WorldWideScience

Sample records for high-strength aluminium alloys

  1. 3D printing of high-strength aluminium alloys

    Science.gov (United States)

    Martin, John H.; Yahata, Brennan D.; Hundley, Jacob M.; Mayer, Justin A.; Schaedler, Tobias A.; Pollock, Tresa M.

    2017-09-01

    Metal-based additive manufacturing, or three-dimensional (3D) printing, is a potentially disruptive technology across multiple industries, including the aerospace, biomedical and automotive industries. Building up metal components layer by layer increases design freedom and manufacturing flexibility, thereby enabling complex geometries, increased product customization and shorter time to market, while eliminating traditional economy-of-scale constraints. However, currently only a few alloys, the most relevant being AlSi10Mg, TiAl6V4, CoCr and Inconel 718, can be reliably printed; the vast majority of the more than 5,500 alloys in use today cannot be additively manufactured because the melting and solidification dynamics during the printing process lead to intolerable microstructures with large columnar grains and periodic cracks. Here we demonstrate that these issues can be resolved by introducing nanoparticles of nucleants that control solidification during additive manufacturing. We selected the nucleants on the basis of crystallographic information and assembled them onto 7075 and 6061 series aluminium alloy powders. After functionalization with the nucleants, we found that these high-strength aluminium alloys, which were previously incompatible with additive manufacturing, could be processed successfully using selective laser melting. Crack-free, equiaxed (that is, with grains roughly equal in length, width and height), fine-grained microstructures were achieved, resulting in material strengths comparable to that of wrought material. Our approach to metal-based additive manufacturing is applicable to a wide range of alloys and can be implemented using a range of additive machines. It thus provides a foundation for broad industrial applicability, including where electron-beam melting or directed-energy-deposition techniques are used instead of selective laser melting, and will enable additive manufacturing of other alloy systems, such as non-weldable nickel

  2. 3D printing of high-strength aluminium alloys.

    Science.gov (United States)

    Martin, John H; Yahata, Brennan D; Hundley, Jacob M; Mayer, Justin A; Schaedler, Tobias A; Pollock, Tresa M

    2017-09-20

    Metal-based additive manufacturing, or three-dimensional (3D) printing, is a potentially disruptive technology across multiple industries, including the aerospace, biomedical and automotive industries. Building up metal components layer by layer increases design freedom and manufacturing flexibility, thereby enabling complex geometries, increased product customization and shorter time to market, while eliminating traditional economy-of-scale constraints. However, currently only a few alloys, the most relevant being AlSi10Mg, TiAl6V4, CoCr and Inconel 718, can be reliably printed; the vast majority of the more than 5,500 alloys in use today cannot be additively manufactured because the melting and solidification dynamics during the printing process lead to intolerable microstructures with large columnar grains and periodic cracks. Here we demonstrate that these issues can be resolved by introducing nanoparticles of nucleants that control solidification during additive manufacturing. We selected the nucleants on the basis of crystallographic information and assembled them onto 7075 and 6061 series aluminium alloy powders. After functionalization with the nucleants, we found that these high-strength aluminium alloys, which were previously incompatible with additive manufacturing, could be processed successfully using selective laser melting. Crack-free, equiaxed (that is, with grains roughly equal in length, width and height), fine-grained microstructures were achieved, resulting in material strengths comparable to that of wrought material. Our approach to metal-based additive manufacturing is applicable to a wide range of alloys and can be implemented using a range of additive machines. It thus provides a foundation for broad industrial applicability, including where electron-beam melting or directed-energy-deposition techniques are used instead of selective laser melting, and will enable additive manufacturing of other alloy systems, such as non-weldable nickel

  3. Industrial based volume manufacturing of lightweight aluminium alloy panel components with high-strength and complex-shape for car body and chassis structures

    Science.gov (United States)

