WorldWideScience

Sample records for high-strength low-alloy steels

  1. Dualism of precipitation morphology in high strength low alloy steel

    International Nuclear Information System (INIS)

    Chih-Yuan, Chen; Chien-Chon, Chen; Jer-Ren, Yang

    2015-01-01

    While the role of microalloying elements on precipitation strengthening in ferrite matrix during austenite/ferrite transformation is quite clear, some uncertainty still exists concerning the variability of the microhardness distribution of ferrite grains in the isothermal holding condition. The objective of the present study was to clarify the intrinsic characteristics of carbide precipitation morphology in the ferrite matrix under different processing temperatures and times and to correlate it with austenite decomposition kinetics to elucidate why a large microhardness distribution occurs at low isothermal holding temperature. Better understanding of carbide precipitation behavior can help researchers to determine the root cause of variation in microhardness distribution, which would allow metallurgists to produce high quality steels. Measurement with a Vickers hardness indenter revealed that, in specimens isothermally held at 625 °C, the range of Vickers hardness distribution was 240–420 after 5 min of isothermal holding, and 270–340 after 60 min. For specimens isothermally held at 725 °C, the range of Vickers hardness distribution was 200–330 for 5 min of isothermal holding, and 200–250 for 60 min. Therefore, the average microhardness decreased with the isothermal holding temperature and time, and a larger range of distribution occurred with short isothermal holding times. Transmission electron microscopy (TEM) images showed that interface precipitation and random precipitation can occur within the same ferrite grain. The reason is that the austenite decomposition rate varies with transformation temperature and time. An excessively fast austenite/ferrite interface movement velocity, which usually happens in small ferrite grains, would cause these ferrite grains with microalloying elements to exceed their solubility. Furthermore, these microalloying elements will be precipitated randomly after isothermal holding at longer times. Consequently, a large

  2. Dualism of precipitation morphology in high strength low alloy steel

    Energy Technology Data Exchange (ETDEWEB)

    Chih-Yuan, Chen, E-mail: chen6563@gmail.com [Department of Energy Engineering, National United University, Miaoli 36003, Taiwan (China); Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Chien-Chon, Chen [Department of Energy Engineering, National United University, Miaoli 36003, Taiwan (China); Jer-Ren, Yang, E-mail: jryang@ntu.edu.tw [Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan (China)

    2015-02-25

    While the role of microalloying elements on precipitation strengthening in ferrite matrix during austenite/ferrite transformation is quite clear, some uncertainty still exists concerning the variability of the microhardness distribution of ferrite grains in the isothermal holding condition. The objective of the present study was to clarify the intrinsic characteristics of carbide precipitation morphology in the ferrite matrix under different processing temperatures and times and to correlate it with austenite decomposition kinetics to elucidate why a large microhardness distribution occurs at low isothermal holding temperature. Better understanding of carbide precipitation behavior can help researchers to determine the root cause of variation in microhardness distribution, which would allow metallurgists to produce high quality steels. Measurement with a Vickers hardness indenter revealed that, in specimens isothermally held at 625 °C, the range of Vickers hardness distribution was 240–420 after 5 min of isothermal holding, and 270–340 after 60 min. For specimens isothermally held at 725 °C, the range of Vickers hardness distribution was 200–330 for 5 min of isothermal holding, and 200–250 for 60 min. Therefore, the average microhardness decreased with the isothermal holding temperature and time, and a larger range of distribution occurred with short isothermal holding times. Transmission electron microscopy (TEM) images showed that interface precipitation and random precipitation can occur within the same ferrite grain. The reason is that the austenite decomposition rate varies with transformation temperature and time. An excessively fast austenite/ferrite interface movement velocity, which usually happens in small ferrite grains, would cause these ferrite grains with microalloying elements to exceed their solubility. Furthermore, these microalloying elements will be precipitated randomly after isothermal holding at longer times. Consequently, a large

  3. Fracture toughness of welded joints of a high strength low alloy steel

    International Nuclear Information System (INIS)

    Veiga, S.M.B. da; Bastian, F.L.; Pope, A.M.

    1985-10-01

    The fracture toughness of the different regions of welded joints of a high strength low alloy steel, Niocor 2, was evaluated at different temperatures and compared with the toughness of the base metal. The studied regions were: the weld metal, fusion boundary and heat affected zone. The welding process used was the manual metal arc. It is shown that the weld metal region has the highest toughness values. (Author) [pt

  4. Influence of microstructure of high-strength low-alloy steels on their weldability

    International Nuclear Information System (INIS)

    Cwiek, J.; Labanowski, J.

    2003-01-01

    Microstructure of steel before welding has influence on the steel's susceptibility to cold cracking because it influences hardenability and maximum hardness of heat affected zone (HAZ). Two high-strength low-alloy (HSLA) steel grades 18G2AV and 14HNMBCu, in various heat treatment conditions, were subjected to simulated welding thermal cycles. It was revealed that maximum HAZ hardness is influenced by microstructure presented before thermal cycle was applied. The higher HAZ hardness was observed for quenched and tempered condition, comparing to full annealed and overheated conditions. (author)

  5. Effect of surface decarburization on the mechanical properties of high strength low alloy steel

    International Nuclear Information System (INIS)

    Saqib, S.

    1993-01-01

    An attempt has been made to study the relationship of mechanical properties with the microstructure of a high strength low alloy steel. A thorough investigation was conducted on the steel sheet and variation in mechanical properties was observed across its thickness with a change in the microstructure. Change in hardness and tensile strength at the surface compare to the core of the material is attributed to decarburization. The current research indicates that the correlation between hardness and tensile strength is not valid for steels if the hardness is determined on the surface only. Great care should be taken at the time of determination of tensile strength by using conversion charts/tables on the basis of hardness values obtained by practical means. (author)

  6. Nickel coating on high strength low alloy steel by pulse current deposition

    Science.gov (United States)

    Nigam, S.; Patel, S. K.; Mahapatra, S. S.; Sharma, N.; Ghosh, K. S.

    2015-02-01

    Nickel is a silvery-white metal mostly used to enhance the value, utility, and lifespan of industrial equipment and components by protecting them from corrosion. Nickel is commonly used in the chemical and food processing industries to prevent iron from contamination. Since the properties of nickel can be controlled and varied over broad ranges, nickel plating finds numerous applications in industries. In the present investigation, pulse current electro-deposition technique has been used to deposit nickel on a high strength low alloy (HSLA) steel substrate.Coating of nickel is confirmed by X-ray diffraction (XRD) and EDAX analysis. Optical microscopy and SEM is used to assess the coating characteristics. Electrochemical polarization study has been carried out to study the corrosion behaviour of nickel coating and the polarisation curves have revealed that current density used during pulse electro-deposition plays a vital role on characteristics of nickel coating.

  7. High-Strength Low-Alloy Steel Strengthened by Multiply Nanoscale Microstructures

    Science.gov (United States)

    Shen, Y. F.; Zuo, L.

    Recently, we have being focused on improving the strength without sacrificing ductility of High-strength low-alloy (HSLA) steels by designing nanostructures. Several developments have been obtained, summarized as the following three parts: (a) Depressively nanoscale precipitates: A ferritic steel with finely dispersed precipitates reveals a yield strength of 760 MPa, approximately three times higher than that of conventional Ti-bearing high strength hot-rolled sheet steels, and its ultimate tensile strength reaches 850 MPa with an elongation-to-failure value of 18%. The finely dispersed TiC precipitates in the matrix provide matrix strengthening. The estimated magnitude of precipitation strengthening is around 458 MPa. The effects of the particle size, particle distribution and intrinsic particle strength have been investigated through dislocation dynamics (DD) simulations. The DD results show that strengthening is not only a function of the density of the nano-scale precipitates but also of their size. (b) Ultrafinely ferritic plate: An interstitial-free (IF) steel sheet with a cold-rolling reduction of 75% shows a high tensile strength (710MPa) while preserving a considerable plastic strain (13%). The ductility recovery with increasing the rolling reduction up to 75% is related with the decreasing both in lamellar spacings and cell blocks sizes. (c) Parallel nano-laminated austenite: A composite microstructure consisting of ferrite, bainitic ferrite (BF) laths and retained austenite (RA) platelets has been found for the steel with a chemical composition of 0.19C-0.30Si-1.76Mn-1.52Al (in mass fraction), processed with annealing and bainitic holding. The sample annealed at 820oC (for 120s) and partitioned at 400oC (for 300s) has the best combination of ultimate tensile strength (UTS, 682 MPa) and elongation to failure ( 70%) with about 26% of BF plates 16% RA in its microstructure.

  8. Effect Mo Addition on Corrosion Property and Sulfide Stress Cracking Susceptibility of High Strength Low Alloy Steels

    International Nuclear Information System (INIS)

    Lee, Woo Yong; Koh, Seong Ung; Kim, Kyoo Young

    2005-01-01

    The purpose of this work is to understand the effect of Mo addition on SSC susceptibility of high strength low alloy steels in terms of microstructure and corrosion property. Materials used in this study are high strength low alloy (HSLA) steels with carbon content of 0.04wt% and Mo content varying from 0.1 to 0.3wt%. The corrosion property of steels was evaluated by immersion test in NACE-TM01-77 solution A and by analyzing the growth behavior of surface corrosion products. SSC resistance of steels was evaluated using constant load test. Electrochemical test was performed to investigate initial corrosion rate. Addition of Mo increased corrosion rate of steels by enhancing the porosity of surface corrosion products. however, corrosion rate was not directly related to SSC susceptibility of steels

  9. Identification of low cycle fatigue parameters of high strength low-alloy (HSLA steel at room temperature

    Directory of Open Access Journals (Sweden)

    S. Bulatović

    2014-10-01

    Full Text Available Low cycle fatigue test was performed in ambient atmosphere at room temperature. Cycle loading of material, in case of High strength low-alloy steel, entails modifications of its properties and in this paper is therefore shown behavior of fatigue life using low cycle fatigue parameters. More precisely, crack initiation life of tested specimens was computed using theory of Coffin-Manson relation during the fatigue loading. The geometry of the stabilized hysteresis loop of welded joint HSLA steel, marked as Nionikral 70, is also analyzed. This stabilized hysteresis loop is very important for determination of materials properties.

  10. Effect of Cooling Rate on Microstructures and Mechanical Properties in SA508 Gr4N High Strength Low Alloy Steel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Minchul; Park, Sanggyu; Choi, Kwonjae; Lee, Bongsang [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    The microstructure of Ni-Cr-Mo low alloy steel is a mixture of tempered martensite and tempered lower bainite and that of Mn-Mo-Ni low alloy steel is predominantly tempered upper bainite. Higher strength and toughness steels are very attractive as an eligible RPV steel, so several researchers have studied to use the Ni-Cr-Mo low alloy steel for the NPP application. Because of the thickness of reactor vessel, there are large differences in austenitizing cooling rates between the surface and the center locations of thickness in RPV. Because the cooling rates after austenitization determine the microstructure, it would affect the mechanical properties in Ni-Cr-Mo low alloy steel, and it may lead to inhomogeneous characteristics when the commercial scale of RPV is fabricated. In order to apply the Ni-Cr-Mo low alloy steel to RPV, it is necessary to evaluate the changes of microstructure and mechanical properties with varying phase fractions in Ni-Cr-Mo low alloy steel. In this study, the effects of martensite and bainite fractions on mechanical properties in Ni-Cr-Mo low alloy steel were examined by controlling the cooling rate after austenitization. First of all, continuous cooling transformation(CCT) diagram was established from the dilatometric analyses. Then, the phase fractions at each cooling rate were quantitatively evaluated. Finally, the mechanical properties were correlated with the phase fraction, especially fraction of martensite in Ni-Cr-Mo low alloy steel.

  11. Enhancement of Impact Toughness by Delamination Fracture in a Low-Alloy High-Strength Steel with Al Alloying

    Science.gov (United States)

    Sun, Junjie; Jiang, Tao; Liu, Hongji; Guo, Shengwu; Liu, Yongning

    2016-12-01

    The effect of delamination toughening of martensitic steel was investigated both at room and low temperatures [253 K and 233 K (-20 °C and -40 °C)]. Two low-alloy martensitic steels with and without Al alloying were both prepared. Layered structure with white band and black matrix was observed in Al alloyed steel, while a homogeneous microstructure was displayed in the steel without Al. Both steels achieved high strength (tensile strength over 1600 MPa) and good ductility (elongation over 11 pct), but they displayed stark contrasts on impact fracture mode and Charpy impact energy. Delamination fracture occurred in Al alloyed steel and the impact energies were significantly increased both at room temperature (from 75 to 138 J, i.e., nearly improved up to 2 times) and low temperatures [from 47.9 to 71.3 J at 233 K (-40 °C)] compared with the one without Al. Alloying with Al promotes the segregation of Cr, Mn, Si and C elements to form a network structure, which is martensite with higher carbon content and higher hardness than that of the matrix. And this network structure evolved into a band structure during the hot rolling process. The difference of yield stress between the band structure and the matrix gives rise to a delamination fracture during the impact test, which increases the toughness greatly.

  12. Influence of austenization temperature on microstructure and mechanical properties of a new ultra-high strength low alloyed steel

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Ya-Ya; Xu, Chi; Su, Xiang; Sun, Yu-Lin; Pan, Xi; Cao, Yue-De; Chen, Guang [Nanjing Univ. of Science and Technology, Nanjing (China). Engineering Research Center of Materials Behavior and Design

    2017-07-01

    The effects of austenization temperature on the microstructures and mechanical properties of a newly designed ultra-high strength low alloy martensitic steel were systematically studied. The microstructures of the martensitic steels which were quenched from different temperatures between 860 and 980 C were investigated by transmission electron microscopy (TEM) and electron backscatter diffraction (EBSD) and discussed. The results showed that the martensite laths were found to coarsen slowly and the carbide precipitates dissolved gradually with increasing austenization temperature. As the austenization temperature increased from 860 to 980 C, the volume of retained austenite and the numerical ratio of high angle grain boundaries (HAGBs) were observed to increase while the numerical ratio of low angle grain boundaries (LAGBs) decreased. Rockwell C hardness (HRC), tensile strength and yield strength increased at first and then decreased, while impact toughness was greatly improved with increasing austenization temperature. The fracture mechanism was brittle fracture when austenitized at low temperatures, while it was ductile fracture when austenitized at high temperatures. The mechanical properties were significantly influenced by the formation of retained austenite, the dissolution of carbides, and the numerical ratio of HAGBs and LAGBs.

  13. Sulphide stress corrosion behaviour of a nickel coated high-strength low-alloyed steel

    Energy Technology Data Exchange (ETDEWEB)

    Salvago, G; Fumagalli, G; Cigada, A; Scolari, P

    1987-01-01

    The sulphide stress corrosion cracking (SSCC) of the quenched and tempered AISI 4137 H steel either bare or coated with nickel alloys was examined. Both traditional electrochemical and linear elastic fracture mechanics methods were used to examine cracking in the NACE environment and in environments simulating the geothermal fluids found in the area of Larderello in Italy. Some tests were carried out on a geothermal well in Ferrara. High nickel content coatings seem to increase the SSCC resistance of the AISI 4137-H steel. Galvanic couplings effects are possible factors responsible for the behaviour in SSCC.

  14. Effects of the Microstructure on Segregation behavior of Ni-Cr-Mo High Strength Low Alloy RPV Steel

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sang Gyu; Wee, Dang Moon [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Kim, Min Chul; Lee, Bong Sang [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-10-15

    SA508 Gr.4N Ni-Cr-Mo low alloy steel has an improved fracture toughness and strength, compared to commercial Mn-Mo-Ni low alloy RPV steel SA508 Gr.3. Higher strength and fracture toughness of low alloy steels could be achieved by adding Ni and Cr. So there are several researches on SA508 Gr.4N low alloy steel for a RPV application. The operation temperature and time of a reactor pressure vessel is more than 300 .deg. C and over 40 years. Therefore, in order to apply the SA508 Gr.4N low alloy steel for a reactor pressure vessel, it requires a resistance of thermal embrittlement in the high temperature range including temper embrittlement resistance. S. Raoul reported that the susceptibility to temper embrittlement was increasing a function of the cooling rate in SA533 steel, which suggests the martensitic microstructures resulting from increased cooling rates are more susceptible to temper embrittlement. However, this result has not been proved yet. So the comparison of temper embrittlement behavior was made between martensitic microstructure and bainitic microstructure with a viewpoint of boundary features in SA508 Gr.4N, which have mixture of tempered bainite/martensite. In this study, we have compared temper embrittlement behaviors of SA508 Gr.4N low alloy steel with changing volume fraction of martensite. The mechanical properties of these low alloy steels) were evaluated after a long-term heat treatment(450 .deg. C, 2000hr. Then, the images of the segregated boundaries were observed and segregation behavior was analyzed by AES. In order to compare the misorientation distributions of model alloys, grain boundary structures were measured with EBSD

  15. Specific energy of cold crack initiation in welding low alloy high-strength steels

    International Nuclear Information System (INIS)

    Brednev, V.I.; Kasatkin, B.S.

    1988-01-01

    Methods for determination of energy spent on cold crack initiation, when testing welded joint samples by the Implant method, are described. Data on the effect of the steel alloying system, cooling rate of welded joints, content of diffusion hydrogen on the critical specific energy spent on the development of local plastic deformation upto cold crack initiation are presented. The value of specific energy spent on cold crack initiation is shown to be by two-three orders lower than the value of impact strength minimum accessible. The possibility to estimate welded joint resistance to cold crack initiation according to the critical specific energy is established

  16. Microstructural Characterization of Clad Interface in Welds of Ni-Cr-Mo High Strength Low Alloy Steel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hong-Eun; Kim, Min-Chul; Lee, Ho-Jin; Kim, Keong-Ho [KAERI, Daejeon (Korea, Republic of); Lee, Ki-Hyoung [KAIST, Daejeon (Korea, Republic of); Lee, Chang-Hee [Hanyang Univ., Seoul (Korea, Republic of)

    2011-08-15

    SA508 Gr.4N Ni-Cr-Mo low alloy steel, in which Ni and Cr contents are higher than in commercial SA508 Gr.3 Mn-Mo-Ni low alloy steels, may be a candidate reactor pressure vessel (RPV) material with higher strength and toughness from its tempered martensitic microstructure. The inner surface of the RPV is weld-cladded with stainless steels to prevent corrosion. The goal of this study is to evaluate the microstructural properties of the clad interface between Ni-Cr-Mo low alloy steel and stainless weldment, and the effects of post weld heat treatment (PWHT) on the properties. The properties of the clad interface were compared with those of commercial Mn-Mo-Ni low alloy steel. Multi-layer welding of model alloys with ER308L and ER309L stainless steel by the SAW method was performed, and then PWHT was conducted at 610°C for 30 h. The microstructural changes of the clad interface were analyzed using OM, SEM and TEM, and micro-Vickers hardness tests were performed. Before PWHT, the heat affected zone (HAZ) showed higher hardness than base and weld metals due to formation of martensite after welding in both steels. In addition, the hardness of the HAZ in Ni-Cr-Mo low alloy steel was higher than that in Mn-Mo-Ni low alloy steel due to a comparatively high martensite fraction. The hardness of the HAZ decreased after PWHT in both steels, but the dark region was formed near the fusion line in which the hardness was locally high. In the case of Mn-Mo-Ni low alloy steel, formation of fine Cr-carbides in the weld region near the fusion line by diffusion of C from the base metal resulted in locally high hardness in the dark region. However, the precipitates of the region in the Ni-Cr-Mo low alloy steel were similar to that in the base metal, and the hardness in the region was not greatly different from that in the base metal.

  17. Microstructural Characterization of Clad Interface in Welds of Ni-Cr-Mo High Strength Low Alloy Steel

    International Nuclear Information System (INIS)

    Kim, Hong-Eun; Kim, Min-Chul; Lee, Ho-Jin; Kim, Keong-Ho; Lee, Ki-Hyoung; Lee, Chang-Hee

    2011-01-01

    SA508 Gr.4N Ni-Cr-Mo low alloy steel, in which Ni and Cr contents are higher than in commercial SA508 Gr.3 Mn-Mo-Ni low alloy steels, may be a candidate reactor pressure vessel (RPV) material with higher strength and toughness from its tempered martensitic microstructure. The inner surface of the RPV is weld-cladded with stainless steels to prevent corrosion. The goal of this study is to evaluate the microstructural properties of the clad interface between Ni-Cr-Mo low alloy steel and stainless weldment, and the effects of post weld heat treatment (PWHT) on the properties. The properties of the clad interface were compared with those of commercial Mn-Mo-Ni low alloy steel. Multi-layer welding of model alloys with ER308L and ER309L stainless steel by the SAW method was performed, and then PWHT was conducted at 610°C for 30 h. The microstructural changes of the clad interface were analyzed using OM, SEM and TEM, and micro-Vickers hardness tests were performed. Before PWHT, the heat affected zone (HAZ) showed higher hardness than base and weld metals due to formation of martensite after welding in both steels. In addition, the hardness of the HAZ in Ni-Cr-Mo low alloy steel was higher than that in Mn-Mo-Ni low alloy steel due to a comparatively high martensite fraction. The hardness of the HAZ decreased after PWHT in both steels, but the dark region was formed near the fusion line in which the hardness was locally high. In the case of Mn-Mo-Ni low alloy steel, formation of fine Cr-carbides in the weld region near the fusion line by diffusion of C from the base metal resulted in locally high hardness in the dark region. However, the precipitates of the region in the Ni-Cr-Mo low alloy steel were similar to that in the base metal, and the hardness in the region was not greatly different from that in the base metal.

  18. Microstructure and mechanical characterization of friction stir welded high strength low alloy steels

    Energy Technology Data Exchange (ETDEWEB)

    Ramesh, R., E-mail: rameshsmit@gmail.com [Department of Mechanical Engineering, PSG College of Technology, Coimbatore 641004, Tamilnadu (India); Dinaharan, I., E-mail: dinaweld2009@gmail.com [Department of Mechanical Engineering Science, University of Johannesburg, Auckland Park Kingsway Campus, Johannesburg 2006, Gauteng (South Africa); Kumar, Ravi, E-mail: nvrk@iitm.ac.in [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600036, Tamilnadu (India); Akinlabi, E.T., E-mail: etakinlabi@uj.ac.za [Department of Mechanical Engineering Science, University of Johannesburg, Auckland Park Kingsway Campus, Johannesburg 2006, Gauteng (South Africa)

    2017-02-27

    Friction stir welding (FSW) is a promising technique to join HSLA steels without the problems encountered during fusion based welding processes. In the present work, 3 mm thick HSLA plates were successfully welded using FSW. A tool made of tungsten-rhenium alloy was used in this work. The relationship between microstructure and tensile strength was studied under various welding conditions i.e. change in traverse speed (57–97 mm/min). The microstructure of the weld nugget revealed the presence of upper bainite and fine ferrite phases. The amount of upper bainite reduced with increase in traverse speed. EBSD images showed a reducing trend for grain size. The details of hardness, tensile strength and bending test were reported.

  19. Microstructure and mechanical characterization of friction stir welded high strength low alloy steels

    International Nuclear Information System (INIS)

    Ramesh, R.; Dinaharan, I.; Kumar, Ravi; Akinlabi, E.T.

    2017-01-01

    Friction stir welding (FSW) is a promising technique to join HSLA steels without the problems encountered during fusion based welding processes. In the present work, 3 mm thick HSLA plates were successfully welded using FSW. A tool made of tungsten-rhenium alloy was used in this work. The relationship between microstructure and tensile strength was studied under various welding conditions i.e. change in traverse speed (57–97 mm/min). The microstructure of the weld nugget revealed the presence of upper bainite and fine ferrite phases. The amount of upper bainite reduced with increase in traverse speed. EBSD images showed a reducing trend for grain size. The details of hardness, tensile strength and bending test were reported.

  20. The influence of high heat input and inclusions control for rare earth on welding in low alloy high strength steel

    Science.gov (United States)

    Chu, Rensheng; Mu, Shukun; Liu, Jingang; Li, Zhanjun

    2017-09-01

    In the current paper, it is analyzed for the influence of high heat input and inclusions control for rare earth on welding in low alloy high strength steel. It is observed for the structure for different heat input of the coarse-grained area. It is finest for the coarse grain with the high heat input of 200 kJ / cm and the coarse grain area with 400 kJ / cm is the largest. The performance with the heat input of 200 kJ / cm for -20 °C V-shaped notch oscillatory power is better than the heat input of 400 kJ / cm. The grain structure is the ferrite and bainite for different holding time. The grain structure for 5s holding time has a grain size of 82.9 μm with heat input of 200 kJ/cm and grain size of 97.9 μm for 10s holding time. For the inclusions for HSLA steel with adding rare earth, they are Al2O3-CaS inclusions in the Al2O3-CaS-CaO ternary phase diagram. At the same time, it can not be found for low melting calcium aluminate inclusions compared to the inclusions for the HSLA steel without rare earth. Most of the size for the inclusions is between 1 ~ 10μm. The overall grain structure is smaller and the welding performance is more excellent for adding rare earth.

  1. Continuous cooling transformations and microstructures in a low-carbon, high-strength low-alloy plate steel

    Science.gov (United States)

    Thompson, S. W.; Vin, D. J., Col; Krauss, G.

    1990-06-01

    A continuous-cooling-transformation (CCT) diagram was determined for a high-strength low-alloy plate steel containing (in weight percent) 0.06 C, 1.45 Mn, 1.25 Cu, 0.97 Ni, 0.72 Cr, and 0.42 Mo. Dilatometric measurements were supplemented by microhardness testing, light microscopy, and transmission electron microscopy. The CCT diagram showed significant suppression of polygonal ferrite formation and a prominent transformation region, normally attributed to bainite formation, at temperatures intermediate to those of polygonal ferrite and martensite formation. In the intermediate region, ferrite formation in groups of similarly oriented crystals about 1 μm in size and containing a high density of dislocations dominated the transformation of austenite during continuous cooling. The ferrite grains assumed two morphologies, elongated or acicular and equiaxed or granular, leading to the terms “acicular ferrite” and “granular ferrite,” respectively, to describe these structures. Austenite regions, some transformed to martensite, were enriched in carbon and retained at interfaces between ferrite grains. Coarse interfacial ledges and the nonacicular morphology of the granular ferrite grains provided evidence for a phase transformation mechanism involving reconstructive diffusion of substitutional atoms. At slow cooling rates, polygonal ferrite and Widmanstätten ferrite formed. These latter structures contained low dislocation densities and e-copper precipitates formed by an interphase transformation mechanism.

  2. Neutron irradiation effects on mechanical properties in SA508 Gr4N high strength low alloy steel

    International Nuclear Information System (INIS)

    Kim, Minchul; Lee, Kihyoung; Park, Sanggyu; Choi, Kwonjae; Lee, Bongsang

    2012-01-01

    The Reactor Pressure Vessel (RPV) is the key component in determining the lifetime of nuclear power plants because it is subject to the significant aging degradation by irradiation and thermal aging, and there is no practical method for replacing that component. Advanced reactors with much larger capacity than current reactor require the usage of higher strength materials inevitably. The SA508 Gr.4N Ni Cr Mo low alloy steel, in which Ni and Cr contents are larger than in conventional RPV steels, could be a promising RPV material offering improved strength and toughness from its tempered martensitic microstructure. For a structural integrity of RPV, the effect of neutron irradiation on the material property is one of the key issues. The RPV materials suffer from the significant degradation of transition properties by the irradiation embrittlement when its strength is increased by a hardening mechanism. Therefore, the potential for application of SA508 Gr.4N steel as the structural components for nuclear power reactors depends on its ability to maintain adequate transition properties against the operating neutron does. However, it is not easy to fine the data on the irradiation effect on the mechanical properties of SA508 Gr.4N steel. In this study, the irradiation embrittlement of SA508 Gr.4N Ni Cr Mo low alloy steel was evaluated by using specimens irradiated in research reactor. For comparison, the variations of mechanical properties by neutron irradiation for commercial SA508 Gr.3 Mn Mo Ni low alloy steel were also evaluated

  3. Effect of different stages of tensile deformation on micromagnetic parameters in high-strength, low-alloy steel

    Energy Technology Data Exchange (ETDEWEB)

    Vaidyanathan, S.; Moorthy, V.; Kalyanasundaram, P.; Jayakumar, T.; Raj, B. [Indira Gandhi Centre for Atomic Research, Kalpakkam (India). Metallurgy and Materials Group

    1999-08-01

    The influence of tensile deformation on the magnetic Barkhausen emissions (MBE) and hysteresis loop has been studied in a high-strength, low-alloy steel (HSLA) and its weldment. The magnetic measurements were made both in loaded and unloaded conditions for different stress levels. The root-mean-square (RMS) voltage of the MBE has been used for analysis. This study shows that the preyield and postyield deformation can be identified from the change in the MBE profile. The initial elastic deformation showed a linear increase in the MBE level in the loaded condition, and the MBE level remained constant in the unloaded condition. The microplastic yielding, well below the macroyield stress, significantly reduces the MBE, indicating the operation of grain-boundary dislocation sources below the macroyield stress. This is indicated by the slow increase in the MBE level in the loaded condition and the decrease in the MBE level in the unloaded condition. The macroyielding resulted in a significant increase in the MBE level in the loaded condition and, more clearly, in the unloaded condition. The increase in the MBE level during macroyielding has been attributed to the grain rotation phenomenon, in order to maintain the boundary integrity between adjacent grains, which would preferentially align the magnetic domains along the stress direction. This study shows that MBE during tensile deformation can be classified into four stages: (1) perfectly elastic, (2) microplastic yielding, (3) macroyielding, and (4) progressive plastic deformation. A multimagnetic parameter approach, combining the hysteresis loop and MBE, has been suggested to evaluate the residual stresses.

  4. Impact of choice of stabilized hysteresis loop on the end result of investigation of high-strength low-alloy (HSLA steel on low cycle fatigue

    Directory of Open Access Journals (Sweden)

    S. Bulatović

    2014-10-01

    Full Text Available High strength low-alloy steel under low cycle fatigue at a certain level of strain controlled achieve stabilized condition. During the fatigue loading stabilized hysteresis loop is determined, which typical cycle of stabilization is calculated as half number of cycles to failure. Stabilized hysteresis loop is a representative of all hysteresis and it’s used to determine all of the parameters for the assessment of low cycle fatigue. This paper shows comparison of complete strain-life curves of low cycle fatigue for two chosen stabilized hysteresis loop cycles of base metal HSLA steel marked as Nionikral 70.

  5. Effects of Nb on microstructure and continuous cooling transformation of coarse grain heat-affected zone in 610 MPa class high-strength low-alloy structural steels

    International Nuclear Information System (INIS)

    Zhang, Y.Q.; Zhang, H.Q.; Liu, W.M.; Hou, H.

    2009-01-01

    Continuous cooling transformation diagrams of the coarse grain heat-affected zone and microstructure after continuous cooling were investigated for 610 MPa class high-strength low-alloy (HSLA) structural steels with and without niobium. For the steel without Nb, grain boundary ferrite, degenerate pearlite and acicular ferrite are produced at slower cooling rates. Bainite phase is formed at faster cooling rates. However, for the steel with Nb, granular bainite is dominant at a large range of cooling rates. At cooling rates 32 K/s, Nb addition has no obvious influence on transformation start temperature, but it influences microstructure transformation significantly. Martensite is observed in steel with Nb at faster cooling rates, but not produced in steel without Nb

  6. Effect of heat input on microstructure and mechanical properties of dissimilar joints between super duplex stainless steel and high strength low alloy steel

    International Nuclear Information System (INIS)

    Sadeghian, M.; Shamanian, M.; Shafyei, A.

    2014-01-01

    Highlights: • The microstructure of weld metal consists of austenite and ferrite. • The HAZ of the API X-65 shows different transformation. • Impact strength of sample with low heat input was lower than base metals. • The heat input at 0.506 kJ/mm is not the suitable for dissimilar joining between UNS S32750/API X-65. - Abstract: In the present study, microstructure and mechanical properties of UNS S32750 super duplex stainless steel (SDSS)/API X-65 high strength low alloy steel (HSLA) dissimilar joint were investigated. For this purpose, gas tungsten arc welding (GTAW) was used in two different heat inputs: 0.506 and 0.86 kJ/mm. The microstructures investigation with optical microscope, scanning electron microscope and X-ray diffraction showed that an increase in heat input led to a decrease in ferrite percentage, and that detrimental phases were not present. It also indicated that in heat affected zone of HSLA base metal in low heat input, bainite and ferrite phases were created; but in high heat input, perlite and ferrite phases were created. The results of impact tests revealed that the specimen with low heat input exhibited brittle fracture and that with high heat input had a higher strength than the base metals

  7. Cyclic Strain Resistance, Stress Response, Fatigue Life, and Fracture Behavior of High Strength Low Alloy Steel 300 M

    Science.gov (United States)

    Manigandan, K.; Srivatsan, T. S.; Tammana, Deepthi; Poorgangi, Behrang; Vasudevan, Vijay K.

    2014-05-01

    The focus of this technical manuscript is a record of the specific role of microstructure and test specimen orientation on cyclic stress response, cyclic strain resistance, and cyclic stress versus strain response, deformation and fracture behavior of alloy steel 300 M. The cyclic strain amplitude-controlled fatigue properties of this ultra-high strength alloy steel revealed a linear trend for the variation of log elastic strain amplitude with log reversals-to-failure, and log plastic strain amplitude with log reversals-to-failure for both longitudinal and transverse orientations. Test specimens of the longitudinal orientation showed only a marginal improvement over the transverse orientation at equivalent values of plastic strain amplitude. Cyclic stress response revealed a combination of initial hardening for the first few cycles followed by gradual softening for a large portion of fatigue life before culminating in rapid softening prior to catastrophic failure by fracture. Fracture characteristics of test specimens of this alloy steel were different at both the macroscopic and fine microscopic levels over the entire range of cyclic strain amplitudes examined. Both macroscopic and fine microscopic observations revealed fracture to be a combination of both brittle and ductile mechanisms. The underlying mechanisms governing stress response, deformation characteristics, fatigue life, and final fracture behavior are presented and discussed in light of the competing and mutually interactive influences of test specimen orientation, intrinsic microstructural effects, deformation characteristics of the microstructural constituents, cyclic strain amplitude, and response stress.

  8. Effect of Cooling Rate on Phase Transformations in a High-Strength Low-Alloy Steel Studied from the Liquid Phase

    Science.gov (United States)

    Dorin, Thomas; Stanford, Nicole; Taylor, Adam; Hodgson, Peter

    2015-12-01

    The phase transformation and precipitation in a high-strength low-alloy steel have been studied over a large range of cooling rates, and a continuous cooling transformation (CCT) diagram has been produced. These experiments are unique because the measurements were made from samples cooled directly from the melt, rather than in homogenized and re-heated billets. The purpose of this experimental design was to examine conditions pertinent to direct strip casting. At the highest cooling rates which simulate strip casting, the microstructure was fully bainitic with small regions of pearlite. At lower cooling rates, the fraction of polygonal ferrite increased and the pearlite regions became larger. The CCT diagram and the microstructural analysis showed that the precipitation of NbC is suppressed at high cooling rates, and is likely to be incomplete at intermediate cooling rates.

  9. Effects of the phase fractions on the carbide morphologies, Charpy and tensile properties in SA508 Gr.4N High Strength Low Alloy RPV Steel

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sang Gyu; Wee, Dang Moon [KAIST, Daejeon (Korea, Republic of); Kim, Min Chul; Lee, Bong Sang [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-05-15

    To improve the strength and toughness of RPV (reactor pressure vessel) steels for nuclear power plants, an effective way is the change of material specification from tempered bainitic SA508 Gr.3 Mn-Mo-Ni low alloy steel into tempered martensitic/bainitic SA508 Gr.4N Ni-Cr-Mo low alloy steel. It is known that the phase fractions of martensitic/bainitic steels are very sensitive to the austenitizing cooling rates. Kim reported that there are large differences of austenitizing cooling rates between the surface and the center locations in RPV due to its thickness of 250mm. Hence, the martensite/bainite fractions would be changed in different locations, and it would affect the microstructure and mechanical properties in Ni-Cr-Mo low alloy steel. These results may lead to inhomogeneous characteristics after austenitizing. Therefore, it is necessary to evaluate the changes of microstructure and mechanical properties with varying phase fractions in Ni-Cr-Mo low alloy steel. In this study, the effects of martensite/bainite fractions on microstructure and mechanical properties in Ni-Cr-Mo low alloy steel were examined. The changes in phase fractions of Ni-Cr-Mo low alloy steel with different cooling rates were analyzed, and then the phase fractions were correlated with its microstructural observation and mechanical properties

  10. Relationship Between Solidification Microstructure and Hot Cracking Susceptibility for Continuous Casting of Low-Carbon and High-Strength Low-Alloyed Steels: A Phase-Field Study

    Science.gov (United States)

    Böttger, B.; Apel, M.; Santillana, B.; Eskin, D. G.

    2013-08-01

    Hot cracking is one of the major defects in continuous casting of steels, frequently limiting the productivity. To understand the factors leading to this defect, microstructure formation is simulated for a low-carbon and two high-strength low-alloyed steels. 2D simulation of the initial stage of solidification is performed in a moving slice of the slab using proprietary multiphase-field software and taking into account all elements which are expected to have a relevant effect on the mechanical properties and structure formation during solidification. To account for the correct thermodynamic and kinetic properties of the multicomponent alloy grades, the simulation software is online coupled to commercial thermodynamic and mobility databases. A moving-frame boundary condition allows traveling through the entire solidification history starting from the slab surface, and tracking the morphology changes during growth of the shell. From the simulation results, significant microstructure differences between the steel grades are quantitatively evaluated and correlated with their hot cracking behavior according to the Rappaz-Drezet-Gremaud (RDG) hot cracking criterion. The possible role of the microalloying elements in hot cracking, in particular of traces of Ti, is analyzed. With the assumption that TiN precipitates trigger coalescence of the primary dendrites, quantitative evaluation of the critical strain rates leads to a full agreement with the observed hot cracking behavior.

  11. TEM Study of the Orientation Relationship Between Cementite and Ferrite in a Bainitic Low Carbon High Strength Low Alloy Steel

    OpenAIRE

    Illescas Fernandez, Silvia; Brown, A.P.; He, K.; Fernández, Javier; Guilemany Casadamon, Josep Maria

    2005-01-01

    Two different bainitic structures are observed in a steel depending on the sample heat treatment. The different types of bainitic structures exhibit different orientation relationships between cementite and the ferrite matrix. Upper bainite presents a Pitsch orientation relationship and lower bainite presents a Bagaryatski orientation relationship. Different heat treatments of low carbon HSLA steel samples have been studied using TEM in order to find the orientation relationshi...

  12. Comparison of the segregation behavior between tempered martensite and tempered bainite in Ni-Cr-Mo high strength low alloy RPV steel

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sang Gyu; Kim, Min Chul; Kim, Hyung Jun; Lee, Bong Sang [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    SA508 Gr.4N Ni-Cr-Mo low alloy steel has an superior fracture toughness and strength, compared to commercial Mn-Mo-Ni low alloy RPV steel SA508 Gr.3. Higher strength and fracture toughness of low alloy steels could be obtained by adding Ni and Cr. So several were performed on researches on SA508 Gr.4N low alloy steel for a RPV application. The operation temperature and term of a reactor pressure vessel is more than 300 .deg. C and over 40 years. Therefore, in order to apply the SA508 Gr.4N low alloy steel for a reactor pressure vessel, the resistance of thermal embrittlement in the high temperature range including temper embrittlement is required. S. Raoul reported that the susceptibility to temper embrittlement was increasing a function of the cooling rate in SA533 steel, which suggests the martensitic microstructures resulting from increased cooling rates are more susceptible to temper embrittlement. However, this result has not been proved yet. So the comparison of temper embrittlement behavior was made between martensitic microstructure and bainitic microstructure with a viewpoint of boundary features in SA508 Gr.4N, which have mixture of tempered bainite/martensite. We have compared temper embrittlement behaviors of SA508 Gr.4N low alloy steel with changing volume fraction of martensite. The mechanical properties of these low alloy steels were evaluated after a long-term heat treatment. Then, the the segregated boundaries were observed and segregation behavior was analyzed by AES. In order to compare the misorientation distributions of model alloys, grain boundary structures were measured with EBSD

  13. Study of the Impact of Heat Treatment Modes on Formation of Microstructure and a Given Set of Mechanical Properties of High-Strength Flat Products with Guaranteed Hardness (400 to 450 HB) from Low-Alloyed Steel

    Science.gov (United States)

    Matrosov, M. Yu; Martynov, P. G.; Goroshko, T. V.; Zvereva, M. I.; Mitrofanov, A. V.; Barabash, K. Yu

    2017-12-01

    The results of the study of influence of heat treatment modes on microstructure, size and shape of grains, mechanical properties of high-strength flat products from low-alloyed C-Mn-Cr-Si-Mo steel microalloyed by boron are presented. Heat treatment modes, which provide a combination of high impact viscosity at negative temperatures and guaranteed hardness, are determined.

  14. The hydrogen influenced cold cracking tendency of two high strength low alloy steels - evaluated by the implant-test

    International Nuclear Information System (INIS)

    Neumann, V.; Schoenherr, W.

    1978-01-01

    A possible way of evaluating the hydrogen influenced cold cracking tendency of constructional steels is the implant test. Using this testing method, it is possible to adjust extensively independently of one other the three influencing parameters - hydrogen content of the welding deposit and the heat-affected zone, hardness structure and stresses - and to examine their effect on the crack behaviour. Due to the same microstructure formation in the heat affected zone of the implant samples and in the non-heat affected regions from the consequent position of the heat affected zone of component seams, welding conditions can be determined with suitable changing of the sample whose application to the real component practically excludes the danger of cold cracking. The broken surfaces in cold cracking are partly ductile and poor in deformation. The deformation-poor fracturing can possibly take an intercrystalline or transcrystalline course according to the chemical composition of the steel. The investigation confirm the theories and test results of other authors: The formation of deformation-poor, typical fracture sections for cold cracking was only obtained when there was a clear delay between putting on the test load and fracture of the sample. (orig./RW) [de

  15. Surface Modification of Micro-Alloyed High-Strength Low-Alloy Steel by Controlled TIG Arcing Process

    Science.gov (United States)

    Ghosh, P. K.; Kumar, Ravindra

    2015-02-01

    Surface modification of micro-alloyed HSLA steel plate has been carried out by autogenous conventional and pulse current tungsten inert gas arcing (TIGA) processes at different welding parameters while the energy input was kept constant. At a given energy input the influence of pulse parameters on the characteristics of surface modification has been studied in case of employing single and multi-run procedure. The role of pulse parameters has been studied by considering their summarized influence defined by a factor Φ. The variation in Φ and pulse frequency has been found to significantly affect the thermal behavior of fusion and accordingly the width and penetration of the modified region along with its microstructure, hardness and wear characteristics. It is found that pulsed TIGA is relatively more advantageous over the conventional TIGA process, as it leads to higher hardness, improved wear resistance, and a better control over surface characteristics.

  16. Selective role of bainitic lath boundary in influencing slip systems and consequent deformation mechanisms and delamination in high-strength low-alloy steel

    Science.gov (United States)

    Liu, S.; Li, X.; Guo, H.; Yang, S.; Wang, X.; Shang, C.; Misra, R. D. K.

    2018-04-01

    We elucidate here the deformation behaviour and delamination phenomenon in a high-strength low-alloy bainitic steel, in terms of microstructure, texture and stress evolution during deformation via in situ electron back-scattered diffraction and electron microscopy. Furthermore, the selective role of bainitic lath boundary on slip systems was studied in terms of dislocation pile-up and grain boundary energy models. During tensile deformation, the texture evolution was concentrated at {1 1 0} and the laths were turn parallel to loading direction. The determining role of lath on the deformation behaviour is governed by length/thickness (l/t) ratio. When l/t > 28, the strain accommodates along the bainite lath rather than along the normal direction. The delamination crack initiated normal to (0 1 1) plane, and become inclined to (0 1 1) plane with continued strain along (0 1 1) plane and lath plane. This indicated that the delamination is not brittle process but plastic process. The lack of dimples at the delaminated surface is because of lack of strain normal to the direction of lath. The delaminated (0 1 1) planes were associated with cleavage along the (1 0 0) plane.

  17. Three-dimensional characterization of bainitic microstructures in low-carbon high-strength low-alloy steel studied by electron backscatter diffraction

    International Nuclear Information System (INIS)

    Kang, J.S.; Seol, Jae-Bok; Park, C.G.

    2013-01-01

    We investigated the microstructural evolution of high strength low alloy steel, Fe–2.0Mn–0.15Si–0.05C (wt.%), by varying the continuous cooling rates from 1 K/s to 50 K/s using three-dimensional electron backscatter diffraction and transmission electron microscopy. Granular bainitic microstructure was prevalent under a slow cooling rate of 1–10 K/s, while lath-type bainite was dominant at a high cooling rate of 50 K/s. The acicular ferrite that was the major microstructure under the intermediate ranges of cooling rates between 10 K/s and 30 K/s was tangled with each other, leading to a three-dimensional interwoven structure with highly misoriented grains. Because of the formation of three-dimensional structures, we propose that the terms “acicular ferrite” and “bainitic ferrite,” which are currently used in steel, be replaced by the terms “interwoven acicular bainite” and “lath bainite,” respectively. Moreover, we also confirmed that the cooling rate is an important factor in determining whether bainitic microstructures occur in the form of granular bainite, interwoven bainite, or lath bainite. - Highlights: • The morphology of bainitic grains was characterized by 3D-EBSD. • The ‘interwoven bainite’ and ‘lath bainite’ were suggested. • Interwoven bainite consisted of lenticular plates that were interlinked in 3D regime. • The packets of lath bainite were aligned in a specific direction

  18. Three-dimensional characterization of bainitic microstructures in low-carbon high-strength low-alloy steel studied by electron backscatter diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Kang, J.S. [Department of Materials Science and Engineering, POSTECH, Pohang 790-784 (Korea, Republic of); Technical Research Laboratories, POSCO, Pohang 790-300 (Korea, Republic of); Seol, Jae-Bok, E-mail: j.seol@mpie.de [Max-Planck-Institut für Eisenforschung, Max-Planck-Str. 1, D-40237 Düsseldorf (Germany); Park, C.G. [Department of Materials Science and Engineering, POSTECH, Pohang 790-784 (Korea, Republic of)

    2013-05-15

    We investigated the microstructural evolution of high strength low alloy steel, Fe–2.0Mn–0.15Si–0.05C (wt.%), by varying the continuous cooling rates from 1 K/s to 50 K/s using three-dimensional electron backscatter diffraction and transmission electron microscopy. Granular bainitic microstructure was prevalent under a slow cooling rate of 1–10 K/s, while lath-type bainite was dominant at a high cooling rate of 50 K/s. The acicular ferrite that was the major microstructure under the intermediate ranges of cooling rates between 10 K/s and 30 K/s was tangled with each other, leading to a three-dimensional interwoven structure with highly misoriented grains. Because of the formation of three-dimensional structures, we propose that the terms “acicular ferrite” and “bainitic ferrite,” which are currently used in steel, be replaced by the terms “interwoven acicular bainite” and “lath bainite,” respectively. Moreover, we also confirmed that the cooling rate is an important factor in determining whether bainitic microstructures occur in the form of granular bainite, interwoven bainite, or lath bainite. - Highlights: • The morphology of bainitic grains was characterized by 3D-EBSD. • The ‘interwoven bainite’ and ‘lath bainite’ were suggested. • Interwoven bainite consisted of lenticular plates that were interlinked in 3D regime. • The packets of lath bainite were aligned in a specific direction.

  19. Hydrogen assisted cracking and CO2 corrosion behaviors of low-alloy steel with high strength used for armor layer of flexible pipe

    Science.gov (United States)

    Liu, Zhenguang; Gao, Xiuhua; Du, Linxiu; Li, Jianping; Zhou, Xiaowei; Wang, Xiaonan; Wang, Yuxin; Liu, Chuan; Xu, Guoxiang; Misra, R. D. K.

    2018-05-01

    In this study, hydrogen induced cracking (HIC), sulfide stress corrosion cracking (SSCC) and hydrogen embrittlement (HE) were carried out to study hydrogen assisted cracking behavior (HIC, SSCC and HE) of high strength pipeline steel used for armor layer of flexible pipe in ocean. The CO2 corrosion behavior of designed steel with high strength was studied by using immersion experiment. The experimental results demonstrate that the corrosion resistance of designed steel with tempered martensite to HIC, SSCC and HE is excellent according to specific standards, which contributes to the low concentration of dislocation and vacancies previously formed in cold rolling process. The corrosion mechanism of hydrogen induced cracking of designed steel, which involves in producing process, microstructure and cracking behavior, is proposed. The designed steel with tempered martensite shows excellent corrosion resistance to CO2 corrosion. Cr-rich compound was first formed on the coupon surface exposed to CO2-saturated brine condition and chlorine, one of the corrosion ions in solution, was rich in the inner layer of corrosion products.

  20. Application of the Materials-by-Design Methodology to Redesign a New Grade of the High-Strength Low-Alloy Class of Steels with Improved Mechanical Properties and Processability

    Science.gov (United States)

    Grujicic, M.; Snipes, J. S.; Ramaswami, S.

    2016-01-01

    An alternative to the traditional trial-and-error empirical approach for the development of new materials is the so-called materials-by-design approach. Within the latter approach, a material is treated as a complex system and its design and optimization is carried out by employing computer-aided engineering analyses, predictive tools, and available material databases. In the present work, the materials-by-design approach is utilized to redesign a grade of high-strength low-alloy (HSLA) class of steels with improved mechanical properties (primarily strength and fracture toughness), processability (e.g., castability, hot formability, and weldability), and corrosion resistance. Toward that end, a number of material thermodynamics, kinetics of phase transformations, and physics of deformation and fracture computational models and databases have been developed/assembled and utilized within a multi-disciplinary, two-level material-by-design optimization scheme. To validate the models, their prediction is compared against the experimental results for the related steel HSLA100. Then the optimization procedure is employed to determine the optimal chemical composition and the tempering schedule for a newly designed grade of the HSLA class of steels with enhanced mechanical properties, processability, and corrosion resistance.

  1. Microalloyed HSLA (High Strength Low Alloy) Steels: Proceedings of Microalloying 󈨜 Held in Conjunction with the 1988 World Materials Congress, Chicago, Illinois, USA, 24-30 September 1988

    Science.gov (United States)

    1988-01-01

    strongly with other building construction materials particularly in situ , or reinforced concrete. A number Solid Hot 930-338 370-520 0.10-0.20 Mn up to of...e Agua In: XXXIX Oliveira, E.Q.. Experience in The Metallurgical Congresso Anual - ABM. Proceedings, Belo Design and Production of HSLA Steels in a...frac- these dual-phase steels. ture was observed by Im situ techniques under a HITACHI S-570 scanning electron microscope EXP REIIENTAL XfATERIALS

  2. Impact toughness of high strength low alloy TMT reinforcement ...

    Indian Academy of Sciences (India)

    Unknown

    R&D Centre for Iron and Steel, Steel Authority of India Limited, Ranchi 834 002, India. †Steel ... of TMT (thermomechanically treated) ribbed bar product, particularly the ... Through this process, the martensitic rim gets self- tempered by the heat ...

  3. Advanced characterization techniques in understanding the roles of nickel in enhancing strength and toughness of submerged arc welding high strength low alloy steel multiple pass welds in the as-welded condition

    Science.gov (United States)

    Sham, Kin-Ling

    Striving for higher strength along with higher toughness is a constant goal in material properties. Even though nickel is known as an effective alloying element in improving the resistance of a steel to impact fracture, it is not fully understood how nickel enhances toughness. It was the goal of this work to assist and further the understanding of how nickel enhanced toughness and maintained strength in particular for high strength low alloy (HSLA) steel submerged arc welding multiple pass welds in the as-welded condition. Using advanced analytical techniques such as electron backscatter diffraction, x-ray diffraction, electron microprobe, differential scanning calorimetry, and thermodynamic modeling software, the effect of nickel was studied with nickel varying from one to five wt. pct. in increments of one wt. pct. in a specific HSLA steel submerged arc welding multiple pass weldment. The test matrix of five different nickel compositions in the as-welded and stress-relieved condition was to meet the targeted mechanical properties with a yield strength greater than or equal to 85 ksi, a ultimate tensile strength greater than or equal to 105 ksi, and a nil ductility temperature less than or equal to -140 degrees F. Mechanical testing demonstrated that nickel content of three wt. pct and greater in the as-welded condition fulfilled the targeted mechanical properties. Therefore, one, three, and five wt. pct. nickel in the as-welded condition was further studied to determine the effect of nickel on primary solidification mode, nickel solute segregation, dendrite thickness, phase transformation temperatures, effective ferrite grain size, dislocation density and strain, grain misorientation distribution, and precipitates. From one to five wt. pct nickel content in the as-welded condition, the primary solidification was shown to change from primary delta-ferrite to primary austenite. The nickel partitioning coefficient increased and dendrite/cellular thickness was

  4. High-Strength Low-Alloy (HSLA) Mg-Zn-Ca Alloys with Excellent Biodegradation Performance

    Science.gov (United States)

    Hofstetter, J.; Becker, M.; Martinelli, E.; Weinberg, A. M.; Mingler, B.; Kilian, H.; Pogatscher, S.; Uggowitzer, P. J.; Löffler, J. F.

    2014-04-01

    This article deals with the development of fine-grained high-strength low-alloy (HSLA) magnesium alloys intended for use as biodegradable implant material. The alloys contain solely low amounts of Zn and Ca as alloying elements. We illustrate the development path starting from the high-Zn-containing ZX50 (MgZn5Ca0.25) alloy with conventional purity, to an ultrahigh-purity ZX50 modification, and further to the ultrahigh-purity Zn-lean alloy ZX10 (MgZn1Ca0.3). It is shown that alloys with high Zn-content are prone to biocorrosion in various environments, most probably because of the presence of the intermetallic phase Mg6Zn3Ca2. A reduction of the Zn content results in (Mg,Zn)2Ca phase formation. This phase is less noble than the Mg-matrix and therefore, in contrast to Mg6Zn3Ca2, does not act as cathodic site. A fine-grained microstructure is achieved by the controlled formation of fine and homogeneously distributed (Mg,Zn)2Ca precipitates, which influence dynamic recrystallization and grain growth during hot forming. Such design scheme is comparable to that of HSLA steels, where low amounts of alloying elements are intended to produce a very fine dispersion of particles to increase the material's strength by refining the grain size. Consequently our new, ultrapure ZX10 alloy exhibits high strength (yield strength R p = 240 MPa, ultimate tensile strength R m = 255 MPa) and simultaneously high ductility (elongation to fracture A = 27%), as well as low mechanical anisotropy. Because of the anodic nature of the (Mg,Zn)2Ca particles used in the HSLA concept, the in vivo degradation in a rat femur implantation study is very slow and homogeneous without clinically observable hydrogen evolution, making the ZX10 alloy a promising material for biodegradable implants.

  5. Current Status of Development of High Nickel Low Alloy Steels for Commercial Reactor Pressure Vessel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Chul; Lee, B. S.; Park, S. G.; Lee, K. H. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-12-15

    SA508 Gr.3 Mn-Mo-Ni low alloy steels have been used for nuclear reactor pressure vessel steels up to now. Currently, the design goal of nuclear power plant is focusing at larger capacity and longer lifetime. Requirements of much bigger pressure vessels may cause critical problems in the manufacturing stage as well as for the welding stage. Application of higher strength steel may be required to overcome the technical problems. It is known that a higher strength and fracture toughness of low alloy steels such as SA508 Gr.4N low alloy steel could be achieved by increasing the Ni and Cr contents. Therefore, SA508 Gr.4N low alloy steel is very attractive as eligible RPV steel for the next generation PWR systems. In this report, we propose the possibility of SA508 Gr.4N low alloy steel for an application of next generation commercial RPV, based on the literature research result about development history of the RPV steels and SA508 specification. In addition, we have surveyed the research result of HSLA(High Strength Low Alloy steel), which has similar chemical compositions with SA508 Gr.4N, to understand the problems and the way of improvement of SA508 Gr.4N low alloy steel. And also, we have investigated eastern RPV steel(WWER-1000), which has higher Ni contents compared to western RPV steel.

  6. Athermal kinetics in low alloy steels

    International Nuclear Information System (INIS)

    Leiva, Jorge A Vega; Valencia Morales, Eduardo; Villar Cociña, Ernesto; Hernández Ruiz, Jesús; Donis, Carlos

    2008-01-01

    Athermic analyses for the kinetic study of the reactions in the solid state are preferred because they consume much less experimental work time than the isothermal tests, and lead to more accurate calculations of the energies of activation of reactions that have occurred. In the present work are required conditions where you can apply the equation of speed of an athermal reaction in a low alloy in solid steel. From records of steel (AISI 1050) dilatometric triples were calculated kinetics (E, Ko, n) that characterize the reactions that occurred during the tempering of samples using different methods of iso conversion, one of which is a new modification of the method of Friedman. Also, has shown that during the formation of carbide Epsilon in the first stage of the tempering has occurred a saturation of sites, which validates the use of some methods. Finally, the orders of the reactions occurred during tempering of steel studied treatment are calculated.

  7. Stress corrosion in low alloy steels

    International Nuclear Information System (INIS)

    Scott, P.M.; Tice, D.R.

    1988-01-01

    The main variables affecting environmentally induced crack initiation and growth in low alloy pressure vessel steels exposed to high temperature aqueous environments are reviewed. Considerable background knowledge is available on many of the important factors such as stress, crack tip stress intensity, strain rate, steel composition and microstructure, environmental temperature, chemistry, oxidising capacity and flowrate. This information is also compared with known plant incidents of environmentally induced or assisted cracking. Certain gaps in these data and their interpretation are judged to remain particularly in the case where oxygenated water is present. These arise predominantly in the definition of margins available on plant water chemistry specifications before risk of environmentally induced cracking becomes unacceptable and in quantifying the beneficial effect of high water flowrates. (orig.)

  8. Stress corrosion in low alloy steels

    International Nuclear Information System (INIS)

    Scott, P.M.; Tice, D.R.

    1990-01-01

    The main variables affecting environmentally induced crack initiation and growth in low alloy pressure vessel steels exposed to high temperature aqueous environments are reviewed. Considerable background knowledge is available on many of the important factors such as stress, crack tip stress intensity, strain rate, steel composition and microstructure, environmental temperature, chemistry, oxidising capacity and flowrate. This information is also compared with known plant incidents of environmentally induced or assisted cracking. Certain gaps in these data and their interpretation are judged to remain particularly in the case where oxygenated water is present. These arise predominantly in the definition of margins available on plant water chemistry specifications before risk of environmentally incuced cracking becomes unacceptable and in quantifying the beneficial effect of high water flowrates. (orig.)

  9. Stress corrosion of low alloy steel forgings

    International Nuclear Information System (INIS)

    Thornton, D.V.; Mould, P.B.; Patrick, E.C.

    1976-01-01

    The catastrophic failure of a steam turbine rotor disc at Hinkley Point 'A' Power station was shown to have been caused by the growth of a stress corrosion crack to critical dimensions. This failure has promoted great interest in the stress corrosion susceptibility of medium strength low alloy steel forgings in steam environments. Consequently, initiation and growth of stress corrosion cracks of typical disc steels have been investigated in steam and also in water at 95 0 C. Cracking has been shown to occur, predominantly in an intergranular manner, with growth rates of between 10 -9 and 10 -7 mm sec. -1 . It is observed that corrosion pitting and oxide penetration prior to the establishment of a stress corrosion crack in the plain samples. (author)

  10. High-strength maraging steels

    International Nuclear Information System (INIS)

    Grachev, S.V.; Shejn, A.S.

    1989-01-01

    Analysis of data on technological and operation properties of maraging steels on Fe-Cr-Ni, Fe-Ni, Fe-Cr-Co-Mo bases is given. Their advantages and drawbacks are pointed out. The scheme of strengthening heat treatment is considered. The fields of the most effective application of maraging steels for instance, for products operating under conditions of low-cycle and shock cyclic loading are mentioned

  11. Advanced high strength steels for automotive industry

    Energy Technology Data Exchange (ETDEWEB)

    Galan, J.; Samek, L.; Verleysen, P.; Verbeken, K.; Houbert, Y.

    2012-11-01

    The car industry is facing pressure because of the growing demand for more fuel-efficient passenger cars. In order to limit energy consumption and air pollution the weight of the car body has to be reduced. At the same time, high levels of safety have to be guaranteed. In this situation, the choice of material becomes a key decision in car design. As a response to the requirements of the automotive sector, high strength steels and advanced high strength steels have been developed by the steel industry. These modern steel grades offer an excellent balance of low cost, light weight and mechanical properties. (Author) 48 refs.

  12. Crack stability analysis of low alloy steel primary coolant pipe

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, T.; Kameyama, M. [Kansai Electric Power Company, Osaka (Japan); Urabe, Y. [Mitsubishi Heavy Industries, Ltd., Takasago (Japan)] [and others

    1997-04-01

    At present, cast duplex stainless steel has been used for the primary coolant piping of PWRs in Japan and joints of dissimilar material have been applied for welding to reactor vessels and steam generators. For the primary coolant piping of the next APWR plants, application of low alloy steel that results in designing main loops with the same material is being studied. It means that there is no need to weld low alloy steel with stainless steel and that makes it possible to reduce the welding length. Attenuation of Ultra Sonic Wave Intensity is lower for low alloy steel than for stainless steel and they have advantageous inspection characteristics. In addition to that, the thermal expansion rate is smaller for low alloy steel than for stainless steel. In consideration of the above features of low alloy steel, the overall reliability of primary coolant piping is expected to be improved. Therefore, for the evaluation of crack stability of low alloy steel piping to be applied for primary loops, elastic-plastic future mechanics analysis was performed by means of a three-dimensioned FEM. The evaluation results for the low alloy steel pipings show that cracks will not grow into unstable fractures under maximum design load conditions, even when such a circumferential crack is assumed to be 6 times the size of the wall thickness.

  13. Metal dusting of low alloy steels

    Energy Technology Data Exchange (ETDEWEB)

    Grabke, H.J. (Max-Planck-Institut fuer Eisenforschung GmbH, Duesseldorf (Germany)); Bracho-Troconis, C.B. (Max-Planck-Institut fuer Eisenforschung GmbH, Duesseldorf (Germany)); Mueller-Lorenz, E.M. (Max-Planck-Institut fuer Eisenforschung GmbH, Duesseldorf (Germany))

    1994-04-01

    The metal dusting of two low alloy steels was investigated at 475 C in flowing CO-H[sub 2]-H[sub 2]O mixtures at atmospheric pressure with a[sub C] > 1. The reaction sequence comprises: (1) oversaturation with C, formation of cementite and its decomposition to metal particles and carbon, and (2) additional carbon deposition on the metal particles from the atmosphere. The metal wastage rate r[sub 1] was determined by analysis of the corrosion product after exposures, this rate is constant with time and virtually independent of the environment. The carbon deposition from the atmosphere was determined by thermogravimetry, its rate r[sub 2] increases linearly with time, which can be explained by the catalytic action of the metal particles - periodic changes are superposed. The rate of carbon deposition r[sub 2] is proportional to the carbon activity in the atmosphere. The metal dusting could not be suppressed by increasing the oxygen activity or preoxidation, even if magnetite should be stable. Addition of H[sub 2]S, however, effectively suppresses the attack. (orig.)

  14. Boric acid corrosion of low alloy steel

    Energy Technology Data Exchange (ETDEWEB)

    Jones, R.; White, G.; Collin, J.; Marks, C. [Dominion Engineering, Inc., Reston, Virginia (United States); Reid, R.; Crooker, P. [Electric Power Research Inst., Palo Alto, California (United States)

    2010-07-01

    In the last decade, the industry has been aware of a potential loss of coolant accident (LOCA) per the following scenario: primary water stress corrosion cracking (PWSCC) of a primary system component or weld leads to a coolant leak, the coolant corrodes a low alloy steel structural component (e.g., the reactor vessel (RV) or the reactor vessel head (RVH)), and corrosion degrades the pressure boundary leading to a loss of coolant accident. The industry has taken several steps to address this concern, including replacement of the most susceptible components (RVH replacement), enhanced inspection (both NDE of components and visual inspections for boric acid deposits), and safety analyses to determine appropriate inspection intervals. Although these measures are generally thought to have adequately addressed this issue, there have been some uncertainties in the safety analyses which the industry has sought to address in order to quantify the extent of conservatism in the safety analyses. Specifically, there has been some uncertainty regarding the rate of boric acid corrosion under various conditions which might arise due to a PWSCC leak and the extent to which boric acid deposits are retained near the leak under various geometries. This paper reviews the results of the Electric Power Research Institute (EPRI) Materials Reliability Program (MRP) boric acid corrosion (BAC) test programs conducted over the last 8 years, focusing on the most recent results of full-scale mockup testing of CRDM nozzle and bottom mounted nozzle (BMN) configurations. The main purpose of this presentation is to provide an overview of the latest understanding of the risk of boric acid corrosion as it is informed by the results of the testing conducted over the last eight years. The rate of boric acid corrosion has been found to be a function of many factors, including initial chemistry, the extent of concentration due to boiling, the temperature at which concentration takes place, the velocity

  15. Advanced high strength steels for automotive industry

    Directory of Open Access Journals (Sweden)

    Galán, J.

    2012-04-01

    Full Text Available The car industry is facing pressure because of the growing demand for more fuel-efficient passenger cars. In order to limit energy consumption and air pollution the weight of the carbody has to be reduced. At the same time, high levels of safety have to be guaranteed. In this situation, the choice of material becomes a key decision in car design. As a response to the requirements of the automotive sector, high strength steels and advanced high strength steels have been developed by the steel industry. These modern steel grades offer an excellent balance of low cost, light weight and mechanical properties.

    La industria del automóvil se enfrenta a una creciente demanda de vehículos de pasajeros más eficientes. Con el fin de disminuir el consumo de energía y la contaminación ambiental, el peso del vehículo tiene que ser reducido, al mismo tiempo que se garantizan altos niveles de seguridad. Ante esta situación, la elección de material se convierte en una decisión crucial en el diseño del vehículo. Como respuesta a las necesidades del sector automovilístico, nuevos aceros avanzados y de alta resistencia, han sido desarrollados por la industria siderúrgica. Dichos tipos de acero ofrecen un excelente equilibrio de precio, peso y propiedades mecánicas.

  16. Low alloy steel versus ADI – differences and similarities

    Directory of Open Access Journals (Sweden)

    A. Krzyńska

    2009-01-01

    Full Text Available The results of comparison between the microstructure of selected bainitic low alloy steel and austempered ductile iron ADI are presented. The aim of the comparison was to find out differences and similarities existing in these iron carbon commercial alloys. In this paper our own results on ADI structure and literature data were used. It follows from discussion presented here that both microstructure and properties of ADI are very close that which are observed in low alloy carbon steel. Moreover, we suggest that there is no so doubt to treat ADI mechanical properties as steel containing nodular inclusions of graphite.

  17. Influence of alloying elements and density on aqueous corrosion behaviour of some sintered low alloy steels

    International Nuclear Information System (INIS)

    Kandavel, T.K.; Chandramouli, R.; Karthikeyan, P.

    2012-01-01

    Highlights: ► Corrosion of low alloy P/M steels under HCl acid pickling environment has been studied. ► Influence of density, strain and alloying elements on the rate of corrosion of the steels has been investigated. ► Residual porosity has significant effect on acid corrosion. ► Addition of the alloying elements Cu, Mo and Ti reduces the corrosion rate significantly. ► Carbide forming elements Mo and Ti improve further the resistance of the steels to aqueous corrosion. -- Abstract: Low alloy steels produced through powder metallurgy route of sintering followed by forging are promising candidate materials for high strength small components. Porosity in such steels poses a real challenge during acid pickling treatment, which is one of the processing steps during manufacturing. The present research work attempts to investigate the mechanism underlying the acid corrosion behaviour of some sintered low alloy steels under induced acid pickling conditions. Sintered-forged low alloy steel samples containing molybdenum (Mo), copper (Cu) and titanium (Ti) were subjected to aqueous corrosion attack by immersing the samples in 18% HCl (Hydrochloric acid) solution for 25 h. Sample weight loss and Fe (Iron) loss were estimated for the corroded samples. The morphology of the corroded surfaces was studied through metallography and scanning electron microscopy. Higher porosity alloys underwent enhanced corrosion rates. Both corrosion rate and iron loss are found to decrease linearly with reduction in porosity in all cases of the alloys. The alloying elements Mo, Ti and Cu, when added in combination, have played a complementary role in the reduction of corrosion rate by almost one order of magnitude compared to unalloyed steel. Presence of carbides of the carbide forming elements Mo and Ti played a positive role on the corrosion behaviour of the low alloy steels.

  18. Fatigue and fracture behavior of low alloy ferritic forged steels

    International Nuclear Information System (INIS)

    Chaudhry, V.; Sharma, A.K.; Muktibodh, U.C.; Borwankar, Neeraj; Singh, D.K.; Srinivasan, K.N.; Kulkarni, R.G.

    2016-01-01

    Low alloy ferritic steels are widely used in nuclear industry for the construction of pressure vessels. Pressure vessel forged low alloy steels 20MnMoNi55 (modified) have been developed indigenously. Experiments have been carried out to study the Low Cycle Fatigue (LCF) and fracture behavior of these forged steels. Fully reversed strain controlled LCF testing at room temperature and at 350 °C has been carried out at a constant strain rate, and for different axial strain amplitude levels. LCF material behavior has been studied from cyclic stress-strain responses and the strain-life relationships. Fracture behavior of the steel has been studied based on tests carried out for crack growth rate and fracture toughness (J-R curve). Further, responses of fatigue crack growth rate tests have been compared with the rate evaluated from fatigue precracking carried out for fracture toughness (J-R) tests. Fractography of the samples have been carried out to reveal dominant damage mechanisms in crack propagation and fracture. The fatigue and fracture properties of indigenously developed low alloy steel 20MnMoNi55 (modified) steels are comparable with similar class of steels. (author)

  19. OF PLAIN CARBON AND LOW ALLOY STEELS

    African Journals Online (AJOL)

    Two steels En 3 and En 39 were given a TiC-TiN. CVD coating in the carburized and uncarburized conditions. The continuity of the coatings and their adherance to the substrate were examined. The thickness of the deposited coatings were also measured, their adherence to the substrate and their thickness was off ected by ...

