Sample records for high-temperature moessbauer study

  1. Synthesis, structure, and high temperature Moessbauer and Raman spectroscopy studies of Ba{sub 1.6}Sr{sub 1.4}Fe{sub 2}WO{sub 9} double perovskite

    Energy Technology Data Exchange (ETDEWEB)

    Manoun, B., E-mail: [Laboratoire de Physico-Chimie des Materiaux, Departement de Chimie, FST Errachidia (Morocco); Equipe Materiaux et environnement, laboratoire des Procedes de Valorisation des Ressources Naturelles, des Materiaux et Environnement, FST Settat (Morocco); Benmokhtar, S. [Laboratoire de chimie des Materiaux Solides (LCMS), Departement de Chimie, Faculte des Sciences Ben M' Sik Casablanca (Morocco); Bih, L.; Azrour, M. [Laboratoire de Physico-Chimie des Materiaux, Departement de Chimie, FST Errachidia (Morocco); Ezzahi, A.; Ider, A. [Equipe Materiaux et environnement, laboratoire des Procedes de Valorisation des Ressources Naturelles, des Materiaux et Environnement, FST Settat (Morocco); Azdouz, M. [Laboratoire de Physico-Chimie des Materiaux, Departement de Chimie, FST Errachidia (Morocco); Annersten, H.; Lazor, P. [Department of Earth Sciences, Uppsala University, S-752 36 Uppsala (Morocco)


    Research highlights: {yields} Synthesis and characterization of new double perovskites, apatites, orthophosphates and orthovanadates. {yields} High pressure and high temperature studies of double perovskite, orthophosphates, orthovanadates and MAX phases, using XRD, synchrotron radiations, Raman spectroscopy, magnetism, Moessbauer. {yields} Pressure, temperature and compositions induced phase transitions in these materials. {yields} Structural determination/refinement of these compounds as a function of temperature, pressure and composition. - Abstract: Ba{sub 1.6}Sr{sub 1.4}Fe{sub 2}WO{sub 9} has been prepared in polycrystalline form by solid-state reaction method in air, and has been studied by X-ray powder diffraction method (XRPD), and high temperature Moessbauer and Raman spectroscopies. The crystal structure was resolved at room temperature by the Rietveld refinement method, and revealed that Ba{sub 1.6}Sr{sub 1.4}Fe{sub 2}WO{sub 9} crystallizes in a tetragonal system, space group I4/m, with a = b = 5.6489(10)A, c = 7.9833(2)A and adopts a double perovskite-type A{sub 3}B'{sub 2}B''O{sub 9} (A = Ba, Sr; B' = Fe/W, and B'' = Fe/W) structure described by the crystallographic formula (Ba{sub 1.07}Sr{sub 0.93}){sub 4d}(Fe{sub 0.744}W{sub 0.256}){sub 2a}(Fe{sub 0.585}W{sub 0.415}){sub 2b}O{sub 6}. The structure contains alternating [(Fe/W){sub 2a}O{sub 6}] and [(Fe/W){sub 2b}O{sub 6}] octahedra. Moessbauer studies reveal the presence of iron in the 3+ oxidation state. The high temperature Moessbauer measurements showed a magnetic to paramagnetic transition around 405 {+-} 10 K. The transition is gradual over the temperature interval. The decrease in isomer shift is in line with the general temperature dependence. While the isomer shift is rather linear over the whole temperature range, the quadratic dipolar {Delta}E temperature dependence shows an abrupt change at 405 K. The latter results allow concluding that a temperature

  2. Moessbauer Studies of Implanted Impurities in Solids

    CERN Multimedia


    Moessbauer studies were performed on implanted radioactive impurities in semiconductors and metals. Radioactive isotopes (from the ISOLDE facility) decaying to a Moessbauer isotope were utilized to investigate electronic and vibrational properties of impurities and impurity-defect structures. This information is inferred from the measured impurity hyperfine interactions and Debye-Waller factor. In semiconductors isoelectronic, shallow and deep level impurities have been implanted. Complex impurity defects have been produced by the implantation process (correlated damage) or by recoil effects from the nuclear decay in both semiconductors and metals. Annealing mechanisms of the defects have been studied. \\\\ \\\\ In silicon amorphised implanted layers have been recrystallized epitaxially by rapid-thermal-annealing techniques yielding highly supersaturated, electrically-active donor concentrations. Their dissolution and migration mechanisms have been investigated in detail. The electronic configuration of Sb donors...

  3. Moessbauer Study of Multiple Substitutions in YBCO

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, M.; Patel, N. V.; Mehta, P. K.; Somayajulu, D. R. S. [M.S. University, Physics Department (India)


    Moessbauer studies of multiple substitutions in YBCO with general formula (Y{sub 1-Z}Ca{sub Z})Ba{sub 2}(Cu{sub 1-X-Y}Fe{sub Y}M{sub X}){sub 3}O{sub 7-{delta}} are reported. XRD has been used to find out the lattice parameters. All the samples show a single tetragonal phase formation. Iodometric titration is done to estimate the oxygen content. The present study discusses the effect of multiple substitutions of 3d-ions like Ni, Zn, Co, Mn, Cr in YBCO and the effect of various substitutions on charge balancing, oxygen content and site occupancy.

  4. Moessbauer spectroscopic study of half-Heusler compounds

    Energy Technology Data Exchange (ETDEWEB)

    Ksenofontov, V., E-mail:; Kroth, K.; Reiman, S.; Casper, F.; Jung, V. [Johannes Gutenberg Universitaet, Institut fuer Anorganische Chemie und Analytische Chemie (Germany); Takahashi, M.; Takeda, M. [Toho University, Department of Chemistry, Faculty of Science (Japan); Felser, C. [Johannes Gutenberg Universitaet, Institut fuer Anorganische Chemie und Analytische Chemie (Germany)


    The family of half-Heusler compounds offers a variety of half-metallic ferromagnetic materials. We have applied the Moessbauer spectroscopy to study the atomic order, local surroundings and hyperfine fields to several half-Heusler compounds. {sup 121}Sb Moessbauer study of the compound CoMnSb revealed the presence of two nonequivalent antimony positions in the elementary cell and enabled to identify the structure. {sup 119m}Sn, {sup 155}Gd and {sup 197}Au Moessbauer spectroscopic studies were used to characterize the properties of ferromagnetic granular material based on the half-Heusler ferromagnet MnAuSn in the antiferromagnetic GdAuSn matrix.

  5. Moessbauer studies of impactites from Huamalies province in Huanuco Region

    Energy Technology Data Exchange (ETDEWEB)

    Bustamante, A., E-mail:; Espinoza, S. [San Marcos University, Faculty of Physical Sciences (Peru); Morales, G. [Museo de Historia Natural(Museum of Natural History) (Peru); Scorzelli, R. B. [Centro Brasileiro de Pesquisas Fisicas (Brazilian Center for Research in Physics) (Brazil)


    This report is about the X-ray diffraction and Moessbauer studies of three impactite samples denominated PMe-8, PMe-9 and PMe-11 from Huamalies Province in Huanuco Region, Peru. When terrestrial rocks are submitted to pressures higher than 60 GP, the majority is completely melted, forming a kind of glass called impactites. X-ray diffraction indicates the presence of quartz as the principal mineralogical phase in all samples. The {sup 57}Fe Moessbauer spectra at room temperature of samples PMe-8 and PMe-9 show broadened spectra that were fitted using a distribution model. The most probable field of the magnetic component is 34 T, corresponding to the presence of small particles of goethite, confirmed by the 4.2 K spectrum. For the sample PMe-11, the MS showed the presence of well crystallized hematite.

  6. Comparative Study of Human Liver Ferritin and Chicken Liver by Moessbauer Spectroscopy. Preliminary Results

    Energy Technology Data Exchange (ETDEWEB)

    Oshtrakh, M. I. [Ural State Technical University - UPI, Division of Applied Biophysics, Faculty of Physical Techniques and Devices for Quality Control (Russian Federation); Milder, O. B.; Semionkin, V. A. [Ural State Technical University - UPI, Faculty of Experimental Physics (Russian Federation); Prokopenko, P. G. [Russian State Medical University, Faculty of Biochemistry (Russian Federation); Malakheeva, L. I. [Simbio Holding, Science Consultation Department (Russian Federation)


    A comparative study of normal human liver ferritin and livers from normal chicken and chicken with Marek disease was made by Moessbauer spectroscopy. Small differences of quadrupole splitting and isomer shift were found for human liver ferritin and chicken liver. Moessbauer parameters for liver from normal chicken and chicken with Marek disease were the same.

  7. Moessbauer spectroscopic study on inorganic compounds. Pt. 2

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Masashi; Kitazawa, Takafumi; Nanba, Hiroshi; Yoshinaga, Tomohiro; Nakajima, Norio; Sumisawa, Yasuhiro; Takeda, Masuo [Toho Univ., Funabashi, Chiba (Japan). Faculty of Science; Sawahata, Hiroyuki; Ito, Yasuo


    {sup 166}Er and {sup 127}I Moessbauer spectra were observed. {sup 166}Er Moessbauer spectrum of Er metal and 9 compounds were measured by {sup 166}Ho/Y{sub 0.6}Ho{sub 0.4}H{sub 2} source at 12K and the parameters such as e{sup 2}qQ(mm s{sup -1}), Heff(T) and {tau}(ns) were determined. The relaxation time of ErCl{sub 3}{center_dot}6H{sub 2}O was 0.7ns, long, but that of ErCl{sub 3} was 10 ps, short time. {sup 127}I Moessbauer spectrum of PhI(O{sub 2}CR){sub 2} (R=CH{sub 3}, CHF{sub 2}, CH{sub 2}Cl, CHCl{sub 2}, CCl{sub 3}, CH{sub 2}Br, CHBr{sub 2} and CBr{sub 3}) were observed and compared with that of R`{sub 3}Sb(O{sub 2}CR){sub 2} was similar to that of PhI(O{sub 2}CR){sub 2}. The correlation coefficient between e{sup 2}qQ({sup 127}I) and Mulliken population of carboxylic hydrogen atom of R{sub 2}CO{sub 2}H was -0.87. The relation between the hypervalent bond of O-I-O and that of O-Sb-0 was shown by the equation: e{sup 2}qQ({sup 121}Sb)/mm s{sup -1} = -47.2 + 1.32 e{sup 2}qQ({sup 127}I)/mm s{sup -1}. Hypervalent iodine complex such as (PhI(py){sub 2}){sup 2+} salt and E-Sb-I (E=O, I, N and C) were studied, too. (S.Y.)

  8. Magnetic and Moessbauer studies of Fe/V multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Fnidiki, A.; Juraszek, J.; Teillet, J. [Groupe de Metallurgie Physique, equipe Magnetisme et Applications, UMR CNRS 6634, Faculte des Sciences de Rouen, 76821 Mont-Saint-Aignan Cedex (France); Duc, N.H.; Danh, T.M. [Cryogenic Laboratory, University of Hanoi (Viet Nam); Kaabouchi, M.; Sella, C. [Laboratoire de Magnetisme et d' Optique, 92195 Meudon Bellevue (France)


    The structural and magnetic properties of rf-sputtered Fe/V multilayers with the elemental Fe and V layer thickness t{sub Fe}=t{sub V} and with the structural modulation period {lambda} ranging from 2 nm to 24 nm have been studied by high-angle x-ray diffraction, vibrating-sample magnetometry, and conversion-electron Moessbauer spectrometry methods at room temperature. The results show that the Fe/V interfaces are paramagnetic. The magnetic behaviour of the multilayers, hence, originates from the {alpha}-Fe at the centres of the individual subsystems and the iron-rich crystalline Fe(V) alloy lying near the interface. The spin orientation in the Fe layers is strongly aligned in the film plane. However, evidence for a weak perpendicular spin orientation associated with the magnetic topmost Fe layer is found. (author)

  9. Moessbauer Study of Discoloration of Synthetic Resin Covered Electric Switches

    Energy Technology Data Exchange (ETDEWEB)

    Kuzmann, E. [Eoetvoes University, Department of Nuclear Chemistry (Hungary); Muzsay, I.; Homonnay, Z. [Taurus EMERGE, Rubber Industrial Ltd (Hungary); Vertes, A. [Eoetvoes University, Department of Nuclear Chemistry (Hungary)


    {sup 57}Fe Moessbauer spectroscopy and X-ray diffractometry were used to investigate brown discoloration and sediments formed on the surface of synthetic resin product covered electronic switches. The Moessbauer measurement revealed that alloyed steels and iron-containing corrosion products are associated with the discolored layers. Iron, and iron corrosion products were shown by both MS and XRD in the sediments formed eventually during the finishing of the synthetic resin products after machining and washing with water solution.

  10. The stabilization of archaeological iron objects: Moessbauer and XRD studies

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, Ursula [Technische Universitaet Muenchen, Physik-Department E15 (Germany); Demoulin, Thibault; Gebhard, Rupert [Archaeologische Staatssammlung Muenchen (Germany); Haeusler, Werner [Technische Universitaet Muenchen, Physik-Department E15 (Germany); Mazzola, Cristina; Meissner, Ina [Archaeologische Staatssammlung Muenchen (Germany); Wagner, Friedrich E., E-mail: [Technische Universitaet Muenchen, Physik-Department E15 (Germany)


    Archaeological iron objects that were buried in the ground for long times often corrode rapidly once they have been excavated. We have used Moessbauer spectroscopy and X-ray diffraction to elucidate some specific problems of the corrosion of such objects and gain insights that may help to improve the methods of conservation.

  11. Atmospheric Corrosion on Steel Studied by Conversion Electron Moessbauer Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Nakanishi, Akio; Kobayashi, Takayuki [Shiga University of Medical Science, Department of Physics (Japan)


    In order to investigate initial products on steel by atmospheric corrosion, conversion electron Moessbauer measurements were carried out at temperatures between 15 K and room temperature. From the results obtained at low temperatures, it was found that the corrosion products on steel consisted of ferrihydrite.

  12. Moessbauer study of austenite stability and impact fracture in Fe--6Ni steel

    Energy Technology Data Exchange (ETDEWEB)

    Fultz, B.T.


    The two phase (..cap alpha.. + ..gamma..) microstructure of a commercial cryogenic alloy steel was studied with regard to possible phase transformations induced by impact fracture. A backscatter Moessbauer spectrometer was constructed for measurements of atomic fractions of the two phases near specimen surfaces. Moessbauer spectra were collected from several types of unpolished and chemically polished surfaces of impact specimens to reveal (for the first time) the depth profile of the observed ..gamma.. ..-->.. ..cap alpha..' transformation near fracture surfaces. It was found that the spatial extent of transformation could be monotonically related to the impact energy absorbed by the specimen. These results are interpreted in light of several models of phase stability and impact toughness. A general description of the Moessbauer effect and methods of spectral analysis is included. The method of linear perturbations in the hyperfine magnetic field is discussed with respect to its general usefulness in obtaining chemical information for Moessbauer spectra of the ..cap alpha.. phase. The procedure adopted for spectral analysis was chosen to provide an accurate phase analysis at the expense of chemical information. Both the Moessbauer equipment and analysis procedures were developed with the primary objective of providing a routine metallurgical phase analysis technique for low alloy steels.

  13. Moessbauer study of steels cooled to dry ice temperature

    Energy Technology Data Exchange (ETDEWEB)

    Boyanov, B S [Plovdiv University ' Paisii Hilendarski' , 24 Tsar Assen St., 4000 Plovdiv (Bulgaria); Paneva, D G [Institute of Catalysis, Bulgarian Academy of Science, 1113 Sofia (Bulgaria); Ivanov, K I, E-mail: boyanb@uni-plovdiv.b [Agricultural University, Department of Chemistry, 12 Mendeleev St., 4000 Plovdiv (Bulgaria)


    Based on the change of hardness H{sub B,} the parameter {beta}, the microstructure and Moessbauer spectra of 7 kinds of steels the conclusion is made that in the conditions of CO{sub 2} (dry ice) cleaning, using dry ice for repair and modification of pipes and dry snow for cooling (-78.3 {sup 0}C) no significant change in the mechanical properties of the cleaned surfaces, mechanically processed steels and the steel pipes can be expected.

  14. Lattice dynamic studies from {sup 151}Eu-Moessbauer spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Katada, Motomi [Tokyo Metropolitan Univ., Hachioji (Japan). Faculty of Science


    New complexes {l_brace}(Eu(napy){sub 2}(H{sub 2}O){sub 3})(Fe(CN){sub 6})4H{sub 2}O{r_brace}{sub x}, bpy({l_brace}(Eu(bpy)(H{sub 2}O){sub 4})(Fe(CN){sub 6})1.5bpy4H{sub 2}O{r_brace}{sub x}) and ({l_brace}(Eu(phen){sub 2}(H{sub 2}O){sub 2})(Fe(CN){sub 6})2phen{r_brace}{sub x}) etc were synthesized using phenanthroline and bipyridine. Lattice dynamic behaviors of Eu and Fe atom in the complexes were investigated by Moessbauer spectroscopy. By {sup 151}Eu-Moessbauer spectrum and parameters of new complexes, bpy complex showed the largest quadrupole splitting value, indicating bad symmetry of Eu ligand in the environment. Molecular structure of napy, bpy and phen complex were shown. These complexes are consisted of Eu atom coordinated with ligand and water molecule, of which (Fe(CN){sub 6}){sup 3-} ion formed one dimentional polymer chain and naphthyridines formed stacking structure. New complexes were observed by {sup 57}Fe-Moessbauer spectroscopy, too. The quadrupole splitting values were very different each other, indicating change of symmetry of Fe atom in the environment and three valence low spin state of Fe in the complex. (S.Y.)

  15. Early Pottery Making in Northern Coastal Peru. Part I: Moessbauer Study of Clays

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, I. [Southern Illinois University (United States); Haeusler, W.; Hutzelmann, T.; Wagner, U. [Technische Universitaet Muenchen, Physik-Department E15 (Germany)


    We report on an investigation of several ancient clays which were used for pottery making in northern coastal Peru at a kiln site from the Formative period (ca. 2000-800 BC) in the Poma Canal and at a Middle Sican pottery workshop in use between ca. AD 950 and 1050 at Huaca Sialupe in the lower La Leche valley. Neutron activation analysis, {sup 57}Fe Moessbauer spectroscopy and X-ray diffraction were used for the characterisation of the clays. The changes that occur in iron-bearing compounds in the clays depending on the kiln atmosphere and on the maximum firing temperature were studied by Moessbauer spectroscopy and X-ray diffraction. Laboratory firing series under varying controlled conditions were performed to obtain a basic understanding of the different reactions taking place in the clays during firing. The results can be used as models in the interpretation of the Moessbauer spectra observed in ancient ceramics from the same context.

  16. Moessbauer Spectroscopic Study of a Mural Painting from Morgadal Grande, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Kuno, A.; Matsuo, M. [University of Tokyo, Graduate School of Arts and Sciences (Japan); Soto, A. Pascual [Universidad Nacional Autonoma de Mexico, Instituto de Investigaciones Esteticas (Mexico); Tsukamoto, K. [Escuela Nacional de Antropologia e Historia (Mexico)


    In this study, {sup 57}Fe Moessbauer spectroscopy has been applied to fragments of a mural painting excavated at Morgadal Grande, Mexico, to characterize the pigments used. A sextet attributable to hematite ({alpha}-Fe{sub 2}O{sub 3}) was clearly detected in the red fragments. The spectra of orange fragments showed a doublet attributable to paramagnetic high-spin Fe{sup 3+}, which presumably originates from goethite ({alpha}-FeOOH) exhibiting superparamagnetic relaxation due to its small particle size. The blue fragments contained little iron. The scattered X-ray Moessbauer spectra revealed that the thickness of the pigments was larger than 20 {mu}m.

  17. Carrier mobility of iron oxide nanoparticles supported on ferroelectrics studied by Moessbauer spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, T., E-mail: [DENSO Corporation (Japan); Kano, J. [Okayama University, Graduate School of Natural Science and Technology (Japan); Nakamura, S. [Teikyo University, Department of Science and Engineering (Japan); Fuwa, A. [Waseda University, Faculty of Science and Engineering (Japan); Otoyama, T.; Nakazaki, Y. [Nano Cube Japan Co., Ltd. (Japan); Hashimoto, H.; Takada, J. [Okayama University, Graduate School of Natural Science and Technology (Japan); Ito, M. [DENSO Corporation (Japan); Ikeda, N. [Okayama University, Graduate School of Natural Science and Technology (Japan)


    {sup 57}Fe Moessbauer spectroscopy was performed on two types of Fe oxide nanoparticles supported on a typical ferroelectric, BaTiO3. It was found that the valence state of FeO nanoparticles changed to a mixed 2+/3+ state at high temperature where BaTiO{sub 3} shows paraelectric behaviour. We attribute this phenomenon to the fluctuation of electric dipoles which realizes carrier injection into the Fe oxides. This is the first report which discusses a dynamical valence state of transition metal oxides supported on ferroelectrics.

  18. Rapid sulfur capture studies at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Richards, G.A.; Lawson, W.F.; Maloney, D.J.; Shaw, D.W.


    Determine conditions that would reproduce optimum sulfur capture ( super-equilibrium'') behavior. No attempt was made to extract kinetic data for calcination or sulfur capture, as might be done in a comprehensive study of sorbent behavior. While some interesting anomalies are present in the calcination data and in the limited surface area data, no attempt was made to pursue those issues. Since little sulfur capture was observed at operating conditions where super-equilibrium'' might be expected to occur, tests were stopped when the wide range of parameters that were studied failed to produce significant sulfur capture via the super-equilibrium mechanism. Considerable space in this report is devoted to a description of the experiment, including details of the GTRC construction. This description is included because we have received requests for a detailed description of the GTRC itself, as well as the pressurized dry powder feed system. In addition, many questions about accurately sampling the sulfur species from a high-temperature, high-pressure reactor were raised during the course of this investigation. A full account of the development of the gas and particulate sampling train in thus provided. 8 refs., 17 figs., 2 tabs.

  19. High-pressure Moessbauer study of perovskite iron oxides

    CERN Document Server

    Kawakami, T; Sasaki, T; Kuzushita, K; Morimoto, S; Endo, S; Kawasaki, S; Takano, M


    The perovskite oxides CaFeO sub 3 and La sub 1 sub / sub 3 Sr sub 2 sub / sub 3 FeO sub 3 have been investigated by high-pressure sup 5 sup 7 Fe Moessbauer spectroscopy. The critical temperatures of the charge disproportionation (CD) and the magnetic order (MO) have been determined as a function of pressure. In CaFeO sub 3 the CD (2Fe sup 4 sup + -> Fe sup 3 sup + + Fe sup 5 sup +) occurs at an almost constant temperature of 290 K in the pressure range of 0-17 GPa. Above 20 GPa, the CD is suppressed. The MO temperature of 125 K at an ambient pressure rises to 300 K at 34 GPa. In La sub 1 sub / sub 3 Sr sub 2 sub / sub 3 FeO sub 3 the CD (3Fe sup 1 sup 1 sup / sup 3 sup + -> 2Fe sup 3 sup + + Fe sup 5 sup +) and the MO occur at the same temperature up to 21 GPa, which decreases from 207 to 165 K with increasing pressure. Above 25 GPa, however, the MO temperature rises above 400 K.

  20. Moessbauer Study of Ceramic Finds from the Galeria de las Ofrendas, Chavin de Huantar

    Energy Technology Data Exchange (ETDEWEB)

    Lumbreras, L. G. [Museo Nacional de Antropologia (Peru); Gebhard, R. [Archaeologische Staatssammlung Muenchen (Germany); Haeusler, W. [Technische Universitaet Muenchen, Physik-Department E15 (Germany); Kauffmann-Doig, F. [Universidad Peruana de Ciencias Aplicadas (UPC) (Peru); Riederer, J. [Rathgen-Forschungslabor (Germany); Sieben, G.; Wagner, U. [Technische Universitaet Muenchen, Physik-Department E15 (Germany)


    Ceramic finds from the Galeria de las Ofrendas at Chavin de Huantar and surface finds from the settlement of Chavin were characterised by combining the results of archaeological typology with archaeometric studies using neutron activation analysis, Moessbauer spectroscopy, X-ray diffraction and thin-section microscopy. Sherds from the pyramid Tello are included in the study as representative of local material. The analyses show that the vessels were made from different raw materials and that different firing procedures were used in their production. Sherds of certain styles largely exhibit similar types of Moessbauer patterns and in many instances also have similar element compositions. This supports the archaeological notion that the vessels were brought to Chavin from the provinces, perhaps on the occasion of a festivity.

  1. Phase analysis study of copper ferrite aluminates by X-ray diffraction and Moessbauer spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Almokhtar, M. E-mail:; Abdalla, A.M.Atef M.; Gaffar, M.A


    CuFe{sub 2-x}Al{sub x}O{sub 4} (where x=0.0-0.6) have been synthesized at 950 deg. C, 1000 deg. C, 1050 deg. C and 1100 deg. C using the usual ceramic method. The Moessbauer measurements show reasonable values of magnetic as well as electric hyperfine interactions. At higher sintering temperatures, the spinel ferrite phase is partially dissociated forming delafossite phase in addition to the main matrix. The delafossite phase manifested itself as paramagnetic doublet overlapping the main Moessbauer spectra measured at room temperature. Furthermore, X-ray diffraction studies confirmed the presence of the CuFeO{sub 2} (delafossite) phase of Cu-Al ferrite.

  2. Moessbauer and X-ray study of the firing process for production of improved roofing tiles

    Energy Technology Data Exchange (ETDEWEB)

    Rekecki, R.; Kuzmann, E., E-mail:; Homonnay, Z. [Eoetvoes University, Laboratory of Nuclear Chemistry, Institute of Chemistry (Hungary); Ranogajec, J. [University of Novi Sad, Faculty of Technology (Serbia)


    The effects of firing atmosphere parameters on the microstructural characteristics and physical properties of clay roofing tiles were studied. For these investigations, {sup 57}Fe Moessbauer spectroscopy, X-ray diffractometry and dilatometry were used. XRD of the raw material exploited from the clay pit belonging to the roofing tile factory 'Potisje-Kanjiza', revealed the presence of montmorillonite, kaolinite, illite and some chlorite clay minerals, as well as, quartz, albite, calcite and dolomite. Gradual changes were observed both in the {sup 57}Fe Moessbauer spectra and X-ray diffractograms with samples fired in reducing CO/N{sub 2} gas atmosphere at temperatures between 700 and 1060 Degree-Sign C. These changes reflect the dehydroxylation processes, oxide (Fe{sub 3}O{sub 4}) formation, carbonate decomposition, densification and new silicate (plagioclase) formation. The firing conditions in reducing atmosphere were determined to produce roofing tiles with improved properties.

  3. A Moessbauer Spectral Study of the Hull Steel and Rusticles Recovered from the Titanic

    Energy Technology Data Exchange (ETDEWEB)

    Long, Gary J., E-mail:; Hautot, Dimitri [University of Missouri-Rolla, Department of Chemistry (United States); Grandjean, Fernande; Vandormael, D. [University of Liege, Institute of Physics, B5 (Belgium); Leighly, H. P. [University of Missouri-Rolla, Department of Metallurgical Engineering (United States)


    The recent recovery of steel from the Titanic has permitted a 295 K conversion electron Moessbauer spectral study of the Titanic hull plate steel oriented with the gamma-ray direction either perpendicular or parallel to the microstructural banding directions. The two spectra reveal virtually identical average orientations of the magnetization close to the plane of the plate. The hyperfine parameters are virtually identical to those of {alpha}-iron, a finding which agrees with the chemical analysis which reveals at most 0.21 wt% carbon corresponding to 3 wt% of cementite in pearlite. A 4.2 to 295 K transmission Moessbauer spectral study of the rusticles reveals small particles of geothite undergoing superparamagnetic relaxation with a blocking temperature of ca. 300 K. In addition approximately two percent of the Moessbauer spectral absorption area corresponds to a quadrupole doublet with hyperfine parameters typical of green rust. The identified iron containing components in therusticles agree with the powder X-ray diffraction results which reveal the predominant presence of small particles of poorly crystallized goethite and traces of quartz and green rust. An average size of 20{+-}5 nm for the goethite particles is obtained from both the average hyperfine field and the broadening of the X-ray diffraction peaks. The magnetic anisotropy constant of the goethite particles deduced from the hyperfine field and the particle size is 8x10{sup 3} J/m{sup 3}.

  4. Iron implantation in gadolinium gallium garnet studied by conversion-electron Moessbauer spectroscopy

    CERN Document Server

    Szucs, I; Fetzer, C; Langouche, G


    Gadolinium gallium garnet single crystals were implanted with doses of sup 5 sup 7 Fe ions in the range 8x10 sup 1 sup 5 - 6x10 sup 1 sup 6 atoms cm sup - sup 2. Depending on the dose, iron with Fe sup 2 sup + or Fe sup 3 sup + charge states was found to have formed after the implantation. After a subsequent annealing in air, the iron oxidized to Fe sup 3 sup +. The Moessbauer and channelling measurements showed lattice recrystallization taking place at 600 deg. C. After recrystallization, the iron was found to have substituted for gallium ions both at the octahedral and at the tetrahedral positions. The relative concentration of the two types of iron at the two sites shifted towards the equilibrium distribution upon high-temperature annealing. (author)

  5. Study of iron valence state and position in sub-site by Moessbauer spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Uhm, Young Rang; Lim, Jae Cheong; KIm, Chul Sung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Son, Kwang Jae [Kookmin Univ., Seoul (Korea, Republic of)


    The magnetic ordering temperature and the magnitude of the magnetic fields at the iron sites of YIG can be influenced by substituting, either partially or totally, the Fe{sup 3+} ions at the octahedral and/or the tetrahedral sites with magnetic or diamagnetic ions, and/or by substitution the Y{sup 3+} ions at the dodecahedral sites with magnetic rare earth ions. It has been known for some time that Moessbauer spectroscopy is a powerful method by which iron-containing garnets can be studied. We report here on the synthesis of the compounds with garnet-related structures of composition Y{sub 3}Fe{sub 4.5}Cr{sub 0.5}O{sub 12} and its examination by {sup 57}Fe Moessbauer spectroscopy. The chromium in compounds of the Y{sub 3}Fe{sub 4.5}Cr{sub 0.5}O{sub 12} is distributed at an octahedral site. The Moessbauer spectra can be analyzed using 3 or 4 sets of six Lorentzians with increasing amount of Cr{sup 3+} compounds in this system. It results from the distribution ({sub 4}C{sub n}) of Fe{sup 3+} and Cr{sup 3+} at an octahedral site. A comparative study of ferrous tablets of Dynabi was carried out using Moessbauer spectroscopy. The obtained results revealed the presence of ferrous (Fe{sup 2+}) gluconate and ferrous fumarate in a sample. This observation is important to better control the iron state in such medicaments because their pharmaceutical effect in the body is related to the form and valence of iron. The Cr-containing yttrium iron garnet (YIG), and the exchange interactions and site distributions were studied using {sup 57}Fe Moessbauer spectroscopy. The obtained results revealed the presence of ferrous (Fe{sup 2+}) gluconate and ferrous fumarate in the sample. This observation is important better control the iron state in such medicaments because their pharmaceutical effect in the body is related to the form and valence of iron.

  6. {sup 57}Fe Moessbauer spectroscopy and x-ray diffraction study of some complex metamict minerals

    Energy Technology Data Exchange (ETDEWEB)

    Malczewski, Dariusz, E-mail: [University of Silesia, Faculty of Earth Sciences (Poland); Frackowiak, Janusz E., E-mail: [University of Silesia, Faculty of Computer and Materials Science (Poland); Galuskin, Evgeny V., E-mail: [University of Silesia, Faculty of Earth Sciences (Poland)


    Metamict minerals are a class of natural amorphous materials which were initially crystalline but self-radiation damage mainly from alpha decays of {sup 238}U and {sup 232}Th series inside the structure can produce partially or fully amorphization (metamictization) of these minerals. This paper reports the results of {sup 57}Fe Moessbauer spectroscopy, gamma-ray spectrometry and X-ray diffraction (XRD) study of some complex metamict minerals like: davidite-(La), gadolinite, steenstrupine-(Ce), vesuvianite and comparatively epidote. The absorbed {alpha}-dose for these minerals varies in wide range from 1.9 x 10{sup 14} {alpha}-decay/mg (epidote) to as high as 2.7 x 10{sup 16} {alpha}-decay/mg (steenstrupine). The Moessbauer spectra show decreasing IS values (except steenstrupine) for Fe{sup 2+} components with absorbed {alpha}-dose. Rather unexpected feature of these spectra is a noticeable decrease of the spectral line widths with increasing absorbed {alpha}-dose both Fe{sup 2+} and Fe{sup 3+} components in gadolinite, davidite and steenstrupine.

  7. Moessbauer Studies of Static and Dynamic Critical Behavior. (United States)

    Chowdhury, Ataur Rahman

    Two separate studies were made on two distinct problems in the area of critical phenomena in Heisenberg ferromagnets by Mossbauer effect. The first study involves static critical behavior of a Heisenberg ferromagnet, Fe, randomly disordered by non-magnetic Al impurities. For the theoretical model best representing this system, the random exchange model, it is expected that the static critical exponents remain unchanged with addition of impurity. In order to test this prediction Mossbauer measurements were made to determine the critical exponent (beta). It is found that (beta) remains unchanged with addition of disorder, in agreement with the theoretical prediction. By inclusion of correction to scaling terms in the data analysis, a mean value of (beta) = 0.366(2) is found for five measurements on pure Fe and FeAl alloys. This value is in excellent agreement with the renormalization group prediction (beta) = 0.364(2). The second study concerns the dynamic critical behavior of Gd. The q-averaged atomic spin auto-correlation time, (tau)(,c) was measured from the excess broadening, (DELTA)(GAMMA) of the Mossbauer linewidth of ('161)Dy just above T(,c). On the assumption that the spin fluctuations are isotropic and describable by dynamic scaling theory, (DELTA)(GAMMA) is directly proportional to (tau)(,c) and is expressable as a power law, (DELTA)(GAMMA) = Dt('-w), in an exponent w = (nu)(z-1-(eta)), related to the static exponents (nu) and (eta) and the dynamic exponent z. Theory predicts for Heisenberg ferro- magnets that z = 2.5 (2.0) for spin conserved (non-conserved) order parameter. From measurements in the range 3 x 10('-4) < (T - T(,c))/T(,c) < 3 x 10('-2) we deduced 1.30 < z < 1.52. This anomalous value is much lower than any current theoretical predictions.

  8. Muon spin relaxation and Moessbauer studies of iron pnictide superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Klauss, Hans-Henning; Maeter, H.; Dellmann, T. [Technische Universitaet, Dresden (Germany); Luetkens, H.; Khasanov, R.; Amato, A. [PSI, Villigen (Switzerland); Pashkevich, Y. [Donetsk Phystech, NASU (Ukraine); Hess, C.; Klingeler, R.; Buechner, B. [IFW, Dresden (Germany); Leithe-Jasper, A.; Rosner, H.; Geibel, C.; Schnelle, W. [MPI-CPfS, Dresden (Germany); Braden, M. [Universitaet Koeln (Germany); Litterst, J. [Technische Universitaet, Braunschweig (Germany)


    We have determined the electronic phase diagrams and order parameters of ReO{sub 1-x}F{sub x}FeAs and (Sr,Eu)Fe{sub 2-x}Co{sub x}As{sub 2} superconductors. The results prove an important role of the structural distortion for the SDW magnetism and reveal two gap multiband superconductivity. We examined the interplay of iron and rare earth magnetic order in ReO{sub 1-x}F{sub x}FeAs. The undoped compounds show different magnetic coupling strength of the rare earth ion to the antiferromagnetic iron layers ranging from independent order to strong polarization of the rare earth moments by the ordered iron. Finally, we present recent studies on (Ca,Sr,Ba,Eu)Fe{sub 2}As{sub 2} and (Fe{sub 2}As{sub 2})(Sr{sub 4}T{sub 2}O{sub 6})based pnictide superconductors.

  9. Moessbauer study of modified iron-molybdenum catalysts for methanol oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, K I; Krustev, St V [Agricultural University, Department of Chemistry, 12 Mendeleev St., 4000 Plovdiv (Bulgaria); Mitov, I G [Institute of Catalysis, Bulgarian Academy of Science, 1113 Sofia (Bulgaria); Boyanov, B S, E-mail: kivanov1@abv.b [Plovdiv University ' Paisii Hilendarski' , 24 Tsar Assen St., 4000 Plovdiv (Bulgaria)


    The preparation and catalytic properties of mixed Fe-Mo-W catalysts toward methanol oxidation are investigated. Moessbauer spectroscopy, X-ray diffraction and chemical studies revealed the formation of two types of solid solutions with compositions Fe{sub 2}(Mo{sub x}W{sub 1-x}O{sub 4}){sub 3} and (Mo{sub x}W{sub 1-x})O{sub 3}. The solid solutions formed are characterized by high activity and selectivity upon methanol oxidation and are of interest in view of their practical application. Sodium-doped iron-molybdenum catalysts are also investigated and the NaFe(MoO{sub 4}){sub 2} formation was established.

  10. Moessbauer study of mixed crystalline (Eu sub 2 O sub 3) sub x (Fe sub 2 O sub 3) sub 1 sub - sub x (x=0.45)

    CERN Document Server

    Kim, J G; Kim, Y H; Kim, E C


    The crystallography and the temperature dependence of the Moessbauer parameters of mixed crystalline (Eu sub 2 O sub 3) sub x (Fe sub 2 O sub 3) sub 1 sub - sub x (x=0.45) were studied by the method of X-ray diffraction at room temperature and Moessbauer spectroscopy within the temperature range from liquid nitrogen temperature to 540 K. The X-ray diffraction pattern of the sample showed the coexistence of cubic and orthorhombic crystal phases. The Moessbauer spectrum of 540 K indicated a crystal phase which was in good agreement with the X-ray result and gave no indication, within the experimental error, of any other crystal phases. By analyzing the temperature dependence of the Moessbauer parameters by using the spin-wave theory and the Debye model, useful result were obtained for examining the changes in the physical properties in mixed crystalline system.

  11. Scaling Studies for High Temperature Test Facility and Modular High Temperature Gas-Cooled Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Richard R. Schult; Paul D. Bayless; Richard W. Johnson; James R. Wolf; Brian Woods


    The Oregon State University (OSU) High Temperature Test Facility (HTTF) is an integral experimental facility that will be constructed on the OSU campus in Corvallis, Oregon. The HTTF project was initiated, by the U.S. Nuclear Regulatory Commission (NRC), on September 5, 2008 as Task 4 of the 5-year High Temperature Gas Reactor Cooperative Agreement via NRC Contract 04-08-138. Until August, 2010, when a DOE contract was initiated to fund additional capabilities for the HTTF project, all of the funding support for the HTTF was provided by the NRC via their cooperative agreement. The U.S. Department of Energy (DOE) began their involvement with the HTTF project in late 2009 via the Next Generation Nuclear Plant (NGNP) project. Because the NRC's interests in HTTF experiments were only centered on the depressurized conduction cooldown (DCC) scenario, NGNP involvement focused on expanding the experimental envelope of the HTTF to include steady-state operations and also the pressurized conduction cooldown (PCC).

  12. Moessbauer and Electron Microprobe Studies of Density Separates of Martian Nakhlite Mil03346: Implications for Interpretation of Moessbauer Spectra Acquired by the Mars Exploration Rovers (United States)

    Morris, R. V.; McKay, G. A.; Agresti, D. G.; Li, Loan


    Martian meteorite MIL03346 is described as an augite-rich cumulate rock with approx.80%, approx.3%, and approx.21% modal phase proportions of augite (CPX), olivine and glassy mesostasis, respectively, and is classified as a nakhlite [1]. The Mossbauer spectrum for whole rock (WR) MIL 03346 is unusual for Martian meteorites in that it has a distinct magnetite subspectrum (7% subspectral area) [2]. The meteorite also has products of pre-terrestrial aqueous alteration ("iddingsite") that is associated primarily with the basaltic glass and olivine. The Mossbauer spectrometers on the Mars Exploration Rovers have measured the Fe oxidation state and the Fe mineralogical composition of rocks and soils on the planet s surface since their landing in Gusev Crater and Meridiani Planum in January, 2004 [3,4]. The MIL 03346 meteorite provides an opportunity to "ground truth" or refine Fe phase identifications. This is particularly the case for the so-called "nanophase ferric oxide" (npOx) component. NpOx is a generic name for a ferric rich product of oxidative alteration. On Earth, where we can take samples apart and study individual phases, examples of npOx include ferrihydrite, schwertmannite, akagaaneite, and superparamagnetic (small particle) goethite and hematite. It is also possible for ferric iron to be associated to some unknown extent with igneous phases like pyroxene. We report here an electron microprobe (EMPA) and Moessbauer (MB) study of density separates of MIL 03346. The same separates were used for isotopic studies by [5]. Experimental techniques are described by [6,7].

  13. Moessbauer high pressure and magnetic field studies of the superconductor FeSe

    Energy Technology Data Exchange (ETDEWEB)

    Ksenofontov, Vadim; Felser, Claudia [Institute of Inorganic and Analytical Chemistry, Johannes Gutenberg - University, Mainz (Germany); Wortmann, Gerhard [Department of Physics, University of Paderborn, Paderborn (Germany); Trojan, Ivan; Palasyuk, Taras; Medvedev, Sergey; Eremets, Michail [Max-Planck-Institute for Chemistry, Mainz (Germany); McQueen, Tyrel M.; Cava, Richard J. [Department of Chemistry, Princeton University, Princeton (United States)


    Superconducting FeSe has been investigated by Moessbauer spectroscopy applying high pressure and strong external magnetic fields. It was found that pressure-induced structural phase transition between tetragonal and hexagonal modifications is accompanied by increased distortion of local surrounding of Fe atoms. Appearance of the hexagonal phase above 7.2 GPa is accompanied by degradation of superconducting properties of FeSe. Low-temperature measurements demonstrated that the ground states in both orthorhombic and hexagonal phases of FeSe are nonmagnetic. Moessbauer measurements in the external magnetic field below transition to the superconducting state revealed zero electron spin density on Fe atoms. Interpretation of Moessbauer spectra of FeSe in the Shubnikov phase is discussed.

  14. High Temperature Boost (HTB) Power Processing Unit (PPU) Formulation Study (United States)

    Chen, Yuan; Bradley, Arthur T.; Iannello, Christopher J.; Carr, Gregory A.; Mohammad, Mojarradi M.; Hunter, Don J.; DelCastillo, Linda; Stell, Christopher B.


    This technical memorandum is to summarize the Formulation Study conducted during fiscal year 2012 on the High Temperature Boost (HTB) Power Processing Unit (PPU). The effort is authorized and supported by the Game Changing Technology Division, NASA Office of the Chief Technologist. NASA center participation during the formulation includes LaRC, KSC and JPL. The Formulation Study continues into fiscal year 2013. The formulation study has focused on the power processing unit. The team has proposed a modular, power scalable, and new technology enabled High Temperature Boost (HTB) PPU, which has 5-10X improvement in PPU specific power/mass and over 30% in-space solar electric system mass saving.

  15. A Moessbauer spectroscopy and magnetometry study of magnetic multilayers and oxides

    CERN Document Server

    Bland, J


    A study of the magnetic properties of thin films, multilayers and oxides has been performed using Moessbauer spectroscopy and SQUID magnetometry. The systems studied are DyFe sub 2 , HoFe sub 2 and YFe sub 2 cubic Laves Phase thin films, DyFe sub 2 /Dy and DyFe sub 2 /YFe sub 2 multilayers; Ce/Fe and U/Fe multilayers; and iron oxide powders and thin films. CEMS results at room temperature show a low symmetry magnetic easy axis for all of the Laves Phase samples studied. Analysis of the dipolar and contact hyperfine fields show that this axis is close to the [2-bar41] and [3-bar51] directions but cannot be fully determined. The spin moments lie out of plane in all samples by approximately 22 deg, indicating a significant magneto-elastic anisotropy. 2.5 kG inplane applied field measurements indicate a much larger magnitude of magnetocrystalline anisotropy in the DyFe sub 2 system than in the YFe sub 2 system. In the DyFe sub 2 /YFe sub 2 multilayer samples the anisotropy is dominated by the dysprosium single-io...

  16. Moessbauer spectroscopic studies on ultra fine powders of NiZn-ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Michalk, C.; Knese, K. (Leipzig Univ. (Germany, F.R.). Sektion Physik); Fischer, S.; Toepelmann, W.; Scheler, H. (Technische Univ. Dresden (Germany, F.R.). Sektion Chemie)


    Mixed ferrite Ni{sub x}Zn{sub 1-x}Fe{sub 2}O{sub 4} was precipitated from a solution containing Ni{sup 2+}, Zn{sup 2+} and Fe{sup 3+} ions in the molecular ratio of 1:1:4. The different aged samples were investigated by X-ray diffractometry and Moessbauer spectroscopy. The substance which was not aged contains {beta}-FeOOH and strongly distorted NiZn ferrite. Ageing leads to the formation of spinel structure. Moessbauer spectra of the aged samples exhibit a typical relaxation shape, which can be explained by occuring of small clusters possessing complete spinel structure. (orig.).

  17. Moessbauer and magnetic studies of parent material from argentine pampas soils

    Energy Technology Data Exchange (ETDEWEB)

    Bidegain, J. C. [Laboratorio de Entrenamiento Multidisciplinario para la Investigacion Tecnologica (Argentina); Bartel, A. A. [Universidad Nacional de La Pampa, Facultad de Ciencias Exactas y Naturales (Argentina); Sives, F. R.; Mercader, R. C., E-mail: [Universidad Nacional de La Plata, Departamento de Fisica, Facultad de Ciencias Exactas (Argentina)


    In order to establish a correlation between the different types of soils using hyperfine and magnetic parameters as climatic and environmental proxies, we have studied the differentiation of soil developed around 38.5{sup o} south latitude, in the central Pampas of Argentina, by means of Moessbauer spectroscopy and environmental magnetism. The soils transect (climosequence) investigated stretches from the drier west (around 64{sup o} W) to the more humid east (at around 59{sup o} W) in the Buenos Aires Province, covering a distance of 600 km. The soils studied developed during recent Holocene geologic times in a landscape characterized by small relict plateaus, slopes and depressions, dunes and prairies. The parent material consists of eolian sandy silts overlying calcrete layers. The low mean annual precipitation in the western parts of the region gives rise to soils without B-horizons, which limits the agricultural use of land. The preliminary results show an increase of the paramagnetic Fe{sup 3+} relative concentration from west to east in the soils investigated. Magnetite is probably mainly responsible for the observed enhancement in the susceptibility values. The magnetic response of the parent material is similar to that of the loess part of the previously investigated loess-paleosol sequences of the Argentine loess plateau.

  18. High temperature gas-cooled reactor: gas turbine application study

    Energy Technology Data Exchange (ETDEWEB)


    The high-temperature capability of the High-Temperature Gas-Cooled Reactor (HTGR) is a distinguishing characteristic which has long been recognized as significant both within the US and within foreign nuclear energy programs. This high-temperature capability of the HTGR concept leads to increased efficiency in conventional applications and, in addition, makes possible a number of unique applications in both electrical generation and industrial process heat. In particular, coupling the HTGR nuclear heat source to the Brayton (gas turbine) Cycle offers significant potential benefits to operating utilities. This HTGR-GT Application Study documents the effort to evaluate the appropriateness of the HTGR-GT as an HTGR Lead Project. The scope of this effort included evaluation of the HTGR-GT technology, evaluation of potential HTGR-GT markets, assessment of the economics of commercial HTGR-GT plants, and evaluation of the program and expenditures necessary to establish HTGR-GT technology through the completion of the Lead Project.

  19. Study Progress of Physiological Responses in High Temperature Environment (United States)

    Li, K.; Zheng, G. Z.; Bu, W. T.; Wang, Y. J.; Lu, Y. Z.


    Certain workers are exposed to high temperatures for a long time. Heat stress will result in a series of physiological responses, and cause adverse effects on the health and safety of workers. This paper summarizes the physiological changes of cardiovascular system, core temperature, skin temperature, water-electrolyte metabolism, alimentary system, neuroendocrine system, reaction time and thermal fatigue in high temperature environments. It can provide a theoretical guidance for labor safety in high temperature environment.

  20. Moessbauer study of glasses in meteorites: the D'Orbigny angrite and Cachari eucrite

    Energy Technology Data Exchange (ETDEWEB)

    Abdu, Y. A.; Souza Azevedo, I. [Centro Brasileiro de Pesquisas Fisicas (Brazil); Stewart, S. J. [Universidad Nacional de La Plata, IFLP, CONICET, Depto. De Fisica, Facultad de Cs. Exactas (Argentina); Lopez, A. [Centro Brasileiro de Pesquisas Fisicas (Brazil); Varela, M. E. [CONICET-UNS, Depto. de Geologia (Argentina); Kurat, G. [Naturhistorisches Museum (Austria); Scorzelli, R. B., E-mail: [Centro Brasileiro de Pesquisas Fisicas (Brazil)


    Moessbauer spectroscopy measurements at room temperature (RT) and at liquid helium temperature (4.2 K) were carried out on bulk and glass samples from the D'Orbigny (angrite) and Cachari (eucrite) meteorites. The RT Moessbauer spectrum of the bulk sample of D'Orbigny shows the presence of Fe{sup 2+} in olivine and pyroxene and that of bulk Cachari contains only pyroxene. Very small amounts of Fe{sup 3+} are also present in the bulk samples, but are attributed to surface contamination. The RT spectra of the D'Orbigny and Cachari glasses are fitted with three doublets, which are assigned to Fe{sup 2+} at three different octahedral positions. No Fe{sup 3+} was detected in the glass samples. The spectra of the glasses measured at 4.2 K show the presence of relaxation effects. The results suggest a certain degree of structural ordering in these glasses.

  1. Moessbauer study of C18N/Fe Langmuir-Blodgett layers

    Energy Technology Data Exchange (ETDEWEB)

    Kuzmann, Erno [Institute of Chemistry, Eoetvoes Lorand University (Hungary); Telegdi, Judit [Institute of Nanochemistry and Catalysis, Chemical Research Center, HAS (Hungary); Nemeth, Zoltan, E-mail:; Vertes, Attila [Institute of Chemistry, Eoetvoes Lorand University (Hungary); Nyikos, Lajos [Institute of Nanochemistry and Catalysis, Chemical Research Center, HAS (Hungary)


    Langmuir-Blodgett (LB) films of octadecanoyl hydroxamic acid (C18N) complexed with Fe{sup 3 + } ions have been prepared at various subphase pH values. The LB films consisting of different number of layers were investigated by {sup 57}Fe conversion electron Moessbauer spectroscopy (CEM) at room temperature. The CEM detector contained a piece of {alpha}-iron, enriched with {sup 57}Fe, using as an internal standard. The Moessbauer pattern of the C18N/Fe LB films is a doublet with parameters {delta} = 0.35 mm/s and {Delta} = 0.74 mm/s. A gradual increase of the relative occurrence of the doublet compared to the sextet of the internal standard was observed with the increasing number of layers, indicating the nearly uniform distribution of Fe among the LB layers.

  2. Neutron in-beam Moessbauer spectroscopic study of iron disulfide at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Kubo, M. K. [International Christian University, College of Liberal Arts (Japan); Kobayashi, Y., E-mail: [RIKEN (Japan); Nonaka, H.; Yamada, Y. [Science University of Tokyo, Department of Chemistry (Japan); Sakai, Y. [Daido Institute of Technology (Japan); Shoji, H. [Tokyo Metropolitan University, Graduate School of Science (Japan); Matsue, H. [Japan Atomic Energy Research Institute (Japan)


    An in-beam emission Moessbauer spectrum of {sup 57}Fe arising from the {sup 56}Fe(n, {gamma}) {sup 57}Fe reaction in iron disulfide at room temperature was measured with a parallel plate avalanche counter. It was clearly observed that the nuclear reaction and the following process lead to the production of a new chemical species of iron different from the parent compound.

  3. Moessbauer studies of raw materials from Misti volcano of Arequipa (Peru) for its potential application in the ceramic field

    Energy Technology Data Exchange (ETDEWEB)

    Bustamante, Angel, E-mail: [Universidad Nacional Mayor de San Marcos (Peru); Capel, Francisco; Barba, Flora, E-mail:; Callejas, Pio [Consejo Superior de investigaciones Cientificas (CSIC), Instituto de Ceramica y Vidrio (Spain); Guzman, Rivalino [Universidad Nacional de San Agustin de Arequipa (Peru); Trujillo, Alejandro [Universidad Nacional Mayor de San Marcos (Peru)


    We would like to introduce, the study of two different colour 'sillar' samples: white and pink, belonging to the Anashuayco quarry in the Arequipa Region (Peru). The X-ray diffraction (XRD) analysis indicates the presence of several mineralogical phases, such as feldpars and biotite for the both white and pink 'sillar' whereas cristobalite and quartz are detected only in the first sample and amorphous phase in the second one. In room temperature, Moessbauer spectroscopy, the presence of hematite ({alpha}-Fe{sub 2}O{sub 3}) was detected as the main phase for both samples, this was not detected in the XRD measurements. Moreover, corresponding doublets in the Moessbauer spectra indicate the presence of iron in the aluminium-silicate minerals. The rates Fe{sup 2+}/Fe{sup 3+} are 0.0752 and 0.0526 to the white and pink samples respectively. The minerals composing the white tuff form a heterogeneous aggregate of uniform aspect. Mining of these materials generates a great amount of waste in the form of lumps of varying size and which are raw materials studied in the present work for potential application in the ceramic field.

  4. Moessbauer study of iron-carbide growth and Fischer-Tropsch activity

    Energy Technology Data Exchange (ETDEWEB)

    Rao, K.R.P.M.; Huggins, F.E.; Huffman, G.P. [Univ. of Kentucky, Lexington, (United States)] [and others


    There is a need to establish a correlation between the Fischer-Tropsch (FT) activity of an iron-based catalyst and the catalyst phase during FT synthesis. The nature of iron phases formed during activation and FT synthesis is influenced by the nature of the gas and pressure apart from other parameters like temperature, flow rate etc., used for activation. Moessbauer investigations of iron-based catalysts subjected to pretreatment at two different pressures in gas atmospheres containing mixtures of CO, H{sub 2}, and He have been carried out. Studies on UCI 1185-57 (64%Fe{sub 2}O{sub 3}/5%CuO/1%K{sub 2}O/30% Kaolin) catalyst indicate that activation of the catalyst in CO at 12 atms. leads to the formation of 100% magnetite and the magnetite formed gets rapidly converted to at least 90% of {chi}-Fe{sub 5}C{sub 2} during activation. The FT activity was found to be good at 70-80% of (H{sub 2}+CO) conversion. On the other hand, activation. The FT activity was found to be good at 70-80% of (H{sub 2}+CO) conversion. On the other hand, activation of the catalyst in synthesis gas at 12 atms. leads to formation of Fe{sub 3}O{sub 4} and it gets sluggishly converted to {chi}-Fe{sub 5}C{sub 2} and {epsilon}-Fe{sub 2.2}C during activation and both continue to grow slowly during FT synthesis. FT activity is found to be poor. Pretreatment of the catalyst, 100fe/3.6Si/0.71K at a low pressure of 1 atms. in syngas gave rise to the formation of {chi}-Fe{sub 5}C{sub 2} and good FT activity. On the other hand, pretreatment of the catalyst, 100Fe/3.6Si/0.71K at a relatively high pressure of 12 atms. in syngas did not give rise to the formation any carbide and FT activity was poor.

  5. Moessbauer studies of frataxin role in iron-sulfur cluster assembly and dysfunction-related disease

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Serres, Ricardo [Universite Joseph Fourier (France); Clemancey, Martin [CNRS, UMR5249 (France); Oddou, Jean-Louis [Universite Joseph Fourier (France); Pastore, Annalisa [Medical Research Council National Institute for Medical Research (United Kingdom); Lesuisse, Emmanuel [Laboratoire Mitochondries, Metaux et Stress oxydant, Institut Jacques Monod, CNRS-Universite Paris (France); Latour, Jean-Marc, E-mail: [CEA, iRTSV, LCBM (France)


    Friedreich ataxia is a disease that is associated with defects in the gene coding for a small protein frataxin. Several different roles have been proposed for the protein, including iron chaperoning and iron storage. Moessbauer spectroscopy was used to probe these hypotheses. Iron accumulation in mutant mitochondria unable to assemble iron sulfur clusters proved to be insensitive to overexpression of frataxin, ruling out its potential involvement as an iron storage protein similar to ferritin. Rather, it was found that frataxin negatively regulates iron sulfur cluster assembly.

  6. Moessbauer studies of Dy/sub 2/Fesub(17-y)Alsub(y) hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Zukrowski, J.; Barnasik, A.; Krop, K.; Radwanski, R.; Pszczola, J. (Akademia Gorniczo-Hutnicza, Krakow (Poland)); Suwalski, J.; Kucharski, Z.; Lukasiak, M. (Solid State Physics Department, IBJ, Swierk, Poland)


    The X-ray and Moessbauer measurements of both /sup 57/Fe and /sup 161/Dy in Dy/sub 2/Fesub(17-y)Alsub(y) (y = 0, 1.5 and 3) compounds and their hydrides are reported. Hydrogenation slightly increases the lattice parameters. An appreciable increase of the isomer shift and the hyperfine field at /sup 57/Fe nuclei is observed after hydrogenation. The hyperfine field for both the parent compound and its hydride decreases with increasing Al content across the series. Only a small variation of the hyperfine field at /sup 161/Dy nuclei is noticeable after hydrogenation.

  7. Reduction of amorphous Fe(III)-hydroxide by binary microbial culture, a Moessbauer study

    Energy Technology Data Exchange (ETDEWEB)

    Chistyakova, N. I., E-mail:; Rusakov, V. S.; Shapkin, A. A. [M.V. Lomonosov Moscow State University, Faculty of Physics (Russian Federation); Zhilina, T. N.; Zavarzina, D. G. [Russian Academy of Sciences, Winogradsky Institute of Microbiology (Russian Federation)


    Moessbauer investigations between 4.5 and 300 K of iron minerals formed during the growth of the binary culture containing two anaerobic alkaliphilic bacteria-dissimilatory iron-reducing Geoalkalibacter ferrihydriticus (strain Z-0531) and organotrophic Anaerobacillus alkalilacustre (strain Z- 0521), have been carried out. Mannitol (2 g/l) as the sole substrate with amorphous Fe(III) hydroxide at final concentration 10 or 100 mM were added to the mineral medium. The formation of siderite and probable magnetite or a mixture of magnetite and maghemite were observed.

  8. Study of the high temperature characteristics of hydrogen storage alloys

    CERN Document Server

    Rong, Li; Shaoxiong, Zhou; Yan, Qi; 10.1016/j.jallcom.2004.07.006


    In this work, the phase structure of as-cast and melt-spun (MmY)/sub 1/(NiCoMnAl)/sub 5/ alloys (the content of yttrium is 0-2.5wt.%) and their electrochemical properties were studied with regard to discharge capacity at different temperatures (30-80 degrees C) and cycling life at 30 degrees C. It is found that the substitution of yttrium increase the electrochemical capacity of the compounds and decrease the difference in capacity between as-cast and as-quenched compounds at 30 degrees C. When increasing the yttrium concentration from 0 to 2.5wt.%, the cycling life of both the as-cast and the melt- spun compounds deteriorated, although the latter have a slightly longer cycle life than the former. The remarkable feature of the alloys obtained by yttrium substitution is the improvement of the high temperature electrochemical properties. It shows that the stability of the hydrides is increased. Compared with the as-cast alloys, the melt-spun ribbons have higher electrochemical charge /discharge capacity in the ...

  9. Stoichiometry of LiNiO{sub 2} Studied by Moessbauer Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ksenofontov, V.; Reiman, S.; Walcher, D.; Garcia, Y. [Johannes Gutenberg Universitaet, Institut fuer Anorganische Chemie und Analytische Chemie (Germany); Doroshenko, N. [A. A. Galkin Donetsk Physico-Technical Institute NAS of Ukraine (Ukraine); Guetlich, P. [Johannes Gutenberg Universitaet, Institut fuer Anorganische Chemie und Analytische Chemie (Germany)


    From the {sup 61}Ni and {sup 57}Fe Moessbauer spectroscopy data follows the cationic site assignment in Li{sub 1-x}Ni{sub 1+x}O{sub 2}. Our data explain the ferromagnetic properties of this material because of the appearance of Ni{sup 2+} (S=1) among Ni{sup 3+} (S=1/2) in Ni{sup 3+}O{sub 2} hexagonal planes. We have no evidence for the ferromagnetic interaction between the NiO{sub 2} layers through the excess Ni{sup 2+} ions substituting the Li{sup +} ions. The presence of Ni{sup 2+} found in the Ni{sup 3+}O{sub 2} planes explains the absence of the Jahn-Teller distortions probably because of the electronic transfer between the Ni{sup 3+} and Ni{sup 2+} ions.

  10. Moessbauer and XRD study of the Fe{sub 65}Si{sub 35} alloy obtained by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Velez, G. Y., E-mail: [Universidad del Valle, Departamento de Fisica (Colombia); Rodriguez, R. R. [Corporacion Universidad Autonoma de Occidente (Colombia); Melo, C. A.; Perez Alcazar, G. A.; Zamora, Ligia E.; Tabares, J. A. [Universidad del Valle, Departamento de Fisica (Colombia)


    A study was made on the alloy Fe{sub 65}Si{sub 35} using x-ray diffraction and Moessbauer spectrometry. The alloy was obtained by mechanical alloying in a high energy planetary mill, with milling times of 15, 30, 50, 75 and 100 h. The results show that in the alloys two structural phases are present, a Fe-Si BCC disordered phase and ferromagnetic, and a Fe-Si SC phase, whose nature is paramagnetic and which decreases with milling time. In the temporal evolution of the milling two stages are differentiated: one between 15 and 75 h of milling, in which silicon atoms diffuse into the bcc matrix of iron and its effect is to reduce the hyperfine magnetic field; the other, after 75 h of milling, where the alloy is consolidated, the effect of the milling is only to increase the disorder of the system, increasing the magnetic order.

  11. Magnetic properties of GdPdSb and GdNiSb studied by {sup 155}Gd-Moessbauer spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bielemeier, B. [Department Physik, Universitaet Paderborn, D-33098 Paderborn (Germany); Wortmann, G. [Department Physik, Universitaet Paderborn, D-33098 Paderborn (Germany)], E-mail:; Casper, F.; Ksenofontov, V.; Felser, C. [Institut fuer Anorg. und Analyt. Chemie, Johannes Gutenberg-Universitaet, D-55099 Mainz (Germany)


    {sup 155}Gd-Moessbauer spectroscopy was applied to study the magnetic properties of GdPdSb with hexagonal LiGaGe structure and of GdNiSb in the cubic MgAgAs-type structure as well as in the hexagonal AlB{sub 2}-type structure. In GdPdSb magnetic ordering is observed at 13.0 K with indications of a tilted spin structure at lower temperatures. In the cubic phase of GdNiSb magnetic ordering is observed at 9.5 K and in the hexagonal phase around 3.5 K. These results are discussed in conjunction with previous investigations of these samples.

  12. Moessbauer study of Cu sub 0 sub . sub 8 Fe sub 2 sub . sub 2 O sub 4

    CERN Document Server

    Kim, S J; An, D H; Kang, K U; Baek, K S; Oak, H N


    Cu sub 0 sub . sub 8 Fe sub 2 sub . sub 2 O sub 4 has been studied by using Moessbauer spectroscopy and X-ray diffraction. The crystal is found to have a cubic spinel structure with the lattice constant a sub 0 =8.399 +- 0.005 A. It is noteworthy that a 20% replacement of Cu by Fe in the copper ferrite transforms the crystal structure from tetragonal to cubic and decreases the quadrupole shifts drastically. The iron ions at both A (tetrahedral) and B (octahedral) sites are found to be in ferric states. Atomic migration between A- and B-sites starts near 300 K and increases rapidly with increasing temperature to such a degree that 78% of the ferric ions at the A-sites move over to the B sites at 600 K.

  13. Application of Moessbauer spectroscopy to the study of tannins inhibition of iron and steel corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Jaen, Juan A., E-mail: [Universidad de Panama, CITEN, Depto. de Quimica Fisica (Panama); Obaldia, J. De; Rodriguez, M. V. [Universidad de Panama, Escuela de Quimica, Facultad de Ciencias Naturales, Exactas y Tecnologia (Panama)


    The inhibitory effect of tannins was investigated using, among others, potentiodynamic polarizations and Moessbauer spectroscopy. These techniques confirmed that the nature, pH and concentration of tannic solution are of upmost importance in the inhibitory properties of the solutions. It is observed that at low tannin concentration or pH, both, hydrolizable and condensed tannins, effectively inhibit iron corrosion, due to the redox properties of tannins. At pH Almost-Equal-To 0, Moessbauer spectra of the frozen aqueous solutions of iron(III) with the tannin solutions showed that iron is in the form of a monomeric species [Fe(H{sub 2}O){sub 6}]{sup 3 + }, without coordination with the functional hydroxyl groups of the tannins. The suspended material consisted of amorphous ferric oxide and oxyhydroxides, though with quebracho tannin partly resulted in complex formation and in an iron (II) species from a redox process. Other tannins, such as chestnut hydrolysable tannins, do not complex iron at this low pH. Tannins react at high concentrations or pH (3 and 5) to form insoluble blue-black amorphous complexes of mono-and bis-type tannate complexes, with a relative amount of the bis-ferric tannate generally increasing with pH. Some Fe{sup 2 + } in the form of hydrated polymeric ferrous tannate could be obtained. At pH 7, a partially hydrolyzed ferric tannate complex was also formed. The latter two phases do not provide corrosion protection. Tannin solutions at natural pH react with electrodeposited iron films (approx. 6 {mu}m) to obtain products consisting only on the catecholate mono-complex of ferric tannate. Some aspects of the mechanism of tannins protection against corrosion are discussed.

  14. The study of some physical properties of high temperature superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Ismail, Atif Mahmoud


    The phenomenon of superconductivity, the discovery of high temperature superconductivity in the Cuprates and the properties of these materials is described in the introductory chapter. It also includes a discussion of the pseudogap, which has remained a mystery as has the high transition temperature. Possible applications of high temperature superconductivity are reviewed before the theories by Bardeen, Cooper, and Schrieffer (BCS) and Ginzburg and Landau are briefly sketched. The last section gives excerpts of the by now vast literature on this subject, focussing on the role impurities play in this context. The second chapter develops the mathematical tools and the theoretical background for the description of many-body systems. Various Green's functions are introduced which are then used to describe scattering of quasiparticles off defects of arbitrary strength. They are also required to calculate the a.c. conductivity, for which an expression is derived using linear response theory. The convergence problems one encounters when actually calculating the conductivity are briefly discussed. Detailed calculations for the normal state are presented in the third chapter and in the appendix. The third Chapter begins with a detailed presentation of the tight binding model for the energy dispersion because this model appears to give a more accurate description of the electronic properties of high temperature superconductors than the nearly free electron model. The shape of the two-dimensional Fermi surface is calculated and displayed as function of band filling and the next-nearest neighbor hopping integral B, assuming a rigid band. B plays an important role in the formation of so-called hot spots. The quasiparticle density of states and its Hilbert transform F({omega}) are solved by means of complete elliptic integrals formalism. These results are used to obtain impurity bound states. A simple model for the superconductivity in the cuprate materials is developed on

  15. Thermal Expansion Studies of Selected High Temperature Thermoelectric Materials (United States)

    Ravi, Vilupanur; Firdosy, Samad; Caillat, Thierry; Brandon, Erik; Van Der Walde, Keith; Maricic, Lina; Sayir, Ali


    Radioisotope thermoelectric generators (RTGs) generate electrical power by converting the heat released from the nuclear decay of radioactive isotopes (typically plutonium-238) into electricity using a thermoelectric converter. RTGs have been successfully used to power a number of space missions and have demonstrated their reliability over an extended period of time (tens of years) and are compact, rugged, radiation resistant, scalable, and produce no noise, vibration or torque during operation. System conversion efficiency for state-of-practice RTGs is about 6% and specific power less than or equal to 5.1 W/kg. Higher specific power would result in more on-board power for the same RTG mass, or less RTG mass for the same on-board power. The Jet Propulsion Laboratory has been leading, under the advanced thermoelectric converter (ATEC) project, the development of new high-temperature thermoelectric materials and components for integration into advanced, more efficient RTGs. Thermoelectric materials investigated to date include skutterudites, the Yb14MnSb11 compound, and SiGe alloys. The development of long-lived thermoelectric couples based on some of these materials has been initiated and is assisted by a thermo-mechanical stress analysis to ensure that all stresses under both fabrication and operation conditions will be within yield limits for those materials. Several physical parameters are needed as input to this analysis. Among those parameters, the coefficient of thermal expansion (CTE) is critically important. Thermal expansion coefficient measurements of several thermoelectric materials under consideration for ATEC are described in this paper. The stress response at the interfaces in material stacks subjected to changes in temperature is discussed, drawing on work from the literature and project-specific tools developed here. The degree of CTE mismatch and the associated effect on the formation of stress is highlighted.

  16. Moessbauer and X-ray diffraction studies of nanostructured Fe{sub 70}Al{sub 30} powders elaborated by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Kezrane, M., E-mail: [LMP2M Laboratory, University of Medea, (26000) (Algeria); Guittoum, A. [Nuclear Research Centre of Algiers, 2 Bd Frantz Fanon, BP 399, Algiers (Algeria); Boukherroub, N.; Lamrani, S. [LMMC, M' hamed Bougara University, Boumerdes, 35000 (Algeria); Sahraoui, T. [Laboratory of Materials and Surface Treatments, LTSM, University of Saad Dahleb Blida, BP. 270 route de Soumaa, Blida (09000) (Algeria)


    Highlights: Black-Right-Pointing-Pointer Nanocrystalline Fe{sub 70}Al{sub 30} powders were successfully elaborated by mechanical alloying. Black-Right-Pointing-Pointer The Moessbauer spectra show that from 4 h of milling, a disordered ferromagnetic. Black-Right-Pointing-Pointer Fe{sub 70}Al{sub 30} starts to form and dominates after 36 h. - Abstract: We have studied the effect of milling time on the structural and hyperfine properties of Fe{sub 70}Al{sub 30} compound elaborated by mechanical alloying. The elaboration was performed with a vario-planetary ball mill P4 at different milling times. The milled powders were characterized by X-ray diffraction (XRD) and Moessbauer spectroscopy. From XRD diffraction spectra, we show that the bcc Fe(Al) solid solution was completely formed after 27 h of milling time. When the milling time increases, the lattice parameter increases, whereas the grain size decreases and the mean level of microstrains increases. The analysis of Moessbauer spectra shows that from 4 h of milling, a disordered ferromagnetic Fe{sub 70}Al{sub 30} starts to form and dominates after 36 h.

