (United States)

    Huang, Xiao; Liu, Cai; Lu, Yang; Xiu, Tongping; Jin, Jun; Badding, Michael E.; Wen, Zhaoyin

    2018-04-01

    A high strength Li-Garnet solid electrolyte composite ceramic is successfully prepared via conventional solid state method with Li6.4La3Zr1.4Ta0.6O12 and nano MgO powders. Well sintered ceramic pellets and bars are obtained with 0-9 wt.% MgO. Fracture strength is approximately 135 MPa for composite ceramics with 5-9 wt.% MgO, which is ∼50% higher than that of pure Li6.4La3Zr1.4Ta0.6O12 (90 MPa). Lithium-ion conductivity of the composite is above 5 × 10-4 S cm-1 at room temperature; comparable to the pure Li6.4La3Zr1.4Ta0.6O12 material. SEM cross-sections of the composite ceramic shows a much more uniform microstructure comparing with pure ones, owing to the grain growth inhibition effect of the MgO second phase. A battery cell consisting of Li/composite ceramics/Sulfur-Carbon at 25 °C exhibits a capacity of 685 mAh g-1 at 0.2 C at the 200th cycle, while maintaining a coulombic efficiency of 100%. These results indicate that the composite ceramic Li6.4La3Zr1.4Ta0.6O12-MgO is promising for the production of electrolyte membrane and fabrication of Li-Sulfur batteries.

  5. Ni-SDC cermet anode for medium-temperature solid oxide fuel cell with lanthanum gallate electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xinge; Ohara, Satoshi; Maric, R.; Mukai, Kazuo; Fukui, Takehisa [Japan Fine Ceramics Center, Nagoya (Japan); Yoshida, Hiroyuki; Nishimura, Masayoshi; Inagaki, Toru [Kansai Electr. Power Co. Inc., Hyogo (Japan); Miura, Kazuhiro [Kanden Kakou, Amagasaki (Japan)

    1999-10-01

    The polarization properties and microstructure of Ni-SDC (samaria-doped ceria) cermet anodes prepared from spray pyrolysis (SP) composite powder, and element interface diffusion between the anode and a La{sub 0.9}Sr{sub 0.1}Ga{sub 0.8}Mg{sub 0.2}O{sub 3-{delta}} (LSGM) electrolyte are investigated as a function of anode sintering temperature. The anode sintered at 1250 C displays minimum anode polarization (with anode ohmic loss), while the anode prepared at 1300 C has the best electrochemical overpotential, viz., 27 mV at 300 mA cm{sup -2} operating at 800 C. The anode ohmic loss gradually increases with increase in the sintering temperature at levels below 1300 C, and sharply increases at 1350 C. Electron micrographs show a clear grain growth at sintering temperatures higher than 1300 C. The anode microstructure appears to be optimized at 1300 C, in which nickel particles form a network with well-connected SDC particles finely distributed over the surfaces of the nickel particles. The anode sintered at 1350 C has severe grain growth and an apparent interface diffusion of nickel from the anode to the electrolyte. The nickel interface diffusion is assumed to be the main reason for the increment in ohmic loss, and the resulting loss in anode performance. The findings suggest that sintering Ni-SDC composite powder near 1250 C is the best method to prepare the anode on a LSGM electrolyte. (orig.)

  6. Ni-SDC cermet anode for medium-temperature solid oxide fuel cell with lanthanum gallate electrolyte

    Science.gov (United States)

    Zhang, Xinge; Ohara, Satoshi; Maric, Radenka; Mukai, Kazuo; Fukui, Takehisa; Yoshida, Hiroyuki; Nishimura, Masayoshi; Inagaki, Toru; Miura, Kazuhiro

    The polarization properties and microstructure of Ni-SDC (samaria-doped ceria) cermet anodes prepared from spray pyrolysis (SP) composite powder, and element interface diffusion between the anode and a La 0.9Sr 0.1Ga 0.8Mg 0.2O 3- δ (LSGM) electrolyte are investigated as a function of anode sintering temperature. The anode sintered at 1250°C displays minimum anode polarization (with anode ohmic loss), while the anode prepared at 1300°C has the best electrochemical overpotential, viz., 27 mV at 300 mA cm -2 operating at 800°C. The anode ohmic loss gradually increases with increase in the sintering temperature at levels below 1300°C, and sharply increases at 1350°C. Electron micrographs show a clear grain growth at sintering temperatures higher than 1300°C. The anode microstructure appears to be optimized at 1300°C, in which nickel particles form a network with well-connected SDC particles finely distributed over the surfaces of the nickel particles. The anode sintered at 1350°C has severe grain growth and an apparent interface diffusion of nickel from the anode to the electrolyte. The nickel interface diffusion is assumed to be the main reason for the increment in ohmic loss, and the resulting loss in anode performance. The findings suggest that sintering Ni-SDC composite powder near 1250°C is the best method to prepare the anode on a LSGM electrolyte.

  7. Influence of temperature and electrolyte on the performance of activated-carbon supercapacitors

    Science.gov (United States)

    Liu, Ping; Verbrugge, Mark; Soukiazian, Souren

    For hybrid electric vehicle traction applications, energy storage devices with high power density and energy efficiency are required. A primary attribute of supercapacitors is that they retain their high power density and energy efficiency even at -30 °C, the lowest temperature at which unassisted starting must be provided to customers. More abuse-tolerant electrolytes are preferred to the high-conductivity acetonitrile-based systems commonly employed. Propylene carbonate based electrolytes are a promising alternative. In this work, we compare the electrochemical performance of two high-power density electrical double layer supercapacitors employing acetonitrile and propylene carbonate as solvents. From this study, we are able to elucidate phenomena that control the resistance of supercapacitor at lower temperatures, and quantify the difference in performance associated with the two electrolytes.

  8. All-solid-state flexible supercapacitors based on papers coated with carbon nanotubes and ionic-liquid-based gel electrolytes

    International Nuclear Information System (INIS)

    Kang, Yu Jin; Kim, Woong; Chung, Haegeun; Han, Chi-Hwan

    2012-01-01

    All-solid-state flexible supercapacitors were fabricated using carbon nanotubes (CNTs), regular office papers, and ionic-liquid-based gel electrolytes. Flexible electrodes were made by coating CNTs on office papers by a drop-dry method. The gel electrolyte was prepared by mixing fumed silica nanopowders with ionic liquid, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMIM][NTf 2 ]). This supercapacitor showed high power and energy performance as a solid-state flexible supercapacitor. The specific capacitance of the CNT electrodes was 135 F g −1 at a current density of 2 A g −1 , when considering the mass of active materials only. The maximum power and energy density of the supercapacitors were 164 kW kg −1 and 41 Wh kg −1 , respectively. Interestingly, the solid-state supercapacitor with the gel electrolyte showed comparable performance to the supercapacitors with ionic-liquid electrolyte. Moreover, the supercapacitor showed excellent stability and flexibility. The CNT/paper- and gel-based supercapacitors may hold great potential for low-cost and high-performance flexible energy storage applications. (paper)

  9. Electrochemical investigation of LiMn2O4 cathodes in gel electrolyte at various temperatures

    International Nuclear Information System (INIS)

    Hjelm, Anna-Karin; Eriksson, Tom; Lindbergh, Goeran

    2002-01-01

    A composite lithium battery electrode of LiMn 2 O 4 in combination with a gel electrolyte (1 M LiBF 4 /24 wt% PMMA/1:1 EC:DEC) has been investigated by galvanostatic cycling experiments and electrochemical impedance spectroscopy (EIS) at various temperatures, i.e. -3 -1 ), the solid phase transfer (∼45 kJ mol -1 ) and of the ionic bulk and effective conductance in the gel phase (∼34 kJ mol -1 ), respectively, were also determined. The kinetic results related to ambient temperature were compared to those obtained in the corresponding liquid electrolyte. The incorporated PMMA was found to reduce the ionic conductivity of the free electrolyte, and it was concluded that the presence of 24 wt% PMMA does not have a significant influence on the kinetic properties of LiMn 2 O 4

  10. Degradation in Solid Oxide Cells During High Temperature Electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Manohar Sohal

    2009-05-01

    Idaho National Laboratory has an ongoing project to generate hydrogen from steam using solid oxide electrolysis cells. One goal of that project is to address the technical and degradation issues associated with solid oxide electrolysis cells. This report covers a variety of these degradation issues, which were discussed during a workshop on “Degradation in Solid Oxide Electrolysis Cells and Strategies for its Mitigation,” held in Phoenix, AZ on October 27, 2008. Three major degradation issues related to solid oxide electrolysis cells discussed at the workshop are: • Delamination of O2-electrode and bond layer on steam/O2-electrode side • Contaminants (Ni, Cr, Si, etc.) on reaction sites (triple-phase boundary) • Loss of electrical/ionic conductivity of electrolyte. This list is not all inclusive, but the workshop summary can be useful in providing a direction for future research related to the degradation of solid oxide electrolysis cells.

  11. Evaluation of MHD materials for use in high-temperature fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Guidotti, R.

    1978-06-15

    The MHD and high-temperature fuel cell literature was surveyed for data pertaining to materials properties in order to identify materials used in MHD power generation which also might be suitable for component use in high-temperature fuel cells. Classes of MHD-electrode materials evaluated include carbides, nitrides, silicides, borides, composites, and oxides. Y/sub 2/O/sub 3/-stabilized ZrO/sub 2/ used as a reference point to evaluate materials for use in the solid-oxide fuel cell. Physical and chemical properties such as electrical resistivity, coefficient of thermal expansion, and thermodynamic stability toward oxidation were used to screen candidate materials. A number of the non-oxide ceramic MHD-electrode materials appear promising for use in the solid-electrolyte and molten-carbonate fuel cell as anodes or anode constituents. The MHD-insulator materials appear suitable candidates for electrolyte-support tiles in the molten-carbonate fuel cells. The merits and possible problem areas for these applications are discussed and additional needed areas of research are delineated.

  12. High ion conductive Sb2O5-doped β-Li3PS4 with excellent stability against Li for all-solid-state lithium batteries

    Science.gov (United States)

    Xie, Dongjiu; Chen, Shaojie; Zhang, Zhihua; Ren, Jie; Yao, Lili; Wu, Linbin; Yao, Xiayin; Xu, Xiaoxiong

    2018-06-01

    The combination of high conductivity and good stability against Li is not easy to achieve for solid electrolytes, hindering the development of high energy solid-state batteries. In this study, doped electrolytes of Li3P1-xSbxS4-2.5xO2.5x are successfully prepared via the high energy ball milling and subsequent heat treatment. Plenty of techniques like XRD, Raman, SEM, EDS and TEM are utilized to characterize the crystal structures, particle sizes, and morphologies of the glass-ceramic electrolytes. Among them, the Li3P0.98Sb0.02S3.95O0.05 (x = 0.02) exhibits the highest ionic conductivity (∼1.08 mS cm-1) at room temperature with an excellent stability against lithium. In addition, all-solid-state lithium batteries are assembled with LiCoO2 as cathode, Li10GeP2S12/Li3P0.98Sb0.02S3.95O0.05 as the bi-layer electrolyte, and lithium as anode. The constructed solid-state batteries delivers a high initial discharge capacity of 133 mAh g-1 at 0.1C in the range of 3.0-4.3 V vs. Li/Li+ at room temperature, and shows a capacity retention of 78.6% after 50 cycles. Most importantly, the all-solid-state lithium batteries with the Li10GeP2S12/Li3P0.98Sb0.02S3.95O0.05 electrolyte can be workable even at -10 °C. This study provides a promising electrolyte with the improved conductivity and stability against Li for the application of all-solid-state lithium batteries.

  13. Challenges and perspectives of garnet solid electrolytes for all solid-state lithium batteries

    Science.gov (United States)

    Liu, Qi; Geng, Zhen; Han, Cuiping; Fu, Yongzhu; Li, Song; He, Yan-bing; Kang, Feiyu; Li, Baohua

    2018-06-01

    Garnet Li7La3Zr2O12 (LLZO) solid electrolytes recently have attracted tremendous interest as they have the potential to enable all solid-state lithium batteries (ASSLBs) owing to high ionic conductivity (10-3 to 10-4 S cm-1), negligible electronic transport, wide potential window (up to 9 V), and good chemical stability. Here we present the key issues and challenges of LLZO in the aspects of ion conduction property, interfacial compatibility, and stability in air. First, different preparation methods of LLZO are reviewed. Then, recent progress about the improvement of ionic conductivity and interfacial property between LLZO and electrodes are presented. Finally, we list some emerging LLZO-based solid-state batteries and provide perspectives for further research. The aim of this review is to summarize the up-to-date developments of LLZO and lead the direction for future development which could enable LLZO-based ASSLBs.

  14. Synthesis of new solid polymer electrolyte and actuator based on PEDOT/NBR/ionic liquid

    Science.gov (United States)

    Cho, M. S.; Seo, H. J.; Nam, J. D.; Choi, H. R.; Koo, J. C.; Lee, Y.

    2006-03-01

    The conducting polymer actuator was presented. The solid polymer electrolyte based on nitrile rubber (NBR) activated with different ionic liquids was prepared. The three different grades of NBR films were synthesized by emulsion polymerization with different amount of acrylonitrile, 23, 35, and 40 mol. %, respectively. The effect of acrylonitrile content on the ionic conductivity and dielectric constant of solid polymer electrolytes was characterized. A conducting polymer, poly(3,4-ethylenedioxythiophene) (PEDOT), was synthesized on the surface of the NBR layer by using a chemical oxidation polymerization technique, and room temperature ionic liquids (RTIL) based on imidazolium salts, e.g. 1-butyl-3-methyl imidazolium X [where X= BF 4 -, PF 6 -, (CF 3SO II) IIN -], were absorbed into the composite film. The effects of the anion size of the ionic liquids on the displacement of the actuator were examined. The displacement increased with increasing the anion-size of the ionic liquids.

  15. Electrode property of single-walled carbon nanotubes in all-solid-state lithium ion battery using polymer electrolyte

    International Nuclear Information System (INIS)

    Sakamoto, Y.; Ishii, Y.; Kawasaki, S.

    2016-01-01

    Electrode properties of single-walled carbon nanotubes (SWCNTs) in an all-solid-state lithium ion battery were investigated using poly-ethylene oxide (PEO) solid electrolyte. Charge-discharge curves of SWCNTs in the solid electrolyte cell were successfully observed. It was found that PEO electrolyte decomposes on the surface of SWCNTs.

  16. Electrode property of single-walled carbon nanotubes in all-solid-state lithium ion battery using polymer electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Sakamoto, Y.; Ishii, Y.; Kawasaki, S., E-mail: kawasaki.shinji@nitech.ac.jp [Nagoya Institute of Technology, Gokiso, Showa, Nagoya, Aichi (Japan)

    2016-07-06

    Electrode properties of single-walled carbon nanotubes (SWCNTs) in an all-solid-state lithium ion battery were investigated using poly-ethylene oxide (PEO) solid electrolyte. Charge-discharge curves of SWCNTs in the solid electrolyte cell were successfully observed. It was found that PEO electrolyte decomposes on the surface of SWCNTs.

  17. High temperature electrolysis for hydrogen production using nuclear energy

    International Nuclear Information System (INIS)

    Herring, J. Stephen; O'brien, James E.; Stoots, Carl M.; Hawkes, Grant L.; Hartvigsen, Joseph J.

    2005-01-01

    High-temperature nuclear reactors have the potential for substantially increasing the efficiency of hydrogen production from water splitting, which can be accomplished via high-temperature electrolysis (HTE) or thermochemical processes. In order to achieve competitive efficiencies, both processes require high-temperature operation (∼850degC). High-temperature electrolytic water splitting supported by nuclear process heat and electricity has the potential to produce hydrogen with overall system efficiencies of 45 to 55%. At the Idaho National Laboratory, we are developing solid-oxide cells to operate in the steam electrolysis mode. The research program includes both experimental and modeling activities. Experimental results were obtained from ten-cell and 22-cell planar electrolysis stacks, fabricated by Ceramatec, Inc. The electrolysis cells are electrolyte-supported, with scandia-stabilized zirconia electrolytes (∼200 μm thick, 64 cm 2 active area), nickel-cermet steam/hydrogen electrodes, and manganite air-side electrodes. The metallic interconnect plates are fabricated from ferritic stainless steel. The experiments were performed over a range of steam inlet mole fractions, gas glow rates, and current densities. Hydrogen production rates greater than 100 normal liters per hour for 196 hours have been demonstrated. In order to evaluate the performance of large-scale HTE operations, we have developed single-cell models, based on FLUENT, and a process model, using the systems-analysis code HYSYS. (author)

  18. PEO nanocomposite polymer electrolyte for solid state symmetric ...

    Indian Academy of Sciences (India)

    cells/supercapacitors) to electro-chromic displays, smart windows and ... electrolytes and their usage in lithium ion rechargeable solid state batteries are well .... the experimental plot using the Arrhenius relationship σ = σ0exp(−Ea/kT) where ...

  19. Preparation and Characterization of PVA Alkaline Solid Polymer Electrolyte with Addition of Bamboo Charcoal

    Directory of Open Access Journals (Sweden)

    Lidan Fan

    2018-04-01

    Full Text Available Natural bamboo charcoal (BC powder has been developed as a novel filler in order to further improve performances of the polyvinyl alcohol (PVA-based alkaline solid polymer electrolyte (ASPE by solution casting method. X-ray diffraction patterns of composite polymer electrolyte with BC revealed the decrease in the degree of crystallinity with increasing content of BC. Scanning electron microscopy images showed pores on a micrometer scale (average diameter about 2 μm distributed inside and on the surface of the membranes, indicating a three-dimension network formed in the polymer framework. The ionic conductivity was measured by the alternating-current (AC impedance method, and the highest conductivity value of 6.63 × 10−2 S·cm−1 was obtained with 16 wt % of BC content and mKOH:mPVA = 2:1.5 at 30 °C. The contents of BC and KOH could significantly influence the conductivity. The temperature dependence of the bulk electrical conductivity displayed a combination of Arrhenius nature, and the activation energy for the ion in polymer electrolyte has been calculated. The electrochemical stability window of the electrolyte membrane was over 1.6 V. The thermogravimetric analysis curves showed that the degradation temperatures of PVA-BC-KOH ASPE membranes shifted toward higher with adding BC. A simple nickel-hydrogen battery containing PVA-BC-KOH electrolyte membrane was assembled with a maximum discharge capacity of 193 mAh·g−1.

  20. Preparation and Characterization of PVA Alkaline Solid Polymer Electrolyte with Addition of Bamboo Charcoal.

    Science.gov (United States)

    Fan, Lidan; Wang, Mengyue; Zhang, Zhen; Qin, Gang; Hu, Xiaoyi; Chen, Qiang

    2018-04-26

    Natural bamboo charcoal (BC) powder has been developed as a novel filler in order to further improve performances of the polyvinyl alcohol (PVA)-based alkaline solid polymer electrolyte (ASPE) by solution casting method. X-ray diffraction patterns of composite polymer electrolyte with BC revealed the decrease in the degree of crystallinity with increasing content of BC. Scanning electron microscopy images showed pores on a micrometer scale (average diameter about 2 μm) distributed inside and on the surface of the membranes, indicating a three-dimension network formed in the polymer framework. The ionic conductivity was measured by the alternating-current (AC) impedance method, and the highest conductivity value of 6.63 × 10 −2 S·cm −1 was obtained with 16 wt % of BC content and m KOH : m PVA = 2:1.5 at 30 °C. The contents of BC and KOH could significantly influence the conductivity. The temperature dependence of the bulk electrical conductivity displayed a combination of Arrhenius nature, and the activation energy for the ion in polymer electrolyte has been calculated. The electrochemical stability window of the electrolyte membrane was over 1.6 V. The thermogravimetric analysis curves showed that the degradation temperatures of PVA-BC-KOH ASPE membranes shifted toward higher with adding BC. A simple nickel-hydrogen battery containing PVA-BC-KOH electrolyte membrane was assembled with a maximum discharge capacity of 193 mAh·g −1 .

  1. Promising Ni-Fe-LSGMC anode compatible with lanthanum gallate electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Wang Shizhong [Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005 (China); School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245 (United States)], E-mail: shizwang@sohu.com; He, Qiong [Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005 (China); Liu Meilin [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245 (United States)], E-mail: meilin.liu@mse.gatech.edu

    2009-06-01

    A number of composite materials in the Ni-Fe-LSGMC family have been studied as potential anodes for solid oxide fuel cells (SOFCs) based on strontium, magnesium, and cobalt doped lanthanum gallate electrolyte (LSGMC). The results show that Ni reacts with LSGMC especially under reducing conditions at high temperatures, resulting in high contact resistance, large electrode polarization, and poor performance. The reaction between Ni and LSGMC depends strongly on the composition and pre-sintering temperature of LSGMC, the concentration of iron in the electrode, and the processing and operating temperatures. Under proper conditions, Ni-Fe-LSGMC5 could be a promising high-performance anode with good compatibility with LSGMC5 electrolyte.

  2. Promising Ni-Fe-LSGMC anode compatible with lanthanum gallate electrolyte

    International Nuclear Information System (INIS)

    Wang Shizhong; He, Qiong; Liu Meilin

    2009-01-01

    A number of composite materials in the Ni-Fe-LSGMC family have been studied as potential anodes for solid oxide fuel cells (SOFCs) based on strontium, magnesium, and cobalt doped lanthanum gallate electrolyte (LSGMC). The results show that Ni reacts with LSGMC especially under reducing conditions at high temperatures, resulting in high contact resistance, large electrode polarization, and poor performance. The reaction between Ni and LSGMC depends strongly on the composition and pre-sintering temperature of LSGMC, the concentration of iron in the electrode, and the processing and operating temperatures. Under proper conditions, Ni-Fe-LSGMC5 could be a promising high-performance anode with good compatibility with LSGMC5 electrolyte.

  3. Materials for high temperature solid oxide fuel cells

    International Nuclear Information System (INIS)

    Singhal, S.C.

    1987-01-01

    High temperature solid oxide fuel cells show great promise for economical production of electricity. These cells are based upon the ability of stabilized zirconia to operate as an oxygen ion conductor at elevated temperatures. The design of the tubular solid oxide fuel cell being pursued at Westinghouse is illustrated. The cell uses a calcia-stabilized zironcia porous support tube, which acts both as a structural member onto which the other cell components are fabricated in the form of thin layers, and as a functional member to allow the passage, via its porosity, of air (or oxygen) to the air electrode. This paper summarizes the materials and fabrication processes for the various cell components

  4. High Ionic Conductivity of Composite Solid Polymer Electrolyte via In Situ Synthesis of Monodispersed SiO2 Nanospheres in Poly(ethylene oxide).

    Science.gov (United States)

    Lin, Dingchang; Liu, Wei; Liu, Yayuan; Lee, Hye Ryoung; Hsu, Po-Chun; Liu, Kai; Cui, Yi

    2016-01-13

    High ionic conductivity solid polymer electrolyte (SPE) has long been desired for the next generation high energy and safe rechargeable lithium batteries. Among all of the SPEs, composite polymer electrolyte (CPE) with ceramic fillers has garnered great interest due to the enhancement of ionic conductivity. However, the high degree of polymer crystallinity, agglomeration of ceramic fillers, and weak polymer-ceramic interaction limit the further improvement of ionic conductivity. Different from the existing methods of blending preformed ceramic particles with polymers, here we introduce an in situ synthesis of ceramic filler particles in polymer electrolyte. Much stronger chemical/mechanical interactions between monodispersed 12 nm diameter SiO2 nanospheres and poly(ethylene oxide) (PEO) chains were produced by in situ hydrolysis, which significantly suppresses the crystallization of PEO and thus facilitates polymer segmental motion for ionic conduction. In addition, an improved degree of LiClO4 dissociation can also be achieved. All of these lead to good ionic conductivity (1.2 × 10(-3) S cm(-1) at 60 °C, 4.4 × 10(-5) S cm(-1) at 30 °C). At the same time, largely extended electrochemical stability window up to 5.5 V can be observed. We further demonstrated all-solid-state lithium batteries showing excellent rate capability as well as good cycling performance.

  5. Effect of Al2O3 nanoparticles in plasticized PMMA-LiClO4 based solid polymer electrolyte

    Science.gov (United States)

    Pal, P.; Ghosh, A.

    2017-05-01

    We have studied the broadband complex conductivity spectra covering a 0.01 Hz-3 GHz frequency range for plasticized PMMA-LiClO4 based solid polymer electrolyte embedded with Al2O3 nanoparticle. We have analyzed the conductivity spectra using the random free-energy barrier model (RBM) coupled with electrode polarization contribution in the low frequency region and at high temperatures. The temperature dependence of the ionic conductivity obtained from the analysis has been analyzed using Vogel-Tammann-Fulcher equation. The maximum ionic conductivity ˜ 1.93×10-4 S/cm has been obtained for 1 wt% Al2O3 nanoparticle.

  6. High cation transport polymer electrolyte

    Science.gov (United States)

    Gerald, II, Rex E.; Rathke, Jerome W [Homer Glen, IL; Klingler, Robert J [Westmont, IL

    2007-06-05

    A solid state ion conducting electrolyte and a battery incorporating same. The electrolyte includes a polymer matrix with an alkali metal salt dissolved therein, the salt having an anion with a long or branched chain having not less than 5 carbon or silicon atoms therein. The polymer is preferably a polyether and the salt anion is preferably an alkyl or silyl moiety of from 5 to about 150 carbon/silicon atoms.

  7. Methods for using novel cathode and electrolyte materials for solid oxide fuel cells and ion transport membranes

    Science.gov (United States)

    Jacobson, Allan J.; Wang, Shuangyan; Kim, Gun Tae

    2016-01-12

    Methods using novel cathode, electrolyte and oxygen separation materials operating at intermediate temperatures for use in solid oxide fuel cells and ion transport membranes include oxides with perovskite related structures and an ordered arrangement of A site cations. The materials have significantly faster oxygen kinetics than in corresponding disordered perovskites.

  8. Nitrogen dissociation during RF sputtering of Lipon electrolyte for all-solid-states batteries

    DEFF Research Database (Denmark)

    Stamate, Eugen; Christiansen, Ane Sælland; Holtappels, Peter

    2013-01-01

    Small size and high power density secondary batteries are desired for a large number of applications based on miniature wireless devices and sensors that need to be compatible with the microelectronic fabrication technology. This fact resulted in the development of solid electrolytes, like lithium...

  9. Low temperature electrochemical cells with sodium {beta}''-alumina solid electrolyte (BASE)

    Energy Technology Data Exchange (ETDEWEB)

    Girija, T.C.; Virkar, Anil V. [Department of Materials Science and Engineering, 122 S. Central Campus Drive, University of Utah, Salt Lake City, UT 84112 (United States)

    2008-05-15

    Cells of Daniell-type with copper-zinc electrochemical couples and sodium {beta}''-alumina solid electrolyte (BASE) were constructed. The cathode consisted of copper in contact with its ions (Cu/Cu{sup 2+}) while zinc in contact with its ions (Zn/Zn{sup 2+}) constituted the anode. Dimethyl sulfoxide (DMSO) containing 1 M NaBF{sub 4} was used as the liquid electrolyte. The configuration of the cell constructed can be written as follows: Zn(s)/ZnCl{sub 2}(DMSO)(0.1 M), NaBF{sub 4}(1 M)/BASE/NaBF{sub 4}(1 M), CuCl{sub 2}(DMSO)(0.1 M)/Cu(s) The cell was subjected to charge-discharge cycles at 100 C. The BASE discs were found to be stable even after the cell was subjected to several electrochemical charge-discharge cycles. Cells were also constructed using BASE discs with porous BASE surface layers introduced to lower the interfacial resistance. Cells with surface modified BASE exhibited a lower resistance in comparison to those using unmodified BASE. XRD and SEM analyses indicated that no detectable degradation of BASE discs occurred after cell testing. Preliminary cell tests were also conducted with NaCF{sub 3}SO{sub 3} in place of NaBF{sub 4}. (author)

  10. Na3Si2Y0.16Zr1.84PO12-ionic liquid hybrid electrolytes: An approach for realizing solid-state sodium-ion batteries?

    Science.gov (United States)

    de la Torre-Gamarra, Carmen; Appetecchi, Giovanni Battista; Ulissi, Ulderico; Varzi, Alberto; Varez, Alejandro; Passerini, Stefano

    2018-04-01

    Ceramic electrolytes are prepared through sintering processes which are carried out at high temperatures and require prolonged operating times, resulting unwelcome in industrial applications. We report a physicochemical characterization on hybrid, sodium conducting, electrolyte systems obtained by coating NASICON ceramic powders with the N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide ionic liquid. The goal is to realize a ceramic-IL interface with improved sodium mobility, aiming to obtain a solid electrolyte with high ion transport properties but avoiding sintering thermal treatment. The purpose of the present work, however, is showing how simply combining NASICON powder and Py14TFSI does not lead to any synergic effect on the resulting hybrid electrolyte, evidencing that an average functionalization of the ceramic powder surface and/or ionic liquid is needed. Also, the processing conditions for preparing the hybrid samples are found to affect their ion transport properties.

  11. Modeling of ionic transport in solid polymer electrolytes

    International Nuclear Information System (INIS)

    Cheang, P L; Teo, L L; Lim, T L

    2010-01-01

    A Monte Carlo model describing the ionic trans port in solid polyme relectrolyte is developed. Single cation simulation is carried out using hopping rate to study the transport mechanism of a thermally activated ion in solid polymer electrolyte. In our model, the ion is able to hop along a polymer chain and to jump between different chains, surmounting energy barriers that consist of polymer's activation energy and the externally applied electric field. The model is able to trace the motion of ion across polymer electrolyte. The mean hopping distance is calculated based on the available open bond in the next nearest side. Random numbers are used to determine the hopping distances, free flight times, final energy and direction of the cation after successful hop. Drift velocity and energy of cation are simulated in our work. The model is expected to be able to simulate the lithium-polymer battery in future.

  12. Graphene quantum dots as the electrolyte for solid state supercapacitors

    Science.gov (United States)

    Zhang, Su; Li, Yutong; Song, Huaihe; Chen, Xiaohong; Zhou, Jisheng; Hong, Song; Huang, Minglu

    2016-01-01

    We propose that graphene quantum dots (GQDs) with a sufficient number of acidic oxygen-bearing functional groups such as -COOH and -OH can serve as solution- and solid- type electrolytes for supercapacitors. Moreover, we found that the ionic conductivity and ion-donating ability of the GQDs could be markedly improved by simply neutralizing their acidic functional groups by using KOH. These neutralized GQDs as the solution- or solid-type electrolytes greatly enhanced the capacitive performance and rate capability of the supercapacitors. The reason for the enhancement can be ascribed to the fully ionization of the weak acidic oxygen-bearing functional groups after neutralization. PMID:26763275

  13. Block Copolymer Electrolytes: Thermodynamics, Ion Transport, and Use in Solid- State Lithium/Sulfur Cells

    Science.gov (United States)

    Teran, Alexander Andrew

    -like environment around the ion while the second mechanism of ion conduction is attributed to diffusion of the entire polymer chain with coordinated ions. Equilibrated block copolymer electrolytes exhibit a non-monotonic dependence on molecular weight, decreasing with increasing molecular weight in the small molecular weight limit before increasing when molecular weight exceeds about 10 kg mol-1. Conductivity in annealed electrolytes was shown to be affected by two competing factors: the glass transition temperature of the insulating polystyrene block and the width of the conducting poly(ethylene oxide) (PEO) channel. In the low molecular weight limit, all ions are in contact with both polystyrene (PS) and PEO segments. The intermixing between PS and PEO segments is restricted to an interfacial zone of width of about 5 nm. The fraction of ions affected by the interfacial zone decreases as the conducting channel width increases. Furthermore, the effect of thermal history on the conductivity of the block copolymer electrolytes was examined. Results suggest that long-range order impedes ion transport, and consequently decreases in conductivity of up to 80% were seen upon annealing. The effect of morphology on ion transport was studied by conducting simultaneous impedance and X-ray scattering experiments as the block copolymer electrolyte transitioned from an ordered lamellar structure to a disordered phase. The ionic conductivity increased discontinuously through the transition from order to disorder. A simple framework for quantifying the magnitude of the discontinuity was presented. Finally, block copolymer electrolytes were examined specifically for use in high energy density solid state lithium/sulfur batteries. Such materials have been shown to form a stable interface with lithium metal anodes, maintain intimate contact upon cycling, and have sufficiently high shear moduli to retard dendrite formation. Having previously satisfied the concerns associated with the lithium metal

  14. A novel temperature-gradient Na±β-alumina solid electrolyte based SOx gas sensor without gaseous reference electrode

    DEFF Research Database (Denmark)

    Rao, N.; Bleek, C.M. Van den; Schoonman, J.

    1992-01-01

    An electrochemical SOx ps sensor with a tubular Na+-beta"-alumina solid electrolyte has been fabricated and tested under non-isothermal conditions. The temperature difference between the reference and working electrode of the sensor cell is about 100-degrees-C, which causes a serious deviation...... of the experimental EMF response from the value as calculated using the Nernst equation for an isothermal system. The experimental results are Consistent with the theoretical prediction for a non-isothermal system. The response time is usually less then 10 min. SEM and EDX have been employed to investigate the sensor...... material before and after use, confirming the formation of a glassy phase of Na2SO4 by an electrochemical reaction at the interface of the platinum electrodes and Na+-beta"-alumina. According to this new theoretical derivation, the sensor design could be simplified by applying the same SO2 ps at the two...

  15. Highly Stable Sr-Free Cobaltite-Based Perovskite Cathodes Directly Assembled on a Barrier-Layer-Free Y2 O3 -ZrO2 Electrolyte of Solid Oxide Fuel Cells.

    Science.gov (United States)

    Ai, Na; Li, Na; Rickard, William D A; Cheng, Yi; Chen, Kongfa; Jiang, San Ping

    2017-03-09

    Direct assembly is a newly developed technique in which a cobaltite-based perovskite (CBP) cathode can be directly applied to a barrier-layer-free Y 2 O 3 -ZrO 2 (YSZ) electrolyte with no high-temperature pre-sintering steps. Solid oxide fuel cells (SOFCs) based on directly assembled CBPs such as La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3-δ show high performance initially but degrade rapidly under SOFC operation conditions at 750 °C owing to Sr segregation and accumulation at the electrode/electrolyte interface. Herein, the performance and interface of Sr-free CBPs such as LaCoO 3-δ (LC) and Sm 0.95 CoO 3-δ (SmC) and their composite cathodes directly assembled on YSZ electrolyte was studied systematically. The LC electrode underwent performance degradation, most likely owing to cation demixing and accumulation of La on the YSZ electrolyte under polarization at 500 mA cm -2 and 750 °C. However, the performance and stability of LC electrodes could be substantially enhanced by the formation of LC-gadolinium-doped ceria (GDC) composite cathodes. Replacement of La by Sm increased the cell stability, and doping of 5 % Pd to form Sm 0.95 Co 0.95 Pd 0.05 O 3-δ (SmCPd) significantly improved the electrode activity. An anode-supported YSZ-electrolyte cell with a directly assembled SmCPd-GDC composite electrode exhibited a peak power density of 1.4 W cm -2 at 750 °C, and an excellent stability at 750 °C for over 240 h. The higher stability of SmC as compared to that of LC is most likely a result of the lower reactivity of SmC with YSZ. This study demonstrates the new opportunities in the design and development of intermediate-temperature SOFCs based on the directly assembled high-performance and durable Sr-free CBP cathodes. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Performance of intermediate temperature (600-800{sup o}C) solid oxide fuel cell based on Sr and Mg doped lanthanum-gallate electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Wenquan; Gopalan, Srikanth; Pal, Uday B. [Department of Manufacturing Engineering, Boston University, MA 02215 (United States)

    2006-09-29

    The solid electrolyte chosen for this investigation was La{sub 0.9}Sr{sub 0.1}Ga{sub 0.8}Mg{sub 0.2}O{sub 3} (LSGM). To select appropriate electrode materials from a group of possible candidate materials, AC complex impedance spectroscopy studies were conducted between 600 and 800{sup o}C on symmetrical cells that employed the LSGM electrolyte. Based on the results of the investigation, LSGM electrolyte supported solid oxide fuel cells (SOFCs) were fabricated with La{sub 0.6}Sr{sub 0.4}Co{sub 0.8}Fe{sub 0.2}O{sub 3}-La{sub 0.9}Sr{sub 0.1}Ga{sub 0.8}Mg{sub 0.2}O{sub 3} (LSCF-LSGM) composite cathode and nickel-Ce{sub 0.6}La{sub 0.4}O{sub 2} (Ni-LDC) composite anode having a barrier layer of Ce{sub 0.6}La{sub 0.4}O{sub 2} (LDC) between the LSGM electrolyte and the Ni-LDC anode. Electrical performances of these cells were determined and the electrode polarization behavior as a function of cell current was modeled between 600 and 800{sup o}C. (author)

  17. Hydrogen Production System with High Temperature Electrolysis for Nuclear Power Plant

    International Nuclear Information System (INIS)

    Kentaro, Matsunaga; Eiji, Hoashi; Seiji, Fujiwara; Masato, Yoshino; Taka, Ogawa; Shigeo, Kasai

    2006-01-01

    Steam electrolysis with solid oxide cells is one of the most promising methods for hydrogen production, which has the potential to be high efficiency. Its most parts consist of environmentally sound and common materials. Recent development of ceramics with high ionic conductivity suggests the possibility of widening the range of operating temperature with maintaining the high efficiency. Toshiba is constructing a hydrogen production system with solid oxide electrolysis cells for nuclear power plants. Tubular-type cells using YSZ (Yttria-Stabilized- Zirconia) as electrolyte showed good performance of steam electrolysis at 800 to 900 deg C. Larger electrolysis cells with present configuration are to be combined with High Temperature Reactors. The hydrogen production efficiency on the present designed system is expected around 50% at 800 to 900 deg C of operating temperature. For the Fast Reactors, 'advanced cell' with higher efficiency at lower temperature are to be introduced. (authors)

  18. High Temperature Polymers for use in Fuel Cells

    Science.gov (United States)

    Peplowski, Katherine M.

    2004-01-01

    NASA Glenn Research Center (GRC) is currently working on polymers for fuel cell and lithium battery applications. The desire for more efficient, higher power density, and a lower environmental impact power sources has led to interest in proton exchanges membrane fuels cells (PEMFC) and lithium batteries. A PEMFC has many advantages as a power source. The fuel cell uses oxygen and hydrogen as reactants. The resulting products are electricity, heat, and water. The PEMFC consists of electrodes with a catalyst, and an electrolyte. The electrolyte is an ion-conducting polymer that transports protons from the anode to the cathode. Typically, a PEMFC is operated at a temperature of about 80 C. There is intense interest in developing a fuel cell membrane that can operate at higher temperatures in the range of 80 C- 120 C. Operating the he1 cell at higher temperatures increases the kinetics of the fuel cell reaction as well as decreasing the susceptibility of the catalyst to be poisoned by impurities. Currently, Nafion made by Dupont is the most widely used polymer membrane in PEMFC. Nafion does not function well above 80 C due to a significant decrease in the conductivity of the membrane from a loss of hydration. In addition to the loss of conductivity at high temperatures, the long term stability and relatively high cost of Nafion have stimulated many researches to find a substitute for Nafion. Lithium ion batteries are popular for use in portable electronic devices, such as laptop computers and mobile phones. The high power density of lithium batteries makes them ideal for the high power demand of today s advanced electronics. NASA is developing a solid polymer electrolyte that can be used for lithium batteries. Solid polymer electrolytes have many advantages over the current gel or liquid based systems that are used currently. Among these advantages are the potential for increased power density and design flexibility. Automobiles, computers, and cell phones require

  19. Investigations of a zirconia solid electrolyte oxygen sensor in liquid lead

    Energy Technology Data Exchange (ETDEWEB)

    Rivai, Abu Khalid, E-mail: rivai.abukhalid@jaea.go.j [Department of Nuclear Engineering, Graduate School of Science and Engineering, Tokyo Institute of Technology, N1-18, 2-12-1, O-okayama, Meguro-ku, Tokyo 152-8550 (Japan); Takahashi, Minoru, E-mail: mtakahas@nr.titech.ac.j [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, N1-18, 2-12-1, O-okayama, Meguro-ku, Tokyo 152-8550 (Japan)

    2010-03-15

    Investigations of a magnesia-stabilized zirconia solid electrolyte oxygen sensor for oxygen control measurement in liquid lead were carried out. The fluid of Bi/Bi{sub 2}O{sub 3} as a reference electrode and a molybdenum wire as a working electrode to detect the output signal of the sensor were used. The Nernst equation was used to estimate the electromotive force (EMF) values theoretically. The temperatures of liquid lead were 500, 550 and 600 deg. C. The results showed that the injection gas temperatures did not affect the detected EMF, the sensor responded well to quick changes of oxygen activity in liquid lead, and the discrepancy between the measured and theoretical EMF of the oxygen sensor output signal was higher at 500 deg. C than at 550 and 600 deg. C.