  20. Carburizing treatment of low alloy steels: Effect of technological parameters

    Science.gov (United States)

    Benarioua, Younes

    2018-05-01

    The surface areas of the parts subjected to mechanical loads influence to a great extent the resistance to wear and fatigue. In majority of cases, producing of a hard superficial layer on a tough substrate is conducive to an increased resistance to mechanical wear and fatigue. Cementation treatment of low alloy steels which bonds superficial martensitic layer of high hardness and lateral compressive to a core of lower hardness and greater toughness is an example of a good solution of the problem. The high hardness of the martensitic layer is due to an increased concentration of interstitial carbon atoms in the austenite before quenching. The lower hardness of the core after quenching is due to the presence of ferrite and pearlite components which appear if the cooling rate after austenitization becomes lower than the critical on. The objective of the present study was to obtain a cemented surface layer on low alloy steel by means of pack carburizing treatment. Different steel grades, austenitization temperatures as well as different soaking times were used as parameters of the pack carburizing treatment. During this treatment, carbon atoms from the pack powder diffuse toward the steels surface and form compounds of iron carbides. The effect of carburizing parameters on the transformation rate of low carbon surface layer of the low alloy steel to the cemented one was investigated by several analytical techniques.

  1. Development of advanced low alloy steel for nuclear RPV

    Energy Technology Data Exchange (ETDEWEB)

    Lee, H. C.; Shin, K. S.; Lee, S. H.; Lee, B. J. [Seoul National Univ., Seoul (Korea)

    2000-04-01

    Low carbon low alloy steels are used in nuclear power plants as pressure vessel, steam generator, etc. Nuclear pressure vessel material requires good combination of strength/ toughness, good weldability and high resistance to neutron irradiation and corrosion fatigue. For SA508III steels, most widely used in the production of nuclear power plant, attaining toughness is more difficult than strength. When taking into account the loss of toughness due to neutron irradiation, attaining as low transition temperature as possible prior to operation is a critical task in the production of nuclear pressure vessels. In the present study, we investigated detrimental microstructural features of SA508III steels to toughness, then alloy design directions to achieve improved mechanical properties were devised. The next step of alloy design was determined based on phase equilibrium thermodynamics and obtained results. Low carbon low alloy steels having low transition temperatures with enough strength and hardenability were developed. Microstructure and mechanical properties of HAZ of SA508III steels and alloy designed steels were investigated. 22 refs., 147 figs., 38 tabs. (Author)

  2. Processing of a new high strength high toughness steel with duplex microstructure (Ferrite + Austenite)

    International Nuclear Information System (INIS)

    Martis, Codrick J.; Putatunda, Susil K.; Boileau, James

    2013-01-01

    Highlights: ► This new steel has exceptional combination of high strength and fracture toughness. ► Austempering treatment resulted in a very fine scale bainitic ferrite microstructure. ► As the austempering temperature increases yield strength and toughness decreases. ► Maximum fracture toughness of 105 MPa √m is obtained after austempering at 371 °C. ► A relationship between fracture toughness and the parameter σ y (X γ C γ ) 1/2 was observed. - Abstract: In this investigation a new third generation advanced high strength steel (AHSS) has been developed. This steel was synthesized by austempering of a low carbon and low alloy steel with high silicon content. The influence of austempering temperature on the microstructure and the mechanical properties including the fracture toughness of this steel was also examined. Compact tension and cylindrical tensile specimens were prepared from a low carbon low alloy steel and were initially austenitized at 927 °C for 2 h and then austempered in the temperature range between 371 °C and 399 °C to produce different microstructures. The microstructures were characterized by X-ray diffraction, scanning electron microscopy and optical metallography. Test results show that the austempering heat treatment has resulted in a microstructure consisting of very fine scale bainitic ferrite and austenite. A combination of very high tensile strength of 1388 MPa and fracture toughness of 105 MPa √m was obtained after austempering at 371 °C

  3. Testing and assessment of low alloy steel for marine application

    International Nuclear Information System (INIS)

    Amjad, M.; Ahmad, S.; Mahmood, K.; Qureshi, A.H.

    2007-01-01

    This paper is an account of the work carried out during the assessment of low alloy steel (WH-80) for marine application. The relevant acceptance criteria consulted during the process is DEFST AN 02-874 and a standard reference material. Assessment is based on the experimental results of the tests carried out for the steel. Testing comprised of mechanical (tensile, impact and hardness) tests, corrosion (immersion corrosion and stress corrosion cracking) tests, metallography test and weldability (weld joint strength, controlled thermal severity -CTS and Y -Groove) tests undertaken at various testing laboratories in Pakistan. The results obtained after testing have been compared with acceptance criteria (DEFSTAN 02-874 and standard reference material). Moreover results have been compared with contemporary steels used for marine applications. Results showed a reasonable agreement with results available in literature for other low alloy steels with respect to mechanical strength and weldability. Steel weldments qualified the weld joint strength tests and weldability tests. Toughness has been measured at various temperatures. Results revealed that the toughness of base metal is higher than heat affected zone (HAZ) and weld metal. In weldability tests, weld metal and HAZ were examined microscopically to investigate integrity of weld. No cracks have been observed in the weld which indicates complete diffusion in to the welding material. WH- 80 steel has exhibited comparatively high corrosion rate, reduction in tensile strength during SCC test and low Charpy energy values at -50 degree C. It is therefore concluded that the WH-80 steel is unsuitable for use in application at subzero (OC) temperatures and in highly corrosive environment. (author)

  4. Formability Characterization of a New Generation High Strength Steels

    Energy Technology Data Exchange (ETDEWEB)

    Sriram Sadagopan; Dennis Urban; Chris Wong; Mai Huang; Benda Yan

    2003-05-16

    Advanced high strength steels (AHSS) are being progressively explored by the automotive industry all around the world for cost-effective solutions to accomplish vehicle lightweighting, improve fuel economy, and consequently reduce greenhouse emissions. Because of their inherent high strength, attractive crash energy management properties, and good formability, the effective use of AHSS such as Duel Phase and TRIP (Transformation Induced Plasticity) steels, will significantly contribute to vehicle lightweighting and fuel economy. To further the application of these steels in automotive body and structural parts, a good knowledge and experience base must be developed regarding the press formability of these materials. This project provides data on relevant intrinsic mechanical behavior, splitting limits, and springback behavior of several lots of mild steel, conventional high strength steel (HSS), advanced high strength steel (AHSS) and ultra-high strength steel (UHSS), supplied by the member companies of the Automotive Applications Committee (AAC) of the American Iron and Steel Institute (AISI). Two lots of TRIP600, which were supplied by ThyssenKrupp Stahl, were also included in the study. Since sheet metal forming encompasses a very diverse range of forming processes and deformation modes, a number of simulative tests were used to characterize the forming behavior of these steel grades. In general, it was found that formability, as determined by the different tests, decreased with increased tensile strength. Consistant with previous findings, the formability of TRIP600 was found to be exceptionally good for its tensile strength.

  5. Mechanical properties of low alloy high phosphorus weathering steel

    Directory of Open Access Journals (Sweden)

    Jena B.K.

    2015-01-01

    Full Text Available Mechanical behaviour of two low alloy steels (G11 and G12 was studied with respect to different phosphorus contents. Tensile strength and yield strength increased while percentage elongation at fracture decreased on increasing phosphorus content. The SEM and light optical photomicrograph of low phosphorus steel (G11 revealed ferrite and pearlite microstructure. On increasing phosphorus content from 0.25 wt.% to 0.42 wt.%, the morphology of grain changed from equiaxed shape to pan-cake shape and grain size also increased. The Charpy V notch (CVN impact energy of G11 and G12 steel at room temperature was 32 J and 4 J respectively and their fractographs revealed brittle rupture with cleavage facets for both the steels. However, the fractograph of G11 steel after tensile test exhibited ductile mode of fracture with conical equiaxed dimple while that of G12 steel containing 0.42 wt. % P exhibited transgranular cleavage fracture. Based on this study, G11 steel containing 0.25 wt. % P could be explored as a candidate material for weathering application purpose where the 20°C toughness requirement is 27 J as per CSN EN10025-2:2004 specification.

  6. Engineering Performance of High Strength Concrete Containing Steel Fibre Reinforcement

    Directory of Open Access Journals (Sweden)

    Md Azree Othuman Mydin

    2013-09-01

    Full Text Available The development and utilization of the high strength concrete in the construction industry have been increasing rapidly. Fiber reinforced concrete is introduced to overcome the weakness of the conventional concrete because concrete normally can crack under a low tensile force and it is known to be brittle. Steel fibre is proved to be the popular and best combination in the high strength concrete to result the best in the mechanical and durability properties of high strength concrete with consideration of curing time, steel fibre geometry, concrete grade and else more. The incorporation of steel fibre in the mortar mixture is known as steel fibre reinforced concrete have the potential to produce improvement in the workability, strength, ductility and the deformation of high strength concrete. Besides that, steel fibre also increases the tensile strength of concrete and improves the mechanical properties of the steel fibre reinforced concrete. The range for any high strength concrete is between 60MPa-100MPa. Steel fibre reinforced concrete which contains straight fibres has poorer physical properties than that containing hooked end stainless steel fibre due to the length and the hooked steel fibre provide a better effective aspects ratio. Normally, steel fibre tensile strength is in the range of 1100MPa-1700MPa. Addition of less steel fibre volumes in the range of 0.5% to 1.0% can produce better increase in the flexural fatigue strength. The strength can be increased with addition of steel fibre up to certain percentage. This paper will review and present some basic properties of steel fibre reinforced concrete such as mechanical, workability and durability properties.

  7. Optimal welding technology of high strength steel S690QL

    Directory of Open Access Journals (Sweden)

    Dusan Arsic

    2015-02-01

    Full Text Available In this paper is presented the detailed procedure for defining the optimal technology for welding the structures made of the high strength steel S690QL. That steel belongs into a group of steels with exceptional mechanical properties. The most prominent properties are the high tensile strength and impact toughness, at room and at elevated temperatures, as well. However, this steel has a negative characteristic - proneness to appearance of cold cracks.  That impedes welding and makes as an imperative to study different aspects of this steel's properties as well as those of eventual filler metal. Selection and defining of the optimal welding technology of this high strength steel is done for the purpose of preserving the favorable mechanical properties once the welded joint is realized; properties of the welded metal and the melting zone, as well as in the heat affected zone, which is the most critical zone of the welded joint.

  8. Study on Fatigue Characteristics of High-Strength Steel Welds

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Hong Suk; Yoo, Seung Won; Park, Jong Chan [Hyundai Motor Group, Seoul (Korea, Republic of)

    2015-03-15

    High-strength steel has replaced mild steel as the material of choice for truck decks or frames, owing to the growing demand for lightweight vehicles. Although studies on the weld fatigue characteristics of mild steel are available, studies on high-strength steels have been seldom conducted. In this study, firstly, we surveyed a chosen number of approaches and selected the Radaj method, which uses the notch factor approach, as the one suitable for evaluating the fatigue life of commercial vehicles. Secondly, we obtained the S-N curves of HARDOX and ATOS60 steel welds, and the F-N curves of the T-weld and overlapped-weld structures. Thirdly, we acquired a general S-N curve of welded structures made of high-strength steel from the F-N curve, using the notch factor approach. Fourthly, we extracted the weld fatigue characteristics of high-strength steel and incorporated the results in the database of a commercial fatigue program. Finally, we compared the results of the fatigue test and the CAE prediction of the example case, which demonstrated sufficiently good agreement.

  9. Temperature and environmentally assisted cracking in low alloy steel

    International Nuclear Information System (INIS)

    Auten, T.A.; Monter, J.V.

    1995-04-01

    Environmental assisted cracking (EAC) can be defined as the propagation of fatigue cracks in water at rates from 3 to over 40 times the growth rates in air. For low alloy steels with sulfur contents > 0.0125% by weight, EAC is normal behavior in the 240 to 290C range. However, literature yields mixed results for low alloy steels with compositions just below this sulfur level; some reports indicate EAC while others do not. Also, several authors have reported an increased tendency toward EAC when the water temperatures were lowered. In the present work, five ASTM A 508 Class 2 forgings with ladle and check analyses that ranged from 0.010 to 0.019 wt% S were tested in high purity deaerated water in the temperature range of 93 to 260C. At 260C these forgings did not exhibit EAC, reinforcing earlier results for two similar forgings. This broad sampling indicates strong resistance to EAC for this class of forging at 260C. On the other hand, EAC occurred consistently in the three of these forgings that were tested below 204C, provided the test conditions (loading frequency, ΔK, and R) were high enough to produce a high baseline fatigue crack growth rate (FCGR), where the baseline FCGR is that expected in air. At 149C, EAC occurred at test conditions that combined to yield a baseline FCGR greater than ∼2E-6 mm/s. At 204, 121, and 93C, this critical crack growth rate appeared to shift to lower baseline values. The EAC that occurred at lower temperatures was a factor of 3 to 12 times higher than baseline air rates, which was not as strong as the effect for higher sulfur steels at 240 to 290C. Also, no plateau in the growth rates occurred as it does with the higher sulfur steels. In another approach, EAC was induced at 93 and at 260C by raising the dissolved oxygen content of the water from 15 ppb

  10. Localized bending fatigue behavior of high-strength steel monostrands

    DEFF Research Database (Denmark)

    Winkler, Jan; Fischer, Gregor; Georgakis, Christos T.

    2012-01-01

    In this paper, the localized bending fatigue behavior of pretensioned high strength steel monostrands is investigated. Furthermore, a new methodology using an optical photogrammetry system, which can quantify surface deformations on the strand is presented. The system allows measurement of the st......In this paper, the localized bending fatigue behavior of pretensioned high strength steel monostrands is investigated. Furthermore, a new methodology using an optical photogrammetry system, which can quantify surface deformations on the strand is presented. The system allows measurement...... displacement (opening/closing and sliding) of the helically wound wires. Moreover, the results are a step towards understanding the bending fatigue damage mechanisms of monostrand cables....

  11. Application of high strength steel to nuclear reactor containment vessel

    International Nuclear Information System (INIS)

    Susukida, H.; Sato, M.; Takano, G.; Uebayashi, T.; Yoshida, K.

    1976-01-01

    Nuclear reactor containment vessels are becoming larger in size with the increase in the power generating capacity of nuclear power plants. For example, a containment vessel for a PWR power plant with an output of 1,000 MWe becomes an extremely large one if it is made of the conventional JIS SGV 49 (ASTM A 516 Gr. 70) steel plates less than 38 mm in thickness. In order to design the steel containment vessel within the conventional dimensional range, therefore, it is necessary to use a high strength steel having a higher tensile strength than SGV 49 steel, good weldability and a higher fracture toughness and moreover, possessing satisfactory properties without undergoing post-weld heat treatment. The authors conducted a series of verification tests on high strength steel developed by modifying the ASTM A 543 Grade B Class 1 steel with a view to adopting it as a material for the nuclear reactor containment vessels. As the result of evaluation of the test results from various angles, we confirmed that the high strength steel is quite suitable for the manufacture of nuclear reactor containment vessels. (auth.)

  12. Low cycle fatigue behaviors of low alloy steels in 310 .deg. C deoxygenated water

    International Nuclear Information System (INIS)

    Jang, Hun

    2008-02-01

    After low cycle fatigue tests of SA508 Gr.1a low alloy steel in 310 .deg. C deoxygenated water, the fatigue surface and the sectioned area of specimens were observed to understand the effect of the cyclic strain rate on the environmentally assisted cracking behaviors. From the fatigue crack morphologies of the specimen tested at a strain rate of 0.008 %/s, unclear ductile striations and blunt crack tip were observed. So, metal dissolution could be the main cracking mechanism of the material at the strain rate. On the other hand, on the fatigue surface of the specimen tested at strain rates of 0.04 and 0.4 %/s, the brittle cracks and the flat facets, which are the evidence of the hydrogen induced cracking, were observed. Also, the tendency of linkage between the main crack and micro-cracks was observed on the sectioned area. Therefore, the main cracking mechanism at the strain rates of 0.04 and 0.4 %/s could be the hydrogen induced cracking. Additionally, the evidence of the dissolved MnS inclusions was observed on the fatigue surface from energy dispersive x-ray spectrometer analyses. So, despite of the low sulfur content of the test material, the sulfides seem to contribute to environmentally assisted cracking of SA508 Gr.1a low alloy steel in 310 .deg. C deoxygenated water. Additionally, our experimental fatigue life data of SA508 Gr.1a low alloy steel (heat A) showed a consistent difference with statistical model produced in argon national laboratory. So, additional low cycle fatigue tests of other heat SA508 Gr.1a (heat B) and SA508 Gr.3 low alloy steels were performed to investigate the effect of material variability on fatigue behaviors of low alloy steels in 310 .deg. C deoxygenated water. In results, the fatigue lives of three low alloy steels were increased following order: SA508 Gr.1a low alloy steel - heat A, SA508 Gr.3 low alloy steel, and SA508 Gr.1a low alloy steel - heat B. From microstructure observation, the fatigue surface of SA508 Gr.1a low alloy

  13. Fatigue Life of High-Strength Steel Offshore Tubular Joints

    DEFF Research Database (Denmark)

    Petersen, Rasmus Ingomar; Agerskov, Henning; Lopez Martinez, Luis

    1996-01-01

    In the present investigation, the fatigue life of tubular joints in offshore steel structures is studied. Two test series on full-scale tubular joints have been carried through. One series was on joints in conventional offshore structural steel, and the other series was on joints in high-strength......In the present investigation, the fatigue life of tubular joints in offshore steel structures is studied. Two test series on full-scale tubular joints have been carried through. One series was on joints in conventional offshore structural steel, and the other series was on joints in high......-strength steel with a yield stress of 820-830 MPa and with high weldability and toughness properties. The test specimens of both series had the same geometry. The present report concentrates on the results obtained in the investigation on the high-strength steel tubular joints.The test specimens were fabricated...... from Ø 324-610 mm tubes, and the joints were loaded in in-plane bending. Both fatigue tests under constant amplitude loading and tests with a stochastic loading that is realistic in relation to offshore structures, are included in the investigation.A comparison between constant amplitude and variable...

  14. Performance assessment on high strength steel endplate connections after fire

    NARCIS (Netherlands)

    Qiang, X.; Wu, N.; Jiang, X.; Bijlaard, F.S.K.; Kolstein, M.H.

    2017-01-01

    Purpose – This study aims to reveal more information and understanding on performance and failure mechanisms of high strength steel endplate connections after fire. Design/methodology/approach – An experimental and numerical study on seven endplate connections after

  15. Oxidation Phenomena in Advanced High Strength Steels : Modelling and Experiment

    NARCIS (Netherlands)

    Mao, W.

    2018-01-01

    Galvanized advanced high strength steels (AHSS) will be the most competitive structural material for automotive applications in the next decade. Oxidation of AHSS during the recrystalization annealing process in a continuous galvanizing line to a large extent influences the quality of zinc coating

  16. Comparison of SA508 Gr.3 and SA508 Gr.4N Low Alloy Steels for Reactor Pressure Vessel Steel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Chul; Lee, B. S

    2009-12-15

    The microstructural characteristics and mechanical properties of SA508 Gr.3 Mn-Mo-Ni low alloy steel and SA508 Gr.4N Ni-Mo-Cr low alloy steel were investigated. The differences in the stable phases between these two low alloy steels were evaluated by means of a thermodynamic calculation using ThermoCalc. They were then compared to microstructural features and correlated with mechanical properties. Mn-Mo-Ni low alloy steel shows the upper bainite structure which has the coarse cementite in the lath boundaries. However, Ni-Mo-Cr low alloy steel shows the mixture of lower bainite and tempered martensite structure that homogeneously precipitates the small carbides such as M{sub 23}C{sub 6} and M{sub 7}C{sub 3} due to an increase of hardenability and Cr addition. In the mechanical properties, Ni-Mo-Cr low alloy steel has higher strength and toughness than Mn-Mo-Ni low alloy steel. Ni and Cr additions increase the strength by solid solution hardening. Besides, microstructural changes from upper bainite to tempered martensite improve the strength of the low alloy steel by grain refining effect. And the changes in the precipitation behavior by Cr addition improve the ductile-brittle transition behavior along with a toughening effect of Ni addition.

  17. Effects of tempering temperature on microstructural evolution and mechanical properties of high-strength low-alloy D6AC plasma arc welds

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chun-Ming, E-mail: chunming@ntut.edu.tw [Department of Mechanical Engineering, National Taipei University of Technology, Taipei 10608, Taiwan (China); Lu, Chi-Hao [Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei 10673, Taiwan (China)

    2016-10-31

    This study prepared high-strength low-alloy (HSLA) D6AC weldments using a plasma arc welding (PAW) process. The PAW weldments were then tempered at temperatures of 300 °C, 450 °C, and 600 °C for 1000 min. Microstructural characteristics of the weld in as-welded HSLA-D6AC, tempered D6AC, and tensile-tested D6AC were observed via optical microscopy (OM). We also investigated the hardness, tensile strength, and V-notched tensile strength (NTS) of the tempered specimens using a Vickers hardness tester and a universal testing machine. The fracture surfaces of the specimens were observed using a scanning electron microscope (SEM). Our results show that the mechanical properties and microstructural features of the HSLA weldments are strongly dependent on tempering temperature. An increase in tempering temperature led to a decrease in the hardness and tensile strength of the weldments but led to an increase in ductility. These effects can be attributed to the transformation of the microstructure and its effect on fracture characteristics. The specimens tempered at 300 °C and 450 °C failed in a ductile-brittle manner due to the presence of inter-lath austenite in the microstructure. After tempering at a higher temperature of 600 °C, martensite embrittlement did not occur, such that specimens failure was predominantly in a ductile manner. In the NTS specimens, an increase in tempering temperature led to a reduction in tensile strength due to notch embrittlement and the effects of grain boundary thickening and sliding. Our findings provide a valuable reference for the application of HSLA-D6AC steel in engineering and other fields.

  18. Fatigue life of high strength steel for cold forming

    Directory of Open Access Journals (Sweden)

    R. Ulewicz

    2017-01-01

    Full Text Available The article presents the results of fatigue tests carried out on STRENX-type high-strength cold forming steel. For high-cycle fatigue tests carried out using low cycle loading frequencies of around 30 Hz, a ROTOFLEX machine was used. For ultra high-cycle tests, a KAUP-ZU testing machine was employed, which enables fatigue tests to be performed with symetric specimen loading (R = -1 and at a frequency of f ≈ 20 kHz. The relationships σa = f(N were determined experimentally in the high and ultra high-cycle region for STRENX high-strength steel. To determine the fatigue crack initiation mechanism, the fractographic analysis of fatigue fractures was made.

  19. Mechanical Properties of Heat Affected Zone of High Strength Steels

    Science.gov (United States)

    Sefcikova, K.; Brtnik, T.; Dolejs, J.; Keltamaki, K.; Topilla, R.

    2015-11-01

    High Strength Steels became more popular as a construction material during last decade because of their increased availability and affordability. On the other hand, even though general use of Advanced High Strength Steels (AHSS) is expanding, the wide utilization is limited because of insufficient information about their behaviour in structures. The most widely used technique for joining steels is fusion welding. The welding process has an influence not only on the welded connection but on the area near this connection, the so-called heat affected zone, as well. For that reason it is very important to be able to determine the properties in the heat affected zone (HAZ). This area of investigation is being continuously developed in dependence on significant progress in material production, especially regarding new types of steels available. There are currently several types of AHSS on the world market. Two most widely used processes for AHSS production are Thermo-Mechanically Controlled Processing (TMCP) and Quenching in connection with Tempering. In the presented study, TMCP and QC steels grade S960 were investigated. The study is focused on the changes of strength, ductility, hardness and impact strength in heat affected zone based on the used amount of heat input.

  20. Overview of research trends and problems on Cr-Mo low alloy steels for pressure vessel

    International Nuclear Information System (INIS)

    Chi, Byung Ha; Kim, Jeong Tae

    2000-01-01

    Cr-Mo low alloy steels have been used for a long time for pressure vessel due to its excellent corrosion resistance, high temperature strength and toughness. The paper reviewed the latest trends on material development and some problems on Cr-Mo low alloy steel for pressure vessel, such as elevated temperature strength, hardenability, synergetic effect between temper and hydrogen embrittlement, hydrogen attack and hydrogen induced disbonding of overlay weld-cladding

  1. Behaviour of High Strength Steel Endplate Connections in Fire and after Fire

    NARCIS (Netherlands)

    Qiang, X.

    2013-01-01

    The aim of this research is to reveal more information and understanding on behaviour and failure mechanisms of high strength steel endplate connections (combining high strength steel endplates with either mild steel or high strength steel beams and columns in endplate connections) in fire and after

  2. Ultrahigh Charpy impact toughness (~450J) achieved in high strength ferrite/martensite laminated steels

    Science.gov (United States)

    Cao, Wenquan; Zhang, Mingda; Huang, Chongxiang; Xiao, Shuyang; Dong, Han; Weng, Yuqing

    2017-02-01

    Strength and toughness are a couple of paradox as similar as strength-ductility trade-off in homogenous materials, body-centered-cubic steels in particular. Here we report a simple way to get ultrahigh toughness without sacrificing strength. By simple alloying design and hot rolling the 5Mn3Al steels in ferrite/austenite dual phase temperature region, we obtain a series of ferrite/martensite laminated steels that show up-to 400-450J Charpy V-notch impact energy combined with a tensile strength as high as 1.0-1.2 GPa at room temperature, which is nearly 3-5 times higher than that of conventional low alloy steels at similar strength level. This remarkably enhanced toughness is mainly attributed to the delamination between ferrite and martensite lamellae. The current finding gives us a promising way to produce high strength steel with ultrahigh impact toughness by simple alloying design and hot rolling in industry.

  3. Additively manufactured hierarchical stainless steels with high strength and ductility

    Science.gov (United States)

    Wang, Y. Morris; Voisin, Thomas; McKeown, Joseph T.; Ye, Jianchao; Calta, Nicholas P.; Li, Zan; Zeng, Zhi; Zhang, Yin; Chen, Wen; Roehling, Tien Tran; Ott, Ryan T.; Santala, Melissa K.; Depond, Philip J.; Matthews, Manyalibo J.; Hamza, Alex V.; Zhu, Ting

    2018-01-01

    Many traditional approaches for strengthening steels typically come at the expense of useful ductility, a dilemma known as strength-ductility trade-off. New metallurgical processing might offer the possibility of overcoming this. Here we report that austenitic 316L stainless steels additively manufactured via a laser powder-bed-fusion technique exhibit a combination of yield strength and tensile ductility that surpasses that of conventional 316L steels. High strength is attributed to solidification-enabled cellular structures, low-angle grain boundaries, and dislocations formed during manufacturing, while high uniform elongation correlates to a steady and progressive work-hardening mechanism regulated by a hierarchically heterogeneous microstructure, with length scales spanning nearly six orders of magnitude. In addition, solute segregation along cellular walls and low-angle grain boundaries can enhance dislocation pinning and promote twinning. This work demonstrates the potential of additive manufacturing to create alloys with unique microstructures and high performance for structural applications.

  4. Galvanic Interaction between Chalcopyrite and Pyrite with Low Alloy and High Carbon Chromium Steel Ball

    Directory of Open Access Journals (Sweden)

    Asghar Azizi

    2013-01-01

    Full Text Available This study was aimed to investigate the galvanic interaction between pyrite and chalcopyrite with two types of grinding media (low alloy and high carbon chromium steel ball in grinding of a porphyry copper sulphide ore. Results indicated that injection of different gases into mill altered the oxidation-reduction environment during grinding. High carbon chromium steel ball under nitrogen gas has the lowest galvanic current, and low alloy steel ball under oxygen gas had the highest galvanic current. Also, results showed that the media is anodic relative to pyrite and chalcopyrite, and therefore pyrite or chalcopyrite with a higher rest potential acted as the cathode, whilst the grinding media with a lower rest potential acted as the anode, when they are electrochemically contacted. It was also found that low alloy steel under oxygen produced the highest amount of EDTA extractable iron in the slurry, whilst high carbon chromium steel under nitrogen atmosphere led to the lowest amount.

  5. Recent trends in steel fibered high-strength concrete

    International Nuclear Information System (INIS)

    Shah, Abid A.; Ribakov, Y.

    2011-01-01

    Highlights: → Recent studies on steel fibred high strength concrete (SFHSC) are reviewed. → Different design provisions for SFHSC are compared. → Applications of SFHSC in new and existing structures and elements are discussed. → Using non-destructive techniques for quality control of SFHSC are reviewed. -- Abstract: Steel fibered high-strength concrete (SFHSC) became in the recent decades a very popular material in structural engineering. High strength attracts designers and architects as it allows improving the durability as well as the esthetics of a construction. As a result of increased application of SFHSC, many experimental studies are conducted to investigate its properties and to develop new rules for proper design. One of the trends in SFHSC structures is to provide their ductile behavior that is desired for proper structural response to dynamic loadings. An additional goal is to limit development and propagation of macro-cracks in the body of SFHSC elements. SFHSC is tough and demonstrates high residual strengths after appearance of the first crack. Experimental studies were carried out to select effective fiber contents as well as suitable fiber types, to study most efficient combination of fiber and regular steel bar reinforcement. Proper selection of other materials like silica fume, fly ash and super plasticizer has also high importance because of the influence on the fresh and hardened concrete properties. Combination of normal-strength concrete with SFHSC composite two-layer beams leads to effective and low cost solutions that may be used in new structures as well as well as for retrofitting existing ones. Using modern nondestructive testing techniques like acoustic emission and nonlinear ultrasound allows verification of most design parameters and control of SFHSC properties during casting and after hardening. This paper presents recent experimental results, obtained in the field SFHSC and non-destructive testing. It reviews the

  6. A new generation of ultra high strength steel pipelines

    International Nuclear Information System (INIS)

    Brozda, J.; Zeman, M.; Weglowski, M.

    2008-01-01

    For many years an increased demand for natural gas can be observed. Ultra high-strength pipelines with higher operating pressures and/or reduced wall thickness are a means to reduce transmission costs. Motivated by reduced investment costs (overcharge a few billion of dollars), tend towards the development of a new grade of pipeline steel with microalloying element for example Nb, that potentially lowers the total cost of long-distance gas pipelines by 5 - 15%. New long distance pipelines have budgets in excess of several billion dollars. This paper describes mechanical properties of new generation of pipelines steel with higher content of niobium and the influence the welding thermal cycles on the microstructure and brittle fracture resistance. The resistance to cold cracking has also been determined. It was found that the new steel has close properties to API X70 grade steels, but is cheaper in manufacturing and installation. The steel has been covered by the amended EN 10028-5 standard and proper modifications will also be made in other European standards. (author)

  7. High-strength structural steels; their properties, and the problems encountered during the welding process

    International Nuclear Information System (INIS)

    Uwer, D.

    1978-01-01

    High-strength structural steels, manufacture, properties. Requirements to be met by the welded joints of high-strength structural steels. Influence of the welding conditions on the mechanical properties in the heat-affected zone. Cold-cracking behaviour of welded joints. Economic efficiency of high-strength structural steels. Applications. (orig.) [de

  8. Recent Niobium Developments for High Strength Steel Energy Applications

    Science.gov (United States)

    Jansto, Steven G.

    Niobium-containing high strength steel materials have been developed for oil and gas pipelines, offshore platforms, nuclear plants, boilers and alternative energy applications. Recent research and the commercialization of alternative energy applications such as windtower structural supports and power transmission gear components provide enhanced performance. Through the application of these Nb-bearing steels in demanding energy-related applications, the designer and end user experience improved toughness at low temperature, excellent fatigue resistance and fracture toughness and excellent weldability. These enhancements provide structural engineers the opportunity to further improve the structural design and performance. For example, through the adoption of these Nb-containing structural materials, several design-manufacturing companies are initiating new windtower designs operating at higher energy efficiency, lower cost, and improved overall material design performance.

  9. Guidelines for Stretch Flanging Advanced High Strength Steels

    International Nuclear Information System (INIS)

    Sriram, S.; Chintamani, J.

    2005-01-01

    Advanced High Strength Steels (AHSS) are currently being considered for use in closure and structural panels in the automotive industry because of their high potential for affordable weight reduction and improved performance. AHSS such as dual phase steels are currently being used in some vehicle platforms. From a manufacturing perspective, stretch flanging during stamping is an important deformation mode requiring careful consideration of geometry and the die process. This paper presents some geometric and process guidelines for stretch flanging AHSS. Hole expansion experiments were conducted to determine the failure limit for a sheared edge condition. Effects of punching clearance, prestrain and prior strain path on hole expansion were explored in these experiments. In addition, dynamic explicit FE calculations using LS-DYNA were also conducted for a typical stretch flange by varying some key geometric parameters. The experimental and FEA results were then analyzed to yield process and geometric guidelines to enable successful stretch flanging of AHSS

  10. Characteristics in Paintability of Advanced High Strength Steels

    International Nuclear Information System (INIS)

    Park, Ha Sun

    2007-01-01

    It is expected that advanced high strength steels (AHSS) would be widely used for vehicles with better performance in automotive industries. One of distinctive features of AHSS is the high value of carbon equivalent (Ceq), which results in the different properties in formability, weldability and paintability from those of common grade of steel sheets. There is an exponential relation between Ceq and electric resistance, which seems also to have correlation with the thickness of electric deposition (ED) coat. higher value of Ceq of AHSS lower the thickness of ED coat of AHSS. Some elements of AHSS such as silicon, if it is concentrated on the surface, affect negatively the formation of phosphates. In this case, silicon itself doesn't affect the phosphate, but its oxide does. This phenomenon is shown dramatically in the welding area. Arc welding or laser welding melts the base material. In the process of cooling of AHSS melt, the oxides of Si and Mn are easily concentrated on the surface of boundary between welded and non welded area because Si and Mn cold be oxidized easier than Fe. More oxide on surface results in poor phosphating and ED coating. This is more distinctive in AHSS than in mild steel. General results on paintability of AHSS would be reported, being compared to those of mild steel

  11. Microstructure-property relationship in microalloyed high-strength steel welds

    International Nuclear Information System (INIS)

    Zhang, Lei

    2017-01-01

    High-strength steels are favoured materials in the industry for production of safe and sustainable structures. The main technology used for joining the components of such steel is fusion welding. Steel alloy design concepts combined with advanced processing technologies have been extensively investigated during the development of High-Strength Low-Alloy (HSLA) steels. However, very few studies have addressed the issue of how various alloy designs, even with limited microalloy addition, can influence the properties of high-strength steel welds. In high-strength steel welding practices, the challenges regarding microstructure evolution and the resulting mechanical properties variation, are of great interest. The main focus is the debate regarding the role of microalloy elements on phase transformation and weld performance. Limited Heat Affected Zone (HAZ) softening and limited austenite grain coarsening are significant design essentials, but the primary goal is to ensure excellent toughness and tensile properties in the steel weld. To achieve this purpose, microalloy elements such as Ti, Nb, or V were intentionally added to modern high-strength steels. The focus of this work was to understand the mechanical properties of HSLA steels resulting from differences in alloy design after joining by modern welding processes. To begin, three microalloyed S690QL steels (Nb, Ti, and Ti+V addition) were investigated. Optical microscopy confirmed that similar mixtures of tempered bainite and martensite predominated the parent microstructure in the three steels, different types of coarse microalloy precipitates were also visible. These precipitates were analysed by using a thermodynamic-based software and then identified by Transmission Electron Microscopy (TEM). Results of mechanical testing revealed that all three steels performed above the standard toughness and tensile strength values, but with varied yielding phenomena. During the welding operation, each of the three steels

  12. Microstructure-property relationship in microalloyed high-strength steel welds

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lei

    2017-04-01

    High-strength steels are favoured materials in the industry for production of safe and sustainable structures. The main technology used for joining the components of such steel is fusion welding. Steel alloy design concepts combined with advanced processing technologies have been extensively investigated during the development of High-Strength Low-Alloy (HSLA) steels. However, very few studies have addressed the issue of how various alloy designs, even with limited microalloy addition, can influence the properties of high-strength steel welds. In high-strength steel welding practices, the challenges regarding microstructure evolution and the resulting mechanical properties variation, are of great interest. The main focus is the debate regarding the role of microalloy elements on phase transformation and weld performance. Limited Heat Affected Zone (HAZ) softening and limited austenite grain coarsening are significant design essentials, but the primary goal is to ensure excellent toughness and tensile properties in the steel weld. To achieve this purpose, microalloy elements such as Ti, Nb, or V were intentionally added to modern high-strength steels. The focus of this work was to understand the mechanical properties of HSLA steels resulting from differences in alloy design after joining by modern welding processes. To begin, three microalloyed S690QL steels (Nb, Ti, and Ti+V addition) were investigated. Optical microscopy confirmed that similar mixtures of tempered bainite and martensite predominated the parent microstructure in the three steels, different types of coarse microalloy precipitates were also visible. These precipitates were analysed by using a thermodynamic-based software and then identified by Transmission Electron Microscopy (TEM). Results of mechanical testing revealed that all three steels performed above the standard toughness and tensile strength values, but with varied yielding phenomena. During the welding operation, each of the three steels

  13. Stress corrosion cracking studies on ferritic low alloy pressure vessel steel - water chemistry and modelling aspects

    International Nuclear Information System (INIS)

    Tipping, P.; Ineichen, U.; Cripps, R.

    1994-01-01

    The susceptibility of low alloy ferritic pressure vessel steels (A533-B type) to stress corrosion cracking (SCC) degradation has been examined using various BWR type coolant chemistries. Fatigue pre-cracked wedge-loaded double cantilever beams and also constantly loaded 25 mm thick compact tension specimens have shown classical SCC attack. The influence of parameters such as dissolved oxygen content, water impurity level and conductivity, material chemical composition (sulphur content) and stress intensity level are discussed. The relevance of SCC as a life-limiting degradation mechanism for low alloy ferritic nuclear power plant PV steel is examined. Some parameters, thought to be relevant for modelling SCC processes in low alloy steels in simulated BWR-type coolant, are discussed. 8 refs., 1 fig., 4 tabs

  14. CO2 laser cutting of advanced high strength steels (AHSS)

    International Nuclear Information System (INIS)

    Lamikiz, A.; Lacalle, L.N. Lopez de; Sanchez, J.A.; Pozo, D. del; Etayo, J.M.; Lopez, J.M.

    2005-01-01

    This article demonstrates the optimum working areas and cutting conditions for the laser cutting of a series of advanced high strength steels (AHSS). The parameters that most influence the cutting of sheet metal have been studied and the results have been divided into two large groups with thickness of more and less than 1 mm. The influence of the material and, more important, the effect of coating have been taken into account. The results, have demonstrate very different behaviours between the thinnest and thickest sheets, whilst the variation of the cutting parameters due to the influence of the material is less relevant. The optimum cutting areas and the quality of the cut evaluated with different criteria are presented. Finally, the best position for the laser beam has been observed to be underneath the sheet

  15. Features of Pd-Ni-Fe solder system for vacuum brazing of low alloy steels

    International Nuclear Information System (INIS)

    Radzievskij, V.N.; Kurochko, R.S.; Lotsmanov, S.N.; Rymar', V.I.

    1975-01-01

    The brazing solder of the Pd-Ni-Fe alloyed with copper and lithium, in order to decrease the melting point and provide for a better spreading, when soldered in vacuum ensures a uniform strength of soldered joints with the base metal of low-alloyed steels of 34KHNIM-type. The properties of low-alloyed steel joints brazed with the Pd-Ni-Fe-system solder little depend on the changes in the soldering parameters. The soldered joint keeps a homogeneous structure after all the stages of heat treatment (annealing, quenching and tempering)

  16. Fatigue of carbon and low-alloy steels in LWR environments

    International Nuclear Information System (INIS)

    Chopra, O.K.; Michaud, W.F.; Shack, W.J.

    1994-01-01

    Fatigue tests have been conducted on A106-Gr B carbon steel and A533-Gr B low-alloy steel to evaluate the effects of an oxygenated-water environment on the fatigue life of these steels. For both steels, environmental effects are modest in PWR water at all strain rates. Fatigue data in oxygenated water confirm the strong dependence of fatigue life on dissolved oxygen (DO) and strain rate. The effect of strain rate on fatigue life saturates at some low value, e.g., between 0.0004 and 0.001%/s in oxygenated water with ∼0.8 ppm DO. The data suggest that the saturation value of strain rate may vary with DO and sulfur content of the steel. Although the cyclic stress-strain and cyclic-hardening behavior of carbon and low-alloy steels is distinctly different, the degradation of fatigue life of these two steels with comparable sulfur levels is similar. The carbon steel exhibits pronounced dynamic strain aging, whereas strain-aging effects are modest in the low-alloy steel. Environmental effects on nucleation of fatigue crack have also been investigated. The results suggest that the high-temperature oxygenated water has little or not effect on crack nucleation

  17. Comparison and Analysis of Steel Frame Based on High Strength Column and Normal Strength Column

    Science.gov (United States)

    Liu, Taiyu; An, Yuwei

    2018-01-01

    The anti-seismic performance of high strength steel has restricted its industrialization in civil buildings. In order to study the influence of high strength steel column on frame structure, three models are designed through MIDAS/GEN finite element software. By comparing the seismic performance and economic performance of the three models, the three different structures are comprehensively evaluated to provide some references for the development of high strength steel in steel structure.

  18. Advanced High Strength Steel in Auto Industry: an Overview

    Directory of Open Access Journals (Sweden)

    N. Baluch

    2014-08-01

    Full Text Available The world’s most common alloy, steel, is the material of choice when it comes to making products as diverse as oil rigs to cars and planes to skyscrapers, simply because of its functionality, adaptability, machine-ability and strength. Newly developed grades of Advanced High Strength Steel (AHSS significantly outperform competing materials for current and future automotive applications. This is a direct result of steel’s performance flexibility, as well as of its many benefits including low cost, weight reduction capability, safety attributes, reduced greenhouse gas emissions and superior recyclability. To improve crash worthiness and fuel economy, the automotive industry is, increasingly, using AHSS. Today, and in the future, automotive manufacturers must reduce the overall weight of their cars. The most cost-efficient way to do this is with AHSS. However, there are several parameters that decide which of the AHSS types to be used; the most important parameters are derived from the geometrical form of the component and the selection of forming and blanking methods. This paper describes the different types of AHSS, highlights their advantages for use in auto metal stampings, and discusses about the new challenges faced by stampers, particularly those serving the automotive industry.

  19. Influence of pre-strain on thermal stability of non-equilibrium microstructures in a low alloy steel

    International Nuclear Information System (INIS)

    Sun, Chao; Yang, Shanwu; Wang, Xian; Zhang, Rui; He, Xinlai

    2013-01-01

    Highlights: ► High pre-strain and low pre-strain influence differently on thermal stability of non-equilibrium microstructures. ► High pre-strain, in which dislocation sources can be actuated and dislocation density is increased excessively, will markedly promote recrystallization. ► Low pre-strain, in which dislocations are induced to redistribute into a low-energy structure, can slow down microstructure evolution. -- Abstract: Non-equilibrium microstructures in steels including martensite and bainite, which are main phases in current high strength steels, possess high strength and hardness. However, these microstructures are metastable due to their high density of crystal defects. In the present investigation, hardness test, optical microscopy and electron microscopy have been carried out to detect microstructure evolution in a low alloy steel, which was reheated and held isothermally at 550 °C. Special emphasis was put on influence of pre-strain on thermal stability of non-equilibrium microstructures. It is found that high pre-strain, in which dislocation sources can be actuated and dislocation density is increased excessively, will markedly promote recrystallization of non-equilibrium microstructures at 550 °C, while low pre-strain, in which only can mono-glide of dislocations can be operated in each grain and dislocations are induced to redistribute into a low-energy structure, can slow down microstructure evolution

  20. The Effect of Microstructure on the Abrasion Resistance of Low Alloyed Steels

    NARCIS (Netherlands)

    Xu, X.

    2016-01-01

    The thesis attempts to develop advanced high abrasion resistant steels with low hardness in combination with good toughness, processability and low alloying additions. For this purpose, a novel multi-pass dual-indenter (MPDI) scratch test approach has been developed to approach the real continuous

  1. Practical measurement of silicon in low alloy steels by differential pulse stripping voltammetry

    International Nuclear Information System (INIS)

    Rahier, A.; Lunardi, S.; Triki, C.

    2005-01-01

    A sensitive differential pulse anodic stripping voltammetry has been adapted to allow the determination of Si in low-alloy steels using a hanging mercury drop electrode. The method has been qualified using certified ASTM standards and is now running in routine. The present report describes the experimental details, thereby allowing the reader to carry out the measurements precisely. (author)

  2. Chemical heat treatment of low alloyed maraging steels

    Energy Technology Data Exchange (ETDEWEB)

    Malinov, L S; Korotich, I K [Zhdanovskij Metallurgicheskij Inst. (Ukrainian SSR)

    1979-09-01

    The investigation concerned the nitriding, cementation, chromizing, borating of economically alloyed maraging grade 04Kh2N5MFYu steel. The investigated methods of chemothermal treatment were found to considerably increase the hardness of the surface layer of the maraging steel. The high tempering of the grade 04Kh2N5MFYu cemented and hardened steel was found to produce secondary hardening. On chromizing, the diffusion layer is an alloyed ferrite which strengthens because of the dispersion hardening on ageing. The formation of the plastic low-carbon martensite at relatively small cooling rates greatly decreases the tendency of the boride layer to cracking.

  3. Internal and External Oxidation of Manganese in Advanced High Strength Steels

    NARCIS (Netherlands)

    Aghaei Lashgari, V.

    2014-01-01

    Advanced high strength steels (AHSS) have been used extensively in the automotive industries. The main characteristic of these steels is combination of high strength and enhanced formability that makes them very attractive for automotive application. However, the major drawback of these steels is

  4. The creep properties of a low alloy ferritic steel containing an intermetallic precipitate dispersion

    International Nuclear Information System (INIS)

    Batte, A.D.; Murphy, M.C.; Edmonds, D.V.

    1976-01-01

    A good combination of creep rupture ductility and strength together with excellent long term thermal stability, has been obtained from a dispersion of intermetallic Laves phase precipitate in a non-transforming ferritic low alloy steel. The steel is without many of the problems currently associated with the heat affected zone microstructures of low alloy transformable ferritic steels, and can be used as a weld metal. Following suitable development to optimize the composition and heat treatment, such alloys may provide a useful range of weldable creep resistant steels for steam turbine and other high temperature applications. They would offer the unique possibility of easily achievable microstructural uniformity, giving good long term strength and ductility across the entire welded joint

  5. Corrosion Behavior and Durability of Low-Alloy Steel Rebars in Marine Environment

    Science.gov (United States)

    Liu, Ming; Cheng, Xuequn; Li, Xiaogang; Yue, Pan; Li, Jun

    2016-11-01

    The corrosion resistance of Cr-modified low-alloy steels and HRB400 carbon steel was estimated using the open-circuit potential, potentiodynamic polarization, electrochemical impedance spectroscopic, and weight loss methods in simulated concrete pore solution. Results show that Cr-modified steels exhibit a higher corrosion resistance with a higher critical chloride level (CTL), lower corrosion current density, and higher impedance than carbon steel. The CTL of the steels significantly reduces with increasing temperature. Weight loss measurement shows that the Cr-modified steels exhibit low corrosion rates and small corrosion pitting. The primary constituents of the corrosion scales are Fe2O3, Fe3O4, β-FeOOH, γ-FeOOH, and α-FeOOH. A large amount of α-FeOOH could be detected in the Cr-modified steel corrosion products. Moreover, the Cr-modified steels demonstrate a higher durability than HRB400 carbon steel.

  6. High Strength Concrete Columns under Axial Compression Load: Hybrid Confinement Efficiency of High Strength Transverse Reinforcement and Steel Fibers

    Science.gov (United States)

    Perceka, Wisena; Liao, Wen-Cheng; Wang, Yo-de

    2016-01-01

    Addition of steel fibers to high strength concrete (HSC) improves its post-peak behavior and energy absorbing capability, which can be described well in term of toughness. This paper attempts to obtain both analytically and experimentally the efficiency of steel fibers in HSC columns with hybrid confinement of transverse reinforcement and steel fibers. Toughness ratio (TR) to quantify the confinement efficiency of HSC columns with hybrid confinement is proposed through a regression analysis by involving sixty-nine TRs of HSC without steel fibers and twenty-seven TRs of HSC with hybrid of transverse reinforcement and steel fibers. The proposed TR equation was further verified by compression tests of seventeen HSC columns conducted in this study, where twelve specimens were reinforced by high strength rebars in longitudinal and transverse directions. The results show that the efficiency of steel fibers in concrete depends on transverse reinforcement spacing, where the steel fibers are more effective if the spacing transverse reinforcement becomes larger in the range of 0.25–1 effective depth of the section column. Furthermore, the axial load–strain curves were developed by employing finite element software (OpenSees) for simulating the response of the structural system. Comparisons between numerical and experimental axial load–strain curves were carried out. PMID:28773391

  7. Effect of microstructure on static and dynamic mechanical properties of high strength steels

    Science.gov (United States)

    Qu, Jinbo

    The high speed deformation behavior of a commercially available dual phase (DP) steel was studied by means of split Hopkinson bar apparatus in shear punch (25m/s) and tension (1000s-1) modes with an emphasis on the influence of microstructure. The cold rolled sheet material was subjected to a variety of heat treatment conditions to produce several different microstructures, namely ferrite plus pearlite, ferrite plus bainite and/or acicular ferrite, ferrite plus bainite and martensite, and ferrite plus different fractions of martensite. Static properties (0.01mm/s for shear punch and 0.001s -1 for tension) of all the microstructures were also measured by an MTS hydraulic machine and compared to the dynamic properties. The effects of low temperature tempering and bake hardening were investigated for some ferrite plus martensite microstructures. In addition, two other materials, composition designed as high strength low alloy (HSLA) steel and transformation induced plasticity (TRIP) steel, were heat treated and tested to study the effect of alloy chemistry on the microstructure and property relationship. A strong effect of microstructure on both static and dynamic properties and on the relationship between static and dynamic properties was observed. According to the variation of dynamic factor with static strength, three groups of microstructures with three distinct behaviors were identified, i.e. classic dual phase (ferrite plus less than 50% martensite), martensite-matrix dual phase (ferrite plus more than 50% martensite), and non-dual phase (ferrite plus non-martensite). Under the same static strength level, the dual phase microstructure was found to absorb more dynamic energy than other microstructures. It was also observed that the general dependence of microstructure on static and dynamic property relationship was not strongly influenced by chemical composition, except the ferrite plus martensite microstructures generated by the TRIP chemistry, which exhibited

  8. Technological Aspects of Low-Alloyed Cast Steel Massive Casting Manufacturing

    Directory of Open Access Journals (Sweden)

    Szajnara J.

    2013-12-01

    Full Text Available In the paper authors have undertaken the attempt of explaining the causes of cracks net occurrence on a massive 3-ton cast steel casting with complex geometry. Material used for casting manufacturing was the low-alloyed cast steel with increased wear resistance modified with vanadium and titanium. The studies included the primary and secondary crystallization analysis with use of TDA and the qualitative and quantitative analysis of non-metallic inclusions.

  9. Hybrid Welding of 45 mm High Strength Steel Sections

    Science.gov (United States)

    Bunaziv, Ivan; Frostevarg, Jan; Akselsen, Odd M.; Kaplan, Alexander F.

    Thick section welding has significant importance for oil and gas industry in low temperature regions. Arc welding is usually employed providing suitable quality joints with acceptable toughness at low temperatures with very limited productivity compared to modern high power laser systems. Laser-arc hybrid welding (LAHW) can enhance the productivity by several times due to higher penetration depth from laser beam and combined advantages of both heat sources. LAHW was applied to join 45 mm high strength steel with double-sided technique and application of metal cored wire. The process was captured by high speed camera, allowing process observation in order to identify the relation of the process stability on weld imperfections and efficiency. Among the results, it was found that both arc power and presence of a gap increased penetration depth, and that higher welding speeds cause unstable processing and limits penetration depth. Over a wide range of heat inputs, the welds where found to consist of large amounts of fine-grained acicular ferrite in the upper 60-75% part of welds. At the root filler wire mixing was less and cooling faster, and thus found to have bainitic transformation. Toughness of deposited welds provided acceptable toughness at -50 °C with some scattering.

  10. Fatigue crack retardation of high strength steel in saltwater

    International Nuclear Information System (INIS)

    Tokaji, K.; Ando, Z.; Imai, T.; Kojima, T.

    1983-01-01

    A high strength steel was studied in 3 percent saltwater to investigate the effects of a corrosive environment and sheer thickness on fatigue crack propagation behavior following the application of a single tensile overload. Experiments were carried out under sinusoidally varying loads at a load ratio of 0 and frequency of 10 H /SUB z/ . A single tensile overload was found to cause delayed retardation, and the crack propagation rate at first increased, followed by fairly rapid decrease to a minimum value and then increased gradually to its steady-state value, just as it did in air. The overload affected zone size and the retardation cycles increased with decreasing sheet thickness, just as they did in air. However, the zone size and the cycles were larger in 3 percent saltwater than in air. Since the crack propagation rates through the overload affected zone were not affected by the test environment, the longer retardation cycles in 3 percent saltwater were attributed to an enlargement of the overload affected zone size. The crack propagation behavior following the application of a single tensile overload in 3 percent saltwater was well explained by the crack closure concept

  11. Microstructures and properties of low-alloy fire resistant steel

    Indian Academy of Sciences (India)

    Unknown

    hardening. In a quenched and self-tempered 600 MPa class TMT reinforcement bar steel (YS: 624 MPa), low ..... of processing (1000–1050°C), static, dynamic as well as metadynamic recrystallization of austenite can occur (Poliak and Jonas ...

  12. Modeling the Gas Nitriding Process of Low Alloy Steels

    Science.gov (United States)

    Yang, M.; Zimmerman, C.; Donahue, D.; Sisson, R. D.

    2013-07-01

    The effort to simulate the nitriding process has been ongoing for the last 20 years. Most of the work has been done to simulate the nitriding process of pure iron. In the present work a series of experiments have been done to understand the effects of the nitriding process parameters such as the nitriding potential, temperature, and time as well as surface condition on the gas nitriding process for the steels. The compound layer growth model has been developed to simulate the nitriding process of AISI 4140 steel. In this paper the fundamentals of the model are presented and discussed including the kinetics of compound layer growth and the determination of the nitrogen diffusivity in the diffusion zone. The excellent agreements have been achieved for both as-washed and pre-oxided nitrided AISI 4140 between the experimental data and simulation results. The nitrogen diffusivity in the diffusion zone is determined to be constant and only depends on the nitriding temperature, which is ~5 × 10-9 cm2/s at 548 °C. It proves the concept of utilizing the compound layer growth model in other steels. The nitriding process of various steels can thus be modeled and predicted in the future.

  13. Properties of low-alloy steel with tellurium

    International Nuclear Information System (INIS)

    Popova, L.V.; Lebedev, D.V.; Litvinenko, D.A.; Nasibov, A.G.

    1983-01-01

    The results of investigations into 09G2 and 09G2F steels alloyed with tellurium after controlled rolling are presented. 0.002-0.011% tellurium additions did not change strength and plastic properties of the steels after controlled rolling. Tellurium additions results in 40-50% increase of the steel impact strength on samples With circular and sharp cuts in brittle-viscous region. 0.002-0.003% of tellurium is considered to be the optimum content from the view point of increa=. sing steel strength. Increase of impact strength takes place at the expense of growth of both work function of crack formation and work function of crack propagation but in different temperature ranges: at the expense of firstone at 80-40 deg C, at the expense of second one at 20-40 deg C. 0.002-0.011% teilurium additions mainly at the expense of sulphide globularization bring about decrease of anisotropy of steet properties by impact strength reducing anisotropy factor from 2 to 1.5

  14. Adsorption and inhibitive properties of Tryptophan on low alloy steel corrosion in acidic media

    Directory of Open Access Journals (Sweden)

    Hesham T.M. Abdel-Fatah

    2017-02-01

    Corrosion inhibition was studied using electrochemical methods (electrochemical impedance spectroscopy; EIS and the new technique electrochemical frequency modulation; EFM and weight loss measurements. The influence of inhibitor concentration, solution temperature, and immersion time on the corrosion resistance of low alloy steel (LAS has been investigated. Trp proved to be a very good inhibitor for low alloy steel acid corrosion. EFM measurements showed that Trp is a mixed type inhibitor. Trp behaved better in 0.6 M HCl than in 0.6 M HSO3NH2. Moreover, it was found that the inhibition efficiency increased with increasing inhibitor concentration, while a decrease was detected with the rise of temperature and immersion time. The associated activation energy (Ea has been determined. The values of Ea indicate that the type of adsorption of Trp on the steel surface in both acids belongs to physical adsorption. The adsorption process was tested using Temkin adsorption isotherm.

  15. Study of a low alloy steel rust using Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Maier, I.A.; Saragovi-Badler, C.; Labenski, F.

    1978-01-01

    Moessbauer spectroscopy has been used to analyze the internal and external rust layers of a weathering steel exposed for ten months to an urban-industrial atmosphere. Superparamagnetic α-FeOOH and γ-FeOOH were found in both layers. The external one also contained small sized delta-FeOOH and/or amorphous iron oxyhydroxide. These compounds were not present in the internal layer at this stage of the patina formation. (author)

  16. Laser beam welding of new ultra-high strength and supra-ductile steels

    OpenAIRE

    Dahmen, M.

    2015-01-01

    Ultra-high strength and supra-ductile are entering fields of new applications. Those materials are excellent candidates for modern light-weight construction and functional integration. As ultra-high strength steels the stainless martensitic grade 1.4034 and the bainitic steel UNS 53835 are investigated. For the supra-ductile steels stand two high austenitic steels with 18 and 28 % manganese. As there are no processing windows an approach from the metallurgical base on is required. Adjusting t...

  17. Effects of LWR environments on fatigue life of carbon and low-alloy steels

    International Nuclear Information System (INIS)

    Chopra, O.K.; Shack, W.J.

    1995-03-01

    SME Boiler and Pressure Vessel Code provides construction of nuclear power plant components. Figure I-90 Appendix I to Section III of the Code specifies fatigue design curves for structural materials. While effects of environments are not explicitly addressed by the design curves, test data suggest that the Code fatigue curves may not always be adequate in coolant environments. This paper reports the results of recent fatigue tests that examine the effects of steel type, strain rate, dissolved oxygen level, strain range, loading waveform, and surface morphology on the fatigue life of A 106-Gr B carbon steel and A533-Gr B low-alloy steel in water

  18. Interim fatigue design curves for carbon, low-alloy, and austenitic stainless steels in LWR environments

    International Nuclear Information System (INIS)

    Majumdar, S.; Chopra, O.K.; Shack, W.J.

    1993-01-01

    Both temperature and oxygen affect fatigue life; at the very low dissolved-oxygen levels in PWRs and BWRs with hydrogen water chemistry, environmental effects on fatigue life are modest at all temperatures (T) and strain rates. Between 0.1 and 0.2 ppM, the effect of dissolved-oxygen increases rapidly. In oxygenated environments, fatigue life depends strongly on strain rate and T. A fracture mechanics model is developed for predicting fatigue lives, and interim environmentally assisted cracking (EAC)-adjusted fatigue curves are proposed for carbon steels, low-alloy steels, and austenitic stainless steels

  19. Evaluation of microstructural difference in low alloy steel (SA508 CI.3) by magnetic measurements

    International Nuclear Information System (INIS)

    Chi, Se Hwan; Park, Duck Gun; Hong, Jun Hwa; Kuk, Il Hium; Song, Sook Hyang; Shur, Dong Soo

    1997-01-01

    Magnetic measurements on SA 508 Cl. 3 low alloy reactor pressure vessel (RPV) steels of three different refining processes were conducted to prepare baseline magnetic properties for future comparison with that of irradiated one and to examine the correlation between microstructures and magnetic parameters. TEM(transmission electron microscopy) on thin films and carbon replications were performed for microstructural investigation, and microhardness, tensile and fracture toughness tests were conducted for mechanical properties measurement. Barkhausen noise analysis was conducted and hysteresis parameters were measured. Microstructure, mechanist and magnetic properties were interpreted together to explore their inter-relationship. Also the applicability of a magnetic nondestructive evaluation method for monitoring fine microstructural changes in low alloy steels of complicated microstructure was examined. The results showed that, of all magnetic parameters, Barkhausen noise amplitudes show consistent change with microstructure (grain size, carbide microstructure, lath width) and hardness of the materials. For monitoring microstructural and mechanical property changes of low alloy steel under service environment of reactor pressure vessel steels, Barkhausen noise amplitude and coercivity appear to be as key magnetic parameters useful for nondestructive evaluation.

  20. Toughness degradation evaluation of low alloyed steels by electrical resistivity

    Energy Technology Data Exchange (ETDEWEB)

    Nahm, S H; Yu, K M; Kim, S C [Korea Research Inst. of Standards and Science, Taejon (Korea, Republic of); Kim, A [Department of Mechanical Engineering, Kongju Univ., Kongju, Chungnam (Korea, Republic of)

    1997-09-01

    Remaining life of turbine rotors with a crack can be assessed by the fracture toughness on the aged rotors at service temperature. DC potential drop measurement system was constructed in order to evaluate material toughness nondestructively. Test material was 1Cr-1Mo-0.25V steel used widely for turbine rotor material. Seven kinds of specimen with different degradation levels were prepared according to isothermal aging heat treatment at 630 deg. C. Electrical resistivity of test material was measured at room temperature. It was observed that material toughness and electrical resistivity decreased with the increase of degradation. The relationship between fracture toughness and electrical resistivity was investigated. Fracture toughness of a test material may be determined nondestructively by electrical resistivity. (author). 13 refs, 7 figs.

  1. Comparison of fracture properties for two types of low alloy steels

    International Nuclear Information System (INIS)

    Nasreldin, A.M.

    2004-01-01

    The fracture properties of two types of low alloy steels used in the pressure vessel and boilers industry were determined. The first type was the steel A533-B which comprised a fully bainitic microstructure. The second one was the C-Mn steel which consisted of ferritic-pearlitic microstructure. The following fracture properties were determined using instrumented impact testing: the total fracture energy, the crack initiation and propagation energies, the brittleness transition temperature and the local fracture stress. The steel A533-B showed better fracture properties at high testing temperatures, while the C-Mn steel displayed higher resistance to brittle fracture at low testing temperatures. The results were discussed in relation to the difference in microstructure and fracture surface morphology for both steels

  2. Welding of High-Strength Steels for Aircraft and Missile Applications

    Science.gov (United States)

    1959-10-12

    the aircraft industry for years. The alloys that have been most widely used have been AISI 4130, 4140 , and 4340. However, only the AISI 4340 steel...MARTENSITIC STEELS ................. . .. . . . 6 AISI 4340 and AMS 6434 ..................... ....................... 7 Welding Procedures...metal. A survey of the procedures currently being used is presented. Low-Alloy Martensitic Steels AISI 4340, AMS 6434, XZOO, 300M, and 17-Z2AS all are

  3. Temperature and environmentally assisted cracking in low alloy steel

    International Nuclear Information System (INIS)

    Auten, T.A.; Monter, J.V.

    1995-01-01

    Environmentally assisted cracking (EAC) can be defined as the propagation of fatigue cracks in water at rates that are anywhere from 3 to over 40 times the growth rates expected in air. In the present work, five ASTM A 508 Class 2 forgings with ladle and check analyses that ranged from 0.010 to 0.019 wt% S were tested in high purity deaerated water in the temperature range of 93 to 260 C. At 260 C these forgings did not undergo EAC, reinforcing earlier results for two similar forgings. This broad sampling indicates a strong resistance to EAC for this class of forging at 260 C. On the other hand, EAC occurred consistently in the three of these forgings that were tested below 204 C, provided the test conditions were high enough to produce a high baseline fatigue crack growth rate (FCGR), where the baseline FCGR is that expected in air. At 149 C, EAC occurred at test conditions that combined to yield a baseline FCGR greater than ∼2E-6 mm/s. At 204, 121, and 93 C, this ''critical crack growth rate'' appeared to shift to lower baseline values. The EAC that occurred at lower temperatures was a factor of 3 to 12 times higher than baseline air rates, which was not as strong as the effect for higher sulfur steels at 240 to 290 C. Also, no plateau in the growth rates occurred as it does with the higher sulfur steels. In another approach, EAC was induced at 93 and at 260 C by raising the dissolved oxygen content of the water from 15 ppb. In this case, the EAC growth rates decreased to non-EAC levels when the oxygen supply was shut off. The oxygen-related EAC occurred over a broader range of baseline growth rates than found for the EAC driven by the baseline crack tip speed. Again, this can be rationalized by the buildup of sulfur in the crack tip water, which can be associated with the higher corrosion potential of the bulk water

  4. Literature Survey on the Stress Corrosion Cracking of Low-Alloy Steels in High Temperature Water

    Energy Technology Data Exchange (ETDEWEB)

    Seifert, H.P

    2002-02-01

    The present report is a summary of a literature survey on the stress corrosion cracking (SCC) behaviour/ mechanisms in low-alloy steels (LAS) in high-temperature water with special emphasis to primary-pressure-boundary components of boiling water reactors (BWR). A brief overview on the current state of knowledge concerning SCC of low-alloy reactor pressure vessel and piping steels under BWR conditions is given. After a short introduction on general aspects of SCC, the main influence parameter and available quantitative literature data concerning SCC of LAS in high-temperature water are discussed on a phenomenological basis followed by a summary of the most popular SCC models for this corrosion system. The BWR operating experience and service cracking incidents are discussed with respect to the existing laboratory data and background knowledge. Finally, the most important open questions and topics for further experimental investigations are outlined. (author)

  5. Crack growth behavior of low-alloy bainitic 51CrV4 steel

    OpenAIRE

    Canadinç, Demircan; Lambers, H. G.; Gorny B.; Tschumak, S.; Maier, H.J.

    2010-01-01

    The crack growth behavior of low-alloy bainitic 51CrV4 steel was investigated. The current results indicate that the stress state present during the isothermal bainitic transformation has a strong influence on the crack propagation behavior in the near threshold regime, when the crack growth direction is perpendicular to the loading axis of the original sample undergoing phase transformation. However, the influence of stresses superimposed during the bainitic transformation on the crack growt...

  6. Three-Sheet Spot Welding of Advanced High-Strength Steels

    DEFF Research Database (Denmark)

    Nielsen, Chris Valentin; Friis, Kasper Storgaard; Zhang, W.

    2011-01-01

    The automotive industry has introduced the three-layer weld configuration, which represents new challenges compared to normal two-sheet lap welds. The process is further complicated by introducing high-strength steels in the joint. The present article investigates the weldability of thin, low....... The weld mechanisms are analyzed numerically and compared with metallographic analyses showing how the primary bonding mechanism between the thin, low-carbon steel sheet and the thicker sheet of high-strength steel is solid-state bonding, whereas the two high-strength steels are joined by melting, forming...... a weld nugget at their mutual interface. Despite the absence of the typical fusion nugget through the interface between the low-carbon steel and high-strength steel, the weld strengths obtained are acceptable. The failure mechanism in destructive testing is ductile fracture with plug failure....

  7. Microstructural Developments Leading to New Advanced High Strength Sheet Steels: A Historical Assessment of Critical Metallographic Observations

    Energy Technology Data Exchange (ETDEWEB)

    Matlock, David K [CSM/ASPPRC; Thomas, Larrin S [CSM/ASPPRC; Taylor, Mark D [CSM/ASPPRC; De Moor, Emmanuel [CSM/ASPPRC; Speer, John G [CSM/ASPPRC

    2015-08-03

    In the past 30+ years significant advancements have been made in the development of higher strength sheet steels with improved combinations of strength and ductility that have enabled important product improvements leading to safer, lighter weight, and more fuel efficient automobiles and in other applications. Properties of the primarily low carbon, low alloy steels are derived through careful control of time-temperature processing histories designed to produce multiphase ferritic based microstructures that include martensite and other constituents including retained austenite. The basis for these developments stems from the early work on dual-phase steels which was the subject of much interest. In response to industry needs, dual-phase steels have evolved as a unique class of advanced high strength sheet steels (AHSS) in which the thermal and mechanical processing histories have been specifically designed to produce constituent combinations for the purpose of simultaneously controlling strength and deformation behavior, i.e. stress-strain curve shapes. Improvements continue as enhanced dual-phase steels have recently been produced with finer microstructures, higher strengths, and better overall formability. Today, dual phase steels are the primary AHSS products used in vehicle manufacture, and several companies have indicated that the steels will remain as important design materials well into the future. In this presentation, fundamental results from the early work on dual-phase steels will be reviewed and assessed in light of recent steel developments. Specific contributions from industry/university cooperative research leading to product improvements will be highlighted. The historical perspective provided in the evolution of dual-phase steels represents a case-study that provides important framework and lessons to be incorporated in next generation AHSS products.

  8. Laser beam welding of new ultra-high strength and supra-ductile steels

    Science.gov (United States)

    Dahmen, Martin

    2015-03-01

    Ultra-high strength and supra-ductile are entering fields of new applications. Those materials are excellent candidates for modern light-weight construction and functional integration. As ultra-high strength steels the stainless martensitic grade 1.4034 and the bainitic steel UNS 53835 are investigated. For the supra-ductile steels stand two high austenitic steels with 18 and 28 % manganese. As there are no processing windows an approach from the metallurgical base on is required. Adjusting the weld microstructure the Q+P and the QT steels require weld heat treatment. The HSD steel is weldable without. Due to their applications the ultra-high strength steels are welded in as-rolled and strengthened condition. Also the reaction of the weld on hot stamping is reflected for the martensitic grades. The supra-ductile steels are welded as solution annealed and work hardened by 50%. The results show the general suitability for laser beam welding.