    Anyasodor, Gerald; Koroschetz, Christian

    2017-09-01

    To achieve the high volume manufacture of lightweight passenger cars at economic cost as required in the automotive industry, low density materials and new process route will be needed. While high strength aluminium alloy grades: AA7075 and AA6082 may provide the alternative material solution, hot stamping process used for high-strength and ultrahigh strength steels such as boron steel 22mnb5 can enable the volume manufacture of panel components with high-strength and complex-shape for car body and chassis structures. These aluminium alloy grades can be used to manufacture panel components with possible yield strengths ≥ 500 MPa. Due to the differences in material behaviors, hot stamping process of 22mnb5 cannot be directly applied to high strength aluminium alloy grades. Despite recorded successes in laboratories, researches and niche hot forming processes of high strength aluminium alloy grades, not much have been achieved for adequate and efficient volume manufacturing system applicable in the automotive industry. Due to lack of such system and based on expert knowledge in hot stamping production-line, AP&T presents in this paper a hot stamping processing route for high strength aluminium alloys been suitable for production-line development and volume manufacturing.

  4. High strength alloys

    Energy Technology Data Exchange (ETDEWEB)

    Maziasz, Phillip James; Shingledecker, John Paul; Santella, Michael Leonard; Schneibel, Joachim Hugo; Sikka, Vinod Kumar; Vinegar, Harold J.; John, Randy Carl; Kim, Dong Sub

    2012-06-05

    High strength metal alloys are described herein. At least one composition of a metal alloy includes chromium, nickel, copper, manganese, silicon, niobium, tungsten and iron. System, methods, and heaters that include the high strength metal alloys are described herein. At least one heater system may include a canister at least partially made from material containing at least one of the metal alloys. At least one system for heating a subterranean formation may include a tublar that is at least partially made from a material containing at least one of the metal alloys.

  5. High strength alloys

    Energy Technology Data Exchange (ETDEWEB)

    Maziasz, Phillip James [Oak Ridge, TN; Shingledecker, John Paul [Knoxville, TN; Santella, Michael Leonard [Knoxville, TN; Schneibel, Joachim Hugo [Knoxville, TN; Sikka, Vinod Kumar [Oak Ridge, TN; Vinegar, Harold J [Bellaire, TX; John, Randy Carl [Houston, TX; Kim, Dong Sub [Sugar Land, TX

    2010-08-31

    High strength metal alloys are described herein. At least one composition of a metal alloy includes chromium, nickel, copper, manganese, silicon, niobium, tungsten and iron. System, methods, and heaters that include the high strength metal alloys are described herein. At least one heater system may include a canister at least partially made from material containing at least one of the metal alloys. At least one system for heating a subterranean formation may include a tubular that is at least partially made from a material containing at least one of the metal alloys.

  6. Small Crack Growth and Fatigue Life Predictions for High-Strength Aluminium Alloys. Part 1; Experimental and Fracture Mechanics Analysis

    Science.gov (United States)

    Wu, X. R.; Newman, J. C.; Zhao, W.; Swain, M. H.; Ding, C. F.; Phillips, E. P.

    1998-01-01

    The small crack effect was investigated in two high-strength aluminium alloys: 7075-T6 bare and LC9cs clad alloy. Both experimental and analytical investigations were conducted to study crack initiation and growth of small cracks. In the experimental program, fatigue tests, small crack and large crack tests A,ere conducted under constant amplitude and Mini-TWIST spectrum loading conditions. A pronounced small crack effect was observed in both materials, especially for the negative stress ratios. For all loading conditions, most of the fatigue life of the SENT specimens was shown to be crack propagation from initial material defects or from the cladding layer. In the analysis program, three-dimensional finite element and A weight function methods were used to determine stress intensity factors and to develop SIF equations for surface and corner cracks at the notch in the SENT specimens. A plastisity-induced crack-closure model was used to correlate small and large crack data, and to make fatigue life predictions, Predicted crack-growth rates and fatigue lives agreed well with experiments. A total fatigue life prediction method for the aluminum alloys was developed and demonstrated using the crack-closure model.