  20. Physical, mechanical and electrochemical characterization of all-perovskite intermediate temperature solid oxide fuel cells

    Science.gov (United States)

    Mohammadi, Alidad

    Strontium- and magnesium-doped lanthanum gallate (LSGM) has been considered as a promising electrolyte for solid oxide fuel cell (SOFC) systems in recent years due to its high ionic conductivity and chemical stability over a wide range of oxygen partial pressures and temperatures. This research describes synthesis, physical and mechanical behavior, electrochemical properties, phase evolution, and microstructure of components of an all-perovskite anode-supported intermediate temperature solid oxide fuel cell (ITSOFC), based on porous La 0.75Sr0.25Cr0.5Mn0.5O3 (LSCM) anode, La0.8Sr0.2Ga0.8Mg0.2O 2.8 (LSGM) electrolyte, and porous La0.6Sr0.4Fe 0.8Co0.2O3 (LSCF) cathode. The phase evolution of synthesized LSGM and LSCM powders has been investigated, and it has been confirmed that there is no reaction between LSGM and LSCM at sintering temperature. Using different amounts of poreformers and binders as well as controlling firing temperature, porosity of the anode was optimized while still retaining good mechanical integrity. The effect of cell operation conditions under dry hydrogen fuel on the SOFC open circuit voltage (OCV) and cell performance were also investigated. Characterization study of the synthesized LSGM indicates that sintering at 1500°C obtains higher electrical conductivity compared to the currently published results, while conductivity of pellets sintered at 1400°C and 1450°C would be slightly lower. The effect of sintering temperature on bulk and grain boundary resistivities was also discussed. The mechanical properties, such as hardness, Young's modulus, fracture toughness and modulus of rupture of the electrolyte were determined and correlated with scanning electron microscopy (SEM) morphological characterization. Linear thermal expansion and thermal expansion coefficient of LSGM were also measured.

  1. Electrolytes for Wide Operating Temperature Lithium-Ion Cells

    Science.gov (United States)

    Smart, Marshall C. (Inventor); Bugga, Ratnakumar V. (Inventor)

    2016-01-01

    Provided herein are electrolytes for lithium-ion electrochemical cells, electrochemical cells employing the electrolytes, methods of making the electrochemical cells and methods of using the electrochemical cells over a wide temperature range. Included are electrolyte compositions comprising a lithium salt, a cyclic carbonate, a non-cyclic carbonate, and a linear ester and optionally comprising one or more additives.

  2. Ionic liquid electrolytes for dye-sensitized solar cells.

    Science.gov (United States)

    Gorlov, Mikhail; Kloo, Lars

    2008-05-28

    The potential of room-temperature molten salts (ionic liquids) as solvents for electrolytes for dye-sensitized solar cells has been investigated during the last decade. The non-volatility, good solvent properties and high electrochemical stability of ionic liquids make them attractive solvents in contrast to volatile organic solvents. Despite this, the relatively high viscosity of ionic liquids leads to mass-transport limitations. Here we review recent developments in the application of different ionic liquids as solvents or components of liquid and quasi-solid electrolytes for dye-sensitized solar cells.

  3. A high-temperature high-pressure calorimeter for determining heats of solution up to 623 K.

    Science.gov (United States)

    Djamali, Essmaiil; Turner, Peter J; Murray, Richard C; Cobble, James W

    2010-07-01

    A high-temperature high-pressure isoperibol calorimeter for determining the heats of solution and reaction of very dilute substances in water (10(-4) m) at temperatures up to 623 K is described. The energies of vaporization of water at steam saturation pressure were measured as a function of temperature and the results agree with the corresponding values from steam tables to better than 0.08+/-0.18%. The novelties of the present instrument relative to flow type heat capacity calorimeters are that measurements can be made at orders of magnitude lower concentrations and that measurement of heat of reaction involving solids or gases or in the presence of high concentrations of supporting electrolytes, acids, and bases is possible. Furthermore, the advantage of using enthalpy data over heat capacity data for calculations of the standard state Gibbs free energies of electrolytes is that the experimental heat data of this research need only be integrated once to derive higher temperature free energy data from lower temperatures. The derived heat capacities can be used mathematically to obtain free energies by double integration. However, the resulting errors are much smaller than if experimental aqueous heat capacities were used for the integrations.

  4. Zinc composite anode for batteries with solid electrolyte

    Science.gov (United States)

    Tedjar, F.; Melki, T.; Zerroual, L.

    A new negative composite anode for batteries with a solid electrolyte is studied. Using a complex of zinc ammonium chloride mixed with zinc metal powder, the advantage of the Zn/Zn 2+ electrode ( e = -760 mV) is kept while the energy density and the shelf-life of the battery are increased.

  5. Oxidative degradation of polybenzimidazole membranes as electrolytes for high temperature proton exchange membrane fuel cells

    DEFF Research Database (Denmark)

    Liao, J.H.; Li, Qingfeng; Rudbeck, H.C.

    2011-01-01

    the oxidative degradation of the polymer membrane was studied under the Fenton test conditions by the weight loss, intrinsic viscosity, size exclusion chromatography, scanning electron microscopy and Fourier transform infrared spectroscopy. During the Fenton test, significant weight losses depending...... on the initial molecular weight of the polymer were observed. At the same time, viscosity and SEC measurements revealed a steady decrease in molecular weight. The degradation of acid doped PBI membranes under Fenton test conditions is proposed to start by the attack of hydroxyl radicals at the carbon atom......Polybenzimidazole membranes imbibed with acid are emerging as a suitable electrolyte material for high-temperature polymer electrolyte fuel cells. The oxidative stability of polybenzimidazole has been identified as an important issue for the long-term durability of such cells. In this paper...

  6. Novel polybenzimidazole derivatives for high temperature polymer electrolyte membrane fuel cell applications

    Science.gov (United States)

    Xiao, Lixiang

    Recent advances have made polymer electrolyte membrane fuel cells (PEMFCs) a leading alternative to internal combustion engines for both stationary and transportation applications. In particular, high temperature polymer electrolyte membranes operational above 120°C without humidification offer many advantages including fast electrode kinetics, high tolerance to fuel impurities and simple thermal and water management systems. A series of polybenzimidazole (PBI) derivatives including pyridine-based PBI (PPBI) and sulfonated PBI (SPBI) homopolymers and copolymers have been synthesized using polyphosphoric acid (PPA) as both solvent and polycondensation agent. High molecular weight PBI derivative polymers were obtained with well controlled backbone structures in terms of pyridine ring content, polymer backbone rigidity and degree of sulfonation. A novel process, termed the PPA process, has been developed to prepare phosphoric acid (PA) doped PBI membranes by direct-casting of the PPA polymerization solution without isolation or re-dissolution of the polymers. The subsequent hydrolysis of PPA to PA by moisture absorbed from the atmosphere usually induced a transition from the solution-like state to a gel-like state and produced PA doped PBI membranes with a desirable suite of physiochemical properties characterized by the PA doping levels, mechanical properties and proton conductivities. The effects of the polymer backbone structure on the polymer characteristics and membrane properties, i.e., the structure-property relationships of the PBI derivative polymers have been studied. The incorporation of additional basic nitrogen containing pyridine rings and sulfonic acid groups enhanced the polymer solubility in acid and dipolar solvents while retaining the inherently high thermal stability of the PBI heteroaromatic backbone. In particular, the degradation of the SPBI polymers with reasonable high molecular weights commenced above 450°C, notably higher than other

  7. Operation Strategies Based on Carbon Corrosion and Lifetime Investigations for High Temperature Polymer Electrolyte Membrane Fuel Cell Stacks

    DEFF Research Database (Denmark)

    Kannan, A.; Kaczerowski, J.; Kabza, A.

    2018-01-01

    This paper is aimed to develop operation strategies or high temperature polymer electrolyte fuel cells (HT-PEMFCs) stacks in order to enhance the endurance by mitigating carbon oxidation reaction. The testing protocols are carefully designed to suit the operating cycle for the realistic application...

  8. Zinc composite anode for batteries with solid electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Tedjar, F.; Melki, T.; Zerroual, L. (Setif Univ. (Algeria). Unite de Recherche Electrochimie)

    1992-05-01

    A new negative composite anode for batteries with a solid electrolyte is studied. Using a complex of zinc ammonium chloride mixed with zinc metal powder, the advantage of the Zn/Zn[sup 2+] electrode (e = -760 mV) is kept while the energy density and the shelf-life of the battery are increased. (orig.).

  9. Long-term Steam Electrolysis with Electrolyte-Supported Solid Oxide Cells

    International Nuclear Information System (INIS)

    Schefold, Josef; Brisse, Annabelle; Poepke, Hendrik

    2015-01-01

    Steam electrolysis over 11000 h with an electrolyte-supported solid oxide cell is discussed. The cell of 45 cm"2 area consists of a scandia/ceria doped zirconia electrolyte (6Sc1CeSZ), CGO diffusion-barrier/adhesion layers, a lanthanum strontium cobaltite ferrite (LSCF) oxygen electrode, and a nickel steam/hydrogen electrode. After initial 2500 h operation with lower current-density magnitude, the current density was set to j = -0.9 A cm"−"2 and the steam conversion rate to 51%. This led to a cell voltage of 1.185 V at 847 °C cell temperature. Average voltage degradation was 7.3 mV/1000 h ( 100% throughout the test (with an external heat source for evaporation). Impedance spectroscopic measurements revealed a degradation almost entirely due to increasing ohmic resistance. The rate of resistance increase was initially faster (up to 40 mΩ cm"2/1000 h) and stabilised after several 1000 h operation. After 9000 h a small (non-ohmic) electrode degradation became detectable (<2 mV/1000 h), superimposed to ohmic degradation. The small electrode degradation is understood as indication for largely reversible (electrolysis cell/fuel cell) behaviour.

  10. Flexible all-solid-state supercapacitors based on graphene/carbon black nanoparticle film electrodes and cross-linked poly(vinyl alcohol)-H2SO4 porous gel electrolytes

    Science.gov (United States)

    Fei, Haojie; Yang, Chongyang; Bao, Hua; Wang, Gengchao

    2014-11-01

    Flexible all-solid-state supercapacitors (SCs) are fabricated using graphene/carbon black nanoparticle (GCB) film electrodes and cross-linked poly(vinyl alcohol)-H2SO4 porous gel electrolytes (gPVAP-H2SO4). The GCB composite films, with carbon black (CB) nanoparticles uniformly distributed in the graphene nanosheets, greatly improve the active surface areas and ion transportation of pristine graphene film. The porous structure of as-prepared gPVAP-H2SO4 membrane improves the equilibrium swelling ratio in electrolyte and provides interconnected ion transport channels. The chemical crosslinking solves the fluidity problem of PVA-H2SO4 gel electrolyte at high temperature. As-fabricated GCB//gPVAP(20)-H2SO4//GCB flexible SC displays an increased specific capacitance (144.5 F g-1 at 0.5 A g-1) and a higher specific capacitance retention (67.9% from 0.2 to 4 A g-1). More importantly, the flexible SC possesses good electrochemical performance at high temperature (capacitance retention of 78.3% after 1000 cycles at 70 °C).

  11. Conductivity studies of PEG based polymer electrolyte for applications as electrolyte in ion batteries

    Science.gov (United States)

    Patil, Ravikumar V.; Praveen, D.; Damle, R.

    2018-05-01

    Development of lithium ion batteries employing solid polymer electrolytes as electrolyte material has led to efficient energy storage and usage in many portable devices. However, due to a few drawbacks like lower ionic conductivity of solid polymer electrolytes (SPEs), studies on SPEs for improvement in conductivity still have a good scope. In the present paper, we report the conductivity studies of a new SPE with low molecular weight poly ethylene glycol (PEG) as host polymer in which a salt with larger anion Lithium trifluro methane sulphonate (LTMS). XRD studies have revealed that the salt completely dissociates in the polymer giving a good stable electrolyte at lower salt concentration. Conductivity of the SPEs has been studied as a function of temperature and we reiterate that the conductivity is a thermally activated process and follows Arrhenius type behavior.

  12. Pyrrolidinium FSI and TFSI-Based Polymerized Ionic Liquids as Electrolytes for High-Temperature Lithium-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Manfred Kerner

    2018-02-01

    Full Text Available Promising electrochemical and dynamical properties, as well as high thermal stability, have been the driving forces behind application of ionic liquids (ILs and polymerized ionic liquids (PILs as electrolytes for high-temperature lithium-ion batteries (HT-LIBs. Here, several ternary lithium-salt/IL/PIL electrolytes (PILel have been investigated for synergies of having both FSI and TFSI anions present, primarily in terms of physico-chemical properties, for unique application in HT-LIBs operating at 80 °C. All of the electrolytes tested have low Tg and are thermally stable ≥100 °C, and with TFSI as the exclusive anion the electrolytes (set A have higher thermal stabilities ≥125 °C. Ionic conductivities are in the range of 1 mS/cm at 100 °C and slightly higher for set A PILel, which, however, have lower oxidation stabilities than set B PILel with both FSI and TFSI anions present: 3.4–3.7 V vs. 4.2 V. The evolution of the interfacial resistance increases for all PILel during the first 40 h, but are much lower for set B PILel and generally decrease with increasing Li-salt content. The higher interfacial resistances only influence the cycling performance at high C-rates (1 C, where set B PILel with high Li-salt content performs better, while the discharge capacities at the 0.1 C rate are comparable. Long-term cycling at 0.5 C, however, shows stable discharge capacities for 100 cycles, with the exception of the set B PILel with high Li-salt content. Altogether, the presence of both FSI and TFSI anions in the PILel results in lower ionic conductivities and decreased thermal stabilities, but also higher oxidation stabilities and reduced interfacial resistances and, in total, result in an improved rate capability, but compromised long-term capacity retention. Overall, these electrolytes open for novel designs of HT-LIBs.

  13. X-ray photoelectron spectroscopy study of the surface of solid electrolyte La0.88Sr0.12Ga0.82Mg0.18O3-α

    International Nuclear Information System (INIS)

    Shkerin, S.N.; Kalashnikova, N.A.; Kuznetsov, M.V.

    2003-01-01

    The composition and chemical state of elements on the surface of solid oxygen-conducting electrolyte La 0.88 Sr 0.12 Ga 0.82 Mg 0.18 O 3-α prior to and after high-temperature annealing (T = 973 K) in CO 2 atmosphere were studied by the method of X-ray photoelectron spectroscopy. It is shown that products of interaction between doped lanthanum gallate and carbon dioxide are localized in the surface layer 8-10 nm thick. Annealing in CO 2 atmosphere does not involve formation of carbon chemical compounds with metals on the electrolyte surface. Surface layers both in the initial electrolyte and after allowance to stay in CO 2 were enriched by strontium oxide, lanthanum hydroxide being present on the surface [ru

  14. Secondary lithium solid polymer electrolyte cells

    International Nuclear Information System (INIS)

    Fix, K.A.; Sammells, A.F.

    1988-01-01

    A strategy for developing morphologically invariant lithium/solid polymer electrolyte interface is being investigated via the use of lithium intercalated electrodes. Emphasis is being placed upon the rutile material Li/sub x/WO/sub 2/ 0.1 < x < 1.0. An absence of shape change at this interface is expected to result in both long cycle life electrochemical cells and the simultaneous maintenance of small interelectrode spacing so that low IR losses can be maintained. During fabrication of cells investigated here both electrochemical and chemical lithium intercalation of WO/sub 2/ was pursued. In the case of larger WO/sub 2/ electrodes initially prepared for fully discharged state cells, electrochemical intercalation during cell charge was found to require significant time, and the reproducible achievement of complete uniform intercalation across the negative electrode became an issue. Emphasis was consequently placed upon cells fabricated using Li/sub x/WO/sub 2/ electrodes initially chemically intercalated by lithium prior to cell assembly. Previous work has demonstrated direct lithium intercalation of metal dichalcogenides using n-BuLi. Lithium activity in n-BuLi is, however, insufficient to achieve lithium intercalation of WO/sub 2//sup 4/. However, recent work has shown that WO/sub 2/ can be directly lithium intercalated upon immersion in lithium naphthalide. Li/sub x/WO/sub 2/ electrodes prepared in this work were intercalated using lithium naphthalide (0.8M) in 2MeTHF. Lithium intercalation was found to readily occur at room temperature, being initially rapid and slowing as bulk intercalation within the electrode proceeded. For electrodes intercalated in this manner, a relationship was identified between the degree of lithium intercalation and initial open-circuit potential in liquid non-aqueous electrolyte

  15. Solid electrolyte membranes and the system to produce hydrogen from thermally decomposed water by solar energy; Taiyo energy riyo ni yoru mizu no chokusetsu netsubunkai kara no suiso seizoyo

    Energy Technology Data Exchange (ETDEWEB)

    Nigara, K; Watanabe, K; Kawamura, K; Kawada, T; Mizusaki, J; Ishigame, M [Tohoku University, Sendai (Japan). Research Institute for Scientific Measurements

    1996-10-27

    For conversion of solar heat to transportable energy, hydrogen production by direct thermal decomposition of water using concentrated high-temperature solar heat was studied. Water vapor is injected into the tubular target with high melting point and high oxygen permeability at high temperature while heating the target by concentrated solar heat over 2000K. Oxygen in decomposed gas is discharged through an oxygen permeable membrane to extract hydrogen. Solid electrolyte is used as one of the target materials. Oxygen gas in the high-oxygen partial pressure site changes into oxygen ion by accepting two electrons at the target surface, and returns to neutral oxygen gas in the low-oxygen partial pressure site by discharging two electrons at the surface after permeation through oxygen vacancy. In the case of n-type solid electrolyte, to obtain constant permeation of a large amount of oxygen, flow of a large amount of electrons is indispensable in the opposite direction to oxygen ion. Among [(ZrO2)(1-x)(CeO2)x](0.9)(CaO)(0.1), materials of 0.4-0.5 in x seems to be useful as the target material. 7 refs., 7 figs.

  16. Designing Artificial Solid-Electrolyte Interphases for Single-Ion and High-Efficiency Transport in Batteries

    KAUST Repository

    Tu, Zhengyuan

    2017-09-21

    Substrates able to rectify transport of ions based on charge and/or size are ubiquitous in biological systems. Electrolytes and interphases that selectively transport electrochemically active ions are likewise of broad interest in all electrical energy storage technologies. In lithium-ion batteries, electrolytes with single- or near-single-ion conductivity reduce losses caused by ion polarization. In emergent lithium or sodium metal batteries, they maintain high conductivity at the anode and stabilize metal deposition by fundamental mechanisms. We report that 20- to 300-nm-thick, single-ion-conducting membranes deposited at the anode enable electrolytes with the highest combination of cation transference number, ionic conductivity, and electrochemical stability reported. By means of direct visualization we find that single-ion membranes also reduce dendritic deposition of Li in liquids. Galvanostatic measurements further show that the electrolytes facilitate long (3 mAh) recharge of full Li/LiNi0.8Co0.15Al0.05O2 (NCA) cells with high cathode loadings (3 mAh cm−2/19.9 mg cm−2) and at high current densities (3 mA cm−2).

  17. Method for calculating solid-solid phase transitions at high temperature: An application to N2O

    International Nuclear Information System (INIS)

    Kuchta, B.; Etters, R.D.

    1992-01-01

    Two similar techniques for calculating solid-solid phase transitions at high temperatures are developed, where the contribution of the entropy may be a decisive factor. They utilize an artificial reversible path from one phase to another by application of a control parameter. Thermodynamic averages are calculated using constant-volume and constant-pressure Monte Carlo techniques. An application to N 2 O at room temperature shows that the cubic Pa3 to orthorhombic Cmca transition occurs near 4.9-GPa pressure, very close to the value calculated at very low temperatures. These results support experimental evidence that the transition pressure is virtually independent of temperature

  18. Elastic Properties of the Solid Electrolyte Li7La3Zr2O12 (LLZO)

    DEFF Research Database (Denmark)

    Yu, Seungho; Schmidt, Robert D.; Garcia-Mendez, Regina

    2016-01-01

    The oxide known as LLZO, with nominal composition Li7La3Zr2O12, is a promising solid electrolyte for Li-based batteries due to its high Li ion conductivity and chemical stability with respect to lithium. Solid electrolytes may also enable the use of metallic Li anodes by serving as a physical bar...

  19. A highly conductive, non-flammable polymer–nanoparticle hybrid electrolyte

    KAUST Repository

    Agrawal, Akanksha

    2015-01-01

    © 2015 The Royal Society of Chemistry. We report on the physical properties of lithium-ion conducting nanoparticle-polymer hybrid electrolytes created by dispersing bidisperse mixtures of polyethylene glycol (PEG)-functionalized silica nanoparticles in an aprotic liquid host. At high particle contents, we find that the ionic conductivity is a non-monotonic function of the fraction of larger particles xL in the mixtures, and that for the nearly symmetric case xL ≈ 0.5 (i.e. equal volume fraction of small and large particles), the room temperature ionic conductivity is nearly ten-times larger than in similar nanoparticle hybrid electrolytes comprised of the pure small (xL ≈ 0) or large (xL ≈ 1) particle components. Complementary trends are seen in the activation energy for ion migration and effective tortuosity of the electrolytes, which both exhibit minima near xL ≈ 0.5. Characterization of the electrolytes by dynamic rheology reveals that the maximum conductivity coincides with a distinct transition in soft glassy properties from a jammed to partially jammed and back to jammed state, as the fraction of large particles is increased from 0 to 1. This finding implies that the conductivity enhancement arises from purely entropic loss of correlation between nanoparticle centers arising from particle size dispersity. As a consequence of these physics, it is now possible to create hybrid electrolytes with MPa elastic moduli and mS cm-1 ionic conductivity levels at room temperature using common aprotic liquid media as the electrolyte solvent. Remarkably, we also find that even in highly flammable liquid media, the bidisperse nanoparticle hybrid electrolytes can be formulated to exhibit low or no flammability without compromising their favorable room temperature ionic conductivity and mechanical properties.

  20. Electrochemical hydrogen isotope sensor based on solid electrolytes

    International Nuclear Information System (INIS)

    Matsumoto, Hiroshige; Hayashi, Hiroyuki; Iwahara, Hiroyasu

    2002-01-01

    An electrochemical sensor of hydrogen isotopes based on solid electrolytes for determining the hydrogen isotope ratios and/or total hydrogen pressures in gases has been developed. This paper describes the methodology of the hydrogen isotope sensing together with experimental results. When hydrogen isotope gases are introduced to an electrochemical cell using a proton-conducting electrolyte (hydrogen isotope cell), the electromotive force (EMF) of the cell agrees with that theoretically estimated. The EMF signals can be used for the determination of the hydrogen isotope ratio in gases if the total hydrogen pressure is predetermined. By supplementary use of an oxide ion conductor cell, both the ratio and total pressure of the hydrogen isotopes can be simultaneously determined. (author)

  1. Ionic Borate-Based Covalent Organic Frameworks: Lightweight Porous Materials for Lithium-Stable Solid State Electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Black, Hayden T; Harrison, Katharine Lee

    2016-10-01

    The synthesis and characterization of the first polyelectrolyte of intrinsic microporosity (PEIM) is described. The novel material was synthesized via reaction between the nitrile group in the polymer backbone and n-butyl lithium, effectively anchoring an imine anion to the porous framework while introducing a mobile lithium counterion. The PEIM was characterized by 13C, 1H, and 7Li NMR experiments, revealing quantitative conversion of the nitrile functionality to the anionic imine. Variable temperature 7Li NMR analysis of the dry PEIM and the electrolyteswollen PEIM revealed that lithium ion transport within the dry PEIM was largely due to interchain hopping of the Li+ ions, and that the mobility of polymer associated Li+ was reduced after swelling in electrolyte solution. Meanwhile, the swollen PEIM supported efficient transport of dissolved Li+ within the expanded pores. These results are discussed in the context of developing novel solid or solid-like lithium ion electrolytes using the new PEIM material.

  2. Crosslinked Polymer Ionic Liquid/Ionic Liquid Blends Prepared by Photopolymerization as Solid-State Electrolytes in Supercapacitors.

    Science.gov (United States)

    Wang, Po-Hsin; Wang, Tzong-Liu; Lin, Wen-Churng; Lin, Hung-Yin; Lee, Mei-Hwa; Yang, Chien-Hsin

    2018-04-07

    A photopolymerization method is used to prepare a mixture of polymer ionic liquid (PIL) and ionic liquid (IL). This mixture is used as a solid-state electrolyte in carbon nanoparticle (CNP)-based symmetric supercapacitors. The solid electrolyte is a binary mixture of a PIL and its corresponding IL. The PIL matrix is a cross-linked polyelectrolyte with an imidazole salt cation coupled with two anions of Br - in PIL-M-(Br) and TFSI - in PIL-M-(TFSI), respectively. The corresponding ionic liquids have imidazolium salt cation coupled with two anions of Br - and TFSI - , respectively. This study investigates the electrochemical characteristics of PILs and their corresponding IL mixtures used as a solid electrolyte in supercapacitors. Results show that a specific capacitance, maximum power density and energy density of 87 and 58 F·g - ¹, 40 and 48 kW·kg - ¹, and 107 and 59.9 Wh·kg - ¹ were achieved in supercapacitors based on (PIL-M-(Br)) and (PIL-M-(TFSI)) solid electrolytes, respectively.

  3. Medium-temperature solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Maffei, N.; Kuriakose, A.K. [Natural Resources Canada, Ottawa, ON (Canada). Materials Technology Lab

    2000-07-01

    The Materials Technology Laboratory (MTL) of Natural Resources Canada has been conducting research on the development of a solid oxide fuel cell (SOFC) for the past decade. Fuel cells convert chemical energy directly into electric energy in an efficient and environmentally friendly manner. SOFCs are considered to be good stationary power sources for commercial and residential applications and will likely be commercialized in the near future. The research at MTL has focused on the development of new electrolytes for use in SOFCs. In the course of this research, monolithic planar single cell SOFCs based on doubly doped ceria and lanthanum gallate have been fabricated and tested at 700 degrees C. This paper compared the performance characteristics of both these systems. The data suggested the presence of a significant electronic conductivity in the SOFC incorporating doubly doped ceria, resulting in lower than expected voltage output. The stability of the SOFC, however, did not appear to be negatively affected. The lanthanum gallate based SOFC performed well. It was concluded that reducing the operating temperature of SOFCs would improve their reliability and enhance their operating life. First generation commercial SOFCs will use a zirconium oxide-based electrolytes while second generation units might possibly use ceria-based and/or lanthanum gallate electrolytes. 24 refs., 6 figs.

  4. The study of flow and proton exchange interactions in the cylindrical solid oxide fuel cell

    CERN Document Server

    Saievar-Iranizad, E

    2002-01-01

    The solid oxide fuel cell operates at high temperature of about 1000 deg C. In this temperature, some known materials such as Ni, ... which is abundant in the nature, can be used as a catalyst in the electrodes. The electrolytes of such cell solid oxide fuel cell can be made through non-porous solid ceramics such as Zircon's (ZrO sub 2). It can be stabilized using a doped Yttrium oxide. The importance of Yttria-stabilised Zirconia at high temperature belongs to the transport of oxygen ions through the electrolyte. Oxygen using in the hot cathode side causes a considerable reduction in the concentration of oxygen molecules. The oxygen ions exchange through the electrolyte relates to the molecular oxygen concentration gradient between the anode and cathode. Applying fuels such as hydrogen or natural gas in the anode and its chemical reaction with oxygen ions transfer from cathode through the electrolyte, produce electricity, water and heat. To study the ion exchange and its interaction into solid oxide fuel cel...

  5. Atomistic study of ternary oxides as high-temperature solid lubricants

    Science.gov (United States)

    Gao, Hongyu

    Friction and wear are important tribological phenomena tightly associated with the performance of tribological components/systems such as bearings and cutting machines. In the process of contact and sliding, friction and wear lead to energy loss, and high friction and wear typically result in shortened service lifetime. To reduce friction and wear, solid lubricants are generally used under conditions where traditional liquid lubricants cannot be applied. However, it is challenging to maintain the functionality of those materials when the working environment becomes severe. For instance, at elevated temperatures (i.e., above 400 °C), most traditional solid lubricants, such as MoS2 and graphite, will easily oxidize or lose lubricity due to irreversible chemical changes. For such conditions, it is necessary to identify materials that can remain thermally stable as well as lubricious over a wide range of temperatures. Among the currently available high-temperature solid lubricants, Ag-based ternary metal oxides have recently drawn attention due to their low friction and ability to resist oxidation. A recent experimental study showed that the Ag-Ta-O ternary exhibited an extremely low coefficient of friction (0.06) at 750 °C. To fully uncover the lubricious nature of this material as a high-temperature solid lubricant, a series of tribological investigations were carried out based on one promising candidate - silver tantalate (AgTaO3). The study was then extended to alternative materials, Cu-Ta-O ternaries, to accommodate a variety of application requirements. We aimed to understand, at an atomic level, the effects of physical and chemical properties on the thermal, mechanical and tribological behavior of these materials at high temperatures. Furthermore, we investigated potassium chloride films on a clean iron surface as a representative boundary lubricating system in a nonextreme environment. This investigation complemented the study of Ag/Cu-Ta-O and enhanced the

  6. Neutron scattering studies of solid electrolytes

    International Nuclear Information System (INIS)

    Shapiro, S.M.

    1976-01-01

    The role which neutron scattering can play in determining the nature of the disorder and the conducting mechanism in the solid electrolytes is discussed. First, some of the general formalism for elastic and inelastic neutron scattering is reviewed, and the quantities which can be measured are pointed out. Then the application of neutron scattering to the studies of three different problems is examined; the anion disorder in the fluorite system, the dynamical behavior in beta-alumina, and the cation diffusion in αAgI are discussed. 8 figures

  7. Investigation of the Reversible Lithiation of an Oxide Free Aluminum Anode by a LiBH4 Solid State Electrolyte

    Directory of Open Access Journals (Sweden)

    Jason A. Weeks

    2017-11-01

    Full Text Available In this study, we analyze and compare the physical and electrochemical properties of an all solid-state cell utilizing LiBH4 as the electrolyte and aluminum as the active anode material. The system was characterized by galvanostatic lithiation/delithiation, cyclic voltammetry (CV, X-ray diffraction (XRD, energy dispersive X-ray spectroscopy (EDS, Raman spectroscopy, electrochemical impedance spectroscopy (EIS, and scanning electron microscopy (SEM. Constant current cycling demonstrated that the aluminum anode can be reversibly lithiated over multiple cycles utilizing a solid-state electrolyte. An initial capacity of 895 mAh/g was observed and is close to the theoretical capacity of aluminum. Cyclic voltammetry of the cell was consistent with the constant current cycling data and showed that the reversible lithiation/delithiation of aluminum occurs at 0.32 V and 0.38 V (vs. Li+/Li respectively. XRD of the aluminum anode in the initial and lithiated state clearly showed the formation of a LiAl (1:1 alloy. SEM-EDS was utilized to examine the morphological changes that occur within the electrode during cycling. This work is the first example of reversible lithiation of aluminum in a solid-state cell and further emphasizes the robust nature of the LiBH4 electrolyte. This demonstrates the possibility of utilizing other high capacity anode materials with a LiBH4 based solid electrolyte in all-solid-state batteries.

  8. Structural and morphological analysis of barium cerate electrolyte for SOFC application

    Directory of Open Access Journals (Sweden)

    Senthil Kumar A.

    2017-02-01

    Full Text Available Gadolinium doped barium cerate (BCG electrolytes Ce0.8Gd0.2O1.9 + xBaO (x = 0.1 and 0.4 were prepared by wet chemical method for the use in solid oxide fuel cells operating at intermediate temperatures (600 °C to 800 °C. The as-prepared powder sample was calcined at 900 °C. The calcination temperature was identified using differential scanning calorimetry (DSC analysis. The orthorhombic perovskite phase formation was confirmed by XRD analysis. From TEM results, the particle size was found to be about 32 nm which is in a good agreement with XRD results. BCG nanoparticles were formed at lower sintering temperature due to using microwave furnace. By reducing the sintering temperature of solid electrolyte through microwave technique, the percentage of barium loss was successfully reduced and the prepared electrolyte can be a good choice for solid oxide fuel cells operating at intermediate temperatures.

  9. Epoxy-silica hybrid organic–inorganic electrolytes with a high Li-ion conductivity

    International Nuclear Information System (INIS)

    Vélez, J.F.; Procaccini, R.A.; Aparicio, M.; Mosa, J.

    2013-01-01

    Organic–inorganic hybrid electrolytes were prepared by co-hydrolysis and co-condensation of 3-glycidoxipropyltrimethoxysilane (GPTMS) and tetraethyl orthosilicate (TEOS) doped with lithium acetate as self-supported materials and thin-films. The effects of the relative molar content of LiAc on the physicochemical properties of electrolytes, such as morphology, thermal, chemical and electrochemical properties were investigated. Two and four probes test cells were designed for comparative studies of ionic conductivity of hybrid electrolytes using electrochemical impedance spectroscopy (EIS). Similar ionic conductivities were obtained using both measurement methods, reaching a maximum ionic conductivity value of around 10 −6 S/cm at 25 °C. The conductivity mechanism presents Arrehenius behavior with the increase of the temperature from 25 °C to 120 °C. The electrochemical stability window is found to be in the range of 0–5 V, which ensures that hybrid organic–inorganic materials are potential electrolytes for solid-state rechargeable lithium ion batteries

  10. Solid State Multinuclear Magnetic Resonance Investigation of Electrolyte Decomposition Products on Lithium Ion Electrodes

    Science.gov (United States)

    DeSilva, J .H. S. R.; Udinwe, V.; Sideris, P. J.; Smart, M. C.; Krause, F. C.; Hwang, C.; Smith, K. A.; Greenbaum, S. G.

    2012-01-01

    Solid electrolyte interphase (SEI) formation in lithium ion cells prepared with advanced electrolytes is investigated by solid state multinuclear (7Li, 19F, 31P) magnetic resonance (NMR) measurements of electrode materials harvested from cycled cells subjected to an accelerated aging protocol. The electrolyte composition is varied to include the addition of fluorinated carbonates and triphenyl phosphate (TPP, a flame retardant). In addition to species associated with LiPF6 decomposition, cathode NMR spectra are characterized by the presence of compounds originating from the TPP additive. Substantial amounts of LiF are observed in the anodes as well as compounds originating from the fluorinated carbonates.

  11. Solid State Track Recorder fission rate measurements at high neutron fluence and high temperature

    International Nuclear Information System (INIS)

    Ruddy, F.H.; Roberts, J.H.; Gold, R.

    1985-01-01

    Solid State Track Recorder (SSTR) techniques have been used to measure 239-Pu, 235-U, and 237-Np fission rates for total neutron fluences approaching 5 x 10 17 n/cm 2 at temperatures in the range 680 to 830 0 F. Natural quartz crystal SSTRs were used to withstand the high temperature environment and ultra low-mass fissionable deposits of the three isotopes were required to yield scannable track densities at the high neutron fluences. The results of these high temperature, high neutron fluence measurements are reported

  12. Quasi-solid-state dye-sensitized solar cells from hydrophobic poly(hydroxyethyl methacrylate/glycerin)/polyaniline gel electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Li, Qinghua [National Defence Key Discipline Laboratory of Light Alloy Processing Science and Technology, Nanchang Hangkong University, Nanchang 330063 (China); Tang, Qunwei, E-mail: tangqunwei@hotmail.com [Institute of Materials Science and Engineering, Ocean University of China, Shandong Province, Qingdao 266100 (China); Chen, Haiyan [Institute of Materials Science and Engineering, Ocean University of China, Shandong Province, Qingdao 266100 (China); Xu, Haitao; Qin, Yuancheng [National Defence Key Discipline Laboratory of Light Alloy Processing Science and Technology, Nanchang Hangkong University, Nanchang 330063 (China); He, Benlin, E-mail: blhe@ouc.edu.cn [Institute of Materials Science and Engineering, Ocean University of China, Shandong Province, Qingdao 266100 (China); Liu, Zhichao; Jin, Suyue; Chu, Lei [Institute of Materials Science and Engineering, Ocean University of China, Shandong Province, Qingdao 266100 (China)

    2014-04-01

    Hydrophobic poly(hydroxyethyl methacrylate/glycerin) [poly(HEMA/GR)] gel with a three-dimensional (3D) framework was successfully fabricated and employed to integrate with polyaniline (PANi). The resultant poly(HEMA/GR)/PANi gel electrolyte exhibited interconnective porous structure for holding I{sup −}/I{sub 3}{sup −}, giving a similar conduction mechanism and ionic conductivity to that of liquid system but a much enhanced retention of I{sup −}/I{sub 3}{sup −} redox couple. Fourier transform infrared spectroscopy, X-ray diffraction patterns, cyclic voltammograms as well as electrochemical impedance spectroscopy were employed to evaluate the molecular structure, crystallinity, and the electrochemical behaviors, showing that the combination of PANi with poly(HEMA/GR) caused a lower charge-transfer resistance and higher electrocatalytic activity for the I{sub 3}{sup −}/I{sup −} redox reaction in the gel electrolyte. An efficiency of 6.63% was recorded from the quasi-solid-state DSSC assembled with the poly(HEMA/GR)/PANi gel electrolyte at 100 mW cm{sup −2}. - Graphical abstract: A poly(HEMA/GR)/PANi gel electrolyte is synthesized through in situ polymerization of PANi in 3D framework of poly(HEMA/GR) hydrophobic hydrogel. The recorded ionic conductivity and electrochemical performances are significantly enhanced by integrating with PANi The resultant overall photo-to-electric conversion efficiency is 6.63%. The high ionic conductivity, along with good electrolyte retention ability, reasonable DSSC performance, low cost, simple and scalable synthesis procedure, and competitive cost, promises the electrolyte to find applications in quasi-solid-state DSSCs. - Highlights: • Poly(HEMA/GR) was employed to combine with PANi in the 3D framework. • The conductivity and electrochemical performances were enhanced. • The conversion efficiency of the quasi-solid-state DSSC was 6.63%.

  13. A polymer electrolyte membrane for high temperature fuel cells to fit vehicle applications

    International Nuclear Information System (INIS)

    Li Mingqiang; Scott, Keith

    2010-01-01

    Poly(tetrafluoroethylene) PTFE/PBI composite membranes doped with H 3 PO 4 were fabricated to improve the performance of high temperature polymer electrolyte membrane fuel cells (HT-PEMFC). The composite membranes were fabricated by immobilising polybenzimidazole (PBI) solution into a hydrophobic porous PTFE membrane. The mechanical strength of the membrane was good exhibiting a maximum load of 35.19 MPa. After doping with the phosphoric acid, the composite membrane had a larger proton conductivity than that of PBI doped with phosphoric acid. The PTFE/PBI membrane conductivity was greater than 0.3 S cm -1 at a relative humidity 8.4% and temperature of 180 deg. C with a 300% H 3 PO 4 doping level. Use of the membrane in a fuel cell with oxygen, at 1 bar overpressure gave a peak power density of 1.2 W cm -2 at cell voltages >0.4 V and current densities of 3.0 A cm -2 . The PTFE/PBI/H 3 PO 4 composite membrane did not exhibit significant degradation after 50 h of intermittent operation at 150 deg. C. These results indicate that the composite membrane is a promising material for vehicles driven by high temperature PEMFCs.

  14. Synthesis, ionic conductivity, and thermal properties of proton conducting polymer electrolyte for high temperature fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Takahito; Hamaguchi, Yohei; Uno, Takahiro; Kubo, Masataka [Department of Chemistry for Materials, Faculty of Engineering, Mie University, 1577 Kurima Machiya-cho, Tsu, Mie 514-8507 (Japan); Aihara, Yuichi; Sonai, Atsuo [Samsung Yokohama Research Institute, 2-7 Sugasawa-cho, Tsurumi-ku, Yokohama 230-0027 (Japan)

    2006-01-16

    Hyperbranched polymer (poly-1a) with sulfonic acid groups at the end of chains was successfully synthesized. Interpenetration reaction of poly-1a with a hyperbranched polymer with acryloyl groups at the end of chains (poly-1b) as a cross-linker afforded a tough electrolyte membrane. The poly-1a and the resulting electrolyte membrane showed the ionic conductivities of 7x10{sup -4} and 8x10{sup -5} S/cm, respectively, at 150C under dry condition. The ionic conductivities of the poly-1a and the electrolyte membrane exhibited the VTF type temperature dependence. And also, both poly-1a and the resulting electrolyte membrane were thermally stable up to 200C. (author)

  15. Solid-state electric double layer capacitors fabricated with plastic crystal based flexible gel polymer electrolytes: Effective role of electrolyte anions

    International Nuclear Information System (INIS)

    Suleman, Mohd; Kumar, Yogesh; Hashmi, S.A.