  9. Viscosity and plasticity rise and reduction of anisotropy of low-alloy steel properties

    International Nuclear Information System (INIS)

    Matrosov, Yu.I.; Polyakov, I.E.

    1976-01-01

    Based on the published data, consideration is given to the possibilities of upgrading the toughness and plastic properties of low-alloy structural steels (16GS, 09G20S, 18G2, etc.) through the reduction in carbon and detrimental impurity (including sulphur) contents and also by treating the steels with the elements which are active with respect to sulphur (rare-earth metals, titanium, zirconium) and provide for the modifying action on sulphide inclusions. Drawing the impact strength properties on lateral samples nearer to those on longitudinal samples may be very favourable to the higher reliability of the structural components [ru

  10. Quantitative consideration for the tempering effect during multi-pass thermal cycle in HAZ of low-alloy steel

    International Nuclear Information System (INIS)

    Yu, Lina; Nakabayashi, Yuma; Saida, Kazuyoshi; Mochizuki, Masahito; Nishimoto, Kazutoshi; Kameyama, Masashi; Hirano, Shinro; Chigusa, Naoki

    2011-01-01

    A new Thermal Cycle Tempering Parameter (TCTP) to deal with the tempering effect during multi-pass thermal cycles has been proposed by extending Larson-Miller parameter (LMP). Experimental result revealed that the hardness in synthetic HAZ of the low alloy steel subjected to multi tempering thermal cycles has a good linear relationship with TCTP. By using this relationship, the hardness of the low-alloy steel reheated with tempering thermal cycles can be predicted when the original hardness is known. (author)

  11. Welding simulation and fatigue assessment of tubular K-joints in high-strength steel

    International Nuclear Information System (INIS)

    Zamiri Akhlaghi, F.

    2014-01-01

    conducted to evaluate the residual stress field in the gap region of K-joint, which was critical location for fatigue cracking. Transversal residual stresses of up to 0.60f_y nominal were registered at some depth from the surface of the chord. The σ_r_e_s l_y ratio for the high strength steel S690QH was lower than similar measurements previously done by Acevedo (2011) on steel grade S355J2H. This is believed to be mainly due to welding with low heat input and solid-state phase transformations in high strength steel material. Microstructural changes in the heat affected zone (HAZ) for low alloy carbon steels favorably act in reducing tensile residual stresses by adding compressive residual stresses during part of cooling. These effects were modelled numerically using a coupled thermal mechanical- metallurgical analysis of welding process. Welding sequence was registered and temperature data acquired during fabrication stage of the test trusses; they were employed for creation of calculation model. There has been considerable progress in the methods and tools for computational weld modelling since early 90’s, from 2D to 3D possibilities. Since welded details involved in structural engineering design have generally complex shapes, one major objective of this study was to apply the state of the art in weld modelling into a purposely-selected complex detail with several weld passes. This led to recommendations regarding modelling procedures and simplifying assumptions, as well as FEM practical issues that arise for the case of such intricate geometries. Investigated parameters include weld pass reduction by lumping, welding start/stop positions, and microstructural transformation assumptions. Finally, an extended finite element model (XFEM) was used for fatigue crack propagation analysis in 3D in a K-joint under combined effect of external compressive loading and tensile residual stresses at crack site. Limitations of the utilized finite element code were identified and

  12. Numerical simulation of continuous cooling of a low alloy steel to predict microstructure and hardness

    International Nuclear Information System (INIS)

    Kakhki, M Eshraghi; Kermanpur, A; Golozar, M A

    2009-01-01

    In this work, a numerical model was developed to simulate the continuous cooling of a low alloy steel. In order to simulate the kinetics of diffusional phase transformations, the Johnson–Mehl–Avrami–Kolmogorov (JMAK) equation and additivity rule were employed, while a new model was applied for martensitic transformation. In addition, a novel approach was applied for computing the actual phase fractions in the multiphase steel. Effects of latent heat release during phase transformations, temperature and phase fractions on the variation of thermo-physical properties were considered. The developed numerical model was applied to simulate the cooling process during the Jominy end quench test as well as the quenching of a steel gear in water and oil. In this respect, precise models were used to simulate the complex boundary conditions in the Jominy test and a stainless steel probe was used for determining the heat transfer coefficients of quenching media by an inverse method. The present model was validated against cooling curve measurements, metallographic analysis and hardness tests. Good agreement was found between the experimental and simulation results. This model is able to simulate the continuous cooling and kinetics of phase transformation and to predict the final distribution of microstructures and hardness in low alloy steels

  13. Microstructure design of low alloy transformation-induced plasticity assisted steels

    Science.gov (United States)

    Zhu, Ruixian

    The microstructure of low alloy Transformation Induced Plasticity (TRIP) assisted steels has been systematically varied through the combination of computational and experimental methodologies in order to enhance the mechanical performance and to fulfill the requirement of the next generation Advanced High Strength Steels (AHSS). The roles of microstructural parameters, such as phase constitutions, phase stability, and volume fractions on the strength-ductility combination have been revealed. Two model alloy compositions (i.e. Fe-1.5Mn-1.5Si-0.3C, and Fe-3Mn-1Si-0.3C in wt%, nominal composition) were studied. Multiphase microstructures including ferrite, bainite, retained austenite and martensite were obtained through conventional two step heat treatment (i.e. intercritical annealing-IA, and bainitic isothermal transformation-BIT). The effect of phase constitution on the mechanical properties was first characterized experimentally via systematically varying the volume fractions of these phases through computational thermodynamics. It was found that martensite was the main phase to deteriorate ductility, meanwhile the C/VA ratio (i.e. carbon content over the volume fraction of austenite) could be another indicator for the ductility of the multiphase microstructure. Following the microstructural characterization of the multiphase alloys, two microstructural design criteria (i.e. maximizing ferrite and austenite, suppressing athermal martensite) were proposed in order to optimize the corresponding mechanical performance. The volume fraction of ferrite was maximized during the IA with the help of computational thermodyanmics. On the other hand, it turned out theoretically that the martensite suppression could not be avoided on the low Mn contained alloy (i.e. Fe- 1.5Mn-1.5Si-0.3C). Nevertheless, the achieved combination of strength (~1300MPa true strength) and ductility (˜23% uniform elongation) on the low Mn alloy following the proposed design criteria fulfilled the

  14. Study of austenitic stainless steel welded with low alloy steel filler metal. [tensile and impact strength tests

    Science.gov (United States)

    Burns, F. A.; Dyke, R. A., Jr.

    1979-01-01

    The tensile and impact strength properties of 316L stainless steel plate welded with low alloy steel filler metal were determined. Tests were conducted at room temperature and -100 F on standard test specimens machined from as-welded panels of various chemical compositions. No significant differences were found as the result of variations in percentage chemical composition on the impact and tensile test results. The weldments containing lower chromium and nickel as the result of dilution of parent metal from the use of the low alloy steel filler metal corroded more severely in a marine environment. The use of a protective finish, i.e., a nitrile-based paint containing aluminum powder, prevented the corrosive attack.

  15. Influence of alloying elements on the marine corrosion of low alloy steels

    International Nuclear Information System (INIS)

    Dajoux, E.; Malard, S.; Lefevre, Y.; Kervadec, D.; Gil, O.

    2005-01-01

    The study of steel marine corrosion leads to the survey of the parameters having an influence on this phenomenon. These parameters may be dependent on the seawater environment or on steel characteristics. Thus it appears that an experimental procedure could be set up in order to simulate immersion conditions in natural seawater. The system allows fifteen different steels with compositions ranging from carbon steels to stainless steels to be tested during some 14 months in natural seawater with or without microbiological activity. Electrochemical and gravimetric measurements are performed on immersed steel samples. Microbiological analyses are carried out either on the metallic surface and on the liquid medium. Possible influences of alloying elements and bacteria are studied. After a two-month immersion, first results show an influence of the chromium content on the steel corrosion resistance and on marine bacteria behaviour. They also reveal that the bio-film formed onto the carbon steel and low alloy steels surfaces tends to slow down the generalized corrosion or to increase localized corrosion depending on the steel alloying elements content. (authors)

  16. Theoretical design and advanced microstructure in super high strength steels

    International Nuclear Information System (INIS)

    Caballero, F.G.; Santofimia, M.J.; Garcia-Mateo, C.; Chao, J.; Garcia de Andres, C.

    2009-01-01

    A theoretical design procedure based on phase transformation theory alone has been successfully applied to design steels with a microstructure consisting of a mixture of bainitic ferrite and retained austenite. Using thermodynamics and kinetics models, a set of four carbide free bainitic steels with a 0.3 wt.% carbon content were designed and manufactured following a thermomechanical treatment consisting of hot rolling and two-step cooling. The designed steels present significant combinations of strength and ductility, with tensile strengths ranging from 1500 to 1800 MPa and total elongations over 15%. However, a carbon content of 0.3 wt.% is still high for in-use properties such as weldability. In this sense, a reduction in the average carbon content of advanced bainitic steels was proposed. Improved bainitic steels with a carbon content of 0.2 wt.% reached combinations of strength and ductility comparable to those in TRIP assisted steels.

  17. Modern high strength QT, TM and duplex-stainless steels

    International Nuclear Information System (INIS)

    Bocquet, P.; Luxenburger, G.; Porter, D.; Ericsson, C.

    2003-01-01

    Pressure vessels are commonly manufactured with normalised steel grades with a yield strength up to 355 MPa or with austenitic stainless steels when corrosion as to be considered. From three decades, modern steels with higher mechanical properties - up to yield strength of 960 Mpa - are available and largely used for other applications where weight saving is of major importance as per off-shore, bridges, cranes, shipbuilding, line pipes.. The paper presents these modern steel's families - TMCP (Thermo Mechanically Controlled Process), QT (Quenched and Tempered) and Duplex (austeno-ferritic) stainless - in comparison with the normalised and austenitic steel grades. The following aspects are presented: the main mechanical properties (tensile and Charpy) as per the requirements of the standards for pressure equipment; some examples of use of these modern steels in the industry are given; the limitations of the forming conditions are considered; the weldability aspects and welds properties are developed; the interest of the PWHT (Post Weld Heat Treatment) is discussed. (orig.)

  18. TRP 9904 - Constitutive Behavior of High Strength Multiphase Sheel Steel Under High Strain Rate Deformation

    Energy Technology Data Exchange (ETDEWEB)

    David Matlock; John Speer

    2005-03-31

    The focus of the research project was to systematically assess the strain rate dependence of strengthening mechanisms in new advanced high strength sheet steels. Data were obtained on specially designed and produced Duel Phase and TRIP steels and compared to the properties of automotive steels currently in use.

  19. Intergranular stress corrosion cracking of low alloy and carbon steels in high temperature pure water

    International Nuclear Information System (INIS)

    Tsubota, M.; Sakamoto, H.; Tsuzuki, R.

    1993-01-01

    Stress corrosion cracking (SCC) behavior of low alloy steels (A508 and SNCM630) and a carbon steel (SGV480) in high temperature water has been examined with relation to the heat treatment condition, including a long time aging, and the mechanical properties. Intergranular stress corrosion cracking (IGSCC) as observed in the highly hardened specimens, and there was observed in the highly hardened specimens, and there was observed in the highly hardened specimens, and there was observed a close relationship between hardness and SCC susceptibility. From the engineering point of view, it was concluded that adequate SR (stress relief) or tempering heat treatment is necessary to avoid the IGSCC of the welded structures made of low alloy and carbon steels. A508 heat treated with specified quench and temper did not show the SCC susceptibility, even after aging 10000 hours at 350, 400 and 450 degrees C. Tensile properties corresponding to the critical hardness for SSC susceptibility coincided with the values at the 'necking point' in the true stress-strain curve. Ductile-brittle transition observed in the fracture toughness test also occurred at around the critical hardness for SCC susceptibility. Therefore, it was conjectured that the limitation of plasticity was an absolute cause for the SCC susceptibility of the steels

  20. Systematic investigation of the fatigue performance of a friction stir welded low alloy steel

    International Nuclear Information System (INIS)

    Toumpis, Athanasios; Galloway, Alexander; Molter, Lars; Polezhayeva, Helena

    2015-01-01

    Highlights: • The fatigue behaviour of a friction stir welded low alloy steel has been assessed. • The welds’ fatigue lives outperform the International Institute of Welding’s recommendations for fusion welds. • The slow weld exhibits the best fatigue performance of the investigated welds. • Fracture surface analysis shows that minor embedded flaws do not offer crack initiation sites. • Process-related surface breaking flaws have a significant effect on the fatigue life. - Abstract: A comprehensive fatigue performance assessment of friction stir welded DH36 steel has been undertaken to address the relevant knowledge gap for this process on low alloy steel. A detailed set of experimental procedures specific to friction stir welding has been put forward, and the consequent study extensively examined the weld microstructure and hardness in support of the tensile and fatigue testing. The effect of varying welding parameters was also investigated. Microstructural observations have been correlated to the weldments’ fatigue behaviour. The typical fatigue performance of friction stir welded steel plates has been established, exhibiting fatigue lives well above the weld detail class of the International Institute of Welding even for tests at 90% of yield strength, irrespective of minor instances of surface breaking flaws which have been identified. An understanding of the manner in which these flaws impact on the fatigue performance has been established, concluding that surface breaking irregularities such as these produced by the tool shoulder’s features on the weld top surface can be the dominant factor for crack initiation under fatigue loading

  1. Heterogeneities in local plastic flow behavior in a dissimilar weld between low-alloy steel and stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Mas, Fanny [Université Grenoble Alpes, SIMAP, 38000 Grenoble (France); CNRS, SIMAP, 38000 Grenoble (France); Martin, Guilhem, E-mail: guilhem.martin@simap.grenoble-inp.fr [Université Grenoble Alpes, SIMAP, 38000 Grenoble (France); CNRS, SIMAP, 38000 Grenoble (France); Lhuissier, Pierre; Bréchet, Yves; Tassin, Catherine [Université Grenoble Alpes, SIMAP, 38000 Grenoble (France); CNRS, SIMAP, 38000 Grenoble (France); Roch, François [Areva NP, Tour Areva, 92084 Paris La Défense (France); Todeschini, Patrick [EDF R& D, Avenue des Renardières, 77250 Moret-sur-Loing (France); Simar, Aude [Institute of Mechanics, Materials and Civil Engineering (iMMC), Université catholique de Louvain, 1348 Louvain-la-Neuve (Belgium)

    2016-06-14

    In dissimilar welds between low-alloy steel and stainless steel, the post-weld heat-treatment results in a high variety of microstructures coexisting around the fusion line, due to carbon diffusion and carbides dissolution/precipitation. The local constitutive laws in the vicinity of the fusion zone were identified by micro tensile specimens for the sub-millimeter sized zones, equivalent bulk materials representing the decarburized layer using both wet H{sub 2} atmosphere and diffusion couple, and nano-indentation for the carburized regions (i.e. the martensitic band and the austenitic region). The decarburized zone presents only 50% of the yield strength of the low-alloy steel heat affected zone and a ductility doubled. The carburized zones have a yield strength 3–5 times higher than that of the low-alloy steel heat affected zone and have almost no strain hardening capacity. These properties result in heterogeneous plastic deformation happening over only millimeters when the weld is loaded perpendicularly to the weld line, affecting its overall behavior. The constitutive laws experimentally identified were introduced as inputs into a finite elements model of the transverse tensile test performed on the whole dissimilar weld. A good agreement between experiments and simulations was achieved on the global stress-strain curve. The model also well predicts the local strain field measured by microscale DIC. A large out-of-plane deformation due to the hard carburized regions has also been identified.

  2. Splitting in Dual-Phase 590 high strength steel plates

    International Nuclear Information System (INIS)

    Yang Min; Chao, Yuh J.; Li Xiaodong; Tan Jinzhu

    2008-01-01

    Charpy V-notch impact tests on 5.5 mm thick, hot-rolled Dual-Phase 590 (DP590) steel plate were evaluated at temperatures ranging from 90 deg. C to -120 deg. C. Similar tests on 2.0 mm thick DP590 HDGI steel plate were also conducted at room temperature. Splitting or secondary cracks was observed on the fractured surfaces. The mechanisms of the splitting were then investigated. Fracture surfaces were analyzed by optical microscope (OM) and scanning electron microscope (SEM). Composition of the steel plates was determined by electron probe microanalysis (EPMA). Micro Vickers hardness of the steel plates was also surveyed. Results show that splitting occurred on the main fractured surfaces of hot-rolled steel specimens at various testing temperatures. At temperatures above the ductile-brittle-transition-temperature (DBTT), -95 deg. C, where the fracture is predominantly ductile, the length and amount of splitting decreased with increasing temperature. At temperatures lower than the DBTT, where the fracture is predominantly brittle, both the length and width of the splitting are insignificant. Splitting in HDGI steel plates only appeared in specimens of T-L direction. The analysis revealed that splitting in hot-rolled plate is caused by silicate and carbide inclusions while splitting in HDGI plate results from strip microstructure due to its high content of manganese and low content of silicon. The micro Vickers hardness of either the inclusions or the strip microstructures is higher than that of the respective base steel

  3. Modern high strength QT, TM and duplex-stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Bocquet, P. [Industeel (France); Luxenburger, G. [Aktiengesellschaft der Dillinger Huettenwerke, Dillingen/Saar (Germany); Porter, D. [Rautaruukki (Finland); Ericsson, C. [Avesta Polarit (Sweden)

    2003-07-01

    Pressure vessels are commonly manufactured with normalised steel grades with a yield strength up to 355 MPa or with austenitic stainless steels when corrosion as to be considered. From three decades, modern steels with higher mechanical properties - up to yield strength of 960 Mpa - are available and largely used for other applications where weight saving is of major importance as per off-shore, bridges, cranes, shipbuilding, line pipes.. The paper presents these modern steel's families - TMCP (Thermo Mechanically Controlled Process), QT (Quenched and Tempered) and Duplex (austeno-ferritic) stainless - in comparison with the normalised and austenitic steel grades. The following aspects are presented: the main mechanical properties (tensile and Charpy) as per the requirements of the standards for pressure equipment; some examples of use of these modern steels in the industry are given; the limitations of the forming conditions are considered; the weldability aspects and welds properties are developed; the interest of the PWHT (Post Weld Heat Treatment) is discussed. (orig.)

  4. Effect of Tryptophan on the corrosion behavior of low alloy steel in sulfamic acid

    Directory of Open Access Journals (Sweden)

    Hesham T.M. Abdel-Fatah

    2016-11-01

    Full Text Available Sulfamic acid is widely used in various industrial acid cleaning applications. In the present work, the inhibition effect of Tryptophan (Tryp on the corrosion of low alloy steel in sulfamic acid solutions at four different temperatures was studied. The investigations involved electrochemical methods (electrochemical impedance spectroscopy; EIS and the new technique electrochemical frequency modulation; EFM as well as gravimetric measurements. The inhibition efficiency and the apparent activation energy have been calculated in the presence and in the absence of Tryp. It is most probable that the inhibition property of Tryp was due to the electrostatic adsorption of the protonated form of Tryp on the steel surface. Adsorption of the inhibitor molecule, onto the steel surface followed the Temkin adsorption isotherm. The thermodynamic parameters of adsorption were determined and discussed. All of the obtained data from the three techniques were in close agreement, which confirmed that EFM technique can be used efficiently for monitoring the corrosion inhibition under the studied conditions.

  5. The measurement of phosphorus in low alloy steels by electrochemical methods

    International Nuclear Information System (INIS)

    Rahier, A.; Campsteyn, A.; Verheyen, E.; Verpoucke, G.

    2008-01-01

    The oscillo-polarographic method reported by Chen for the determination of phosphorus in silicates, iron ores, carbonates and tea leaves has been thoroughly studied and enhanced in view of the determination of P in various steels. Together with a carefully selected sample dissolution method, the chromatographic separation reported by Hanada et al. for eliminating the matrix has also been examined. The results of these investigations allowed finding out a path towards the successful electrochemical measurement of P in low alloy ferritic steels without eliminating the matrix. The limit of detection is 5.2 micro gram -1 in the metal. The precision ranges between 5 and 15 % relative to the mean measured values. The finely tuned method has been successfully validated using five NIST standard steels. The chromatographic method remains an option for addressing other metals in the future, should they contain unacceptable levels of possibly interfering elements.. Detailed experimental procedures are given.

  6. The measurement of phosphorus in low alloy steels by electrochemical methods

    Energy Technology Data Exchange (ETDEWEB)

    Rahier, A.; Campsteyn, A.; Verheyen, E.; Verpoucke, G.

    2008-08-15

    The oscillo-polarographic method reported by Chen for the determination of phosphorus in silicates, iron ores, carbonates and tea leaves has been thoroughly studied and enhanced in view of the determination of P in various steels. Together with a carefully selected sample dissolution method, the chromatographic separation reported by Hanada et al. for eliminating the matrix has also been examined. The results of these investigations allowed finding out a path towards the successful electrochemical measurement of P in low alloy ferritic steels without eliminating the matrix. The limit of detection is 5.2 micro gram{sup -1} in the metal. The precision ranges between 5 and 15 % relative to the mean measured values. The finely tuned method has been successfully validated using five NIST standard steels. The chromatographic method remains an option for addressing other metals in the future, should they contain unacceptable levels of possibly interfering elements.. Detailed experimental procedures are given.

  7. Intergranular brittle fracture of a low alloy steel. Global and local approaches

    International Nuclear Information System (INIS)

    Kantidis, E.

    1993-08-01

    The intergranular brittle fracture of a low alloy steel (A533B.Cl1) is studied: an embrittlement heat treatment is used to develop two brittle 'states' that fail through an intergranular way at low temperatures. This mode of fracture leads to an important shift of the transition temperature (∼ 165 deg C) and a decrease in the fracture toughness. The local approach to fracture, developed for cleavage, is applied to the case of intergranular fracture. Modifications are proposed. The physical supports of these models are verified by biaxial (tension-torsion) tests. From the local approaches developed for intergranular fracture, the static and dynamic fracture toughness of the embrittled steel is predicted. The local approach applied to a structural steel, which presents mixed modes of fracture (cleavage and intergranular), showed that this mode of fracture seems to be controlled by intergranular loss of cohesion

  8. Low Alloy Steel Structures After Welding with Micro-Jet Cooling

    OpenAIRE

    Węgrzyn T.; Piwnik J.; Hadryś D.; Wszołek Ł.

    2017-01-01

    The paper focuses on low alloy steel after innovate welding method with micro-jet cooling. Weld metal deposit (WMD) was carried out for welding and for MIG and MAG welding with micro-jet cooling. This method is very promising mainly due to the high amount of AF (acicular ferrite) and low amount of MAC (self-tempered martensite, retained austenite, carbide) phases in WMD. That structure corresponds with very good mechanical properties, ie. high impact toughness of welds at low temperature. Mic...

  9. The Prediction of the Mechanical Properties for Dual-Phase High Strength Steel Grades Based on Microstructure Characteristics

    Directory of Open Access Journals (Sweden)

    Emil Evin

    2018-04-01

    Full Text Available The decrease of emissions from vehicle operation is connected mainly to the reduction of the car’s body weight. The high strength and good formability of the dual phase steel grades predetermine these to be used in the structural parts of the car’s body safety zones. The plastic properties of dual phase steel grades are determined by the ferrite matrix while the strength properties are improved by the volume and distribution of martensite. The aim of this paper is to describe the relationship between the mechanical properties and the parameters of structure and substructure. The heat treatment of low carbon steel X60, low alloyed steel S460MC, and dual phase steel DP600 allowed for them to reach states with a wide range of volume fractions of secondary phases and grain size. The mechanical properties were identified by a tensile test, volume fraction of secondary phases, and grain size were measured by image analysis. It was found that by increasing the annealing temperature, the volume fraction of the secondary phase increased, and the ferrite grains were refined. Regression analysis was used to find out the equations for predicting mechanical properties based on the volume fraction of the secondary phase and grain size, following the annealing temperature. The hardening mechanism of the dual phase steel grades for the states they reached was described by the relationship between the strain-hardening exponent and the density of dislocations. This allows for the designing of dual phase steel grades that are “tailored” to the needs of the automotive industry customers.

  10. Microstructure and corrosion behavior of shielded metal arc-welded dissimilar joints comprising duplex stainless steel and low alloy steel

    Science.gov (United States)

    Srinivasan, P. Bala; Muthupandi, V.; Sivan, V.; Srinivasan, P. Bala; Dietzel, W.

    2006-12-01

    This work describes the results of an investigation on a dissimilar weld joint comprising a boiler-grade low alloy steel and duplex stainless steel (DSS). Welds produced by shielded metal arc-welding with two different electrodes (an austenitic and a duplex grade) were examined for their microstructural features and properties. The welds were found to have overmatching mechanical properties. Although the general corrosion resistance of the weld metals was good, their pitting resistance was found to be inferior when compared with the DSS base material.

  11. Comparison of Corrosion Behavior of Low-Alloy Steel Containing Copper and Antimony with 409L Stainless Steel for a Flue Gas Desulfurization System

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sun-Ah; Shin, Su-Bin; Kim, Jung-Gu [Sungkyunkwan University, Suwon (Korea, Republic of)

    2016-07-15

    The corrosion behavior of low alloy steel containing Cu, Sb and 409L stainless steel was investigated for application in the low-temperature section of a flue gas desulfurization (FGD) system. The electrochemical properties were evaluated by potentiodynamic polarization testing and electrochemical impedance spectroscopy (EIS) in 16.9 vol% H{sub 2}SO{sub 4} + 0.35 vol% HCl at 60 ℃. The inclusions in these steels ere identified by electron probe microanalyzer (EPMA). The corrosion products of the steels were analyzed using scanning electron microscope (SEM) with energy dispersive spectroscopy (EDS) and transmission electron microscopy (TEM). The corrosion rate of the low alloy steel containing Cu, Sb was about 100 times lower than that of 409L stainless steel. For stainless steel without passivation, active corrosion behavior was shown. In contrast, in the low alloy steel, the Cu, Sb compounds accumulated on the surface improved the corrosion resistance by suppressing the anodic dissolution reaction.

  12. Fatigue crack Behaviour in a High Strength Tool Steel

    DEFF Research Database (Denmark)

    Højerslev, Christian; Carstensen, Jesper V.; Brøndsted, Povl

    2002-01-01

    The influence of microstructure on fatigue crack initiation and crack growth of a hardened and tempered high speed steel was investigated. The evolution of fatigue cracks was followed in four point bending at room temperature. It was found that a carbide damage zone exists above a threshold load...... value of maximally 80% of the yield strength of the steel. The size of this carbide damage zone increases with increasing load amplitude, and the zone is apparently associated with crack nucleation. On fatigue crack propagation plastic deformation of the matrix occurs in a radius of approximately 4...... microns in front of the fatigue crack tip, which is comparable with the relevant mean free carbide spacing....

  13. Hydrogen Assisted Cracking of High Strength Steel Welds

    Science.gov (United States)

    1988-05-01

    differs in general from the previous models in that hydrogen is assumed , to enhance local plasticity rather than truly embrittle the lattice. 5) Formation...measured. - The salient caracteristics of the IIW test include: - A 10mm X 15mm X 30mm specimen machined from mild steel with a sur- . .. face ground...hydrogen so %4. -. ,*. that a crack can grow under a lower applied stress. This theory has been criticized on the basis that the small but finite plastic

  14. High-strength shape memory steels alloyed with nitrogen

    International Nuclear Information System (INIS)

    Ullakko, K.; Jakovenko, P.T.; Gavriljuk, V.G.

    1996-01-01

    Since shape memory effect in Fe-Mn-Si systems was observed, increasing attention has been paid to iron based shape memory alloys due to their great technological potential. Properties of Fe-Mn-Si shape memory alloys have been improved by alloying with Cr, Ni, Co and C. A significant improvement on shape memory, mechanical and corrosion properties is attained by introducing nitrogen in Fe-Mn-Si based systems. By increasing the nitrogen content, strength of the matrix increases and the stacking fault energy decreases, which promote the formation of stress induced martensite and decrease permanent slip. The present authors have shown that nitrogen alloyed shape memory steels exhibit recoverable strains of 2.5--4.2% and recovery stresses of 330 MPa. In some cases, stresses over 700 MPa were attained at room temperature after cooling a constrained sample. Yield strengths of these steels can be as high as 1,100 MPa and tensile strengths over 1,500 MPa with elongations of 30%. In the present study, effect of nitrogen alloying on shape memory and mechanical properties of Fe-Mn-Si, Fe-Mn-Si-Cr-Ni and Fe-Mn-Cr-Ni-V alloys is studied. Nitrogen alloying is shown to exhibit a beneficial effect on shape memory properties and strength of these steels

  15. Enhanced hot ductility of a Cr–Mo low alloy steel by rare earth cerium

    International Nuclear Information System (INIS)

    Jiang, X.; Song, S.-H.

    2014-01-01

    The hot ductility of a 1Cr–0.5Mo low alloy steel is investigated over a temperature range of 700–1050 °C using a Gleeble thermomechanical simulator in conjunction with various characterization techniques. The steel samples undoped and doped with cerium are heated at 1300 °C for 3 min and then cooled with a rate of 5 K s −1 down to different test temperatures, followed by tensile deformation until fracture. The results show that the hot ductility of the steel, evaluated by the reduction in area, can be substantially enhanced by a minor addition of cerium, especially in the range 800–1000 °C. In the austenite–ferrite dual-phase region, cerium may delay the formation of proeutectoid ferrite layers along austenite grain boundaries, thereby increasing the hot ductility of the steel. In the single austenite region, grain boundary segregation of cerium may increase the grain boundary cohesion, toughening the steel and thus raising the resistance to grain boundary sliding as well as promoting dynamic recrystallization. Consequently, the hot ductility of the steel is enhanced

  16. Grain boundary phosphorus segregation under thermal aging in low alloy steels

    International Nuclear Information System (INIS)

    Nakata, Hayato; Fujii, Katsuhiko; Fukuya, Koji; Kasada, Ryuta; Kimura, Akihiko

    2007-01-01

    Intergranular embrittlement due to grain boundary segregation of phosphorus is recognized as one of the potential degradation factors in irradiated reactor low alloy steels at high neutron fluence. In this study, low alloy steels thermally aged at 400-500degC were investigated to evaluate the correlation between phosphorus segregation and intergranular embrittlement. Phosphorus segregation determined using Auger electron spectroscopy increased after thermal aging above 450degC and was in good agreement with the calculated value based on McLean's model. No influence of thermal aging on tensile properties or hardness was observed. The ductile brittle transition temperature determined using a one-third size Charpy impact test increased at a P/Fe peak ratio of 0.14. These results indicated that there is a threshold level of phosphorus segregation for non-hardening embrittlement. DBTT increased with the proportion of intergranular fracture, so this result shows that there is a relationship between DBTT and the properties of intergranular fracture. The fracture stress decreases due to non-hardening embrittlement on the thermally aged material with high proportion of intergranular fracture. (author)

  17. Statistical analysis of fatigue strain-life data for carbon and low-alloy steels

    International Nuclear Information System (INIS)

    Keisler, J.; Chopra, O.K.; Shack, W.J.

    1994-08-01

    The existing fatigue strain vs. life (S-N) data, foreign and domestic, for carbon and low-alloy steels used in the construction of nuclear power plant components have been compiled and categorized according to material, loading, and environmental conditions. A statistical model has been developed for estimating the effects of the various test conditions on fatigue life. The results of a rigorous statistical analysis have been used to estimate the probability of initiating a fatigue crack. Data in the literature were reviewed to evaluate the effects of size, geometry, and surface finish of a component on its fatigue life. The fatigue S-N curves for components have been determined by applying design margins for size, geometry, and surface finish to crack initiation curves estimated from the model. The significance of the effect of environment on the current Code design curve and on the proposed interim design curves for carbon and low-alloy steels presented in NUREG/CR-5999 is discussed

  18. Research and service experience with environmentally assisted cracking of low-alloy steel

    Energy Technology Data Exchange (ETDEWEB)

    Hickling, J. [Electric Power Reasearch Inst., Palo Alto, CA (United States); Seifert, H.P.; Ritter, S. [Paul Scherrer Inst. (Switzerland)

    2005-01-01

    Environmentally assisted cracking (EAC) of carbon and low-alloy steels has been identified as a possible degradation mechanism for pressure vessels and piping in nuclear power plants. Selected aspects of research and service experience with cracking of these materials in high-temperature water are reviewed, with special emphasis on the primary pressure boundary in boiling water reactors. The main factors controlling EAC susceptibility under reactor conditions are discussed with regard to both crack initiation and crack growth. The adequacy and conservatism of the relevant engineering criteria for component design and disposition of detected or postulated flaws are evaluated in the context of recent research results, e.g., on the effects of so-called ''ripple loading'' or of water chemistry transients. Finally, the relevant operating experience over the last 30 years is briefly summarized and compared with the background knowledge which has been accumulated in more recent laboratory experiments. Some of the insights gained in this work may also be of value in improving understanding and prediction of the EAC behavior of carbon and low-alloy steels in certain fossil plant components, if appropriate allowances are made for differences in temperature and water chemistry. (orig.)

  19. Weldability prediction of high strength steel S960QL after weld thermal cycle simulation

    Directory of Open Access Journals (Sweden)

    M. Dunđer

    2014-10-01

    Full Text Available This paper presents weld thermal cycle simulation of high strength steel S960QL, and describes influence of cooling time t8/5 on hardness and impact toughness of weld thermal cycle simulated specimens. Furthermore, it presents analysis of characteristic fractions done by electron scanning microscope which can contribute to determination of welding parameters for S960QL steel.

  20. High strength reinforcing steel bars : concrete shear friction interface : final report : Part A.

    Science.gov (United States)

    2017-03-01

    High-strength steel (HSS) reinforcement, specifically ASTM A706 Grade 80 (550), is now permitted by the AASHTO LRFD Bridge Design Specifications for use in reinforced concrete bridge components in non-seismic regions. Using Grade 80 (550) steel reinf...

  1. Compact cross-sections of mild and high-strength steel hollow-section beams

    NARCIS (Netherlands)

    Pavlovic, M.; Veljkovic, M.

    2017-01-01

    The Eurocode 3 rules for the high-strength steel (HSS: fy > 460 MPa) limit the analysis of beams to elastic global analysis and grades up to S700. In order to fully exploit the potential to design lightweight and sustainable steel structures, plastic analysis and the use of higher

  2. Grain boundary phosphorus segregation under thermal aging in low alloy steels

    International Nuclear Information System (INIS)

    Nakata, Hayato; Fujii, Katsuhiko; Fukuya, Koji; Shibata, Masaaki; Kasada, Ryuta; Kimura, Akihiko

    2002-01-01

    Intergranular embrittlement due to grain boundary segregation of phosphorus is recognized as one of the potential degradation factors in irradiated reactor pressure vessel steels at high neutron fluences. In this study, investigations on low alloy steels thermally aged at 400-500degC were conducted to evaluate the correlation between phosphorus segregation and intergranular embrittlement. Phosphorus segregation determined using Auger electron spectroscopy increased after aging above 450degC and was in good agreement with the calculated value based on McLean model. No influence of thermal aging was observed in tensile properties. The ductile brittle transition temperature determined using 1/3 size charpy impact tests increased of 12degC after aging at 450degC for 3000 hours. These results indicated that there is a threshold level of phosphorus segregation for non-hardening embrittlement and that the level is around 0.14 for P/Fe peak ratio. (author)

  3. Corrosion behavior of low-alloy steel in the presence of Desulfotomaculum sp

    International Nuclear Information System (INIS)

    Cetin, Demet; Aksu, Mehmet Levent

    2009-01-01

    The objective of this study was to determine the effect of sulfate-reducing Desulfotomaculum sp. bacteria isolated from a crude oil field on the corrosion of low-alloy steel. The corrosion rate and mechanism were determined with the use of Tafel slopes, mass loss method and electrochemical impedance spectroscopy (EIS). The formation of the biofilm and the corrosion products on the steel surface was determined with scanning electron microscopy (SEM) micrographs and energy dispersive X-ray spectra (EDS) analysis. It was observed from the Tafel plots that the corrosion potential exhibited a cathodic shift that verifies an increase in the corrosion rates. The semicircles tended to open at lower frequencies in the Nyquist plots which indicates the rupture of the protective film. The corrosion current density reached its maximum value at the 14th hour after the inoculation and decreased afterwards. This was attributed to the accumulation of corrosion products on the surface.

  4. Standard guide for estimating the atmospheric corrosion resistance of low-alloy steels

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2004-01-01

    1.1 This guide presents two methods for estimating the atmospheric corrosion resistance of low-alloy weathering steels, such as those described in Specifications A242/A242M, A588/A588M, A606 Type 4, A709/A709M grades 50W, HPS 70W, and 100W, A852/A852M, and A871/A871M. One method gives an estimate of the long-term thickness loss of a steel at a specific site based on results of short-term tests. The other gives an estimate of relative corrosion resistance based on chemical composition. 1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.

  5. Grain boundary phosphorus segregation under thermal aging in low alloy steels

    Energy Technology Data Exchange (ETDEWEB)

    Nakata, Hayato; Fujii, Katsuhiko; Fukuya, Koji [Inst. of Nuclear Safety System Inc., Mihama, Fukui (Japan); Shibata, Masaaki; Kasada, Ryuta; Kimura, Akihiko [Kyoto Univ. (Japan)

    2002-09-01

    Intergranular embrittlement due to grain boundary segregation of phosphorus is recognized as one of the potential degradation factors in irradiated reactor pressure vessel steels at high neutron fluences. In this study, investigations on low alloy steels thermally aged at 400-500degC were conducted to evaluate the correlation between phosphorus segregation and intergranular embrittlement. Phosphorus segregation determined using Auger electron spectroscopy increased after aging above 450degC and was in good agreement with the calculated value based on McLean model. No influence of thermal aging was observed in tensile properties. The ductile brittle transition temperature determined using 1/3 size charpy impact tests increased of 12degC after aging at 450degC for 3000 hours. These results indicated that there is a threshold level of phosphorus segregation for non-hardening embrittlement and that the level is around 0.14 for P/Fe peak ratio. (author)

  6. Fatigue in Welded High-Strength Steel Plate Elements under Stochastic Loading

    DEFF Research Database (Denmark)

    Agerskov, Henning; Petersen, R.I.; Martinez, L. Lopez

    1999-01-01

    The present project is a part of an investigation on fatigue in offshore structures in high-strength steel. The fatigue life of plate elements with welded attachments is studied. The material used has a yield stress of ~ 810-840 MPa, and high weldability and toughness properties. Fatigue test...... series with constant amplitude loading and with various types of stochastic loading have been carried through on test specimens in high-strength steel, and - for a comparison - on test specimens in conventional offshore structural steel with a yield stress of ~ 400-410 MPa.A comparison between constant...... amplitude and variable amplitude fatigue test results shows shorter fatigue lives in variable amplitude loading than should be expected from the linear fatigue damage accumulation formula. Furthermore, in general longer fatigue lives were obtained for the test specimens in high-strength steel than those...

  7. Influence of the welding process on martensitic high strength steel

    Directory of Open Access Journals (Sweden)

    Petr Hanus

    2014-07-01

    Full Text Available The subject of the study is martensitic 22MnB5 steels, which are used in the automotive industry. The main purpose of the performed analyses is a study of strength differences in heat affected zones of the spot welding. For the needs of the strength decrease assessment, the critical layer of the heat affected area was experimentally simulated. The aim of the work is to determine the most suitable methodology for evaluating the local changes of the elastic-plastic material response. The aim of this work is to determine the optimal methods for the determination of the yield strength and to find a firming trend in these zones.

  8. Corrosion of low alloy steels in natural seawater. Influence of alloying elements and bacteria

    International Nuclear Information System (INIS)

    Dajoux Malard, Emilie

    2006-01-01

    Metallic infrastructures immersed in natural seawater are exposed to important corrosion phenomena, sometimes characterised as microbiologically influenced corrosion. The presence of alloying elements in low alloy steels could present a corrosion resistance improvement of the structures. In this context, tests are performed with commercial steel grades, from 0,05 wt pc Cr to 11,5 wt pc Cr. They consist in 'on site' immersion in natural seawater on the one hand, and in laboratory tests with immersion in media enriched with marine sulphide-producing bacteria on the other hand. Gravimetric, microbiological, electrochemical measurements and corrosion product analyses are carried out and show that corrosion phenomenon is composed of several stages. A preliminary step is the reduction of the corrosion kinetics and is correlated with the presence of sessile sulphide-producing bacteria and an important formation of sulphur-containing species. This phase is shorter when the alloying element content of the steel increases. This phase is probably followed by an increase of corrosion, appearing clearly after an 8-month immersion in natural seawater for some of the grade steels. Chromium and molybdenum show at the same time a beneficial influence to generalised corrosion resistance and a toxic effect on sulphide-producing bacteria. This multidisciplinary study reflects the complexity of the interactions between bacteria and steels; sulphide-producing bacteria seem to be involved in corrosion processes in natural seawater and complementary studies would have to clarify occurring mechanisms. (author) [fr

  9. Cyclic fatigue of a high-strength corrosion-resistant sheet TRIP steel

    Science.gov (United States)

    Terent'ev, V. F.; Alekseeva, L. E.; Korableva, S. A.; Prosvirnin, D. V.; Pankova, M. N.; Filippov, G. A.

    2014-04-01

    The mechanical properties of 0.3- and 0.8-mm-thick high-strength corrosion-resistant TRIP steel having various levels of strength properties are studied during static and cyclic loading in the high-cycle fatigue range. The fatigue fracture surface is analyzed by fractography, and the obtained results demonstrate ductile and quasi-brittle fracture mechanisms of this steel depending on the strength properties of the steel and the content of deformation martensite in it.

  10. Experimental Investigation into Corrosion Effect on Mechanical Properties of High Strength Steel Bars under Dynamic Loadings

    Directory of Open Access Journals (Sweden)

    Hui Chen

    2018-01-01

    Full Text Available The tensile behaviors of corroded steel bars are important in the capacity evaluation of corroded reinforced concrete structures. The present paper studies the mechanical behavior of the corroded high strength reinforcing steel bars under static and dynamic loading. High strength reinforcing steel bars were corroded by using accelerated corrosion methods and the tensile tests were carried out under different strain rates. The results showed that the mechanical properties of corroded high strength steel bars were strain rate dependent, and the strain rate effect decreased with the increase of corrosion degree. The decreased nominal yield and ultimate strengths were mainly caused by the reduction of cross-sectional areas, and the decreased ultimate deformation and the shortened yield plateau resulted from the intensified stress concentration at the nonuniform reduction. Based on the test results, reduction factors were proposed to relate the tensile behaviors with the corrosion degree and strain rate for corroded bars. A modified Johnson-Cook strength model of corroded high strength steel bars under dynamic loading was proposed by taking into account the influence of corrosion degree. Comparison between the model and test results showed that proposed model properly describes the dynamic response of the corroded high strength rebars.

  11. Corrosion of carbon steel and low-alloy steel in diluted seawater containing hydrazine under gamma-rays irradiation

    International Nuclear Information System (INIS)

    Nakano, Junichi; Yamamoto, Masahiro; Tsukada, Takashi

    2014-01-01

    Seawater was injected into reactor cores of Units 1, 2, and 3 in the Fukushima Daiichi nuclear power station as an urgent coolant. It is considered that the injected seawater causes corrosion of steels of the reactor pressure vessel and primary containment vessel. To investigate the effects of gamma-rays irradiation on weight loss in carbon steel and low-alloy steel, corrosion tests were performed in diluted seawater at 50°C under gamma-rays irradiation. Specimens were irradiated with dose rates of 4.4 kGy/h and 0.2 kGy/h. To evaluate the effects of hydrazine (N 2 H 4 ) on the reduction of oxygen and hydrogen peroxide, N 2 H 4 was added to the diluted seawater. In the diluted seawater without N 2 H 4 , weight loss in the steels irradiated with 0.2 kGy/h was similar to that in the unirradiated steels, and weight loss in the steels irradiated with 4.4 kGy/h increased to approximate 1.7 times of those in the unirradiated steels. Weight loss in the steels irradiated in the diluted seawater containing N 2 H 4 was similar to that in the diluted seawater without N 2 H 4 . When N 2 was introduced into the gas phase in the flasks during gamma-rays irradiation, weight loss in the steels decreased. (author)

  12. Improvement of formability of high strength steel sheets in shrink flanging

    International Nuclear Information System (INIS)

    Hamedon, Z; Abe, Y; Mori, K

    2016-01-01

    In the shrinkage flanging, the wrinkling tends to occur due to compressive stress. The wrinkling will cause a difficulty in assembling parts, and severe wrinkling may leads to rupture of parts. The shrinkage flange of the ultra-high strength steel sheets not only defects the product by the occurrence of the wrinkling but also causes seizure and wear of the dies and shortens the life of dies. In the present study, a shape of a punch having gradual contact was optimized in order to prevent the wrinkling in shrinkage flanging of ultra-high strength steel sheets. The sheet was gradually bent from the corner of the sheet to reduce the compressive stress. The wrinkling in the shrink flanging of the ultra-high strength steel sheets was prevented by the punch having gradual contact. It was found that the punch having gradual contact is effective in preventing the occurrence of wrinkling in the shrinkage flanging. (paper)

  13. Trace element assessment of low-alloy and stainless steels with reference to gamma activity

    International Nuclear Information System (INIS)

    Goddard, A.J.H.; Macmahon, T.D.; Gamberini, D.; Taylor, J.M.; Duggan, F.

    1984-01-01

    In order to predict the long-lived gamma activities leading to radiation exposure during dismantling operations it is necessary to know the likely trace element content of the reactor vessel and internals. This work has been concerned with measuring the elements Ni, Nb, Mo, Co, Ag, Eu, Sm and Ho in steels, with particular reference to light-water reactors. Various steel samples have been provided by organizations in Europe. Analyses have been carried out principally by neutron activation analysis, but also by atomic absorption (AA), inductively coupled plasma (ICP) and secondary ion microprobe spectrometry (SIMS). Analyses for Ni, Mo and Co were straightforward and results agreed with analyses carried out elsewhere. A variety of techniques were employed for Nb; ICP was the most successful and results were confirmed using SIMS. In the case of Ag only flameless AA yielded results for all samples. The low concentration of rare earth elements required the development of a preliminary ion exchange technique. Low-alloy steels examined had Nb concentrations less than 10 ppm. Ag levels in the vicinity of 1 ppm were found in all steel samples, indicating that Ag may be the most significant element at long cooling times. Rare earth concentrations from this and other work indicate that these elements are unlikely to give gamma activities exceeding those of 60 Co, 59 Ni, sup(108m)Ag and 94 Nb activities. Illustrative gamma activity decay calculations using the Origen code are presented

  14. Acoustic emission during the elastic-plastic deformation of low alloy reactor pressure vessel steels. I

    International Nuclear Information System (INIS)

    Holt, J.; Goddard, D.J.

    1980-01-01

    Measurements of the acoustic emission behaviour of A533B and C-Mn low alloy reactor pressure vessel steels subjected to uniaxial tensile deformation are described. The effects on the emission activity of the rolling plane orientation and the carbide morphology were examined. Detailed discussions are given of the stress dependence of the emission activity below yield and of its recovery by annealing at the stress relief temperature. It is shown that the dominant emission source is the same in both steels and is associated with inclusions, such as MnS, elongated by the rolling process, the carbide morphology being relatively unimportant. A criterion for the occurrence of an emission is obtained which is directly analogous to the general criterion for yielding. It is also shown that a large fraction, at least, of the emission activity arises from a recoverable process such as localized yielding around inclusions or limited inclusion decohesion and not from inclusion fracture. Low activity in C-Mn steel taken from reactor pressure vessels, previously attributed to spheroidization of carbides, is shown to be due to the limited acoustic recovery of these relatively high sulphur content steels when annealed at the stress relief temperature. It is concluded that the limited amplitudes of these emissions during deformation severely restrict their potential application in practice. (Auth.)

  15. Irradiation effects in low-alloy reactor pressure vessel steels (Heavy-Section Steel Technology program series 4 and 5)

    International Nuclear Information System (INIS)

    McGowan, J.J.; Nanstad, R.K.; Thoms, K.R.; Menke, B.H.

    1985-01-01

    This report presents studies on the irradiation effects in low-alloy reactor pressure vessel steels. The Fourth Heavy-Section Steel Technology (HSST) Irradiation Series, almost completed, was aimed at elastic-plastic and fully plastic fracture toughness of low-copper weldments (''current practice welds''). A typical nuclear pressure vessel plate steel was included for statistical purposes. The Fifth HSST Irradiation Series, now in progress, is aimed at determining the shape of the K/sub IR/ curve after significant radiation-induced shift of the transition temperatures. This series includes irradiated test specimens of thicknesses up to 100 mm and weldment compositions typical of early nuclear power reactor pressure vessel welds. 27 refs., 22 figs

  16. Hot ductility behavior of a low carbon advanced high strength steel (AHSS) microalloyed with boron

    OpenAIRE

    Mejía, Ignacio; Bedolla Jacuinde, Arnoldo; Maldonado, Cuauhtémoc; Cabrera Marrero, José M.

    2011-01-01

    The current study analyses the influence of boron addition on the hot ductility of a low carbon advanced high strength NiCrVCu steel. For this purpose hot tensile tests were carried out at different temperatures (650, 750, 800, 900 and 1000 ◦C) at a constant true strain rate of 0.001 s−1. Experimental results showed a substantial improvement in hot ductility for the low carbon advanced high strength steel when microalloyed with boron compared with that without boron addition. Nevertheless,...

  17. Statistical analysis of fatigue strain-life data for carbon and low-alloy steels

    International Nuclear Information System (INIS)

    Keisler, J.; Chopra, O.K.

    1995-03-01

    The existing fatigue strain vs life (S-N) data, foreign and domestic, for carbon and low-alloy steels used in the construction of nuclear power plant components have been compiled and categorized according to material, loading, and environmental conditions. A statistical model has been developed for estimating the effects of the various test conditions on fatigue life. The results of a rigorous statistical analysis have been used to estimate the probability of initiating a fatigue crack. Data in the literature were reviewed to evaluate the effects of size, geometry, and surface finish of a component on its fatigue life. The fatigue S-N curves for components have been determined by applying design margins for size, geometry, and surface finish to crack initiation curves estimated from the model

  18. Overlapping phase transformations on tempering of a low-alloy steel

    International Nuclear Information System (INIS)

    Valencia Morales, E; Galeano Alvarez, N.J; Vega Leiva, J; Castellanos L M; Villar C E; Antiquera Munoz J; Hernandez R J

    2006-01-01

    The kinetics of precipitation of the primary and independent carbides during tempering of a low-alloy steel are characterized by the application of the Kinetic Theory of the Overlapping Phase Transformations(KTOPT). It is based on the Avrami model and considers two simultaneous precipitation processes. The present set-up allows us to calculate the exponent of the Avrami equation for simultaneous reactions at different rates. Only the dilatometry curves on tempering are required. According to this new formulation, the treatment of the dilatometry records showed different mechanisms of nucleation and growth of the primary and independent carbides. These results are in agreement with the thin foil electron micrographs and hardness tests of the thermally treated samples (au)

  19. Predicting the creep life and failure mode of low-alloy steel weldments

    Energy Technology Data Exchange (ETDEWEB)

    Brear, J.M.; Middleton, C.J.; Aplin, P.F. [ERA Technology Ltd., Leatherhead (United Kingdom)

    1998-12-31

    This presentation reviews and consolidates experience gained through a number of research projects and practical plant assessments in predicting both the life and the likely failure mode and location in low alloy steel weldments. The approach adopted begins with the recognition that the relative strength difference between the microstructural regions is a key factor controlling both life and failure location. Practical methods based on hardness measurement and adaptable to differing weld geometries are presented and evidence for correlations between hardness ratio, damage accumulation and strain development is discussed. Predictor diagrams relating weld life and failure location to the service conditions and the hardness of the individual microstructural constituents are suggested and comments are given on the implications for identifying the circumstances in which Type IV cracking is to be expected. (orig.) 6 refs.

  20. Predicting the creep life and failure mode of low-alloy steel weldments

    Energy Technology Data Exchange (ETDEWEB)

    Brear, J M; Middleton, C J; Aplin, P F [ERA Technology Ltd., Leatherhead (United Kingdom)

    1999-12-31

    This presentation reviews and consolidates experience gained through a number of research projects and practical plant assessments in predicting both the life and the likely failure mode and location in low alloy steel weldments. The approach adopted begins with the recognition that the relative strength difference between the microstructural regions is a key factor controlling both life and failure location. Practical methods based on hardness measurement and adaptable to differing weld geometries are presented and evidence for correlations between hardness ratio, damage accumulation and strain development is discussed. Predictor diagrams relating weld life and failure location to the service conditions and the hardness of the individual microstructural constituents are suggested and comments are given on the implications for identifying the circumstances in which Type IV cracking is to be expected. (orig.) 6 refs.

  1. Low Alloy Steel Structures After Welding with Micro-Jet Cooling

    Directory of Open Access Journals (Sweden)

    Węgrzyn T.

    2017-03-01

    Full Text Available The paper focuses on low alloy steel after innovate welding method with micro-jet cooling. Weld metal deposit (WMD was carried out for welding and for MIG and MAG welding with micro-jet cooling. This method is very promising mainly due to the high amount of AF (acicular ferrite and low amount of MAC (self-tempered martensite, retained austenite, carbide phases in WMD. That structure corresponds with very good mechanical properties, ie. high impact toughness of welds at low temperature. Micro-jet cooling after welding can find serious application in automotive industry very soon. Until that moment only argon, helium and nitrogen were tested as micro-jet gases. In that paper first time various gas mixtures (gas mixtures Ar-CO2 were tested for micro-jet cooling after welding.

  2. Regularities in development of surface cracks in low-alloy steel under asymmetric cyclic bending

    International Nuclear Information System (INIS)

    Letunov, V.I.; Shul'ginov, B.S.; Plundrova, I.; Vajnshtok, V.A.; Kramarenko, I.V.

    1985-01-01

    Semielliptical cracks in low-alloy 09g2 and 12gn2mfayu steels are studied for regularities of their growth. It is shown that the growth rate of the semielliptical crack at the preset ΔK and R values is higher in the maximally depressed point of the front than in the point on the surface on the specimen under cyclic bending. A decrease of the 1/C parameter with growth of the semielliptical crack is experimentally established being attributed to the increase in difference of ΔK both in maximally depressed point of the crack front (phi=0) and in the point on the specimen surface (phi= π/2). Experiments have proved the correctness of the previously established formulas of stress-intensity factor calculation for semielliptical surface cracks under bending

  3. Microstructure Evolution and Mechanical Properties of Underwater Dry and Local Dry Cavity Welded Joints of 690 MPa Grade High Strength Steel.

    Science.gov (United States)

    Shi, Yonghua; Sun, Kun; Cui, Shuwan; Zeng, Min; Yi, Jianglong; Shen, Xiaoqin; Yi, Yaoyong

    2018-01-22

    Q690E high strength low alloy (HSLA) steel plays an important role in offshore structures. In addition, underwater local cavity welding (ULCW) technique was widely used to repair important offshore constructions. However, the high cooling rate of ULCW joints results in bad welding quality compared with underwater dry welding (UDW) joints. Q690E high strength low alloy steels were welded by multi-pass UDW and ULCW techniques, to study the microstructural evolution and mechanical properties of underwater welded joints. The microstructure and fracture morphology of welded joints were observed by scanning electron microscope and optical microscope. The elemental distribution in the microstructure was determined with an Electron Probe Microanalyzer. The results indicated that the microstructure of both two welded joints was similar. However, martensite and martensite-austenite components were significantly different with different underwater welding methods such that the micro-hardness of the HAZ and FZ in the ULCW specimen was higher than that of the corresponding regions in UDW joint. The yield strength and ultimate tensile strength of the ULCW specimen are 109 MPa lower and 77 MPa lower, respectively, than those of the UDW joint. The impact toughness of the UDW joint was superior to those of the ULCW joint.

  4. Microstructure Evolution and Mechanical Properties of Underwater Dry and Local Dry Cavity Welded Joints of 690 MPa Grade High Strength Steel

    Science.gov (United States)

    Sun, Kun; Cui, Shuwan; Zeng, Min; Yi, Jianglong; Shen, Xiaoqin; Yi, Yaoyong

    2018-01-01

    Q690E high strength low alloy (HSLA) steel plays an important role in offshore structures. In addition, underwater local cavity welding (ULCW) technique was widely used to repair important offshore constructions. However, the high cooling rate of ULCW joints results in bad welding quality compared with underwater dry welding (UDW) joints. Q690E high strength low alloy steels were welded by multi-pass UDW and ULCW techniques, to study the microstructural evolution and mechanical properties of underwater welded joints. The microstructure and fracture morphology of welded joints were observed by scanning electron microscope and optical microscope. The elemental distribution in the microstructure was determined with an Electron Probe Microanalyzer. The results indicated that the microstructure of both two welded joints was similar. However, martensite and martensite-austenite components were significantly different with different underwater welding methods such that the micro-hardness of the HAZ and FZ in the ULCW specimen was higher than that of the corresponding regions in UDW joint. The yield strength and ultimate tensile strength of the ULCW specimen are 109 MPa lower and 77 MPa lower, respectively, than those of the UDW joint. The impact toughness of the UDW joint was superior to those of the ULCW joint. PMID:29361743

  5. Investigation on dissimilar laser welding of advanced high strength steel sheets for the automotive industry

    Energy Technology Data Exchange (ETDEWEB)

    Rossini, M., E-mail: matteo.rossini@unibz.it [Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano (Italy); Spena, P. Russo, E-mail: pasquale.russospena@unibz.it [Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano (Italy); Cortese, L., E-mail: luca.cortese@unibz.it [Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano (Italy); Matteis, P., E-mail: paolo.matteis@polito.it [Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy); Firrao, D., E-mail: donato.firrao@polito.it [Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy)

    2015-03-25

    To support the use of advanced high strength steels in car body design and fabrication, an investigation was carried out on dissimilar butt laser welding between TWinning Induced Plasticity (TWIP) steels, Dual Phase (DP) steels, hot stamping boron (22MnB5) steels, and TRansformation Induced Plasticity (TRIP) steels. The base materials and the weldments were fully characterized by means of metallography, microhardness, and tensile tests. Digital image analysis was also used to provide additional information on the local strain field in the joint during the tensile tests. Fractographic examination was finally performed on the fracture surfaces of the tensile samples. The dissimilar joints between the DP, 22MnB5, and TRIP steels exhibit good resistance properties. On the contrary, the dissimilar joints encompassing the TWIP steel exhibit poor mechanical strength and fail along the weld seam by intergranular fracture, probably due to presence of Mn segregations. Therefore, the laser welding of TWIP steel with other advanced high strength steels is not recommended without the use of proper metal fillers. Dissimilar laser welding of DP, TRIP and 22MnB5 combinations, on the contrary, can be a solution to assemble car body parts made of these steel grades.

  6. Properties of Galvanized and Galvannealed Advanced High Strength Hot Rolled Steels

    Energy Technology Data Exchange (ETDEWEB)

    V.Y. Guertsman; E. Essadiqi; S. Dionne; O. Dremmailova; R. Bouchard; B. Voyzelle; J. McDermid; R. Fourmentin

    2008-04-01

    The objectives of the project were (i) to develop the coating process information to achieve good quality coatings on 3 advanced high strength hot rolled steels while retaining target mechanical properties, (ii) to obtain precise knowledge of the behavior of these steels in the various forming operations and (iii) to establish accurate user property data in the coated conditions. Three steel substrates (HSLA, DP, TRIP) with compositions providing yield strengths in the range of 400-620 MPa were selected. Only HSLA steel was found to be suitable for galnaizing and galvannealing in the hot rolled condition.

  7. Effects of LWR coolant environments on fatigue design curves of carbon and low-alloy steels

    International Nuclear Information System (INIS)

    Chopra, O.K.; Shack, W.J.

    1998-03-01

    The ASME Boiler and Pressure Vessel Code provides rules for the construction of nuclear power plant components. Figures I-9.1 through I-9.6 of Appendix I to Section III of the code specify fatigue design curves for structural materials. While effects of reactor coolant environments are not explicitly addressed by the design curves, test data indicate that the Code fatigue curves may not always be adequate in coolant environments. This report summarizes work performed by Argonne National Laboratory on fatigue of carbon and low-alloy steels in light water reactor (LWR) environments. The existing fatigue S-N data have been evaluated to establish the effects of various material and loading variables such as steel type, dissolved oxygen level, strain range, strain rate, temperature, orientation, and sulfur content on the fatigue life of these steels. Statistical models have been developed for estimating the fatigue S-N curves as a function of material, loading, and environmental variables. The results have been used to estimate the probability of fatigue cracking of reactor components. The different methods for incorporating the effects of LWR coolant environments on the ASME Code fatigue design curves are presented

  8. Threshold velocity for environmentally-assisted cracking in low alloy steels

    International Nuclear Information System (INIS)

    Wire, G.L.; Kandra, J.T.

    1997-01-01

    Environmentally Assisted Cracking (EAC) in low alloy steels is generally believed to be activated by dissolution of MnS inclusions at the crack tip in high temperature LWR environments. EAC is the increase of fatigue crack growth rate of up to 40 to 100 times the rate in air that occurs in high temperature LWR environments. A steady state theory developed by Combrade, suggested that EAC will initiate only above a critical crack velocity and cease below this same velocity. A range of about twenty in critical crack tip velocities was invoked by Combrade, et al., to describe data available at that time. This range was attributed to exposure of additional sulfides above and below the crack plane. However, direct measurements of exposed sulfide densities on cracked specimens were performed herein and the results rule out significant additional sulfide exposure as a plausible explanation. Alternatively, it is proposed herein that localized EAC starting at large sulfide clusters reduces the calculated threshold velocity from the value predicted for a uniform distribution of sulfides. Calculations are compared with experimental results where the threshold velocity has been measured, and the predicted wide range of threshold values for steels of similar sulfur content but varying sulfide morphology is observed. The threshold velocity decreases with the increasing maximum sulfide particle size, qualitatively consistent with the theory. The calculation provides a basis for a conservative minimum velocity threshold tied directly to the steel sulfur level, in cases where no details of sulfide distribution are known

  9. An investigation on fatigue in high-strength steel offshore structures

    DEFF Research Database (Denmark)

    Agerskov, Henning; Petersen, R.I.; Martinez, L. Lopez

    1998-01-01

    of the investigation, fatigue test series were carried out on both full scale tubular joints and smaller welded plate test specimens in high-strength steel as well as in conventional offshore structural steel. This paper gives a summary of the main results presented in two recent research reports [15, 16], from...... these investigations. A comparison between constant amplitude and variable amplitude fatigue test results shows shorter fatigue lives in variable amplitude loading than should be expected from the linear fatigue damage accumulation formula.Furthermore, in general longer fatigue lives were obtained for the test...... specimens in high-strength steel than those obtained in corresponding tests on joints in conventional offshore structural steel....

  10. An Investigation on Fatigue in High-Strength Steel Offshore Structures

    DEFF Research Database (Denmark)

    Agerskov, Henning; Petersen, R.I.; Lopez Martinez, L.

    1997-01-01

    . In the experimental part of the investigation, fatigue test series have been carried through on both full-scale tubular joints and smaller welded plate test specimens, in high-strength steel as well as in conventional offshore structural steel. The present document gives a summary of the main results presented in two...... recent research reports, Refs. 15 and 16, from these investigations.A comparison between constant amplitude and variable amplitude fatigue test results shows shorter fatigue lives in variable amplitude loading than should be expected from the linear fatigue damage accumulation formula. Furthermore......, in general longer fatigue lives were obtained for the test specimens in high-strength steel than those obtained in corresponding tests on joints in conventional offshore structural steel....

  11. Effect of microstructure on the impact toughness of high strength steels

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez, I.

    2014-07-01

    One of the major challenges in the development of new steel grades is to get increasingly high strength combined with a low ductile brittle transition temperature and a high upper shelf energy. This requires the appropriate microstructural design. Toughness in steels is controlled by different microstructural constituents. Some of them, like inclusions, are intrinsic while others happening at different microstructural scales relate to processing conditions. A series of empirical equations express the transition temperature as a sum of contributions from substitutional solutes, free nitrogen, carbides, pearlite, grain size and eventually precipitation strengthening. Aimed at developing a methodology that could be applied to high strength steels, microstructures with a selected degree of complexity were produced at laboratory in a Nb-microalloyed steel. As a result a model has been developed that consistently predicts the Charpy curves for ferrite-pearlite, bainitic and quenched and tempered microstructures using as input data microstructural parameters. This model becomes a good tool for microstructural design. (Author)

  12. Forming of High-strength Steels Using a Hot-melt Dry Lubricant

    DEFF Research Database (Denmark)

    Hörnström, Sven-Erik; Karlsson, Erik; Olsson, Mikael

    2008-01-01

    during forming resulting in seizure of the tool/steel sheet contact and extensive scratching of the steel sheet surface. As a result, a number of concepts have been developed in order to reduce the tendency to galling in metal forming, including the development of new dry lubricants, new forming tool...... steel grades and improved surface engineering treatments such as the deposition of low friction CVD and PVD coatings. In the present study the performance of a hot-melt dry lubricant in the forming of hot and cold rolled and hot-dip galvanized high strength steel has been evaluated and compared...... with a conventional rust protection oil using four different tests methods, i.e. a strip reduction test, a bending under tension test, a stretch-forming test and a pin-on disc test. In the tests, two different cold work tool steels, a conventional steel grade and a nitrogen alloyed PM steel grade were evaluated...

  13. Development of Ferrium S53 High-Strength, Corrosion-Resistant Steel

    Science.gov (United States)

    2009-01-01

    or any other high-strength steel. No special tools or grinding wheels are required. The only significant differences with S53 are  Machining... runout point and ** point) Fit for 4330 in Air (w/o runout points) Fit for S53 in Salt Fit for 300M in Salt Fit for 4330 in Salt MIL HNBK 5 for 300M in

  14. Defect enhanced diffusion process and hydrogen delayed fracture in high strength steels

    International Nuclear Information System (INIS)

    Lung, C.W.; Mu Zaiqin.

    1985-10-01

    A defect enhanced diffusion model for hydrogen delayed fracture in high strength steels is suggested. It is shown that the rate of crack growth is dependent on the square or higher power of the stress intensity factor which is consistent with recent experiments. (author)

  15. Fatigue strength of repaired cracks in welded connections made of very high strength steels

    NARCIS (Netherlands)

    Akyel, A.

    2017-01-01

    For cyclically loaded structures, fatigue design becomes one of the important design criteria. The state of art shows that with modification of the conventional structural design methodology, the use of very high strength steels may have a positive effect on fatigue strength of welded connections.

  16. Evaluation of the Precipitation Behavior in SA508 Gr. 4N Low Alloy Steel Using a Thermodynamic Calculation

    International Nuclear Information System (INIS)

    Park, Sang Gyu; Wee, Dang Moon; Kim, Min Chul; Lee, Bong Sang

    2007-01-01

    Low carbon low alloy steels, used as nuclear pressure vessels, steam generators and so on, hold a large portion of materials for nuclear power plants, and they are very important materials since they determine the safety and the life span of nuclear power plants. In addition, they are utilized for a long period under very severe conditions such as a high pressure, high temperature, neutron irradiation and corrosion, so they need a good combination of strength and toughness, a good weldability and an excellent neutron irradiation resistance and so on. SA508 Gr.3 steel shows the upper bainite microstructure, which is a less tough, so the steel is more difficult to obtain good toughness than to have good strength. And then, if a loss of toughness due to a neutron irradiation during service is considered, above all improving the toughness is important when a pressure vessel is fabricated It is known that a higher strength and fracture toughness of low alloy steels could be achieved by increasing the Ni and Cr contents. In this study, we have performed a thermodynamic calculation based on the microstructure of SA508 Gr.4N low alloy steel which has higher Ni and Cr contents than SA508 Gr.3 low alloy steel. Based on the microstructure/property relations obtained from literature research experimental works on SA508 Gr.4N steels, and by predicting the constitutional changes with alloying elements (such as Mn, Cr) during individual steps of a steel making process a using thermodynamic calculation, fundamental information for an alloy design have been discussed

  17. Irradiation damage behavior of low alloy steel wrought and weld materials

    International Nuclear Information System (INIS)

    Stofanak, R.J.; Poskie, T.J.; Li, Y.Y.; Wire, G.L.

    1993-01-01

    A study was undertaken to evaluate the irradiation damage response of several different types of low alloy steel: vintage type ASTM A302 Grade B (A302B) plates and welds containing different Ni and Cu concentrations, 3.5% Ni steels similar to ASTM A508 Class 4, welds containing about 1% Ni (similar to type 105S), and 3.5% Ni steels with ''superclean'' composition. All materials were irradiated at several different irradiation damage levels ranging from 0.0003 to 0.06 dpa at 232C (450F). Complete Charpy V-notch impact energy transition temperature curves were generated for all materials before and after irradiation to determine transition temperature at 4IJ (30 ft-lb) or 47J (35 ft-lb) and the upper shelf energy. Irradiation damage behavior was measured by shift in Charpy 41J or 47J transition temperature (ΔTT4 41J or ΔTT 47J ) and lowering of upper shelf Charpy energy at a given irradiation damage level. It was found that chemical composition greatly influenced irradiation damage behavior; highest irradiation damage (greatest ΔTT) was found in an A302B type weld containing 1.28% Ni and 0.20% Cu while the least damage was found in 3.5% Ni, 0.05% Cu, superclean wrought materials. Combination of Ni and Cu was found to affect irradiation damage behavior at higher irradiation damage levels in the A302B welds where the 1.28% Ni, 0.20% Cu weld showed more damage than a 0.60% Ni, 0.31% Cu weld. For the 3.5% Ni steels, fabrication influenced irradiation behavior in that a silicon (Si) killed material showed greater irradiation damage than a low silicon material. In general, the 3.5% Ni materials with low copper showed less irradiation damage than the A302B materials

  18. Cessation of environmentally-assisted cracking in a low-alloy steel: Theoretical analysis

    International Nuclear Information System (INIS)

    Wire, G.L.