  17. {sup 57}Fe-Moessbauer study of electrically conducting barium iron vanadate glass after heat treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kubuki, Shiro, E-mail:; Sakka, Hiroshi; Tsuge, Kanako [Ube National College of Technology, Department of Chemical and Biological Engineering (Japan); Homonnay, Zoltan [Eoetvoes Lorand University, Laboratory of Nuclear Chemistry (Hungary); Sinko, Katalin [Eoetvoes Lorand University, Institute of Chemistry (Hungary); Kuzmann, Erno [Eoetvoes Lorand University, Laboratory of Nuclear Chemistry, HAS CRC (Hungary); Yasumitsu, Hiroki; Nishida, Tetsuaki [Kinki University, Graduate School of Advanced Technology (Japan)


    Local structure and thermal durability of semiconducting xBaO{center_dot}(90 - x)V{sub 2}O{sub 5} {center_dot} 10Fe{sub 2}O{sub 3} glasses (x = 20, 30 and 40), NTA glass{sup TM}, before and after isothermal annealing were investigated by {sup 57}Fe-Moessbauer spectroscopy and differential thermal analysis (DTA). An identical isomer shift ({delta}) of 0.39 {+-} 0.01 mm s{sup -1} and a systematic increase in the quadrupole splitting ({Delta}) were observed from 0.70 {+-} 0.02 to 0.80 {+-} 0.02 mm s{sup -1} with an increasing BaO content, showing an increase in the local distortion of Fe{sup III}O{sub 4} tetrahedra. From the slope of the straight line in the T{sub g}-{Delta} plot of NTA glass{sup TM}, it proved that Fe{sup III} plays a role of network former. Large Debye temperature ({Theta}{sub D}) values of 1000 and 486 K were respectively obtained for 20BaO {center_dot} 70V{sub 2}O{sub 5} {center_dot} 10Fe{sub 2}O{sub 3} glass before and after isothermal annealing at 400 deg. C for 60 min, respectively. This result also suggests that Fe{sup III} atoms constitute the glass network composed of tetrahedral FeO{sub 4}, tetrahedral VO{sub 4} and pyramidal VO{sub 5} units. The electric conductivity of 20BaO {center_dot} 70V{sub 2}O{sub 5} {center_dot} 10Fe{sub 2}O{sub 3} glass increased from 1.6 x 10{sup -5} to 5.8 x 10{sup -2} S cm{sup -1} after isothermal annealing at 450 deg. C for 2,000 min. These results suggest that the drastic increase in the electric conductivity caused by heat treatment is closely related to the structural relaxation of the glass network structure.

  18. Structural and Electronic Properties Study of Colombian Aurifer Soils by Moessbauer Spectroscopy and X-ray Diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Bustos Rodriguez, H., E-mail:; Rojas Martinez, Y.; Oyola Lozano, D. [Universidad del Tolima, Departamento de Fisica (Colombia); Perez Alcazar, G. A.; Fajardo, M. [Universidad del Valle, Departamento de Fisica (Colombia); Mojica, J. [Ingeominas Valle, Departamento de Geologia (Colombia); Molano, Y. J. C. [Universidad Nacional, Departamento de Geologia (Colombia)


    In this work a study on gold mineral samples is reported, using optical microscopy, X-ray diffraction (XRD) and Moessbauer spectroscopy (MS). The auriferous samples are from the El Diamante mine, located in Guachavez-Narino (Colombia) and were prepared by means of polished thin sections. The petrography analysis registered the presence, in different percentages that depend on the sample, of pyrite, quartz, arsenopyirite, sphalerite, chalcopyrite and galena. The XRD analysis confirmed these findings through the calculated cell parameters. One typical Rietveld analysis showed the following weight percent of phases: 85.0% quartz, 14.5% pyrite and 0.5% sphalerite. In this sample, MS demonstrated the presence of two types of pyrite whose hyperfine parameters are {delta}{sub 1} = 0.280 {+-} 0.002 mm/s and {Delta}{sub 1} = 0.642 {+-} 0.002 mm/s, {delta}{sub 2} = 0.379 {+-} 0.002 mm/s and {Delta}{sub 2} = 0.613 {+-} 0.002 mm/s.

  19. Toluene pyrolysis studies and high temperature reactions of propargyl chloride

    Energy Technology Data Exchange (ETDEWEB)

    Kern, R.D.; Chen, H.; Qin, Z. [Univ. of New Orleans, LA (United States)


    The main focus of this program is to investigate the thermal decompositions of fuels that play an important role in the pre-particle soot formation process. It has been demonstrated that the condition of maximum soot yield is established when the reaction conditions of temperature and pressure are sufficient to establish a radical pool to support the production of polyaromatic hydrocarbon species and the subsequent formation of soot particles. However, elevated temperatures result in lower soot yields which are attributed to thermolyses of aromatic ring structures and result in the bell-shaped dependence of soot yield on temperature. The authors have selected several acyclic hydrocarbons to evaluate the chemical thermodynamic and kinetic effects attendant to benzene formation. To assess the thermal stability of the aromatic ring, the authors have studied the pyrolyses of benzene, toluene, ethylbenzene, chlorobenzene and pyridine. Time-of-flight mass spectrometry (TOF) is employed to analyze the reaction zone behind reflected shock waves. Reaction time histories of the reactants, products, and intermediates are constructed and mechanisms are formulated to model the experimental data. The TOF work is often performed with use of laser schlieren densitometry (LS) to measure density gradients resulting from the heats of various reactions involved in a particular pyrolytic system. The two techniques, TOF and LS, provide independent and complementary information about ring formation and ring rupture reactions.

  20. High pressure study of high-temperature superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Souliou, Sofia-Michaela


    The current thesis studies experimentally the effect of high external pressure on high-T{sub c} superconductors. The structure and lattice dynamics of several members of the high-T{sub c} cuprate and Fe-based superconductors families were investigated by means of Raman spectroscopy and X-ray diffraction under well-controlled, hydrostatic high pressure and low temperature conditions. The lattice dynamics of the high-T{sub c} superconductor YBa{sub 2}Cu{sub 3}O{sub 6+x} have been investigated systematically by Raman spectroscopy as a function of doping (x = 0.95, 0.75, 0.60, 0.55, and 0.45) and external pressure. Under ambient pressure conditions, in addition to the Raman modes expected from group theory, we observe new Raman active phonons upon cooling the underdoped samples, at temperatures well above the superconducting transition temperature. The doping dependence and the onset temperatures of the new Raman features suggest that they are associated with the incommensurate charge density wave (CDW) state recently discovered in underdoped cuprates using synchrotron X-ray scattering techniques. Under high pressure conditions (from 2 to 12 GPa), our Raman measurements on highly ordered underdoped YBa{sub 2}Cu{sub 3}O{sub 6.55} samples do not show any of the new Raman phonons seen at ambient pressure. High pressure and low temperature Raman measurements have been performed on the underdoped superconductor YBa{sub 2}Cu{sub 4}O{sub 8}. A clear renormalization of some of the Raman phonons is seen below T{sub c} as a result of the changes in the phonon self-energy upon the opening of the superconducting gap, with the most prominent one being that of the B{sub 1g}-like buckling phonon mode. The amplitude of this renormalization strongly increases with pressure, resembling the effect of hole doping in YBa{sub 2}Cu{sub 3}O{sub 6+x}. At ∝ 10 GPa, the system undergoes a reversible pressure-induced structural phase transition to a non-centrosymmmetric structure (space group

  1. Studies of nonlinear electrodynamics of high-temperature superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Lam, Quan-Chiu H.


    Nonlinear electrodynamics of high-{Tc} superconductors are studied both theoretically and experimentally. For powdered samples, a novel model is presented in which the metallographically observed superconducting grains in the powder are modeled as superconducting current loops of various areas with weak links. Surprising harmonic generation behavior in an arc field, H{sub 1} cos({omega}t), is predicted by the model; the power at high harmonics show sharp dips almost periodic in a superposing dc magnetic field, revealing flux quantization in the prototype loops in the model. Such oscillation of the harmonic power in dc magnetic field P{sub nf}(H{sub dc}), is indeed experimentally observed in powdered YBa{sub 2}Cu{sub 3}O{sub 7}. Other experimental aspects also agree with model predictions. For bulk sintered cylindrical samples, a generalized critical state model is presented. In this model, the nonlinear electrodynamics are due to flux-pinning, somewhat similar to low-temperature type-II superconductors, but with a more generalized critical current densities' dependence on magnetic field -- J{sub c}(H){approximately}H{sub local}{sup -{beta}}, with {beta} being an adjustable parameter. Experiments in ac and dc magnetic fields on a sintered cylindrical rod of YBa{sub 2}Cu{sub 3}O{sub 7} yield unambiguous evidence of independent inter- and intragranular contributions to the complex harmonic permeability {tilde {mu}}{sub n} = {mu}{prime}{sub n} -i{mu}{double prime}{sub n}. Temperature- dependence measurements reveal that, while the intragranular supercurrents disappear at {Tc}{ge}91.2 K, the intergranular supercurrents disappear at T{ge}86.6 K. This result is, to our knowledge, the first clear measurement of the phase-locking temperature of the 3-D matrix formed by YBa{sub 2}Cu{sub 3}O{sub 7} grains, which are in electrical contact with one another through weak links.

  2. Studies of nonlinear electrodynamics of high-temperature superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Lam, Quan-Chiu H. [Univ. of California, Berkeley, CA (United States)


    Nonlinear electrodynamics of high-Tc superconductors are studied both theoretically and experimentally. For powdered samples, a novel model is presented in which the metallographically observed superconducting grains in the powder are modeled as superconducting current loops of various areas with weak links. Surprising harmonic generation behavior in an arc field, H1 cos(ωt), is predicted by the model; the power at high harmonics show sharp dips almost periodic in a superposing dc magnetic field, revealing flux quantization in the prototype loops in the model. Such oscillation of the harmonic power in dc magnetic field Pnf(Hdc), is indeed experimentally observed in powdered YBa2Cu3O7. Other experimental aspects also agree with model predictions. For bulk sintered cylindrical samples, a generalized critical state model is presented. In this model, the nonlinear electrodynamics are due to flux-pinning, somewhat similar to low-temperature type-II superconductors, but with a more generalized critical current densities` dependence on magnetic field -- Jc(H)~H$β\\atop{local}$, with β being an adjustable parameter. Experiments in ac and dc magnetic fields on a sintered cylindrical rod of YBa2Cu3O7 yield unambiguous evidence of independent inter- and intragranular contributions to the complex harmonic permeability$\\tilde{μ}$n = μ'n -iμ''n. Temperature- dependence measurements reveal that, while the intragranular supercurrents disappear at Tc≥91.2 K, the intergranular supercurrents disappear at T≥86.6 K. This result is, to our knowledge, the first clear measurement of the phase-locking temperature of the 3-D matrix formed by YBa2Cu3O7 grains, which are in electrical contact with one another through weak links.

  3. X-ray diffraction and Moessbauer studies on superparamagnetic nickel ferrite (NiFe{sub 2}O{sub 4}) obtained by the proteic sol–gel method

    Energy Technology Data Exchange (ETDEWEB)

    Nogueira, N.A.S. [Departamento de Engenharia Metalúrgica e de Materiais, Centro de Tecnologia, Campus do Pici, Universidade Federal do Ceará – UFC, 60455-760 Fortaleza, CE (Brazil); Utuni, V.H.S.; Silva, Y.C. [Departamento de Física, Universidade Federal do Ceará – UFC, Campus do Pici, 60440-970 Fortaleza, CE (Brazil); Kiyohara, P.K. [Instituto de Física, Universidade de São Paulo – USP, 05315-970 São Paulo, SP (Brazil); Vasconcelos, I.F. [Departamento de Engenharia Metalúrgica e de Materiais, Centro de Tecnologia, Campus do Pici, Universidade Federal do Ceará – UFC, 60455-760 Fortaleza, CE (Brazil); Miranda, M.A.R., E-mail: [Departamento de Física, Universidade Federal do Ceará – UFC, Campus do Pici, 60440-970 Fortaleza, CE (Brazil); Sasaki, J.M. [Departamento de Física, Universidade Federal do Ceará – UFC, Campus do Pici, 60440-970 Fortaleza, CE (Brazil)


    Nickel ferrite (NiFe{sub 2}O{sub 4}) nanoparticles were synthesized by the proteic sol–gel method at synthesis temperature of 250 °C, 300 °C and 400 °C, with the objective of obtaining superparamagnetic nanoparticles. Thermogravimetric analysis (TGA) and temperature-programed oxidation (TPO) presented peaks around 290 °C indicating that nickel ferrite was forming at this temperature. X-ray powder diffraction (XRPD) confirmed that the polycrystalline sample was single phased NiFe{sub 2}O{sub 4} with space group Fd3m. Scherrer equation applied to the diffraction patterns and transmission electron microscopy (TEM) images showed that the size of the nanoparticles ranged from 9 nm to 13 nm. TEM images also revealed that the nanoparticles were agglomerated, which was supported by the low values of surface area provided by the Brunauer-Emmet-Teller (BET) method. Moessbauer spectroscopy presented spectra composed of a superposition of three components: a sextet, a doublet and a broad singlet pattern. The sample synthetized at 300 °C had the most pronounced doublet pattern characteristic of superparamagnetic nanoparticles. In conclusion, this method was partially successful in obtaining superparamagnetic nickel ferrite nanoparticles, in which the synthetized samples were a mixture of nanoparticles with blocking temperature above and below room temperature. Magnetization curves revealed a small hysteresis, supporting the Moessbauer results. The sample with the higher concentration of superparamagnetic nanoparticles being the one synthetized at 300 °C. - Highlights: • Superparamagnetic nickel ferrite nanoparticles were grown by the proteic sol–gel method. • The proteic sol–gel method provided superparamagnetic nickel ferrite nanoparticles with sizes in the range of 9–13 nm. • Nickel ferrite nanoparticles were prepared at temperatures as low as 250 °C. • The nickel ferrite nanoparticles were studied by x-ray diffraction and Moessbauer.

  4. Study of the iron hydroxide in oxidative reaction in base media using Moessbauer spectroscopy; Estudio de reaccion oxidativa del hidroxido ferrico en medio basico empleando espectroscopia Mossbauer

    Energy Technology Data Exchange (ETDEWEB)

    Reyes F, A.A


    {sub 4}) and the hematite (Fe{sub 2} O{sub 3}) have the same cubic symmetry but with different atomic arrangement and slightly different lattice parameters. On the other hand, the goethite ({alpha}-FeOOH) posses an orthorhombic symmetry. X-ray diffraction, Moessbauer, surface area and positron annihilation lifetime measurements were performed to characterize the products of oxidation reaction of the Fe(OH){sub 2} in basic medium. The measure of the life times of the positron and the surface areas were realized to know some aspects related to the defects of the studied samples. (Author)

  5. Thermal treatment of the Fe{sub 78}Si{sub 9}B{sub 13} alloy in it amorphous phase studied by means of Moessbauer spectroscopy; Tratamiento termico de la aleacion Fe{sub 78}Si{sub 9}B{sub 13} en su fase amorfa estudiado por medio de la espectroscopia Moessbauer

    Energy Technology Data Exchange (ETDEWEB)

    Cabral P, A. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico); Lopez, A.; Garcia S, F. [Facultad de Ciencias, UAEM, 50000 Toluca, Estado de Mexico (Mexico)


    The magnetic and microhardness changes, dependents of the temperature that occur in the Fe{sub 78}Si{sub 9}B{sub 13} alloy in it amorphous state were studied by means of the Moessbauer spectroscopy and Vickers microhardness. According to the Moessbauer parameters and in particular that of the hyperfine magnetic field, this it changes according to the changes of the microhardness; i.e. if the microhardness increases, the hyperfine magnetic field increases. The registered increment of hardness in the amorphous state of this alloy should be considered as anomalous, according to the prediction of the Hall-Petch equation, the one that relates negative slopes with grain sizes every time but small. (Author)

  6. Superconducting FeSe{sub 0.5}Te{sub 0.5} under high pressure: Susceptibility, XRD and Moessbauer studies.

    Energy Technology Data Exchange (ETDEWEB)

    Ksenofontov, Vadim; Schoop, Leslie; Felser, Claudia [Institute of Inorganic and Analytical Chemistry, Johannes Gutenberg University, Mainz (Germany); Medvedev, Sergey; Eremets, Michail [Max-Planck-Institute for Chemistry, Mainz (Germany); Tsurkan, Vladimir; Deisenhofer, Joachim; Loidl, Alois [Institute of Physics, University of Augsburg, Augsburg (Germany); Wortmann, Gerhard [Department of Physics, University of Paderborn, Paderborn (Germany)


    High-pressure magnetic, structural and Moessbauer studies were performed on single-crystalline samples of superconducting (sc) FeSe{sub 0.5}Te{sub 0.5} with T{sub c} = 14.5 K. Susceptibility data up to 1.5 GPa revealed a strong increase of Tc up to 25 K, followed by a plateau in T{sub c} up to 6.0 GPa. Further increase of pressure leads to a disappearance of sc state around 7.0 GPa. Structural and Moessbauer studies explain this fact by a structural phase transition of the sc PbO to the non-sc NiAs structure. We discuss the fact of an almost pressure-independent T{sub c}, between 1.5 and 6.0 GPa by the respective variation of the lattice constants and hyperfine parameters in FeSe. We conclude that the strong increase of T{sub c} in FeSe{sub 0.5}Te{sub 0.5} with pressure up to 1.5 GPa can not be attributed to a change in the phonon-DOS.

  7. Moessbauer-Borrmann superradiance

    Energy Technology Data Exchange (ETDEWEB)

    Baldwin, G.C.; Feld, M.S.; Hannon, J.P.; Hutton, J.T.; Trammell, G.T.


    The kinetic behavior of a gamma-ray laser is comprised of an array of isomeric nuclei located at regular lattice sites in a perfect single crystal of dimensions and structure so chosen as to favor anomalous emission into that Borrmann mode having the maximum possible number of component Bragg-reflected beams, which greatly reduces the excitation requirements. The analysis of several hypothetical systems shows that superradiance, rather than amplified spontaneous emission, will then be the preferred mode of deexcitation, provided the nuclei can be pumped rapidly to a short-lived Moessbauer level while preserving crystal integrity. This warrants a search for solutions to the major problems: candidate nuclides, preparation of a storage isomer, and interlevel transfer from storage to lasing state. 10 refs., 8 figs., 2 tabs.

  8. Moessbauer spectroscopy study of a mineral sample from Oshno Hill, District of Chavin de Pariarca, Huanuco Region, Peru

    Energy Technology Data Exchange (ETDEWEB)

    Bustamante, A., E-mail: [Universidad Nacional Mayor de San Marcos, Laboratorio de Ceramicos y Nanomateriales, Facultad de Ciencias Fisicas (Peru); Lovera, D. [Universidad Nacional Mayor de San Marcos, Facultad de Ingenieria Geologica, Minera, Metalurgica y Geografica (Peru); Quille, R. [Universidad Nacional Mayor de San Marcos, Laboratorio de Ceramicos y Nanomateriales, Facultad de Ciencias Fisicas (Peru); Arias, A. V.; Quinones, J. [Universidad Nacional Mayor de San Marcos, Facultad de Ingenieria Geologica, Minera, Metalurgica y Geografica (Peru)


    The analysis by X-ray diffraction of a mining sample collected from Oshno hill, which is located in the District of Chavin de Pariarca, Huamalies Province, Huanuco, Peru, indicates the presence of lepidocrocite ({gamma}-FeOOH) and goethite ({alpha}-FeOOH). The room temperature Moessbauer spectrum (MS) doublet with broad lines displays hyperfine parameters corresponding to the presence of particles of iron hydroxides smaller than 100 A in a superparamagnetic regime. The measurement of a MS at 4.2 K allowed confirming the presence of goethite and lepidocrocite (with average magnetic fields of 49.21 T and 44.59 T, respectively).

  9. Moessbauer studies of one representative hydromorphic soil of the coastal area of the Rio de La Plata

    Energy Technology Data Exchange (ETDEWEB)

    Guichon, B. A. [Universidad Nacional de La Plata, Instituto de Geomorfologia y Suelos (Argentina); Desimoni, J.; Mercader, R. C., E-mail: [Universidad Nacional de La Plata, Departamento de Fisica, IFLP-CONICET, Facultad de Ciencias Exactas (Argentina); Imbellone, P. A. [Universidad Nacional de La Plata, Instituto de Geomorfologia y Suelos (Argentina)


    In the present work, we have applied Moessbauer spectroscopy as well as the traditional chemical analyses to assess the contents of different states of Fe in oxides and hydroxides in an Entisol soil from the Argentine coastal plain of the Rio de La Plata. Tentative assignments for the different Fe ion sites are proposed. Our findings show that the isomer shift and quadrupole splitting are sensitive to the changes detected in the Fe{sup 2+} contents of the soluble phase while others remain constant within the experimental uncertainties.

  10. Electronic phase diagrams and competing ground states of complex iron pnictides and chalcogenides. A Moessbauer spectroscopy and muon spin rotation/relaxation study

    Energy Technology Data Exchange (ETDEWEB)

    Kamusella, Sirko


    In this thesis the superconducting and magnetic phases of LiOH(Fe,Co)(Se,S), CuFeAs/CuFeSb, and LaFeP{sub 1-x}As{sub x}O - belonging to the 11, 111 and 1111 structural classes of iron-based arsenides and chalcogenides - are investigated by means of {sup 57}Fe Moessbauer spectroscopy and muon spin rotation/relaxation (μSR). Of major importance in this study is the application of high magnetic fields in Moessbauer spectroscopy to distinguish and characterize ferro- (FM) and antiferromagnetic (AFM) order. A user-friendly Moessbauer data analysis program was developed to provide suitable model functions not only for high field spectra, but relaxation spectra or parameter distributions in general. In LaFeP{sub 1-x}As{sub x}O the reconstruction of the Fermi surface is described by the vanishing of the Γ hole pocket with decreasing x. The continuous change of the orbital character and the covalency of the d-electrons is shown by Moessbauer spectroscopy. A novel antiferromagnetic phase with small magnetic moments of ∼ 0.1 μ{sub B} state is characterized. The superconducting order parameter is proven to continuously change from a nodal to a fully gapped s-wave like Fermi surface in the superconducting regime as a function of x, partially investigated on (O,F) substituted samples. LiOHFeSe is one of the novel intercalated FeSe compounds, showing strongly increased T{sub C} = 43 K mainly due to increased interlayer spacing and resulting two-dimensionality of the Fermi surface. The primary interest of the samples of this thesis is the simultaneously observed ferromagnetism and superconductivity. The local probe techniques prove that superconducting sample volume gets replaced by ferromagnetic volume. Ferromagnetism arises from magnetic order with T{sub C} = 10 K of secondary iron in the interlayer. The tendency of this system to show (Li,Fe) disorder is preserved upon (Se,S) substitution. However, superconductivity gets suppressed. The results of Moessbauer spectroscopy

  11. Facility Configuration Study of the High Temperature Gas-Cooled Reactor Component Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    S. L. Austad; L. E. Guillen; D. S. Ferguson; B. L. Blakely; D. M. Pace; D. Lopez; J. D. Zolynski; B. L. Cowley; V. J. Balls; E.A. Harvego, P.E.; C.W. McKnight, P.E.; R.S. Stewart; B.D. Christensen


    A test facility, referred to as the High Temperature Gas-Cooled Reactor Component Test Facility or CTF, will be sited at Idaho National Laboratory for the purposes of supporting development of high temperature gas thermal-hydraulic technologies (helium, helium-Nitrogen, CO2, etc.) as applied in heat transport and heat transfer applications in High Temperature Gas-Cooled Reactors. Such applications include, but are not limited to: primary coolant; secondary coolant; intermediate, secondary, and tertiary heat transfer; and demonstration of processes requiring high temperatures such as hydrogen production. The facility will initially support completion of the Next Generation Nuclear Plant. It will secondarily be open for use by the full range of suppliers, end-users, facilitators, government laboratories, and others in the domestic and international community supporting the development and application of High Temperature Gas-Cooled Reactor technology. This pre-conceptual facility configuration study, which forms the basis for a cost estimate to support CTF scoping and planning, accomplishes the following objectives: • Identifies pre-conceptual design requirements • Develops test loop equipment schematics and layout • Identifies space allocations for each of the facility functions, as required • Develops a pre-conceptual site layout including transportation, parking and support structures, and railway systems • Identifies pre-conceptual utility and support system needs • Establishes pre-conceptual electrical one-line drawings and schedule for development of power needs.

  12. Theoretical/Computational Studies of High-Temperature Superconductivity from Quantum Magnetism (United States)


    AFRL-AFOSR-VA-TR-2016-0204 Theoretical/Computational Studies of High-Temperature Superconductivity from Quantum Magnetism Jose Rodriguez CALIFORNIA...TITLE AND SUBTITLE Theoretical/Computational Studies of High-Temperature Superconductivity from Quantum Magnetism 5a.  CONTRACT NUMBER 5b.  GRANT...SUBJECT TERMS quantum magnetism , HTS, superconductivity 16.  SECURITY CLASSIFICATION OF: 17.  LIMITATION OF       ABSTRACT UU 18.  NUMBER        OF

  13. Moessbauer effect study of iron(III)-inidazolidine nitroxyl-free radical ligand complex

    Energy Technology Data Exchange (ETDEWEB)

    Mulaba, A. [Technikon Witwatersrand, Metallurgy Department (South Africa); Kiremire, E. [University of the Witwatersrand, Chemistry Department (South Africa); Pollak, H. [University of the Witwatersrand, Physics Department (South Africa); Boeyens, J. [University of the Witwatersrand, Chemistry Department (South Africa)


    A new complex, [Fe(acac)L{sub 2}], bearing inidazolidine nitroxyl-free radical ligand (L{sup -}) was recently synthesised for biological studies. It proved to be biologically active against African sleeping sickness, plasmodium falciparum (malaria), leishmaniasis and chaga disease causative agents. Three ESR well resolved peaks indicated the presence of a free (unpaired) and chemically active electron in the complex. The structural complex ferric iron was found at the centre of two electric gradient whose the biggest is suggested to be initiated by the unpaired charge. No distinction between different cis isomers could be made.

  14. Early Pottery Making in Northern Coastal Peru. Part IV: Moessbauer Study of Ceramics from Huaca Sialupe

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, I. [Southern Illinois University (United States); Haeusler, W.; Jakob, M. [Technische Universitaet Muenchen, Physik-Department E15 (Germany); Montenegro, J. [Southern Illinois University (United States); Riederer, J. [Rathgen-Forschungslabor (Germany); Wagner, U. [Technische Universitaet Muenchen, Physik-Department E15 (Germany)


    We report on an interdisciplinary study of ceramic material excavated in 1999 and 2001 at a 1000-year old ceramic and metal production site, located at Huaca Sialupe in the La Leche valley on the north coast of Peru and dating to the Middle Sican period (AD 900-1100). Sherds of Sican red- and blackware, numerous moulds, several kilns and other evidence of pottery making were found. The pottery, in particular, is famous for its fine texture and perfect black surface finish. In addition, some clay lumps and sherds of unfired Sican pottery were excavated. Within the same workshop several large inverted ceramic urns used as furnaces were found together with Middle Sican metal working tools and debris. Various physical methods were applied to investigate this material. The ancient firing procedures could be elucidated by comparing the spectra observed for the ancient sherds with model spectra of laboratory and field fired clay samples. This shows that the fine ware made at Huaca Sialupe was intentionally fired under strongly reducing conditions at temperatures up to 900{sup o}C. Reoxidation at the end of the reducing firing took place only occasionally. Less care was taken in firing moulds used for pottery making.

  15. In situ high temperature XRD studies of ZnO nanopowder prepared ...

    Indian Academy of Sciences (India)

    This is a promising method for large area deposition at low temperature inspite of being simple, inexpensive and safe. The particle size, lattice parameters and crystal structure of ZnO nanopowder are characterized by in situ high temperature X-ray diffraction (XRD). Surface morphology of powder was studied using ...

  16. Anelastic Relaxation Mechanisms Characterization by Moessbauer Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Soberon Mobarak, Martin Jesus, E-mail: [Secretaria de Educacion Publica (Mexico)


    Anelastic behavior of crystalline solids is generated by several microstructural processes. Its experimental study yields valuable information about materials, namely: modulus, dissipation mechanisms and activation enthalpies. However, conventional techniques to evaluate it are complicated, expensive, time consuming and not easily replicated. As a new approach, in this work a Moessbauer spectrum of an iron specimen is obtained with the specimen at repose being its parameters the 'base parameters'. After that, the same specimen is subjected to an alternated stress-relaxation cycle at frequency {omega}{sub 1} and a new Moessbauer spectrum is obtained under this excited condition; doing the same at several increasing frequencies {omega}{sub n} in order to scan a wide frequencies spectrum. The differences between the Moessbauer parameters obtained at each excitation frequency and the base parameters are plotted against frequency, yielding an 'anelastic spectrum' that reveals the different dissipation mechanisms involved, its characteristic frequency and activation energy. Results are in good agreement with the obtained with other techniques

  17. The history of the Moessbauer effect

    CERN Document Server

    Miglierini, M


    The background of the discovery of the Moessbauer effect and the development of Moessbauer spectrometry as an analytical technique are highlighted. The basic principles and instrumentation, application fields, and trends of future progress and outlined and discussed

  18. Comparative study of the iron cores in human liver ferritin, its pharmaceutical models and ferritin in chicken liver and spleen tissues using Moessbauer spectroscopy with a high velocity resolution

    Energy Technology Data Exchange (ETDEWEB)

    Alenkina, I.V.; Semionkin, V.A. [Faculty of Physical Techniques and Devices for Quality Control, Ural Federal University, Ekaterinburg (Russian Federation); Faculty of Experimental Physics, Ural Federal University, Ekaterinburg (Russian Federation); Oshtrakh, M.I. [Faculty of Physical Techniques and Devices for Quality Control, Ural Federal University, Ekaterinburg (Russian Federation); Klepova, Yu.V.; Sadovnikov, N.V. [Faculty of Physiology and Biotechnology, Ural State Agricultural Academy, Ekaterinburg, (Russian Federation); Dubiel, S.M. [Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Krakow (Poland)


    Full text: Application of the Moessbauer spectroscopy with a high velocity resolution (4096 channels) for a study of iron-containing biological species is of great interest. Improving the velocity resolution allows to reveal small variations in the electronic structure of iron, and to obtain hyperfine parameters with smaller instrumental (systematic) errors in comparison with measurements performed in 512 channels or less. It also allows a more reliable fitting of complex Moessbauer spectra. In the present study the Moessbauer spectroscopy with the high velocity resolution was used for a comparative analysis of ferritin and its pharmaceutically important models as well as iron storage proteins in a chicken liver and a spleen. The ferritin, an iron storage protein, consists of a nanosized polynuclear iron core formed by a ferrihydrite surrounded by a protein shell. Iron-polysaccharide complexes contain {beta}-FeOOH iron cores coated with various polysaccharides. The Moessbauer spectra of the ferritin and commercial products Imferon, MaltoferR and Ferrum Lek as well as those of the chicken liver and spleen tissues were measured with the high velocity resolution at 295 and 90 K. They were fitted using two models: (1) with a homogeneous iron core (an approximation using one quadrupole doublet), and (2) with a heterogeneous iron core (an approximation using several quadrupole doublets). The model (1) can be used as the first approximation fit to visualize small variations in the hyperfine parameters. Using this model, differences in the Moessbauer hyperfine parameters were obtained in both 295 and 90 K Moessbauer spectra. However, this model was considered as a rough approximation because the measured Moessbauer spectra had non-Lorentzian line shapes. Therefore, the spectra of the ferritin, Imferon, MaltoferR and Ferrum Lek as well as those of the liver and spleen tissues were fitted again using the model (2) in which a different number of the quadrupole doublets was

  19. Results Of Recent High Temperature Co-Electrolysis Studies At The Idaho National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    C. M. Stoots; James E. O' Brien; Joseph J. Hartvigsen


    For the past several years, the Idaho National Laboratory and Ceramatec, Inc. have been studying the feasibility of high temperature solid oxide electrolysis for large-scale, nuclear-powered hydrogen production. Parallel to this effort, the INL and Ceramatec have been researching high temperature solid oxide co-electrolysis of steam/CO2 mixtures to produce syngas, the raw material for synthetic fuels production. When powered by nuclear energy, high temperature co-electrolysis offers a carbon-neutral means of syngas production while consuming CO2. The INL has been conducting experiments to characterize the electrochemical performance of co-electrolysis, as well as validate INL-developed computer models. An inline methanation reactor has also been tested to study direct methane production from co-electrolysis products. Testing to date indicate that high temperature steam electrolysis cells perform equally well under co-electrolysis conditions. Process model predictions compare well with measurements for outlet product compositions. The process appears to be a promising technique for large-scale syngas production.

  20. A study on structural analysis of highly corrosive melts at high temperature

    CERN Document Server

    Ohtori, N


    When sodium is burned at high temperature in the atmosphere, it reacts simultaneously with H sub 2 O in the atmosphere so that it can produce high temperature melt of sodium hydroxide as a solvent. If this melt includes peroxide ion (O sub 2 sup 2 sup -), it will be a considerably active and corrosive for iron so that several sodium iron double oxides will be produced as corrosion products after the reaction with steel structures. The present study was carried out in order to investigate the ability of presence of peroxide ion in sodium hydroxide solvent at high temperature and that of identification of the several corrosion products using laser Raman spectroscopy. The measurement system with ultraviolet laser was developed simultaneously in the present work to improve the ability of the measurement at high temperature. As results from the measurements, the possibility of the presence of peroxide ion was shown up to 823K in sodium peroxide and 823K in the melt of sodium hydroxide mixed with sodium peroxide. A...

  1. {sup 57}Fe Moessbauer and X-ray Rietveld studies of ferrian prehnite from Kouragahana, Shimane Peninsula, Japan

    Energy Technology Data Exchange (ETDEWEB)

    Akasaka, Masahide; Hashimoto, Hideaki [Shimane Univ., Matsue (Japan). Dept. of Geoscience, Interdisciplinary Faculty of Science and Engineering; Makino, Kuniaki [Shinshu Univ., Matsumoto, Nagano (Japan). Dept. of Geology, Faculty of Science; Hino, Ryozi [Shimane Univ., Matsue (Japan). Dept. of Material Science, Interdisciplinary Faculty of Science and Engineering


    Fe-bearing prehnite, Ca{sub 2}Al{sub 2-p}Fe{sub p}Si{sub 3}O{sub 10} (OH){sub 2} (Z - 2), from Kouragahana, Shimane Peninsula, Japan, was investigated using {sup 57}Fe Moessbauer spectroscopy and X-ray Rietveld method. Iron and aluminum contents of the prehnite are variable, with p ranging from 0.003 to 0.425 (n = 97). Fe-poor and Al-rich prehnites generally grow over clusters of Fe-rich prehnite crystals. Intergrowth texture of Fe-poor and Fe-rich crystals is also common in spherical aggregates. The {sup 57}Fe Moessbauer spectrum consists of one doublet with isomer shift = 0.360 mm/s, quadrupole splitting = 0.276 mm/s and peak width = 0.310 mm/s. The doublet is assigned to Fe{sup 3+} in the octahedral site. X-ray Rietveld refinement was carried out using two structural models of space groups Pmna and Pma2. Results of the refinement are characterized by R-weighted pattern (R{sub wp}) = 9.30 %, 'Goodness-of-fit' indicator (S) = 1.276 and Durbin-Watson statistic d(D-W d) of 1.485 for the refinement in space group Pmna, and by R{sub wp} = 10.00 %, S = 1.367 and D-W d of 1.383 in space group Pma2, indicating that the fit of the former refinement is better than the latter. The refined Fe occupancies at the octahedral site in space groups Pmna and Pma2 are 0.16{+-}0.01 and 0.20{+-}0.01, respectively. In the Pmma-structure, the T2 site is occupied by Si{sub 0.5}Al{sub 0.5} with disordering scheme, and average T2-O distance is 1.668 A. In contrast, in the Pma2-structure, Al and Si are distributed in an ordered state in the T2 site, and average Al{sub T2}-O and Si{sub T2}-O distances are 1.72 and 1.61 A, respectively. Absence of Fe{sup 3+} from the tetrahedral site may be attributed to the small size for the cation and inflexible character of the T2 site. A very small quadrupole splitting of the Moessbauer doublet by Fe{sup 3+} in the octahedral site suggests the octahedral site has a highly symmetrical site-geometry. This is consistent with a more symmetrical

  2. Study on acoustic emission source localization of 16Mn structural steel of high temperature deformation (United States)

    Zhang, Yubo; Deng, Muhan; Yang, Rui; Jin, Feixiang


    The location technique of acoustic emission (AE) source for deformation damage of 16Mn steel in high temperature environment is studied by using linear time-difference-of-arrival (TDOA) location method. The distribution characteristics of strain induced acoustic emission source signals at 20°C and 400°C of tensile specimens were investigated. It is found that the near fault has the location signal of the cluster, which can judge the stress concentration and cause the fracture.

  3. Study of Creep of Alumina-Forming Austenitic Stainless Steel for High-Temperature Energy Applications (United States)

    Afonina, Natalie Petrovna

    To withstand the high temperature (>700°C) and pressure demands of steam turbines and boilers used for energy applications, metal alloys must be economically viable and have the necessary material properties, such as high-temperature creep strength, oxidation and corrosion resistance, to withstand such conditions. One promising class of alloys potentially capable of withstanding the rigors of aggressive environments, are alumina-forming austenitic stainless steels (AFAs) alloyed with aluminum to improve corrosion and oxidation resistance. The effect of aging on the microstructure, high temperature constant-stress creep behavior and mechanical properties of the AFA-type alloy Fe-20Cr-30Ni-2Nb-5Al (at.%) were investigated in this study. The alloy's microstructural evolution with increased aging time was observed prior to creep testing. As aging time increased, the alloy exhibited increasing quantities of fine Fe2Nb Laves phase dispersions, with a precipitate-free zone appearing in samples with higher aging times. The presence of the L1 2 phase gamma'-Ni3Al precipitate was detected in the alloy's matrix at 760°C. A constant-stress creep rig was designed, built and its operation validated. Constant-stress creep tests were performed at 760°C and 35MPa, and the effects of different aging conditions on creep rate were investigated. Specimens aged for 240 h exhibited the highest creep rate by a factor of 5, with the homogenized sample having the second highest rate. Samples aged for 2.4 h and 24 h exhibited similar low secondary creep rates. Creep tests conducted at 700oC exhibited a significantly lower creep rate compared to those at 760oC. Microstructural analysis was performed on crept samples to explore high temperature straining properties. The quantity and size of Fe2Nb Laves phase and NiAl particles increased in the matrix and on grain boundaries with longer aging time. High temperature tensile tests were performed and compared to room temperature results. The

  4. Thermogravimetric study of oxidation of a PdCr alloy used for high-temperature sensors (United States)

    Boyd, Darwin L.; Zeller, Mary V.


    In this study, the oxidation of Pd-13 weight percent Cr, a candidate alloy for high-temperature strain gages, was investigated by thermogravimetry. Although the bulk alloy exhibits linear electrical resistivity versus temperature and stable resistivity at elevated temperatures, problems attributed to oxidation occur when this material is fabricated into strain gages. In this work, isothermal thermogravimetry (TG) was used to study the oxidation kinetics. Results indicate that the oxidation of Pd-13 weight percent Cr was approximately parabolic in time at 600 C but exhibited greater passivation from 700 to 900 C. At 1100 C, the oxidation rate again increased.

  5. The Miniaturized Moessbauer Spectrometer MIMOS II for the Asteroid Redirect Mission(ARM): Quantative Iron Mineralogy And Oxidation States (United States)

    Schroeder, C.; Klingelhoefer, G; Morris, R. V.; Yen, A. S.; Renz, F.; Graff, T. G.


    The miniaturized Moessbauer spectrometer MIMOS II is an off-the-shelf instrument with proven flight heritage. It has been successfully deployed during NASA’s Mars Exploration Rover (MER) mission and was on-board the UK-led Beagle 2 Mars lander and the Russian Phobos-Grunt sample return mission. A Moessbauer spectrometer has been suggested for ASTEX, a DLR Near-Earth Asteroid (NEA) mission study, and the potential payload to be hosted by the Asteroid Redirect Mission (ARM). Here we make the case for in situ asteroid characterization with Moessbauer spectroscopy on the ARM employing one of three available fully-qualified flight-spare Moessbauer instruments.

  6. Study of the high-temperature corrosion of heat-resisting alloys

    Energy Technology Data Exchange (ETDEWEB)

    Wada, K.


    An experimental study is reported of the corrosion resistance of the heat-resistant materials which play such an important role in the development of high-efficiency coal gasification combined-cycle power generation. Specifically, a study was made of the high-temperature and molten salt corrosion of nickel base alloys in coal combustion gas environments. The authors outline various types of high-temperature corrosion which occur: oxidation, sulfidation, decarburization and carburizing, nitridation, hot corrosion and halogenation. The mechanisms involved in molten salt corrosion are explained with reference to various models and currently available data. Finally, a study of electro-chemical measuring methods is reported. The authors conclude that future work on corrosion in coal gasification combined cycle power generation systems should concentrate on the following items: 1) elucidating the conditions under which molten salts form; 2) developing methods for predicting the quantity of molten salts which will form, and for assessing their contribution to corrosion; 3) evaluating the corrosion resistance of specific alloys to molten salts of given composition; 4) clarifying the effect of alloy surface temperature on corrosion resistance and local corrosion; and 5) developing techniques for predicting the amount of corrosion. 24 references, 28 figures, 7 tables.

  7. (Gamma scattering in condensed matter with high intensity Moessbauer radiation)

    Energy Technology Data Exchange (ETDEWEB)


    This report discusses: quasielastic scattering studies on glycerol; gamma-ray scattering from alkali halides; lattice dynamics in metals; Moessbauer neutron scattering, x-ray diffraction, and macroscopic studies of high {Tc} superconductors containing tungsten; NiAl scattering studies; and atomic interference factors and nuclear Casimir effect.

  8. Observations on dental prostheses and restorations subjected to high temperatures: experimental studies to aid identification processes. (United States)

    Merlati, G; Danesino, P; Savio, C; Fassina, G; Osculati, A; Menghini, P


    In large scale disasters associated with fire the damage caused by heat can make medico-legal identification of human remains difficult. Teeth, restorations and prostheses, all of which are resistant to even quite high temperatures can be used as aids in the identification process. In this project the behaviour and morphology of teeth and dental prostheses exposed to a range of high temperatures was studied. Healthy teeth, dental restorations and prostheses were placed in a furnace and heated at a rate of 30 degrees C/min and the effects of the predetermined temperatures 200, 400, 600, 800, 1000 and 1100 degrees C were examined by stereomicroscopy and scanning electron microscopy (SEM). Our observations show that some prostheses and restorative materials resist higher temperatures than theoretically predictable and that even when a restoration is lost because of detachment or change of state its ante-mortem presence can be confirmed and detected by both stereomicroscopic examination and SEM of the residual cavity. We further conclude that a reasonably reliable estimation of the temperature of exposure can be made from an analysis of the teeth and restorative materials.

  9. Development of an apparatus to study chemical reactions at high temperature - a progress report

    Energy Technology Data Exchange (ETDEWEB)

    Sturzenegger, M.; Schelling, Th.; Steiner, E.; Wuillemin, D. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)


    TREMPER is an apparatus that was devised to study kinetic and thermodynamic aspects of high-temperature reactions under concentrated solar irradiation. The design allows investigations on solid or liquid samples under inert or reactive atmospheres. The working temperature is adjustable; the upper limit that has yet been reached is about 1900 K. TREMPER will facilitate chemical reactivity studies on a temperature level that is difficult to access by other means. First experiments were conducted to study the decomposition of manganese oxide MnO{sub 2}. Chemical analysis of exposed samples confirmed that the parent MnO{sub 2} was decomposed to mixtures of Mn O and Mn{sub 3}O{sub 4}. The amount of Mn O ranged from 60 mol-% in air to 86 mol-% under inert atmosphere. (author) 1 fig., 1 tab., 2 refs.

  10. Studies Related to the Oregon State University High Temperature Test Facility: Scaling, the Validation Matrix, and Similarities to the Modular High Temperature Gas-Cooled Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Richard R. Schultz; Paul D. Bayless; Richard W. Johnson; William T. Taitano; James R. Wolf; Glenn E. McCreery


    The Oregon State University (OSU) High Temperature Test Facility (HTTF) is an integral experimental facility that will be constructed on the OSU campus in Corvallis, Oregon. The HTTF project was initiated, by the U.S. Nuclear Regulatory Commission (NRC), on September 5, 2008 as Task 4 of the 5 year High Temperature Gas Reactor Cooperative Agreement via NRC Contract 04-08-138. Until August, 2010, when a DOE contract was initiated to fund additional capabilities for the HTTF project, all of the funding support for the HTTF was provided by the NRC via their cooperative agreement. The U.S. Department of Energy (DOE) began their involvement with the HTTF project in late 2009 via the Next Generation Nuclear Plant project. Because the NRC interests in HTTF experiments were only centered on the depressurized conduction cooldown (DCC) scenario, NGNP involvement focused on expanding the experimental envelope of the HTTF to include steady-state operations and also the pressurized conduction cooldown (PCC). Since DOE has incorporated the HTTF as an ingredient in the NGNP thermal-fluids validation program, several important outcomes should be noted: 1. The reference prismatic reactor design, that serves as the basis for scaling the HTTF, became the modular high temperature gas-cooled reactor (MHTGR). The MHTGR has also been chosen as the reference design for all of the other NGNP thermal-fluid experiments. 2. The NGNP validation matrix is being planned using the same scaling strategy that has been implemented to design the HTTF, i.e., the hierarchical two-tiered scaling methodology developed by Zuber in 1991. Using this approach a preliminary validation matrix has been designed that integrates the HTTF experiments with the other experiments planned for the NGNP thermal-fluids verification and validation project. 3. Initial analyses showed that the inherent power capability of the OSU infrastructure, which only allowed a total operational facility power capability of 0.6 MW, is

  11. First Principles Study on Ta25 Low- and High-Temperature Phases (United States)

    Wu, Yu-Ning; Li, Lan; Cheng, Hai-Ping


    Low- and high-temperature phases of Tantalum pentoxide (Ta2O5) have been studied by density functional method. Our calculations have been carried out using the projector-augmented wave method and a plane wave basis set. Tantalum pen-oxide, Ta2O5 is considered as a potential alternative to SiO2 because of its high breakdown voltage, its high dielectric constant, and its excellent step coverage characteristics. It is also a dielectric material for optical coating application that is important to high precision instrumentation. We have studied structure, electronic properties, and phonon spectra, as well as elastic modulii, including bulk modulus, Young's modulus and Poisson's ratio. Four different isomorphs will be presented. Furthermore, SiO2-doped Ta2O5, which is used as mirror coatings in current interferometric gravitational wave detectors, has also been investigated. Our results help to understand the properties of this material in different phases.

  12. Moessbauer spectroscopy of Fe-B based amorphous alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kreislerova, Y.; Zemcik, T. (Ceskoslovenska Akademie Ved, Brno. Ustav Fyzikalni Metalurgie)


    The influence of heat treatment on structure changes of amorphous alloy Fe/sub 83/B/sub 17/ was studied by /sup 57/Fe Moessbauer spectroscopy. At 613 K a change in the magnetization direction was detected and at 633 K the precipitation of ..cap alpha..-Fe quantitatively determined.

  13. The study on stress-strain state of the spring at high temperature using ABAQUS

    Directory of Open Access Journals (Sweden)

    H Sun


    Full Text Available Cylindrical helical springs are widely used in the elements of thermal energy devices. It is necessary to guarantee the stability of the stress state of spring in high temperature. Relaxation phenomenon of stress is studied in this paper. Calculations are carried out in the environment of ABAQUS. The verification is taken out using analytical calculations.This paper describes the distribution and character of stress contour lines on the cross section of spring under the condition of instantaneous load, explicates the relaxation law with time. Research object is cylindrical helical spring, that working at high temperature. The purpose of this work is to get the stress relaxation law of spring, and to guarantee the long-term strength.This article presents the basic theory of helical spring. Establishes spring mathematical model of creep under the loads of compression and torsion. The stress formulas of each component in the cross section of spring are given. The calculation process of relaxation is analyzed in the program ABAQUS.In this paper compare the analytical formulas of spring stress with the simulation results, which are created by program ABAQUS.Finite element model for stress creep analysis in the cross section is created, material of spring – stainless steel 10X18N9T, springs are used at the temperature 650℃.At the beginning, stress-stain of spring is in the elastic state. Analyzes the change law of creep stress under the condition of constant load and a fixed compression.When analyzing under the condition of a fixed compression, the stresses are quickly decreased in most area in the cross section of spring, and the point of minimum shear stress gradually moves to the direction of outer diameter, because of this, stresses in a small area near the center increase slowly at first then decrease gradually with time. When analyzing under the condition of constant load, the stresses are quickly decreased in the around area and in creased

  14. Capturing high temperature protein conformations for low-temperature study using ultra-fast cooling (United States)

    Moreau, David; Atakisi, Hakan; Thorne, Robert

    protocols for cooling biomolecular crystals for x-ray cryocrystallography are poorly controlled, leading to crystal-to-crystal and within-crystal non-isomorphism. Furthermore, cooling times below the protein-solvent glass transition of .1 s provide ample time for biological temperature conformations to depopulate and shift. To address these issues, methods and apparatus for cooling biomolecular crystals at rates approaching 100,000 K/s have been developed. These cooling rates are sufficient to eliminate ice formation on cooling without use of cryoprotectants, and to quench additional high-temperature conformations for low-temperature study. Time scales for conformational relaxation can be characterized using variable cooling rates. Possible extension of these methods to maximize conformational quenching will be discussed.

  15. Levitation Methods for Structural and Dynamical Studies of Liquids at High Temperatures

    Directory of Open Access Journals (Sweden)

    Holland-Moritz D.


    Full Text Available In recent years, levitation methods have been increasingly used to study the atomic structure and dynamics of high-temperature liquids, in particular metallic melts. These methods provide a containerless and, consequently, high-purity sample environment. No corrections for signals due to a crucible need to be made, and deep undercoolings of the liquid become possible, reducing the effect of thermal fluctuations. On the other hand, the sample position and, hence, the scattering geometry is not fixed and the free sample surface exhibits capillary waves. Nevertheless, the combination of levitation techniques with x-ray or neutron sources has proven to be possible and successfull. This paper reviews the progress made in this field during the last 10 years or so. It discusses the different levitation techniques: aerodynamic, electromagnetic, electrostatic, as well as the applied spectroscopic techniques: x-ray and neutron diffraction, x-ray absorption and quasi-elastic neutron diffraction. Some recent results are also highlighted.

  16. Crystallization and Moessbauer studies of the Fe sub 7 sub 8 Al sub 4 Nb sub 5 B sub 1 sub 2 Cu sub 1 alloy

    CERN Document Server

    Kim, C S; Kim, S B; Park, J Y; Kim, K Y; Noh, T H; Oak, H N


    A melt-spun Fe sub 7 sub 8 Al sub 4 Nb sub 5 B sub 1 sub 2 Cu sub 1 alloy with an ultra-thin ribbon has been studied by x-ray diffraction, Moessbauer spectroscopy, and vibrating sample magnetometry. The average hyperfine field H sub h sub f (T) of the amorphous state shows temperature dependence of [H sub h sub f (T) - H sub h sub f (0)]/H sub h sub f (0) -0.53(T/T sub c) sup 3 sup / sup 2 - 0.21(T/T sub c < 0.7, indicative of spin-wave excitation. The quadrupole splitting just above the Curie temperature Tc is 0.42 mm/s, whereas the quadrupole shift below T sub c is zero. The Curie and the crystallization temperature are T sub c = 450 K and T sub x = 703 K, respectively, for a heating rate of 5 K/min. The occupied area ratio of the alpha-Fe phase flash-annealed at 723 K is 59% and remains unchanged. The crystallization temperature of the flash-annealed alloy becomes lower, and the formation of an alpha-Fe is easier than that of the conventional alloy. The flash-annealing technique is effective in improvin...

  17. Moessbauer and NMR study of Heusler alloy Co{sub 2}Mn{sub 1-x}Fe{sub x}Si

    Energy Technology Data Exchange (ETDEWEB)

    Ksenofontov, Vadim; Kandpal, Hem C.; Balke, Benjamin; Felser, Claudia [Institut fuer Anorganische Chemie und Analytische Chemie, Johannes Gutenberg Univ. Mainz (Germany); Wojcik, Marek [Institute of Physics, Polish Academy of Sciences, Warszawa (Poland)


    The Heusler alloys Co{sub 2}Mn{sub 1-x}Fe{sub x}Si have recently attracted particular interest due to the unique possibility to tune the spin polarization by varying the Mn/Fe fraction. The calculated band structures show the shift of the Fermi energy from the top of the minority valence band for Co{sub 2}MnSi to the bottom of the minority conduction band for Co{sub 2}FeSi upon Fe doping. From computational results it has been predicted that a compound with an intermediate Fe concentration of about 50% should be best suited for spintronic applications. These theoretical findings still require experimental proofs. We report on 57 Fe Moessbauer spectroscopic, {sup 59}Co and {sup 55}Mn NMR studies of hyperfine magnetic fields (HFF) in Co{sub 2}Mn{sub 1-x}Fe{sub x}Si (0{<=}x{<=}1). The hyperfine magnetic field on Fe atoms is non-monotonic and shows maximum at x=0.5. We argue that the maximum value of the HFF found on Fe and Co atoms at x=0.5 is due to the existence of maximal spin-polarization in Co{sub 2}Mn{sub 0.5}Fe{sub 0.5}Si. Experimentally found HFF values are compared with results following from electronic band structure calculations taking into account electronic correlations (LDA+U).

  18. Monazite behaviours during high-temperature metamorphism: a case study from Dinggye region, Tibetan Himalaya (United States)

    Wang, Jia-Min; Wu, Fu-Yuan; Rubatto, Daniela; Liu, Shi-Ran; Zhang, Jin-Jiang


    Monazite is a key accessory mineral for metamorphic geochronology, but its growth mechanisms during melt-bearing high-temperature metamorphism is not well understood. Therefore, the petrology, pressure-temperature and timing of metamorphism have been investigated in pelitic and psammitic granulites from the Greater Himalayan Crystalline Complex (GHC) in Dinggye, southern Tibet. These rocks underwent an isothermal decompression process from pressure conditions of >10 kbar to mineral growth by comprehensive studies on zoning patterns, trace element signatures, index mineral inclusions (melt inclusions, sillimanite and K-feldspar) in dated domains and textural correlations with coexisting minerals. The results show that inherited domains (500-400 Ma) are common in monazite even at granulite-facies conditions. Few monazites formed at the M1-stage ( 30-29 Ma) and recorded heterogeneous Th, Y, and HREE compositions, which formed by recrystallization related to muscovite dehydration melting reaction. These monazite grains were protected from dissolution or lateral overprinting mainly by the armour effect of matrix crystals (biotite and quartz). Most monazite grains formed at the M3-stage (21-19 Ma) through either dissolution-reprecipitation or recrystallization that was related to biotite dehydration melting reaction. These monazite grains record HREE and Y signatures in local equilibrium with different reactions involving either garnet breakdown or peritectic garnet growth. Another peak of monazite growth occurs during melt crystallization ( 15 Ma), and these monazites are unzoned and have homogeneous compositions. Our results documented the widespread recrystallization to account for monazite growth during high-temperature metamorphism and related melting reactions that trigger monazite recrystallization. In a regional sense, our P-T-t data along with published data indicate that the pre-M1 eclogite-facies metamorphism occurred at 39-30 Ma in the Dinggye Himalaya. Our

  19. High temperature study of flexible silicon-on-insulator fin field-effect transistors

    KAUST Repository

    Diab, Amer El Hajj


    We report high temperature electrical transport characteristics of a flexible version of the semiconductor industry\\'s most advanced architecture: fin field-effect transistor on silicon-on-insulator with sub-20 nm fins and high-κ/metal gate stacks. Characterization from room to high temperature (150 °C) was completed to determine temperature dependence of drain current (Ids), gate leakage current (Igs), transconductance (gm), and extracted low-field mobility (μ0). Mobility degradation with temperature is mainly caused by phonon scattering. The other device characteristics show insignificant difference at high temperature which proves the suitability of inorganic flexible electronics with advanced device architecture.

  20. Atomistic study of ternary oxides as high-temperature solid lubricants (United States)

    Gao, Hongyu

    Friction and wear are important tribological phenomena tightly associated with the performance of tribological components/systems such as bearings and cutting machines. In the process of contact and sliding, friction and wear lead to energy loss, and high friction and wear typically result in shortened service lifetime. To reduce friction and wear, solid lubricants are generally used under conditions where traditional liquid lubricants cannot be applied. However, it is challenging to maintain the functionality of those materials when the working environment becomes severe. For instance, at elevated temperatures (i.e., above 400 °C), most traditional solid lubricants, such as MoS2 and graphite, will easily oxidize or lose lubricity due to irreversible chemical changes. For such conditions, it is necessary to identify materials that can remain thermally stable as well as lubricious over a wide range of temperatures. Among the currently available high-temperature solid lubricants, Ag-based ternary metal oxides have recently drawn attention due to their low friction and ability to resist oxidation. A recent experimental study showed that the Ag-Ta-O ternary exhibited an extremely low coefficient of friction (0.06) at 750 °C. To fully uncover the lubricious nature of this material as a high-temperature solid lubricant, a series of tribological investigations were carried out based on one promising candidate - silver tantalate (AgTaO3). The study was then extended to alternative materials, Cu-Ta-O ternaries, to accommodate a variety of application requirements. We aimed to understand, at an atomic level, the effects of physical and chemical properties on the thermal, mechanical and tribological behavior of these materials at high temperatures. Furthermore, we investigated potassium chloride films on a clean iron surface as a representative boundary lubricating system in a nonextreme environment. This investigation complemented the study of Ag/Cu-Ta-O and enhanced the

  1. Sensitivity studies of modular high-temperature gas-cooled reactor postulated accidents

    Energy Technology Data Exchange (ETDEWEB)

    Ball, Syd [Nuclear Science and Technology Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6010 (United States)]. E-mail:


    The results of various accident scenario simulations for the two major modular high temperature gas-cooled reactor (HTGR) variants (prismatic and pebble bed cores) are presented. Sensitivity studies can help to quantify the uncertainty ranges of the predicted outcomes for variations in some of the more crucial system parameters, as well as for occurrences of equipment and/or operator failures or errors. In addition, sensitivity studies can guide further efforts in improving the design and determining where more (or less) R and D is appropriate. Both of the modular HTGR designs studied - the 400-MW(t) pebble bed modular reactor (PBMR, pebble) and the 600-MW(t) gas-turbine modular helium reactor (GT-MHR, prismatic) - show excellent accident prevention and mitigation capabilities because of their inherent passive safety features. The large thermal margins between operating and 'potential damage' temperatures, along with the typically very slow accident response times (approximate days to reach peak temperatures), tend to reduce concerns about uncertainties in the simulation models, the initiating events, and the equipment and operator responses.

  2. High-pressure high-temperature rheological studies of colloidal suspensions with carbon nanotube (United States)

    Baby, Anoop; Sadr, Reza; Yarc, Rommel; Amani, Mahmood


    Selection of the drilling fluid, drilling mud, is vital in minimizing the cost and time required for the drilling in oil fields. Drilling mud aids in cooling, lubricating drilling bit, removing the debries from the drill bore and maintaining the wellbore stability. Owing to the enhanced thermo-physical properties and stable nature, suspensions of nanoparticles have been suggested for drilling fluids. High-pressure and high-temperature rheology of a nanomud suspension (nano particles suspended in a mud solution) is studied here. The nanomud is prepared by dispersing a water-based drilling mud suspension (water with 1% Bentonite and 7% Barite particles) with multi-walled carbon nanotubes, MWCNT. The effect of pressure, temperature, and shear rate are independently studied for the various particle loading of the nanoparticles. Viscosity values are measured at a maximum pressure of 170MPa with temperatures ranging from ambient to 180oC. The effect of MWCNT concentration and variation in shear rate are also investigated A shear thinning non-Newtonian behavior is observed for the basemud and the nanomud samples for all cases. The basemud showed an increase in viscosity with an increase in pressure. However, with MWCNT particle addition, this trend is observed to have reversed.

  3. Room temperature synthesis and high temperature frictional study of silver vanadate nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Singh, D P; Aouadi, S M [Department of Physics, Southern Illinois University, Carbondale-62901 (United States); Polychronopoulou, K [Department of Chemistry, University of Cyprus, Nicosia, 1678 (Cyprus); Rebholz, C, E-mail:, E-mail: [Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, 1678 (Cyprus)


    We report the room temperature (RT) synthesis of silver vanadate nanorods (consisting of mainly {beta}-AgV O{sub 3}) by a simple wet chemical route and their frictional study at high temperatures (HT). The sudden mixing of ammonium vanadate with silver nitrate solution under constant magnetic stirring resulted in a pale yellow coloured precipitate. Structural/microstructural characterization of the precipitate through x-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed the high yield and homogeneous formation of silver vanadate nanorods. The length of the nanorods was 20-40 {mu}m and the thickness 100-600 nm. The pH variation with respect to time was thoroughly studied to understand the formation mechanism of the silver vanadate nanorods. This synthesis process neither demands HT, surfactants nor long reaction time. The silver vanadate nanomaterial showed good lubrication behaviour at HT (700 deg. C) and the friction coefficient was between 0.2 and 0.3. HT-XRD revealed that AgV O{sub 3} completely transformed into silver vanadium oxide (Ag{sub 2}V{sub 4}O{sub 11}) and silver with an increase in temperature from RT to 700 deg. C.

  4. Core and Refueling Design Studies for the Advanced High Temperature Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, David Eugene [ORNL; Ilas, Dan [ORNL; Varma, Venugopal Koikal [ORNL; Cisneros, Anselmo T [ORNL; Kelly, Ryan P [ORNL; Gehin, Jess C [ORNL


    The Advanced High Temperature Reactor (AHTR) is a design concept for a central generating station type [3400 MW(t)] fluoride-salt-cooled high-temperature reactor (FHR). The overall goal of the AHTR development program is to demonstrate the technical feasibility of FHRs as low-cost, large-size power producers while maintaining full passive safety. This report presents the current status of ongoing design studies of the core, in-vessel structures, and refueling options for the AHTR. The AHTR design remains at the notional level of maturity as important material, structural, neutronic, and hydraulic issues remain to be addressed. The present design space exploration, however, indicates that reasonable options exist for the AHTR core, primary heat transport path, and fuel cycle provided that materials and systems technologies develop as anticipated. An illustration of the current AHTR core, reactor vessel, and nearby structures is shown in Fig. ES1. The AHTR core design concept is based upon 252 hexagonal, plate fuel assemblies configured to form a roughly cylindrical core. The core has a fueled height of 5.5 m with 25 cm of reflector above and below the core. The fuel assembly hexagons are {approx}45 cm across the flats. Each fuel assembly contains 18 plates that are 23.9 cm wide and 2.55 cm thick. The reactor vessel has an exterior diameter of 10.48 m and a height of 17.7 m. A row of replaceable graphite reflector prismatic blocks surrounds the core radially. A more complete reactor configuration description is provided in Section 2 of this report. The AHTR core design space exploration was performed under a set of constraints. Only low enrichment (<20%) uranium fuel was considered. The coated particle fuel and matrix materials were derived from those being developed and demonstrated under the Department of Energy Office of Nuclear Energy (DOE-NE) advanced gas reactor program. The coated particle volumetric packing fraction was restricted to at most 40%. The pressure

  5. [A study of phonon vibration like modes for aggregation structure in silicate melts by high temperature Raman spectrum]. (United States)

    Xu, Pei-Cang; Li, Ru-Bi; Shang, Tong-Ming; Zhou, Jian; Sun, Jian-Hua; You, Jing-Lin


    Silicate melts are special fractal dimension system that is metastable state of near-way order and far-way disorder. In this paper, the size of nanometer aggregation structure and the frequences of phonon vibration like mode in the low dimension silicate series (CaO-Al2O3-SiO2 and Na2-Al2O3-SiO2 series) synthesized via high temperature melting and sol gel methods were measured by means of small-angle X-ray scattering (SAXS), low wavenumber Raman spectrum (LWRS) and high temperature Raman spectrum (HTRS in situ measuring). The nanometer self-similarity aggregation structure(it's size is about a few nm to a few tens nm) and phonic phonon vibration like modes of low temperature silicate gel, high temperature silicate melts and it's quenching glasses phases were obtained. So a quantitative method by HTRS for measuring the aggregation size in the high temperature melts was established. The results showed that the aggregation size of the silicate melts is smaller at high temperature than at room temperature and the number of bridge oxygen in one Si-O tetrahedron in network structure units is decreasing at high temperature. This study work provides important theory and information for deliberating geochemistry characteristic, crystallization & evolution of natural magma and enhancing performance of low dimension silicate matelials.

  6. TEM studies of high temperature corrosion behaviour of TiAl intermetallics with surface modifications

    Energy Technology Data Exchange (ETDEWEB)

    Du, H.L.; Rose, S.R.; Xiang, Z.D.; Datta, P.K. [University of Northumbria, Advanced Materials Research Institute, Ellison Building, Ellison Place, NE1 8 ST Newcastle upon Tyne (United Kingdom); Li, X.Y. [Ion Engieneering Research Institute Corporation, 2-8-1, Tsudayamate, Hirakata, Osaka 513-0128 (Japan)


    The oxidation/sulphidation behaviour of a Ti-46.7Al-1.9W-0.5Si alloy with a TiAl{sub 3} diffusion coating was studied in an environment of H{sub 2}/H{sub 2}S/H{sub 2}O at 850{sup o}C. The kinetic results demonstrate that the TiAl{sub 3} coating significantly increased the high temperature corrosion resistance of Ti-46.7Al-1.9W-0.5Si. The SEM, EDX, XRD and TEM analysis reveals that the formation of an Al{sub 2}O{sub 3} scale on the surface of the TiAl{sub 3}-coated sample was responsible for the enhancement of the corrosion resistance. The Ti-46.7Al-1.9W-0.5Si alloy was also modified by Nb ion implantation. The Nb ion implanted and as received samples were subjected to cyclic oxidation in an open air at 800{sup o}C. The Nb ion implantation not only increased the oxidation resistance but also substantially improved the adhesion of scale to the substrate. (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  7. High temperature surface Brillouin scattering study of mechanical properties of boron-doped epitaxial polysilicon

    Directory of Open Access Journals (Sweden)

    B. A. Mathe


    Full Text Available A study of the mechanical properties of a boron-doped epitaxial polysilicon layer deposited on a Si (100 substrate specimen has been carried out by surface Brillouin scattering at high temperatures. This type of specimen is widely used in micro-electro-mechanical systems (MEMS. By accumulating spectra with the Rayleigh mode and the Lamb continuum the isotropic elastic constants C44 and C11 were obtained, from which the values of the bulk, shear and Young’s moduli and Poisson’s ratio for the layer were determined over a range of temperatures from 20 °C to 110 °C. By contrast, an examination of the literature on polycrystalline silicon shows that other methods each provide a limited range of the above properties and thus additional experiments and techniques were needed. The SBS method is applicable to other polycrystalline materials such as silicon carbide, silicon nitride, silicon germanium and amorphous diamond that have also been used for MEMS applications.

  8. Kinetic study of the thermal transformation of limonite to hematite by X-ray diffraction, {mu}-Raman and Moessbauer spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Palacios, P. R., E-mail:; Bustamante, Angel [Universidad Nacional Mayor de San Marcos, Laboratorio de Ceramicos y Nanomateriales, Facultad de Ciencias Fisicas (Peru); Romero-Gomez, P.; Gonzalez, J. C. [Instituto de Ciencia de Materiales de Sevilla - CSIC - Univ. Sevilla, Grupo de Investigacion de Superficies, Intercaras y Laminas Delgadas (Spain)


    A kinetic study about the phase limonite (FeO(OH)-nH{sub 2}O) was performed through X-ray diffraction, {mu}-Raman spectroscopy and Moessbauer spectroscopy. The oxide powder sample was extracted from Taraco district, Huancane province of Puno (Peru). X-ray diffraction identified the phase goethite as the main mineralogical component, and then the sample was subjected to in-situ heat treatment in the temperature range: 100 to 500 Degree-Sign C in oxidizing (air) and inert (nitrogen) atmospheres. The goethite phase remains stable in this range: room temperature to 200 Degree-Sign C. Between 200 Degree-Sign C to 250 Degree-Sign C there is a phase transition: {alpha}-Fe{sup 3 + }O(OH) {yields} {alpha}-Fe{sub 2}O{sub 3}, i.e., from goethite to hematite phase, taking as evidence the evolution of the diffraction profiles. At 200 Degree-Sign C spectra shows the start of broadened magnetic component and it was adjusted through of a magnetic distribution giving a mean field of 38.6T and a relative area of 52.9%, which is a characteristic of goethite. Also, it is noticed the presence of a small amount of hematite with a mean field of 49.0T linked with a superparamagnetic broadened doublet of relative area of 47.1% where the domains of the particles have sizes smaller than 100 A and it is evidence the superparamagnetic limit; i.e., the superparamagnetic effect tends toward a distribution of magnetic fields. Moreover, the Raman spectra of the in-situ thermal treatment, support the transition at 290 Degree-Sign C through the transformation of characteristic bands of goethite to hematite phase at the frequency range from 200 to 1,800 cm{sup - 1}.

  9. Moessbauer-Spectrometer MIMOS II: Future applications

    Energy Technology Data Exchange (ETDEWEB)

    Klingelhoefer, Goestar; Blumers, Mathias; Schroeder, Christian; Fleischer, Iris; Lopez, Jordi G.; Sanchez, Jose F.; Hahn, Michaela; Upadhyay, Chandan [Institut fuer Anorganische Chemie und Analytische Chemie, Johannes Gutenberg Universitaet, Staudinger Weg 9, 55128 Mainz (Germany); Rodionov, Daniel [Institut fuer Anorganische Chemie und Analytische Chemie, Johannes Gutenberg Universitaet, Staudinger Weg 9, 55128 Mainz (Germany); Space Research Institute IKI, 117997 Moskau (Russian Federation)


    The Miniaturized Moessbauer Spectrometer MIMOS II operates on the surface of Mars for the last three years (part of NASA Mars Exploration Rovers scientific payload). Successful application of MIMOS II as a tool for detection/analysis of Fe-bearing minerals on the extraterrestrial surfaces has proven its use for other missions. Currently MIMOS II is a part of ExoMars and Phobos-Grunt missions. ExoMars is managed by the European Space Agency and planned to be launched in 2013. It involves the development of a sophisticated Mars rover with set of instruments to further characterize the biological environment on Mars in preparation for robotic missions and human exploration. Data from the mission should provide an input for broader studies of exobiology. Phobos-Grunt is developed by Russian Space Agency. Currently, launch is planned in 2009. The main goals of the mission are Phobos regolith sample return, Phobos in situ study and Mars/Phobos remote sensing.