    2015-01-01

    Flexible gel polymer electrolyte (GPE) thick films incorporated with solutions of lithium trifluoromethanesulfonate (Li-triflate or LiTf) and lithium bis trifluoromethane-sulfonimide (LiTFSI) in a plastic crystal succinonitrile (SN), entrapped in poly(vinylidine fluoride-co-hexafluoropropylene) (PVdF-HFP) have been prepared and characterized. The films have been used as electrolytes in the electrical double layer capacitors (EDLCs). Coconut-shell derived activated carbon with high specific surface area (∼2100 m 2 g −1 ) and mixed (micro- and meso-) porosity has been used as EDLC electrodes. The structural, thermal, and electrochemical characterization of the GPEs have been performed using scanning electron microscopy (SEM), X-ray diffraction (XRD), differential scanning calorimetry (DSC), impedance measurements and cyclic voltammetry. The high ionic conductivity (∼10 −3 S cm −1 at 25 °C), good electrochemical stability window (>4.0 V) and flexible nature of the free-standing films of GPEs show their competence in the fabrication of EDLCs. The EDLCs have been tested using electrochemical impedance spectroscopy, cyclic voltammetry, and charge–discharge studies. The EDLCs using LiTf based electrolyte have been found to give higher values of specific capacitance, specific energy, power density (240–280 F g −1 , ∼39 Wh kg −1 and ∼19 kW kg −1 , respectively) than the EDLC cell with LiTFSI based gel electrolyte. EDLCs have been found to show stable performance for ∼10 4 charge–discharge cycles. The comparative studies indicate the effective role of electrolyte anions on the capacitive performance of the solid-state EDLCs. - Graphical abstract: Display Omitted - Highlights: • Flexible EDLCs with succinonitrile based gel electrolyte membranes are reported. • Anionic size of salts in gel electrolytes plays important role on capacitive performance. • Li-triflate incorporated gel electrolyte shows better performance over LiTFSI-based gel.

  16. Solid-state electric double layer capacitors fabricated with plastic crystal based flexible gel polymer electrolytes: Effective role of electrolyte anions

    Energy Technology Data Exchange (ETDEWEB)

    Suleman, Mohd; Kumar, Yogesh; Hashmi, S.A., E-mail: sahashmi@physics.du.ac.in

    2015-08-01

    Flexible gel polymer electrolyte (GPE) thick films incorporated with solutions of lithium trifluoromethanesulfonate (Li-triflate or LiTf) and lithium bis trifluoromethane-sulfonimide (LiTFSI) in a plastic crystal succinonitrile (SN), entrapped in poly(vinylidine fluoride-co-hexafluoropropylene) (PVdF-HFP) have been prepared and characterized. The films have been used as electrolytes in the electrical double layer capacitors (EDLCs). Coconut-shell derived activated carbon with high specific surface area (∼2100 m{sup 2} g{sup −1}) and mixed (micro- and meso-) porosity has been used as EDLC electrodes. The structural, thermal, and electrochemical characterization of the GPEs have been performed using scanning electron microscopy (SEM), X-ray diffraction (XRD), differential scanning calorimetry (DSC), impedance measurements and cyclic voltammetry. The high ionic conductivity (∼10{sup −3} S cm{sup −1} at 25 °C), good electrochemical stability window (>4.0 V) and flexible nature of the free-standing films of GPEs show their competence in the fabrication of EDLCs. The EDLCs have been tested using electrochemical impedance spectroscopy, cyclic voltammetry, and charge–discharge studies. The EDLCs using LiTf based electrolyte have been found to give higher values of specific capacitance, specific energy, power density (240–280 F g{sup −1}, ∼39 Wh kg{sup −1} and ∼19 kW kg{sup −1}, respectively) than the EDLC cell with LiTFSI based gel electrolyte. EDLCs have been found to show stable performance for ∼10{sup 4} charge–discharge cycles. The comparative studies indicate the effective role of electrolyte anions on the capacitive performance of the solid-state EDLCs. - Graphical abstract: Display Omitted - Highlights: • Flexible EDLCs with succinonitrile based gel electrolyte membranes are reported. • Anionic size of salts in gel electrolytes plays important role on capacitive performance. • Li-triflate incorporated gel electrolyte shows better

  17. Structural and optical characterization of PVA:KMnO4 based solid polymer electrolyte

    Directory of Open Access Journals (Sweden)

    Omed Gh. Abdullah

    Full Text Available Solid polymer electrolyte films of polyvinyl alcohol (PVA doped with a different weight percent of potassium permanganate (KMnO4 were prepared by standard solution cast method. XRD and FTIR techniques were performed for structural study. Complex formation between the PVA polymer and KMnO4 salt was confirmed by Fourier transform infrared (FTIR spectroscopy. The description of crystalline nature of the solid polymer electrolyte films has been confirmed by XRD analysis. The UV-Visible absorption spectra were analyzed in terms of absorption formula for non-crystalline materials. The fundamental optical parameters such as optical band gap energy, refractive index, optical conductivity, and dielectric constants have been investigated and showed a clear dependence on the KMnO4 concentration. The observed value of optical band gap energy for pure PVA is about 6.27 eV and decreases to a value 3.12 eV for the film sample formed with 4 wt% KMnO4 salt. The calculated values of refractive index and the dielectric constants of the polymer electrolyte films increase with increasing KMnO4 content. Keywords: Solid polymer electrolyte, XRD analysis, FTIR study, Optical band gap, Dielectric constant, Refractive index

  18. On the theory of the electroreduction of solid oxide electrolytes

    International Nuclear Information System (INIS)

    Chebotin, V.N.; Brajnin, M.I.; Solov'eva, L.M.; Pakhnutov, I.A.; Lukach, Yu.S.

    1986-01-01

    The process of direct current passage through the cell with MOsub(2)+MeOsub(r) solid electrolyte (M-Zr, Hf, Ce, Th; Me-Ca, Sr, Sc, Y, lanthanides), a blockage cathode and a reversible anode is considered; it leads to electrolyte deviation from stoichiometric composition to insufficient oxygen content. The degree of this deviation and n-type electron conductivity proportional to it, depending on coordinate and time, is described by the nonlinear differential equation of the diffusion type. Electron conductivity of the electrolyte near the cathode increases in time approximating to the limiting value proportional to current conducted. As the distance to the cathode increases electron conductivity reduces by the exponential law, which transforms to a linear one in due course

  19. Synthesis and microstructural characterization of Sr- and Mg-substituted LaGaO3 solid electrolyte

    International Nuclear Information System (INIS)

    Datta, Pradyot; Majewski, Peter; Aldinger, Fritz

    2007-01-01

    Sr and Mg substituted LaGaO 3 is a solid electrolyte for intermediate temperature solid oxide fuel cell. Phase purity of this material is a concern for the researchers for a long time. In this contribution the secondary phases that are evolved during the synthesis of Sr and Mg doped LaGaO 3 are reported. For that purpose, a series of La 1-x Sr x Ga 1-y Mg y O 3-δ (LSGM) was prepared by solid state synthesis route. Scanning electron microscopic photographs showed secondary phases namely La 4 Ga 2 O 9 , LaSrGa 3 O 7 , LaSrGaO 4 along with the parent perovskite LSGM depending upon the amount of dopant. Amount of secondary phases was estimated from the peak positions of room temperature X-ray diffraction. It was observed that for a fixed amount of Mg dopant increasing the amount of Sr content also increased the amount of secondary phases whereas the reverse was found to be true when Sr content was fixed and Mg content was increased. This behaviour was attributed to the increase in solid solubility of Sr in presence of Mg

  20. Obtaining of ceria - samaria - gadolinia ceramics for application as solid oxide fuel cell (SOFC) electrolyte

    International Nuclear Information System (INIS)

    Arakaki, Alexander Rodrigo

    2010-01-01

    Cerium oxide (CeO 2 ) when doped with rare earth oxides has its ionic conductivity enhanced, enabling its use as electrolyte for Intermediate Temperature Solid Oxide Fuel Cell (IT-SOFC), which is operated in temperatures between 500 e 700 degree C. The most effective additives or dopants for ionic conductivity improvement are (samarium oxide - Sm 2 O 3 ) and gadolinia (gadolinium oxide - Gd 2 O 3 ), fixing the concentration between 10 and 20 molar%. In this work, Ce 0,8 (SmGd) 0,2 O 1,9 powders have been synthesized by hydroxide, carbonate and oxalate coprecipitation routes. The hydrothermal treatment has been studied for powders precipitated with ammonium hydroxide. A concentrate of rare earths containing 90wt% of CeO 2 and other containing 51% of Sm 2 O 3 and 30% of Gd 2 O 3 , both prepared from monazite processing, were used as starting materials. These concentrates were used due the lower cost compared to pure commercial materials and the chemical similarity of others rare earth elements. Initially, the coprecipitation and calcination conditions were defined. The process efficiency was verified by ceramic sinterability evaluation. The results showed that powders calcined in the range of 450 and 800 degree C presented high specific surface area (90 - 150 m 2 .g -1 ) and fluorite cubic structure, indicating the solid solution formation. It was observed, by scanning electron microscopy, that morphology of particles and agglomerates is a function of precipitant agent. The dilatometric analysis indicated the higher rate of shrinkage at temperatures around 1300-1350 degree C. High densification values (>95% TD) was obtained at temperatures above 1400 degree C. Synthesis by hydroxides coprecipitation followed by hydrothermal treatment demonstrated to be a promising route for crystallization of ceria nano powders at low temperatures (200 degree C). High values of specific surface area were reached with the employment of hydrothermal treatment (about 100 m 2 .g -1

  1. Present status of solid state photoelectrochemical solar cells and dye sensitized solar cells using PEO-based polymer electrolytes

    International Nuclear Information System (INIS)

    Singh, Pramod Kumar; Bhattacharya, Bhaskar; Nagarale, R K; Pandey, S P; Rhee, H W

    2011-01-01

    Due to energy crises in the future, much effort is being directed towards alternate sources. Solar energy is accepted as a novel substitute for conventional sources of energy. Out of the long list of various types of solar cells available on the market, solid state photoelectrochemical solar cells (SSPECs) and dye sensitized solar cells (DSSCs) are proposed as an alternative to costly crystalline solar cell. This review provides a common platform for SSPECs and DSSCs using polymer electrolyte, particularly on polyethylene oxide (PEO)-based polymer electrolytes. Due to numerous advantageous properties of PEO, it is frequently used as an electrolyte in both SSPECs as well as DSSCs. In DSSCs, so far high efficiency (more than 11%) has been obtained only by using volatile liquid electrolyte, which suffers many disadvantages, such as corrosion, leakage and evaporation. The PEO-based solid polymer proves its importance and could be used to solve the problems stated above. The recent developments in SSPECs and DSSCs using modified PEO electrolytes by adding nano size inorganic fillers, blending with low molecular weight polymers and ionic liquid (IL) are discussed in detail. The role of ionic liquid in modifying the electrical, structural and photoelectrochemical properties of PEO polymer electrolytes is also described. (review)

  2. Present status of solid state photoelectrochemical solar cells and dye sensitized solar cells using PEO-based polymer electrolytes

    Science.gov (United States)

    Singh, Pramod Kumar; Nagarale, R. K.; Pandey, S. P.; Rhee, H. W.; Bhattacharya, Bhaskar

    2011-06-01

    Due to energy crises in the future, much effort is being directed towards alternate sources. Solar energy is accepted as a novel substitute for conventional sources of energy. Out of the long list of various types of solar cells available on the market, solid state photoelectrochemical solar cells (SSPECs) and dye sensitized solar cells (DSSCs) are proposed as an alternative to costly crystalline solar cell. This review provides a common platform for SSPECs and DSSCs using polymer electrolyte, particularly on polyethylene oxide (PEO)-based polymer electrolytes. Due to numerous advantageous properties of PEO, it is frequently used as an electrolyte in both SSPECs as well as DSSCs. In DSSCs, so far high efficiency (more than 11%) has been obtained only by using volatile liquid electrolyte, which suffers many disadvantages, such as corrosion, leakage and evaporation. The PEO-based solid polymer proves its importance and could be used to solve the problems stated above. The recent developments in SSPECs and DSSCs using modified PEO electrolytes by adding nano size inorganic fillers, blending with low molecular weight polymers and ionic liquid (IL) are discussed in detail. The role of ionic liquid in modifying the electrical, structural and photoelectrochemical properties of PEO polymer electrolytes is also described.

  3. Comparison of high-temperature and low-temperature polymer electrolyte membrane fuel cell systems with glycerol reforming process for stationary applications

    International Nuclear Information System (INIS)

    Authayanun, Suthida; Mamlouk, Mohamed; Scott, Keith; Arpornwichanop, Amornchai

    2013-01-01

    Highlights: • PEMFC systems with a glycerol steam reformer for stationary application are studied. • Performance of HT-PEMFC and LT-PEMFC systems is compared. • HT-PEMFC system shows good performance over LT-PEMFC system at a high current density. • HT-PEMFC system with water gas shift reactor shows the highest system efficiency. • Heat integration can improve the efficiency of HT-PEMFC system. - Abstract: A high-temperature polymer electrolyte membrane fuel cell (HT-PEMFC) has a major advantage over a low-temperature polymer electrolyte fuel cell (LT-PEMFC) demonstrated by a tolerance to a higher CO content in the hydrogen feed and thus a simpler fuel processing. In this study, a direct comparison between the performance of HT-PEMFC and LT-PEMFC systems integrated with a glycerol steam reformer with and without a water gas shift reactor is shown. Under pure hydrogen operation, the LT-PEMFC performance is superior to the HT-PEMFC. However, the HT-PEMFC system shows good performance over the LT-PEMFC system when operated under high current density and high pressure (3 atm) and using the reformate gas derived from the glycerol processor as fuel. At high current density, the high concentration of CO is the major limitation for the operation of HT-PEMFC system without water gas shift reactor, whereas the LT-PEMFC suffers from CO poisoning and restricted oxygen mass transport. Considering the system efficiency with co-heat and power generation, the HT-PEMFC system with water gas shift reactor shows the highest overall system efficiency (approximately 60%) and therefore one of the most suitable technologies for stationary applications

  4. Crosslinked Polymer Ionic Liquid/Ionic Liquid Blends Prepared by Photopolymerization as Solid-State Electrolytes in Supercapacitors

    Science.gov (United States)

    Wang, Po-Hsin; Wang, Tzong-Liu; Lin, Wen-Churng; Lin, Hung-Yin; Lee, Mei-Hwa; Yang, Chien-Hsin

    2018-01-01

    A photopolymerization method is used to prepare a mixture of polymer ionic liquid (PIL) and ionic liquid (IL). This mixture is used as a solid-state electrolyte in carbon nanoparticle (CNP)-based symmetric supercapacitors. The solid electrolyte is a binary mixture of a PIL and its corresponding IL. The PIL matrix is a cross-linked polyelectrolyte with an imidazole salt cation coupled with two anions of Br− in PIL-M-(Br) and TFSI− in PIL-M-(TFSI), respectively. The corresponding ionic liquids have imidazolium salt cation coupled with two anions of Br− and TFSI−, respectively. This study investigates the electrochemical characteristics of PILs and their corresponding IL mixtures used as a solid electrolyte in supercapacitors. Results show that a specific capacitance, maximum power density and energy density of 87 and 58 F·g−1, 40 and 48 kW·kg−1, and 107 and 59.9 Wh·kg−1 were achieved in supercapacitors based on (PIL-M-(Br)) and (PIL-M-(TFSI)) solid electrolytes, respectively. PMID:29642456

  5. Crosslinked Polymer Ionic Liquid/Ionic Liquid Blends Prepared by Photopolymerization as Solid-State Electrolytes in Supercapacitors

    Directory of Open Access Journals (Sweden)

    Po-Hsin Wang

    2018-04-01

    Full Text Available A photopolymerization method is used to prepare a mixture of polymer ionic liquid (PIL and ionic liquid (IL. This mixture is used as a solid-state electrolyte in carbon nanoparticle (CNP-based symmetric supercapacitors. The solid electrolyte is a binary mixture of a PIL and its corresponding IL. The PIL matrix is a cross-linked polyelectrolyte with an imidazole salt cation coupled with two anions of Br− in PIL-M-(Br and TFSI− in PIL-M-(TFSI, respectively. The corresponding ionic liquids have imidazolium salt cation coupled with two anions of Br− and TFSI−, respectively. This study investigates the electrochemical characteristics of PILs and their corresponding IL mixtures used as a solid electrolyte in supercapacitors. Results show that a specific capacitance, maximum power density and energy density of 87 and 58 F·g−1, 40 and 48 kW·kg−1, and 107 and 59.9 Wh·kg−1 were achieved in supercapacitors based on (PIL-M-(Br and (PIL-M-(TFSI solid electrolytes, respectively.

  6. The LiBH4-LiI Solid Solution as an Electrolyte in an All-Solid-State Battery

    DEFF Research Database (Denmark)

    Sveinbjörnsson, Dadi Þorsteinn; Christiansen, Ane Sælland; Viskinde, Rasmus

    2014-01-01

    The charge and discharge performance of an all-solid-state lithium battery with the LiBH4-LiI solid solution as an electrolyte is reported. Lithium titanate (Li4Ti5O12) was used as the positive electrode and lithium metal as the negative electrode. The performance of the all-solid-state cell...

  7. Designable ultra-smooth ultra-thin solid-electrolyte interphases of three alkali metal anodes.

    Science.gov (United States)

    Gu, Yu; Wang, Wei-Wei; Li, Yi-Juan; Wu, Qi-Hui; Tang, Shuai; Yan, Jia-Wei; Zheng, Ming-Sen; Wu, De-Yin; Fan, Chun-Hai; Hu, Wei-Qiang; Chen, Zhao-Bin; Fang, Yuan; Zhang, Qing-Hong; Dong, Quan-Feng; Mao, Bing-Wei

    2018-04-09

    Dendrite growth of alkali metal anodes limited their lifetime for charge/discharge cycling. Here, we report near-perfect anodes of lithium, sodium, and potassium metals achieved by electrochemical polishing, which removes microscopic defects and creates ultra-smooth ultra-thin solid-electrolyte interphase layers at metal surfaces for providing a homogeneous environment. Precise characterizations by AFM force probing with corroborative in-depth XPS profile analysis reveal that the ultra-smooth ultra-thin solid-electrolyte interphase can be designed to have alternating inorganic-rich and organic-rich/mixed multi-layered structure, which offers mechanical property of coupled rigidity and elasticity. The polished metal anodes exhibit significantly enhanced cycling stability, specifically the lithium anodes can cycle for over 200 times at a real current density of 2 mA cm -2 with 100% depth of discharge. Our work illustrates that an ultra-smooth ultra-thin solid-electrolyte interphase may be robust enough to suppress dendrite growth and thus serve as an initial layer for further improved protection of alkali metal anodes.

  8. Study on low temperature solid oxide fuel cells using Y Doped BaZrO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Ikw Hang; Ji, Sang Hoon; Paek, Jun Yeol; Lee, Yoon Ho; Park, Tae Hyun; Cha, Suk Won [Seoul Nat' l Univ., Seoul (Korea, Republic of)

    2012-09-15

    In this study, we fabricate and investigate low temperature solid oxide fuel cells with a ceramic substrate/porous matal/ceramic/porous metal structure. To realize low temperature operation in solid oxide fuel cells, the membrane should be fabricated to have a thickness of the order of a few hundreds nanometers to minimize IR loss Yttrium doped barium zirconate (BYZ), a proton conductor, was used as the electrolyte. We deposited a 350nm thick Pt (anode) layer on a porous substrate by sputter deposition. We also deposited a 1{mu}m thick BYZ layer on the Pt anode using pulsed laser deposition (PLD). Finally, we deposited a 200nm thick Pt (cathode) layer on the BYZ electrolyte by sputter deposition. The open circuit voltage (OCV) is 0.806V, and the maximum power density is 11.9mW/cm'2' at 350 .deg. C. Even though a fully dense electrolyte is deposited via PLD, a cross sectional transmission electron microscopy (TEM) image reveals many voids and defects.

  9. Enhanced performance of a quasi-solid-state dye-sensitized solar cell with aluminum nitride in its gel polymer electrolyte

    KAUST Repository

    Huang, Kuan-Chieh

    2011-08-01

    The effects of incorporation of aluminum nitride (AlN) in the gel polymer electrolyte (GPE) of a quasi-solid-state dye-sensitized solar cell (DSSC) were studied in terms of performance of the cell. The electrolyte, consisting of lithium iodide (LiI), iodine (I2), and 4-tert-butylpyridine (TBP) in 3-methoxypropionitrile (MPN), was solidified with poly(vinyidene fluoride-co-hexafluoro propylene) (PVDF-HFP). The 0.05, 0.1, 0.3, and 0.5 wt% of AlN were added to the electrolyte for this study. XRD analysis showed a reduction of crystallinity in the polymer PVDF-HFP for all the additions of AlN. The DSSC fabricated with a GPE containing 0.1 wt% AlN showed a short-circuit current density (JSC) and power-conversion efficiency (η) of 12.92±0.54 mA/cm2 and 5.27±0.23%, respectively, at 100 mW/cm2 illumination, in contrast to the corresponding values of 11.52±0.21 mA/cm2 and 4.75±0.08% for a cell without AlN. The increases both in JSC and in η of the promoted DSSC are attributed to the higher apparent diffusion coefficient of I- in its electrolyte (3.52×10-6 cm2/s), compared to that in the electrolyte without AlN of a DSSC (2.97×10-6 cm 2/s). At-rest stability of the quasi-solid-state DSSC with 0.1 wt% of AlN was found to decrease hardly by 5% and 7% at room temperature and at 40 °C, respectively, after 1000 h duration. The DSSC with a liquid electrolyte showed a decrease of about 40% at room temperature, while it virtually lost its performance in about 150 h at 40 °C. Explanations are further substantiated by means of electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM), and by porosity measurements. © 2010 Elsevier B.V.

  10. Development of Lithium-Stuffed Garnet-Type Oxide Solid Electrolytes with High Ionic Conductivity for Application to All-Solid-State Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Inada, Ryoji, E-mail: inada@ee.tut.ac.jp; Yasuda, Satoshi; Tojo, Masaru; Tsuritani, Keiji; Tojo, Tomohiro; Sakurai, Yoji [Department of Electrical and Electronic Engineering, Toyohashi University of Technology, Toyohashi (Japan)

    2016-07-20

    All-solid-state lithium-ion batteries are expected to be one of the next generations of energy storage devices because of their high energy density, high safety, and excellent cycle stability. Although oxide-based solid electrolyte (SE) materials have rather lower conductivity and poor deformability than sulfide-based ones, they have other advantages, such as their chemical stability and ease of handling. Among the various oxide-based SEs, lithium-stuffed garnet-type oxide, with the formula of Li{sub 7}La{sub 3}Zr{sub 2}O{sub 12} (LLZ), has been widely studied because of its high conductivity above 10{sup −4} S cm{sup −1} at room temperature, excellent thermal performance, and stability against Li metal anode. Here, we present our recent progress for the development of garnet-type SEs with high conductivity by simultaneous substitution of Ta{sup 5+} into the Zr{sup 4+} site and Ba{sup 2+} into the La{sup 3+} site in LLZ. Li{sup +} concentration was fixed to 6.5 per chemical formulae, so that the formula of our Li garnet-type oxide is expressed as Li{sub 6.5}La{sub 3−x}Ba{sub x}Zr{sub 1.5−x}Ta{sub 0.5+x}O{sub 12} (LLBZT) and Ba contents x are changed from 0 to 0.3. As a result, all LLBZT samples have a cubic garnet structure without containing any secondary phases. The lattice parameters of LLBZT decrease with increasing Ba{sup 2+} contents x ≤ 0.10 while increase with x from 0.10 to 0.30, possibly due to the simultaneous change of Ba{sup 2+} and Ta{sup 5+} substitution levels. The relative densities of LLBZT are in a range between 89 and 93% and are not influenced in any significant way by the compositions. From the AC impedance spectroscopy measurements, the total (bulk + grain) conductivity at 27°C of LLBZT shows its maximum value of 8.34 × 10{sup −4} S cm{sup −1} at x = 0.10, which is slightly higher than the conductivity (= 7.94 × 10{sup −4} S cm{sup −1}) of LLZT without substituting Ba (x = 0). The activation energy of the conductivity

  11. Enabling electrolyte compositions for columnar silicon anodes in high energy secondary batteries

    Science.gov (United States)

    Piwko, Markus; Thieme, Sören; Weller, Christine; Althues, Holger; Kaskel, Stefan

    2017-09-01

    Columnar silicon structures are proven as high performance anodes for high energy batteries paired with low (sulfur) or high (nickel-cobalt-aluminum oxide, NCA) voltage cathodes. The introduction of a fluorinated ether/sulfolane solvent mixture drastically improves the capacity retention for both battery types due to an improved solid electrolyte interface (SEI) on the surface of the silicon electrode which reduces irreversible reactions normally causing lithium loss and rapid capacity fading. For the lithium silicide/sulfur battery cycling stability is significantly improved as compared to a frequently used reference electrolyte (DME/DOL) reaching a constant coulombic efficiency (CE) as high as 98%. For the silicon/NCA battery with higher voltage, the addition of only small amounts of fluoroethylene carbonate (FEC) to the novel electrolyte leads to a stable capacity over at least 50 cycles and a CE as high as 99.9%. A high volumetric energy density close to 1000 Wh l-1 was achieved with the new electrolyte taking all inactive components of the stack into account for the estimation.

  12. High temperature electrical energy storage: advances, challenges, and frontiers.

    Science.gov (United States)

    Lin, Xinrong; Salari, Maryam; Arava, Leela Mohana Reddy; Ajayan, Pulickel M; Grinstaff, Mark W

    2016-10-24

    With the ongoing global effort to reduce greenhouse gas emission and dependence on oil, electrical energy storage (EES) devices such as Li-ion batteries and supercapacitors have become ubiquitous. Today, EES devices are entering the broader energy use arena and playing key roles in energy storage, transfer, and delivery within, for example, electric vehicles, large-scale grid storage, and sensors located in harsh environmental conditions, where performance at temperatures greater than 25 °C are required. The safety and high temperature durability are as critical or more so than other essential characteristics (e.g., capacity, energy and power density) for safe power output and long lifespan. Consequently, significant efforts are underway to design, fabricate, and evaluate EES devices along with characterization of device performance limitations such as thermal runaway and aging. Energy storage under extreme conditions is limited by the material properties of electrolytes, electrodes, and their synergetic interactions, and thus significant opportunities exist for chemical advancements and technological improvements. In this review, we present a comprehensive analysis of different applications associated with high temperature use (40-200 °C), recent advances in the development of reformulated or novel materials (including ionic liquids, solid polymer electrolytes, ceramics, and Si, LiFePO 4 , and LiMn 2 O 4 electrodes) with high thermal stability, and their demonstrative use in EES devices. Finally, we present a critical overview of the limitations of current high temperature systems and evaluate the future outlook of high temperature batteries with well-controlled safety, high energy/power density, and operation over a wide temperature range.

  13. A high performance flexible all solid state supercapacitor based on the MnO2 sphere coated macro/mesoporous Ni/C electrode and ionic conducting electrolyte

    Science.gov (United States)

    Zhi, Jian; Reiser, Oliver; Wang, Youfu; Hu, Aiguo

    2016-06-01

    A high contact resistance between the active materials and the current collector, a low ionic conductivity of the gel electrolyte, and an impenetrable electrode structure are the three major barriers which greatly limit the capacitance of MnO2 in solid state supercapacitors. As a potential solution to these problems, in this work we report a novel electrode for solid state supercapacitors, based on a ternary system composed of hierarchical MnO2 spheres as the active material, macroporous Ni foam as gel penetrable skeletons and an ordered mesoporous carbon (OMC) membrane as the charge-transport accelerating layer. By employing butyl-3-methylimidazolium chloride (BMIMCl) modified gels as the ionic conducting electrolyte, the utilization efficiency of MnO2 on the specific capacitance was enhanced up to 88% of the theoretical value, delivering a volumetric capacitance of 81 F cm-3, which is the highest value among MnO2 based solid state supercapacitors. Moreover, such a flexible device exhibits exceptional volumetric energy and power density (6.6 Wh L-1 and 549 W L-1, based on the whole device volume) combined with a small capacity loss of 8.5% after 6000 cycles under twisting. These encouraging findings unambiguously overcome the energy bottleneck of MnO2 in solid state supercapacitors, and open up a new application of macro/mesoporous materials in flexible devices.A high contact resistance between the active materials and the current collector, a low ionic conductivity of the gel electrolyte, and an impenetrable electrode structure are the three major barriers which greatly limit the capacitance of MnO2 in solid state supercapacitors. As a potential solution to these problems, in this work we report a novel electrode for solid state supercapacitors, based on a ternary system composed of hierarchical MnO2 spheres as the active material, macroporous Ni foam as gel penetrable skeletons and an ordered mesoporous carbon (OMC) membrane as the charge-transport accelerating

  14. Facile and scalable fabrication of polymer-ceramic composite electrolyte with high ceramic loadings

    Science.gov (United States)

    Pandian, Amaresh Samuthira; Chen, X. Chelsea; Chen, Jihua; Lokitz, Bradley S.; Ruther, Rose E.; Yang, Guang; Lou, Kun; Nanda, Jagjit; Delnick, Frank M.; Dudney, Nancy J.

    2018-06-01

    Solid state electrolytes are a promising alternative to flammable liquid electrolytes for high-energy lithium battery applications. In this work polymer-ceramic composite electrolyte membrane with high ceramic loading (greater than 60 vol%) is fabricated using a model polymer electrolyte poly(ethylene oxide) + lithium trifluoromethane sulfonate and a lithium-conducting ceramic powder. The effects of processing methods, choice of plasticizer and varying composition on ionic conductivity of the composite electrolyte are thoroughly investigated. The physical, structural and thermal properties of the composites are exhaustively characterized. We demonstrate that aqueous spray coating followed by hot pressing is a scalable and inexpensive technique to obtain composite membranes that are amazingly dense and uniform. The ionic conductivity of composites fabricated using this protocol is at least one order of magnitude higher than those made by dry milling and solution casting. The introduction of tetraethylene glycol dimethyl ether further increases the ionic conductivity. The composite electrolyte's interfacial compatibility with metallic lithium and good cyclability is verified by constructing lithium symmetrical cells. A remarkable Li+ transference number of 0.79 is discovered for the composite electrolyte.

  15. The thermal stability of sodium beta'-Alumina solid electrolyte ceramic in AMTEC cells

    International Nuclear Information System (INIS)

    Williams, Roger M.; Ryan, Margaret A.; Homer, Margie L.; Lara, Liana; Manatt, Ken; Shields, Virgil; Cortez, Roger H.; Kulleck, James

    1999-01-01

    A critical component of alkali metal thermal-to electric converter (AMTEC) devices for long duration space missions is the beta'-alumina solid electrolyte ceramic (BASE), for which there exists no substitute. The temperature and environmental conditions under which BASE remains stable control operational parameters of AMTEC devices. We have used mass loss experiments in vacuum to 1573K to characterize the kinetics of BASE decomposition, and conductivity and exchange current measurements in sodium vapor filled exposure cells to 1223K to investigate changes in the BASE which affect its ionic conductivity. There is no clear evidence of direct thermal decomposition of BASE below 1273K, although limited soda loss may occur. Reactive metals such as Mn or Cr can react with BASE at temperatures at least as low as 1223K

  16. An experimental and simulation study of novel channel designs for open-cathode high-temperature polymer electrolyte membrane fuel cells

    DEFF Research Database (Denmark)

    Thomas, Sobi; Bates, Alex; Park, Sam

    2016-01-01

    A minimum balance of plant (BOP) is desired for an open-cathode high temperature polymer electrolyte membrane (HTPEM) fuel cell to ensure low parasitic losses and a compact design. The advantage of an open-cathode system is the elimination of the coolant plate and incorporation of a blower for ox...

  17. 5V-class bulk-type all-solid-state rechargeable lithium batteries with electrode-solid electrolyte composite electrodes prepared by aerosol deposition

    Science.gov (United States)

    Iriyama, Yasutoshi; Wadaguchi, Masaki; Yoshida, Koki; Yamamoto, Yuta; Motoyama, Munekazu; Yamamoto, Takayuki

    2018-05-01

    Composite electrodes (∼9 μm in thickness) composed of 5V-class electrode of LiNi0.5Mn1.5O4 (LNM) and high Li+ conductive crystalline-glass solid electrolyte (LATP, Ohara Inc.) were prepared at room temperature by aerosol deposition (AD) on platinum sheets. The resultant LNM-LATP composite electrodes were combined with LiPON and Li, and 5V-class bulk-type all-solid-state rechargeable lithium batteries (SSBs) were prepared. The crystallnity of the LNM in the LNM-LATP composite electrode was improved by annealing. Both thermogravimetry-mass spectroscopy analysis and XRD analysis clarified that the side reactions between the LNM and the LATP occurred over 500 °C with oxygen release. From these results, annealing temperature of the LNM-LATP composite electrode system was optimized at 500 °C due to the improved crystallinity of the LNM with avoiding the side-reactions. The SSBs with the composite electrodes (9 μm in thickness, 40 vol% of the LNM) annealed at 500 °C delivered 100 mAh g-1 at 10 μA cm-2 at 100 °C. Degradation of the discharge capacity with the repetition of the charge-discharge reactions was observed, which will originate from large volume change of the LNM (∼6.5%) during the reactions.

  18. Nanostructured TiO2 microspheres for dye-sensitized solar cells employing a solid state polymer electrolyte

    International Nuclear Information System (INIS)

    Jung, Hun-Gi; Nagarajan, Srinivasan; Kang, Yong Soo; Sun, Yang-Kook

    2013-01-01

    Bimodal mesoporous, anatase TiO 2 microspheres with particle sizes ranging from 0.3 to 2 μm were synthesized using a facile solvothermal method. The photovoltaic performance of TiO 2 microspheres in dye-sensitized solar cells (DSSCs) using a solid state electrolyte was investigated. The solid state electrolyte DSSC device based on the TiO 2 microspheres exhibits an energy conversion efficiency of 4.2%, which is greater than that of commercial P25 TiO 2 (3.6%). The higher photocurrent density was primarily achieved as a result of the greater specific surface area and pore size, which resulted in an increase in the dye uptake of the TiO 2 microspheres and easy transport of solid electrolyte through mesopores. In addition, the greater electron lifetime and superior light scattering ability also enhanced the photovoltaic performance of the TiO 2 microsphere-based, solid state DSSCs

  19. Solid oxide fuel cell electrolytes produced via very low pressure suspension plasma spray and electrophoretic deposition

    Science.gov (United States)

    Fleetwood, James D.

    Solid oxide fuel cells (SOFCs) are a promising element of comprehensive energy policies due to their direct mechanism for converting the oxidization of fuel, such as hydrogen, into electrical energy. Both very low pressure plasma spray and electrophoretic deposition allow working with high melting temperature SOFC suspension based feedstock on complex surfaces, such as in non-planar SOFC designs. Dense, thin electrolytes of ideal composition for SOFCs can be fabricated with each of these processes, while compositional control is achieved with dissolved dopant compounds that are incorporated into the coating during deposition. In the work reported, sub-micron 8 mole % Y2O3-ZrO2 (YSZ) and gadolinia-doped ceria (GDC), powders, including those in suspension with scandium-nitrate dopants, were deposited on NiO-YSZ anodes, via very low pressure suspension plasma spray (VLPSPS) at Sandia National Laboratories' Thermal Spray Research Laboratory and electrophoretic deposition (EPD) at Purdue University. Plasma spray was carried out in a chamber held at 320 - 1300 Pa, with the plasma composed of argon, hydrogen, and helium. EPD was characterized utilizing constant current deposition at 10 mm electrode separation, with deposits sintered from 1300 -- 1500 °C for 2 hours. The role of suspension constituents in EPD was analyzed based on a parametric study of powder loading, powder specific surface area, polyvinyl butyral (PVB) content, polyethyleneimine (PEI) content, and acetic acid content. Increasing PVB content and reduction of particle specific surface area were found to eliminate the formation of cracks when drying. PEI and acetic acid content were used to control suspension stability and the adhesion of deposits. Additionally, EPD was used to fabricate YSZ/GDC bilayer electrolyte systems. The resultant YSZ electrolytes were 2-27 microns thick and up to 97% dense. Electrolyte performance as part of a SOFC system with screen printed LSCF cathodes was evaluated with peak

  20. Determination of thermodynamic properties and stability limit from fluorite phase of uranium and lanthanide mixed oxides, using galvanic cells with solid electrolytes

    International Nuclear Information System (INIS)

    Santiago, T.N.

    1980-10-01

    A method for thermodynamic properties determination for oxygen solubility in oxide systems at temperature interval 973 ≤ T [K] ≤ 1773 is described. A galvanic cell using as solid electrolytes zircon dioxide doped with 15% of calcium oxide is presented. This method was used for determining the phase change, temperature dependent, of uranium-lanthanides-oxygen Ln U O 4 stoichiometric system. (C.G.C.)

  1. CHALLENGES IN GENERATING HYDROGEN BY HIGH TEMPERATURE ELECTROLYSIS USING SOLID OXIDE CELLS

    Energy Technology Data Exchange (ETDEWEB)

    M. S. Sohal; J. E. O' Brien; C. M. Stoots; M. G. McKellar; J. S. Herring; E. A. Harvego

    2008-03-01

    Idaho National Laboratory’s (INL) high temperature electrolysis research to generate hydrogen using solid oxide electrolysis cells is presented in this paper. The research results reported here have been obtained in a laboratory-scale apparatus. These results and common scale-up issues also indicate that for the technology to be successful in a large industrial setting, several technical, economical, and manufacturing issues have to be resolved. Some of the issues related to solid oxide cells are stack design and performance optimization, identification and evaluation of cell performance degradation parameters and processes, integrity and reliability of the solid oxide electrolysis (SOEC) stacks, life-time prediction and extension of the SOEC stack, and cost reduction and economic manufacturing of the SOEC stacks. Besides the solid oxide cells, balance of the hydrogen generating plant also needs significant development. These issues are process and ohmic heat source needed for maintaining the reaction temperature (~830°C), high temperature heat exchangers and recuperators, equal distribution of the reactants into each cell, system analysis of hydrogen and associated energy generating plant, and cost optimization. An economic analysis of this plant was performed using the standardized H2A Analysis Methodology developed by the Department of Energy (DOE) Hydrogen Program, and using realistic financial and cost estimating assumptions. The results of the economic analysis demonstrated that the HTE hydrogen production plant driven by a high-temperature helium-cooled nuclear power plant can deliver hydrogen at a cost of $3.23/kg of hydrogen assuming an internal rate of return of 10%. These issues need interdisciplinary research effort of federal laboratories, solid oxide cell manufacturers, hydrogen consumers, and other such stakeholders. This paper discusses research and development accomplished by INL on such issues and highlights associated challenges that need to

  2. Materials space of solid-state electrolytes: unraveling chemical composition-structure-ionic conductivity relationships in garnet-type metal oxides using cheminformatics virtual screening approaches.

    Science.gov (United States)

    Kireeva, Natalia; Pervov, Vladislav S

    2017-08-09

    The organic electrolytes of most current commercial rechargeable Li-ion batteries (LiBs) are flammable, toxic, and have limited electrochemical energy windows. All-solid-state battery technology promises improved safety, cycling performance, electrochemical stability, and possibility of device miniaturization and enables a number of breakthrough technologies towards the development of new high power and energy density microbatteries for electronics with low processing cost, solid oxide fuel cells, electrochromic devices, etc. Currently, rational materials design is attracting significant attention, which has resulted in a strong demand for methodologies that can accelerate the design of materials with tailored properties; cheminformatics can be considered as an efficient tool in this respect. This study was focused on several aspects: (i) identification of the parameters responsible for high Li-ion conductivity in garnet structured oxides; (ii) development of quantitative models to elucidate composition-structure-Li ionic conductivity relationships, taking into account the experimental details of sample preparation; (iii) circumscription of the materials space of solid garnet-type electrolytes, which is attractive for virtual screening. Several candidate compounds have been recommended for synthesis as potential solid state electrolyte materials.