    1997-01-01

    Environmentally Assisted Cracking (EAC) can cause increases in fatigue crack growth rates of 40 to 100 times the rate in air for low alloy steels. The increased rates can lead to very large predicted crack growth. EAC is activated by a critical level of dissolved sulfides at the crack tip. Sulfide inclusions (MnS) in the steel produce corrosive sulfides in solution following exposure by a growing crack. In stagnant, low oxygen water conditions considered here, diffusion is the dominant mass transport mechanism acting to change the sulfide concentration within the crack. The average crack tip velocity is below the level required to produce the critical crack tip sulfide ion concentration required for EAC. Crack extension analyses also consider the breakthrough of large, hypothetical embedded defects with the attendant large freshly exposed sulfide inventory. Combrade et al. noted that a large inventory of undissolved metallurgical sulfides on crack flanks could trigger EAC, but did not quantify the effects. Diffusion analysis is extended herein to cover breakthrough of embedded defects with large sulfide inventories. The mass transport via diffusion is limited by the sulfide solubility. As a result, deep cracks in high sulfur steels are predicted to retain undissolved sulfides for extended but finite periods of time t diss which increase with the crack length and the metallurgical sulfide content in the steel. The analysis shows that the duration of EAC is limited to t diss providing V eac , the crack tip velocity associated with EAC is less than V In , the crack tip velocity below which EAC will not occur in an initially sulfide free crack. This condition on V eac need only be met for a short time following crack cleanup to turn off EAC. The predicted crack extension due to limited duration of EAC is a small fraction of the initial embedded defect size and would not greatly change calculated crack depths

  19. Modification of Low-Alloy Steel Surface by High-Temperature Gas Nitriding Plus Tempering

    Science.gov (United States)

    Jiao, Dongling; Li, Minsong; Ding, Hongzhen; Qiu, Wanqi; Luo, Chengping

    2018-02-01

    The low-alloy steel was nitrided in a pure NH3 gas atmosphere at 640 660 °C for 2 h, i.e., high-temperature gas nitriding (HTGN), followed by tempering at 225 °C, which can produce a high property surface coating without brittle compound (white) layer. The steel was also plasma nitriding for comparison. The composition, microstructure and microhardness of the nitrided and tempered specimens were examined, and their tribological behavior investigated. The results showed that the as-gas-nitrided layer consisted of a white layer composed of FeN0.095 phase (nitrided austenite) and a diffusional zone underneath the white layer. After tempering, the white layer was decomposed to a nano-sized (α-Fe + γ'-Fe4N + retained austenite) bainitic microstructure with a high hardness of 1150HV/25 g. Wear test results showed that the wear resistance and wear coefficient yielded by the complex HTGN plus tempering were considerably higher and lower, respectively, than those produced by the conventional plasma nitriding.

  20. The mechanical stability of retained austenite in low-alloyed TRIP steel under shear loading

    Energy Technology Data Exchange (ETDEWEB)

    Blondé, R., E-mail: r.j.p.blonde@tudelft.nl [Fundamental Aspects of Materials and Energy, Faculty of Applied Sciences, Delft University of Technology, Mekelweg 15, 2629 JB Delft (Netherlands); Materials Innovation Institute, Mekelweg 2, 2628 CD Delft (Netherlands); Jimenez-Melero, E., E-mail: enrique.jimenez-melero@manchester.ac.uk [Dalton Cumbrian Facility, The University of Manchester, Westlakes Science and Technology Park, Moor Row, Cumbria CA24 3HA (United Kingdom); Zhao, L., E-mail: lie.zhao@tudelft.nl [Materials Innovation Institute, Mekelweg 2, 2628 CD Delft (Netherlands); Department of Materials Science and Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft (Netherlands); Schell, N., E-mail: norbert.schell@hzg.de [Institute of Materials Research, Helmholtz-Zentrum Geesthacht, Max Planck Strasse 1, 21502 Geesthacht (Germany); Brück, E., E-mail: e.h.bruck@tudelft.nl [Fundamental Aspects of Materials and Energy, Faculty of Applied Sciences, Delft University of Technology, Mekelweg 15, 2629 JB Delft (Netherlands); Zwaag, S. van der, E-mail: s.vanderzwaag@tudelft.nl [Novel Aerospace Materials Group, Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, 2629 HS Delft (Netherlands); Dijk, N.H. van, E-mail: n.h.vandijk@tudelft.nl [Fundamental Aspects of Materials and Energy, Faculty of Applied Sciences, Delft University of Technology, Mekelweg 15, 2629 JB Delft (Netherlands)

    2014-01-31

    The microstructure evolution during shear loading of a low-alloyed TRIP steel with different amounts of the metastable austenite phase and its equivalent DP grade has been studied by in-situ high-energy X-ray diffraction. A detailed powder diffraction analysis has been performed to probe the austenite-to-martensite transformation by characterizing simultaneously the evolution of the austenite phase fraction and its carbon concentration, the load partitioning between the austenite and the ferritic matrix and the texture evolution of the constituent phases. Our results show that for shear deformation the TRIP effect extends over a significantly wider deformation range than for simple uniaxial loading. A clear increase in average carbon content during the mechanically-induced transformation indicates that austenite grains with a low carbon concentration are least stable during shear loading. The observed texture evolution indicates that under shear loading the orientation dependence of the austenite stability is relatively weak, while it has previously been found that under tensile load the {110}〈001〉 component transforms preferentially. The mechanical stability of retained austenite in TRIP steel is found to be a complex interplay between the interstitial carbon concentration in the austenite, the grain orientation and the load partitioning.

  1. Factors affecting the grain growth of austenite in low alloy steel

    International Nuclear Information System (INIS)

    Parker, J.D.; Storer, S.M.

    1995-01-01

    The performance of steels is linked to the metallurgical transformations which occur during manufacture. Clearly then the optimization of a fabrication procedure must be based on fundamental relationships linking specific thermal treatments with transformation behaviour. Optimized manufacture of thick-section, multipass welds is therefore particularly complex since the thermal cycles associated with fusion welding result in the formation of heterogeneous microstructures. Moreover, these transformations will take place under rapid heating and cooling conditions so that standard data based on equilibrium behaviour may not be directly relevant. The present study is part of an integrated research programme aimed at establishing the basic microstructural relationships required to optimize the manufacture and performance of weldments. Work to date demonstrates that utilization of a computer controlled Gleeble simulation system allows a wider range of heating and cooling rates to be applied than is possible with traditional heat treatment techniques. Additional advantages of this system include precise control of time at peak temperature and uniform temperatures within a defined work zone. Results presented for a CrMoV creep resistant low alloy steel indicate that grain growth behaviour in the range 955-1390 C can be related to the time at peak temperature. The effect of this transformation behaviour on weldment behaviour is discussed. (orig.)

  2. Microstructure Characterization and Corrosion Properties of Nitrocarburized AISI 4140 Low Alloy Steel

    Science.gov (United States)

    Fattah, M.; Mahboubi, F.

    2012-04-01

    Plasma nitrocarburizing treatments of AISI 4140 low alloy steel have been carried out in a gas mixture of 85% N2-12% H2-3% CO2. All treatments were performed for 5 h at a chamber pressure of 4 mbar. Different treatment temperatures varying from 520 to 620 °C have been used to investigate the effect of treatment temperature on the corrosion and hardness properties and also microstructure of the plasma nitrocarburized steel. Scanning electron and optical microscopy, x-ray diffraction, microhardness measurement, and potentiodynamic polarization technique in 3.5% NaCl solution were used to study the treated surfaces. The results revealed that plasma nitrocarburizing at temperatures below 570 °C can readily produce a monophase ɛ compound layer. The compound layer formed at 620 °C is composed of two sub-layers and is supported by an austenite zone followed by the diffusion layer. The thickest diffusion layer was related to the sample treated at 620 °C. Microhardness results showed a reduction of surface hardness with increasing the treatment temperature from 520 to 620 °C. It has also been found that with increasing treatment temperature from 520 to 545 °C the corrosion resistance increases up to a maximum and then decreases with further increasing treatment temperature from 545 to 620 °C.

  3. Topical problems of crackability in weld annealing of low-alloyed pressure vessel steels

    International Nuclear Information System (INIS)

    Holy, M.

    1977-01-01

    The following method was developed for determining annealing crackability: A sharp notch was made in the middle of the bodies of rods imitated in a welding simulator. Chucking heads were modified such as to permit chucking a rod in an austenitic block by securing the nut. Prestress was controlled by button-headed screw adapters. The blocks were made of 4 types of austenitic steels with graded thermal expansivity coefficients, all higher than that of the tested low-alloyed steel rod. The blocks with rods were placed in a furnace and heated at a rate of 100 degC/h. As a result of the larger austenite block diameter the rod began to be stretched and at some temperature of more than 500 degC it was pulled apart. The risk of annealing crackability of welded joints may be reduced by the choice of material and melt and by the technology of welding, mainly by the choice of a suitable addition material in whose weld metal the plastic deformation preferably takes place in annealing. (J.P.)

  4. Parameters of straining-induced corrosion cracking in low-alloy steels in high temperature water

    International Nuclear Information System (INIS)

    Lenz, E.; Liebert, A.; Stellwag, B.; Wieling, N.

    Tensile tests with slow deformation speed determine parameters of corrosion cracking at low strain rates of low-alloy steels in high-temperature water. Besides the strain rate the temperature and oxygen content of the water prove to be important for the deformation behaviour of the investigated steels 17MnMoV64, 20 MnMoNi55 and 15NiCuMoNb 5. Temperatures about 240 0 C, increased oxygen contents in the water and low strain rates cause a decrease of the material ductility as against the behaviour in air. Tests on the number of stress cycles until incipient cracking show that the parameters important for corrosion cracking at low strain velocities apply also to low-frequency cyclic loads with high strain amplitude. In knowledge of these influencing parameters the strain-induced corrosion cracking is counteracted by concerted measures taken in design, construction and operation of nuclear power stations. Essential aims in this matter are to avoid as far as possible inelastic strains and to fix and control suitable media conditions. (orig.) [de

  5. Effect of copper precipitates on the toughness of low alloy steels for pressure boundary components

    International Nuclear Information System (INIS)

    Foehl, J.; Willer, D.; Katerbau, K.H.

    2004-01-01

    The ferritic bainitic steel 15NiCuMoNb5 (WB 36)is widely used for pressure boundary components. Due to the high copper content which leads to precipitation hardening high strength and toughness are characteristic for this type of steel. However, in the initial state, there is still a high amount of dissolved copper in an oversaturated state which makes the steel susceptible to thermal ageing. Ageing and annealing experiments were performed, and the change in microstructure was investigated by small angle neutron scattering (SANS), measurements of the residual electric resistance and hardness measurements. A correlation between micro structural changes and changes in mechanical properties could be established. It could clearly be shown that significant effects on strength and toughness have to be considered when the size of the copper rich precipitates vary in the range from 1.2 to 2.2 nm in radius. The changes in microstructure affect both, the Carpy impact transition temperature and the fracture toughness qualitatively and quantitatively in a similar way. The investigations have contributed to a better understanding of precipitation hardening by copper not only for this type of steel but also for copper containing steels and weld subjected to neutron irradiation. (orig.)

  6. Comparison of Post Weld Treatment of High Strength Steel Welded Joints in Medium Cycle Fatigue

    DEFF Research Database (Denmark)

    Pedersen, Mikkel Melters; Mouritsen, Ole Ø.; Hansen, Michael Rygaard

    2010-01-01

    This paper presents a comparison of three post-weld treatments for fatigue life improvement of welded joints. The objective is to determine the most suitable post-weld treatment for implementation in mass production of certain crane components manufactured from very high-strength steel...... the stress range can exceed the yield-strength of ordinary structural steel, especially when considering positive stress ratios (R > 0). Fatigue experiments and qualitative evaluation of the different post-weld treatments leads to the selection of TIG dressing. The process of implementing TIG dressing...... in mass production and some inherent initial problems are discussed. The treatment of a few critical welds leads to a significant increase in fatigue performance of the entire structure and the possibility for better utilization of very high-strength steel....

  7. Influence of laser cutting on the fatigue limit of two high strength steels

    International Nuclear Information System (INIS)

    Mateo, Antonio; Fargas, Gemma; Calvo, Jessica; Roa, Joan Josep

    2015-01-01

    Laser cutting is widely used in the metal industry, particularly when components of high strength steel sheets are produced. However, the roughness of cut edges produced by laser differs from that obtained by other methods, such as mechanical blanking, and this fact influences the fatigue performance. In the present investigation, specimens of two grades of high strength austenitic steels, i.e. AISI 301LN and TWIP17Mn, were cut by laser and tested in the high cycle fatigue regime to determine their corresponding fatigue limits. A series of fatigue specimens were tested without polishing and other series after a careful polishing of the cut edges, in order to assess the influence of the cut edges condition. Results indicate a significant influence of the edge roughness, more distinctive for AISI 301LN than for TWIP steel.

  8. Influence of laser cutting on the fatigue limit of two high strength steels

    Energy Technology Data Exchange (ETDEWEB)

    Mateo, Antonio; Fargas, Gemma; Calvo, Jessica; Roa, Joan Josep [Univ. Politecnica de Catalunya, Barcelona (Spain). Dept. of Materials Science and Metallurgical Engineering

    2015-02-01

    Laser cutting is widely used in the metal industry, particularly when components of high strength steel sheets are produced. However, the roughness of cut edges produced by laser differs from that obtained by other methods, such as mechanical blanking, and this fact influences the fatigue performance. In the present investigation, specimens of two grades of high strength austenitic steels, i.e. AISI 301LN and TWIP17Mn, were cut by laser and tested in the high cycle fatigue regime to determine their corresponding fatigue limits. A series of fatigue specimens were tested without polishing and other series after a careful polishing of the cut edges, in order to assess the influence of the cut edges condition. Results indicate a significant influence of the edge roughness, more distinctive for AISI 301LN than for TWIP steel.

  9. The risk of hydrogen embrittlement in high-strength prestressing steels under cathodic protection

    Energy Technology Data Exchange (ETDEWEB)

    Isecke, B.; Mietz, J. (Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin (Germany))

    1993-01-01

    High strength prestressing steels in prestressed concrete structures are protected against corrosion due to passivation resulting from the high alkalinity of the concrete. If depassivation of the prestressing steel occurs due to the ingress of chlorides the corrosion risk can be minimized by application of cathodic protection with impressed current. The risk of hydrogen embrittlement of the prestressing steel is especially pronounced if overprotection is applied due to hydrogen evolution in the cathodic reaction. The present work considers this risk by hydrogen activity measurements under practical conditions and application of different levels of cathodic protection potentials. Information on threshold potentials in prestressed concrete structures is provided, too. (orig.).

  10. Fatigue testing of weldable high strength steels under simulated service conditions

    Science.gov (United States)

    Tantbirojn, Natee

    There have been concerns over the effect of Cathodic Protection (CP) on weldable high strength steels employed in Jack-up production platform. The guidance provided by the Department of Energy HSE on higher strength steels, based on previous work, was to avoid overprotection as this could cause hydrogen embrittlement. However, the tests conducted so far at UCL for the SE702 type high strength steels (yields strength around 690 MPa) have shown that the effect of over protection on high strength steels may not be as severe as previously thought. For this thesis, SE702 high strength steels have been investigated in more detail. Thick (85mm) parent and ground welded plates were tested under constant amplitude in air and seawater with CP. Tests were also conducted on Thick (40mm) T-butt welded plates under variable amplitude loading in air and seawater with two CP levels (-800mV and -1050mV). Different backing materials (ceramic and metallic) for the welding process of the T-butt plates were also investigated. The variable amplitude sequences employed were generated using the Jack-up Offshore Standard load History (JOSH). The fatigue results are presented as crack growth and S/N curves. They were compared to the conventional offshore steel (BS 4360 50D). The results suggested that the fatigue life of the high strength steels was comparable to the BS 4360 50D steels. The effect of increasing the CP was found to be detrimental to the fatigue life but the effect was not large. The effect of CP was less noticeable in T-butt welded plates. However, in general, the effect of overprotection is not as detrimental to the Jack-up steels as previously thought. The load histories generated by JOSH were found to have some unfavourable characteristics. The framework is based on Markov Chain method and pseudo-random number generator for selecting sea-states. A study was carried out on the sequence generated by JOSH. The generated sequences were analysed for their validity for fatigue

  11. Effect of effective grain size on Charpy impact properties of high-strength bainitic steels

    International Nuclear Information System (INIS)

    Shin, Sang Yong; Han, Seung Youb; Lee, Sung Hak; Hwang, Byoung Chul; Lee, Chang Gil

    2008-01-01

    This study is concerned with the effect of Cu and B addition on microstructure and mechanical properties of high-strength bainitic steels. Six kinds of steels were fabricated by varying alloying elements and hot-rolling conditions, and their microstructures and tensile and Charpy impact properties were investigated. Their effective grain sizes were also characterized by the electron back-scatter diffraction analysis. The tensile test results indicated that the B- or Cu-containing steels had the higher yield and tensile strengths than the B- or Cu-free steels because their volume fractions of bainitic ferrite and martensite were quite high. The B- or Cu-free steels had the higher upper shelf energy than the B- or Cu-containing steels because of their higher volume fraction of granular bainite. In the steel containing 10 ppm B without Cu, the best combination of high strengths, high upper shelf energy, and low energy transition temperature could be obtained by the decrease in the overall effective grain size due to the presence of bainitic ferrite having smaller effective grain size

  12. Effects of cathodic protection on cracking of high-strength pipeline steels

    Energy Technology Data Exchange (ETDEWEB)

    Elboujdaini, M.; Revie, R. W.; Attard, M. [CANMET Materials Technology Laboratory, Ottawa, ON(Canada)], email: melboujd@nrcan.gc.ca

    2010-07-01

    Four strength levels of pipeline steels, ranging from X-70 to X-120, were compared to determine whether higher strength materials are more susceptible to hydrogen embrittlement under cathodic protection. Ductility was measured in a solution at four protection levels, going from no cathodic protection to 500 mV of overprotection. All four steels showed loss of ductility under cathodic protection. Under cathodic polarization, the loss of ductility increased with the strength of the steel and the activity of the potential. After slow-strain-rate experiments conducted in air and examination of fracture surfaces, it is concluded that application of cathodic potentials, cathodic overprotection, higher strength of steel, and exposure to aqueous solution are factors that decrease the ductility of steel. Hydrogen reduction seems to be an important factor in ductility reduction and fractures. Observations suggest that high-strength pipelines need better control of cathodic protection than lower-strength pipelines.

  13. Application and validation of the notch master curve in medium and high strength structural steels

    Energy Technology Data Exchange (ETDEWEB)

    Cicero, Sergio; Garcia, Tiberio [Universidad de Cantabria, Santander (Spain); Madrazo, Virginia [PCTCAN, Santander (Spain)

    2015-10-15

    This paper applies and validates the Notch master curve in two ferritic steels with medium (steel S460M) and high (steel S690Q) strength. The Notch master curve is an engineering tool that allows the fracture resistance of notched ferritic steels operating within their corresponding ductile-to-brittle transition zone to be estimated. It combines the Master curve and the Theory of critical distances in order to take into account the temperature and the notch effect respectively, assuming that both effects are independent. The results, derived from 168 fracture tests on notched specimens, demonstrate the capability of the Notch master curve for the prediction of the fracture resistance of medium and high strength ferritic steels operating within their ductile-to-brittle transition zone and containing notches.

  14. TIG-dressing of High Strength Steel Butt Welded Connections. Part 1 : Weld Toe Geometry and Local Hardness

    NARCIS (Netherlands)

    Van Es, S.H.J.; Kolstein, M.H.; Pijpers, R.J.M.; Bijlaard, F.S.K.

    2014-01-01

    This paper presents the results of extensive measurements on weld toe geometry of as-welded and TIG-dressed butt welded connections in high strength steels S460, S690 and very high strength steels S890 and S1100. Descriptions of the measurement techniques and data analysis are presented. Four weld

  15. TIG-dressing of high strength steel butt welded connections - Part 1: weld toe geometry and local hardness

    NARCIS (Netherlands)

    Es, S.H.J. van; Kolstein, M.H.; Pijpers, R.J.M.; Bijlaard, F.S.K.

    2013-01-01

    This paper presents the results of extensive measurements on weld toe geometry of as-welded and TIG-dressed butt welded connections in high strength steels S460, S690 and very high strength steels S890 and S1100. Descriptions of the measurement techniques and data analysis are presented. Four weld

  16. Properties of Fresh and Hardened High Strength Steel Fibres Reinforced Self-Compacted Concrete

    Directory of Open Access Journals (Sweden)

    Saad Ali Al-Ta'an

    2016-10-01

    Full Text Available Fresh and hardened properties of high strength steel fibrous self-compacted concrete were studied in this investigation. One reference high strength self-compacted concrete mix is used, with five percent (by weight of cement silica fume and eight percent of the cement replaced by limestone powder. Three steel fibres percentages by volume of concrete are used (0.4, 0.8, and 1.2. The used steel fibres were a shelled Harex type with irregular cross-section, equivalent diameter of 0.9278 mm, and 32 mm long. Super plasticizer was used to improve the workability and flow ability of the mixes. The test results showed that the presence of steel fibres decrease the flow ability, and increase the time of spreading, segregation, and passing ability of the fresh concrete. For the fibres percentages used, the fresh properties were within the recommended specifications for the self-compacted concrete. The test results showed an early strength development rate more than that for plain normal concrete due to the presence of the fine materials. As for normal concrete, the test results showed also that the increase in the splitting strength is more than the increase in the compressive strength due to the presence of the steel fibres. The brittle mode of failure of the plain unreinforced specimens changed to a ductile one due to the presence of the steel fibres.

  17. The Study on Environmental Fatigue Behavior of Low Alloy Steel and Stainless Steel Pipes Using the Simplified Plant Transients

    International Nuclear Information System (INIS)

    Yoo, One; Song, M. S.; Kim, I. Y.; Park, S. H.; Lee, B. S.

    2010-01-01

    Nuclear components categorized as ASME Code Class 1 shall be evaluated for the fatigue and satisfy the fatigue acceptance criteria, CUF(cumulative usage factor) < 1 in accordance with ASME Code. However, recent studies have shown the fatigue evaluation procedure may not give conservative results when the components operate in the water environment. NRC issued Regulatory Guide 1.207 which enforces the new fatigue evaluation method or Fen(environmental fatigue correction factor) method to nuclear plants to be newly constructed. This paper describes the characteristics of the behavior of low alloy and austenitic stainless steel straight pipe related to environmental fatigue, which are obtained by using the method suggested by Regulatory Guide 1.207 and simplified plant transients

  18. Effect of welding process on the microstructure and properties of dissimilar weld joints between low alloy steel and duplex stainless steel

    Science.gov (United States)

    Wang, Jing; Lu, Min-xu; Zhang, Lei; Chang, Wei; Xu, Li-ning; Hu, Li-hua

    2012-06-01

    To obtain high-quality dissimilar weld joints, the processes of metal inert gas (MIG) welding and tungsten inert gas (TIG) welding for duplex stainless steel (DSS) and low alloy steel were compared in this paper. The microstructure and corrosion morphology of dissimilar weld joints were observed by scanning electron microscopy (SEM); the chemical compositions in different zones were detected by energy-dispersive spectroscopy (EDS); the mechanical properties were measured by microhardness test, tensile test, and impact test; the corrosion behavior was evaluated by polarization curves. Obvious concentration gradients of Ni and Cr exist between the fusion boundary and the type II boundary, where the hardness is much higher. The impact toughness of weld metal by MIG welding is higher than that by TIG welding. The corrosion current density of TIG weld metal is higher than that of MIG weld metal in a 3.5wt% NaCl solution. Galvanic corrosion happens between low alloy steel and weld metal, revealing the weakness of low alloy steel in industrial service. The quality of joints produced by MIG welding is better than that by TIG welding in mechanical performance and corrosion resistance. MIG welding with the filler metal ER2009 is the suitable welding process for dissimilar metals jointing between UNS S31803 duplex stainless steel and low alloy steel in practical application.

  19. Environmentally-Assisted Cracking of Low-Alloy Reactor Pressure Vessel Steels under Boiling Water Reactor Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Seifert, H.P.; Ritter, S

    2002-02-01

    The present report summarizes the experimental work performed by PSI on the environmentally-assisted cracking (EAC) of low-alloy steels (LAS) in the frame of the RIKORR-project during the period from January 2000 to August 2001. Within this project, the EAC crack growth behaviour of different low-alloy reactor pressure vessel (RPV) steels, weld filler and weld heat-affected zone materials is investigated under simulated transient and steady-state BWR/NWC power operation conditions. The EAC crack growth behaviour of different low-alloy RPV steels was characterized by slow rising load (SRL) / low-frequency corrosion fatigue (LFCF) and constant load tests with pre-cracked fracture mechanics specimens in oxygenated high-temperature water at temperatures of either 288, 250, 200 or 150 C. These tests revealed the following important interim results: Under low-flow and highly oxidizing (ECP >= 100 mV SHE) conditions, the ASME XI 'wet' reference fatigue crack growth curve could be significantly exceeded by cyclic fatigue loading at low frequencies (<0.001 Hz), at high and low load-ratios R, and by ripple loading near to DKth fatigue thresholds. The BWR VIP 60 SCC disposition lines may be significantly or slightly exceeded (even in steels with a low sulphur content) in the case of small load fluctuations at high load ratios (ripple loading) or at intermediate temperatures (200 -250 C) in RPV materials, which show a distinct susceptibility to dynamic strain ageing (DSA). (author)

  20. Application of electron beam welding to large size pressure vessels made of thick low alloy steel

    International Nuclear Information System (INIS)

    Kuri, S.; Yamamoto, M.; Aoki, S.; Kimura, M.; Nayama, M.; Takano, G.

    1993-01-01

    The authors describe the results of studies for application of the electron beam welding to the large size pressure vessels made of thick low alloy steel (ASME A533 Gr.B cl.2 and A533 Gr.A cl.1). Two major problems for applying the EBW, the poor toughness of weld metal and the equipment to weld huge pressure vessels are focused on. For the first problem, the effects of Ni content of weld metal, welding conditions and post weld heat treatment are investigated. For the second problem, an applicability of the local vacuum EBW to a large size pressure vessel made of thick plate is qualified by the construction of a 120 mm thick, 2350 mm outside diameter cylindrical model. The model was electron beam welded using local vacuum chamber and the performance of the weld joint is investigated. Based on these results, the electron beam welding has been applied to the production of a steam generator for a PWR. (author). 3 refs., 10 figs., 4 tabs

  1. Microstructural Evolution of Inverse Bainite in a Hypereutectoid Low-Alloy Steel

    Science.gov (United States)

    Kannan, Rangasayee; Wang, Yiyu; Li, Leijun

    2017-12-01

    Microstructural evolution of inverse bainite during isothermal bainite transformation of a hypereutectoid low-alloy steel at 773 K (500 °C) was investigated through a series of interrupted isothermal experiments using a quench dilatometer. Microstructural characterization revealed that the inverse bainitic transformation starts by the nucleation of cementite (Fe3C) from parent austenite as a midrib in the bainitic microstructure. The inverse bainite becomes "degenerated" to typical upper bainite at prolonged transformation times. Crystallographic orientation relationships between the individual phases of inverse bainite microstructure were found to obey { _{γ } || _{θ } } { _{α } || _{θ } } { _{γ } || _{α } } 111_{γ } || { \\overline{2} 21} _{θ } } { 110} _{α } || { \\overline{2} 21} _{θ } } { 111} _{γ } || { 110 } _{α } {111} _{γ } || {211} _{θ } {110} _{α } || {211} _{θ } Furthermore, the crystallographic orientation deviations between the individual phases of inverse bainite microstructure suggest that the secondary carbide nucleation occurs from the inverse bainitic ferrite. Thermodynamic driving force calculations provide an explanation for the observed nucleation sequence in inverse bainite. The degeneracy of inverse bainite microstructure to upper bainite at prolonged transformation times is likely due to the effects of cementite midrib dissolution at the early stage and secondary carbide coarsening at the later stage.

  2. Creep damage evaluation of low alloy steel weld joint by small punch creep testing

    International Nuclear Information System (INIS)

    Nishioka, Tomoya; Sawaragi, Yoshiatsu; Uemura, Hiromi

    2013-01-01

    The effect of sampling location on SPC (Small Punch Creep) tests were investigated for weld joints to establish evaluation method of Type IV creep behavior. The SPC specimen shape was 10mm diameter and 0.5mm thick round disc prepared from weld joints of 2.25Cr-1Mo low alloy steel. It was found that the center of SPC specimen should be 2mm apart from the weld interface as the recommended sampling location. Creep damage was imposed for large weld joint specimens by axial creep loading at 620degC, 52MPa with the interrupted time fraction of 0.34, 0.45, 0.64 and 0.82.SPC samples were prepared from those damaged specimens following the recommended way described in this paper. Among the various SPC tests conducted, good relationships were found for the test condition of 625degC, 200N. Namely, good relationships were obtained both between minimum deflection rate and creep life fraction, and between rupture time and creep life fraction. Consequently, creep life assessment of Type IV fracture by SPC tests could be well conducted using the sampling location and the test condition recommended in this paper. (author)

  3. Effects of solute elements on irradiation hardening and microstructural evolution in low alloy steels

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Katsuhiko, E-mail: fujiik@inss.co.jp [Institute of Nuclear Safety System Inc., 64 Sata, Mihama 919-1205 (Japan); Ohkubo, Tadakatsu, E-mail: OHKUBO.Tadakatsu@nims.go.jp [National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047 (Japan); Fukuya, Koji, E-mail: fukuya@inss.co.jp [Institute of Nuclear Safety System Inc., 64 Sata, Mihama 919-1205 (Japan)

    2011-10-01

    The effects of the elements Mn, Ni, Si and Cu on irradiation hardening and microstructural evolution in low alloy steels were investigated in ion irradiation experiments using five kinds of alloys prepared by removing Mn, Ni and Si from, and adding 0.05 wt.%Cu to, the base alloy (Fe-1.5Mn-0.5Ni-0.25Si). The alloy without Mn showed less hardening and the alloys without Ni or Si showed more hardening. The addition of Cu had hardly any influence on hardening. These facts indicated that Mn enhanced hardening and that Ni and Si had some synergetic effects. The formation of solute clusters was not confirmed by atom probe (AP) analysis, whereas small dislocation loops were identified by TEM observation. The difference in hardening between the alloys with and without Mn was qualitatively consistent with loop formation. However, microstructural components that were not detected by the AP and TEM were assumed to explain the hardening level quantitatively.

  4. Microstructure and microchemistry variation during thermal exposure of low alloy steels

    International Nuclear Information System (INIS)

    Kim, S.; Shekhter, A.; Ringer, S.P.

    2002-01-01

    The microstructure of an ex-service (136,000 h) Fe-1Cr-1Mo-0.25V (wt%) low alloy steel turbine rotor was investigated using energy dispersive X-ray spectroscopy (EDXS) techniques in TEM/STEM on extraction replicas. Since different stages of the rotor experience different thermal histories, an examination of microstructural variations can serve as a method to indicate metallurgical factors affecting service-lifetime of the material. The coldest, hottest and most embrittled stages were taken for investigation. The overall fraction of carbide precipitation was measured using image analysis techniques and results indicated that the hottest stage possessed the highest precipitate volume fraction. Large area EDXS analysis using a defocused electron beam was also performed on the replica samples and this was supported by spot analyses using scanning TEM to identify individual carbides so as to allow quantification of the enrichment of solute into carbides as a function of service temperature. Three-dimensional atom probe field ion microscopy was also used to assess the chemistry at the interface between matrix and precipitate

  5. Technical Developments and Trends of Earthquake Resisting High-Strength Reinforcing Steel Bars

    International Nuclear Information System (INIS)

    Hwang, Byoungchul; Shim, Jae-Hyeok; Lee, Myoung-Gyu; Lee, Joonho; Jung, Jun-Ho; Kim, Bo-Sung; Won, Sung-Bin

    2016-01-01

    Since reconstruction of old town in Korea requires high-rise and seismic design construction, many attentions have been paid to high strength seismic reinforced steel bar. In the present paper, technical developments and trends are summarized for developing next-generation seismic reinforced steel bar of grade 700 MPa. Steelmaking process requires high energy efficiency and refining ability. Effects of alloying elements are explained, and alloy design based on computational thermodynamics is introduced. On the other hand, it is considered that grain size refinement by the controlled rolling and low temperature transformation structures formed by the accelerated cooling are effective to obtain acceptable mechanical properties with high strength. Finite element simulation analysis is also useful to understand plastic deformation by rolling, internal and external heat transfer, and corresponding phase transformation of austenite phase to various low-temperature transformation structures.

  6. Technical Developments and Trends of Earthquake Resisting High-Strength Reinforcing Steel Bars

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Byoungchul [Seoul National University of Science and Technology, Seoul (Korea, Republic of); Shim, Jae-Hyeok [Korea Institute of Science and Technology, Seoul (Korea, Republic of); Lee, Myoung-Gyu; Lee, Joonho [Korea University, Seoul (Korea, Republic of); Jung, Jun-Ho [Hyundai Steel, Incheon (Korea, Republic of); Kim, Bo-Sung [Daehan Steel, Busan (Korea, Republic of); Won, Sung-Bin [Dongkuk Steel, Kyungju (Korea, Republic of)

    2016-12-15

    Since reconstruction of old town in Korea requires high-rise and seismic design construction, many attentions have been paid to high strength seismic reinforced steel bar. In the present paper, technical developments and trends are summarized for developing next-generation seismic reinforced steel bar of grade 700 MPa. Steelmaking process requires high energy efficiency and refining ability. Effects of alloying elements are explained, and alloy design based on computational thermodynamics is introduced. On the other hand, it is considered that grain size refinement by the controlled rolling and low temperature transformation structures formed by the accelerated cooling are effective to obtain acceptable mechanical properties with high strength. Finite element simulation analysis is also useful to understand plastic deformation by rolling, internal and external heat transfer, and corresponding phase transformation of austenite phase to various low-temperature transformation structures.

  7. Ductile failure analysis of high strength steel in hot forming based on micromechanical damage model

    OpenAIRE

    Ying Liang; Liu Wenquan; Wang Dantong; Hu Ping

    2016-01-01

    The damage evolution of high strength steel at elevated temperature is investigated by using the Gurson-Tvergaard-Needleman (GTN) model. A hybrid method integrated thermal tensile test and numerical technique is employed to identify the damage parameters. The analysis results show that the damage parameters are different at different temperature as the variation of tested material microstructure. Furthermore, the calibrated damage parameters are implemented to simulate a bugling forming at el...

  8. On the tribological behavior of nanoalumina reinforced low alloy sintered steel

    International Nuclear Information System (INIS)

    Fallahdoost, H.; Khorsand, H.; Eslami-Farsani, R.; Ganjeh, E.

    2014-01-01

    Highlights: • A novel process has done to ameliorate wear resistance. • We examine changes in the level of porosity by adding alumina nanoparticles. • Effect of load on tribological behavior of metal matrix composite has investigated. • By adding alumina nanoparticles, volume loss decrease up to 73%. • Wear mechanisms have studied completely. - Abstract: Powder metallurgy (PM) technique offers progress of new material processing for applications requiring various combinations of properties. Demanding for applying ceramic materials in tribological concept is increasingly growing over last two decades. Unique characteristic of ceramic materials such as low density, high hardness, low thermal expansion, high corrosion and tribological resistance is the rudimentary reason. In this study, different weight percentage of alumina nanoparticles was added to low alloy powder steel (Astaloy 85Mo) as reinforcement agent. Microstructure and tribological behavior of the metal matrix composite has investigated at dry condition and room temperature for different loads by reciprocating tribometer. Sintered specimens possess homogenous microstructure with bainitic and partial ferrite feature in retained austenite matrix. Outcomes show improvement in wear resistance by increasing of alumina nanoparticles containing 3 wt.%, porosity level of 15.38% and micro hardness of 105.4 HV which demonstrates the best wear resistance properties. Tribological behavior of PM steel parts is so complex due to existing pores. Not only do surface pores deteriorate the wear resistant as inherent characteristic but also the properties could enhance at optimum porosity level. An important role of surface porosities which have crucial influence on decreasing wear rate is trapping wear debris causes severe wear. Mixed mode of abrasive, adhesive and oxidation mechanisms were distinguishing according to electron image analysis

  9. Cessation of environmentally-assisted cracking in a low-alloy steel: Experimental results

    International Nuclear Information System (INIS)

    Li, Y.Y.

    1997-01-01

    The presence of dissolved metallurgical sulfides in pressure vessel and piping steels has been linked to Environmentally-Assisted Cracking (EAC), a phenomenon observed in laboratory tests that results in fatigue crack growth rates as high as 100 times that in air. Previous experimental and analytical work based on diffusion as the mass transport process has shown that surface cracks that are initially clean of sulfides will not initiate EAC in most applications. This is because the average crack tip velocity would not be sufficiently high to expose enough metallurgical sulfides per unit time and produce the sulfide concentration required for EAC. However, there is a potential concern for the case of a relatively large embedded crack breaking through to the wetted surface. Such a crack would not be initially clean of sulfides, and EAC could initiate. This paper presents the results of a series of experiments conducted on two heats of an EAC susceptible, high-sulfur, low-alloy steel in 243 degrees C low-oxygen water to further study the phenomenon of EAC persistence at low crack tip velocities. A load cycle profile that incorporated a significant load dwell period at minimum load was used. In one experiment, the fatigue cycling history was such that relatively high crack tip velocities at the start of the experiment produced a persistent case of EAC even when crack tip velocities were later reduced to levels below the EAC initiation velocity. The other series of experiments used initial crack tip velocities that were much lower and probably more realistic. Air precracking of the compact tension specimens produced an initial inventory of undissolved sulfides on the crack flanks that directly simulates the array of sulfides expected from the breakthrough of an embedded crack. In all cases, results showed EAC ceased after several hundred hours of cycling

  10. Microstructure and Hardness Distribution of Resistance Welded Advanced High Strength Steels

    DEFF Research Database (Denmark)

    Pedersen, Kim Richardt; Harthøj, Anders; Friis, Kasper Leth

    2008-01-01

    In this work a low carbon steel and two high strength steels (DP600 and TRIP700) have been resistance lap welded and the hardness profiles were measured by micro hardness indentation of cross sections of the joint. The resulting microstructure of the weld zone of the DP-DP and TRIP-TRIP joints were...... found to consist of a martensitic structure with a significant increase in hardness. Joints of dissimilar materials mixed completely in the melted region forming a new alloy with a hardness profile lying in between the hardness measured in joints of the similar materials. Furthermore the joints were...

  11. Fractographic investigation of stress corrosion cracking of steels for high-strength bolts

    International Nuclear Information System (INIS)

    Gladshtejn, L.I.; Goritskij, V.M.; Evtushenko, N.A.; Sokolov, S.P.; Panfilova, L.M.

    1980-01-01

    By the methods of quantitative fractography studied is the effect of chemical composition on stress corrosion cracking resistance in the mean agressive medium (pH=2.2) and the fracture structure of cylindrical delta samples with the notch (K=2.75) of high-strength chromium steel. It is shown that the alloying of the 40 steel with Cr, Si, V increases its strength under short-time loading but leads to forming of brittle areas in fracture under long time effect of corrosion medium

  12. Effect of tempering time on the ballistic performance of a high strength armour steel

    OpenAIRE

    Jena, Pradipta Kumar; Senthil P., Ponguru; K., Siva Kumar

    2016-01-01

    The investigation describes and analyses the effect of tempering time on the mechanical and ballistic performance of a high strength armour steel. The steel is subjected to tempering at 300 °C for 2, 24 and 48 h. A marginal variation in strength and hardness is observed with increase in tempering time, whereas ductility and Charpy impact values are found to be decreasing. Ballistic performance of the samples are evaluated by impacting 7.62 mm and 12.7 mm armour piercing projectiles at 0° angl...

  13. Analysis of local warm forming of high strength steel using near infrared ray energy

    Energy Technology Data Exchange (ETDEWEB)

    Yang, W. H., E-mail: whyang21@hyundai.com [Hyundai Motor Company, 700 Yeompo-ro, Buk-Gu, Ulsan, 683-791 (Korea, Republic of); Lee, K., E-mail: klee@deform.co.kr [Solution Lab, 502, 102, Dunsan-daero 117 beon-gil, Seo-Gu, Daejeon, 302-834 (Korea, Republic of); Lee, E. H., E-mail: mtgs2@kaist.ac.kr, E-mail: dyyang@kaist.ac.kr; Yang, D. Y., E-mail: mtgs2@kaist.ac.kr, E-mail: dyyang@kaist.ac.kr [KAIST, Science Town291, Daehak-ro, Yuseong-Gu, Daejeon 305-701 (Korea, Republic of)

    2013-12-16

    The automotive industry has been pressed to satisfy more rigorous fuel efficiency requirements to promote energy conservation, safety features and cost containment. To satisfy this need, high strength steel has been developed and used for many different vehicle parts. The use of high strength steels, however, requires careful analysis and creativity in order to accommodate its relatively high springback behavior. An innovative method, called local warm forming with near infrared ray, has been developed to help promote the use of high strength steels in sheet metal forming. For this method, local regions of the work piece are heated using infrared ray energy, thereby promoting the reduction of springback behavior. In this research, a V-bend test is conducted with DP980. After springback, the bend angles for specimens without local heating are compared to those with local heating. Numerical analysis has been performed using the commercial program, DEFORM-2D. This analysis is carried out with the purpose of understanding how changes to the local stress distribution will affect the springback during the unloading process. The results between experimental and computational approaches are evaluated to assure the accuracy of the simulation. Subsequent numerical simulation studies are performed to explore best practices with respect to thermal boundary conditions, timing, and applicability to the production environment.

  14. Analysis of local warm forming of high strength steel using near infrared ray energy

    International Nuclear Information System (INIS)

    Yang, W. H.; Lee, K.; Lee, E. H.; Yang, D. Y.

    2013-01-01

    The automotive industry has been pressed to satisfy more rigorous fuel efficiency requirements to promote energy conservation, safety features and cost containment. To satisfy this need, high strength steel has been developed and used for many different vehicle parts. The use of high strength steels, however, requires careful analysis and creativity in order to accommodate its relatively high springback behavior. An innovative method, called local warm forming with near infrared ray, has been developed to help promote the use of high strength steels in sheet metal forming. For this method, local regions of the work piece are heated using infrared ray energy, thereby promoting the reduction of springback behavior. In this research, a V-bend test is conducted with DP980. After springback, the bend angles for specimens without local heating are compared to those with local heating. Numerical analysis has been performed using the commercial program, DEFORM-2D. This analysis is carried out with the purpose of understanding how changes to the local stress distribution will affect the springback during the unloading process. The results between experimental and computational approaches are evaluated to assure the accuracy of the simulation. Subsequent numerical simulation studies are performed to explore best practices with respect to thermal boundary conditions, timing, and applicability to the production environment

  15. Effect of antimony on the corrosion behavior of low-alloy steel for flue gas desulfurization system

    International Nuclear Information System (INIS)

    Le, D.P.; Ji, W.S.; Kim, J.G.; Jeong, K.J.; Lee, S.H.

    2008-01-01

    The alloying effect of Sb in a new low-alloy steel for the purpose of FGD materials was investigated by potentiodynamic polarization, linear polarization resistance measurement, electrochemical impedance spectroscopy (EIS) and weight loss measurements in an aggressive solution of 16.9 vol.% H 2 SO 4 + 0.35 vol.% HCl (modified green death solution) at 60 deg. C, pH -0.3. All measurements confirmed the marked improvement in the corrosion behavior of the low-alloy steel via the addition of a small amount of Sb, particularly for the 0.10Sb steel. Pitting corrosion was detected by scanning electron microscopy (SEM) on the surface of blank steel and 0.05Sb steel, but not 0.10Sb steel, after weight loss measurements. X-ray photoelectron spectroscopy (XPS) analysis of the corroded surfaces after EIS and linear polarization measurements showed that the decrease in corrosion rates was due to the formation of a protective Sb 2 O 5 oxide film on the surface of the Sb-containing steels. Moreover, the addition of 0.10% Sb stimulated the development of high corrosion inhibiting, Cu-containing compounds which further inhibited the anodic and cathodic reactions

  16. Weld Metallurgy and Mechanical Properties of High Manganese Ultra-high Strength Steel Dissimilar Welds

    Science.gov (United States)

    Dahmen, Martin; Lindner, Stefan; Monfort, Damien; Petring, Dirk

    The increasing demand for ultra-high strength steels in vehicle manufacturing leads to the application of new alloys. This poses a challenge on joining especially by fusion welding. A stainless high manganese steel sheet with excellent strength and deformation properties stands in the centre of the development. Similar and dissimilar welds with a metastable austenitic steel and a hot formed martensitic stainless steel were performed. An investigation of the mixing effects on the local microstructure and the hardness delivers the metallurgical features of the welds. Despite of carbon contents above 0.4 wt.% none of the welds have shown cracks. Mechanical properties drawn from tensile tests deliver high breaking forces enabling a high stiffness of the joints. The results show the potential for the application of laser beam welding for joining in assembly of structural parts.

  17. Effect of microstructure on the sulphide stress cracking susceptibility of a high strength pipeline steel

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez, E. [Centro de Investigacion en Ingenieria y Ciencias Aplicadas-UAEM, Av. Universidad 1001, 62209-Cuernavaca, Mor. (Mexico); Gonzalez-Rodriguez, J.G. [Centro de Investigacion en Ingenieria y Ciencias Aplicadas-UAEM, Av. Universidad 1001, 62209-Cuernavaca, Mor. (Mexico)], E-mail: ggonzalez@uaem.mx; Torres-Islas, A.; Serna, S. [Centro de Investigacion en Ingenieria y Ciencias Aplicadas-UAEM, Av. Universidad 1001, 62209-Cuernavaca, Mor. (Mexico); Campillo, B. [Intituto de Ciencias Fisicas-Facultad de Quimicas-Universidad Nacional Autonoma de Mexico Cuernavaca, Mor. (Mexico); Dominguez-Patino, G. [Centro de Investigacion en Ingenieria y Ciencias Aplicadas-UAEM, Av. Universidad 1001, 62209-Cuernavaca, Mor. (Mexico); Juarez-Islas, J.A. [Instituto de Investigaciones en Materiales-Universidad Nacional Autonoma de Mexico, Circuito Exterior S/N, Cd. Universitaria, C.P. 04510, Mexico, D.F. (Mexico)

    2008-12-15

    The sulphide stress cracking (SSC) susceptibility of a newly developed high strength microalloyed steel with three different microstructures has been evaluated using the slow strain rate testing (SSRT) technique. Studies were complemented with potentiodynamic polarization curves and hydrogen permeation measurements. Material included a C-Mn steel having Ni, Cu, and Mo as main microalloying elements with three microstructures: martensitic, ferritic and ferritic + bainitic. Testing temperatures included 25, 50, 70 and 90 deg. C. Detailed SEM observations of the microstructure and fracture surfaces were done to identify possible degradation mechanisms. The results showed that in all cases, the corrosion rate, number of hydrogen atoms at the surface and the percentage reduction in area increased with temperature. The steel with a martensitic microstructure had the highest SSC susceptibility at all temperatures, whereas the ferritic steels were susceptible only at 25 deg. C, and the most likely mechanism is hydrogen embrittlement assisted by anodic dissolution.

  18. Applicability of newly developed 610MPa class heavy thickness high strength steel to boiler pressure vessel

    Energy Technology Data Exchange (ETDEWEB)

    Katayama, Norihiko; Kaihara, Shoichiro; Ishii, Jun [Ishikawajima-Harima Heavy Industries Corp., Yokohama (Japan); Kajigaya, Ichiro [Ishikawajima-Harima Heavy Industries Corp., Tokyo (Japan); Totsuka, Takehiro; Miyazaki, Takashi [Ishikawajima-Harima Heavy Industries Corp., Aioi (Japan)

    1995-11-01

    Construction of a 350 MW Class PFBC (Pressurized Fluidized Bed Combustion) boiler plant is under planning in Japan. Design temperature and pressure of the vessel are maximum 350 C and 1.69 MPa, respectively. As the plate thickness of the vessel exceeds over 100 mm, high strength steel plate of good weldability and less susceptible to reheat cracking was required and developed. The steel was aimed to satisfy the tensile strength over 610 MPa at 350 C after postweld heat treatment (PWHT), with good notch toughness. The authors investigated the welding performances of the newly developed steel by using 150 mm-thick plate welded by pulsed-MAG and SAW methods. It was confirmed that the newly developed steel and its welds possess sufficient strength and toughness after PWHT, and applicable to the actual pressure vessel.

  19. Stress corrosion cracking behaviour of low alloy steels in high temperature water: Description and results from modelling

    International Nuclear Information System (INIS)

    Tirbonod, B.

    2001-01-01

    The initiation and growth of a crack by stress and corrosion in the low alloy steels used for the pressure vessels of Boiling Water Reactors may affect the availability and safety of the plant. This paper presents a new model for stress corrosion cracking of the low alloy steels in high temperature water. The model, based on observations, assumes the crack growth mechanism to be based on an anodic dissolution and cleavage. The main results deal with the position of the dissolution cell found at the crack tip, and with the identification of the parameters sensitive to crack growth, among which are the electrolyte composition and the cleavage length. The model is conservative, in qualitative agreement with measurements conducted at PSI, and may be extended to other metal-environment systems. (author)

  20. Damage Mechanisms and Mechanical Properties of High-Strength Multiphase Steels

    Directory of Open Access Journals (Sweden)

    Sebastian Heibel

    2018-05-01

    Full Text Available The usage of high-strength steels for structural components and reinforcement parts is inevitable for modern car-body manufacture in reaching lightweight design as well as increasing passive safety. Depending on their microstructure these steels show differing damage mechanisms and various mechanical properties which cannot be classified comprehensively via classical uniaxial tensile testing. In this research, damage initiation, evolution and final material failure are characterized for commercially produced complex-phase (CP and dual-phase (DP steels in a strength range between 600 and 1000 MPa. Based on these investigations CP steels with their homogeneous microstructure are characterized as damage tolerant and hence less edge-crack sensitive than DP steels. As final fracture occurs after a combination of ductile damage evolution and local shear band localization in ferrite grains at a characteristic thickness strain, this strain measure is introduced as a new parameter for local formability. In terms of global formability DP steels display advantages because of their microstructural composition of soft ferrite matrix including hard martensite particles. Combining true uniform elongation as a measure for global formability with the true thickness strain at fracture for local formability the mechanical material response can be assessed on basis of uniaxial tensile testing incorporating all microstructural characteristics on a macroscopic scale. Based on these findings a new classification scheme for the recently developed high-strength multiphase steels with significantly better formability resulting of complex underlying microstructures is introduced. The scheme overcomes the steel designations using microstructural concepts, which provide no information about design and production properties.

  1. Phase transformation and mechanical behavior of thermomechanically controlled processed high strength ordnance steel

    International Nuclear Information System (INIS)

    Bandyopadhyay, P.S.; Ghosh, S.K.; Kundu, S.; Chatterjee, S.

    2013-01-01

    A new low carbon titanium and niobium microalloyed steel has been thermomechanically processed in a pilot plant unit. Phase transformation phenomenon of the above steel during continuous cooling has been assessed. Evolution of microstructure and mechanical properties has also been studied at different finish rolling temperatures. A mixture of intragranular ferrite with granular bainite and bainitic ferrite along with inter-lath and intra-lath precipitation of (Ti, Nb)CN particles are the characteristic microstructural feature of air cooled steel. However, mixture of lower bainite and lath martensitic structure along with similar type (Ti, Nb)CN precipitate is observed in water quenched steel. High yield strength (896–948 MPa) with high tensile strength (974–1013 MPa) has been achieved with moderate ductility (16–17%) for the selected range of finish rolling temperature for air cooled steel. However, the water quenched steel yields higher yield strength (1240–1260 MPa) as well as higher tensile strength (1270–1285 MPa) but with lower ductility (13–14%) for the selected range of finish rolling temperature. Fairly good impact toughness values in the range of 50–89 J are obtained for the air cooled steel which are marginally higher than those of water quenched steel (42–81 J). - Highlights: ► New high strength steel has been processed in a pilot plant scale. ► Primarily granular bainite and bainitic ferrite are obtained in air cooled steel. ► Mixture of lower bainite and lath martensite is obtained in water quenched steel. ► (Ti, Nb)CN precipitate is obtained for both air cooled and water quenched steels. ► Highest strength with reasonable ductility has been achieved after water quenching

  2. Phase transformation and mechanical behavior of thermomechanically controlled processed high strength ordnance steel

    Energy Technology Data Exchange (ETDEWEB)

    Bandyopadhyay, P.S. [Ordnance Development Centre, Metal and Steel Factory, Ishapore 743 144 (India); Ghosh, S.K., E-mail: skghosh@metal.becs.ac.in [Department of Metallurgy and Materials Engineering, Bengal Engineering and Science University, Shibpur, Howrah 711 103 (India); Kundu, S.; Chatterjee, S. [Department of Metallurgy and Materials Engineering, Bengal Engineering and Science University, Shibpur, Howrah 711 103 (India)

    2013-02-15

    A new low carbon titanium and niobium microalloyed steel has been thermomechanically processed in a pilot plant unit. Phase transformation phenomenon of the above steel during continuous cooling has been assessed. Evolution of microstructure and mechanical properties has also been studied at different finish rolling temperatures. A mixture of intragranular ferrite with granular bainite and bainitic ferrite along with inter-lath and intra-lath precipitation of (Ti, Nb)CN particles are the characteristic microstructural feature of air cooled steel. However, mixture of lower bainite and lath martensitic structure along with similar type (Ti, Nb)CN precipitate is observed in water quenched steel. High yield strength (896–948 MPa) with high tensile strength (974–1013 MPa) has been achieved with moderate ductility (16–17%) for the selected range of finish rolling temperature for air cooled steel. However, the water quenched steel yields higher yield strength (1240–1260 MPa) as well as higher tensile strength (1270–1285 MPa) but with lower ductility (13–14%) for the selected range of finish rolling temperature. Fairly good impact toughness values in the range of 50–89 J are obtained for the air cooled steel which are marginally higher than those of water quenched steel (42–81 J). - Highlights: ► New high strength steel has been processed in a pilot plant scale. ► Primarily granular bainite and bainitic ferrite are obtained in air cooled steel. ► Mixture of lower bainite and lath martensite is obtained in water quenched steel. ► (Ti, Nb)CN precipitate is obtained for both air cooled and water quenched steels. ► Highest strength with reasonable ductility has been achieved after water quenching.

  3. On the performance of circular concrete-filled high strength steel columns under axial loading

    Directory of Open Access Journals (Sweden)

    Mohamed Mahmoud El-Heweity

    2012-06-01

    Full Text Available This work presents a numerical study to investigate the performance of circular high-strength steel tubes filled with concrete (CFT under monotonic axial loading. A model is developed to implement the material constitutive relationships and non-linearity. Calibration against previous experimental data shows good agreement. A parametric study is then conducted using the model and compared with codes provisions. Strength and ductility of confined concrete are of primary concern. Variables considered are yield stress of steel tube and column diameter. The assessment of column performance is based on axial load carrying capacities and enhancements of both strength and ductility due to confinement. Two parameters namely strength enhancement factor (Kf and ductility index (μ are clearly defined and introduced for assessment. Results indicate that both concrete strength and ductility of CFT columns are enhanced but to different extents. The ductile behaviors are significantly evident. The increase in yield stress of steel tube has a minimal effect on concrete strength but pronounced effect on concrete ductility. However, reduction in ductility is associated with using high-tensile steel of Grade 70. The overall findings indicate that the use of high-strength tube in CFT columns is not promising. This finding may seriously be considered in seismic design.

  4. Roll force prediction of high strength steel using foil rolling theory in cold skin pass rolling

    International Nuclear Information System (INIS)

    Song, Gil Ho; Jung, Jae Chook

    2013-01-01

    Skin pass rolling is a very important process for applying a certain elongation to a strip in the cold rolling and annealing processes, which play an important role in preventing the stretching of the yield point when the material is processed. The exact prediction of the rolling force is essential for obtaining a given elongation with the steel grade and strip size. Unlike hot rolling and cold rolling, skin pass rolling is used to apply an elongation of within 2% to the strip. Under a small reduction, it is difficult to predict the rolling force because the elastic deformation behavior of the rolls is complicated and a model for predicting the rolling force has not yet been established. Nevertheless, the exact prediction of the rolling force in skin pass rolling has gained increasing importance in recent times with the rapid development of high strength steels for use in automobiles. In this study, the possibility of predicting the rolling force in skin pass rolling for producing various steel grades was examined using foil rolling theory, which is known to have similar elastic deformation behavior of rolls in the roll bite. It was found that a noncircular arc model is more accurate than a circular model in predicting the roll force of high strength steel below TS 980 MPa in skin pass rolling

  5. A new effect of retained austenite on ductility enhancement in high strength bainitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Wang Ying; Zhang Ke; Guo Zhenghong; Chen Nailu [School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Rong Yonghua, E-mail: yhrong@sjtu.edu.cn [School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2012-08-30

    Highlights: Black-Right-Pointing-Pointer A new DARA effect in the bainitic steel is proposed. Black-Right-Pointing-Pointer The conditions of DARA effect are proposed. Black-Right-Pointing-Pointer The mechanism of retained austenite on ductility enhancement is clarified. - Abstract: A designed high strength bainitic steel with considerable amount of retained austenite is presented in order to study the effect of retained austenite on the ductility enhancement in bainitic steels. Transformation induced plasticity (TRIP) effect is verified by both X-ray diffraction (XRD) measurement of retained austenite fraction in various deformation stages and transmission electron microscopy observation of the deformed twin-type martensite. Results from XRD line profile analysis reveal that the average dislocation density in bainite during the deformation is lower than that before deformation, and such a phenomenon can be explained by a new effect, dislocations absorption by retained austenite (DARA) effect, based on our previous investigation of martensitic steels. DARA effect availably enhances the compatibility of deformation ability of bainite with retained austenite. In view of microstructure similarity of bainitic steels with martensitic steels, the conditions of DARA effect are proposed. The effects of retained austenite on the ductility enhancement in bainitic steels are clarified.

  6. Stress-strain relationship of high-strength steel (HSS) reinforcing bars

    Science.gov (United States)

    Anggraini, Retno; Tavio, Raka, I. Gede Putu; Agustiar

    2018-05-01

    The introduction of High-Strength Steel (HSS) reinforcing bars in reinforced concrete members has gained much attention in recent years and led to many advantages such as construction timesaving. It is also more economical since it can reduce the amount of reinforcing steel bars used in concrete members which in turn alleviates the congestion of reinforcement. Up to present, the building codes, e.g. American Concrete Institute (ACI) 318M-14 and Standard National Indonesia (SNI) 2847:2013, still restrict the use of higher-strength steel reinforcing bars for concrete design up to Grade 420 MPa due to the possible suspected brittle behavior of concrete members. This paper evaluates the characteristics of stress-strain relationships of HSS bars if they are comparable to the characteristics of those of Grade 420 MPa. To achieve the objective of the study, a series of steel bars from various grades (420, 550, 650, and 700 MPa) was selected. Tensile tests of these steel samples were conducted under displacement-controlled mode to capture the complete stress-strain curves and particularly the post-yield response of the steel bars. The results indicate that all the steel bars tested had the actual yield strengths greater than the corresponding specified values. The stress-strain curves of HSS reinforcing bars (Grade 550, 650, and 700 MPa) performed slightly different characteristics with those of Grade 420 MPa.

  7. SCC propagation and cessation behavior near the fusion boundary of dissimilar weld joint with Ni-based weld metal and low alloy steel

    International Nuclear Information System (INIS)

    Ishizawa, Makoto; Abe, Hiroshi; Watanabe, Yutaka

    2009-01-01

    The purpose of this study is to investigate the following items focused on the microstructure near the fusion boundary of dissimilar weld joint with Ni-based weld metal and low alloy steel; (1) Microstructural characteristics near the fusion boundary, (2) Dominant factor that makes crack retardation near the fusion boundary. Main conclusions can be summarized as follows; (1) From the results of CBB tests, it has been understood that the low alloy steel has no SCC susceptibility and that there is a difference in oxidation behavior between high and low sulfur containing low alloy steel, (2) In Alloy182/LAS sample, most of crack tips were located at the fusion boundary. It has been thought that crack become less active when crack reach at fusion boundary, (3) It has been suggested that the dominant factor of crack retardation is low SCC susceptibility of low alloy steel in high temperature water. (author)

  8. Influence of heat input on weld bead geometry using duplex stainless steel wire electrode on low alloy steel specimens

    Directory of Open Access Journals (Sweden)

    Ajit Mondal

    2016-12-01

    Full Text Available Gas metal arc welding cladding becomes a popular surfacing technique in many modern industries as it enhances effectively corrosion resistance property and wear resistance property of structural members. Quality of weld cladding may be enhanced by controlling process parameters. If bead formation is found acceptable, cladding is also expected to be good. Weld bead characteristics are often assessed by bead geometry, and it is mainly influenced by heat input. In this paper, duplex stainless steel E2209 T01 is deposited on E250 low alloy steel specimens with 100% CO2 gas as shielding medium with different heats. Weld bead width, height of reinforcement and depth of penetration are measured. Regression analysis is done on the basis of experimental data. Results reveal that within the range of bead-on-plate welding experiments done, parameters of welding geometry are on the whole linearly related with heat input. A condition corresponding to 0.744 kJ/mm heat input is recommended to be used for weld cladding in practice.

  9. Fracture assessment for a dissimilar metal weld of low alloy steel and Ni-base alloy

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Takuya, E-mail: takuya4.ogawa@toshiba.co.jp [Toshiba Corporation Power Systems Company, Power and Industrial Systems Research and Development Center, 8, Shinsugita-cho, Isogo-ku, Yokohama 235-8523 (Japan); Itatani, Masao; Saito, Toshiyuki; Hayashi, Takahiro; Narazaki, Chihiro; Tsuchihashi, Kentaro [Toshiba Corporation Power Systems Company, Power and Industrial Systems Research and Development Center, 8, Shinsugita-cho, Isogo-ku, Yokohama 235-8523 (Japan)

    2012-02-15

    Recently, instances of SCC in Ni-base alloy weld metal of light water reactor components have been reported. Despite the possibility of propagation of SCC crack to the fusion line between low alloy steel (LAS) of pressure vessel and Ni-base alloy of internal structure, a fracture assessment method of dissimilar metal welded joint has not been established. The objective of this study is to investigate a fracture mode of dissimilar metal weld of LAS and Ni-base alloy for development of a fracture assessment method for dissimilar metal weld. Fracture tests were conducted using two types of dissimilar metal weld test plates with semi-elliptical surface crack. In one of the test plates, the fusion line lies around the surface points of the surface crack and the crack tips at the surface points have intruded into LAS. Material ahead of the crack tip at the deepest point is Ni-base alloy. In the other, the fusion line lies around the deepest point of the surface crack and the crack tip at the deepest point has intruded into LAS. Material ahead of the crack tip at the deepest point is LAS. The results of fracture tests using the former type of test plate reveal that the collapse load considering the proportion of ligament area of each material gives a good estimation for fracture load. That is, fracture assessment based on plastic collapse mode is applicable to the former type of test plate. It is also understood that a fracture assessment method based on the elastic-plastic fracture mode is suitable for the latter type of test plate.

  10. Comparison of ferritic and austenitic plasma nitriding and nitrocarburizing behavior of AISI 4140 low alloy steel

    International Nuclear Information System (INIS)

    Fattah, M.; Mahboubi, F.

    2010-01-01

    This paper compares the ferritic and austenitic plasma nitriding and nitrocarburizing behavior of AISI 4140 low alloy steel carried out to improve the surface corrosion resistance. The gas composition for plasma nitriding was 85% N 2 -15% H 2 and that for plasma nitrocarburizing was 85% N 2 -12% H 2 -3% CO 2 . Both treatments were performed for 5 h, for different process temperatures of 570 and 620 o C for ferritic and austenitic plasma treatment, respectively. Optical microscopy, X-ray diffraction and potentiodynamic polarization technique in 3.5% NaCl solution, were used to study the treated surfaces. The results of X-ray analysis revealed that with increasing the treatment temperature from 570 to 620 o C for both treatments, the amount of ε phase decreased and γ' phase increased. Nitrocarburizing treatment resulted in formation of a more amount of ε phase with respect to nitriding treatment. However, the highest amount of ε phase was observed in the ferritic nitrocarburized sample at 570 o C. The sample nitrided at 620 o C exhibited the thickest layer. The potentiodynamic polarization results revealed that after plasma nitriding and nitrocarburizing at 570 o C, corrosion potential increased with respect to the untreated sample due to the noble nitride and carbonitride phases formed on the surface. After increasing the treatment temperature from 570 to 620 o C, corrosion potential decreased due to the less ε phase development in the compound layer and more porous compound layer formed at 620 o C with respect to the treated samples at 570 o C.

  11. Specification for carbon and low alloy steel containment structures for stationary nuclear power reactors. [Now obsolescent (by Amendment No. 1)

    Energy Technology Data Exchange (ETDEWEB)

    1967-01-01

    This British Standard covers the design, construction, inspection and testing of steel reactor containment structures made of carbon and low alloy steel for temperatures not exceeding 300 deg C. Such structures are not in contact with the reactor coolant during normal operation. Pressure-relieved structures are not excluded, provided they are of a form that contains the fission products or ensures their safe disposal. Attachments such as air-locks or piping that is or may become directly connected between the interior of the containment structure and a closure, and may therefore contain radioactive material released during accidents, is considered part of the containment structure.

  12. Hydrogen in trapping states innocuous to environmental degradation of high-strength steels

    International Nuclear Information System (INIS)

    Takai, Kenichi

    2003-01-01

    Hydrogen in trapping states innocuous to environmental degradation of the mechanical properties of high-strength steels has been separated and extracted using thermal desorption analysis (TDA) and slow strain rate test (SSRT). The high-strength steel occluding only hydrogen desorbed at low temperature (peak 1), as determined by TDA, decreases in maximum stress and plastic elongation with increasing occlusion time of peak 1 hydrogen. Thus the trapping state of peak 1 hydrogen is directly associated with environmental degradation. The trap activation energy for peak 1 hydrogen is 23.4 kJ/mol, so the peak 1 hydrogen corresponds to weaker binding states and diffusible states at room temperature. In contrast, the high-strength steel occluding only hydrogen desorbed at high temperature (peak 2), by TDA, maintains the maximum stress and plastic elongation in spite of an increasing content of peak 2 hydrogen. This result indicates that the peak 2 hydrogen trapping state is innocuous to environmental degradation, even though the steel occludes a large amount of peak 2 hydrogen. The trap activation energy for peak 2 hydrogen is 65.0 kJ/mol, which indicates a stronger binding state and nondiffusibility at room temperature. The trap activation energy for peak 2 hydrogen suggests that the driving force energy required for stress-induced, diffusion during elastic and plastic deformation, and the energy required for hydrogen dragging by dislocation mobility during plastic deformation are lower than the binding energy between hydrogen and trapping sites. The peak 2 hydrogen, therefore, is believed to not accumulate in front of the crack tip and to not cause environmental degradation in spite of being present in amounts as high as 2.9 mass ppm. (author)

  13. Segregation Behaviour of Third Generation Advanced High-Strength Mn-Al Steels

    Directory of Open Access Journals (Sweden)

    A. Grajcar

    2012-04-01

    Full Text Available The paper addresses the macro- and microsegregation of alloying elements in the new-developed Mn-Al TRIP steels, which belong to the third generation of advanced high-strength steels (AHSS used in the automotive industry. The segregation behaviour both in the as-cast state and after hot forging was assessed in the macro scale by OES and by EDS measurements in different structural constituents. The structural investigations were carried out using light and scanning electron microscopy. A special attention was paid to the effect of Nb microaddition on the structure and the segregation of alloying elements. The tendency of Mn and Al to macrosegregation was found. It is difficult to remove in Nb-free steels. Microsegregation of Mn and Al between austenite and ferritic structural constituents can be removed.

  14. Strain rate dependent tensile behavior of advanced high strength steels: Experiment and constitutive modeling

    International Nuclear Information System (INIS)

    Kim, Ji-Hoon; Kim, Daeyong; Han, Heung Nam; Barlat, F.; Lee, Myoung-Gyu

    2013-01-01

    High strain rate tensile tests were conducted for three advanced high strength steels: DP780, DP980 and TRIP780. A high strain rate tensile test machine was used for applying the strain rate ranging from 0.1/s to 500/s. Details of the measured stress–strain responses were comparatively analyzed for the DP780 and TRIP780 steels which show similar microstructural feature and ultimate tensile strength, but different strengthening mechanisms. The experimental observations included: usual strain rate dependent plastic flow stress behavior in terms of the yield stress (YS), the ultimate tensile strength (UTS), the uniform elongation (UE) and the total elongation (TE) which were observed for the three materials. But, higher strain hardening rate at early plastic strain under quasi-static condition than that of some increased strain rates was featured for TRIP780 steel, which might result from more active transformation during deformation with lower velocity. The uniform elongation that explains the onset of instability and the total elongation were larger in case of TRIP steel than the DP steel for the whole strain rate range, but interestingly the fracture strain measured by the reduction of area (RA) method showed that the TRIP steel has lower values than DP steel. The fractographs using scanning electron microscopy (SEM) at the fractured surfaces were analyzed to relate measured fracture strain and the microstructural difference of the two materials during the process of fracture under various strain rates. Finally, constitutive modeling for the plastic flow stresses under various strain rates was provided in this study. The proposed constitutive law could represent both Hollomon-like and Voce-like hardening laws and the ratio between the two hardening types was efficiently controlled as a function of strain rate. The new strength model was validated successfully under various strain rates for several grades of steels such as mild steels, DP780, TRIP780, DP980 steels.