  10. Moessbauer spectroscopy in neptunium compounds

    Energy Technology Data Exchange (ETDEWEB)

    Nakamoto, Tadahiro; Nakada, Masami; Masaki, Nobuyuki; Saeki, Masakatsu [Japan Atomic Energy Research Inst., Tokyo (Japan)


    Moessbauer effects are observable in seven elements of actinides from {sup 232}Th to {sup 247}Cm and Moesbauer spectra have been investigated mainly with {sup 237}Np and {sup 238}U for the reasons of availability and cost of materials. This report describes the fundamental characteristics of Moessbauer spectra of {sup 237}Np and the correlation between the isomer shift and the coordination number of Np(V) compounds. The isomer shifts of Np(V) compounds had a tendency to increase as an increase of coordination number and the isomer shifts of Np(V) compounds showed broad distribution as well as those of Np(VI) but {delta} values of the compounds with the same coordination number were distributed in a narrow range. The {delta} values of Np(VI) complexes with O{sub x} donor set suggest that the Np atom in its hydroxide (NpO{sub 2}(OH){center_dot}4H{sub 2}O)might have pentagonal bipyramidal structure and at least, pentagonal and hexagonal bipyramidal structures might coexist in its acetate and benzoate. Really, such coexistence has been demonstrated in its nitrate, (NpO{sub 2}){sub 2}(NO{sub 3}){sub 2}{center_dot}5H{sub 2}O. (M.N.)

  11. Structural changes in cartilage and collagen studied by high temperature Raman spectroscopy. (United States)

    Fields, Mark; Spencer, Nicholas; Dudhia, Jayesh; McMillan, Paul F


    Understanding the high temperature behavior of collagen and collagenous tissue is important for surgical procedures and biomaterials processing for the food, pharmaceutical, and cosmetics industries. One primary event for proteins is thermal denaturation that involves unfolding the polypeptide chains while maintaining the primary structure intact. Collagen in the extracellular matrix of cartilage and other connective tissue is a hierarchical material containing bundles of triple-helical fibers associated with water and proteoglycan components. Thermal analysis of dehydrated collagen indicates irreversible denaturation at high temperature between 135°C and 200°C, with another reversible event at ∼60-80°C for hydrated samples. We report high temperature Raman spectra for freeze-dried cartilage samples that show an increase in laser-excited fluorescence interpreted as conformational changes associated with denaturation above 140°C. Spectra for separated collagen and proteoglycan fractions extracted from cartilage indicate the changes are associated with collagen. The Raman data also show appearance of new features indicating peptide bond hydrolysis at high temperature implying that molecular H2 O is retained within the freeze-dried tissue. This is confirmed by thermogravimetric analysis that show 5-7 wt% H2 O remaining within freeze-dried cartilage that is released progressively upon heating up to 200°C. Spectra obtained after exposure to high temperature and re-hydration following recovery indicate that the capacity of the denatured collagen to re-absorb water is reduced. Our results are important for revealing the presence of bound H2 O within the collagen component of connective tissue even after freeze-drying and its role in denaturation that is accompanied by or perhaps preceded by breakdown of the primary polypeptide structure. © 2017 Wiley Periodicals, Inc.

  12. Experimental study on the double-evaporator thermosiphon for cooling HTS (high temperature superconductor) system (United States)

    Lee, Junghyun; Ko, Junseok; Kim, Youngkwon; Jeong, Sangkwon; Sung, Taehyun; Han, Younghee; Lee, Jeong-Phil; Jung, Seyong


    A cryogenic thermosiphons is an efficient heat transfer device between a cryocooler and a thermal load that is to be cooled. This paper presents an idea of thermosiphon which contains two vertically-separated evaporators. This unique configuration of the thermosiphon is suitable for the purpose of cooling simultaneously two superconducting bearings of the HTS (high temperature superconducting) flywheel system at the same temperature. A so-called double-evaporator thermosiphon was designed, fabricated and tested using nitrogen as the working fluid under sub-atmospheric pressure condition. The interior thermal condition of the double-evaporator thermosiphon was examined in detail during its cool-down process according to the internal thermal states. The double-evaporator thermosiphon has operated successfully at steady-state operation under sub-atmospheric pressure. At the heat flow of 10.6 W, the total temperature difference of the thermosiphon was only 1.59 K and the temperature difference between the evaporators was 0.64 K. The temperature difference of two evaporators is attributed to the conductive thermal resistance of the adiabatic section between the evaporators. The method to reduce this temperature difference has been investigated and presented in this paper. The proper area selection of condenser, evaporator 1, and evaporator 2 was studied by using thermal resistance model to optimize the performance of a thermosiphon. The superior heat transfer characteristic of the double-evaporator thermosiphon without involving any cryogenic pump can be a great potential advantage for cooling HTS bulk modules that are separated vertically.

  13. High Temperature QCD

    CERN Document Server

    Lombardo, M P


    I review recent results on QCD at high temperature on a lattice. Steady progress with staggered fermions and Wilson type fermions allow a quantitative description of hot QCD whose accuracy in many cases parallels that of zero temperature studies. Simulations with chiral quarks are coming of age, and togheter with theoretical developments trigger interesting developments in the analysis of the critical region. Issues related with the universality class of the chiral transition and the fate of the axial symmetry are discussed in the light of new numerical and analytical results. Transport coefficients and analysis of bottomonium spectra compare well with results of heavy ion collisions at RHIC and LHC. Model field theories, lattice simulations and high temperature systematic expansions help building a coherent picture of the high temperature phase of QCD. The (strongly coupled) Quark Gluon Plasma is heavily investigated, and asserts its role as an inspiring theoretical laboratory.

  14. Magnetization studies of oxides related to the high temperature cuprate superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhaorong [Iowa State Univ., Ames, IA (United States)


    The magnetic properties related to the following high temperature superconductors were measured utilizing a Faraday magnetometer: BaCuO2+x , La2 CuO4 , Sr2 RhO4 , Sr2 VO4, and Sr2 CuO3. Neutron diffraction, magnetic susceptibility, and heat capacity measurements are discussed.

  15. In situ high temperature study of ZrO 2 ball-milled to nanometer sizes (United States)

    Gajović, A.; Furić, K.; Štefanić, G.; Musić, S.


    Nanostructured ZrO 2 was prepared by high-energy ball-milling under different conditions and sintered at high temperatures. Structural and microstructural changes during the ball-milling were monitored using Raman spectroscopy (RS), X-ray powder diffraction (XRD), transmission electron microscopy (TEM) and selected area electron diffraction (SAED). The sintering process was monitored in situ at high temperature (300-1400 °C) by RS and XRD. The results of RS showed that the ball-milling had little or no influence on the transition from the starting monoclinic ZrO 2 to the high-temperature tetragonal ZrO 2. It was concluded that a partial transition from monoclinic to tetragonal polymorph, observed in some earlier ball-milling experiments, can be attributed to the stabilizing influence of impurities introduced due to the wearing of the milling media. In the present experiment ZrO 2 ball-milling assembly was used, which reduced the influence of an additional material. The results of the line broadening analysis, performed using Rietveld refinements of the ball-milling products with powder-to-ball weight ratio ( R) 1:10, indicated a decrease in the crystallite size and an increase in the microstrains with an increase in the ball-milling time up to 3 h. Further increase in the ball-milling time up to 10 h had a very small influence on the size and strain of the obtained m-ZrO 2 products. A difference between the results of in situ RS and XRD analysis of the samples subjected to prolonged ball-milling was attributed to the chemical and microstractural differences between the surface and the bulk of the ZrO 2 particles during the sintering at high temperatures.

  16. New Micro-Raman Spectroscopy Systems for High-Temperature Studies in the Diamond Anvil Cell (United States)

    Shim, S.; Lamm, R.; Rekhi, S.; Catalli, K.; Santillan, J.; Lundin, S.


    In order to measure high-quality Raman spectra at high temperature and pressure in either the resistance- or laser-heated diamond-anvil cell, we have developed two Raman systems at MIT, a dispersive and a nanosecond time-resolved Raman spectroscopy systems. The excitation source of the dispersive Raman system is an Ar/Kr mixed ion laser which has nine available laser lines with wavelengths between 457 and 752 nm. Near UV laser lines allow us to measure Raman spectra up to 1200 K by shifting the spectral range of Raman modes away from intense thermal radiation. Near IR lines can be used for highly fluorescent materials. Three 500 mm spectrometers (Trivista spectrometer, Acton Research) are configured to operate in either single, triple subtractive, or triple additive mode combined with a liquid nitrogen cooled CCD detector. Holographic notch filters allow for high throughput in the single mode, which is ideal for weak Raman scattering. The subtractive triple mode allows detection of phonon modes to 5 cm-1 from the Raleigh line. The nanosecond time-resolved Raman system is designed for measurements above 1000 K. Previous studies at ambient pressure have shown that time-resolved Raman spectroscopy is the most effective technique to reject strong thermal radiation above 1000 K. We achieve nanosecond time resolution by synchronizing a frequency-doubled pulse Nd:YLF laser (527 nm, 0.1-10 kHz rep rate, 10-100 ns pulse width) with an intensified gated CCD detector (>5 ns gate width). This system is combined with a laser heating system (Nd:YLF laser, 1053 nm, TEM00, 45 W). Temperature is measured using both spectroradiometry and Raman thermometry methods. Our systems are designed to study phase relations and thermodynamic properties of mantle minerals at high P-T. Using these systems, we have measured the phase transition in (Mg0.9Fe0.1)SiO3 pyroxene at 300-1700 K and 0 GPa, and the dehydration of serpentine at 2-8 GPa and 300-900 K. We also have found that the time

  17. Inconel 718 and UNSM Treated Alloy Study on the Rotary Bending High Temperature Fatigue Characteristics under a Light Concentrating System

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Chang Min [Kyungpook Nat’l Univ., Daegu (Korea, Republic of); Nahm, Seung Hoon [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of); Woo, Young Han; Hur, Kwang Ho; Hong, Sang Hwui [Gyeongbuk Hybrid Technology Institute, Daegu (Korea, Republic of); Kim, Jun Hyong; Pyun, Young Sik [Sun Moon Univ., Asan (Korea, Republic of)


    This study investigated the influence of high temperature and UNSM on the fatigue behavior of Inconel 718 alloy at RT, 300, 500, and 600℃. Fatigue properties of Inconel 718 were reduced at high temperatures compared to those at room temperature. However, the endurance limit was similar to that of the room temperature sample at the design stress level. High-temperature fatigue characteristics of the UNSM-treated specimen were significantly improved at the design stress level as compared to the untreated specimens. Specifically, the influence of temperature on the S-N curves at the design stress level of the UNSM-treated specimen showed the tendency of longer fatigue lives than those of untreated ones. Researchers can obtain rotary fatigue test results simply by heating specimens with a halogen lamp to precise temperatures during specific operations.

  18. Ambient high temperature and mortality in Jinan, China: A study of heat thresholds and vulnerable populations. (United States)

    Li, Jing; Xu, Xin; Yang, Jun; Liu, Zhidong; Xu, Lei; Gao, Jinghong; Liu, Xiaobo; Wu, Haixia; Wang, Jun; Yu, Jieqiong; Jiang, Baofa; Liu, Qiyong


    Understanding the health consequences of continuously rising temperatures-as is projected for China-is important in terms of developing heat-health adaptation and intervention programs. This study aimed to examine the association between mortality and daily maximum (T max ), mean (T mean ), and minimum (T min ) temperatures in warmer months; to explore threshold temperatures; and to identify optimal heat indicators and vulnerable populations. Daily data on temperature and mortality were obtained for the period 2007-2013. Heat thresholds for condition-specific mortality were estimated using an observed/expected analysis. We used a generalised additive model with a quasi-Poisson distribution to examine the association between mortality and T max /T min /T mean values higher than the threshold values, after adjustment for covariates. T max /T mean /T min thresholds were 32/28/24°C for non-accidental deaths; 32/28/24°C for cardiovascular deaths; 35/31/26°C for respiratory deaths; and 34/31/28°C for diabetes-related deaths. For each 1°C increase in T max /T mean /T min above the threshold, the mortality risk of non-accidental-, cardiovascular-, respiratory, and diabetes-related death increased by 2.8/5.3/4.8%, 4.1/7.2/6.6%, 6.6/25.3/14.7%, and 13.3/30.5/47.6%, respectively. Thresholds for mortality differed according to health condition when stratified by sex, age, and education level. For non-accidental deaths, effects were significant in individuals aged ≥65 years (relative risk=1.038, 95% confidence interval: 1.026-1.050), but not for those ≤64 years. For most outcomes, women and people ≥65 years were more vulnerable. High temperature significantly increases the risk of mortality in the population of Jinan, China. Climate change with rising temperatures may bring about the situation worse. Public health programs should be improved and implemented to prevent and reduce health risks during hot days, especially for the identified vulnerable groups. Copyright

  19. High temperature superconductivity: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Bedell, K.S.; Coffey, D. (Los Alamos National Lab., NM (USA)); Meltzer, D.E. (Florida Univ., Gainesville, FL (USA)); Pines, D. (Illinois Univ., Urbana, IL (USA)); Schrieffer, J.R. (California Univ., Santa Barbara, CA (USA)) (eds.)


    This book is the result of a symposium at Los Alamos in 1989 on High Temperature Superconductivity. The topics covered include: phenomenology, quantum spin liquids, spin space fluctuations in the insulating and metallic phases, normal state properties, and numerical studies and simulations. (JF)

  20. Feasibility study of high temperature reactor utilization in Czech Republic after 2025

    Energy Technology Data Exchange (ETDEWEB)

    Losa, Evžen, E-mail: [Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering, Department of Nuclear Reactors (Czech Republic); Heřmanský, Bedřich; Kobylka, Dušan; Rataj, Jan; Sklenka, Ľubomír [Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering, Department of Nuclear Reactors (Czech Republic); Souček, Václav; Kohout, Petr [AZIN CZ, s.r.o., Hanusova 3, 140 00 Praha 4 (Czech Republic)


    High temperature reactors (HTRs) were examined as an option to intended future broadening of the nuclear energy production in Czech Republic. The known qualities as the inherent safety, high thermal utilization and non-electrical applications have been assessed in years 2009–2011 during the survey funded by Czech Ministry of Industry and Trade. The survey of high temperature reactors with spherical fuel was initiated by reason of mature state of the art of this technology type in South Africa and in China, where in both countries pilot plants were planned. Unfortunately, the global financial crisis caused the decision of stopping the governmental support in South African programme was made. In China, however, the development still continues. Czech Republic has almost 60 years nuclear research history and the knowledge of operation of gas cooled and heavy water moderated reactor has been gained in the past. Nevertheless, the design of light water reactors was more developed in former Soviet Union, which provided Czech scientists by initial knowledge base; hence the research has been reoriented to this technology. But, the demands on future nuclear reactors application are still growing and the same or even higher living standard of next generations have to be taken into consideration. Therefore the systems, which can produce more energy and less waste, are getting into foreground of interest of Czech decision makers. The high temperature reactor technology seems to be the successful representative of the GEN IV reactor types, which will be operated commercially in the near future. The broad spectrum of utilization enables this system to be an option after 2030, when the electricity demand is planned to be covered from about 50% by nuclear in our country.

  1. A Study on the High Temperature Irradiation Test Possibility for the HANARO Outer Core Region

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Young Hwan; Cho, M. S.; Choo, K. N.; Shin, Y. T.; Sohn, J. M.; Park, S. J.; Kim, B. G


    1. Information on the neutron flux levels and the gamma heat of the concerned test holes, which have been produced from a series of nuclear analysis and tests performed at KAERI since 1993, were collected and analyzed to develop the nuclear data for the concerned test holes of HANARO and to develop the new design concepts of a capsule for the high temperature irradiation devices. 2. From the literature survey and analysis about the system design characteristics of the new concepts of irradiation devices in the ATR and MIT reactor, U.S. and the JHR reactor, France, which are helpful in understanding the key issues for the on-going R and D programmes related to a SFR and a VHTR, the most important parameters for the design of high temperature irradiation devices are identified as the neutron spectrum, the heat generation density, the fuel and cladding temperature, and the coolant chemistry. 3. From the thermal analysis of a capsule by using a finite element program ANSYS, high temperature test possibility at the OR and IP holes of HANARO was investigated based on the data collected from a literature survey. The OR holes are recommended for the tests of the SFR and VHTR nuclear materials. The IP holes could be applicable for an intermediate temperature irradiation of the SWR and LMR materials. 4. A thermal analysis for the development of a capsule with a new configuration was also performed. The size of the center hole, which is located at the thermal media of a capsule, did not cause specimen temperature changes. The temperature differences are found to be less than 2%. The introduction of an additional gap in the thermal media was able to contribute to an increase in the specimen temperature by up to 27-90 %.

  2. Study on high temperature design methodology of heat-resistant materials for GEN-IV systems

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Woo Seog; Kim, D. W.; Kim, S. H.; Kim, W. G.; Kim, J. H.; Park, D. G.; Yoon, J. H.; Lee, H. Y.; Hing, J. H


    Analysis of the existing high temperature design and assessment codes such as US(ASME-NH,Draft Code Case for Alloy 617), France(RCC-MR), UK(R5), Japan(BDS/DDS/FDS) for Gen IV reactor structure has been carried out. In addition the scope and fields for research and development is needed in the future have been defined. For assessing the high temperature creep cracks, time dependent fracture mechanics (TDFM) parameters of the C and Ct were analyzed. The creep propagation data were obtained from the creep crack growth tests for type 316LN stainless steels, and creep crack growth testing machine for Gen-IV system up to 950 .deg. C was set up. Damage mechanism and causes for creep-fatigue were investigated. The difference between prediction creep-fatigue life and experimental life were investigated. Material properties for analysis creep-fatigue damage were recommended. The assessment procedure (Draft) on creep-fatigue crack initiation has been developed based on the technical appendix A16 of French RCC-MR code. Ultrasonic wave signal against creep ruptured specimens of type 316LN stainless steel was obtained. It was identified that creep damage can be evaluated by ultrasonic method. The NDT techniques evaluated include Barkhausen noise, magnetic hysteresis parameters, positron annihilation, X-ray diffraction and small angle neutron scattering. Experimental procedure and evaluation method of material integrity were developed through the fracture toughness test of Cr-Mo steel.

  3. High temperature shock tube experiments and kinetic modeling study of diisopropyl ketone ignition and pyrolysis

    KAUST Repository

    Barari, Ghazal


    Diisopropyl ketone (DIPK) is a promising biofuel candidate, which is produced using endophytic fungal conversion. In this work, a high temperature detailed combustion kinetic model for DIPK was developed using the reaction class approach. DIPK ignition and pyrolysis experiments were performed using the UCF shock tube. The shock tube oxidation experiments were conducted between 1093K and 1630K for different reactant compositions, equivalence ratios (φ=0.5–2.0), and pressures (1–6atm). In addition, methane concentration time-histories were measured during 2% DIPK pyrolysis in argon using cw laser absorption near 3400nm at temperatures between 1300 and 1400K near 1atm. To the best of our knowledge, current ignition delay times (above 1050K) and methane time histories are the first such experiments performed in DIPK at high temperatures. Present data were used as validation targets for the new kinetic model and simulation results showed fair agreement compared to the experiments. The reaction rates corresponding to the main consumption pathways of DIPK were found to have high sensitivity in controlling the reactivity, so these were adjusted to attain better agreement between the simulation and experimental data. A correlation was developed based on the experimental data to predict the ignition delay times using the temperature, pressure, fuel concentration and oxygen concentration.

  4. High-Temperature Chemistry in Solid Oxide Fuel Cells: In Situ Optical Studies. (United States)

    Pomfret, Michael B; Walker, Robert A; Owrutsky, Jeffrey C


    Solid oxide fuels cells (SOFCs) are promising devices for versatile and efficient power generation with fuel flexibility, but their viability is contingent upon understanding chemical and material processes to improve their performance and durability. Newly developed in situ optical methods provide new insight into how carbon deposition varies with different hydrocarbon and alcohol fuels and depends on operating conditions. Some findings, such as heavier hydrocarbon fuels forming more carbon than lighter fuels, are expected, but other discoveries are surprising. For example, methanol shows a greater tendency to form carbon deposits than methane at temperatures below 800 °C, and kinetically controlled steam reforming with ethanol at high temperatures (∼800 °C) is less detrimental to SOFC performance than operating the device with dry methanol as the fuel. In situ optical techniques will continue to provide the chemical information and mechanistic insight that is critical for SOFCs to become a viable energy conversion technology.

  5. Study on the fuel cycle cost of gas turbine high temperature reactor (GTHTR300). Contract research

    Energy Technology Data Exchange (ETDEWEB)

    Takei, Masanobu; Katanishi, Shoji; Nakata, Tetsuo; Kunitomi, Kazuhiko [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Oda, Takefumi; Izumiya, Toru [Nuclear Fuel Industries, Ltd., Tokyo (Japan)


    In the basic design of gas turbine high temperature reactor (GTHTR300), reduction of the fuel cycle cost has a large benefit of improving overall plant economy. Then, fuel cycle cost was evaluated for GTHTR300. First, of fuel fabrication for high-temperature gas cooled reactor, since there was no actual experience with a commercial scale, a preliminary design for a fuel fabrication plant with annual processing of 7.7 ton-U sufficient four GTHTR300 was performed, and fuel fabrication cost was evaluated. Second, fuel cycle cost was evaluated based on the equilibrium cycle of GTHTR300. The factors which were considered in this cost evaluation include uranium price, conversion, enrichment, fabrication, storage of spent fuel, reprocessing, and waste disposal. The fuel cycle cost of GTHTR300 was estimated at about 1.07 yen/kWh. If the back-end cost of reprocessing and waste disposal is included and assumed to be nearly equivalent to LWR, the fuel cycle cost of GTHTR300 was estimated to be about 1.31 yen/kWh. Furthermore, the effects on fuel fabrication cost by such of fuel specification parameters as enrichment, the number of fuel types, and the layer thickness were considered. Even if the enrichment varies from 10 to 20%, the number of fuel types change from 1 to 4, the 1st layer thickness of fuel changes by 30 {mu}m, or the 2nd layer to the 4th layer thickness of fuel changes by 10 {mu}m, the impact on fuel fabrication cost was evaluated to be negligible. (author)

  6. Study of phase development in alumina-spodumene ceramics by high temperature neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Gan, B.K. [University of Technology, Sydney, NSW (Australia). Microstructural Analysis Unit; Latella, B.A.; Hunter, B.A. [Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, NSW (Australia); O`Connor, B.H. [Curtin University of Technology, Perth, WA (Australia). Department of Applied Physics


    Full text: Melting and crystallisation of minor phases are important in many material systems which contain impurities and/or grain boundary liquid phases. Grain boundary glassy phases are generally not thermodynamically stable, and can devitrify during the sintering process or from other high temperature exposure. Characterising the minor phase assemblage in these types of materials has implications in processing, microstructural design and in-service use, particularly fluctuating thermal environments. An in situ high temperature neutron diffraction (ND) technique was used to follow the phase dynamics on sintering an alumina-spodumene ceramic as well as the crystallisation kinetics of the evolving crystalline phase in real time. The main benefit of using ND analysis in the present work is that it provides bulk specimen character of the material which is important in quantitatively extracting phase composition information. Likewise, most diffraction measurements are conducted with ambient or static temperature data, collected after specimens have been heat-treated and then cooled. Such data may yield misleading information particularly in relation to non-equilibrium phases. Hence dynamic measurements are clearly preferable as a direct means of confirming sintering processes. ND measurements were performed using the High Flux Australian Reactor (HIFAR) neutron source operated by the Australian Nuclear Science and Technology Organisation (ANSTO) at Lucas Heights, NSW, Australia. The ND patterns collected on heating the compacts provided relevant information for optimising materials processing and sintering protocols. Similarly, the ND patterns collected for three specific cooling schemes yielded significant details of evolution and crystallisation of the minor phase. The principal aim was to demonstrate the fundamental influence of the minor crystalline phase (and hence glassy phase) on properties and to manipulate and tailor the phase structure by controlled

  7. High temperature oxidation and electrochemical studies on novel co-base superalloys

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Leonhard


    Isothermal oxidation in air was carried out on novel γ'-strengthened Cobalt-base superalloys of the system Co-Al-W-B. After fast initial oxide formation, a multi-layered structure establishes, consisting of an outer cobalt oxide layer, a middle spinel-containing layer, and an inner Al{sub 2}O{sub 3}-rich region. Ion diffusion in outward direction is hindered by the development of Al{sub 2}O{sub 3}, that can be either present as a continuous and protective layer or as a discontinuous Al{sub 2}O{sub 3}-rich area without comparable protective effect. Furthermore, high temperature oxidation leads to phase transformation (from γ/γ' into γ/Co{sub 3}W) at the alloy/oxide layer interface due to aluminium depletion. Pure cobalt and ternary Co-Al-W alloys exhibit parabolic oxide growth due to the lack or insufficient amounts of protective oxides, whereas quaternary Co-Al-W-B alloys possess sub-parabolic oxidation behaviour (at 900 C). At lower temperatures (800 C), even a blockage of further oxidation can be observed. High amounts of B (0.12 at%) significantly improve oxidation resistance mainly due to its beneficial effect on inner Al{sub 2}O{sub 3}-formation at the alloy/oxide interface. Furthermore, B prevents decohesion of high temperature scales due to the formation of B-rich phases (presumably tungsten borides) in the middle oxide layer. Appropriate amounts of chromium (8 at%) as additional alloying element to Co-Al-W-B alloys lead to the formation of an inner duplex layer composed of protective Cr{sub 2}O{sub 3} and Al{sub 2}O{sub 3} phases. In this respect, chromium also benefits selective oxidation of aluminium, which results in higher Al{sub 2}O{sub 3}-contents compared to chromium-free alloys. Major drawbacks of chromium additions are, on the one hand, the formation of volatile chromium-containing species at temperatures exceeding 1000 C and on the other hand, the instability of the γ/γ'-microstructure. Titanium and silicon additions lead to

  8. Studies and development of high-temperature catalytic materials for application in gas turbine combustion chamber

    Energy Technology Data Exchange (ETDEWEB)

    Papadias, Dennis; Thevenin, Philippe [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Chemical Engineering and Technology


    -based garnets and aluminium titanate. The NZP materials (NaZr{sub 2}(PO{sub 4}){sub 3}) have an ultra-low thermal expansion which gives them the desired properties to stand thermal shocks. However their catalytic activity needs to be improved as they have a T{sub 50} above 520 deg C. The iron containing garnets (YIG) with the following formula Y{sub 3}Fe{sub 5}O{sub 12}, as well as the MgAl{sub 2}O{sub 4} spinel, show promising results with an activity close to the hexaaluminates. Different fuels could be considered for application in gas turbine combustion chambers. Ethanol appears to be a promising alternative fuel for mobile gas turbines, methane and gasified biomass for stationary utilisation. The experimental work in this project has been done using ethanol as fuel. The coming work will be oriented towards gasified biomass as well. Specific attention will be given to fuel-NO{sub x} formation from the ammonia present in the feed. The work was carried out in co-operation with Volvo Aero Corporation, which was involved in the European project AGATA where the objective was to develop a ceramic gas turbine for hybrid car applications. Furthermore, another project within catalytic combustion for gas turbine is conducted in co-operation with the Division of Heat and Power Technology at KTH (Nutek project P7057, Catalytic Combustion of Gasified Biomass). In this projects a fully catalytic system has been chosen. However a solution to overcome the problem given by the high temperature present in the last section of the combustor is a hybrid system described in the literature. A first catalyst segment with low temperature catalytic activity ignites part of the fuel at 300-400 deg C. The rest of the fuel is then burned homogeneously between 1000 - 1400 deg C. This design avoid the use of catalytic material at temperature above 1000 deg C. Different projects are running both in the US (Catalytica Combustion Systems Inc., Precision Combustion) and Japan (Osaka Gas Company) to develop a

  9. An experimental study on creep of partially molten granulite under high temperature and wet conditions (United States)

    Zhou, Yongsheng; Zhang, Huiting; Yao, Wenming; Dang, Jiaxiang; He, Changrong


    Samples of natural granulite were deformed in a gas medium apparatus to evaluate the flow strength of the lower crust. The sample consists of ∼52 vol% plagioclase, ∼40 vol% pyroxene, ∼3 vol% quartz, ∼5 vol% magnetite and ilmenite. Water content was ∼0.17 ± 0.05 wt% in the deformed samples. 40 creep tests were performed on 13 samples at 300 MPa confining pressure, temperatures of 900-1200 °C, and strain rates between 3.13 × 10-6 and 5 × 10-5/s, resulting in axial stresses of 12-764 MPa and the total strain up to 7.8-20.5%. At low temperatures of 900-1000 °C, the microstructural observations show that the granulite samples were deformed in semi-brittle deformation regime, mainly by dislocation glide and intragranular microcracking. At medium temperatures (MT) of 1050-1100 °C, deformation was observed to be dominated by grain boundary migration recrystallization, corresponding to stress exponent nMT of 5.7 ± 0.1, activation energies QMT of 525 ± 34 kJ/mol, log AMT of 1.3. At high temperatures (HT) of 1125-1150 °C, the samples was deformed mainly by grain boundary migration recrystallization accommodated by partial melting and metamorphic reactions characterized by neo-crystallization of fine-grained olivine, with nHT of 4.8 ± 0.1, QHT of 1392 ± 63 kJ/mol, and log AHT of 37.5. Partial melting at high temperatures of 1125-1200 °C, which induces grain boundaries slip and enhances diffusion, has a significant weakening effect on the rheology of granulite, with an estimated strain rate enhancement by 5 times at melt fraction of ∼2 vol%. Reaction from pyroxene to olivine may affect the flow law parameters and deformation mechanism. Based on our data, a wet and cool continental lower crust may still be in brittle deformation regime, whereas a hot lower crust may likely have a weak layer with plastic deformation.

  10. Spin density wave in (Fe{sub x}V{sub 3-x})S{sub 4} and the coexistence of normal and condensate states: A Moessbauer study

    Energy Technology Data Exchange (ETDEWEB)

    Embaid, B.P., E-mail: [Laboratorio de Magnetismo, Escuela de Fisica, Universidad Central de Venezuela, Apartado 47586, Los Chaguaramos, Caracas 1041-A (Venezuela, Bolivarian Republic of); Gonzalez-Jimenez, F. [Laboratorio de Magnetismo, Escuela de Fisica, Universidad Central de Venezuela, Apartado 47586, Los Chaguaramos, Caracas 1041-A (Venezuela, Bolivarian Republic of)


    Iron-vanadium sulfides of the monoclinic system Fe{sub x}V{sub 3-x}S{sub 4} (1.0{<=}x{<=}2.0) have been investigated by {sup 57}Fe Moessbauer Spectroscopy in the temperature range 30-300 K. Incommensurate spin density waves (SDW) have been found in this system. An alternative treatment of the spectra allows a direct measurement of the temperature evolution of condensate density of the SDW state which follows the Maki-Virosztek formula. For composition (x=1.0) the SDW condensate is unpinned while for compositions (x>1.0) the SDW condensate is pinned. Possible causes of the pinning-unpinning SDW will be discussed. - Highlights: Black-Right-Pointing-Pointer Fe{sub x}V{sub 3-x}S{sub 4}(1.0{<=}x{<=}2.0) system was investigated by {sup 57}Fe Moessbauer Spectroscopy. Black-Right-Pointing-Pointer Incommensurate spin density wave (SDW) has been found in this system. Black-Right-Pointing-Pointer We report the temperature evolution of the condensate density of SDW state. Black-Right-Pointing-Pointer For composition (x=1.0) the SDW is unpinned while for (x>1.0) is pinned.

  11. Moessbauer spectroscopic study on valence-detrapping and trapping of mixed-valence trinuclear iron(III, III, II) fluorine-substituted benzoate complexes

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Yoichi, E-mail:; Onaka, Satoru [Daido University (Japan); Takahashi, Masashi [Toho University (Japan); Ogiso, Ryo; Takayama, Tsutomu [Daido University (Japan); Nakamoto, Tadahiro [Toray Research Center (Japan)


    Four mixed-valence trinuclear iron(III, III, II) fluorine-substituted benzoate complexes were synthesized; Fe{sub 3}O(C{sub 6}F{sub 5}COO){sub 6}(C{sub 5}H{sub 5}N){sub 3}{center_dot}CH{sub 2}Cl{sub 2} (1), Fe{sub 3}O(C{sub 6}F{sub 5}COO){sub 6}(C{sub 5}H{sub 5}N){sub 3} (2), Fe{sub 3}O(2H-C{sub 6}F{sub 4}COO){sub 6}(C{sub 5}H{sub 5}N){sub 3} (3), and Fe{sub 3}O(4H-C{sub 6}F{sub 4}COO){sub 6}(C{sub 5}H{sub 5}N){sub 3} (4), in which valence-detrapping and trapping phenomena have been investigated by {sup 57}Fe- Moessbauer spectroscopy. The valence state of the three iron ions is trapped at lower temperatures while it is fully detrapped at higher temperatures for 1. Valence detrapping is not observed for 2, 3, and 4 even at room temperature, although Moessbauer spectra for 3 and 4 show complicated temperature dependence.

  12. High Temperature Annealing Studies on the Piezoelectric Properties of Thin Aluminum Nitride Films

    Energy Technology Data Exchange (ETDEWEB)

    R. Farrell; V. R. Pagan; A. Kabulski; Sridhar Kuchibhatl; J. Harman; K. R. Kasarla; L. E. Rodak; P. Famouri; J. Peter Hensel; D. Korakakis


    A Rapid Thermal Annealing (RTA) system was used to anneal sputtered and MOVPE grown Aluminum Nitride (AlN) thin films at temperatures up to 1000°C in ambient and controlled environments. According to Energy Dispersive X-Ray Analysis (EDAX), the films annealed in an ambient environment rapidly oxidize after five minutes at 1000°C. Below 1000°C the films oxidized linearly as a function of annealing temperature which is consistent with what has been reported in literature [1]. Laser Doppler Vibrometry (LDV) was used to measure the piezoelectric coefficient, d33, of these films. Films annealed in an ambient environment had a weak piezoelectric response indicating that oxidation on the surface of the film reduces the value of d33. A high temperature furnace has been built that is capable of taking in-situ measurements of the piezoelectric response of AlN films. In-situ d33 measurements are recorded up to 300°C for both sputtered and MOVPE-grown AlN thin films. The measured piezoelectric response appears to increase with temperature up to 300°C possibly due to stress in the film.

  13. High Temperature Annealing Studies on the Piezoelectric Properties of Thin Aluminum Nitride Films

    Energy Technology Data Exchange (ETDEWEB)

    Farrell, R.; Pagan, V.R.; Kabulski, A.; Kuchibhatla, S.; Harman, J.; Kasarla, K.R.; Rodak, L.E.; Hensel, J.P.; Famouri, P.; Korakakis, D.


    A Rapid Thermal Annealing (RTA) system was used to anneal sputtered and MOVPE-grown Aluminum Nitride (AlN) thin films at temperatures up to 1000°C in ambient and controlled environments. According to Energy Dispersive X-Ray Analysis (EDAX), the films annealed in an ambient environment rapidly oxidize after five minutes at 1000°C. Below 1000°C the films oxidized linearly as a function of annealing temperature which is consistent with what has been reported in literature [1]. Laser Doppler Vibrometry (LDV) was used to measure the piezoelectric coefficient, d33, of these films. Films annealed in an ambient environment had a weak piezoelectric response indicating that oxidation on the surface of the film reduces the value of d33. A high temperature furnace has been built that is capable of taking in-situ measurements of the piezoelectric response of AlN films. In-situ d33 measurements are recorded up to 300°C for both sputtered and MOVPE-grown AlN thin films. The measured piezoelectric response appears to increase with temperature up to 300°C possibly due to stress in the film.

  14. Comparative study of high temperature oxidation behaviour in AISI 304 and AISI 439 stainless steels

    Directory of Open Access Journals (Sweden)

    Antônio Claret Soares Sabioni


    Full Text Available This work deals with a comparison of high temperature oxidation behaviour in AISI 304 austenitic and AISI 439 ferritic stainless steels. The oxidation experiments were performed between 850 and 950 °C, in oxygen and Ar (100 vpm H2. In most cases, it was formed a Cr2O3 protective scale, whose growth kinetics follows a parabolic law. The exception was for the the AISI 304 steel, at 950 °C, in oxygen atmosphere, which forms an iron oxide external layer. The oxidation resistance of the AISI 439 does not depend on the atmosphere. The AISI 304 has the same oxidation resistance in both atmospheres, at 850 °C, but at higher temperatures, its oxidation rate strongly increases in oxygen atmosphere. Concerning the performance of these steels under oxidation, our results show that the AISI 439 steel has higher oxidation resistance in oxidizing atmosphere, above 850 °C, while, in low pO2 atmosphere, the AISI 304 steel has higher oxidation resistance than the AISI 439, in all the temperature range investigated.

  15. Oxidation of UC: An in situ high temperature environmental scanning electron microscopy study (United States)

    Gasparrini, Claudia; Podor, Renaud; Horlait, Denis; Rushton, Michael J. D.; Fiquet, Olivier; Lee, William Edward


    In situ HT-ESEM oxidation of sintered UC fragments revealed the morphological changes occurring during the transformation between UC to UO2 and UO2 to U3O8 at 723-848 K and in an atmosphere of 10-100 Pa O2. Two main oxidation pathways were revealed. Oxidation at 723 K in atmospheres ≤25 Pa O2 showed the transformation from UC to UO2+x, as confirmed by post mortem HRTEM analysis. This oxidation pathway was comprised of three steps: (i) an induction period, where only surface UC particles oxidised, (ii) a sample area expansion accompanied by crack formation and propagation, (iii) a stabilisation of the total crack length inferring that crack propagation had stopped. Samples oxidised under 50 Pa O2 at 723 K and at 773-848 K for 10-100 Pa O2 showed an ;explosive; oxidation pathway: (i) sample area expansion occurred as soon as oxygen was inserted into the chamber and crack propagation and crack length followed an exponential law; (ii) cracks propagated as a network and the oxide layer fragmented, (iii) an ;explosion; occurred causing a popcorn-like transformation, typical for oxidation from UO2 to U3O8. HRTEM characterisation revealed U3O8 preferentially grow in the [001] direction. The explosive growth, triggered by ignition of UC, proceeded as a self-propagating high-temperature synthesis reaction, with a propagation speed of 150-500 ± 50 μm/s.

  16. FOREX-A Fiber Optics Diagnostic System For Study Of Materials At High Temperatures And Pressures (United States)

    Smith, D. E.; Roeske, F.


    We have successfully fielded a Fiber Optics Radiation EXperiment system (FOREX) designed for measuring material properties at high temperatures and pressures on an underground nuclear test. The system collects light from radiating materials and transmits it through several hundred meters of optical fibers to a recording station consisting of a streak camera with film readout. The use of fiber optics provides a faster time response than can presently be obtained with equalized coaxial cables over comparable distances. Fibers also have significant cost and physical size advantages over coax cables. The streak camera achieves a much higher information density than an equivalent oscilloscope system, and it also serves as the light detector. The result is a wide bandwidth high capacity system that can be fielded at a relatively low cost in manpower, space, and materials. For this experiment, the streak camera had a 120 ns time window with a 1.2 ns time resolution. Dynamic range for the system was about 1000. Beam current statistical limitations were approximately 8% for a 0.3 ns wide data point at one decade above the threshold recording intensity.

  17. High-temperature nuclear magnetic resonance study of phase transition kinetics in LiNaSO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Shakhovoy, R. A., E-mail:, E-mail:; Sarou-Kanian, V.; Rakhmatullin, A.; Véron, E.; Bessada, C. [CNRS, CEMHTI UPR 3079, Univ. Orléans, F-45071 Orléans (France)


    A new high-temperature NMR technique for measurements of the phase transition kinetics in solids has been developed. The technique allows measuring the time evolution of the volume of the appearing phase at controlled cooling rates. Developed method was applied to study the phase transition kinetics in the superionic conductor LiNaSO{sub 4}. It was revealed that the phase transition in LiNaSO{sub 4} is governed by the diffusion-controlled growth of nuclei (“germs”). An effect of the crystallite rearrangement in the LiNaSO{sub 4} powder after cooling through the phase transition was also revealed. This effect was studied by means of high-temperature XRD and NMR.

  18. Structural study of high temperature metal-rich titanium sulfide phases

    Energy Technology Data Exchange (ETDEWEB)

    Owens, J.P.


    Ti/sub 2/S and Ti/sub 8/S/sub 3/ have been prepared by high temperature annealing techniques. The crystal structures of these two phases have been determined from single crystal x-ray diffraction data. Both structures were refined using a full-matrix least-squares treatment of positional parameters and isotropic temperature factor coefficients. Ti/sub 2/S crystallizes with orthorhombic symmetry, space group Pnnm, having unit cell dimensions a = 11.367A, b= 14.060A, and c = 3.326A. Ti/sub 2/S is isostructural with Ta/sub 2/P. Ti/sub 8/S/sub 3/ crystallizes with monoclinic symmetry, space group C2/m, a = 32.69A, b = 3.327A, c = 19.35A, ..beta.. = 139.9/sup 0/ (b - unique). Ti/sub 2/S and Ti/sub 8/S/sub 3/ have structural features similar to the features of a large number of metal-rich transition-metal chalcogenides and pnictides. These various structure types have been characterized in terms of nonmetal trigonal prismatic coordination polyhedra, eight different metal partial coordination polyhedra, a short (approximately equal to 3.4A) crystallographic axis, two unique layers of atoms containing both metal and nonmetal atom positions, and mirror planes coincident with the two layers of atom positions. The existence of a variety of structures with these structural features has led to their consideration as a unique structural class. The structural similarities and differences between the structure types of this class have been discussed in detail. Comparison of different structure types emphasized the importance of the metal bonding contribution in understanding the structural features and suggested limitations on qualitative bonding models used to understand the structural-chemical principles underlying structure stability.

  19. Experimental and Analytic Study on the Core Bypass Flow in a Very High Temperature Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Richard Schultz


    Core bypass flow has been one of key issues in the very high temperature reactor (VHTR) design for securing core thermal margins and achieving target temperatures at the core exit. The bypass flow in a prismatic VHTR core occurs through the control element holes and the radial and axial gaps between the graphite blocks for manufacturing and refueling tolerances. These gaps vary with the core life cycles because of the irradiation swelling/shrinkage characteristic of the graphite blocks such as fuel and reflector blocks, which are main components of a core's structure. Thus, the core bypass flow occurs in a complicated multidimensional way. The accurate prediction of this bypass flow and counter-measures to minimize it are thus of major importance in assuring core thermal margins and securing higher core efficiency. Even with this importance, there has not been much effort in quantifying and accurately modeling the effect of the core bypass flow. The main objectives of this project were to generate experimental data for validating the software to be used to calculate the bypass flow in a prismatic VHTR core, validate thermofluid analysis tools and their model improvements, and identify and assess measures for reducing the bypass flow. To achieve these objectives, tasks were defined to (1) design and construct experiments to generate validation data for software analysis tools, (2) determine the experimental conditions and define the measurement requirements and techniques, (3) generate and analyze the experimental data, (4) validate and improve the thermofluid analysis tools, and (5) identify measures to control the bypass flow and assess its performance in the experiment.

  20. Studies on uniformity of the active ingredients in acetaminophen suppositories re-solidified after melting under high temperature conditions. (United States)

    Yamamoto, Yoshihisa; Fukami, Toshiro; Koide, Tatsuo; Onuki, Yoshinori; Suzuki, Toyofumi; Katori, Noriko; Tomono, Kazuo


    The target of the present pharmaceutical study was the antipyretic analgesic, acetaminophen; its suppository form is usually split when used in pediatric patients. We focused on the active ingredient uniformity in these products, which were re-solidified after melting under high temperature condition. When sections of the cut surfaces of the seven acetaminophen suppository products (SUP-A-G) commercially available in Japan were visualized by polarized microscopy, acetaminophen crystals that were dispersed in the base were identified. The results of the quantitative determination of agent concentration for each cut portion (mg/g) suggested uniform dispersion of these crystals in the base of each product. The agent concentration in each portion of the suppositories that was re-solidified after melting at high temperatures was measured. Segregation of the active ingredient was observed in four products at a temperature of 40°C for 1 h, while active ingredient uniformity was maintained in the other three products (SUP-C, SUP-F and SUP-G). The latter three products also showed high viscosity at 40°C. At 50°C for 4 h, only the uniformity of the active ingredient in SUP-C was maintained. These results suggest that the uniformity of the active ingredient is lost in some acetaminophen suppositories that were re-solidified after melting under high temperature conditions. The degree of loss varies depending on the product.

  1. PSI's 1kW imaging furnace-A tool for high-temperature chemical reactivity studies

    Energy Technology Data Exchange (ETDEWEB)

    Guesdon, C.; Alxneit, I.; Tschudi, H.R.; Wuillemin, D.; Brunner, Y.; Winkel, L.; Sturzenegger, M. [Laboratory for High-Temperature Solar Technology, Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Petrasch, J. [Professorship for Renewable Energy Carriers, ETHZ Zentrum, 8092 Zurich (Switzerland)


    A new experiment has been installed to conduct studies at temperatures as high as 2500K on chemical reactions that involve solids or melts and the release of condensable gases. The sample is radiatively heated by a 1kW xenon short arc lamp placed in the upper focus of a vertically oriented ellipsoid of revolution. The optimal optical configuration has been determined by a Monte-Carlo Ray tracing method. Several methods to machine the reflector have been evaluated by experimentally determining the optical quality of the surface of plane test pieces. In the imaging furnace the sample is placed on a water-cooled support and heated by the concentrated radiation. This arrangement allows for fast heating and impedes the reaction of the sample with crucible material. A remotely controlled hammer allows for freezing the high-temperature composition of the sample by a fast quench. Thus, the sample can be later analyzed by conventional methods such as XRD or TEM. To allow for measurements under defined atmospheres and to protect the ellipsoidal reflector from liberated condensable products, the entire sample stage is enclosed by a hemispherical glass dome. The dome itself is protected from condensable compounds by a laminar flow of inert gas. Experiments with an incense cone at the place of the sample to visualize the gas flow showed that a steady layer of inert gas protects the dome from smoke, if the inert gas flow is properly adjusted. Measured peak flux densities clearly exceed 500Wcm{sup -2} required to access temperatures of at least 2500K. Decomposition experiments on copper sulfides confirmed the operation of the furnace. In the near future flash assisted multi-wavelength pyrometry (FAMP) will be implemented to measure sample temperatures online. Though the imaging furnace was developed to study the decomposition of metal sulfides it is obviously suited to conduct high-temperature studies on most materials relevant for high-temperature solar technology. (author)

  2. Inelastic scattering in condensed matter with high intensity Moessbauer radiation

    Energy Technology Data Exchange (ETDEWEB)

    Yelon, W.B.; Schupp, G.


    We give a progress report for the work which has been carried out in the last three years with DOE support. A facility for high-intensity Moessbauer scattering is now fully operational at the University of Missouri Research Reactor (MURR) as well as facility at Purdue, using special isotopes produced at MURR. High precision, fundamental Moessbauer effect studies have been carried out using scattering to filter the unwanted radiation. These have led to a new Fourier transform method for describing Moessbauer effect (ME) lineshape and a direct method of fitting ME data to the convolution integral. These methods allow complete correction for source resonance self absorption (SRSA) and the accurate representation of interference effects that add an asymmetric component to the ME lines. We have begun applying these techniques to attenuated ME sources whose central peak has been attenuated by stationary resonant absorbers, to more precisely determine interference parameters and line-shape behavior in the resonance asymptotic region. This analysis is important to both the fundamental ME studies and to scattering studies for which a deconvolution is essential for extracting the correct recoilless fractions and interference parameters. A number of scattering studies have been successfully carried out including a study of the thermal diffuse scattering in Si, which led to an analysis of the resolution function for gamma-ray scattering. Also studied was the anharmonic motion in Na and the satellite reflection Debye-Waller factor in TaS{sub 2}, which indicate phason rather than phonon behavior. We have begun quasielastic diffusion studies in viscous liquids and current results are summarized. These advances, coupled to our improvements in MIcrofoil Conversion Electron spectroscopy lay the foundation for the proposed research outlined in this request for a three-year renewal of DOE support.

  3. Gamma scattering in condensed matter with high intensity Moessbauer radiation

    Energy Technology Data Exchange (ETDEWEB)


    We give a progress report for the work which has been carried out in the last three years with DOE support. A facility for high-intensity Moessbauer scattering is now fully operational at the University of Missouri Research Reactor (MURR) as well as a facility at Purdue, using special isotopes produced at MURR. High precision, fundamental Moessbauer effect studies have been carried out using scattering to filter the unwanted radiation. These have led to a new Fourier transform method for describing Moessbauer effect (ME) lineshape and a direct method of fitting ME data to the convolution integral. These methods allow complete correction for source resonance self absorption (SRSA) and the accurate representation of interference effects that add an asymmetric component to the ME lines. We have begun applying these techniques to attenuated ME sources whose central peak has been attenuated by stationary resonant absorbers, to more precisely determine interference parameters and line-shape behavior in the resonance asymptotic region. This analysis is important to both the fundamental ME studies and to scattering studies for which a deconvolution is essential for extracting the correct recoilless fractions and interference parameters. A number of scattering studies have been successfully carried out including a study of the thermal diffuse scattering in Si, which led to an analysis of the resolution function for gamma-ray scattering. Also studied was the anharmonic motion in Na and the satellite reflection Debye-Waller factor in TaS{sub 2}, which indicate phason rather than phonon behavior. We have begun quasielastic diffusion studies in viscous liquids and current results are summarized. These advances, coupled to our improvements in MIcrofoil Conversion Electron spectroscopy lay the foundation for the proposed research outlined in this request for a three-year renewal of DOE support.

  4. Determination of Spin State in Dinuclear Iron(II) Coordination Compounds Using Applied Field Moessbauer Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ksenofontov, V.; Spiering, H.; Reiman, S.; Garcia, Y. [Johannes-Gutenberg Universitaet, Institut fuer Anorganische Chemie und Analytische Chemie (Germany); Gaspar, A. B.; Real, J. A. [Universitat de Valencia, Departament de Quimica Inorganica (Spain); Guetlich, P. [Johannes-Gutenberg Universitaet, Institut fuer Anorganische Chemie und Analytische Chemie (Germany)


    So far there has been no direct method to determine the spin state of molecules in dinuclear iron(II) compounds. The molecular fractions of high spin (HS) and low spin (LS) species have been deduced from magnetic susceptibility and zero field Moessbauer spectroscopy data irrespective of whether they belong to LS-LS, LS-HS and HS-HS pairs. However, the distinction of pairs becomes possible if Moessbauer measurements are carried out in an external magnetic field. The proposed method opens new possibilities in the study of spin crossover phenomena in dinuclear compounds.

  5. Time-resolved remote Raman study of minerals under supercritical CO2 and high temperatures relevant to Venus exploration. (United States)

    Sharma, Shiv K; Misra, Anupam K; Clegg, Samuel M; Barefield, James E; Wiens, Roger C; Acosta, Tayro


    We report time-resolved (TR) remote Raman spectra of minerals under supercritical CO(2) (approx. 95 atm pressure and 423 K) and under atmospheric pressure and high temperature up to 1003 K at distances of 1.5 and 9 m, respectively. The TR Raman spectra of hydrous and anhydrous sulphates, carbonate and silicate minerals (e.g. talc, olivine, pyroxenes and feldspars) under supercritical CO(2) (approx. 95 atm pressure and 423 K) clearly show the well-defined Raman fingerprints of each mineral along with the Fermi resonance doublet of CO(2). Besides the CO(2) doublet and the effect of the viewing window, the main differences in the Raman spectra under Venus conditions are the phase transitions, the dehydration and decarbonation of various minerals, along with a slight shift in the peak positions and an increase in line-widths. The dehydration of melanterite (FeSO(4).7H(2)O) at 423 K under approximately 95 atm CO(2) is detected by the presence of the Raman fingerprints of rozenite (FeSO(4).4H(2)O) in the spectrum. Similarly, the high-temperature Raman spectra under ambient pressure of gypsum (CaSO(4).2H(2)O) and talc (Mg(3)Si(4)O(10)(OH)(2)) indicate that gypsum dehydrates at 518 K, but talc remains stable up to 1003 K. Partial dissociation of dolomite (CaMg(CO(3))(2)) is observed at 973 K. The TR remote Raman spectra of olivine, alpha-spodumene (LiAlSi(2)O(6)) and clino-enstatite (MgSiO(3)) pyroxenes and of albite (NaAlSi(3)O(8)) and microcline (KAlSi(3)O(8)) feldspars at high temperatures also show that the Raman lines remain sharp and well defined in the high-temperature spectra. The results of this study show that TR remote Raman spectroscopy could be a potential tool for exploring the surface mineralogy of Venus during both daytime and nighttime at short and long distances.

  6. High temperature microplasticity of fine-grained Y-TZP zirconia studied by mechanical spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Donzel, L.; Schaller, R. [Ecole Polytechnique Federale, Lausanne (Switzerland). Dept. de Physique


    Mechanical spectroscopy has been used to study the early stage of the plastic deformation, i.e. the microplasticity of Y-TZP ceramics. Measurements on samples with different grain sizes have shown that the mechanical loss is proportional to the inverse of the square root of the grain size. The existence of a threshold stress has been observed. (orig.) 4 refs.

  7. Feasibility Study of Secondary Heat Exchanger Concepts for the Advanced High Temperature Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Piyush Sabharwall


    The work reported herein represents a significant step in the preliminary design of heat exchanger options (material options, thermal design, selection and evaluation methodology with existing challenges). The primary purpose of this study is to aid in the development and selection of the required heat exchanger for power production using either a subcritical or supercritical Rankine cycle.

  8. Feasibility study of underground energy storage using high-pressure, high-temperature water. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Dooley, J.L.; Frost, G.P.; Gore, L.A.; Hammond, R.P.; Rawson, D.L.; Ridgway, S.L.


    A technical, operational and economic feasibility study on the storage of energy as heated high pressure water in underground cavities that utilize the rock overburden for containment is presented. Handling peak load requirements of electric utility power networks is examined in some detail. The cavity is charged by heating water with surplus steaming capacity during periods of low power requirement. Later this hot water supplies steam to peaking turbines when high load demands must be met. This system can be applied to either new or existing power plants of nuclear or fossil fuel type. The round trip efficiency (into storage and back) is higher than any other system - over 90%. Capital costs are competitive and the environmental impact is quite benign. Detailed installation and design problems are studied and costs are estimated. The continental United States is examined for the most applicable geology. Formations favorable for these large cavities exist in widespread areas.

  9. Risk Associated With The Decompression Of High Pressure High Temperature Fluids - Study On Black Oil

    DEFF Research Database (Denmark)

    Figueroa, D. C.; Fosbøl, P. L.; Thomsen, K.


    that the final temperature of black oil increases upon adiabatic decompression. In the case of the isenthalpic process at initial conditions of the reservoir, e.g. 150°C and 1000 bars, it is found that the final temperature can increase to 173.7°C. At non-isenthalpic conditions the final temperature increases......Fluids produced from deep underground reservoirs may result in exponential increase in temperature. It is a consequence of adiabatic fluid decompression from the inverse Joule Thomson Effect (JTE). The phenomenon requires analysis in order to avoid any operational risks. This study evaluates...

  10. Mechanism study on the sulfidation of ZnO with sulfur and iron oxide at high temperature (United States)

    Han, Junwei; Liu, Wei; Zhang, Tianfu; Xue, Kai; Li, Wenhua; Jiao, Fen; Qin, Wenqing


    The mechanism of ZnO sulfidation with sulfur and iron oxide at high temperatures was studied. The thermodynamic analysis, sulfidation behavior of zinc, phase transformations, morphology changes, and surface properties were investigated by HSC 5.0 combined with FactSage 7.0, ICP, XRD, optical microscopy coupled with SEM-EDS, and XPS. The results indicate that increasing temperature and adding iron oxide can not only improve the sulfidation of ZnO but also promote the formation and growth of ZnS crystals. Fe2O3 captured the sulfur in the initial sulfidation process as iron sulfides, which then acted as the sulfurizing agent in the late period, thus reducing sulfur escape at high temperatures. The addition of carbon can not only enhance the sulfidation but increase sulfur utilization rate and eliminate the generation of SO2. The surfaces of marmatite and synthetic zinc sulfides contain high oxygen due to oxidation and oxygen adsorption. Hydroxyl easily absorbs on the surface of iron-bearing zinc sulfide (Zn1-xFexS). The oxidation of synthetic Zn1-xFexS is easier than marmatite in air.

  11. High temperature transformations of waste printed circuit boards from computer monitor and CPU: Characterisation of residues and kinetic studies. (United States)

    Rajagopal, Raghu Raman; Rajarao, Ravindra; Sahajwalla, Veena


    This paper investigates the high temperature transformation, specifically the kinetic behaviour of the waste printed circuit board (WPCB) derived from computer monitor (single-sided/SSWPCB) and computer processing boards - CPU (multi-layered/MLWPCB) using Thermo-Gravimetric Analyser (TGA) and Vertical Thermo-Gravimetric Analyser (VTGA) techniques under nitrogen atmosphere. Furthermore, the resulting WPCB residues were subjected to characterisation using X-ray Fluorescence spectrometry (XRF), Carbon Analyser, X-ray Photoelectron Spectrometer (XPS) and Scanning Electron Microscopy (SEM). In order to analyse the material degradation of WPCB, TGA from 40°C to 700°C at the rates of 10°C, 20°C and 30°C and VTGA at 700°C, 900°C and 1100°C were performed respectively. The data obtained was analysed on the basis of first order reaction kinetics. Through experiments it is observed that there exists a substantial difference between SSWPCB and MLWPCB in their decomposition levels, kinetic behaviour and structural properties. The calculated activation energy (EA) of SSWPCB is found to be lower than that of MLWPCB. Elemental analysis of SSWPCB determines to have high carbon content in contrast to MLWPCB and differences in materials properties have significant influence on kinetics, which is ceramic rich, proving to have differences in the physicochemical properties. These high temperature transformation studies and associated analytical investigations provide fundamental understanding of different WPCB and its major variations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Processing study of high temperature superconducting Y-Ba-Cu-O ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Safari, A.; Wachtman, J.B. Jr.; Ward, C.; Parkhe, V.; Jisrawi, N.; McLean, W.L. (Rutgers Univ., Piscataway, NJ (USA))


    Processing of the YBa{sub 2}Cu{sub 3}O{sub 6+x} superconducting phase by employing different precursor powder preparation techniques (ball milling, attrition milling) and samples formed by different sintering conditions are discussed. The superconducting phase has been identified by powder x-ray diffraction. The effect of different powder processing and pressing conditions on the structure, density, resistivity and a.c. magnetic susceptibility were studied. Though there is no variation in T{sub c} for all the samples, attrition milled samples show a much lower resistance and less temperature dependence compared to ball milled samples above the superconducting transition temperature up to room temperature. Ball milled samples were loosely packed with more voids compared to attrition milled samples which are more densely packed with a needle-like structure.

  13. The oxidation of aluminum at high temperature studied by Thermogravimetric Analysis and Differential Scanning Calorimetry.

    Energy Technology Data Exchange (ETDEWEB)

    Coker, Eric Nicholas


    The oxidation in air of high-purity Al foil was studied as a function of temperature using Thermogravimetric Analysis with Differential Scanning Calorimetry (TGA/DSC). The rate and/or extent of oxidation was found to be a non-linear function of the temperature. Between 650 and 750 ÀC very little oxidation took place; at 850 ÀC oxidation occurred after an induction period, while at 950 ÀC oxidation occurred without an induction period. At oxidation temperatures between 1050 and 1150 ÀC rapid passivation of the surface of the aluminum foil occurred, while at 1250 ÀC and above, an initial rapid mass increase was observed, followed by a more gradual increase in mass. The initial rapid increase was accompanied by a significant exotherm. Cross-sections of oxidized specimens were characterized by scanning electron microscopy (SEM); the observed alumina skin thicknesses correlated qualitatively with the observed mass increases.

  14. Laboratory Study of High Temperature Corrosion in Straw-fired Power Plants

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Maahn, Ernst emanuel


    The components contributing to corrosion, HCl(g)SO2(g), KCl and K2SO4 were studied in the laboratory for Sandvik 8LR30 and Sanicro 28. The influence of HCl and SO2 was investigated at 600C material temperature and 600/800C flue gas temperature at time intervals up to 300 hours. The influence of ash...... deposits in air was examined at 525C-700C. Finally exposures were undertaken combining the aforementioned aggressive gas environment with the ash deposits. Thus the corrosion potential of individual components were evaluated and also whether they had a synergistic, antagonistic or additive effect on one...... another to influence the overall corrosion rate....

  15. Studies on mechanical high-temperature properties of materials with sprayed coatings

    Energy Technology Data Exchange (ETDEWEB)

    Pisarenko, G.S.; Ljasenko, B.A.; Zygylev, O.V.


    The results of studies on the tensile strength, creep behaviour and durability in the temperature range from 1 700 to 2 400 K of surface-coated molybdenum samples for experimental times <=10h. are reported here. Monolayer coatings based on molybdenum disilicide and bilayer coatings consisting of a ground coating of molybdenum disilicide and a cover layer of glass and high-melting oxides are used as protective coatings. The ground coating is formed by a thermodiffusion process and the cover coating formed with the aid of a plasma spaying technique. A suggestion is made for optimizing the properties of the combination basic material/coating by taking as criterium the heat resistance and standard parameters for the properties of the basic material and the coating, together with their adhesion resistance.

  16. Prototyping and performance study of a single crystal diamond detector for operation at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Amit; Kumar, Arvind; Topkar, Anita, E-mail:; Das, D.


    Prototype single crystal diamond detectors with different types of metallization and post metallization treatment were fabricated for the applications requiring fast neutron measurements in the Indian Test Blanket Module (TBM) at the International Thermonuclear Experimental Reactor (ITER) Experiment. The detectors were characterized by leakage current measurements to ascertain that the leakage currents are low and breakdown voltages are higher than the voltage required for full charge collection. The detector response to charged particles was evaluated using a {sup 238+239} Pu dual energy alpha source. The detectors showed an energy resolution of about 2% at 5.5 MeV. In order to study their suitability for the operation at higher temperatures, leakage current variation and alpha response were studied up to 300 °C. At 300 °C, peaks corresponding to 5.156 MeV and 5.499 MeV alphas could be separated and there was no significant degradation of energy resolution. Finally, the detector response to fast neutrons was evaluated using a Deuterium-Tritium (D-T) neutron generator. The observed spectrum showed peaks corresponding to various channels of n-C interactions with a clear isolated peak corresponding to ~8.5 MeV alphas. The detectors also showed high sensitivity of 3.4×10{sup −2} cps/n/(cm{sup 2} s)–4.5×10{sup −2} cps/n/(cm{sup 2} s) and excellent linearity of response in terms of count rate at different neutron flux in the observed range of 3.2×10{sup 5} n/(cm{sup 2} s) to 2.0×10{sup 6} n/(cm{sup 2} s).

  17. TEM Study of High-Temperature Precipitation of Delta Phase in Inconel 718 Alloy

    Directory of Open Access Journals (Sweden)

    Moukrane Dehmas


    Full Text Available Inconel 718 is widely used because of its ability to retain strength at up to 650∘C for long periods of time through coherent metastable  Ni3Nb precipitation associated with a smaller volume fraction of  Ni3Al precipitates. At very long ageing times at service temperature,  decomposes to the stable Ni3Nb phase. This latter phase is also present above the  solvus and is used for grain control during forging of alloy 718. While most works available on precipitation have been performed at temperatures below the  solvus, it appeared of interest to also investigate the case where phase precipitates directly from the fcc matrix free of  precipitates. This was studied by X-ray diffraction and transmission electron microscopy (TEM. TEM observations confirmed the presence of rotation-ordered domains in plates, and some unexpected contrast could be explained by double diffraction due to overlapping phases.

  18. The chemical shock tube as a tool for studying high-temperature chemical kinetics (United States)

    Brabbs, Theodore A.


    Although the combustion of hydrocarbons is our primary source of energy today, the chemical reactions, or pathway, by which even the simplest hydro-carbon reacts with atmospheric oxygen to form CO2 and water may not always be known. Furthermore, even when the reaction pathway is known, the reaction rates are always under discussion. The shock tube has been an important and unique tool for building a data base of reaction rates important in the combustion of hydrocarbon fuels. The ability of a shock wave to bring the gas sample to reaction conditions rapidly and homogeneously makes shock-tube studies of reaction kinetics extremely attractive. In addition to the control and uniformity of reaction conditions achieved with shock-wave methods, shock compression can produce gas temperatures far in excess of those in conventional reactors. Argon can be heated to well over 10 000 K, and temperatures around 5000 K are easily obtained with conventional shock-tube techniques. Experiments have proven the validity of shock-wave theory; thus, reaction temperatures and pressures can be calculated from a measurement of the incident shock velocity. A description is given of the chemical shock tube and auxiliary equipment and of two examples of kinetic experiments conducted in a shock tube.

  19. Study of the microstructure evolution of zirconium alloy during deuterium absorption at high temperature (United States)

    Zhang, Cheng; Yang, Yun; Zhang, Yin; Liu, Jingru; You, Li; Song, Xiping


    In the exploration of fusion power, zirconium alloy has been viewed as a potential deuterium storage material to store and deliver deuterium fuel into fusion reactors, due to its large deuterium storage capacity, low deuterium desorption pressure and fast deuterium absorption kinetics. But it often cracks after deuterium absorption. In this study, the microstructure and deuterium absorption kinetic of β-Zr in various deuteriding conditions (pressure, time and temperature) were investigated. The results showed that, with the increase of deuteriding pressures from 1 bar to 3 bar at 1173 K, the deuteride content and the deuteride morphology changed significantly. During deuterium absorption at 3 bar, the surface deuteride layer was formed first, and then the inner deuteride network was gradually developed with the time. There existed an apparent deuterium concentration gradient from surface to center. With the increase of deuteriding temperatures from 973 K to 1173 K, the deuteride content decreased. The kinetic of deuterium absorption at 1173 K was found to be affected by the deuteriding pressures. Transmission electron microscopy (TEM) results showed that ε deuterides nucleated and grew at the interface of δ deuterides, and small bands with different crystal orientation were found within the ε deuterides. The γ deuterides were found at 3 bar, within which twins and tweed structure were observed. An orientation relationship of δ//ε, {111}δ//{111}ε between δ and ε deuterides was also determined by TEM analysis.

  20. Phase relations study on the melting and crystallization regions of the Bi-2223 high temperature superconductor

    Directory of Open Access Journals (Sweden)

    Polasek Alexander


    Full Text Available The melting and solidification behavior of Bi2Sr2Ca2Cu3 O10 (Bi-2223 precursors has been studied. Nominal compositions corresponding to excess of liquid, Ca2CuO3 and CuO have been investigated. Each sample was made by packing a precursor powder into a silver crucible, in order to approximately simulate the situation found in 2223 silver-sheathed tapes. The samples were partially melted and then slow-cooled, being quenched from different temperatures and analyzed through X-ray diffraction (XRD and scanning electron microscopy (SEM/EDS. The precursors decomposed peritectically during melting, forming liquid and solid phases. Very long plates with compositions falling in the vicinity of the 2223 primary phase field formed upon slow-cooling. The 2223 phase may have been formed and the results suggest that long grains of this phase might be obtained by melting and crystallization if the exact peritectic region and the optimum processing conditions are found.

  1. Partitioning planning studies: Preliminary evaluation of metal and radionuclide partitioning the high-temperature thermal treatment systems

    Energy Technology Data Exchange (ETDEWEB)

    Liekhus, K.; Grandy, J.; Chambers, A. [and others


    A preliminary study of toxic metals and radionuclide partitioning during high-temperature processing of mixed waste has been conducted during Fiscal Year 1996 within the Environmental Management Technology Evaluation Project. The study included: (a) identification of relevant partitioning mechanisms that cause feed material to be distributed between the solid, molten, and gas phases within a thermal treatment system; (b) evaluations of existing test data from applicable demonstration test programs as a means to identify and understand elemental and species partitioning; and, (c) evaluation of theoretical or empirical partitioning models for use in predicting elemental or species partitioning in a thermal treatment system. This preliminary study was conducted to identify the need for and the viability of developing the tools capable of describing and predicting toxic metals and radionuclide partitioning in the most applicable mixed waste thermal treatment processes. This document presents the results and recommendations resulting from this study that may serve as an impetus for developing and implementing these predictive tools.

  2. A Computational-Experimental Study of Plasma Processing of Carbides at High Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Bronson, Arturo [Univ. of Texas, El Paso, TX (United States); Kumar, Vinod [Univ. of Texas, El Paso, TX (United States)


    The effects of plasma on carbides were computationally investigated for the ultimate development of adherent, dense scales such as Al2O3-TiO2 systems toward oxidation resistance at 1873 K. An alumina scale forms on the carbide because of the significant stability of Al2O3 as the outer scale adjacent to the gas phase compared to rutile, though TiO and Ti2O3 may form as components of an inner layer of a complicated scale. A sequence of surface reactions starting with the adsorption of oxygen on the surface was applied to experimental data from Donnelly’s research group who reported the adsorption of O2 in a plasma atmosphere as a function of power. In addition to the adsorbed oxygen (Oad) as the rate determining step, it controlled the cascading reaction sequence of the adsorbed species of AlO, AlO2 and AlO3, as indicated in the present study. The rate of oxygen adsorption also depends on the ratio of the final to initial adsorbed oxygen as a function the oxygen potential. In a secondary research thrust, Ti3AlC was synthesized and subsequently oxidized. A 39Ti-14Al-47TiC (in wt%) mixture was equilibrated by using a pseudo-isopiestic technique to form ultimately an aggregate of Ti3AlC, Ti2AlC and TiC phases. The aggregate was primarily composed of Ti3AlC with minor amounts of Ti2AlC and TiC, as determined by an X-ray diffraction analysis. The Ti3AlC/Ti2AlC/TiC aggregate was subsequently oxidized at 1873 K to form a scale composed of an outer layer of Al2O3-TiO2-Al2TiO5 with an inner layer consisting of TiO-Al2O3- Al4CO3. The measured scale thickness grew according to Wagner’s parabolic growth rate, which estimates an effective diffusion coefficient of 6 (10)-8 cm2/s. The scale

  3. Structural Studies of NH4-exchanged Natrolites at Ambient Conditions and High Temperature

    Energy Technology Data Exchange (ETDEWEB)

    Y Lee; D Seoung; Y Jang; J Bai; Y Lee


    with larger alkali metal cations such as the K-, Rb-, and Cs-forms. The dehydrated model of the fully NH{sub 4}-exchanged natrolite at 400 C is essentially same as the one reported previously from the sample prepared by direct melt exchange method using sodium-natrolite. Both the hydrated and dehydrated structures of the partially NH{sub 4}-exchanged natrolite at RT and at 400 C, respectively, are characterized by having two separate sites for the ammonium and potassium cations. Comparing the structural models of the monovalent cation forms studied so far, we find that the rotation angle of the natrolite chain is inversely proportional to the cation radius both in the hydrated and dehydrated phases. The distribution pattern of the non-framework species along the natrolite channel also seems to be related to the non-framework cation radius and hence to the chain rotation angle.