  3. Oxide-Based Composite Electrolytes Using Na3Zr2Si2PO12/Na3PS4 Interfacial Ion Transfer.

    Science.gov (United States)

    Noi, Kousuke; Nagata, Yuka; Hakari, Takashi; Suzuki, Kenji; Yubuchi, So; Ito, Yusuke; Sakuda, Atsushi; Hayashi, Akitoshi; Tatsumisago, Masahiro

    2018-05-31

    All-solid-state sodium batteries using Na 3 Zr 2 Si 2 PO 12 (NASICON) solid electrolytes are promising candidates for safe and low-cost advanced rechargeable battery systems. Although NASICON electrolytes have intrinsically high sodium-ion conductivities, their high sintering temperatures interfere with the immediate development of high-performance batteries. In this work, sintering-free NASICON-based composites with Na 3 PS 4 (NPS) glass ceramics were prepared to combine the high grain-bulk conductivity of NASICON and the interfacial formation ability of NPS. Before the composite preparation, the NASICON/NPS interfacial resistance was investigated by modeling the interface between the NASICON sintered ceramic and the NPS glass thin film. The interfacial ion-transfer resistance was very small above room temperature; the area-specific resistances at 25 and 100 °C were 15.8 and 0.40 Ω cm 2 , respectively. On the basis of this smooth ion transfer, NASICON-rich (70-90 wt %) NASICON-NPS composite powders were prepared by ball-milling fine powders of each component. The composite powders were well-densified by pressing at room temperature. Scanning electron microscopy observation showed highly dispersed sub-micrometer NASICON grains in a dense NPS matrix to form closed interfaces between the oxide and sulfide solid electrolytes. The composite green (unfired) compacts with 70 and 80 wt % NASICON exhibited high total conductivities at 100 °C of 1.1 × 10 -3 and 6.8 × 10 -4 S cm -1 , respectively. An all-solid-state Na 15 Sn 4 /TiS 2 cell was constructed using the 70 wt % NASICON composite electrolyte by the uniaxial pressing of the powder materials, and its discharge properties were evaluated at 100 °C. The cell showed the reversible capacities of about 120 mAh g -1 under the current density of 640 μA cm -2 . The prepared oxide-based composite electrolytes were thus successfully applied in all-solid-state sodium rechargeable batteries without sintering.

  4. Ionic liquids and ionic liquid acids with high temperature stability for fuel cell and other high temperature applications, method of making and cell employing same

    Science.gov (United States)

    Angell, C Austen [Mesa, AZ; Xu, Wu [Broadview Heights, OH; Belieres, Jean-Philippe [Chandler, AZ; Yoshizawa, Masahiro [Tokyo, JP

    2011-01-11

    Disclosed are developments in high temperature fuel cells including ionic liquids with high temperature stability and the storage of inorganic acids as di-anion salts of low volatility. The formation of ionically conducting liquids of this type having conductivities of unprecedented magnitude for non-aqueous systems is described. The stability of the di-anion configuration is shown to play a role in the high performance of the non-corrosive proton-transfer ionic liquids as high temperature fuel cell electrolytes. Performance of simple H.sub.2(g) electrolyte/O.sub.2(g) fuel cells with the new electrolytes is described. Superior performance both at ambient temperature and temperatures up to and above 200.degree. C. are achieved. Both neutral proton transfer salts and the acid salts with HSO.sup.-.sub.4 anions, give good results, the bisulphate case being particularly good at low temperatures and very high temperatures. The performance of all electrolytes is improved by the addition of a small amount of involatile base of pK.sub.a value intermediate between those of the acid and base that make the bulk electrolyte. The preferred case is the imidazole-doped ethylammonium hydrogensulfate which yields behavior superior in all respects to that of the industry standard phosphoric acid electrolyte.

  5. Detonation nanodiamond introduced into samarium doped ceria electrolyte improving performance of solid oxide fuel cell

    Science.gov (United States)

    Pei, Kai; Li, Hongdong; Zou, Guangtian; Yu, Richeng; Zhao, Haofei; Shen, Xi; Wang, Liying; Song, Yanpeng; Qiu, Dongchao

    2017-02-01

    A novel electrolyte materials of introducing detonation nanodiamond (DNDs) into samarium doped ceria (SDC) is reported here. 1%wt. DNDs doping SDC (named SDC/ND) can enlarge the electrotyle grain size and change the valence of partial ceria. DNDs provide the widen channel to accelerate the mobility of oxygen ions in electrolyte. Larger grain size means that oxygen ions move easier in electrolyte, it can also reduce the alternating current (AC) impedance spectra of internal grains. The lower valence of partial Ce provides more oxygen vacancies to enhance mobility rate of oxygen ions. Hence all of them enhance the transportation of oxygen ions in SDC/ND electrolyte and the OCV. Ultimately the power density of SOFC can reach 762 mw cm-2 at 800 °C (twice higher than pure SDC, which is 319 mw cm-2 at 800 °C), and it remains high power density in the intermediate temperature (600-800 °C). It is relatively high for the electrolyte supported (300 μm) cells.

  6. A New Miniaturized Inkjet Printed Solid State Electrolyte Sensor for Applications in Life Support Systems - First Results

    Science.gov (United States)

    Hill, Christine; Stefanos Fasoulas, -; Eberhart, Martin; Berndt, Felix

    New generations of integrated closed loop systems will combine life support systems (incl. biological components) and energy systems such as fuel cell and electrolysis systems. Those systems and their test beds also contain complex safety sensor monitoring systems. Especially in fuel cells and electrolysis systems, the hydrogen and oxygen flows and exchange into other areas due to diffusion processes or leaks need to be monitored. Knowledge of predominant gas concentrations at all times is essential to avoid explosive gas mixtures. Solid state electrolyte sensors are promising for use as safety sensors. They have already been developed and produced at various institutes, but the power consumption for heating an existing solid state electrolyte sensor element still lies between 1 to 1.5 W and the operational readiness still takes about 20 to 30 s. This is partially due to the current manufacturing process for the solid state electrolyte sensor elements that is based on screen printing technology. However this technology has strong limitations in flexibility of the layout and re-designs. It is therefore suitable for mass production, but not for a flexible development and the production of specific individual sensors, e.g. for space applications. Moreover a disadvantage is the relatively high material consumption, especially in combination with the sensors need of expensive noble metal and ceramic pastes, which leads to a high sensor unit price. The Inkjet technology however opens up completely new possibilities in terms of dimensions, geometries, structures, morphologies and materials of sensors. This new approach is capable of printing finer high-resolution layers without the necessity of meshes or masks for patterning. Using the Inkjet technology a design change is possible at any time on the CAD screen. Moreover the ink is only deposited where it is needed. Custom made sensors, as they are currently demanded in space sensor applications, are thus realized simply

  7. Ionic conductivity and dielectric permittivity of PEO-LiClO4 solid polymer electrolyte plasticized with propylene carbonate

    Directory of Open Access Journals (Sweden)

    S. Das

    2015-02-01

    Full Text Available We have studied ionic conductivity and dielectric permittivity of PEO-LiClO4 solid polymer electrolyte plasticized with propylene carbonate. Differential scanning calorimetry and X-ray diffraction studies confirm minimum volume fraction of crystalline phase for the polymer electrolyte with 40 wt. % propylene carbonate. The ionic conductivity exhibits a maximum for the same composition. The temperature dependence of the ionic conductivity has been well interpreted using Vogel-Tamman-Fulcher equation. Ion-ion interactions in the polymer electrolytes have been studied using Raman spectra and the concentrations of free ions, ion-pairs and ion-aggregates have been determined. The ionic conductivity increases due to the increase of free ions with the increase of propylene carbonate content. But for higher content of propylene carbonate, the ionic conductivity decreases due to the increase of concentrations of ion-pairs and ion-aggregates. To get further insights into the ion dynamics, the experimental data for the complex dielectric permittivity have been studied using Havriliak–Negami function. The variation of relaxation time with temperature obtained from this formalism follows Vogel-Tamman-Fulcher equation similar to the ionic conductivity.

  8. Li-ion site disorder driven superionic conductivity in solid electrolytes: a first-principles investigation of β-Li3PS4

    International Nuclear Information System (INIS)

    Phani Dathar, Gopi Krishna; Balachandran, Janakiraman; Kent, Paul R. C.; Rondinone, Adam J.; Ganesh, P.

    2016-01-01

    The attractive safety and long-term stability of all solid-state batteries has added a new impetus to the discovery and development of solid electrolytes for lithium batteries. Recently several superionic lithium conducting solid electrolytes have been discovered. All the superionic lithium containing compounds (β-Li 3 PS 4 and Li 10 GeP 2 S 12 and oxides, predominantly in the garnet phase) have partially occupied sites. This naturally begs the question of understanding the role of partial site occupancies (or site disorder) in optimizing ionic conductivity in these family of solids. In this paper, we find that for a given topology of the host lattice, maximizing the number of sites with similar Li-ion adsorption energies, which gives partial site occupancy, is a natural way to increase the configurational entropy of the system and optimize the conductivity. For a given topology and density of Li-ion adsorption sites, the ionic conductivity is maximal when the number of mobile Li-ions are equal to the number of mobile vacancies, also the very condition for achieving maximal configurational entropy. We demonstrate applicability of this principle by elucidating the role of Li-ion site disorder and the local chemical environment in the high ionic conductivity of β-Li 3 PS 4 . In addition, for β-Li 3 PS 4 we find that a significant density of vacancies in the Li-ion sub-lattice (~25%) leads to sub-lattice melting at (~600 K) leading to a molten form for the Li-ions in an otherwise solid anionic host. This gives a lithium site occupancy that is similar to what is measured experimentally. We further show that quenching this disorder can improve conductivity at lower temperatures. As a consequence, we discover that (a) one can optimize ionic conductivity in a given topology by choosing a chemistry/composition that maximizes the number of mobile-carriers i.e. maximizing both mobile Li-ions and vacancies, and (b) when the concentration of vacancies becomes significant in

  9. Effect of electrolyte temperature on the formation of self-organized anodic niobium oxide microcones in hot phosphate-glycerol electrolyte

    Science.gov (United States)

    Yang, S.; Aoki, Y.; Habazaki, H.

    2011-07-01

    Nanoporous niobium oxide films with microcone-type surface morphology were formed by anodizing at 10 V in glycerol electrolyte containing 0.6 mol dm -3 K 2HPO 4 and 0.2 mol dm -3 K 3PO 4 in a temperature range of 428-453 K. The microcones appeared after prolonged anodizing, but the required time was largely reduced by increasing electrolyte temperature. The anodic oxide was initially amorphous at all temperatures, but crystalline oxide nucleated during anodizing. The anodic oxide microcones, which were crystalline, appeared on surface as a consequence of preferential chemical dissolution of initially formed amorphous oxide. The chemical dissolution of an initially formed amorphous layer was accelerated by increasing the electrolyte temperature, with negligible influence of the temperature on the morphology of microcones up to 448 K.

  10. Organic solvents, electrolytes, and lithium ion cells with good low temperature performance

    Science.gov (United States)

    Smart, Marshall C. (Inventor); Bugga, Ratnakumar V. (Inventor); Surampudi, Subbarao (Inventor); Huang, Chen-Kuo (Inventor)

    2002-01-01

    Multi-component organic solvent systems, electrolytes and electrochemical cells characterized by good low temperature performance are provided. In one embodiment, an improved organic solvent system contains a ternary mixture of ethylene carbonate, dimethyl carbonate and diethyl carbonate. In other embodiments, quaternary systems include a fourth component, i.e, an aliphatic ester, an asymmetric alkyl carbonate or a compound of the formula LiOX, where X is R, COOR, or COR, where R is alkyl or fluoroalkyl. Electrolytes based on such organic solvent systems are also provided and contain therein a lithium salt of high ionic mobility, such as LiPF.sub.6. Reversible electrochemical cells, particularly lithium ion cells, are constructed with the improved electrolytes, and preferably include a carbonaceous anode, an insertion type cathode, and an electrolyte interspersed therebetween.

  11. All-solid-state lithium batteries – The Mg2FeH6-electrode LiBH4-electrolyte system

    DEFF Research Database (Denmark)

    Huen, Priscilla; Ravnsbæk, Dorthe B.

    2018-01-01

    The complex hydride Mg2FeH6 is investigated as conversion type anode in a solid-state all-hydride Li-battery employing LiBH4 as solid-state electrolyte. In the solid-state battery, Mg2FeH6 exhibits improvements in the capacity retention and initial Coulombic efficiency of > 3 and > 2.5 times......, respectively, compared to the conventional liquid-electrolyte battery. Through investigations of the conversion reactions of Mg2FeH6, formation of MgH2 as intermediate in the conversion to Mg is discovered the first time. In addition, the effect of mixing procedure for the electrode-electrolyte composite...... on the battery performance is discussed....

  12. Modulation of solid electrolyte interphase of lithium-ion batteries by LiDFOB and LiBOB electrolyte additives

    Science.gov (United States)

    Huang, Shiqiang; Wang, Shuwei; Hu, Guohong; Cheong, Ling-Zhi; Shen, Cai

    2018-05-01

    Solid-electrolyte interphase (SEI) layer is an organic-inorganic composite layer that allows Li+ transport across but blocks electron flow across and prevents solvent diffusing to electrode surface. Morphology, thickness, mechanical and chemical properties of SEI are important for safety and cycling performance of lithium-ion batteries. Herein, we employ a combination of in-situ AFM and XPS to investigate the effects of two electrolyte additives namely lithium difluoro(oxalate)borate (LiDFOB) and lithium bis(oxalato)borate (LiBOB) on SEI layer. LiDFOB is found to result in a thin but hard SEI layer containing more inorganic species (LiF and LiCO3); meanwhile LiBOB promotes formation of a thick but soft SEI layer containing more organic species such as ROCO2Li. Findings from present study will help development of electrolyte additives that promote formation of good SEI layer.

  13. The electrolyte challenge for a direct methanol-air polymer electrolyte fuel cell operating at temperatures up to 200 C

    Science.gov (United States)

    Savinell, Robert; Yeager, Ernest; Tryk, Donald; Landau, Uziel; Wainright, Jesse; Gervasio, Dominic; Cahan, Boris; Litt, Morton; Rogers, Charles; Scherson, Daniel

    1993-01-01

    Novel polymer electrolytes are being evaluated for use in a direct methanol-air fuel cell operating at temperatures in excess of 100 C. The evaluation includes tests of thermal stability, ionic conductivity, and vapor transport characteristics. The preliminary results obtained to date indicate that a high temperature polymer electrolyte fuel cell is feasible. For example, Nafion 117 when equilibrated with phosphoric acid has a conductivity of at least 0.4 Omega(exp -1)cm(exp -1) at temperatures up to 200 C in the presence of 400 torr of water vapor and methanol vapor cross over equivalent to 1 mA/cm(exp 2) under a one atmosphere methanol pressure differential at 135 C. Novel polymers are also showing similar encouraging results. The flexibility to modify and optimize the properties by custom synthesis of these novel polymers presents an exciting opportunity to develop an efficient and compact methanol fuel cell.

  14. Enhanced ionic conductivity with Li{sub 7}O{sub 2}Br{sub 3} phase in Li{sub 3}OBr anti-perovskite solid electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Jinlong, E-mail: jlzhu04@physics.unlv.edu, E-mail: yusheng.zhao@unlv.edu, E-mail: zhaoys@sustc.edu.cn; Li, Shuai; Zhang, Yi; Howard, John W.; Wang, Yonggang; Kumar, Ravhi S.; Wang, Liping [High Pressure Science and Engineering Center, University of Nevada, Las Vegas, Nevada 89154 (United States); Lü, Xujie [Center for Integrated Nanotechnologies and Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Li, Yutao [Materials Research Program and The Texas Materials Institute, University of Texas at Austin, Texas 78712 (United States); Zhao, Yusheng, E-mail: jlzhu04@physics.unlv.edu, E-mail: yusheng.zhao@unlv.edu, E-mail: zhaoys@sustc.edu.cn [High Pressure Science and Engineering Center, University of Nevada, Las Vegas, Nevada 89154 (United States); Department of Physics, South University of Science and Technology of China, Guangdong 518055 (China)

    2016-09-05

    Cubic anti-perovskites with general formula Li{sub 3}OX (X = Cl, Br, I) were recently reported as superionic conductors with the potential for use as solid electrolytes in all-solid-state lithium ion batteries. These electrolytes are nonflammable, low-cost, and suitable for thermoplastic processing. However, the primary obstacle of its practical implementation is the relatively low ionic conductivity at room temperature. In this work, we synthesized a composite material consisting of two anti-perovskite phases, namely, cubic Li{sub 3}OBr and layered Li{sub 7}O{sub 2}Br{sub 3,} by solid state reaction routes. The results indicate that with the phase fraction of Li{sub 7}O{sub 2}Br{sub 3} increasing to 44 wt. %, the ionic conductivity increased by more than one order of magnitude compared with pure phase Li{sub 3}OBr. Formation energy calculations revealed the meta-stable nature of Li{sub 7}O{sub 2}Br{sub 3}, which supports the great difficulty in producing phase-pure Li{sub 7}O{sub 2}Br{sub 3} at ambient pressure. Methods of obtaining phase-pure Li{sub 7}O{sub 2}Br{sub 3} will continue to be explored, including both high pressure and metathesis techniques.

  15. Stable quasi-solid-state dye-sensitized solar cell using ionic gel electrolyte with low molecular mass organogelator

    International Nuclear Information System (INIS)

    Tao, Li; Huo, Zhipeng; Dai, Songyuan; Zhu, Jun; Zhang, Changneng; Pan, Xu; Huang, Yang; Yang, Shangfeng; Zhang, Bing; Yao, Jianxi

    2015-01-01

    Long-term stability is essential for the application and commercialization of dye-sensitized solar cells (DSCs). A quasi-solid-state DSC (QS-DSC) with excellent long-term stability is fabricated using ionic gel electrolyte (IGE) with N,N′-methylenebisdodecanamide as low molecular mass organogelator (LMOG). The gel to solution transition temperature (T gel ) of this IGE is 127 °C, well above the working temperature of the device, which contributes to the thermal properties of the IGE and the device. The electrochemical properties of the IGE and the kinetic processes of electron transport and recombination of the QS-DSC are investigated by means of electrochemical impedance spectroscopy (EIS) and controlled intensity modulated photocurrent/photovoltage spectroscopy (IMPS/IMVS). Due to the obstructed diffusion of redox species caused by the network of IGE, the electron recombination at the TiO 2 photoelectrode/electrolyte interface in the QS-DSC is accelerated. More importantly, compared with the ionic liquid electrolyte (ILE) based DSC, the QS-DSC based on the IGE exhibits excellent thermal and light-soaking stabilities during the accelerated aging tests for 1000 h. Especially, there is almost no degradation in the short-circuit current density (J sc ) in the IGE based QS-DSC, while the J sc of the ILE based DSC decreased to 85–94% of their initial values. - Highlights: • A novel IGE with high T gel is obtained by using a diamide derivative as LMOG. • The IGE based QS-DSC is very stable during the accelerated aging tests. • The influences of gelation on the electron kinetic processes are investigated

  16. Stable quasi-solid-state dye-sensitized solar cell using ionic gel electrolyte with low molecular mass organogelator

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Li [Key Laboratory of Novel Thin Film Solar Cells, Division of Solar Energy Materials and Engineering, Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Huo, Zhipeng, E-mail: zhipenghuo@163.com [Key Laboratory of Novel Thin Film Solar Cells, Division of Solar Energy Materials and Engineering, Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Dai, Songyuan, E-mail: sydai@ncepu.edu.cn [Key Laboratory of Novel Thin Film Solar Cells, Division of Solar Energy Materials and Engineering, Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Beijing Key Lab of Novel Thin Film Solar Cells, North China Electric Power University, Beijing 102206 (China); Zhu, Jun; Zhang, Changneng; Pan, Xu; Huang, Yang [Key Laboratory of Novel Thin Film Solar Cells, Division of Solar Energy Materials and Engineering, Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Yang, Shangfeng [Hefei National Laboratory for Physical Sciences at Microscale, Department of Materials Science and Engineering, University of Science and Technology of China (USTC), Hefei 230026 (China); Zhang, Bing; Yao, Jianxi [Beijing Key Lab of Novel Thin Film Solar Cells, North China Electric Power University, Beijing 102206 (China)

    2015-02-15

    Long-term stability is essential for the application and commercialization of dye-sensitized solar cells (DSCs). A quasi-solid-state DSC (QS-DSC) with excellent long-term stability is fabricated using ionic gel electrolyte (IGE) with N,N′-methylenebisdodecanamide as low molecular mass organogelator (LMOG). The gel to solution transition temperature (T{sub gel}) of this IGE is 127 °C, well above the working temperature of the device, which contributes to the thermal properties of the IGE and the device. The electrochemical properties of the IGE and the kinetic processes of electron transport and recombination of the QS-DSC are investigated by means of electrochemical impedance spectroscopy (EIS) and controlled intensity modulated photocurrent/photovoltage spectroscopy (IMPS/IMVS). Due to the obstructed diffusion of redox species caused by the network of IGE, the electron recombination at the TiO{sub 2} photoelectrode/electrolyte interface in the QS-DSC is accelerated. More importantly, compared with the ionic liquid electrolyte (ILE) based DSC, the QS-DSC based on the IGE exhibits excellent thermal and light-soaking stabilities during the accelerated aging tests for 1000 h. Especially, there is almost no degradation in the short-circuit current density (J{sub sc}) in the IGE based QS-DSC, while the J{sub sc} of the ILE based DSC decreased to 85–94% of their initial values. - Highlights: • A novel IGE with high T{sub gel} is obtained by using a diamide derivative as LMOG. • The IGE based QS-DSC is very stable during the accelerated aging tests. • The influences of gelation on the electron kinetic processes are investigated.

  17. Polarization characteristics of composite electrodes in electrochemical cells with solid electrolytes based on CeO2 and LaGaO3

    International Nuclear Information System (INIS)

    Yaroslavtsev, I. Yu.; Kuzin, B. L.; Bronin, D. I.; Bogdanovich, N. M.

    2005-01-01

    For two types of electrochemical cells with oxygen-conducting solid electrolytes based on lanthanum gallate (LSGM) and cerium oxide (SDC) studied are the temperature dependences of the polarization conductivity of air electrodes prepared from lanthanum strontium manganite (LSM) and composites LSM-LSGM, LSM-SDC, and LSM-SSZ (SSZ is zirconium dioxide-based electrolyte). Effect of praseodymium oxide, added into these electrodes as a modifier, on their electrochemical properties is examined. Electrochemical systems with an LSM/LSGM interface exhibit low electrochemical activity toward the oxygen reaction, because during the formation of electrodes, LSM interacts with LSGM to form a poorly conducting product [ru

  18. Studies in solid state ionics

    International Nuclear Information System (INIS)

    Jakes, D.; Rosenkranz, J.

    1987-01-01

    Studies performed over 10 years by the high temperature chemistry group are reviewed. Attention was paid to different aspects of ionic solids from the point of view of practical as well as theoretical needs of nuclear technology. Thus ceramic fuel compound like uranates, urania-thoria system, solid electrolytes based on oxides and ionics transformations were studied under reactor irradiation. (author) 13 figs., 3 tabs., 46 refs

  19. Fabrication of WO3-based electrochromic displays using solid or gel-like organic electrolytes

    International Nuclear Information System (INIS)

    Vasilopoulou, M; Aspiotis, G; Kostis, I; Argitis, P; Davazoglou, D

    2005-01-01

    New all solid-state electrochromic displays were fabricated by chemically vapor depositing and patterning a tungsten oxide film on SnO 2 :F covered glass substrates. Aluminum sheets were used as counter electrodes to form electrochromic displays using solid or gel-like organic electrolytes. These ionically conductive and electronically insulating electrolytes were based on poly(methyl methacrylate) (PMMA) and poly(2-hydrohyethyl methacrylate) (PHEMA) into which phospho-tungstic acid was added at various concentrations. In some devices the electrolyte was formed by addition of photoacid generator into the polymeric matrix and exposure at deep UV light. It was found that displays exhibit an intense, reversible electrochromic effect with reflectivity varying by a factor of five between the uncolored to the colored state. The coloring voltage depends strongly on the polymeric matrix, the thickness of the electrolyte and post-apply baking conditions and is of the order of 6-9 V. The response time was found to be of the order of 500 ms; coloration and bleaching times were comparable

  20. Optimization of spin-coated electrodes for electrolyte-supported solid oxide fuel cells

    International Nuclear Information System (INIS)

    Nobrega, Shayenne Diniz da; Monteiro, Natalia Kondo; Tabuti, Francisco; Fonseca, Fabio Coral; Florio, Daniel Zanetti de

    2017-01-01

    Electrodes for electrolyte-supported solid oxide fuel cells (SOFC’s) were fabricated by spin coating. Strontium-doped lanthanum manganite (LSM) cathode and nickel yttria-stabilized zirconia cermet anodes were synthesized and processed for enhanced deposition conditions. The influence of electrode microstructural parameters was investigated by a systematic experimental procedure aiming at optimized electrochemical performance of single cells. Polarization curves showed a strong dependence on both electrode thickness and sintering temperature. By a systematic control of such parameters, the performance of single cells was significantly enhanced due to decreasing of polarization resistance from 26 Ω cm² to 0.6 Ω cm² at 800°C. The results showed that spin-coated electrodes can be optimized for fast and cost effective fabrication of SOFCs. (author)

  1. Optimization of spin-coated electrodes for electrolyte-supported solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Nobrega, Shayenne Diniz da; Monteiro, Natalia Kondo; Tabuti, Francisco; Fonseca, Fabio Coral, E-mail: shaynnedn@hotmail.com, E-mail: nataliakm@usp.br, E-mail: fntabuti@ipen.br, E-mail: fabiocf@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Sao Paulo, SP (Brazil); Florio, Daniel Zanetti de, E-mail: daniel.florio@ufabc.edu.br [Universidade Federal do ABC (UFABC), Santo Andre, SP (Brazil)

    2017-01-15

    Electrodes for electrolyte-supported solid oxide fuel cells (SOFC’s) were fabricated by spin coating. Strontium-doped lanthanum manganite (LSM) cathode and nickel yttria-stabilized zirconia cermet anodes were synthesized and processed for enhanced deposition conditions. The influence of electrode microstructural parameters was investigated by a systematic experimental procedure aiming at optimized electrochemical performance of single cells. Polarization curves showed a strong dependence on both electrode thickness and sintering temperature. By a systematic control of such parameters, the performance of single cells was significantly enhanced due to decreasing of polarization resistance from 26 Ω cm² to 0.6 Ω cm² at 800°C. The results showed that spin-coated electrodes can be optimized for fast and cost effective fabrication of SOFCs. (author)

  2. Tuning the Solid Electrolyte Interphase for Selective Li- and Na-Ion Storage in Hard Carbon

    Energy Technology Data Exchange (ETDEWEB)

    Soto, Fernando A. [Department of Chemical Engineering, Texas A& M University, College Station TX 77843-3122 USA; Yan, Pengfei [Pacific Northwest National Laboratory, 902 Battelle Boulevard Richland WA 99354 USA; Engelhard, Mark H. [Pacific Northwest National Laboratory, 902 Battelle Boulevard Richland WA 99354 USA; Marzouk, Asma [Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, P.O. Box 5825 Doha Qatar; Wang, Chongmin [Pacific Northwest National Laboratory, 902 Battelle Boulevard Richland WA 99354 USA; Xu, Guiliang [Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue Argonne IL 60439 USA; Chen, Zonghai [Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue Argonne IL 60439 USA; Amine, Khalil [Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue Argonne IL 60439 USA; Liu, Jun [Pacific Northwest National Laboratory, 902 Battelle Boulevard Richland WA 99354 USA; Sprenkle, Vincent L. [Pacific Northwest National Laboratory, 902 Battelle Boulevard Richland WA 99354 USA; El-Mellouhi, Fedwa [Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, P.O. Box 5825 Doha Qatar; Balbuena, Perla B. [Department of Chemical Engineering, Texas A& M University, College Station TX 77843-3122 USA; Li, Xiaolin [Pacific Northwest National Laboratory, 902 Battelle Boulevard Richland WA 99354 USA

    2017-03-07

    Solid-electrolyte interphase (SEI) films with controllable properties are highly desirable for improving battery performance. In this paper, a combined experimental and theoretical approach is used to study SEI films formed on hard carbon in Li- and Na-ion batteries. It is shown that a stable SEI layer can be designed by precycling an electrode in a desired Li- or Na-based electrolyte, and that ionic transport can be kinetically controlled. Selective Li- and Na-based SEI membranes are produced using Li- or Na-based electrolytes, respectively. The Na-based SEI allows easy transport of Li ions, while the Li-based SEI shuts off Na-ion transport. Na-ion storage can be manipulated by tuning the SEI layer with film-forming electrolyte additives, or by preforming an SEI layer on the electrode surface. The Na specific capacity can be controlled to < 25 mAh g(-1); approximate to 1/10 of the normal capacity (250 mAh g(-1)). Unusual selective/ preferential transport of Li ions is demonstrated by preforming an SEI layer on the electrode surface and corroborated with a mixed electrolyte. This work may provide new guidance for preparing good ion-selective conductors using electrochemical approaches.

  3. In-situ Mass Spectrometric Determination of Molecular Structural Evolution at the Solid Electrolyte Interphase in Lithium-Ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Zihua; Zhou, Yufan; Yan, Pengfei; Vemuri, Venkata Rama Ses; Xu, Wu; Zhao, Rui; Wang, Xuelin; Thevuthasan, Suntharampillai; Baer, Donald R.; Wang, Chong M.

    2015-08-19

    Dynamic molecular evolution at solid/liquid electrolyte interface is always a mystery for a rechargeable battery due to the challenge to directly probe/observe the solid/liquid interface under reaction conditions, which in essence appears to be similarly true for all the fields involving solid/liquid phases, such as electrocatalysis, electrodeposition, biofuel conversion, biofilm, and biomineralization, We use in-situ liquid secondary ion mass spectroscopy (SIMS) for the first time to directly observe the molecular structural evolution at the solid electrode/liquid electrolyte interface for a lithium (Li)-ion battery under dynamic operating conditions. We have discovered that the deposition of Li metal on copper electrode leads to the condensation of solvent molecules around the electrode. Chemically, this layer of solvent condensate tends to deplete the salt anion and with low concentration of Li+ ions, which essentially leads to the formation of a lean electrolyte layer adjacent to the electrode and therefore contributes to the overpotential of the cell. This unprecedented molecular level dynamic observation at the solid electrode/liquid electrolyte interface provides vital chemical information that is needed for designing of better battery chemistry for enhanced performance, and ultimately opens new avenues for using liquid SIMS to probe molecular evolution at solid/liquid interface in general.

  4. Effect of electrolyte temperature on the formation of self-organized anodic niobium oxide microcones in hot phosphate-glycerol electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Yang, S.; Aoki, Y. [Division of Materials Chemistry, Faculty of Engineering, Hokkaido University, Sapporo 060-8628 (Japan); Habazaki, H., E-mail: habazaki@eng.hokudai.ac.jp [Division of Materials Chemistry, Faculty of Engineering, Hokkaido University, Sapporo 060-8628 (Japan)

    2011-07-15

    Nanoporous niobium oxide films with microcone-type surface morphology were formed by anodizing at 10 V in glycerol electrolyte containing 0.6 mol dm{sup -3} K{sub 2}HPO{sub 4} and 0.2 mol dm{sup -3} K{sub 3}PO{sub 4} in a temperature range of 428-453 K. The microcones appeared after prolonged anodizing, but the required time was largely reduced by increasing electrolyte temperature. The anodic oxide was initially amorphous at all temperatures, but crystalline oxide nucleated during anodizing. The anodic oxide microcones, which were crystalline, appeared on surface as a consequence of preferential chemical dissolution of initially formed amorphous oxide. The chemical dissolution of an initially formed amorphous layer was accelerated by increasing the electrolyte temperature, with negligible influence of the temperature on the morphology of microcones up to 448 K.

  5. A self-standing hydrogel neutral electrolyte for high voltage and safe flexible supercapacitors

    Science.gov (United States)

    Batisse, N.; Raymundo-Piñero, E.

    2017-04-01

    The development of safe flexible supercapacitors implies the use of new non-liquid electrolytes for avoiding device leakage which combine mechanical properties and electrochemical performance. In this sense, hydrogel electrolytes composed of a solid non-conductive matrix holding an aqueous electrolytic phase are a reliable solution. In this work, we propose a green physical route for producing self-standing hydrogel films from a PVA polymer based on the freezing/thawing method without using chemical cross-linking agents. Moreover, a neutral electrolytic phase as Na2SO4 is used for reaching higher cell voltages than in an acidic or basic electrolyte. Such new PVA-Na2SO4 hydrogel electrolyte, which also acts as separator, allows reaching voltages windows as high as 1.8 V in a symmetric carbon/carbon supercapacitor with optimal capacitance retention through thousands of cycles. Additionally, in reason of the fast mobility of the ions inside of the polymeric matrix, the hydrogel electrolyte based supercapacitor keeps the power density of the liquid electrolyte device.

  6. Control and experimental characterization of a methanol reformer for a 350W high temperature polymer electrolyte membrane fuel cell system

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen; Jensen, Hans-Christian Becker

    suited for reformer systems, where high CO tolerance is required. This enables the use fuels based on e.g. liquid alcohols. This work presents the control strategies of a methanol refoermer for a 350W HTPEM FC system. The system examined is the Serenergy H3-350 Mobile Battery Charger, an integrated......High temperature polymer electrolyte membrane(HTPEM) fuel cells offer many advantages due to their increased operating tempera-tures compared to similar Nafion-based membrane tech-nologies, that rely on the conductive abilities of liquid water. The polybenzimidazole (PBI) membranes are especially...

  7. Fabrication of cathode supported tubular solid oxide electrolysis cell for high temperature steam electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Le; Wang, Shaorong; Qian, Jiqin; Xue, Yanjie; Liu, Renzhu

    2011-01-15

    In recent years, hydrogen has been identified as a potential alternative fuel and energy carrier for the future energy supply. Water electrolysis is one of the important hydrogen production technologies which do not emit carbon dioxide. High temperature steam electrolysis (HTSE) consumes even less electrical energy than low temperature water electrolysis. Theoretically, HTSE using solid oxide electrolysis cells (SOEC) can efficiently utilize renewable energy to produce hydrogen, and it is also possible to operate the SOEC in reverse mode as the solid oxide fuel cell (SOFC) to produce electricity. Tubular SOFC have been widely investigated. In this study, tubular solid oxide cells were fabricated by dip-coating and cosintering techniques. In SOEC mode, results suggested that steam ratio had a strong impact on the performance of the tubular cell; the tubular SOEC preferred to be operated at high steam ratio in order to avoid concentration polarization. The microstructure of the tubular SOEC should therefore be optimized for high temperature steam electrolysis.

  8. Symmetric supercapacitors using urea-modified lignin derived N-doped porous carbon as electrode materials in liquid and solid electrolytes

    Science.gov (United States)

    Wang, Keliang; Xu, Ming; Gu, Yan; Gu, Zhengrong; Fan, Qi Hua

    2016-11-01

    N-doped porous carbon materials derived from urea-modified lignin were prepared via efficient KOH activation under carbonization. The synthesized N-doped carbon materials, which displayed a well-developed porous morphology with high specific surface area of 3130 m2 g-1, were used as electrode materials in symmetric supercapacitors with aqueous and solid electrolytes. In consistent with the observed physical structures and properties, the supercapacitors exhibited specific capacitances of 273 and 306 F g-1, small resistances of 2.6 and 7.7 Ω, stable charge/discharge at different current densities for over 5000 cycles and comparable energy and power density in 6 mol L-1 KOH liquid and KOH-PVA solid electrolytes, respectively.

  9. LOW TEMPERATURE CATHODE SUPPORTED ELECTROLYTES

    Energy Technology Data Exchange (ETDEWEB)

    Harlan U. Anderson

    2000-03-31

    This project has three main goals: Thin Films Studies, Preparation of Graded Porous Substrates and Basic Electrical Characterization and Testing of Planar Single Cells. During this time period substantial progress has been made in developing low temperature deposition techniques to produce dense, nanocrystalline yttrium-stabilized zirconia films on both dense oxide and polymer substrates. Progress has been made in the preparation and characterization of thin electrolytes and porous LSM substrates. Both of these tasks are essentially on or ahead of schedule. In our proposal, we suggested that the ZrO{sub 2}/Sc system needed to be considered as a candidate as a thin electrolyte. This was because microcrystalline ZrO{sub 2}/Sc has a significantly higher ionic conductivity than YSZ, particularly at the lower temperatures. As a result, some 0.5 micron thick film of ZrO{sub 2}/16% Sc on an alumina substrate (grain size 20nm) was prepared and the electrical conductivity measured as a function of temperature and oxygen activity. The Sc doped ZrO{sub 2} certainly has a higher conductivity that either 20nm or 2400nm YSZ, however, electronic conductivity dominates the conductivity for oxygen activities below 10{sup -15}. Whereas for YSZ, electronic conductivity is not a problem until the oxygen activity decreases below 10{sup -25}. These initial results show that the ionic conductivity of 20nm YSZ and 20nm ZrO{sub 2}/16% Sc are essentially the same and the enhanced conductivity which is observed for Sc doping in microcrystalline specimens is not observed for the same composition when it is nanocrystalline. In addition they show that the electronic conductivity of Sc doped ZrO{sub 2} is at least two orders of magnitude higher than that observed for YSZ. The conclusion one reaches is that for 0.5 to 1 micron thick nanocrystalline films, Sc doping of ZrO{sub 2} has no benefits compared to YSZ. As a result, electrolyte films of ZrO{sub 2}/Sc should not be considered as candidates

  10. Subcontract Report: Diffusion Mechanisms and Bond Dynamics in Solid Electrolyte Ion-Conductors

    Energy Technology Data Exchange (ETDEWEB)

    Zevgolis, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hall, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Alvez, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mehmedovic, Z. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Shea, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Varley, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wood, B. C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Adelstein, N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-10-03

    We employ first-principles molecular dynamics simulations and Maximally Localized Wannier Function (MLWF) analysis to explore how halide substitution and nano-phase microstructures affect diffusivity, through the activation energy barrier - Ea and D0, in the solid electrolyte Li3InBr6-xClx. We find that nano-phase microstructures with x=3 (50-50 Br-Cl) mixed composition have a higher diffusivity compared to x=2 and x=3 solid solutions. There is a positive linear relationship between ln(D0.) and Ea, which suggests that for superionic conductivity optimizing both the activation energy and the D0 is important. Bond frustration due to mismatch in crystal geometry and ideal coordination number leads to especially high diffusivity through a high D0 in the x=3 composition.

  11. Bulk solid state rechargeable lithium ion battery fabrication with Al-doped Li7La3Zr2O12 electrolyte and Cu0.1V2O5 cathode

    International Nuclear Information System (INIS)

    Jin, Ying; McGinn, Paul J.

    2013-01-01

    A simple, low-temperature route was developed to process bulk solid-state Li-ion batteries employing Al-doped Li 7 La 3 Zr 2 O 12 solid electrolyte (thickness: ∼ 0.5 mm; 25 °C conductivity: ∼ 2 × 10 −4 S cm −1 ). A composite Cu 0.1 V 2 O 5 –based slurry was directly painted on Li 7 La 3 Zr 2 O 12 and dried at 120 °C to prepare the cathode film. The opposite side of the electrolyte was subsequently exposed to molten Li to form the anode. The discharge capacity of the solid state battery was 53 mAh g −1 (calculated based on the weight of active cathode material) at room temperature with 5 μA cm −2 discharging current. Severe capacity decay occurred after the initial discharging. A comparable liquid electrolyte battery was tested at room temperature for comparison and had a much slower decay rate. However, when the operating temperature of the solid state battery was increased to 50 °C, the cell performance significantly improved. At 50 °C, the battery exhibited 176 mAh g −1 initial discharging capacity at 5 μA cm −2 current density and 93 mAh g −1 initial capacity under a 10 μA cm −2 discharging current density. After 20 cycles, the capacity decayed to 68.6 mAh g −1 when cycled at a 10 μA cm −2 current density. Impedance spectroscopy was used to investigate the interface resistance of the battery at different temperatures. The results indicated that both the cathode and anode interface resistance were dramatically reduced at 50 °C. The decrease in interface resistances at elevated temperature is proposed as the main reason for the observed battery performance enhancement

  12. MATERIAL AND PROCESS DEVELOPMENT LEADING TO ECONOMICAL HIGH-PERFORMANCE THIN-FILM SOLID OXIDE FUEL CELLS. Final Technical Report (October 2000 - December 2003)

    International Nuclear Information System (INIS)

    Jie Guan; Nguyen Minh

    2003-01-01

    This report summarizes the results of the work conducted under the program: ''Material and Process Development Leading to Economical High-Performance Thin-Film Solid Oxide Fuel Cells'' under contract number DE-AC26-00NT40711. The program goal is to advance materials and processes that can be used to produce economical, high-performance solid oxide fuel cells (SOFC) capable of achieving extraordinary high power densities at reduced temperatures. Under this program, anode-supported thin electrolyte based on lanthanum gallate (LSMGF) has been developed using tape-calendering process. The fabrication parameters such as raw materials characteristics, tape formulations and sintering conditions have been evaluated. Dense anode supported LSGMF electrolytes with thickness range of 10-50 micron have been fabricated. High performance cathode based on Sr 0.5 Sm 0.5 CoO 3 (SSC) has been developed. Polarization of ∼0.23 ohm-cm 2 has been achieved at 600 C with Sr 0.5 Sm 0.5 CoO 3 cathode. The high-performance SSC cathode and thin gallate electrolyte have been integrated into single cells and cell performance has been characterized. Tested cells to date generally showed low performance because of low cell OCVs and material interactions between NiO in the anode and lanthanum gallate electrolyte

  13. Ionic conductivity and dielectric permittivity of PEO-LiClO{sub 4} solid polymer electrolyte plasticized with propylene carbonate

    Energy Technology Data Exchange (ETDEWEB)

    Das, S.; Ghosh, A., E-mail: sspag@iacs.res.in [Department of Solid State Physics, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India)

    2015-02-15

    We have studied ionic conductivity and dielectric permittivity of PEO-LiClO{sub 4} solid polymer electrolyte plasticized with propylene carbonate. Differential scanning calorimetry and X-ray diffraction studies confirm minimum volume fraction of crystalline phase for the polymer electrolyte with 40 wt. % propylene carbonate. The ionic conductivity exhibits a maximum for the same composition. The temperature dependence of the ionic conductivity has been well interpreted using Vogel-Tamman-Fulcher equation. Ion-ion interactions in the polymer electrolytes have been studied using Raman spectra and the concentrations of free ions, ion-pairs and ion-aggregates have been determined. The ionic conductivity increases due to the increase of free ions with the increase of propylene carbonate content. But for higher content of propylene carbonate, the ionic conductivity decreases due to the increase of concentrations of ion-pairs and ion-aggregates. To get further insights into the ion dynamics, the experimental data for the complex dielectric permittivity have been studied using Havriliak–Negami function. The variation of relaxation time with temperature obtained from this formalism follows Vogel-Tamman-Fulcher equation similar to the ionic conductivity.