  15. Improving Strength-Ductility Balance of High Strength Dual-Phase Steels by Addition of Vanadium

    Science.gov (United States)

    Gong, Yu; Hua, M.; Uusitalo, J.; DeArdo, A. J.

    For galvanized or galvannealed steels to be commercially successful, they must exhibit several attributes: (i) easy and inexpensive processing in the hot mill, cold mill and on the coating line, (ii) high strength with good formability and spot weldability, and (iii) good corrosion resistance, especially after cold forming. For good corrosion resistance, the coating must have sufficient coverage, be of uniform thickness, and most importantly, the coating must survive the cold stamping or forming operation. The purpose of this paper is to present research aiming at improving the steel substrate, such that high strength can be obtained while maintaining good global formability (tensile ductility), local formability (sheared-edge ductility), and good spot weldability. It is well-known that the strength of DP steels is controlled by several factors, including the amount of martensite found in the final microstructure. Recent research has revealed that the amount of austenite formed during intercritical annealing can be strongly influenced by the annealing temperature and the pre-annealing conditions of the hot band (coiling temperature) and cold band (% cold reduction). Current experiments have explored the combination of pre-annealing conditions and four annealing practices to help define the best practice to optimize the strength-formability balance in these higher strength DP steels. The steels used in these experiments contained (i) low carbon content for good spot weldability, (ii) the hardenability additions Mo and Cr for strength, and (iii) V for grain refinement, precipitation hardening and temper resistance. When processed correctly, these steels exhibited UTS levels up to 1000MPa, total elongation to 25%, reduction in area to 45%, and Hole Expansion Ratios to 50%. The results of this program will be presented and discussed.

  16. Master curve characterization of the fracture toughness behavior in SA508 Gr.4N low alloy steels

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ki-Hyoung, E-mail: shirimp@kaist.ac.k [Department of Materials Science and Engineering, KAIST, Daejeon 305-701 (Korea, Republic of); Kim, Min-Chul; Lee, Bong-Sang [Nuclear Materials Research Division, KAERI, Daejeon 305-353 (Korea, Republic of); Wee, Dang-Moon [Department of Materials Science and Engineering, KAIST, Daejeon 305-701 (Korea, Republic of)

    2010-08-15

    The fracture toughness properties of the tempered martensitic SA508 Gr.4N Ni-Mo-Cr low alloy steel for reactor pressure vessels were investigated by using the master curve concept. These results were compared to those of the bainitic SA508 Gr.3 Mn-Mo-Ni low alloy steel, which is a commercial RPV material. The fracture toughness tests were conducted by 3-point bending with pre-cracked charpy (PCVN) specimens according to the ASTM E1921-09c standard method. The temperature dependency of the fracture toughness was steeper than those predicted by the standard master curve, while the bainitic SA508 Gr.3 steel fitted well with the standard prediction. In order to properly evaluate the fracture toughness of the Gr.4N steels, the exponential coefficient of the master curve equation was changed and the modified curve was applied to the fracture toughness test results of model alloys that have various chemical compositions. It was found that the modified curve provided a better description for the overall fracture toughness behavior and adequate T{sub 0} determination for the tempered martensitic SA508 Gr.4N steels.

  17. Effect of decreased hot-rolling reduction treatment on fracture toughness of low-alloy structural steels

    Science.gov (United States)

    Tomita, Yoshiyuki

    1990-09-01

    Commercial low-alloy structural steels, 0.45 pct C (AISI 1045 grade), 0.40 pct C-Cr-Mo (AISI 4140 grade), and 0.40 pct C-Ni-Cr-Mo (AISI 4340 grade), have been studied to determine the effect of the decreased hot-rolling reduction treatment (DHRRT) from 98 to 80 pct on fracture toughness of quenched and highly tempered low-alloy structural steels. The significant conclusions are as follows: (1) the sulfide inclusions were modified through the DHRRT from a stringer (mean aspect ratio: 16.5 to 17.6) to an ellipse (mean aspect ratio: 3.8 to 4.5), independent of the steels studied; (2) the DHRRT significantly improved J Ic in the long-transverse and shorttransverse orientations, independent of the steels studied; and (3) the shelf energy in the Charpy V-notch impact test is also greatly improved by the DHRRT, independent of testing orientation and steels studied; however, (4) the ductile-to-brittle transition temperature was only slightly affected by the DHRRT. The beneficial effect on the J Ic is briefly discussed in terms of a crack extension model involving the formation of voids at the inclusion sites and their growth and eventual linking up through the rupture of the intervening ligaments by local shear.

  18. A numerical study on the mechanical properties and the processing behaviour of composite high strength steels

    Energy Technology Data Exchange (ETDEWEB)

    Muenstermann, Sebastian [RWTH Aachen (Germany). Dept. of Ferrous Metallurgy; Vajragupta, Napat [RWTH Aachen (Germany). Materials Mechanics Group; Weisgerber, Bernadette [ThyssenKrupp Steel Europe AG (Germany). Patent Dept.; Kern, Andreas [ThyssenKrupp Steel Europe AG (Germany). Dept. of Quality Affairs

    2013-06-01

    The demand for lightweight construction in mechanical and civil engineering has strongly promoted the development of high strength steels with excellent damage tolerance. Nowadays, the requirements from mechanical and civil engineering are even more challenging, as gradients in mechanical properties are demanded increasingly often for components that are utilized close to the limit state of load bearing capacity. A metallurgical solution to this demand is given by composite rolling processes. In this process components with different chemical compositions were jointed, which develop after heat treatment special properties. These are actually evaluated in order to verify that structural steels with the desired gradients in mechanical properties can be processed. A numerical study was performed aiming to numerically predict strenght and toughness properties, as well as the procesing behaviour using Finite Element (FE) simulations with damage mechanics approaches. For determination of mechanical properties, simulations of tensile specimen, SENB sample, and a mobile crane have been carried out for different configurations of composite rolled materias out of high strebght structural steels. As a parameter study, both the geometrical and the metallurgical configurations of the composite rolled steels were modified. Thickness of each steel layer and materials configuration have been varied. Like this, a numerical procedure to define optimum tailored configurations of high strenght steels could be established.

  19. Effect of steel fibres on mechanical properties of high-strength concrete

    International Nuclear Information System (INIS)

    Holschemacher, K.; Mueller, T.; Ribakov, Y.

    2010-01-01

    Steel fibre reinforced concrete (SFRC) became in the recent decades a very popular and attractive material in structural engineering because of its good mechanical performance. The most important advantages are hindrance of macrocracks' development, delay in microcracks' propagation to macroscopic level and the improved ductility after microcracks' formation. SFRC is also tough and demonstrates high residual strengths after appearing of the first crack. This paper deals with a role of steel fibres having different configuration in combination with steel bar reinforcement. It reports on results of an experimental research program that was focused on the influence of steel fibre types and amounts on flexural tensile strength, fracture behaviour and workability of steel bar reinforced high-strength concrete beams. In the frame of the research different bar reinforcements (2o6 mm and 2o12 mm) and three types of fibres' configurations (two straight with end hooks with different ultimate tensile strength and one corrugated) were used. Three different fibre contents were applied. Experiments show that for all selected fibre contents a more ductile behaviour and higher load levels in the post-cracking range were obtained. The study forms a basis for selection of suitable fibre types and contents for their most efficient combination with regular steel bar reinforcement.

  20. Measurements of Bauschinger effect and transient behavior of a quenched and partitioned advanced high strength steel

    International Nuclear Information System (INIS)

    Zang, Shun-lai; Sun, Li; Niu, Chao

    2013-01-01

    In recent decades, the needs for new advanced high strength steels (AHSS) with high ductility and strength have rapidly increased to achieve the targets of more fuel-efficient and safer vehicles in automotive industry. However, several undesirable phenomena are experimentally observed during the forming of such materials, particularly with complex loading and large plastic deformation. Springback is one of the most important problems that should be compensated in sheet metal forming process. In this paper, we investigated the hardening behavior of a Q and P (quench and partitioning) steel designated by QP980CR, which is a new third generation advance high strength steel, from the Baosteel Group Corp. in Shanghai, China. The uni-axial tensile and cyclic simple shear tests were conducted. The uni-axial tensile tests were performed on the specimens at 0°, 45° and 90° to rolling direction (RD). The flow stress and transverse strain evolution were obtained in view of the digital image correlation (DIC) measurement. The plastic anisotropy was optimized from the uni-axial tensile tests and thereafter incorporated into the simulations of cyclic simple shear tests. The cyclic simple shear tests were conducted with three prestrains to measure the Bauschinger effect, transient behavior and permanent softening, and to determine the material parameters of the combined isotropic-kinematic hardening model

  1. Measurements of Bauschinger effect and transient behavior of a quenched and partitioned advanced high strength steel

    Energy Technology Data Exchange (ETDEWEB)

    Zang, Shun-lai, E-mail: shawn@mail.xjtu.edu.cn [School of Mechanical Engineering, Xi' an Jiaotong University, No. 28, Xianning Road, Xi' an, Shaanxi (China); Sun, Li [Manufacturing Process Research, General Motors China Science Lab, No. 56, Jinwan Road, Shanghai (China); Niu, Chao [School of Mechanical Engineering, Xi' an Jiaotong University, No. 28, Xianning Road, Xi' an, Shaanxi (China)

    2013-12-01

    In recent decades, the needs for new advanced high strength steels (AHSS) with high ductility and strength have rapidly increased to achieve the targets of more fuel-efficient and safer vehicles in automotive industry. However, several undesirable phenomena are experimentally observed during the forming of such materials, particularly with complex loading and large plastic deformation. Springback is one of the most important problems that should be compensated in sheet metal forming process. In this paper, we investigated the hardening behavior of a Q and P (quench and partitioning) steel designated by QP980CR, which is a new third generation advance high strength steel, from the Baosteel Group Corp. in Shanghai, China. The uni-axial tensile and cyclic simple shear tests were conducted. The uni-axial tensile tests were performed on the specimens at 0°, 45° and 90° to rolling direction (RD). The flow stress and transverse strain evolution were obtained in view of the digital image correlation (DIC) measurement. The plastic anisotropy was optimized from the uni-axial tensile tests and thereafter incorporated into the simulations of cyclic simple shear tests. The cyclic simple shear tests were conducted with three prestrains to measure the Bauschinger effect, transient behavior and permanent softening, and to determine the material parameters of the combined isotropic-kinematic hardening model.

  2. Springback Prediction and Compensation for a High Strength Steel Side Impact Beam

    International Nuclear Information System (INIS)

    Dutton, Trevor; Edwards, Richard; Blowey, Andrew

    2005-01-01

    Prediction of formability for sheet metal pressings has advanced to a high state of confidence in recent years. The major challenge is now to predict springback and, moreover, to assist in the design of tooling to correctly compensate for springback. This is particularly the case for materials now being routinely considered for automotive production, such as aluminium and ultra high strength steels, which are prone to greater degrees of springback than traditional mild steels. This paper presents a case study based on the tool design for an ultra high strength steel side impact beam. The forming and springback simulations, carried out using eta/DYNAFORM (based on the LS-DYNA solver), are reported and compared to measurements from the prototype panels. The analysis parameters used in the simulation are presented, and the sensitivity of the results to variation in physical properties is also reviewed. The process of compensating the tools based on the analysis prediction is described; finally, an automated springback compensation method is also applied and the results compared with the final tool design

  3. Influence of Cyclic Straining on Fatigue, Deformation, and Fracture Behavior of High-Strength Alloy Steel

    Science.gov (United States)

    Manigandan, K.; Srivatsan, T. S.; Vasudevan, V. K.; Tammana, D.; Poorganji, B.

    2016-01-01

    In this paper, the results of a study on microstructural influences on mechanical behavior of the high-strength alloy steel Tenax™ 310 are presented and discussed. Under the influence of fully reversed strain cycling, the stress response of this alloy steel revealed softening from the onset of deformation. Cyclic strain resistance exhibited a linear trend for the variation of both elastic strain amplitude with reversals-to-failure, and plastic strain amplitude with reversals-to-failure. Fracture morphology was essentially the same at the macroscopic level over the entire range of cyclic strain amplitudes examined. However, at the fine microscopic level, this high-strength alloy steel revealed fracture to be mixed-mode with features reminiscent of "locally" ductile and brittle mechanisms. The macroscopic mechanisms governing stress response at the fine microscopic level, resultant fatigue life, and final fracture behavior are presented and discussed in light of the mutually interactive influences of intrinsic microstructural effects, deformation characteristics of the microstructural constituents during fully reversed strain cycling, cyclic strain amplitude, and resultant response stress.

  4. Metallurgical/Alloy Optimization of High Strength and Wear Resistant Structural Quench and Tempered Steels

    Science.gov (United States)

    Stalheim, Douglas G.; Peimao, Fu; Linhao, Gu; Yongqing, Zhang

    Structural steels with yield strength requirements greater or equal to 690 MPa can be produced through controlled recrystallization hot rolling coupled with precipitation strengthening or purposeful heat treatment through quench and tempering (Q&T). High strength structural steel and wear/abrasion resistant requirements greater or equal to 360 Brinell hardness (BHN) are produced by the development of microstructures of tempered lower bainite and/or martensite through the Q&T process. While these Q&T microstructures can produce very high strengths and hardness levels making them ideal for 690 MPa plus yield strength or wear/abrasion resistant applications, they lack toughness/ductility and hence are very brittle and prone to cracking. While tempering the microstructures helps in improving the toughness/ductility and reducing the brittleness, strength and hardness can be sacrificed. In addition, these steels typically consist of alloy designs containing boron with carbon equivalents (CE) greater than 0.50 to achieve the desired microstructures. The higher CE has a negative influence on weldability.

  5. Influence of non-metallic second phases on fatigue behaviour of high strength steel components

    International Nuclear Information System (INIS)

    Gonzalez, L.; Elvira, R.; Garcia de Andoin, A.; Pizarro, R.; Bertrand, C.

    2005-01-01

    To assess the real effect of the inclusion type on fatigue life of ultra clean high strength steels mechanical components made of 100Cr6 steel were fatigue tested and fracture surfaces analysed to determine the origin of fatigue cracks.Two heats proceedings from different steelmaking routes were taken for the tests. The material were forged into ring shape components which were fatigue tested under compression-compression loads. Failures were analysed by SFEM (Scanning field Emission Microscopy), proving that most of failures at high loads were originated by manganese sulphides of small size (10-70 micros), while less than 40% of all fatigue cracks due to inclusions were caused by titanium carbonitrides and hard oxides. It has been demonstrated that once number and size of hard inclusions have been reduced, the hazardous effect of oxides and carbonitrides on the fatigue life decreases also. However, softer inclusions as manganese sulphides, currently considered as less hazardous, play a more relevant role as direct cause of fatigue failure and they should be taken into account in a deeper way in order to balance both machinability and fatigue life requirements in high strength steel components. (Author) 11 refs

  6. Influence of steel fibers on the shear and flexural performance of high-strength concrete beams tested under blast loads

    Science.gov (United States)

    Algassem, O.; Li, Y.; Aoude, H.

    2017-09-01

    This paper presents the results of a study examining the effect of steel fibres on the blast behaviour of high-strength concrete beams. As part of the study, a series of three large-scale beams built with high-strength concrete and steel fibres are tested under simulated blast loading using the shock-tube testing facility at the University of Ottawa. The specimens include two beams built with conventional high-strength concrete (HSC) and one beam built with high-strength concrete and steel fibres (HSFRC). The effect of steel fibres on the blast behaviour is examined by comparing the failure mode, mid-span displacements and, overall blast resistance of the specimens. The results show that the addition of steel fibres in high-strength concrete beams can prevent shear failure and substitute for shear reinforcement if added in sufficient quantity. Moreover, the use of steel fibres improves flexural response under blast loading by reducing displacements and increasing blast capacity. Finally, the provision of steel fibres is found to improve the fragmentation resistance of high-strength concrete under blast loads.

  7. Hot ductility behavior of a low carbon advanced high strength steel (AHSS) microalloyed with boron

    International Nuclear Information System (INIS)

    Mejia, I.; Bedolla-Jacuinde, A.; Maldonado, C.; Cabrera, J.M.

    2011-01-01

    Research highlights: → Effect of boron on the hot ductility behavior of a low carbon NiCrVCu AHSS. → Boron addition of 117 ppm improves hot ductility over 100% in terms of RA. → Hot ductility improvement is associated with segregation/precipitation of boron. → Typical hot ductility recovery at lower temperatures does not appear in this steel. → Hot ductility loss is associated with precipitates/inclusions coupled with voids. - Abstract: The current study analyses the influence of boron addition on the hot ductility of a low carbon advanced high strength NiCrVCu steel. For this purpose hot tensile tests were carried out at different temperatures (650, 750, 800, 900 and 1000 deg. C) at a constant true strain rate of 0.001 s -1 . Experimental results showed a substantial improvement in hot ductility for the low carbon advanced high strength steel when microalloyed with boron compared with that without boron addition. Nevertheless, both steels showed poor ductility when tested at the lowest temperatures (650, 750 and 800 deg. C), and such behavior is associated to the precipitation of vanadium carbides/nitrides and inclusions, particularly MnS and CuS particles. The fracture mode of the low carbon advanced high strength steel microalloyed with boron seems to be more ductile than the steel without boron addition. Furthermore, the fracture surfaces of specimens tested at temperatures showing the highest ductility (900 and 1000 deg. C) indicate that the fracture mode is a result of ductile failure, while in the region of poor ductility the fracture mode is of the ductile-brittle type failure. It was shown that precipitates and/or inclusions coupled with voids play a meaningful role on the crack nucleation mechanism which in turn causes a hot ductility loss. Likewise, dynamic recrystallization (DRX) which always results in restoration of ductility only occurs in the range from 900 to 1000 deg. C. Results are discussed in terms of boron segregation towards

  8. Hot ductility behavior of a low carbon advanced high strength steel (AHSS) microalloyed with boron

    Energy Technology Data Exchange (ETDEWEB)

    Mejia, I., E-mail: imejia@umich.mx [Instituto de Investigaciones Metalurgicas, Universidad Michoacana de San Nicolas de Hidalgo, Edificio ' U' , Ciudad Universitaria, 58066 Morelia, Michoacan (Mexico); Bedolla-Jacuinde, A.; Maldonado, C. [Instituto de Investigaciones Metalurgicas, Universidad Michoacana de San Nicolas de Hidalgo, Edificio ' U' , Ciudad Universitaria, 58066 Morelia, Michoacan (Mexico); Cabrera, J.M. [Departament de Ciencia dels Materials i Enginyeria Metal.lurgica, ETSEIB - Universitat Politecnica de Catalunya, Av. Diagonal 647, 08028 Barcelona (Spain); Fundacio CTM Centre Tecnologic, Av. de las Bases de Manresa 1, 08240 Manresa (Spain)

    2011-05-25

    Research highlights: {yields} Effect of boron on the hot ductility behavior of a low carbon NiCrVCu AHSS. {yields} Boron addition of 117 ppm improves hot ductility over 100% in terms of RA. {yields} Hot ductility improvement is associated with segregation/precipitation of boron. {yields} Typical hot ductility recovery at lower temperatures does not appear in this steel. {yields} Hot ductility loss is associated with precipitates/inclusions coupled with voids. - Abstract: The current study analyses the influence of boron addition on the hot ductility of a low carbon advanced high strength NiCrVCu steel. For this purpose hot tensile tests were carried out at different temperatures (650, 750, 800, 900 and 1000 deg. C) at a constant true strain rate of 0.001 s{sup -1}. Experimental results showed a substantial improvement in hot ductility for the low carbon advanced high strength steel when microalloyed with boron compared with that without boron addition. Nevertheless, both steels showed poor ductility when tested at the lowest temperatures (650, 750 and 800 deg. C), and such behavior is associated to the precipitation of vanadium carbides/nitrides and inclusions, particularly MnS and CuS particles. The fracture mode of the low carbon advanced high strength steel microalloyed with boron seems to be more ductile than the steel without boron addition. Furthermore, the fracture surfaces of specimens tested at temperatures showing the highest ductility (900 and 1000 deg. C) indicate that the fracture mode is a result of ductile failure, while in the region of poor ductility the fracture mode is of the ductile-brittle type failure. It was shown that precipitates and/or inclusions coupled with voids play a meaningful role on the crack nucleation mechanism which in turn causes a hot ductility loss. Likewise, dynamic recrystallization (DRX) which always results in restoration of ductility only occurs in the range from 900 to 1000 deg. C. Results are discussed in terms of

  9. New understanding of the effect of hydrostatic pressure on the corrosion of Ni–Cr–Mo–V high strength steel

    International Nuclear Information System (INIS)

    Yang, Yange; Zhang, Tao; Shao, Yawei; Meng, Guozhe; Wang, Fuhui

    2013-01-01

    Highlights: •Stress distributions of pits under different hydrostatic pressures are simulated. •Corrosion model of Ni–Cr–Mo–V steel under hydrostatic pressure is established. •A novel understanding of the effect of hydrostatic pressure is proposed. -- Abstract: Corrosion of Ni–Cr–Mo–V high strength steel at different hydrostatic pressures is investigated by scanning electron microscopy (SEM) and finite element analysis (FEA). The results indicate that corrosion pits of Ni–Cr–Mo–V high strength steel originate from inclusions in the steel and high hydrostatic pressures accelerate pit growth rate parallel to steel and the coalescence rate of neighbouring pits, which lead to the fast formation of uniform corrosion. Corrosion of Ni–Cr–Mo–V high strength steel under high hydrostatic pressure is the interaction result between electrochemical corrosion and elastic stress

  10. Transformation of localized necking of strain space into stress space for advanced high strength steel sheet

    Science.gov (United States)

    Nakwattanaset, Aeksuwat; Suranuntchai, Surasak

    2018-03-01

    Normally, Forming Limit Curves (FLCs) can’t explain for shear fracture better than Damage Curve, this article aims to show the experimental of Forming Limit Curve (FLC) for Advanced High Strength Steel (AHSS) sheets grade JAC780Y with the Nakazima forming test and tensile tests of different sample geometries. From these results, the Forming Limit Curve (strain space) was transformed to damage curve (stress space) between plastic strain and stress triaxiality. Therefore, Stress space transformed using by Hill-48 and von-Mises yield function. This article shows that two of these yield criterions can use in the transformation.

  11. Irreversible traps, their influence on the embrittlement of high strength steel

    International Nuclear Information System (INIS)

    Mariano, I; Mansilla, G

    2012-01-01

    Hydrogen (H) can be trapped in lattice defects such as vacancies, dislocations, grain boundaries and interfaces between the matrix and precipitates. The effect on the mechanical properties depends on factors inherent in materials such as the activation energy of irreversible traps (H trapped in Network Places) and its sensitivity to embrittlement. Differential scanning calorimetry (DSC) allows the study of those processes in which enthalpy variation occurs. The purpose is to record the difference in enthalpy change that occurs in the sample as a function of temperature or time. This work represents a study of H embrittlement of high strength steel resulfurized

  12. Experimental evaluation of the fretting fatigue behavior of high-strength steel monostrands

    DEFF Research Database (Denmark)

    Winkler, Jan; Fischer, Gregor; Georgakis, Christos T.

    2013-01-01

    In this paper, the fretting fatigue behavior of pretensioned high-strength steel monostrands is investigated. A method based on the digital image correlation (DIC) technique was used to quantify the relative movement between individual wires along the length of the monostrand. The experimental data....... Moreover, the paper provides relevant information about the monostrand bending stiffness and the extent of relative displacement between core and outer wires of the monostrand undergoing flexural deformations. The results presented herein are of special interest for the fatigue analysis of modern stay...

  13. Fretting fatigue behavior of high-strength steel monostrands under bending load

    DEFF Research Database (Denmark)

    Winkler, Jan; Georgakis, Christos T.; Fischer, Gregor

    2015-01-01

    In this paper, the fretting fatigue behavior of pretensioned high-strength steel monostrands is investigated. To measure the local deformations on the strands, a novel method based on the digital image correlation (DIC) technique was used to quantify the relative movement between individual wires...... along the length of the monostrand. Information about the monostrand bending stiffness and the extent of relative displacement between core and outer wires of a monostrand undergoing flexural deformations is provided. From the series of dynamic fatigue tests, a fretting fatigue spectrum is derived...

  14. Ductile failure analysis of high strength steel in hot forming based on micromechanical damage model

    Directory of Open Access Journals (Sweden)

    Ying Liang

    2016-01-01

    Full Text Available The damage evolution of high strength steel at elevated temperature is investigated by using the Gurson-Tvergaard-Needleman (GTN model. A hybrid method integrated thermal tensile test and numerical technique is employed to identify the damage parameters. The analysis results show that the damage parameters are different at different temperature as the variation of tested material microstructure. Furthermore, the calibrated damage parameters are implemented to simulate a bugling forming at elevated temperature. The experimental results show the availability of GTN damage model in analyzing sheet formability in hot forming.

  15. Testing new tribo-systems for sheet metal forming of advanced high strength steels and stainless steels

    DEFF Research Database (Denmark)

    Bay, Niels; Ceron, Ermanno

    2014-01-01

    of a methodology for off-line testing of new tribo-systems for advanced high strength steels and stainless steels. The methodology is presented and applied to an industrial case, where different tribo-systems are tested. A universal sheet tribotester has been developed, which can run automatically repetitive......Testing of new tribo-systems in sheet metal forming has become an important issue due to new legislation, which forces industry to replace current, hazardous lubricants. The present paper summarizes the work done in a recent PhD project at the Technical University of Denmark on the development...

  16. Corrosion Characterization in Nickel Plated 110 ksi Low Alloy Steel and Incoloy 925: An Experimental Case Study

    Science.gov (United States)

    Thomas, Kiran; Vincent, S.; Barbadikar, Dipika; Kumar, Shresh; Anwar, Rebin; Fernandes, Nevil

    2018-04-01

    Incoloy 925 is an age hardenable Nickel-Iron-Chromium alloy with the addition of Molybdenum, Copper, Titanium and Aluminium used in many applications in oil and gas industry. Nickel alloys are preferred mostly in corrosive environments where there is high concentration of H2S, CO2, chlorides and free Sulphur as sufficient nickel content provides protection against chloride-ion stress-corrosion cracking. But unfortunately, Nickel alloys are very expensive. Plating an alloy steel part with nickel would cost much lesser than a part make of nickel alloy for large quantities. A brief study will be carried out to compare the performance of nickel plated alloy steel with that of an Incoloy 925 part by conducting corrosion tests. Tests will be carried out using different coating thicknesses of Nickel on low alloy steel in 0.1 M NaCl solution and results will be verified. From the test results we can confirm that Nickel plated low alloy steel is found to exhibit fairly good corrosion in comparison with Incoloy 925 and thus can be an excellent candidate to replace Incoloy materials.

  17. High strength oil palm shell concrete beams reinforced with steel fibres

    Directory of Open Access Journals (Sweden)

    S. Poh-Yap

    2017-10-01

    Full Text Available The utilization of lightweight oil palm shell to produce high strength lightweight sustainable material has led many researchers towards its commercialization as structural concrete. However, the low tensile strength of Oil Palm Shell Concrete (OPSC has hindered its development. This study aims to enhance the mechanical properties and flexural behaviours of OPSC by the addition of steel fibres of up to 3% by volume, to produce oil palm shell fibre-reinforced concrete (OPSFRC. The experimental results showed that the steel fibres significantly enhanced the mechanical properties of OPSFRC. The highest compressive strength, splitting tensile and flexural strengths of 55, 11.0 and 18.5 MPa, respectively, were achieved in the OPSFRC mix reinforced with 3% steel fibres. In addition, the flexural beam testing on OPSFRC beams with 3% steel fibres showed that the steel fibre reinforcement up to 3% produced notable increments in the moment capacity and crack resistance of OPSFRC beams, but accompanied by reduction in the ductility.

  18. Crack Arrest Toughness of Two High Strength Steels (AISI 4140 and AISI 4340)

    Science.gov (United States)

    Ripling, E. J.; Mulherin, J. H.; Crosley, P. B.

    1982-04-01

    The crack initiation toughness ( K c ) and crack arrest toughness ( K a ) of AISI 4140 and AISI 4340 steel were measured over a range of yield strengths from 965 to 1240 MPa, and a range of test temperatures from -53 to +74°C. Emphasis was placed on K a testing since these values are thought to represent the minimum toughness of the steel as a function of loading rate. At the same yield strengths and test temperatures, K a for the AISI 4340 was about twice as high as it was for the AISI 4140. In addition, the K a values showed a more pronounced transition temperature than the K c values, when the data were plotted as a function of test temperature. The transition appeared to be associated with a change in fracture mechanism from cleavage to dimpled rupture as the test temperature was increased. The occurrence of a “pop-in” behavior at supertransition temperatures has not been found in lower strength steels, and its evaluation in these high strength steels was possible only because they are not especially tough at their supertransition temperatures. There is an upper toughness limit at which pop-in will not occur, and this was found for the AISI 4340 steel when it was tempered to its lowest yield strength (965 MPa). All the crack arrest data were identified as plane strain values, while only about one-half of the initiation values could be classified this way.

  19. An investigation of the properties of conventional and severe shot peened low alloy steel

    Science.gov (United States)

    Quang Trung, Pham; Butler, David Lee; Win Khun, Nay

    2017-07-01

    The effects of the conventional shot peening and severe shot peening process on the mechanical and tribological properties of shot peened AISI 4340 high strength steel were systematically investigated. Compared with the conventional shot peened sample, the ultrafine grain surface layer with a depth of about 20 µm generated by the severe shot peening process can enhance the hardness and wear resistance of the treated material. However, deeper dimples generated by the high media velocity in the severe shot peening process resulted in a higher surface roughness, which is considered as a side effect of this method reducing the fatigue life of the material. Applying a smaller shot size with an appropriate intensity can be used to peen the severe shot peened samples to not only reduce the surface roughness and friction coefficient but also improve the wear resistance for these samples. This work was presented in the shot peening section during ‘The 30th International Conference on Surface Modification Technologies, 2016, Milan, Italy’ (SMT30, ID 61, entitled ‘Comparison of the effects of conventional shot peening and severe shot peening processes on the mechanical and tribological properties of shot peened AISI 4340’) and the authors were encouraged to submit a manuscript to the Materials Research Express journal after adding some nessesary information.

  20. Experimental and numerical analysis of micromechanical damage in the punching process for High-Strength Low-Alloy steels

    OpenAIRE

    ACHOURI, Mohamed; GERMAIN, Guénaël; DAL SANTO, Philippe; SAIDANE, Delphine

    2014-01-01

    Sequential sheet metal forming processes can result in the accumulation of work hardening and damage effects in the workpiece material. The mechanical strength of the final component depends on the “evolution” of these two characteristics in the different production steps. The punching process, which is usually in the beginning of the production chain, has an important impact on the stress, strain and damage states in the punched zones. It is essential that the influence of these mechanical f...

  1. The kinetics and mechanism of bainite transformation in high strength steels

    International Nuclear Information System (INIS)

    Ali, A.; Bhadeshia, H.K.D.H.

    1993-01-01

    The kinetics and mechanism of bainite formation have been studied in high strength Fe-C-Si-Mn and Fe-C-Si-Ni steels using dilatometry, optical and transmission electron microscopy. In these silicon containing steels, carbide precipitation dies not accompany the growth of bainitic ferrite so that the mechanism of transformation can be readily interpreted. The work confirms that the volume fraction of bainite when the reaction stops, is far less that expected from equilibrium or para equilibrium considerations. In addition the bainite exhibits an invariant plane strain surface relief effect with a large shear component, and adopts a sheaf morphology. The results are demonstrated to be consistent with a displacive diffusion less transformation mechanism of bainite, in which the excess carbon is, subsequent to transformation, rejected into the residual austenite. (author)

  2. Welding of high-strength stainless steel 03Kh12N10MT for cryogenic engineering

    International Nuclear Information System (INIS)

    Pustovit, A.I.

    1989-01-01

    Consideration is being given to weld resistance to cold and hot cracking at 93 and 77K and to mechanical properties of welded joints of high-strength stainless steel 03Kh12N10MT, produced under the fluxes AN-17M, AN-18, AN-26, AN-45, ANF-5, 48-OF-6, ANK-45 and ANK-49 in combination with various welding wires. It is shown that welds on 03Kh12N10MT steel meet the requirements only when using 48-OF-6 or ANK-49 flux. It is noted that impact strength of welds at 77K is sufficiently affected by the volume fraction of non-metallic inclusions in weld metal

  3. Integrated Computational Materials Engineering (ICME) for Third Generation Advanced High-Strength Steel Development

    Energy Technology Data Exchange (ETDEWEB)

    Savic, Vesna; Hector, Louis G.; Ezzat, Hesham; Sachdev, Anil K.; Quinn, James; Krupitzer, Ronald; Sun, Xin

    2015-06-01

    This paper presents an overview of a four-year project focused on development of an integrated computational materials engineering (ICME) toolset for third generation advanced high-strength steels (3GAHSS). Following a brief look at ICME as an emerging discipline within the Materials Genome Initiative, technical tasks in the ICME project will be discussed. Specific aims of the individual tasks are multi-scale, microstructure-based material model development using state-of-the-art computational and experimental techniques, forming, toolset assembly, design optimization, integration and technical cost modeling. The integrated approach is initially illustrated using a 980 grade transformation induced plasticity (TRIP) steel, subject to a two-step quenching and partitioning (Q&P) heat treatment, as an example.

  4. Evaluation of essential work of fracture in a dual phase high strength steel sheet

    International Nuclear Information System (INIS)

    Gutierrez, D.; Perez, L. I.; Lara, A.; Casellas, D.; Prado, J. M.

    2013-01-01

    Fracture toughness of advanced high strength steels (AHSS), can be used to optimize crash behavior of structural components. However it cannot be readily measured in metal sheet because of the sheet thickness. In this work, the Essential Work of Fracture (EWF) methodology is proposed to evaluate the fracture toughness of metal sheets. It has been successfully applied in polymers films and some metal sheets. However, their information about the applicability of this methodology to AHSS is relatively scarce. In the present work the fracture toughness of a Dual Phase (strength of 800 MPa) and drawing steel sheets has been measured by means of the EWF. The results show that the test requirements are met and also show the clear influence of notch radii on the measured values, specially for the AHSS grade. Thus, the EWF is postulated as a methodology to evaluate the fracture toughness in AHSS sheets. (Author) 18 refs.

  5. Effect of prestrain on ductility and toughness in high strength line pipe steels

    Energy Technology Data Exchange (ETDEWEB)

    Shinohara, Y.; Besson, J. [Paristech, Evry (France). Centre des Materiaux, Mines Paris; Madi, Y. [Ecole d' Ingenieurs, Sceaux (France). Ermess EPF; Paristech, Evry (France). Centre des Materiaux, Mines Paris

    2009-07-01

    The anisotropic plasticity, ductility and toughness of an X100 steel pipeline was investigated both before and after a series of prestraining experiments. The aim of the study was to determine the effect of prestraining on ductility and toughness in high strength pipe steels. Results of the study showed that primary void growth and coalescence was dependent on initial plastic anisotropy and not dependent on tensile prestrain. Secondary void nucleation and growth was not influenced by either the initial plastic anisotropy or by prestraining. Scanning electron microscopy (SEM) studies showed that the main damage mechanism was the void growth of primary dimples. Dimples in the prestrained materials were larger than those observed in materials that had not been prestrained. However, the effect on prestrain on dimple size was limited. Results showed both plastic and rupture anisotropies. It was concluded that prestraining induces a decrease in ductility, but has a significant impact on toughness. 4 refs., 2 tabs., 12 figs.

  6. Study Of The Wet Multipass Drawing Process Applied On High Strength Thin Steel Wires

    Science.gov (United States)

    Thimont, J.; Felder, E.; Bobadilla, C.; Buessler, P.; Persem, N.; Vaubourg, JP.

    2011-05-01

    Many kinds of high strength thin steel wires are involved in so many applications. Most of the time, these wires are made of a pearlitic steel grade. The current developments mainly concern the wire last drawing operation: after a patenting treatment several reduction passes are performed on a slip-type multipass drawing machine. This paper focuses on modeling this multipass drawing process: a constitutive law based on the wire microstructure evolutions is created, a mechanical study is performed, a set of experiments which enables determining the process friction coefficients is suggested and finally the related analytical model is introduced. This model provides several general results about the process and can be used in order to set the drawing machines.

  7. Corrosion behaviour of low alloy steels: from ancient past to far future

    Energy Technology Data Exchange (ETDEWEB)

    Santarini, G. [Commissariat a l' Energie Atomique, CEA-Saclay DEN/DPC, Bat 450, 91191 Gif-sur-Yvette Cedex (France)

    2004-07-01

    With the envisaged concepts of long term storage and underground disposal of high level radioactive waste, corrosion science has to face a new challenge: to obtain reliable behaviour predictions over very long periods of time, up to thousands of years. For such durations, the development of mechanistically based models becomes an absolute necessity. In France, the first candidate materials considered for the containers of high level waste are low alloy steels because of their relatively low sensitivity to localized corrosion, when compared, for example, to passive materials: this characteristics makes their corrosion behaviour less difficult to predict. In this mechanistic modelling, numerous physicochemical steps have to be taken into consideration, such as chemical and/or electrochemical reactions, solid state diffusion of point defects, liquid state diffusion of chemical species in oxide pores, etc. However, since the complex links between all these steps highly depend on the nature and on the characteristics (porosity, conductivity, protectiveness, etc.) of the corrosion products, the first stage before the model construction is to obtain experimental data on this phenomenology in the very near environment of the metal. At the opposite, once a model constructed, it is necessary to compare its predictions to field experience, and to verify that the mechanisms and phenomenology retained in the model remain unchanged over very long periods of time. In the various stages of a progressive iterative model improvement, the examination of archaeological objects is liable to provide useful information. The considerable interest of such objects, in this context, comes from the long duration of the contact with a natural environment, a duration of the same order of magnitude as the one considered for high level waste storage. However, the differences between the ancient materials and the modern ones and also the poor knowledge about the initial conditions and about the

  8. Reliability/unreliability of mixture rule in a low alloy ferrite–martensite dual phase steel

    International Nuclear Information System (INIS)

    Fereiduni, E.; Ghasemi Banadkouki, S.S.

    2013-01-01

    Highlights: •The ferrite hardening response is quite variable in DP microstructures. •Martensite microhardness has not shown a specific manner in DP microstructures. •There is a major difference between experimental and calculated hardness values. •Mixture rule can be applied to predict the hardness if using some assumptions. -- Abstract: The aim of this paper is to investigate in details the relationship between the volume fractions of ferrite and martensite with the variation of hardness in a low alloy ferrite–martensite dual phase (DP) steel. For this purpose, a wide variety of ferrite–martensite DP samples consisting different volume fractions of ferrite and martensite have been developed using step quenching heat treatment cycle involving reheating at 860 °C for 60 min, soaking at 600 °C salt bath for various holding times followed by 70 °C hot oil quenching. Optical microscopy has been supplemented by electron microscopy and hardness measurements to follow microstructural changes and their relation to the variation in hardness. The results showed that there is a non-linear relationship between the hardness of DP samples with the volume fraction of phase constituents indicating that the mixture rule is not reliable in the ferrite–martensite DP microstructures. The unreliability of mixture rule is related to the variation of ferrite and martensite hardening responses developed in the DP samples. The DP microstructure consisting 6–7% volume fraction of continuous grain boundary ferrite in the vicinity of martensite has been associated with a remarkable higher hardness for both ferrite and martensite in comparison with the other DP microstructures. The higher martensite hardness is due to the higher carbon content of the remaining metastable austenite developed in the ferrite–austenite two phase field area, leading to the harder martensite formation on the subsequent 70 °C hot oil quenching. The harder ferrite grains have been developed as a

  9. Latest Development and Application of Nb-Bearing High Strength Pipeline Steels

    Science.gov (United States)

    Zhang, Yongqing; Shang, Chengjia; Guo, Aimin; Zheng, Lei; Niu, Tao; Han, Xiulin

    In order to solve the pollution problem emerging in China recently, China's central government is making great efforts to raise the percentage of natural gas consumption in the China's primary energy mix, which needs to construct big pipelines to transport natural gas from the nation's resource-rich western regions to the energy-starved east, as well as import from the Central Asia and Russia. With this mainstream trend, high strength, high toughness, heavy gauge, and large diameter pipeline steels are needed to improve the transportation efficiency. This paper describes the latest progresses in Nb-bearing high strength pipeline steels with regard to metallurgical design, development and application, including X80 coil with a thickness up to 22.0mm, X80 plate with a diameter as much as 1422mm, X80 plate with low-temperature requirements and low-Mn sour service X65 for harsh sour service environments. Moreover, based on widely accepted TMCP and HTP practices with low carbon and Nb micro-alloying design, this paper also investigated some new metallurgical phenomena based on powerful rolling mills and heavy ACC equipment.

  10. Generation of forming limit bands for ultra-high-strength steels in car body structures

    Science.gov (United States)

    Bayat, Hamid Reza; Sarkar, Sayantan; Italiano, Francesco; Bach, Aleksandar; Wulfinghoff, Stephan; Reese, Stefanie

    2018-05-01

    The application of ultra-high-strength steels in safety-related automotive components has led to higher safety levels as well as weight reduction. Nevertheless, this class of advanced high-strength steels (AHSS) show material scatter due to its manufacturing processes. To address this problem in advance, it is of significance not only to model the failure of the sheet metal but also to specify a band for the necking regime. The former is described by a forming limit curve (FLC), whereas a forming limit band (FLB) introduces the upper and lower bounds for the permissible strains. The objective of the present work is to generate a robust prediction of the strain-based failure of the sheet metal during a car crash. The FLCs are generated numerically applying a modified Marciniak-Kuczynski (MK) model, where the existence of an angled groove is mandatory. This assures to obtain the maximum admissible strain. In addition, a zero extension angle is utilized for the left hand side of the FLC (tension-compression). The material scatter is captured in experiments and applied in the hardening relations. Necking strains are recorded experimentally by a digital image correlation based system (ARAMIS). Later, they are fit into the FLC based on an inhomogeneity parameter fi from the MK model. In order to generate a theoretical FLB, first a statistical approach is exploited to take the experimental data into consideration. Eventually, the forming limit band distinguishes between safe, necking and failed regions.

  11. General and localized corrosion of carbon and low-alloy steels in oxygenated high-temperature water. Final report

    International Nuclear Information System (INIS)

    Macdonald, D.D.; Smialowska, S.; Pednekar, S.

    1983-02-01

    The susceptibilities to stress corrosion cracking (SCC) of two carbon steels, SA106-grB and SA333-gr6, which are used in seamless BWR piping, and a low-alloy pressure vessel steel, A508-C12, were studied in high purity water as a function of oxygen concentration (0.16 to 8 ppM) and temperature (50 to 288 0 C) . The susceptibility to SCC was measured using the slow strain rate technique. The fracture surfaces of the test specimens were also examined using SEM to determine the mode of failure. In water containing 1 and 8 ppM oxygen and at temperatures above 135 0 C, transgranular stress corrosion cracking (TGSCC) was observed to occur in A508-C12, SA333-gr6 and SA106grB steels at very high stresses. The susceptibility to SCC increased with temperature

  12. Ferrite channel effect on ductility and strain hardenability of ultra high strength dual phase steel

    Energy Technology Data Exchange (ETDEWEB)

    Ravi, Kumar B., E-mail: ravik@nmlindia.org [CSIR-National Metallurgical Laboratory, Jamshedpur 831007 (India); Patel, Nand Kumar [O.P Jindal University, Raigarh 496001 (India); Mukherjee, Krishnendu; Walunj, Mahesh; Mandal, Gopi Kishor [CSIR-National Metallurgical Laboratory, Jamshedpur 831007 (India); Venugopalan, T. [Tata Steel Limited, Jamshedpur 831001 (India)

    2017-02-08

    This study describes an effect of controlled austenite decomposition on microstructure evolution in dual phase steel. Steel sheets austenitized at various annealing temperatures were rapidly cooled to the inter-critical annealing temperature of 800 °C for the isothermal decomposition of austenite and then ultra fast cooled to room temperature. The scanning electron microscope analysis of evolving microstructure revealed ferrite nucleation and growth along prior austenite grain boundaries leading to ferrite network/channel formation around martensite. The extent of ferrite channel formation showed a strong dependence on the degree of undercooling in the inter-critical annealing temperature regime. Uniaxial tensile deformation of processed steel sheets showed extensive local inter-lath martensite damage activity. Extension/propagation of these local micro cracks to neighboring martensite grains was found to be arrested by ferrite channels. This assisted in delaying the onset of global damage which could lead to necking and fracture. The results demonstrated an alternate possible way of inducing ductility and strain hardenability in ultra high strength dual phase steels.

  13. Influence of Short Austenitization Treatments on the Mechanical Properties of Low-Alloy Steels for Hot Forming Applications

    Science.gov (United States)

    Holzweissig, Martin Joachim; Lackmann, Jan; Konrad, Stefan; Schaper, Mirko; Niendorf, Thomas

    2015-07-01

    The current work elucidates an improvement of the mechanical properties of tool-quenched low-alloy steel by employing extremely short austenitization durations utilizing a press heating arrangement. Specifically, the influence of different austenitization treatments—involving austenitization durations ranging from three to 15 seconds—on the mechanical properties of low-alloy steel in comparison to an industrial standard furnace process was examined. A thorough set of experiments was conducted to investigate the role of different austenitization durations and temperatures on the resulting mechanical properties such as hardness, bending angle, tensile strength, and strain at fracture. The most important finding is that the hardness, the bending angle as well as the tensile strength increase with shortened austenitization durations. Furthermore, the ductility of the steels exhibits almost no difference following the short austenitization durations and the standard furnace process. The enhancement of the mechanical properties imposed by the short heat treatments investigated, is related to a refinement of microstructural features as compared to the standard furnace process.

  14. In-situ tensile test of high strength nanocrystalline bainitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Haddad, Mike, E-mail: mike.haddad@uni-ulm.de [Institute of Micro and Nanomaterials, University of Ulm, Ulm (Germany); Ivanisenko, Yulia; Courtois-Manara, Eglantine [Institute of Nanotechnology, Karlsruhe Institute of Technology, Karlsruhe (Germany); Fecht, Hans-Jörg [Institute of Micro and Nanomaterials, University of Ulm, Ulm (Germany)

    2015-01-03

    Because of its great importance in modern engineering and technology applications, steel continues to be highly relevant in the modern research field of nanocrystalline materials. Innovative processing methods and procedures are required for the production of such materials, which possess superior properties compared to their conventional counter parts. In this research, the original microstructure of a commercial C45 steel (Fe, 0.42–0.5 wt% C, 0.5–0.8 wt% Mn) was modified from ferritic–pearlitic to bainitic. Warm high pressure torsion for 5 rotations at 6 GPa and 350 °C was used to process the bainitic sample leading to an ultrafine/nano-scale grain size. A unique nano-crystalline microstructure consisting of equiaxed and elongated ferrite grains with a mean size smaller than 150 nm appeared in images taken by Transmission Electron Microscopy. Results of in-situ tensile testing in a scanning electron microscope showed very high tensile strength, on the order of 2100 MPa with a total elongation of 4.5% in comparison with 800 MPa and around 16% in the original state. Fracture occurred abruptly, without any sign of necking, and was typically caused by the stress concentration at a surface flaw. Also, stress concentrations near all surface defects were observed on the sample, visualized by the formation of shear bands. The fracture surface was covered with dimples, indicating ductile fracture. These properties are fully comparable with high strength, high alloyed steels.

  15. Experimental study of Electro-Plastic Effect on Advanced High Strength Steels

    International Nuclear Information System (INIS)

    Liu, Xun; Lan, Shuhuai; Ni, Jun

    2013-01-01

    Application of Advanced High Strength Steels (AHSS) into vehicle structures calls for innovative manufacturing processes. In terms of reducing deformation resistance through external energy, Electro-Plastic Effect (EPE) provides a potential alternative to traditional thermal softening phenomenon. In this work, effectiveness of EPE on one group of AHSS, Transformation Induced Plasticity (TRIP) Steel, was evaluated. It was found that EPE cannot be effectively initiated until the current density reaches a threshold value between 7.4 A/mm 2 and 11.4 A/mm 2 . Besides, the softening phenomenon is more distinct at larger strains. Underlying mechanisms are explained from perspectives of dislocation multiplication, gliding and mechanical twinning. The inevitable Joule heating phenomenon associated with current was suppressed with forced air cooling and the temperature distribution inside the tensile specimen was numerically calculated with a coupled Finite Element Model. Effectiveness of EPE rather than thermal softening or expansion was further proved with the larger flow stress reduction under higher current density and shorter pulses at same temperature increase. Hollomon equation was adopted to model the observed stress strain relationships. Since material properties of TRIP steels are directly related to the phase transformation from retained austenite into martensite, volume fraction of retained austenite was quantitatively measured by X-ray Diffraction (XRD). It was found that the applied current retarded martensitic transformation process. Metallographic analysis was further performed and phenomena of change of grain structures and phase distribution were hardly observable

  16. Precipitation characteristic of high strength steels microalloyed with titanium produced by compact strip production

    Institute of Scientific and Technical Information of China (English)

    Jian Zhou; Yonglin Kang; Xinping Mao

    2008-01-01

    Transmission electron microscopy (TEM) and physics-chemical phase analysis were employed to investigate the precipitates in high strength steels microalloyed with Ti produced by compact strip production (CSP). It was seen that precipitates in Ti mieroalloyed steels mainly included TiN, Ti4C2S2, and TiC. The size of TiN particles varied from 50 to 500 nm, and they could precipitate during or before soaking. The Ti4C2S>2 with the size of 40-100 nm might precipitate before rolling, and the TiC particles with the size of 5-50 nm precipitated heterogeneously. High Ti content would lead to the presence of bigger TiC particles that precipitated in austenite, and by contrast, TiC particles that precipitated in ferrite and the transformation of austenite to ferrite was smaller. They were less than 30 nm and mainly responsible for precipitate strengthening. It should be noted that the TiC particles in higher Ti content were generally smaller than those in the steel with a lower Ti content.

  17. Nanoscale surface analysis on second generation advanced high strength steel after hot dip galvanizing.

    Science.gov (United States)

    Arndt, M; Duchoslav, J; Preis, K; Samek, L; Stifter, D

    2013-09-01

    Second generation advanced high strength steel is one promising material of choice for modern automotive structural parts because of its outstanding maximal elongation and tensile strength. Nonetheless there is still a lack of corrosion protection for this material due to the fact that cost efficient hot dip galvanizing cannot be applied. The reason for the insufficient coatability with zinc is found in the segregation of manganese to the surface during annealing and the formation of manganese oxides prior coating. This work analyses the structure and chemical composition of the surface oxides on so called nano-TWIP (twinning induced plasticity) steel on the nanoscopic scale after hot dip galvanizing in a simulator with employed analytical methods comprising scanning Auger electron spectroscopy (SAES), energy dispersive X-ray spectroscopy (EDX), and focused ion beam (FIB) for cross section preparation. By the combination of these methods, it was possible to obtain detailed chemical images serving a better understanding which processes exactly occur on the surface of this novel kind of steel and how to promote in the future for this material system galvanic protection.

  18. Combining gradient structure and TRIP effect to produce austenite stainless steel with high strength and ductility

    International Nuclear Information System (INIS)

    Wu, X.L.; Yang, M.X.; Yuan, F.P.; Chen, L.; Zhu, Y.T.

    2016-01-01

    We report a design strategy to combine the benefits from both gradient structure and transformation-induced plasticity (TRIP). The resultant TRIP-gradient steel takes advantage of both mechanisms, allowing strain hardening to last to a larger plastic strain. 304 stainless steel sheets were treated by surface mechanical attrition to synthesize gradient structure with a central coarse-grained layer sandwiched between two grain-size gradient layers. The gradient layer is composed of submicron-sized parallelepiped austenite domains separated by intersecting ε-martensite plates, with increasing domain size along the depth. Significant microhardness heterogeneity exists not only macroscopically between the soft coarse-grained core and the hard gradient layers, but also microscopically between the austenite domain and ε-martensite walls. During tensile testing, the gradient structure causes strain partitioning, which evolves with applied strain, and lasts to large strains. The γ → α′ martensitic transformation is triggered successively with an increase of the applied strain and flow stress. Importantly, the gradient structure prolongs the TRIP effect to large plastic strains. As a result, the gradient structure in the 304 stainless steel provides a new route towards a good combination of high strength and ductility, via the co-operation of both the dynamic strain partitioning and TRIP effect.

  19. Friction stir weld assisted diffusion bonding of 5754 aluminum alloy to coated high strength steels

    International Nuclear Information System (INIS)

    Haghshenas, M.; Abdel-Gwad, A.; Omran, A.M.; Gökçe, B.; Sahraeinejad, S.; Gerlich, A.P.

    2014-01-01

    Highlights: • Successful lap joints of Al 5754 sheet to coated DP600 and 22MnB5 steels. • Negligible effect of welding speed on mechanical properties of Al 5754/22MnB5 joints. • Lower strength of Al 5754/22MnB5 joints compared with Al 5754/DP600 joints. - Abstract: In the present paper friction stir-induced diffusion bonding is used for joining sheets of 5754 aluminum alloy to coated high strength steels (DP600 and 22MnB5) by promoting diffusion bonding in an overlap configuration. Mechanical performance and microstructures of joints were analyzed by overlap shear testing, metallography, and X-ray diffraction. Our results show that the strength of joint is dependent upon tool travel speed and the depth of the tool pin relative to the steel surface. The thickness and types of intermetallic compounds formed at the interface play a significant role in achieving a joint with optimum performance. That is, the formation of high aluminum composition intermetallic compounds (i.e. Al 5 Fe 2 ) at the interface of the friction stir lap joint appeared to have a more negative effect on joint strength compared to the presence of high iron composition intermetallic phases (i.e. FeAl). This is in agreement with previously reported findings that FeAl intermetallic can improve the fracture toughness and interface strength in Al/St joints

  20. An experimental study on the effects of compressive stress on the fatigue crack growth of low-alloy steel

    International Nuclear Information System (INIS)

    Jones, D.P.; Hoppe, R.G.; James, B.A.

    1993-01-01

    A series of fatigue crack growth rate tests was conducted in order to study effects of negative stress ratio on fatigue crack growth rate of low-alloy steel in air. Four-point bend specimens were used to simulate linear stress distributions typical of pressure vessel applications. This type of testing adds to knowledge on negative stress ratio effects for low-alloy steels obtained in the past from uniform tension-compression tests. Applied bending stress range was varied over twice the yield strength. Load control was used for tests for which the stress range was less than twice the yield strength and deflection control was used for the higher stress range tests. Crack geometries were both short and long fatigue cracks started at notches and tight fatigue cracks for which crack closure could occur over the full crack face. Results are presented in terms of the stress intensity factor ratio R = K MIN /K MAX . The negative R-ratio test results were correlated to an equation of the form da/dN = C[ΔK/(A-R)] n , where A, C, and n are curve fitting parameters. It was found that effects of negative R-ratio on fatigue crack growth rates for even the high stress range tests could be bounded by correlating the above equation to only positive R-ratio test results and extending the resulting equation into the negative R-ratio regime

  1. Gradient twinned 304 stainless steels for high strength and high ductility

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Aiying [School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai (China); Liu, Jiabin; Wang, Hongtao [Institute of Applied Mechanics, Zhejiang University, Hangzhou (China); Lu, Jian, E-mail: jianlu@cityu.edu.hk [Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong (China); Wang, Y. Morris, E-mail: ymwang@llnl.gov [Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA (United States)

    2016-06-14

    Gradient materials often have attractive mechanical properties that outperform uniform microstructure counterparts. It remains a difficult task to investigate and compare the performance of various gradient microstructures due to the difficulty of fabrication, the wide range of length scales involved, and their respective volume percentage variations. We have investigated four types of gradient microstructures in 304 stainless steels that utilize submicrotwins, nanotwins, nanocrystalline-, ultrafine- and coarse-grains as building blocks. Tensile tests reveal that the gradient microstructure consisting of submicrotwins and nanotwins has a persistent and stable work hardening rate and yields an impressive combination of high strength and high ductility, leading to a toughness that is nearly 50% higher than that of the coarse-grained counterpart. Ex- and in-situ transmission electron microscopy indicates that nanoscale and submicroscale twins help to suppress and limit martensitic phase transformation via the confinement of martensite within the twin lamellar. Twinning and detwinning remain active during tensile deformation and contribute to the work hardening behavior. We discuss the advantageous properties of using submicrotwins as the main load carrier and nanotwins as the strengthening layers over those coarse and nanocrystalline grains. Our work uncovers a new gradient design strategy to help metals and alloys achieve high strength and high ductility.

  2. Influence of Carbide Modifications on the Mechanical Properties of Ultra-High-Strength Stainless Steels

    Science.gov (United States)

    Seo, Joo-Young; Park, Soo-Keun; Kwon, Hoon; Cho, Ki-Sub

    2017-10-01

    The mechanical properties of ultra-high-strength secondary hardened stainless steels with varying Co, V, and C contents have been studied. A reduced-Co alloy based on the chemical composition of Ferrium S53 was made by increasing the V and C content. This changed the M2C-strengthened microstructure to a MC plus M2C-strengthened microstructure, and no deteriorative effects were observed for peak-aged and over-aged samples despite the large reduction in Co content from 14 to 7 wt pct. The mechanical properties according to alloying modification were associated with carbide precipitation kinetics, which was clearly outlined by combining analytical tools including small-angle neutron scattering (SANS) as well as an analytical TEM with computational simulation.

  3. DETERMINATION OF HYDROGEN DESORBED THROUGH THERMAL CALORIMETRY IN A HIGH STRENGTH STEEL

    Directory of Open Access Journals (Sweden)

    Carolina A. Asmus

    2014-03-01

    Full Text Available The following study aims to quantify the release activation energy (Ea of hydrogen (H from lattice sites, reversible or irreversible, where the H can be trapped. Moreover, enthalpy changes associated with the main hydrogen (H trapping sites can be analyzed by means of differential scanning calorimetry (DSC. In this technique, the peak temperature measurement is determined at two different heating rates, 3ºC/min y 5ºC/min, from ambient temperature to 500°C. In order to simulate severe conditions of hydrogen income into resulfurized high strength steel, electrolytic permeation tests were performed on test tubes suitable for fatigue tests. Sometimes during charging, H promoters were aggregated to electrolytic solution. Subsequently, the test tubes were subjected to flow cycle fatigue tests. Finally, irreversible trap which anchor more strongly H atoms are MnS inclusions. Its role on hydrogen embrittlement during fatigue tests is conclusive.

  4. Effect of defect length on rolling contact fatigue crack propagation in high strength steel

    Directory of Open Access Journals (Sweden)

    T. Makino

    2015-10-01

    Full Text Available The objective of the present paper is to clarify the effect of defect length in depth direction on rolling contact fatigue (RCF crack propagation in high strength steel. RCF test and synchrotron radiation micro computed tomography (SR micro CT imaging were conducted. In the case of the defect with the 15 m diameter, flaking life decreased with increasing defect length. In a comparison of the CT image and the SEM view, the shapes of defects and the locations of the horizontal cracks were almost the same respectively. The mechanism of RCF crack propagation was discussed by finite element (FE analysis. Defects led to higher tensile residual stress than that without defects in the region where the defect exists. The shear stress range at 0.1 mm in depth on the middle line of the defect and the range of mode II stress intensity factor at the bottom of a vertical crack increased with increasing defect length.

  5. CO{sub 2} laser cutting of advanced high strength steels (AHSS)

    Energy Technology Data Exchange (ETDEWEB)

    Lamikiz, A. [Department of Mechanical Engineering, University of the Basque Country, ETSII-UPV, c/Alameda de Urquijo s/n, 48013 Bilbao (Spain)]. E-mail: implamea@bi.ehu.es; Lacalle, L.N. Lopez de [Department of Mechanical Engineering, University of the Basque Country, ETSII-UPV, c/Alameda de Urquijo s/n, 48013 Bilbao (Spain); Sanchez, J.A. [Department of Mechanical Engineering, University of the Basque Country, ETSII-UPV, c/Alameda de Urquijo s/n, 48013 Bilbao (Spain); Pozo, D. del [ROBOTIKER Technology Centre, Parque Tecnologico, Edif. 202, 48170 Zamudio (Spain); Etayo, J.M. [Department of Mechanical Engineering, University of the Basque Country, ETSII-UPV, c/Alameda de Urquijo s/n, 48013 Bilbao (Spain); ROBOTIKER Technology Centre, Parque Tecnologico, Edif. 202, 48170 Zamudio (Spain); Lopez, J.M. [Department of Mechanical Engineering, University of the Basque Country, ETSII-UPV, c/Alameda de Urquijo s/n, 48013 Bilbao (Spain); ROBOTIKER Technology Centre, Parque Tecnologico, Edif. 202, 48170 Zamudio (Spain)

    2005-04-15

    This article demonstrates the optimum working areas and cutting conditions for the laser cutting of a series of advanced high strength steels (AHSS). The parameters that most influence the cutting of sheet metal have been studied and the results have been divided into two large groups with thickness of more and less than 1 mm. The influence of the material and, more important, the effect of coating have been taken into account. The results, have demonstrate very different behaviours between the thinnest and thickest sheets, whilst the variation of the cutting parameters due to the influence of the material is less relevant. The optimum cutting areas and the quality of the cut evaluated with different criteria are presented. Finally, the best position for the laser beam has been observed to be underneath the sheet.

  6. Fatigue Behavior of Steel Fiber Reinforced High-Strength Concrete under Different Stress Levels

    Science.gov (United States)

    Zhang, Chong; Gao, Danying; Gu, Zhiqiang

    2017-12-01

    The investigation was conducted to study the fatigue behavior of steel fiber reinforced high-strength concrete (SFRHSC) beams. A series of 5 SFRHSC beams was conducted flexural fatigue tests at different stress level S of 0.5, 0.55, 0.6, 0.7 and 0.8 respectively. Static test was conducted to determine the ultimate static capacity prior to fatigue tests. Fatigue modes and S-N curves were analyzed. Besides, two fatige life prediction model were analyzed and compared. It was found that stress level S significantly influenced the fatigue life of SFRHSC beams and the fatigue behavior of SFRHSC beams was mainly determined by the tensile reinforcement.

  7. A thermostatistical theory for solid solution effects in the hot deformation of alloys: an application to low-alloy steels

    International Nuclear Information System (INIS)

    Galindo-Nava, E I; Rivera-Díaz-del-Castillo, P E J; Perlade, A

    2014-01-01

    The hot deformation of low-alloy steels is described by a thermostatistical theory of plastic deformation. This is based on defining a statistical entropy term that accounts for the energy dissipation due to possible dislocation displacements. In this case, dilute substitutional and interstitial atom effects alter such paths. The dislocation population is described by a single parameter equation, with the parameter being the average dislocation density. Solute effects incorporate additional dislocation generation sources. They alter the energy barriers corresponding to the activation energies for dislocation recovery, grain nucleation and growth. The model is employed to describe work hardening and dynamic recrystallization softening in fifteen steels for a wide range of compositions, temperatures and strain rates. Maps for dynamic recrystallization occurrence are defined in terms of processing conditions and composition. (paper)

  8. Effect of Q&P heat treatment on fine microstructure and mechanical properties of a low-alloy medium-carbon steel

    Science.gov (United States)

    Jafari, Rahim; Kheirandish, Shahram; Mirdamadi, Shamsoddin

    2018-01-01

    The current research investigates the effect of ultrafine microstructure resulted from Quench and Partitioning (Q&P) process on obtaining ultra-high strengths in a low-alloy steel with 4wt.% carbon. The purpose of Q&P heat treatment is to enrich the austenite with carbon by partitioning of carbon from supersaturated martensite to austenite, in order to stabilize it to the room temperature. The microstructure, consequently, is consists of martensite, retained austenite and in some conditions bainite. Two-step Q&P heat treatment with quench and partitioning temperatures equal to 120°C and 300°C respectively were applied to the samples at different times. Mechanical behavior was studied by tensile test. The microstructure of the samples was observed using SEM, and TEM and to quantify the amount of retained austenite X-ray diffraction was used. The retained austenite grain size was estimated to be about 0.5 µm and the highest amount of retained austenite obtained was 10 vol%. All samples showed a yield strength and a tensile strength of above 900MPa and 1500MP respectively. The yield strength increased with increase in partitioning time, whereas tensile strength showed an inverse behavior. The elongation in samples varied from 5% to 9% which seemed to not have a direct connection with the amount of retained austenite, but instead it was related to the ferritic structures formed during partitioning such as coalesced martensite, bainite and tempered martensite.

  9. Finite element modelling of chain-die forming for ultra-high strength steel

    Science.gov (United States)

    Majji, Raju; Xiang, Yang; Ding, Scott; Yang, Chunhui

    2017-10-01

    There has been a high demand for weight reduction in automotive vehicles while maintaining passenger safety. A potential steel material to achieve this is Ultra High Strength Steel (UHSS). As a high strength material, it is difficult to be formed with desired profiles using traditional sheet metal forming processes such as Cold Roll Forming. To overcome this problem, a potentially alternative solution is Chain-die Forming (CDF), recently developed. The basic principal of the CDF is to fully combine roll forming and bending processes. The main advantage of this process is the elongated deformation length that significantly increases effective roll radius. This study focuses on identifying issues with the CDF by using CAD modelling, Motion Analysis and Finite Element Analysis (FEA) to devise solutions and construct a more reliable process in an optimal design sense. Some attempts on finite element modelling and simulation of the CDF were conducted using relatively simple models in literature and the research was still not sufficient enough for optimal design of a typical CDF for UHSS. Therefore two numerical models of Chain-die Forming process are developed in this study, including a) one having a set of rolls similar to roll forming but with a large radius, i.e., 20 meters; and b) the other one with dies and punch segments similar to a typical CDF machine. As a case study, to form a 60° channel with single pass was conducted using these two devised models for a comparison. The obtained numerical results clearly show the CDF could generate less residual stress, low strain and small springback of a single pass for the 60° UHSS channel. The design analysis procedure proposed in this study could greatly help the mechanical designers to devise a cost-effective and reliable CDF process for forming UHSS.

  10. Effect of microstructure on the impact toughness of high strength steels

    Directory of Open Access Journals (Sweden)

    Gutiérrez, Isabel

    2014-12-01

    Full Text Available One of the major challenges in the development of new steel grades is to get increasingly high strength combined with a low ductile brittle transition temperature and a high upper shelf energy. This requires the appropriate microstructural design. Toughness in steels is controlled by different microstructural constituents. Some of them, like inclusions, are intrinsic while others happening at different microstructural scales relate to processing conditions. A series of empirical equations express the transition temperature as a sum of contributions from substitutional solutes, free nitrogen, carbides, pearlite, grain size and eventually precipitation strengthening. Aimed at developing a methodology that could be applied to high strength steels, microstructures with a selected degree of complexity were produced at laboratory in a Nb-microalloyed steel. As a result a model has been developed that consistently predicts the Charpy curves for ferrite-pearlite, bainitic and quenched and tempered microstructures using as input data microstructural parameters. This model becomes a good tool for microstructural design.El desarrollo de nuevos grados de acero se tropieza con frecuencia con la necesidad de incrementar la resistencia mecánica al mismo tiempo que se reduce la temperatura de transición dúctil-frágil y se eleva la energía del palier dúctil. Hacer frente a este reto requiere un diseño microestructural. La tenacidad en aceros está controlada por diferentes constituyentes microestructurales. Algunos de ellos, como las inclusiones son intrínsecos, pero otros que se manifiestan a diferentes escalas microestructurales dependen de las condiciones de proceso. Existen algunas ecuaciones empíricas que permiten calcular para ferrita-perlita en aceros de bajo carbono la temperatura de transición como suma de contribuciones de elementos en solución sólida, nitrógeno libre, carburos, fracción de perlita, tamaño de grano y, eventualmente

  11. The plane strain shear fracture of the advanced high strength steels

    International Nuclear Information System (INIS)

    Sun, Li

    2013-01-01

    The “shear fracture” which occurs at the high-curvature die radii in the sheet metal forming has been reported to remarkably limit the application of the advanced high strength steels (AHSS) in the automobile industry. However, this unusual fracture behavior generally cannot be predicted by the traditional forming limit diagram (FLD). In this research, a new experimental system was developed in order to simulate the shear fracture, especially at the plane strain state which is the most common state in the auto-industry and difficult to achieve in the lab due to sample size. Furthermore, the system has the capability to operate in a strain rate range from quasi-static state to the industrial forming state. One kinds of AHSS, Quenching-Partitioning (QP) steels have been performed in this test and the results show that the limiting fracture strain is related to the bending ratio and strain rate. The experimental data support that deformation-induced heating is an important cause of “shear fracture” phenomena for AHSS: a deformation-induced quasi-heating caused by smaller bending ratio and high strain rate produce a smaller limiting plane strain and lead a “shear fracture” in the component

  12. Real-time monitoring of laser welding of galvanized high strength steel in lap joint configuration

    Science.gov (United States)

    Kong, Fanrong; Ma, Junjie; Carlson, Blair; Kovacevic, Radovan

    2012-10-01

    Two different cases regarding the zinc coating at the lap joint faying surface are selected for studying the influence of zinc vapor on the keyhole dynamics of the weld pool and the final welding quality. One case has the zinc coating fully removed at the faying surface; while the other case retains the zinc coating on the faying surface. It is found that removal of the zinc coating at the faying surface produces a significantly better weld quality as exemplified by a lack of spatters whereas intense spatters are present when the zinc coating is present at the faying surface. Spectroscopy is used to detect the optical spectra emitted from a laser generated plasma plume during the laser welding of galvanized high strength DP980 steel in a lap-joint configuration. A correlation between the electron temperature and defects within the weld bead is identified by using the Boltzmann plot method. The laser weld pool keyhole dynamic behavior affected by a high-pressure zinc vapor generated at the faying surface of galvanized steel lap-joint is monitored in real-time by a high speed charge-coupled device (CCD) camera assisted with a green laser as an illumination source.