  4. Hematite at Meridiani Planum and Gusev Crater as identified by the Moessbauer Spectrometer MIMOS II (United States)

    Klingelhoefer, G.; Morris, R. V.; Rodionov, D.; Schroeder, C.; de Souza, P. A.; Yen, A.; Renz, F.; Wdowiak, T.


    The Moessbauer (MB) spectrometers on the MER rovers Opportunity and Spirit, which landed on Mars in January 2004, have identified the iron-containing mineral hematite (a-Fe2O3) at both landing sites. On Earth, hematite can occur either by itself or with other iron oxides as massive deposits, in veins , and as particles dispersed through a silicate or other matrix material. Hematite particle size can range from nanophase (superparamagnetic) to multidomain and particle shape ranges from equant to acicular to platy. Fine-grained hematite is red in color and is a pigmenting agent. Coarse-grained hematite can be spectrally neutral (gray) at visible wavelengths. Substitutional impurities, particularly Al, are common in hematite. Chemically pure, coarse-grained, and well-crystalline hematite has a magnetic transition (the Morin transition) at 260 K. Moessbauer spectra, recorded as a function of temperature, provide a way to characterize Martian hematite with respect to some of the physical and chemical characteristics. At Meridiani Planum besides the iron-sulfate mineral jarosite also the Fe-oxide hematite has been identified by the Moessbauer spectrometer, mainly in three distinct types of reservoir: - outcrop matrix material dominated by the mineral jarosite in the MB spectrum, certain basaltic soils, and mm-sized spherules dubbed blueberries. Moessbauer spectra of each reservoir yield a distinct set of hyperfine parameters for hematite, suggesting different degrees of crystallinity and particle size. The hematite found by MB instrument MIMOS II in the outcrop material shows the Morin transition at relatively high temperatures (ca. 250 K) which is an indication of pure and well-crystallized hematite. The source of the hematite in the Blueberries as identified by Moessbauer spectroscopy, and also by MiniTES, is not known. These spherules, covering nearly the whole landing site area (Eagle crater, plains, Endurance crater), may be concretions formed in the outcrop

  5. Moessbauer study of epitaxial Co{sub 2}Cr{sub 0.6}Fe{sub 0.4}Al thin films.

    Energy Technology Data Exchange (ETDEWEB)

    Ksenofontov, Vadim; Felser, Claudia [Institute of Inorganic and Analytical Chemistry, Johannes Gutenberg - University, 55099 Mainz (Germany); Herbort, Christian; Jourdan, Martin [Institute of Physics, Johannes Gutenberg - University, 55099 Mainz (Germany)


    Epitaxial thin films of the promising for spintronic applications Heusler half-metallic compound Co{sub 2}Cr{sub 0.6}Fe{sub 0.4}Al (CCFA) were investigated using conversion electron Moessssbauer spectroscopy (CEMS) in order to get insight into the structural and magnetic properties. Thin films of 100 nm thickness were deposited by rf magnetron sputtering on MgO substrates without and with 10 nm Fe buffer layer. We discuss a correlation between the annealing temperature and the structural disorder and hyperfine fields on Fe atoms measured by Moessbauer spectroscopy. Samples prepared at the optimum annealing temperature as determined by tunneling magnetoresistance measurements show the optimum degree of order on the Fe sites as determined by CEMS. Additionally, we observed evidence for a diffusion of Cr atoms from the CCFA thin film into the Fe buffer layer and the related diffusion of Fe atoms from the buffer into the CCFA film. Thus the thermal treatment changes the Fe to Cr ratio of the Heusler compound additional to influencing the degree of disorder on the Fe/Cr sites.

  6. Auger electron spectroscopy study of oxidation of a PdCr alloy used for high-temperature sensors (United States)

    Boyd, Darwin L.; Zeller, Mary V.; Vargas-Aburto, Carlos


    A Pd-13 wt. percent Cr solid solution is a promising high-temperature strain gage alloy. In bulk form it has a number of properties that are desirable in a resistance strain gage material, such as a linear electrical resistance versus temperature curve to 1000 C and stable electrical resistance in air at 1000 C. However, unprotected fine wire gages fabricated from this alloy perform well only to 600 C. At higher temperatures severe oxidation degrades their electrical performance. In this work Auger electron spectroscopy was used to study the oxidation chemistry of the alloy wires and ribbons. Results indicate that the oxidation is caused by a complex mechanism that is not yet fully understood. As expected, during oxidation, a layer of chromium oxide is formed. This layer, however, forms beneath a layer of metallic palladium. The results of this study have increased the understanding of the oxidation mechanism of Pd-13 wt. percent Cr.

  7. High temperature EPR study of the M3Fe4V6O24 (M = Cu, Zn, Mg and Mn

    Directory of Open Access Journals (Sweden)

    Guskos Niko


    Full Text Available Electron paramagnetic resonance (EPR spectra of M3Fe4V6O24 (M = Cu, Zn, Mg and Mn compounds in high temperature range (293 K to 493 K have been investigated. The role of magnetic (Cu, Mn and non-magnetic (Zn, Mg ions in M3Fe4V6O24 structure in formation of magnetic resonance spectra was studied. Temperature dependence of EPR parameters: resonance field, linewidth and integrated intensity were examined. Similarities and differences in temperature behavior of these parameters has been discussed in terms of different relaxation mechanisms and magnetic interactions in the spin systems. An important role of additional magnetic ions (M = Mn or Cu in the M3Fe4V6O24 structure has been identified and its consequences considered.

  8. Method and apparatus for studying high-temperature properties of conductive materials in the interests of nuclear power engineering

    Energy Technology Data Exchange (ETDEWEB)

    Savvatimskiy, A. I., E-mail:; Onufriev, S. V. [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation)


    Physical processes during a rapid (microsecond) heating of metals, carbon, and their compounds by a single pulse of electric current are discussed. Effects arising in such short-term heating near the melting point are noted: the electron emission and heat capacity anomalies and the possible occurrence of Frenkel pair (interstitial atom and vacancy). The problem of measuring the temperature using optical methods under pulse heating is considered, including the use of a specimen in the form of a blackbody model. The melting temperature of carbon (4800–4900 K) is measured at increased pulse pressure. The results of studying the properties of metals (by example of zirconium and hafnium) and of zirconium carbide at high temperatures are discussed. The schematics of the pulse setups and the instrumentation, as well as specimens for a pulse experiment, are presented.

  9. High temperatures and high pressures Brillouin scattering studies of liquid H(2)O+CO(2) mixtures. (United States)

    Qin, Junfeng; Li, Min; Li, Jun; Chen, Rongyan; Duan, Zhenhao; Zhou, Qiang; Li, Fangfei; Cui, Qiliang


    The Brillouin scattering spectroscopy studies have been conducted in a diamond anvil cell for a liquid mixtures composed of 95 mol % H(2)O and 5 mol % CO(2) under high temperatures and pressures. The sound velocity, refractive index, density, and adiabatic bulk modulus of the H(2)O+CO(2) mixtures were determined under pressures up to the freezing point at 293, 453, and 575 K. It is found from the experiment that sound velocities of the liquid mixture are substantially lower than those of pure water at 575 K, but not at lower temperatures. We presented an empirical relation of the density in terms of pressure and temperature. Our results show that liquid H(2)O+CO(2) mixtures are more compressible than water obtained from an existing equation of state of at 453 and 575 K.

  10. Moessbauer spectroscopy as a tool in astrobiology

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, Christian, E-mail:; Klingelhoefer, Goestar, E-mail: [Johannes Gutenberg-Universitaet, Institut fuer Anorganische Chemie und Analytische Chemie (Germany); Bailey, Brad E., E-mail:; Staudigel, Hubert, E-mail: [University of California San Diego, Institute of Geophysics and Planetary Physics, Scripps Institution of Oceanography (United States)


    Two miniaturized Moessbauer spectrometers are part of the Athena instrument package of the NASA Mars Exploration Rovers, Spirit and Opportunity. The primary objectives of their science investigation are to explore two sites on the surface of Mars where water may once have been present, and to assess past environmental conditions at those sites and their suitability for life. Aqueous minerals - jarosite at Meridiani Planum, Opportunity's landing site, and goethite in the Columbia Hills in Gusev Crater, Spirit's landing site - were identified by Moessbauer spectroscopy, thus providing in situ proof of water being present at those sites in the past. The formation of jarosite in particular puts strong constraints on environmental conditions during the time of formation and hence on the evaluation of potential habitability. On Earth Moessbauer spectroscopy was used to investigate microbially induced changes in Fe oxidation states and mineralogy at the Loihi deep sea mount, a hydrothermal vent system, which might serve as an analogue for potential habitats in the Martian subsurface and the sub-ice ocean of Jupiter's icy moon Europa.

  11. Fast transient infrared studies in material science: development of a novel low dead-volume, high temperature DRIFTS cell. (United States)

    Dal Santo, V; Dossi, C; Fusi, A; Psaro, R; Mondelli, C; Recchia, S


    A prototype DRIFTS flow reaction chamber was designed and developed in order to find analytical application in the study of heterogeneous catalysts operating at high temperatures under fast transient gas feed conditions. Minimisation of dead-volumes allows gas replacement in 8-10s at 10mLmin(-1) total flow. To overcome problems related to the reactivity of the cell walls under alternating oxidizing/reducing gases, the cell was built with Inconel 600trade mark, which was tested to be very inert even at high temperatures. The sample holder, which was developed to closely resemble a micro plug-flow reactor, poses some problems in terms of heat transfer to the outer body of the cell (limiting then the maximum reachable temperature) and of the correct measurement of the actual sample temperature. These problems were solved with a careful re-design of the upper part of the cell. The second prototype thus derived is able to reach temperatures up to 803K and allows gas replacement in less than 4s at 10mLmin(-1). The cell is inserted in a MCT-FT-IR, which allows to collect high quality spectra with a 1s time-resolution. The downstream flow can be analysed by a quadrupole mass spectrometer equipped with an enclosed source and by a commercial GC. The performances of this prototype cell are presented showing some tests carried out with ceria-zirconia (Ce(x)Zr(1-x)O(2)) catalysts for CO abatement under real operando conditions.

  12. High temperature battery. Hochtemperaturbatterie

    Energy Technology Data Exchange (ETDEWEB)

    Bulling, M.


    To prevent heat losses of a high temperature battery, it is proposed to make the incoming current leads in the area of their penetration through the double-walled insulating housing as thermal throttle, particularly spiral ones.

  13. Thermodynamic Characteristic Study of a High-temperature Flow-rate Control Valve for Fuel Supply of Scramjet Engines

    National Research Council Canada - National Science Library

    ZENG Wen TONG Zhizhong LI Songjing LI Hongzhou ZHANG Liang


    ... and increasing of leakage,to the valve.In this paper,a high-temperature flow-rate control valve,pilot-controlled by a pneumatic servo system is developed to control the fuel supply for scramjet...

  14. Moessbauer spectroscopy evidence of intrinsic non-stoichiometry in iron telluride single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kiiamov, Airat G.; Tayurskii, Dmitrii A. [Institute of Physics, Kazan Federal University (Russian Federation); Centre for Quantum Technologies, Kazan Federal University (Russian Federation); Lysogorskiy, Yury V.; Vagizov, Farit G. [Institute of Physics, Kazan Federal University (Russian Federation); Tagirov, Lenar R. [Institute of Physics, Kazan Federal University (Russian Federation); E.K. Zavoisky Physical-Technical Institute, Russian Academy of Sciences, Kazan (Russian Federation); Croitori, Dorina [Institute of Applied Physics, Academy of Sciences of Moldova, Chisinau (Moldova, Republic of); Tsurkan, Vladimir [Institute of Applied Physics, Academy of Sciences of Moldova, Chisinau (Moldova, Republic of); Experimental Physics V, University of Augsburg (Germany); Loidl, Alois [Experimental Physics V, University of Augsburg (Germany)


    The FeTe parent compound for iron-superconductor chalcogenides was studied applying Moessbauer spectroscopy accompanied by ab initio calculations of electric field gradients at the iron nuclei. Room-temperature (RT) Moessbauer spectra of single crystals have shown asymmetric doublet structure commonly ascribed to contributions of over-stoichiometric iron or impurity phases. Low-temperature Moessbauer spectra of the magnetically ordered compound could be well described by four hyperfine-split sextets, although no other foreign phases different from Fe{sub 1.05}Te were detected by XRD and microanalysis within the sensitivity limits of the equipment. Density functional ab initio calculations have shown that over-stoichiometric iron atoms significantly affect electron charge and spin density up to the second coordination sphere of the iron sub-lattice, and, as a result, four non-equivalent groups of iron atoms are formed by their local environment. The resulting four-group model consistently describes the angular dependence of the single crystals Moessbauer spectra as well as intensity asymmetry of the doublet absorption lines in powdered samples at RT. We suppose that our approach could be extended to the entire class of Fe{sub 1+y}Se{sub 1-x}Te{sub x} compounds, which contain excess iron atoms. (copyright 2016 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. An Angle Resolved Photoemission Study of a Mott Insulator and Its Evolution to a High Temperature Superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Ronning, Filip


    One of the most remarkable facts about the high temperature superconductors is their close proximity to an antiferromagnetically ordered Mott insulating phase. This fact suggests that to understand superconductivity in the cuprates we must first understand the insulating regime. Due to material properties the technique of angle resolved photoemission is ideally suited to study the electronic structure in the cuprates. Thus, a natural starting place to unlocking the secrets of high Tc would appears to be with a photoemission investigation of insulating cuprates. This dissertation presents the results of precisely such a study. In particular, we have focused on the compound Ca{sub 2-x}Na{sub x}CuO{sub 2}Cl{sub 2}. With increasing Na content this system goes from an antiferromagnetic Mott insulator with a Neel transition of 256K to a superconductor with an optimal transition temperature of 28K. At half filling we have found an asymmetry in the integrated spectral weight, which can be related to the occupation probability, n(k). This has led us to identify a d-wave-like dispersion in the insulator, which in turn implies that the high energy pseudogap as seen by photoemission is a remnant property of the insulator. These results are robust features of the insulator which we found in many different compounds and experimental conditions. By adding Na we were able to study the evolution of the electronic structure across the insulator to metal transition. We found that the chemical potential shifts as holes are doped into the system. This picture is in sharp contrast to the case of La{sub 2-x}Sr{sub x}CuO{sub 4} where the chemical potential remains fixed and states are created inside the gap. Furthermore, the low energy excitations (ie the Fermi surface) in metallic Ca{sub 1.9}Na{sub 0.1}CuO{sub 2}Cl{sub 2} is most well described as a Fermi arc, although the high binding energy features reveal the presence of shadow bands. Thus, the results in this dissertation provide a

  16. Experimental study and modeling of a high-temperature solar chemical reactor for hydrogen production from methane cracking

    Energy Technology Data Exchange (ETDEWEB)

    Abanades, Stephane; Flamant, Gilles [Processes, Materials, and Solar Energy Laboratory, CNRS (PROMES-CNRS, UPR 8521), 7 Rue du Four Solaire, 66120 Odeillo Font-Romeu (France)


    A high-temperature fluid-wall solar reactor was developed for the production of hydrogen from methane cracking. This laboratory-scale reactor features a graphite tubular cavity directly heated by concentrated solar energy, in which the reactive flowing gas dissociates to form hydrogen and carbon black. The solar reactor characterization was achieved with: (a) a thorough experimental study on the reactor performance versus operating conditions and (b) solar reactor modeling. The results showed that the conversion of CH{sub 4} and yield of H{sub 2} can exceed 97% and 90%, respectively, and these depend strongly on temperature and on fluid-wall heat transfer and reaction surface area. In addition to the experimental study, a 2D computational model coupling transport phenomena was developed to predict the mapping of reactor temperature and of species concentration, and the reaction extent at the outlet. The model was validated and kinetics of methane decomposition were identified from simulations and comparison to experimental results. (author)

  17. High Temperature Electrolysis

    DEFF Research Database (Denmark)

    Elder, Rachael; Cumming, Denis; Mogensen, Mogens Bjerg


    High temperature electrolysis of carbon dioxide, or co-electrolysis of carbon dioxide and steam, has a great potential for carbon dioxide utilisation. A solid oxide electrolysis cell (SOEC), operating between 500 and 900. °C, is used to reduce carbon dioxide to carbon monoxide. If steam is also...... input to the cell then hydrogen is produced giving syngas. This syngas can then be further reacted to form hydrocarbon fuels and chemicals. Operating at high temperature gives much higher efficiencies than can be achieved with low temperature electrolysis. Current state of the art SOECs utilise a dense...

  18. Optical parameters as a tool to study the microstructural evolution of carbonized anthracites during high-temperature treatment

    Energy Technology Data Exchange (ETDEWEB)

    Isabel Surez-Ruiz; Ana B. Garcia [Instituto Nacional del Carbon (INCAR-CSIC), Oviedo (Spain)


    The graphitization process of two different carbonized anthracites in the temperature interval of 2000-2800 C was studied by using the optical properties of the materials prepared. These optical properties are defined by the main axes and parameters of the reflectance-indicating surface (RIS) and the anisotropy indexes (BW and oil bireflectance ratio). Two temperature segments, with the second one being a plateau, were found to occur in the evolution of the structural organization (textural anisotropy) of the materials. The variation with the temperature of the structural order of the materials as determined from X-ray diffraction and Raman crystalline parameters followed a similar tendency, thus confirming the validity of the optical properties as another indicator of the textural and structural changes occurring during anthracite high-temperature treatment. Moreover, as shown by the optical microscopic observation of the materials, crystalline aggregates, microspheres, and flake microstructures, which were previously detected in natural graphites, were developed from the dense and massive particles, with their proportion being higher in those materials with a larger degree of textural anisotropy and/or structural order. 29 refs., 4 figs., 3 tabs.

  19. Experimental Studies on the Synthesis and Performance of Boron-containing High Temperature Resistant Resin Modified by Hydroxylated Tung Oil (United States)

    Zhang, J. X.; Y Ren, Z.; Zheng, G.; Wang, H. F.; Jiang, L.; Fu, Y.; Yang, W. Q.; He, H. H.


    In this work, hydroxylated tung oil (HTO) modified high temperature resistant resin containing boron and benzoxazine was synthesized. HTO and ethylenediamine was used to toughen the boron phenolic resin with specific reaction. The structure of product was studied by Fourier-transform infrared spectroscopy(FTIR), and the heat resistance was tested by Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis(TGA). The results indicated that the conjugated triene structure of HTO was involved in the crosslinking of the heating curing progress, and in addition, the open-loop polymerization reaction of benzoxazine resin during heating can effectively reduce the curing temperature of the resin and reduce the release of small molecule volatiles, which is advantageous to follow-up processing. DSC data showed that the initial decomposition temperature of the resin is 350-400 °C, the carbon residue rate under 800 °C was 65%. It indicated that the resin has better heat resistance than normal boron phenolic resin. The resin can be used as an excellent ablative material and anti-friction material and has a huge application market in many fields.

  20. Potential Usage of Thermoelectric Devices in a High-Temperature Polymer Electrolyte Membrane (PEM) Fuel Cell System: Two Case Studies (United States)

    Gao, Xin; Chen, Min; Andreasen, Søren Juhl; Kær, Søren Knudsen


    Methanol-fueled, high-temperature polymer electrolyte membrane fuel cell (HTPEMFC) power systems are promising as the next generation of vehicle engines, efficient and environmentally friendly. Currently, their performance still needs to be improved, and they still rely on a large Li-ion battery for system startup. In this article, to handle these two issues, the potential of thermoelectric (TE) devices applied in a HTPEMFC power system has been preliminarily evaluated. First, right after the fuel cell stack or the methanol reformer, thermoelectric generators (TEGs) are embedded inside a gas-liquid heat exchanger to form a heat recovery subsystem jointly for electricity production. It is calculated that the recovered power can increase the system efficiency and mitigate the dependence on Li-ion battery during system startup. To improve the TEG subsystem performance, a finite-difference model is then employed and two main parameters are identified. Second, TE coolers are integrated into the methanol steam reformer to regulate heat fluxes herein and improve the system dynamic performance. Similar modification is also done on the evaporator to improve its dynamic performance as well as to reduce the heat loss during system startup. The results demonstrate that the TE-assisted heat flux regulation and heat-loss reduction can also effectively help solve the abovementioned two issues. The preliminary analysis in this article shows that a TE device application inside HTPEMFC power systems is of great value and worthy of further study.

  1. Rheological Study on ATBS-AM Copolymer-Surfactant System in High-Temperature and High-Salinity Environment

    Directory of Open Access Journals (Sweden)

    Muhammad Shahzad Kamal


    Full Text Available Experimental studies were conducted to evaluate the rheological properties of surfactant-polymer (SP system. This SP system consists of a copolymer of acrylamide (AM and acrylamido tertiary butyl sulfonate (ATBS and sodium dodecyl sulphate (SDS surfactant. Effects of surfactant concentration, temperature, polymer concentration, and salinity on rheological properties of SP system were investigated by means of oscillation and shear measurements. Comparison with classical partially hydrolyzed polyacrylamide (HPAM was made. For the same temperature range, the viscosity drop for HPAM was about four times higher than the viscosity drop for ATBS-AM copolymer. In deionized water, viscosity of both polymers and SP systems was very high as compared to viscosity in saline water. Viscosity reduction of ATBS-AM copolymer was higher for salts having divalent cations. The SP system showed precipitation in presence of divalent cations. It worked well with monovalent cations even at relatively high salinities. The addition of 0.1% surfactant to the polymer resulted in a 60% decrease in the viscosity. Some interfacial rheological experiments were also carried out to investigate the behaviors on the interface between SP solutions and oil. Addition of 0.1% surfactant showed a 65% decrease in G′ at SP solution-oil interface. SP system consisting of ATBS-AM and SDS showed better performance at high temperature compared to HPAM-SDS system. Due to precipitation, the SP system should be restricted to environment having low divalent cations.

  2. Luminescence Studies of Residual Damage in Low-Dose Arsenic Implanted Silicon after High-Temperature Annealing (United States)

    Sagara, Akihiko; Hiraiwa, Miori; Shibata, Satoshi; Sugie, Ryuichi; Yamada, Keiichi


    In order to prevent the degradation of device performance, it is necessary to detect and reduce residual damage remaining after ion implantation and annealing. In this study, we focused on the high-temperature annealing process after low-dose arsenic (As) implantation in silicon (Si) and evaluated the correlation of annealing conditions and damage by cathodoluminescence (CL) compared to Secondary Ion Mass Spectrometry (SIMS) and Junction Photo-Voltage (JPV) results. Increasing the annealing temperature with the high-heat-up rate, As profile and the sheet resistance didn't change. However, the intensity of the band-to-band transition increased with temperature. This implies the some kind of residual damage remains after low-temperature annealing and it is removed with increasing annealing temperature. On the other hand, with increasing the annealing time at 1200 °C, more As was piled-up at the SiO2/Si interface and the luminescence intensity decreased. We guess this piled-up As is inactive and it may create some kind of damage combined with the defects around the interface, and these damage types cause the suppression of the luminescence intensity. We concluded that the luminescence intensity reflects the various kinds of damage and optical characterization methods have a potential to evaluate defect evolution in annealing process.

  3. Experimental Study and Stabilization Mechanisms of Silica Nanoparticles Based Brine Mud with High Temperature Resistance for Horizontal Shale Gas Wells

    Directory of Open Access Journals (Sweden)

    Xian-yu Yang


    Full Text Available Previous studies showed that silica nanoparticles based fresh water drilling muds had good thermal stability up to 160°C; however its performance at high salt concentration was rather poor. Therefore, high performance silica nanoparticles based brine mud (NPBMs with high temperature resistance for horizontal shale gas wells was proposed. Thermal stability tests from ambient temperature to 180°C, along with pressure transmission tests and rheology analysis, were performed to evaluate comprehensive properties of the NPBMs. Results show that the NPBMs embody excellent salt tolerance and thermal resistance for their rheological parameters did not suffer significant fluctuation. Fluid loss of the NPBM-1 (4% NaCl plus 3% KCl at 180°C was only 7.6 mL while the NPBM-2 (10% NaCl plus 3% KCl had a fluid loss of 6.6 mL at 150°C. Low water activity and good lubricity of the NPBMs were beneficial to improve wellbore stability and reduce friction resistance. Pressure transmission tests on the NPBM-1 show that it can mitigate or even prevent the transmission of drilling mud pressure into shale thus improving wellbore stability. Additionally, optimal rheological models for the NPBM-1 and the NPBM-2 were Herschel-Bulkley model and Power Law model separately.

  4. Aging effect in CaLaBa{l_brace}Cu{sub 1 - x}Fe{sub x}{r_brace}{sub 3}O{sub 7 - {delta}} with 0 {<=} x {<=} 0.07 studied by Moessbauer spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bustamante, Angel, E-mail: [Universidad Nacional Mayor de San Marcos, Laboratorio de Ceramicos y Nanomateriales, Facultad de Ciencias Fisicas (Peru); Santos Valladares, Luis De Los, E-mail: [University of Cambridge, Cavendish Laboratory (United Kingdom); Flores, Jesus [Universidad Nacional Mayor de San Marcos, Laboratorio de Ceramicos y Nanomateriales, Facultad de Ciencias Fisicas (Peru); Barnes, Crispin H. W. [University of Cambridge, Cavendish Laboratory (United Kingdom); Majima, Yutaka [Tokyo Institute of Technology, Materials and Structures Laboratory (Japan)


    In this work, we study the long-term aging effect caused by Fe atoms in the superconductor CaLaBa{l_brace}Cu{sub 1 - x}Fe{sub x}{r_brace}{sub 3}O{sub 7 - {delta}} with 0 {<=} x {<=} 0.07. XRD confirms that this system has a YBCO-like structure. The critical temperature (T{sub c}) is strongly affected by aging and depends on the amount of Fe in the structure. Room temperature Moessbauer spectroscopy reveals the presence of the typical species A, B-B Prime , C and new species E Prime and F. Interestingly; A, which corresponds to the Fe{sup 3 + } atom located in the Cu(1) of the chains with spin S{sub z} = 3/2, shows a drastic reduction which means migration to the species B, B Prime and C. Species B and B Prime correspond to the Fe{sup 3 + } in the Cu(2) site forming planar quasi-octahedral and planar square pyramidal, while the C specie is a square pyramidal with O(5) respectively (spin S{sub z} = 3/2 in all these cases). Aging causes loss of superconductivity in the samples with 5 and 7% of iron content.

  5. High temperature superconducting materials

    Energy Technology Data Exchange (ETDEWEB)

    Alario-Franco, M.A. [Universidad Complutense de Madrid (Spain). Facultad de Ciencias Quimicas


    The perovskite structure is the basis of all known high-temperature superconducting materials. Many of the most successful (highest T{sub c}) materials are based on mercury and thallium phases but, due to the high toxicity of the component compounds effort has been invested in the substitution of these elements with silver. Progress is reviewed. (orig.)

  6. High-temperature superconductors

    CERN Document Server

    Saxena, Ajay Kumar


    The present book aims at describing the phenomenon of superconductivity and high-temperature superconductors discovered by Bednorz and Muller in 1986. The book covers the superconductivity phenomenon, structure of high-Tc superconductors, critical currents, synthesis routes for high Tc materials, superconductivity in cuprates, the proximity effect and SQUIDs, theories of superconductivity and applications of superconductors.

  7. Life at High Temperatures

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 10; Issue 9. Life at High Temperatures. Ramesh Maheshwari. General Article Volume 10 Issue 9 September 2005 pp 23-36. Fulltext. Click here to view fulltext PDF. Permanent link: Keywords.

  8. High temperature storage loop :

    Energy Technology Data Exchange (ETDEWEB)

    Gill, David Dennis; Kolb, William J.


    A three year plan for thermal energy storage (TES) research was created at Sandia National Laboratories in the spring of 2012. This plan included a strategic goal of providing test capability for Sandia and for the nation in which to evaluate high temperature storage (>650ÀC) technology. The plan was to scope, design, and build a flow loop that would be compatible with a multitude of high temperature heat transfer/storage fluids. The High Temperature Storage Loop (HTSL) would be reconfigurable so that it was useful for not only storage testing, but also for high temperature receiver testing and high efficiency power cycle testing as well. In that way, HTSL was part of a much larger strategy for Sandia to provide a research and testing platform that would be integral for the evaluation of individual technologies funded under the SunShot program. DOEs SunShot program seeks to reduce the price of solar technologies to 6/kWhr to be cost competitive with carbon-based fuels. The HTSL project sought to provide evaluation capability for these SunShot supported technologies. This report includes the scoping, design, and budgetary costing aspects of this effort

  9. Moire interferometry at high temperatures (United States)

    Wu, Jau-Je


    The objective of this study was to provide an optical technique allowing full-field in-plane deformation measurements at high temperature by using high-sensitivity moire interferometry. This was achieved by a new approach of performing deformation measurements at high temperatures in a vacuum oven using an achromatic interferometer. The moire system setup was designed with particular consideration for the stability, compactness, flexibility, and ease of control. A vacuum testing environment was provided to minimize the instability of the patterns by protecting the optical instruments from the thermal convection currents. Also, a preparation procedure for the high-temperature specimen grating was developed with the use of the plasma-etched technique. Gold was used as a metallic layer in this procedure. This method was demonstrated on a ceramic block, metal/matrix composite, and quartz. Thermal deformation of a quartz specimen was successfully measured in vacuum at 980 degrees Celsius, with the sensitivity of 417 nm per fringe. The stable and well-defined interference patterns confirmed the feasibility of the developments, including the high-temperature moire system and high-temperature specimen grating. The moire system was demonstrated to be vibration-insensitive. Also, the contrast of interference fringes at high temperature was enhanced by means of a spatial filter and a narrow band interference filter to minimize the background noise from the flow of the specimen and heater. The system was verified by a free thermal expansion test of an aluminum block. Good agreement demonstrated the validity of the optical design. The measurements of thermal deformation mismatch were performed on a graphite/epoxy composite, a metal/matrix composite equipped with an optical fiber, and a cutting tool bit. A high-resolution data-reduction technique was used to measure the strain distribution of the cutting tool bit.

  10. Experimental study of cell reversal of a high temperature polymer electrolyte membrane fuel cell caused by H2 starvation

    DEFF Research Database (Denmark)

    Zhou, Fan; Andreasen, Søren Juhl; Kær, Søren Knudsen


    Operation under fuel starvation has been proved to be harmful to the fuel cell by causing severe and irreversible degradation. To characterize the behaviors of the high temperature PEM fuel cell under fuel starvation conditions, the cell voltage and local current density is measured simultaneousl...

  11. Experimental study of thermo-mechanical behavior of SiC composite tubing under high temperature gradient using solid surrogate

    Energy Technology Data Exchange (ETDEWEB)

    Alva, Luis; Shapovalov, Kirill [University of South Carolina, Mechanical Engineering Department (United States); Jacobsen, George M.; Back, Christina A. [General Atomics (United States); Huang, Xinyu, E-mail: [University of South Carolina, Mechanical Engineering Department (United States)


    Nuclear grade silicon carbide fiber (SiC{sub f}) reinforced silicon carbide matrix (SiC{sub m}) composite is a promising candidate material for accident tolerance fuel (ATF) cladding. A major challenge is ensuring the mechanical robustness of the ceramic cladding under accident conditions. In this work the high temperature mechanical response of a SiC{sub f}–SiC{sub m} composite tubing is studied using a novel thermo-mechanical test method. A solid surrogate tube is placed within and bonded to the SiC{sub f}–SiC{sub m} sample tube using a ceramic adhesive. The bonded tube pair is heated from the center using a ceramic glower. During testing, the outer surface temperature of the SiC sample tube rises up to 1274 K, and a steep temperature gradient develops through the thickness of the tube pair. Due to CTE mismatch and the temperature gradient, the solid surrogate tube induces high tensile stress in the SiC sample. During testing, 3D digital image correlation (DIC) method is used to map the strains on the outer surface of the SiC-composite, and acoustic emissions (AE) are monitored to detect the onset and progress of material damage. The thermo-mechanical behavior of SiC-composite sample is compared with that of monolithic SiC samples. Finite element models are developed to estimate stress–strain distribution within the tube assembly. Model predicted surface strain matches the measured surface strain using the DIC method. AE activities indicated a progressive damage process for SiC{sub f}–SiC{sub m} composite samples. For the composites tested in this study, the threshold mechanical hoop strain for matrix micro-cracking to initiate in SiC{sub f}–SiC{sub m} sample is found to be ∼300 microstrain.

  12. In-Situ Study of Gaseous Reduction of Magnetite Doped with Alumina Using High-Temperature XRD Analysis (United States)

    Kapelyushin, Yury; Sasaki, Yasushi; Zhang, Jianqiang; Jeong, Sunkwang; Ostrovski, Oleg


    The reduction of magnetite of technical grade and magnetite doped with 3 mass pct Al2O3 was studied in situ using high-temperature XRD (HT-XRD) analysis. Magnetite was reduced by CO-CO2 gas (80 vol pct CO) at 1023 K (750 °C). Reduction of magnetite doped with alumina occurred from the Fe3O4-FeAl2O4 solid solution which has a miscibility gap with critical temperature of 1133 K (860 °C). The degree of reduction of magnetite was derived using Rietveld refinement of the HT-XRD spectra; the compositions of the Fe3O4-FeAl2O4 solid solution and the concentrations of carbon in γ-iron were determined from the lattice constants of the solutions. The reduction of magnetite progressed topochemically with the formation of a dense iron shell. The reduction of alumina-containing magnetite started along certain lattice planes with the formation of a network-like structure. Reduction of alumina-containing magnetite was faster than that of un-doped magnetite; this difference was attributed to the formation of the network-like structure. Hercynite content in the Fe3O4-FeAl2O4 solid solution in the process of reduction of magnetite doped with 3 mass pct Al2O3 increased from 5.11 to 20 mass pct, which is close to the miscibility gap at 1023 K (750 °C). The concentration of carbon in γ-Fe (0.76 mass pct) formed in the reduced sample of magnetite doped with 3 mass pct Al2O3 was close to the equilibrium value with 80 vol pct CO to 20 vol pct CO2 gas used in the HT-XRD experiments.

  13. Study of oxide and α-Zr(O) growth kinetics from high temperature steam oxidation of Zircaloy-4 cladding

    Energy Technology Data Exchange (ETDEWEB)

    Sawarn, Tapan K., E-mail:; Banerjee, Suparna, E-mail:; Samanta, Akanksha, E-mail:; Rath, B.N., E-mail:; Kumar, Sunil, E-mail:


    Oxidation kinetics of Zircaloy-4 cladding of fuel pins of Indian pressurized heavy water reactors (IPHWRs) under a simulated loss of coolant accident (LOCA) condition was investigated. The kinetic rate constants for the oxide and oxygen stabilized α-Zr phase growth were established from the isothermal metal-steam reaction at high temperatures (900–1200 °C) with soaking periods in the range of 60–900 s. Oxide and α-Zr(O) layer thickness were measured to derive the respective growth rates. The observed rates obeyed a parabolic law and Arrhenius expressions of rate constants were established. Percentage equivalent clad reacted (%ECR) was calculated using Baker-Just equation. Hydrogen estimation was carried out on the oxidized samples using inert gas fusion technique. The hydrogen pick up was found to be in the range 10–30 ppm. The measured values of oxide and α-Zr(O) layer thickness were compared with the results obtained using OXYCON, an indigenously developed model. The model predicts the oxide growth reasonably well but under predicts the α-Zr(O) growth significantly at thickness values higher than 80 μm. - Highlights: • Steam oxidation kinetics of IPHWR fuel cladding material, Zircaloy-4 in the temperature range 900–1200 °C has been studied. • The growth kinetics of the oxide and α-Zr(O) were established from the microstructural analysis. • An indigenously developed model, OXYCON has been validated against the experimental data. • The hydrogen pick up in the cladding during oxidation was observed to be in the range 10–30 ppm.

  14. Exploring the linkage between drought, high temperatures, and hydrologic sensitivities: A case study of the 2012 Great Plains drought. (United States)

    Livneh, B.; Hoerling, M. P.


    The occurrence of drought is associated with agricultural loss, water supply shortfalls, and other economic impacts. Here we explore the physical relationships between precipitation deficits, high temperatures, and hydrologic responses as a pathway to better anticipate drought impacts. Current methodologies to predict hydrologic scarcity include local monitoring of river flows, remote sensing of land-surface wetness, drought indices, expert judgment, climate indices (e.g. SST-relationships) and the application of hydrologic models. At longer lead times, predictions of drought have most frequently been made on the basis of GCM ensembles, with subsequent downscaling of those to scales over which hydrologic predictions can be made. This study focuses on two important aspects of drought. First, we explore the causal hydro-climatic timeline of a drought event, namely (a) the lack of precipitation, which serves to reduce soil moisture and produce (b) a skewed Bowen ratio, i.e. comparatively more sensible heating (warming) with less ET, resulting in (c) anomalously warm conditions. We seek to assess the extent to which the lack of precipitation contributes to warming temperatures, and the further effects of that warming on hydrology and the severity of drought impacts. An ensemble of GCM simulations will be used to explore the evolution of the land surface energy budget during a recent Great Plains drought event, which will subsequently be used to drive a hydrologic model. Second, we examine the impacts of the critical assumptions relating climatic variables with water demand, specifically the relationship between potential evapotranspiration (PET) and temperature. The common oversimplification in relating PET to temperature is explored against a more physically consistent energy balance estimate of PET, using the Penman-Monteith approach and the hydrologic impacts are presented. Results from this work are anticipated to have broad relevance for future water management

  15. Use of high-temperature, high-torque rheometry to study the viscoelastic properties of coal during carbonization

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, M.C.; Duffy, J.J.; Snape, C.E.; Steel, K.M. [University of Nottingham, Nottingham (United Kingdom)


    When coal is heated in the absence of oxygen it softens at approximately 400 degrees C, becomes viscoelastic, and volatiles are driven off. With further heating, the viscous mass reaches a minimum viscosity in the range of 10{sup 3}-10{sup 5} Pa s and then begins to resolidify. A high-torque, high-temperature, controlled-strain rheometer with parallel plates has been used to study the theology during this process. Under shear, the viscosity of the softening mass decreases with increasing shear rate. During resolidification, the viscosity increases as C-C bond formation and physical interactions gives rise to an aromatic network, but, under shear, the network breaks apart and flows. This is viewed as a yielding of the structure. The higher the shear rate, the earlier the yielding occurs, such that if the shear rate is low enough, the structure is able to build. Also, further into resolidification lower shear rates are able to break the structure. It is proposed that resolidification occurs through the formation of aromatic clusters that grow and become crosslinked by non-covalent interactions. As the clusters grow, the amount of liquid surrounding them decreases and it is thought that the non-covalent interactions between clusters and liquid could decrease and the ability of growing clusters to move past each other increases, which would explain the weakening of the structure under shear. This work is part of a program of work aimed at attaining a greater understanding of microstructural changes taking place during carbonization for different coals, in order to understand the mechanisms that give rise to good quality cokes and coke oven problems such as excessive wall pressure.

  16. High temperature future

    Energy Technology Data Exchange (ETDEWEB)

    Sheinkopf, K. [Solar Energy Research and Education Foundation, Washington, DC (United States)


    During the past few years, there have been dramatic accomplishments and success of high temperature solar thermal systems and significant development of these systems. High temperature technologies, about 500 F and higher, such as dish engines, troughs, central receiver power towers and solar process heat systems, have been tested, demonstrated and used in an array of applications, including many cost-effective utility bulk power production and demand side supply projects in the United States. Large systems provide power and hot water to prisons, schools, nursing homes and other institutions. Joint ventures with industry, utility projects, laboratory design assistance and other activities are building a solid industry of US solar thermal systems ready for use today.

  17. Geological exploration for a high-temperature aquifer thermal energy storage (HT-ATES) system: a case study from Oman (United States)

    Winterleitner, Gerd; Schütz, Felina; Huenges, Ernst


    , as second potential storage horizon, were deposited in a carbonate ramp setting. Individual facies belts extend over kilometres and thus horizontal reservoir connectivity is expected to be good with minor facies variability. Thin-section analyses point to the fossil-rich sections with high porosities and permeabilities and thus good storage qualities. Fluid flow and thermal modelling indicate that both potential storage horizons show good to very good storage characteristics but also have challenges such as reservoir heterogeneity and connectivity. In particular the tilting of the thermocline, specific to high-temperature systems poses a major challenge. We investigated scenarios to counterbalance the distortion of the subsurface heat-plume, which includes adjustments of the salinity contrast between injected and aquifer fluid to prohibit buoyancy-driven flow. Additionally, geological structures ("HT-ATES traps" e.g.: fault structures) were modelled in detail in order to analyse their suitability as high-temperature storage system. First results show that an effective HT-ATES trap is necessary in the alluvial fan system in order to keep in control of the heat-plume. Salinity adjustments are sufficient in the carbonate-dominated sequences where vertical permeability contrasts are higher and constitute natural vertical flow barriers.

  18. Dielectric Performance of a High Purity HTCC Alumina at High Temperatures - a Comparison Study with Other Polycrystalline Alumina (United States)

    Chen, Liangyu


    A very high purity (99.99+%) high temperature co-fired ceramic (HTCC) alumina has recently become commercially available. The raw material of this HTCC alumina is very different from conventional HTCC alumina, and more importantly there is no glass additive in this alumina material for co-firing processing. Previously, selected HTCC and LTCC (low temperature co-fired ceramic) alumina materials were evaluated at high temperatures as dielectric and compared to a regularly sintered 96% polycrystalline alumina (96% Al2O3), where 96% alumina was used as the benchmark. A prototype packaging system based on regular 96% alumina with Au thickfilm metallization successfully facilitated long term testing of high temperature silicon carbide (SiC) electronic devices for over 10,000 hours at 500 C. In order to evaluate this new high purity HTCC alumina for possible high temperature packaging applications, the dielectric properties of this HTCC alumina substrate were measured and compared with those of 96% alumina and a previously tested LTCC alumina from room temperature to 550 C at frequencies of 120 Hz, 1 KHz, 10 KHz, 100 KHz, and 1 MHz. A parallel-plate capacitive device with dielectric of the HTCC alumina and precious metal electrodes were used for measurements of the dielectric constant and dielectric loss of the co-fired alumina material in the temperature and frequency ranges. The capacitance and AC parallel conductance of the capacitive device were directly measured by an AC impedance meter, and the dielectric constant and parallel AC conductivity of the dielectric were calculated from the capacitance and conductance measurement results. The temperature and frequency dependent dielectric constant, AC conductivity, and dissipation factor of the HTCC alumina substrate are presented and compared to those of 96% alumina and a selected LTCC alumina. Other technical advantages of this new co-fired material for possible high packaging applications are also discussed.

  19. Dielectric Performance of High Purity HTCC Alumina at High Temperatures - A Comparison Study with Other Polycrystalline Alumina (United States)

    Chen, Liang-Yu


    A very high purity (99.99+) high temperature co-fired ceramic (HTCC) alumina has recently become commercially available. The raw material of this HTCC alumina is very different from conventional HTCC alumina, and more importantly there is no glass additive in this co-fired material. Previously, selected HTCC and LTCC (low temperature co-fired ceramic) alumina materials were evaluated at high temperatures as dielectric and compared to a regularly sintered 96 polycrystalline alumina (96 Al2O3), where 96 alumina was used as the benchmark. A prototype packaging system based on regular 96 alumina with Au thick-film metallization successfully facilitated long term testing of high temperature silicon carbide (SiC) electronic devices for over 10,000 hours at 500C. In order to evaluate this new HTCC alumina for possible high temperature packaging applications, the dielectric properties of this HTCC alumina substrate were measured and compared with those of 96 alumina and a LTCC alumina from room temperature to 550C at frequencies of 120 Hz, 1 KHz, 10 KHz, 100 KHz, and 1 MHz. A parallel-plate capacitive device with dielectric of the HTCC alumina and precious metal electrodes were used for measurements of the dielectric constant and dielectric loss of the co-fired alumina material in the temperature and frequency ranges. The capacitance and AC parallel conductance of the capacitive device were directly measured by an AC impedance meter, and the dielectric constant and parallel AC conductivity of the dielectric were calculated from the capacitance and conductance measurement results. The temperature and frequency dependent dielectric constant, AC conductivity, and dissipation factor of the HTCC alumina substrate are presented and compared to those of 96 alumina. Other technical advantages of this new co-fired material for possible high packaging applications are also discussed.

  20. Studies involving high temperature desulfurization/regeneration reactions of metal oxides for fuel cell development. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Jalan, V.


    Research conducted at Giner, Inc. during 1981 to 1983 under the present contract has been a continuation of the investigation of a high temperature regenerable desulfurization process capable of reducing the sulfur content in coal gases from 200 ppM to 1 ppM. The overall objective has been the integration of a coal gasifier with a molten carbonate fuel cell, which requires that the sulfur content be below 1 ppM. Commercially available low temperature processes incur an excessive energy penalty. Results obtained with packed-bed and fluidized bed reactors have demonstrated that a CuO/ZnO mixed oxide sorbent is regenerable and capable of lowering the sulfur content (as H/sub 2/S and COS) from 200 ppM in simulated hot coal-derived gases to below 1 ppM level at 600 to 650/sup 0/C. Four potential sorbents (copper, tungsten oxide, vanadium oxide and zinc oxide) were initially selected for experimental use in hot regenerable desulfurization in the temperature range 500 to 650/sup 0/C. Based on engineering considerations, such as desulfurization capacity in per weight or volume of sorbents, a coprecipitated CuO/ZnO was selected for further study. A structural reorganization mechanism, unique to mixed oxides, was identified: the creation of relatively fine crystallites of the sulfided components (Cu/sub 2/S and ZnS) to counteract the loss of surface area due to sintering during regeneration. Studies with 9 to 26% water vapor in simulated coal gases show that sulfur levels below 1 ppM can be achieved in the temperature range of 500/sup 0/ to 650/sup 0/C. The ability of CuO/ZnO to remove COS, CS/sub 2/ and CH/sub 3/SH at these conditions has been demonstrated in this study. Also a previously proposed pore-plugging model was further developed with good success for data treatment of both packed bed and fluidized-bed reactors. 96 references, 42 figures, 21 tables.

  1. High temperature solid oxide fuel cell integrated with novel allothermal biomass gasification. Part I: Modelling and feasibility study (United States)

    Panopoulos, K. D.; Fryda, L. E.; Karl, J.; Poulou, S.; Kakaras, E.

    Biomass gasification derived fuel gas is a renewable fuel that can be used by high temperature fuel cells. In this two-part work an attempt is made to investigate the integration of a near atmospheric pressure solid oxide fuel cell (SOFC) with a novel allothermal biomass steam gasification process into a combined heat and power (CHP) system of less than MW e nominal output range. Heat for steam gasification is supplied from SOFC depleted fuel into a fluidised bed combustor via high temperature sodium heat pipes. The integrated system model was built in Aspen Plus™ simulation software and is described in detail. Part I investigates the feasibility and critical aspects of the system based on modelling results. A low gasification steam to biomass ratio (STBR = 0.6) is used to avoid excess heat demands and to allow effective H 2S high temperature removal. Water vapour is added prior to the anode to avoid carbon deposition. The SOFC off gases adequately provide gasification heat when fuel utilisation factors are electrical efficiency is estimated at 36% while thermal efficiency at 14%. An exergy analysis is presented in Part II.

  2. Study of Raman Spectroscopy on Phase Relations of CaCO3 at High Temperature and High Pressure (United States)

    Li, M.; Zheng, H.; Duan, T.


    Laser Raman Spectroscopy was used to study phase relations between calcite I, calcite II and aragonite at high pressure and high temperature. The experiment was performed in an externally heated Basselt type diamond anvil cell (DAC). Natural calcite (calcite I) was used as starting mineral. The sample and a small chip of quartz were loaded in a cavity (300 μm in diameter and 250 μm in depth) in a rhenium gasket. The Na2CO3 aqueous solution of 1mol/L was also loaded as a pressure medium to yield hydrostatic pressure. The whole assembly was pressurized first and then heated stepwise to 400°C. Pressure and temperature in the chamber were determined by the shift of Raman band at 464 cm-1 of quartz and by NiCr-NiSi thermocouple, respectively. The Raman spectra were measured by a Renishaw 1000 spetrometer with 50 mW of 514.5nm argon-ion laser as the excitation light source. The slit width was 50 μm and the corresponding resolution was ±1 cm-1. From the experiments, we observed the phase transitions between calcite I and calcite II, calcite I and aragonite, calcite II and aragonite, respectively. Our data showed a negative slope for the boundary between calcite I and calcite II, which was similar to Bridgman's result, although Hess et al. gave a positive slope. The boundary with a negative slope for calcite II and aragonite was also defined, which had never been done before. And all these data can yield a more complete phase diagram of CaCO3 than the studies of Hess et al. and Suito et al.Reference:Bridgeman P. W.(1939) Journal: American Journal of Science, Vol. 237, p. 7-18Bassett W. A. et al. (1993) Journal: Review of Scientific Instruments, Vol. 64, p. 2340-2345Suito K. et al. (2001) Journal: American Mineralogist, Vol. 86, p. 997- 1002Hess N. J. et al. (1991) In A. K. Singh, Ed., Recent Trends in High Pressure Research; Proc. X IIIth AIRAPT International Conference on High Pressure Science and Technology, p. 236-241. Oxford & IBH Publishing Co. Pvt, Ltd., New

  3. Influence of the magnetic field orientation on the mixed state properties of high temperature superconductors: an ac shielding study

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, B


    This work deals with the influence of the orientation of an applied static magnetic field on the mixed state properties of high temperature superconducting cuprates. The mixed state is characterized by the presence of vortices (quanta of magnetic flux). Their properties have been tested via the dynamic approach of the shielding of an ac magnetic field. In pristine Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8} crystals the first order transition of the vortex system from an ordered to a disordered state has been studied. It has been found that in the material the transition is mainly determined by the component of the field perpendicular to the superconducting copper oxide layers. However, the value of this component at the transition diminishes with the increase of the field component parallel to the layers. This is explained by the decrease of the Josephson coupling between 2D vortices in neighbouring planes in the presence of a parallel component. In heavy ion irradiated Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8} the subject under investigation has been the pinning of the vortices by the irradiation tracks. These defects push the irreversibility line towards higher fields. In the field range that has become irreversible after irradiation pinning by columnar defects is anisotropic. This anisotropy in pinning indicates that a coupling exists between the 2D vortices that form a vortex line, in contrast to the behaviour in the pristine material in the same field range. HgBa{sub 2}Ca{sub 2}Cu{sub 3}O{sub 8} with columnar defects shows essentially the same behaviour as Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8}, the differences being well explained by the lower anisotropy of HgBa{sub 2}Ca{sub 2}Cu{sub 3}O{sub 8} which leads to a more linear character of the vortices. Finally, it has been shown that in pristine Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8} the concentration of the vortices in the center of the sample is explained by the surface barrier alone. (author)

  4. {sup 57}Fe Moessbauer and X-ray characterisation of sandstones

    Energy Technology Data Exchange (ETDEWEB)

    Mulaba-Bafubiandi, A. F. [University of Johannesburg, Mineral Processing and Technology Research Centre, Department of Metallurgy, School of Mining, Metallurgy and Chemical Engineering, Faculty of Engineering and The Built Environment (South Africa); Waanders, F. B., E-mail: [North West University, School of Chemical and Minerals Engineering (South Africa)


    Sandstones from the Free State province in South Africa have been mined and processed mainly by small scale and artisanal miners in the rural areas. In the present investigation basic fire proof and water absorption tests, X-ray and {gamma}-ray based characterisation techniques were used to study the sandstones. The collected samples were grouped according to their apparent colour in day light conditions and the elemental analysis showed the presence of a high amount of oxygen (>52%) and silicon (>38%) with Mn, Al, Fe and Ca as major elements in proportions related to the colour distribution of the various sandstones. The uniaxial compressive stress was found to be the highest (56 MPa) for the greyish sandstone and the lowest (8 MPa) for the white sandstone sample, also associated with the lowest (Al+Fe)/Si value of 0.082. The humidity test showed that the 6 % water absorption was lower than the recommended ASTM value of 8 %. The sandstone samples were also subjected to various high temperatures to simulate possible fire conditions and it was found that the non alteration of the mineral species might be one of the reasons why the sandstones are regarded as the most refractory amongst the building materials typically used. Moessbauer spectroscopy revealed that iron is present in all the sandstones, mainly as Fe{sup 3 + } with the black sandstone showing an additional presence of 3 % Fe{sup 2 + } indicating that a higher iron content coupled to higher silicon content, contributes to an increase in the uniaxial compressive strength.

  5. Feasibility Study of Using High-Temperature Raman Spectroscopy for On-Line Monitoring and Product Control of the Glass Vitrification Process

    Energy Technology Data Exchange (ETDEWEB)

    Windisch, C.F. Jr.; Piepel, G.F.; Li, H.; Elliott, M.L.; Su, Y.


    A pulse-gating Raman spectroscopy setup was developed in this project. The setup was capable of performing in-situ high-temperature Raman measurements for glasses at temperatures as high as 1412 C. In the literature, high-temperature Raman measurements have only been performed on thin films of glass to minimize black-body radiation effects. The pulse-gating Raman setup allows making high-temperature measurements for bulk melts while effectively minimizing black-body radiation effects. A good correlation was found between certain Raman characteristic parameters and glass melt temperature for sodium silicate glasses measured in this project. Comparisons were made between the high-temperature Raman data from this study and literature data. The results suggest that an optimization of the pulse-gating Raman setup is necessary to further improve data quality (i.e., to obtain data with a higher signal-to-noise ratio). An W confocal Raman microspectrometer with continuous wave laser excitation using a 325 nm excitation line was evaluated selectively using a transparent silicate glass ad a deep-colored high-level waste glass in a bulk quantity. The data were successfully collected at temperatures as high as approximately 1500 C. The results demonstrated that the UV excitation line can be used for high-temperature Raman measurements of molten glasses without black-body radiation interference from the melt for both transparent and deep-color glasses. Further studies are needed to select the best laser system that can be used to develop high-temperature Raman glass databases.

  6. High temperature superconductors

    CERN Document Server

    Paranthaman, Parans


    This essential reference provides the most comprehensive presentation of the state of the art in the field of high temperature superconductors. This growing field of research and applications is currently being supported by numerous governmental and industrial initiatives in the United States, Asia and Europe to overcome grid energy distribution issues. The technology is particularly intended for densely populated areas. It is now being commercialized for power-delivery devices, such as power transmission lines and cables, motors and generators. Applications in electric utilities include current limiters, long transmission lines and energy-storage devices that will help industries avoid dips in electric power.

  7. A kinetic study of gaseous potassium capture by coal minerals in a high temperature fixed-bed reactor

    DEFF Research Database (Denmark)

    Zheng, Yuanjing; Jensen, Peter Arendt; Jensen, Anker Degn


    The reactions between gaseous potassium chloride and coal minerals were investigated in a lab-scale high temperature fixed-bed reactor using single sorbent pellets. The applied coal minerals included kaolin, mullite, silica, alumina, bituminous coal ash, and lignite coal ash that were formed...... when heated at temperatures above 450°C. The amounts of potassium captured by metakaolin pellet decreases with increasing reaction temperature in the range of 900-1300°C and increases again with further increasing the temperature up to 1500°C. There is no reaction of pre-made mullite with KCl...

  8. High-temperature Raman study of L-alanine, L-threonine and taurine crystals related to thermal decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Cavaignac, A.L.O. [Centro de Ciências Sociais, Saúde e Tecnologia, Universidade Federal do Maranhão, Imperatriz, MA 65900-410 (Brazil); Lima, R.J.C., E-mail: [Centro de Ciências Sociais, Saúde e Tecnologia, Universidade Federal do Maranhão, Imperatriz, MA 65900-410 (Brazil); Façanha Filho, P.F. [Centro de Ciências Sociais, Saúde e Tecnologia, Universidade Federal do Maranhão, Imperatriz, MA 65900-410 (Brazil); Moreno, A.J.D. [Coordenação de Ciências Naturais, Universidade Federal do Maranhão, Bacabal, MA 65700-000 (Brazil); Freire, P.T.C. [Departamento de Física, Universidade Federal do Ceará, Fortaleza, CE 60455-760 (Brazil)


    In this work high-temperature Raman spectra are used to compare temperature dependence of the lattice mode wavenumber of L-alanine, L-threonine and taurine crystals. Anharmonic effects observed are associated with intermolecular N-H· · ·O hydrogen bond that plays an important role in thermal decomposition process of these materials. Short and strong hydrogen bonds in L-alanine crystal were associated with anharmonic effects in lattice modes leading to low thermal stability compared to taurine crystals. Connection between thermal decomposition process and anharmonic effects is furnished for the first time.

  9. Crystal chemistry and Moessbauer spectroscopic analysis of clays around Riyadh for brick industry

    Energy Technology Data Exchange (ETDEWEB)

    Khalil, Mutasim I., E-mail: [King Saud University, Department of Chemistry, College of Science (Saudi Arabia)


    A total of 30 clay samples were collected from the area around Riyadh city, Saudi Arabia. A complete chemical analysis was carried out using different techniques. X-ray diffraction studies showed that the clay samples were mainly of the smectite group with traces of the kaolinite one. The samples studied were classified as nontronite clay minerals. One of the clay fraction has been studied by Moessbauer spectroscopy as raw clay fraction and after being fired at 950-1,000 Degree-Sign C. The Moessbauer spectra showed accessory iron compounds in the form of hematite and goethite. The structural iron contents disintegrate on firing transforming into magnetic iron oxide and a paramagnetic small particles iron oxide.

  10. Extraterrestrial and terrestrial outdoor applications of Moessbauer spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Souza Junior, P.A. de


    Chapter 2 describes basic concepts of {sup 57}Fe Moessbauer spectroscopy, as well as some effects that can be investigated by this technique. The portable and miniaturized Moessbauer spectrometer (MIMOS II), developed by the group in Main z lead by Dr. Goestar Klingelhoefer, is presented in detail in chapter 3. The calibration procedures, functionality, and operational features are also presented. The analysis of a Moessbauer spectrum is described in detail in chapter 4. In this chapter the proposed analysis using genetic algorithms, fuzzy set theory, and artificial neural networks are discussed and some examples are demonstrated. The motivation of this development is to make a data analysis package available for fast fitting of the Moessbauer spectrum, and precise identification of minerals from Moessbauer parameters. In chapter 5 some outdoor terrestrial applications of MIMOS II are proposed. The chapter starts presenting the use of MIMOS II for in situ air pollution investigation in Vitoria, ES, Brazil. The instrument was adapted for the characterization of airborne particles in an industrial urban area. This chapter contains surface analysis of painted figures on ancient pottery, of fragments of Chinese wall paintings, and of a 'miniature' from the fifteenth century; and the characterization of a Celtic helmet knob to determine whether it was burned in sacrifices. The authenticity of fragments of a Roman mask is verified with the Moessbauer spectrum obtained with MIMOS II. The characterization of corrosion products in archaeological artifacts is also reported. For this characterization it was necessary to supplement data from X-ray diffraction and SQUID (Superconducting Quantum Interference Device). Chapter 6 is devoted to extraterrestrial applications, starting with the results on Moessbauer characterization of some meteorites. Detailed discussion of data obtained by MIMOS II onboard of the rover Spirit at the Mars surface and comparison of

  11. High temperature phase equilibria and phase diagrams

    CERN Document Server

    Kuo, Chu-Kun; Yan, Dong-Sheng


    High temperature phase equilibria studies play an increasingly important role in materials science and engineering. It is especially significant in the research into the properties of the material and the ways in which they can be improved. This is achieved by observing equilibrium and by examining the phase relationships at high temperature. The study of high temperature phase diagrams of nonmetallic systems began in the early 1900s when silica and mineral systems containing silica were focussed upon. Since then technical ceramics emerged and more emphasis has been placed on high temperature

  12. High temperature superconductor accelerator magnets


    van Nugteren, J.


    For future particle accelerators bending dipoles are considered with magnetic fields exceeding 20T. This can only be achieved using high temperature superconductors (HTS). These exhibit different properties from classical low temperature superconductors and still require significant research and development before they can be applied in a practical accelerator magnet. In order to study HTS in detail, a five tesla demonstrator magnet named Feather-M2 is designed and constructed. The magnet is ...

  13. High Temperature Superconductor Accelerator Magnets


    Van Nugteren, Jeroen; ten Kate, Herman; de Rijk, Gijs; Dhalle, Marc


    For future particle accelerators bending dipoles are considered with magnetic fields exceeding $20T$. This can only be achieved using high temperature superconductors (HTS). These exhibit different properties from classical low temperature superconductors and still require significant research and development before they can be applied in a practical accelerator magnet. In order to study HTS in detail, a five tesla demonstrator magnet named Feather-M2 is designed and constructed. The magnet ...

  14. High temperature structural silicides

    Energy Technology Data Exchange (ETDEWEB)

    Petrovic, J.J.


    Structural silicides have important high temperature applications in oxidizing and aggressive environments. Most prominent are MoSi{sub 2}-based materials, which are borderline ceramic-intermetallic compounds. MoSi{sub 2} single crystals exhibit macroscopic compressive ductility at temperatures below room temperature in some orientations. Polycrystalline MoSi{sub 2} possesses elevated temperature creep behavior which is highly sensitive to grain size. MoSi{sub 2}-Si{sub 3}N{sub 4} composites show an important combination of oxidation resistance, creep resistance, and low temperature fracture toughness. Current potential applications of MoSi{sub 2}-based materials include furnace heating elements, molten metal lances, industrial gas burners, aerospace turbine engine components, diesel engine glow plugs, and materials for glass processing.

  15. High temperature measuring device (United States)

    Tokarz, Richard D.


    A temperature measuring device for very high design temperatures (to 2, C.). The device comprises a homogenous base structure preferably in the form of a sphere or cylinder. The base structure contains a large number of individual walled cells. The base structure has a decreasing coefficient of elasticity within the temperature range being monitored. A predetermined quantity of inert gas is confined within each cell. The cells are dimensionally stable at the normal working temperature of the device. Increases in gaseous pressure within the cells will permanently deform the cell walls at temperatures within the high temperature range to be measured. Such deformation can be correlated to temperature by calibrating similarly constructed devices under known time and temperature conditions.

  16. High temperature materials and mechanisms

    CERN Document Server


    The use of high-temperature materials in current and future applications, including silicone materials for handling hot foods and metal alloys for developing high-speed aircraft and spacecraft systems, has generated a growing interest in high-temperature technologies. High Temperature Materials and Mechanisms explores a broad range of issues related to high-temperature materials and mechanisms that operate in harsh conditions. While some applications involve the use of materials at high temperatures, others require materials processed at high temperatures for use at room temperature. High-temperature materials must also be resistant to related causes of damage, such as oxidation and corrosion, which are accelerated with increased temperatures. This book examines high-temperature materials and mechanisms from many angles. It covers the topics of processes, materials characterization methods, and the nondestructive evaluation and health monitoring of high-temperature materials and structures. It describes the ...

  17. New information on Moessbauer and phase transition properties of Z-type hexaferrites

    Energy Technology Data Exchange (ETDEWEB)

    Elkady, H.A. [Suez Canal University (Egypt); Abou-Sekkina, M.M. [Tanta University (Egypt); Nagorny, K. [Hamburg University (Germany)


    In this paper various cation substituted Z-hexaferrites, prepared by the usual ceramic procedure and firing at a relatively low temperature (980 deg. C) in a 2 atm. oxygen pressure are discussed. On these materials extensive studies were undertaken, X-ray diffraction, IR absorption, scanning electronmicroscopy and a Moessbauer spectroscopy. Data obtained are explained, and discussed in details, leading to new information about the interaction of variant doped cation with the Z-hexaferrite Fe sites.

  18. Nanoscale high-temperature superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Mohanty, P.; Wei, J.Y.T.; Ananth, V.; Morales, P.; Skocpol, W


    We discuss the exciting prospects of studying high-temperature superconductivity in the nanometer scale from the perspective of experiments, theory and simulation. In addition to enabling studies of novel quantum phases in an unexplored regime of system dimensions and parameters, nanoscale high-temperature superconducting structures will allow exploration of fundamental mechanisms with unprecedented insight. The prospects include, spin-charge separation, detection of electron fractionalization via novel excitations such as vison, stripe states and their dynamics, preformed cooper pairs or bose-condensation in the underdoped regime, and other quantum-ordered states. Towards this initiative, we present the successful development of a novel nanofabrication technique for the epitaxial growth of nanoscale cuprates. Combining the techniques of e-beam lithography and nanomachining, we have been able to fabricate the first generation of high-temperature superconducting nanoscale devices, including Y-junctions, four-probe wires and rings. Their initial transport characterization and scanning tunneling microscopy reveal the integrity of the crystal structure, grown on nanometer scale lateral dimensions. Here, we present atomic force micrographs and electrical characterization of a few nanoscale YBa{sub 2}Cu{sub 3}O{sub 7} (YBCO) samples.

  19. A study on the paste boronizing treatment of 12%Cr steel for steam turbine nozzle and high temperature surface properties

    Energy Technology Data Exchange (ETDEWEB)

    Cho, J. H.; Son, G. S.; Yoon, J. H. [Changwon Univ., Changwon (Korea, Republic of); Kim, H. S. [Korea Electrotechnology Research Institute, Changwon (Korea, Republic of); Lee, S. H.; Byon, E. S. [Korea Institute of Machine and Metals, Changwon (Korea, Republic of); Lee, E. Y. [Andong Univ., Andong (Korea, Republic of); Kim, I. S. [Doosan Heavy Co., Ltd., Changwon (Korea, Republic of)


    12% Cr steel used for a nozzle in steam turbine was paste-boronized and its surface properties at high temperature were evaluated. Typical tooth structure, which consisted of outer layer of FeB and inner layer of Fe{sub 2}B, was observed at the boronized layer of the specimen and its activation energy was 286.7kJ/mole. Cracks due to the difference of thermal expansion coefficient and brittleness of FeB layer were observed. Voids were also observed at tip area of tooth structure. Weight of the specimen exposed at 740 .deg. C increased rapidly from the initial stage of oxidation. Iron oxide was mixed in chromium oxide at outer layer of the oxidized specimen, but chromium oxide and molybdenum were mixed in iron oxide at inner layer. Boronized specimen has shown excellent erosion resistance up to 20 times higher than that of non-treated specimen.

  20. High Temperature Hybrid Elastomers (United States)

    Drake, Kerry Anthony

    Conventional high temperature elastomers are produced by chain polymerization of olefinic or fluorinated olefinic monomers. Ultimate thermal stabilities are limited by backbone bond strengths, lower thermal stability of cross-link sites relative to backbone bonds, and depolymerization or "unzipping" at high temperatures. In order to develop elastomers with enhanced thermal stability, hybrid thermally cross-linkable polymers that consisted only of organic-inorganic and aromatic bonds were synthesized and evaluated. The addition of phenylethynyl or phenylacetylinic functional groups to these polymers resulted in conversion of the polymers into high temperature elastomers when cross-linked by thermal curing. Polyphenyoxydiphenylsilanes were synthesized via several different condensation reactions. Results of these synthetic reactions, which utilized both hydroquinone and biphenol as monomers, were systematically evaluated to determine the optimal synthetic conditions for subsequent endcapping reactions. It was determined that dichlorodiphenylsilane condensations with biphenol in toluene or THF were best suited for this work. Use of excess dichlorodiphenylsilane yielded polymers of appropriate molecular weights with terminal reactive chlorosilane groups that could be utilized for coupling with phenylethynyl reagents in a subsequent reaction. Two new synthetic routes were developed to endcap biphenoxysilanes with ethynyl containing substituents, to yield polymers with cross-linkable end groups. Endcapping by lithiumphenylacetylide and 4[(4-fluorophenylethynyl))phenol yielded two new polymers that could be thermally cross-linked on heating above 300 °C. Successful endcapping was verified chemically by 13C NMR, FTIR and Raman analysis. Exothermic peaks consistent with ethynyl curing reactions were observed in endcapped polymers by DSC. A new diacetylinic polymer was prepared through reaction of 4,4'-buta-1,3-diyne-1,4-diyldiphenol and dichlorodiphenylsilane. This


    Directory of Open Access Journals (Sweden)

    E. D. Chertov


    Full Text Available The work is devoted to the creation of a new type of mixer to produce homogeneous mixtures of dissimilar materials applied to recycling of housing and communal services waste. The article describes the design of a dual-chamber device of the original high-temperature vacuum mixer, there investigated the processes occurring in the chambers of such devices. The results of theoretical and experimental research of the process of mixing recycled polyethylene with a mixture of "grinded food waste – Eco wool” are presented. The problem of the optimum choice of bending the curvilinear blades in the working volume of the seal, which is achieved by setting their profile in the form of involute arc of several circles of different radii, is examined . The dependences, allowing to define the limits of the changes of the main mode parameters the angular velocity of rotation of the working body of the mixer using two ways of setting the profile of the curvilinear blade mixer are obtained. Represented design of the mixer is proposed to use for a wide range of tasks associated with the mixing of the components with a strongly pronounced difference of physic al chemical properties and, in particular, in the production of composites out of housing and communal services waste.

  2. Mineral identification in Colombian coals using Moessbauer spectroscopy and X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Fajardo, M. [Universidad del Valle, A.A, Departamento de Fisica (Colombia); Mojica, J. [Instituto Nacional de Investigaciones en Geociencia, Mineria y Quimica (INGEOMINAS) (Colombia); Barraza, J. [Universidad del Valle, A.A, Departamento de Procesos Quimicos, Facultad de Ingenieria (Colombia); Perez Alcazar, G.A.; Tabares, J.A. [Universidad del Valle, A.A, Departamento de Fisica (Colombia)


    Minerals were identified in three Colombian coal samples from the Southwest of the country using Moessbauer spectroscopy and X-ray diffraction. Original and sink separated coal fractions of specific gravity 1.40 and 1.60 with particle size less than 600 {mu}m were used in the study. Using Moessbauer spectroscopy, the minerals identified in the original coal samples were pyrite jarosite, ankerite, illite and ferrous sulfate, whereas by means of X-ray diffraction, minerals identified were kaolinite, quartz, pyrite, and jarosite. Differences in mineral composition were found in the original and sink separated fractions using both techniques. Moessbauer spectra show that the mineral phases in low concentrations such as illite, ankerite and ferrous sulfate do not always appear in the spectra of sink coals, despite of those minerals occurring in the original coal, due to the fact that they are associated with the organic matter and not liberated in the grinding process. X-ray results show that the peak intensity grows as the specific gravity is increased indicating that the density separation method could be an effective process to clean coal.