  7. Materials and simulation modelling of a crash-beam performance - a comparison study showing the potential for weight saving using warm-formed ultra-high strength aluminium alloys

    Science.gov (United States)

    Schlosser, J.; Schneider, R.; Rimkus, W.; Kelsch, R.; Gerstner, F.; Harrison, D. K.; Grant, R. J.

    2017-09-01

    Forming complex parts out of high and ultra-high strength aluminium alloys has proved to be more challenging in comparison to the currently used deep drawing steels. The novel “Warmforming-Process” offers the potential to produce light and highly integrated one-piece components out of such aluminium alloys at elevated temperatures. When considering aluminium alloys in the 7000 group, which can reach strength values (UTS) far above 600 MPa, crash components such as side impact bars would offer a suitable field of application. It is important when taking into consideration the geometric design of structural components to utilise their load bearing characteristics in an efficient manner. This structural optimisation lends itself well to computational simulation techniques, which are essential in the evaluation of appropriate geometry and sizing of complex structures with challenging load scenarios. Crash simulations using the nonlinear finite element method (FEM) of side impact protection beams have been used to demonstrate the weight saving potential of high and ultra-high strength aluminium alloys. A beam design formed from a 7000 series alloy was taken as a reference. Substituting various materials, inter alia press hardened steel (phs), and benchmarking against the original beam’s crash performance, by changing the material thickness, equivalent beams were produced. The thicknesses of the beam geometries have been evaluated by “sizing optimisation” and their possible mass reduction are compared against each other. The nonlinear FEM simulations show good agreement with a corresponding set of experimental results. It was seen that for a common crash performance the ultra-high strength aluminium alloys outperform press hardened steel components in terms of their weight. Thus, there is a significant weight saving potential to be realised if crash components are manufactured using 7000 series aluminium alloys. In this work, the weight saving potential was

  8. Press hardening of alternative high strength aluminium and ultra-high strength steels

    Science.gov (United States)

    Mendiguren, Joseba; Ortubay, Rafael; Agirretxe, Xabier; Galdos, Lander; de Argandoña, Eneko Sáenz

    2016-10-01

    The boron steel press hardening process takes more and more importance on the body in white structure in the last decade. In this work, the advantages of using alternative alloys on the press hardening process is analysed. In particular, the press hardening of AA7075 high strength aluminium and CP800 complex phase ultra-high strength steel is analysed. The objective is to analyse the potential decrease on springback while taking into account the strength change associated with the microstructural modification carried out during the press hardening process. The results show a clear improvement of the final springback in both cases. Regarding the final mechanical properties, an important decrease has been measured in the AA7075 due to the process while an important increase has been found in the CP800 material.

  9. High-strength, low-alloy steels.

    Science.gov (United States)

    Rashid, M S

    1980-05-23

    High-strength, low-alloy (HSLA) steels have nearly the same composition as plain carbon steels. However, they are up to twice as strong and their greater load-bearing capacity allows engineering use in lighter sections. Their high strength is derived from a combination of grain refinement; precipitation strengthening due to minor additions of vanadium, niobium, or titanium; and modifications of manufacturing processes, such as controlled rolling and controlled cooling of otherwise essentially plain carbon steel. HSLA steels are less formable than lower strength steels, but dualphase steels, which evolved from HSLA steels, have ferrite-martensite microstructures and better formability than HSLA steels of similar strength. This improved formability has substantially increased the utilization potential of high-strength steels in the manufacture of complex components. This article reviews the development of HSLA and dual-phase steels and discusses the effects of variations in microstructure and chemistry on their mechanical properties.

  10. Application of a criterion for cold cracking to casting high strength aluminum alloys

    NARCIS (Netherlands)

    Lalpoor, M.; Eskin, D.G.; Fjaer, H.G.; Ten Cate, A.; Ontijt, N.; Katgerman, L.