  13. Liquid Zn assisted embrittlement of advanced high strength steels with different microstructures

    Science.gov (United States)

    Jung, Geunsu; Woo, In Soo; Suh, Dong Woo; Kim, Sung-Joon

    2016-03-01

    In the present study, liquid metal embrittlement (LME) phenomenon during high temperature deformation was investigated for 3 grades of Zn-coated high strength automotive steel sheets consisting of different phases. Hot tensile tests were conducted for each alloy to compare their LME sensitivities at temperature ranges between 600 and 900 °C with different strain rates. The results suggest that Zn embrittles all the Fe-alloy system regardless of constituent phases of the steel. As hot tensile temperature and strain rate increase, LME sensitivity increases in every alloy. Furthermore, it is observed that the critical strain, which is experimentally thought to be 0.4% of strain at temperatures over 700 °C, is needed for LME to occur. It is observed via TEM work that Zn diffuses along grain boundaries of the substrate alloy when the specimen is strained at high temperatures. When the specimen is exposed to the strain more than 0.4% at over 700 °C, the segregation level of Zn at grain boundaries seems to become critical, leading to occurrence of LME cracks.

  14. Alloy and composition dependence of hydrogen embrittlement susceptibility in high-strength steel fasteners

    Science.gov (United States)

    Brahimi, S. V.; Yue, S.; Sriraman, K. R.

    2017-06-01

    High-strength steel fasteners characterized by tensile strengths above 1100 MPa are often used in critical applications where a failure can have catastrophic consequences. Preventing hydrogen embrittlement (HE) failure is a fundamental concern implicating the entire fastener supply chain. Research is typically conducted under idealized conditions that cannot be translated into know-how prescribed in fastener industry standards and practices. Additionally, inconsistencies and even contradictions in fastener industry standards have led to much confusion and many preventable or misdiagnosed fastener failures. HE susceptibility is a function of the material condition, which is comprehensively described by the metallurgical and mechanical properties. Material strength has a first-order effect on HE susceptibility, which increases significantly above 1200 MPa and is characterized by a ductile-brittle transition. For a given concentration of hydrogen and at equal strength, the critical strength above which the ductile-brittle transition begins can vary due to second-order effects of chemistry, tempering temperature and sub-microstructure. Additionally, non-homogeneity of the metallurgical structure resulting from poorly controlled heat treatment, impurities and non-metallic inclusions can increase HE susceptibility of steel in ways that are measurable but unpredictable. Below 1200 MPa, non-conforming quality is often the root cause of real-life failures. This article is part of the themed issue 'The challenges of hydrogen and metals'.

  15. A cohesive zone model to simulate the hydrogen embrittlement effect on a high-strength steel

    Directory of Open Access Journals (Sweden)

    G. Gobbi

    2016-01-01

    Full Text Available The present work aims to model the fracture mechanical behavior of a high-strength low carbon steel, AISI 4130 operating in hydrogen contaminated environment. The study deals with the development of 2D finite element cohesive zone model (CZM reproducing a toughness test. Along the symmetry plane over the crack path of a C(T specimen a zero thickness layer of cohesive elements are implemented in order to simulate the crack propagation. The main feature of this kind of model is the definition of a traction-separation law (TSL that reproduces the constitutive response of the material inside to the cohesive elements. Starting from a TSL calibrated on hydrogen non-contaminated material, the embrittlement effect is simulated by reducing the cohesive energy according to the total hydrogen content including the lattice sites (NILS and the trapped amount. In this perspective, the proposed model consists of three steps of simulations. First step evaluates the hydrostatic pressure. It drives the initial hydrogen concentration assigned in the second step, a mass diffusion analysis, defining in this way the contribution of hydrogen moving across the interstitial lattice sites. The final stress analysis, allows getting the total hydrogen content, including the trapped amount, and evaluating the new crack initiation and propagation due to the hydrogen presence. The model is implemented in both plane strain and plane stress configurations; results are compared in the discussion. From the analyses, it resulted that hydrogen is located only into lattice sites and not in traps, and that the considered steel experiences a high hydrogen susceptibility. By the proposed procedure, the developed numerical model seems a reliable and quick tool able to estimate the mechanical behavior of steels in presence of hydrogen.

  16. Development of high strength steel sheets for crashworthiness; Shototsu anzen`yo kokyodo usu koban no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Fukui, K; Yamamoto, M; Mizui, N; Hirose, Y; Kojima, K [Sumitomo Metal Industries, Ltd. Osaka (Japan)

    1997-10-01

    For frontal or rear members of automotive body, the most suitable high strength steel was investigated. Dynamic tensile test at strain-rate of 2000/s and crash test of hat-shape column at 4m/s were conducted for steel sheets with tensile strength ranging from 290 to 980 MPa. Dynamic tensile strength increases with increasing static one but the ratio of dynamic tensile strength to static one decreases. Tensile strength remarkably affects crash energy absorption of column and TRIP steel is superior to other steels with same tensile strength. 7 refs., 16 figs., 1 tab.

  17. Design of Helical Self-Piercing Rivet for Joining Aluminum Alloy and High-Strength Steel Sheets

    Energy Technology Data Exchange (ETDEWEB)

    Kim, W. Y.; Kim, D. B.; Park, J. G; Kim, D. H.; Kim, K. H.; Lee, I. H.; Cho, H. Y. [Chungbuk National University, Cheongju (Korea, Republic of)

    2014-07-15

    A self-piercing rivet (SPR) is a mechanical component for joining dissimilar material sheets such as those of aluminum alloy and steel. Unlike conventional rivets, the SPR directly pierces sheets without the need for drilling them beforehand. However, the regular SPR can undergo buckling when it pierces a high-strength steel sheet, warranting the design of a helical SPR. In this study, the joining and forging processes using the helical SPR were simulated using the commercial FEM code, DEFORM-3D. High-tensile-strength steel sheets of different strengths were joined with aluminum alloy sheets using the designed helical SPR. The simulation results were found to agree with the experimental results, validating the optimal design of a helical SPR that can pierce high-strength steel sheets.

  18. Design of Helical Self-Piercing Rivet for Joining Aluminum Alloy and High-Strength Steel Sheets

    International Nuclear Information System (INIS)

    Kim, W. Y.; Kim, D. B.; Park, J. G; Kim, D. H.; Kim, K. H.; Lee, I. H.; Cho, H. Y.

    2014-01-01

    A self-piercing rivet (SPR) is a mechanical component for joining dissimilar material sheets such as those of aluminum alloy and steel. Unlike conventional rivets, the SPR directly pierces sheets without the need for drilling them beforehand. However, the regular SPR can undergo buckling when it pierces a high-strength steel sheet, warranting the design of a helical SPR. In this study, the joining and forging processes using the helical SPR were simulated using the commercial FEM code, DEFORM-3D. High-tensile-strength steel sheets of different strengths were joined with aluminum alloy sheets using the designed helical SPR. The simulation results were found to agree with the experimental results, validating the optimal design of a helical SPR that can pierce high-strength steel sheets

  19. Three dimensional atom probe study of Ni-base alloy/low alloy steel dissimilar metal weld interfaces

    International Nuclear Information System (INIS)

    Choi, Kyoung Joon; Shin, Sang Hun; Kim, Jong Jin; Jung, Ju Ang; Kim, Ji Hyun

    2012-01-01

    Three dimensional atom probe tomography (3D APT) is applied to characterize the dissimilar metal joint which was welded between the Ni-based alloy, Alloy 690 and the low alloy steel, A533 Gr. B, with Alloy 152 filler metal. While there is some difficulty in preparing the specimen for the analysis, the 3D APT has a truly quantitative analytical capability to characterize nanometer scale particles in metallic materials, thus its application to the microstructural analysis in multicomponent metallic materials provides critical information on the mechanism of nanoscale microstructural evolution. In this study, the procedure for 3D APT specimen preparation was established, and those for dissimilar metal weld interface were prepared near the fusion boundary by a focused ion beam. The result of the analysis in this study showed the precipitation of chromium carbides near the fusion boundary between A533 Gr. B and Alloy 152.

  20. Three dimensional atom probe study of Ni-base alloy/low alloy steel dissimilar metal weld interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Kyoung Joon; Shin, Sang Hun; Kim, Jong Jin; Jung, Ju Ang; Kim, Ji Hyun [Interdisciplinary School of Green Energy, Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2012-08-15

    Three dimensional atom probe tomography (3D APT) is applied to characterize the dissimilar metal joint which was welded between the Ni-based alloy, Alloy 690 and the low alloy steel, A533 Gr. B, with Alloy 152 filler metal. While there is some difficulty in preparing the specimen for the analysis, the 3D APT has a truly quantitative analytical capability to characterize nanometer scale particles in metallic materials, thus its application to the microstructural analysis in multicomponent metallic materials provides critical information on the mechanism of nanoscale microstructural evolution. In this study, the procedure for 3D APT specimen preparation was established, and those for dissimilar metal weld interface were prepared near the fusion boundary by a focused ion beam. The result of the analysis in this study showed the precipitation of chromium carbides near the fusion boundary between A533 Gr. B and Alloy 152.

  1. EBSD as a tool to identify and quantify bainite and ferrite in low-alloyed Al-TRIP steels.

    Science.gov (United States)

    Zaefferer, S; Romano, P; Friedel, F

    2008-06-01

    Bainite is thought to play an important role for the chemical and mechanical stabilization of metastable austenite in low-alloyed TRIP steels. Therefore, in order to understand and improve the material properties, it is important to locate and quantify the bainitic phase. To this aim, electron backscatter diffraction-based orientation microscopy has been employed. The main difficulty herewith is to distinguish bainitic ferrite from ferrite because both have bcc crystal structure. The most important difference between them is the occurrence of transformation induced geometrically necessary dislocations in the bainitic phase. To determine the areas with larger geometrically necessary dislocation density, the following orientation microscopy maps were explored: pattern quality maps, grain reference orientation deviation maps and kernel average misorientation maps. We show that only the latter allow a reliable separation of the bainitic and ferritic phase. The kernel average misorientation threshold value that separates both constituents is determined by an algorithm that searches for the smoothness of the boundaries between them.

  2. Corrosion of carbon and low-alloy steel weldments in brines: A literature review: Salt Repository Project

    International Nuclear Information System (INIS)

    Reimus, P.W.

    1988-07-01

    The literature indicates that corrosion of carbon and low-alloy steel weldments in brines should not be a major concern if the weld is properly designed and fabricated. Seven characteristics of a weld can affect the corrosion performance of the weldment including composition of the weld metal (with respect to that of the parent metal); microstructure of the weld metal, heat-affected zone (HAZ), and parent metal; size and number of defects (cracks and pores) in the weld metal and HAZ (both internal and external); size, shape composition, location, and number of nonmetallic inclusions in the weld metal and HAZ; residual stress distribution in the weld; hydrogen content of the weld; and geometry of the weld at the outer surface. The effects of these characteristics on weldment corrosion are discussed in the report. 104 refs., 14 figs

  3. The Effect of Material Variability on Fatigue Behaviors of Low Alloy Steels in 310 .deg. C Deoxygenated Water

    International Nuclear Information System (INIS)

    Jang, Hun; Jang, Changheui; Kim, Insup; Cho, Hyunchul

    2008-01-01

    As environmental fatigue damage is one of the main crack initiation mechanisms in nuclear power plants (NPPs), it is most important factor to assess the integrity and safety of NPPs. So, based on extensive researches, argon nation laboratory (ANL) suggested the statistical model to predict fatigue life of low alloy steels (LASs) which are widely used as structural material in NPPs. Also, we reported the environmental fatigue behaviors of SA508 Gr.1a LAS. However, from comparison between our experimental fatigue data and ANL's statistical model, our fatigue life data showed poor agreement with the ANL's statistical model. In this regard, the additional low cycle fatigue (LCF) tests were performed in 310 .deg. C deoxygenated water, and compared with ANL's statistical model to evaluate reliability of the data. And then, the effect of material variability on the fatigue life of LASs was investigated through microstructure analysis

  4. New Insights in the Long-Term Atmospheric Corrosion Mechanisms of Low Alloy Steel Reinforcements of Cultural Heritage Buildings

    Directory of Open Access Journals (Sweden)

    Marie Bouchar

    2017-06-01

    Full Text Available Reinforcing clamps made of low alloy steel from the Metz cathedral and corroded outdoors during 500 years were studied by OM, FESEM/EDS, and micro-Raman spectroscopy. The corrosion product layer is constituted of a dual structure. The outer layer is mainly constituted of goethite and lepidocrocite embedding exogenous elements such as Ca and P. The inner layer is mainly constituted of ferrihydrite. The behaviour of the inner layer under conditions simulating the wetting stage of the RH wet/dry atmospheric corrosion cycle was observed by in situ micro-Raman spectroscopy. The disappearance of ferrihydrite near the metal/oxide interface strongly suggests a mechanism of reductive dissolution caused by the oxidation of the metallic substrate and was observed for the first time in situ on an archaeological system.

  5. Heat treatment and effects of Cr and Ni in low alloy steel

    Indian Academy of Sciences (India)

    Administrator

    Materials and Metallurgical Engineering Department, Bangladesh University of Engineering and Technology. (BUET) ... The use of plain carbon steels frequently neces- sitates water ... temperatures higher than upper critical temperature.

  6. Microstructure, Composition, and Impact Toughness Across the Fusion Line of High-Strength Bainitic Steel Weldments

    Science.gov (United States)

    Lan, Liangyun; Kong, Xiangwei; Chang, Zhiyuan; Qiu, Chunlin; Zhao, Dewen

    2017-09-01

    This paper analyzed the evolution of microstructure, composition, and impact toughness across the fusion line of high-strength bainitic steel weldments with different heat inputs. The main purpose was to develop a convenient method to evaluate the HAZ toughness quickly. The compositions of HAZ were insensitive to higher contents of alloy elements ( e.g., Ni, Mo) in the weld metal because their diffusion distance is very short into the HAZ. The weld metal contained predominantly acicular ferrite at any a heat input, whereas the main microstructures in the HAZ changed from lath martensite/bainite to upper bainite with the increasing heat input. The evolution of HAZ toughness in relation to microstructural changes can be revealed clearly combined with the impact load curve and fracture morphology, although the results of impact tests do not show an obvious change with heat input because the position of Charpy V notch contains the weld metal, HAZ as well as a part of base metal. As a result, based on the bead-on-plate welding tests, the welding parameter affecting the HAZ toughness can be evaluated rapidly.

  7. Evaluation of creep rupture property of high strength ferritic/martensitic steel (PNC-FMS)

    International Nuclear Information System (INIS)

    Uehira, Akihiro; Mizuno, Tomoyasu; Ukai, Shigeharu; Yoshida, Eiichi

    1999-04-01

    High Strength Ferritic/Martensitic Steel (PNC-FMS : 11Cr-0.5Mo-2W,Nb,V), developed by JNC, is one of the candidate materials for the long-life core of large-scale fast breeder reactor. The material design base standard (tentative) of PNC-FMS was established and the creep rupture strength reduction factor in the standard was determined in 1992. This factor was based on only evaluation of decarburization effect on tensile strength after sodium exposure. In this study, creep rupture properties of PNC-FMS under out of pile sodium exposure and in pile were evaluated, using recent test results as well as previous ones. The evaluation results are summarized as follows : a. Decarburization rate constant of pressurized tubes under sodium exposure is identical with stress free specimens. b. In case of the same decarburization content under out of pile sodium exposure, creep strength tends to decrease more significantly than tensile strength. c. Creep strength under out of pile sodium exposure showed significant decrease in high temperature and long exposure time, but in pile (MOTA) creep strength showed little decrease. A new creep rupture strength reduction factor, which is the ratio of creep rupture strength under sodium exposure or in pile to in air, was made by correlating the creep rupture strength. This new method directly using the ratio of creep rupture strength was evaluated and discussed from the viewpoint of design applicability, compared with the conventional method based on decarburization effect on tensile strength. (author)

  8. Fatigue of non-welded pressure vessels made of high strength steel

    International Nuclear Information System (INIS)

    Rauscher, F.

    2003-01-01

    When using high strength steels for pressure vessels, cyclic fatigue requirements may become decisive for the design. Within a European research project, two typical non-welded types of vessels--gas cylinders as used for gas transportation and hydraulic accumulators with screwed in ends--were investigated. The results of the fatigue analyses and of the testing of these vessels are described here. Special attention is drawn to the evaluation of the stresses in the threads used for threaded in flat ends and rings, because the usual formulae for bolted connections cannot be used. In the case of sharp notches and of threads, the experiments showed that the fatigue calculation gave conservative results. The unexpected failure of the gas cylinders in the cylindrical part and at the onset of the end showed that the fatigue analyses according to prEN13445-3 clause 18 is non-conservative for these surfaces without mechanical preparation, and need special consideration. Based on the investigations, a stress concentration factor for small fabrication notches and a new surface finish factor is proposed

  9. Fatigue of non-welded pressure vessels made of high strength steel

    Energy Technology Data Exchange (ETDEWEB)

    Rauscher, F

    2003-03-01

    When using high strength steels for pressure vessels, cyclic fatigue requirements may become decisive for the design. Within a European research project, two typical non-welded types of vessels--gas cylinders as used for gas transportation and hydraulic accumulators with screwed in ends--were investigated. The results of the fatigue analyses and of the testing of these vessels are described here. Special attention is drawn to the evaluation of the stresses in the threads used for threaded in flat ends and rings, because the usual formulae for bolted connections cannot be used. In the case of sharp notches and of threads, the experiments showed that the fatigue calculation gave conservative results. The unexpected failure of the gas cylinders in the cylindrical part and at the onset of the end showed that the fatigue analyses according to prEN13445-3 clause 18 is non-conservative for these surfaces without mechanical preparation, and need special consideration. Based on the investigations, a stress concentration factor for small fabrication notches and a new surface finish factor is proposed.

  10. Microstructural influence on fatigue properties of a high-strength spring steel

    Energy Technology Data Exchange (ETDEWEB)

    Lee, C.S.; Lee, K.A.; Li, D.M. [Pohang Univ. of Sci. and Technol. (Korea, Republic of). Center for Adv. Aerospace Mater.; Yoo, S.J.; Nam, W.J. [Technical Research Laboratory, Pohang Iron and Steel Co. Ltd, Pohang 790-785 (Korea, Republic of)

    1998-01-30

    A study has been made to investigate the fatigue properties of a high-strength spring steel in relation to the microstructural variation via different heat treatments. Rotating-bending fatigue and fatigue crack growth (FCG) tests were conducted to evaluate the fatigue properties, and a transmission electron microscope (TEM) equipped with an energy dispersive X-ray (EDX) unit was used to characterize the tempered microstructure. The results indicate that the fatigue endurance {sigma}{sub f} increases with increasing tempering temperature, reaching a maximum at 450 C, then decreases. The increase of {sigma}{sub f} is mainly attributed to the refined distribution of precipitation, together with the structural uniformity of tempered martensite. The softening of tempered martensite due to excessive precipitation accounts for the decrease of {sigma}{sub f}. By contrast, the FCG results show an insensitivity of the stage-II growth behavior to the microstructural changes for the whole range of tempering temperature tested. The insensitivity is interpreted in terms of the counterbalancing microstructure-dependent contributions to the FCG behavior. (orig.) 30 refs.

  11. Effect of tensile overloads on fatigue crack growth of high strength steel wires

    International Nuclear Information System (INIS)

    Haag, J.; Reguly, A.; Strohaecker, T.R.

    2013-01-01

    Highlights: • A proof load process may be an option to increase the fatigue life of flexible pipelines. • There is possibility to produce plastic deformation at crack tip of tensile armor wires. • Controlled overloads provide effective crack growth retardation. • Crack growth retardation is also evident at higher stress ratios. - Abstract: Fatigue of the tensile armor wires is the main failure mode of flexible risers. Techniques to increase the life of these components are required to improve the processes safety on oil exploration. This work evaluates the crack growth retardation of high strength steel wires used in flexible pipelines. Fracture toughness tests were performed to establish the level of stress intensity factor wherein the wires present significant plastic deformation at the crack tip. The effect of tensile overload on fatigue behavior was assessed by fatigue crack growth testing under constant ΔK control and different overload ratios with two different load ratios. The outcomes show that the application of controlled overloads provides crack retardation and increases the fatigue life of the wires more than 31%. This behavior is also evident at stress ratio of 0.5, in spite of the crack closure effect being minimized by increasing the applied mean stress

  12. Setting Mechanical Properties of High Strength Steels for Rapid Hot Forming Processes

    Science.gov (United States)

    Löbbe, Christian; Hering, Oliver; Hiegemann, Lars; Tekkaya, A. Erman

    2016-01-01

    Hot stamping of sheet metal is an established method for the manufacturing of light weight products with tailored properties. However, the generally-applied continuous roller furnace manifests two crucial disadvantages: the overall process time is long and a local setting of mechanical properties is only feasible through special cooling techniques. Hot forming with rapid heating directly before shaping is a new approach, which not only reduces the thermal intervention in the zones of critical formability and requested properties, but also allows the processing of an advantageous microstructure characterized by less grain growth, additional fractions (e.g., retained austenite), and undissolved carbides. Since the austenitization and homogenization process is strongly dependent on the microstructure constitution, the general applicability for the process relevant parameters is unknown. Thus, different austenitization parameters are analyzed for the conventional high strength steels 22MnB5, Docol 1400M, and DP1000 in respect of the mechanical properties. In order to characterize the resulting microstructure, the light optical and scanning electron microscopy, micro and macro hardness measurements, and the X-ray diffraction are conducted subsequent to tensile tests. The investigation proves not only the feasibility to adjust the strength and ductility flexibly, unique microstructures are also observed and the governing mechanisms are clarified. PMID:28773354

  13. Experimental investigation of piercing of high-strength steels within a critical range of slant angle

    Science.gov (United States)

    Senn, S.; Liewald, M.

    2017-09-01

    Deep drawn parts often do have complex designs and, therefore, must be trimmed or punched subsequently in a second stage. Due to the complex part geometry, most punching areas do reveal critical slant angle (angle between part surface and ram movement direction) different to perpendicular direction. Piercing within a critical range of slant angle may lead to severe damage of the cutting tool. Consequently, expensive cam units are required to transform the ram moving direction in order to perform the piercing process perpendicularly to the local part surface. For modern sheet metals, however, the described critical angle of attack has not been investigated adequately until now. Therefore, cam units are used in cases in which regular piercing with high slant angle wouldn’t be possible. Purpose of this study is to investigate influencing factors and their effect on punch damage during piercing of high strength steels with slant angles. Therefore, a modular shearing tool was designed, which allows to simply switch die parts to vary cutting clearance and cutting angle. The target size of the study is to measure the lateral deviation of the punch which is monitored by an eddy current sensor. The sensor is located in the downholder and measures the lateral punch deviation in-line during manufacturing. The deviation is mainly influenced by slant angle of workpiece surface. In relation to slang angle and sheet thickness the clearance has a small influence on the measured punch deflection.

  14. Prediction of the fatigue curve parameters of high strength steels in terms of the static and microplastic deformations of samples

    International Nuclear Information System (INIS)

    Shetulov, D.I.; Kryukov, L.T.; Myasnikov, A.M.

    2015-01-01

    The cycling and static strengths of a wide range of high-strength steels have been experimentally tested. Correlation between the three parameters-microplastic deformation, strain hardening coefficient, and the slope of the curve to the axis of load cycles-has been established [ru

  15. Application of the radioisotope process when studying the decarbonization of low-alloy multicomponent steels in sodium

    International Nuclear Information System (INIS)

    Pavlinov, L.V.; Evstratov, V.D.

    1982-06-01

    By means of the radioisotope process and the method of a planning matrix for factor experiments quantitative values have been found for the influence of alloys of chromium molybdenum, niobium, vanadium, titanium on the decarbonization of low alloy pearlitic steels in sodium at temperatures of 500 to 800 0 C. It has been proved that of all alloys with a concentration of 1 to 3% Cr, 1 to 2% Mo, 0 to 1% Nb, 0 to 0.25% V, and 0 to 0.25% Ti, which had been studied, the alloys of iron with 1-3% Cr and 1% Mo showed the greatest tendency for decarbonization in sodium where the carbon concentration decreases from 0.01 to 0.02% at the surface. An increase of the concentration of molybdenum and especially of niobium and titanium leads to a decrease of the decarbonization tendency of steel because the surface concentration of carbon remains at the level of 0.08 to 0.09% in alloys which contain up to 1% niobium and in complex alloy steels with up to 1% niobium, 0.25% vanadium, and 0.25% titanium. (orig.) [de

  16. A fracture mechanics approach for estimating fatigue crack initiation in carbon and low-alloy steels in LWR coolant environments

    International Nuclear Information System (INIS)

    Park, H. B.; Chopra, O. K.

    2000-01-01

    A fracture mechanics approach for elastic-plastic materials has been used to evaluate the effects of light water reactor (LWR) coolant environments on the fatigue lives of carbon and low-alloy steels. The fatigue life of such steel, defined as the number of cycles required to form an engineering-size crack, i.e., 3-mm deep, is considered to be composed of the growth of (a) microstructurally small cracks and (b) mechanically small cracks. The growth of the latter was characterized in terms of ΔJ and crack growth rate (da/dN) data in air and LWR environments; in water, the growth rates from long crack tests had to be decreased to match the rates from fatigue S-N data. The growth of microstructurally small cracks was expressed by a modified Hobson relationship in air and by a slip dissolution/oxidation model in water. The crack length for transition from a microstructurally small crack to a mechanically small crack was based on studies on small crack growth. The estimated fatigue S-N curves show good agreement with the experimental data for these steels in air and water environments. At low strain amplitudes, the predicted lives in water can be significantly lower than the experimental values

  17. Evaluation of the Effect of Different Plasma-Nitriding Parameters on the Properties of Low-Alloy Steel

    Science.gov (United States)

    Zdravecká, Eva; Slota, Ján; Solfronk, Pavel; Kolnerová, Michaela

    2017-07-01

    This work is concerned with the surface treatment (ion nitriding) of different plasma-nitriding parameters on the characteristics of DIN 1.8519 low-alloy steel. The samples were nitrided from 500 to 570 °C for 5-40 h using a constant 25% N2-75% H2 gaseous mixture. Lower temperature (500-520 °C) favors the formation of compound layers of γ' and ɛ iron nitrides in the surface layers, whereas a monophase γ'-Fe4 N layer can be obtained at a higher temperature. The hardness of this layer can be obtained when nitriding is performed at a higher temperature, and the hardness decreases when the temperature increases to 570 °C. These results indicate that pulsed plasma nitriding is highly efficient at 550 °C and can form thick and hard nitrided layers with satisfactory mechanical properties. The results show the optimized nitriding process at 540 °C for 20 h. This process can be an interesting means of enhancing the surface hardness of tool steels to forge dies compared to stamped steels with zinc coating with a reduced coefficient of friction and improving the anti-sticking properties of the tool surface.

  18. ''Global and local approaches of fracture in the ductile to brittle regime of a low alloy steel''

    International Nuclear Information System (INIS)

    Renevey, S.

    1998-01-01

    The study is a contribution to the prediction of flow fracture toughness of low alloy steel and to a better knowledge of fracture behavior in the ductile to brittle transition region. Experiments were performed on a nozzle cut-off from a pressurized water reactor vessel made of steels A508C13 type steel. Axisymmetrical notched specimens were tested to study the fracture onset in a volume element while pre-cracked specimens were used to investigate cleavage fracture after stable crack growth. Systematic observations of fracture surfaces showed manganese sulfide inclusions (MnS) at cleavage sites or in the vicinity. The experimental results were used for modelling by the local approach to fracture. In a volume element the fracture is described by an original probabilistic model. This model is based on volume fraction distributions of MnS inclusions gathered in clusters and on the assumption of a competition without interaction between ductile and cleavage fracture modes. This model was applied to pre-cracked specimens (CT specimens). It is able to describe the scatter in the toughness after a small stable crack growth if a temperature effect on the cleavage stress is assumed. So, the modelling is able to give a lower bound of fracture toughness as a function of temperature. (author)

  19. GRINDABILITY OF SELECTED GRADES OF LOW-ALLOY HIGH-SPEED STEEL

    Directory of Open Access Journals (Sweden)

    Jan Jaworski

    2016-09-01

    Full Text Available In this paper, we presents the results of investigations studied the cutting ability and grindability of selected high-speed steels. We analysed the effect of the austenitization temperature on the grain size, the amount of retained austenite and percentage of retained austenite in HS3-1-1 steel. Furthermore, the investigations concerned on the efficiency of the keyway broaches during the whole period of operation were carried out. It was found that the value of average roughness parameter increases together with increases in the grinding depth. The investigations also show the influence of tempering conditions on the volume of carbide phases in HS3-1-1 steel.

  20. submitter Physical Properties of a High-Strength Austenitic Stainless Steel for the Precompression Structure of the ITER Central Solenoid

    CERN Document Server

    Sgobba, Stefano; Arauzo, Ana; Roussel, Pascal; Libeyre, Paul

    2016-01-01

    The ITER central solenoid (CS) consists of six independent coils kept together by a precompression support structure that must react vertical tensile loads and provide sufficient preload to maintain coil-to-coil contact when the solenoid is energized. The CS precompression system includes tie plates, lower and upper key blocks, load distribution and isolation plates and other attachment, support and insulating hardware. The tie plates operating at 4 K are manufactured starting from forgings in a high-strength austenitic stainless steel (FXM-19) with a stringent specification. Moreover, forged components for the lower and upper key blocks have to be provided in the same FXM-19 grade with comparably strict requirements. FXM-19 is a high-nitrogen austenitic stainless steel, featuring high strength and toughness, ready weldability, and forgeability. It features as well higher integral thermal contraction down to 4 K compared with the very high Mn steel grade selected for the CS coil jackets, hence providing an ad...

  1. Evaluation of susceptibility of high strength steels to delayed fracture by using cyclic corrosion test and slow strain rate test

    International Nuclear Information System (INIS)

    Li Songjie; Zhang Zuogui; Akiyama, Eiji; Tsuzaki, Kaneaki; Zhang Boping

    2010-01-01

    To evaluate susceptibilities of high strength steels to delayed fracture, slow strain rate tests (SSRT) of notched bar specimens of AISI 4135 with tensile strengths of 1300 and 1500 MPa and boron-bearing steel with 1300 MPa have been performed after cyclic corrosion test (CCT). During SSRT the humidity around the specimen was kept high to keep absorbed diffusible hydrogen. The fracture stresses of AISI 4135 steels decreased with increment of diffusible hydrogen content which increased with CCT cycles. Their delayed fracture susceptibilities could be successfully evaluated in consideration of both influence of hydrogen content on mechanical property and hydrogen entry.

  2. Evaluation of susceptibility of high strength steels to delayed fracture by using cyclic corrosion test and slow strain rate test

    Energy Technology Data Exchange (ETDEWEB)

    Li Songjie [School of Materials Science and Engineering, University of Science and Technology Beijing, No. 30 Xueyuan Road, Hidian Zone, Beijing 100083 (China); Structural Metals Center, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Zhang Zuogui [Structural Metals Center, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Akiyama, Eiji [Structural Metals Center, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan)], E-mail: AKIYAMA.Eiji@nims.go.jp; Tsuzaki, Kaneaki [Structural Metals Center, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Zhang Boping [School of Materials Science and Engineering, University of Science and Technology Beijing, No. 30 Xueyuan Road, Hidian Zone, Beijing 100083 (China)

    2010-05-15

    To evaluate susceptibilities of high strength steels to delayed fracture, slow strain rate tests (SSRT) of notched bar specimens of AISI 4135 with tensile strengths of 1300 and 1500 MPa and boron-bearing steel with 1300 MPa have been performed after cyclic corrosion test (CCT). During SSRT the humidity around the specimen was kept high to keep absorbed diffusible hydrogen. The fracture stresses of AISI 4135 steels decreased with increment of diffusible hydrogen content which increased with CCT cycles. Their delayed fracture susceptibilities could be successfully evaluated in consideration of both influence of hydrogen content on mechanical property and hydrogen entry.

  3. Creep and microstructural processes in a low-alloy 2.25%Cr1.6%W steel (ASTM Grade 23)

    Czech Academy of Sciences Publication Activity Database

    Kuchařová, Květa; Sklenička, Václav; Kvapilová, Marie; Svoboda, Milan

    2015-01-01

    Roč. 109, NOV (2015), s. 1-8 ISSN 1044-5803 R&D Projects: GA TA ČR TA02010260; GA MŠk(CZ) ED1.1.00/02.0068 Institutional support: RVO:68081723 Keywords : Bainitic steel * Low-alloy steel * Creep strength * Microstructural changes * Carbide precipitation Subject RIV: JG - Metallurgy Impact factor: 2.383, year: 2015

  4. Effect of hydrazine on general corrosion of carbon and low-alloyed steels in pressurized water reactor secondary side water

    Energy Technology Data Exchange (ETDEWEB)

    Järvimäki, Sari [Fortum Ltd, Loviisa Power Plant, Loviisa (Finland); Saario, Timo; Sipilä, Konsta [VTT Technical Research Centre of Finland Ltd., Nuclear Safety, P.O. Box 1000, FIN-02044 VTT (Finland); Bojinov, Martin, E-mail: martin@uctm.edu [Department of Physical Chemistry, University of Chemical Technology and Metallurgy, Kl. Ohridski Blvd, 8, 1756 Sofia (Bulgaria)

    2015-12-15

    Highlights: • The effect of hydrazine on the corrosion of steel in secondary side water investigated by in situ and ex situ techniques. • Oxide grown on steel in 100 ppb hydrazine shows weaker protective properties – higher corrosion rates. • Possible explanation of the accelerating effect of higher concentrations of hydrazine on flow assisted corrosion offered. - Abstract: The effect of hydrazine on corrosion rate of low-alloyed steel (LAS) and carbon steel (CS) was studied by in situ and ex situ techniques under pressurized water reactor secondary side water chemistry conditions at T = 228 °C and pH{sub RT} = 9.2 (adjusted by NH{sub 3}). It is found that hydrazine injection to a maximum level of 5.06 μmol l{sup −1} onto surfaces previously oxidized in ammonia does not affect the corrosion rate of LAS or CS. This is confirmed also by plant measurements at Loviisa NPP. On the other hand, hydrazine at the level of 3.1 μmol l{sup −1} decreases markedly the amount and the size of deposited oxide crystals on LAS and CS surface. In addition, the oxide grown in the presence of 3.1 μmol l{sup −1} hydrazine is somewhat less protective and sustains a higher corrosion rate compared to an oxide film grown without hydrazine. These observations could explain the accelerating effect of higher concentrations of hydrazine found in corrosion studies of LAS and CS.

  5. Effects of Cu and B addition on microstructure and mechanical properties of high-strength bainitic steels

    International Nuclear Information System (INIS)

    Shin, Sang Yong; Han, Seung Youb; Hwang, Byoungchul; Lee, Chang Gil; Lee, Sunghak

    2009-01-01

    Effects of Cu and B addition on microstructure and mechanical properties of high-strength bainitic steels were investigated in this study. Six kinds of steels were fabricated by controlling the amount of Cu and B addition, and their microstructures and tensile and Charpy impact properties were investigated. Their effective grain sizes were also characterized by the electron back-scatter diffraction analysis. The tensile test results indicated that the B- or Cu-containing steels had the higher yield and tensile strengths than the B- or Cu-free steels because their volume fractions of acicular ferrite and martensite were quite high. The B- or Cu-free steels had the higher upper shelf energy than the B- or Cu-containing steels because of their lower volume fraction of martensite. In the steel containing 10 ppm B without Cu, the best combination of high strengths, high upper shelf energy, and low energy transition temperature could be obtained by the decrease in effective grain size due to the presence of acicular ferrite having fine effective grain size.

  6. Nanoscale co-precipitation and mechanical properties of a high-strength low-carbon steel

    International Nuclear Information System (INIS)

    Mulholland, Michael D.; Seidman, David N.

    2011-01-01

    Nanoscale co-precipitation in a novel high-strength low-carbon steel is studied in detail after isothermal aging. Atom-probe tomography is utilized to quantify the co-precipitation of co-located Cu precipitates and M 2 C (M is any combination of Cr, Mo, Fe, or Ti) carbide strengthening precipitates. Coarsening of Cu precipitates is offset by the nucleation and growth of M 2 C carbide precipitate, resulting in the maintenance of a yield strength of 1047 ± 7 MPa (152 ± 1 ksi) for as long as 320 h of aging time at 450 deg. C. Impact energies of 153 J (113 ± 6 ft-lb) and 144 J (106 ± 2 ft-lb) are measured at -30 deg. C and -60 deg. C, respectively. The co-location of Cu and M 2 C carbide precipitates results in non-stationary-state coarsening of the Cu precipitates. Synchrotron-source X-ray diffraction studies reveal that the measured 33% increase in impact toughness after aging for 80 h at 450 deg. C is due to dissolution of cementite, Fe 3 C, which is the source of carbon for the nucleation and growth of M 2 C carbide precipitates. Less than 1 vol.% austenite is observed for aging treatments at temperatures less than 600 deg. C, suggesting that transformation-induced plasticity does not play a significant role in the toughness of specimens aged at temperatures less than 600 deg. C. Aging treatments at temperatures greater than 600 deg. C produce more austenite, in the range 2-7%, but at the expense of yield strength.

  7. Integrated Computational Materials Engineering Development of Advanced High Strength Steel for Lightweight Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Hector, Jr., Louis G. [General Motors, Warren, MI (United States); McCarty, Eric D. [United States Automotive Materials Partnership LLC (USAMP), Southfield, MI (United States)

    2017-07-31

    The goal of the ICME 3GAHSS project was to successfully demonstrate the applicability of Integrated Computational Materials Engineering (ICME) for the development and deployment of third generation advanced high strength steels (3GAHSS) for immediate weight reduction in passenger vehicles. The ICME approach integrated results from well-established computational and experimental methodologies to develop a suite of material constitutive models (deformation and failure), manufacturing process and performance simulation modules, a properties database, as well as the computational environment linking them together for both performance prediction and material optimization. This is the Final Report for the ICME 3GAHSS project, which achieved the fol-lowing objectives: 1) Developed a 3GAHSS ICME model, which includes atomistic, crystal plasticity, state variable and forming models. The 3GAHSS model was implemented in commercially available LS-DYNA and a user guide was developed to facilitate use of the model. 2) Developed and produced two 3GAHSS alloys using two different chemistries and manufacturing processes, for use in calibrating and validating the 3GAHSS ICME Model. 3) Optimized the design of an automotive subassembly by substituting 3GAHSS for AHSS yielding a design that met or exceeded all baseline performance requirements with a 30% mass savings. A technical cost model was also developed to estimate the cost per pound of weight saved when substituting 3GAHSS for AHSS. The project demonstrated the potential for 3GAHSS to achieve up to 30% weight savings in an automotive structure at a cost penalty of up to $0.32 to $1.26 per pound of weight saved. The 3GAHSS ICME Model enables the user to design 3GAHSS to desired mechanical properties in terms of strength and ductility.

  8. Bonding evolution with sintering temperature in low alloyed steels with chromium

    Directory of Open Access Journals (Sweden)

    Fuentes-Pacheco L.

    2009-01-01

    Full Text Available At present, high performance PM steels for automotive applications follow a processing route that comprises die compaction of water-atomized powder, followed by sintering and secondary treatments, and finishing operations. This study examines Cr-alloyed sintered steels with two level of alloying. In chromium-alloyed steels, the surface oxide on the powder is of critical importance for developing the bonding between the particles during sintering. Reduction of this oxide depends mainly on three factors: temperature, dew point of the atmosphere, and carbothermic reduction provided by the added graphite. The transformation of the initial surface oxide evolves sequence as temperature increases during sintering, depending on the oxide composition. Carbothermic reduction is supposed to be the controlling mechanism, even when sintering in hydrogen-containing atmospheres. The effect of carbothermic reduction can be monitored by investigating the behavior of the specimens under tensile testing, and studying the resultant fracture surfaces.

  9. Artificial neural networks and the effects of loading conditions on fatigue life of carbon and low-alloy steels

    International Nuclear Information System (INIS)

    Pleune, T.T.

    1996-11-01

    The ASME Boiler and Pressure Vessel Code contains rules for the construction of nuclear power plant components. Figure 1-90 of Appendix I to Section III of the Code specifies fatigue design curves for structural materials. However, the effects of light water reactor (LWR) coolant environments are not explicitly addressed by the Code design curves. Recent test data indicate significant decreases in the fatigue lives of carbon and low-alloy steels in LWR environments when five conditions are satisfied simultaneously. When applied strain range, temperature, dissolved oxygen in the water, and sulfur content of the steel are above a minimum threshold level, and the loading strain rate is below a threshold value, environmentally assisted fatigue occurs. For this study, a data base of 1036 fatigue tests was used to train an artificial neural network (ANN). Once the optimal ANN was designed, ANN were trained and used to predict fatigue life for specified sets of loading and environmental conditions. By finding patterns and trends in the data, the ANN can find the fatigue lifetime for any set of conditions. Artificial neural networks show great potential for predicting environmentally assisted corrosion. Their main benefits are that the fit of the data is based purely on data and not on preconceptions and that the network can interpolate effects by learning trends and patterns when data are not available

  10. Determination of biocorrosion of low alloy steel by sulfate-reducing Desulfotomaculum sp. isolated from crude oil field

    Energy Technology Data Exchange (ETDEWEB)

    Cetin, D.; Doenmez, G. [Faculty of Science, Department of Biology, Ankara University, Tandogan, 06100, Ankara (Turkey); Bilgic, S. [Faculty of Science, Department of Chemistry, Ankara University, Tandogan, 06100, Ankara (Turkey); Doenmez, S. [Faculty of Engineering, Department of Food Engineering, Ankara University, Diskapi, 06110 Ankara (Turkey)

    2007-11-15

    In this study corrosion behavior of low alloy steel, in the presence of anaerobic sulfate-reducing Desulfotomaculum sp. which was isolated from an oil production well, was investigated. In order to determine corrosion rates and mechanisms, mass loss measurements and electrochemical polarization studies were performed without and with bacteria in the culture medium. Scanning electron microscopic observations and energy dispersive X-ray spectra (EDS) analysis were made on steel coupons. The effect of iron concentration on corrosion behavior was determined by Tafel extrapolation method. In a sterile culture medium, as the FeSO{sub 4} . 7H{sub 2}O concentration increased, corrosion potential (E{sub cor}) values shifted towards more anodic potentials and corrosion current density (I{sub cor}) values increased considerably. After inoculation of sulfate-reducing bacteria (SRB), E{sub cor} shifted towards cathodic values. I{sub cor} values increased with increasing incubation time for 10 and 100 mg/L concentrations of FeSO{sub 4} . 7H{sub 2}O. Results have shown that the corrosion activity changed due to several factors such as bacterial metabolites, ferrous sulfide, hydrogen sulfide, iron phosphide, and cathodic depolarization effect. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  11. Evaluation of thermal and radiation treatment on microstructure of low-alloyed steels

    International Nuclear Information System (INIS)

    Slugen, V.

    1998-09-01

    Eighth different types of reactor pressure vessel steels used in Eastern and Western Nuclear Power Plants were studied for their microstructural changes due to thermal-, irradiation- and postirradiation heat treatment. Methods used were positron annihilation spectroscopy, Moessbauer spectroscopy and transmission electron spectroscopy. Clear differences between Eastern- and Western reactor pressure vessel types were observed not only due to different chemical composition but also due to differences in the preparation and treatment of the investigated steels. Detailed results are presented in tables and figures. (author)

  12. Stress corrosion of low alloy steels used in external bolting on pressurised water reactors

    International Nuclear Information System (INIS)

    Skeldon, P.; Hurst, P.; Smart, N.R.

    1992-01-01

    The stress corrosion cracking (SCC) susceptibility of AISI 4140 and AISI 4340 steels has been evaluated in five environments, three simulating a leaking aqueous boric acid environment and two simulating ambient external conditions ie moist air and salt spray. Both steels were found to be highly susceptible to SCC in all environments at hardnesses of 400 VPN and above. The susceptibility was greatly reduced at hardnesses below 330 VPN but in one environment, viz refluxing PWR primary water, SCC was observed at hardnesses as low as 260VPN. Threshold stress intensities for SCC were frequently lower than those in the literature

  13. Characterization of morphology and kinetics of bainite transformation in a low alloy steel

    International Nuclear Information System (INIS)

    Gupta, C.; Dey, G.K.; Srivastav, D.; Chakravarthy, J.K.; Banerjee, S.

    2005-01-01

    Bainite transformation is ubiquitous in steels for pressure vessel applications in thermal and nuclear power plants. In this class of steels bainite is the dominant phase found in the microstructure, after industrial thermo-mechanical processing and heat treatment of pressure vessel component. The study of bainite transformation has been carried out using both isothermal and continuous cooling conditions. Previous studies have reported significant differences in the morphology and the type of bainite formed under these two conditions. Continuous cooling has been shown to result in a wider variety of bainite transformation products as compared with isothermal treatments. This has important implications for the technological properties of power plant components such as strength, toughness and hardenability. In the present study the cooling transformation characteristics of a new CrMo pressure vessel steel has been examined using dilatometry supplemented with TEM examination. The dilatometric data were analyzed to determine the activation energy and Avrami exponents. It was found that bainite with different morphologies formed over the cooling rates employed and were kinetically distinct. The dilatometric study along with TEM studies has shown that non-isothermal decomposition of austenite in this steel results in a complex microstructure containing an array of bainite morphologies. The bainitic ferrite plates are seen to be associated with various inter- and intra- plate constituents as the cooling rate changes. Despite this the transformation remains essentially bainitic over the range of cooling rates studied. Three different cooling rate regimes with distinctly different calculated Avrami exponents have been observed. (author)

  14. Structure Analysis Of Corrosion Resistant Thermal Sprayed Coatings On Low Alloy Steels

    Science.gov (United States)

    Chaliampalias, D.; Vourlias, G.; Pistofidis, N.; Pavlidou, E.; Stergiou, A.; Stergioudis, G.; Polychroniadis, E. K.

    2007-04-01

    Metallic coatings have been proved to reduce the rate of corrosion of steel in various atmospheres. In this work the structure of Al, Cu-Al and Zn thermal sprayed coatings is examined. The as formed coatings are extremely rough, and they are composed of several phases which increase corrosion resistance as it was determined Salt Spray Chamber tests.

  15. Microstructure and Property of Mn-Nb-B Low Carbon Bainite High Strength Steel Under Ultra-fast Cooling

    Directory of Open Access Journals (Sweden)

    WANG Bing-xing

    2016-07-01

    Full Text Available Using the Mn-Nb-B low carbon bainite high strength steel with the reducing production technology as the research target, the deformation behavior and phase transformation behavior were studied by the thermal simulation testing machine. Combining with the characteristics of the medium and heavy plate production line, the controlled rolling and controlled cooling technology based on ultra-fast cooling were designed to produce low cost high strength construction machinery steel with superior comprehensive mechanical properties. The strengthening mechanisms such as grain refinement strengthening, precipitation strengthening are effective to produce the Mn-Nb-B low carbon bainite high strength steel. The yield strength and tensile strength of the product reach to 678MPa and 756 MPa respectively, the elongation A50 is 33% and the impact energy at -20℃ is 261J. The microstructure of the steel is composed of granular bainite, acicular ferrite and lath bainite. A large number of fine, point, granular M/A constituents and dislocation structures dispersively distributed inside the matrix, and also tiny and dispersed (Nb,Ti (C,N precipitates are observed by transmission electron microscopy.

  16. Deterioration of mechanical properties of high strength structural steel S460N under transient state fire condition

    International Nuclear Information System (INIS)

    Qiang, Xuhong; Bijlaard, Frans S.K.; Kolstein, Henk

    2012-01-01

    Highlights: ► Mechanical properties of S460N under transient state fire condition are obtained. ► Elevated-temperature mechanical properties of steels are dependent on steel grades. ► No design standard is applicable to HSS S460N under transient state fire condition. ► Specific statements on various HSS in fire should be proposed in design standards. ► Research results offer accurate material property for structural design engineers. -- Abstract: 911 World Trade Centre Tragedy put fire safety of constructional steel structures into question. Since then, more and more research attention has been paid to the elevated-temperature mechanical properties of structural steels, which is a critical basis of evaluating the fire performance of steel structures. In the literature the available mechanical properties of structural steels under fire conditions were mainly obtained from steady state test method, as steady state test method is easier to perform than transient state test method and offers stress–strain curves directly. However, the transient state fire condition is considered to be more realistic to represent the real condition when constructions are exposed to fire. In order to reveal the deterioration of mechanical properties of the commonly used high strength structural steel S460N under transient state fire condition, tensile tests were conducted under various constant stress levels up to 800 MPa. The reduction factors of elastic modulus, yield and ultimate strengths of S460N under transient state fire condition were obtained and compared with current leading design standards and available literature. The application of such accurate elevated-temperature mechanical properties reduction factors of S460N can ensure a safe fire-resistance design and evaluation of steel structures with high strength steel S460N under transient state fire condition. This experimental study also supports other relative research on fire performance of steel structures with

  17. Development of Low Carbon Niobium Bearing High Strength F-B Dual Phase Steel with High Hole Expansion Property

    Science.gov (United States)

    Zhang, Lin; Xia, Ming-sheng; Xiong, Zi-liu; Du, Yan-bing; Qiao, Zhi-ming; Zhang, Hong-bo

    In the study a low carbon niobium bearing high strength F-B dual phase automobile steel with high hole expansion property has been investigated. Steels of different chemical composition have been investigated by simulation experiments of controlled rolling and cooling process to study the influences of chemical elements, especially for C,Nb and Ti, and cooling pattern on the mechanical properties, flangeability and microstructure of strips. So-called 3-stages cooling pattern was adopted in simulation experiments, combining ultra fast cooling in first stage, air cooling in middle stage and fast cooling in the last stage, and at the end of run-out table the temperature of rolled pieces drop to below Bs point. Optical microstructure and SEM morphology have been observed. Results indicate that it is possible to obtain dual phase microstructure of polygonal ferrite plus bainite in adopting 3-stages cooling pattern. The low temperature coiling method using 3-step controlled cooling pattern after hot rolling is effective to produce low carbon Nb bearing steel with high balance of strength-ductility-flangeability, in addition, higher carbon content of steel tend to be detrimental to flangeability of steel, due to much carbide precipitation at ferrite boundary. Based on the results of simulation experiments mill trial has been carried out and hot rolled high strength steel with tensile strength higher as 600Mpa and hole expansion ratio higher as 100% has been developed successfully.

  18. Partial-Isothermally-Treated Low Alloy Ultrahigh Strength Steel with Martensitic/Bainitic Microstructure

    Science.gov (United States)

    Luo, Quanshun; Kitchen, Matthew; Patel, Vinay; Filleul, Martin; Owens, Dave

    We introduce a new strengthening heat treatment of a Ni-Cr-Mo-V alloyed spring steel by partial isothermal salt-bath and subsequent air-cooling and tempering. Detailed isothermal treatments were made at temperatures below or above the Ms point (230°C). The salt bath time was controlled between 10 and 80 minutes. Through the new treatment, the candidate steel developed ultrahigh tensile strength 2,100 MPa, yield strength 1,800 MPa, elongation 8-10 %, hardness 580-710 HV, and V-notch Charpy toughness 10-12 J. Optical and electron microscopic observations and X-ray diffraction revealed multi-phase microstructures of bainitic/martensitic ferrites, fine carbide precipitates and retained austenite. Carbon partitioning during the bainitic/martensitic transformation was investigated for its remarkable influence on the strengthening mechanism.

  19. Computational Design of a Novel Medium-Carbon, Low-Alloy Steel Microalloyed with Niobium

    Science.gov (United States)

    Javaheri, Vahid; Nyyssönen, Tuomo; Grande, Bjørnar; Porter, David

    2018-04-01

    The design of a new steel with specific properties is always challenging owing to the complex interactions of many variables. In this work, this challenge is dealt with by combining metallurgical principles with computational thermodynamics and kinetics to design a novel steel composition suitable for thermomechanical processing and induction heat treatment to achieve a hardness level in excess of 600 HV with the potential for good fracture toughness. CALPHAD-based packages for the thermodynamics and kinetics of phase transformations and diffusion, namely Thermo-Calc® and JMatPro®, have been combined with an interdendritic segregation tool (IDS) to optimize the contents of chromium, molybdenum and niobium in a proposed medium-carbon low-manganese steel composition. Important factors taken into account in the modeling and optimization were hardenability and as-quenched hardness, grain refinement and alloying cost. For further investigations and verification, the designed composition, i.e., in wt.% 0.40C, 0.20Si, 0.25Mn, 0.90Cr, 0.50Mo, was cast with two nominal levels of Nb: 0 and 0.012 wt.%. The results showed that an addition of Nb decreases the austenite grain size during casting and after slab reheating prior to hot rolling. Validation experiments showed that the predicted properties, i.e., hardness, hardenability and level of segregation, for the designed composition were realistic. It is also demonstrated that the applied procedure could be useful in reducing the number of experiments required for developing compositions for other new steels.

  20. The effect of aqueous environments upon the initiation and propagation of fatigue cracks in low-alloy steels

    International Nuclear Information System (INIS)

    James, L.A.

    1996-01-01

    The effect of elevated temperature aqueous environments upon the initiation and propagation of fatigue cracks in low-alloy steels is discussed in terms of the several parameters which influence such behavior. These parameters include water chemistry, impurities within the steels themselves, as well as factors such as the water flow rate, loading waveform and loading rates. Some of these parameters have similar effects upon both crack initiation and propagation, while others exhibit different effects in the two stages of cracking. In the case of environmentally-assisted crack (EAC) growth, the most important impurities within the steel are metallurgical sulfide inclusions which dissolve upon contact with the water. A ''critical'' concentration of sulfide ions at the crack tip can then induce environmentally-assisted cracking which proceeds at significantly increased crack growth rates over those observed in air. The occurrence, or non-occurrence, of EAC is governed by the mass-transport of sulfide ions to and from the crack-tip region, and the mass-transport is discussed in terms of diffusion, ion migration, and convection induced within the crack enclave. Examples are given of convective mass-transport within the crack enclave resulting from external free stream flow. The initiation of fatigue cracks in elevated temperature aqueous environments, as measured by the S-N fatigue lifetimes, is also strongly influenced by the parameters identified above. The influence of sulfide inclusions does not appear to be as strong on the crack initiation process as it is on crack propagation. The oxygen content of the environment appears to be the dominant factor, although loading frequency (strain rate) and temperature are also important factors

  1. Effect of heat input on dissimilar welds of ultra high strength steel and duplex stainless steel: Microstructural and compositional analysis

    Energy Technology Data Exchange (ETDEWEB)

    Tasalloti, H., E-mail: hamed.tasalloti.kashani@student.lut.fi; Kah, P., E-mail: paul.kah@lut.fi; Martikainen, J., E-mail: jukka.martikainen@lut.fi

    2017-01-15

    The effect of heat input on the microstructure and compositional heterogeneity of welds of direct-quenched ultra high strength steel (Optim 960 QC) and duplex stainless steel (UNS S32205) was studied. The dissimilar welds were made using GMAW with a fully austenitic filler wire. In addition to grain coarsening in the heat affected zone (HAZ) of the ferritic side, it was found that an increase in heat input correlatively increased the proportional volume of bainitic to martensitic phases. Coarse ferritic grains were observed in the duplex HAZ. Higher heat input, however, had a beneficial effect on the nucleation of austenite in the HAZ. Heat input had a regulatory effect on grain growth within the austenitic weld and more favorable equiaxed austenite was obtained with higher heat input. On the ferritic side of the welds, macrosegregation in the form of a martensitic intermediate zone was observed for all the cooling rates studied. However, on the duplex side, macrosegregation in the fusion boundary was only noticed with higher cooling rates. Microstructural observations and compositional analysis suggest that higher heat input could be beneficial for the structural integrity of the weld despite higher heat input increasing the extent of adverse coarse grains in the HAZ, especially on the ferritic side. - Highlights: •The effect of heat input on dissimilar welds of UHSS and DSS was studied. •Transmutation of the microstructure was discussed in detail. •The influence of heat input on compositional heterogeneity of welds was described. •Higher heat input enhanced bainitic transformation on the ferritic side. •Macrosegregation was affected by the amount of heat input on the DSS side.

  2. Behavior of steel fiber high strength concrete under impact of projectiles

    Directory of Open Access Journals (Sweden)

    Cánovas, M. F.

    2012-09-01

    Full Text Available This paper presents the results of the investigation carried out by the authors about the behavior of 80 MPa characteristic compression strength concrete reinforced with different amount of high carbon content steel fiber, submit to impact of different caliber projectiles, determining the thickness of this type of concrete walls needs to prevent no perforation, as well as the maximum penetration to reach into them, so that in the event of no perforation and only penetration, "scabbing" phenomena does not take place on the rear surface of the wall. Prior to ballistic testing was necessary to design the high-strength concrete with specific mechanical properties, especially those related to ductility, since these special concrete must absorb the high energy of projectiles and also the shock waves that accompany them.Este trabajo presenta los resultados de la investigación llevada a cabo por los autores sobre el comportamiento de hormigón de 80 MPa de resistencia característica a compresión reforzado con diferentes cuantías de fibras de acero de alto contenido en carbono sometido al impacto de proyectiles de distintos calibres, determinando el espesor de muros de este tipo de hormigón que sería preciso disponer para impedir su perforación por dichos proyectiles, así como los valores máximos de penetración, para que en el caso de no producirse perforación y sólo penetración, no se genera cráter, “scabbing”, en el trasdós de los mismos. Previamente a los ensayos balísticos fue preciso diseñar los hormigones para que, presentaran determinadas características mecánicas, especialmente las relacionadas con la ductilidad, dado que estos hormigones especiales deben absorber la elevada energía que le transmiten los proyectiles y las ondas de choque que los acompañan.

  3. Microstructural evolution of cold-sprayed Inconel 625 superalloy coatings on low alloy steel substrate

    International Nuclear Information System (INIS)

    Chaudhuri, Atanu; Raghupathy, Y.; Srinivasan, Dheepa; Suwas, Satyam; Srivastava, Chandan

    2017-01-01

    This study illustrates microstructural evolution of INCONEL 625 superalloy coatings cold-sprayed on a 4130 chrome alloy steel with medium carbon content. INCONEL 625 powder (5–25 μm) were successfully cold sprayed without any oxidation. The comprehensive microstructure analysis of the as-sprayed coatings and of the substrate-coating interface was carried out using EBSD, TEM, and XRD. The coating microstructure at the substrate-coating interface was markedly different from the microstructure away from the interface. The coating microstructure at steel-coating interface consisted of a fine layer of small grains. The microstructure beyond this fine layer can be divided into splats, inter splat and intra splat boundaries. Both splat and splat boundaries exhibited deformation induced dislocations. Dynamic recovery of dislocations-ridden regions inside the splat was responsible for the development of sub grain structure inside a splat with both low and high angle grain boundaries. Splat-splat (inter splat) boundary consisted of a relatively high density of dislocations and shear bands as a result of adiabatic shear flow localisation. This flow instability is believed to enhance the microstructural integrity by eliminating porosity at splat-splat boundaries. Based on the microstructural analysis using electron microscopy, a plausible mechanism for the development of microstructure has been proposed in this work. Cold spray technique can thus be deployed to develop high quality coatings of commercial importance. - Graphical abstract: Schematics of the evolution of microstructure at the 4130 steel substrate close to interface. i) initial deformation close to interface. ii) Accumulation of dislocation in the substrate. iii) Formation of cell structure due to dislocation tangling and arrangement. iv) Dislocation rearrangement and subgrain formation. v.a) Formation HAGB from dislocation accumulation into LAGB. v.b) HAGB formation through DRX by progressive lattice rotation

  4. On the tempered martensite embrittlement in AISI 4140 low alloy steel

    Energy Technology Data Exchange (ETDEWEB)

    Darwish, F.A. (Dept. of Materials Science and Metallurgy, Catholic Univ., Rio de Janeiro, RJ (Brazil)); Pereira, L.C.; Gatts, C. (Dept. of Metallurgy and Materials Engineering, Federal Univ., Rio de Janeiro, RJ (Brazil)); Graca, M.L. (Materials Div., Technical Aerospace Center, Sao Jose dos Campos, SP (Brazil))

    1991-02-01

    In the present investigation the Auger electron spectroscopy (AES) technique was used to determine local carbon and phosphorus concentrations on the fracture surfaces of as-quenched and quenched-and-tempered (at 350deg C) AISI 4140 steel specimens austenitized at low and high temperatures. The AES results were rationalized to conclude that, although carbide growth as well as phosphorus segregation are expected to contribute to tempered martensite embrittlement, carbide precipitation on prior austenite grain boundaries during tempering is seen to be the microstructural change directly responsible for the occurrence of the referred embrittlement phenomenon. (orig.).

  5. On flux effects in a low alloy steel from a Swedish reactor pressure vessel

    Energy Technology Data Exchange (ETDEWEB)

    Boåsen, Magnus, E-mail: boasen@kth.se [Department of Solid Mechanics, Royal Institute of Technology (KTH), SE-100 44 Stockholm (Sweden); Efsing, Pål [Department of Solid Mechanics, Royal Institute of Technology (KTH), SE-100 44 Stockholm (Sweden); Ehrnstén, Ulla [VTT Technical Research Centre of Finland Ltd, PO Box 1000, FI-02044 VTT (Finland)

    2017-02-15

    This study aims to investigate the presence of Unstable Matrix Defects in irradiated pressure vessel steel from weldments of the Swedish PWR Ringhals 4 (R4). Hardness tests have been performed on low flux (surveillance material) and high flux (Halden reactor) irradiated material samples in combination with heat treatments at temperatures of 330, 360 and 390 °C in order to reveal eventual recovery of any hardening features induced by irradiation. The experiments carried out in this study could not reveal any hardness recovery related to Unstable Matrix Defects at relevant temperatures. However, a difference in hardness recovery was found between the low and the high flux samples at heat treatments at higher temperatures than expected for the annihilation of Unstable Matrix Defects–the observed recovery is here attributed to differences of the solute clusters formed by the high and low flux irradiations. - Highlights: • Hardness testing is combined with post irradiation annealing at 330, 360 and 390 °C. • Unstable matrix defects is studied in a reactor pressure vessel steel. • Comparison between surveillance material and accelerated irradiation. • No evidence of unstable matrix defects, i.e. not present in studied material. • Difference in hardness recovery between irradiation conditions found at 390 °C.

  6. Round Robin/collaborative programme [cyclic crack growth in low alloy steel

    International Nuclear Information System (INIS)

    Jones, R.L.; Hurst, P.; Scott, P.M.

    1989-01-01

    During the 10 years of its existence International Cooperative Group on Cyclic Crack Growth the (ICCGR) has undertaken five collaborative efforts related to cyclic crack growth and stress corrosion susceptibility in reactor pressure vessel steels. The initial collaborative effort, a data reduction exercise, identified and reconciled several important procedural differences and led to confidence that, given the same crack length versus cycles data, the Group members could all derive similar plots of da/dN versus δK. Subsequently, a low-R testing round robin highlighted the importance of a number of comparatively subtle aspects of the methods used for cyclic crack growth testing in water environments and led to confidence that the various laboratories could generate similar test data, given the same test material and a sufficiently precise and detailed test specification. The results of a high-R test programme support the conclusion that the state of the art of cyclic crack growth testing has now advanced to a point at which coordinated, multilaboratory test programmes are feasible and indeed, such a programme covering the influence of temperature is currently under way. The slow strain rate round robin has highlighted important test variables, notably the electrochemical potential, which must be carefully controlled in assessing the conditions under which pressure vessel steels may suffer from stress corrosion cracking. (author)

  7. Phase evolution and mechanical behavior of 0.36 wt% C high strength TRIP-assisted steel

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Swarup Kumar; Chattopadhyay, Partha Protim [Department of Metallurgy and Materials Engineering, Bengal Engineering and Science University, Shibpur, Howrah 711 103 (India)

    2012-12-15

    Phase evolution in a 0.36 wt% C steel has been studied by thermodynamic calculation and dilatometric analysis with an aim to achieve high strength TRIP-assisted steel with bainitic microstructure. The equilibrium phase fraction calculated as the function of temperature indicated the formation of {delta}-ferrite ({approx}98%) at 1417 C. In contrast, similar calculation under para-equilibrium condition exhibited transformation of {delta}-ferrite to austenite at the temperature below 1300 C. During further cooling two-phase ({alpha}+{gamma}) microstructure has been found to be stable at the intercritical temperature range. The experimentally determined CCT diagram has revealed that adequate hardenability is achievable in the steel under continuous cooling condition at cooling rate >5 C s{sup -1}. In view of the aforesaid results, the steel has been hot rolled and subjected to different process schedule conducive to the evolution of bainitic microstructure. The hot rolled steel has exhibited reasonably good tensile properties. However, cold deformation of the hot rolled sample followed by intercritical annealing and subsequent isothermal bainitic transformation has resulted in high strength (>1000 MPa) with attractive elongation due to the favorable work hardening condition during plastic deformation offered by the multiphase microstructure. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. AFM study of the early corrosion of a high strength steel in a diluted sodium chloride solution

    International Nuclear Information System (INIS)

    Sanchez, Javier; Fullea, Jose; Andrade, Carmen; Gaitero, Juan J.; Porro, Antonio

    2008-01-01

    The high strength steels employed as reinforcement in pre-stressed concrete structures are drawn wire steels of eutectoid composition with a pearlitic microstructure. This work is focused on the study, by atomic force microscopy, of the early stages of the corrosion of such steels as a consequence of their exposition to a sodium chloride solution. The obtained images show the pearlitic microstructure of the steel, with a preferential attack of the ferrite phase and the cementite acting as a cathode. The corrosion rate was determined by calculating the amount of material lost from a roughness analysis. The obtained results are in good agreement with the predictions of Galvelel's theory, according to which the corrosion rate slows down as the pit depth increases

  9. Creep deformation, creep damage accumulation and residual life prediction for three low alloyed CrMo-steels

    International Nuclear Information System (INIS)

    Kondyr, A.; Sandstroem, R.; Samuelsson, A.

    1979-02-01

    A detailed analysis of creep strain results for three low alloyed steels of type 0.5 Mo, 1 Cr-0.5 Mo and 2.25 Cr-1 Mo has been undertaken. The results show that, excluding the primary stage, the true strain rate can be described by a simple analytical expression dE/dt = Aexp(B.E) where A and B are constants at constant stress and temperature. A is approximately equal to the minimum strain rate and B inversly proportional to the fracture strain. Furthermore, 1/AB equals the time t sub(r) to rupture. The residual life fraction in creep can be expressed as exp(-B.E) = 1-t/t sub(r) and a creep damage function μ is introduced as μ = 1-ABt. The expressions for strain rate and damage are shown to be a special case of the Rabotnov-Kachanov equations. The analysis has been generalized to account for multiaxial stress states, and as an example creep in a tube with internal pressure is considered. (author)

  10. Effect of alloying element partitioning on ferrite hardening in a low alloy ferrite-martensite dual phase steel

    Energy Technology Data Exchange (ETDEWEB)

    Ebrahimian, A., E-mail: ebrahimiana@yahoo.com; Ghasemi Banadkouki, S.S.

    2016-11-20

    In this paper, the effect of carbon and other alloying elements partitioning on ferrite hardening behavior were studied in details using a low alloy AISI4340 ferrite-martensite dual phase (DP) steel. To do so, various re-austenitised samples at 860 °C for 60 min were isothermally heated at 650 °C from 3 to 60 min and then water–quenched to obtain the final ferrite-martensite DP microstructures containing different ferrite and martensite volume fractions. Light and electron microscopic observations were supplemented with electron dispersive spectroscopy (EDS) and nanoindentation tests to explore the localized compositional and hardening variations within ferrite grains in DP samples. The experimental results showed that the ferrite hardness was varied with progress of austenite to ferrite phase transformation in DP samples. In the case of a particular ferrite grain in a particular DP sample, despite a homogeneous distribution of carbon concentration, the ferrite hardness was significantly increased by increasing distance from the central location toward the interfacial α/γ areas. Beside a considerable influence of martensitic phase transformation on adjacent ferrite hardness, these results were rationalized in part to the significant level of Cr and Mo pile-up at α/γ interfaces leading to higher solid solution hardening effect of these regions. The reduction of potential energy developed by attractive interaction between C-Cr and C-Mo couples toward the carbon enriched prior austenite areas were the dominating driving force for pile-up segregation.

  11. Effect of Temperature on the Toughness of Locally Manufactured Low Alloy Steel SUP9 Used for Manufacturing Leaf Springs

    Directory of Open Access Journals (Sweden)

    Muhammad Ishaque Abro

    2011-10-01

    Full Text Available The effect of heat treatment on locally manufactured low alloy steel grade SUP9 most frequently used in making leaf springs for automobiles was studied. While for determination of toughness and hardness Charpy impact testing machine and Rockwell hardness tester were used. The cryogenic test temperatures were achieved by soaking the samples in liquid nitrogen and temperature was measured using digital thermometer capable of reading the temperature from -40-200oC. Hardening, tempering and austempering treatments were conducted using muffle furnace and salt bath furnace. After heat treatment samples were quenched in oil. The results of present work confirmed that toughness and hardness are inversely related with each other and are highly dependent on the type of heat treatment employed. Highest toughness was measured after austempering at 450oC. Effect of test temperature revealed that toughness of the samples increased significantly with decreasing temperature. DBTT (Ductile to Brittle Transition Temperature of the austempered samples was observed at -10oC, whereas, that of tempered samples could not be determined. Based on the test results authors wish to recommend the 600oC tempering temperature in place of 450oC where normally tempering is practiced in Alwin industry Karachi during manufacturing of leaf spring.