  14. Effect of epoxidation level on thermal properties and ionic conductivity of epoxidized natural rubber solid polymer nanocomposite electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Harun, Fatin; Chan, Chin Han; Winie, Tan [Faculty of Applied Sciences, UniversitiTeknologi MARA (UiTM), Shah Alam, 40450 Selangor Darul Ehsan (Malaysia); Sim, Lai Har; Zainal, Nurul Fatahah Asyqin [Center of Foundation Studies, PuncakAlam Campus, UniversitiTeknologi MARA, 40430 Selangor Darul Ehsan (Malaysia)

    2015-08-28

    Effect of epoxide content on the thermal and conductivity properties of epoxidized natural rubber (ENR) solid polymer nanocomposite electrolytes was investigated. Commercial available epoxidized natural rubber having 25 (ENR25) and 50 mole% (ENR50) epoxide, respectively were incorporated with lithium perchlorate (LiClO{sub 4}) salt and titanium dioxide (TiO{sub 2}) nanofiller via solution casting method. The solid polymer nanocomposite electrolytes were characterized by differential scanning calorimetry (DSC) and impedance spectroscopy (IS) for their thermal properties and conductivity, respectively. It was evident that introduction of LiClO{sub 4} causes a greater increase in glass transition temperature (T{sub g}) and ionic conductivity of ENR50 as compared to ENR25. Upon addition of TiO{sub 2} in ENR/LiClO{sub 4} system, a remarkable T{sub g} elevation was observed for both ENRs where ENR50 reveals a more pronounced changes. It is interesting to note that they exhibit different phenomenon in ionic conductivity with TiO{sub 2} loading where ENR25 shows enhancement of conductivity while ENR50 shows declination.

  15. High performance electrodes for reduced temperature solid oxide fuel cells with doped lanthanum gallate electrolyte. I. Ni-SDC cermet anode

    Science.gov (United States)

    Ohara, S.; Maric, R.; Zhang, X.; Mukai, K.; Fukui, T.; Yoshida, H.; Inagaki, T.; Miura, K.

    A Ni-samaria-doped ceria (SDC) cermet was selected as the anode material for reduced temperature (800°C) solid oxide fuel cells. The NiO-SDC composite powder, synthesized by spray pyrolysis, was employed as the starting anode powder in this study. The influence of Ni content in Ni-SDC cermets on the electrode performance was investigated in order to create the most suitable microstructures. It was found that anodic polarization was strongly influenced by the Ni content in Ni-SDC cermets. The best results were obtained for anode cermets with Ni content of around 50 vol.%; anodic polarization was about 30 mV at a current density of 300 mA/cm 2. This high performance seems to be attributable to the microstructure, in which Ni grains form a skeleton with well-connected SDC grains finely distributed over the Ni grains surfaces; such microstructure was also conducive to high stability of the anode.

  16. Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries

    Science.gov (United States)

    Wang, Aiping; Kadam, Sanket; Li, Hong; Shi, Siqi; Qi, Yue

    2018-03-01

    A passivation layer called the solid electrolyte interphase (SEI) is formed on electrode surfaces from decomposition products of electrolytes. The SEI allows Li+ transport and blocks electrons in order to prevent further electrolyte decomposition and ensure continued electrochemical reactions. The formation and growth mechanism of the nanometer thick SEI films are yet to be completely understood owing to their complex structure and lack of reliable in situ experimental techniques. Significant advances in computational methods have made it possible to predictively model the fundamentals of SEI. This review aims to give an overview of state-of-the-art modeling progress in the investigation of SEI films on the anodes, ranging from electronic structure calculations to mesoscale modeling, covering the thermodynamics and kinetics of electrolyte reduction reactions, SEI formation, modification through electrolyte design, correlation of SEI properties with battery performance, and the artificial SEI design. Multi-scale simulations have been summarized and compared with each other as well as with experiments. Computational details of the fundamental properties of SEI, such as electron tunneling, Li-ion transport, chemical/mechanical stability of the bulk SEI and electrode/(SEI/) electrolyte interfaces have been discussed. This review shows the potential of computational approaches in the deconvolution of SEI properties and design of artificial SEI. We believe that computational modeling can be integrated with experiments to complement each other and lead to a better understanding of the complex SEI for the development of a highly efficient battery in the future.

  17. Modeling of vapor-liquid-solid equilibrium in gas - aqueous electrolyte systems

    DEFF Research Database (Denmark)

    Thomsen, Kaj; Rasmussen, Peter

    1999-01-01

    A thermodynamic model for the description of vapor-liquid-solid equilibria is introduced. This model is a combination of the extended UNIQUAC model for electrolytes and the Soave-Redlich-Kwong cubic equation of state. The model has been applied to aqueous systems containing ammonia and/or carbon ...

  18. Nanostructured Gd-CeO2 electrolyte for solid oxide fuel cell by aqueous tape casting

    Science.gov (United States)

    Akbari-Fakhrabadi, A.; Mangalaraja, R. V.; Sanhueza, Felipe A.; Avila, Ricardo E.; Ananthakumar, S.; Chan, S. H.

    2012-11-01

    Gadolinia-doped ceria (Ce0.9Gd0.1O1.95, GDC) electrolyte was fabricated by aqueous-based tape casting method for solid oxide fuel cells (SOFCs). The ceramic powder prepared by combustion synthesis was used with poly acrylic acid (PAA), poly vinyl alcohol (PVA), poly ethylene glycol (PEG), Octanol, 2,4,7,9-tetramethyl-5-decyne-4,7-diol ethoxylate and double distilled water as dispersant, binder, plasticizer, defoamer, surfactant and solvent respectively, to prepare stable GDC slurry. The conditions for preparing stable GDC slurries were studied and optimized by sedimentation, zeta potential and viscosity measurements. Green tapes with smooth surface, flexibility, thickness in the range of 0.35-0.4 mm and 45% relative green density were prepared. Conventional and flash sintering techniques were used and compared for densification which demonstrated the possibility of surpassing sintering at high temperatures and retarding related grain growth.

  19. Active Edge Sites Engineering in Nickel Cobalt Selenide Solid Solutions for Highly Efficient Hydrogen Evolution

    KAUST Repository

    Xia, Chuan

    2017-01-06

    An effective multifaceted strategy is demonstrated to increase active edge site concentration in NiCoSe solid solutions prepared by in situ selenization process of nickel cobalt precursor. The simultaneous control of surface, phase, and morphology result in as-prepared ternary solid solution with extremely high electrochemically active surface area (C = 197 mF cm), suggesting significant exposure of active sites in this ternary compound. Coupled with metallic-like electrical conductivity and lower free energy for atomic hydrogen adsorption in NiCoSe, identified by temperature-dependent conductivities and density functional theory calculations, the authors have achieved unprecedented fast hydrogen evolution kinetics, approaching that of Pt. Specifically, the NiCoSe solid solutions show a low overpotential of 65 mV at -10 mV cm, with onset potential of mere 18 mV, an impressive small Tafel slope of 35 mV dec, and a large exchange current density of 184 μA cm in acidic electrolyte. Further, it is shown that the as-prepared NiCoSe solid solution not only works very well in acidic electrolyte but also delivers exceptional hydrogen evolution reaction (HER) performance in alkaline media. The outstanding HER performance makes this solid solution a promising candidate for mass hydrogen production.

  20. Improvement of the stability of TiSnSb anode under lithiation using SEI forming additives and room temperature ionic liquid/DMC mixed electrolyte

    International Nuclear Information System (INIS)

    Zhang, W.; Ghamouss, F.; Mery, A.; Lemordant, D.; Dedryvère, R.; Monconduit, L.; Martinez, H.

    2015-01-01

    Highlights: • Lithiation and delithiation of TiSnSb conversion anode material • Room temperature ionic liquid based electrolyte • Fluoroethylene carbonate SEI builder additives • XPS and electrochemical analysis of the anode/electrolyte interface -- Abstract: The electrochemical behavior and the stability under cycling of TiSnSb anode for Li-ion batteries were investigated in room temperature ionic liquids based electrolyte. X-ray photoelectron spectroscopy (XPS), cyclic voltammetry, and electrochemical impedance (EIS) measurements have been performed to study the formation of surface film on the TiSnSb anode. Surface analysis was performed by a combined XPS core peaks and quantification data analysis, to establish the main components of the solid electrolyte interphase film (SEI). The key observation is that the thickness and the chemical nature of the SEI layer is strongly related to the electrolyte formulation and the addition of SEI layer forming additives. Vinylene carbonate (VC) and fluoroethylene carbonate (FEC) were applied in order to improve the anode/electrolyte interface. From XPS, EIS results and galvanostatic cycling the role of additives and ionic liquids as an effective stability improver has been highlighted

  1. Surface Modification Of The High Temperature Porous Sliding Bearings With Solid Lubricant Nanoparticles

    Directory of Open Access Journals (Sweden)

    Wiśniewska-Weinert H.

    2015-09-01

    Full Text Available A surface modification of stainless steel bearing sleeves is developed to improve the tribology characteristics at high temperature. Solid lubricant nano- and microparticles are applied for this purpose. To create the quasi-hydrodynamic lubrication regimes, the solid lubricant powder layer is made by developed pressure impregnation technique. Porous sliding bearing sleeve prototypes were made by powder metallurgy technique. The purpose of the paper is to define the friction and wear characteristics of the sleeves and to determine the influence of sealing of the sliding interface on these characteristics. It is found that application of WS2 sold lubricant nano- and micro-particles and preservation of a particle leakage out of interface allows to achieve at the high temperature the friction coefficients comparable to those at ambient temperature.

  2. Semi-solid electrodes having high rate capability

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, Yet-Ming; Duduta, Mihai; Holman, Richard; Limthongkul, Pimpa; Tan, Taison

    2017-11-28

    Embodiments described herein relate generally to electrochemical cells having high rate capability, and more particularly to devices, systems and methods of producing high capacity and high rate capability batteries having relatively thick semi-solid electrodes. In some embodiments, an electrochemical cell includes an anode and a semi-solid cathode. The semi-solid cathode includes a suspension of an active material of about 35% to about 75% by volume of an active material and about 0.5% to about 8% by volume of a conductive material in a non-aqueous liquid electrolyte. An ion-permeable membrane is disposed between the anode and the semi-solid cathode. The semi-solid cathode has a thickness of about 250 .mu.m to about 2,000 .mu.m, and the electrochemical cell has an area specific capacity of at least about 7 mAh/cm.sup.2 at a C-rate of C/4. In some embodiments, the semi-solid cathode slurry has a mixing index of at least about 0.9.

  3. Behavior of strontium- and magnesium-doped gallate electrolyte in direct carbon solid oxide fuel cells

    International Nuclear Information System (INIS)

    Zhang, Li; Xiao, Jie; Xie, Yongmin; Tang, Yubao; Liu, Jiang; Liu, Meilin

    2014-01-01

    Highlights: • La 0.9 Sr 0.1 Ga 0.8 Mg 0.2 O 3−δ (LSGM) can be used as electrolyte of direct carbon SOFCs. • DC-SOFC with LSGM electrolyte gives higher performance than that with YSZ. • LSGM-electrolyte DC-SOFC gives maximum power density of 383 mW cm −2 at 850 °C. • Operation of LSGM-DC-SOFC at 210 mA cm −2 lasts 72 min, with fuel utilization of 60%. - Abstract: Perovskite-type La 0.9 Sr 0.1 Ga 0.8 Mg 0.2 O 3−δ (LSGM) is synthesized by conventional solid state reaction. Its phase composition, microstructure, relative density, and oxygen-ionic conductivity are investigated. Tubular electrolyte-supported solid oxide fuel cells (SOFCs) are prepared with the LSGM as electrolyte and gadolinia doped ceria (GDC) mixed with silver as anode. The SOFCs are operated with Fe-loaded activated carbon as fuel and ambient air as oxidant. A typical single cell gives a maximum power density of 383 mW cm −2 at 850 °C, which is nearly 1.3 times higher than that of the similar cell with YSZ as electrolyte. A stability test of 72 min is carried out at a constant current density of 210 mA cm −2 , with a fuel utilization of 60%, indicating that LaGaO 3 -based electrolyte is promising to be applied in direct carbon SOFCs (DC-SOFCs)

  4. Investigations on the kinetics of the oxygen reduction in high temperature fuel cells

    International Nuclear Information System (INIS)

    Erning, J.W.

    1998-07-01

    Lanthan-Strontium-Manganite perowskites are the most widespread materials in use for solid oxide fuel cell cathodes. The electrode reaction taking place, i.e. the reduction of oxygen supplied by air, was investigated by electrochemical means to obtain further knowledge about the electrode processes. The high activation energy of this reaction (200 kJ/mol), preventing lower operation temperatures of the SOFC, was the starting point for the investigation. Quasi steady state current voltage measurements and impedance spectroscopy were performed in a three electrode configuration. The electrodes were of circular shape with a diameter of 10 mm. The preparation was made by screen printing as well as wet powder spraying onto plates made of Yttria-stabilized zirconia. Perowskite powders of varying chemical and stoichiometric composition were used. To obtain higher power densities and, more important, lower apparent activation energies, catalytic layers were added at the interface electrode/electrolyte. Additionally, a less complex system, a model electrode/electrolyte setup made from single-crystal YSZ as electrolyte and gold in liquid and solid state as electrode was developed to create a better defined system. This setup was used to investigate the behaviour of the electrode/electrolyte interface. Reliable, reproducible results could be obtained using either setup. The experimental conditions i.e. oxygen partial pressure, temperature and overpotential were varied in order to determine the kinetic properties of the electrodes. Apparent activation energies, pre-exponential factors, apparent charge-transfer coefficients and electrochemical orders of reaction were calculated from the current-voltage data in order to propose possible reaction steps. (orig.)

  5. Graphene/activated carbon supercapacitors with sulfonated-polyetheretherketone as solid-state electrolyte and multifunctional binder

    Science.gov (United States)

    Chen, Y.-R.; Chiu, K.-F.; Lin, H. C.; Chen, C.-L.; Hsieh, C. Y.; Tsai, C. B.; Chu, B. T. T.

    2014-11-01

    Sulfonated polyetheretherketone (SPEEK) has been synthesised by sulphonation process and used as the solid-state electrolyte, binder and surfactant for supercapacitors. Reduced graphene dispersed by SPEEK is used as a high-efficiency conducting additive in solid-state supercapacitors. It is found that SPEEK can improve the stability of the reduced graphene dispersion significantly, and therefore, the solid-state supercapacitors show a large decrease in IR drop and charge-transfer resistance (Rct), resulting in a higher rate capability. The solid-state supercapacitors with the activated carbon/reduced graphene/SPEEK/electrode can be operated from 1 to 8 A/g and exhibit capacity retention of 93%. The noteworthy is more than twice higher value for capacity retention by comparison with the solid-state supercapacitors using activated carbon/reduced graphene/PVDF electrode (capacity retention is 36%). The cell of reduced graphene with SPEEK can be cycled over 5000 times at 5 A/g with no capacitance fading.

  6. Highly stable bilayer of LiPON and B2O3 added Li1.5Al0.5Ge1.5(PO4) solid electrolytes for non-aqueous rechargeable Li-O2 batteries

    International Nuclear Information System (INIS)

    Jadhav, Harsharaj S.; Kalubarme, Ramchandra S.; Jadhav, Arvind H.; Seo, Jeong Gil

    2016-01-01

    Highlights: • LiPON thin film deposited by RF-sputtering technique. • The effect of deposition temperature on ionic conductivity was investigated. • The LiPON/B-LAGP composite was successfully employed in Li-O 2 battery. • LiPON interlayer enhances stability of B-LAGP in contact with Li-metal. - Abstract: Lithium ion conducting membranes are barely studied, although they are essentially indispensable for building Li-air batteries composed of aqueous and non-aqueous electrolytes for long-term operation. Lithium phosphorous oxynitride (LiPON) thin films were deposited by RF-sputtering technique on B 2 O 3 -added lithium aluminum germanium phosphate (B-LAGP). Compact thin amorphous LiPON layer could act as a protective interlayer for B-LAGP by separating it from Li metal electrode and mitigate the reaction between them. Large electrochemical stability window (0–5 V) of LiPON/B-LAGP solid electrolyte shows promising feasibility for applications in all lithium based batteries. The aprotic Li-O 2 cell with protected lithium electrode configuration employing LiPON/B-LAGP solid electrolyte has exhibited reasonable cycling stability with long-life of 52 cycles at a limited capacity of 1000 mA h g −1 .

  7. Novel Non-Vacuum Fabrication of Solid State Lithium Ion Battery Components

    Energy Technology Data Exchange (ETDEWEB)

    Oladeji, I. [Planar Energy Devices, Inc.; Wood, D. L. [ORNL; Wood, III, D. L.

    2012-10-19

    The purpose of this Cooperative Research and Development Agreement (CRADA) between Oak Ridge National Laboratory (ORNL) and Planar Energy Devices, Inc. was to develop large-scale electroless deposition and photonic annealing processes associated with making all-solid-state lithium ion battery cathode and electrolyte layers. However, technical and processing difficulties encountered in 2011 resulted in the focus of the CRADA being redirected solely to annealing of the cathode thin films. In addition, Planar Energy Devices de-emphasized the importance of annealing of the solid-state electrolytes within the scope of the project, but materials characterization of stabilized electrolyte layers was still of interest. All-solid-state lithium ion batteries are important to automotive and stationary energy storage applications because they would eliminate the problems associated with the safety of the liquid electrolyte in conventional lithium ion batteries. However, all-solid-state batteries are currently produced using expensive, energy consuming vacuum methods suited for small electrode sizes. Transition metal oxide cathode and solid-state electrolyte layers currently require about 30-60 minutes at 700-800°C vacuum processing conditions. Photonic annealing requires only milliseconds of exposure time at high temperature and a total of <1 min of cumulative processing time. As a result, these processing techniques are revolutionary and highly disruptive to the existing lithium ion battery supply chain. The current methods of producing all-solid-state lithium ion batteries are only suited for small-scale, low-power cells and involve high-temperature vacuum techniques. Stabilized LiNixMnyCozAl1-x-y-zO2 (NMCA) nanoparticle films were deposited onto stainless steel substrates using Planar Energy Devices’ streaming process for electroless electrochemical deposition (SPEED). Since successful SPEED trials were demonstrated by Planar Energy Devices with NMCA prior to 2010, this

  8. Anthraquinone derivative as high-performance anode material for sodium-ion batteries using ether-based electrolytes

    Directory of Open Access Journals (Sweden)

    Linqin Mu

    2018-01-01

    Full Text Available Organic materials, especially the carbonyl compounds, are promising anode materials for room temperature sodium-ion batteries owing to their high reversible capacity, structural diversity as well as eco-friendly synthesis from bio-mass. Herein, we report a novel anthraquinone derivative, C14H6O4Na2 composited with carbon nanotube (C14H6O4Na2-CNT, used as an anode material for sodium-ion batteries in ether-based electrolyte. The C14H6O4Na2-CNT electrode delivers a reversible capacity of 173 mAh g−1 and an ultra-high initial Coulombic efficiency of 98% at the rate of 0.1 C. The capacity retention is 82% after 50 cycles at 0.2 C and a good rate capability is displayed at 2 C. Furthermore, the average Na insertion voltage of 1.27 V vs. Na+/Na makes it a unique and safety battery material, which would avoid Na plating and formation of solid electrolyte interface. Our contribution provides new insights for designing developed organic anode materials with high initial Coulombic efficiency and improved safety capability for sodium-ion batteries.

  9. Semi-solid electrodes having high rate capability

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, Yet-Ming; Duduta, Mihai; Holman, Richard; Limthongkul, Pimpa; Tan, Taison

    2017-11-28

    Embodiments described herein relate generally to electrochemical cells having high rate capability, and more particularly to devices, systems and methods of producing high capacity and high rate capability batteries having relatively thick semi-solid electrodes. In some embodiments, an electrochemical cell includes an anode, a semi-solid cathode that includes a suspension of an active material and a conductive material in a liquid electrolyte, and an ion permeable membrane disposed between the anode and the cathode. The semi-solid cathode has a thickness in the range of about 250 .mu.m-2,500 .mu.m, and the electrochemical cell has an area specific capacity of at least 5 mAh/cm.sup.2 at a C-rate of C/2.

  10. A porous ceramic membrane tailored high-temperature supercapacitor

    Science.gov (United States)

    Zhang, Xin; He, Benlin; Zhao, Yuanyuan; Tang, Qunwei

    2018-03-01

    The supercapacitor that can operate at high-temperature are promising for markedly increase in capacitance because of accelerated charge movement. However, the state-of-the-art polymer-based membranes will decompose at high temperature. Inspired by solid oxide fuel cells, we present here the experimental realization of high-temperature supercapacitors (HTSCs) tailored with porous ceramic separator fabricated by yttria-stabilized zirconia (YSZ) and nickel oxide (NiO). Using activated carbon electrode and supporting electrolyte from potassium hydroxide (KOH) aqueous solution, a category of symmetrical HTSCs are built in comparison with a conventional polymer membrane based device. The dependence of capacitance performance on temperature is carefully studied, yielding a maximized specific capacitance of 272 F g-1 at 90 °C for the optimized HTSC tailored by NiO/YSZ membrane. Moreover, the resultant HTSC has relatively high durability when suffer repeated measurement over 1000 cycles at 90 °C, while the polymer membrane based supercapacitor shows significant reduction in capacitance at 60 °C. The high capacitance along with durability demonstrates NiO/YSZ membrane tailored HTSCs are promising in future advanced energy storage devices.

  11. Nanoporous Hybrid Electrolytes for High-Energy Batteries Based on Reactive Metal Anodes

    Energy Technology Data Exchange (ETDEWEB)

    Tu, Zhengyuan [Department of Materials Science and Engineering, Cornell University, Ithaca NY 14850 USA; Zachman, Michael J. [School of Applied and Engineering Physics, Cornell University, Ithaca NY 14850 USA; Choudhury, Snehashis [School of Chemical Engineering and Biomolecular Engineering, Cornell University, Ithaca NY 14850 USA; Wei, Shuya [School of Chemical Engineering and Biomolecular Engineering, Cornell University, Ithaca NY 14850 USA; Ma, Lin [Department of Materials Science and Engineering, Cornell University, Ithaca NY 14850 USA; Yang, Yuan [Department of Chemistry and Geochemistry, Colorado School of Mines, Golden CO 80401 USA; Kourkoutis, Lena F. [School of Applied and Engineering Physics, Cornell University, Ithaca NY 14850 USA; Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca NY 14853 USA; Archer, Lynden A. [Department of Materials Science and Engineering, Cornell University, Ithaca NY 14850 USA; School of Chemical Engineering and Biomolecular Engineering, Cornell University, Ithaca NY 14850 USA

    2017-01-06

    Successful strategies for stabilizing electrodeposition of reactive metals, including lithium, sodium, and aluminum are a requirement for safe, high-energy electrochemical storage technologies that utilize these metals as anodes. Unstable deposition produces high-surface area dendritic structures at the anode/electrolyte interface, which causes premature cell failure by complex physical and chemical processes that have presented formidable barriers to progress. Here, it is reported that hybrid electrolytes created by infusing conventional liquid electrolytes into nanoporous membranes provide exceptional ability to stabilize Li. Electrochemical cells based on γ-Al2O3 ceramics with pore diameters below a cut-off value above 200 nm exhibit long-term stability even at a current density of 3 mA cm-2. The effect is not limited to ceramics; similar large enhancements in stability are observed for polypropylene membranes with less monodisperse pores below 450 nm. These findings are critically assessed using theories for ion rectification and electrodeposition reactions in porous solids and show that the source of stable electrodeposition in nanoporous electrolytes is fundamental.

  12. Nanoporous Hybrid Electrolytes for High-Energy Batteries Based on Reactive Metal Anodes

    KAUST Repository

    Tu, Zhengyuan

    2017-01-06

    Successful strategies for stabilizing electrodeposition of reactive metals, including lithium, sodium, and aluminum are a requirement for safe, high-energy electrochemical storage technologies that utilize these metals as anodes. Unstable deposition produces high-surface area dendritic structures at the anode/electrolyte interface, which causes premature cell failure by complex physical and chemical processes that have presented formidable barriers to progress. Here, it is reported that hybrid electrolytes created by infusing conventional liquid electrolytes into nanoporous membranes provide exceptional ability to stabilize Li. Electrochemical cells based on γ-Al2O3 ceramics with pore diameters below a cut-off value above 200 nm exhibit long-term stability even at a current density of 3 mA cm−2. The effect is not limited to ceramics; similar large enhancements in stability are observed for polypropylene membranes with less monodisperse pores below 450 nm. These findings are critically assessed using theories for ion rectification and electrodeposition reactions in porous solids and show that the source of stable electrodeposition in nanoporous electrolytes is fundamental.

  13. Modeling and experimental performance of an intermediate temperature reversible solid oxide cell for high-efficiency, distributed-scale electrical energy storage

    Science.gov (United States)

    Wendel, Christopher H.; Gao, Zhan; Barnett, Scott A.; Braun, Robert J.

    2015-06-01

    Electrical energy storage is expected to be a critical component of the future world energy system, performing load-leveling operations to enable increased penetration of renewable and distributed generation. Reversible solid oxide cells, operating sequentially between power-producing fuel cell mode and fuel-producing electrolysis mode, have the capability to provide highly efficient, scalable electricity storage. However, challenges ranging from cell performance and durability to system integration must be addressed before widespread adoption. One central challenge of the system design is establishing effective thermal management in the two distinct operating modes. This work leverages an operating strategy to use carbonaceous reactant species and operate at intermediate stack temperature (650 °C) to promote exothermic fuel-synthesis reactions that thermally self-sustain the electrolysis process. We present performance of a doped lanthanum-gallate (LSGM) electrolyte solid oxide cell that shows high efficiency in both operating modes at 650 °C. A physically based electrochemical model is calibrated to represent the cell performance and used to simulate roundtrip operation for conditions unique to these reversible systems. Design decisions related to system operation are evaluated using the cell model including current density, fuel and oxidant reactant compositions, and flow configuration. The analysis reveals tradeoffs between electrical efficiency, thermal management, energy density, and durability.

  14. Asymmetric diffusion of Zr, Sc and Ce, Gd at the interface between zirconia electrolyte and ceria interlayer for solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Bo, E-mail: Liangbo@gdut.edu.cn; Tao, Tao; Zhang, Silong; Huang, Yongan; Cai, Zhihong; Lu, Shenguo, E-mail: sglu@gdut.edu.cn

    2016-09-15

    The microstructures of cathode interlayer and elemental diffusion behaviors across the interfacial region (electrolyte/interlayer) have been characterized using high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD) and scanning TEM combined with energy dispersive X-ray spectroscopy (STEM-EDS). A densified film about 100 nm is locally formed at the interface of electrolyte/interlayer as the interlayer using dip-coating method and being sintered at 1200 °C. It is observed that the compositional distribution curves across the interface are asymmetric. More amount of the Zr, Sc component is detected in gadolinium-doped ceria (GDC) than that of the Ce, Gd component is detected in scandia-stabilized-zirconia (SSZ). XRD and EDS results show that the densified layer might consist of (Zr, Ce)O{sub 2}-based solid solution. The high open circuit voltage of the cell is related to the dense structure of electrolyte, while the increased activation energy in overpotential resistance is attributed to the porous structure of interlayer as well as the high resistance phases locally formed at its interface. - Highlights: • The (Ce−Zr)O{sub 2} based solid solution was locally formed at 1200 °C. • More Zr, Sc elements were detected in GDC than Ce, Gd elements in SSZ. • Zirconia nanodomain was embedded in GDC beside grain boundary. • High OCVs were achieved due to the highly dense electrolyte layer.

  15. Study of strontium- and magnesium-doped lanthanum gallate solid electrolyte surface by X-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Datta, Pradyot; Majewski, Peter; Aldinger, Fritz

    2008-01-01

    The chemical states of the surface of the oxygen ion conducting solid electrolyte La 0.9 Sr 0.1 Ga 0.85 Mg 0.15 O 3-δ (LSGM 1015) as prepared by solid-state synthesis was analyzed by X-ray photoelectron spectroscopy. It was found that adventitious carbon did not interact with any of the constituent elements of LSGM 1015. Ga and La were found to exist in trivalent states. But, due to ionic bombardment presence of Mg could not be detected in the electrolyte surface

  16. The study of flow and proton exchange interactions in the cylindrical solid oxide fuel cell

    International Nuclear Information System (INIS)

    Saievar-Iranizad, E.; Malekifar, A.

    2002-01-01

    The solid oxide fuel cell operates at high temperature of about 1000 deg C. In this temperature, some known materials such as Ni, ... which is abundant in the nature, can be used as a catalyst in the electrodes. The electrolytes of such cell solid oxide fuel cell can be made through non-porous solid ceramics such as Zircon's (ZrO 2 ). It can be stabilized using a doped Yttrium oxide. The importance of Yttria-stabilised Zirconia at high temperature belongs to the transport of oxygen ions through the electrolyte. Oxygen using in the hot cathode side causes a considerable reduction in the concentration of oxygen molecules. The oxygen ions exchange through the electrolyte relates to the molecular oxygen concentration gradient between the anode and cathode. Applying fuels such as hydrogen or natural gas in the anode and its chemical reaction with oxygen ions transfer from cathode through the electrolyte, produce electricity, water and heat. To study the ion exchange and its interaction into solid oxide fuel cell, a mathematical model had been considered in this article. This model simulates and illustrates the interaction, diffusion and oxygen ions exchange into fuel cell. The electrical power of fuel cell due to the ion exchange can be obtained using a simulation method. The ion exchange simulation, diffusion of molecules, their interactions and system development through the mathematical model has been discussed in this paper

  17. UV-Induced Radical Photo-Polymerization: A Smart Tool for Preparing Polymer Electrolyte Membranes for Energy Storage Devices

    Directory of Open Access Journals (Sweden)

    Claudio Gerbaldi

    2012-06-01

    Full Text Available In the present work, the preparation and characterization of quasi-solid polymer electrolyte membranes based on methacrylic monomers and oligomers, with the addition of organic plasticizers and lithium salt, are described. Noticeable improvements in the mechanical properties by reinforcement with natural cellulose hand-sheets or nanoscale microfibrillated cellulose fibers are also demonstrated. The ionic conductivity of the various prepared membranes is very high, with average values approaching 10-3 S cm-1 at ambient temperature. The electrochemical stability window is wide (anodic breakdown voltages > 4.5 V vs. Li in all the cases along with good cyclability in lithium cells at ambient temperature. The galvanostatic cycling tests are conducted by constructing laboratory-scale lithium cells using LiFePO4 as cathode and lithium metal as anode with the selected polymer electrolyte membrane as the electrolyte separator. The results obtained demonstrate that UV induced radical photo-polymerization is a well suited method for an easy and rapid preparation of easy tunable quasi-solid polymer electrolyte membranes for energy storage devices.

  18. UV-Induced Radical Photo-Polymerization: A Smart Tool for Preparing Polymer Electrolyte Membranes for Energy Storage Devices

    Directory of Open Access Journals (Sweden)

    Claudio Gerbaldi

    2012-10-01

    Full Text Available In the present work, the preparation and characterization of quasi-solid polymer electrolyte membranes based on methacrylic monomers and oligomers, with the addition of organic plasticizers and lithium salt, are described. Noticeable improvements in the mechanical properties by reinforcement with natural cellulose hand-sheets or nanoscale microfibrillated cellulose fibers are also demonstrated. The ionic conductivity of the various prepared membranes is very high, with average values approaching 10-3 S cm-1 at ambient temperature. The electrochemical stability window is wide (anodic breakdown voltages > 4.5 V vs. Li in all the cases along with good cyclability in lithium cells at ambient temperature. The galvanostatic cycling tests are conducted by constructing laboratory-scale lithium cells using LiFePO4 as cathode and lithium metal as anode with the selected polymer electrolyte membrane as the electrolyte separator. The results obtained demonstrate that UV induced radical photo-polymerization is a well suited method for an easy and rapid preparation of easy tunable quasi-solid polymer electrolyte membranes for energy storage devices.

  19. Selective deposition of nanostructured ruthenium oxide using Tobacco mosaic virus for micro-supercapacitors in solid Nafion electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Gnerlich, Markus; Ben-Yoav, Hadar; Culver, James N.; Ketchum, Douglas R.; Ghodssi, Reza

    2015-10-01

    A three-dimensional micro-supercapacitor has been developed using a novel bottom-up assembly method combining genetically modified Tobacco mosaic virus (TMV-1Cys), photolithographically defined micropillars and selective deposition of ruthenium oxide on multi-metallic microelectrodes. The three-dimensional microelectrodes consist of a titanium nitride current collector with two functionalized areas: (1) gold coating on the active electrode area promotes TMV-1Cys adhesion, and (2) sacrificial nickel pads dissolve in ruthenium tetroxide plating solution to produce ruthenium oxide on all electrically connected areas. The microfabricated electrodes are arranged in an interdigitated pattern, and the capacitance per electrode has been measured as high as 203 mF cm-2 with solid Nafion electrolyte. The process integration of bio-templated ruthenium oxide with microfabricated electrodes and solid electrolyte is an important advance towards the energy storage needs of mass produced self-sufficient micro-devices.

  20. Behavior of strontium- and magnesium-doped gallate electrolyte in direct carbon solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Li; Xiao, Jie; Xie, Yongmin [The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641 (China); Tang, Yubao [Key Laboratory of Sensor Analysis of Tumor Marker Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao o 266042 (China); Liu, Jiang, E-mail: jiangliu@scut.edu.cn [The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641 (China); New Energy Research Institute, College of Environment and Energy, South China University of Technology, Guangzhou 510006 (China); Liu, Meilin [New Energy Research Institute, College of Environment and Energy, South China University of Technology, Guangzhou 510006 (China); School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Drive, Atlanta, GA 30332-0245 (United States)

    2014-09-01

    Highlights: • La{sub 0.9}Sr{sub 0.1}Ga{sub 0.8}Mg{sub 0.2}O{sub 3−δ} (LSGM) can be used as electrolyte of direct carbon SOFCs. • DC-SOFC with LSGM electrolyte gives higher performance than that with YSZ. • LSGM-electrolyte DC-SOFC gives maximum power density of 383 mW cm{sup −2} at 850 °C. • Operation of LSGM-DC-SOFC at 210 mA cm{sup −2} lasts 72 min, with fuel utilization of 60%. - Abstract: Perovskite-type La{sub 0.9}Sr{sub 0.1}Ga{sub 0.8}Mg{sub 0.2}O{sub 3−δ} (LSGM) is synthesized by conventional solid state reaction. Its phase composition, microstructure, relative density, and oxygen-ionic conductivity are investigated. Tubular electrolyte-supported solid oxide fuel cells (SOFCs) are prepared with the LSGM as electrolyte and gadolinia doped ceria (GDC) mixed with silver as anode. The SOFCs are operated with Fe-loaded activated carbon as fuel and ambient air as oxidant. A typical single cell gives a maximum power density of 383 mW cm{sup −2} at 850 °C, which is nearly 1.3 times higher than that of the similar cell with YSZ as electrolyte. A stability test of 72 min is carried out at a constant current density of 210 mA cm{sup −2}, with a fuel utilization of 60%, indicating that LaGaO{sub 3}-based electrolyte is promising to be applied in direct carbon SOFCs (DC-SOFCs)

  1. Crosslinked wholly aromatic polyether membranes based on quinoline derivatives and their application in high temperature polymer electrolyte membrane fuel cells

    Science.gov (United States)

    Kallitsis, K. J.; Nannou, R.; Andreopoulou, A. K.; Daletou, M. K.; Papaioannou, D.; Neophytides, S. G.; Kallitsis, J. K.

    2018-03-01

    An AB type difunctional quinoline based monomer bearing a pentafluorophenyl unit combined with a phenol functionality is being synthesized and homopolymerized to create linear aromatic polyethers as polymer electrolytes for HT-PEM FCs applications. Several conditions are tested for the optimized synthesis of the monomer and homopolymer. Additionally, covalent crosslinking through aromatic polyether bond formation enables the creation of wholly aromatic crosslinked polymeric electrolyte membranes. More specifically, the perfluorophenyl units are crosslinked with other hydroxyl end functionalized moieties, providing membranes with enhanced chemical and mechanical properties that are moreover easily doped with phosphoric acid even at ambient temperatures. All membranes are evaluated for their structural and thermal characteristics and their doping ability with phosphoric acid. Selected crosslinked membranes are further tested in terms of their single cell performance at the temperature range 160 °C-200 °C showing promising performance and high conductivity values even up to 0.2 S cm-1 in some cases.

  2. A novel thermosetting gel electrolyte for stable quasi-solid-state dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Lan, Z.; Lin, J.M.; Huang, M.L.; Hao, S.C. [Institute of Materials Physical Chemistry, Huaqiao University, Quanzhou, 362021 (China); Sato, T.; Yin, S. [Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 1-1 Katahira 2-Chome, Aoba-ku, Sendai 980-8577 (Japan); Wu, J.H.

    2007-11-19

    Using poly(acrylic acid)-poly(ethylene glycol) hybrid-absorbing liquid electrolyte, we prepare a novel thermosetting gel electrolyte (TSGE) with ionic conductivity of 6.12 mS cm{sup -1}. Based on the TSGE, a quasi-solid-state dye-sensitized solar cell with a good long-term stability and light-to-electricity conversion efficiency of 6.10 % is attained under AM 1.5 irradiation. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  3. Method of forming components for a high-temperature secondary electrochemical cell

    Science.gov (United States)

    Mrazek, Franklin C.; Battles, James E.

    1983-01-01

    A method of forming a component for a high-temperature secondary electrochemical cell having a positive electrode including a sulfide selected from the group consisting of iron sulfides, nickel sulfides, copper sulfides and cobalt sulfides, a negative electrode including an alloy of aluminum and an electrically insulating porous separator between said electrodes. The improvement comprises forming a slurry of solid particles dispersed in a liquid electrolyte such as the lithium chloride-potassium chloride eutetic, casting the slurry into a form having the shape of one of the components and smoothing the exposed surface of the slurry, cooling the cast slurry to form the solid component, and removing same. Electrodes and separators can be thus formed.

  4. Sodium conducting polymer electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Skaarup, S.; West, K. (eds.)

    1989-04-01

    This section deals with the aspects of ionic conduction in general as well as specific experimental results obtained for sodium systems. The conductivity as a function of temperature and oxygen/metal ratio are given for the systems NaI, NaCF/sub 3/SO/sub 3/ and NaClO/sub 4/ plus polyethylene oxide. Attempts have been made to produce mixed phase solid electrolytes analogous to the lithium systems that have worked well. These consist of mixtures of polymer and a solid electrolyte. The addition of both nasicon and sodium beta alumina unexpectedly decreases the ionic conductivity in contrast to the lithium systems. Addition of the nonconducting silica AEROSIL in order to increase the internal surface area has the effect of retarding the phase transition at 60 deg. C, but does not enhance the conductivity. (author) 23 refs.

  5. Solid-state lithium battery

    Science.gov (United States)

    Ihlefeld, Jon; Clem, Paul G; Edney, Cynthia; Ingersoll, David; Nagasubramanian, Ganesan; Fenton, Kyle Ross

    2014-11-04

    The present invention is directed to a higher power, thin film lithium-ion electrolyte on a metallic substrate, enabling mass-produced solid-state lithium batteries. High-temperature thermodynamic equilibrium processing enables co-firing of oxides and base metals, providing a means to integrate the crystalline, lithium-stable, fast lithium-ion conductor lanthanum lithium tantalate (La.sub.1/3-xLi.sub.3xTaO.sub.3) directly with a thin metal foil current collector appropriate for a lithium-free solid-state battery.