  3. The two-dimensional vibrating reed technique. A study of anisotropic pinning in high-temperature superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Karelina, Anna


    In this work the anisotropy of the pinning forces of vortices in a-b plane of high temperature-supraconductors was examined. For this purpose vibrating reed with two degrees of freedom of the oscillation was constructed. The pinning forces were examined in single crystals of YBa{sub 2}Cu{sub 3}O{sub 7} and Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8}. The experiments with YBa{sub 2}Cu{sub 3}O{sub 7} show that at temperatures lower than 78 K the vortices are in a nonequilibrium state. This leads to a flux creep and to a drift of the resonance frequency with time. This prevents the comparison of resonance curves in different directions of oscillations. In Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8} single crystals the vortices are in more stable state, but the measurements of the resonance curves in different directions show no indication of the four-fold symmetry. At temperatures below 60 K a strong hysteresis of the resonance frequency and the resonance-oscillation amplitude was found in YBa{sub 2}Cu{sub 3}O{sub 7} crystals as a function of the magnetic field. (orig.)

  4. High-Temperature unfolding of a trp-Cage mini-protein: a molecular dynamics simulation study

    Directory of Open Access Journals (Sweden)

    Seshasayee Aswin Sai Narain


    Full Text Available Abstract Background Trp cage is a recently-constructed fast-folding miniprotein. It consists of a short helix, a 3,10 helix and a C-terminal poly-proline that packs against a Trp in the alpha helix. It is known to fold within 4 ns. Results High-temperature unfolding molecular dynamics simulations of the Trp cage miniprotein have been carried out in explicit water using the OPLS-AA force-field incorporated in the program GROMACS. The radius of gyration (Rg and Root Mean Square Deviation (RMSD have been used as order parameters to follow the unfolding process. Distributions of Rg were used to identify ensembles. Conclusion Three ensembles could be identified. While the native-state ensemble shows an Rg distribution that is slightly skewed, the second ensemble, which is presumably the Transition State Ensemble (TSE, shows an excellent fit. The denatured ensemble shows large fluctuations, but a Gaussian curve could be fitted. This means that the unfolding process is two-state. Representative structures from each of these ensembles are presented here.

  5. Study on vapor film collapse behavior on high temperature particle surface. 2. Effect of subcooling on micro-mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Abe, Yutaka [Yamagata University, Dept. of Mechanical Systems Engineering, Yonezawa, Yamagata (Japan); Tochio, Daisuke [Yamagata Univ. (Japan)


    Thermal detonation model is proposed to describe vapor explosion. According to this model, vapor film on pre-mixed high temperature droplet surface should be collapsed for the trigger of the vapor explosion. It is pointed out that the vapor film collapse behavior is significantly affected by the subcooling of low temperature liquid. However, the effect of subcooling on micro-mechanism of vapor film collapse behavior is not experimentally well identified. The objective of the present research is to experimentally investigate the effect of subcooling on micro-mechanism of film boiling collapse behavior. As the results, it is experimentally clarified that the vapor film collapse behavior in low subcool condition is qualitatively different from the vapor film collapse behavior in high subcool condition. In high subcool condition, instability of the vapor film dominates the vapor film collapse on the particle surface. On the other hand, micro-mechanism at the interface between vapor and liquid such as micro-jet is dominant in low subcool condition in case of vapor film collapse by pressure pulse. (author)

  6. In situ high-temperature scanning tunneling microscopy study of bilayer graphene growth on 6H-SiC(0001)

    Energy Technology Data Exchange (ETDEWEB)

    Murata, Yuya [Dept. Materials Science and Engineering, University of California Los Angeles, Los Angeles, CA 90095 (United States); Petrova, V.; Petrov, I. [Frederick-Seitz Materials Research Laboratory, University of Illinois, Urbana, IL 61801 (United States); Kodambaka, S., E-mail: [Dept. Materials Science and Engineering, University of California Los Angeles, Los Angeles, CA 90095 (United States)


    Using in situ high-temperature (1395 K), ultra-high vacuum, scanning tunneling microscopy (STM), we investigated the growth of bilayer graphene on 6H-SiC(0001). From the STM images, we measured areal coverages of SiC and graphene as a function of annealing time and found that graphene grows at the expense of SiC. Graphene domains were observed to grow, at comparable rates, at (I) graphene-free SiC step edges, (II) graphene-SiC interfaces, and (III) the existing graphene domain edges. Based upon our results, we suggest that the rate-limiting step controlling bilayer graphene growth is the desorption of Si from the substrate. - Highlights: Black-Right-Pointing-Pointer Use of scanning tunneling microscopy at temperatures as high as 1395 K. Black-Right-Pointing-Pointer Direct observation of graphene formation on SiC surfaces at the growth temperature. Black-Right-Pointing-Pointer Identification of atomic-scale pathways for bilayer graphene growth.

  7. Study on the Effects of Liquid Thermal Media on the Irradiation Capsule of High-Temperature Materials

    Directory of Open Access Journals (Sweden)

    Man Soon Cho


    Full Text Available Irradiation tests of materials at HANARO have usually been conducted using a standard capsule at temperatures of about 300°C for irradiation of materials used at PWR. Thus, the standard capsule uses aluminum as the specimen holder, which acts to dissipate the thermal energy. Future nuclear systems such as a VHTR and SFR require the irradiation tests at a relatively high temperature. As an alternative to aluminum which has been used as the thermal media in a standard material capsule, the characteristics of liquid metals such as NaK and LBE are reviewed. The temperatures of the capsule are affected by the variation of parameters such as the gap and wall thickness of the container. In particular, the external gap is most important in determining the temperature of the specimen. LBE raises the temperature of the specimen higher than NaK at the same configuration of the capsule. Thus, LBE can lessen the gap of the parts and reduce the vibration for a stable long-term test in reactor.

  8. Phenomenological simulation and density functional theory prediction of {sup 57}Fe Moessbauer parameters: application to magnetically coupled diiron proteins

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, Jorge H., E-mail: [Purdue University, Department of Physics (United States)


    The use of phenomenological spin Hamiltonians and of spin density functional theory for the analysis and interpretation of Moessbauer spectra of antiferromagnetic or ferromagnetic diiron centers is briefly discussed. The spectroscopic parameters of the hydroxylase component of methane monooxygenase (MMOH), an enzyme that catalyzes the conversion of methane to methanol, have been studied. In its reduced diferrous state (MMOH{sub Red}) the enzyme displays {sup 57}Fe Moessbauer and EPR parameters characteristic of two ferromagnetically coupled high spin ferrous ions. However, Moessbauer spectra recorded for MMOH{sub Red} from two different bacteria, Methylococcus capsulatus (Bath) and Methylosinus trichosporium OB3b, display slightly different electric quadrupole splittings ({Delta}E{sub Q}) in apparent contradiction to their essentially identical active site crystallographic structures and biochemical functions. Herein, the Moessbauer spectral parameters of MMOH{sub Red} have been predicted and studied via spin density functional theory. The somewhat different {Delta}E{sub Q} recorded for the two bacteria have been traced to the relative position of an essentially unbound water molecule within their diiron active sites. It is shown that the presence or absence of the unbound water molecule mainly affects the electric field gradient at only one iron ion of the binuclear active sites.

  9. Advances in high temperature chemistry

    CERN Document Server

    Eyring, Leroy


    Advances in High Temperature Chemistry, Volume 2 covers the advances in the knowledge of the high temperature behavior of materials and the complex and unfamiliar characteristics of matter at high temperature. The book discusses the dissociation energies and free energy functions of gaseous monoxides; the matrix-isolation technique applied to high temperature molecules; and the main features, the techniques for the production, detection, and diagnosis, and the applications of molecular beams in high temperatures. The text also describes the chemical research in streaming thermal plasmas, as w

  10. High temperature corrosion studies. A. Iron: based superalloy in SO/sub 2//O/sub 2/ atmospheres. B. Gas: solid reaction with formation of volatile species

    Energy Technology Data Exchange (ETDEWEB)

    Liu, T.K.


    The thermogravimetric method was used to study high temperature corrosion under SO/sub 2//O/sub 2/ atmosphere applied to Armco 18SR alloys with different heat treatment histories, Armco T310 and pure chromium between 750 and 1100/sup 0/C. The weight gain follows the parabolic rate law. The volatilization of the protective Cr/sub 2/O/sub 3/ layer via formation of CrO/sub 3/ was taken into account above 900/sup 0/C for long time runs. The parabolic rate and the volatilization rate, derived from fitting the experimental data to the modified Tedmon's non-linear model, were correlated using the Arrhenius equation. Armco 18SR-C has the best corrosion resistance of the Armco 18SR alloys. Armco T310 is not protective at high temperatures. The available rate data on the oxidation of chromium oxide, chlorination of chromium, oxidation-chlorination of chromium oxide, chlorination of nickel and chlorination of iron were found to be predictable. The calculation of high temperature volatilization rate was performed using the available fluid correlation equations and the Lennard-Jones parameters derived from the molecule with similar structure and from the low temperature viscosity measurement. The lower predicted volatilization rate is due to the use of the Chapman-Enskog equation with the Lennard-Jones parameters mostly derived from the low temperature viscosity measurement. This was substantiated by comparing the reliable high temperature diffusion rate in the literature with the above mentioned calculational method. The experimental volatilization rates of this study are compared with the other related studies and the mass transfer predictions.

  11. Experimental Study of Abiotic Organic Synthesis at High Temperature and Pressure Conditions: Carbon Isotope and Mineral Surface Characterizations (United States)

    Fu, Qi; Socki, R. A.; Niles, P. B.


    Abiotic organic synthesis processes have been proposed as potential mechanisms for methane generation in subseafloor hydrothermal systems on Earth, and on other planets. To better understand the detailed reaction pathways and carbon isotope fractionations in this process under a wide range of physical and chemical conditions, hydrothermal experiments at high temperature (750 C) and pressure (0.55 GPa) were performed using piston cylinder apparatus. Formic acid was used as the source of CO2 and H2, and magnetite was the mineral catalyst. The chemical and carbon isotopic compositions of dissolved organic products were determined by GC-C-MS-IRMS, while organic intermediaries on the mineral catalyst were characterized by Pyrolysis-GC-MS. Among experimental products, dissolved CO2 was the dominant carbon species with a relative abundance of 88 mol%. Dissolved CH4 and C2H6 were also identified with a mole ratio of CH4 over C2H6 of 15:1. No dissolved CO was detected in the experiment, which might be attributable to the loss of H2 through the Au capsule used in the experiments at high temperature and pressure conditions and corresponding conversion of CO to CO2 by the water-gas shift reaction. Carbon isotope results showed that the 13C values of CH4 and C2H6 were -50.3% and -39.3% (V-PDB), respectively. CO2 derived from decarboxylation of formic acid had a (sigma)C-13 value of -19.2%, which was 3.2% heavier than its source, formic acid. The (sigma)C-13 difference between CO2 and CH4 was 31.1%, which was higher than the value of 9.4% calculated from theoretical isotopic equilibrium predictions at experimental conditions, suggesting the presence of a kinetic isotope effect. This number was also higher than the values (4.6 to 27.1%) observed in similar experiments previously performed at 400 C and 50 MPa with longer reaction times. CH4 is 11.0% less enriched in C-13 than C2H6. Alcohols were observed as carbon compounds on magnetite surfaces by Pyrolysis-GC-MS, which confirms

  12. Investigational study of the CO2 balance in high temperature CO2 separation technology; Nisanka tanso koon bunri gijutsu ni okeru CO2 balance ni kansuru chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)



    An investigational study was conducted to clarify the adaptable environment and effectivity of technologies of high temperature separation/recovery/reutilization of CO2. In the study, data collection, arrangement and comparison were made of various separation technologies such as the membrane method, absorption method, adsorption method, and cryogenic separation method. With the LNG-fired power generation as an example, the adaptable environment and effectivity were made clear by making models by a process simulator, ASPEN PLUS. Moreover, using this simulator, effects of replacing the conventional steam reforming of hydrocarbon with the CO2 reforming were made clear with the methanol synthesis as an example. As to the rock fixation treatment of high temperature CO2, collection/arrangement were made of the data on the fixation treatment of the CO2 separated at high temperature into basic rocks such as peridotite and serpentinite in order to clarify the adaptable environment and effectivity of the treatment. Besides, a potentiality of the fixation to concrete waste was made clear. 57 refs., 57 figs., 93 tabs.

  13. Study of high temperature ceramic turbocharger. ; Basic research on turbine housing materials. Koon ceramic turbocharger no kenkyu. ; Turbine shashitsu zairyo no kiso shiken

    Energy Technology Data Exchange (ETDEWEB)

    Miyashita, K.; Miyagi, Y.; Sugihara, H.; Kitagawa, M. (Ishikawajima-Harima Heavy Industries, Co. Ltd., Tokyo (Japan))


    In order to engineer the development of high temperature ceramic turbocharger for the gasoline engine use, characteristics at high temperature were studied of ceramics-made turbine impeller and turbine housing material. Used ceramics is silica nitride, developed for the gas turbine use and sintered under the atmospheric pressure. Prototypically prepared turbine rotors, designed upon studying the centrifugal stress, thermal stress, impeller shape and joint strength between the impellers and metallic shaft, were durable against 1050 centigrade in turbine inlet gas temperature (TIT), as a result of reliability evaluation test thereon. The turbine housing material comprises five categories such as stainless steel, Ni-resist cast iron and N155 (turbocharger housing material for the race use). As a comparative result of high temperature tensile strength, thermal cycle oxidation and thermal fatigue tests, the stainless steel was excellent in oxidation characteristics and at the equal level to the N155 in thermal fatigue strength at 1050 centigrade in TIT. 5 refs., 18 figs., 2 tabs.

  14. A study on high temperature oxidation behavior of double glow plasma surface metallurgy Fe-Al-Cr alloyed layer on Q235 steel (United States)

    Luo, Xi-Xi; Yao, Zheng-Jun; Zhang, Ping-Ze; Miao, Qiang; Liang, Wen-Ping; Wei, Dong-Bo; Chen, Yu


    The high-temperature oxidation behavior of Q235 steel coated with Fe-Al-Cr by using double glow plasma surface metallurgy method was studied in air at different temperatures of 500, 600 and 700 °C, respectively. The Q235 and the 304 stainless steels were produced as the control samples. Electron microscopy, energy dispersive spectroscopy and X-ray diffractometry were carried out to investigate the surface morphologies, microstructures and phases of alloyed layer before and after oxidation. It showed that the structure of the Fe-Al-Cr alloyed layer was compact without any microstructure defects. This alloyed layer connected with the substrate metal by metallurgical bonding. At the temperatures of 500 and 600 °C, the high temperature oxidation resistance of the Fe-Al-Cr alloyed layer was similar to that of the 304 steel, but 2-3 times higher than that of the Q235 steel. While at 700 °C, the Fe-Al-Cr alloyed layer exhibited much better oxidation resistance than that of the 304 steel (2.5 times) and the Q235 steel (5.5 times). And this was because the special Al distribution (approximate Gaussian distribution) in the Fe-Al-Cr alloyed layer, which displayed the self-healing ability for the oxidation film on the surface of the Fe-Al-Cr alloyed layer in the high temperature oxidation conditions.

  15. High Temperature Aquifer Storage (United States)

    Ueckert, Martina; Niessner, Reinhard; Baumann, Thomas


    Combined heat and power generation (CHP) is highly efficient because excess heat is used for heating and/or process energy. However, the demand of heat energy varies considerably throughout the year while the demand for electrical energy is rather constant. It seems economically and ecologically highly beneficial for municipalities and large power consumers such as manufacturing plants to store excess heat in groundwater aquifers and to recuperate this energy at times of higher demand. Within the project High Temperature Aquifer Storage, scientists investigate storage and recuperation of excess heat energy into the bavarian Malm aquifer. Apart from high transmissivity and favorable pressure gradients, the hydrochemical conditions are crucial for long-term operation. An enormous technical challenge is the disruption of the carbonate equilibrium - modeling results indicated a carbonate precipitation of 10 - 50 kg/d in the heat exchangers. The test included five injection pulses of hot water (60 °C up to 110 °C) and four tracer pulses, each consisting of a reactive and a conservative fluorescent dye, into a depth of about 300 m b.s.l. resp. 470 m b.s.l. Injection and production rates were 15 L/s. To achieve the desired water temperatures, about 4 TJ of heat energy were necessary. Electrical conductivity, pH and temperature were recorded at a bypass where also samples were taken. A laboratory container at the drilling site was equipped for analysing the concentration of the dyes and the major cations at sampling intervals of down to 15 minutes. Additional water samples were taken and analysed in the laboratory. The disassembled heat exchanger prooved that precipitation was successfully prevented by adding CO2 to the water before heating. Nevertheless, hydrochemical data proved both, dissolution and precipitation processes in the aquifer. This was also suggested by the hydrochemical modelling with PhreeqC and is traced back to mixture dissolution and changing

  16. High-Temperature Piezoelectric Sensing

    Directory of Open Access Journals (Sweden)

    Xiaoning Jiang


    Full Text Available Piezoelectric sensing is of increasing interest for high-temperature applications in aerospace, automotive, power plants and material processing due to its low cost, compact sensor size and simple signal conditioning, in comparison with other high-temperature sensing techniques. This paper presented an overview of high-temperature piezoelectric sensing techniques. Firstly, different types of high-temperature piezoelectric single crystals, electrode materials, and their pros and cons are discussed. Secondly, recent work on high-temperature piezoelectric sensors including accelerometer, surface acoustic wave sensor, ultrasound transducer, acoustic emission sensor, gas sensor, and pressure sensor for temperatures up to 1,250 °C were reviewed. Finally, discussions of existing challenges and future work for high-temperature piezoelectric sensing are presented.

  17. Mechanical Proprieties of Steel at High Temperatures

    Directory of Open Access Journals (Sweden)

    Ana-Diana Ancaş


    Full Text Available The experimental test results obtained in the study of steel mechanical proprieties variation in case of high temperatures (fire are presented. The proprieties are referring to: Young’s modulus, E, the elastic limit, σe, and the characteristic diagram of the material (the rotation stress-strain. Theoretical laws that the model the steel behaviour at high temperature have been elaborated based on the most significant studies presented in the literature.

  18. First-principles molecular dynamics study for average structure and oxygen diffusivity at high temperature in cubic Bi2O3. (United States)

    Seko, Atsuto; Koyama, Yukinori; Matsumoto, Akifumi; Tanaka, Isao


    Bismuth oxide, Bi(2)O(3), has a cubic structure (δ-phase) at high temperature. High oxygen conductivity of δ-Bi(2)O(3) should be closely related to disordering of the oxygen sublattice. In order to reconstruct the disordered structure in the crystal using first-principles molecular dynamics (FPMD), a sufficiently long simulation time is essentially required. In this study, the FPMD simulation up to 1 ns is performed with special interest given to the convergence of the average structure and the oxygen diffusivity with respect to the simulation time. The obtained average structure and the oxygen diffusivity are in good agreement with those obtained by experimental analysis.

  19. High temperature and risk of hospitalizations, and effect modifying potential of socio-economic conditions: A multi-province study in the tropical Mekong Delta Region. (United States)

    Phung, Dung; Guo, Yuming; Nguyen, Huong T L; Rutherford, Shannon; Baum, Scott; Chu, Cordia


    The Mekong Delta Region (MDR) in Vietnam is highly vulnerable to extreme weather related to climate change. However there have been hardly any studies on temperature-hospitalization relationships. The objectives of this study were to examine temperature-hospitalization relationship and to evaluate the effects of socio-economic factors on the risk of hospitalizations due to high temperature in the MDR. The Generalized Linear and Distributed Lag Models were used to examine hospitalizations for extreme temperature for each of the 13 provinces in the MDR. A random-effects meta-analysis was used to estimate the pooled risk for all causes, and for infectious, cardiovascular, and respiratory diseases sorted by sex and age groups. Random-effects meta-regression was used to evaluate the effect of socio-economic factors on the temperature-hospitalization association. For 1°C increase in average temperature, the risk of hospital admissions increased by 1.3% (95% CI, 0.9-1.8) for all causes, 2.2% (95% CI, 1.4-3.1) for infectious diseases, and 1.1% (95% CI, 0.5-1.7) for respiratory diseases. However the result was inconsistent for cardiovascular diseases. Meta-regression showed population density, poverty rate, and illiteracy rate increased the risk of hospitalization due to high temperature, while higher household income, houses using safe water, and houses using hygienic toilets reduced this risk. In the MDR, high temperatures have a significant impact on hospitalizations for infectious and respiratory diseases. Our findings have important implications for better understanding the future impacts of climate change on residents of the MDR. Adaptation programs that consider the risk and protective factors should be developed to protect residents from extreme temperature conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Beamline Electrostatic Levitator (BESL) for in-situ High Energy K-Ray Diffraction Studies of Levitated Solids and Liquids at High Temperature (United States)

    Gangopadhyay, A. K.; Lee, G. W.; Kelton, K. F.; Rogers, J. R.; Goldman, A. I.; Robinson, D. S.; Rathz, T. J.; Hyers, R. W.


    Determinations of the phase formation sequence, the crystal structures and the thermodynamic properties of materials at high temperatures are difficult because of contamination from the sample container and environment. Containerless processing techniques, such as electrostatic (ESL), electromagnetic (EML), aerodynamic, and acoustic levitation, are most suitable these studies. An adaptation of ESL for in-situ structural studies of a wide range of materials, including metals, semiconductors, insulators using high energy (125 keV) synchrotron x-rays is described here. This beamline ESL (BESL) allows the in-situ determination of the atomic structures of equilibrium solid and liquid phases, including undercooled liquids, as well as real-time studies of solid-solid and liquid-solid phase transformations. The use of image plate (MAR345) or GE-Angio detectors enables fast (30 ms - 1s) acquisition of complete diffraction patterns over a wide q-range (4 - 140/mm). The wide temperature range (300 - 2500 K), containerless processing under high vacuum (10(exp -7) - 10(exp -8) torr), and fast data acquisition, make BESL particularly suitable for phase diagram studies of high temperature materials. An additional, critically important, feature of BESL is the ability to also make simultaneous measurement of a host of thermo-physical properties, including the specific heat, enthalpy of transformation, solidus and liquidus temperatures, density, viscosity, and surface tension; all on the same sample and simultaneous with the structural measurements.

  1. Nonlinear plasmonics at high temperatures (United States)

    Sivan, Yonatan; Chu, Shi-Wei


    We solve the Maxwell and heat equations self-consistently for metal nanoparticles under intense continuous wave (CW) illumination. Unlike previous studies, we rely on experimentally-measured data for metal permittivity for increasing temperature and for the visible spectral range. We show that the thermal nonlinearity of the metal can lead to substantial deviations from the predictions of the linear model for the temperature and field distribution and, thus, can explain qualitatively the strong nonlinear scattering from such configurations observed experimentally. We also show that the incompleteness of existing data of the temperature dependence of the thermal properties of the system prevents reaching a quantitative agreement between the measured and calculated scattering data. This modeling approach is essential for the identification of the underlying physical mechanism responsible for the thermo-optical nonlinearity of the metal and should be adopted in all applications of high-temperature nonlinear plasmonics, especially for refractory metals, for both CW and pulsed illumination.

  2. Nonlinear plasmonics at high temperatures

    Directory of Open Access Journals (Sweden)

    Sivan Yonatan


    Full Text Available We solve the Maxwell and heat equations self-consistently for metal nanoparticles under intense continuous wave (CW illumination. Unlike previous studies, we rely on experimentally-measured data for metal permittivity for increasing temperature and for the visible spectral range. We show that the thermal nonlinearity of the metal can lead to substantial deviations from the predictions of the linear model for the temperature and field distribution and, thus, can explain qualitatively the strong nonlinear scattering from such configurations observed experimentally. We also show that the incompleteness of existing data of the temperature dependence of the thermal properties of the system prevents reaching a quantitative agreement between the measured and calculated scattering data. This modeling approach is essential for the identification of the underlying physical mechanism responsible for the thermo-optical nonlinearity of the metal and should be adopted in all applications of high-temperature nonlinear plasmonics, especially for refractory metals, for both CW and pulsed illumination.

  3. Rayleigh scattering of Moessbauer radiation in hyaluronate oriented fibres

    Energy Technology Data Exchange (ETDEWEB)

    Albanese, G.; Cavatorta, F.; Deriu, A. [Parma Univ. (Italy). Dip. di Fisica]|[Istituto Nazionale di Fisica della Materia, Parma (Italy); Rupprecht, A. [Stockholm Univ. (Sweden). Dep. of Physical Chemistry


    The Rayleigh scattering of Moessbauer radiation has been measured on highly oriented fibres of Na-hyaluronate at different hydration levels. The elastic- and-inelastic-scattering intensities, measured as a function of the scattering vector Q, have provided information on the dynamic structuring of the water molecules to the polysaccharidic chains.

  4. Molecular dynamics in cytochrome c oxidase Moessbauer spectra deconvolution

    Energy Technology Data Exchange (ETDEWEB)

    Bossis, Fabrizio [Department of Medical Biochemistry, Medical Biology and Medical Physics (DIBIFIM), University of Bari ' Aldo Moro' , Bari (Italy); Palese, Luigi L., E-mail: [Department of Medical Biochemistry, Medical Biology and Medical Physics (DIBIFIM), University of Bari ' Aldo Moro' , Bari (Italy)


    Research highlights: {yields} Cytochrome c oxidase molecular dynamics serve to predict Moessbauer lineshape widths. {yields} Half height widths are used in modeling of Lorentzian doublets. {yields} Such spectral deconvolutions are useful in detecting the enzyme intermediates. -- Abstract: In this work low temperature molecular dynamics simulations of cytochrome c oxidase are used to predict an experimentally observable, namely Moessbauer spectra width. Predicted lineshapes are used to model Lorentzian doublets, with which published cytochrome c oxidase Moessbauer spectra were simulated. Molecular dynamics imposed constraints to spectral lineshapes permit to obtain useful information, like the presence of multiple chemical species in the binuclear center of cytochrome c oxidase. Moreover, a benchmark of quality for molecular dynamic simulations can be obtained. Despite the overwhelming importance of dynamics in electron-proton transfer systems, limited work has been devoted to unravel how much realistic are molecular dynamics simulations results. In this work, molecular dynamics based predictions are found to be in good agreement with published experimental spectra, showing that we can confidently rely on actual simulations. Molecular dynamics based deconvolution of Moessbauer spectra will lead to a renewed interest for application of this approach in bioenergetics.

  5. High Temperature Piezoelectric Drill (United States)

    Bao, Xiaoqi; Bar-Cohen, Yoseph; Sherrit, Stewart; Badescu, Mircea; Shrout, Tom


    Venus is one of the planets in the solar systems that are considered for potential future exploration missions. It has extreme environment where the average temperature is 460 deg C and its ambient pressure is about 90 atm. Since the existing actuation technology cannot maintain functionality under the harsh conditions of Venus, it is a challenge to perform sampling and other tasks that require the use of moving parts. Specifically, the currently available electromagnetic actuators are limited in their ability to produce sufficiently high stroke, torque, or force. In contrast, advances in developing electro-mechanical materials (such as piezoelectric and electrostrictive) have enabled potential actuation capabilities that can be used to support such missions. Taking advantage of these materials, we developed a piezoelectric actuated drill that operates at the temperature range up to 500 deg C and the mechanism is based on the Ultrasonic/Sonic Drill/Corer (USDC) configuration. The detailed results of our study are presented in this paper

  6. Renormalized Phonon Microstructures at High Temperatures from First-Principles Calculations: Methodologies and Applications in Studying Strong Anharmonic Vibrations of Solids

    Directory of Open Access Journals (Sweden)

    Tian Lan


    Full Text Available While the vibrational thermodynamics of materials with small anharmonicity at low temperatures has been understood well based on the harmonic phonons approximation, at high temperatures, this understanding must accommodate how phonons interact with other phonons or with other excitations. To date the anharmonic lattice dynamics is poorly understood despite its great importance, and most studies still rely on the quasiharmonic approximations. We shall see that the phonon-phonon interactions give rise to interesting coupling problems and essentially modify the equilibrium and nonequilibrium properties of materials, for example, thermal expansion, thermodynamic stability, heat capacity, optical properties, thermal transport, and other nonlinear properties of materials. The review aims to introduce some recent developements of computational methodologies that are able to efficiently model the strong phonon anharmonicity based on quantum perturbation theory of many-body interactions and first-principles molecular dynamics simulations. The effective potential energy surface of renormalized phonons and structures of the phonon-phonon interaction channels can be derived from these interdependent methods, which provide both macroscopic and microscopic perspectives in analyzing the strong anharmonic phenomena while the traditional harmonic models fail dramatically. These models have been successfully performed in the studies on the temperature-dependent broadenings of Raman and neutron scattering spectra, high temperature phase stability, and negative thermal expansion of rutile and cuprite structures, for example.

  7. Final report on neutron irradiation at low temperature to investigate plastic instability and at high temperature to study caviation

    DEFF Research Database (Denmark)

    Singh, B.N; Eldrup, Morten Mostgaard; Golubov, D.J.


    Effects of neutron irradiation on defect accumulation and physical and mechanical properties of pure iron and F82H and EUROFER 97 ferritic-martensitic steels have been investigated. Tensile specimens were neutron irradiated to a dose level of 0,23 dpa at333 and 573 K. Electrical resistivity...... studied using the Kinetic Monte Carlo (KMC) code during arealistic dynamic irradiation of bcc iron at 300 K. Molecular dynamics (MD) simulations have been carried out to study the stress dependencies of dislocation velocity and drag coefficient for an edge dislocation decorated with small SIA loops...

  8. History of Resistance Welding Oxide Dispersion Strengthened Cladding and other High Temperature Materials at Center for Advanced Energy Studies

    Energy Technology Data Exchange (ETDEWEB)

    Larry Zirker; Nathan Jerred; Dr. Indrajit Charit; James Cole


    Research proposal 08-1079, 'A Comparative Study of Welded ODS Cladding Materials for AFCI/GNEP,' was funded in 2008 under an Advanced Fuel Cycle Initiative (AFCI) Research and Development Funding Opportunity, number DE-PS07-08ID14906. Th proposal sought to conduct research on joining oxide dispersion strengthen (ODS) tubing material to a solid end plug. This document summarizes the scientific and technical progress achieved during the project, which ran from 2008 to 2011.

  9. Electrostatic levitation facility optimized for neutron diffraction studies of high temperature liquids at a spallation neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Mauro, N. A., E-mail: [Department of Physics, North Central College, Naperville, Illinois 60540 (United States); Vogt, A. J. [Instrument and Source Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Derendorf, K. S. [Mechanical Engineering and Materials Science, Washington University, St. Louis, Missouri 63130 (United States); Johnson, M. L.; Kelton, K. F. [Department of Physics and Institute of Materials Science and Engineering, Washington University, 1 Brookings Drive, St. Louis, Missouri 63130 (United States); Rustan, G. E.; Quirinale, D. G.; Goldman, A. I. [Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011 (United States); Kreyssig, A. [Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011 (United States); Division of Materials Sciences and Engineering, Ames Laboratory, Ames, Iowa 50011 (United States); Lokshin, K. A. [Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996 (United States); Quantum Condensed Matter Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Neuefeind, J. C.; An, Ke [Chemical and Engineering Materials Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Wang, Xun-Li [Department of Physics and Materials Science, City University of Hong Kong, 83 Tat Chee Ave., Kowloon (Hong Kong); Egami, T. [Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996 (United States); Department of Physics and Astronomy, Joint Institute for Neutron Sciences, University of Tennessee, Knoxville, Tennessee 37996 (United States)


    Neutron diffraction studies of metallic liquids provide valuable information about inherent topological and chemical ordering on multiple length scales as well as insight into dynamical processes at the level of a few atoms. However, there exist very few facilities in the world that allow such studies to be made of reactive metallic liquids in a containerless environment, and these are designed for use at reactor-based neutron sources. We present an electrostatic levitation facility, NESL (for Neutron ElectroStatic Levitator), which takes advantage of the enhanced capabilities and increased neutron flux available at spallation neutron sources (SNSs). NESL enables high quality elastic and inelastic neutron scattering experiments to be made of reactive metallic and other liquids in the equilibrium and supercooled temperature regime. The apparatus is comprised of a high vacuum chamber, external and internal neutron collimation optics, and a sample exchange mechanism that allows up to 30 samples to be processed between chamber openings. Two heating lasers allow excellent sample temperature homogeneity, even for samples approaching 500 mg, and an automated temperature control system allows isothermal measurements to be conducted for times approaching 2 h in the liquid state, with variations in the average sample temperature of less than 0.5%. To demonstrate the capabilities of the facility for elastic scattering studies of liquids, a high quality total structure factor for Zr{sub 64}Ni{sub 36} measured slightly above the liquidus temperature is presented from experiments conducted on the nanoscale-ordered materials diffractometer (NOMAD) beam line at the SNS after only 30 min of acquisition time for a small sample (∼100 mg)

  10. Corrosion studies of UNS N08031 in a heavy brine LiBr solution at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Garcia, D.M.; Blasco-Tamarit, E.; Igual-Munoz, A.; Garcia-Anton, J. [Valencia Univ. Politecnica, Dept. de Ingenieria Quimica y Nuclear. ETSI Industriales, Valencia (Spain)


    Lithium Bromide heavy brine solutions are used as absorbent in LiBr absorption machines. These machines are an alternative to refrigeration compression systems. The double effect absorption machines are more efficient than those of single effect, but they reach higher temperatures and they use higher LiBr concentrations. These conditions aggravate the corrosion problems on the metallic components of these systems. Therefore, it is necessary to study the corrosion resistance of the construction materials of the LiBr absorption machines, like UNS N08031, under these aggressive conditions. The objective of the present work is to study the pitting corrosion resistance and the re-passivation behaviour of a highly alloyed austenitic stainless steel (N08031) in a 1080 g/l heavy brine LiBr solution at 75 C, 100 C, 125 C and 150 C. Open Circuit Potential tests and Potentiodynamic Cyclic curves were carried out to obtain information about the electrochemical behaviour of UNS N08031 alloy. Corrosion potentials and corrosion current densities were obtained from the Tafel Analysis. The pitting corrosion resistance was evaluated from the passivation current density and the pitting potential values. The re-passivation potential and the re-passivation current density provided information about the re-passivation behaviour of UNS N08031. The samples were etched to study the microstructure by Scanning Electron Microscopy (SEM). The results showed that the potentiodynamic curves were typical of a passive material at all temperatures. Pitting corrosion resistance decreased with temperature, as the decrease in pitting potential and the increase in passivation current density evidenced. However, the re-passivation capability increased with temperature, since the width of the hysteresis loop diminished as temperature increased. (authors)

  11. High-temperature gas-cooled reactor safety studies. Progress report for January 1, 1974--June 30, 1975

    Energy Technology Data Exchange (ETDEWEB)

    Cole, T.E.; Sanders, J.P.; Kasten, P.R.


    Progress is reported in the following areas: systems and safety analysis; fission product technology; primary coolant technology; seismic and vibration technology; confinement components; primary system materials technology; safety instrumentation; loss of flow accident analysis using HEATUP code; use of coupled-conduction-convection model for core thermal analysis; development of multichannel conduction-convection program HEXEREI; cooling system performance after shutdown; core auxiliary cooling system performance; development of FLODIS code; air ingress into primary systems following DBDA; performance of PCRV thermal barrier cover plates; temperature limits for fuel particle coating failure; tritium distribution and release in HTGR; energy release to PCRV during DBDA; and mathematical models for HTGR reactor safety studies.

  12. High Temperature Corrosion and Characterization Studies in Flux Cored Arc Welded 2.25Cr-1Mo Power Plant Steel (United States)

    Kumaresh Babu, S. P.; Natarajan, S.


    Higher productivity is registered with Flux cored arc welding (FCAW) process in many applications. Further, it combines the characteristics of shielded metal arc welding (SMAW), gas metal arc welding (GMAW), and submerged arc welding (SAW) processes. This article describes the experimental work carried out to evaluate and compare corrosion and its inhibition in SA 387 Gr.22 (2.25Cr-1Mo) steel weldments prepared by FCAW process with four different heat inputs exposed to hydrochloric acid medium at 0.1, 0.5, and 1.0 M concentrations. The parent metal, weld metal, and heat-affected zone are chosen as regions of exposure for the study carried out at 100 °C. Electrochemical polarization techniques such as Tafel line extrapolation (Tafel) and linear polarization resistance (LPR) have been used to measure the corrosion current. The role of hexamine and mixed inhibitor (thiourea + hexamine in 0.5 M HCl), each at 100 ppm concentration is studied in these experiments. Microstructural observation, hardness survey, surface characterization, and morphology using scanning electron microscope (SEM) and x-ray diffraction (XRD) have been made on samples to highlight the nature and extent of film formation. The film is found to contain Fe2Si, FeSi2, FeMn3, Fe7Mo3, Fe3O4, FeO, FeCr, AlO7Fe3SiO3, and KFe4Mn77Si19.

  13. Self-diffusion in supercritical water and benzene in high-temperature high-pressure conditions studied by NMR and dynamic solvation-shell model (United States)

    Yoshida, Ken; Matubayasi, Nobuyuki; Uosaki, Yasuhiro; Nakahara, Masaru


    The self-diffusion coefficients of water and organic solvents in the high-temperature high-pressure conditions are studied by using high-temperature NMR and MD simulation methods. The experimental results are analyzed using a scheme based on the solvation shell relaxation time obtained by MD simulation. The dynamic effect of hydrogen bonding is discussed through the comparison between water and a nonpolar organic solvent, benzene, over a wide range of density and temperature. The hydrogen-bonding effects are as follows: (1) the self-diffusion coefficient of water depends on density more weakly than that of benzene, (2) the self-diffusion coefficient of water at the ambient density depends on temperature more strongly than that of benzene at the density, (3) the turnover from the mobile-shell type to the in-shell type with increasing density does not occur in supercritical water up to the ambient density, whereas such turnover is observed in benzene. These contrasts are reflecting the dynamic effect of the anisotropic attractive interactions.

  14. Laboratory Study on the Potential EOR Use of HPAM/VES Hybrid in High-Temperature and High-Salinity Oil Reservoirs

    Directory of Open Access Journals (Sweden)

    Dingwei Zhu


    Full Text Available Polymer flooding represents one of the most efficient processes to enhance oil recovery, and partially hydrolyzed polyacrylamide (HPAM is a widely used oil-displacement agent, but its poor thermal stability, salt tolerance, and mechanical degradation impeded its use in high-temperature and high-salinity oil reservoirs. In this work, a novel viscoelastic surfactant, erucyl dimethyl amidobetaine (EDAB, with improved thermal stability and salinity tolerance, was complexed with HPAM to overcome the deficiencies of HPAM. The HPAM/EDAB hybrid samples were studied in comparison with HPAM and EDAB in synthetic brine regarding their rheological behaviors and core flooding experiments under simulated high-temperature and high-salinity oil reservoir conditions (T: 85°C; total dissolved solids: 32,868 mg/L; [Ca2+] + [Mg2+]: 873 mg/L. It was found that the HPAM/EDAB hybrids exhibited much better heat- and salinity-tolerance and long-term thermal stability than HPAM. Core flooding tests showed that the oil recovery factors of HPAM/EDAB hybrids are between those of HPAM and EDAB. These results are attributed to the synergistic effect between HPAM and EDAB in the hybrid.

  15. Laboratory study on the high-temperature capture of HCl gas by dry-injection of calcium-based sorbents. (United States)

    Shemwell, B; Levendis, Y A; Simons, G A


    This is a laboratory study on the reduction of combustion-generated hydrochloric acid (HCl) emissions by in-furnace dry-injection of calcium-based sorbents. HCl is a hazardous gaseous pollutant emitted in significant quantities by municipal and hazardous waste incinerators, coal-fired power plants, and other industrial furnaces. Experiments were conducted in a laboratory furnace at gas temperatures of 600-1000 degrees C. HCl gas diluted with N2, and sorbent powders fluidized in a stream of air were introduced into the furnace concurrently. Chlorination of the sorbents occurred in the hot zone of the furnace at gas residence times approximately 1 s. The sorbents chosen for these experiments were calcium formate (CF), calcium magnesium acetate (CMA), calcium propionate (CP), calcium oxide (CX), and calcium carbonate (CC). Upon release of organic volatiles, sorbents calcine to CaO at approximately 700 degrees C, and react with the HCl according to the reaction CaO + 2HCl CaCl2 + H2O. At the lowest temperature case examined herein, 600 degrees C, direct reaction of HCl with CaCO3 may also be expected. The effectiveness of the sorbents to capture HCl was interpreted using the "pore tree" mathematical model for heterogeneous diffusion reactions. Results show that the thin-walled, highly porous cenospheres formed from the pyrolysis and calcination of CF, CMA, and CP exhibited high relative calcium utilization at the upper temperatures of this study. Relative utilizations under these conditions reached 80%. The less costly low-porosity sorbents, calcium carbonate and calcium oxide also performed well. Calcium carbonate reached a relative utilization of 54% in the mid-temperature range, while the calcium oxide reached an 80% relative utilization at the lowest temperature examined. The data matched theoretical predictions of sorbent utilization using the mathematical model, with activation energy and pre-exponential factors for the calcination reaction of 17,000 K and 300

  16. NATO Advanced Study Institute on Low-dimensional Cooperative Phenomena : the Possibility of High-Temperature Superconductivity

    CERN Document Server


    Theoretical and experimental work on solids with low-dimensional cooperative phenomena has been rather explosively expanded in the last few years, and it seems to be quite fashionable to con­ tribute to this field, especially to the problem of one-dimensional metals. On the whole, one could divide the huge amount of recent investigations into two parts although there is much overlap bet­ ween these regimes, namely investigations on magnetic exchange interactions constrained to mainly one or two dimensions and, secondly, work done on Id metallic solids or linear chain compounds with Id delocalized electrons. There is, of course, overlap from one extreme case to the other with these solids and in some rare cases both phenomena are studied on one and the same crystal. In fact, however, most of the scientific groups in this area could be associated roughly with one of these categories and,in addition, a separation between theoreticians and experimentalists in each of these groups leads to a further splitting of...

  17. Grainex Mar-M 247 Turbine Disk Life Study for NASA's High Temperature High Speed Turbine Seal Test Facility (United States)

    Delgado, Irebert R.


    An experimental and analytical fatigue life study was performed on the Grainex Mar-M 247 disk used in NASA s Turbine Seal Test Facility. To preclude fatigue cracks from growing to critical size in the NASA disk bolt holes due to cyclic loading at severe test conditions, a retirement-for-cause methodology was adopted to detect and monitor cracks within the bolt holes using eddy-current inspection. For the NASA disk material that was tested, the fatigue strain-life to crack initiation at a total strain of 0.5 percent, a minimum to maximum strain ratio of 0, and a bolt hole temperature of 649 C was calculated to be 665 cycles using -99.95 percent prediction intervals. The fatigue crack propagation life was calculated to be 367 cycles after implementing a safety factor of 2 on life. Thus, the NASA disk bolt hole total life or retirement life was determined to be 1032 cycles at a crack depth of 0.501 mm. An initial NASA disk bolt hole inspection at 665 cycles is suggested with 50 cycle inspection intervals thereafter to monitor fatigue crack growth.

  18. A High Temperature Experimental and Theoretical Study of the Unimolecular Dissociation of 1,3,5-Trioxane

    KAUST Repository

    Alquaity, Awad B. S.


    Unimolecular dissociation of 1,3,5-trioxane was investigated experimentally and theoretically over a wide range of conditions. Experiments were performed behind reflected shock waves over the temperature range of 775-1082 K and pressures near 900 Torr using a high-repetition rate time of flight mass spectrometer (TOF-MS) coupled to a shock tube (ST). Reaction products were identified directly, and it was found that formaldehyde is the sole product of 1,3,5-trioxane dissociation. Reaction rate coefficients were extracted by the best fit to the experimentally measured concentration-time histories. Additionally, high-level quantum chemical and RRKM calculations were employed to study the falloff behavior of 1,3,5-trioxane dissociation. Molecular geometries and frequencies of all species were obtained at the B3LYP/cc-pVTZ, MP2/cc-pVTZ, and MP2/aug-cc-pVDZ levels of theory, whereas the single-point energies of the stationary points were calculated using coupled cluster with single and double excitations including the perturbative treatment of triple excitation (CCSD(T)) level of theory. It was found that the dissociation occurs via a concerted mechanism requiring an energy barrier of 48.3 kcal/mol to be overcome. The new experimental data and theoretical calculations serve as a validation and extension of kinetic data published earlier by other groups. Calculated values for the pressure limiting rate coefficient can be expressed as log10 k∞ (s-1) = [15.84 - (49.54 (kcal/mol)/2.3RT)] (500-1400 K). © 2015 American Chemical Society.

  19. High temperature superconductor accelerator magnets

    NARCIS (Netherlands)

    van Nugteren, J.


    For future particle accelerators bending dipoles are considered with magnetic fields exceeding 20T. This can only be achieved using high temperature superconductors (HTS). These exhibit different properties from classical low temperature superconductors and still require significant research and

  20. High Temperature Electrostrictive Ceramics Project (United States)

    National Aeronautics and Space Administration — TRS Technologies proposes to develop high temperature electrostrictors from bismuth-based ferroelectrics. These materials will exhibit high strain and low loss in...

  1. High Temperature Materials Laboratory (HTML) (United States)

    Federal Laboratory Consortium — The six user centers in the High Temperature Materials Laboratory (HTML), a DOE User Facility, are dedicated to solving materials problems that limit the efficiency...

  2. Moessbauer- and EPR-Snapshots of an Enzymatic Reaction: The Cytochrome P450 Reaction Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Schuenemann, V. [University of Luebeck, Institute of Physics (Germany); Jung, C. [Max-Delbrueck-Center for Molecular Medicine (Germany); Lendzian, F. [Technical University, PC 14, Max-Volmer Laboratory for Biophysical Chemistry (Germany); Barra, A.-L. [Grenoble High Magnetic Field Laboratory (France); Teschner, T.; Trautwein, A. X. [University of Luebeck, Institute of Physics (Germany)


    In this communication we present a complimentary Moessbauer- and EPR-study of the time dependance of the reaction of substrate free P450cam with peracetic acid within a time region ranging from 8 ms up to 5 min. An Fe(IV) species as well as a tyrosyl radical residing on the amino acid residue Tyr96 have been identified as reaction intermediates. These species possibly are formed by the reduction of compound I by means of transferring an electron from Tyr 96 to the heme moiety.

  3. High temperature shock tube studies on the thermal decomposition of O3 and the reaction of dimethyl carbonate with O-atoms. (United States)

    Peukert, S L; Sivaramakrishnan, R; Michael, J V


    The shock tube technique was used to study the thermal decomposition of ozone, O3, with a view to using this as a thermal precursor of O-atoms at high temperatures. The formation of O-atoms was measured behind reflected shock waves by using atomic resonance absorption spectrometry (ARAS). The experiments span a T-range, 819 K ≤ T ≤ 1166 K, at pressures 0.13 bar ≤ P ≤ 0.6 bar. Unimolecular rate theory provides an excellent representation of the falloff characteristics from the present and literature data on ozone decomposition at high temperatures. The present decomposition study on ozone permits its usage as a thermal source for O-atoms allowing measurements for, O + CH3OC(O)OCH3 → OH + CH3OC(O)OCH2 [A]. Reflected shock tube experiments monitoring the formation and decay of O-atoms were performed on reaction A using mixtures of O3 and CH3OC(O)OCH3, (DMC), in Kr bath gas over the T-range, 862 K ≤ T ≤ 1167 K, and pressure range, 0.15 bar ≤ P ≤ 0.33 bar. A detailed model was used to fit the O-atom temporal profile to obtain experimental rate constants for reaction A. Rate constants from the present experiments for O + DMC can be represented by the Arrhenius expression: kA(T) = 2.70 × 10(-11) exp(-2725 K/T) cm(3) molecule(-1) s(-1) (862-1167 K). Transition state theory calculations employing CCSD(T)/cc-pv∞z//M06-2X/cc-pvtz energetics and molecular properties for reaction A are in good agreement with the experimental rate constants. The theoretical rate constants can be well represented (to within ±10%) over the 500-2000 K temperature range by: kA(T) = 1.87 × 10(-20)T(2.924) exp(-2338 K/T) cm(3) molecule(-1) s(-1). The present study represents the first experimental measurement and theoretical study on this bimolecular reaction which is of relevance to the high temperature oxidation of DMC.

  4. Speciation of triphenyltin compounds using Moessbauer spectroscopy. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Eng, G.


    Organotin compounds have been used widely as the active agent in antifouling marine paints. Organotin compounds, i.e., tributyltin compounds (TBTs) and triphenyltin compounds (TPTs) have been found to be effective in preventing the unwanted attachment and development of aquatic organisms such as barnacles, sea grass and hydroids on ships, hulls and underwater surfaces. However, these organotin compounds have been found to be toxic to non-targeted marine species as well. While speciation of tributyltins in environmental water systems has received much attention in the literature, little information concerning the speciation of triphenyltins is found. Therefore, it would be important to study the fate of TPTs in the aquatic environment, particularly in sediments, both oxic and anoxic, in order to obtain speciation data. Since marine estuaries consist of areas with varying salinity and pH, it is important to investigate the speciation of these compounds under varying salinity conditions. In addition, evaluation of the speciation of these compounds as a function of pH would give an insight into how these compounds might interact with sediments in waters where industrial chemical run-offs can affect the pH of the estuarine environment. Finally, since organotins are present in both salt and fresh water environments, the speciation of the organotins in seawater and distilled water should also be studied. Moessbauer spectroscopy would provide a preferred method to study the speciation of triphenyltins as they leach from marine paints into the aquatic environment. Compounds used in this study are those triphenyltin compounds that are commonly incorporated into marine paints such as triphenyltin fluoride (TPTF), triphenyltin acetate (TPTOAc), triphenyltin chloride (TPTCl) and triphenyltin hydroxide (TPTOH).

  5. An experimental and simulation study of novel channel designs for open-cathode high-temperature polymer electrolyte membrane fuel cells

    DEFF Research Database (Denmark)

    Thomas, Sobi; Bates, Alex; Park, Sam


    A minimum balance of plant (BOP) is desired for an open-cathode high temperature polymer electrolyte membrane (HTPEM) fuel cell to ensure low parasitic losses and a compact design. The advantage of an open-cathode system is the elimination of the coolant plate and incorporation of a blower...... for oxidant and coolant supply, which reduces the overall size of the stack, power losses, and results in a lower system volume. In the present study, we present unique designs for an open-cathode system which offers uniform temperature distribution with a minimum temperature gradient and a uniform flow...... distribution through each cell. Design studies were carried out to increase power density. An experimental and simulation approach was carried out to design the novel open-cathode system. Two unique parallel serpentine flow designs were developed to yield a low pressure drop and uniform flow distribution, one...

  6. Combined high-pressure and high-temperature vibrational studies of dolomite: phase diagram and evidence of a new distorted modification (United States)

    Efthimiopoulos, I.; Jahn, S.; Kuras, A.; Schade, U.; Koch-Müller, M.


    A combined high-pressure mid-infrared absorption and Raman spectroscopy study on a natural CaMg0.98Fe0.02(CO3)2 dolomite sample was performed both at ambient and high temperatures. A pressure-temperature phase diagram was constructed for all the reported dolomite ambient- and high-pressure polymorphs. In addition, a local distortion of the ambient-pressure dolomite structure was identified close to 11 GPa, just before the transition toward the first known high-pressure phase. All the Clausius-Clapeyron slopes are found to be positive with similar magnitudes. Complementary first-principles calculations suggest a metastable nature of the high-pressure dolomite polymorphs. Finally, theoretical spectroscopy is used to interpret and discuss the observed changes in the measured vibrational spectra.

  7. Comparative study of the break in process of post doped and sol–gel high temperature proton exchange membrane fuel cells

    DEFF Research Database (Denmark)

    Vang, Jakob Rabjerg; Andreasen, Søren Juhl; Araya, Samuel Simon


    In this paper six High Temperature PEM (HTPEM) MEAs from two manufacturers have been tested. The MEAs are three Dapozol 77 from Danish Power Systems (DPS) with varying electrode composition and two Celtec P2100 and one Celtec P1000 from BASF. The break in process of the MEAs has been monitored...... using voltage measurements and impedance spectroscopy. The purpose of this study is twofold. One aim is to try and interpret the processes happening during break in. The other aim is to investigate whether the impedance spectra or the voltage profiles contain information that can be used to determine...... when an MEA has been broken in. To aid in the interpretation of the impedance spectra, equivalent circuit models are used. Three models are evaluated. The most detailed models produce the best fits but the most simple model is chosen, since it produces the most consistent results. The processes...

  8. Solubility study of nickel ferrite in boric acid using a flow-through autoclave system under high temperature and high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yong Joon; Choi, Ke Chon; Ha, Yeong Keong [Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)


    The solubility of nickel ferrite in an aqueous solution of boric acid was studied by varying the pH at the temperatures ranging from 25 .deg. C to 320 .deg. C. A flow-through autoclave system was specially designed and fabricated to measure the solubility of Fe in hydrothermal solutions under high temperature and pressure. The performance of this flow-through system was directly compared with the conventional static state technique using a batch-type autoclave system. The stability of fluid velocity for the flow-through autoclave system was verified prior to the solubility measurement. The influence of chemical additives, such as boric acid and H2, on the solubility of nickel ferrite was also evaluated.

  9. In Situ UV-Visible Assessment of Iron-Based High-Temperature Water-Gas Shift Catalysts Promoted with Lanthana: An Extent of Reduction Study

    Directory of Open Access Journals (Sweden)

    Basseem B. Hallac


    Full Text Available The extent of reduction of unsupported iron-based high-temperature water-gas shift catalysts with small (<5 wt % lanthana contents was studied using UV-visible spectroscopy. Temperature- programmed reduction measurements showed that lanthana content higher than 0.5 wt % increased the extent of reduction to metallic Fe, while 0.5 wt % of lanthana facilitated the reduction to Fe3O4. In situ measurements on the iron oxide catalysts using mass and UV-visible spectroscopies permitted the quantification of the extent of reduction under temperature-programmed reduction and high-temperature water-gas shift conditions. The oxidation states were successfully calibrated against normalized absorbance spectra of visible light using the Kubelka-Munk theory. The normalized absorbance relative to the fully oxidized Fe2O3 increased as the extent of reduction increased. XANES suggested that the average bulk iron oxidation state during the water-gas shift reaction was Fe+2.57 for the catalyst with no lanthana and Fe+2.54 for the catalysts with 1 wt % lanthana. However, the UV-vis spectra suggest that the surface oxidation state of iron would be Fe+2.31 for the catalyst with 1 wt % lanthana if the oxidation state of iron in the catalyst with 0 wt % lanthana were Fe+2.57. The findings of this paper emphasize the importance of surface sensitive UV-visible spectroscopy for determining the extent of catalyst reduction during operation. The paper highlights the potential to use bench-scale UV-visible spectroscopy to study the surface chemistry of catalysts instead of less-available synchrotron X-ray radiation facilities.

  10. Precise determination of Moessbauer lineshape parameters including interference

    Energy Technology Data Exchange (ETDEWEB)

    Mullen, J.G.; Djedid, A.; Bullard, B.; Schupp, G.; Cowan, D.; Cao, Y.; Crow, M.L.; Yelon, W.


    Using 100 Ci /sup 183/Ta and 5 Ci /sup 182/Ta sources, with LiF and NaCl crystal monochromating filters, we have measured the lineshape parameters for the 46.5 keV and 99.1 keV Moessbauer effect (ME) transitions of /sup 183/W and the 100.1 keV transition of /sup 182/W. Using an analytic representation of the convolution integral and utilizing asymptotic analyses of the lineshape, we find, for both transmission and microfoil internal conversion (MICE) experiments, accurate values of all ME parameters including width, position, cross section, and interference. This new approach allows deconvolution of source and absorber spectra and gives a simple analytic expression for both as well as their Fourier transforms. The line widths for the 46.5, 99.1, and 100.1 keV transitions are 3.10(10), 0.369(18), and 0.195(12) cm/s, respectively. The interference parameters are -0.00257(9), -0.0093(12), and -0.0107(12) in the same respective order. The agreement between transmission and MICE measurements for the above lineshape parameters is within the experimental errors. We believe these measurements are the first having sufficient precision to allow a quantitative comparison with dispersion theory and they indicate interference parameters 10 to 20% smaller than predicted. Our measured line widths are less than earlier reported values. This is because our analysis of the true lineshape and the study of line asymptotics permits a quantitative determination of the isomer lifetimes rather than the usual lower bound found in earlier ME experiments. 37 refs., 4 figs., 2 tabs.

  11. Unfolding the role of iron in Li-ion conversion electrode materials by {sup 57}Fe Moessbauer spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tirado, Jose L., E-mail:; Lavela, Pedro; Perez Vicente, Carlos; Leon, Bernardo; Vidal-Abarca, Candela [Universidad de Cordoba, Laboratorio de Quimica Inorganica (Spain)


    {sup 57}Fe Moessbauer spectroscopy is particularly useful in the study of oxide and oxalate conversion anode materials for Li-ion batteries. After reduction in lithium test cells, all these materials showed Moessbauer spectra ascribable to iron atoms in two different environments with superparamagnetic relaxation. The spectra recorded at 12 K revealed the ferromagnetic character in agreement with particle sizes of ca. 5 nm. The two types of iron can be ascribed then to surface and core atoms. Core iron atoms play an important role to retain high faradic capacity values for a large number of cycles. These atoms are preserved from irreversible reactions with the electrolyte and hence they promote a high reversibility and rate capability.

  12. High Temperature Superconductor Accelerator Magnets

    CERN Document Server

    AUTHOR|(CDS)2079328; de Rijk, Gijs; Dhalle, Marc


    For future particle accelerators bending dipoles are considered with magnetic fields exceeding $20T$. This can only be achieved using high temperature superconductors (HTS). These exhibit different properties from classical low temperature superconductors and still require significant research and development before they can be applied in a practical accelerator magnet. In order to study HTS in detail, a five tesla demonstrator magnet named Feather-M2 is designed and constructed. The magnet is based on ReBCO coated conductor, which is assembled into a $10kA$ class Roebel cable. A new and optimized Aligned Block layout is used, which takes advantage of the anisotropy of the conductor. This is achieved by providing local alignment of the Roebel cable in the coil windings with the magnetic field lines. A new Network Model capable of analyzing transient electro-magnetic and thermal phenomena in coated conductor cables and coils is developed. This model is necessary to solve critical issues in coated conductor ac...

  13. High temperature shock tube and theoretical studies on the thermal decomposition of dimethyl carbonate and its bimolecular reactions with H and D-atoms. (United States)

    Peukert, S L; Sivaramakrishnan, R; Michael, J V


    The shock tube technique was used to study the high temperature thermal decomposition of dimethyl carbonate, CH3OC(O)OCH3 (DMC). The formation of H-atoms was measured behind reflected shock waves by using atomic resonance absorption spectrometry (ARAS). The experiments span a T-range of 1053-1157 K at pressures ∼0.5 atm. The H-atom profiles were simulated using a detailed chemical kinetic mechanism for DMC thermal decomposition. Simulations indicate that the formation of H-atoms is sensitive to the rate constants for the energetically lowest-lying bond fission channel, CH3OC(O)OCH3 → CH3 + CH3OC(O)O [A], where H-atoms form instantaneously at high temperatures from the sequence of radical β-scissions, CH3OC(O)O → CH3O + CO2 → H + CH2O + CO2. A master equation analysis was performed using CCSD(T)/cc-pv∞z//M06-2X/cc-pvtz energetics and molecular properties for all thermal decomposition processes in DMC. The theoretical predictions were found to be in good agreement with the present experimentally derived rate constants for the bond fission channel (A). The theoretically derived rate constants for this important bond-fission process in DMC can be represented by a modified Arrhenius expression at 0.5 atm over the T-range 1000-2000 K as, kA(T) = 6.85 × 10(98)T (-24.239) exp(-65250 K/T) s(-1). The H-atom temporal profiles at long times show only minor sensitivity to the abstraction reaction, H + CH3OC(O)OCH3 → H2 + CH3OC(O)OCH2 [B]. However, H + DMC is an important fuel destruction reaction at high temperatures. Consequently, measurements of D-atom profiles using D-ARAS allowed unambiguous rate constant measurements for the deuterated analog of reaction B, D + CH3OC(O)OCH3 → HD + CH3OC(O)OCH2 [C]. Reaction C is a surrogate for H + DMC since the theoretically predicted kinetic isotope effect at high temperatures (1000 - 2000K) is close to unity, kC ≈ 1.2 kB. TST calculations employing CCSD(T)/cc-pv∞z//M06-2X/cc-pvtz energetics and molecular properties

  14. High temperature superconductor current leads (United States)

    Hull, John R.; Poeppel, Roger B.


    An electrical lead having one end for connection to an apparatus in a cryogenic environment and the other end for connection to an apparatus outside the cryogenic environment. The electrical lead includes a high temperature superconductor wire and an electrically conductive material distributed therein, where the conductive material is present at the one end of the lead at a concentration in the range of from 0 to about 3% by volume, and at the other end of the lead at a concentration of less than about 20% by volume. Various embodiments are shown for groups of high temperature superconductor wires and sheaths.

  15. High temperature corrosion in gasifiers

    Directory of Open Access Journals (Sweden)

    Wate Bakker


    Full Text Available Several commercial scale coal gasification combined cycle power plants have been built and successfully operated during the last 5-10 years. Supporting research on materials of construction has been carried out for the last 20 years by EPRI and others. Emphasis was on metallic alloys for heat exchangers and other components in contact with hot corrosive gases at high temperatures. In this paper major high temperature corrosion mechanisms, materials performance in presently operating gasifiers and future research needs will be discussed.

  16. Electronic and magnetic properties study of neptunium compounds: NpX{sub 3} and Np{sub 2}T{sub 2}X by Moessbauer effect, neutrons diffraction and Squid magnetometry; Etude des proprietes magnetiques et electroniques de composes de neptunium NpX{sub 3} et Np{sub 2}T{sub 2}X par spectrometrie mossbauer, diffraction de neutrons et magnetometrie squid

    Energy Technology Data Exchange (ETDEWEB)

    Colineau, E.


    This work is a contribution to the study of magnetic and electronic properties of the intermetallic compounds: NpX{sub 3} (X= Al, Ga, In, Sn) and Np{sub 2}T{sub 2}X (T= Co, Ni, Ru, Rh, Pd, Pt; X= In, Sn). These properties have been determined by Moessbauer effect, neutron diffraction and Squid magnetometry. The obtained results for NpX{sub 3} show particularly that NpAl{sub 3} orders in a type II (k= 1/2 1/2 1/2) antiferromagnetic structure at T{sub N} {approx_equal} 37 K. The antiferromagnetic phase NpGa{sub 3} orders in a type II too and the magnetic moments carried by neptunium in the ferromagnetic phase are oriented along the (111) axes. The two NpIN{sub 3} magnetic phases observed by Moessbauer effect (4.2 K-10 K and 10 K- 14 K) are identified by neutron diffraction as ferromagnetic and antiferromagnetic (k= 3/8 3/8 3/8). In this last phase the moments are oriented along the (111) axes. The magnetization measures on monocrystals show a weak anisotropy with (111) at all the temperatures and reveal the presence of a third magnetic phase between 8.2 and 10 K. At last, the fundamental state of the compounds NpAl{sub 3}, NpGa{sub 3} and NpIn{sub 3} is attributed to the {Gamma}{sub 5} crystal field and the strong reduction of the ordered moment in NpSn{sub 3} to a Kondo effect. Concerning the Np{sub 2}T{sub 2}X compounds, the Moessbauer effect measures have revealed that eight of these compounds order and three do not order. (O.M.). 239 refs.

  17. The flavoured BFSS model at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Asano, Yuhma; Filev, Veselin G. [School of Theoretical Physics, Dublin Institute for Advanced Studies,10 Burlington Road, Dublin 4 (Ireland); Kováčik, Samuel [School of Theoretical Physics, Dublin Institute for Advanced Studies,10 Burlington Road, Dublin 4 (Ireland); Faculty of Mathematics, Physics and Informatics,Comenius University Bratislava, Mlynská dolina, Bratislava, 842 48 (Slovakia); O’Connor, Denjoe [School of Theoretical Physics, Dublin Institute for Advanced Studies,10 Burlington Road, Dublin 4 (Ireland)


    We study the high-temperature series expansion of the Berkooz-Douglas matrix model, which describes the D0/D4-brane system. At high temperature the model is weakly coupled and we develop the series to second order. We check our results against the high-temperature regime of the bosonic model (without fermions) and find excellent agreement. We track the temperature dependence of the bosonic model and find backreaction of the fundamental fields lifts the zero-temperature adjoint mass degeneracy. In the low-temperature phase the system is well described by a gaussian model with three masses m{sub A}{sup t}=1.964±0.003, m{sub A}{sup l}=2.001±0.003 and m{sub f}=1.463±0.001, the adjoint longitudinal and transverse masses and the mass of the fundamental fields respectively.

  18. (Krauss) at constant high temperatures

    African Journals Online (AJOL)

    Snail Research Unit of the SAMRC and Department of Zoology, Potchefstroom University for CHE,. Potchefstroom. The survival of the freshwater snail species Bulinus africanus, Bulinus g/obosus and Biompha/aria pfeifferi at extreme high temperatures was experimentally investigated. Snails were exposed to temperatures ...

  19. High Temperature Superconductor Machine Prototype

    DEFF Research Database (Denmark)

    Mijatovic, Nenad; Jensen, Bogi Bech; Træholt, Chresten


    A versatile testing platform for a High Temperature Superconductor (HTS) machine has been constructed. The stationary HTS field winding can carry up to 10 coils and it is operated at a temperature of 77K. The rotating armature is at room temperature. Test results and performance for the HTS field...

  20. High-Temperature Optical Sensor (United States)

    Adamovsky, Grigory; Juergens, Jeffrey R.; Varga, Donald J.; Floyd, Bertram M.


    A high-temperature optical sensor (see Figure 1) has been developed that can operate at temperatures up to 1,000 C. The sensor development process consists of two parts: packaging of a fiber Bragg grating into a housing that allows a more sturdy thermally stable device, and a technological process to which the device is subjected to in order to meet environmental requirements of several hundred C. This technology uses a newly discovered phenomenon of the formation of thermally stable secondary Bragg gratings in communication-grade fibers at high temperatures to construct robust, optical, high-temperature sensors. Testing and performance evaluation (see Figure 2) of packaged sensors demonstrated operability of the devices at 1,000 C for several hundred hours, and during numerous thermal cycling from 400 to 800 C with different heating rates. The technology significantly extends applicability of optical sensors to high-temperature environments including ground testing of engines, flight propulsion control, thermal protection monitoring of launch vehicles, etc. It may also find applications in such non-aerospace arenas as monitoring of nuclear reactors, furnaces, chemical processes, and other hightemperature environments where other measurement techniques are either unreliable, dangerous, undesirable, or unavailable.

  1. Chemistry of high temperature superconductors

    CERN Document Server


    This review volume contains the most up-to-date articles on the chemical aspects of high temperature oxide superconductors. These articles are written by some of the leading scientists in the field and includes a comprehensive list of references. This is an essential volume for researchers working in the fields of ceramics, materials science and chemistry.

  2. High temperature component life assessment

    CERN Document Server

    Webster, G A


    The aim of this book is to investigate and explain the rapid advances in the characterization of high temperature crack growth behaviour which have been made in recent years, with reference to industrial applications. Complicated mathematics has been minimized with the emphasis placed instead on finding solutions using simplified procedures without the need for complex numerical analysis.

  3. Properties of high temperature SQUIDS

    Energy Technology Data Exchange (ETDEWEB)

    Falco, C. M.; Wu, C. T.


    A review is given of the present status of weak links and dc and rf biased SQUIDs made with high temperature superconductors. A method for producing reliable, reproducible devices using Nb/sub 3/Sn is outlined, and comments are made on directions future work should take.

  4. High-temperature flooding injury (United States)

    This problem, also called scald, is most serious in the hot desert valleys of the southwestern United States, subtropical regions in eastern Australia, and western Asia and northern Africa (Middle East) where fields are established and irrigated under high temperatures. The disorder also occurs to...

  5. Self propagating high temperature synthesis of ferrites in magnetic fields

    CERN Document Server

    Affleck, L


    Self propagating high temperature synthesis (SHS) reactions have been performed on mixtures of BaO sub 2 , Fe and Fe sub 2 O sub 3 to form barium ferrite, BaFe sub 1 sub 2 O sub 1 sub 9. Reactions were conducted in zero field and in an applied magnetic field of 1.1 T with the aim of exploring the influence of the field. The temperature and velocity of the reactions were measured and the products, both post-SHS and post-annealing, were characterised by techniques including X-ray diffraction, Moessbauer spectroscopy, vibrating sample magnetometry and electron microprobe analysis. The applied magnetic field was found to lead to hotter and faster reactions, a greater degree of conversion of the reactants, a needle-like microstructure in the post-SHS product, and a reduced coercive field (approx 20-30 %) in the annealed product, compared to zero field. Sodium perchlorate was used as an internal oxidising agent, and found to produce similar effects. Correlations were observed between the temperature reached in the ...

  6. Thermoelastic properties of minerals at high temperature

    Indian Academy of Sciences (India)

    The knowledge of elasticity of the minerals is useful for interpreting the structure and composition of the lower mantle and also in seismic studies. The purpose of the present study is to discuss a simple and straightforward method for evaluating thermoelastic properties of minerals at high temperatures. We have extended ...

  7. High-temperature mass spectrometric study and modeling of thermodynamic properties of binary glass-forming systems containing Bi2O3. (United States)

    Stolyarova, V L; Shilov, A L; Lopatin, S I; Shugurov, S M


    Binary glass-forming systems containing bismuth(III) oxide, especially the Bi2O3-SiO2 system, are of great importance in modern materials science: preparation of thin films, fiber optics, potential solar converters, and radiation shields in nuclear physics. Information on vaporization processes and thermodynamic properties obtained in the present study and the results of modeling of this system will be useful for optimization of the synthesis and applications of Bi2O3-containing materials at high temperatures. High-temperature Knudsen effusion mass spectrometry was used to study the vaporization processes and to determine the partial pressures of components of the Bi2O3-SiO2 system. Measurements were performed with a MS-1301 mass spectrometer. Vaporization was carried out using two iridium-plated molybdenum effusion cells containing the sample under study and pure bismuth(III) oxide (reference substance). Modeling of the thermodynamic properties and structure of glasses and melts in the Bi2O3-SiO2 and Bi2O3-B2O3 systems was performed using a modified approach based on the generalized lattice theory of associated solutions (GLTAS). At a temperature of 1000 K, Bi and O2 were found to be the main vapor species over the samples studied. The Bi2O3 activity as a function of composition of the Bi2O3-SiO2 system was obtained from the measured partial pressures of the vapor species. The thermodynamic properties of mixing from oxides in this system were calculated. The advantages of GLTAS for modeling of glasses and melts in the binary systems containing Bi2O3 were demonstrated. The thermodynamic functions of mixing in glasses and melts of the Bi2O3-SiO2 system determined at 1000 K in the present study, as well as in the Bi2O3-B2O3 system, demonstrated negative deviations from ideality. Modeling of the obtained experimental data using GLTAS allowed a correlation to be found between the thermodynamic properties and the relative number of bonds of various types formed in

  8. Characteristics of the Shanghai high-temperature superconducting electron-beam ion trap and studies of the space-charge effect under ultralow-energy operating conditions (United States)

    Tu, B.; Lu, Q. F.; Cheng, T.; Li, M. C.; Yang, Y.; Yao, K.; Shen, Y.; Lu, D.; Xiao, J.; Hutton, R.; Zou, Y.