  12. The small punch assessment of toughness losses in low alloy steels

    Energy Technology Data Exchange (ETDEWEB)

    Bulloch, J.H. [ESB, Power Generation, Dublin (Ireland)

    1998-12-31

    The presentation deals at length with the relationship between the Small Punch, SP, test transition temperature Tsp, behaviour and those displayed by the conventional Charpy Fracture Appearance Transition Temperature, FATT, obtained from large test specimens. Essentially it was demonstrated that the total test temperature range trends could reasonably be described by a non-linear expression such as FATT varied inversely with the square of the Tsp. Finally when the Tsp against FATT trends were separated into different steel classes an encouraging picture emerged inasmuch that a reasonable amount of data exhibited good agreement with the predicted effects of grain size. Fractographic details were also discussed and strong effects of strain or loading rates were identified. (orig.) 19 refs.

  13. The small punch assessment of toughness losses in low alloy steels

    Energy Technology Data Exchange (ETDEWEB)

    Bulloch, J H [ESB, Power Generation, Dublin (Ireland)

    1999-12-31

    The presentation deals at length with the relationship between the Small Punch, SP, test transition temperature Tsp, behaviour and those displayed by the conventional Charpy Fracture Appearance Transition Temperature, FATT, obtained from large test specimens. Essentially it was demonstrated that the total test temperature range trends could reasonably be described by a non-linear expression such as FATT varied inversely with the square of the Tsp. Finally when the Tsp against FATT trends were separated into different steel classes an encouraging picture emerged inasmuch that a reasonable amount of data exhibited good agreement with the predicted effects of grain size. Fractographic details were also discussed and strong effects of strain or loading rates were identified. (orig.) 19 refs.

  14. The effect of steel slag as a coarse aggregate and Sinabung volcanic ash a filler on high strength concrete

    Science.gov (United States)

    Karolina, R.; Putra, A. L. A.

    2018-02-01

    The Development of concrete technology is continues to grow. The requisite for efficient constructions that are often viewed in terms of concrete mechanical behavior, application on the field, and cost estimation of implementation increasingly require engineers to optimize construction materials, especially for concrete materials. Various types of concrete have now been developed according to their needs, such as high strength concrete. On high strength concrete design, it is necessary to consider several factors that will affect the reach of the quality strength, Those are cement, water cement ratio (w/c), aggregates, and proper admixture. In the use of natural mineral, it is important for an engineer to keep an eye on the natural conditions that have been explored. So the selection of aggregates as possible is a material that is not causing nature destruction. On this experiment the use of steel slag from PT.Growth Sumatra Industry as a substitute of coarse and fine aggregate, and volcanic ash of mount Sinabung as microsilka in concrete mixture substituted to create high strength concrete that is harmless for the environment. The use of mount sinabung volcanic ash as microsilika coupled with the use of Master Glenium Sky 8614 superplasticizer. This experiment intend to compare high strength concrete based slag steel as the main constituent aggregates and high strength concrete with a conventional mixture. The research result for 28 days old concrete shows that conventional concrete compressive strength is 67.567 MPa, slag concrete 75.958 Mpa, conventional tensile strength 5.435 Mpa while slag concrete 5.053 Mpa, conventional concrete bending strength 44064.96 kgcm while concrete slag 51473.94 kgcm and modulus of conventional concrete fracture 124.978 kg / cm2 while slag concrete 145.956 kg / cm2. Both concrete slump values shows similar results due to the use of superplasticizer.

  15. Modified heat treatment for lower temperature improvement of the mechanical properties of two ultrahigh strength low alloy steels

    Science.gov (United States)

    Tomita, Yoshiyuki; Okabayashi, Kunio

    1985-01-01

    In the previous papers, a new heat treatment for improving the lower temperature mechanical propertise of the ultrahigh strength low alloy steels was suggested by the authors which produces a mixed structure of 25 vol pct lower bainite and 75 vol pct martensite through isothermal transformation at 593 K for a short time followed by water quenching (after austenitization at 1133 K). In this paper, two commercial Japanese ultrahigh strength steels, 0.40 pct C-Ni-Cr-Mo (AISI 4340 type) and 0.40 pct C-Cr-Mo (AISI 4140 type), have been studied to determine the effect of the modified heat treatment, coupled above new heat treatment with γ ⇆ α' repctitive heat treatment, on the mechanical properties from ambient temperature (287 K) to 123 K. The results obtained for various test temperatures have been compared with those for the new heat treatment reported previously and the conventional 1133 K direct water quenching treatment. The incorporation of intermediate four cyclic γ ⇆ α' repctitive heat treatment steps (after the initial austenitization at 1133 K and oil quenching) into the new heat treatment reported previously, as compared with the conventional 1133 K direct water quenching treatment, significantly improved 0.2 pct proof stress as well as notch toughness of the 0.40 pct C-Ni-Cr-Mo ultrahigh strength steel at similar fracture ductility levels from 287 to 123 K. Also, this heat treatment, as compared with the conventional 1133 K direct water quenching treatment, significantly improved both 0.2 pct proof stress and notch toughness of the 0.40 pct C-Cr-Mo ultrahigh strength steel with increased fracture ductility at 203 K and above. The microstructure consists of mixed areas of ultrafine grained martensite, within which is the refined blocky, highly dislocated structure, and the second phase lower bainite (about 15 vol pct), which appears in acicular form and partitions prior austenite grains. This newly developed heat treatment makes it possible to modify

  16. Nano-structureal and nano-chemical analysis of Ni-based alloy/low alloy steel dissimilar metal weld interfaces

    International Nuclear Information System (INIS)

    Choi, Kyoung Joon; Shin, Sang Hun; Kim, Jong Jin; Jung, Ju Ang; Kim, Ji Hyun

    2012-01-01

    The dissimilar metal joints welded between Ni-based alloy, Alloy 690 and low alloy steel, A533 Gr. B with Alloy 152 filler metal were characterized by using optical microscope, scanning electron microscope, transmission electron microscope, secondary ion mass spectrometry and 3-dimensional atom probe tomography. It was found that in the weld root region, the weld was divided into several regions including unmixed zone in Ni-base alloy, fusion boundary, and heat-affected zone in the low alloy steel. The result of nanostructural and nanochemical analyses in this study showed the non-homogeneous distribution of elements with higher Fe but lower Mn, Ni and Cr in A533 Gr. B compared with Alloy 152, and the precipitation of carbides near the fusion boundary.

  17. Nano-structureal and nano-chemical analysis of Ni-based alloy/low alloy steel dissimilar metal weld interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Kyoung Joon; Shin, Sang Hun; Kim, Jong Jin; Jung, Ju Ang; Kim, Ji Hyun [Interdisciplinary School of Green Energy, Ulsan National Institute of Science and Technology (UNIST), Ulsan (Korea, Republic of)

    2012-06-15

    The dissimilar metal joints welded between Ni-based alloy, Alloy 690 and low alloy steel, A533 Gr. B with Alloy 152 filler metal were characterized by using optical microscope, scanning electron microscope, transmission electron microscope, secondary ion mass spectrometry and 3-dimensional atom probe tomography. It was found that in the weld root region, the weld was divided into several regions including unmixed zone in Ni-base alloy, fusion boundary, and heat-affected zone in the low alloy steel. The result of nanostructural and nanochemical analyses in this study showed the non-homogeneous distribution of elements with higher Fe but lower Mn, Ni and Cr in A533 Gr. B compared with Alloy 152, and the precipitation of carbides near the fusion boundary.

  18. Microstructural evolution in low alloy steels under high dose ion irradiation

    International Nuclear Information System (INIS)

    Fujii, Katsuhiko; Fukuya, Koji; Ohkubo, Tadakatsu; Hono, Kazuhiro

    2006-01-01

    Radiation hardening and microstructural evolution in low Cu A533B steels (0.03 wt% Cu) irradiated by 3 MeV Ni 2+ ions at 290degC to 1 dpa were investigated by ultra-micro hardness measurement and leaser type three dimensional atom probe analysis. Mn-Ni-Si enriched precipitates were detected in the samples irradiated to 1 dpa by 3DAP analysis. The well-defined precipitates had a size of less than 4 nm, and the number density increased with dose. The formation of the precipitates under high dose rate irradiation suggested that Mn-Ni-Si enriched precipitates were formed by a process such as radiation induced precipitation rather than by thermal equilibrium process. The increase of yield stress calculated by size and number density of the precipitates in 1 dpa irradiated sample using the similar value of hardening efficiency to that of Cu rich precipitates was consistent with that estimated by data of increases of hardness measured by nano-indentation. The result indicates that effects of Mn-Ni-Si enriched precipitates on radiation embrittlement are similar to those of Cu rich precipitates. (author)

  19. Effect of radiolysis on long-term corrosion system formed on low-alloy steels

    International Nuclear Information System (INIS)

    Badet, H.

    2013-01-01

    In France, for nuclear waste management, it is planned to build a storage device with a barrier system composed of steel container. Corrosion is evaluated for the safety of anoxic storage over the long term. With radiation, water radiolysis generates oxidizing and reducing species that can change the corrosion. Three aspects are developed in this thesis. The first concerns iron coupon samples experimented in carbonate deaerated water and subjected to gamma irradiation. It is shown that irradiation can increase corrosion rates within the parameters of dose. Identified crystalline phases are little changed with irradiation. Solution chemistry shows a decrease in pH with dose related to iron. Organic species are identified. The second axis is archaeological analogues irradiation with an old corrosion products layer. Structural analysis verified the phase stability with radiolysis, only the newly formed products changes. The third axis is a kinetic simulation approach. It checks the pH drop under irradiation. Taken together, these results allow us to provide new data for the anoxic corrosion under irradiation. (author) [fr

  20. A Study on the Microstructural Evolution of a Low Alloy Steel by Different Shot Peening Treatments

    Directory of Open Access Journals (Sweden)

    Juan González

    2018-03-01

    Full Text Available Recent studies have shown that severe shot peening can be categorized as a severe plastic deformation surface treatment that is able to strongly modify the microstructure of the surface layer of materials, by both increasing the dislocation density and introducing a large number of defects that define new grain boundaries and form ultrafine structure. In this work, conventional shot peening and severe shot peening treatments were applied to 39NiCrMo3 steel samples. The samples were characterized in terms of microstructure, surface roughness, microhardness, residual stresses, and surface work-hardening as a function of surface coverage. Particular attention was focused on the analysis of the microstructure to assess the evolution of grain size from the surface to the inner material to capture the gradient microstructure. Severe shot peening proved to cause a more remarkable improvement of the general mechanical characteristics compared to conventional shot peening; more significant improvement was associated with the microstructural alteration induced by the treatment. Our datas provide a detailed verification of the relationship between shot peening treatment parameters and the microstructure evolution from the treated surface to the core material.

  1. Structure and electrochemical properties of plasma-nitrided low alloy steel

    Energy Technology Data Exchange (ETDEWEB)

    Chyou, S.D.; Shih, H.C. (Dept. of Materials Science and Engineering, National Tsing Hua Univ., Hsinchu (Taiwan))

    1990-10-01

    Plasma-nitrided SAE 4140 steel has been widely applied industrially because of its superior resistance to wear and fatigue. However, its corrosion behaviour in aqueous environments has not been completely explored. The effects of nitriding on corrosion were investigated by performing electrochemical tests on both nitrided and untreated SAE 4140. It was found that, by plasma nitriding, the corrosion resistance improved significantly in HNO{sub 3} and Na{sub 2}SO{sub 4} aqueous environments. A reaction model is proposed to explain the beneficial effect of nitride on corrosion resistance. It is concluded that nitrogen and chromium (an alloying element) act synergistically to form a dense protective layer which is responsible for the corrosion resistance. Characterization of the surface layers by Auger electron spectroscopy and X-ray photoelectron spectroscopy reveals that the protective layer is composed of (Fe, Cr){sub 4}N, (Fe, Cr){sub 2-3}N and CrN in the inner layer, Fe{sub 2}O{sub 3}, Cr{sub 2}O{sub 3} together with nitrides in the middle layer, and nitrides, {gamma}'-FeOOH, and Cr(OH){sub 3}.H{sub 2}O in the outermost layer. (orig.).

  2. Compliance variations in the fatigue thresold regime of a low alloy ferritic steel under closure-free testing conditions

    International Nuclear Information System (INIS)

    Vaidya, W.V.

    1991-01-01

    Compliance variations in the threshold regime of a high strength ferritic steel tested under closure-free conditions at room temperature and in air are reported. In contrast to the Paris regime, and irrespective of whether the data during load shedding, at threshold or after postthreshold load increase are considered, it is found that comparatively compliance varies inconsistently in the threshold regime. Therefore, a 1:1 correlation between the averaged optical crack length and that inferred from compliance was not observed. This discrepancy is analyzed. The variations in compliance are utilized to infer the crack front behavior, and the results are discussed in terms of the microstructural impedance. (orig.) With 22 figs., 2 appendices [de

  3. Deformation mechanism maps for pure iron, corrosion resistant austenitic steels and a low-alloy carbon steel

    International Nuclear Information System (INIS)

    Frost, H.Y.; Ashby, M.F.

    1980-01-01

    Principles of construction of deformation mechanisms charts for iron base alloys are presented. Deformation mechanisms charts for pure iron, 316 and 314 stainless steels, a ferritic steel with 1% Cr, Mo, V are given, examples of the charts application being provided. The charts construction is based, when it is possible, on the state equations, deduced from theoretical models and satisfying experimental data. The charts presented should be considered as an attempt to unite the main regularities of the theory of dislocations and diffusion with the observed experimental picture of plastic deformation and creep of commercial steels [ru

  4. Technical basis for the initiation and cessation of environmentally-assisted cracking of low-alloy steels in elevated temperature PWR environments

    International Nuclear Information System (INIS)

    James, L.A.

    1997-01-01

    The Section 11 Working Group on Flaw Evaluation of the ASME B and PV Code Committee is considering a Code Case to allow the determination of the conditions under which environmentally-assisted cracking of low-alloy steels could occur in PWR primary environments. This paper provides the technical support basis for such an EAC Initiation and Cessation Criterion by reviewing the theoretical and experimental information in support of the proposed Code Case

  5. Technical basis for the initiation and cessation of environmentally-assisted cracking of low-alloy steels in elevated temperature PWR environments

    Energy Technology Data Exchange (ETDEWEB)

    James, L.A.

    1997-10-01

    The Section 11 Working Group on Flaw Evaluation of the ASME B and PV Code Committee is considering a Code Case to allow the determination of the conditions under which environmentally-assisted cracking of low-alloy steels could occur in PWR primary environments. This paper provides the technical support basis for such an EAC Initiation and Cessation Criterion by reviewing the theoretical and experimental information in support of the proposed Code Case.

  6. Examination and modeling of void growth kinetics in modern high strength dual phase steels during uniaxial tensile deformation

    Energy Technology Data Exchange (ETDEWEB)

    Saeidi, N., E-mail: navidsae@gmail.com [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Ashrafizadeh, F.; Niroumand, B. [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Forouzan, M.R.; Mohseni mofidi, S. [Department of Mechanical Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Barlat, F. [Materials Mechanics Laboratory (MML), Graduate Institute of Ferrous Technology (GIFT), Pohang University of Science and Technology - POSTECH, San 31 Hyoja-dong, Nam-gu, Pohang, Gyeongbuk 790-784 (Korea, Republic of)

    2016-04-01

    Ductile fracture mechanisms during uniaxial tensile testing of two different modern high strength dual phase steels, i.e. DP780 and DP980, were studied. Detailed microstructural characterization of the strained and sectioned samples was performed by scanning electron microscopy as well as EBSD examination. The results revealed that interface decohesion, especially at martensite particles located at ferrite grain boundaries, was the most probable mechanism for void nucleation. It was also revealed that the creation of cellular substructure can reduce stored strain energy and thereby, higher true fracture strain was obtained in DP980 than DP780 steel. Prediction of void growth behavior based on some previously proposed models showed unreliable results. Therefore, a modified model based on Rice-Tracey family models was proposed which showed a very lower prediction error compared with other models. - Highlights: • Damage mechanism in two modern high strength dual phase steels was studied. • Creation of cellular substructures can reduce the stored strain energy within the ferrite grains. • The experimental values were examined by Agrawal as well as RT family models. • A modified model was proposed for prediction of void growth behavior of DP steels.

  7. Thermodynamic effect of elastic stress on grain boundary segregation of phosphorus in a low alloy steel

    International Nuclear Information System (INIS)

    Zheng, Lei; Lejček, Pavel; Song, Shenhua; Schmitz, Guido; Meng, Ye

    2015-01-01

    Grain boundary (GB) segregation of P in 2.25Cr1Mo steel induced by elastic stress shows that the P equilibrium concentration, after reaching the non-equilibrium concentration maximum at critical time, returns to its initial thermal equilibrium level. This finding confirms the interesting phenomenon that the effect of elastic stress on GB segregation of P is significant in kinetics while slight in thermodynamics. Through extending the “pressure” in classical theory of chemical potential to the “elastic stress”, the thermodynamic effect of elastic stress on GB segregation is studied, and the relationship between elastic stress and segregation Gibbs energy is formulated. The formulas reveal that the difference in the segregation Gibbs energy between the elastically-stressed and non-stressed states depends on the excess molar volume of GB segregation and the magnitude of elastic stress. Model calculations in segregation Gibbs energy confirm that the effect of elastic stress on the thermodynamics of equilibrium GB segregation is slight, and the theoretical analyses considerably agree with the experimental results. The confirmation indicates that the nature of the thermodynamic effect is well captured. - Highlights: • GB segregation of P after stress aging returns to its initial thermal equilibrium level. • Relationship between elastic stress and segregation energy is formulated. • Thermodynamic effect relies on excess molar volume and magnitude of elastic stress. • Effect of elastic stress on Gibbs energy of GB segregation is estimated to be slight. • Complete theory of the effect of elastic stress on grain boundary segregation is setup

  8. Corrosion fatigue crack growth in clad low-alloy steels: Part 1, medium-sulfur forging steel

    International Nuclear Information System (INIS)

    James, L.A.; Poskie, T.J.; Auten, T.A.; Cullen, W.H.

    1996-01-01

    Corrosion fatigue crack propagation tests were conducted on a medium- sulfur ASTM A508-2 forging steel overlaid with weld-deposited Alloy EN82H cladding. The specimens featured semi-elliptical surface cracks penetrating approximately 6.3 mm of cladding into the underlying steel. The initial crack sizes were relatively large with surface lengths of 30.3--38.3 mm, and depths of 13.1--16.8 mm. The experiments were conducted in a quasi-stagnant low-oxygen (O 2 < 10 ppb) aqueous environment at 243 degrees C, under loading conditions (ΔK, R, and cyclic frequency) conductive to environmentally-assisted cracking (EAC) in higher-sulfur steels under quasi-stagnant conditions. Earlier experiments on unclad compact tension specimens of this heat of steel did not exhibit EAC, and the present experiments on semi-elliptical surface cracks penetrating cladding also did not exhibit EAC

  9. A study of microstructure, quasi-static response, fatigue, deformation and fracture behavior of high strength alloy steels

    Science.gov (United States)

    Kannan, Manigandan

    The history of steel dates back to the 17th century and has been instrumental in the betterment of every aspect of our lives ever since, from the pin that holds the paper together to the Automobile that takes us to our destination steel touches everyone every day. Path breaking improvements in manufacturing techniques, access to advanced machinery and understanding of factors like heat treatment, corrosion resistance have aided in the advancement in the properties of steel in the last few years. In this dissertation document, the results of a study aimed at the influence of alloy chemistry, processing and influence of the quasi static and fatigue behavior of seven alloy steels is discussed. The microstructure of the as-received steel was examined and characterized for the nature and morphology of the grains and the presence of other intrinsic features in the microstructure. The tensile, cyclic fatigue and bending fatigue tests were done on a fully automated closed-loop servo-hydraulic test machine at room temperature. The failed samples of high strength steels were examined in a scanning electron microscope for understanding the fracture behavior, especially the nature of loading be it quasi static, cyclic fatigue or bending fatigue . The quasi static and cyclic fatigue fracture behavior of the steels examined coupled with various factors contributing to failure are briefly discussed in light of the conjoint and mutually interactive influences of intrinsic microstructural effects, nature of loading, and stress (load)-deformation-microstructural interactions.

  10. In Situ Local Measurement of Austenite Mechanical Stability and Transformation Behavior in Third-Generation Advanced High-Strength Steels

    Science.gov (United States)

    Abu-Farha, Fadi; Hu, Xiaohua; Sun, Xin; Ren, Yang; Hector, Louis G.; Thomas, Grant; Brown, Tyson W.

    2018-05-01

    Austenite mechanical stability, i.e., retained austenite volume fraction (RAVF) variation with strain, and transformation behavior were investigated for two third-generation advanced high-strength steels (3GAHSS) under quasi-static uniaxial tension: a 1200 grade, two-phase medium Mn (10 wt pct) TRIP steel, and a 980 grade, three-phase TRIP steel produced with a quenching and partitioning heat treatment. The medium Mn (10 wt pct) TRIP steel deforms inhomogeneously via propagative instabilities (Lüders and Portevin Le Châtelier-like bands), while the 980 grade TRIP steel deforms homogenously up to necking. The dramatically different deformation behaviors of these steels required the development of a new in situ experimental technique that couples volumetric synchrotron X-ray diffraction measurement of RAVF with surface strain measurement using stereo digital image correlation over the beam impingement area. Measurement results with the new technique are compared to those from a more conventional approach wherein strains are measured over the entire gage region, while RAVF measurement is the same as that in the new technique. A determination is made as to the appropriateness of the different measurement techniques in measuring the transformation behaviors for steels with homogeneous and inhomogeneous deformation behaviors. Extension of the new in situ technique to the measurement of austenite transformation under different deformation modes and to higher strain rates is discussed.

  11. Effects of Nitrogen Content on the HAZ Softening of Ti-Containing High Strength Steels Manufactured by Accelerated Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Bang, Kook-soo; Jung, Ho-shin; Park, Chan [Pukyong National University, Busan (Korea, Republic of)

    2017-03-15

    The effects of nitrogen content on the HAZ softening of Ti-containing high strength steels manufactured by accelerating cooling were investigated and interpreted in terms of the microstructures in the softening zone. Regardless of their content, all of the steels investigated showed a softened zone 9-10 mm wide. The minimum hardness in the zone, however, was different, with lower hardness in the higher nitrogen content steel. Microstructural observations of the steel showed that the amount of soft ferrite was increased in the zone with an increase of nitrogen content of the steel, suggesting that microstructural evolution in the HAZ is influenced by the nitrogen content. Measurements of TiN particles showed that the degree of particles coarsening in the HAZ was lower in the higher nitrogen content steel. Therefore, it is believed that finer TiN particles in the HAZ inhibit austenite grain growth more effectively, and lead to an accelerated ferrite transformation in higher nitrogen content steel, resulting in a higher amount of soft ferrite microstructure in the softened zone.

  12. Lanthanum additions and the toughness of ultra-high strength steels and the determination of appropriate lanthanum additions

    International Nuclear Information System (INIS)

    Garrison, Warren M.; Maloney, James L.

    2005-01-01

    Studies of commercial heats of AF1410 steel suggest that under appropriate conditions additions of rare-earth elements can significantly enhance fracture toughness. This improvement in toughness is not due to an extremely low inclusion volume fraction but is apparently due to the formation of larger and more widely spaced inclusions. The purpose of this work is to discuss our experience in using rare-earth additions to laboratory scale vacuum induction melted and subsequently vacuum arc remelted heats of ultra-high strength steels to achieve inclusion distributions similar to those observed in commercial heats modified with lanthanum additions. The results indicate that lanthanum additions of 0.015 wt.% to low sulfur steels which have been well deoxidized using carbon-vacuum deoxidation can result in lanthanum rich inclusions which are similar in size, volume fraction and spacing to those obtained in commercially produced heats of ultra-high strength steel to which lanthanum has been added. The heat of steel to which lanthanum additions of 0.015 wt.% were made had significantly higher toughness than did the heat of the same steel in which the sulfur had been gettered as small and closely spaced particles of MnS and which had an inclusion volume fraction similar to that of the heat modified by the addition of 0.015 wt.% lanthanum. This improvement in toughness was attributed to an increase in inclusion spacing. An addition of 0.06 wt.% lanthanum was excessive. Such an addition of lanthanum resulted in a huge volume fraction of large cuboidal inclusions which primarily contain lanthanum and oxygen and which are extremely detrimental to toughness

  13. Hydrogen induced cold cracking studies on armour grade high strength, quenched and tempered steel weldments

    Energy Technology Data Exchange (ETDEWEB)

    Magudeeswaran, G.; Balasubramanian, V. [Centre for Materials Joining Research (CEMAJOR), Department of Manufacturing Engineering, Annamalai University, Annamalai Nagar 608 002, Tamil Nadu (India); Madhusudhan Reddy, G. [Metal Joining Section, Defence Metallurgical Research Laboratory (DMRL), Kanchanbagh (P.O.) Hyderabad 560 058 Andhra Pradesh (India)

    2008-04-15

    Quenched and tempered (Q and T) steels are prone to hydrogen induced cracking (HIC) in the heat affected zone after welding. The use of austenitic stainless steel (ASS) consumables to weld the above steel was the only available remedy because of higher solubility for hydrogen in austenitic phase. The use of stainless steel consumables for a non-stainless steel base metal is not economical. Hence, alternate consumables for welding Q and T steels and their vulnerability to HIC need to be explored. Recent studies proved that low hydrogen ferritic (LHF) steel consumables can be used to weld Q and T steels, which can give very low hydrogen levels in the weld deposits. In this investigation an attempt has been made to study the influence of welding consumables and welding processes on hydrogen induced cold cracking of armour grade Q and T steel welds by implant testing. Shielded metal arc welding (SMAW) and flux cored arc welding (FCAW) processes were used for making welds using ASS and LHF welding consumables. ASS welds made using FCAW process offered a higher resistance to HIC than all other welds considered in this investigation. (author)

  14. Low Temperature (320 deg C and 340 deg C) Creep Crack Growth in Low Alloy Reactor Pressure Vessel Steel

    International Nuclear Information System (INIS)

    Rui Wu; Sandstroem, Rolf; Seitisleam, Facredin

    2004-02-01

    Uni-axial creep and creep crack growth (CCG) tests at 320 deg C and 340 deg C as well as post test metallography have been carried out in a low alloy reactor pressure vessel steel (ASTM A508 class 2) having simulated coarse grained heat affected zone microstructure. The CCG behaviour is studied in terms of steady crack growth rate, creep fracture parameter C*, stress intensity factor and reference stress at given testing conditions. It has been found that CCG does occur at both tested temperatures. The lifetimes for the CCG tests are considerably shorter than those for the uni-axial creep tests. This is more pronounced at longer lifetimes or lower stresses. Increasing temperature from 320 deg C to 340 deg C causes a reduction of lifetime by approximately a factor of five and a corresponding increase of steady crack growth rate. For the CCG tests, there are three regions when the crack length is plotted against time. After incubation, the crack grows steadily until it accelerates when rupture is approached. Notable crack growth takes place at later stage of the tests. No creep cavitation is observed and transgranular fracture is dominant for the uni-axial creep specimens. In the CT specimens the cracks propagate intergranularly, independent of temperature and time. Some relations between time to failure, reference stress and steady crack growth rate are found for the CCG tests. A linear extrapolation based on the stress-time results indicates that the reference stress causing failure due to CCG at a given lifetime of 350,000 hours at 320 deg C is clearly lower than both yield and tensile strengths, on which the design stress may have based. Therefore, caution must be taken to prevent premature failure due to low temperature CCG. Both uni-axial and CCG tests on real welded joint at 320 deg C, study of creep damage zone at crack tip as well as numerical simulation are recommended for future work

  15. Microstructural and hardness investigations on a dissimilar metal weld between low alloy steel and Alloy 82 weld metal

    International Nuclear Information System (INIS)

    Chen, Z.R.; Lu, Y.H.; Ding, X.F.; Shoji, T.

    2016-01-01

    The investigation on microstructure and hardness at the fusion boundary (FB) region of a dissimilar metal weld (DMW) between low alloy steel (LAS) A508-III and Alloy 82 weld metal (WM) was carried out. The results indicated that there were two kinds of FBs, martensite FB and sharp FB, with obvious different microstructures, alternately distributed in the same FB. The martensite FB region had a gradual change of elemental concentration across FB, columnar WM grains with high length/width ratios, a thick martensite layer and a wide heat affected zone (HAZ) with large prior austenite grains. By comparison, the sharp FB region had a relatively sharp change of elemental concentration across the FB, WM grains with low length/width ratios and a narrow HAZ with smaller prior austenite grains. The martensite possessed a K-S orientation relationship with WM grains, while no orientation relationship was found between the HAZ grains and WM grains at the sharp FB. Compared with sharp FB there were much more Σ3 boundaries in the HAZ beside martensite FB. The hardness maximum of the martensite FB was much higher than that of the sharp FB, which was attributed to the martensite layer at the martensite FB. - Highlights: •Martensite and sharp FBs with different microstructures were found in the same FB. •There were high length/width-ratio WM grains and a wide HAZ beside martensite FB. •There were low length/width-ratio WM grains and a narrow HAZ beside sharp FB. •Compared with sharp FB, there were much more Σ3 boundaries in HAZ of martensite FB. •Hardness maximium of martensite FB was much higher than that of sharp FB.

  16. The effect of potential on the high-temperature fatigue crack growth response of low alloy steels: Part II, electrochemical results

    International Nuclear Information System (INIS)

    Moshier, W.C.; James, L.A.

    1997-01-01

    Environmentally assisted cracking (EAC) in low alloy steels was found to be dependent on externally applied potential in low sulfur steels in high temperature water. EAC could be turned on when the specimen was polarized anodically above a critical potential. However, hydrogen (H) additions inhibited the ability of potential to affect EAC. The behavior was related to formation of H ions during H oxidation at the crack mouth. A mechanism based on formation of H sulfide at the crack tip and H ions at the crack mouth is presented to describe the process by which sulfides and H ions affect the critical sulfide concentration at the crack tip

  17. The effect of potential upon the high-temperature fatigue crack growth response of low-alloy steels. Part 1: Crack growth results

    International Nuclear Information System (INIS)

    James, L.A.; Moshier, W.C.

    1997-01-01

    Corrosion-fatigue crack propagation experiments were conducted on several low-alloy steels in elevated temperature aqueous environments, and experimental parameters included temperature, sulfur content of the steel, applied potential level, and dissolved hydrogen (and in one case, dissolved oxygen) concentration in the water. Specimen potentials were controlled potentiostatically, and the observation (or non-observation) of accelerated fatigue crack growth rates was a complex function of the above parameters. Electrochemical results and the postulated explanation for the complex behavior are given in Part II

  18. Chemical analysis by X-ray fluorescence, of niobium in high-strength plate steels

    International Nuclear Information System (INIS)

    Iozzi, F.B.; Dias, M.J.P.

    1981-01-01

    The use of X-ray fluorescence spectrometry in quantitative analysis of niobium in steels, as an alternative solution for optical emission spectrometry, in the rapid chemical control of steel fabrication by LD type converters, is presented. (M.C.K.) [pt

  19. Microstructure and tensile properties of high strength duplex ferrite-martensite (DFM) steels

    International Nuclear Information System (INIS)

    Chakraborti, P.C.; Mitra, M.K.

    2007-01-01

    Duplex ferrite-martensite (DFM) steels containing 38-80% martensite of varying morphologies were developed by batch intercritical annealing of a commercial variety vanadium bearing 0.2% C-Mn steel at different temperatures. Microstructures before intercritical annealing were found to control the morphological distribution of the phase constituents of the developed DFM steels. Tensile test results revealed best strength-ductility combination for finely distributed lamellar ferrite-martensite phase aggregate containing ∼60% martensite developed from a prior martensitic structure. Taking consideration of the modified law of mechanical mixture the experimental tensile strength data of the developed DFM steels has been formulated with some success and very good estimation for tensile strengths of pure ferrite and low carbon martensite has been made from tensile strength data of DFM steels

  20. An investigation of laser cutting quality of 22MnB5 ultra high strength steel using response surface methodology

    Science.gov (United States)

    Tahir, Abdul Fattah Mohd; Aqida, Syarifah Nur

    2017-07-01

    In hot press forming, changes of mechanical properties in boron steel blanks have been a setback in trimming the final shape components. This paper presents investigation of kerf width and heat affected zone (HAZ) of ultra high strength 22MnB5 steel cutting. Sample cutting was conducted using a 4 kW Carbon Dioxide (CO2) laser machine with 10.6 μm wavelength with the laser spot size of 0.2 mm. A response surface methodology (RSM) using three level Box-Behnken design of experiment was developed with three factors of peak power, cutting speed and duty cycle. The parameters were optimised for minimum kerf width and HAZ formation. Optical evaluation using MITUTOYO TM 505 were conducted to measure the kerf width and HAZ region. From the findings, laser duty cycle was crucial to determine cutting quality of ultra-high strength steel; followed by cutting speed and laser power. Meanwhile, low power intensity with continuous wave contributes the narrowest kerf width formation and least HAZ region.

  1. Comparison on Mechanical Properties of SA508 Gr.3 Cl.1, Cl.2, and Gr.4N Low Alloy Steels for Pressure Vessels

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min-Chul; Park, Sang-Gyu; Lee, Bong-Sang [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lee, Ki-Hyoung [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2014-10-15

    In this study, microstructure and mechanical properties of SA508 Gr.3 Cl. 1, Cl.2, and Gr.4N low alloy steels are characterized to compare their properties. To evaluate the fracture toughness in the transition region, the master curve method according to ASTM E1921 was adopted in the cleavage transition region. Tensile tests and Charpy impact tests were also performed to evaluate the mechanical properties, and a microstructural investigation was carried out. The microstructure and mechanical properties of SA508 Gr.3 Cl.1, Cl2 and Gr.4N low alloy steels were characterized.. The predominant microstructure of SA508 Gr.4N model alloy is tempered martensite, while SA508 Gr.3 Cl.1 and Cl.2 steels show a typical tempered upper bainitic structure. SA508 Gr. 4N model alloy shows the best strength and transition behavior among the three SA508 steels. SA508 Gr.3 Cl.2 steel also has quite good strength, but there is a loss of toughness.

  2. Effect of dynamic strain ageing on the environmentally assisted cracking of low-alloy steels oxygenated high-temperature water

    International Nuclear Information System (INIS)

    Devrient, B.; Roth, A.; Kuester, K.; Ilg, U.; Widera, M.

    2007-01-01

    The plastic deformation behavior of low-alloy steels (LAS) is significantly influenced by their individual susceptibility to dynamic strain ageing (DSA). Interstitial atoms of nitrogen (N) or carbon (C) in the steel matrix can change the mechanical properties like ductility and strength by interaction with moving dislocations during plastic deformation. The degree of DSA is depending on temperature and strain rate during plastic deformation. Under critical parameter combinations strength increases while ductility decreases. Furthermore, the interaction of dislocations and interstitial atoms can lead to a localization of plastic deformation, which results in planar gliding processes. Shear bands in LAS types with a high susceptibility to DSA show significantly higher slip steps during plastic deformation as compared to heats with low susceptibility to DSA. Since the basic mechanism of environmentally-assisted cracking (EAC) of LAS in high-temperature water (HTW) environment is slip-step-dissolution, slip behavior is of crucial nature for the kinetics of crack initiation and crack growth. Therefore, a program concerning deformation behavior, slip characterization regarding distribution and size, and behavior in oxygenated HTW environment was performed. Analysis of slip steps by advanced techniques for surface morphology investigation showed that the maximum height of slip steps is in the range of freshly formed magnetite layers on LAS in oxygenated HTW environment. This supports the active effect of localized deformation on EAC in LAS types of high susceptibility to DSA. The exposure to oxygenated HTW environment with additional mechanical loading under critical combinations of temperature and strain rate of different LAS types with high, intermediate and low susceptibility to DSA in Slow Strain Rate Tensile-tests (SSRT) showed preferential crack initiation in the areas of coarse shear bands due to localized deformation. Furthermore, a continuous transition of the

  3. Solutions for Safe Hot Coil Evacuation and Coil Handling in Case of Thick and High Strength Steel

    Directory of Open Access Journals (Sweden)

    Sieberer Stefan

    2016-01-01

    Full Text Available Currently hot rolling plants are entering the market segment for thick gauges and high strength steel grades where the elastic bending property of the strip leads to internal forces in the coil during coiling operation. The strip tends to open. Primetals is investigating several possibilities to facilitate safe coil evacuation and coil handling under spring-back conditions. The contribution includes finite element models of such mechanical solutions. Results of parameter variation and stability limits of case studies are presented in the paper.

  4. Alloying element effect on the mechanical properties of high-strength stainless steels and welds

    International Nuclear Information System (INIS)

    Pustovit, A.I.; Yushchenko, K.A.; Fortunatova, N.N.

    1977-01-01

    Experimental steels containing 11-17% Cr, 3-13% Ni, 0-2% Mo, 0-1% Ti, 1-2% Cu, 0-4% Co, 0-1% He, < 0.03% C and their welded joints have been studied. The ''MRA-1'' program was used to obtain mathematical description (in the form of regression equations) of the effect of alloying elements on strength and plasticity of the steels and the welded joints at 20...-196 deg C. The dependences obtained make it possible to predict the properties of the steels and the joints in a satisfactory agreement with their actual behaviour at 20...-196 deg C

  5. The Science of Cost-Effective Materials Design - A Study in the Development of a High Strength, Impact Resistant Steel

    Science.gov (United States)

    Abrahams, Rachel

    2017-06-01

    Intermediate alloy steels are widely used in applications where both high strength and toughness are required for extreme/dynamic loading environments. Steels containing greater than 10% Ni-Co-Mo are amongst the highest strength martensitic steels, due to their high levels of solution strengthening, and preservation of toughness through nano-scaled secondary hardening, semi-coherent hcp-M2 C carbides. While these steels have high yield strengths (σy 0.2 % >1200 MPa) with high impact toughness values (CVN@-40 >30J), they are often cost-prohibitive due to the material and processing cost of nickel and cobalt. Early stage-I steels such as ES-1 (Eglin Steel) were developed in response to the high cost of nickel-cobalt steels and performed well in extreme shock environments due to the presence of analogous nano-scaled hcp-Fe2.4 C epsilon carbides. Unfortunately, the persistence of W-bearing carbides limited the use of ES-1 to relatively thin sections. In this study, we discuss the background and accelerated development cycle of AF96, an alternative Cr-Mo-Ni-Si stage-I temper steel using low-cost heuristic and Integrated Computational Materials Engineering (ICME)-assisted methods. The microstructure of AF96 was tailored to mimic that of ES-1, while reducing stability of detrimental phases and improving ease of processing in industrial environments. AF96 is amenable to casting and forging, deeply hardenable, and scalable to 100,000 kg melt quantities. When produced at the industrial scale, it was found that AF96 exhibits near-statistically identical mechanical properties to ES-1 at 50% of the cost.

  6. COMMERCIAL SUPERSONIC TRANSPORT PROGRAM. PHASE II-C REPORT. HIGH STRENGTH STEEL EVALUATION FOR SUPERSONIC AIRCRAFT.

    Science.gov (United States)

    JET TRANSPORT AIRCRAFT, *AIRFRAMES, SUPERSONIC AIRCRAFT, STEEL , STRUCTURAL PROPERTIES, FRACTURE(MECHANICS), FATIGUE(MECHANICS), STRESS CORROSION...MICROPHOTOGRAPHY, HIGH TEMPERATURE, NICKEL ALLOYS, COBALT ALLOYS, CARBON, BAINITE , COMMERCIAL AIRCRAFT.

  7. Development of Advanced High Strength Steel for Improved Vehicle Safety, Fuel Efficiency and CO2 Emission

    Science.gov (United States)

    Kumar, Satendra; Singhai, Mrigandra; Desai, Rahul; Sam, Srimanta; Patra, Pradip Kumar

    2016-10-01

    Global warming and green house gas emissions are the major issues worldwide and their impacts are clearly visible as a record high temperatures, rising sea, and severe `flooding and droughts'. Motor vehicles considered as a major contributor on global warming due to its green house gas emissions. Hence, the automobile industries are under tremendous pressure from government and society to reduce green house gas emission to maximum possible extent. In present work, Dual Phase steel with boron as microalloying is manufactured using thermo-mechanical treatment during hot rolling. Dual phase steel with boron microalloying improved strength by near about 200 MPa than dual phase steel without boron. The boron added dual phase steel can be used for manufacturing stronger and a lighter vehicle which is expected to perform positively on green house gas emissions. The corrosion resistance behavior is also improved with boron addition which would further increase the life cycle of the vehicle even under corrosive atmosphere.

  8. Role of vanadium carbide traps in reducing the hydrogen embrittlement susceptibility of high strength alloy steels. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, G.L.; Duquette, D.J.

    1998-08-01

    High strength alloy steels typically used for gun steel were investigated to determine their susceptibility to hydrogen embrittlement. Although AISI grade 4340 was quite susceptible to hydrogen embrittlement, ASTM A723 steel, which has identical mechanical properties but slightly different chemistries, was not susceptible to hydrogen embrittlement when exposed to the same conditions. The degree of embrittlement was determined by conducting notched tensile testing on uncharged and cathodically charged specimens. Chemical composition was modified to isolate the effect of alloying elements on hydrogen embrittlement susceptibility. Two steels-Modified A723 (C increased from 0.32% to 0.40%) and Modified 4340 (V increased from 0 to O.12%) were tested. X-ray diffraction identified the presence of vanadium carbide, V{sub 4}C{sub 3}, in A-23 steels, and subsequent hydrogen extraction studies evaluated the trapping effect of vanadium carbide. Based on these tests, it was determined that adding vanadium carbide to 4340 significantly decreased hydrogen embrittlement susceptibility because vanadium carbide traps ties up diffusible hydrogen. The effectiveness of these traps is examined and discussed in this paper.

  9. Effect of Nb on hydrogen-induced delayed fracture in high strength hot stamping steels

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shiqi [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); College of Mechanical Engineering, Yangtze University, Jingzhou 434023 (China); Huang, Yunhua, E-mail: huangyh@mater.ustb.edu.cn [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Sun, Bintang, E-mail: bingtangsun@ustb.edu.cn [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Liao, Qingliang [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Lu, Hongzhou [CITIC Metal Co. Ltd., Room 1901, Capital Mansion 6, Xin Yuan Nanlu, Chaoyang District, Beijing 100004 (China); The School of Resources and Environmental Engineering, East China University of Science and Technology, Meilong road 130, Xujiahui District, Shanghai 200237 (China); Jian, Bian [Niobium Tech Asia, 068898 Singapore (Singapore); Mohrbacher, Hardy [NiobelCon bvba, 2970 Schilde (Belgium); Zhang, Wei; Guo, Aimin [CITIC Metal Co. Ltd., Room 1901, Capital Mansion 6, Xin Yuan Nanlu, Chaoyang District, Beijing 100004 (China); Zhang, Yue [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); The State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China)

    2015-02-25

    The effect of Nb addition (0.022, 0.053, 0.078 wt%) on the hydrogen-induced delayed fracture resistance of 22MnB5 was studied by constant load test and electrochemical hydrogen permeation method. It is shown that the appropriate addition of Nb is beneficial to the improvement of the delayed fracture resistance of tested steel, especially when the steel contains high concentration of hydrogen, and the maximum delayed fracture resistance is obtained at a Nb content of 0.053%.The result of hydrogen permeation test shows that the diffusion coefficient of hydrogen in the steel containing niobium is lower than that in steel without niobium, which indicates that it is harder for hydrogen in the steels containing niobium to diffuse and aggregate. In addition, the reason for Nb improving the delayed fracture resistance of steels is discussed from two aspects: hydrogen trap effect and grain refinement effect. The analysis shows that the main reason leading to the improvement of the delayed fracture resistance is the hydrogen trapping effect of NbC while the grain refinement effect of Nb(C,N) secondary.

  10. Effect of Nb on hydrogen-induced delayed fracture in high strength hot stamping steels

    International Nuclear Information System (INIS)

    Zhang, Shiqi; Huang, Yunhua; Sun, Bintang; Liao, Qingliang; Lu, Hongzhou; Jian, Bian; Mohrbacher, Hardy; Zhang, Wei; Guo, Aimin; Zhang, Yue

    2015-01-01

    The effect of Nb addition (0.022, 0.053, 0.078 wt%) on the hydrogen-induced delayed fracture resistance of 22MnB5 was studied by constant load test and electrochemical hydrogen permeation method. It is shown that the appropriate addition of Nb is beneficial to the improvement of the delayed fracture resistance of tested steel, especially when the steel contains high concentration of hydrogen, and the maximum delayed fracture resistance is obtained at a Nb content of 0.053%.The result of hydrogen permeation test shows that the diffusion coefficient of hydrogen in the steel containing niobium is lower than that in steel without niobium, which indicates that it is harder for hydrogen in the steels containing niobium to diffuse and aggregate. In addition, the reason for Nb improving the delayed fracture resistance of steels is discussed from two aspects: hydrogen trap effect and grain refinement effect. The analysis shows that the main reason leading to the improvement of the delayed fracture resistance is the hydrogen trapping effect of NbC while the grain refinement effect of Nb(C,N) secondary

  11. Investigation on AISI 304 austenitic stainless steel to AISI 4140 low alloy steel dissimilar joints by gas tungsten arc, electron beam and friction welding

    International Nuclear Information System (INIS)

    Arivazhagan, N.; Singh, Surendra; Prakash, Satya; Reddy, G.M.

    2011-01-01

    Research highlights: → Beneficial effects of FRW, GTAW and EBW joints of dissimilar AISI 304 and AISI 4140 materials. → Comparative study of FRW, GTAW and EBW joints on mechanical properties. → SEM/EDAX, XRD analysis on dissimilar AISI 304 and AISI 4140 materials. -- Abstract: This paper presents the investigations carried out to study the microstructure and mechanical properties of AISI 304 stainless steel and AISI 4140 low alloy steel joints by Gas Tungsten Arc Welding (GTAW), Electron Beam Welding (EBW) and Friction Welding (FRW). For each of the weldments, detailed analysis was conducted on the phase composition, microstructure characteristics and mechanical properties. The results of the analysis shows that the joint made by EBW has the highest tensile strength (681 MPa) than the joint made by GTAW (635 Mpa) and FRW (494 Mpa). From the fractographs, it could be observed that the ductility of the EBW and GTA weldment were higher with an elongation of 32% and 25% respectively when compared with friction weldment (19%). Moreover, the impact strength of weldment made by GTAW is higher compared to EBW and FRW.

  12. G phase precipitation and strengthening in ultra-high strength ferritic steels: Towards lean ‘maraging’ metallurgy

    International Nuclear Information System (INIS)

    Sun, W.W.; Marceau, R.K.W.; Styles, M.J.; Barbier, D.; Hutchinson, C.R.

    2017-01-01

    Ultra-high strength steels are interesting materials for light-weighting applications in the transportation industries. A key requirement of these applications is weldability and consequently a low carbon content is desirable. Maraging steels are examples of ultra-high strength, low carbon steels but their disadvantage is their high cost due to the large Ni and/or Co additions required. This contribution is focussed on the development of steels with maraging-like strengths but with low solute contents (less than 10%). A series of alloy compositions were designed to exploit precipitation of the G phase in a ferritic matrix at temperatures of 450–600 °C in order to obtain yield strengths in excess of 2 GPa. The mechanical response of the materials was measured using tension and compression testing and the precipitate evolution has been characterized using atom probe tomography (APT) and in-situ small angle X-ray scattering (SAXS) at a synchrotron beamline. Precipitate number densities of 10"2"5 m"−"3 are obtained, which are amongst the highest number densities so far observed in engineering alloys. The intrinsic strength of the G phase is shown to be proportional to its size, and deviations in the chemistry of the precipitates do not significantly affect their strengthening behaviour. An important outcome is that the common temper embrittlement issues known to occur during aging of martensite in the 450–600 °C range were mitigated in one alloy by starting with a cold-rolled and partially fragmented lath martensite instead of a freshly quenched martensite.

  13. Phase Equilibrium and Austenite Decomposition in Advanced High-Strength Medium-Mn Bainitic Steels

    Directory of Open Access Journals (Sweden)

    Adam Grajcar

    2016-10-01

    Full Text Available The work addresses the phase equilibrium analysis and austenite decomposition of two Nb-microalloyed medium-Mn steels containing 3% and 5% Mn. The pseudobinary Fe-C diagrams of the steels were calculated using Thermo-Calc. Thermodynamic calculations of the volume fraction evolution of microstructural constituents vs. temperature were carried out. The study comprised the determination of the time-temperature-transformation (TTT diagrams and continuous cooling transformation (CCT diagrams of the investigated steels. The diagrams were used to determine continuous and isothermal cooling paths suitable for production of bainite-based steels. It was found that the various Mn content strongly influences the hardenability of the steels and hence the austenite decomposition during cooling. The knowledge of CCT diagrams and the analysis of experimental dilatometric curves enabled to produce bainite-austenite mixtures in the thermomechanical simulator. Light microscopy (LM, scanning electron microscopy (SEM, and transmission electron microscopy (TEM were used to assess the effect of heat treatment on morphological details of produced multiphase microstructures.

  14. Development of high strength hot rolled low carbon copper-bearing steel containing nanometer sized carbides

    Energy Technology Data Exchange (ETDEWEB)

    Phaniraj, M.P. [High Temperature Energy Materials Research Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Shin, Young-Min [High Temperature Energy Materials Research Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Department of Materials Science and Engineering, Korea University, Seoul 136-701 (Korea, Republic of); Lee, Joonho [Department of Materials Science and Engineering, Korea University, Seoul 136-701 (Korea, Republic of); Goo, Nam Hoon [Sheet Product Design Group, Hyundai Steel Co., North Industrial Street 1400, 343-823, DangJin 343-823 (Korea, Republic of); Kim, Dong-Ik; Suh, Jin-Yoo; Jung, Woo-Sang [High Temperature Energy Materials Research Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Shim, Jae-Hyeok, E-mail: jhshim@kist.re.kr [High Temperature Energy Materials Research Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Choi, In-Suk, E-mail: insukchoi@kist.re.kr [High Temperature Energy Materials Research Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of)

    2015-05-01

    A low carbon ferritic steel was alloyed with Ti, Mo and Cu with the intention of achieving greater increment in strength by multiple precipitate strengthening. The steel is hot rolled and subjected to interrupted cooling to enable precipitation of Ti–Mo carbides and copper. Thermodynamic calculations were carried out to determine equilibrium phase fractions at different temperatures. Microstructure characterization using transmission electron microscopy and composition analysis revealed that the steel contains ~5 nm size precipitates of (Ti,Mo)C. Precipitation kinetics calculations using MatCalc software showed that mainly body centered cubic copper precipitates of size < 5nm form under the cooling conditions in the present study. The steel has the high tensile strength of 853 MPa and good ductility. The yield strength increases by 420 MPa, which is more than that achieved in hot rolled low carbon ferritic steels with only copper precipitates or only carbide precipitates. The precipitation and strengthening contribution of copper and (Ti,Mo)C precipitates and their effect on the work hardening behavior is discussed.

  15. Investigation of the hot ductility of a high-strength boron steel

    International Nuclear Information System (INIS)

    Güler, Hande; Ertan, Rukiye; Özcan, Reşat

    2014-01-01

    In this study, the high-temperature ductility behaviour of an Al–Si-coated 22MnB5 sheet was investigated. The mechanical properties of Al–Si-coated 22MnB5 boron steel were examined via hot tensile tests performed at temperatures ranging from 400 to 900 °C at a strain rate of 0.083 s −1 . The deformation and fracture mechanisms under hot tensile testing were considered in relation to the testing data and to the fracture-surface observations performed via SEM. The hot ductility of the tested boron steel was observed as a function of increasing temperature and the Al–Si-coated 22MnB5 boron steel exhibited a ductility loss at 700 °C

  16. Application of MMC model on simulation of shearing process of thick hot-rolled high strength steel plate

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Liang; Li, Shuhui [Shanghai Key Laboratory of Digital Manufacture for Thin-walled Structures, Shanghai Jiao Tong University, Shanghai 200240 (China); Yang, Bing; Gao, Yongsheng [Automotive Steel Research Institute, R and D Center, BaoShan Iron and Steel Co.,Ltd, Shanghai 201900 (China)

    2013-12-16

    Shear operation is widely used as the first step in sheet metal forming to cut the sheet or plate into the required size. The shear of thick hot-rolled High Strength Steel (HSS) requires large shearing force and the sheared edge quality is relatively poor because of the large thickness and high strength compared with the traditional low carbon steel. Bad sheared edge quality will easily lead to edge cracking during the post-forming process. This study investigates the shearing process of thick hot-rolled HSS plate metal, which is generally exploited as the beam of heavy trucks. The Modified Mohr-Coulomb fracture criterion (MMC) is employed in numerical simulation to calculate the initiation and propagation of cracks during the process evolution. Tensile specimens are designed to obtain various stress states in tension. Equivalent fracture strains are measured with Digital Image Correlation (DIC) equipment to constitute the fracture locus. Simulation of the tension test is carried out to check the fracture model. Then the MMC model is applied to the simulation of the shearing process, and the simulation results show that the MMC model predicts the ductile fracture successfully.

  17. Application of MMC model on simulation of shearing process of thick hot-rolled high strength steel plate

    International Nuclear Information System (INIS)

    Dong, Liang; Li, Shuhui; Yang, Bing; Gao, Yongsheng

    2013-01-01

    Shear operation is widely used as the first step in sheet metal forming to cut the sheet or plate into the required size. The shear of thick hot-rolled High Strength Steel (HSS) requires large shearing force and the sheared edge quality is relatively poor because of the large thickness and high strength compared with the traditional low carbon steel. Bad sheared edge quality will easily lead to edge cracking during the post-forming process. This study investigates the shearing process of thick hot-rolled HSS plate metal, which is generally exploited as the beam of heavy trucks. The Modified Mohr-Coulomb fracture criterion (MMC) is employed in numerical simulation to calculate the initiation and propagation of cracks during the process evolution. Tensile specimens are designed to obtain various stress states in tension. Equivalent fracture strains are measured with Digital Image Correlation (DIC) equipment to constitute the fracture locus. Simulation of the tension test is carried out to check the fracture model. Then the MMC model is applied to the simulation of the shearing process, and the simulation results show that the MMC model predicts the ductile fracture successfully

  18. On the impact bending test technique for high-strength pipe steels

    Science.gov (United States)

    Arsenkin, A. M.; Odesskii, P. D.; Shabalov, I. P.; Likhachev, M. V.

    2015-10-01

    It is shown that the impact toughness (KCV-40 = 250 J/cm2) accepted for pipe steels of strength class K65 (σy ≥ 550 MPa) intended for large-diameter gas line pipes is ineffective to classify steels in fracture strength. The results obtained upon testing of specimens with a fatigue crack and additional sharp lateral grooves seem to be more effective. In energy consumption, a macrorelief with splits is found to be intermediate between ductile fracture and crystalline brittle fracture. A split formation mechanism is considered and a scheme is proposed for split formation.

  19. Heterogeneous multi-layered IF steel with simultaneous high strength and good ductility

    Science.gov (United States)

    Zhang, Ling; Jiang, Xiaojuan; Wang, Yuhui; Chen, Qiang; Chen, Zhen; Zhang, Yonghong; Huang, Tianlin; Wu, Guilin

    2017-07-01

    Multi-layered IF steel samples were designed and fabricated by hot compression followed by cold forging of an alternating stack of cold-rolled and annealed IF steel sheets, with an aim to improve the strength of the material without losing much ductility. A very good combination of strength and ductility was achieved by proper annealing after deformation. Microstructural analysis by electron back-scatter diffraction revealed that the good combination of strength and ductility is related to a characteristic hierarchical structure that is characterized by layered and lamella structures with different length scales.

  20. Surface Oxidation of the High-Strength Steels Electrodeposited with Cu or Fe and the Resultant Defect Formation in Their Coating during the Following Galvanizing and Galvannealing Processes

    Science.gov (United States)

    Choi, Yun-Il; Beom, Won-Jin; Park, Chan-Jin; Paik, Doojin; Hong, Moon-Hi

    2010-12-01

    This study examined the surface oxidation of high-strength steels electrodeposited with Cu or Fe and the resultant defect formation in their coating during the following galvanizing and galvannealing processes. The high-strength steels were coated with an Cu or Fe layer by the electroplating method. Then, the coated steels were annealed in a reducing atmosphere, dipped in a molten zinc, and finally transformed into galvannealed steels through the galvannealing process. The formation of Si and Mn oxides on the surface of the high-strength steel was effectively suppressed, and the density of surface defects on the galvanized steel was significantly reduced by the pre-electrodeposition of Cu and Fe. This effect was more prominent for the steels electrodeposited at higher cathodic current densities. The finer electrodeposit layer formed at higher cathodic current density on the steels enabled the suppression of partial surface oxidation by Mn or Si and better wetting of Zn on the surface of the steels in the following galvanizing process. Furthermore, the pre-electrodeposited steels exhibited a smoother surface without surface cracks after the galvannealing process compared with the untreated steel. The diffusion of Fe and Zn in the Zn coating layer in the pre-electrodeposited steels appears to occur more uniformly during the galvannealing process due to the low density of surface defects induced by oxides.

  1. PSI contribution to the CASTOC round robin on EAC of low-alloy RPV steels under BWR conditions

    Energy Technology Data Exchange (ETDEWEB)

    Seifert, H.P.; Ritter, S

    2001-08-01

    Within the CASTOC-project (5th EU FW programme), the environmentally-assisted crack growth (EAC) behaviour of low-alloy reactor pressure vessel (RPV) steels is experimentally investigated under simulated transient and steady-state BWR power operation conditions by 6 European laboratories. The present report contains a summary of the PSI contribution to the Working Package 1 (WP1) of this project. WP1 is an interlaboratory round robin EAC test in simulated BWR/NWC environment under cyclic and static loading conditions. The round robin shall demonstrate the applicability of the used advanced test technique and establishes the technical basis for the decision of test conditions in the other working packages. In the first part of the report, the PSI testing facility/measurement instruments and the applied test and evaluation procedure are discussed in detail. In the second part, the exact test conditions and test results with detailed post-test fractographical evaluation in the SEM are presented. The test results are compared with other PSI results, literature data and nuclear codes. Stable and stationary test conditions within the specified range could be achieved in the PSI test during the whole conditioning and experimental phase. The cyclic crack growth rate results agree well with recent PSI results at a higher dissolved oxygen content of 8 ppm and are slightly below the 'high-sulphur line' of the PLEDGE-model. The crack growth rates are significantly above the ASME XI 'wet' curve. Compared to fatigue crack growth rates in air under otherwise identical test conditions, the effect of the high-temperature water environment resulted in an acceleration of crack growth by a factor of 150-250 under these low-cyclic loading conditions. The test results at constant load confirm the extremely low susceptibility to SCC crack growth under static load at 288 {sup o}C observed in tests at MPA, PSI and in a European Round Robin. They agree well with the RPV

  2. Crack growth behaviour of low alloy steels for pressure boundary components under transient light water reactor operating conditions (CASTOC)

    International Nuclear Information System (INIS)

    Foehl, J.; Weissenberg, T.; Gomez-Briceno, D.; Lapena, J.; Ernestova, M.; Zamboch, M.; Seifert, H.P.; Ritter, S.; Roth, A.; Devrient, B.; Ehrnsten, U.

    2004-01-01

    The CASTOC project addresses environmentally assisted cracking (EAC) phenomena in low alloy steels used for pressure boundary components in both Western type boiling water reactors (BWR) and Russian type pressurised water reactors (VVER). It comprises the four work packages (WP): inter-laboratory comparison test (WP1); EAC behaviour under static load (WP2), EAC behaviour under cyclic load and load transients (WP3); evaluation of the results with regard to their relevance for components in practice (WP4). The use of sophisticated test facilities and measurement techniques for the on-line detection of crack advances have provided a more detailed understanding of the mechanisms of environmentally assisted cracking and provided quantitative data of crack growth rates as a function of loading events and time, respectively. The effect of several major parameters controlling EAC was investigated with particular emphasis on the transferability of the results to components in service. The obtained crack growth rate data were reflected on literature data and on commonly applied prediction curves as presented in the appropriate Code. At relevant stress intensity factors it could be shown that immediate cessation of growing cracks occurs after changing from cyclic to static load in high purity oxygenated BWR water and oxygen-free VVER water corresponding to steady state operation conditions. Susceptibility to environmentally assisted cracking under static load was observed for a heat affected zone material in oxygenated high purity water and also in base materials during a chloride transient representing BWR water condition below Action Level 1 of the EPRI Water Chemistry Guidelines according to the lectrical conductivity of the water but in the range of Action Level 2 according to the content of chlorides. Time based crack growth was also observed in one Russian type base material in oxygenated VVER water and in one Western type base material in oxygenated high purity BWR

  3. PSI contribution to the CASTOC round robin on EAC of low-alloy RPV steels under BWR conditions

    International Nuclear Information System (INIS)

    Seifert, H.P.; Ritter, S.

    2001-08-01

    Within the CASTOC-project (5th EU FW programme), the environmentally-assisted crack growth (EAC) behaviour of low-alloy reactor pressure vessel (RPV) steels is experimentally investigated under simulated transient and steady-state BWR power operation conditions by 6 European laboratories. The present report contains a summary of the PSI contribution to the Working Package 1 (WP1) of this project. WP1 is an interlaboratory round robin EAC test in simulated BWR/NWC environment under cyclic and static loading conditions. The round robin shall demonstrate the applicability of the used advanced test technique and establishes the technical basis for the decision of test conditions in the other working packages. In the first part of the report, the PSI testing facility/measurement instruments and the applied test and evaluation procedure are discussed in detail. In the second part, the exact test conditions and test results with detailed post-test fractographical evaluation in the SEM are presented. The test results are compared with other PSI results, literature data and nuclear codes. Stable and stationary test conditions within the specified range could be achieved in the PSI test during the whole conditioning and experimental phase. The cyclic crack growth rate results agree well with recent PSI results at a higher dissolved oxygen content of 8 ppm and are slightly below the 'high-sulphur line' of the PLEDGE-model. The crack growth rates are significantly above the ASME XI 'wet' curve. Compared to fatigue crack growth rates in air under otherwise identical test conditions, the effect of the high-temperature water environment resulted in an acceleration of crack growth by a factor of 150-250 under these low-cyclic loading conditions. The test results at constant load confirm the extremely low susceptibility to SCC crack growth under static load at 288 o C observed in tests at MPA, PSI and in a European Round Robin. They agree well with the RPV operating experience

  4. Elemental segregation during resistance spot welding of boron containing advanced high strength steels

    NARCIS (Netherlands)

    Amirthalingam, M.; Van der Aa, E.M.; Kwakernaak, C.; Hermans, M.J.M.; Richardson, I.M.

    2015-01-01

    The partitioning behaviour of carbon, phosphorous and boron during the solidification of a resistance spot weld pool was studied using experimental simulations and a phase field model. Steels with varying carbon, phosphorous and boron contents were designed and subjected to a range of resistant spot

  5. Resistance spot welding of a complicated joint in new advanced high strength steel

    NARCIS (Netherlands)

    Joop Pauwelussen; Nick den Uijl

    2015-01-01

    The goal of this article is to investigate resistance spot welding of a complicated welding configuration of three sheets of dissimilar steel sheet materials with shunt welds, using simulations. The configuration used resembles a case study of actual welds in automotive applications. One of the

  6. Effect of steel fibers on plastic shrinkage cracking of normal and high strength concretes

    Directory of Open Access Journals (Sweden)

    Özgür Eren

    2010-06-01

    Full Text Available Naturally concrete shrinks when it is subjected to a drying environment. If this shrinkage is restrained, tensile stresses develop and concrete may crack. Plastic shrinkage cracks are especially harmful on slabs. One of the methods to reduce the adverse effects of shrinkage cracking of concrete is by reinforcing concrete with short randomly distributed fibers. The main objective of this study was to investigate the effect of fiber volume and aspect ratio of hooked steel fibers on plastic shrinkage cracking behavior together with some other properties of concrete. In this research two different compressive strength levels namely 56 and 73 MPa were studied. Concretes were produced by adding steel fibers of 3 different volumes of 3 different aspect ratios. From this research study, it is observed that steel fibers can significantly reduce plastic shrinkage cracking behavior of concretes. On the other hand, it was observed that these steel fibers can adversely affect some other properties of concrete during fresh and hardened states.

  7. The effect of low temperatures on the fatigue of high-strength structural grade steels

    NARCIS (Netherlands)

    Walters, C.L.

    2014-01-01

    It is well-known that for fracture, ferritic steels undergo a sudden transition from ductile behavior at higher temperatures to brittle cleavage failure at lower temperatures. However, this phenomenon has not received much attention in the literature on fatigue. The so-called Fatigue Ductile-Brittle

  8. Corrosion resistance of Zn-Co-Fe alloy coatings on high strength steel

    NARCIS (Netherlands)

    Lodhi, Z.F.; Mol, J.M.C.; Hovestad, A.; Hoen-Velterop, L. 't; Terryn, H.; Wit, J.H.W.de

    2009-01-01

    The corrosion properties of electrodeposited zinc-cobalt-iron (Zn-Co-Fe) alloys (up to 40 wt.% Co and 1 wt.% Fe) on steel were studied by using various electrochemical techniques and compared with zinc (Zn) and cadmium (Cd) coatings in 3.5% NaCl solution. It was found that with an increase in Co

  9. Corrosion and Fatigue Behavior of High-Strength Steel Treated with a Zn-Alloy Thermo-diffusion Coating

    Science.gov (United States)

    Mulligan, C. P.; Vigilante, G. N.; Cannon, J. J.

    2017-11-01

    High and low cycle fatigue tests were conducted on high-strength steel using four-point bending. The materials tested were ASTM A723 steel in the as-machined condition, grit-blasted condition, MIL-DTL-16232 heavy manganese phosphate-coated condition, and ASTM A1059 Zn-alloy thermo-diffusion coated (Zn-TDC). The ASTM A723 steel base material exhibits a yield strength of 1000 MPa. The effects of the surface treatments versus uncoated steel were examined. The fatigue life of the Zn-TDC specimens was generally reduced on as-coated specimens versus uncoated or phosphate-coated specimens. Several mechanisms are examined including the role of compressive residual stress relief with the Zn-TDC process as well as fatigue crack initiation from the hardened Zn-Fe alloy surface layer produced in the gas-metal reaction. Additionally, the effects of corrosion pitting on the fatigue life of coated specimens are explored as the Zn-TDC specimens exhibit significantly improved corrosion resistance over phosphate-coated and oiled specimens.

  10. Accelerated Carbonation of Steel Slag Compacts: Development of High-Strength Construction Materials

    Energy Technology Data Exchange (ETDEWEB)

    Quaghebeur, Mieke; Nielsen, Peter, E-mail: peter.nielsen@vito.be; Horckmans, Liesbeth [Sustainable Materials Management, VITO, Mol (Belgium); Van Mechelen, Dirk [RECMIX bvba, Genk (Belgium)

    2015-12-17

    Mineral carbonation involves the capture and storage of carbon dioxide in carbonate minerals. Mineral carbonation presents opportunities for the recycling of steel slags and other alkaline residues that are currently landfilled. The Carbstone process was initially developed to transform non-hydraulic steel slags [stainless steel (SS) slag and basic oxygen furnace (BOF) slags] in high-quality construction materials. The process makes use of accelerated mineral carbonation by treating different types of steel slags with CO{sub 2} at elevated pressure (up to 2 MPa) and temperatures (20–140°C). For SS slags, raising the temperature from 20 to 140°C had a positive effect on the CO{sub 2} uptake, strength development, and the environmental properties (i.e., leaching of Cr and Mo) of the carbonated slag compacts. For BOF slags, raising the temperature was not beneficial for the carbonation process. Elevated CO{sub 2} pressure and CO{sub 2} concentration of the feed gas had a positive effect on the CO{sub 2} uptake and strength development for both types of steel slags. In addition, the compaction force had a positive effect on the strength development. The carbonates that are produced in situ during the carbonation reaction act as a binder, cementing the slag particles together. The carbonated compacts (Carbstones) have technical properties that are equivalent to conventional concrete products. An additional advantage is that the carbonated materials sequester 100–150 g CO{sub 2}/kg slag. The technology was developed on lab scale by the optimization of process parameters with regard to compressive strength development, CO{sub 2} uptake, and environmental properties of the carbonated construction materials. The Carbstone technology was validated using (semi-)industrial equipment and process conditions.

  11. Hydrogen Environment Assisted Cracking of Modern Ultra-High Strength Martensitic Steels

    Science.gov (United States)

    Pioszak, Greger L.; Gangloff, Richard P.

    2017-09-01

    Martensitic steels (Aermet®100, Ferrium®M54™, Ferrium®S53®, and experimental CrNiMoWV at ultra-high yield strength of 1550 to 1725 MPa) similarly resist hydrogen environment assisted cracking (HEAC) in aqueous NaCl. Cracking is transgranular, ascribed to increased steel purity and rare earth addition compared to intergranular HEAC in highly susceptible 300M. Nano-scale precipitates ((Mo,Cr)2C and (W,V)C) reduce H diffusivity and the K-independent Stage II growth rate by 2 to 3 orders of magnitude compared to 300M. However, threshold K TH is similarly low (8 to 15 MPa√m) for each steel at highly cathodic and open circuit potentials. Transgranular HEAC likely occurs along martensite packet and {110}α'-block interfaces, speculatively governed by localized plasticity and H decohesion. Martensitic transformation produces coincident site lattice interfaces; however, a connected random boundary network persists in 3D to negate interface engineering. The modern steels are near-immune to HEAC when mildly cathodically polarized, attributed to minimal crack tip H production and uptake. Neither reduced Co and Ni in M54 and CrNiMoWV nor increased Cr in S53 broadly degrade HEAC resistance compared to baseline AM100. The latter suggests that crack passivity dominates acidification to widen the polarization window for HEAC resistance. Decohesion models predict the applied potential dependencies of K TH and d a/d t II with a single-adjustable parameter, affirming the importance of steel purity and trap sensitive H diffusivity.