  6. Designing Artificial Solid-Electrolyte Interphases for Single-Ion and High-Efficiency Transport in Batteries

    KAUST Repository

    Tu, Zhengyuan; Choudhury, Snehashis; Zachman, Michael J.; Wei, Shuya; Zhang, Kaihang; Kourkoutis, Lena F.; Archer, Lynden A.

    2017-01-01

    energy storage technologies. In lithium-ion batteries, electrolytes with single- or near-single-ion conductivity reduce losses caused by ion polarization. In emergent lithium or sodium metal batteries, they maintain high conductivity at the anode

  7. An all-solid-state electrochemical double-layer capacitor based on a plastic crystal electrolyte

    Directory of Open Access Journals (Sweden)

    Ali eaabouimrane

    2015-08-01

    Full Text Available A plastic crystal, solid electrolyte was prepared by mixing tetrabutylammonium hexafluorophosphate salt, (C4H94NPF6, (10 molar % with succinonitrile, SCN, (N C−CH2−CH2−C N, [SCN-10%TBA-PF6]. The resultant waxy material shows a plastic crystalline phase that extend from -36 °C up to its melting at 23 °C. It shows a high ionic conductivity reaching 4 × 10−5 S/cm in the plastic crystal phase (15 °C and ~ 3 × 10−3 S/cm in the molten state (25 °C. These properties along with the high electrochemical stability rendered the use of this material as an electrolyte in an electrochemical double-layer capacitor (EDLC. The EDLC was assembled and its performance was tested by cyclic voltammetry, AC impedance spectroscopy and galvanostatic charge-discharge methods. Specific capacitance values in the range of 4-7 F/g. (of electrode active material were obtained in the plastic crystal phase at 15 °C, that although compare well with those reported for some polymer electrolytes, can be still enhanced with further development of the device and its components, and only demonstrate their great potential use for capacitors as a new application.

  8. An All-Solid-State Electrochemical Double-Layer Capacitor Based on a Plastic Crystal Electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Abouimrane, Ali; Belharouak, Ilias [Qatar Environment and Energy Research Institute, Qatar Foundation, Doha (Qatar); Abu-Lebdeh, Yaser A., E-mail: yaser.abu-lebdeh@nrc.gc.ca [Energy, Mining and Environment Portfolio and Automotive and Surface Transportation Portfolio, National Research Council of Canada, Ottawa, ON (Canada)

    2015-08-18

    A plastic crystal, solid electrolyte was prepared by mixing tetrabutylammonium hexafluorophosphate salt, (C{sub 4}H{sub 9}){sub 4}-NPF{sub 6}, (10 molar %) with succinonitrile, SCN, (N≡C−CH{sub 2}−CH{sub 2}−C≡N), [SCN-10%TBA-PF{sub 6}]. The resultant waxy material shows a plastic crystalline phase that extends from −36°C up to its melting at 23°C. It shows a high ionic conductivity reaching 4 × 10{sup -5} S/cm in the plastic crystal phase (15°C) and ~ 3 × 10{sup -3} S/cm in the molten state (25°C). These properties along with the high electrochemical stability rendered the use of this material as an electrolyte in an electrochemical double-layer capacitor (EDLC). The EDLC was assembled, and its performance was tested by cyclic voltammetry, AC impedance spectroscopy, and galvanostatic charge–discharge methods. Specific capacitance values in the range of 4–7 F/g (of electrode active material) were obtained in the plastic crystal phase at 15°C, that although compare well with those reported for some polymer electrolytes, can be still enhanced with further development of the device and its components, and only demonstrate their great potential use for capacitors as a new application.

  9. An All-Solid-State Electrochemical Double-Layer Capacitor Based on a Plastic Crystal Electrolyte

    International Nuclear Information System (INIS)

    Abouimrane, Ali; Belharouak, Ilias; Abu-Lebdeh, Yaser A.

    2015-01-01

    A plastic crystal, solid electrolyte was prepared by mixing tetrabutylammonium hexafluorophosphate salt, (C 4 H 9 ) 4 -NPF 6 , (10 molar %) with succinonitrile, SCN, (N≡C−CH 2 −CH 2 −C≡N), [SCN-10%TBA-PF 6 ]. The resultant waxy material shows a plastic crystalline phase that extends from −36°C up to its melting at 23°C. It shows a high ionic conductivity reaching 4 × 10 -5 S/cm in the plastic crystal phase (15°C) and ~ 3 × 10 -3 S/cm in the molten state (25°C). These properties along with the high electrochemical stability rendered the use of this material as an electrolyte in an electrochemical double-layer capacitor (EDLC). The EDLC was assembled, and its performance was tested by cyclic voltammetry, AC impedance spectroscopy, and galvanostatic charge–discharge methods. Specific capacitance values in the range of 4–7 F/g (of electrode active material) were obtained in the plastic crystal phase at 15°C, that although compare well with those reported for some polymer electrolytes, can be still enhanced with further development of the device and its components, and only demonstrate their great potential use for capacitors as a new application.

  10. Copper based anodes for bio-ethanol fueled low-temperature solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Kondakindi, R.R.; Karan, K. [Queen' s Univ., Kingston, ON (Canada)

    2003-07-01

    Laboratory studies have been conducted to develop a low-temperature solid oxide fuel cell (SOFC) fueled by bio-ethanol. SOFCs are considered to be a potential source for clean and efficient electricity. The use of bio-ethanol to power the SOFC contributes even further to reducing CO{sub 2} emissions. The main barrier towards the development of the proposed SOFC is the identification of a suitable anode catalyst that prevents coking during electro-oxidation of ethanol while yielding good electrical performance. Copper was selected as the catalyst for this study. Composite anodes consisting of copper catalysts and gadolinium-doped ceria (GDC) electrolytes were prepared using screen printing of GDC and copper oxide on dense GDC electrolytes and by wet impregnation of copper nitrate in porous GDC electrolytes followed by calcination and sintering. The electrical conductivity of the prepared anodes was characterized to determine the percolation threshold. Temperature-programmed reduction and the Brunner Emmett Teller (BET) methods were used to quantify the catalyst dispersion and surface area. Electrochemical performance of the single-cell SOFC with a hydrogen-air system was used to assess the catalytic activities. Electrochemical Impedance Spectroscopy was used to probe the electrode kinetics.

  11. Enhancement in ionic conductivity on solid polymer electrolytes containing large conducting species

    Energy Technology Data Exchange (ETDEWEB)

    Praveen, D. [Department of Physics, Amrita Viswha Vidyapeetham, Bangalore, India, E-mail: d-praveen@blr.amrita.edu (India); Damle, Ramakrishna [Department of Physics, Bangalore University, Bangalore, India. E-mail: ramkrishnadamle@bub.ernet.in (India)

    2016-05-23

    Solid Polymer Electrolytes (SPEs) lack better conducting properties at ambient temperatures. Various methods to enhance their ionic conductivity like irradiation with swift heavy ions, γ-rays, swift electrons and quenching at low temperature etc., have been explored in the literature. Among these, one of the oldest methods is incorporation of different conducting species into the polymer matrix and/or addition of nano-sized inert particles into SPEs. Various new salts like LiBr, Mg(ClO{sub 4}){sub 2}, NH{sub 4}I etc., have already been tried in the past with some success. Also various nanoparticles like Al{sub 2}O{sub 3}, TiO{sub 2} etc., have been tried in the past. In this article, we have investigated an SPE containing Rubidium as a conducting species. Rubidium has a larger ionic size compared to lithium and sodium ions which have been investigated in the recent past. In the present article, we have investigated the conductivity of large sized conducting species and shown the enhancement in the ionic conductivity by addition of nano-sized inert particles.

  12. Enhancement in ionic conductivity on solid polymer electrolytes containing large conducting species

    International Nuclear Information System (INIS)

    Praveen, D.; Damle, Ramakrishna

    2016-01-01

    Solid Polymer Electrolytes (SPEs) lack better conducting properties at ambient temperatures. Various methods to enhance their ionic conductivity like irradiation with swift heavy ions, γ-rays, swift electrons and quenching at low temperature etc., have been explored in the literature. Among these, one of the oldest methods is incorporation of different conducting species into the polymer matrix and/or addition of nano-sized inert particles into SPEs. Various new salts like LiBr, Mg(ClO_4)_2, NH_4I etc., have already been tried in the past with some success. Also various nanoparticles like Al_2O_3, TiO_2 etc., have been tried in the past. In this article, we have investigated an SPE containing Rubidium as a conducting species. Rubidium has a larger ionic size compared to lithium and sodium ions which have been investigated in the recent past. In the present article, we have investigated the conductivity of large sized conducting species and shown the enhancement in the ionic conductivity by addition of nano-sized inert particles.

  13. Development of layered anode structures supported over Apatite-type Solid Electrolytes

    Directory of Open Access Journals (Sweden)

    Pandis P.

    2016-01-01

    Full Text Available Apatite-type lanthanum silicates (ATLS materials have attracted interest in recent literature as solid electrolytes for SOFCs. The fabrication of an ATLS based fuel cell with the state-of-art electrodes (NiO/YSZ as anode and LSCF or LSM as cathode can show degradation after long operation hours due to Si diffusion mainly towards the anode. In this work, we report a “layer-by-layer anodic electrodes” fabrication by means of spin coating and physical spraying. The overall aim of this work is the successful fabrication of such a layered structure including suitable blocking layers towards the inhibition of Si interdiffusion from the apatite electrolyte to the anode. The results showed that the deposition of 3 layers of LFSO/GDC (3μm, NiO/GDC (4μm and the final NiO/YSZ anode layer provided a stable half-cell, with no solid state reaction occurring among the electrodes and no Si diffusion observed towards the anode after thermal treatment at 800°C for 120h.

  14. Atomic scale imaging of structural changes in solid electrolyte lanthanum lithium niobate upon annealing

    International Nuclear Information System (INIS)

    Hu, Xiaobing; Fisher, Craig A.J.; Kobayashi, Shunsuke; Ikuhara, Yumi H.; Fujiwara, Yasuyuki; Hoshikawa, Keigo; Moriwake, Hiroki; Kohama, Keiichi; Iba, Hideki; Ikuhara, Yuichi

    2017-01-01

    La (1-x)/3 Li x NbO 3 (LLNbO) is a promising electrolyte material for solid-state lithium-ion batteries because it is stable in contact with Li metal and contains a high concentration of intrinsic Li-ion vacancies. One strategy for improving its ionic conductivity and making it more competitive with other solid-state Li-ion electrolytes is to disorder the Li-ion vacancies by appropriate post-synthesis heat treatment, e.g., annealing. In this study, we examine the effects of annealing on single crystals of LLNbO with Li contents x = 0.07 and 0.13 based on simultaneous atomic resolution high angle annular dark field and annular bright field imaging methods using state-of-the-art aberration corrected scanning transmission electron microscopes. It is found that La modulation within A1 layers of the cation-deficient layered perovskite structure becomes more diffuse after annealing. In addition, some La atoms move to A-site positions and O4 window positions in the nominally vacant A2 layer, while O atom columns in this layer become rumpled in the [001] p direction, indicating that the NbO 6 octahedra are more heavily distorted after annealing. The observed crystal structure differences between as-prepared and annealed single crystals explain the drop in Li-ion conductivities of LLNbO single crystals after heat treatment.

  15. Properties of nanostructured undoped ZrO{sub 2} thin film electrolytes by plasma enhanced atomic layer deposition for thin film solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Gu Young; Noh, Seungtak; Lee, Yoon Ho; Cha, Suk Won, E-mail: ybkim@hanyang.ac.kr, E-mail: swcha@snu.ac.kr [Department of Mechanical and Aerospace Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-744 (Korea, Republic of); Ji, Sanghoon [Graduate School of Convergence Science and Technology, Seoul National University, Iui-dong, Yeongtong-gu, Suwon 443-270 (Korea, Republic of); Hong, Soon Wook; Koo, Bongjun; Kim, Young-Beom, E-mail: ybkim@hanyang.ac.kr, E-mail: swcha@snu.ac.kr [Department of Mechanical Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791 (Korea, Republic of); An, Jihwan [Manufacturing Systems and Design Engineering Programme, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 139-743 (Korea, Republic of)

    2016-01-15

    Nanostructured ZrO{sub 2} thin films were prepared by thermal atomic layer deposition (ALD) and by plasma-enhanced atomic layer deposition (PEALD). The effects of the deposition conditions of temperature, reactant, plasma power, and duration upon the physical and chemical properties of ZrO{sub 2} films were investigated. The ZrO{sub 2} films by PEALD were polycrystalline and had low contamination, rough surfaces, and relatively large grains. Increasing the plasma power and duration led to a clear polycrystalline structure with relatively large grains due to the additional energy imparted by the plasma. After characterization, the films were incorporated as electrolytes in thin film solid oxide fuel cells, and the performance was measured at 500 °C. Despite similar structure and cathode morphology of the cells studied, the thin film solid oxide fuel cell with the ZrO{sub 2} thin film electrolyte by the thermal ALD at 250 °C exhibited the highest power density (38 mW/cm{sup 2}) because of the lowest average grain size at cathode/electrolyte interface.

  16. Alkali Influence on Synthesis of Solid Electrolyte Based on Alkali Nitrate-Alumina

    International Nuclear Information System (INIS)

    Yustinus Purwamargapratala; Purnama, S.; Purwanto, P.

    2008-01-01

    Research of solid electrolyte based on alumina with addition of alkali materials of barium nitrate, calcium nitrate, sodium nitrate and lithium nitrate has been done. Aluminium hydroxide and alkali nitrate were mixed in mole ratio of 1 : 1 in water media and pyrolyzed at 300 o C for 1 hour Pyrolysis result were then mixed with alumina in mole ratio of 1 : 1, compacted and heated at 600 o C for 3 hours. To characterize the sample, XRD (X-Ray Diffractometers) and LCR meter (impedance, capacitance, and resistance) were used for analysis the phase and conductivity properties. The result showed formation of alkali-aluminate in which Li-base have the highest room temperature conductivity of 3.1290 x 10 -5 S.cm -1 , while Ba-base have the lowest conductivity of 5.7266 x 10 -8 S.cm -1 . (author)

  17. Solid polymer electrolyte on the basis of polyethylene carbonate-lithium perchlorate system

    International Nuclear Information System (INIS)

    Dukhanin, G.P.; Dumler, S.A.; Sablin, A.N.; Novakov, I.A.

    2009-01-01

    Reaction in the system polyethylene carbonate-lithium perchlorate was investigated by IR spectroscopy, differential thermal and X-ray structural analyses. Specific electric conductivity of the prepared composition has been measured. Solid polymer electrolytes on the basis of polyethylene carbonate have conducting properties as electrolytes on the basis of unmodified polyethylene oxide. Compositions of polyethylene carbonate : LiClO 4 =10 : 1Al 2 O 3 -ZrO 2 possess maximum value of electrical conductivity. Activation energies of the process is calculated for all investigated compositions, and dependence of these values from concentration of lithium perchlorate is established

  18. High performance electrodes for reduced temperature solide oxide fuel cells with doped lanthanum gallate electrolyte. Pt. 1. Ni-SDC cermet anode

    Energy Technology Data Exchange (ETDEWEB)

    Ohara, S.; Maric, R.; Zhang, X.; Mukai, K.; Fukui, T. [Japan Fine Ceramics Center, Nagoya (Japan); Yoshida, H.; Inagaki, T. [The Kansai Electroc Power Co. Inc., Hyogo (Japan); Miura, K. [Kanden Kakou Co. Ltd., Hyogo (Japan)

    2000-03-01

    A Ni-samaria-doped ceria (SDC) cermet was selected as the anode material for reduced temperature (800 C) solid oxide fuel cells. The NiO-SDC composite powder, synthesized by spray pyrolysis, was employed as the starting anode powder in this study. The influence of Ni content in Ni-SDC cermets on the electrode performance was investigated in order to create the most suitable microstructures. It was found that anodic polarization was strongly influenced by the Ni content in Ni-SDC cermets. The best results were obtained for anode cermets with Ni content of around 50 vol.%; anodic polarization was about 30 mV at a current density of 300 mA/cm{sup 2}. This high performance seems to be attributable to the microstructure, in which Ni grains form a skeleton with well-connected SDC grains finely distributed over the Ni grains surfaces; such microstructure was also conducive to high stability of the anode. (orig.)

  19. Preparation and Characterization of PVA Alkaline Solid Polymer Electrolyte with Addition of Bamboo Charcoal

    OpenAIRE

    Lidan Fan; Mengyue Wang; Zhen Zhang; Gang Qin; Xiaoyi Hu; Qiang Chen

    2018-01-01

    Natural bamboo charcoal (BC) powder has been developed as a novel filler in order to further improve performances of the polyvinyl alcohol (PVA)-based alkaline solid polymer electrolyte (ASPE) by solution casting method. X-ray diffraction patterns of composite polymer electrolyte with BC revealed the decrease in the degree of crystallinity with increasing content of BC. Scanning electron microscopy images showed pores on a micrometer scale (average diameter about 2 μm) distributed inside a...

  20. Yttrium and Nickel Co-Doped BaZrO3 as a Proton-Conducting Electrolyte for Intermediate Temperature Solid Oxide Fuel Cells

    KAUST Repository

    Shafi, S. P.

    2015-07-17

    High temperature proton conducting oxides, due to their lower activation energy for proton conduction, can achieve high conductivity at relatively low temperatures (500-700°C). Though BaZr0.8Y0.2O3-δ (BZY) perovskite exhibits good chemical stability and high bulk conductivity, high grain boundary resistance decreases its total conductivity. This work focuses on substitution of Zr4+ with Ni2+ in the perovskite B-site in a targeted fashion in order to promote the sinterability of BZY. Powder X-ray diffraction analysis showed the formation of single phases for Ba0.8-xY0.2NixO3-δ compositions up to x = 0.04. Scanning electron microscopy (SEM) image analysis demonstrated that densification is promoted by increasing the Ni-content, reaching a fully dense microstructure for Ba0.76Y0.2Ni0.04O3-δ (BZYNi04). An anode supported single cell based on BZYNi04 electrolyte showed superior power performance, achieving 240 and 428 mW cm-2 at 600 and 700°C, respectively. © The Electrochemical Society.

  1. Yttrium and Nickel Co-Doped BaZrO3 as a Proton-Conducting Electrolyte for Intermediate Temperature Solid Oxide Fuel Cells

    KAUST Repository

    Shafi, S. P.; Bi, Lei; Boulfrad, S.; Traversa, Enrico

    2015-01-01

    High temperature proton conducting oxides, due to their lower activation energy for proton conduction, can achieve high conductivity at relatively low temperatures (500-700°C). Though BaZr0.8Y0.2O3-δ (BZY) perovskite exhibits good chemical stability and high bulk conductivity, high grain boundary resistance decreases its total conductivity. This work focuses on substitution of Zr4+ with Ni2+ in the perovskite B-site in a targeted fashion in order to promote the sinterability of BZY. Powder X-ray diffraction analysis showed the formation of single phases for Ba0.8-xY0.2NixO3-δ compositions up to x = 0.04. Scanning electron microscopy (SEM) image analysis demonstrated that densification is promoted by increasing the Ni-content, reaching a fully dense microstructure for Ba0.76Y0.2Ni0.04O3-δ (BZYNi04). An anode supported single cell based on BZYNi04 electrolyte showed superior power performance, achieving 240 and 428 mW cm-2 at 600 and 700°C, respectively. © The Electrochemical Society.

  2. Ab initio investigation of ground-states and ionic motion in particular in zirconia-based solid-oxide electrolytes

    International Nuclear Information System (INIS)

    Hirschfeld, Julian Arndt

    2012-01-01

    Electrolytes with high ionic conductivity at lower temperatures are the prerequisite for the success of Solid Oxide Fuel Cells (SOFC). One candidate is doped zirconia. In the past, the electrical resistance of zirconia based SOFC electrolytes has mainly been decreased by reducing its thickness. But there are limits to reducing the thickness and one can say that nowadays the normal ways are basically exhausted to further enhance the conductivity of well-known electrolyte materials. Hence, new approaches need to be found to discover windows of enhanced ionic conductivity. This can be achieved by understanding the quantum-mechanical oxygen transport in unconventional configurations of doped zirconia. Therefore, such an understanding is of fundamental importance. In this thesis two approaches are pursued, the investigation of the strain dependent ionic migration in zirconia based electrolytes and the designing of an electrolyte material structure with enhanced and strongly anisotropic ionic conductivity. The first approach expands the elementary understanding of oxygen migration in oxide lattices. The migration barrier of the oxygen ion jumps in zirconia is determined by applying the Density Functional Theory (DFT) calculations in connection with the Nudged Elastic Band (NEB) method. These computations show an unexpected window of decreased migration barriers at high compressive strains. Similar to other publications a decrease in the migration barrier for expansive strain is observed. But, in addition, a migration barrier decrease under high compressive strains is found beyond a maximal height of the migration barrier. A simple analytic model offers an explanation. The drop of the migration barrier at high compressions originates from the elevation of the ground-state energy. This means: Increasing ground state energies becomes an interesting alternative to facilitate ionic mobility. The second approach is based on the idea, that actually, only in the direction of ion

  3. Proton-conducting solid acid electrolytes based upon MH(PO3H)

    NARCIS (Netherlands)

    Zhou, W.

    2011-01-01

    Solid acids, such as CsHSO4 and CsH2PO4, are a novel class of anhydrous proton-conducting compounds that can be used as electrolyte in H2/O2 and direct methanol fuel cells. The disordering of the hydrogen-bonded network above the so-called superprotonic phase transition results in an increase of the

  4. Electrolyte materials - Issues and challenges

    International Nuclear Information System (INIS)

    Balbuena, Perla B.

    2014-01-01

    Electrolytes are vital components of an electrochemical energy storage device. They are usually composed of a solvent or mixture of solvents and a salt or a mixture of salts which provide the appropriate environment for ionic conduction. One of the main issues associated with the selection of a proper electrolyte is that its electronic properties have to be such that allow a wide electrochemical window - defined as the voltage range in which the electrolyte is not oxidized or reduced - suitable to the battery operating voltage. In addition, electrolytes must have high ionic conductivity and negligible electronic conductivity, be chemically stable with respect to the other battery components, have low flammability, and low cost. Weak stability of the electrolyte against oxidation or reduction leads to the formation of a solid-electrolyte interphase (SEI) layer at the surface of the cathode and anode respectively. Depending on the materials of the electrolyte and those of the electrode, the SEI layer may be composed by combinations of organic and inorganic species, and it may exert a passivating role. In this paper we discuss the current status of knowledge about electrolyte materials, including non-aqueous liquids, ionic liquids, solid ceramic and polymer electrolytes. We also review the basic knowledge about the SEI layer formation, and challenges for a rational design of stable electrolytes

  5. Tuning the Solid Electrolyte Interphase for Selective Li- and Na-Ion Storage in Hard Carbon

    Energy Technology Data Exchange (ETDEWEB)

    Soto, Fernando A. [Department of Chemical Engineering, Texas A& M University, College Station TX 77843-3122 USA; Yan, Pengfei [Pacific Northwest National Laboratory, 902 Battelle Boulevard Richland WA 99354 USA; Engelhard, Mark H. [Pacific Northwest National Laboratory, 902 Battelle Boulevard Richland WA 99354 USA; Marzouk, Asma [Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, P.O. Box 5825 Doha Qatar; Wang, Chongmin [Pacific Northwest National Laboratory, 902 Battelle Boulevard Richland WA 99354 USA; Xu, Guiliang [Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue Argonne IL 60439 USA; Chen, Zonghai [Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue Argonne IL 60439 USA; Amine, Khalil [Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue Argonne IL 60439 USA; Liu, Jun [Pacific Northwest National Laboratory, 902 Battelle Boulevard Richland WA 99354 USA; Sprenkle, Vincent L. [Pacific Northwest National Laboratory, 902 Battelle Boulevard Richland WA 99354 USA; El-Mellouhi, Fedwa [Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, P.O. Box 5825 Doha Qatar; Balbuena, Perla B. [Department of Chemical Engineering, Texas A& M University, College Station TX 77843-3122 USA; Li, Xiaolin [Pacific Northwest National Laboratory, 902 Battelle Boulevard Richland WA 99354 USA

    2017-03-07

    Solid-electrolyte interphase (SEI) with controllable properties are highly desirable to improve battery performance. In this paper, we use a combined experimental and simulation approach to study the SEI formation on hard carbon in Li and Na-ion batteries. We show that with proper additives, stable SEI can be formed on hard carbon by pre-cycling the electrode materials in Li or Na-ion electrolyte. Detailed mechanistic studies suggest that the ion transport in the SEI layer is kinetically controlled and can be tuned by the applied voltage. Selective Na and Li-ion SEI membranes are produced using the Na or Li-ion based electrolytes respectively. The large Na ion SEI allows easy transport of Li ions, while the small Li ion SEI shuts off the Na-ion transport. Na-ion storage can be manipulated by tuning the SEI with film-forming electrolyte additives or preforming a SEI on the electrodes’ surface. The Na specific capacity can be controlled to <25 mAh/g, ~1/10 of the normal capacity (250 mAh/g). Unusual selective/preferential transport of Li-ion is demonstrated by preforming a SEI on the electrode’s surface and corroborated with a mixed electrolyte. This work may provide new guidance for preparing good ion selective conductors using electrochemical approaches in the future.

  6. Current limit diagrams for dendrite formation in solid-state electrolytes for Li-ion batteries

    Science.gov (United States)

    Raj, R.; Wolfenstine, J.

    2017-03-01

    We build upon the concept that nucleation of lithium dendrites at the lithium anode-solid state electrolyte interface is instigated by the higher resistance of grain boundaries that raises the local electro-chemical potential of lithium, near the lithium-electrode. This excess electro-chemo-mechanical potential, however, is reduced by the mechanical back stress generated when the dendrite is formed within the electrolyte. These parameters are coalesced into an analytical model that prescribes a specific criterion for dendrite formation. The results are presented in the form of current limit diagrams that show the "safe" and "fail" regimes for battery function. A higher conductivity of the electrolyte can reduce dendrite formation.

  7. Li-Ion Cells Employing Electrolytes With Methyl Propionate and Ethyl Butyrate Co-Solvents

    Science.gov (United States)

    Smart, Marshall C.; Bugga, Ratnakumar V.

    2011-01-01

    temperature range in MCMB-LiNiCoAlO2 and Li4Ti5O12-LiNi-CoAlO2 prototype cells. These electrolytes have enabled high rate performance at low temperature (i.e., up to 2.0C rates at -50 C and 5.0C rates at -40 C), and good cycling performance over a wide temperature range (i.e., from -40 to +70 C). Current efforts are focused upon improving the high temperature resilience of the methyl propionatebased system through the use of electrolyte additives, which are envisioned to improve the nature of the solid electrolyte interphase (SEI) layers.

  8. Preparation and characterization of poly(vinyl sulfone)- and poly(vinylidene fluoride)-based electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Choe, H.S.; Giaccai, J.; Alamgir, M.; Abraham, K.M. [EIC Labs., Inc., Norwood, MA (United States)

    1995-10-01

    A novel group of polymer electrolytes based on poly(vinyl sulfone) (PVS) and poly(vinylidene fluoride) (PVdF) polymers, plasticized with highly conductive solutions of LiClO{sub 4}, LiN(CF{sub 3}SO{sub 2}){sub 2} or LiAsF{sub 6} dissolved in ethylene carbonate, propylene carbonate, sulfolane, or mixtures thereof, was prepared via in situ photopolymerization and solution casting, respectively. The polymer electrolytes were characterized from conductivity and cyclic voltammetry data. It was found that solutions of Li salts in the vinyl sulfone monomer were highly conductive at room temperature with conductivities of 0.6 to 1.3 x 10{sup -3} {Omega}{sup -1}cm{sup -1} at 30{sup o}C, but the conductivities decreased by about 10{sup 3} times on polymerizing. Conversely, the conductivities increased by about 10{sup 2} to 10{sup 4} times on incorporating plasticizing solvents into the solid polymer electrolytes, suggesting that ionic mobility is the primary factor affecting the conductivities of solid polymer electrolytes. The highest conductivity exhibited by PVS-based electrolyte was 3.74 x 10{sup -4} {Omega}{sup -1}cm{sup -1} and that by PVdF-based electrolyte was 1.74 x 10{sup -3} {Omega}{sup -1}cm{sup -1}, at 30{sup o}C. The PVS-based electrolytes were found to be stable to oxidation up to potentials ranging between 4.5 and 4.8 V, while the stable potential limits for PVdF-based electrolytes were between 3.9 and 4.3 V vs. Li{sup +}/Li. (author)

  9. Flexible and Self-Healing Aqueous Supercapacitors for Low Temperature Applications: Polyampholyte Gel Electrolytes with Biochar Electrodes.

    Science.gov (United States)

    Li, Xinda; Liu, Li; Wang, Xianzong; Ok, Yong Sik; Elliott, Janet A W; Chang, Scott X; Chung, Hyun-Joong

    2017-05-10

    A flexible and self-healing supercapacitor with high energy density in low temperature operation was fabricated using a combination of biochar-based composite electrodes and a polyampholyte hydrogel electrolyte. Polyampholytes, a novel class of tough hydrogel, provide self-healing ability and mechanical flexibility, as well as low temperature operation for the aqueous electrolyte. Biochar is a carbon material produced from the low-temperature pyrolysis of biological wastes; the incorporation of reduced graphene oxide conferred mechanical integrity and electrical conductivity and hence the electrodes are called biochar-reduced-graphene-oxide (BC-RGO) electrodes. The fabricated supercapacitor showed high energy density of 30 Wh/kg with ~90% capacitance retention after 5000 charge-discharge cycles at room temperature at a power density of 50 W/kg. At -30 °C, the supercapacitor exhibited an energy density of 10.5 Wh/kg at a power density of 500 W/kg. The mechanism of the low-temperature performance excellence is likely to be associated with the concept of non-freezable water near the hydrophilic polymer chains, which can motivate future researches on the phase behaviour of water near polyampholyte chains. We conclude that the combination of the BC-RGO electrode and the polyampholyte hydrogel electrolyte is promising for supercapacitors for flexible electronics and for low temperature environments.

  10. Lithium dendrite and solid electrolyte interphase investigation using OsO4

    Science.gov (United States)

    Zier, Martin; Scheiba, Frieder; Oswald, Steffen; Thomas, Jürgen; Goers, Dietrich; Scherer, Torsten; Klose, Markus; Ehrenberg, Helmut; Eckert, Jürgen

    2014-11-01

    Osmium tetroxide (OsO4) staining, commonly used to enhance scattering contrast in electron microscopy of biologic tissue and polymer blends, has been adopted for studies of graphite anodes in lithium-ion batteries. OsO4 shows a coordinated reaction with components of the solid electrolyte interphase (SEI) and lithium dendrites, thereby increasing material contrast for scanning electron microscopy investigations. Utilizing the high affinity of lithium metal to react with osmium tetroxide it was possible to localize even small lithium deposits on graphite electrodes. In spite of their reaction with the OsO4 fume, the lithium dendrite morphology remains almost untouched by the staining procedure, offering information on the dendrite growth process. Correlating the quantity of osmium detected with the amount of residual ("dead") lithium of a discharged electrode, it was possible to obtain a practical measure for lithium plating and stripping efficiencies. EDX mappings allowed for a localization of electrochemically stripped lithium dendrites by their residual stained SEI shells. Cross sections, prepared by focused ion beam (FIB) of cycled graphite electrodes treated with OsO4, revealed important information about deposition and distribution of metallic lithium and the electrolyte reduction layer across the electrode.

  11. High-temperature x-ray diffraction study of HfTiO4-HfO2 solid solutions

    International Nuclear Information System (INIS)

    Carpenter, D.A.

    1975-01-01

    High-temperature x-ray diffraction techniques were used to determine the axial thermal expansion curves of HfTiO 4 -HfO 2 solid solutions as a function of composition. Data show increasing anisotropy with increasing HfO 2 content. An orthorhombic-to-monoclinic phase transformation was detected near room temperature for compositions near the high HfO 2 end of the orthorhombic phase field and for compositions within the two-phase region (HfTiO 4 solid solution plus HfO 2 solid solution). An orthorhombic-to-cubic phase transformation is indicated by data from oxygen-deficient materials at greater than 1873 0 K. (U.S.)

  12. Single- and double-ion type cross-linked polysiloxane solid electrolytes for lithium cells

    Science.gov (United States)

    Tsutsumi, Hiromori; Yamamoto, Masahiro; Morita, Masayuki; Matsuda, Yoshiharu; Nakamura, Takashi; Asai, Hiroyuki

    Polymeric solid electrolytes, that have poly(dimethylsiloxane) (PMS) backbone and cross-linked network, were applied to a rechargeable lithium battery system. Single- (PMS-Li) and double-ion type (PMS-LiClO 4) electrolytes were prepared from the same prepolymers. Lithium electrode in the both electrolytes showed reversible stripping and deposition of lithium. Intercalation and deintercalation processes of lithium ion between lithium-manganese composite oxide (Li xMnO 2) electrode and the electrolytes were also confirmed by cyclic voltammetry, however, peak current decreased with several cycles in both cases. The model cell, Li/PMS-Li/Li xMnO 2 cell had 1.4 mA h g -1 (per 1 g of active material, current density: 3.77 μA cm -2), and the Li/PMS-LiClO 4/Li xMnO 2 cell had 1.6 mA h g -1 (current density: 75.3 μA cm -2).

  13. A review of electrolyte materials and compositions for electrochemical supercapacitors.

    Science.gov (United States)

    Zhong, Cheng; Deng, Yida; Hu, Wenbin; Qiao, Jinli; Zhang, Lei; Zhang, Jiujun

    2015-11-07

    Electrolytes have been identified as some of the most influential components in the performance of electrochemical supercapacitors (ESs), which include: electrical double-layer capacitors, pseudocapacitors and hybrid supercapacitors. This paper reviews recent progress in the research and development of ES electrolytes. The electrolytes are classified into several categories, including: aqueous, organic, ionic liquids, solid-state or quasi-solid-state, as well as redox-active electrolytes. Effects of electrolyte properties on ES performance are discussed in detail. The principles and methods of designing and optimizing electrolytes for ES performance and application are highlighted through a comprehensive analysis of the literature. Interaction among the electrolytes, electro-active materials and inactive components (current collectors, binders, and separators) is discussed. The challenges in producing high-performing electrolytes are analyzed. Several possible research directions to overcome these challenges are proposed for future efforts, with the main aim of improving ESs' energy density without sacrificing existing advantages (e.g., a high power density and a long cycle-life) (507 references).

  14. NATO Advanced Research Workshop on Boron Rich Solids Sensors for Biological and Chemical Detection, Ultra High Temperature Ceramics, Thermoelectrics, Armor

    CERN Document Server

    Orlovskaya, Nina

    2011-01-01

    The objective of this book is to discuss the current status of research and development of boron-rich solids as sensors, ultra-high temperature ceramics, thermoelectrics, and armor. Novel biological and chemical sensors made of stiff and light-weight boron-rich solids are very exciting and efficient for applications in medical diagnoses, environmental surveillance and the detection of pathogen and biological/chemical terrorism agents. Ultra-high temperature ceramic composites exhibit excellent oxidation and corrosion resistance for hypersonic vehicle applications. Boron-rich solids are also promising candidates for high-temperature thermoelectric conversion. Armor is another very important application of boron-rich solids, since most of them exhibit very high hardness, which makes them perfect candidates with high resistance to ballistic impact. The following topical areas are presented: •boron-rich solids: science and technology; •synthesis and sintering strategies of boron rich solids; •microcantileve...

  15. Novel composite membranes based on PBI and dicationic ionic liquids for high temperature polymer electrolyte membrane fuel cells

    International Nuclear Information System (INIS)

    Hooshyari, Khadijeh; Javanbakht, Mehran; Adibi, Mina

    2016-01-01

    Two types of innovative composite membranes based on polybenzimidazole (PBI) containing dicationic ionic liquid 1,3-di(3-methylimidazolium) propane bis (trifluoromethylsulfonyl) imide (PDC 3 ) and monocationic ionic liquid 1-hexyl-3-methylimidazolium bis (trifluoromethanesulfonyl) imide (PMC 6 ) are prepared as electrolyte for high temperature fuel cells applications under anhydrous conditions. The analyses of results display promising characteristics such as high proton conductivity and thermal stability. Moreover the fuel cell performance of PA doped PDC 3 composite membranes is enhanced in comparison with PA doped PMC 6 and PA doped PBI membranes at high temperatures. Dicationic ionic liquid with high number of charge carriers provides well-developed ionic channels which form facile pathways and considerably develop the anhydrous proton conductivity. The highest proton conductivity of 81 mS/cm is achieved for PA doped PDC 3 composite membranes with PBI/IL mole ratio: 4 at 180 °C. A power density of 0.44 W/cm 2 is obtained at 0.5 V and 180 °C for PA doped PDC 3 composite membranes, which proves that these developed composite membranes can be considered as most promising candidates for high temperature fuel cell applications with enhanced proton conductivity.

  16. TAMOAS: In Situ Gasometry in the Atmosphere with Solid Electrolyte Sensors on BEXUS-19

    Science.gov (United States)

    Bronowski, A.; Clemens, R.; Jaster, T.; Kosel, F.; Matyash, I.; Westphal, A.

    2015-09-01

    A student experiment developed for testing gas sensors in the stratosphere is described. The setup consists of a measurement electronic running miniaturized in situ amperiometric gas sensors based on different solid state electrolytes dedicated for oxygen, ozone and atomic oxygen. The experiment took place at Esrange Space Center in October 2014. The setup was attached to the high-altitude balloon BEXUS-19 and reached an altitude of 27 km at night. The primary objective was to test the prototype sensors and to gain data during flight.

  17. Surface properties of magnetite in high temperature aqueous electrolyte solutions: A review.

    Science.gov (United States)

    Vidojkovic, Sonja M; Rakin, Marko P

    2017-07-01

    Deposits and scales formed on heat transfer surfaces in power plant water/steam circuits have a significant negative impact on plant reliability, availability and performance, causing tremendous economic consequences and subsequent increases in electricity cost. Consequently, the improvement of the understanding of deposition mechanisms on power generating surfaces is defined as a high priority in the power industry. The deposits consist principally of iron oxides, which are steel corrosion products and usually present in colloidal form. Magnetite (Fe 3 O 4 ) is the predominant and most abundant compound found in water/steam cycles of all types of power plants. The crucial factor that governs the deposition process and influences the deposition rate of magnetite is the electrostatic interaction between the metal wall surfaces and the suspended colloidal particles. However, there is scarcity of data on magnetite surface properties at elevated temperatures due to difficulties in their experimental measurement. In this paper a generalized overview of existing experimental data on surface characteristics of magnetite at high temperatures is presented with particular emphasis on possible application in the power industry. A thorough analysis of experimental techniques, mathematical models and results has been performed and directions for future investigations have been considered. The state-of-the-art assessment showed that for the characterization of magnetite/aqueous electrolyte solution interface at high temperatures acid-base potentiometric titrations and electrophoresis were the most beneficial and dependable techniques which yielded results up to 290 and 200°C, respectively. Mass titrations provided data on magnetite surface charge up to 320°C, however, this technique is highly sensitive to the minor concentrations of impurities present on the surface of particle. Generally, fairly good correlation between the isoelectric point (pH iep ) and point of zero charge

  18. Weighted-density functional approach for the solid-liquid interfaces in electrolytes

    International Nuclear Information System (INIS)

    Cherepanova, T.A.; Stekolnikov, A.V.

    1991-09-01

    A weighted-density functional method is proposed to describe the atomic structure of the crystal-melt interface in electrolytes based on a charged-hard-sphere model of salt. The contribution of long-range Coulomb interaction is taken into account in the field formulation: the electrostatic field potential is determined from the Poisson equation. The ion density profiles and crystalline order parameter at the crystal-melt interface in the 1:1 symmetric electrolytes are calculated. The structurization of liquid near the solid surface is described. The results are compared to those for the neutral hard sphere system. The impurity distributions of extremely small concentrations are calculated both for the neutral and charged hard sphere systems. (author). 24 refs, 6 figs, 1 tab

  19. Solid-state electrolyte for supercapacitors

    OpenAIRE

    K.C., Sabin

    2016-01-01

    Renewable energy has become a primary focus for scientific community since last decade. Great interesting investigations and creative works have been carried out to develop technology for powering our society, including disrupt technology for efficient energy storage and power manage. Supercapacitors (SP) also known as electrochemical double layer capacitors uses high surface area active electrode materials and various electrolytes to achieve capacitance of several order magnitude greater tha...

  20. An electroactive conducting polymer actuator based on NBR/RTIL solid polymer electrolyte

    Science.gov (United States)

    Cho, M. S.; Seo, H. J.; Nam, J. D.; Choi, H. R.; Koo, J. C.; Lee, Y.