    2010-01-01

    Direct chill (DC) casting of high strength 7xxx series aluminium alloys is difficult mainly due to solidification cracking (hot cracks) and solid state cracking (cold cracks). Poor thermal properties along with extreme brittleness in the as-cast condition make DC-casting of such alloys a challenging

  11. High strength forgeable tantalum base alloy

    Science.gov (United States)

    Buckman, R. W., Jr.

    1975-01-01

    Increasing tungsten content of tantalum base alloy to 12-15% level will improve high temperature creep properties of existing tantalum base alloys while retaining their excellent fabrication and welding characteristics.

  12. High-strength iron aluminide alloys

    Energy Technology Data Exchange (ETDEWEB)

    McKamey, C.G.; Maziasz, P.J.

    1996-06-01

    Past studies have shown that binary Fe{sub 3}Al possesses low creep-rupture strength compared to many other alloys, with creep-rupture lives of less than 5 h being reported for tests conducted at 593{degrees}C and 207 MPa. The combination of poor creep resistance and low room-temperature tensile ductility due to a susceptibility to environmentally-induced dynamic hydrogen embrittlement has limited use of these alloys for structural applications despite their excellent corrosion properties. With regard to the ductility problem, alloy development efforts have produced significant improvements, with ductilities of 10-20% and tensile yield strengths as high as 500 MPa being reported. Likewise, initial improvements in creep resistance have been realized through small additions of Mo, Nb, and Zr.

  13. Analysis of phase transformation in high strength low alloyed steels

    OpenAIRE

    A. Di Schino

    2017-01-01

    The effect of low-alloy additions on phase transformation of high strength low alloyed steels is reported. Various as-quenched materials with microstructures consisting of low carbon (granular) bainitic, mixed bainitic/martensitic and fully martensitic microstructures were reproduced in laboratory. Results show that for a given cooling rate, an increase of austenite grain size (AGS) and of Mo and Cr contents decreases the transformation temperatures and promotes martensite formation.

  14. A new high strength alloy for hydrogen fueled propulsion systems

    Science.gov (United States)

    Mcpherson, W. B.

    1986-01-01

    This paper describes the development of a high-strength alloy (1241 MPa ultimate and 1103 MPa yield, with little or no degradation in hydrogen) for application in advanced hydrogen-fueled rocket engines. Various compositions of the Fe-Ni-Co-Cr system with elemental additions of Cb, Ti and Al are discussed. After processing, notched tensile specimens were tested in 34.5-MPa hydrogen at room temperature, as the main screening test. The H2/air notch tensile ratio was used as the selection/rejection criterion. The most promising alloys are discussed.

  15. Effect of hydrogen on aluminium and aluminium alloys: A review

    DEFF Research Database (Denmark)

    Ambat, Rajan; Dwarakadasa, E.S.

    1996-01-01

    Susceptibility of aluminium and its alloys towards hydrogen embrittlement has been well established. Still a lot of confusion exists on the question of transport of hydrogen and its possible role in stress corrosion cracking. This paper reviews some of the fundamental properties of hydrogen...... in aluminium and its alloys and its effect on mechanical properties. The importance of hydrogen embrittlement over anodic dissolution to explain the stress corrosion cracking mechanism of these alloys is also examined in considerable detail. The various experimental findings concerning the link between...

  16. APPLICATION OF ANTIFRICTION ALUMINIUM-SILICON ALLOY

    Directory of Open Access Journals (Sweden)

    V. Ju. Stetsenko

    2010-01-01

    Full Text Available It is shown that antifriction aluminium-silicon alloy is perspective material for change of the parts of heavy and expensive bronze in different frictional units of machines and mechanisms.