  12. Hydrogen diffusion and effect on degradation in welded microstructures of creep-resistant low-alloyed steels

    Energy Technology Data Exchange (ETDEWEB)

    Rhode, Michael

    2016-04-04

    The main challenge for the future is to further increase the power plant thermal efficiency independent of the type of power plant concept, i.e. fossil-fired or nuclear power plant, where the material selection can directly affect reduction of CO{sub 2} emissions. In power plant design, welding is the most applied manufacturing technique in component construction. The necessary weld heat input causes metallurgical changes and phase transitions in the heat affected zone (HAZ) of the base materials and in the deposited weld metal. The weld joint can absorb hydrogen during welding or in later service - This absorption can cause degradation of mechanical properties of the materials, and in certain loading conditions, hydrogen-assisted cold cracks can occur. This cracking phenomenon can appear time delayed due to the temperature dependency of the hydrogen diffusion and the presence of a ''critical'' hydrogen concentration. Additionally, each specific weld microstructure shows a certain hydrogen diffusion and solubility that contribute to susceptibility of the cracking phenomenon. Therefore hydrogen cannot be neglected as possible failure effect, which was identified recently in the case of T24 creep-resistant tube-to-tube weld joints. It is necessary to identify and assess the hydrogen effect in weld joints of low-alloyed steel grades for to improve further early detection of possible failures. For each specific weld joint microstructure, it is necessary to separate the interdependencies between mechanical load and the hydrogen concentration. The diffusivity and solubility must be considered to identify hydrogen quantities in the material at any given time. In this case, the effects of mechanical loading were dealt with independently. For the characterization of the mechanical properties, hydrogen charged tensile specimens were investigated for the base materials and thermally simulated HAZ microstructures. The hydrogen diffusion was characterized

  13. Hydrogen diffusion and effect on degradation in welded microstructures of creep-resistant low-alloyed steels

    International Nuclear Information System (INIS)

    Rhode, Michael

    2016-01-01

    The main challenge for the future is to further increase the power plant thermal efficiency independent of the type of power plant concept, i.e. fossil-fired or nuclear power plant, where the material selection can directly affect reduction of CO 2 emissions. In power plant design, welding is the most applied manufacturing technique in component construction. The necessary weld heat input causes metallurgical changes and phase transitions in the heat affected zone (HAZ) of the base materials and in the deposited weld metal. The weld joint can absorb hydrogen during welding or in later service - This absorption can cause degradation of mechanical properties of the materials, and in certain loading conditions, hydrogen-assisted cold cracks can occur. This cracking phenomenon can appear time delayed due to the temperature dependency of the hydrogen diffusion and the presence of a ''critical'' hydrogen concentration. Additionally, each specific weld microstructure shows a certain hydrogen diffusion and solubility that contribute to susceptibility of the cracking phenomenon. Therefore hydrogen cannot be neglected as possible failure effect, which was identified recently in the case of T24 creep-resistant tube-to-tube weld joints. It is necessary to identify and assess the hydrogen effect in weld joints of low-alloyed steel grades for to improve further early detection of possible failures. For each specific weld joint microstructure, it is necessary to separate the interdependencies between mechanical load and the hydrogen concentration. The diffusivity and solubility must be considered to identify hydrogen quantities in the material at any given time. In this case, the effects of mechanical loading were dealt with independently. For the characterization of the mechanical properties, hydrogen charged tensile specimens were investigated for the base materials and thermally simulated HAZ microstructures. The hydrogen diffusion was characterized with

  14. Optimum tungsten content in high strength 9 to 12% chromium containing creep resistant steels

    International Nuclear Information System (INIS)

    Hasegawa, Y.; Muraki, T.; Mimura, H.

    2000-01-01

    Tungsten containing ferritic creep resistant steels are the candidate materials for ultra-super-critical fossil power plant because of their high creep rupture strength. But the strengthening mechanisms by tungsten addition have not yet been completely studied. In this report, creep rupture time and creep strain rate measurement decided the optimum tungsten content in 9 to 12% chromium ferritic steels. The precipitation behavior of Laves phase and the precise discussion of creep strain rate analyses explain the contribution of Laves phase at the lath boundary and the contribution of tungsten in solid solution. P92 contains the optimum amount of tungsten and chromium, 1.8 mass% and 9 mass% respectively judging from the creep rupture strength point of view. (orig.)

  15. Laser Beam Welding of Ultra-high Strength Chromium Steel with Martensitic Microstructure

    Science.gov (United States)

    Dahmen, Martin; Janzen, Vitalij; Lindner, Stefan; Wagener, Rainer

    A new class of steels is going to be introduced into sheet manufacturing. Stainless ferritic and martensitic steels open up opportunities for sheet metal fabrication including hot stamping. Strengths of up to 2 GPa at fracture elongations of 15% can be attained through this. Welding of these materials, as a result, became a challenge. Energy-reduced welding methods with in-situ heat treatment are required in order to ensure the delicate and complex heat control. Laser beam welding is the joining technique of choice to supply minimum heat input to the fusion process and to apply efficient heat control. For two application cases, tailored blank production in as-rolled condition and welding during assembly in hot stamped condition, welding processes have been developed. The welding suitability is shown through metallurgical investigations of the welds. Crash tests based on the KS-II concept as well as fatigue tests prove the applicability of the joining method.

  16. High strength H2S resistant steels and alloys for oil field tubular products

    International Nuclear Information System (INIS)

    Straatmann, J.A.; Grobner, P.J.

    1976-01-01

    New sources of oil and natural gas are more frequently occurring at greater depths in hostile surface and underground environments. The materials utilized in drilling and completing the wells require higher strength along with improved resistance to corrosive/embrittling attack by contaminants present in the deep, high pressure-high temperature formations. Higher strength steels having yield strengths in excess of 690 MPa and possessing improved resistance to sulfide stress corrosion cracking (SSC) have been developed and are currently being evaluated by the oil industry. The research to develop these new steels combined modifications of chemical compositions, heat treatment and processing variables. For most severe SSC environments and deep wells, it was necessary to provide even better alloys for tubular materials. The successful solution to the problem was found with the utilization of nickel-base alloys. These materials are being evaluated in commercial applications

  17. European column buckling curves and finite element modelling including high strength steels

    DEFF Research Database (Denmark)

    Jönsson, Jeppe; Stan, Tudor-Cristian

    2017-01-01

    Eurocode allows for finite element modelling of plated steel structures, however the information in the code on how to perform the analysis or what assumptions to make is quite sparse. The present paper investigates the deterministic modelling of flexural column buckling using plane shell elements...... imperfections may be very conservative if considered by finite element analysis as described in the current Eurocode code. A suggestion is given for a slightly modified imperfection formula within the Ayrton-Perry formulation leading to adequate inclusion of modern high grade steels within the original four...... bucking curves. It is also suggested that finite element or frame analysis may be performed with equivalent column bow imperfections extracted directly from the Ayrton-Perry formulation....

  18. Influence of corrosion environment composition on crack propagation in high-strength martensitic steel

    International Nuclear Information System (INIS)

    Romaniv, O.N.; Nikiforchin, G.N.; Tsirul'nik, A.T.

    1984-01-01

    The 40 Kh steel is taken as an example to investigate the dependence of electrochemical parameters in the crack tip and characteristics of corrosion static cracking resistance of martensitic steel on the composition of environment. The tests are performed in acidic and alkaline solutions prepared by adding HC or NaOH in distilled water. It is established that growth of pH value of initial solutions trom 0 to 13 brings about linear increase of a threshold stress intensity factor. It is found that acidic medium in the crack tip preserves up to pH 13 of initial medium. The possibility of corrosion crack propagation in alkaline solutions according to the mechanism of hydrogen embrittlement is proved

  19. The effects of friction on the compressive behaviour of high strength steels

    International Nuclear Information System (INIS)

    Ashton, M.; Parry, D.J.

    1997-01-01

    An investigation, covering a wide range of strain rate and temperature, has been performed into the effects of interfacial friction on the compressive properties of an armour plate steel. In order to calculate the coefficient of friction, ring tests were carried out and the Avitzur analysis applied. In general, coefficients of friction decreased with increasing temperature and strain rate. Other specimen observations indicated the same friction trends. It is essential that friction corrections be applied if meaningful results are to be obtained. (orig.)

  20. Control of Hydrogen Embrittlement in High Strength Steel Using Special Designed Welding Wire

    Science.gov (United States)

    2016-03-01

    microstructure 4. A low near ambient temperature is reached. • All four factor must be simultaneously present 3 Mitigating HIC and Improving Weld Fatigue...Performance Through Weld Residual Stress Control UNCLASIFIED:DISTRIBUTION A. Approved for public release: distribution unlimited. Click to edit Master...title style 4 • Welding of Armor Steels favors all these conditions for HIC • Hydrogen Present in Sufficient Degree – Derived from moisture in the

  1. Study of Residual Stresses and Distortion in Structural Weldments in High-Strength Steels.

    Science.gov (United States)

    1981-11-30

    diagram of the material under consideration which is either known experimentally or can be derived from the TTT diagram. Using the CCT diagram and the...strains are incorporated into the finite element program ADINA replacing the conventional thermal strains, T TH e i" I Computed CCT Diagram . Experimentally...derived CCT diagrams exist today for several steel alloys, enabling one to predict the microstructure [history during the cooling stage of the

  2. Mechanical Properties of Laser Beam Welded Ultra-high Strength Chromium Steel with Martensitic Microstructure

    Science.gov (United States)

    Dahmen, Martin; Janzen, Vitalij; Lindner, Stefan; Wagener, Rainer

    A new class of steels is going to be introduced into sheet manufacturing. Stainless ferritic and martensitic steels open up opportunities for sheet metal fabrication including hot stamping. A strength of up to 2 GPa at a fracture strain of 15% can be attained. Welding of these materials became apparently a challenge. Energy-reduced welding methods with in-situ heat treatment are required in order to ensure the delicate and complex heat control. Laser beam welding is the joining technique of choice to supply minimum heat input to the fusion process and to apply an efficient heat control. For two application cases, production of tailored blanks in as-rolled condition and welding in assembly in hot stamped conditions, welding processes have been developed. The welding suitability is shown in metallurgical investigations of the welds. Crash tests based on the KSII concept as well as fatigue tests prove the applicability of the joining method. For the case of assembly also joining with deep drawing and manganese boron steel was taken into consideration. The strength of the joint is determined by the weaker partner but can benefit from its ductility.

  3. Austenitic stainless steels and high strength copper alloys for fusion components

    International Nuclear Information System (INIS)

    Rowcliffe, A.F.; Zinkle, S.J.; Alexander, D.J.; Stubbins, J.F.

    1998-01-01

    An austenitic stainless steel (316LN), an oxide-dispersion-strengthened copper alloy (GlidCop A125), and a precipitation-hardened copper alloy (Cu-Cr-Zr) are the primary structural materials for the ITER first wall/blanket and divertor systems. While there is a long experience of operating 316LN stainless steel in nuclear environments, there is no prior experience with the copper alloys in neutron environments. The ITER first wall (FW) consists of a stainless steel shield with a copper alloy heat sink bonded by hot isostatic pressing (HIP). The introduction of bi-layer structural material represents a new materials engineering challenge; the behavior of the bi-layer is determined by the properties of the individual components and by the nature of the bond interface. The development of the radiation damage microstructure in both classes of materials is summarized and the effects of radiation on deformation and fracture behavior are considered. The initial data on the mechanical testing of bi-layers indicate that the effectiveness of GlidCop A125 as a FW heat sink material is compromised by its strongly anisotropic fracture toughness and poor resistance to crack growth in a direction parallel to the bi-layer interface. (orig.)

  4. Formation Energies and Electronic Properties of Vanadium Carbides Found in High Strength Steel Alloys

    Science.gov (United States)

    Limmer, Krista; Medvedeva, Julia

    2013-03-01

    Carbide formation and stabilization in steels is of great interest owing to its effect on the microstructure and properties of the Fe-based alloys. The appearance of carbides with different metal/C ratios strongly depends on the carbon concentration, alloy composition as well as the heat treatment. Strong carbide-forming elements such as Ti, V, and Nb have been used in microalloyed steels; with VC showing an increased solubility in the iron matrix as compared with TiC and NbC. This allows for dissolution of the VC into the steel during heating and fine precipitation during cooling. In addition to VC, the primary vanadium carbide with cubic structure, a wide range of non-stoichiometric compositions VCy with y varying from 0.72 to 0.88, has been observed. This range includes two ordered compounds, V8C7 and V6C5. In this study, first-principles density functional theory (DFT) is employed to examine the stability of the binary carbides by calculating their formation energies. We compare the local structures (atomic coordination, bond distances and angles) and the density of states in optimized geometries of the carbides. Further, the effect of alloying additions, such as niobium and titanium, on the carbide stabilization is investigated. We determine the energetically preferable substitutional atom location in each carbide and study the impurity distribution as well as its role in the carbide formation energy and electronic structure.

  5. Methods for protection of high-strength welded stainless steel from corrosion cracking

    International Nuclear Information System (INIS)

    Lashchevskij, V.B.; Gurvich, L.Ya.; Batrakov, V.P.; Kozheurova, N.S.; Molotova, V.A.; Shvarts, M.M.

    1978-01-01

    The efficiency of protection from corrosion cracking under a bending stress of 100 kgf/mm 2 in a salt mist and in a sulphur dioxide atmosphere, of welded joints of steel 08Kh15N5D2T with metallizing, galvanic and varnish coatings and lubricants, and of steel 1Kh15N4AM3 with sealing compounds has been investigated. Metallization of welded joints with aluminium and zinc efficiently increases corrosion resistance in a salt mist. Galvanic coatings of Cd, Zn, and Cr increase the time to cracking in a salt mist from 2-3 to 60-80 days. The protective properties of varnishes under the effect of a salt mist decrease in the following sequence: epoxy-polyamide enamel EP-140, acrylic enamel C-38, silicone enamels KO-834, KO-811, and KO-814. In an atmosphere containing SO 2 0.15 vol.% at 100% relative humidity, the varnishes investigated, with the exception of the inhibited coating XC-596, show lower protective properties than in a salt mist. The high efficiency of protection from corrosion cracking in a salt mist of slots of steel 1Kh15N4AM3 when using organic sealing compounds U4-21 and U5-21, and also slushing lubricants and oils PVK, TsIATIM-201, K17, and AMS3 was established

  6. Development of High Heat Input Welding High Strength Steel Plate for Oil Storage Tank in Xinyu Steel Company

    Science.gov (United States)

    Zhao, Hemin; Dong, Fujun; Liu, Xiaolin; Xiong, Xiong

    This essay introduces the developed high-heat input welding quenched and tempered pressure vessel steel 12MnNiVR for oil storage tank by Xinyu Steel, which passed the review by the Boiler and Pressure Vessel Standards Technical Committee in 2009. The review comments that compared to the domestic and foreign similar steel standard, the key technical index of enterprise standard were in advanced level. After the heat input of 100kJ/cm electro-gas welding, welded points were still with excellent low temperature toughness at -20°C. The steel plate may be constructed for oil storage tank, which has been permitted by thickness range from 10 to 40mm, and design temperature among -20°C-100°C. It studied microstructure genetic effects mechanical properties of the steel. Many production practices indicated that the mechanical properties of products and the steel by stress relief heat treatment of steel were excellent, with pretreatment of hot metal, converter refining, external refining, protective casting, TMCP and heat treatment process measurements. The stability of performance and matured technology of Xinyu Steel support the products could completely service the demand of steel constructed for 10-15 million cubic meters large oil storage tank.

  7. Hybrid laser-gas metal arc welding (GMAW) of high strength steel gas transmission pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Ian D.; Norfolk, Mark I. [Edison Welding Institute (EWI), Columbus, Ohio (United States)

    2009-07-01

    Hybrid Laser/arc welding process (HLAW) can complete 5G welds, assure weld soundness, material properties, and an acceptable geometric profile. Combining new lasers and pulsed gas metal arc welding (GMAW-P) has led to important innovations in the HLAW process, increasing travel speed for successful root pass welding. High power Yb fiber lasers allow a 10 kW laser to be built the size of a refrigerator, allowing portability for use on the pipeline right-of-way. The objective was to develop and apply an innovative HLAW system for mechanized welding of high strength, high integrity, pipelines and develop 5G welding procedures for X80 and X100 pipe, including mechanical testing to API 1104. A cost-matched JIP developed a prototype HLAW head based on a commercially available bug and band system (CRC-Evans P450). Under the US Department of Transportation (DOT) project, the subject of this paper, the system was used to advance pipeline girth welding productivity. External hybrid root pass welding achieved full penetration welds with a 4-mm root at a travel speed of 2.3-m/min. Welds were made 'double down' using laser powers up to 10 kW and travel speeds up to 3-m/min. The final objective of the project was to demonstrate the hybrid LBW/GMAW system under simulated field conditions. (author)

  8. Hydrogen embrittlement of high strength steel electroplated with zincâ  cobalt allo

    OpenAIRE

    Hillier, Elizabeth M. K.; Robinson, M. J.

    2004-01-01

    Slow strain rate tests were performed on quenched and tempered AISI 4340 steel to measure the extent of hydrogen embrittlement caused by electroplating with zincâ  cobalt alloys. The effects of bath composition and pH were studied and compared with results for electrodeposited cadmium and zincâ  10%nickel. It was found that zincâ  1%cobalt alloy coatings caused serious hydrogen embrittlement (EI 0.63); almost as severe as that of cadmium (EI 0.78). Baking cadmium plate...

  9. Production and construction technology of C100 high strength concrete filled steel tube

    Science.gov (United States)

    Wu, Yanli; Sun, Jinlin; Yin, Suhua; Liu, Yu

    2017-10-01

    In this paper, the effect of the amount of cement, water cement ratio and sand ratio on compressive strength of C100 concrete was studied. The optimum mix ratio was applied to the concrete filled steel tube for the construction of Shenyang Huangchao Wanxin mansion. The results show that the increase of amount of cement, water cement ratio can improve the compressive strength of C100 concrete but increased first and then decreased with the increase of sand ratio. The compressive strength of C100 concrete can reach 110MPa with the amount of cement 600kg/m3, sand ratio 40% and water cement ratio 0.25.

  10. Modelling and simulation of the influence of forming processes on the structural behavior of high strength steels

    International Nuclear Information System (INIS)

    Gelin, J.C.; Thibaud, S.; Boudeau, N.

    2005-01-01

    The paper first describes experiments and modeling concerning the identification of material behavior for high strength steels with phase transformations associated to plastic deformation. The experiments consist of tensile and bulging tests carried out on 316L stainless steels and TRIP 700 steels used in automotive industry. These experiments have permitted to determine the hardening curves of such materials vs. the martensite volume fraction associated to plastic deformation. It has been demonstrated that the stress triaxiality has a major role in the martenstic transformation and a model is proposed to define the flow stress vs. effective strain accounting planar anisotropy and variation of martenstic volume fraction. Then a plasticity model has been proposed in an anisotropic form and the related flow rules have been defined. The resulting model has been implemented in different finite elements software, and applied in numerical simulations of stamping and hydroforming of typical components to prove the effects of forming processes on the resulting properties of the components. Finally, the structural behavior of the resulting components is investigated and the effects of forming processes on the resulting structural behaviour are analyzed. Two cases are presented, one concerns the deep drawing of a cylindrical cup and the other concerns the stamping of a closed U channel used as a structural part for crash frames. Is has been clearly proved that the variation of martensite volume fraction arising during processing has a strong influence on the resulting behaviour of the parts considering springback and crash resistance

  11. High temperature corrosion studies on friction welded low alloy steel and stainless steel in air and molten salt environment at 650 oC

    International Nuclear Information System (INIS)

    Arivazhagan, N.; Narayanan, S.; Singh, Surendra; Prakash, Satya; Reddy, G.M.

    2012-01-01

    Highlights: → Thermogravimetric analysis on friction welded AISI 304 with AISI 4140 exposed in air and molten salt environment. → Comparative study on friction welded AISI 4140 with AISI 304 exposed in air, Na 2 SO 4 -60%V 2 O 5 and NaCl-50%Na 2 SO 4 at 650 o C. → SEM/EDAX, XRD analysis on corroded dissimilar AISI 304 and AISI 4140 materials. -- Abstract: The investigation on high-temperature corrosion resistance of the weldments is necessary for prolonged service lifetime of the components used in corrosive environments. This paper reports on the performance of friction welded low alloy steel AISI 4140 and stainless steel AISI 304 in air as well as molten salt environment of Na 2 SO 4 -60%V 2 O 5 and NaCl-50%Na 2 SO 4 at 650 o C. This paper reports several studies carried out for characterizing the weldments corrosion behavior. Initially thermogravimetric technique was used to establish the kinetics of corrosion. For analyzing the corrosion products, X-ray diffraction, scanning electron microscopy/energy-dispersive analysis and electron probe micro analysis techniques were used. From the results of the experiments, it is observed that the weldments suffered accelerated corrosion in NaCl-Na 2 SO 4 environment and showed spalling/sputtering of the oxide scale. Furthermore, corrosion resistance of weld interface was found to be lower than that of parent metals in molten salt environment. Weight gain kinetics in air oxidation studies reveals a steady-state parabolic rate law while the kinetics with salt deposits displays multi-stage growth rates. Moreover NaCl is the main corrosive species in high temperature corrosion, involving mixtures of NaCl and Na 2 SO 4 which is responsible for formation of internal attack.

  12. Mechanical behavior of a controlled rolled highstrenght low alloy steeel plate, microalloyed with Nb e V

    International Nuclear Information System (INIS)

    Maria, C.R.; Bruno, J.C.; Gomes, D.T.; Chawla, K.K.

    1986-01-01

    The tension and fatique behaviour of a controlled rolled high-strength low-alloy steel plate, microalloyed with Nb and V, was studied. It was verified that the material showed an anisotropic tensile behaviour. In spite of this anisotropy, it was verified that the fatique crack propagation rates (da/Dn) in the L, T and S directions showed similar results with respect to the two levels of mean applied stress. (Author) [pt

  13. Nanoscale analysis of the influence of pre-oxidation on oxide formation and wetting behavior of hot-dip galvanized high strength steel

    International Nuclear Information System (INIS)

    Arndt, M.; Duchoslav, J.; Steinberger, R.; Hesser, G.; Commenda, C.; Samek, L.; Arenholz, E.

    2015-01-01

    Highlights: • Pre-oxidized hot-dip galvanized advanced high strength steel was examined. • The interface was analyzed in detail via high energy resolution Auger spectra. • Evidence for an aluminothermic reduction of the Mn oxide was found. • A new model for galvanizing high manganese steel was developed. - Abstract: Hot-dip galvanized (HDG) 2nd generation advanced high strength steel (AHSS), nano-TWIP (twinning induced plasticity) with 15.8 wt.% Mn, 0.79 wt.% C, was analyzed at the interface between steel and zinc by scanning Auger electron microscopy (AES) in order to confirm and improve an existing model of additional pre-oxidation treatment before annealing and immersion into the hot zinc bath. Furthermore these steel samples were fractured in the analysis chamber of the AES and analyzed without breaking vacuum. In these measurements the results of an aluminothermic reduction of the manganese and iron surface oxides on the steel could be confirmed by AES

  14. Material Selection for an Ultra High Strength Steel Component Based on the Failure Criteria of CrachFEM

    International Nuclear Information System (INIS)

    Kessler, L.; Beier, Th.; Werner, H.; Horstkott, D.; Dell, H.; Gese, H.

    2005-01-01

    An increasing use of combining more than one process step is noticed for coupling crash simulations with the results of forming operations -- mostly by inheriting the forming history like plastic strain and material hardening. Introducing a continuous failure model allows a further benefit of these coupling processes; it sometimes can even be the most attractive result of such a work. In this paper the algorithm CrachFEM for fracture prediction has been used to generate more benefit of the successive forming and crash simulations -- especially for ultra high strength steels. The choice and selection of the material grade in combination with the component design can therefore be done far before the prototyping might show an unsuccessful crash result; and in an industrial applicable manner

  15. Fatigue characteristics of high strength fire resistance steel for frame structure and time-frequency analysis its acoustic emission signal

    International Nuclear Information System (INIS)

    Kim, Hyun Soo; Nam, Ki Woo; Kang, Chang Young

    2000-01-01

    Demand for now nondestructive evaluation are growing to detect fatigue crack growth behavior to predict long term performance of materials and structure in aggressive environments, especially when they are in non-visible area. Acoustic emission technique is well suited to these problems and has drawn a keen interests because of its dynamic detection ability, extreme sensitivity and location of growing defects. In this study, we analysed acoustic emission signals obtained in fatigue and tensile test of high strength fire resistance steel for frame structure with time-frequency analysis methods. The main frequency range is different in the noise and the fatigue crack propagation. It could be classified that it were also generated by composite fracture mechanics of cleavage, dimple, inclusion separation etc

  16. Genetic design and characterization of novel ultra-high-strength stainless steels strengthened by Ni3Ti intermetallic nanoprecipitates

    International Nuclear Information System (INIS)

    Xu, W.; Rivera-Diaz-del-Castillo, P.E.J.; Wang, W.; Yang, K.; Bliznuk, V.; Kestens, L.A.I.; Zwaag, S. van der

    2010-01-01

    A general computational alloy design approach based on thermodynamic and physical metallurgical principles, and coupled with a genetic optimization scheme, is presented. The method is applied to the design of new ultra-high-strength maraging stainless steels strengthened by Ni 3 Ti intermetallics. In the first design round, the alloy composition is optimized on the basis of precipitate formation at a fixed ageing temperature without considering other steps in the heat treatment. In the second round, the alloy is redesigned, applying an integrated model which allows for the simultaneous optimization of alloy composition and the ageing temperature as well as the prior austenitization temperature. The experimental characterizations of prototype alloys clearly demonstrate that alloys designed by the proposed approach achieve the desired microstructures.

  17. Research on Microstructure and Properties of Welded Joint of High Strength Steel

    Science.gov (United States)

    Zhu, Pengxiao; Li, Yi; Chen, Bo; Ma, Xuejiao; Zhang, Dongya; Tang, Cai

    2018-01-01

    BS960 steel plates were welded by Laser-MAG and MAG. The microstructure and properties of the welded joints were investigated by optical microscope, micro-hardness tester, universal tensile testing machine, impact tester, scanning electron microscope (SEM) and fatigue tester. By a series of experiments, the following results were obtained: The grain size of the coarse grain zone with Laser-MAG welded joint is 20μm, and that with MAG welded joint is about 32μm, both of the fine grain region are composed of fine lath martensite and granular bainite; the width of the heat affected region with Laser-MAG is lower than that with MAG. The strength and impact energy of welded joints with Laser-MAG is higher than that with MAG. The conditioned fatigue limit of welded joint with Laser-MAG is 280MPa; however, the conditioned fatigue limit of welded joint with MAG is 250MPa.

  18. Fatigue Assessment of High Strength Steel Welded Joints Under Bending Loading

    International Nuclear Information System (INIS)

    Lee, Myeong-Woo; Kim, Yun-Jae; Park, Jun-Hyub

    2014-01-01

    In this study, a fatigue assessment method for vehicle suspension systems having welded geometries was established under a bending loading condition. For the fatigue life estimation of the actual product s welded joints made of different steels, bending fatigue tests were performed on welded specimens with a simplified shape for obtaining the moment-fatigue-life plot. Further, geometry modeling of the simplified welded specimens was conducted. Results of finite element analysis were used to obtain the stress-fatigue-life plot. The analysis results were also used to calculate the stress concentration factors for notch-factor-based fatigue life estimation. The test results were compared with results of the general notch-factor-based fatigue life estimation for improving fatigue assessment. As a result, it was concluded that both the welded fatigue tests and the notch-factor-based fatigue life estimation are necessary for accurate fatigue assessment

  19. Microstructure Characterization of Fiber Laser Welds of S690QL High-Strength Steels

    Science.gov (United States)

    Li, Baoming; Xu, Peiquan; Lu, Fenggui; Gong, Hongying; Cui, Haichao; Liu, Chuangen

    2018-02-01

    The use of fiber laser welding to join S690QL steels has attracted interest in the field of construction and assembly. Herein, 13-mm-thick S690QL welded joints were obtained without filler materials using the fiber laser. The as-welded microstructures and the impact energies of the joints were characterized and measured using electron microscopy in conjunction with high-resolution transmission electron images, X-ray diffraction, and impact tests. The results indicated that a single-sided welding technique could be used to join S690QL steels up to a thickness of 12 mm (fail to fuse the joint in the root) when the laser power is equal to 12 kW (scan speed 1 m/min). Double-side welding technique allows better weld penetration and better control of heat distribution. Observation of the samples showed that the fusion zone exhibited bainitic and martensitic microstructures with increased amounts of martensites (Ms) compared with the base materials. Also, the grains in the fusion zone increased in coarseness as the heat input was increased. The fusion zone exhibited increased hardness (397 HV0.2) while exhibiting a simultaneous decrease in the impact toughness. The maximum impact energy value of 26 J was obtained from the single-side-welded sample, which is greater than those obtained from the double-side-welded samples (maximum of 18 J). Many more dislocations and plastic deformations were found in the fusion zone than the heat-affected zone in the joint, which hardened the joints and lowered the impact toughness. The microstructures characterized by FTEM-energy-dispersive X-ray spectrometer also exhibited laths of M, as well as stacking faults and dislocations featuring high-density, interfacial structure ledges that occur between the high-angle grain boundaries and the M and bainite.

  20. Assessment of high-strength stainless steel weldments for fusion energy applications

    International Nuclear Information System (INIS)

    Alexander, D.J.; Goodwin, G.M.

    1991-01-01

    Primary design considerations for the Compact Ignition Tokomak fusion reactor magnet cases are yield strength and toughness in the temperature range from liquid nitrogen to room temperature (77 to 300K). Type 21-6-9 stainless steel, also known as Nitronic 40, is the proposed alloy for this application. This study documented the mechanical properties, including tensile yield strength and Charpy V-notch impact toughness, at 77K and room temperature, of weldments made using seven different filler metals. Six welds were made with filler metal added as cold filler wire using the argon-shielded gas tungsten arc welding process. Filler metals included Nitronic 35W and 40W, 21-6-9, ERNiCr-3 (Inconel 82), ERNiCrMo-3 (Inconel 625), and Inconel 625 PLUS. All welds were prepared with a double-groove butt-weld geometry. At room temperature, all of the filler metals had yield strengths which exceeded the base metal. However, at 77K only the Nitronics and the 21-6-9 filler metals exceeded the base metals, and the Inconel filler metals were significantly weaker. The impact properties of the weld metals were very good at room temperature, with the exception of Inconel 625. At 77K, impact toughness was greatly reduced for all of the filler metals with the exception of Inconel 82. This alloy had excellent toughness at both temperatures. The severe drop in the impact toughness of the Nitronic and 21-6-9 filler metals was attributed to the amount of ferrite present in these welds. At 77K, fracture occurred by a cleavage mechanism in the ferrite regions which allowed the crack to grow readily. The fully austenitic Inconel 82 material fractured by a microvoid coalescence mode at either test temperature. These results indicate that the Inconel 82 filler metal is the preferred material for welding 21-6-o stainless steel for this application

  1. Dresden 1 Radiation Level Reduction Program. Intergranular corrosion tests of sensitized Type-304 stainless steel in Dow NS-1, and stress corrosion cracking tests of Type-304 stainless steel and carbon and low alloy steels in Dow copper rinse solution

    International Nuclear Information System (INIS)

    Walker, W.L.

    1978-09-01

    Corrosion tests were performed to evaluate the extent of intergranular attack on sensitized Type-304 stainless steel by a proprietary Dow Chemical solvent, NS-1, which is to be used in the chemical cleaning of the Dresden 1 primary system. In addition, tests were performed to evaluate stress corrosion cracking of sensitized Type-304 stainless steel and post-weld heat-treated ASTM A336-F1, A302-B, and A106-B carbon and low alloy steels in a solution to be used to remove residual metallic copper from the Dresden 1 primary system surfaces following the chemical cleaning. No evidence of deleterious corrosion was observed in either set of tests

  2. Numerical simulations of electric potential field for alternating current potential drop associated with surface cracks in low-alloy steel nuclear material

    Science.gov (United States)

    Yeh, Chun-Ping; Huang, Jiunn-Yuan

    2018-04-01

    Low-alloy steels used as structural materials in nuclear power plants are subjected to cyclic stresses during power plant operations. As a result, cracks may develop and propagate through the material. The alternating current potential drop technique is used to measure the lengths of cracks in metallic components. The depth of the penetration of the alternating current is assumed to be small compared to the crack length. This assumption allows the adoption of the unfolding technique to simplify the problem to a surface Laplacian field. The numerical modelling of the electric potential and current density distribution prediction model for a compact tension specimen and the unfolded crack model are presented in this paper. The goal of this work is to conduct numerical simulations to reduce deviations occurring in the crack length measurements. Numerical simulations were conducted on AISI 4340 low-alloy steel with different crack lengths to evaluate the electric potential distribution. From the simulated results, an optimised position for voltage measurements in the crack region was proposed.

  3. Twin-spot laser welding of advanced high-strength multiphase microstructure steel

    Science.gov (United States)

    Grajcar, Adam; Morawiec, Mateusz; Różański, Maciej; Stano, Sebastian

    2017-07-01

    The study addresses the results concerning the laser welding of TRIP (TRansformation Induced Plasticity) steel using a beam focused at two spots (also referred to as twin-spot laser welding). The analysis involved the effect of variable welding thermal cycles on the properties and microstructure of welded joints. The tests were performed using a linear energy of 0.048 and 0.060 kJ/mm and the laser beam power distribution of 50%:50%, 60%:40% and 70%:30%. The tests also involved welding performed using a linear energy of 0.150 kJ/mm and the laser beam power distribution of 70%:30%. In addition, the research included observations of the microstructure of the fusion zone, heat affected zone and the transition zone using light microscopy and scanning electron microscopy. The fusion zone was composed of blocky-lath martensite whereas the HAZ (heat-affected zone) was characterised by the lath microstructure containing martensite, bainite and retained austenite. The distribution of twin-spot laser beam power significantly affected the microstructure and hardness profiles of welded joints. The highest hardness (480-505 HV), regardless of welding variants used, was observed in the HAZ.

  4. High Strength and Ductility of Additively Manufactured 316L Stainless Steel Explained

    Science.gov (United States)

    Shamsujjoha, Md.; Agnew, Sean R.; Fitz-Gerald, James M.; Moore, William R.; Newman, Tabitha A.

    2018-04-01

    Structure-property relationships of an additively manufactured 316L stainless steel were explored. A scanning electron microscope and electron backscattered diffraction (EBSD) analysis revealed a fine cellular-dendritic (0.5 to 2 μm) substructure inside large irregularly shaped grains ( 100 μm). The cellular structure grows along the crystallographic directions. However, texture analysis revealed that the main texture component is inclined by 15 deg from the building direction. X-ray diffraction line profile analysis indicated a high dislocation density of 1 × 1015 m-2 in the as-built material, which correlates well with the observed EBSD microstructure and high-yield strength, via the traditional Taylor hardening equation. Significant variations in strain hardening behavior and ductility were observed for the horizontal (HB) and vertical (VB) built samples. Ductility of HB and VB samples measured 49 and 77 pct, respectively. The initial growth texture and subsequent texture evolution during tensile deformation are held responsible for the observed anisotropy. Notably, EBSD analysis of deformed samples showed deformation twins, which predominately form in the grains with aligned parallel to the loading direction. The VB samples showed higher twinning activity, higher strain hardening rates at high strain, and therefore, higher ductility. Analysis of annealed samples revealed that the observed microstructures and properties are thermally stable, with only a moderate decrease in strength and very similar levels of ductility and anisotropy, compared with the as-built condition.

  5. Precipitatation Behavior of FeTiP Phase in High Strength IF Steel

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The influence of chemical composition and annealing parameters on the behavior of FeTiP precipitation has been investigated. With increasing Ti content the yield strength and tensile strength were reduced, and the tendency of FeTiP precipitation became more remarkable. No FeTiP precipitate was observed and the best mechanical properties have been obtained in the steel sheet, of which the atom ratio of Ti to N is approximately equal to 1. In the temperature range of 700 to 800€℃ the FeTiP precipitation could appear easily. The precipitation process was suppressed when the annealing temperature was below 600€℃, and the FeTiP phase was dissolved above 900€℃. The FeTiP precipitates would inhibit the migration of grain boundaries during the recrystallization in certain extent, and weaken the density of {111} fiber texture, which resulted in the reduction of r value. The relationship between composition and processing parameters, as well as their influence on the mechanical properties is discussed.

  6. Low friction and high strength of 316L stainless steel tubing for biomedical applications

    International Nuclear Information System (INIS)

    Amanov, Auezhan; Lee, Soo–Wohn; Pyun, Young–Sik

    2017-01-01

    We propose herein a nondestructive surface modification technique called ultrasonic nanocrystalline surface modification (UNSM) to increase the strength and to improve the tribological performance of 316L stainless steel (SS) tubing. Nanocrystallization along nearly the complete tube thickness of 200 μm was achieved by UNSM technique that was confirmed by electron backscatter diffraction (EBSD). Nano-hardness of the untreated and UNSM-treated specimens was measured using a nanoindentation. Results revealed that a substantial increase in hardness was obtained for the UNSM-treated specimen that may be attributed to the nanocrystallization and refined grains. Stress-strain behavior of the untreated and UNSM-treated specimens was assessed by a 3-point bending test. It was found that the UNSM-treated specimen exhibited a much higher strength than that of the untreated specimen. In addition, the tribological behavior of the untreated and UNSM-treated specimens with an outer diameter (OD) of 1.6 mm and an inner diameter (ID) of 1.2 mm was investigated using a cylinder-on-cylinder (crossed tubes of equal radius) tribo-tester against itself under dry conditions at ambient temperature. The friction coefficient and wear resistance of the UNSM-treated specimen were remarkably improved compared to that of the untreated specimen. The significant increase in hardness after UNSM treatment is responsible for the improved friction coefficient and wear resistance of the tubing. Thus, the UNSM technique was found to be beneficial to improving the mechanical and tribological properties of 316L SS tubing for various potential biomedical applications, in particular for coronary artery stents. - Highlights: • A newly developed setting for tubing was employed. • A nanocrystalline surface was produced by UNSM technique. • High hardness and strength were obtained by UNSM technique. • Friction and wear behavior was improved by UNSM technique.

  7. Low friction and high strength of 316L stainless steel tubing for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Amanov, Auezhan, E-mail: aamanov@outlook.com [Department of Mechanical Engineering, Sun Moon University, Asan 31460 (Korea, Republic of); Lee, Soo–Wohn [Department of Metals and Materials Engineering, Sun Moon University, Asan 31460 (Korea, Republic of); Pyun, Young–Sik [Department of Mechanical Engineering, Sun Moon University, Asan 31460 (Korea, Republic of)

    2017-02-01

    We propose herein a nondestructive surface modification technique called ultrasonic nanocrystalline surface modification (UNSM) to increase the strength and to improve the tribological performance of 316L stainless steel (SS) tubing. Nanocrystallization along nearly the complete tube thickness of 200 μm was achieved by UNSM technique that was confirmed by electron backscatter diffraction (EBSD). Nano-hardness of the untreated and UNSM-treated specimens was measured using a nanoindentation. Results revealed that a substantial increase in hardness was obtained for the UNSM-treated specimen that may be attributed to the nanocrystallization and refined grains. Stress-strain behavior of the untreated and UNSM-treated specimens was assessed by a 3-point bending test. It was found that the UNSM-treated specimen exhibited a much higher strength than that of the untreated specimen. In addition, the tribological behavior of the untreated and UNSM-treated specimens with an outer diameter (OD) of 1.6 mm and an inner diameter (ID) of 1.2 mm was investigated using a cylinder-on-cylinder (crossed tubes of equal radius) tribo-tester against itself under dry conditions at ambient temperature. The friction coefficient and wear resistance of the UNSM-treated specimen were remarkably improved compared to that of the untreated specimen. The significant increase in hardness after UNSM treatment is responsible for the improved friction coefficient and wear resistance of the tubing. Thus, the UNSM technique was found to be beneficial to improving the mechanical and tribological properties of 316L SS tubing for various potential biomedical applications, in particular for coronary artery stents. - Highlights: • A newly developed setting for tubing was employed. • A nanocrystalline surface was produced by UNSM technique. • High hardness and strength were obtained by UNSM technique. • Friction and wear behavior was improved by UNSM technique.

  8. Effects of cooling rate, austenitizing temperature and austenite deformation on the transformation behavior of high-strength boron steel

    International Nuclear Information System (INIS)

    Mun, Dong Jun; Shin, Eun Joo; Choi, Young Won; Lee, Jae Sang; Koo, Yang Mo

    2012-01-01

    Highlights: ► Non-equilibrium segregation of B in steel depends strongly on the cooling rate. ► A higher austenitization temperature reduced the B hardenability effect. ► An increase in B concentration at γ grain boundaries accelerates the B precipitation. ► The loss of B hardenability effect is due to intragranular borocarbide precipitation. ► The controlled cooling after hot deformation increased the B hardenability effect. - Abstract: The phase transformation behavior of high-strength boron steel was studied considering the segregation and precipitation behavior of boron (B). The effects of cooling rate, austenitizing temperature and austenite deformation on the transformation behavior of B-bearing steel as compared with B-free steel were investigated by using dilatometry, microstructural observations and analysis of B distribution. The effects of these variables on hardenability were discussed in terms of non-equilibrium segregation mechanism and precipitation behavior of B. The retardation of austenite-to-ferrite transformation by B addition depends strongly on cooling rate (CR); this is mainly due to the phenomenon of non-equilibrium grain boundary segregation of B. The hardenability effect of B-bearing steel decreased at higher austenitizing temperature due to the precipitation of borocarbide along austenite grain boundaries. Analysis of B distribution by second ion mass spectroscopy confirmed that the grain boundary segregation of B occurred at low austenitizing temperature of 900 °C, whereas B precipitates were observed along austenite grain boundaries at high austenitizing temperature of 1200 °C. The significant increase in B concentration at austenite grain boundaries due to grain coarsening and a non-equilibrium segregation mechanism may lead to the B precipitation. In contrast, solute B segregated to austenite grain boundaries during cooling after heavy deformation became more stable because the increase in boundary area by grain

  9. The mechanical properties and microstructures of vanadium bearing high strength dual phase steels processed with continuous galvanizing line simulations

    Science.gov (United States)

    Gong, Yu

    For galvanized or galvannealed steels to be commercially successful, they must exhibit several attributes: (i) easy and inexpensive processing in the hot mill, cold mill and on the coating line, (ii) high strength with good formability and spot weldability, and (iii) good corrosion resistance. At the beginning of this thesis, compositions with a common base but containing various additions of V or Nb with or without high N were designed and subjected to Gleeble simulations of different galvanizing(GI), galvannealing(GA) and supercooling processing. The results revealed the phase balance was strongly influenced by the different microalloying additions, while the strengths of each phase were somewhat less affected. Our research revealed that the amount of austenite formed during intercritical annealing can be strongly influenced by the annealing temperature and the pre-annealing conditions of the hot band (coiling temperature) and cold band (% cold reduction). In the late part of this thesis, the base composition was a low carbon steel which would exhibit good spot weldability. To this steel were added two levels of Cr and Mo for strengthening the ferrite and increasing the hardenability of intercritically formed austenite. Also, these steels were produced with and without the addition of vanadium in an effort to further increase the strength. Since earlier studies revealed a relationship between the nature of the starting cold rolled microstructure and the response to CGL processing, the variables of hot band coiling temperature and level of cold reduction prior to annealing were also studied. Finally, in an effort to increase strength and ductility of both the final sheet (general formability) and the sheared edges of cold punched holes (local formability), a new thermal path was developed that replaced the conventional GI ferrite-martensite microstructure with a new ferrite-martensite-tempered martensite and retained austenite microstructure. The new

  10. Influence of cold deformation and annealing on hydrogen embrittlement of cold hardening bainitic steel for high strength bolts

    Energy Technology Data Exchange (ETDEWEB)

    Hui, Weijun, E-mail: wjhui@bjtu.edu.cn [School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044 (China); Zhang, Yongjian; Zhao, Xiaoli; Shao, Chengwei [School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044 (China); Wang, Kaizhong; Sun, Wei; Yu, Tongren [Technical Center, Maanshan Iron & Steel Co., Ltd., Maanshan 243002, Anhui (China)

    2016-04-26

    The influence of cold drawing and annealing on hydrogen embrittlement (HE) of newly developed cold hardening bainitic steel was investigated by using slow strain rate testing (SSRT) and thermal desorption spectrometry (TDS), for ensuring safety performance of 10.9 class high strength bolts made of this kind of steel against HE under service environments. Hydrogen was introduced into the specimen by electrochemical charging. TDS analysis shows that the hydrogen-charged cold drawn specimen exhibits an additional low-temperature hydrogen desorption peak besides the original high-temperature desorption peak of the as-rolled specimen, causing remarkable increase of absorbed hydrogen content. It is found that cold drawing significantly enhances the susceptibility to HE, which is mainly attributed to remarkable increase of diffusible hydrogen absorption, the occurrence of strain-induced martensite as well as the increase of strength level. Annealing after cold deformation is an effective way to improve HE resistance and this improvement strongly depends on annealing temperature, i.e. HE susceptibility decreases slightly with increasing annealing temperature up to 200 °C and then decreases significantly with further increasing annealing temperature. This phenomenon is explained by the release of hydrogen, the recovery of cold worked microstructure and the decrease of strength with increasing annealing temperature.

  11. Corrosion Behavior of Metal Active Gas Welded Joints of a High-Strength Steel for Automotive Application

    Science.gov (United States)

    Garcia, Mainã Portella; Mantovani, Gerson Luiz; Vasant Kumar, R.; Antunes, Renato Altobelli

    2017-10-01

    In this work, the corrosion behavior of metal active gas-welded joints of a high-strength steel with tensile yield strength of 900 MPa was investigated. The welded joints were obtained using two different heat inputs. The corrosion behavior has been studied in a 3.5 wt.% NaCl aqueous solution using electrochemical impedance spectroscopy and potentiodynamic polarization tests. Optical microscopy images, scanning electron microscopy and transmission electron microscopy with energy-dispersive x-ray revealed different microstructural features in the heat-affected zone (HAZ) and the weld metal (WM). Before and after the corrosion process, the sample was evaluated by confocal laser scanning microscopy to measure the depth difference between HAZ and WM. The results showed that the heat input did not play an important role on corrosion behavior of HSLA steel. The anodic and cathodic areas of the welded joints could be associated with depth differences. The HAZ was found to be the anodic area, while the WM was cathodic with respect to the HAZ. The corrosion behavior was related to the amount and orientation nature of carbides in the HAZ. The microstructure of the HAZ consisted of martensite and bainite, whereas acicular ferrite was observed in the weld metal.

  12. Application of carbon extraction replicas in grain-size measurements of high-strength steels using TEM

    International Nuclear Information System (INIS)

    Poorhaydari, Kioumars; Ivey, Douglas G.

    2007-01-01

    In this paper, the application of carbon extraction replicas in grain-size measurements is introduced and discussed. Modern high-strength microalloyed steels, used as structural or pipeline materials, have very small grains with substructures. Replicas used in transmission electron microscopes can resolve the grain boundaries and can be used for systematic measurement of grain size in cases where the small size of the grains pushes the resolution of conventional optical microscopes. The grain-size variations obtained from replicas are compared with those obtained from optical and scanning electron microscopy. An emphasis is placed on the importance of using the correct technique for imaging and the optimal magnification. Grain-size measurements are used for estimation of grain-boundary strengthening contribution to yield strength. The variation in grain size is also correlated with hardness in the base metal of several microalloyed steels, as well as the fine-grained heat-affected zone of a weld structure with several heat inputs

  13. Experimental and Numerical Investigations of Applying Tip-bottomed Tool for Bending Advanced Ultra-high Strength Steel Sheet

    Science.gov (United States)

    Mitsomwang, Pusit; Borrisutthekul, Rattana; Klaiw-awoot, Ken; Pattalung, Aran

    2017-09-01

    This research was carried out aiming to investigate the application of a tip-bottomed tool for bending an advanced ultra-high strength steel sheet. The V-die bending experiment of a dual phase steel (DP980) sheet which had a thickness of 1.6 mm was executed using a conventional bending and a tip-bottomed punches. Experimental results revealed that the springback of the bent worksheet in the case of the tip-bottomed punch was less than that of the conventional punch case. To further discuss bending characteristics, a finite element (FE) model was developed and used to simulate the bending of the worksheet. From the FE analysis, it was found that the application of the tip-bottomed punch contributed the plastic deformation to occur at the bending region. Consequently, the springback of the worksheet reduced. In addition, the width of the punch tip was found to affect the deformation at the bending region and determined the springback of the bent worksheet. Moreover, the use of the tip-bottomed punch resulted in the apparent increase of the surface hardness of the bent worksheet, compared to the bending with the conventional punch.

  14. Highly corrosive and high strength Cr-Mn series austenite sintered steel, method of manufacturing the same and the usage

    International Nuclear Information System (INIS)

    Arai, Masahiko; Hirano, Tatsumi; Aono, Yasuhisa; Kato, Takahiko; Kondo, Yasuo; Inagaki, Masatoshi

    1998-01-01

    The steel of the present invention comprises a highly corrosive and high strength Cr-Mn series austenite sintered steel containing up to 0.1% of C, up to 1% of Si, up to 0.4% of N, from 9 to 25% of (Mn + Ni) within a range of more than 2% and up to 15% of Mn and from 14 to 20% of Cr, and it has an average crystal grain size of 1μm or less and comprises at least 90 vol% of an austenite phase. In addition, the alloy is incorporated with one or more elements of up to 3% of Mo, 1.0% of Ti, up to 2.0% of Zr and up to 1.0% of Nb in an amount of up to 2.0% in total of Ti, Zr and Nb. When these materials are used under the circumstance where materials are generally deteriorated in grain boundaries, since they are excellent in corrosion resistance and strength, remarkable effects can be attained in the improvement of the safety and the reliability of products. In addition, they are applied not only to a reactor core but also to a water-cooled circumstance and a circumstance where hydrogen exists, thereby capable of exhibiting remarkable effects. (T.M.)

  15. Tensile strength/yield strength (TS/YS) ratios of high-strength steel (HSS) reinforcing bars

    Science.gov (United States)

    Tavio, Anggraini, Retno; Raka, I. Gede Putu; Agustiar

    2018-05-01

    The building codes such as American Concrete Institute (ACI) 318M-14 and Standard National Indonesia (SNI) 2847:2013 require that the ratio of tensile strength (TS) and yield strength (YS) should not less than 1.25. The requirement is based on the assumption that a capability of a structural member to develop inelastic rotation capacity is a function of the length of the yield region. This paper reports an investigation on various steel grades, namely Grades 420, 550, 650, and 700 MPa, to examine the impact of different TS/YS ratios if it is less or greater than the required value. Grades 550, 650, and 700 MPa were purposely selected with the intention to examine if these higher grades are still promising to be implemented in special structural systems since they are prohibited by the building codes for longitudinal reinforcement, whereas Grade 420 MPa bars are the maximum limit of yield strength of reinforcing bars that is allowable for longitudinal reinforcement of special structural systems. Tensile tests of these steel samples were conducted under displacement controlled mode to capture the complete stress-strain curves and particularly the post-yield response of the steel bars. From the study, it can be concluded that Grade 420 performed higher TS/YS ratios and they were able to reach up to more than 1.25. However, the High Strength Still (HSS) bars (Grades 550, 600, and 700 MPa) resulted in lower TS/YS ratios (less than 1.25) compared with those of Grade 420 MPa.

  16. Characterization of surface defects in high strength galvannealed steels; Charakterisierung der Oberflaechendefekte in hochfesten, nach dem Verzinken waermebehandelten Staehlen

    Energy Technology Data Exchange (ETDEWEB)

    Hong, M.H. [Automotive Steels Research Center, Technical Research Labs., POSCO, Gwangyang (Korea)

    2004-03-01

    Hot-dip galvannealed steel sheets, in which Fe of the substrate steel diffused into upper coating layer so as to be alloyed with Zn through a galvannealing above 450 C followed by hot-dip galvanizing process, generally show superior corrosion resistance, weldability and paintability. They have been widely used in automobile, construction, appliance industries and others. In particular, many researches have been carrying out to produce defect-free coating for an exposed automotive body panel. In the present study, high strength interstitial-free steel sheets containing Mn and P were galvannealed in an industrial continuous galvanizing line and defects on the coating surface were investigated by optical microscopy, scanning electron microscopy and transmission electron microscopy. It is clear that the quality of the substrate strongly affects galvannealed coating and it is essential to keep clean surface just before immediately dipping into molten Zn pot. (orig.) [German] Feuerverzinkte und danach waermebehandelte Stahlbleche, wo Fe aus dem Substratstahl in die obere Beschichtungsschicht diffundiert wie bei Legieren mit Zn und einer Waermebehandlung von ueber 450 C, gefolgt von einem Feuerverzinkverfahren, zeigen im Allgemeinen hervorragende Korrosionsbestaendigkeit, Schweissbarkeit und Anstreichbarkeit. Sie finden ein breites Einsatzgebiet bei Automobilen, im Bauwesen, in Werkzeugindustrien und anderen. Insbesondere wurde von vielen Forschern versucht, eine fehlerfreie Beschichtung fuer ein ungeschuetztes Karosserieteil herzustellen. In der vorliegenden Arbeit wurden hochfeste porenfreie Stahlbleche mit Mn- und P-Gehalt nach dem Verzinken in einer industriellen Endlos-Verzinkungslinie (CGL) waermebehandelt, wobei die Defekte auf der Schichtoberflaeche lichtmikroskopisch, rasterund transmissionselektronenmikroskopisch untersucht wurden. Klar ist, dass die Qualitaet des Substrats die nach dem Verzinken waermebehandelten Schichten beeinflusst und es ist von grosser

  17. Effects of Post-Weld Heat Treatment on the Microstructure and Toughness of Flash Butt Welded High-Strength Low-Alloy Steel

    Science.gov (United States)

    Shajan, Nikhil; Arora, Kanwer Singh; Asati, Brajesh; Sharma, Vikram; Shome, Mahadev

    2018-04-01

    Effect of post-weld heat treatment on the weld microstructure, texture, and its correlation to the toughness of flash butt welded joints were investigated. Upon flash butt welding, the α and γ-fiber in the parent material converted to Goss (110)[001], rotated Goss (110)[1 \\bar{1} 0], and rotated cube (001)[1 \\bar{1} 0], (001)[ \\overline{11} 0] textures along the fracture plane. Formation of these detrimental texture components was a result of shear deformation and recrystallization of austenite at temperatures above T nr resulting in a drop of toughness at the weld zone. Inter-critical and sub-critical annealing cycles proved to be less effective in reducing the Goss (110)[001], rotated Goss (110)[1 \\bar{1} 0], and rotated cube (001)[1 \\bar{1} 0], (001)[ \\overline{11} 0] texture components, and therefore, toughness values remained unaffected. Post-weld heat treatment in the austenite phase field at 1000 °C for 5 seconds resulted in the formation of new grains with different orientations leading to a reduction in the texture intensities of both Goss and rotated Goss components and therefore improved weld zone toughness. Prolonged annealing time was found to be ineffective in improving the toughness due to grain growth.

  18. Metallurgical transformations of high strength low alloys steels 450 EMZ type II in the heat affected zone during multipass submerged arc welding

    International Nuclear Information System (INIS)

    Gonzalez-Palma, R.; Suarez-Bermejo, J. C.; Vicario, F. J.; Munoz, A.

    2006-01-01

    A considerable number of crack tip opening displacement tests in the heat affected zone (HAZ) of multipass welds. performed in accordance with standards BS 5762 and EEMUA, are rejected since the crack is not inside the coarse grain region at 0.5 mm from the fusion border, as well as the quantity of the crack length in percentage, that the crack goes through the inter critical region instead of in the grain coarse region as it would correspond. This circumstance make advisable to carry out a metallographic study of he inter critical zone in the HAZ as well as the corresponding tests, in order analyze the inter critical region brittleness reasons. The study is performed on a HSLA 75 mm thick panel 450 EMZ type II, welded under a SAW process with heat input and welded parameters controlled, without any post weld heat treatment. (Author)

  19. The nature of rusts and corrosion characteristics of low alloy and plain carbon steels in three kinds of concrete pore solution with salinity and different pH

    International Nuclear Information System (INIS)

    Singh, J.K.; Singh, D.D.N.

    2012-01-01

    Highlights: ► LAS rebars corrode 2–3 times slower than PCS in concrete pore solution and mortars. ► Raman and XRD studies show that goethite and maghemite phases of rusts formed on LAS. ► On PCS unstable phases of lepidocrocite and akaganite are formed. ► EIS confirms more stable rust on LAS than on PCS. ► A model is proposed to explain formation of passive film on surface of steels. - Abstract: Correlation of corrosion characteristics and nature of rusts on low alloy (LA) and plain carbon (PC) steels exposed in simulated concrete pore solution of different pH is studied. Rusts formed under wet/dry conditions are examined by Raman spectroscopy and X-ray diffraction. LA rust is more adherent compared to PC as confirmed by measurement of weight in gain and electrochemical studies. EIS results show improvement in protective properties of steels with passage of time. Both steels are found prone to pitting attack in chloride contaminated pore solution. Rebars embedded in concrete exhibit same trend as recorded in solution exposure tests.

  20. Ballistic Limit of High-Strength Steel and Al7075-T6 Multi-Layered Plates Under 7.62-mm Armour Piercing Projectile Impact

    OpenAIRE

    Rahman, N. A.; Abdullah, S.; Zamri, W. F. H.; Abdullah, M. F.; Omar, M. Z.; Sajuri, Z.

    2016-01-01

    Abstract This paper presents the computational-based ballistic limit of laminated metal panels comprised of high strength steel and aluminium alloy Al7075-T6 plate at different thickness combinations to necessitate the weight reduction of existing armour steel plate. The numerical models of monolithic configuration, double-layered configuration and triple-layered configuration were developed using a commercial explicit finite element code and were impacted by 7.62 mm armour piercing projectil...

  1. Modeling of the hot flow behavior of advanced ultra-high strength steels (A-UHSS) microalloyed with boron

    Energy Technology Data Exchange (ETDEWEB)

    Mejía, I., E-mail: imejia@umich.mx [Instituto de Investigaciones Metalúrgicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio “U”, Ciudad Universitaria, 58066 Morelia, Michoacán (Mexico); Altamirano, G.; Bedolla-Jacuinde, A. [Instituto de Investigaciones Metalúrgicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio “U”, Ciudad Universitaria, 58066 Morelia, Michoacán (Mexico); Cabrera, J.M. [Departament de Ciència dels Materials i Enginyeria Metallúrgica, ETSEIB – Universitat Politècnica de Catalunya, Av. Diagonal 647, 08028 Barcelona (Spain); Fundació CTM Centre Tecnològic, Av. de las Bases de Manresa, 1, 08240 Manresa (Spain)

    2014-07-29

    In this research work, modeling of the hot flow behavior was carried out in a low carbon advanced ultra-high strength steels (A-UHSS) microalloyed with different amounts of boron (14, 33, 82, 126 and 214 ppm). For this purpose, experimental stress–strain data of uniaxial hot-compression tests over a wide range of temperatures (1223, 1273, 1323 and 1373 K (950, 1000, 1050 and 1100 °C)) and strain rates (10{sup −3}, 10{sup −2} and 10{sup −1} s{sup −1}) were used. The stress–strain relationships as a function of temperature and strain rate were successfully described on the basis of the approach proposed by Estrin, Mecking, and Bergström, together with the classical Avrami equation and the conventional hyperbolic sine function. The analysis of the modeling parameters of the hot flow curves shows that boron additions to A-UHSS play a major role in softening mechanisms rather than on hardening. The peak stress (σ{sub p}) and steady-state stress (σ{sub ss}) values show a decreasing trend with increasing boron content, which indicates that boron additions promote a solid solution softening effect additional to that produced by DRX. The time for 50% recrystallization (t{sub 50%}) tends to increase with boron additions, revealing that boron additions cause a delay of the DRX kinetics during hot deformation. Similarly, the presence of boron in the steel decreases the apparent activation energy for recrystallization (Q{sub t}), indicating that boron additions accelerate the onset of DRX. The constitutive equations developed in this way provided an excellent description of the experimental hot flow curves.

  2. Modeling of the hot flow behavior of advanced ultra-high strength steels (A-UHSS) microalloyed with boron

    International Nuclear Information System (INIS)

    Mejía, I.; Altamirano, G.; Bedolla-Jacuinde, A.; Cabrera, J.M.

    2014-01-01

    In this research work, modeling of the hot flow behavior was carried out in a low carbon advanced ultra-high strength steels (A-UHSS) microalloyed with different amounts of boron (14, 33, 82, 126 and 214 ppm). For this purpose, experimental stress–strain data of uniaxial hot-compression tests over a wide range of temperatures (1223, 1273, 1323 and 1373 K (950, 1000, 1050 and 1100 °C)) and strain rates (10 −3 , 10 −2 and 10 −1 s −1 ) were used. The stress–strain relationships as a function of temperature and strain rate were successfully described on the basis of the approach proposed by Estrin, Mecking, and Bergström, together with the classical Avrami equation and the conventional hyperbolic sine function. The analysis of the modeling parameters of the hot flow curves shows that boron additions to A-UHSS play a major role in softening mechanisms rather than on hardening. The peak stress (σ p ) and steady-state stress (σ ss ) values show a decreasing trend with increasing boron content, which indicates that boron additions promote a solid solution softening effect additional to that produced by DRX. The time for 50% recrystallization (t 50% ) tends to increase with boron additions, revealing that boron additions cause a delay of the DRX kinetics during hot deformation. Similarly, the presence of boron in the steel decreases the apparent activation energy for recrystallization (Q t ), indicating that boron additions accelerate the onset of DRX. The constitutive equations developed in this way provided an excellent description of the experimental hot flow curves

  3. Analysis of microstructural variation and mechanical behaviors in submerged arc welded joint of high strength low carbon bainitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Lan, Liangyun, E-mail: lly.liangyun@gmail.com [State Key Laboratory of Rolling Technology and Automation, Northeastern University, Shenyang 110819 (China); Qiu, Chunlin; Zhao, Dewen; Gao, Xiuhua; Du, Linxiu [State Key Laboratory of Rolling Technology and Automation, Northeastern University, Shenyang 110819 (China)

    2012-12-15

    Microstructural variation in high strength low carbon bainitic steel weldment was investigated in detail by means of optical microscope, transmission electron microscope and scanning electron microscope equipped with electron backscattered diffraction. The results showed that the welded joint has various microstructures such as acicular ferrite, coarse granular ferrite and fine polygonal ferrite. The martensite-austenite (MA) constituent has a variable structure in each sub-zone, which includes fully martensite and fully retained austenite. Meanwhile, the fine grained heat affected zone has higher content of retained austenite than the welded metal (WM) and coarse grained heat affected zone (CGHAZ). The orientation relationship between retained austenite and product phases in the WM and CGHAZ is close to Kurdjumov-Sachs relationship. However, the polygonal ferrite in the fine grained HAZ has no specific orientation relationship with the neighboring retained austenite. The toughness of the coarse grained region is much lower than that of the WM because the coarse bainite contains many large MA constituents to assist the nucleation of microcracks and coarse cleavage facet lowers the ability to inhibit the crack propagation.

  4. Effect of welding heat input on microstructures and toughness in simulated CGHAZ of V–N high strength steel

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Jun, E-mail: hujunral@163.com [The State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819 (China); Du, Lin-Xiu [The State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819 (China); Wang, Jian-Jun [Institute of Materials Research, School of Material and Metallurgy, Northeastern university, Shenyang 110819 (China); Gao, Cai-Ru [The State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819 (China)

    2013-08-10

    For the purpose of obtaining the appropriate heat input in the simulated weld CGHAZ of the hot-rolled V–N microalloyed high strength S-lean steel, the microstructural evolution, hardness, and toughness subjected to four different heat inputs were investigated. The results indicate that the hardness decreases with increase in the heat input, while the toughness first increases and then decreases. Moderate heat input is optimum, and the microstructure is fine polygonal ferrite, granular bainite, and acicular ferrite with dispersive nano-scale V(C,N) precipitates. The hardness is well-matched with that of the base metal. Moreover, the occurrence of energy dissipating micromechanisms (ductile dimples, tear ridges) contributes to the maximum total impact energy. The detrimental effect of the free N atoms on the toughness can be partly remedied by optimizing the microstructural type, fraction, morphologies, and crystallographic characteristics. The potency of V(C,N) precipitates on intragranular ferrite nucleation without MnS assistance under different heat inputs was discussed.

  5. Research on the Cross Section Precision of High-strength Steel Tube with Rectangular Section in Rotary Draw Bending

    Science.gov (United States)

    Yang, Hongliang; Zhao, Hao; Xing, Zhongwen

    2017-11-01

    For the demand of energy conservation and security improvement, high-strength steel (HSS) is increasingly being used to produce safety related automotive components. However, cross-section distortion occurs easily in bending of HSS tube with rectangular section (RS), affecting the forming precision. HSS BR1500HS tube by rotary draw bending is taken as the study object and a description method of cross-section distortion is proposed in this paper. The influence on cross-section precision of geometric parameters including cross-section position, thickness of tube, bend radius etc. are studied by experiment. Besides, simulation of the rotary draw bending of HSS tube with rectangular section by ABAQUS are carried out and compared to the experiment. The results by simulation agree well with the experiment and show that the cross-section is approximately trapezoidal after distortion; the maximum of distortion exists at 45 ∼ 60° of the bending direction; and the absolute and relative distortion values increase with the decreasing of tube thickness or bending radius. Therefore, the results can provide a reference for the design of geometric parameters of HSS tube with rectangular section in rotary draw bending.

  6. The effect of the precipitation of coherent and incoherent precipitates on the ductility and toughness of high-strength steel

    International Nuclear Information System (INIS)

    Hamano, R.

    1993-01-01

    The effect of the coexistence of coherent and incoherent precipitates, such as M 2 C and NiAl, on the ductility and plane strain fracture toughness of 5 wt pct Ni-2 wt pct Al-based high-strength steels was studied. In order to disperse coherent and incoherent precipitates, the heat treatments were carried out as follows: (a) austenitizing at 1373 K, (b) tempering at 1023 or 923 K for dispersing the incoherent precipitates of M 2 C and NiAl, and then (c) aging at 843 K for 2.4 ks to disperse the coherent precipitate of NiAl into the matrix, which contains incoherent precipitates, such as M 2 C and NiAl. The results were obtained as follows: (a) when the strengthening precipitates consist of coherent ones, such as M 2 C and/or NiAl, the ductility and toughness are extremely low, and (b) when the strengthening precipitates consist of coherent and incoherent precipitates, such as M 2 C and NiAl, the ductility and fracture toughness significantly increase with no loss in strength. It is shown that the coexistence of coherent and incoherent precipitates increases homogeneous deformation, thus preventing local strain concentration and early cleavage cracking. Accordingly, the actions of coherent precipitates in strengthening the matrix and of incoherent precipitates in promoting, homogeneous deformation can be expected to increase both the strength and toughness of the material

  7. Prediction Model of Cutting Parameters for Turning High Strength Steel Grade-H: Comparative Study of Regression Model versus ANFIS

    Directory of Open Access Journals (Sweden)

    Adel T. Abbas

    2017-01-01

    Full Text Available The Grade-H high strength steel is used in the manufacturing of many civilian and military products. The procedures of manufacturing these parts have several turning operations. The key factors for the manufacturing of these parts are the accuracy, surface roughness (Ra, and material removal rate (MRR. The production line of these parts contains many CNC turning machines to get good accuracy and repeatability. The manufacturing engineer should fulfill the required surface roughness value according to the design drawing from first trail (otherwise these parts will be rejected as well as keeping his eye on maximum metal removal rate. The rejection of these parts at any processing stage will represent huge problems to any factory because the processing and raw material of these parts are very expensive. In this paper the artificial neural network was used for predicting the surface roughness for different cutting parameters in CNC turning operations. These parameters were investigated to get the minimum surface roughness. In addition, a mathematical model for surface roughness was obtained from the experimental data using a regression analysis method. The experimental data are then compared with both the regression analysis results and ANFIS (Adaptive Network-based Fuzzy Inference System estimations.

  8. Hydrogen permeation and corrosion behavior of high strength steel MCM 430 in cyclic wet-dry SO2 environment

    International Nuclear Information System (INIS)

    Nishimura, Rokuro; Shiraishi, Daisuke; Maeda, Yasuaki

    2004-01-01

    Hydrogen permeation caused by corrosion under a cyclic wet (2 h)-dry (10 h) SO 2 condition was investigated for a high strength steel of MCM 430 by using an electrochemical technique in addition to the corrosion behavior obtained from weight loss measurement and the determination of corrosion products by using X-ray diffraction method. The hydrogen content converted from hydrogen permeation current density was observed in both wet and dry periods. The origin of proton was estimated to be from (1) the hydrolysis of ferrous ions, (2) the oxidation of ferrous ions and ferrous hydroxide, and (3) hydrolysis of SO 2 and formation of FeSO 4 , but not from the dissociation of H 2 O. With respect to the determination of the corrosion products consisting of inner (adherent) and outer (not adherent) layers, the outer layer is composed of α-FeOOH, amorphous phase and γ-FeOOH, where α-FeOOH increases with the increase in the wet-dry cycle, and amorphous phase shows the reverse trend. The corrosion product in the inner layer is mainly Fe 3 O 4 with them. On the basis of the results obtained, the role of the dry or wet period, the effect of SO 2 and the corrosion process during the cyclic wet-dry periods were discussed

  9. <