    2007-04-01

    This paper reports the fabrication of a dry-type conducting polymer actuator using nitrile rubber (NBR) as the base material in a solid polymer electrolyte. The conducting polymer, poly(3,4-ethylenedioxythiophene) (PEDOT), was synthesized on the surface of the NBR layer by using a chemical oxidation polymerization technique. Room-temperature ionic liquids (RTIL) based on imidazolium salts, e.g. 1-butyl-3-methyl imidazolium X (where X = BF4-, PF6-, (CF3SO2)2N-), were absorbed into the composite film. The compatibility between the ionic liquids and the NBR polymer was confirmed by DMA. The effect of the anion size of the ionic liquids on the displacement of the actuator was examined. The displacement increased with increasing anion size of the ionic liquids. The cyclic voltammetry responses and the redox switching dynamics of the actuators were examined in different ionic liquids.

  1. Amperometric detector for gas chromatography based on a silica sol-gel solid electrolyte.

    Science.gov (United States)

    Steinecker, William H; Miecznikowski, Krzysztof; Kulesza, Pawel J; Sandlin, Zechariah D; Cox, James A

    2017-11-01

    An electrochemical cell comprising a silica sol-gel solid electrolyte, a working electrode that protrudes into a gas phase, and reference and counter electrodes that contact the solid electrolyte comprises an amperometric detector for gas chromatography. Under potentiostatic conditions, a current related to the concentration of an analyte in the gas phase is produced by its oxidation at the three-phase boundary among the sol-gel, working electrode, and the gas phase. The sol-gel is processed to contain an electrolyte that also serves as a humidistat to maintain a constant water activity even in the presence the gas chromatographic mobile phase. Response was demonstrated toward a diverse set of analytes, namely hydrogen, 1,2-ethandithiol, phenol, p-cresol, and thioanisole. Using flow injection amperometry of hydrogen with He as the carrier gas, 90% of the steady-state current was achieved in < 1s at a flow rate of 20mLmin -1 . A separation of 1,2-ethandithiol, phenol, p-cresol, and thioanisole at a 2.2mLmin -1 flow rate was achieved with respective detection limits (k = 3 criterion) of 4, 1, 3, and 70 ppmv when the working electrode potential was 800mV. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Solid electrolytes. Extremely fast charge carriers in garnet-type Li{sub 6}La{sub 3}ZrTaO{sub 12} single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Stanje, Bernhard; Breuer, Stefan; Uitz, Marlena [Christian Doppler Laboratory for Lithium Batteries, and Institute for Chemistry and Technology of Materials, Graz University of Technology (NAWI Graz), Graz (Austria); DFG Research Unit ' ' Mobility of Lithium Ions in Solids' ' , Graz University of Technology, Graz (Austria); Rettenwander, Daniel; Redhammer, Guenther [Department Chemistry and Physics of Materials, University of Salzburg (Austria); Berendts, Stefan; Lerch, Martin [Technische Universitaet Berlin, Institut fuer Chemie (Germany); Uecker, Reinhard [Leibniz Institute for Crystal Growth (Forschungsverbund Berlin e.V.), Berlin (Germany); Hanzu, Ilie; Wilkening, Martin [Christian Doppler Laboratory for Lithium Batteries, and Institute for Chemistry and Technology of Materials, Graz University of Technology (NAWI Graz), Graz (Austria); DFG Research Unit ' ' Mobility of Lithium Ions in Solids' ' , Graz University of Technology, Graz (Austria); Alistore-ERI European Research Institute, Amiens (France)

    2017-12-15

    The development of all-solid-state electrochemical energy storage systems, such as lithium-ion batteries with solid electrolytes, requires stable, electronically insulating compounds with exceptionally high ionic conductivities. Considering ceramic oxides, garnet-type Li{sub 7}La{sub 3}Zr{sub 2}O{sub 12} and derivatives, see Zr-exchanged Li{sub 6}La{sub 3}ZrTaO{sub 12} (LLZTO), have attracted great attention due to its high Li{sup +} ionic conductivity of 10{sup -3} S cm{sup -1} at ambient temperature. Despite numerous studies focussing on conductivities of powder samples, only few use time-domain NMR methods to probe Li ion diffusion parameters in single crystals. Here we report on temperature-variable NMR relaxometry measurements using both laboratory and spin-lock techniques to probe Li jump rates covering a dynamic time window spanning several decades. Both techniques revealed a consistent picture of correlated Li ion jump diffusion in the single crystal; the data perfectly mirror a modified BPP-type relaxation response being based on a Lorentzian-shaped relaxation function. The rates measured could be parameterized with a single set of diffusion parameters. Results from NMR are completely in line with ion transport parameters derived from conductivity spectroscopy. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. DEVELOPMENT AND SELECTION OF IONIC LIQUID ELECTROLYTES FOR HYDROXIDE CONDUCTING POLYBENZIMIDAZOLE MEMBRANES IN ALKALINE FUEL CELLS

    Energy Technology Data Exchange (ETDEWEB)

    Fox, E.

    2012-05-01

    Alkaline fuel cell (AFC) operation is currently limited to specialty applications such as low temperatures and pure HO due to the corrosive nature of the electrolyte and formation of carbonates. AFCs are the cheapest and potentially most efficient (approaching 70%) fuel cells. The fact that non-Pt catalysts can be used, makes them an ideal low cost alternative for power production. The anode and cathode are separated by and solid electrolyte or alkaline porous media saturated with KOH. However, CO from the atmosphere or fuel feed severely poisons the electrolyte by forming insoluble carbonates. The corrosivity of KOH (electrolyte) limits operating temperatures to no more than 80°C. This chapter examines the development of ionic liquids electrolytes that are less corrosive, have higher operating temperatures, do not chemically bond to CO and enable alternative fuels. Work is detailed on the IL selection and characterization as well as casting methods within the polybenzimidazole based solid membrane. This approach is novel as it targets the root of the problem (the electrolyte) unlike other current work in alkaline fuel cells which focus on making the fuel cell components more durable.

  4. Impedance spectroscopy of ceramic solid electrolytes; Espectroscopia de impedancia de eletrolitos solidos ceramicos

    Energy Technology Data Exchange (ETDEWEB)

    Muccillo, R.; Cosentino, I.C.; Florio, D.Z. de; Franca, Y.V. [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil). Dept. de Engenharia de Materiais

    1996-12-31

    The Impedance Spectroscopy (IS) technique has been used to the study of Th O{sub 2}:Y{sub 2} O{sub 3}, Zr O{sub 2}:La{sub 2} O{sub 3} and Zr O{sub 2}:Y{sub 2} O{sub 3} solid electrolytes. The results show that solid solution has been attained, grain boundaries act as oxygen-ion blockers, and the importance of the IS technique to study phase transformation in ceramics. (author) 6 refs., 6 figs.

  5. Ab initio investigation of ground-states and ionic motion in particular in zirconia-based solid-oxide electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Hirschfeld, Julian Arndt

    2012-12-11

    Electrolytes with high ionic conductivity at lower temperatures are the prerequisite for the success of Solid Oxide Fuel Cells (SOFC). One candidate is doped zirconia. In the past, the electrical resistance of zirconia based SOFC electrolytes has mainly been decreased by reducing its thickness. But there are limits to reducing the thickness and one can say that nowadays the normal ways are basically exhausted to further enhance the conductivity of well-known electrolyte materials. Hence, new approaches need to be found to discover windows of enhanced ionic conductivity. This can be achieved by understanding the quantum-mechanical oxygen transport in unconventional configurations of doped zirconia. Therefore, such an understanding is of fundamental importance. In this thesis two approaches are pursued, the investigation of the strain dependent ionic migration in zirconia based electrolytes and the designing of an electrolyte material structure with enhanced and strongly anisotropic ionic conductivity. The first approach expands the elementary understanding of oxygen migration in oxide lattices. The migration barrier of the oxygen ion jumps in zirconia is determined by applying the Density Functional Theory (DFT) calculations in connection with the Nudged Elastic Band (NEB) method. These computations show an unexpected window of decreased migration barriers at high compressive strains. Similar to other publications a decrease in the migration barrier for expansive strain is observed. But, in addition, a migration barrier decrease under high compressive strains is found beyond a maximal height of the migration barrier. A simple analytic model offers an explanation. The drop of the migration barrier at high compressions originates from the elevation of the ground-state energy. This means: Increasing ground state energies becomes an interesting alternative to facilitate ionic mobility. The second approach is based on the idea, that actually, only in the direction of ion

  6. In Situ formation of pentafluorophosphate benzimidazole anion stabilizes high-temperature performance of lithium-ion batteries

    International Nuclear Information System (INIS)

    Pradanawati, Sylvia Ayu; Wang, Fu-Ming; Rick, John

    2014-01-01

    Highlights: • A new pentafluorophosphate benzimidazole anion was formed by Lewis acid-base reaction. • This pentafluorophosphate benzimidazole anion is fabricated with the benzimidazole anion and PF 5 . • This pentafluorophosphate benzimidazole anion avoids the ominous side reactions that PF 5 reacts SEI to form LiF and HF at high temperature. • The additional pentafluorophosphate benzimidazole anion formation well maintains the battery performance at 60 °C measurement compares to the electrolyte only with contains the salt, LiPF 6 . - Abstract: Lithium salts play a critical role in initiating electrochemical reactions in Li-ion batteries. Single Li ions dissociate from bulk-salt and associate with carbonates to form a solid electrolyte interface (SEI) during the first charge-discharge of the battery. SEI formation and the chemical stability of salt must both be controlled and optimized to minimize irreversible reactions in SEI formation and to suppress the decomposition of the salt at high temperatures. This study synthesizes a new benzimidazole-based anion in the electrolyte. This anion, pentafluorophosphate benzimidazole, results from a Lewis acid-base reaction between the benzimidazole anion and PF 5 . The new pentafluorophosphate benzimidazole anion inhibits the decomposition of LiPF 6 by inhibiting PF 5 side reactions, which degrade the SEI, and lead to the formation of LiF and HF at high temperatures. In addition, the use of the pentafluorophosphate benzimidazole anion results in the formation of a modified SEI that is able to modify the battery's performance. Cyclic voltammetry, scanning electron microscopy, differential scanning calorimetry, electrochemical impedance spectroscopy, as well as charge-discharge and X-ray photoelectron spectroscopy measurements have been used to characterize the materials in this study. The formation of the pentafluorophosphate benzimidazole anion in the electrolyte caused a 14% decrease in the activation energy

  7. High throughput measurement of high temperature strength of ceramics in controlled atmosphere and its use on solid oxide fuel cell anode supports

    DEFF Research Database (Denmark)

    Frandsen, Henrik Lund; Curran, Declan; Rasmussen, Steffen

    2014-01-01

    In the development of structural and functional ceramics for high temperature electrochemical conversion devices such as solid oxide fuel cells, their mechanical properties must be tested at operational conditions, i.e. at high temperature and controlled atmospheres. Furthermore, characterization...... for testing multiple samples at operational conditions providing a high throughput and thus the possibility achieve high reliability. Optical methods are used to measure deformations contactless, frictionless load measuring is achieved, and multiple samples are handled in one heat up. The methodology...... is validated at room temperature, and exemplified by measurement of the strength of solid oxide fuel cell anode supports at 800 C. © 2014 Elsevier B.V. All rights reserved....

  8. An Aurivillius Oxide Based Cathode with Excellent CO2 Tolerance for Intermediate-Temperature Solid Oxide Fuel Cells.

    Science.gov (United States)

    Zhu, Yinlong; Zhou, Wei; Chen, Yubo; Shao, Zongping

    2016-07-25

    The Aurivillius oxide Bi2 Sr2 Nb2 MnO12-δ (BSNM) was used as a cobalt-free cathode for intermediate-temperature solid oxide fuel cells (IT-SOFCs). To the best of our knowledge, the BSNM oxide is the only alkaline-earth-containing cathode material with complete CO2 tolerance that has been reported thus far. BSNM not only shows favorable activity in the oxygen reduction reaction (ORR) at intermediate temperatures but also exhibits a low thermal expansion coefficient, excellent structural stability, and good chemical compatibility with the electrolyte. These features highlight the potential of the new BSNM material as a highly promising cathode material for IT-SOFCs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Effects of grain boundaries at the electrolyte/cathode interfaces on oxygen reduction reaction kinetics of solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Min Gi; Koo, Ja Yang; Ahn, Min Woo; Lee, Won Young [Dept. of Mechanical Engineering, Sungkyunkwan University, Suwon (Korea, Republic of)

    2017-04-15

    We systematically investigated the effects of grain boundaries (GBs) at the electrolyte/cathode interface of two conventional electrolyte materials, i.e., yttria-stabilized zirconia (YSZ) and gadolinia-doped ceria (GDC). We deposited additional layers by pulsed laser deposition to control the GB density on top of the polycrystalline substrates, obtaining significant improvements in peak power density (two-fold for YSZ and three-fold for GDC). The enhanced performance at high GB density in the additional layer could be ascribed to the accumulation of oxygen vacancies, which are known to be more active sites for oxygen reduction reactions (ORR) than grain cores. GDC exhibited a higher enhancement than YSZ, due to the easier formation, and thus higher concentration, of oxygen vacancies for ORR. The strong relation between the concentration of oxygen vacancies and the surface exchange characteristics substantiated the role of GBs at electrolyte/cathode interfaces on ORR kinetics, providing new design parameters for highly performing solid oxide fuel cells.

  10. Crystal structure and ionic conduction path of solid electrolytic materials by high temperature neutron diffraction method

    International Nuclear Information System (INIS)

    Yashima, Masatomo; Nomura, Katsuhiro

    2005-01-01

    Research of the distribution of oxide ions and the ionic conduction path of bismuth oxide (Bi 2 O 3 ), cerium oxide (CeO 2 ) and lanthanum gallate ((La 0.8 Sr 0.2 )(Ga 0.8 Mg 0.15 Co 0.05 )O 3-δ ) is stated. The high temperature neutron diffraction method, analytical method such as Rietveld method, crystal structure analysis of ionic conductor and MEM (Maximum- Entropy Method) are explained. The nuclear density distribution of oxide ions in bismuth oxide showed so larger distribution in the direction of and than Bi ions that the oxide ions conducted these direction in the crystal. The nuclear density distribution of oxide ions of cerium oxide indicated larger distribution in the direction of than Ce ions and its tendency was remarkable at high temperature. Accordingly, the oxide ions conducted in the direction of and . The oxide ions distribution in lanthanum gallate compound was larger and complicated than positive ions. The oxide ions conducted to by describing an arc between the two stable positions. The nuclear density on the conduction path increased with increasing temperature. This above result corresponded to increase of oxide ion conductivity in the area. (S.Y.)

  11. A Rechargeable High-Temperature Molten Salt Iron-Oxygen Battery.

    Science.gov (United States)

    Peng, Cheng; Guan, Chengzhi; Lin, Jun; Zhang, Shiyu; Bao, Hongliang; Wang, Yu; Xiao, Guoping; Chen, George Zheng; Wang, Jian-Qiang

    2018-06-11

    The energy and power density of conventional batteries are far lower than their theoretical expectations, primarily because of slow reaction kinetics that are often observed under ambient conditions. Here we describe a low-cost and high-temperature rechargeable iron-oxygen battery containing a bi-phase electrolyte of molten carbonate and solid oxide. This new design merges the merits of a solid-oxide fuel cell and molten metal-air battery, offering significantly improved battery reaction kinetics and power capability without compromising the energy capacity. The as-fabricated battery prototype can be charged at high current density, and exhibits excellent stability and security in the highly charged state. It typically exhibits specific energy, specific power, energy density, and power density of 129.1 Wh kg -1 , 2.8 kW kg -1 , 388.1 Wh L -1 , and 21.0 kW L -1 , respectively, based on the mass and volume of the molten salt. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Structural, morphological, and electrical properties of doped ceria as a solid electrolyte for intermediate-temperature solid oxide fuel cells

    KAUST Repository

    Stojmenović, M.

    2015-03-11

    The solid solutions of CeO2 with one or more rare-earth oxides among Yb2O3, Sm2O3, and Gd2O3 are synthesized by either modified glycine nitrate procedure (MGNP) or self-propagating reaction at room temperature (SPRT). The overall mole fraction of rare-earth oxide dopants was x = 0.2. The characterization was committed by XRPD, TEM, BET, and Raman Spectroscopy methods. According to XRPD and Raman spectroscopy, the obtained products presented the single-phase solid solutions with basic fluorite-type CeO2 structure, regardless on the number and the concentration of dopants. Both XRPD and TEM analysis evidenced the nanometer particle dimensions. The defect model was applied to calculate lattice parameters of single-, co-, and multi-doped solids. The sintering of the sample nanopowders was performed at 1550 °C, in air atmosphere. The sintered samples were characterized by XRPD, SEM, and complex impedance methods. The sintering did not affect the concentration ratios of the constituents. The highest conductivity at 700 °C amounting to 2.14 × 10−2 and 1.92 × 10−2 Ω−1 cm−1 was measured for the sample Ce0.8Sm0.08Gd0.12O2−δ, synthesized by SPRT and MGNP methods, respectively. The corresponding activation energies of conductivity, measured in the temperature range 500–700 °C, amounted to 0.24 and 0.23 eV.

  13. Structural, morphological, and electrical properties of doped ceria as a solid electrolyte for intermediate-temperature solid oxide fuel cells

    KAUST Repository

    Stojmenović, M.; Zunic, Milan; Gulicovski, J.; Bajuk-Bogdanović, D.; Holclajtner-Antunović, I.; Dodevski, V.; Mentus, S.

    2015-01-01

    The solid solutions of CeO2 with one or more rare-earth oxides among Yb2O3, Sm2O3, and Gd2O3 are synthesized by either modified glycine nitrate procedure (MGNP) or self-propagating reaction at room temperature (SPRT). The overall mole fraction of rare-earth oxide dopants was x = 0.2. The characterization was committed by XRPD, TEM, BET, and Raman Spectroscopy methods. According to XRPD and Raman spectroscopy, the obtained products presented the single-phase solid solutions with basic fluorite-type CeO2 structure, regardless on the number and the concentration of dopants. Both XRPD and TEM analysis evidenced the nanometer particle dimensions. The defect model was applied to calculate lattice parameters of single-, co-, and multi-doped solids. The sintering of the sample nanopowders was performed at 1550 °C, in air atmosphere. The sintered samples were characterized by XRPD, SEM, and complex impedance methods. The sintering did not affect the concentration ratios of the constituents. The highest conductivity at 700 °C amounting to 2.14 × 10−2 and 1.92 × 10−2 Ω−1 cm−1 was measured for the sample Ce0.8Sm0.08Gd0.12O2−δ, synthesized by SPRT and MGNP methods, respectively. The corresponding activation energies of conductivity, measured in the temperature range 500–700 °C, amounted to 0.24 and 0.23 eV.

  14. Improved chemical stability and cyclability in Li2S–P2S5–P2O5–ZnO composite electrolytes for all-solid-state rechargeable lithium batteries

    International Nuclear Information System (INIS)

    Hayashi, Akitoshi; Muramatsu, Hiromasa; Ohtomo, Takamasa; Hama, Sigenori; Tatsumisago, Masahiro

    2014-01-01

    Highlights: • Chemical stability in air of Li 2 S–P 2 S 5 –P 2 O 5 –ZnO composite electrolytes was examined. • A partial substitution of P 2 O 5 for P 2 S 5 decreased the rate of H 2 S generation. • The addition of ZnO to the glasses reduced the amount of H 2 S. • All-solid-state lithium cells using the developed composite electrolytes exhibited good cyclability. -- Abstract: Sulfide glasses with high Li + ion conductivity are promising solid electrolytes for all-solid-state rechargeable lithium batteries. This study specifically examined the chemical stability of Li 2 S–P 2 S 5 -based glass electrolytes in air. Partial substitution of P 2 O 5 for P 2 S 5 decreased the rate of H 2 S generation from glass exposed to air. The addition of ZnO to the Li 2 S–P 2 S 5 –P 2 O 5 glasses as a H 2 S absorbent reduced the H 2 S gas release. A composite electrolyte prepared from 90 mol% of 75Li 2 S⋅21P 2 S 5 ⋅4P 2 O 5 (mol%) glass and 10 mol% ZnO was applied to all-solid-state cells. The all-solid-state In/LiCoO 2 cell with the composite electrolyte showed good cyclability as a lithium secondary battery

  15. A high-capacitance solid-state supercapacitor based on free-standing film of polyaniline and carbon particles

    International Nuclear Information System (INIS)

    Khosrozadeh, A.; Xing, M.; Wang, Q.

    2015-01-01

    Highlights: • The solid-state supercapacitor has high energy density and good cyclic stability. • The electrode is a freestanding composite film of polyaniline and carbon particles. • The impregnation of electrodes with gel electrolyte facilitates high capacitance. • The supercapacitor is lightweight, thin, flexible, and environmental friendly. - Abstract: Polyaniline tends to degrade with cycling in aqueous electrolytes and it can be alleviated using gel electrolytes. A low-cost solid-state supercapacitor of high energy density and good cyclic stability is fabricated with a facile method. The electrodes of the supercapacitor are made of a freestanding composite film of polyaniline and acid-treated carbon particles using phytic acid as a crosslinker, and the gel electrolyte is composed of sulfuric acid and polyvinyl alcohol. The electrochemical performances of the as-fabricated supercapacitor are investigated with cyclic voltammetry, galvanostatic charge/discharge and electrochemical impedance spectroscopy. Our results show that a maximum capacitance of 272.6 F/g (3.63 F/cm 2 ) at a current density of 0.63 A/g can be achieved by the supercapacitor, which is significantly higher than most solid-state ones reported in the literature. The ability to achieve a high-capacitance supercapacitor with good cyclic stability is mainly attributed to excellent infiltration of the gel electrolyte into the electrodes. The developed lightweight, thin, flexible, and environmental friendly supercapacitor would have potential applications in various energy storage devices, such as wearable electronics and hybrid electric vehicles

  16. Solid state protonic conductors II for fuel cells and sensors. Proceedings of the European workshop on solid state materials for low to medium temperature fuel cells and monitors, with special emphasis on proton conductors

    Energy Technology Data Exchange (ETDEWEB)

    Goodenough, J B; Jensen, J; Kleitz, M [eds.

    1983-01-01

    Solid electrolytes for chemical sensing, energy storage and conversion have been actively researched and developed since the early sixties. The zirconia fuel-cell electrolyser, the sodium-sulphur rechargeable battery, the oxygen sensor and lithium batteries can all be cited as significant developments from the field. Although of great potential the solid protonic conductors have somehow been ignored by comparison to the great interest that has been shown in, e.g., the lithium conductors. The long absence of any good, stable protonic conductors could easily explain this. The presence of water in the protonic conductors eliminates the possibility of high-temperature preparation and hence of conventional ceramic processing. Since solid electrolytes are used as dense ceramic membranes, difficulties with the fabrication of protonic electrilytes has been a strong disincentive. However, techniques have been developed for fabricating dense composite membranes; these contain free, but immobilized water that is lost at relatively low temperatures. Framework hydrates hold their water to higher temperatures. Although low-temperature ion-exchange preparations are possible, they yield weak ceramics. Nevertheless, their support on strong substrates, as reported in this conference, may provide an alternate way forward. A second workshop was organised on this theme at Hindsgavl Castle, Denmark, 1982. The aim was to compare the progress made in laboratories in Denmark, France and U.K. and also to review present and and future applications of fuel cells in a broader sense. Thirty scientists and representatives from the Commission of the European Communities, European Space Agency and the Daish Ministry of Energy participated. The proceedings cover all the papers of the workshop and the main comments and suggestions proposed during the discussions.

  17. Room temperature rechargeable polymer electrolyte batteries

    Energy Technology Data Exchange (ETDEWEB)

    Alamgir, M. [EIC Labs., Inc., Norwood, MA (United States); Abraham, K.M. [EIC Labs., Inc., Norwood, MA (United States)

    1995-03-01

    Polyacrylonitrile (PAN)- and poly(vinyl chloride) (PVC)-based Li{sup +}-conductive thin-film electrolytes have been found to be suitable in rechargeable Li and Li-ion cells. Li/Li{sub x}Mn{sub 2}O{sub y} and carbon/LiNiO{sub 2} cells fabricated with these electrolytes have demonstrated rate capabilities greater than the C-rate and more than 375 full depth cycles. Two-cell carbon/LiNiO{sub 2} bipolar batteries could be discharged at pulse currents as high as 50 mA/cm{sup 2}. (orig.)

  18. Polymer Electrolyte Prepared from Highly Deproteinized Natural Rubber Having Epoxy Group

    Science.gov (United States)

    Klinklai, W.; Kawahara, S.; Isono, Y.; Mizumo, T.; Yoshizawa, M.; Ohno, H.

    Deproteinized natural rubber having epoxy group (EDPNR) was applied to transport Li+ as a solid polymer electrolyte. The deproteinized natural rubber, incubated with proteolytic enzyme and surfactant, was subjected to epoxidation followed by oxidative depolymerization in latex stage. The resulting rubber was proved to be a liquid deproteinized natural rubber (LEDPNR) having polar epoxy groups, low Tg, low Mn and well-defined terminal units. Ionic conductivity of LEDPNR mixed with alkali metal salts was investigated through impedance analysis to clarify an effect of proteins present in the rubber. The ionic conductivity of the resulting LEDPNR depended on the kind of salts, their concentrations and temperature. The ionic conductivity of LEDPNR/lithium bis(trifluoromethan sulfonyl)imide (LiTFSI) was higher than that of LEDPNR/ lithium perchlorate (LiClO4). The difference in the ionic conductivity was attributed to the solubility of the salts as results of both high-resolution solid-state 13C-NMR spectroscopy and measurements of spin-lattice relaxation time. The conductivity of LEDPNR/LiTFSI was also dependent upon concentrations of LiTFSI and it reached the highest value at 20 wt%, which was different from the monotonic increase in the Li+ conductivity of liquid epoxidized natural rubber prepared from untreated natural rubber.

  19. High Reversibility of Soft Electrode Materials in All-solid-state Batteries

    Directory of Open Access Journals (Sweden)

    Atsushi eSakuda

    2016-05-01

    Full Text Available All-solid-state batteries using inorganic solid electrolytes (SEs are considered to be ideal batteries for electric vehicles (EVs and plug-in hybrid electric vehicles (PHEVs because they are potentially safer than conventional lithium-ion batteries (LIBs. In addition, all-solid-state batteries are expected to have long battery lives owing to the inhibition of chemical side reactions because only lithium ions move through the typically used inorganic SEs. The development of high-energy (more than 300 Wh kg-1 secondary batteries has been eagerly anticipated for years. The application of high-capacity electrode active materials is essential for fabricating such batteries. Recently, we proposed metal polysulfides as new electrode materials. These materials show higher conductivity and density than sulfur, which is advantageous for fabricating batteries with relatively higher energy density. Lithium niobium sulfides, such as Li3NbS4, have relatively high density, conductivity, and rate capability among metal polysulfide materials, and batteries with these materials have capacities high enough to potentially exceed the gravimetric energy density of conventional LIBs.Favorable solid-solid contact between the electrode and electrolyte particles is a key factor for fabricating high performance all-solid-state batteries. Conventional oxide-based positive electrode materials tend to be given rise to cracks during fabrication and/or charge-discharge processes. Here we report all-solid-state cells using lithium niobium sulfide as a positive electrode material, where favorable solid-solid contact was established by using lithium sulfide electrode materials because of their high processability. Cracks were barely observed in the electrode particles in the all-solid-state cells before or after charging and discharging with a high capacity of approx. 400 mAh g-1, suggesting that the lithium niobium sulfide electrode charged and discharged without experiencing

  20. A high performance cathode for proton conducting solid oxide fuel cells

    KAUST Repository

    Wang, Zhiquan

    2015-01-01

    Intermediate temperature solid-oxide fuel cells (IT-SOFCs)), as one of the energy conversion devices, have attracted worldwide interest for their great fuel efficiency, low air pollution, much reduced cost and excellent longtime stability. In the intermediate temperature range (500-700°C), SOFCs based on proton conducting electrolytes (PSOFCs) display unique advantages over those based on oxygen ion conducting electrolytes. A key obstacle to the practical operation of past P-SOFCs is the poor stability of the traditionally used composite cathode materials in the steam-containing atmosphere and their low contribution to proton conduction. Here we report the identification of a new Ruddlesden-Popper-type oxide Sr3Fe2O7-δ that meets the requirements for much improved long-term stability and shows a superior single-cell performance. With a Sr3Fe2O7-δ-5 wt% BaZr0.3Ce0.5Y0.2O3-δ cathode, the P-SOFC exhibits high power densities (683 and 583 mW cm-2 at 700°C and 650°C, respectively) when operated with humidified hydrogen as the fuel and air as the cathode gas. More importantly, no decay in discharging was observed within a 100 hour test. © The Royal Society of Chemistry 2015.

  1. Thermally responsive polymer electrolytes for inherently safe electrochemical energy storage

    Science.gov (United States)

    Kelly, Jesse C.

    -off" ratio in electrochemical activity at elevated temperatures. Overall, solution pH and conductivity were altered by an order of magnitude and device performance (ability to store charge) decreased by over 70%. After demonstration of a model responsive electrolyte in an aqueous system, ionic liquid (IL) based electrolytes were developed as a means of controlling the electrochemical performance in the non-aqueous environments that batteries, specifically Li-ion, require. Here, two systems were developed: (1) an electrolyte comprising poly(ethylene oxide) (PEO), the IL, [EMIM][BF4], and a lithium salt and (2) an electrolyte comprising poly(benzyl methacrylate) (PBzMA), the IL, [EMIM][TFSI], and a lithium salt. In each system, the polymer-IL phase separation inhibited device operation at elevated temperatures. For the PEO/IL electrolyte, the thermally induced liquid-liquid phase separation was shown to decrease the ionic conductivity, thereby affecting the concentration of ions at the electrode. Additionally, an increasing charge transfer resistance associated with the phase separated polymer coating the porous electrode was shown to limit electrochemical activity significantly. For the PBzMA/IL electrolyte, the solid-liquid phase separation did not show a change in conductivity, but did cause a drastic increase in charge transfer resistance, effectively shutting off Li-ion battery operation at high temperatures. Such responsive mixtures provide a transformative approach to regulating electrochemical processes, which is necessary to achieve inherently safe operation in large format energy storage with EDLCs, supercapacitors and Li-ion batteries.

  2. The Effects of Lithium Triflate (LiCF3SO3) on the PMMA-based Solid Polymer Electrolytes

    International Nuclear Information System (INIS)

    Chew, K. W.; Chen, S. S.; Pang, W. L.; Tan, C. G.; Osman, Z.

    2010-01-01

    The effects of Lithium triflate salt (LiCF 3 SO 3 ), on the poly (methyl methacrylate)(PMMA)-based solid polymer electrolytes plasticized with propylene carbonate (PC) solvated in Tetrahydrofuran (THF) have been studied through a.c impedance spectroscopy and infrared spectroscopy. Lithium triflate was incorporated into the predetermined PMMA/PC system that has the highest value of ionic conductivity. In current investigations, four combination systems: Pure PMMA, (PMMA+PC) systems, (PMMA+LiCF 3 SO 3 ) and (PMMA+PC+LiCF 3 SO 3 ) systems were prepared using the solution cast method. Solutions were stirred for numerous hours to obtain a homogenous solution before it is poured into the petri dishes under ambient temperature to form the solid electrolyte thin film. The films were then removed from petri discs and transferred into the dessicator for further drying prior to the different tests. From the characterization done through the a.c impedance spectroscopy, the highest room temperature ionic conductivity in the pure PMMA sample, (PMMA+PC) system and (PMMA+LiCF 3 SO 3 ) system is 2.83x10 -12 Scm -1 , 4.39x10 -11 Scm -1 and 3.93x10 -6 Scm -1 respectively. The conductivity for (PMMA+PC+LiCF 3 SO 3 ) system was obtained with the 30 wt% of lithium triflate, which is 2.48x10 -5 Scm -1 . Infrared spectroscopy shows that complexation occurred between the polymer and the plasticizer, and the polymer and plasticizer and salt. The interactions have been studied in the C=O band, C-O-C band and the O-CH 3 band.

  3. High-temperature process heat reactor with solid coolant and radiant heat exchange

    International Nuclear Information System (INIS)

    Alekseev, A.M.; Bulkin, Yu.M.; Vasil'ev, S.I.

    1984-01-01

    The high temperature graphite reactor with the solid coolant in which heat transfer is realized by radiant heat exchange is described. Neutron-physical and thermal-technological features of the reactor are considered. The reactor vessel is made of sheet carbon steel in the form of a sealed rectangular annular box. The moderator is a set of graphite blocks mounted as rows of arched laying Between the moderator rows the solid coolant annular layings made of graphite blocks with high temperature nuclear fuel in the form of coated microparticles are placed. The coolant layings are mounted onto ring movable platforms, the continuous rotation of which is realizod by special electric drives. Each part of the graphite coolant laying consecutively passes through the reactor core neutron cut-off zones and technological zone. In the core the graphite is heated up to the temperature of 1350 deg C sufficient for effective radiant heat transfer. In the neutron cut-off zone the chain reaction and further graphite heating are stopped. In the technological zone the graphite transfers the accumulated heat to the walls of technological channels in which the working medium moves. The described reactor is supposed to be used in nuclear-chemical complex for ammonia production by the method of methane steam catalytic conversion

  4. Treatment of solid waste highly contaminated by alpha emitters: Recent developments of leaching process with continuous electrolyte regeneration

    International Nuclear Information System (INIS)

    Madic, C.; Lecomte, M.; Vigreux, B.

    1990-01-01

    Development of processes for leaching solid waste contaminated by alpha or alphaβgamma emitters has been pursued at the Nuclear Research Center in Fontenay-aux-Roses, France with the recent active commissioning of two pilot facilities: the Elise glove box system in February 1987 and the Prolixe shielded hot cell in March 1988. The Elise facility is designed to handle alpha waste and the Prolixe facility is designed to handle alphaβgamma waste. The common goal of the studies conducted in these facilities is to define the operating conditions for declassification of solid waste, i.e. to ensure that the alpha concentration of this waste will be less than 3.7 x 10 6 Bq/kg after treatment, packaging and decay prior to storage in surface repositories. The leaching process developed is mainly based on the continuous electrolytic regeneration of an aggressive agent, AgII, which can induce the dissolution of PuO 2 , the most difficult compound to remove from the solid waste. This paper summarizes recent achievements in the development of this process. 11 refs., 8 figs., 6 tabs

  5. Treatment of solid waste highly contaminated by alpha emitters: recent developments of leaching process with continuous electrolyte regeneration

    International Nuclear Information System (INIS)

    Madic, C.; Lecomte, M.

    1990-01-01

    Development of processes for leaching solid waste contaminated by alpha or alpha/beta/gamma emitters has been pursued at the Nuclear Research Center in Fontenay-aux-Roses, France with the recent active commissioning of two pilot facilities: the Elise glove box system in February 1987 and the Prolixe shielded hot cell in March 1988. The Elise facility is designed to handle alpha waste and the Prolixe facility is designed to handle alpha/beta/gamma waste. The common goal of the studies conducted in these facilities is to define the operating conditions for declassification of solid waste, i.e. to ensure that the alpha concentration of this waste will be less than 3.7 x 10 6 Bq/kg after treatment, packaging and decay prior to storage in surface repositories. The leaching process developed is mainly based on the continuous electrolytic regeneration of an aggressive agent, AgII, which can induce the dissolution of PuO 2 , the most difficult compound to remove from the solid waste. This paper summarizes recent achievements in the development of this process

  6. Investigation of electrolyte leaching in the performance degradation of phosphoric acid-doped polybenzimidazole membrane-based high temperature fuel cells

    Science.gov (United States)

    Jeong, Yeon Hun; Oh, Kyeongmin; Ahn, Sungha; Kim, Na Young; Byeon, Ayeong; Park, Hee-Young; Lee, So Young; Park, Hyun S.; Yoo, Sung Jong; Jang, Jong Hyun; Kim, Hyoung-Juhn; Ju, Hyunchul; Kim, Jin Young

    2017-09-01

    Precise monitoring of electrolyte leaching in high-temperature polymer electrolyte membrane fuel cell (HT-PEMFC) devices during lifetime tests is helpful in making a diagnosis of their quality changes and analyzing their electrochemical performance degradation. Here, we investigate electrolyte leaching in the performance degradation of phosphoric acid (PA)-doped polybenzimidazole (PBI) membrane-based HT-PEMFCs. We first perform quantitative analyses to measure PA leakage during cell operation by spectrophotometric means, and a higher PA leakage rate is detected when the current density is elevated in the cell. Second, long-term degradation tests under various current densities of the cells and electrochemical impedance spectroscopy (EIS) analysis are performed to examine the influence of PA loss on the membrane and electrodes during cell performance degradation. The combined results indicate that PA leakage affect cell performance durability, mostly due to an increase in charge transfer resistance and a decrease in the electrochemical surface area (ECSA) of the electrodes. Additionally, a three-dimensional (3-D) HT-PEMFC model is applied to a real-scale experimental cell, and is successfully validated against the polarization curves measured during various long-term experiments. The simulation results highlight that the PA loss from the cathode catalyst layer (CL) is a significant contributor to overall performance degradation.

  7. High temperature corrosion of metallic interconnects in solid oxide fuel cells

    International Nuclear Information System (INIS)

    Bastidas, D. M.

    2006-01-01

    Research and development has made it possible to use metallic interconnects in solid oxide fuel cells (SOFC) instead of ceramic materials. The use of metallic interconnects was formerly hindered by the high operating temperature, which made the interconnect degrade too much and too fast to be an efficient alternative. When the operating temperature was lowered, the use of metallic interconnects proved to be favourable since they are easier and cheaper to produce than ceramic interconnects. However, metallic interconnects continue to be degraded despite the lowered temperature, and their corrosion products contribute to electrical degradation in the fuel cell. coatings of nickel, chromium, aluminium, zinc, manganese, yttrium or lanthanum between the interconnect and the electrodes reduce this degradation during operation. (Author) 66 refs

  8. Solid oxide fuel cells with apatite-type lanthanum silicate-based electrolyte films deposited by radio frequency magnetron sputtering

    Science.gov (United States)

    Liu, Yi-Xin; Wang, Sea-Fue; Hsu, Yung-Fu; Wang, Chi-Hua

    2018-03-01

    In this study, solid oxide fuel cells (SOFCs) containing high-quality apatite-type magnesium doped lanthanum silicate-based electrolyte films (LSMO) deposited by RF magnetron sputtering are successfully fabricated. The LSMO film deposited at an Ar:O2 ratio of 6:4 on an anode supported NiO/Sm0.2Ce0·8O2-δ (SDC) substrate followed by post-annealing at 1000 °C reveals a uniform and dense c-axis oriented polycrystalline structure, which is well adhered to the anode substrate. A composite SDC/La0·6Sr0·4Co0·2Fe0·8O3-δ cathode layer is subsequently screen-printed on the LSMO deposited anode substrate and fired. The SOFC fabricated with the LSMO film exhibits good mechanical integrity. The single cell with the LSMO layer of ≈2.8 μm thickness reports a total cell resistance of 1.156 and 0.163 Ωcm2, open circuit voltage of 1.051 and 0.982 V, and maximum power densities of 0.212 and 1.490 Wcm-2 at measurement temperatures of 700 and 850 °C, respectively, which are comparable or superior to those of previously reported SOFCs with yttria stabilized zirconia electrolyte films. The results of the present study demonstrate the feasibility of deposition of high-quality LSMO films by RF magnetron sputtering on NiO-SDC anode substrates for the fabrication of SOFCs with good cell performance.

  9. Ethoxy (pentafluoro) cyclotriphosphazene (PFPN) as a multi-functional flame retardant electrolyte additive for lithium-ion batteries

    Science.gov (United States)

    Li, Xi; Li, Weikang; Chen, Lai; Lu, Yun; Su, Yuefeng; Bao, Liying; Wang, Jing; Chen, Renjie; Chen, Shi; Wu, Feng

    2018-02-01

    With the wide application of lithium-ion batteries (LiBs), safety performance is an important constraint on the commercialization of large-scale, high-capacity LIBs. The main reason for the safety problem is that the electrolyte of LiBs is highly flammable, especially under high temperature and high voltage. It is an effective method to improve the safety of cells by mixing flame retardant with conventional electrolyte comprising of LiPF6 and carbonates. Herein, ethoxy (pentafluoro) cyclotriphosphazene (PFPN) is studied as a high efficiency flame retardant. Adding 5 vol% of PFPN results in a non-flammable electrolyte with self-extinguishing time (SET) of 12.38 s g-1 and critical oxygen index (COI) of 22.9, without compromising the capacity of cathode material. The initial discharge capacity of the LiCoO2 electrode with 5% PFPN is 150.7 mAh g-1, with a capacity retention of 99.14% after 30 cycles at 0.1 C. The results show that 5 vol% is the best adding amount of PFPN for electrolyte, which can modify the solid electrolyte interface (SEI). Moreover, PFPN reduces charge transfer resistance of the cells, resulting decreased electrode polarization and enhanced electrochemistry performances at low temperature. These results have confirmed that PFPN has the potential to be a multi-function additive for commercial LIBs production.