    A high-temperature superconducting electron-beam ion trap (EBIT) has been set up at the Shanghai EBIT Laboratory for spectroscopic studies of low-charge-state ions. In the study reported here, beam trajectory simulations are implemented in order to provide guidance for the operation of this EBIT under ultralow-energy conditions, which has been successfully achieved with a full-transmission electron-beam current of 1-8.7 mA at a nominal electron energy of 30-120 eV. The space-charge effect is studied through both simulations and experiments. A modified iterative formula is proposed to estimate the space-charge potential of the electrons and shows very good agreement with the simulation results. In addition, space-charge compensation by trapped ions is found in extreme ultraviolet spectroscopic measurements of carbon ions and is studied through simulation of ion behavior in the EBIT. Based on the simulation results, the ion-cloud radius, ion density, and electron-ion overlap are obtained.

  9. Mineralogy of the clay fraction of soils from the moray cusco archaeological site: a study by energy dispersive X-ray fluorescence, X-ray diffractometry and Moessbauer spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ceron Loayza, Maria L., E-mail:; Bravo Cabrejos, Jorge A.; Mejia Santillan, Mirian E. [Universidad Nacional Mayor de San Marcos, Laboratorio de Analisis de Suelos, Laboratorio de Espectroscopia Moessbauer, Facultad de Ciencias Fisicas (Peru)


    The purpose of this work is to report the advances in the elemental and structural characterization of the clay fraction of soils from the terraces of the Moray Archaeological site, located 38 km north of the city of Cusco, Cusco Region. One sample was collected from each of the twelve terraces of this site and its clay fraction was separated by sedimentation. Previously the pH of the raw samples was measured resulting that all of the samples were from alkaline to strongly alkaline. Energy dispersive X-ray fluorescence (EDXRF) was used for the elemental characterization, and X-ray diffractometry (XRD) and transmission Moessbauer spectroscopy (TMS), using the {gamma} 14.4 keV nuclear resonance transition in {sup 57}Fe, were used for the structural characterization of the clays and clay minerals present in each sample. The EDXRF analyses of all the samples show the presence of relatively high concentrations of sulfur in some of the samples and relatively high concentrations of calcium in all of the samples, which may be related to the high alkalinity of the samples. By XRD it is observed the presence of quartz, calcite, gypsum, cronstedtite, 2:1 phyllosilicates, and iron oxides. The mineralogical analysis of Fe by TMS shows that it is present in the form of hematite and occupying Fe{sup 2 + } and Fe{sup 3 + } sites in phyllosilicates, cronstedtite, and other minerals not yet identified.

  10. Moessbauer spectroscopy study of the synthesis of SnFe{sub 2}O{sub 4} by high energy ball milling (HEBM) of SnO and {alpha}-Fe{sub 2}O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Uwakweh, Oswald N C; Perez Moyet, Richard [Department of Engineering Science and Material, University of Puerto Rico-Mayagueez (Puerto Rico); Mas, Rita; Morales, Carolyn [Department of Industrial Engineering, University of Puerto Rico-Mayagueez (Puerto Rico); Vargas, Pedro; Silva, Josue; Rossa, Angel [Department of Mechanical Engineering, University of Puerto Rico-Mayagueez (Puerto Rico); Lopez, Neshma, E-mail: uwakweh@ece.uprm.ed [Department of Chemical Engineering, University of Puerto Rico-Mayagueez (Puerto Rico)


    The formation of single phase nanoparticles of spinel structured ferrite, SnFe{sub 2}O{sub 4}, by mechanochemical syntheses using HEBM of stoichiometric amounts of solid SnO and {alpha}-Fe{sub 2}O{sub 3} with acetone as surfactant was achieved progressively as function of ball milling time. Single phase SnFe{sub 2}O{sub 4} formation commenced from five hours of continuous ball milling, and reached completion after 22 hours, thereby yielding a material with a lattice parameter of 8.543 A, and particle size of 10.91 nm. The coercivity was 4.44 mT, magnetic saturation value of 17.75 Am{sup 2}/kg, and remanent magnetizations of 1.50 Am{sup 2}/kg, correspondingly. The nanosized particles exhibited superparamagnetic behavior phenomenon based on Moessbauer spectroscopy measurements. The kinetic analyses based on the modified Kissinger method yielded four characteristic stages during the thermal evolution of the 22 hours milled state with activation energies of 0.23 kJ/mol, 2.52 kJ/mol, 0.024 kJ/mol, and 1.57 kJ/mol respectively.

  11. High Temperature Corrosion in Biomass Incineration Plants

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Maahn, Ernst emanuel; Gotthjælp, K.


    The aim of the project is to study the role of ash deposits in high temperature corrosion of superheater materials in biomass and refuse fire combined heat and power plants. The project has included the two main activities: a) A chemical characterisation of ash deposits collected from a major...

  12. Complex performance during exposure to high temperatures. (United States)


    The effects of high temperature on psychomotor performance and physiological function were studied on male pilots (age 30-51) holding a current medical certificate. A total of 41 runs were made at neutral (23.8C (75F), or hot (60.0C (140F), 71.1C (16...

  13. High-Temperature Formation of a Functional Film at the Cathode/Electrolyte Interface in Lithium-Sulfur Batteries: An In Situ AFM Study. (United States)

    Lang, Shuang-Yan; Shi, Yang; Guo, Yu-Guo; Wen, Rui; Wan, Li-Jun


    Lithium-sulfur (Li-S) batteries have been attracting wide attention for their promising high specific capacity. A deep understanding of Li-S interfacial mechanism including the temperature (T) effect is required to meet the demands for battery modification and systematic study. Herein, the interfacial behavior during discharge/charge is investigated at high temperature (HT) of 60 °C in an electrolyte based on lithium bis(fluorosulfonyl) imide (LiFSI). By in situ atomic force microscopy (AFM), dynamic evolution of insoluble Li2 S2 and Li2 S is studied at the nanoscale. An in situ formed functional film can be directly monitored at 60 °C after Li2 S nucleation. It retards side reactions and facilitates interfacial redox. The insight into the interfacial processes at HT provides direct evidence of the existence of the film and reveals its dynamic behavior, providing a new avenue for electrolyte design and performance enhancement. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. In-situ formation of SiC nanocrystals by high temperature annealing of SiO2/Si under CO: A photoemission study (United States)

    D'angelo, M.; Deokar, G.; Steydli, S.; Pongrácz, A.; Pécz, B.; Silly, M. G.; Sirotti, F.; Cavellin, C. Deville


    We have studied CO interaction with SiO2/Si system at high temperature (~ 1100 °C) and 350 mbar by core-level photoemission. Even for short annealing time (5 min) the signal from Si2p and C1s core levels shows a clear change upon CO treatment. Shifted components are attributed to formation of SiC. This is confirmed by TEM imaging which further shows that the silicon carbide is in the form of nano-crystals of the 3C polytype. Photoemission spectroscopy moreover reveals the formation of silicon oxicarbide which could not be evidenced by other methods. Combining these results with previous Nuclear Resonance Profiling study gives a deeper insight into the mechanisms involved in the nanocrystals growth and especially for the reaction equation leading to SiC formation. We show that CO diffuses as a molecule through the silica layer and reacts with the silicon substrate according the following reaction: 4 CO + 4 Si → SiO2 + 2SiC + SiO2C2.

  15. Highly efficient high temperature electrolysis

    DEFF Research Database (Denmark)

    Hauch, Anne; Ebbesen, Sune; Jensen, Søren Højgaard


    High temperature electrolysis of water and steam may provide an efficient, cost effective and environmentally friendly production of H-2 Using electricity produced from sustainable, non-fossil energy sources. To achieve cost competitive electrolysis cells that are both high performing i.e. minimum...... electrolysis is favourable from a thermodynamic point of view, because a part of the required energy can be supplied as thermal heat, and the activation barrier is lowered increasing the H-2 production rate. Only two types of cells operating at high temperature (above 200 degrees C) have been described...... electrolysis using SOECs is competitive to H-2 production from fossil fuels at electricity prices below 0.02-0.03 is an element of per kWh. Though promising SOEC results on H-2 production have been reported a substantial R&D is still required to obtain inexpensive, high performing and long-term stable...

  16. High Temperature Heat Exchanger Project

    Energy Technology Data Exchange (ETDEWEB)

    Anthony E. Hechanova, Ph.D.


    The UNLV Research Foundation assembled a research consortium for high temperature heat exchanger design and materials compatibility and performance comprised of university and private industry partners under the auspices of the US DOE-NE Nuclear Hydrogen Initiative in October 2003. The objectives of the consortium were to conduct investigations of candidate materials for high temperature heat exchanger componets in hydrogen production processes and design and perform prototypical testing of heat exchangers. The initial research of the consortium focused on the intermediate heat exchanger (located between the nuclear reactor and hydrogen production plan) and the components for the hydrogen iodine decomposition process and sulfuric acid decomposition process. These heat exchanger components were deemed the most challenging from a materials performance and compatibility perspective

  17. Motor for High Temperature Applications (United States)

    Roopnarine (Inventor)


    A high temperature motor has a stator with poles formed by wire windings, and a rotor with magnetic poles on a rotor shaft positioned coaxially within the stator. The stator and rotor are built up from stacks of magnetic-alloy laminations. The stator windings are made of high temperature magnet wire insulated with a vitreous enamel film, and the wire windings are bonded together with ceramic binder. A thin-walled cylinder is positioned coaxially between the rotor and the stator to prevent debris from the stator windings from reaching the rotor. The stator windings are wound on wire spools made of ceramic, thereby avoiding need for mica insulation and epoxy/adhesive. The stator and rotor are encased in a stator housing with rear and front end caps, and rear and front bearings for the rotor shaft are mounted on external sides of the end caps to keep debris from the motor migrating into the bearings' races.

  18. High temperature thermoelectric energy conversion (United States)

    Wood, Charles


    The theory and current status of materials research for high-temperature thermoelectric energy conversion are reviewed. Semiconductors are shown to be the preferred class of materials for this application. Optimization of the figure of merit of both broadband and narrow-band semiconductors is discussed as a function of temperature. Phonon scattering mechanisms are discussed, and basic material guidelines are given for reduction of thermal conductivity. Two general classes of materials show promise for high temperature figure of merit (Z) values, namely the rare earth chalcogenides and the boron-rich borides. The electronic transport properties of the rare earth chalcogenides are explicable on the basis of degenerate or partially degenerate n-type semiconductors. Boron and boron-rich borides exhibit p-type hopping conductivity, with detailed explanations proposed for the transport differing from compound to compound. Some discussion is presented on the reasons for the low thermal conductivities in these materials. Also, ZTs greater than one appear to have been realized at high temperature in many of these compounds.

  19. Summary: High Temperature Downhole Motor

    Energy Technology Data Exchange (ETDEWEB)

    Raymond, David W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)


    Directional drilling can be used to enable multi-lateral completions from a single well pad to improve well productivity and decrease environmental impact. Downhole rotation is typically developed with a motor in the Bottom Hole Assembly (BHA) that develops drilling power (speed and torque) necessary to drive rock reduction mechanisms (i.e., the bit) apart from the rotation developed by the surface rig. Historically, wellbore deviation has been introduced by a “bent-sub,” located in the BHA, that introduces a small angular deviation, typically less than 3 degrees, to allow the bit to drill off-axis with orientation of the BHA controlled at the surface. The development of a high temperature downhole motor would allow reliable use of bent subs for geothermal directional drilling. Sandia National Laboratories is pursuing the development of a high temperature motor that will operate on either drilling fluid (water-based mud) or compressed air to enable drilling high temperature, high strength, fractured rock. The project consists of designing a power section based upon geothermal drilling requirements; modeling and analysis of potential solutions; and design, development and testing of prototype hardware to validate the concept. Drilling costs contribute substantially to geothermal electricity production costs. The present development will result in more reliable access to deep, hot geothermal resources and allow preferential wellbore trajectories to be achieved. This will enable development of geothermal wells with multi-lateral completions resulting in improved geothermal resource recovery, decreased environmental impact and enhanced well construction economics.

  20. High-temperature dynamic behavior in bulk liquid water: A molecular dynamics simulation study using the OPC and TIP4P-Ew potentials (United States)

    Gabrieli, Andrea; Sant, Marco; Izadi, Saeed; Shabane, Parviz Seifpanahi; Onufriev, Alexey V.; Suffritti, Giuseppe B.


    Classical molecular dynamics simulations were performed to study the high-temperature (above 300 K) dynamic behavior of bulk water, specifically the behavior of the diffusion coefficient, hydrogen bond, and nearest-neighbor lifetimes. Two water potentials were compared: the recently proposed "globally optimal" point charge (OPC) model and the well-known TIP4P-Ew model. By considering the Arrhenius plots of the computed inverse diffusion coefficient and rotational relaxation constants, a crossover from Vogel-Fulcher-Tammann behavior to a linear trend with increasing temperature was detected at T* ≈ 309 and T* ≈ 285 K for the OPC and TIP4P-Ew models, respectively. Experimentally, the crossover point was previously observed at T* ± 315-5 K. We also verified that for the coefficient of thermal expansion α P ( T, P), the isobaric α P ( T) curves cross at about the same T* as in the experiment. The lifetimes of water hydrogen bonds and of the nearest neighbors were evaluated and were found to cross near T*, where the lifetimes are about 1 ps. For T water structure at T T*, water behaves more like a simple liquid. The fact that T* falls within the biologically relevant temperature range is a strong motivation for further analysis of the phenomenon and its possible consequences for biomolecular systems.

  1. Numerical Studies of the Gas-Solid Hydrodynamics at High Temperature in the Riser of a Bench-Scale Circulating Fluidized Bed

    Directory of Open Access Journals (Sweden)

    Maximilian J. Hodapp


    Full Text Available The hydrodynamics of circulating fluidized beds (CFBs is a complex phenomenon that can drastically vary depending on operational setup and geometrical configuration. A research of the literature shows that studies for the prediction of key variables in CFB systems operating at high temperature still need to be implemented aiming at applications in energy conversion, such as combustion, gasification, or fast pyrolysis of solid fuels. In this work the computational fluid dynamics (CFD technique was used for modeling and simulation of the hydrodynamics of a preheating gas-solid flow in a cylindrical bed section. For the CFD simulations, the two-fluid approach was used to represent the gas-solid flow with the k-epsilon turbulence model being applied for the gas phase and the kinetic theory of granular flow (KTGF for the properties of the dispersed phase. The information obtained from a semiempirical model was used to implement the initial condition of the simulation. The CFD results were in accordance with experimental data obtained from a bench-scale CFB system and from predictions of the semiempirical model. The initial condition applied in this work was shown to be a viable alternative to a more common constant solid mass flux boundary condition.

  2. Study on high temperature sintering processes of selective laser sintered Al2O3/ZrO2/TiC ceramics

    Directory of Open Access Journals (Sweden)

    Bai P.


    Full Text Available High temperature sintering processes of selective laser sintered Al2O3/ZrO2/TiC ceramics were studied. The effects of the sintering temperature and the sintering time on the relative density, strength and fracture toughness of Al2O3/ZrO2/TiC ceramics were investigated. The results showed that the sintering temperature and sintering time had a great effect on the relative density and the mechanical properties of Al2O3/ZrO2/TiC ceramics. The mechanical strength increased from 120MPa to 360MPa and KIC increased from 3.7 J/m2 to 6.9 J/m2 when the sintering temperature increased from 1400ºC to 1600ºC, however, the mechanical strength decreased rapidly from 370MPa to 330MPa and KIC decreased from 6.9 J/m2 to 6.1 J/m2 when the sintering time increased from 30min to 90min. Furthermore, the addition of TiC and ZrO2 in the Al2O3 matrix significantly improved mechanical strength and fracture toughness of the Al2O3 matrix ceramics.

  3. Study of the oxidation of Fe-Cr alloys at high temperatures; Estudo da oxidacao de ligas Fe-Cr a altas temperaturas

    Energy Technology Data Exchange (ETDEWEB)

    Carneiro, J.F.; Sabioni, A.C.S. [Universidade Federal de Ouro Preto (LDM/DF/UFOP), MG (Brazil). Dept. de Fisica. Lab. de Difusao em Materiais; Trindade, V.B. [Universidade Federal de Ouro Preto (DEMM/UFOP), MG (Brazil). Dept. de Engenharia Metalurgica e de Materiais; Ji, V. [Laboratoire d' Etude des Materiaux Hors-Equilibre (LEMHE), Orsay (France)


    The high temperature oxidation behavior of Fe-1.5%Cr, Fe-5.0%Cr, Fe-10%Cr and Fe- 15%Cr model alloys were investigated from 700 to 850 deg C, in air atmosphere. The oxidation treatments were performed in a thermobalance with a sensitivity of 1{mu}g. The oxide films grown by oxidation of the alloys were characterized by scanning electronic microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD). The oxide films are Fe-Cr spinels with variable composition depending on the alloy composition. For all conditions studied, the oxidation kinetics of these alloys follow a parabolic law. The comparison of the oxidation rates of the four alloys, at 700 deg C, shows that the parabolic oxidation constants decrease from 1.96x10{sup -9}g{sup 2}.cm{sup -4}.s{sup -1}, for the alloy Fe-1.5% Cr, to 1.18 x 10-14g{sup 2}.cm{sup -4}.s{sup -1} for the alloy Fe-15% Cr. Comparative analysis of the oxidation behavior of the Fe-10%Cr and Fe-15%Cr alloys, between 700 and 850 deg C, shows that the oxidation rates of these alloys are comparable to 800 deg C, above this temperature the Fe-10%Cr alloy shows lower resistance to oxidation. (author)

  4. Very High Temperature Sound Absorption Coating Project (United States)

    National Aeronautics and Space Administration — Phase I demonstrated experimentally a very high temperature acoustically absorbing coating for ducted acoustics applications. High temperature survivability at 3500...

  5. High temperature structural sandwich panels (United States)

    Papakonstantinou, Christos G.

    High strength composites are being used for making lightweight structural panels that are being employed in aerospace, naval and automotive structures. Recently, there is renewed interest in use of these panels. The major problem of most commercial available sandwich panels is the fire resistance. A recently developed inorganic matrix is investigated for use in cases where fire and high temperature resistance are necessary. The focus of this dissertation is the development of a fireproof composite structural system. Sandwich panels made with polysialate matrices have an excellent potential for use in applications where exposure to high temperatures or fire is a concern. Commercial available sandwich panels will soften and lose nearly all of their compressive strength temperatures lower than 400°C. This dissertation consists of the state of the art, the experimental investigation and the analytical modeling. The state of the art covers the performance of existing high temperature composites, sandwich panels and reinforced concrete beams strengthened with Fiber Reinforced Polymers (FRP). The experimental part consists of four major components: (i) Development of a fireproof syntactic foam with maximum specific strength, (ii) Development of a lightweight syntactic foam based on polystyrene spheres, (iii) Development of the composite system for the skins. The variables are the skin thickness, modulus of elasticity of skin and high temperature resistance, and (iv) Experimental evaluation of the flexural behavior of sandwich panels. Analytical modeling consists of a model for the flexural behavior of lightweight sandwich panels, and a model for deflection calculations of reinforced concrete beams strengthened with FRP subjected to fatigue loading. The experimental and analytical results show that sandwich panels made with polysialate matrices and ceramic spheres do not lose their load bearing capability during severe fire exposure, where temperatures reach several

  6. Solute strengthening at high temperatures (United States)

    Leyson, G. P. M.; Curtin, W. A.


    The high temperature behavior of solute strengthening has previously been treated approximately using various scaling arguments, resulting in logarithmic and power-law scalings for the stress-dependent energy barrier Δ E(τ ) versus stress τ. Here, a parameter-free solute strengthening model is extended to high temperatures/low stresses without any a priori assumptions on the functional form of Δ E(τ ) . The new model predicts that the well-established low-temperature, with energy barrier Δ {{E}\\text{b}} and zero temperature flow stress {τy0} , transitions to a near-logarithmic form for stresses in the regime 0.2intermediate-temperature and the associated transition for the activation volume. Overall, the present analysis unifies the different qualitative models in the literature and, when coupled with the previous parameter-free solute strengthening model, provides a single predictive model for solute strengthening as a function of composition, temperature, and strain rate over the full range of practical utility.

  7. High temperature PEM fuel cells (United States)

    Zhang, Jianlu; Xie, Zhong; Zhang, Jiujun; Tang, Yanghua; Song, Chaojie; Navessin, Titichai; Shi, Zhiqing; Song, Datong; Wang, Haijiang; Wilkinson, David P.; Liu, Zhong-Sheng; Holdcroft, Steven

    There are several compelling technological and commercial reasons for operating H 2/air PEM fuel cells at temperatures above 100 °C. Rates of electrochemical kinetics are enhanced, water management and cooling is simplified, useful waste heat can be recovered, and lower quality reformed hydrogen may be used as the fuel. This review paper provides a concise review of high temperature PEM fuel cells (HT-PEMFCs) from the perspective of HT-specific materials, designs, and testing/diagnostics. The review describes the motivation for HT-PEMFC development, the technology gaps, and recent advances. HT-membrane development accounts for ∼90% of the published research in the field of HT-PEMFCs. Despite this, the status of membrane development for high temperature/low humidity operation is less than satisfactory. A weakness in the development of HT-PEMFC technology is the deficiency in HT-specific fuel cell architectures, test station designs, and testing protocols, and an understanding of the underlying fundamental principles behind these areas. The development of HT-specific PEMFC designs is of key importance that may help mitigate issues of membrane dehydration and MEA degradation.

  8. Silicon Carbide Nanotube Oxidation at High Temperatures (United States)

    Ahlborg, Nadia; Zhu, Dongming


    Silicon Carbide Nanotubes (SiCNTs) have high mechanical strength and also have many potential functional applications. In this study, SiCNTs were investigated for use in strengthening high temperature silicate and oxide materials for high performance ceramic nanocomposites and environmental barrier coating bond coats. The high · temperature oxidation behavior of the nanotubes was of particular interest. The SiCNTs were synthesized by a direct reactive conversion process of multiwall carbon nanotubes and silicon at high temperature. Thermogravimetric analysis (TGA) was used to study the oxidation kinetics of SiCNTs at temperatures ranging from 800degC to1300degC. The specific oxidation mechanisms were also investigated.

  9. HIgh Temperature Photocatalysis over Semiconductors (United States)

    Westrich, Thomas A.

    Due in large part to in prevalence of solar energy, increasing demand of energy production (from all sources), and the uncertain future of petroleum energy feedstocks, solar energy harvesting and other photochemical systems will play a major role in the developing energy market. This dissertation focuses on a novel photochemical reaction process: high temperature photocatalysis (i.e., photocatalysis conducted above ambient temperatures, T ≥ 100°C). The overarching hypothesis of this process is that photo-generated charge carriers are able to constructively participate in thermo-catalytic chemical reactions, thereby increasing catalytic rates at one temperature, or maintaining catalytic rates at lower temperatures. The photocatalytic oxidation of carbon deposits in an operational hydrocarbon reformer is one envisioned application of high temperature photocatalysis. Carbon build-up during hydrocarbon reforming results in catalyst deactivation, in the worst cases, this was shown to happen in a period of minutes with a liquid hydrocarbon. In the presence of steam, oxygen, and above-ambient temperatures, carbonaceous deposits were photocatalytically oxidized over very long periods (t ≥ 24 hours). This initial experiment exemplified the necessity of a fundamental assessment of high temperature photocatalytic activity. Fundamental understanding of the mechanisms that affect photocatalytic activity as a function of temperatures was achieved using an ethylene photocatalytic oxidation probe reaction. Maximum ethylene photocatalytic oxidation rates were observed between 100 °C and 200 °C; the maximum photocatalytic rates were approximately a factor of 2 larger than photocatalytic rates at ambient temperatures. The loss of photocatalytic activity at temperatures above 200 °C is due to a non-radiative multi-phonon recombination mechanism. Further, it was shown that the fundamental rate of recombination (as a function of temperature) can be effectively modeled as a

  10. Laboratory Study on the Potential EOR Use of HPAM/VES Hybrid in High-Temperature and High-Salinity Oil Reservoirs


    Dingwei Zhu; Jichao Zhang; Yugui Han; Hongyan Wang; Yujun Feng


    Polymer flooding represents one of the most efficient processes to enhance oil recovery, and partially hydrolyzed polyacrylamide (HPAM) is a widely used oil-displacement agent, but its poor thermal stability, salt tolerance, and mechanical degradation impeded its use in high-temperature and high-salinity oil reservoirs. In this work, a novel viscoelastic surfactant, erucyl dimethyl amidobetaine (EDAB), with improved thermal stability and salinity tolerance, was complexed with HPAM to overcome...

  11. High Temperature Composite Heat Exchangers (United States)

    Eckel, Andrew J.; Jaskowiak, Martha H.


    High temperature composite heat exchangers are an enabling technology for a number of aeropropulsion applications. They offer the potential for mass reductions of greater than fifty percent over traditional metallics designs and enable vehicle and engine designs. Since they offer the ability to operate at significantly higher operating temperatures, they facilitate operation at reduced coolant flows and make possible temporary uncooled operation in temperature regimes, such as experienced during vehicle reentry, where traditional heat exchangers require coolant flow. This reduction in coolant requirements can translate into enhanced range or system payload. A brief review of the approaches and challengers to exploiting this important technology are presented, along with a status of recent government-funded projects.

  12. Faraday imaging at high temperatures (United States)

    Hackel, Lloyd A.; Reichert, Patrick


    A Faraday filter rejects background light from self-luminous thermal objects, but transmits laser light at the passband wavelength, thus providing an ultra-narrow optical bandpass filter. The filter preserves images so a camera looking through a Faraday filter at a hot target illuminated by a laser will not see the thermal radiation but will see the laser radiation. Faraday filters are useful for monitoring or inspecting the uranium separator chamber in an atomic vapor laser isotope separation process. Other uses include viewing welds, furnaces, plasma jets, combustion chambers, and other high temperature objects. These filters are can be produced at many discrete wavelengths. A Faraday filter consists of a pair of crossed polarizers on either side of a heated vapor cell mounted inside a solenoid.

  13. Vapor phase lubrication of high temperature alloys

    Energy Technology Data Exchange (ETDEWEB)

    Hanyaloglu, B.F.; Graham, E.E.; Oreskovic, T.; Hajj, C.G. [Cleveland State Univ., OH (United States)


    In a previous study, it was found that when a nickel-based superalloy IN750 was heated to high temperatures, a passive layer of aluminum oxide formed on the surface, preventing vapor phase lubrication. In this study, two nickel-chrome-iron alloys and a nickel-copper alloy were studied for high temperature lubrication to see if these alloys, which contained small amounts of aluminum, would exhibit similar behavior. It was found that under static conditions, all three alloys formed a lubricious nodular coating when exposed to a vapor of aryl phosphate. Under dynamic sliding conditions at 500{degrees}C, these alloys were successfully lubricated with a coefficient of friction of 0.1 and no detectable wear. In order to explain these results, a direct correlation between successful vapor phase lubrication and the composition of the alloys containing aluminum has been proposed. If the ratio of copper/aluminum or iron/aluminum is greater that 100 vapor phase, lubrication will be successful. If the ratio is less than 10, a passive aluminum oxide layer will prevent vapor phase lubrication. By selecting alloys with a high iron or copper content, vapor phase lubrication can provide excellent lubrication at high temperatures. 14 refs., 11 figs., 1 tab.

  14. Metallic Membranes for High Temperature Hydrogen Separation

    DEFF Research Database (Denmark)

    Ma, Y.H.; Catalano, Jacopo; Guazzone, Federico


    Composite palladium membranes have extensively been studied in laboratories and, more recently, in small pilot industrial applications for the high temperature separation of hydrogen from reactant mixtures such as water-gas shift (WGS) reaction or methane steam reforming (MSR). Composite Pd...... membrane fabrication methods have matured over the last decades, and the deposition of very thin films (1–5 µm) of Pd over porous ceramics or modified porous metal supports is quite common. The H2 permeances and the selectivities achieved at 400–500 °C were in the order of 50–100 Nm3/m/h/bar0.5 and greater...... than 1000, respectively. This chapter describes in detail composite Pd-based membrane preparation methods, which consist of the grading of the support and the deposition of the dense metal layer, their performances, and their applications in catalytic membrane reactors (CMRs) at high temperatures (400...

  15. A Moessbauer effect investigation of superparamagnetic behavior in ball milled Mn-Zn ferrites

    Energy Technology Data Exchange (ETDEWEB)

    Dunlap, R.A.; Alghamdi, A.; O' Brien, J.W.; Penney, S.J


    Nanostructured Mn{sub 1-x}Zn{sub x}Fe{sub 2}O{sub 4}, with x=0.4, 0.5, 0.6 and 0.7, were prepared by ball milling and were investigated using X-ray diffraction and {sup 57}Fe Moessbauer effect methods. Nanocrystallite grain size has been determined from X-ray linewidths to be around 70 A. {sup 57}Fe Moessbauer effect spectra of all samples showed a combination of a ferromagnetic component and a superparamagnetic component. Low-temperature Moessbauer measurements confirmed the identity of the superparamagnetic component and provided mean grain sizes consistent with the X-ray results.

  16. High temperature materials; Materiaux a hautes temperatures

    Energy Technology Data Exchange (ETDEWEB)



    The aim of this workshop is to share the needs of high temperature and nuclear fuel materials for future nuclear systems, to take stock of the status of researches in this domain and to propose some cooperation works between the different research organisations. The future nuclear systems are the very high temperature (850 to 1200 deg. C) gas cooled reactors (GCR) and the molten salt reactors (MSR). These systems include not only the reactor but also the fabrication and reprocessing of the spent fuel. This document brings together the transparencies of 13 communications among the 25 given at the workshop: 1) characteristics and needs of future systems: specifications, materials and fuel needs for fast spectrum GCR and very high temperature GCR; 2) high temperature materials out of neutron flux: thermal barriers: materials, resistance, lifetimes; nickel-base metal alloys: status of knowledge, mechanical behaviour, possible applications; corrosion linked with the gas coolant: knowledge and problems to be solved; super-alloys for turbines: alloys for blades and discs; corrosion linked with MSR: knowledge and problems to be solved; 3) materials for reactor core structure: nuclear graphite and carbon; fuel assembly structure materials of the GCR with fast neutron spectrum: status of knowledge and ceramics and cermets needs; silicon carbide as fuel confinement material, study of irradiation induced defects; migration of fission products, I and Cs in SiC; 4) materials for hydrogen production: status of the knowledge and needs for the thermochemical cycle; 5) technologies: GCR components and the associated material needs: compact exchangers, pumps, turbines; MSR components: valves, exchangers, pumps. (J.S.)

  17. Preparation of the electroplated Ni and Co films for applying betavoltaic battery and Moessbauer source

    Energy Technology Data Exchange (ETDEWEB)

    Uhm, Young Rang; Choi, Sang Mu; Kim, Jin Joo; Kim, Jong Bum; Son, Kwang Jae; Hong, Jintae [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)


    The reverse occurs at the anode where metallic nickel is dissolved to form divalent positively charged ions that enter the solution. The nickel ions discharged at the cathode are replenished by those formed at the anode. In this study, a Co-and Ni- plating solution is prepared using two different baths. One is the acid-based buffer (pH 3-4) containing boric acid, sodium chloride, and saccharin. The rest is the base-based buffer (pH 10) containing hydrazine hydrate and ammonium citrate. The optimization of the electroplating parameters for the deposition of Co on plate was considered as indispensable. A betavoltaic battery was fabricated using Ni-63 attached on a P-N junction semiconductor, and the I-V characteristics were measured using a probe station. The thickness-dependent self-shielding effect of the radioisotope layer was investigated. Also, the aim of this work was determination of the optimal parameters for thermal diffusion of the electroplated Co into the Rh structure. To establish preparation of betavoltaic battery, and Moessbauer source, natural Ni and Co were electroplated on the Rh plate. Both the acid-based buffer (pH 3) and the alkarine-based buffer (pH 10) are used for plating bath. The deposition yield of the alkarine electrolyte is relatively higher than those of the acidic bath. optimum conditions for the homogeneous diffusion is determined at annealing temperatures of 1100 .deg. C for 3h under the high vacuum atmosphere (10{sup -5} hPa). The proposed condition in this study should be applied to prepare 57Co/Rh Moessbauer source at near future.

  18. High Temperature Superconducting Underground Cable

    Energy Technology Data Exchange (ETDEWEB)

    Farrell, Roger, A.


    The purpose of this Project was to design, build, install and demonstrate the technical feasibility of an underground high temperature superconducting (HTS) power cable installed between two utility substations. In the first phase two HTS cables, 320 m and 30 m in length, were constructed using 1st generation BSCCO wire. The two 34.5 kV, 800 Arms, 48 MVA sections were connected together using a superconducting joint in an underground vault. In the second phase the 30 m BSCCO cable was replaced by one constructed with 2nd generation YBCO wire. 2nd generation wire is needed for commercialization because of inherent cost and performance benefits. Primary objectives of the Project were to build and operate an HTS cable system which demonstrates significant progress towards commercial progress and addresses real world utility concerns such as installation, maintenance, reliability and compatibility with the existing grid. Four key technical areas addressed were the HTS cable and terminations (where the cable connects to the grid), cryogenic refrigeration system, underground cable-to-cable joint (needed for replacement of cable sections) and cost-effective 2nd generation HTS wire. This was the world’s first installation and operation of an HTS cable underground, between two utility substations as well as the first to demonstrate a cable-to-cable joint, remote monitoring system and 2nd generation HTS.

  19. High temperature two component explosive (United States)

    Mars, James E.; Poole, Donald R.; Schmidt, Eckart W.; Wang, Charles


    A two component, high temperature, thermally stable explosive composition comprises a liquid or low melting oxidizer and a liquid or low melting organic fuel. The oxidizer and fuel in admixture are incapable of substantial spontaneous exothermic reaction at temperatures on the order of K. At temperatures on the order of K., the oxidizer and fuel in admixture have an activation energy of at least about 40 kcal/mol. As a result of the high activation energy, the preferred explosive compositions are nondetonable as solids at ambient temperature, and become detonable only when heated beyond the melting point. Preferable oxidizers are selected from alkali or alkaline earth metal nitrates, nitrites, perchlorates, and/or mixtures thereof. Preferred fuels are organic compounds having polar hydrophilic groups. The most preferred fuels are guanidinium nitrate, acetamide and mixtures of the two. Most preferred oxidizers are eutectic mixtures of lithium nitrate, potassium nitrate and sodium nitrate, of sodium nitrite, sodium nitrate and potassium nitrate, and of potassium nitrate, calcium nitrate and sodium nitrate.

  20. Moessbauer study of the (Ru{sub 1-x}Fe{sub x})Sr{sub 2}GdCu{sub 2}O{sub 8-{delta}} system and two of its possible impurities: SrRuO{sub 3} and Gd{sub 2}CuO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, R., E-mail:; Marquina, V.; Arevalo, A.; Perez, J. L.; Ridaura, R.; Marquina, M. L. [Universidad Nacional Autonoma de Mexico, Facultad de Ciencias (Mexico); Escamilla, R.; Akachi, T. [Universidad Nacional Autonoma de Mexico, Instituto de Investigaciones en Materiales (Mexico)


    Moessbauer spectra of a series of samples of the weak ferromagnetic (Ru{sub 1-x}Fe{sub x})Sr{sub 2}GdCu{sub 2}O{sub 8-{delta}} system reveal the existence of three dissimilar sites where the Fe atoms can go into the structure. The Moessbauer parameters of the three observed quadrupole doublets, together with the relative population on each site, allow the following site assignment for the iron atoms: Fe{sup 3+} in four-fold planar coordination at Ru sites; Fe{sup 3+} in five-fold pyramidal coordination also at Ru sites and Fe{sup 2+} or Fe{sup 3+} in five-fold coordination at Cu sites. This assignment implies the formation of oxygen-vacancies at the charge reservoir (the RuO{sub 2} planes) that affect the structure and the superconducting and magnetic properties of the undoped system. Moreover, a close correlation between the oxygen content, calculated through the Moessbauer data, and the measured cell volume is established. We also report the Moessbauer spectra of two compounds (SrRu{sub 0.95}Fe{sub 0.05}O{sub 3} and Gd{sub 2}Cu{sub 0.95}Fe{sub 0.05}O{sub 4}) that could be formed as impurities during the synthesis of our samples.

  1. In-Situ High Temperature Neutron Diffraction Study of Bi,Pb(2223) Phase Formation in Ag-Sheathed Monofilamentary Tapes (United States)

    Giannini, E.; Bellingeri, E.; Passerini, R.; Flükiger, R.

    High temperature neutron diffraction measurements were performed on Bi(2223)/Ag-sheathed monofilamentary tapes at the ILL high-flux reactor in Grenoble. Reactions leading to the conversion from Bi(2212) to Bi,Pb(2223), as well as other transformations involving secondary phases, were directly observed during the reaction heat treatment. The heating ramp and annealing conditions were exactly the same as those used for standard high-performance tapes processing. A quantitative analysis was carried out by means of a full-pattern profile refinement technique: up to 7 phases were simultaneously detected and successfully refined. An increase of the Bi(2212) phase during a slow cooling was found not to be related to a decomposition of Bi,Pb(2223), which remained stable during cooling. The role of secondary cuprates, in particular (Ca,Sr)14Cu24 O41, was investigated. Since neutron diffraction allows for an absolute measurement of the weight of crystalline matter inside the sample, it was possible to measure the total crystalline matter amount as a function of temperature and time during processing. Evidence of partial melting at high temperature was found strongly supporting the Bi,Pb(2223) formation via a nucleation-and-growth mechanism at the early stage of the process.

  2. Effect of microstructure on the high temperature strength of nitride ...

    Indian Academy of Sciences (India)

    The effect of these parameters on room temperature and high temperature strength of the composite up to 1300°C in ambient condition were studied. The high temperature flexural strength of the composite of all compositions increased at 1200 and 1300°C because of oxidation of Si3N4 phase and blunting crack front.

  3. High Temperature Chemistry at NASA: Hot Topics (United States)

    Jacobson, Nathan S.


    High Temperature issues in aircraft engines Hot section: Ni and Co based Superalloys Oxidation and Corrosion (Durability) at high temperatures. Thermal protection system (TPS) and RCC (Reinforced Carbon-Carbon) on the Space Shuttle Orbiter. High temperatures in other worlds: Planets close to their stars.

  4. High temperature vapors science and technology

    CERN Document Server

    Hastie, John


    High Temperature Vapors: Science and Technology focuses on the relationship of the basic science of high-temperature vapors to some areas of discernible practical importance in modern science and technology. The major high-temperature problem areas selected for discussion include chemical vapor transport and deposition; the vapor phase aspects of corrosion, combustion, and energy systems; and extraterrestrial high-temperature species. This book is comprised of seven chapters and begins with an introduction to the nature of the high-temperature vapor state, the scope and literature of high-temp

  5. Basic study for a large AC current supply with a single phase air-core Bi2223 high temperature superconducting transformer (United States)

    Nanato, N.; Kishi, N.; Tanaka, Y.; Kondo, M.


    The authors have been developing a compact power supply with a single-phase Bi2223 high temperature superconducting (HTS) transformer. The conventional transformer has an iron-core for enhancing magnetic coupling between its primary coil and secondary one. However, the iron-core has great majority of size and weight of the transformer and therefore it is desirable to be removed for a smaller and lighter transformer. In this paper, the authors propose an air-core HTS transformer for a more compact power supply than the conventional one. As experimental results, it is shown that appropriate design of the air-core transformer has a possibility to decrease the weight and volume of the large AC current supply.

  6. Nanoparticle Metamorphosis: An in Situ High-Temperature Transmission Electron Microscopy Study of the Structural Evolution of Heterogeneous Au:Fe 2 O 3 Nanoparticles

    KAUST Repository

    Baumgardner, William J.


    High-temperature in situ electron microscopy and X-ray diffraction have revealed that Au and Fe2O3 particles fuse in a fluid fashion at temperatures far below their size-reduced melting points. With increasing temperature, the fused particles undergo a sequence of complex structural transformations from surface alloy to phase segregated and ultimately core-shell structures. The combination of in situ electron microscopy and spectroscopy provides insights into fundamental thermodynamic and kinetic aspects governing the formation of heterogeneous nanostructures. The observed structural transformations present an interesting analogy to thin film growth on the curved surface of a nanoparticle. Using single-particle observations, we constructed a phase diagram illustrating the complex relationships among composition, morphology, temperature, and particle size. © 2014 American Chemical Society.

  7. Extraterrestrial Moessbauer Spectroscopy: More than Three Years of Mars Exploration and Developments for Future Missions (United States)

    Schroeder, Christian; Klingelhoefer, Goestar; Morris, Richard V.; Rodionov, Daniel S.; Fleischer, Iris; Blumers, Mathias


    The NASA Mars Exploration Rovers (MER), Spirit and Opportunity, landed on the Red Planet in January 2004. Both rovers are equipped with a miniaturized Moessbauer spectrometer MIMOS II. Designed for a three months mission, both rovers and both Moessbauer instruments are still working after more than three years of exploring the Martian surface. At the beginning of the mission, with a landed intensity of the Moessbauer source of 150 mCi, a 30 minute touch and go measurement produced scientifically valuable data while a good quality Moessbauer spectrum was obtained after approximately eight hours. Now, after about five halflives of the sources have passed, Moessbauer integrations are routinely planned to last approx.48 hours. Because of this and other age-related hardware degradations of the two rover systems, measurements now occur less frequently, but are still of outstanding quality and scientific importance. Summarizing important Moessbauer results, Spirit has traversed the plains from her landing site in Gusev crater and is now, for the greater part of the mission, investigating the stratigraphically older Columbia Hills. Olivine in rocks and soils in the plains suggests that physical rather than chemical processes are currently active.

  8. XPS and STM study of the growth and structure of passive films in high temperature water on a nickel-base alloy

    Energy Technology Data Exchange (ETDEWEB)

    Machet, A.; Galtayries, A.; Zanna, S.; Klein, L.; Maurice, V.; Jolivet, P.; Foucault, M.; Combrade, P.; Scott, P.; Marcus, P


    The early stages of passivation in high temperature water of a nickel-chromium-iron alloy (Alloy 600) have been investigated by X-ray Photoelectron Spectroscopy (XPS) and Scanning Tunneling Microscopy (STM). The samples (polycrystal Ni-16Cr-9Fe (wt. %) and single crystal Ni-17Cr-7Fe (1 1 1)) have been exposed for short time periods (0.4-8.2 min) to high temperature (325 deg. C) and high pressure water, under controlled hydrogen pressure, in a microautoclave designed to transfer the samples from and to the XPS spectrometer without air exposure. In the early stages of oxidation of the alloy (0.4-4 min), an ultra-thin oxide layer (about 1 nm) is formed, which consists of chromium oxide (Cr{sub 2}O{sub 3}), according to the Cr 2p{sub 3/2} core level spectrum. An outer layer of Cr(OH){sub 3} with a very small amount of Ni(OH){sub 2} is also revealed by the Cr 2p{sub 3/2}, Ni 2p{sub 3/2}, and O 1s core level spectra. At this early stage, there is a temporary blocking of the growth of Cr{sub 2}O{sub 3}. For longer exposures (4-8 min), the Cr{sub 2}O{sub 3} inner layer becomes thicker, at the expense of the outer Cr(OH){sub 3} layer. This implies the transport of Cr and Ni through the oxide layer, and release of Ni{sup 2+} in the solution. The structure of the ultra-thin oxide film formed on a single crystal Ni-17Cr-7Fe(1 1 1) alloy was analysed by STM in the constant current mode; STM images reveal that, in the early stages of oxidation, the oxide is crystalline, and the observed structure is consistent with the hexagonal structure of the oxygen sub-lattice in the basal plane (0 0 0 1) of {alpha}-Cr{sub 2}O{sub 3}.

  9. A study on the phase transformation of the nanosized hydroxyapatite synthesized by hydrolysis using in situ high temperature X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Shih, W.-J. [Department of Materials Science and Engineering, National Cheng Kung University, 1 Ta-Hsueh Road, Tainan, 70101, Taiwan (China); Wang, J.-W. [Department of Enviromental and Safety Engineering, Chung Hwa College of Medical Technology, 89 Wen-Hua 1st St., Rende Shiang, Tainan, 71703, Taiwan (China); Wang, M.-C. [Department of Materials Science and Engineering, National United University, 1 Lien-Da, Kung-Ching Li, Miao Li 360, Taiwan (China)]. E-mail:; Hon, M.-H. [Department of Materials Science and Engineering, National Cheng Kung University, 1 Ta-Hsueh Road, Tainan, 70101, Taiwan (China); Dayeh University, 112 Shan-Jiau Road, Da-Tsuen, Changhua 515, Taiwan (China)


    The biodegradable hydroxyapatite (HA) was synthesized by hydrolysis and characterized using high temperature X-ray diffraction (HT-XRD), differential thermal analysis and thermogravimetry (DTA/TG), and scanning electron microscopy (SEM). The in situ phase transformation of the HA synthesized from CaHPO{sub 4}.2H{sub 2}O (DCPD) and CaCO{sub 3} with a Ca / P = 1.5 in 2.5 M NaOH{sub (aq)} at 75 deg. C for 1 h was investigated by HT-XRD between 25 and 1500 deg. C. The HA was crystallized at 600 deg. C and maintained as the major phase until 1400 deg. C. The HA steadily transformed to the {alpha}-tricalcium phosphate ({alpha}-TCP) which became the major phosphate phase at 1500 deg. C. At 700 deg. C, the minor CaO phase appeared and vanished at 1300 deg. C. The Na{sup +} impurity from the hydrolysis process was responsible for the formation of the NaCaPO{sub 4} phase, which appeared above 800 deg. C and disappeared at 1200 deg. C.

  10. Experimental study to distinguish the effects of methanol slip and water vapour on a high temperature PEM fuel cell at different operating conditions

    DEFF Research Database (Denmark)

    Thomas, Sobi; Vang, Jakob Rabjerg; Araya, Samuel Simon


    The objective of this paper is to separate out the effects of methanol and water vapour on a high temperature polymer electrolyte membrane fuel cell under different temperatures (160°C and 180°C) and current densities (0.2Acm-2, 0.4Acm-2 and 0.6Acm-2). The degradation rates at the different current...... the presence of 5% methanol tends to degrade the cell performance. However, the presence of H2O mitigates some of the adverse effects of methanol. The effect of varying fuel compositions was found to be more prominent at lower current densities. The voltage improves significantly when adding water vapour...... to the anode after pure hydrogen operation at 180°C. A decrease in the total resistance corresponding to the voltage improvement is observed from the impedance spectra. There is minimal variation in performance with the introduction of 3% and 5% methanol along with water vapour in the anode feed at all current...

  11. In-Situ Studies of Structure Transformation and Al Coordination of KAl(MoO42 during Heating by High Temperature Raman and 27Al NMR Spectroscopies

    Directory of Open Access Journals (Sweden)

    Min Wang


    Full Text Available Recent interest in optimizing composition and synthesis conditions of functional crystals, and the further exploration of new possible candidates for tunable solid-state lasers, has led to significant research on compounds in this family MIMIII(MVIO42 (MI = alkali metal, MIII = Al, In, Sc, Fe, Bi, lanthanide; MVI = Mo, W. The vibrational modes, structure transformation, and Al coordination of crystalline, glassy, and molten states of KAl(MoO42 have been investigated by in-situ high temperature Raman scattering and 27Al magic angle spinning nuclear magnetic resonance (MAS NMR spectroscopy, together with first principles density functional simulation of room temperature Raman spectrum. The results showed that, under the present fast quenching conditions, Al is present predominantly in [AlO6] octahedra in both KAl(MoO42 glass and melt, with the tetrahedrally coordinated Al being minor at approximately 2.7%. The effect of K+, from ordered arrangement in the crystal to random distribution in the melt, on the local chemical environment of Al, was also revealed. The distribution and quantitative analysis of different Al coordination subspecies are final discussed and found to be dependent on the thermal history of the glass samples.

  12. High-pressure and high-temperature synthesis and study of the thermal properties of ZrW2O8/Cu composites (United States)

    Li, Xin; Fang, Leiming; Chen, Bo; He, Duanwei


    ZrW2O8/Cu composites with high thermal conductivity and low coefficients of thermal expansion (CTE) are desired to be utilized in thermal management applications. The ZrW2O8/Cu composites were synthesized under high-pressure and high-temperature (HPHT) conditions and annealing method. We found that the thermal conductivity and CTE of the ZrW2O8/Cu composites could be controlled through suitable HPHT sintering. In addition, cyclic heating-cooling is crucial to recrystallize the composite and reduce the thermal mismatch stress to produce a composite with high thermal conductivity and a low CTE. Under HPHT (3 GPa, 500 °C) conditions and annealing at 700 °C, the thermal conductivity and CTE of the ZrW2O8/Cu composites have been determined directly to 165 W/(m k) and 6.8×10-6 K-1. Our results help to understand the structural origins of the high thermal conductivity and low CTE, and aid in designing ZrW2O8/Cu composites with improved performance.

  13. Luminescence study and dosimetry approach of Ce on an α-Sr2 P2 O7 phosphor synthesized by a high-temperature combustion method. (United States)

    Patel, Nimesh P; Srinivas, M; Modi, Dhaval; Vishwnath, Verma; Murthy, K V R


    We report synthesis of a cerium-activated strontium pyrophosphate (Sr2 P2 O7 ) phosphor using a high-temperature combustion method. Samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), photoluminescence (PL) and thermoluminescence (TL). The XRD pattern reveals that Sr2 P2 O7 has an α-phase with crystallization in the orthorhombic space group of Pnam. The IR spectrum of α-Sr2 P2 O7 displays characteristic bands at 746 and 1190 cm(-1) corresponding to the absorption of (P2 O7 )(-4) . PL emission spectra exhibit a broad emission band around 376 nm in the near-UV region due to the allowed 5d-4f transition of cerium and suggest its applications in a UV light-emitting diode (LED) source. PL also reveals that the emission originates from 5d-4f transition of Ce(3+) and intensity increases with doping concentration. TL measurements made after X-ray irradiation, manifest a single intense glow peak at around 192°C, which suggests that this is an outstanding candidate for dosimetry applications. The kinetic parameters, activation energy and frequency factor of the glow curve were calculated using different analysis methods. Copyright © 2014 John Wiley & Sons, Ltd.

  14. Deep Trek High Temperature Electronics Project

    Energy Technology Data Exchange (ETDEWEB)

    Bruce Ohme


    This report summarizes technical progress achieved during the cooperative research agreement between Honeywell and U.S. Department of Energy to develop high-temperature electronics. Objects of this development included Silicon-on-Insulator (SOI) wafer process development for high temperature, supporting design tools and libraries, and high temperature integrated circuit component development including FPGA, EEPROM, high-resolution A-to-D converter, and a precision amplifier.

  15. Hole-doped cuprate high temperature superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Chu, C.W.; Deng, L.Z.; Lv, B.


    Highlights: • Historical discoveries of hole-doped cuprates and representative milestone work. • Several simple and universal scaling laws of the hole-doped cuprates. • A comprehensive classification list with references for hole-doped cuprates. • Representative physical parameters for selected hole-doped cuprates. - Abstract: Hole-doped cuprate high temperature superconductors have ushered in the modern era of high temperature superconductivity (HTS) and have continued to be at center stage in the field. Extensive studies have been made, many compounds discovered, voluminous data compiled, numerous models proposed, many review articles written, and various prototype devices made and tested with better performance than their nonsuperconducting counterparts. The field is indeed vast. We have therefore decided to focus on the major cuprate materials systems that have laid the foundation of HTS science and technology and present several simple scaling laws that show the systematic and universal simplicity amid the complexity of these material systems, while referring readers interested in the HTS physics and devices to the review articles. Developments in the field are mostly presented in chronological order, sometimes with anecdotes, in an attempt to share some of the moments of excitement and despair in the history of HTS with readers, especially the younger ones.

  16. High Temperature Capacitors for Venus Exploration Project (United States)

    National Aeronautics and Space Administration — In this SBIR program, TRS Technologies has developed several new dielectrics for high temperature applications including signal conditioning, filtering and energy...

  17. Advances in high temperature chemistry 1

    CERN Document Server

    Eyring, Leroy


    Advances in High Temperature Chemistry, Volume 1 describes the complexities and special and changing characteristics of high temperature chemistry. After providing a brief definition of high temperature chemistry, this nine-chapter book goes on describing the experiments and calculations of diatomic transition metal molecules, as well as the advances in applied wave mechanics that may contribute to an understanding of the bonding, structure, and spectra of the molecules of high temperature interest. The next chapter provides a summary of gaseous ternary compounds of the alkali metals used in

  18. A new evaluation method for micro-fracture plugging in high-temperature deep wells and its application: A case study of the Xushen Gas Field, Songliao Basin

    Directory of Open Access Journals (Sweden)

    Yonggui Liu


    Full Text Available Micro-fractures are developed in volcanic layers of Cretaceous Yingcheng Fm in the deep part of Xujiaweizi fault depression, Songliao Basin. In the process of well drilling, various complex problems happen, such as borehole wall slabbing and collapse and serious fluid leakage. Based on conventional drilling fluid plugging evaluation methods, the real situations cannot be presented accurately, especially in fracture feature simulation and plugging effect evaluation. Therefore, a specific micro-fracture plugging evaluation method was put forward especially for high-temperature deep wells in the paper. It is a new type of micro-fracture core model with the fracture apertures in the range of 1–50 μm. It is made of aluminosilicate that is compositionally close to natural rocks. It is good in repeatability with fracture-surface roughness, pore development and fracture-surface morphology close to natural fractures. Obviously, this new model makes up for the deficiencies of the conventional methods. A new micro-fracture plugging evaluation instrument was independently designed with operating temperature of 200 °C and operating pressure of 3.5–5.0 MPa. It can be used to simulate the flow regime of downhole operating fluids, with the advantages of low drilling fluid consumption, convenient operation and low cost. The plugging capacity of the organo-silicone drilling fluid system was evaluated by using this instrument. It is shown that the grain size distribution of the drilling fluid is improved and its anti-collapse capacity is enhanced. Based on the field test in Well XSP-3, the safe drilling problems in volcanic layers with developed micro-fractures are effectively solved by using the drilling fluid formula which is optimized by means of this evaluation method. And the safe drilling is guaranteed in the deep fractured formations in this area.

  19. System study on high temperature gas cleaning in Integrated Coal Gasification Combined Cycles (IGCC's). Systeemstudie hoge temperatuur gasreiniging bij KV-STEG-installaties

    Energy Technology Data Exchange (ETDEWEB)

    Alderliesten, P.T.; Jansen, D. (Netherlands Energy Research Foundation, Petten (Netherlands)); Brunia, A.; Melman, A.G.; Schmal, D.; Verschoor, M.J.E.; Woudstra, N. (Instituut voor Milieu- en Energietechnologie TNO, Apeldoorn (Netherlands)); Enoch, G.D.; Janssen, F.J.; Raas, J.L.; Tummers, J.F. (Keuring van Elektrotechnische Materialen, Arnhem (Netherlands)); Klein Teeselink, H. (Stork Ketels, Utrecht (N


    There is a great diversity in high temperature gas cleaning (HTGC) techniques, presently being under development or already commercially available, aiming at the improvement of the overall plant efficiency. Predictions for the rise of plant efficiency due to the use of HTGC in integrated coal gasification combined cycles (IGCC's) vary between zero and ten percent. A thorough investigation and evaluation of HTGC techniques as well as integral thermodynamic system computations, based upon well defined technical starting points, have been carried out, to gain better insights into the technical and economic performance of HTGC in IGCC's, on behalf of further programming of research and development in this field. This report is made up of separate monographs on the various topics, included entirely or in summarized form in this final report, which should be regarded as an independent entity: 1. Monograph 2.1: H{sub 2}S/COS Removal; 2. Monograph 2.4: Dust Removal; 3. Monograph 2.2: HCl/HF Removal; 4. Monograph 2.3: Alkali Metals and other Trace Elements; and 5. Monograph 2.5: DeNO{sub x} Methods and NH{sub 3}/HCN Removal. The report gives a summary of HTGC techniques already in existence or in development. On the basis of the information obtained a selection has been made for three gas cleaning temperature levels, at 250, 350 and 600{sup o}C. These temperatures are coal gas exit temperatures from the syngas coolers and therefore gas cleaning system entry temperatures. 28 figs., 20 tabs., 12 refs.

  20. Research at Very High Pressures and High Temperatures (United States)

    Bundy, Francis P.


    Reviews research and apparatus utilized in the study of the states and characteristics of materials at very high temperatures and pressures. Includes three examples of the research being conducted. (SL)

  1. Spectral emissivity of candidate alloys for very high temperature reactors in high temperature air environment

    Energy Technology Data Exchange (ETDEWEB)

    Cao, G., E-mail:; Weber, S.J.; Martin, S.O.; Sridharan, K.; Anderson, M.H.; Allen, T.R.


    Emissivity measurements for candidate alloys for very high temperature reactors were carried out in a custom-built experimental facility, capable of both efficient and reliable measurements of spectral emissivities of multiple samples at high temperatures. The alloys studied include 304 and 316 austenitic stainless steels, Alloy 617, and SA508 ferritic steel. The oxidation of alloys plays an important role in dictating emissivity values. The higher chromium content of 304 and 316 austenitic stainless steels, and Alloy 617 results in an oxide layer only of sub-micron thickness even at 700 °C and consequently the emissivity of these alloys remains low. In contrast, the low alloy SA508 ferritic steel which contains no chromium develops a thicker oxide layer, and consequently exhibits higher emissivity values.

  2. Spectral emissivity of candidate alloys for very high temperature reactors in high temperature air environment (United States)

    Cao, G.; Weber, S. J.; Martin, S. O.; Sridharan, K.; Anderson, M. H.; Allen, T. R.


    Emissivity measurements for candidate alloys for very high temperature reactors were carried out in a custom-built experimental facility, capable of both efficient and reliable measurements of spectral emissivities of multiple samples at high temperatures. The alloys studied include 304 and 316 austenitic stainless steels, Alloy 617, and SA508 ferritic steel. The oxidation of alloys plays an important role in dictating emissivity values. The higher chromium content of 304 and 316 austenitic stainless steels, and Alloy 617 results in an oxide layer only of sub-micron thickness even at 700 °C and consequently the emissivity of these alloys remains low. In contrast, the low alloy SA508 ferritic steel which contains no chromium develops a thicker oxide layer, and consequently exhibits higher emissivity values.

  3. The fate of Fe{sup 3+} ions in the system {l_brace}AlO(OH)-xerogel/Fe-compounds{r_brace} after mechanical activation and different thermal treatments studied by Moessbauer, ESR spectroscopy and thermal analysis

    Energy Technology Data Exchange (ETDEWEB)

    Stoesser, R. [Humboldt University, Institute of Chemistry (Germany); Menzel, M., E-mail: [Federal Institute for Materials Research and Testing (BAM) (Germany); Feist, M. [Humboldt University, Institute of Chemistry (Germany)


    Co-milling of AlO(OH) xerogels with various iron(III) compounds such as {alpha}-Fe{sub 2}O{sub 3} or K{sub 3}[Fe(CN){sub 6}] has been used for mechanochemical activation leading to Fe/Al oxide phases in coexistence with the activated main component. The results obtained allow a deeper insight into the chemical processes occurring during activation, doping, and thermal treatment in atmospheres of different chemical activity (H{sub 2}O; N{sub 2}; O{sub 2}/N{sub 2}; H{sub 2}/N{sub 2}). Evidence will be given for Fe{sup 3+} species being able to form suitable crystallization germs and to lower the crystallization temperature. One can distinguish between the incorporation of Fe{sup 3+} ions into the alumina matrix at the crystallite growth (e.g. on Fe{sub 2}O{sub 3}-like seeds) and the incorporation of Fe{sup 3+} ions during the last steps of crystallization. These last-mentioned Fe{sup 3+} ions are provided by coexisting Fe/Al oxide phases. In contrast to alumina matrices equilibrated at high temperatures (e.g. at 1,200-1,500{sup o}C), the matrices formed in situ are able to incorporate Fe{sup 3+} ions by diffusion at temperatures of {approx}900-1,100 deg. C in a short time regime.

  4. High temperature superconducting fault current limiter (United States)

    Hull, John R.


    A fault current limiter (10) for an electrical circuit (14). The fault current limiter (10) includes a high temperature superconductor (12) in the electrical circuit (14). The high temperature superconductor (12) is cooled below its critical temperature to maintain the superconducting electrical properties during operation as the fault current limiter (10).

  5. Technological Evolution of High Temperature Superconductors (United States)



  6. High Temperature Polymer Electrolyte Fuel Cells

    DEFF Research Database (Denmark)

    Fleige, Michael

    This thesis presents the development and application of electrochemical half-cell setups to study the catalytic reactions taking place in High Temperature Polymer Electrolyte Fuel Cells (HTPEM-FCs): (i) a pressurized electrochemical cell with integrated magnetically coupled rotating disk electrode...... to 140 ºC and oxygen pressures up to ~100 bar at room temperature. The GDE cell is successfully tested at 130 ºC by means of direct oxidation of methanol and ethanol, respectively. In the second part of the thesis, the emphasis is put on the ORR in H3PO4 with particular focus on the mass transport...... oxidation of ethanol is in principle a promising concept to supply HTPEM-FCs with a sustainable and on large scale available fuel (ethanol from biomass). However, the intermediate temperature tests in the GDE setup show that even on Pt-based catalysts the reaction rates become first significant...

  7. Toroidal high temperature superconducting coils for ISTTOK

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, H., E-mail: [Associacao Euratom/IST, Instituto de Plasmas e Fusao Nuclear, Laboratorio Associado, Instituto Superior Tecnico, 1049-001 Lisboa (Portugal); Goemoery, F. [Institute of Electrical Engineering, Slovak Academy of Sciences, Dubravska cesta 9, 84104 Bratislava (Slovakia); Corte, A. della; Celentano, G. [ENEA C.R. Frascati, Via E. Fermi 45, 00044 Frascati (Italy); Souc, J. [Institute of Electrical Engineering, Slovak Academy of Sciences, Dubravska cesta 9, 84104 Bratislava (Slovakia); Silva, C.; Carvalho, I.; Gomes, R. [Associacao Euratom/IST, Instituto de Plasmas e Fusao Nuclear, Laboratorio Associado, Instituto Superior Tecnico, 1049-001 Lisboa (Portugal); Di Zenobio, A.; Messina, G. [ENEA C.R. Frascati, Via E. Fermi 45, 00044 Frascati (Italy)


    High temperature superconductors (HTS) are very attractive to be used in fusion devices mainly due to lower operations costs. The HTS technology has reached a point where the construction of toroidal field coils for a tokamak is possible. The feasibility of a tokamak operating with HTS is extremely relevant and ISTTOK is the ideal candidate for a meaningful test due to its small size (and consequently lower cost) and the possibility to operate in a steady-state inductive regime. In this paper, a conceptual study of the ISTTOK upgrade to a superconducting device is presented, along with the relevant boundary conditions to achieve a permanent toroidal field with HTS. It is shown that the actual state of the art in HTS allows the design of a toroidal field coil capable of generating the appropriate field on plasma axis while respecting the structural specification of the machine.

  8. RPC operation at high temperature

    CERN Document Server

    Aielli, G; Cardarelli, R; Di Ciaccio, A; Di Stante, L; Liberti, B; Paoloni, A; Pastori, E; Santonico, R


    The resistive electrodes of RPCs utilised in several current experiments (ATLAS, CMS, ALICE, BABAR and ARGO) are made of phenolic /melaminic polymers, with room temperature resistivities ranging from 10**1**0 Omega cm, for high rate operation in avalanche mode, to 5 multiplied by 10**1**1 Omega cm, for streamer mode operation at low rate. The resistivity has however a strong temperature dependence, decreasing exponentially with increasing temperature. We have tested several RPCs with different electrode resistivities in avalanche as well as in streamer mode operation. The behaviours of the operating current and of the counting rate have been studied at different temperatures. Long-term operation has also been studied at T = 45 degree C and 35 degree C, respectively, for high and low resistivity electrodes RPCs.

  9. Moessbauer Characterization of Rust Obtained in an Accelerated Corrosion Test

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, K. E.; Morales, A. L.; Arroyave, C. E.; Barrero, C. A. [Universidad de Antioquia, Grupo de Corrosion y Proteccion, Departamento de Ingenieria de Materiales (Colombia); Cook, D. C. [Old Dominion University, Department of Physics (United States)


    We have performed drying-humectation cyclical processes (CEBELCOR) on eight A36 low carbon steel coupons in NaCl solutions containing 1x10{sup -2} M and 1x10{sup -1} M concentrations. The main purpose of these experiments is to contribute to the understanding of the conditions for akaganeite formation. Additionally, and with the idea to perform a complete characterization of the rust, this work also considers the formation of other iron oxide phases. The corrosion products were characterized by Moessbauer spectroscopy and X-ray diffraction techniques. Gravimetric analysis demonstrates that the coupons presented high corrosion rates. Magnetite/maghemite was common in the rust stuck to the steel surface, whereas akaganeite was present only in traces. In the rust collected from the solutions, i.e., the rust that goes away from the metal surface easily, a magnetite/maghemite was not present and akaganeite showed up in larger quantities. These results support the idea that high concentrations of Cl{sup -} ions are required for the akaganeite formation. We concluded that akaganeite is not easily bonded to the rust layer; this may lead to the formation of a less protective rust layer and to higher corrosion rates.

  10. {sub 119}Sn Moessbauer spectroscopy of tin containing float glass

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Verena; Vadim, Ksenofontov; Felser, Claudia [Johannes Gutenberg - Universitaet, 55099 Mainz (Germany); Aigner, Maria Luisa; Pfeiffer, Thomas; Sprenger, Dirk [Schott AG, 55122 Mainz (Germany)


    According to the production process of float glasses tin is used as a common refining agent. Since the surface quality of the glass strongly depends on the local distribution of Sn-redox states, the influence of process parameters on Sn{sup 2+}/Sn{sup 4+} ratios and the assignment to their structural role in the glass network is extremely helpful. Therefore, glass compositions based on SiO{sub 2}-Al{sub 2}O{sub 3}-B{sub 2}O{sub 3}-CaO-SnO{sub 2} were molten with additions of 0,1, 0,3 and 0,5 wt% SnO{sub 2}. All samples were tempered for 7 days at 1400 C in N{sub 2} and N{sub 2}-air mixtures with controlled p{sub O2}-values of 10{sup -2} and 10{sup -5} bar, respectively. Hyperfine parameters for the tin nucleus in different structural units and their oxidation states were calculated from {sup 119}Sn Moessbauer spectra, using theoretical simulations of electron densities and electric field gradients with the Wien2k software. Finally, the thermochemical impact of oxygen on the structure of Sn-bearing glasses is discussed.

  11. High Temperature Thermoacoustic Heat Pump

    Energy Technology Data Exchange (ETDEWEB)

    Tijani, H.; Spoelstra, S. [ECN Biomass and Energy Efficiency, Petten (Netherlands)


    Thermoacoustic technology can provide new types of heat pumps that can be deployed in different applications. Thermoacoustic heat pumps can for example be applied in dwellings to generate cooling or heating. Typically, space and water heating makes up about 60% of domestic and office energy consumption. The application of heat pumps can contribute to achieve energy savings and environmental benefits by reducing CO2 and NOx emissions. This paper presents the study of a laboratory scale thermoacoustic-Stirling heat pump operating between 10C and 80C which can be applied in domestics and offices. The heat pump is driven by a thermoacoustic-Stirling engine. The experimental results show that the heat pump pumps 250 W of heat at 60C at a drive ratio of 3.6 % and 200 W at 80C at a drive ratio of 3.5 %. The performance for both cases is about 40% of the Carnot performance. The design, construction, and performance measurements of the heat pump will be presented and discussed.

  12. Aeronautical applications of high-temperature superconductors (United States)

    Turney, George E.; Luidens, Roger W.; Uherka, Kenneth; Hull, John


    The successful development of high-temperature superconductors (HTS) could have a major impact on future aeronautical propulsion and aeronautical flight vehicle systems. A preliminary examination of the potential application of HTS for aeronautics indicates that significant benefits may be realized through the development and implementation of these newly discovered materials. Applications of high-temperature superconductors (currently substantiated at 95 k) were envisioned for several classes of aeronautical systems, including subsonic and supersonic transports, hypersonic aircraft, V/STOL aircraft, rotorcraft, and solar, microwave and laser powered aircraft. Introduced and described are the particular applications and potential benefits of high-temperature superconductors as related to aeronautics and/or aeronautical systems.

  13. Symposium on high temperature and materials chemistry

    Energy Technology Data Exchange (ETDEWEB)


    This volume contains the written proceedings of the Symposium on High Temperature and Materials Chemistry held in Berkeley, California on October 24--25, 1989. The Symposium was sponsored by the Materials and Chemical Sciences Division of Lawrence Berkeley Laboratory and by the College of Chemistry of the University of California at Berkeley to discuss directions, trends, and accomplishments in the field of high temperature and materials chemistry. Its purpose was to provide a snapshot of high temperature and materials chemistry and, in so doing, to define status and directions.

  14. Universal LabVIEW-powered Moessbauer spectrometer based on USB, PCI or PXI devices

    Energy Technology Data Exchange (ETDEWEB)

    Pechousek, J; Prochazka, R; Jancik, D; Frydrych, J; Mashlan, M, E-mail: pechous@prfnw.upol.c [Centre for Nanomaterial Research, Palacky University, Slechtitelu 11, 783 71, Olomouc (Czech Republic)


    A new design of the universal Moessbauer spectrometer is presented. Hardware solution is based on commercial-available data acquisition devices working on the USB, PCI or PXI platform controlled by the main application running on the personal computer. Final application allows, in addition to Moessbauer spectra accumulation, the detailed analysis of the acquired detector signal in energy and time domains, and also to tune the velocity driving system separately. The experimental results show a high flexibility in various detectors and velocity transducers usage. It is easy to change the way of operation according to the different experimental requirements. This concept can be used with all common spectrometric benches with different velocity transducers, radioactive sources and gamma-ray detectors. This is a new approach in the Moessbauer spectrometer construction.