  17. TORSIONAL DEFORMATION AND FATIGUE BEHAVIOUR OF 6061 ALUMINIUM ALLOY

    Directory of Open Access Journals (Sweden)

    marini marno

    2012-02-01

    Full Text Available Torsional deformation and fatigue behaviour of both solid and thin-walled tubular specimens were made from as-received and heat treated 6061 aluminium alloy were studied. 6061 aluminium alloy have been widely used as a candidate material in automobile, aerospace, aircraft and structural application because of their superior mechanical properties such as high strength to weight ratio, good ductility and others. The differences in cyclic deformation and fatigue behaviours between round and solid specimens where a stress gradient exist, and thin-walled tubular specimens where a uniform stress state is commonly assumed, are also discussed. Von Mises and Tresca criteria has been used to predict the monotonic and cyclic deformation curve and compared to the torsional data obtained from the experiment. The S-N curve was used to present and evaluate the fatigue life of the specimens. Through fractographic analysis, failure criteria of fracture surfaces were observed and discussed. 

  18. Improving mechanical properties of aluminium alloy through ...

    African Journals Online (AJOL)

    This paper investigates the microstructure and mechanical properties of aluminum alloy (Al-Si-Fe) reinforced with coconut shell-ash particulate. The aluminium (Al-Si-Fe) alloy composite was produced by a double-stir casting process at a speed of 700 rpm for 10 and 5 minutes at first and second stirring respectively.

  19. Impact toughness of laser alloyed aluminium AA1200 alloys

    CSIR Research Space (South Africa)

    Mabhali, Luyolo AB

    2013-08-01

    Full Text Available Laser surface alloying of aluminium AA1200 was performed with a 4kW Nd:YAG laser and impact resistance of the alloys was investigated. The alloying powders were a mixture of Ni, Ti and SiC in different proportions. Surfaces reinforced...

  20. Cold compression residual stress reduction in aluminium alloy 7010

    Energy Technology Data Exchange (ETDEWEB)

    Tanner, D.A. [Limerick Univ. (Ireland). Materials Research Centre; Robinson, J.S. [Dept. of Materials Science and Technology, Univ. of Limerick (Ireland); Cudd, R.L. [HDA Forgings Ltd., Redditch, Worchestershire (United Kingdom)

    2000-07-01

    7010 is one of the high strength aluminium alloys used mainly as plate and forgings in the aerospace industry. Its high strength is achieved through a quenching operation where the material is rapidly cooled from the solution heat treatment temperature (475 C) to room temperature. As with all rapid quenching operations, residual stresses develop, leaving the material unsuitable for further machining operations and for service. Regular shaped forgings are generally cold compressed after quenching to relieve residual stresses. The effect of friction, increasing/decreasing the amount of cold compression and applying cold compression in 'bites' on residual stress magnitudes is unknown. This paper aims to study the effect that these variables have on final residual stress patterns through use of a finite element model. (orig.)

  1. Research and Development of Micro-Alloying High-Strength Shipbuilding Plate

    Science.gov (United States)

    Chen, Zhenye

    Based on the technological requirements and market demand, Nb micro-alloying D36 grade high strength shipbuilding plate has been successfully developed in HBIS. In this papers, the rational chemical compositions design, smelting and rolling process of Nb micro-alloying D36 grade high strength shipbuilding plate were introduced. Its various performance figures not only comply with the rules of nine classification societies of CCS, LR, ABS NK, DNV, BV, GL, KR and RINA but meet users' requirements. It indicates that HBIS have capacity producing Nb micro-alloying D36 grade high strength shipbuilding plate.

  2. High strength nickel base alloy, WAZ-16, for applications up to 2200 F

    Science.gov (United States)

    Waters, W. J.; Freche, J. C.

    1974-01-01

    Alloy product is high strength, high temperature nickel base material with higher incipient melting temperature than all known nickel base alloys. It is microstructurally stable and has high impact resistance both before and after prolonged thermal exposure. It contains relatively few alloying constitutents and low content of expensive and rare metals.