  10. Extended UNIQUAC model for correlation and prediction of vapour-liquid-solid equilibria in aqueous salt systems containing non-electrolytes

    DEFF Research Database (Denmark)

    Iliuta, Maria C.; Thomsen, Kaj; Rasmussen, Peter

    2000-01-01

    to aqueous salt systems containing non-electrolytes in order to demonstrate its ability in representing solid-liquid-vapour (SLV) equilibrium and thermal property data for these strongly non-ideal systems. The model requires only pure component and binary temperature-dependent interaction parameters....... The calculations are based on an extensive database consisting of salt solubility data in pure and mixed solvents, VLE data for solvent mixtures and mixed solvent-electrolyte systems and thermal properties for mixed solvent solutions. Application of the model to the methanol-water system in the presence of several...... ions (Na+, K+, NH4+, Cl-, NO3-, SO42-, CO2- and HCO3-) shows that the Extended UNIQUAC model is able to give an accurate description of VLE and SLE in ternary add quaternary mixtures, using the name set of binary interaction parameters. The capability of the model to predict accurately the phase...

  11. Nitrate conversion and supercritical fluid extraction of UO2-CeO2 solid solution prepared by an electrolytic reduction-coprecipitation method

    International Nuclear Information System (INIS)

    Zhu, L.Y.; Duan, W.H.; Wen, M.F.; Xu, J.M.; Zhu, Y.J.

    2014-01-01

    A low-waste technology for the reprocessing of spent nuclear fuel (SNF) has been developed recently, which involves the conversion of actinide and lanthanide oxides with liquid N 2 O 4 into their nitrates followed by supercritical fluid extraction of the nitrates. The possibility of the reprocessing of SNF from high-temperature gas-cooled reactors (HTGRs) with nitrate conversion and supercritical fluid extraction is a current area of research in China. Here, a UO 2 -CeO 2 solid solution was prepared as a surrogate for a UO 2 -PuO 2 solid solution, and the recovery of U and Ce from the UO 2 -CeO 2 solid solution with liquid N 2 O 4 and supercritical CO 2 containing tri-n-butyl phosphate (TBP) was investigated. The UO 2 -CeO 2 solid solution prepared by electrolytic reduction-coprecipitation method had square plate microstructures. The solid solution after heat treatment was completely converted into nitrates with liquid N 2 O 4 . The XRD pattern of the nitrates was similar to that of UO 2 (NO 3 ) 2 . 3H 2 O. After 120 min of online extraction at 25 MPa and 50 , 99.98% of the U and 98.74% of the Ce were recovered from the nitrates with supercritical CO 2 containing TBP. The results suggest a promising potential technology for the reprocessing of SNF from HTGRs. (orig.)

  12. Alkali-Resistant Quasi-Solid-State Electrolyte for Stretchable Supercapacitors.

    Science.gov (United States)

    Tang, Qianqiu; Wang, Wenqiang; Wang, Gengchao

    2016-10-05

    Research on stretchable energy-storage devices has been motivated by elastic electronics, and considerable research efforts have been devoted to the development of stretchable electrodes. However, stretchable electrolytes, another critical component in stretchable devices, have earned quite little attention, especially the alkali-resistant ones. Here, we reported a novel stretchable alkali-resistant electrolyte made of a polyolefin elastomer porous membrane supported potassium hydroxide-potassium polyacrylate (POE@KOH-PAAK). The as-prepared electrolyte shows a negligible plastic deformation even after 1000 stretching cycles at a strain of 150% as well as a high conductivity of 0.14 S cm -1 . It also exhibits excellent alkali resistance, which shows no obvious degradation of the mechanical performance after immersion in 2 M KOH for up to 2 weeks. To demonstrate its good properties, a high-performance stretchable supercapacitor is assembled using a carbon-nanotube-film-supported NiCo 2 O 4 (CNT@NiCo 2 O 4 ) as the cathode and Fe 2 O 3 (CNT@Fe 2 O 3 ) as the anode, proving great application promise of the stretchable alkali-resistant electrolyte in stretchable energy-storage devices.

  13. Study of inhomogeneous solid adlayers at electrolyte-solid interfaces using differential reflectance spectroscopy. Progress report, July 1, 1977--February 28, 1978

    International Nuclear Information System (INIS)

    Sari, S.O.

    1978-03-01

    Differential reflectance spectroscopy has been used to study interactions at liquid-solid and air-solid interfaces. The aim is to examine a number of properties of adsorbed solid and molecular interlayers formed at such boundaries. Differential optical techniques have not previously been used to a large degree to investigate details of interfacial properties. However, in conjunction with x-ray and electron analysis these approaches are important for examining both electronic structure and adsorption-adhesion mechanics of surface coverings even if these are only a few atomic diameters in thickness. Such layers are induced in experiments by electronic circuitry devised to add or subtract controlled amounts of adlayer through reactions at electrolyte-solid interfaces. The purpose is to supply new information of a basic nature concerning interfacial properties. This can be important since crystal phases of some materials exist only in thin surface coverings. Thus, a connection of this work may well be important to new thin-layer technology. Moreover, an important relation seems well established to problems in solar energy. It is known, for example, that interfacial layers modify gas evolution at some electrolyte-oxide boundaries and thus their study is closely relevant to improvement of some new fuel production schemes

  14. Steam Electrolysis by Proton-Conducting Solid Oxide Electrolysis Cells (SOECs) with Chemically Stable BaZrO3-Based Electrolytes

    KAUST Repository

    Bi, Lei

    2015-07-17

    BaZrO3-based material was applied as the electrolyte for proton-conducting solid oxide fuel cells (SOECs). Compared with the instability of BaCeO3-based proton-conductors, BaZrO3-based material could be a more promising candidate for proton-conducting SOECs due to its excellent chemical stability under H2O conditions, but few reports on this aspect has been made due to the processing difficulty for BaZrO3. Our recent pioneering work has demonstrated the feasibility of using BaZrO3-based electrolyte for SOECs and the fabricated cell achieves relatively high cell performance, which is comparable or even higher than that for BaCeO3-based SOECs and offers better chemical stability. Cell performance can be further improved by tailoring the electrolyte and electrode. © The Electrochemical Society.

  15. Preconceptual design of hyfire. A fusion driven high temperature electrolysis plant

    International Nuclear Information System (INIS)

    Varljen, T.C.; Chi, J.W.H.; Karbowski, J.S.

    1983-01-01

    Brookhaven National Laboratory has been engaged in a scoping study to investigate the potential merits of coupling a fusion reactor with a high temperature blanket to a high temperature electrolysis (HTE) process to produce hydrogen and oxygen. Westinghouse is assisting this study in the areas of systems design integration, plasma engineering, balance of plant design and electrolyzer technology. The aim of the work done in the past year has been to focus on a reference design point for the plant, which has been designated HYFIRE. In prior work, the STARFIRE commercial tokamak fusion reactor was directly used as the fusion driver. This report describes a new design obtained by scaling the basic STARFIRE design to permit the achievement of a blanket power of 6000 MWt. The high temperature blanket design employs a thermally insulated refractory oxide region which provides high temperature (>1000 deg. C) steam at moderate pressures to high temperature electrolysis units. The electrolysis process selected is based on the high temperature, solid electrolyte fuel cell technology developed by Westinghouse. An initial process design and plant layout has been completed; component cost and plant economics studies are now underway to develop estimates of hydrogen production costs and to determine the sensitivity of this cost to changes in major design parameters. (author)

  16. Nanostructuring the electronic conducting La0.8Sr0.2MnO3-δ cathode for high-performance in proton-conducting solid oxide fuel cells below 600°C

    KAUST Repository

    Da’ as, Eman Husni; Bi, Lei; Boulfrad, Samir; Traversa, Enrico

    2017-01-01

    Proton-conducting oxides offer a promising electrolyte solution for intermediate temperature solid oxide fuel cells (SOFCs) due to their high conductivity and low activation energy. However, the lower operation temperature leads to a reduced cathode activity and thus a poorer fuel cell performance. La0.8Sr0.2MnO3-δ (LSM) is the classical cathode material for high-temperature SOFCs, which lack features as a proper SOFC cathode material at intermediate temperatures. Despite this, we here successfully couple nanostructured LSM cathode with proton-conducting electrolytes to operate below 600°C with desirable SOFC performance. Inkjet printing allows depositing nanostructured particles of LSM on Y-doped BaZrO3(BZY) backbones as cathodes for proton-conducting SOFCs, which provides one of the highest power output for the BZY-based fuel cells below 600°C. This somehow changes the common knowledge that LSM can be applied as a SOFC cathode materials only at high temperatures (above 700°C).

  17. Nanostructuring the electronic conducting La0.8Sr0.2MnO3-δ cathode for high-performance in proton-conducting solid oxide fuel cells below 600°C

    KAUST Repository

    Da’as, Eman Husni

    2017-10-28

    Proton-conducting oxides offer a promising electrolyte solution for intermediate temperature solid oxide fuel cells (SOFCs) due to their high conductivity and low activation energy. However, the lower operation temperature leads to a reduced cathode activity and thus a poorer fuel cell performance. La0.8Sr0.2MnO3-δ (LSM) is the classical cathode material for high-temperature SOFCs, which lack features as a proper SOFC cathode material at intermediate temperatures. Despite this, we here successfully couple nanostructured LSM cathode with proton-conducting electrolytes to operate below 600°C with desirable SOFC performance. Inkjet printing allows depositing nanostructured particles of LSM on Y-doped BaZrO3(BZY) backbones as cathodes for proton-conducting SOFCs, which provides one of the highest power output for the BZY-based fuel cells below 600°C. This somehow changes the common knowledge that LSM can be applied as a SOFC cathode materials only at high temperatures (above 700°C).

  18. Yttria-doped zirconia as solid electrolyte for fuel-cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Butz, Benjamin

    2009-11-27

    7.3-10 mol% yttria-doped zirconia (YDZ) was studied with emphasis on its long-term stability as solid electrolyte. The decomposition of common 8.5YDZ (950 C) was detected by analytical TEM. As second issue, the microstructural and chemical properties of nanocrystalline 7.3YDZ thin films were investigated. Metastable t''-YDZ was found to precipitate in nanoscaled regions in YDZ up to 10 mol% yttria. Furthermore, a revised boundary of the c+t phase field, in which YDZ decomposes, is presented. (orig.)

  19. Yttria-doped zirconia as solid electrolyte for fuel-cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Butz, Benjamin

    2009-11-27

    7.3-10 mol% yttria-doped zirconia (YDZ) was studied with emphasis on its long-term stability as solid electrolyte. The decomposition of common 8.5YDZ (950 C) was detected by analytical TEM. As second issue, the microstructural and chemical properties of nanocrystalline 7.3YDZ thin films were investigated. Metastable t''-YDZ was found to precipitate in nanoscaled regions in YDZ up to 10 mol% yttria. Furthermore, a revised boundary of the c+t phase field, in which YDZ decomposes, is presented. (orig.)

  20. Solvothermal synthesis of gallium-indium-zinc-oxide nanoparticles for electrolyte-gated transistors.

    Science.gov (United States)

    Santos, Lídia; Nunes, Daniela; Calmeiro, Tomás; Branquinho, Rita; Salgueiro, Daniela; Barquinha, Pedro; Pereira, Luís; Martins, Rodrigo; Fortunato, Elvira

    2015-01-14

    Solution-processed field-effect transistors are strategic building blocks when considering low-cost sustainable flexible electronics. Nevertheless, some challenges (e.g., processing temperature, reliability, reproducibility in large areas, and cost effectiveness) are requirements that must be surpassed in order to achieve high-performance transistors. The present work reports electrolyte-gated transistors using as channel layer gallium-indium-zinc-oxide nanoparticles produced by solvothermal synthesis combined with a solid-state electrolyte based on aqueous dispersions of vinyl acetate stabilized with cellulose derivatives, acrylic acid ester in styrene and lithium perchlorate. The devices fabricated using this approach display a ION/IOFF up to 1 × 10(6), threshold voltage (VTh) of 0.3-1.9 V, and mobility up to 1 cm(2)/(V s), as a function of gallium-indium-zinc-oxide ink formulation and two different annealing temperatures. These results validates the usage of electrolyte-gated transistors as a viable and promising alternative for nanoparticle based semiconductor devices as the electrolyte improves the interface and promotes a more efficient step coverage of the channel layer, reducing the operating voltage when compared with conventional dielectrics gating. Moreover, it is shown that by controlling the applied gate potential, the operation mechanism of the electrolyte-gated transistors can be modified from electric double layer to electrochemical doping.

  1. Nb and Pd co-doped La0.57Sr0.38Co0.19Fe0.665Nb0.095Pd0.05O3-δ as a stable, high performance electrode for barrier-layer-free Y2O3-ZrO2 electrolyte of solid oxide fuel cells

    Science.gov (United States)

    Chen, Kongfa; He, Shuai; Li, Na; Cheng, Yi; Ai, Na; Chen, Minle; Rickard, William D. A.; Zhang, Teng; Jiang, San Ping

    2018-02-01

    La0.6Sr0.2Co0.2Fe0.8O3-δ (LSCF) is the most intensively investigated high performance cathode for intermediate temperature solid oxide fuel cells (IT-SOFCs), but strontium segregation and migration at the electrode/electrolyte interface is a critical issue limiting the electrocatalytic activity and stability of LSCF based cathodes. Herein, we report a Nb and Pd co-doped LSCF (La0.57Sr0.38Co0.19Fe0.665Nb0.095Pd0.05O3-δ, LSCFNPd) perovskite as stable and active cathode on a barrier-layer-free anode-supported yttria-stabilized zirconia (YSZ) electrolyte cell using direct assembly method without pre-sintering at high temperatures. The cell exhibits a peak power density of 1.3 W cm-2 at 750 °C and excellent stability with no degradation during polarization at 500 mA cm-2 and 750 °C for 175 h. Microscopic and spectroscopic analysis show that the electrochemical polarization promotes the formation of electrode/electrolyte interface in operando and exsolution of Pd/PdO nanoparticles. The Nb doping in the B-site of LSCF significantly reduces the Sr surface segregation, enhancing the stability of the cathode, while the exsoluted Pd/PdO nanoparticles increases the electrocatalytic activity for the oxygen reduction reaction. The present study opens up a new route for the development of cobaltite-based perovskite cathodes with high activity and stability for barrier-layer-free YSZ electrolyte based IT-SOFCs.

  2. In situ electrochemical-mass spectroscopic investigation of solid electrolyte interphase formation on the surface of a carbon electrode

    International Nuclear Information System (INIS)

    Gourdin, Gerald; Zheng, Dong; Smith, Patricia H.; Qu, Deyang

    2013-01-01

    The energy density of an electrochemical capacitor can be significantly improved by utilizing a lithiated negative electrode and a high surface area positive electrode. During lithiation of the negative carbon electrode, the electrolyte reacts with the electrode surface and undergoes decomposition to form a solid electrolyte interphase (SEI) layer that passivates the surface of the carbon electrode from further reactions between Li and the electrolyte. The reduction reactions that the solvent undergoes also form insoluble and gaseous by-products. In this work, those gaseous by-products generated by reductive decomposition of a carbonate-based electrolyte, 1.2 M LiPF 6 in EC/PC/DEC (3:1:4), were analyzed at different stages during the lithiation process of an amorphous carbon electrode. The stages in the generation of gaseous by-products were determined to come as a result of two, 1-electron reduction steps of the cyclic carbonate components of the electrolyte. Electrochemical impedance spectroscopy was also used to investigate the two distinct electrochemical processes and the development of the two phases of the SEI structure. This is the first time that the state of an electrochemical cell during the formation of the SEI layer has been systematically correlated with theoretical reaction mechanisms through the use of in situ electrochemical-MS and impedance spectroscopy analyses

  3. Experimental and Computational Approaches to Interfacial Resistance in Solid-State Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Takada, Kazunori, E-mail: takada.kazunori@nims.go.jp [Battery Materials Unit, National Institute for Materials Science, Tsukuba (Japan); Global Research Center for Environment and Energy Based on Nanomaterials Science, National Institute for Materials Science, Tsukuba (Japan); Ohno, Takahisa [Global Research Center for Environment and Energy Based on Nanomaterials Science, National Institute for Materials Science, Tsukuba (Japan); Computational Materials Science Unit, National Institute for Materials Science, Tsukuba (Japan)

    2016-03-30

    Solid-state batteries with inorganic solid electrolytes are expected to be an efficient solution to the issues of current lithium-ion batteries that are originated from their organic-solvent electrolytes. Although solid-state batteries had been suffering from low rate capability due to low ionic conductivities of solid electrolytes, some sulfide solid electrolytes exhibiting high ionic conductivity of the order of 10{sup −2} S cm{sup −1} have been recently developed. Since the conductivity is comparable to or even higher than that of liquid electrolytes, when taking the transport number of unity into account, ion transport in solid electrolytes has ceased from rate determination; however, it has been replaced by that across interfaces. The sulfide electrolytes show high interfacial resistance to the high-voltage cathodes. Our previous studies have demonstrated that oxide solid electrolytes interposed at the interface reduce the resistance, and they also suggest that the high resistance is attributable to a lithium-depleted layer formed at the interface. This study employs the first-principles calculation in order to gain insight into the interface. The interface structure between an oxide cathode/sulfide electrolyte simulated by the first-principles molecular dynamics has disclosed the presence of lithium-depleted layer at the interface, and the electronic structure calculated on the basis of density functional theory strongly suggests that the charge current preferentially removes lithium ions from the sulfide electrolyte side of the interface to deplete the lithium ion there. These calculation results are consistent with the transport mechanism proposed from the experimental results.

  4. Experimental and Computational Approaches to Interfacial Resistance in Solid-State Batteries

    International Nuclear Information System (INIS)

    Takada, Kazunori; Ohno, Takahisa

    2016-01-01

    Solid-state batteries with inorganic solid electrolytes are expected to be an efficient solution to the issues of current lithium-ion batteries that are originated from their organic-solvent electrolytes. Although solid-state batteries had been suffering from low rate capability due to low ionic conductivities of solid electrolytes, some sulfide solid electrolytes exhibiting high ionic conductivity of the order of 10 −2 S cm −1 have been recently developed. Since the conductivity is comparable to or even higher than that of liquid electrolytes, when taking the transport number of unity into account, ion transport in solid electrolytes has ceased from rate determination; however, it has been replaced by that across interfaces. The sulfide electrolytes show high interfacial resistance to the high-voltage cathodes. Our previous studies have demonstrated that oxide solid electrolytes interposed at the interface reduce the resistance, and they also suggest that the high resistance is attributable to a lithium-depleted layer formed at the interface. This study employs the first-principles calculation in order to gain insight into the interface. The interface structure between an oxide cathode/sulfide electrolyte simulated by the first-principles molecular dynamics has disclosed the presence of lithium-depleted layer at the interface, and the electronic structure calculated on the basis of density functional theory strongly suggests that the charge current preferentially removes lithium ions from the sulfide electrolyte side of the interface to deplete the lithium ion there. These calculation results are consistent with the transport mechanism proposed from the experimental results.

  5. Cobalt-free cathode material SrFe{sub 0.9}Nb{sub 0.1}O{sub 3-{delta}} for intermediate-temperature solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Qingjun [State Key Laboratory of Superhard Materials and College of Physics, Jilin University, Changchun 130012 (China); College of Science, Civil Aviation University of China, Tianjin 300300 (China); Zhang, Leilei; He, Tianmin [State Key Laboratory of Superhard Materials and College of Physics, Jilin University, Changchun 130012 (China)

    2010-02-15

    A cobalt-free cubic perovskite oxide, SrFe{sub 0.9}Nb{sub 0.1}O{sub 3-{delta}} (SFN) was investigated as a cathode for intermediate-temperature solid oxide fuel cells (IT-SOFCs). XRD results showed that SFN cathode was chemically compatible with the electrolyte Sm{sub 0.2}Ce{sub 0.8}O{sub 1.9} (SDC) for temperatures up to 1050 C. The electrical conductivity of SFN sample reached 34-70 S cm{sup -1} in the commonly operated temperatures of IT-SOFCs (600-800 C). The area specific resistance was 0.138 {omega} cm{sup 2} for SFN cathode on SDC electrolyte at 750 C. A maximum power density of 407 mW cm{sup -2} was obtained at 800 C for single-cell with 300 {mu}m thick SDC electrolyte and SFN cathode. (author)

  6. The polymer gel electrolyte based on poly(methyl methacrylate) and its application in quasi-solid-state dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Yang Hongxun; Huang Miaoliang; Wu Jihuai; Lan Zhang; Hao Sancun; Lin Jianming

    2008-01-01

    Using poly(methyl methacrylate) as polymer host, ethylene carbonate, 1,2-propanediol carbonate and dimethyl carbonate as organic mixture solvents, sodium iodide and iodine as source of I - /I 3 - , a polymer gel electrolyte PMMA-EC/PC/DMC-NaI/I 2 with ionic conductivity of 6.89 mS cm -1 was prepared. Based on the polymer gel electrolyte, a quasi-solid-state dye-sensitized solar cell (DSSC) was fabricated. The quasi-solid-state DSSC possessed a good long-term stability and a light-to-electrical energy conversion efficiency of 4.78% under irradiation of 100 mW cm -2 simulated sunlight, which is almost equal to that of DSSC with a liquid electrolyte

  7. Preparation of hydroxide ion conductive KOH–layered double hydroxide electrolytes for an all-solid-state iron–air secondary battery

    Directory of Open Access Journals (Sweden)

    Taku Tsuneishi

    2014-06-01

    Full Text Available Anion conductive solid electrolytes based on Mg–Al layered double hydroxide (LDH were prepared for application in an all-solid-state Fe–air battery. The ionic conductivity and the conducting ion species were evaluated from impedance and electromotive force measurements. The ion conductivity of LDH was markedly enhanced upon addition of KOH. The electromotive force in a water vapor concentration cell was similar to that of an anion-conducting polymer membrane. The KOH–LDH obtained was used as a hydroxide ion conductive electrolyte for all-solid-state Fe–air batteries. The cell performance of the Fe–air batteries was examined using a mixture of KOH–LDH and iron-oxide-supported carbon as the negative electrode.

  8. In situ x-ray diffraction study of crystal structure of Pd during hydrogen isotope loading by solid-state electrolysis at moderate temperatures 250−300 °C

    Energy Technology Data Exchange (ETDEWEB)

    Fukada, Yoshiki, E-mail: yoshiki_fukada@mail.toyota.co.jp [Toyota Motor Corporation, 1200 Mishuku, Susono-shi, Shizuoka-ken, 410-1193 (Japan); Hioki, Tatsumi; Motohiro, Tomoyoshi [Toyota Central R& D Labs.,Inc, 41-1, Yokomichi, Nagakute, Aichi, 480-1192 (Japan); Green Mobility Collaborative Research Center & Graduate School of Engineering Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603 (Japan); Ohshima, Shigeki [Toyota Central R& D Labs.,Inc, 41-1, Yokomichi, Nagakute, Aichi, 480-1192 (Japan)

    2015-10-25

    Hydrogen isotopes and metal interaction with respect to Pd under high hydrogen isotope potential at moderate temperature region around 300 °C was studied. A dry electrolysis technique using BaZr{sub 1−x} Y{sub x}O{sub 3} solid state electrolyte was developed to generate high hydrogen isotope potential. Hydrogen or deuterium was loaded into a 200 nm thick Pd cathode. The cathode is deposited on SiO{sub 2} substrate and covered with the solid state electrolyte and a Pd anode layer. Time resolved in situ monochromatic x-ray diffraction measurement was performed during the electrolysis. Two phase states of the Pd cathodes with large and small lattice parameters were observed during the electrolysis. Numerous sub-micron scale voids in the Pd cathode and dendrite-like Pd precipitates in the solid state electrolyte were found from the recovered samples. Hydrogen induced super-abundant-vacancy may take role in those phenomena. The observed two phase states may be attributed to phase separation into vacancy-rich and vacancy-poor states. The voids formed in the Pd cathodes seem to be products of vacancy coalescence. Isotope effects were also observed. The deuterium loaded samples showed more rapid phase changes and more formation of voids than the hydrogen doped samples. - Highlights: • High amount hydrogen loading into Pd by all solid-state electrolysis was performed. • Two phase states with large and small lattice parameters were observed. • Lattice contractions were observed suggesting formations of super-abundant-vacancy. • The absence of mechanical pressure might stimulate the formation of the vacancy. • Sub-micron void formations were found in the Pd from recovered samples.

  9. In situ x-ray diffraction study of crystal structure of Pd during hydrogen isotope loading by solid-state electrolysis at moderate temperatures 250−300 °C

    International Nuclear Information System (INIS)

    Fukada, Yoshiki; Hioki, Tatsumi; Motohiro, Tomoyoshi; Ohshima, Shigeki

    2015-01-01

    Hydrogen isotopes and metal interaction with respect to Pd under high hydrogen isotope potential at moderate temperature region around 300 °C was studied. A dry electrolysis technique using BaZr 1−x Y x O 3 solid state electrolyte was developed to generate high hydrogen isotope potential. Hydrogen or deuterium was loaded into a 200 nm thick Pd cathode. The cathode is deposited on SiO 2 substrate and covered with the solid state electrolyte and a Pd anode layer. Time resolved in situ monochromatic x-ray diffraction measurement was performed during the electrolysis. Two phase states of the Pd cathodes with large and small lattice parameters were observed during the electrolysis. Numerous sub-micron scale voids in the Pd cathode and dendrite-like Pd precipitates in the solid state electrolyte were found from the recovered samples. Hydrogen induced super-abundant-vacancy may take role in those phenomena. The observed two phase states may be attributed to phase separation into vacancy-rich and vacancy-poor states. The voids formed in the Pd cathodes seem to be products of vacancy coalescence. Isotope effects were also observed. The deuterium loaded samples showed more rapid phase changes and more formation of voids than the hydrogen doped samples. - Highlights: • High amount hydrogen loading into Pd by all solid-state electrolysis was performed. • Two phase states with large and small lattice parameters were observed. • Lattice contractions were observed suggesting formations of super-abundant-vacancy. • The absence of mechanical pressure might stimulate the formation of the vacancy. • Sub-micron void formations were found in the Pd from recovered samples

  10. Effect of ionic conductivity of zirconia electrolytes on polarization properties of various electrodes in SOFC

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Masahiro; Uchida, Hiroyuki; Yoshida, Manabu [Yamanashi Univ., Kofu (Japan)

    1996-12-31

    Solid oxide fuel cells (SOFCs) have been intensively investigated because, in principle, their energy conversion efficiency is fairly high. Lowering the operating temperature of SOFCs from 1000{degrees}C to around 800{degrees}C is desirable for reducing serious problems such as physical and chemical degradation of the constructing materials. The object of a series of the studies is to find a clue for achieving higher electrode performances at a low operating temperature than those of the present level. Although the polarization loss at electrodes can be reduced by using mixed-conducting ceria electrolytes, or introducing the mixed-conducting (reduced zirconia or ceria) laver on the conventional zirconia electrolyte surface, no reports are available on the effect of such an ionic conductivity of electrolytes on electrode polarizations. High ionic conductivity of the electrolyte, of course, reduces the ohmic loss. However, we have found that the IR-free polarization of a platinum anode attached to zirconia electrolytes is greatly influenced by the ionic conductivity, {sigma}{sub ion}, of the electrolytes used. The higher the {sigma}{sub ion}, the higher the exchange current density, j{sub 0}, for the Pt anode in H{sub 2} at 800 {approximately} 1000{degrees}C. It was indicated that the H{sub 2} oxidation reaction rate was controlled by the supply rate of oxide ions through the Pt/zirconia interface which is proportional to the {sigma}{sub ion}. Recently, we have proposed a new concept of the catalyzed-reaction layers which realizes both high-performances of anodes and cathodes for medium-temperature operating SOFCs. We present the interesting dependence of the polarization properties of various electrodes (the SDC anodes with and without Ru microcatalysts, Pt cathode, La(Sr)MnO{sub 3} cathodes with and without Pt microcatalysts) on the {sigma}{sub ion} of various zirconia electrolytes at 800 {approximately} 1000{degrees}C.

  11. Pyrrolidinium-based ionic liquid electrolyte with organic additive and LiTFSI for high-safety lithium-ion batteries

    International Nuclear Information System (INIS)

    Yang, Binbin; Li, Cuihua; Zhou, Junhui; Liu, Jianhong; Zhang, Qianling

    2014-01-01

    Highlights: • New ionic liquid electrolytes composed by PYR 13 TFSI and EC/DMC-5%VC. • Mixed electrolyte for use in high-safety lithium-ion batteries. • LiTFSI concentration in IL electrolyte greatly affects the rate capability of the cell. • The optimal mixed electrolyte is ideal for applications at high temperature. - Abstract: In this paper, we report on the physicochemical properties of mixed electrolytes based on an ionic liquid N-propyl-N-methylpyrrolidiniumbis (trifluoromethanesulfonyl) imide (PYR 13 TFSI), organic additives, and lithium bis (trifluoromethanesulfonyl) imide (LiTFSI) for high safety lithium-ion batteries. The proposed optimal content of ionic liquid in the mixed electrolyte is 65 vol%, which results in non- flammability, high thermal stability, a wide electrochemical window of 4.8 V, low viscosity, low bulk resistance and the lowest interface resistance to lithium anode. The effects of the concentration of LiTFSI in the above electrolyte are critical to the rate performance of the LiFePO 4 -based battery. We have found the suitable LiTFSI concentration (0.3 M) for good capacity retention and rate capability

  12. Co9 S8 /Co as a High-Performance Anode for Sodium-Ion Batteries with an Ether-Based Electrolyte.

    Science.gov (United States)

    Zhao, Yingying; Pang, Qiang; Wei, Yingjin; Wei, Luyao; Ju, Yanming; Zou, Bo; Gao, Yu; Chen, Gang

    2017-12-08

    Co 9 S 8 has been regarded as a desirable anode material for sodium-ion batteries because of its high theoretical capacity. In this study, a Co 9 S 8 anode material containing 5.5 wt % Co (Co 9 S 8 /Co) was prepared by a solid-state reaction. The electrochemical properties of the material were studied in carbonate and ether-based electrolytes (EBE). The results showed that the material had a longer cycle life and better rate capability in EBE. This excellent electrochemical performance was attributed to a low apparent activation energy and a low overpotential for Na deposition in EBE, which improved the electrode kinetic properties. Furthermore, EBE suppressed side reactions of the electrode and electrolyte, which avoided the formation of a solid electrolyte interphase film. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Thermal expansion of proton solid electrolytes on the basis of BaCeO3

    International Nuclear Information System (INIS)

    Gorelov, V.P.; Arestova, N.V.; Kurumchin, Eh.Kh.; Vdovin, G.K.

    1995-01-01

    Thermal expansion of BaCeO 3 base ceramics is under study. It is shown that within the range of 600-800 deg C solid electrolytes on barium cerate basis exhibity the anomaly of thermal expansion. This fact makes their application difficult. 9 refs., 3 figs

  14. Composite cathode based on yttria stabilized bismuth oxide for low-temperature solid oxide fuel cells

    International Nuclear Information System (INIS)

    Xia Changrong; Zhang Yuelan; Liu Meilin

    2003-01-01

    Composites consisting of silver and yttria stabilized bismuth oxide (YSB) have been investigated as cathodes for low-temperature honeycomb solid oxide fuel cells with stabilized zirconia as electrolytes. At 600 deg. C, the interfacial polarization resistances of a porous YSB-Ag cathode is about 0.3 Ω cm 2 , more than one order of magnitude smaller than those of other reported cathodes on stabilized zirconia. For example, the interfacial resistances of a traditional YSZ-lanthanum maganites composite cathode is about 11.4 Ω cm 2 at 600 deg. C. Impedance analysis indicated that the performance of an YSB-Ag composite cathode fired at 850 deg. C for 2 h is severely limited by gas transport due to insufficient porosity. The high performance of the YSB-Ag cathodes is very encouraging for developing honeycomb fuel cells to be operated at temperatures below 600 deg. C

  15. Recycling of hazardous solid waste material using high-temperature solar process heat

    Energy Technology Data Exchange (ETDEWEB)

    Schaffner, B.; Meier, A.; Wuillemin, D.; Hoffelner, W.; Steinfeld, A.

    2003-03-01

    A novel high-temperature solar chemical reactor is proposed for the thermal recycling of hazardous solid waste material using concentrated solar power. A 10 kW solar reactor prototype was designed and tested for the carbothermic reduction of electric arc furnace dusts (EAFD). The reactor was subjected to mean solar flux intensities of 2000 kW/m2 and operated in both batch and continuous mode within the temperature range 1120-1400 K. Extraction of up to 99% and 90% of the Zn originally contained in the EAFD was achieved in the residue for the batch and continuous solar experiments, respectively. The condensed off-gas products consisted mainly of Zn, Pb, and Cl. No ZnO was detected when the O{sub 2} concentration remained below 2 vol.-%. The use of concentrated solar energy as the source of process heat offers the possibility of converting hazardous solid waste material into valuable commodities for processes in closed and sustainable material cycles. (author)

  16. Electrochemical Properties and Speciation in Mg(HMDS)2-Based Electrolytes for Magnesium Batteries as a Function of Ethereal Solvent Type and Temperature.

    Science.gov (United States)

    Merrill, Laura C; Schaefer, Jennifer L

    2017-09-19

    Magnesium batteries are a promising alternative to lithium-ion batteries due to the widespread abundance of magnesium and its high specific volumetric energy capacity. Ethereal solvents such as tetrahydrofuran (THF) are commonly used for magnesium-ion electrolytes due to their chemical compatibility with magnesium metal, but the volatile nature of THF is a concern for practical application. Herein, we investigate magnesium bis(hexamethyldisilazide) plus aluminum chloride (Mg(HMDS) 2 -AlCl 3 ) electrolytes in THF, diglyme, and tetraglyme at varying temperature. We find that, despite the higher thermal stability of the glyme-based electrolytes, THF-based electrolytes have better reversibility at room temperature. Deposition/stripping efficiency is found to be a strong function of temperature. Diglyme-based Mg(HMDS) 2 -AlCl 3 electrolytes are found to not exchange as quickly as THF and tetraglyme, stabilizing AlCl 2 + and facilitating undesired aluminum deposition. Raman spectroscopy, 27 Al NMR, and mass spectrometry are used to identify solution speciation.

  17. Lithiated Nafion as polymer electrolyte for solid-state lithium sulfur batteries using carbon-sulfur composite cathode

    Science.gov (United States)

    Gao, Jing; Sun, Chunshui; Xu, Lei; Chen, Jian; Wang, Chong; Guo, Decai; Chen, Hao

    2018-04-01

    Due to flexible property and light weight, the lithiated Nafion membrane swollen with PC (PC-Li-Nafion) has been employed as both solid-state electrolyte and separator to fabricate solid-state Li-S cells. The electrochemical measurements of PC-Li-Nafion membrane show that its Li-ion transference number is 0.928, ionic conductivity of 2.1 × 10-4 S cm-1 can be achieved at 70 °C and its electrochemical window is 0 ∼ +4.1 V vs. Li+/Li. It is observed that the Li dendrites are suppressed by using PC-Li-Nafion membrane due to its single-ion conducting property. The amounts of Li-Nafion resin binder and conductive carbon in the cathode are optimized as 40% and 10% respectively to make a balance of ionic and electronic conductivities. A thin-layer Li-Nafion resin with a thickness of around 2 μm is fabricated between the cathode and PC-Li-Nafion membrane to improve the interfacial contact and further enhance the specific capacity of the cell. When measured at 70 °C, the Li-S cell delivers a reversible specific capacity of 1072.8 mAh g-1 (S) at 0.05 C and 895 mAh g-1 (S) at 1 C. The capacity retention at 1 C is 89% after 100 cycles. These results suggest that high-performance solid-state Li-S cells can be fabricated with the Li-Nafion polymer electrolyte.

  18. Highly Stable Lithium Metal Batteries Enabled by Regulating the Solvation of Lithium Ions in Nonaqueous Electrolytes.

    Science.gov (United States)

    Zhang, Xue-Qiang; Chen, Xiang; Cheng, Xin-Bing; Li, Bo-Quan; Shen, Xin; Yan, Chong; Huang, Jia-Qi; Zhang, Qiang

    2018-05-04

    Safe and rechargeable lithium metal batteries have been difficult to achieve because of the formation of lithium dendrites. Herein an emerging electrolyte based on a simple solvation strategy is proposed for highly stable lithium metal anodes in both coin and pouch cells. Fluoroethylene carbonate (FEC) and lithium nitrate (LiNO 3 ) were concurrently introduced into an electrolyte, thus altering the solvation sheath of lithium ions, and forming a uniform solid electrolyte interphase (SEI), with an abundance of LiF and LiN x O y on a working lithium metal anode with dendrite-free lithium deposition. Ultrahigh Coulombic efficiency (99.96 %) and long lifespans (1000 cycles) were achieved when the FEC/LiNO 3 electrolyte was applied in working batteries. The solvation chemistry of electrolyte was further explored by molecular dynamics simulations and first-principles calculations. This work provides insight into understanding the critical role of the solvation of lithium ions in forming the SEI and delivering an effective route to optimize electrolytes for safe lithium metal batteries. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. NMR study of the structure and ion transport in the M1-xRxF2+x diamagnetic solid electrolytes

    International Nuclear Information System (INIS)

    Matsulv, A.N.; Nuznik, V.M.; Livshits, A.I.; Fedorov, P.P.; Sobolev, B.P.

    1988-01-01

    Monocrystalline samples of Sr 0.75 La 0.25 F 2.25 and Ba 0.75 Y 0.25 F 2.25 solid electrolytes, which belong to diamagnetic fluorite-like solid solutions, are investigated using 19 F continuous NMR method at 48 MHz frequency. Comparison of theoretical calculations and experimental data has allowed to attach component-spectra to two structural positions - F l main lattice one and F i interstitial one. A technique is suggested, and evaluation of density of structural positions is made on the basis of orientational dependences of spectra secondary moment. Change of spectra form and dispersion on heating is characteristic one for samples with ion diffusive movement. Analysis of experimental data has allowed to determine, that anionic systems of solid solutions are dinamically heterogeneous. At 290-470 K temperatures the florine ions of both types (F l and F i ) contribute to the ionic conductivity. Within this temperature range movement of the bulk of fluorine ions is more, than 10 4 Hz. Measurements, conducted for Sr 0.75 La 0.25 F 2.25 have shown, that fluorine ions in the interstitial positions are more mobile, than in the lattice ones

  20. Preparation and characterization of novel solid polymer blend electrolytes based on poly (vinyl pyrrolidone) with various concentrations of lithium perchlorate

    Energy Technology Data Exchange (ETDEWEB)

    Kesavan, K., E-mail: kesavanphysics@gmail.com [School of Physics, Alagappa University, Karaikudi 630003, Tamilnadu (India); Mathew, Chithra M. [School of Physics, Alagappa University, Karaikudi 630003, Tamilnadu (India); Rajendran, S., E-mail: sraj54@yahoo.com [School of Physics, Alagappa University, Karaikudi 630003, Tamilnadu (India); Ulaganathan, M. [Energy Research Institute @ NTU, Nanyang Technological University, Singapore 637 553 (Singapore)

    2014-05-01

    Graphical abstract: - Highlights: • The maximum ionic conductivity value was found to be 0.2307 × 10{sup −5} S cm{sup −1} for PEO(90 wt%)/PVP(10 wt%)/LiClO{sub 4}(8 wt%) based electrolyte at room temperature. • The structural and functional groups were studied by XRD and FTIR. • Both direct and indirect optical band gap values were evaluated from UV–vis analysis. • The change in viscosity of the polymer electrolytes was studied by photoluminescence spectra. - Abstract: A series of conducting novel solid polymer blend electrolytes (SPE) based on the fixed ratio of poly (ethylene oxide)/poly (vinyl pyrrolidone) (PEO/PVP) and various concentrations of salt lithium perchlorate (LiClO{sub 4}) were prepared by solvent casting technique. Structural and complex formation of the prepared electrolytes was confirmed by X-ray diffraction and FTIR analyses. The maximum ionic conductivity value was found to be 0.2307 × 10{sup −5} S cm{sup −1} for 8 wt% of LiClO{sub 4} based system at ambient temperature. Thermal stability of the present system was studied by thermo gravimetric/differential thermal analysis (TG/DTA). Surface morphology of the sample having maximum ionic conductivity was studied by atomic force microscope (AFM). Optical properties like direct and indirect band gaps were investigated by UV–vis analysis. The change in viscosity of the polymer complexes were also identified using photoluminescence emission spectra. PEO(90)/PVP(10)/LiClO{sub 4}(8) has the highest conductivity which is supported by the lowest optical band gap and lowest intensity in photoluminescence spectroscopy near 400–450 nm.