  15. Performance of new solid state {gamma}-detectors in {sup 57}Fe Moessbauer spectroscopy experiments

    Energy Technology Data Exchange (ETDEWEB)

    Dellmann, Til; Klauss, Hans-Henning [Institute of Solid State Physics, TU Dresden (Germany)


    Usually, proportional counter tubes are used in {sup 57}Fe Moessbauer spectroscopy for the detection of the 14.4 keV transition line. % and further signal processing. The recent developement of Si-based solid state detectors led to commercially available drift detectors (SDD) and high purity PiN diodes without the necessity of cooling with liquid nitrogen. First applications of SDD detectors in the analysis of minerals are already highly promising. In this talk, we present a detailed comparison between the three detector types and their use in Moessbauer spectroscopy using a standard absorber-source-combination (metallic iron with a 2.0 GBq {sup 57}Co/Rh source) in absorbtion geometry. Starting with the definition of a global efficiency function, which optimises the goodness of a Moessbauer spectrum and thus the required measurement time, we examined the influence of the intrinsic detector parameters on the global efficiency.

  16. High Temperature Solid State Lithium Battery Project (United States)

    National Aeronautics and Space Administration — Reliable energy systems with high energy density capable of operating at high temperatures, pressures and radiation levels are needed for certain NASA missions....

  17. Novel High Temperature Strain Gauge Project (United States)

    National Aeronautics and Space Administration — Advanced high-temperature sensor technology and bonding methods are of great interests in designing and developing advanced future aircraft. Current state-of-the-art...

  18. High Temperature Fiberoptic Thermal Imaging System Project (United States)

    National Aeronautics and Space Administration — The proposed Phase 1 program will fabricate and demonstrate a small diameter single fiber endoscope that can perform high temperature thermal imaging in a jet engine...

  19. High Temperature Capacitors for Venus Exploration Project (United States)

    National Aeronautics and Space Administration — High temperature power electronics have become a vital aspect of future designs for power converters in spacecraft, battle zone electric power, satellite power...

  20. Ion Based High-Temperature Pressure Sensor

    National Research Council Canada - National Science Library

    Zdenek, Jeffrey S; Anthenien, Ralph A


    .... The environment encountered in such engines necessitates high temperature and durable (vibration resistant) devices. Traditional pressure sensors can be used, however thermal insulating materials must be used to protect the diaphragm...

  1. Lightweight, High-Temperature Radiator Panels Project (United States)

    National Aeronautics and Space Administration — Lightweight, high-temperature radiators are needed for future, high-efficiency power conversion systems for Nuclear Electric Propulsion (NEP). Creare has developed...

  2. Panel report on high temperature ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Nolet, T C [ed.


    Fundamental research is reported concerning high temperature ceramics for application in turbines, engines, batteries, gasifiers, MHD, fuel cells, heat exchangers, and hot wall combustors. Ceramics microstructure and behavior are included. (FS)

  3. High Temperature Rechargeable Battery Development Project (United States)

    National Aeronautics and Space Administration — This small business innovation research is intended to develop and proof the concept of a highly efficient, high temperature rechargeable battery for supporting...

  4. High temperature superconductors and other superfluids

    CERN Document Server

    Alexandrov, A S


    Written by eminent researchers in the field, this text describes the theory of superconductivity and superfluidity starting from liquid helium and a charged Bose-gas. It also discusses the modern bipolaron theory of strongly coupled superconductors, which explains the basic physical properties of high-temperature superconductors. This book will be of interest to fourth year graduate and postgraduate students, specialist libraries, information centres and chemists working in high-temperature superconductivity.

  5. Moessbauer absorption by thick ferromagnets in radio-frequency magnetic field

    CERN Document Server

    Dzyublik, A Y


    The dynamical scattering theory is developed for transmission of the Moessbauer radiation through a ferromagnetic absorber of arbitrary thickness whose magnetization periodically reverses under the influence of an external radio-frequency (RF) magnetic field. The thickness dependence of the Moessbauer absorption spectrum as well as the time dependence and energy distribution of the transmitted beam are analyzed. The transmitted spectrum as a function of the frequency of transmitted gamma-quanta, reveals a sideband structure separated by twice the frequency of the RF field, which collapses to a single line at high frequencies.

  6. The big and little of fifty years of Moessbauer spectroscopy at Argonne.

    Energy Technology Data Exchange (ETDEWEB)

    Westfall, C.


    Using radioactive materials obtained by chance, a turntable employing gears from Heidelberg's mechanical toy shops, and other minimal equipment available in post World War II Germany, in 1959 Rudolf Moessbauer confirmed his suspicion that his graduate research had yielded ground-breaking results. He published his conclusion: an atomic nucleus in a crystal undergoes negligible recoil when it emits a low energy gamma ray and provides the entire energy to the gamma ray. In the beginning Moessbauer's news might have been dismissed. As Argonne nuclear physicist Gilbert Perlow noted: ''Everybody knew that nuclei were supposed to recoil when emitting gamma rays--people made those measurements every day''. If any such effect existed, why had no one noticed it before? The notion that some nuclei would not recoil was ''completely crazy'', in the words of the eminent University of Illinois condensed matter physicist Frederich Seitz. Intrigued, however, nuclear physicists as well as condensed matter (or solid state) physicists in various locations--but particularly at the Atomic Energy Research Establishment at Harwell in Britain and at Argonne and Los Alamos in the U.S.--found themselves pondering the Moessbauer spectra with its nuclear and solid state properties starting in late 1959. After an exciting year during which Moessbauer's ideas were confirmed and extended, the physics community concluded that Moessbauer was right. Moessbauer won the Nobel Prize for his work in 1961. In the 1960s and 1970s Argonne physicists produced an increasingly clear picture of the properties of matter using the spectroscopy ushered in by Moessbauer. The scale of this traditional Moessbauer spectroscopy, which required a radioactive source and other simple equipment, began quite modestly by Argonne standards. For example Argonne hosted traditional Moessbauer spectroscopy research using mostly existing equipment in the early days and

  7. Moessbauer and infrared spectroscopy as a diagnostic tool for the characterization of ferric tannates

    Energy Technology Data Exchange (ETDEWEB)

    Jaen, Juan A., E-mail: [Universidad de Panama, Depto. de Quimica Fisica, CITEN, Lab. No. 105, Edificio de Laboratorios Cientificos-VIP (Panama); Navarro, Cesar [Universidad de Panama, Escuela de Quimica, Facultad de Ciencias Naturales, Exactas y Tecnologia (Panama)


    Fourier transform infrared spectroscopy and Moessbauer spectroscopy are use for the characterization and qualitative analysis of hydrolysable and condensed tannates. The two classes of tannates may be differentiated from the characteristic IR pattern. Moessbauer proof that a mixture of mono- and bis-type ferric tannate complexes, and an iron(II)-tannin complex are obtained from the interaction of hydrolysable tannins (tannic acid and chestnut tannin) and condensed tannins (mimosa and quebracho) with a ferric nitrate solution. At pH 7, a partially hydrolyzed ferric tannate complex was also obtained.

  8. Coolant Compatibility Studies for Fusion and Fusion-Fission Hybrid Reactor Concepts: Corrosion of Oxide Dispersion Strengthened Iron-Chromium Steels and Tantalum in High Temperature Molten Fluoride Salts

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, Joseph [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); El-dasher, Bassem [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ferreira, James [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Caro, Magdalena Serrano de [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kimura, Akihiko [Kyoto Univ. (Japan). Inst. of Advanced Energy


    Alloys such as 12YWT & 14YWT have exceptional high-temperature strength at temperatures greater than 550 C. This class of materials has also demonstrated relatively little radiation induced swelling at damage levels of at least 75 dpa in sodium-cooled fast reactors. However, corrosion of oxide dispersion strengthened (ODS) steels in high temperature molten fluoride salts may limit the life of advanced reactor systems, including some fusion and fusionfission hybrid systems that are now under consideration. This paper reports corrosion studies of ODS steel in molten fluoride salts at temperatures ranging from 600 to 900 C. Electrochemical impedance spectroscopy (EIS) was used to measure the temperature dependence of charge transfer kinetics in situ, while an environmental electron microscope (ESEM) equipped with energy dispersive spectroscopy (EDS) was used for postexposure examination of test samples. ODS steel experienced corrosion in the molten fluoride salts at 550 to 900 C, even in carefully controlled glove-box environments with very low levels of oxygen and moisture. The observed rate of attack was found to accelerate dramatically at temperatures above 800 C. Tantalum and tantalum-based alloys such as Ta-1W and Ta-10W have exceptional high temperature strength, far better than ODS steels. Unlike ODS steels, tantalum has been found to exhibit some immunity to corrosive attack by molten fluoride salts at temperatures as high as 900 C, though there is some indication that grain boundary attack may have occurred. Unfortunately, tantalum alloys are known to become brittle during irradiation and exposure to hydrogen, both of which are important in fusion applications.

  9. Investigations into High Temperature Components and Packaging

    Energy Technology Data Exchange (ETDEWEB)

    Marlino, L.D.; Seiber, L.E.; Scudiere, M.B.; M.S. Chinthavali, M.S.; McCluskey, F.P.


    The purpose of this report is to document the work that was performed at the Oak Ridge National Laboratory (ORNL) in support of the development of high temperature power electronics and components with monies remaining from the Semikron High Temperature Inverter Project managed by the National Energy Technology Laboratory (NETL). High temperature electronic components are needed to allow inverters to operate in more extreme operating conditions as required in advanced traction drive applications. The trend to try to eliminate secondary cooling loops and utilize the internal combustion (IC) cooling system, which operates with approximately 105 C water/ethylene glycol coolant at the output of the radiator, is necessary to further reduce vehicle costs and weight. The activity documented in this report includes development and testing of high temperature components, activities in support of high temperature testing, an assessment of several component packaging methods, and how elevated operating temperatures would impact their reliability. This report is organized with testing of new high temperature capacitors in Section 2 and testing of new 150 C junction temperature trench insulated gate bipolar transistor (IGBTs) in Section 3. Section 4 addresses some operational OPAL-GT information, which was necessary for developing module level tests. Section 5 summarizes calibration of equipment needed for the high temperature testing. Section 6 details some additional work that was funded on silicon carbide (SiC) device testing for high temperature use, and Section 7 is the complete text of a report funded from this effort summarizing packaging methods and their reliability issues for use in high temperature power electronics. Components were tested to evaluate the performance characteristics of the component at different operating temperatures. The temperature of the component is determined by the ambient temperature (i.e., temperature surrounding the device) plus the

  10. X-ray quantum optics with Moessbauer nuclei in thin-film cavities

    Energy Technology Data Exchange (ETDEWEB)

    Heeg, Kilian Peter


    In this thesis thin-film cavities with embedded Moessbauer nuclei probed by near-resonant X-ray light are studied from a quantum optical perspective. A theoretical framework is developed and compact expressions for the observables are derived for the linear excitation regime, which is encountered in current experiments. Even advanced cavity layouts can be modeled in excellent agreement with the results of previous experiments and semi-classical approaches. In the absence of magnetic hyperfine splitting, the spectral response of the system is found to be formed by tunable Fano profiles. An experimental implementation of this line shape control allows to extract spectroscopic signatures with high precision and to reconstruct the phase of the nuclear transition in good agreement with the theoretical predictions. The alignment of medium magnetization and polarization control of the X-rays enable to engineer advanced quantum optical level schemes, in which vacuum induced coherence effects are predicted and successfully demonstrated in an experiment. Furthermore, it is shown that group velocity control for x-ray pulses can be achieved in the cavity. A scheme for its observation is proposed and then employed to experimentally confirm sub-luminal X-ray propagation. Finally, non-linear effects, which could become accessible with future light sources, are explored and a non-linear line shape control mechanism is discussed.

  11. High temperature deformation of silicon steel

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Calvillo, Pablo, E-mail: [CTM - Technologic Centre, Materials Technology Area, Manresa, Cataluna (Spain); Department of Materials Science and Metallurgical Engineering, Universidad Politecnica de Cataluna, Barcelona (Spain); Houbaert, Yvan, E-mail: [Department of Materials Science and Engineering, University of Ghent (Belgium); Petrov, Roumen, E-mail: [Department of Materials Science and Engineering, University of Ghent (Belgium); Kestens, Leo, E-mail: [Department of Materials Science and Engineering, University of Ghent (Belgium); Colas, Rafael, E-mail: [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon (Mexico); Centro de Innovacion, Investigacion y Desarrollo en Ingenieria y Tecnologia, Universidad Autonoma de Nuevo Leon (Mexico)


    The microstructure and texture development during high temperature plane strain compression of 2% in weight silicon steel was studied. The tests were carried out at a constant strain rate of 5 s{sup -1} with reductions of 25, 35 and 75% at temperatures varying from 800 to 1100 Degree-Sign C. The changes in microstructure and texture were studied by means of scanning electron microscopy and electron backscattered diffraction. The microstructure close to the surface of the samples was equiaxed, which is attributed to the shear caused by friction, whereas that at the centre of the specimens was made of a mixture of elongated and fine equiaxed grains, the last ones attributed to the action of dynamic recovery followed by recrystallization. It was found that the volume fraction of these equiaxed grains augmented as reduction and temperature increased; a 0.7 volume fraction was accomplished with a 75% reduction at 1100 Degree-Sign C. The texture of the equiaxed and elongated grains was found to vary with the increase of deformation and temperature, as the {gamma}-fibre tends to disappear and the {alpha}-fibre to increase towards the higher temperature range. -- Highlights: Black-Right-Pointing-Pointer The plastic deformation of a silicon containing steel is studied by plane strain compression. Black-Right-Pointing-Pointer Equiaxed and elongated grains develop in different regions of the sample due to recrystallization. Black-Right-Pointing-Pointer Texture, by EBSD, is revealed to be similar in either type of grains.

  12. High Temperature Integrated Thermoelectric Ststem and Materials

    Energy Technology Data Exchange (ETDEWEB)

    Mike S. H. Chu


    The final goal of this project is to produce, by the end of Phase II, an all ceramic high temperature thermoelectric module. Such a module design integrates oxide ceramic n-type, oxide ceramic p-type materials as thermoelectric legs and oxide ceramic conductive material as metalizing connection between n-type and p-type legs. The benefits of this all ceramic module are that it can function at higher temperatures (> 700 C), it is mechanically and functionally more reliable and it can be scaled up to production at lower cost. With this all ceramic module, millions of dollars in savings or in new opportunities recovering waste heat from high temperature processes could be made available. A very attractive application will be to convert exhaust heat from a vehicle to reusable electric energy by a thermoelectric generator (TEG). Phase I activities were focused on evaluating potential n-type and p-type oxide compositions as the thermoelectric legs. More than 40 oxide ceramic powder compositions were made and studied in the laboratory. The compositions were divided into 6 groups representing different material systems. Basic ceramic properties and thermoelectric properties of discs sintered from these powders were measured. Powders with different particles sizes were made to evaluate the effects of particle size reduction on thermoelectric properties. Several powders were submitted to a leading thermoelectric company for complete thermoelectric evaluation. Initial evaluation showed that when samples were sintered by conventional method, they had reasonable values of Seebeck coefficient but very low values of electrical conductivity. Therefore, their power factors (PF) and figure of merits (ZT) were too low to be useful for high temperature thermoelectric applications. An unconventional sintering method, Spark Plasma Sintering (SPS) was determined to produce better thermoelectric properties. Particle size reduction of powders also was found to have some positive benefits

  13. Assessment of high-temperature filtering elements

    Energy Technology Data Exchange (ETDEWEB)

    Monica Lupion; Francisco J. Gutierrez Ortiz; Benito Navarrete; Vicente J. Cortes [University of Seville, Seville (Spain). E.T.S. Ingenieros


    A complete experimental campaign has been carried out in a hot gas filtration test facility so as to test several filtering elements and configurations, particularly, three different types of bag filters and one ceramic candle. The facility was designed to operate under a wide range of conditions, thus providing an excellent tool for the investigation of hot gas filtration applications for the advanced electrical power generation industry such as IGCC, PFBC or fuel cell technologies. Relevant parameters for the characterization and optimization of the performance of the filters have been studied for a variety of operation conditions such as filtration velocity, particle concentration, pressure and temperature among others. Pressure drop across the filter, cleaning pulse interval, baseline pressure drop, filtration efficiency and durability of the filter have been investigated for each type considered and dependences on parameters have been established. On top of that, optimal operating conditions and cleaning strategies were determined. The tests results show that bag filters are a suitable alternative for the hot gas filtration due to the better performance and the high efficiency observed, which makes them suitable for industrial applications operating under high temperature high pressure conditions considered within the study (200-370{degree}C and 4-7.5 barg respectively). 7 refs., 7 figs., 10 tabs.

  14. Electrochemical high-temperature gas sensors (United States)

    Saruhan, B.; Stranzenbach, M.; Yüce, A.; Gönüllü, Y.


    Combustion produced common air pollutant, NOx associates with greenhouse effects. Its high temperature detection is essential for protection of nature. Component-integration capable high-temperature sensors enable the control of combustion products. The requirements are quantitative detection of total NOx and high selectivity at temperatures above 500°C. This study reports various approaches to detect NO and NO2 selectively under lean and humid conditions at temperatures from 300°C to 800°C. All tested electrochemical sensors were fabricated in planar design to enable componentintegration. We suggest first an impedance-metric gas sensor for total NOx-detection consisting of NiO- or NiCr2O4-SE and PYSZ-electrolyte. The electrolyte-layer is about 200μm thickness and constructed of quasi-single crystalline columns. The sensing-electrode (SE) is magnetron sputtered thin-layers of NiO or NiCr2O4. Sensor sensitivity for detection of total NOx has been measured by applying impedance analysis. The cross-sensitivity to other emission gases such as CO, CO2, CH4 and oxygen (5 vol.%) has been determined under 0-1000ppm NO. Sensor maintains its high sensitivity at temperatures up to 550°C and 600°C, depending on the sensing-electrode. NiO-SE yields better selectivity to NO in the presence of oxygen and have shorter response times comparing to NiCr2O4-SE. For higher temperature NO2-sensing capability, a resistive DC-sensor having Al-doped TiO2-sensing layers has been employed. Sensor-sensitivity towards NO2 and cross-sensitivity to CO has been determined in the presence of H2O at temperatures 600°C and 800°C. NO2 concentrations varying from 25 to 100ppm and CO concentrations from 25 to 75ppm can be detected. By nano-tubular structuring of TiO2, NO2 sensitivity of the sensor was increased.

  15. Sandia_HighTemperatureComponentEvaluation_2015

    Energy Technology Data Exchange (ETDEWEB)

    Cashion, Avery T. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)


    The objective of this project is to perform independent evaluation of high temperature components to determine their suitability for use in high temperature geothermal tools. Development of high temperature components has been increasing rapidly due to demand from the high temperature oil and gas exploration and aerospace industries. Many of these new components are at the late prototype or first production stage of development and could benefit from third party evaluation of functionality and lifetime at elevated temperatures. In addition to independent testing of new components, this project recognizes that there is a paucity of commercial-off-the-shelf COTS components rated for geothermal temperatures. As such, high-temperature circuit designers often must dedicate considerable time and resources to determine if a component exists that they may be able to knead performance out of to meet their requirements. This project aids tool developers by characterization of select COTS component performances beyond published temperature specifications. The process for selecting components includes public announcements of project intent (e.g., FedBizOps), direct discussions with candidate manufacturers,and coordination with other DOE funded programs.

  16. Simulation and experimental study of solar-absorption heat transformer integrating with two-stage high temperature vapor compression heat pump

    Directory of Open Access Journals (Sweden)

    Nattaporn Chaiyat


    Full Text Available In this study, simulation and experiment studies of a 10 kW solar H2O–LiBr absorption heat transformer (AHT integrating with a two-stage vapor compression heat pump (VCHP were carried out. The whole system was named as compression/absorption heat transformer (CAHT. The VCHP was used to recover rejected heat at the AHT condenser which was transferred back to the AHT evaporator at a higher temperature. The AHT unit took solar heat from a set of flat-plate solar collectors in parallel connection. R-134a and R-123 were refrigerants in the VCHP cycle. From the simulation, the total cycle coefficient (COP of the solar-CAHT was 0.71 compared with 0.49 of the normal solar-AHT. From the experiment, the total cycle COPs of the solar-CAHT and the solar-AHT were 0.62 and 0.39, respectively. The experimental results were lower than those of the simulated models due to the oversize of the experimental compressor. The annual expense of the solar-CAHT was found to be 5113 USD which was lower than 5418 USD of the solar-AHT. So it could be concluded that the modified unit was beneficial than the normal unit in terms of energy efficiency and economic expense.

  17. A scaled experimental study of control blade insertion dynamics in Pebble-Bed Fluoride-Salt-Cooled High-Temperature Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Buster, Grant C., E-mail:; Laufer, Michael R.; Peterson, Per F.


    Highlights: • A granular dynamics scaling methodology is discussed. • Control blade insertion in a representative pebble-bed core is experimentally studied. • Control blade insertion forces and pebble displacements are experimentally measured. • X-ray tomography techniques are used to observe pebble displacement distributions. - Abstract: Direct control element insertion into a pebble-bed reactor core is proposed as a viable control system in molten-salt-cooled pebble-bed reactors. Unlike helium-cooled pebble-bed reactors, this reactor type uses spherical fuel elements with near-neutral buoyancy in the molten-salt coolant, thus reducing contact forces on the fuel elements. This study uses the X-ray Pebble Bed Recirculation Experiment facility to measure the force required to insert a control element directly into a scaled pebble-bed. The required control element insertion force, and therefore the contact force on fuel elements, is measured to be well below recommended limits. Additionally, X-ray tomography is used to observe how the direct insertion of a control element physically displaces spherical fuel elements. The tomography results further support the viability of direct control element insertion into molten-salt-cooled pebble-bed reactor cores.

  18. Quantum-mechanical study of tensorial elastic and high-temperature thermodynamic properties of grain boundary states in superalloy-phase Ni3Al (United States)

    Friák, Martin; Všianská, Monika; Holec, David; Šob, Mojmír


    Grain boundaries (GBs), the most important defects in solids and their properties are crucial for many materials properties including (in-)stability. Quantum-mechanical methods can reliably compute properties of GBs and we use them to analyze (tensorial) anisotropic elastic properties of interface states associated with GBs in one of the most important intermetallic compounds for industrial applications, Ni3Al. Selecting the Σ5(210) GBs as a case study because of its significant extra volume, we address the mechanical stability of the GB interface states by checking elasticity-based Born stability criteria. One critically important elastic constant, C 55, is found nearly three times smaller at the GB compared with the bulk, contributing thus to the reduction of the mechanical stability of Ni3Al polycrystals. Next, comparing properties of Σ5(210) GB state which is fully relaxed with those of a Σ5(210) GB state when the supercell dimensions are kept equal to those in the bulk we conclude that lateral relaxations have only marginal impact on the studied properties. Having the complete elastic tensor of Σ5(210) GB states we combine Green’s-function based homogenization techniques and an approximative approach to the Debye model to compare thermodynamic properties of a perfect Ni3Al bulk and the Σ5(210) GB states. In particular, significant reduction of the melting temperature (to 79-81% of the bulk value) is predicted for nanometer-size grains.

  19. Study of cements silicate phases hydrated under high pressure and high temperature; Etude des phases silicatees du ciment hydrate sous haute pression et haute temperature

    Energy Technology Data Exchange (ETDEWEB)

    Meducin, F.


    This study concerns the durability of oil-well cementing. Indeed, in oil well cementing a cement slurry is pumped down the steel casing of the well up the annular space between it and the surrounding rock to support and protect the casing. The setting conditions of pressure and temperature may be very high (up to 1000 bar and 250 deg C at the bottom of the oil-well). In this research, the hydration of the main constituent of cement, synthetic tri-calcium silicate Ca{sub 3}SiO{sub 2}, often called C{sub 3}S (C = CaO; S = SiO{sub 2} and H H{sub 2}O), is studied. Calcium Silicate hydrates are prepared in high-pressure cells to complete their phase diagram (P,T) and obtain the stability conditions for each species. Indeed, the phases formed in these conditions are unknown and the study consists in the hydration of C{sub 3}S at different temperatures, pressures, and during different times to simulate the oil-well conditions. In a first step (until 120 deg C at ambient pressure) the C-S-H, a not well crystallized and non-stoichiometric phase, is synthesized: it brings adhesion and mechanical properties., Then, when pressure and temperature increase, crystallized phases appear such as jaffeite (Ca{sub 6}(Si{sub 2}O{sub 7})(OH){sub 6}) and hillebrandite (Ca{sub 2}(SiO{sub 3})(OH){sub 2}). Silicon {sup 29}Si Nuclear Magnetic Resonance (using standard sequences MAS, CPMAS) allow us to identify all the silicates hydrates formed. Indeed, {sup 29}Si NMR is a valuable tool to determine the structure of crystallized or not-well crystallized phases of cement. The characterization of the hydrated samples is completed by other techniques: X- Ray Diffraction and Scanning Electron Microscopy. The following results are found: jaffeite is the most stable phase at C/S=3. To simulate the hydration of real cement, hydration of C{sub 3}S with ground quartz and with or without super-plasticizers is done. In those cases, new phases appear: kilchoanite mainly, and xonotlite. A large amount of

  20. Experimental study of high-temperature properties of zirconium carbide as a protective material for nuclear power and aerospace technologies (from 2000 to 5000 K) (United States)

    Savvatimskiy, A. I.; Onufriev, S. V.; Muboyadzhyan, S. A.; Seredkin, N. N.


    The temperature dependences of the thermal and electro physical properties of the zirconium carbide ZrC + C and ZrCa0.95 were studied in the temperature range 2000-5000 K. The Zr+C specimens were in the form of thin layers sputtered on quarts substrate and ZrC0.95 specimens were in the form of plates cut off from the sintered block. The properties are measured: temperature and heat of fusion, enthalpy, specific heat and resistivity, referred to the initial dimensions. A steep increase in the specific heat of these substances before melting and a sharp decrease after melting were observed at a heating rate of ∼ 108 K/s, which is possibly due to the formation of Frenkel pair defects in the specimens.

  1. High-temperature archeointensity measurements from Mesopotamia (United States)

    Gallet, Yves; Le Goff, Maxime


    We present new archeointensity results obtained from 127 potsherds and baked brick fragments dated from the last four millennia BC which were collected from different Syrian archeological excavations. High temperature magnetization measurements were carried out using a laboratory-built triaxial vibrating sample magnetometer (Triaxe), and ancient field intensity determinations were derived from the experimental procedure described by Le Goff and Gallet [Le Goff and Gallet. Earth Planet. Sci. Lett. 229 (2004) 31-43]. As some of the studied samples were previously analyzed using the classical Thellier and Thellier [Thellier and Thellier . Ann. Geophys. 15 (1959) 285-376] method revised by Coe [Coe. J. Geophys. Res. 72 (1967) 3247-3262], a comparison of the results is made from the two methods. The differences both at the fragment and site levels are mostly within ± 5%, which strengthens the validity of the experimental procedure developed for the Triaxe. The new data help to better constrain the geomagnetic field intensity variations in Mesopotamia during archeological times, with the probable occurrence of an archeomagnetic jerk around 2800-2600 BC.

  2. High temperature superconductors at optimal doping

    Directory of Open Access Journals (Sweden)

    W. E. Pickett


    Full Text Available   Intensive study of the high temperature superconductors has been ongoing for two decades. A great deal of this effort has been devoted to the underdoped regime, where the new and difficult physics of the doped Mott insulator has met extra complications including bilayer coupling/splitting, shadow bands, and hot spots. While these complications continue to unfold, in this short overview the focus is moved to the region of actual high-Tc, that of optimal doping. The focus here also is not on the superconducting state itself, but primarily on the characteristics of the normal state from which the superconducting instability arises, and even these can be given only a broad-brush description. A reminder is given of two issues,(i why the “optimal Tc” varies,for n-layered systems it increases for n up to 3, then decreases for a given n, Tc increases according to the ‘basis’ atom in the order Bi, Tl, Hg (ii how does pressure, or a particular uniaxial strain, increase Tc when the zero-strain system is already optimally doped?

  3. High temperature and pressure alkaline electrolysis

    DEFF Research Database (Denmark)

    Allebrod, Frank; Chatzichristodoulou, Christodoulos; Mogensen, Mogens Bjerg


    for immobilization of aqueous KOH solutions. Electrolysis cells with this electrolyte and metal foam based gas diffusion electrodes were successfully demonstrated at temperatures up to 250 °C at 40 bar. Different electro-catalysts were tested in order to reduce the oxygen and hydrogen overpotentials. Current...... the operational temperature and pressure to produce pressurized hydrogen at high rate (m3 H2·h-1·m-2 cell area) and high electrical efficiency. This work describes an exploratory technical study of the possibility to produce hydrogen and oxygen with a new type of alkaline electrolysis cell at high temperatures...... densities of 1.1 A cm-2 and 2.3 A cm-2 have been measured at a cell voltage of 1.5 V and 1.75 V, respectively, without noble metal catalysts. Electrical efficiencies of almost 99 % at 1.1 A cm-2 and 85 % at 2.3 A cm-2 were obtained....

  4. Study of coupled transport and its effect on different electrochemical systems: Implications in high temperature energy storage batteries and proton exchange membrane fuel cells (United States)

    Parthasarathy, Preethy

    Coupled transport is studied on two electrochemical systems: Na-ZnCl 2 batteries and Proton Exchange Membrane Fuel Cells (PEMFC). The energy storage system of interest here is based on sodium β"-alumina solid electrolyte (BASE): Na/BASE/ZnCl2. BASE is an excellent Na+ conductor with a very high conductivity at 300°C. Its high Na+ ion conductivity and high stability are the principal reasons for its application in electrochemical storage systems. A novel vapor phase process was invented facilitating the fabrication of high strength and moisture/CO 2 resistant BASE. A two-phase composite of alumiNa+YSZ is formed by sintering and exposed to Na2O vapor, keeping the activity of Na2O lower than that in NaAlO2. This prevents the formation of hygroscopic NaAlO2 at the grain boundaries. A thin layer of β"-alumina is formed on the surface upon exposure. Further reaction occurs by transporting Na+ ions through the formed β"-alumina and a parallel transport of O2- ions through YSZ. This occurs by a coupled transport of Na+ through β"-alumina and O 2- ions through YSZ, thus expediting the process. The second electrochemical system of interest is PEMFC. The degradation mechanism of catalysts is studied using inexpensive copper particles. The mechanism of growth involves a coupled transport of Cu2+ through the aqueous medium and an electron transport through the direct particle-to-particle contact. Effect of applied stress on coarsening of platinum was also investigated. Two platinum wires/foils were immersed in a PtCl4+DMSO (Dimethyl sulfoxide) solution. A tensile load was applied to one wire/foil and the other one was left load-free. The wire/foil subjected to a tensile load became cathodic with respect to the unstressed wire/foil. Thus, under a tensile stress, the chemical potential of Pt decreases. This result suggests design strategies for core-shell catalysts used in PEMFCs: stable core-shell catalysts for PEMFC with Pt shell should be designed such that the shell is

  5. Copper Alloy For High-Temperature Uses (United States)

    Dreshfield, Robert L.; Ellis, David L.; Michal, Gary


    Alloy of Cu/8Cr/4Nb (numbers indicate parts by atom percent) improved over older high-temperature copper-based alloys in that it offers enhanced high temperature strength, resistance to creep, and ductility while retaining most of thermal conductivity of pure copper; in addition, alloy does not become embrittled upon exposure to hydrogen at temperatures as high as 705 degrees C. Designed for use in presence of high heat fluxes and active cooling; for example, in heat exchangers in advanced aircraft and spacecraft engines, and other high-temperature applications in which there is need for such material. High conductivity and hardness of alloy exploited in welding electrodes and in high-voltage and high-current switches and other applications in which wear poses design problem.

  6. High temperature thrust chamber for spacecraft (United States)

    Chazen, Melvin L. (Inventor); Mueller, Thomas J. (Inventor); Kruse, William D. (Inventor)


    A high temperature thrust chamber for spacecraft (20) is provided herein. The high temperature thrust chamber comprises a hollow body member (12) having an outer surface and an internal surface (16) defining the high temperature chamber (10). The body member (12) is made substantially of rhenium. An alloy (18) consisting of iridium and at least alloying metal selected of the group consisting of rhodium, platinum and palladium is deposited on at least a portion of the internal surface (16) of the body member (12). The iridium and the alloying metal are electrodeposited onto the body member (12). A HIP cycle is performed upon the body member (12) to cause the coating of iridium and the alloying metal to form the alloy (18) which protects the body member (12) from oxidation.

  7. Application of High Temperature Superconductors to Accelerators

    CERN Document Server

    Ballarino, A


    Since the discovery of high temperature superconductivity, a large effort has been made by the scientific community to investigate this field towards a possible application of the new oxide superconductors to different devices like SMES, magnetic bearings, flywheels energy storage, magnetic shielding, transmission cables, fault current limiters, etc. However, all present day large scale applications using superconductivity in accelerator technology are based on conventional materials operating at liquid helium temperatures. Poor mechanical properties, low critical current density and sensitivity to the magnetic field at high temperature are the key parameters whose improvement is essential for a large scale application of high temperature superconductors to such devices. Current leads, used for transferring currents from the power converters, working at room temperature, into the liquid helium environment, where the magnets are operating, represent an immediate application of the emerging technology of high t...

  8. High-temperature heat-pump fluids (United States)

    Bertinat, M. P.


    Heat pumps could be immensely useful in many industrial processes, but standard working fluids are unsuitable for the high temperatures involved. The ideal high-temperature heat-pump fluid should have a high (but not too high) critical temperature, a moderate critical pressure ( approximately=5.0 MPa) and a low (but not too low) boiling point. There are many organic fluids that do meet the above thermodynamic criteria The author's list of 250 contained dozens of them including many of the common laboratory solvents such as ethanol, ether and especially acetone. Unfortunately most of them are highly flammable. The ideal work fluid for high-temperature heat pumps will probably always remain elusive and water, despite its drawbacks will continue to be the best choice in most applications

  9. High Temperature, Wireless Seismometer Sensor for Venus (United States)

    Ponchak, George E.; Scardelletti, Maximilian C.; Taylor, Brandt; Beard, Steve; Meredith, Roger D.; Beheim, Glenn M.; Hunter Gary W.; Kiefer, Walter S.


    Space agency mission plans state the need to measure the seismic activity on Venus. Because of the high temperature on Venus (462? C average surface temperature) and the difficulty in placing and wiring multiple sensors using robots, a high temperature, wireless sensor using a wide bandgap semiconductor is an attractive option. This paper presents the description and proof of concept measurements of a high temperature, wireless seismometer sensor for Venus. A variation in inductance of a coil caused by the movement of an aluminum probe held in the coil and attached to a balanced leaf-spring seismometer causes a variation of 700 Hz in the transmitted signal from the oscillator/sensor system at 426? C. This result indicates that the concept may be used on Venus.

  10. Magnetic structures of vanadium iodide (VI2): long- and short-range order and Moessbauer spectroscopy.

    NARCIS (Netherlands)

    Kuindersma, S. R.; Sanchez, J. P.; Haas, C.


    Neutron diffraction data of VI2 show a magnetic phase transition at 14 K from a 120° magnetic structure to a collinear structure. The collinear structure is compatible with low-temp. Moessbauer spectra. The 120° structure is not a magnetic phase with long-range order but rather a paramagnetic phase

  11. International conference on Moessbauer effect applications. Alma-Ata, 26 September-1 October 1983

    Energy Technology Data Exchange (ETDEWEB)

    Zemcik, T. (Ceskoslovenska Akademie Ved, Brno. Ustav Fyzikalni Metalurgie)


    The participants heard 15 papers and 25 brief communications, the other papers were presented on posters. Most papers were devoted to the application of the Moessbauer effect (metals and alloys, magnetic and amorphous materials, etc.). Some papers dealt with methodology, and greatest interest was aroused by papers from marginal disciplines (e.g., on pulse reversal of the magnetic memory of bacteria).

  12. LACAME 2006: Latin American conference on the applications of the Moessbauer effects. Program and Abstract Book

    Energy Technology Data Exchange (ETDEWEB)



    Theoretical and experimental papers are present in these proceedings on the following subjects: Moessbauer effects and spectroscopy, minerals, structural chemical analysis, crustal structure, ion oxides, hyperfine structure, geology, catalysts, transmission and absorption spectroscopies, materials, crystal and hyperfine structures, stereochemistry and geological materials.

  13. Materials for high-temperature fuel cells

    CERN Document Server

    Jiang, San Ping; Lu, Max


    There are a large number of books available on fuel cells; however, the majority are on specific types of fuel cells such as solid oxide fuel cells, proton exchange membrane fuel cells, or on specific technical aspects of fuel cells, e.g., the system or stack engineering. Thus, there is a need for a book focused on materials requirements in fuel cells. Key Materials in High-Temperature Fuel Cells is a concise source of the most important and key materials and catalysts in high-temperature fuel cells with emphasis on the most important solid oxide fuel cells. A related book will cover key mater

  14. Melt processed high-temperature superconductors

    CERN Document Server


    The achievement of large critical currents is critical to the applications of high-temperature superconductors. Recent developments have shown that melt processing is suitable for producing high J c oxide superconductors. Using magnetic forces between such high J c oxide superconductors and magnets, a person could be levitated.This book has grown largely out of research works on melt processing of high-temperature superconductors conducted at ISTEC Superconductivity Research Laboratory. The chapters build on melt processing, microstructural characterization, fundamentals of flux pinning, criti

  15. Electrons and Phonons in High Temperature Superconductors

    Directory of Open Access Journals (Sweden)

    Anu Singh


    Full Text Available The defect-induced anharmonic phonon-electron problem in high-temperature superconductors has been investigated with the help of double time thermodynamic electron and phonon Green’s function theory using a comprehensive Hamiltonian which includes the contribution due to unperturbed electrons and phonons, anharmonic phonons, impurities, and interactions of electrons and phonons. This formulation enables one to resolve the problem of electronic heat transport and equilibrium phenomenon in high-temperature superconductors in an amicable way. The problem of electronic heat capacity and electron-phonon problem has been taken up with special reference to the anharmonicity, defect concentration electron-phonon coupling, and temperature dependence.

  16. Neutron experiments on high-temperature superconductors (United States)

    Mook, H. A., Jr.


    This report details the trip to the ILL to perform neutron scattering research on high-temperature superconductivity. The trip was very successful because of the excellent users' facilities available at the ILL. The data we accumulated were of high quality and will make an impact on our understanding of high-temperature superconductivity. However, we cannot continue to run a research program in this field with the limited beam time available at the ILL. To make substantial progress in this field, we must restart the High Flux Isotope Reactor.

  17. Test plans of the high temperature test operation at HTTR

    Energy Technology Data Exchange (ETDEWEB)

    Sakaba, Nariaki; Nakagawa, Shigeaki; Takada, Eiji [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment] [and others


    HTTR plans a high temperature test operation as the fifth step of the rise-to-power tests to achieve a reactor outlet coolant temperature of 950 degrees centigrade in the 2003 fiscal year. Since HTTR is the first HTGR in Japan which uses coated particle fuel as its fuel and helium gas as its coolant, it is necessary that the plan of the high temperature test operation is based on the previous rise-to-power tests with a thermal power of 30 MW and a reactor outlet coolant temperature at 850 degrees centigrade. During the high temperature test operation, reactor characteristics, reactor performances and reactor operations are confirmed for the safety and stability of operations. This report describes the evaluation result of the safety confirmations of the fuel, the control rods and the intermediate heat exchanger for the high temperature test operation. Also, problems which were identified during the previous operations are shown with their solution methods. Additionally, there is a discussion on the contents of the high temperature test operation. As a result of this study, it is shown that the HTTR can safely achieve a thermal power of 30 MW with the reactor outlet coolant temperature at 950 degrees centigrade. (author)

  18. Study of High Temperature Insulation Materials

    Directory of Open Access Journals (Sweden)

    Vaclav Mentlik


    Full Text Available One of current objectives of the electro insulating technology is the development of the material for extreme conditions. There is a need to operate some devices in extreme temperatures, for example the propulsion of the nuclear fuel bars. In these cases there is necessary to provide not just insulating property, but also the thermal endurance with the required durability of the insulating materials. Critical is the determination of the limit stress for the irreversible structure modification with relation to material property changes. For this purpose there is necessary to conduct lot of test on chosen materials to determine the limits mentioned above. Content of this article is the definition of diagnostic mode, including the definition of the exposure factors, definitions of the diagnostic system for data acquisition and first result of examinations.

  19. Confinement Studies in High Temperature Spheromak Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Hill, D N; Mclean, H S; Wood, R D; Casper, T A; Cohen, B I; Hooper, E B; LoDestro, L L; Pearlstein, L D; Romero-Talamas, C


    Recent results from the SSPX spheromak experiment demonstrate the potential for obtaining good energy confinement (Te > 350eV and radial electron thermal diffusivity comparable to tokamak L-mode values) in a completely self-organized toroidal plasma. A strong decrease in thermal conductivity with temperature is observed and at the highest temperatures, transport is well below that expected from the Rechester-Rosenbluth model. Addition of a new capacitor bank has produced 60% higher magnetic fields and almost tripled the pulse length to 11ms. For plasmas with T{sub e} > 300eV, it becomes feasible to use modest (1.8MW) neutral beam injection (NBI) heating to significantly change the power balance in the core plasma, making it an effective tool for improving transport analysis. We are now developing detailed designs for adding NBI to SSPX and have developed a new module for the CORSICA transport code to compute the correct fast-ion orbits in SSPX so that we can simulate the effect of adding NBI; initial results predict that such heating can raise the electron temperature and total plasma pressure in the core by a factor of two.

  20. Materials for High-Temperature Catalytic Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Ersson, Anders


    Catalytic combustion is an environmentally friendly technique to combust fuels in e.g. gas turbines. Introducing a catalyst into the combustion chamber of a gas turbine allows combustion outside the normal flammability limits. Hence, the adiabatic flame temperature may be lowered below the threshold temperature for thermal NO{sub X} formation while maintaining a stable combustion. However, several challenges are connected to the application of catalytic combustion in gas turbines. The first part of this thesis reviews the use of catalytic combustion in gas turbines. The influence of the fuel has been studied and compared over different catalyst materials. The material section is divided into two parts. The first concerns bimetallic palladium catalysts. These catalysts showed a more stable activity compared to their pure palladium counterparts for methane combustion. This was verified both by using an annular reactor at ambient pressure and a pilot-scale reactor at elevated pressures and flows closely resembling the ones found in a gas turbine combustor. The second part concerns high-temperature materials, which may be used either as active or washcoat materials. A novel group of materials for catalysis, i.e. garnets, has been synthesised and tested in combustion of methane, a low-heating value gas and diesel fuel. The garnets showed some interesting abilities especially for combustion of low-heating value, LHV, gas. Two other materials were also studied, i.e. spinels and hexa aluminates, both showed very promising thermal stability and the substituted hexa aluminates also showed a good catalytic activity. Finally, deactivation of the catalyst materials was studied. In this part the sulphur poisoning of palladium, platinum and the above-mentioned complex metal oxides has been studied for combustion of a LHV gas. Platinum and surprisingly the garnet were least deactivated. Palladium was severely affected for methane combustion while the other washcoat materials were

  1. Study of the initial stages of oxidation of stainless steels in high temperature water; Etude des premiers stades d'oxydation d'alliages inoxydables dans l'eau a haute temperature

    Energy Technology Data Exchange (ETDEWEB)

    Machet, A


    Steam Generator tubes (alloys 600, 690 and 800) are protected against corrosion by an oxide layer. The release of corrosion products into the primary water of the Pressurised Water Reactor is limited by this layer. Activation of these products increases the radioactivity. Breakdown of the passive film can lead to Stress Corrosion Cracking (SCC). The aim of this study is to understand the early stages of passivation of these alloys, in high temperature and high pressure water. A new micro-autoclave was developed to achieve short time exposures (from several seconds to 10 minutes). The surfaces were characterised by XPS, NRA, STM and SEM and a kinetic model is proposed for the alloy 600. Longer oxidation times were studied (up to 400 hours). The kinetics obtained for short time oxidations were used to fit the long oxidation time behaviour. This reveals that the initial stages of oxidation are essential in the passive films growth in such conditions. (author)

  2. Structure of liquid oxides at very high temperatures

    CERN Document Server

    Landron, C; Thiaudiere, D; Price, D L; Greaves, G N


    The structural characterization of condensed matter by synchrotron radiation combined with neutron data constitutes a powerful structural tool in material science. In order to investigate refractory liquids at very high temperatures, we have developed a new analysis chamber for performing combined X-ray absorption and diffraction measurements by using laser heating and aerodynamic levitation. A similar system has been designed for neutron experiments. This high temperature equipment presents several advantages: the container does not physically or chemically perturb the sample, heterogeneous nucleation during cooling is suppressed and pollution by the container is removed. This cell can operate under various gas conditions from room temperature up to 3000 deg. C obtained by means of a sealed 125 W CO sub 2 laser. Experiments have been performed at LURE, ESRF and at ISIS. We have studied the local structure around the cations in several liquid and solid oxides. We have shown that high temperature synchrotron d...

  3. Handbook of high-temperature superconductivity theory and experiment

    CERN Document Server

    Brooks, James S


    Since the 1980s, a general theme in the study of high-temperature superconductors has been to test the BCS theory and its predictions against new data. At the same time, this process has engendered new physics, new materials, and new theoretical frameworks. Remarkable advances have occurred in sample quality and in single crystals, in hole and electron doping in the development of sister compounds with lower transition temperatures, and in instruments to probe structure and dynamics. Handbook of High-Temperature Superconductvity is a comprehensive and in-depth treatment of both experimental and theoretical methodologies by the the world's top leaders in the field. The Editor, Nobel Laureate J. Robert Schrieffer, and Associate Editor James S. Brooks, have produced a unified, coherent work providing a global view of high-temperature superconductivity covering the materials, the relationships with heavy-fermion and organic systems, and the many formidable challenges that remain.

  4. Lightweight High-Temperature Thermal Insulation (United States)

    Wagner, W. R.; Fasheh, J. I.


    Fine Ni/Cr fibers sintered into corrosion-resistant, fireproof batt. Possible applications include stoves, furnaces, safes, fire clothing, draperies in public buildings, wall firebreaks, airplane walls, and jetengine components. New insulation takes advantage of some of same properties of nickel/chromium alloy useful in heating elements in toasters, namely, corrosion and oxidation resistance even at high temperatures.

  5. High temperatures influence sexual development differentially in ...

    Indian Academy of Sciences (India)

    Although sex determination in amphibians is believed to be a genetic process, environmental factors such as temperatureare known to influence the sex differentiation and development. Extremely low and high temperatures influence gonadaldevelopment and sex ratio in amphibians but the mechanism of action is not ...

  6. High-temperature granulites and supercontinents

    Directory of Open Access Journals (Sweden)

    J.L.R. Touret


    Full Text Available The formation of continents involves a combination of magmatic and metamorphic processes. These processes become indistinguishable at the crust-mantle interface, where the pressure-temperature (P-T conditions of (ultra high-temperature granulites and magmatic rocks are similar. Continents grow laterally, by magmatic activity above oceanic subduction zones (high-pressure metamorphic setting, and vertically by accumulation of mantle-derived magmas at the base of the crust (high-temperature metamorphic setting. Both events are separated from each other in time; the vertical accretion postdating lateral growth by several tens of millions of years. Fluid inclusion data indicate that during the high-temperature metamorphic episode the granulite lower crust is invaded by large amounts of low H2O-activity fluids including high-density CO2 and concentrated saline solutions (brines. These fluids are expelled from the lower crust to higher crustal levels at the end of the high-grade metamorphic event. The final amalgamation of supercontinents corresponds to episodes of ultra-high temperature metamorphism involving large-scale accumulation of these low-water activity fluids in the lower crust. This accumulation causes tectonic instability, which together with the heat input from the sub-continental lithospheric mantle, leads to the disruption of supercontinents. Thus, the fragmentation of a supercontinent is already programmed at the time of its amalgamation.

  7. High Temperature Resistant Exhaust Valve Spindle

    DEFF Research Database (Denmark)

    Bihlet, Uffe Ditlev

    of the engine, new high temperature alloys are required for a specific engine component, the exhaust valve spindle. Two alloys are used for an exhaust valve spindle; one for the bottom of the spindle, and one for the spindle seat. Being placed in the exhaust gas stream, combustion products such as V2O5 and Na2...

  8. Helium-cooled high temperature reactors

    Energy Technology Data Exchange (ETDEWEB)

    Trauger, D.B.


    Experience with several helium cooled reactors has been favorable, and two commercial plants are now operating. Both of these units are of the High Temperature Graphite Gas Cooled concept, one in the United States and the other in the Federal Republic of Germany. The initial helium charge for a reactor of the 1000 MW(e) size is modest, approx.15,000 kg.

  9. Thermoelastic properties of minerals at high temperature

    Indian Academy of Sciences (India)

    under high temperatures and calculated the second-order elastic constant (Cij ) and bulk modulus. (KT) of the above minerals, in two cases first by taking Anderson–Gruneisen parameter (δT) as temperature-independent and then by treating δT as temperature-dependent parameter. The results obtained when δT is ...

  10. High temperature spectral gamma well logging

    Energy Technology Data Exchange (ETDEWEB)

    Normann, R.A.; Henfling, J.A.


    A high temperature spectral gamma tool has been designed and built for use in small-diameter geothermal exploration wells. Several engineering judgments are discussed regarding operating parameters, well model selection, and signal processing. An actual well log at elevated temperatures is given with spectral gamma reading showing repeatability.

  11. High-Temperature Luminescence Quenching of Colloidal Quantum Dots

    NARCIS (Netherlands)

    Zhao, Y.|info:eu-repo/dai/nl/355358352; Riemersma, C.; Pietra, F|info:eu-repo/dai/nl/355358395; de Mello Donega, C.|info:eu-repo/dai/nl/125593899; Meijerink, A.|info:eu-repo/dai/nl/075044986


    Thermal quenching of quantum dot (QD) luminescence is important for application in luminescent devices. Systematic studies of the quenching behavior above 300 K are, however, lacking. Here, high-temperature (300–500 K) luminescence studies are reported for highly efficient CdSe core–shell quantum

  12. Compressive behaviour at High Temperatures of Fibre Reinforced Concretes

    Directory of Open Access Journals (Sweden)

    S. O. Santos


    Full Text Available This paper summarizes the research that is being carried out at the Universities of Coimbra and Rio de Janeiro, on fibre reinforced concretes at high temperatures. Several high strength concrete compositions reinforced with fibres (polypropylene, steel and glass fibres were developed. The results of compressive tests at high temperatures (300 °C, 500 °C and 600 °C and after heating and cooling down of the concrete are presented in the paper. In both research studies, the results indicated that polypropylene fibers prevent concrete spalling. 

  13. The influence of methanol on the chemical state of PtRu anodes in a high-temperature direct methanol fuel cell studied in situ by synchrotron-based near-ambient pressure x-ray photoelectron spectroscopy (United States)

    Saveleva, Viktoriia A.; Daletou, Maria K.; Savinova, Elena R.


    Synchrotron radiation-based near-ambient pressure x-ray photoelectron spectroscopy (NAP-XPS) has recently become a powerful tool for the investigation of interfacial phenomena in electrochemical power sources such as batteries and fuel cells. Here we present an in situ NAP-XPS study of the anode of a high-temperature direct methanol fuel cell with a phosphoric acid-doped hydrocarbon membrane, which reveals an enhanced flooding of the Pt3Ru anode with phosphoric acid in the presence of methanol. An analysis of the electrode surface composition depending on the cell voltage and on the presence of methanol reveals the strong influence of the latter on the extent of Pt oxidation and on the transformation of Ru into Ru (IV) hydroxide.

  14. High-temperature spreading kinetics of metals

    Energy Technology Data Exchange (ETDEWEB)

    Rauch, N.


    In this PhD work a drop transfer setup combined with high speed photography has been used to analyze the spreading of Ag on polished polycrystalline Mo and single crystalline Mo (110) and (100) substrates. The objective of this work was to unveil the basic phenomena controlling spreading in metal-metal systems. The observed spreading kinetics were compared with current theories of low and high temperature spreading such as a molecular kinetic model and a fluid flow model. Analyses of the data reveal that the molecular model does describe the fastest velocity data well for all the investigated systems. Therefore, the energy which is dissipated during the spreading process is a dissipation at the triple line rather than dissipation due to the viscosity in the liquid. A comparison of the determined free activation energy for wetting of {delta}G95{approx}145kJ/mol with literature values allows the statement that the rate determining step seems to be a surface diffusion of the Ag atoms along the triple line. In order to investigate possible ridge formation, due to local atomic diffusion of atoms of the substrate at the triple during the spreading process, grooving experiments of the polycrystalline Mo were performed to calculate the surface diffusities that will control ridge evolution. The analyses of this work showed that a ridge formation at the fastest reported wetting velocities was not possible if there is no initial perturbation for a ridge. If there was an initial perturbation for a ridge the ridge had to be much smaller than 1 nm in order to be able to move with the liquid font. Therefore ridge formation does not influence the spreading kinetics for the studied system and the chosen conditions. SEM, AFM and TEM investigations of the triple line showed that ridge formation does also not occur at the end of the wetting experiment when the drop is close to equilibrium and the wetting velocity is slow. (orig.)

  15. Laser Brazing of High Temperature Braze Alloy (United States)

    Gao, Y. P.; Seaman, R. F.; McQuillan, T. J.; Martiens, R. F.


    The Space Shuttle Main Engine (SSME) consists of 1080 conical tubes, which are furnace brazed themselves, manifolds, and surrounding structural jacket making almost four miles of braze joints. Subsequent furnace braze cycles are performed due to localized braze voids between the coolant tubes. SSME nozzle experiences extremely high heat flux (180 mW/sq m) during hot fire. Braze voids between coolant tubes may result in hot combustion gas escape causing jacket bulges. The nozzle can be disqualified for flight or result in mission failure if the braze voids exceed the limits. Localized braze processes were considered to eliminate braze voids, however, damage to the parent materials often prohibited use of such process. Being the only manned flight reusable rocket engine, it has stringent requirement on the braze process. Poor braze quality or damage to the parent materials limits the nozzle service life. The objective of this study was to develop a laser brazing process to provide quality, localized braze joints without adverse affect on the parent materials. Gold (Au-Cu-Ni-Pd-Mn) based high temperature braze alloys were used in both powder and wire form. Thin section iron base superalloy A286 tube was used as substrate materials. Different Laser Systems including CO2 (10.6 micrometers, 1kW), ND:YAG (1.06 micrometers, 4kW). and direct diode laser (808nm. 150W) were investigated for brazing process. The laser process variables including wavelength. laser power, travel speed and angle of inclination were optimized according to bead geometry and braze alloy wetting at minimum heat input level, The properties of laser brazing were compared to that of furnace brazing. Microhardness profiles were used for braze joint property comparison between laser and furnace brazing. The cooling rate of laser brazing was compared to furnace brazing based on secondary dendritic arm spacing, Both optical and Scanning Electron Microscope (SEM) were used to evaluate the microstructures of

  16. High temperature surface imaging using atomic force microscopy

    NARCIS (Netherlands)

    Broekmaat, Joska Johannes; Brinkman, Alexander; Blank, David H.A.; Rijnders, Augustinus J.H.M.


    Atomic force microscopy (AFM) is one of the most important tools in nanotechnology and surface science. Because of recent developments, nowadays, it is also used to study dynamic processes, such as thin film growth and surface reaction mechanisms. These processes often take place at high temperature

  17. Advanced energy analysis of high temperature fuel cell systems

    NARCIS (Netherlands)

    Kouffeld, R.W.J.; Veringa, H.J.; De Groot, A.

    In this thesis the performance of high temperature fuel cell systems is studied using a new method of exergy analysis. The thesis consists of three parts: ⢠In the first part a new analysis method is developed, which not only considers the total exergy losses in a unit operation, but which

  18. Part-load performance of a high temperature Kalina cycle

    DEFF Research Database (Denmark)

    Modi, Anish; Andreasen, Jesper Graa; Kærn, Martin Ryhl


    The Kalina cycle has recently seen increased interest as an alternative to the conventional steam Rankine cycle. The cycle has been studied for use with both low and high temperature applications such as geothermal power plants, ocean thermal energy conversion, waste heat recovery, gas turbine...

  19. Advanced energy analysis of high temperature fuel cell systems

    NARCIS (Netherlands)

    De Groot, A.


    In this thesis the performance of high temperature fuel cell systems is studied using a new method of exergy analysis. The thesis consists of three parts: ⢠In the first part a new analysis method is developed, which not only considers the total exergy losses in a unit operation, but which

  20. High temperature flow behaviour of SiC reinforced lithium ...

    Indian Academy of Sciences (India)


    Abstract. The compressive flow behaviour of lithium aluminosilicate (LAS) glass, with and without SiC particulate reinforcements, was studied. The LAS glass crystallized to β spodumene during high-temperature testing. The flow behaviour of LAS glass changed from Newtonian to non-Newtonian due to the presence of.

  1. The rhizobium-pea symbiosis as affected by high temperatures

    NARCIS (Netherlands)

    Frings, J.F.J.


    A study has been made concerning the effect of high temperatures on the symbiosis of Rhizobium leguminosarum and pea plants (Pisum sativum). At 30°C, no nodules were found on the roots of plants growing in nutrient solution after inoculation with

  2. Different patterns of transcriptomic response to high temperature ...

    African Journals Online (AJOL)

    Polyploidy is an important evolutionary force in plants and may have significant impact on plant breeding. In this study, expression changes between diploid and tetraploid Dioscorea zingiberensis C. H. under control and high temperature conditions were investigated by sequence-related amplified polymorphism ...

  3. High temperature performance of soy-based adhesives (United States)

    Jane L. O’Dell; Christopher G. Hunt; Charles R. Frihart


    We studied the high temperature performance of soy meal processed to different protein concentrations (flour, concentrate, and isolate), as well as formulated soy-based adhesives, and commercial nonsoy adhesives for comparison. No thermal transitions were seen in phenol-resorcinol-formaldehyde (PRF) or soy-phenol-formaldehyde (SoyPF) or in as-received soy flour...

  4. A high-temperature Raman scattering study of the phase transitions in GaPO{sub 4} and in the AlPO{sub 4}-GaPO{sub 4} system

    Energy Technology Data Exchange (ETDEWEB)

    Angot, E [Laboratoire des Colloides, des Verres et des Nanomateriaux, UMR CNRS 5587, Universite Montpellier II, cc026, Place E Bataillon, F-34095 Montpellier Cedex 5 (France); Parc, R Le [Laboratoire des Colloides, des Verres et des Nanomateriaux, UMR CNRS 5587, Universite Montpellier II, cc026, Place E Bataillon, F-34095 Montpellier Cedex 5 (France); Levelut, C [Laboratoire des Colloides, des Verres et des Nanomateriaux, UMR CNRS 5587, Universite Montpellier II, cc026, Place E Bataillon, F-34095 Montpellier Cedex 5 (France); Beaurain, M [Laboratoire de Physicochimie de la Matiere Condensee, UMR CNRS 5617, Universite Montpellier II, cc003, Place E Bataillon, F-34095 Montpellier Cedex 5 (France); Armand, P [Laboratoire de Physicochimie de la Matiere Condensee, UMR CNRS 5617, Universite Montpellier II, cc003, Place E Bataillon, F-34095 Montpellier Cedex 5 (France); Cambon, O [Laboratoire de Physicochimie de la Matiere Condensee, UMR CNRS 5617, Universite Montpellier II, cc003, Place E Bataillon, F-34095 Montpellier Cedex 5 (France); Haines, J [Laboratoire de Physicochimie de la Matiere Condensee, UMR CNRS 5617, Universite Montpellier II, cc003, Place E Bataillon, F-34095 Montpellier Cedex 5 (France)


    Al{sub 1-x}Ga{sub x}PO{sub 4} solid solutions (x = 0.2, 0.3, 0.38, 0.7) and the pure AlPO{sub 4} (x = 0) and GaPO{sub 4} (x = 1) end members with the {alpha}-quartz-type structure were studied by Raman scattering. An investigation as a function of composition enabled the various modes to be assigned, in particular coupled and decoupled vibrations. The tetrahedral tilting modes, which have been linked to high-temperature phase transitions to {beta}-quartz-type forms, were found to be decoupled. In addition, it is shown that Raman spectroscopy is a powerful technique for determining the gallium content of these solid solutions. Single crystals with x = 0.2, 0.38, and 1.0 (GaPO{sub 4}) were investigated at high temperature. The composition Al{sub 0.8}Ga{sub 0.2}PO{sub 4} was found to exhibit sequential transitions upon heating to the {beta}-quartz and {beta}-cristobalite forms at close to 993 K and 1073 K, respectively. Direct {alpha}-quartz-{beta}-cristobalite transitions were observed for the two other compositions at close to 1083 K and 1253 K, respectively, upon heating. The spectra of the {beta}-quartz and {beta}-cristobalite forms indicate the presence of significant disorder. Back transformation to the {alpha}-quartz-type form occurred readily with a hysteresis of less than 100 K for the composition x = 0.38 and for pure GaPO{sub 4}. Rapid cooling was necessary to obtain the metastable {alpha}-cristobalite form. In contrast, for Al{sub 0.80}Ga{sub 0.20}PO{sub 4}, the {alpha}-cristobalite form was obtained even upon slow cooling.

  5. High Temperature Mechanisms for Venus Exploration (United States)

    Ji, Jerri; Narine, Roop; Kumar, Nishant; Singh, Sase; Gorevan, Steven

    Future Venus missions, including New Frontiers Venus In-Situ Explorer and three Flagship Missions - Venus Geophysical Network, Venus Mobile Explorer and Venus Surface Sample Return all focus on searching for evidence of past climate change both on the surface and in the atmospheric composition as well as in the interior dynamics of the planet. In order to achieve these goals and objectives, many key technologies need to be developed for the Venus extreme environment. These key technologies include sample acquisition systems and other high-temperature mechanisms and mobility systems capable of extended operation when directly exposed to the Venus surface or lower atmosphere environment. Honeybee Robotics has developed two types of high temperature motors, the materials and components in both motors were selected based on the requirement to survive temperatures above a minimum of 460° C, at earth atmosphere. The prototype Switched Reluctance Motor (SRM) has been operated non-continuously for over 20 hours at Venus-like conditions (460° C temperature, mostly CO2 gas environment) and it remains functional. A drilling system, actuated by two SRMs was tested in Venus-like conditions, 460° C temperature and mostly CO2 gas environment, for more than 15 hours. The drill successfully completed three tests by drilling into chalk up to 6 inches deep in each test. A first generation Brushless DC (BLDC) Motor and high temperature resolver were also tested and the feasibility of the designs was demonstrated by the extended operation of both devices under Venus-like condition. Further development of the BLDC motor and resolver continues and these devices will, ultimately, be integrated into the development of a high temperature sample acquisition scoop and high temperature joint (awarded SBIR Phase II in October, 2007). Both the SR and BLDC motors will undergo extensive testing at Venus temperature and pressure (TRL6) and are expected to be mission ready before the next New

  6. Stability projections for high temperature superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Laquer, H.L.; Edeskuty, F.J.; Hassenzahl, W.V.; Wipf, S.L.


    The stability of the new high temperature superconducting oxides has been analyzed, using the methodology developed over the last 25 years for conventional Type II superconductors. The results are presented in graphical form for the temperature range from 4 to 100 K. For a 90 K superconductor the first flux jump field peaks above 7 T at 60 K, ( and for a 120 k superconductor it peaks above 12 T at 75 K). The maximum adiabatically stable thickness increases dramatically. The linear dimension of the minimum propagating zone increases by a factor of 3 to 5, and the quench propagation velocity drops by 4 orders of magnitude. The high temperature superconducting materials will, therefore, have much higher stability than conventional Type II superconductors; their high flux jump fields will make ultra-fine multifilamentary conductors unnecessary and improve the outlook for tape conductors; the energy to create a propagating zone is increased; however, methods of coil protection will have to be modified.

  7. High temperature aircraft research furnace facilities (United States)

    Smith, James E., Jr.; Cashon, John L.


    Focus is on the design, fabrication, and development of the High Temperature Aircraft Research Furnace Facilities (HTARFF). The HTARFF was developed to process electrically conductive materials with high melting points in a low gravity environment. The basic principle of operation is to accurately translate a high temperature arc-plasma gas front as it orbits around a cylindrical sample, thereby making it possible to precisely traverse the entire surface of a sample. The furnace utilizes the gas-tungsten-arc-welding (GTAW) process, also commonly referred to as Tungsten-Inert-Gas (TIG). The HTARFF was developed to further research efforts in the areas of directional solidification, float-zone processing, welding in a low-gravity environment, and segregation effects in metals. The furnace is intended for use aboard the NASA-JSC Reduced Gravity Program KC-135A Aircraft.

  8. High Temperature Phenomena in Shock Waves

    CERN Document Server


    The high temperatures generated in gases by shock waves give rise to physical and chemical phenomena such as molecular vibrational excitation, dissociation, ionization, chemical reactions and inherently related radiation. In continuum regime, these processes start from the wave front, so that generally the gaseous media behind shock waves may be in a thermodynamic and chemical non-equilibrium state. This book presents the state of knowledge of these phenomena. Thus, the thermodynamic properties of high temperature gases, including the plasma state are described, as well as the kinetics of the various chemical phenomena cited above. Numerous results of measurement and computation of vibrational relaxation times, dissociation and reaction rate constants are given, and various ionization and radiative mechanisms and processes are presented. The coupling between these different phenomena is taken into account as well as their interaction with the flow-field. Particular points such as the case of rarefied flows an...

  9. High temperature impedance spectroscopy of barium stannate ...

    Indian Academy of Sciences (India)

    Abstract. Polycrystalline powder of BaSnO3 was prepared at 1300 ◦C using a high-temperature solid-state reac- tion technique. X-ray diffraction analysis indicated the formation of a single-phase cubic structure with lattice parameter: a = (4·1158 ± 0·0003) Å. The synthesized powder was characterized using X-ray diffraction ...

  10. High temperature mechanical properties of iron aluminides

    Directory of Open Access Journals (Sweden)

    Morris, D. G.


    Full Text Available Considerable attention has been given to the iron aluminide family of intermetallics over the past years since they offer considerable potential as engineering materials for intermediate to high temperature applications, particularly in cases where extreme oxidation or corrosion resistance is required. Despite efforts at alloy development, however, high temperature strength remains low and creep resistance poor. Reasons for the poor high-temperature strength of iron aluminides will be discussed, based on the ordered crystal structure, the dislocation structure found in the material, and the mechanisms of dislocation pinning operating. Alternative ways of improving high temperature strength by microstructural modification and the inclusion of second phase particles will also be considered.

    Durante los últimos años se ha prestado mucha atención a la familia de intermetálicos Fe-Al, puesto que estos constituyen un considerable potencial como materiales de ingeniería en aplicaciones a temperaturas intermedias o altas, sobre todo en casos donde se necesita alta resistencia a la oxidación o corrosión. A pesar del considerable esfuerzo desarrollado para obtener aleaciones con mejores propiedades, su resistencia mecánica a alta temperatura no es muy elevada. Se discutirán los aspectos que contribuyen a la baja resistencia mecánica a temperatura elevada en función de la estructura de dislocaciones y los mecanismos de anclaje que operan en este intermetálico. Se considerarán, también, maneras alternativas para mejorar la resistencia a temperatura elevada mediante la modificación de la microestructura y la incorporación de partículas de segunda fase.

  11. Fundamental aspects of high-temperature corrosion


    Rapp, Robert


    Some recent considerations in three widely different aspects of high-temperature corrosion are summarized: 1) reactions at the metal/scale interface in support of scale growth; 2) mass transfer effects in the control of evaporation of volatile reaction products; and 3) the codeposition of multiple elements for diffusion coatings using halide-activated cementation packs. The climb of misfit edge dislocations from the metal/scale interface can achieve the annihilation of vacancies associated wi...

  12. Thermal fuse for high-temperature batteries (United States)

    Jungst, Rudolph G.; Armijo, James R.; Frear, Darrel R.


    A thermal fuse, preferably for a high-temperature battery, comprising leads and a body therebetween having a melting point between approximately C. and C. The body is preferably an alloy of Ag--Mg, Ag--Sb, Al--Ge, Au--In, Bi--Te, Cd--Sb, Cu--Mg, In--Sb, Mg--Pb, Pb--Pd, Sb--Zn, Sn--Te, or Mg--Al.

  13. High-Temperature Thermoelectric Energy Conversion (United States)

    Wood, C.


    Theory of thermoelectric energy conversion at high temperatures and status of research on conversion materials reviewed in report. Shows highest values of thermoelectric figure of merit, Z, found in semiconductor materials. Semiconductors keep wide choice of elements and compounds. Electrical properties tailored to particular application by impurity doping and control of stoichiometry. Report develops definition of Z useful for comparing materials and uses it to evaluate potentials of different classes of materialsmetals, semiconductors, and insulators.

  14. High Temperature Perforating System for Geothermal Applications

    Energy Technology Data Exchange (ETDEWEB)

    Smart, Moises E. [Schlumberger Technology Corporation, Sugar Land, TX (United States)


    The objective of this project is to develop a perforating system consisting of all the explosive components and hardware, capable of reliable performance in high temperatures geothermal wells (>200 ºC). In this light we will focused on engineering development of these components, characterization of the explosive raw powder and developing the internal infrastructure to increase the production of the explosive from laboratory scale to industrial scale.

  15. High-temperature technological processes: Thermophysical principles (United States)

    Rykalin, N. N.; Uglov, A. A.; Anishchenko, L. M.

    The book is concerned with the principles of thermodynamics and heat transfer theory underlying high-temperature technological processes. Some characteristics of electromagnetic radiation and heat transfer in solids, liquids, and gases are reviewed, and boundary layer theory, surface phenomena, and phase transitions are examined. The discussion includes an analysis of a number of specific processes, such as treatment by concentrated energy fluxes (electron-beam and laser processing) and plasma machining.