  3. Steam generated conversion coating on aluminium alloys

    DEFF Research Database (Denmark)

    Din, Rameez Ud; Jellesen, Morten Stendahl; Ambat, Rajan

    into functional conversion coatings in order to enhance corrosion resistance and adhesion to paint systems. Chromium based conversion coatings have been extensively used on aluminium alloys to improve adhesion of subsequent paint layers and corrosion resistance. However, the use of hexavalent chromium is strictly...... regulated due to its toxic nature and suspected carcinogenicity. So, it is highly imperative to develop other alternatives for chrome conversion coatings. Treatment of aluminium with natural water at elevated temperatures results in the formation of different forms of aluminium oxide (γ-AlO(OH) , Al(OH)3...... pressure steam produced by an autoclave at a temperature of 107 – 121 °C and pressure of 15 -17 psi for 10 minutes to produce a thin coating of aluminium oxide. The aim of this study is to understand the effect of high pressure steam with and without different chemical additives on surface morphology...

  4. Microstructure Development during Solidification of Aluminium Alloys

    NARCIS (Netherlands)

    Ruvalcaba Jimenez, D.G.

    2009-01-01

    This Thesis demonstrates studies on microstructure development during the solidification of aluminium alloys. New insights of structure development are presented here. Experimental techniques such as quenching and in-situ High-brilliance X-ray microscopy were utilized to study the microstructure

  5. Thermal Stir Welding of High Strength and High Temperature Alloys for Aerospace Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Keystone and MSU team propose to demonstrate the feasibility of solid-state joining high strength and temperature alloys utilizing the Thermal Stir Welding...

  6. New weldable high strength aluminum alloy developed for cryogenic service

    Science.gov (United States)

    1966-01-01

    Wrought aluminum alloy has improved low temperature notch toughness and weldability. This alloy can be mill-fabricated to plate and sheet without difficulty. Post-weld aging improves weld ductility and strength properties. A typical treatment is 8 hours at 225 deg F plus 16 hours at 300 deg F.

  7. New tungsten alloy has high strength at elevated temperatures

    Science.gov (United States)

    1966-01-01

    Tungsten-hafnium-carbon alloy has tensile strengths of 88,200 psi at 3000 deg F and 62,500 psi at 3500 deg F. Possible industrial applications for this alloy would include electrical components such as switches and spark plugs, die materials for die casting steels, and heating elements.

  8. A Reaction Coating on Aluminium Alloys by Laser Processing

    NARCIS (Netherlands)

    Zhou, X.B.; Hosson, J.Th.M. De

    1993-01-01

    An aluminium oxide layer of 100 µm in thickness has been successfully coated on aluminium alloy 6061 and pure aluminium using a powder mixture of silicon oxide and aluminium by laser processing. A strong Al/Al2O3 interface was formed. The exothermic chemical reaction between SiO2 and Al may promote

  9. Friction Welding of Aluminium and Aluminium Alloys with Steel

    Directory of Open Access Journals (Sweden)

    Andrzej Ambroziak

    2014-01-01

    Full Text Available The paper presents our actual knowledge and experience in joining dissimilar materials with the use of friction welding method. The joints of aluminium and aluminium alloys with the different types of steel were studied. The structural effects occurring during the welding process were described. The mechanical properties using, for example, (i microhardness measurements, (ii tensile tests, (iii bending tests, and (iv shearing tests were determined. In order to obtain high-quality joints the influence of different configurations of the process such as (i changing the geometry of bonding surface, (ii using the interlayer, or (iii heat treatment was analyzed. Finally, the issues related to the selection of optimal parameters of friction welding process were also investigated.

  10. Steam Initiated Surface Modification of Aluminium Alloys

    DEFF Research Database (Denmark)

    Din, Rameez Ud

    , crystalline nano-particles, role of steam-based treatment on adhesion of industrially applied powder coating, and investigations of a failed painted aluminium window profile due to defects in the extruded profile. Chapters 13 and 14 describe the overall discussion, conclusions and future work based...... the use of aluminium alloys in the painted form requiring a conversion coating to improve the adhesion. Chromate based conversion coating processes are extremely good for these purposes, however the carcinogenic and toxic nature of hexavalent chromium led to the search for more benign and eco...