  16. On the electronic phase diagram of Ba{sub 1-x}K{sub x}(Fe{sub 1-y}Co{sub y}){sub 2}As{sub 2} and EuFe{sub 2}(As{sub 1-x}P{sub x}){sub 2} superconductors. A local probe study using Moessbauer spectroscopy and muon spin relaxation

    Energy Technology Data Exchange (ETDEWEB)

    Goltz, Til


    In this thesis, I study the electronic and structural phase diagrams of the superconducting 122 iron pnictides systems Ba{sub 1-x}K{sub x}(Fe{sub 1-y}Co{sub y}){sub 2}As{sub 2} and EuFe{sub 2}(As{sub 1-x}P{sub x}){sub 2} by means of the local probe techniques {sup 57}Fe Moessbauer spectroscopy (MS) and muon spin relaxation (μSR). For both isovalent substitution strategies - Co/K for Fe/Ba and P for As, respectively - the antiferromagnetic Fe ordering and orthorhombic distortion of the parent compounds BaFe{sub 2}As{sub 2} and EuFe{sub 2}As{sub 2} are subsequently suppressed with increasing chemical substitution and superconductivity arises, once long-range and coherent Fe magnetic order is sufficiently but not entirely suppressed. For Ba{sub 1-x}K{sub x}(Fe{sub 1-y}Co{sub y}){sub 2}As{sub 2} in the charge compensated state (x/2 ∼ y), a remarkably similar suppression of both, the orthorhombic distortion and Fe magnetic ordering, as a function of increasing substitution is observed and a linear relationship between the structural and the magnetic order parameter is found. Superconductivity is evidenced at intermediate substitution with a maximum T{sub SC} of 15 K coexisting with static magnetic order on a microscopic length scale. The appearance of superconductivity within the antiferromagnetic state can by explained by the introduction of disorder due to nonmagnetic impurities to a system with a constant charge carrier density. Within this model, the experimental findings are compatible with the predicted s{sup ±} pairing symmetry. For EuFe{sub 2}(As{sub 1-x}P{sub x}){sub 2}, the results from {sup 57}Fe MS and ZF-μSR reveal an intriguing interplay of the local Eu{sup 2+} magnetic moments and the itinerant magnetic Fe moments due to the competing structures of the iron and europium magnetic subsystems. For the investigated single crystals with x = 0.19 and 0.28, {sup 57}Fe MS evidences the interplay of Fe and Eu magnetism by the observation of a transferred

  17. High temperature, high power piezoelectric composite transducers. (United States)

    Lee, Hyeong Jae; Zhang, Shujun; Bar-Cohen, Yoseph; Sherrit, Stewart


    Piezoelectric composites are a class of functional materials consisting of piezoelectric active materials and non-piezoelectric passive polymers, mechanically attached together to form different connectivities. These composites have several advantages compared to conventional piezoelectric ceramics and polymers, including improved electromechanical properties, mechanical flexibility and the ability to tailor properties by using several different connectivity patterns. These advantages have led to the improvement of overall transducer performance, such as transducer sensitivity and bandwidth, resulting in rapid implementation of piezoelectric composites in medical imaging ultrasounds and other acoustic transducers. Recently, new piezoelectric composite transducers have been developed with optimized composite components that have improved thermal stability and mechanical quality factors, making them promising candidates for high temperature, high power transducer applications, such as therapeutic ultrasound, high power ultrasonic wirebonding, high temperature non-destructive testing, and downhole energy harvesting. This paper will present recent developments of piezoelectric composite technology for high temperature and high power applications. The concerns and limitations of using piezoelectric composites will also be discussed, and the expected future research directions will be outlined.

  18. High temperature dynamic engine seal technology development (United States)

    Steinetz, Bruce M.; Dellacorte, Christopher; Machinchick, Michael; Mutharasan, Rajakkannu; Du, Guang-Wu; Ko, Frank; Sirocky, Paul J.; Miller, Jeffrey H.


    Combined cycle ramjet/scramjet engines being designed for advanced hypersonic vehicles, including the National Aerospace Plane (NASP), require innovative high temperature dynamic seals to seal the sliding interfaces of the articulated engine panels. New seals are required that will operate hot (1200 to 2000 F), seal pressures ranging from 0 to 100 psi, remain flexible to accommodate significant sidewall distortions, and resist abrasion over the engine's operational life. This report reviews the recent high temperature durability screening assessments of a new braided rope seal concept, braided of emerging high temperature materials, that shows promise of meeting many of the seal demands of hypersonic engines. The paper presents durability data for: (1) the fundamental seal building blocks, a range of candidate ceramic fiber tows; and for (2) braided rope seal subelements scrubbed under engine simulated sliding, temperature, and preload conditions. Seal material/architecture attributes and limitations are identified through the investigations performed. The paper summarizes the current seal technology development status and presents areas in which future work will be performed.

  19. New fluid for high temperature applications

    Energy Technology Data Exchange (ETDEWEB)

    Riva, M.; Flohr, F. [Solvay Fluor GmbH, Hannover (Germany); Froeba, A.P. [Lehrstuhl fuer Technische Thermodynamik (LTT), Univ. Erlangen (Germany)


    As a result of the worldwide increased consumption of energy, energy saving measures come more and more in the focus of commercial acting. Besides the efficiency enhancement of energy consuming systems the utilization of waste heat is an additional possibility of saving energy. Areas where this might be feasible are geothermal power plants, local combined heat and power plants, solar-thermal-systems and high temperature heat pumps (HTHP). All these applications need a transfer fluid which secures the transport of the energy from it's source to the place where it is needed at high temperatures. The paper will start with a description or overview of promising energy sources and their utilization. The thermophysical properties of an azeotropic binary mixture of HFC-365mfc and a per-fluoro-poly-ether (PFPE) which fulfils the requirements on a high temperature working fluid are introduced in the second part of the paper. First results and practical experiences in an ORC process are shown in this context followed by an estimation regarding the saved energy or the improved efficiency respectively for other applications The paper will end with a brief outlook on possible new applications e.g. autarkic systems or immersion cooling of electrical parts. (orig.)

  20. Laser Plasma Coupling for High Temperature Hohlraums

    Energy Technology Data Exchange (ETDEWEB)

    Kruer, W.


    Simple scaling models indicate that quite high radiation temperatures can be achieved in hohlraums driven with the National Ignition Facility. A scaling estimate for the radiation temperature versus pulse duration for different size NIF hohlraums is shown in Figure 1. Note that a radiation temperature of about 650 ev is projected for a so-called scale 1 hohlraum (length 2.6mm, diameter 1.6mm). With such high temperature hohlraums, for example, opacity experiments could be carried out using more relevant high Z materials rather than low Z surrogates. These projections of high temperature hohlraums are uncertain, since the scaling model does not allow for the very strongly-driven laser plasma coupling physics. Lasnex calculations have been carried out to estimate the plasma and irradiation conditions in a scale 1 hohlraum driven by NIF. Linear instability gains as high as exp(100) have been found for stimulated Brillouin scattering, and other laser-driven instabilities are also far above their thresholds. More understanding of the very strongly-driven coupling physics is clearly needed in order to more realistically assess and improve the prospects for high temperature hohlraums. Not surprisingly, this regime has been avoided for inertial fusion applications and so is relatively unexplored.

  1. Novel High Temperature Magnetic Bearings for Space Vehicle Systems Project (United States)

    National Aeronautics and Space Administration — Previous high temperature magnetic bearings employed only electromagnets. The work proposed in this SBIR program seeks to utilize High Temperature Permanent Magnets...

  2. Novel High Temperature Magnetic Bearings for Space Vehicle Systems Project (United States)

    National Aeronautics and Space Administration — Previous high temperature magnetic bearings employed electromagnets only. The work proposed in this SBIR program seeks to utilize High Temperature Permanent Magnets...

  3. High Temperature Fluoride Salt Test Loop

    Energy Technology Data Exchange (ETDEWEB)

    Aaron, Adam M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cunningham, Richard Burns [Univ. of Tennessee, Knoxville, TN (United States); Fugate, David L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Holcomb, David Eugene [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kisner, Roger A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Peretz, Fred J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Robb, Kevin R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wilson, Dane F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yoder, Jr, Graydon L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)


    Effective high-temperature thermal energy exchange and delivery at temperatures over 600°C has the potential of significant impact by reducing both the capital and operating cost of energy conversion and transport systems. It is one of the key technologies necessary for efficient hydrogen production and could potentially enhance efficiencies of high-temperature solar systems. Today, there are no standard commercially available high-performance heat transfer fluids above 600°C. High pressures associated with water and gaseous coolants (such as helium) at elevated temperatures impose limiting design conditions for the materials in most energy systems. Liquid salts offer high-temperature capabilities at low vapor pressures, good heat transport properties, and reasonable costs and are therefore leading candidate fluids for next-generation energy production. Liquid-fluoride-salt-cooled, graphite-moderated reactors, referred to as Fluoride Salt Reactors (FHRs), are specifically designed to exploit the excellent heat transfer properties of liquid fluoride salts while maximizing their thermal efficiency and minimizing cost. The FHR s outstanding heat transfer properties, combined with its fully passive safety, make this reactor the most technologically desirable nuclear power reactor class for next-generation energy production. Multiple FHR designs are presently being considered. These range from the Pebble Bed Advanced High Temperature Reactor (PB-AHTR) [1] design originally developed by UC-Berkeley to the Small Advanced High-Temperature Reactor (SmAHTR) and the large scale FHR both being developed at ORNL [2]. The value of high-temperature, molten-salt-cooled reactors is also recognized internationally, and Czechoslovakia, France, India, and China all have salt-cooled reactor development under way. The liquid salt experiment presently being developed uses the PB-AHTR as its focus. One core design of the PB-AHTR features multiple 20 cm diameter, 3.2 m long fuel channels

  4. Microstructural Evolution and Mechanical Behavior of High Temperature Solders: Effects of High Temperature Aging (United States)

    Hasnine, M.; Tolla, B.; Vahora, N.


    This paper explores the effects of aging on the mechanical behavior, microstructure evolution and IMC formation on different surface finishes of two high temperature solders, Sn-5 wt.% Ag and Sn-5 wt.% Sb. High temperature aging showed significant degradation of Sn-5 wt.% Ag solder hardness (34%) while aging has little effect on Sn-5 wt.% Sb solder. Sn-5 wt.% Ag experienced rapid grain growth as well as the coarsening of particles during aging. Sn-5 wt.% Sb showed a stable microstructure due to solid solution strengthening and the stable nature of SnSb precipitates. The increase of intermetallic compound (IMC) thickness during aging follows a parabolic relationship with time. Regression analysis (time exponent, n) indicated that IMC growth kinetics is controlled by a diffusion mechanism. The results have important implications in the selection of high temperature solders used in high temperature applications.

  5. {sup 57}Fe Moessbauer spectroscopy of radiation damaged samarskites and gadolinites

    Energy Technology Data Exchange (ETDEWEB)

    Malczewski, Dariusz, E-mail: [University of Silesia, Faculty of Earth Sciences (Poland); Grabias, Agnieszka [Institute of Electronic Materials Technology (Poland); Dercz, Grzegorz [University of Silesia, Institute of Materials Science (Poland)


    We report the results of {sup 57}Fe Moessbauer spectroscopy, gamma-ray spectrometry and X-ray diffraction of two fully metamict samarskites and two partially metamict gadolinites. The absorbed {alpha}-dose for these minerals are found to range from 3.6 x 10{sup 15} {alpha}-decay/mg for one of the gadolinite samples to 7.7 x 10{sup 17} {alpha}-decay/mg for one of the samarskite samples. The Moessbauer spectra of samarskites and gadolinites show increasing line widths of the Fe{sup 2+} doublets with absorbed {alpha}-dose. We also observe that the increase in average quadrupole splitting of the Fe{sup 2+} cmponents correlates better with absorbed {alpha}-dose from {sup 232}Th than with total {alpha}-dose.

  6. High temperature superconductors applications in telecommunications

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, A.A.; Li, J.; Zhang, M.F. [Prairie View A& M Univ., Texas (United States)


    The purpose of this paper is twofold: to discuss high temperature superconductors with specific reference to their employment in telecommunications applications; and to discuss a few of the limitations of the normally employed two-fluid model. While the debate on the actual usage of high temperature superconductors in the design of electronic and telecommunications devices-obvious advantages versus practical difficulties-needs to be settled in the near future, it is of great interest to investigate the parameters and the assumptions that will be employed in such designs. This paper deals with the issue of providing the microwave design engineer with performance data for such superconducting waveguides. The values of conductivity and surface resistance, which are the primary determining factors of a waveguide performance, are computed based on the two-fluid model. A comparison between two models-a theoretical one in terms of microscopic parameters (termed Model A) and an experimental fit in terms of macroscopic parameters (termed Model B)-shows the limitations and the resulting ambiguities of the two-fluid model at high frequencies and at temperatures close to the transition temperature. The validity of the two-fluid model is then discussed. Our preliminary results show that the electrical transport description in the normal and superconducting phases as they are formulated in the two-fluid model needs to be modified to incorporate the new and special features of high temperature superconductors. Parameters describing the waveguide performance-conductivity, surface resistance and attenuation constant-will be computed. Potential applications in communications networks and large scale integrated circuits will be discussed. Some of the ongoing work will be reported. In particular, a brief proposal is made to investigate of the effects of electromagnetic interference and the concomitant notion of electromagnetic compatibility (EMI/EMC) of high T{sub c} superconductors.

  7. High temperature sensors for exhaust diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Svenningstorp, Henrik


    One of the largest problems that we will have to deal with on this planet this millennium is to stop the pollution of our environment. In many of the ongoing works to reduce toxic emissions, gas sensors capable of enduring rough environments and high temperatures, would be a great tool. The different applications where sensors like this would be useful vary between everything from online measurement in the paper industry and food industry to measurement in the exhaust pipe of a car. In my project we have tested Schottky diodes and MlSiCFET sensor as gas sensors operating at high temperatures. The measurement condition in the exhaust pipe of a car is extremely tough, not only is the temperature high and the different gases quite harmful, there are also a lot of particles that can affect the sensors in an undesirable way. In my project we have been testing Schottky diodes and MlSiCFET sensors based on SiC as high temperature sensors, both in the laboratory with simulated exhaust and after a real engine. In this thesis we conclude that these sensors can work in the hostile environment of an engines exhaust. It is shown that when measuring in a gas mixture with a fixed I below one, where the I-value is controlled by the O{sub 2} concentration, a sensor with a catalytic gate metal as sensitive material respond more to the increased O{sub 2} concentration than the increased HC concentration when varying the two correspondingly. A number of different sensors have been tested in simulated exhaust towards NO{sub x}. It was shown that resistivity changes in the thin gate metal influenced the gas response. Tests have been performed where sensors were a part of a SCR system with promising results concerning NH{sub 3} sensitivity. With a working temperature of 300 deg C there is no contamination of the metal surface.

  8. Investigation of potential analytical methods for redox control of the vitrification process. [Moessbauer

    Energy Technology Data Exchange (ETDEWEB)

    Goldman, D.S.


    An investigation was conducted to evaluate several analytical techniques to measure ferrous/ferric ratios in simulated and radioactive nuclear waste glasses for eventual redox control of the vitrification process. Redox control will minimize the melt foaming that occurs under highly oxidizing conditions and the metal precipitation that occurs under highly reducing conditions. The analytical method selected must have a rapid response for production problems with minimal complexity and analyst involvement. The wet-chemistry, Moessbauer spectroscopy, glass color analysis, and ion chromatography techniques were explored, with particular emphasis being placed on the Moessbauer technique. In general, all of these methods can be used for nonradioactive samples. The Moessbauer method can readily analyze glasses containing uranium and thorium. A shielded container was designed and built to analyze fully radioactive glasses with the Moessbauer spectrometer in a hot cell environment. However, analyses conducted with radioactive waste glasses containing /sup 90/Sr and /sup 137/Cs were unsuccessful, presumably due to background radiation problems caused by the samples. The color of glass powder can be used to analyze the ferrous/ferric ratio for low chromium glasses, but this method may not be as precise as the others. Ion chromatography was only tested on nonradioactive glasses, but this technique appears to have the required precision due to its analysis of both Fe/sup +2/ and Fe/sup +3/ and its anticipated adaptability for radioactivity samples. This development would be similar to procedures already in use for shielded inductively coupled plasma emission (ICP) spectrometry. Development of the ion chromatography method is therefore recommended; conventional wet-chemistry is recommended as a backup procedure.

  9. Neutron in-beam Moessbauer spectroscopy of iron disulfide at 298 and 78 K

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Y., E-mail: [RIKEN (Japan); Yamada, Y. [Tokyo University of Science, Department of Chemistry (Japan); Tsuruoka, Y.; Kubo, M. K. [International Christian University (Japan); Shoji, H. [Tokyo Metropolitan University, Graduate School of Science (Japan); Watanabe, Y. [Saint-Gobain K. K., Crystal Division (Japan); Takayama, T.; Sakai, Y. [Daido Institute of Technology (Japan); Sato, W.; Shinohara, A. [Osaka University, Graduate School of Science (Japan); Segawa, M.; Matsue, H. [Japan Atomic Energy Agency (Japan)


    Emission Moessbauer spectra of {sup 57}Fe arising from the {sup 56}Fe(n, {gamma}){sup 57}Fe reaction in two crystal forms of iron disulfide were measured at room temperature and liquid nitrogen temperature. Both forms exhibited two doublets assignable to the parent material and the new species produced by the nuclear reaction. At low temperature three doublets explained the spectra obtained. Production of thermally unstable species after the neutron capture reaction was suggested.

  10. High temperature behaviour of a zircon ceramic

    Energy Technology Data Exchange (ETDEWEB)

    Carbonneau, X.; Olagnon, C.; Fantozzi, G. [INSA, Villeurbanne (France). GEMMPM; Hamidouche, M. [Lab. Science des Materiaux, Univ. de Setif (Algeria); Torrecillas, R. [Inst. Nacional del Carbon, Oviedo (Spain)


    The high temperature properties of a sintered zircon material has been tested up to 1200 C. A significant creep rate is observed, mainly attributed to the presence of glassy phase. The sub-critical crack growth measured in double torsion showed that above 1000 C, the crack velocity is reduced either by stress relaxation or by crack healing. The thermal shock analysis under a heat exchange coefficient of 600 W/m{sup 2}/K showed a regular decrease rather that a sudden fall off of properties. (orig.) 3 refs.

  11. High temperature and pressure electrochemical test station

    DEFF Research Database (Denmark)

    Chatzichristodoulou, Christodoulos; Allebrod, Frank; Mogensen, Mogens Bjerg


    An electrochemical test station capable of operating at pressures up to 100 bars and temperatures up to 400 ◦C has been established. It enables control of the partial pressures and mass flow of O2, N2, H2, CO2, and H2O in a single or dual environment arrangement, measurements with highly corrosive......, to the electrochemical characterization of high temperature and pressure alkaline electrolysis cells and the use of pseudo-reference electrodes for the separation of each electrode contribution. A future perspective of various electrochemical processes and devices that can be developed with the use of the established...

  12. High temperature superconducting digital circuits and subsystems

    Energy Technology Data Exchange (ETDEWEB)

    Martens, J.S.; Pance, A.; Whiteley, S.R.; Char, K.; Johansson, M.F.; Lee, L. [Conductus, Sunnyvale, CA (United States); Hietala, V.M.; Wendt, J.R. [Sandia National Labs., Albuquerque, NM (United States); Hou, S.Y.; Phillips, J. [AT and T Bell Labs., Murray Hill, NJ (United States)


    The advances in the fabrication of high temperature superconducting devices have enabled the demonstration of high performance and useful digital circuits and subsystems. The yield and uniformity of the devices is sufficient for circuit fabrication at the medium scale integration (MSI) level with performance not seen before at 77 K. The circuits demonstrated to date include simple gates, counters, analog to digital converters, and shift registers. All of these are mid-sized building blocks for potential applications in commercial and military systems. The processes used for these circuits and blocks will be discussed along with observed performance data.

  13. Encapsulation of high temperature molten salts

    Energy Technology Data Exchange (ETDEWEB)

    Oxley, James D.; Mathur, Anoop Kumar


    The present disclosure relates to a method of encapsulating microcapsules containing relatively high temperature phase change materials and the microcapsules so produced. The microcapsules are coated with an inorganic binder, film former and an inorganic filler. The microcapsules may include a sacrificial layer that is disposed between the particle and the coating. The microcapsules may also include an inner coating layer, sacrificial layer and outer coating layer. The microcapsules are particularly useful for thermal energy storage in connection with, e.g., heat collected from concentrating solar collectors.

  14. Quench in high temperature superconductor magnets

    CERN Document Server

    Schwartz, J.


    High field superconducting magnets using high temperature superconductors are being developed for high energy physics, nuclear magnetic resonance and energy storage applications. Although the conductor technology has progressed to the point where such large magnets can be readily envisioned, quench protection remains a key challenge. It is well-established that quench propagation in HTS magnets is very slow and this brings new challenges that must be addressed. In this paper, these challenges are discussed and potential solutions, driven by new technologies such as optical fiber based sensors and thermally conducting electrical insulators, are reviewed.

  15. Sorbents Remove Oxygen At High Temperatures (United States)

    Sharma, Pramod K.


    Cobalt-exchanged, platinized zeolites 13X and L found conveniently reducible in hot gaseous mixture of hydrogen and nitrogen and thereafter useful as sorbents of trace amounts of oxygen at high temperatures. Aided by catalytic action of platinum, sorbents exhibit rapid oxygen-sorption kinetics and, according to thermodynamic properties of O2/CoO system, capable of lowering level of oxygen in otherwise inert gaseous atmosphere to less than 1 part per trillion in temperature range of 400 to 800 degrees C. Inert atmospheres with these oxygen levels required for processing of certain materials in semiconductor industry.

  16. A review of high-temperature adhesives (United States)

    St.clair, A. K.; St.clair, T. L.


    The development of high temperature adhesives and polyphenylquinoxalines (PPQ) is reported. Thermoplastic polyimides and linear PPQ adhesive are shown to have potential for bonding both metals and composite structures. A nadic terminated addition polyimide adhesive, LARC-13, and an acetylene terminated phenylquinoxaline (ATPQ) were developed. Both of the addition type adhesives are shown to be more readily processable than linear materials but less thermooxidatively stable and more brittle. It is found that the addition type adhesives are able to perform, at elevated temperatures up to 595 C where linear systems fail thermoplastically.

  17. High Temperature Materials Laboratory third annual report

    Energy Technology Data Exchange (ETDEWEB)

    Tennery, V.J.; Foust, F.M.


    The High Temperature Materials Laboratory has completed its third year of operation as a designated DOE User Facility at the Oak Ridge National Laboratory. Growth of the user program is evidenced by the number of outside institutions who have executed user agreements since the facility began operation in 1987. A total of 88 nonproprietary agreements (40 university and 48 industry) and 20 proprietary agreements (1 university, 19 industry) are now in effect. Sixty-eight nonproprietary research proposals (39 from university, 28 from industry, and 1 other government facility) and 8 proprietary proposals were considered during this reporting period. Research projects active in FY 1990 are summarized.

  18. Moessbauer effect of the alkaline and alkaline earth metal nitroprusside powders

    CERN Document Server

    Yang, T H; Kim, H S; Hong, C Y; Kim, H B; Cho, H Y; Kim, D Y; Moon, Y S


    We observe Moessbauer spectra of Fe atoms centered in nitroprusside anions of sodium nitroprusside (Na sub 2 [Fe(CN) sub 5 NO] 2H sub 2 O). potassium-nitroprusside (K sub 2 [Fe(CN)] sub 5 NO centre dot 2.5H sub 2 O), rubidium nitroprusside (Rb sub 2 [Fe(CN) sub 5 NO centre dot H sub 2 O), magnesium nitroprusside (Mg[Fe(CN) sub 5 NO], calcium nitroprusside (Ca[Fe(CN) sub 5 NO]centre dot 4H sub 2 O), and barium nitroprusside (Ba[Fe(CN) sub 5 NO]centre dot 3H sub 2 O) samples which have photochromic properties. We compare the Moessbauer parameters, the values of the isomer shifts and the quadrupole splittings of the samples with those of a sodium nitroprusside single crystal which is a standard material. The values of the isomer shifts and the quadrupole splittings of the various compounds are close to each other. The values of the line broadening of all samples are between 2.1 GAMMA sub N and 2.5 GAMMA sub N. The Moessbauer Lamb factors (f) are between 0.252(1) and 0.340(2). These values are obtained from the s...

  19. High temperature behavior of eucryptite by means of in situ X ray diffraction studies; Comportamiento de la eucriptita a alta temperatura mediante estudio in situ por difraccion de Rayos X

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Moreno, O.; Khainakov, S.; Torrecillas, R.


    Eucryptite is a lithium aluminosilicate with striking thermal expansion properties: it has negative expansion, i. e. it contracts upon heating in one of its crystallographic dimensions. Due to this characteristic, eucryptite is used in the fabrication of very low coefficient of thermal expansion materials. Two different eucryptite solid solution compositions were synthesized in this study with Li{sub 2}O:Al{sub 2}O{sub 3}:SiO{sub 2} contents of 1:1:3 and 1:1:2. The synthesis was prepared using kaolinite, lithium carbonate and TEOS and o {gamma} Al{sub 2}O{sub 3}, respectively. High resolution X Ray diffraction characterization was performed at high temperature for both compositions between 25 and 1200 degree centigrade. The temperature effect on structure and composition was studied by determining cell parameters and crystal structures. The relation between the observed changes and the CTE variations with the sintering temperature of materials based in these compositions was finally determined. (Author) 19 refs.

  20. High-temperature behaviour of astrophyllite, K2NaFe7 2+Ti2(Si4O12)2O2(OH)4F: a combined X-ray diffraction and Mössbauer spectroscopic study (United States)

    Zhitova, Elena S.; Krivovichev, Sergey V.; Hawthorne, Frank C.; Krzhizhanovskaya, Maria G.; Zolotarev, Andrey A.; Abdu, Yassir A.; Yakovenchuk, Viktor N.; Pakhomovsky, Yakov A.; Goncharov, Alexey G.


    High-temperature X-ray powder-diffraction study of astrophyllite, K2NaFe7 2+Ti2(Si4O12)2O2(OH)4F, and investigation of the samples annealed at 600 and 700 °C, reveal the occurrence of a phase transformation due to the thermal iron oxidation coupled with (1) deprotonation according to the scheme Fe2+ + OH- → Fe3+ + O2- + ½H2 ↑, and (2) defluorination according to the scheme Fe2+ + F- → Fe3+ + O2-. The phase transformation occurs at 500 °C, it is irreversible and without symmetry changes. The mineral decomposes at 775 °C. Both astrophyllite and its high-temperature dehydroxylated (HT) modification are triclinic, P-1. The unit-cell parameters are a = 5.3752(1), b = 11.8956(3), c = 11.6554(3) Å, α = 113.157(3), β = 94.531(2), γ = 103.112(2)º, V = 655.47(3) Å3 for unheated astrophyllite, and a = 5.3287(4), b = 11.790(1), c = 11.4332(9) Å, α = 112.530(8), β = 94.539(6), γ = 103.683(7)º, V = 633.01(9) Å3 for the HT (annealed) modification of astrophyllite. The oxidation of iron is confirmed: (1) by the presence of an exothermic effect at 584 °C in the DTA/TG curves in an Ar-O atmosphere and its absence in an Ar-Ar atmosphere and (2) by ex situ Mössbauer spectroscopy that showed the oxidation of Fe2+ to Fe3+ in the samples heated to 700 °C. Deprotonation was detected by the evolution of IR spectra in the region 3600-3000 cm-1 for astrophyllite and its HT modification. Defluorination was detected by the presence of F in the electron microprobe analysis of unheated astrophyllite and the absence of F in the analysis of unpolished heated astrophyllite. The significant difference between astrophyllite and its HT modification is in the reduction of the M-O interatomic distances after heating to 500 °C and the distortion indices of the MO6 and Dφ6 octahedra. Thermal behaviour of astrophyllite in the 25-475 °C temperature range can be described as a volume thermal expansion with maximal coefficient of thermal expansion in the direction perpendicular to

  1. Development of a highly efficient conversion electron Moessbauer spectroscopy (CEMS) detector for low temperature (<20 K) measurements and tests on Fe / (Eu{sub x}Pb{sub 1-x})Te bilayers; Desenvolvimento de um detector de alta eficiencia para espectroscopia Moessbauer de eletrons de conversao (CEMS) a baixas temperaturas (<20K) e testes em bicamadas Fe / (Eu{sub x}Pb{sub 1-x})Te

    Energy Technology Data Exchange (ETDEWEB)

    Pombo, Carlos Jose da Silva Matos


    The {sup 57}Fe Moessbauer spectroscopy is a nuclear, non-destructive technique used for the investigation of structural, magnetic and hyperfine properties of several materials. It is a powerful tool in characterizing materials in physics, metallurgy, geology and biology field areas, especially magnetic materials, alloys and minerals containing Fe. Lately, the Conversion Electron Moessbauer Spectroscopy (CEMS) is widely used in making studies on ultra-thin magnetic films, as well as other nanostructured materials. In case of magnetic nanostructures, low temperature (LT) studies are especially important due to the possibility of dealing with superparamagnetic effects. In this work it was developed a CEMS measurement system for low temperatures (<20 K) based on a solid-state electron multiplier (Channeltron{sup R}) and an optical cryostat (Model SVT-400, Janis Research Co, USA), from which the project was originally conceived at the Applied Physics / Moessbauer spectroscopy Department from University of Duisburg-Essen, Germany. The LT-CEMS system was fully built, tested and successfully applied in a preliminary characterization of Fe/(Eu{sub x}Pb{sub 1-x})Te(111) bilayers with use of a 15 angstrom, {sup 57} Fe probe layer, with reasonable results at sample temperatures as low as 8 K. (author)

  2. High-Temperature Luminescence Quenching of Colloidal Quantum Dots


    Zhao, Y.; Riemersma, C.; Pietra, F; de Mello Donega, C.; Meijerink, A.


    Thermal quenching of quantum dot (QD) luminescence is important for application in luminescent devices. Systematic studies of the quenching behavior above 300 K are, however, lacking. Here, high-temperature (300–500 K) luminescence studies are reported for highly efficient CdSe core–shell quantum dots (QDs), aimed at obtaining insight into temperature quenching of QD emission. Through thermal cycling (yoyo) experiments for QDs in polymer matrices, reversible and irreversible luminescence quen...

  3. Medium Deep High Temperature Heat Storage (United States)

    Bär, Kristian; Rühaak, Wolfram; Schulte, Daniel; Welsch, Bastian; Chauhan, Swarup; Homuth, Sebastian; Sass, Ingo


    Heating of buildings requires more than 25 % of the total end energy consumption in Germany. Shallow geothermal systems for indirect use as well as shallow geothermal heat storage systems like aquifer thermal energy storage (ATES) or borehole thermal energy storage (BTES) typically provide low exergy heat. The temperature levels and ranges typically require a coupling with heat pumps. By storing hot water from solar panels or thermal power stations with temperatures of up to 110 °C a medium deep high temperature heat storage (MDHTS) can be operated on relatively high temperature levels of more than 45 °C. Storage depths of 500 m to 1,500 m below surface avoid conflicts with groundwater use for drinking water or other purposes. Permeability is typically also decreasing with greater depth; especially in the crystalline basement therefore conduction becomes the dominant heat transport process. Solar-thermal charging of a MDHTS is a very beneficial option for supplying heat in urban and rural systems. Feasibility and design criteria of different system configurations (depth, distance and number of BHE) are discussed. One system is designed to store and supply heat (300 kW) for an office building. The required boreholes are located in granodioritic bedrock. Resulting from this setup several challenges have to be addressed. The drilling and completion has to be planned carefully under consideration of the geological and tectonical situation at the specific site.

  4. Development of High Temperature Gas Sensor Technology (United States)

    Hunter, Gary W.; Chen, Liang-Yu; Neudeck, Philip G.; Knight, Dak; Liu, Chung-Chiun; Wu, Quing-Hai; Zhou, Huan-Jun


    The measurement of engine emissions is important for their monitoring and control. However, the ability to measure these emissions in-situ is limited. We are developing a family of high temperature gas sensors which are intended to operate in harsh environments such as those in an engine. The development of these sensors is based on progress in two types of technology: (1) The development of SiC-based semiconductor technology; and (2) Improvements in micromachining and microfabrication technology. These technologies are being used to develop point-contact sensors to measure gases which are important in emission control especially hydrogen, hydrocarbons, nitrogen oxides, and oxygen. The purpose of this paper is to discuss the development of this point-contact sensor technology. The detection of each type of gas involves its own challenges in the fields of materials science and fabrication technology. Of particular importance is sensor sensitivity, selectivity, and stability in long-term, high temperature operation. An overview is presented of each sensor type with an evaluation of its stage of development. It is concluded that this technology has significant potential for use in engine applications but further development is necessary.

  5. High-temperature superconductors make major progress

    CERN Multimedia

    CERN Bulletin


    This month's Nature Materials featured an important breakthrough for high-temperature superconductors. A new method has been found for processing Bi-2212 high-temperature superconducting round wire in order to drastically increase its critical current density. The result confirms that this conductor is a serious candidate for future very-high-field magnets.   This image shows the cross-section of two Bi-2212 wires. The bottom wire has less leakage and void porosity due to a heat treatment done at an overpressure of 100 bar - about 100 times the pressure used to produce the top wire (image from [Nature Materials, Vol. 13 (2014), 10.1038/nmat3887]). The workhorse for building superconducting accelerator magnets has been, so far, the Niobium-Titanium (Nb-Ti) alloy superconductor. But with Nb-Ti having reached its full potential, other conductors must be used to operate in higher magnetic fields beyond those reached with the LHC magnets. Today, the intermetallic Niobium-Tin (Nb3Sn) is th...

  6. Conformal Properties in High Temperature QCD

    CERN Document Server

    Ishikawa, K -I; Nakayama, Yu; Yoshie, T


    We investigate the properties of quarks and gluons above the chiral phase transition temperature $T_c,$ using the RG improved gauge action and the Wilson quark action with two degenerate quarks mainly on a $32^3\\times 16$ lattice. In the one-loop perturbation theory, the thermal ensemble is dominated by the gauge configurations with effectively $Z(3)$ center twisted boundary conditions, making the thermal expectation value of the spatial Polyakov loop take a non-trivial $Z(3)$ center. This is in agreement with our lattice simulation of high temperature QCD. We further observe that the temporal propagator of massless quarks at extremely high temperature $\\beta=100.0 \\, (T \\simeq10^{58} T_c)$ remarkably agrees with the temporal propagator of free quarks with the $Z(3)$ twisted boundary condition for $t/L_t \\geq 0.2$, but differs from that with the $Z(3)$ trivial boundary condition. As we increase the mass of quarks $m_q$, we find that the thermal ensemble continues to be dominated by the $Z(3)$ twisted gauge fi...

  7. High-temperature studies of multiple fluorinated traps within an Al2O3 gate dielectric for E-Mode AlGaN/GaN power MIS-HEMTs (United States)

    Wang, Yun-Hsiang; Liang, Yung C.; Samudra, Ganesh S.; Chu, Po-Ju; Liao, Ya-Chu; Huang, Chih-Fang; Kuo, Wei-Hung; Lo, Guo-Qiang


    Normally-off AlGaN/GaN MIS-HEMT devices with multiple fluorinated ALD-Al2O3 layers as the gate dielectric have been reported to achieve a high threshold voltage for normally-off operations with satisfactory performance for both on and off states at room temperature. However, a large swing in gate threshold voltage is found when devices operate at elevated temperatures. Hence, further study of the gate dielectric on the distribution of fluorinated trap states in the energy band are required to assess the gate function at higher temperatures. Through the use of the charge analytical model and Poole-Frenkel trap emission theory, the gate voltage stressing measurement was carried out to accurately find the effective trap state distribution within the Al2O3 energy bandgap created by fluorinated treatments. For the samples fabricated and used in the investigation, we found that a higher population of fluorinated trap states located deeper than 1.1 eV corresponding to emission levels above 200 °C would allow more trapped charges to remain in the dielectric at high temperature for better threshold voltage retention. We also discovered that a higher fluorine treatment power on the gate dielectric could yield a higher trap state density at deeper levels, resulting in better temperature stability.

  8. Raman and structural studies on the high-temperature regime of the KH{sub 2}PO{sub 4}-NH{sub 4}H{sub 2}PO{sub 4} system

    Energy Technology Data Exchange (ETDEWEB)

    Jurado, J. F.; Vargas H, C. [Universidad Nacional de Colombia, Departamento de Fisica y Quimica, Laboratorio de Propiedades Opticas de Materiales, A. A. 127, Manizales (Colombia); Vargas, R. A. [Universidad del Valle, Departamento de Fisica, A. A. 25360, Cali (Colombia)


    We have studied the high-temperature phase transition of crystalline potassium and ammonium de hydrogen phosphates and solid solutions of them with composition (1-{chi})KH{sub 2}PO{sub 4} + {chi}NH{sub 4}H{sub 2}PO{sub 4} (KADPx, for {chi} = 0.0, 0.1, 0.2, 0.3, 0.4, 0.6 and 1.0), by means of X-ray diffraction analysis at room temperature and in situ Raman spectroscopy as function of temperature. Analysis of the Raman spectra made it possible to monitor the temperature dependence of vibrational bands associated to structural changes taking place during a proposed partial dehydration reaction that starts to take place at a characteristic temperature T{sub {rho}} and tends to increase above it. This assignment is supported using characteristic vibrational bands of phosphates and polyphosphates (produced as a consequence of the partial dehydration reaction of the crystal above T{sub {rho}}). The presence of the polyphosphate vibrational bands assigned to the stretch vibration of its PO{sub 2} species (at about 1120 cm{sup -1} for pure Kdp) accompanied by a broad band assigned to P-O-P backbone vibrations (at about 713 cm{sup -1} for pure Kdp) become evident at temperature higher than T{sub {rho}} depending on the composition of KADPx. (Author)

  9. High temperature triaxial tests on Rochester shale (United States)

    Bruijn, Rolf; Burlini, Luigi; Misra, Santanu


    Phyllosilicates are one of the major components of the crust, responsible for strength weakening during deformation. High pressure and temperature experiments of natural samples rich in phyllosilicates are needed to test the relevance of proposed weakening mechanisms induced by phyllosilicates, derived from lab experiments on single phase and synthetic polyphase rocks and single crystals. Here, we present the preliminary results of a series of high temperature triaxial tests performed on the illite-rich Rochester Shale (USA - New York) using a Paterson type gas-medium HPT testing machine. Cylindrical samples with homogeneous microstructure and 12-14% porosity were fabricated by cold and hot-isostatically pressing, hot-pressed samples were deformed up to a total shortening of 7.5 to 13%. To study the significance of mica dehydration, iron or copper jackets were used in combination with non-porous or porous spacers. Water content was measured before and after experiments using Karl Fischer Titration (KFT). All experiments show, after yielding at 0.6% strain, rapid hardening in nearly linear fashion until about 4-5% strain, from where stress increases at reducing rates to values at 10% strain, between 400 and 675 MPa, depending on experimental conditions. Neither failure nor steady state however, is achieved within the maximum strain of 13%. Experiments performed under 500 °C and 300 MPa confining pressure show weak strain rate dependence. In addition, iron-jacketed samples appear harder than copper-jacketed ones. At 700 °C samples are 17 to 37% weaker and more sensitive to strain rate than during 500 °C experiments. Although, iron-jacketed samples behave stronger than copper-jacketed ones. By visual inspection, samples appear homogeneously shortened. Preliminary analysis suggests that deformation is mostly accommodated by pore collapse. Although, with finite strain, pore collapse becomes less significant. A temperature, strain rate and jacket material dependent

  10. Thermodynamic study of residual heat from a high temperature nuclear reactor to analyze its viability in cogeneration processes; Estudio termodinamico del calor residual de un reactor nuclear de alta temperatura para analizar su viabilidad en procesos de cogeneracion

    Energy Technology Data Exchange (ETDEWEB)

    Santillan R, A.; Valle H, J.; Escalante, J. A., E-mail: [Universidad Politecnica Metropolitana de Hidalgo, Boulevard acceso a Tolcayuca 1009, Ex-Hacienda San Javier, 43860 Tolcayuca, Hidalgo (Mexico)


    In this paper the thermodynamic study of a nuclear power plant of high temperature at gas turbine (GTHTR300) is presented for estimating the exploitable waste heat in a process of desalination of seawater. One of the most studied and viable sustainable energy for the production of electricity, without the emission of greenhouse gases, is the nuclear energy. The fourth generation nuclear power plants have greater advantages than those currently installed plants; these advantages have to do with security, increased efficiencies and feasibility to be coupled to electrical cogeneration processes. In this paper the thermodynamic study of a nuclear power plant type GTHTR300 is realized, which is selected by greater efficiencies and have optimal conditions for use in electrical cogeneration processes due to high operating temperatures, which are between 700 and 950 degrees Celsius. The aim of the study is to determine the heat losses and the work done at each stage of the system, determining where they are the greatest losses and analyzing in that processes can be taken advantage. Based on the study was appointed that most of the energy losses are in form of heat in the coolers and usually this is emitted into the atmosphere without being used. From the results a process of desalination of seawater as electrical cogeneration process is proposed. This paper contains a brief description of the operation of the nuclear power plant, focusing on operation conditions and thermodynamic characteristics for the implementation of electrical cogeneration process, a thermodynamic analysis based on mass and energy balance was developed. The results allow quantifying the losses of thermal energy and determining the optimal section for coupling of the reactor with the desalination process, seeking to have a great overall efficiency. (Author)

  11. Scientific Pluralism: the battle of High Temperature Superconductivity

    CERN Document Server

    Lederer, Pascal


    The early development of conflicting theories (i.e. one aspect of scientific pluralism) about the microscopic mechanism of High Temperature Superconductivity is described. The biographical roots of this diversity are stressed, as well as its subjective/objective roots. Scientific pluralism is discussed in relation with this study, as well as various philosophical teachnings about relativism, the Duhem-Quine thesis on the underdetermination of theory by facts, and the dialectics of knowledge and nature.

  12. Heat conductivity of high-temperature thermal insulators (United States)

    Kharlamov, A. G.

    The book deals essentially with the mechanisms of heat transfer by conduction, convection, and thermal radiation in absorbing and transmitting media. Particular attention is given to materials for gas-cooled reactor systems, the temperature dependent conductivities of high-temperature insulations in vacuum, and the thermal conductivities of MgO, Al2O3, ZrO2, and other powders at temperatures up to 2000 C. The thermal conductivity of pyrolitic graphite and graphite foam are studied.

  13. Ionic liquid electrolyte for supercapacitor with high temperature compatibility (United States)

    Haque, Mazharul; Li, Qi; Kuzmenko, Volodymyr; Smith, Anderson D.; Enoksson, Peter


    This work describes the electrochemical investigation of two ionic liquids (ILs), 1-ethyl-3-methylimidazolium acetate (EMIM Ac) and 1-butyl-3-methylimidazolium chloride (BMIM Cl), as electrolytes in supercapacitors (SC). A comprehensive study on high temperature (HT) endurance that is required for system integration in microelectronics has also been carried out. It has been found that EMIM Ac containing SC performs better than a BMIM Cl containing SC, and HT treatment improves the capacitive performance.

  14. Fast pyrolysis of biomass at high temperatures

    DEFF Research Database (Denmark)

    Trubetskaya, Anna

    . Different particle shapes of beechwood and leached wheat straw chars produced in the drop tube reactor which have similar potassium content suggested a stronger influence of the major biomass cell wall compounds (cellulose, hemicellulose, lignin and extractives) and silicates on the char morphology than...... multi core structures compared to pinewood soot generated at 1400°C, combining both single and multi core particles.Beechwood and wheat straw soot samples had multi and single core particles at both temperatures.In thermogravimetric analysis, the maximal reaction rate of pinewood soot was shifted...... pyrolysis at high temperatures plays a significant role in the overall combustion process since the biomass type, the reaction kinetics and heat transfer rates during pyrolysis influence the volatile gas release. The solid residue yield and its properties in suspension firing, including particle size...

  15. High Temperature Battery for Drilling Applications

    Energy Technology Data Exchange (ETDEWEB)

    Josip Caja


    In this project rechargeable cells based on the high temperature electrochemical system Na/beta''-alumina/S(IV) in AlCl3/NaCl were developed for application as an autonomous power source in oil/gas deep drilling wells. The cells operate in the temperature range from 150 C to 250 C. A prototype DD size cell was designed and built based on the results of finite element analysis and vibration testing. The cell consisted of stainless steel case serving as anode compartment with cathode compartment installed in it and a seal closing the cell. Critical element in cell design and fabrication was hermetically sealing the cell. The seal had to be leak tight, thermally and vibration stable and compatible with electrode materials. Cathode compartment was built of beta''-alumina tube which served as an electrolyte, separator and cathode compartment.

  16. Creep resistant high temperature martensitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Hawk, Jeffrey A.; Jablonski, Paul D.; Cowen, Christopher J.


    The disclosure provides a creep resistant alloy having an overall composition comprised of iron, chromium, molybdenum, carbon, manganese, silicon, nickel, vanadium, niobium, nitrogen, tungsten, cobalt, tantalum, boron, and potentially additional elements. In an embodiment, the creep resistant alloy has a molybdenum equivalent Mo(eq) from 1.475 to 1.700 wt. % and a quantity (C+N) from 0.145 to 0.205. The overall composition ameliorates sources of microstructural instability such as coarsening of M.sub.23C.sub.6 carbides and MX precipitates, and mitigates or eliminates Laves and Z-phase formation. A creep resistant martensitic steel may be fabricated by preparing a melt comprised of the overall composition followed by at least austenizing and tempering. The creep resistant alloy exhibits improved high-temperature creep strength in the temperature environment of around C.

  17. Creep resistant high temperature martensitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Hawk, Jeffrey A.; Jablonski, Paul D.; Cowen, Christopher J.


    The disclosure provides a creep resistant alloy having an overall composition comprised of iron, chromium, molybdenum, carbon, manganese, silicon, nickel, vanadium, niobium, nitrogen, tungsten, cobalt, tantalum, boron, copper, and potentially additional elements. In an embodiment, the creep resistant alloy has a molybdenum equivalent Mo(eq) from 1.475 to 1.700 wt. % and a quantity (C+N) from 0.145 to 0.205. The overall composition ameliorates sources of microstructural instability such as coarsening of M.sub.23C.sub.6carbides and MX precipitates, and mitigates or eliminates Laves and Z-phase formation. A creep resistant martensitic steel may be fabricated by preparing a melt comprised of the overall composition followed by at least austenizing and tempering. The creep resistant alloy exhibits improved high-temperature creep strength in the temperature environment of around C.

  18. High temperature superconductors for magnetic suspension applications (United States)

    Mcmichael, C. K.; Cooley, R. S.; Chen, Q. Y.; Ma, K. B.; Lamb, M. A.; Meng, R. L.; Chu, C. W.; Chu, W. K.


    High temperature superconductors (HTS) hold the promise for applications in magnetic levitation bearings, vibration damping, and torque coupling. Traditional magnetic suspension systems require active feedback and vibration controls in which power consumption and low frequency vibration are among the major engineering concerns. HTS materials have been demonstrated to be an enabling approach towards such problems due to their flux trapping properties. In our laboratory at TCSUH, we have been conducting a series of experiments to explore various mechanical applications using HTS. We have constructed a 30 lb. model flywheel levitated by a hybrid superconducting magnetic bearing (HSMB). We are also developing a levitated and vibration-dampled platform for high precision instrumentation. These applications would be ideal for space usages where ambient temperature is adequate for HTS to operate properly under greatly reduced cryogenic requirements. We will give a general overview of these potential applications and discuss the operating principles of the HTS devices we have developed.

  19. High-temperature ordered intermetallic alloys V

    Energy Technology Data Exchange (ETDEWEB)

    Baker, I. (ed.) (Dartmouth Coll., Hanover, NH (United States). Thayer School of Engineering); Darolia, R. (ed.) (GE Aircraft Engines, Cincinnati, OH (United States)); Whittenberger, J.D. (ed.) (NASA, Cleveland, OH (United States). Lewis Research Center); Yoo, M.H. (ed.) (Oak Ridge National Lab., TN (United States))


    These proceedings represent the written record of the High-Temperature Ordered Intermetallic Alloys 5 Symposium which was held in conjunction with the 1992 Fall Materials Research Society meeting in Boston, Massachusetts. This symposium, which was the fifth in the series originated by C.C Koch, C.T. Liu and N.S. Stoloff in 1984, was very successful with 86 oral presentations over four days, and approximately 140 posters given during two lively evening sessions. Such a response, in view of the increasing number of conferences being held on intermetallics each year, reveals the continued high regard for this series of symposia. Individual papers have been processed separately for inclusion in the appropriate data bases.

  20. High temperature chemically resistant polymer concrete (United States)

    Sugama, T.; Kukacka, L.E.

    High temperature chemically resistant, non-aqueous polymer concrete composites consist of about 12 to 20% by weight of a water-insoluble polymer binder. The binder is polymerized in situ from a liquid vinyl-type monomer or mixture of vinyl containing monomers such as triallylcyanurate, styrene, acrylonitrile, acrylamide, methacrylamide, methyl-methacrylate, trimethylolpropane trimethacrylate and divinyl benzene. About 5 to 40% by weight of a reactive inorganic filler selected from the group consisting of tricalcium silicate and dicalcium silicate and mixtures containing less than 2% free lime, and about 48 to 83% by weight of silica sand/ and a free radical initiator such as di-tert-butyl peroxide, azobisisobutyronitrile, benzoyl peroxide, lauryl peroxide, other orgaic peroxides and combinations to initiate polymerization of the monomer in the presence of the inorganic filers are used.

  1. FY16 ASME High Temperature Code Activities

    Energy Technology Data Exchange (ETDEWEB)

    Swindeman, M. J. [Chromtech Inc., Oak Ridge, TN (United States); Jetter, R. I. [R. I Jetter Consulting, Pebble Beach, CA (United States); Sham, T. -L. [Argonne National Lab. (ANL), Argonne, IL (United States)


    One of the objectives of the ASME high temperature Code activities is to develop and validate both improvements and the basic features of Section III, Division 5, Subsection HB, Subpart B (HBB). The overall scope of this task is to develop a computer program to be used to assess whether or not a specific component under specified loading conditions will satisfy the elevated temperature design requirements for Class A components in Section III, Division 5, Subsection HB, Subpart B (HBB). There are many features and alternative paths of varying complexity in HBB. The initial focus of this task is a basic path through the various options for a single reference material, 316H stainless steel. However, the program will be structured for eventual incorporation all the features and permitted materials of HBB. Since this task has recently been initiated, this report focuses on the description of the initial path forward and an overall description of the approach to computer program development.

  2. Gravimeter using high-temperature superconductor bearing.

    Energy Technology Data Exchange (ETDEWEB)

    Hull, J. R.


    We have developed a sensitive gravimeter concept that uses an extremely low-friction bearing based on a permanent magnet (PM) levitated over a high-temperature superconductor (HTS). A mass is attached to the PM by means of a cantilevered beam, and the combination of PM and HTS forms a bearing platform that has low resistance to rotational motion but high resistance to horizontal, vertical, or tilting motion. The combination acts as a low-loss torsional pendulum that can be operated in any orientation. Gravity acts on the cantilevered beam and attached mass, accelerating them. Variations in gravity can be detected by time-of-flight acceleration, or by a control coil or electrode that would keep the mass stationary. Calculations suggest that the HTS gravimeter would be as sensitive as present-day superconducting gravimeters that need cooling to liquid helium temperatures, but the HTS gravimeter needs cooling only to liquid nitrogen temperatures.

  3. Thermomechanics of composite structures under high temperatures

    CERN Document Server

    Dimitrienko, Yu I


    This pioneering book presents new models for the thermomechanical behavior of composite materials and structures taking into account internal physico-chemical transformations such as thermodecomposition, sublimation and melting at high temperatures (up to 3000 K). It is of great importance for the design of new thermostable materials and for the investigation of reliability and fire safety of composite structures. It also supports the investigation of interaction of composites with laser irradiation and the design of heat-shield systems. Structural methods are presented for calculating the effective mechanical and thermal properties of matrices, fibres and unidirectional, reinforced by dispersed particles and textile composites, in terms of properties of their constituent phases. Useful calculation methods are developed for characteristics such as the rate of thermomechanical erosion of composites under high-speed flow and the heat deformation of composites with account of chemical shrinkage. The author expan...

  4. Diamond switches for high temperature electronics

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, R.R.; Rondeau, G.; Qi, Niansheng [Alameda Applied Sciences Corp., San Leandro, CA (United States)] [and others


    Diamond switches are well suited for use in high temperature electronics. Laboratory feasibility of diamond switching at 1 kV and 18 A was demonstrated. DC blocking voltages up to 1 kV were demonstrated. A 50 {Omega} load line was switched using a diamond switch, with switch on-state resistivity {approx}7 {Omega}-cm. An electron beam, {approx}150 keV energy, {approx}2 {mu}s full width at half maximum was used to control the 5 mm x 5 mm x 100 {mu}m thick diamond switch. The conduction current temporal history mimics that of the electron beam. These data were taken at room temperature.

  5. Robust high temperature oxygen sensor electrodes

    DEFF Research Database (Denmark)

    Lund, Anders

    reaction kinetics. At oxygen partial pressures below 10-6 bar at 700 C, the mass transport processes dominated the response time. The response time increased with decreasing oxygen partial pressure and inlet gas flow rate. A series of porous platinum electrodes were impregnated with the ionically...... conducting gadolinium-doped cerium oxide (CGO). The addition of CGO was found to decrease the polarisation resistance of the oxygen reaction by up to an order of magnitude compared with a single phase platinum electrode by increasing the effective triple phase boundary (TPB) length. It did not have any......Platinum is the most widely used material in high temperature oxygen sensor electrodes. However, platinum is expensive and the platinum electrode may, under certain conditions, suffer from poisoning, which is detrimental for an oxygen sensor. The objective of this thesis is to evaluate electrode...

  6. High-temperature brushless DC motor controller

    Energy Technology Data Exchange (ETDEWEB)

    Cieslewski, Crzegorz; Lindblom, Scott C.; Maldonado, Frank J.; Eckert, Michael Nathan


    A motor control system for deployment in high temperature environments includes a controller; a first half-bridge circuit that includes a first high-side switching element and a first low-side switching element; a second half-bridge circuit that includes a second high-side switching element and a second low-side switching element; and a third half-bridge circuit that includes a third high-side switching element and a third; low-side switching element. The motor controller is arranged to apply a pulse width modulation (PWM) scheme to switch the first half-bridge circuit, second half-bridge circuit, and third half-bridge circuit to power a motor.

  7. On-wafer high temperature characterization system (United States)

    Teodorescu, L.; ǎghici, F., Dr; Rusu, I.; Brezeanu, G.


    In this work a on-wafer high temperature characterization system for wide bandgap semiconductor devices and circuits has been designed, implemented and tested. The proposed system can perform the wafer temperature adjustment in a large domain, from the room temperature up to 3000C with a resolution better than +/-0.50C. In order to obtain both low-noise measurements and low EMI, the heating element of the wafer chuck is supplied in two ways: one is from a DC linear power supply connected to the mains electricity, another one is from a second DC unit powered by batteries. An original temperature control algorithm, different from classical PID, is used to modify the power applied to the chuck.

  8. Filter unit for use at high temperatures (United States)

    Ciliberti, David F.; Lippert, Thomas E.


    A filtering unit for filtering particulates from high temperature gases uses a spiral ceramic spring to bias a ceramic, tubular filter element into sealing contact with a flange about an aperture of a metallic tube sheet. The ceramic spiral spring may contact the upper edge of the filter element and be restrained by a stop member spaced from one end of the tube sheet, or the spring may contact the bottom of the filter element and be restrained by a support member spaced from the opposite end of the tube sheet. The stop member and support member are adjustably secured to the tube sheet. A filtering system uses the ceramic spiral spring to bias a plurality of ceramic, tubular filter elements in a respective plurality of apertures in a tube sheet which divides a vessel into upper and lower enclosed sections.

  9. Measuring nanowire thermal conductivity at high temperatures (United States)

    Wang, Xiaomeng; Yang, Juekuan; Xiong, Yucheng; Huang, Baoling; Xu, Terry T.; Li, Deyu; Xu, Dongyan


    This work extends the micro-thermal-bridge method for thermal conductivity measurements of nanowires to high temperatures. The thermal-bridge method, based on a microfabricated device with two side-by-side suspended membranes with integrated platinum resistance heaters/thermometers, has been used to determine thermal conductivity of various nanowires/nanotubes/nanoribbons at relatively low temperatures. However, to date, thermal conductivity characterization of nanowires at temperatures above 600 K has seldom been reported presumably due to several technical difficulties including the instability of the microfabricated thermometers, radiation heat loss, and the effect of the background conductance on the measurement. Here we report on our attempt to address the aforementioned challenges and demonstrate thermal conductivity measurement of boron nanoribbons up to 740 K. To eliminate high temperature resistance instability, the device is first annealed at 1023 K for 5 min in an argon atmosphere. Two radiation shields are installed in the measurement chamber to minimize radiation heat loss from the measurement device to the surroundings; and the temperature of the device at each set point is calibrated by an additional thermocouple directly mounted on the chip carrier. The effect of the background conductance is eliminated by adopting a differential measurement scheme. With all these modifications, we successfully measured the thermal conductivity of boron nanoribbons over a wide temperature range from 27 K to 740 K. The measured thermal conductivity increases monotonically with temperature and reaches a plateau of ~2.5 W m‑1 K‑1 at approximately 400 K, with no clear signature of Umklapp scattering observed in the whole measurement temperature range.

  10. Liquid Fuel Production from Biomass via High Temperature Steam Electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Grant L. Hawkes; Michael G. McKellar


    A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to heat steam for the hydrogen production via the high temperature steam electrolysis process. Hydrogen from electrolysis allows a high utilization of the biomass carbon for syngas production. Oxygen produced form the electrolysis process is used to control the oxidation rate in the oxygen-fed biomass gasifier. Based on the gasifier temperature, 94% to 95% of the carbon in the biomass becomes carbon monoxide in the syngas (carbon monoxide and hydrogen). Assuming the thermal efficiency of the power cycle for electricity generation is 50%, (as expected from GEN IV nuclear reactors), the syngas production efficiency ranges from 70% to 73% as the gasifier temperature decreases from 1900 K to 1500 K. Parametric studies of system pressure, biomass moisture content and low temperature alkaline electrolysis are also presented.

  11. [Fluoride emission from different soil minerals at high temperatures]. (United States)

    Wu, W; Xie, Z; Xu, J; Liu, C


    The emission characteristics of fluoride pollutants from montmorillonite, kaolinite, vermiculite, geothite and allophane were studied to elucidate the mechanism of fluoride-releasing from soils during brick and tile making at high temperatures from 300 degrees C to 1000 degrees C. The rate of fluoride emission varied with temperature, mineral type, heating time, specific surface area and cations added to minerals. The escape of crystalline water resulting from crystal lattice collapse at a certain high temperature was found to affect the rate of fluoride emission. Calcium compounds could decrease fluoride emission rate from montmorillonite. At 800 degrees C, the rate of fluoride emission from Ca-treated montmorillonite decreased by 59.6% compared to untreated montmorillonite. The order for fluoride-fixing capacity of the 5 calcium compounds at 800 degrees C was as follows: CaCO3 > CaO > Ca3(PO4)2 > Ca(OH)2 > CaSO4.

  12. Moisture diffusivity of HPFRC exposed to high temperatures (United States)

    Fořt, Jan; Pavlík, Zbyšek; Černý, Robert


    Concrete structures suffer from a high-temperature exposure, among others from the damage induced by spalling. The cracks propagation is connected with the degree of material water saturation and rate of damage during the release of free and bound water from cement hydrates as a result of material high-temperature heating. In case of High Performance Concrete (HPC), its dense structure increases concrete damage due to the formation of higher water vapor pressures compared to normal strength concrete. On this account, detail information on the influence of a high-temperature load on the permeability of a High Performance Fiber Reinforced Concrete (HPFRC) represents worth information for proper building and structural design. In this study, 1-D liquid water transport in HPFRC samples exposed to the laboratory temperature and temperatures of 800 °C and 1000 °C is studied. Experimentally measured moisture profiles are used for the calculation of moisture dependent moisture diffusivity using inverse analysis method based on Boltzmann-Matano treatment. The K-spline software tool, developed at the Department of Materials Engineering and Chemistry, FCE, CTU in Prague is used to get high accuracy of the computational inverse procedure.

  13. High temperature strain of metals and alloys. Physical fundamentals

    Energy Technology Data Exchange (ETDEWEB)

    Levitin, V. [National Technical Univ., Zaporozhye (Ukraine)


    The author shows how new in-situ X-ray investigations and transmission electron microscope studies lead to novel explanations of high-temperature deformation and creep in pure metals, solid solutions and super alloys. This approach is the first to find unequivocal and quantitative expressions for the macroscopic deformation rate by means of three groups of parameters: substructural characteristics, physical material constants and external conditions. Creep strength of the studied uptodate single crystal super alloys is greatly increased over conventional polycrystalline super alloys. The contents of this book include: macroscopic characteristics of strain at high temperatures; experimental equipment and technique of in situ X-ray investigations; experimental data and structural parameters in deformed metals; sub-boundaries as dislocation sources and obstacles; the physical mechanism of creep and the quantitative structural model; simulation of the parameters evolution; system of differential equations; high-temperature deformation of industrial super alloys; single crystals of super alloys; effect of composition, orientation and temperature on properties; and creep of some refractory metals.

  14. Heterogeneous kinetics of vegetable oil transesterification at high temperature

    Directory of Open Access Journals (Sweden)

    Nasreen Sadia


    Full Text Available Currently, the catalytic efficiency and reusability of the solid base catalysts cannot meet the demand of industrial biodiesel production under low temperature. The purpose of this study is to define the kinetics of heterogeneous transesterification process which might be used for the prediction of the biodiesel synthesis at high temperature and pressure. The focus in this study was paid to recently reported data obtained with different catalysts used for biodiesel synthesis in a batch reactor at high temperatures. It was shown that three kinetic models that include: a irreversible first order reaction; b reaction with changeable order; and c resistances of mass transfer and chemical reaction at active sites of the catalyst could be applied for predicting the effect of high temperature of the transesterification. The apparent reaction rate constant of the irreversible first order reaction was determined, as well as the parameters of the other two, more complicated kinetic models. The best agreement was obtained with the more complicated models and the mean relative percent deviation between calculated and experimentally determined triacylglycerols conversion for these kinetic models is between 3 and 10%. [Projekat Ministarstva nauke Republike Srbije, br. 45001

  15. Diamond based detectors for high temperature, high radiation environments (United States)

    Metcalfe, A.; Fern, G. R.; Hobson, P. R.; Smith, D. R.; Lefeuvre, G.; Saenger, R.


    Single crystal CVD diamond has many desirable properties as a radiation detector; exceptional radiation hardness and physical hardness, chemical inertness, low Z (close to human tissue, good for dosimetry and transmission mode applications), wide bandgap (high temperature operation with low noise and solar blind), an intrinsic pathway to fast neutron detection through the 12C(n,α)9Be reaction. This combination of radiation hardness, temperature tolerance and ability to detect mixed radiation types with a single sensor makes diamond particularly attractive as a detector material for harsh environments such as nuclear power station monitoring (fission and fusion) and oil well logging. Effective exploitation of these properties requires the development of a metallisation scheme to give contacts that remain stable over extended periods at elevated temperatures (up to 250°C in this instance). Due to the cost of the primary detector material, computational modelling is essential to best utilise the available processing methods for optimising sensor response through geometry and conversion media configurations and to fully interpret experimental data. Monte Carlo simulations of our diamond based sensor have been developed, using MCNP6 and FLUKA2011, assessing the sensor performance in terms of spectral response and overall efficiency as a function of the detector and converter geometry. Sensors with varying metallisation schemes for high temperature operation have been fabricated at Brunel University London and by Micron Semiconductor Limited. These sensors have been tested under a varied set of conditions including irradiation with fast neutrons and alpha particles at high temperatures. The presented study indicates that viable metallisation schemes for high temperature contacts have been successfully developed and the modelling results, supported by preliminary experimental data from partners, indicate that the simulations provide a reasonable representation of

  16. The Status of the US High-Temperature Gas Reactors

    Directory of Open Access Journals (Sweden)

    Andrew C. Kadak


    Full Text Available In 2005, the US passed the Energy Policy Act of 2005 mandating the construction and operation of a high-temperature gas reactor (HTGR by 2021. This law was passed after a multiyear study by national experts on what future nuclear technologies should be developed. As a result of the Act, the US Congress chose to develop the so-called Next-Generation Nuclear Plant, which was to be an HTGR designed to produce process heat for hydrogen production. Despite high hopes and expectations, the current status is that high temperature reactors have been relegated to completing research programs on advanced fuels, graphite and materials with no plans to build a demonstration plant as required by the US Congress in 2005. There are many reasons behind this diminution of HTGR development, including but not limited to insufficient government funding requirements for research, unrealistically high temperature requirements for the reactor, the delay in the need for a “hydrogen” economy, competition from light water small modular light water reactors, little utility interest in new technologies, very low natural gas prices in the US, and a challenging licensing process in the US for non-water reactors.

  17. High temperature material characterization and advanced materials development

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Woo Seog; Kim, D. H.; Kim, S. H. and others


    The study is to characterize the structural materials under the high temperature, one of the most significant environmental factors in nuclear systems. And advanced materials are developed for high temperature and/or low activation in neutron irradiation. Tensile, fatigue and creep properties have been carried out at high temperature to evaluate the mechanical degradation. Irradiation tests were performed using the HANARO. The optimum chemical composition and heat treatment condition were determined for nuclear grade 316NG stainless steel. Nitrogen, aluminum, and tungsten were added for increasing the creep rupture strength of FMS steel. The new heat treatment method was developed to form more stable precipitates. By applying the novel whiskering process, high density SiC/SiC composites with relative density above 90% could be obtained even in a shorter processing time than the conventional CVI process. Material integrated databases are established using data sheets. The databases of 6 kinds of material properties are accessible through the home page of KAERI material division.

  18. Effect of High Temperature on Properties of Glass Concrete

    Directory of Open Access Journals (Sweden)

    Wang Wei Chien


    Full Text Available In this study, the concrete is mixed with glass fibers which are 0.5%, 1.0% and 1.5% of cement weight and 0.6 cm long. The effect of fiber addition level on the compressive strength, bending strength and residual compressive strength and thermal conductivity after heating of concrete is discussed. The test results show that an appropriate addition of glass fiber to the concrete at room temperature is favorable for the compressive strength. A low addition of relatively short glass fiber has insignificant effect on the bending strength. However, the adverse effect on the bending strength will increase if the addition level is too high. The addition of glass fiber can improve the loss of concrete strength under the effect of high temperature not exceeding 500°C, and a relatively high compressive strength remains under the effect of high temperature not exceeding 800°C. The high temperature can reduce the thermal conductivity of glass concrete, and the higher the addition level of glass fiber is, the lower is the thermal conductivity. Keywords: Glass fiber, concrete, heating, thermal conductivity

  19. New graphite/salt materials for high temperature energy storage. Phase change properties study; Nouveaux materiaux graphite/sel pour le stockage d'energie a haute temperature. Etude des proprietes de changement de phase

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, J


    This work is a contribution to the study of new graphite/salt composites dedicated to high temperature energy storage ({>=}200 C). The aim is to analyse and to understand the influence of both graphite and composite microstructure on the phase change properties of salts. This PhD is carried out within the framework of two projects: DISTOR (European) and HTPSTOCK (French). The major contributions of this work are threefold: 1) An important database (solid-liquid phase change properties) is provided from the DSC analysis of six salts and the corresponding composites. 2) Rigorous modeling of salts melting in confined media in several geometries are proposed to understand why, during the first melting of the compression elaborated composites, problems of salt leakage are observed. These models show that the materials morphology is responsible for these phenomena: the graphite matrix restrains the volume expansion due to salt melting: salt melts under pressure, which leads to a melting on a large temperature range and to a loss of energy density. Sensitivity analysis of parameters (geometric and physic) shows that matrix rigidity modulus is the parameter on which it is necessary to act during the composites elaboration to blur this phenomenon. 3) Finally, this work proposes a thermodynamic formulation of both surface/interface phenomena and the presence of dissolved impurities being able to explain a melting point lowering. It seems that the melting point lowering observed ({approx} 5 C) are mainly due to the presence of dissolved impurities (brought by graphite) in the liquid, along with an additional Gibbs-Thomson effect ({approx} 1 C, related to the size of the clusters crystals). (author)

  20. Denticity and Mobility of the Carbonate Groups in AMCO 3 F Fluorocarbonates: A Study on KMnCO 3 F and High Temperature KCaCO 3 F Polymorph

    Energy Technology Data Exchange (ETDEWEB)

    Rousse, Gwenaelle [UMR 8260 “Chimie du solide et énergie”, Collège de France, 11 Place Marcelin Berthelot, 75231 Paris Cedex 05, France; Sorbonne Universités—UPMC Univ Paris 06, 4 Place Jussieu, F-75005 Paris, France; Réseau sur le Stockage Electrochimique de l’Energie (RS2E), FR CNRS 3459, 80039 Amiens Cedex, France; Ahouari, Hania [Réseau sur le Stockage Electrochimique de l’Energie (RS2E), FR CNRS 3459, 80039 Amiens Cedex, France; Laboratoire; ALISTORE-European Research Institute, FR CNRS 3104, 80039 Amiens, France; Pomjakushin, Vladimir [Laboratory; Tarascon, Jean-Marie [UMR 8260 “Chimie du solide et énergie”, Collège de France, 11 Place Marcelin Berthelot, 75231 Paris Cedex 05, France; Sorbonne Universités—UPMC Univ Paris 06, 4 Place Jussieu, F-75005 Paris, France; Réseau sur le Stockage Electrochimique de l’Energie (RS2E), FR CNRS 3459, 80039 Amiens Cedex, France; Recham, Nadir [Réseau sur le Stockage Electrochimique de l’Energie (RS2E), FR CNRS 3459, 80039 Amiens Cedex, France; Laboratoire; ALISTORE-European Research Institute, FR CNRS 3104, 80039 Amiens, France; Abakumov, Artem M. [Center for Electrochemical Energy Storage, Skolkovo Institute of Science and Technology, Nobel Street 3, 143026 Moscow, Russia


    We report on a thorough structural study on two members of layered fluorocarbonates KMCO3F (M = Ca, Mn). The Ca-based member demonstrates a phase transition at ~320 °C, evidenced for the first time. The crystal structure of the high temperature phase (HT-KCaCO3F) was solved using neutron powder diffraction. A new Mn-based phase KMnCO3F was synthesized, and its crystal structure was solved from electron diffraction tomography data and refined from a combination of X-ray synchrotron and neutron powder diffraction. In contrast to other members of the fluorocarbonate family, the carbonate groups in the KMnCO3F and HT-KCaCO3F structures are not fixed to two distinct orientations corresponding to mono- and bidentate coordinations of the M cation. In KMnCO3F, the carbonate group can be considered as nearly “monodentate”, forming one short (2.14 Å) and one long (3.01 Å) Mn–O contact. This topology provides more flexibility to the MCO3 layer and enables diminishing the mismatch between the MCO3 and KF layers. This conclusion is corroborated by the HT-KCaCO3F structure, in which the carbonate groups can additionally be tilted away from the layer plane thus relieving the strain arising from geometrical mismatch between the layers. The correlation between denticity of the carbonate groups, their mobility, and cation size variance is discussed. KMnCO3 orders antiferromagnetically below TN = 40 K.