  11. Advanced nickel base alloys for high strength, corrosion applications

    Science.gov (United States)

    Flinn, John E.

    1998-01-01

    Improved nickel-base alloys of enhanced strength and corrosion resistance, produced by atomization of an alloy melt under an inert gas atmosphere and of composition 0-20Fe, 10-30Cr, 2-12Mo, 6 max. Nb, 0.05-3 V, 0.08 max. Mn, 0.5 max. Si, less than 0.01 each of Al and Ti, less than 0.05 each of P and S, 0.01-0.08C, less than 0.2N, 0.1 max. 0, bal. Ni.

  12. Effects and mechanisms of grain refinement in aluminium alloys

    Indian Academy of Sciences (India)

    Grain refinement plays a crucial role in improving characteristics and properties of cast and wrought aluminium alloys. Generally Al–Ti and Al–Ti–B master alloys are added to the aluminium alloys to grain refine the solidified product. The mechanism of grain refinement is of considerable controversy in the scientific literature ...

  13. Friction factor of CP aluminium and aluminium–zinc alloys

    Indian Academy of Sciences (India)

    Friction factor has been determined for CP aluminium and aluminium–zinc alloys using ring compression test at different temperatures from 303 K to 773 K. It is found that CP aluminium exhibits sticking whereas Al–Zn alloys do not exhibit sticking at elevated temperatures. Hot working of Al–Zn alloy is easier than that of CP ...

  14. Effects and mechanisms of grain refinement in aluminium alloys

    Indian Academy of Sciences (India)

    Unknown

    Abstract. Grain refinement plays a crucial role in improving characteristics and properties of cast and wrought aluminium alloys. Generally Al–Ti and Al–Ti–B master alloys are added to the aluminium alloys to grain refine the solidified product. The mechanism of grain refinement is of considerable controversy in the scientific ...

  15. High Strength Aluminum Alloy For High Temperature Applications

    Science.gov (United States)

    Lee, Jonathan A. (Inventor); Chen, Po-Shou (Inventor)

    2005-01-01

    A cast article from an aluminum alloy has improved mechanical properties at elevated temperatures. The cast article has the following composition in weight percent: Silicon 6.0-25.0, Copper 5.0-8.0, Iron 0.05-1.2, Magnesium 0.5-1.5, Nickel 0.05-0.9, Manganese 0.05-1.2, Titanium 0.05-1.2, Zirconium 0.05-1.2, Vanadium 0.05-1.2, Zinc 0.05-0.9, Strontium 0.001-0.1, Phosphorus 0.001-0.1, and the balance is Aluminum, wherein the silicon-to-magnesium ratio is 10-25, and the copper-to-magnesium ratio is 4-15. The aluminum alloy contains a simultaneous dispersion of three types of Al3X compound particles (X=Ti, V, Zr) having a LI2 crystal structure, and their lattice parameters are coherent to the aluminum matrix lattice. A process for producing this cast article is also disclosed, as well as a metal matrix composite, which includes the aluminum alloy serving as a matrix containing up to about 60% by volume of a secondary filler material.

  16. Dynamic hardness of high-strength steel and titanium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Stepanov, G.; Zubov, V. [Natsional' na Akademyiya Ukrayini, Kiev (Ukraine). Inst. of Strength Problems

    2000-09-01

    Essential results of experimental studies on dynamic hardness (an average pressure on the cone face of a rigid rod at its impact indentation into the surface layer of a thick plate) of a homogeneous rolled steel (HRA) and a titanium alloy are presented in this paper. Significant influence of the impact velocity on dynamic hardness of materials tested follows from the analysis of the experimental data. Specific energy of the formation of a conical cavity (per unit volume of displaced material) decreases with an increase in the indentation velocity and the conical cavity depth. At further process of indentation, corresponding to the initial stage of penetration (the cavity depth exceeds the length of the rod conical head) the average pressure increases with the impact velocity. Combined influence of viscosity effect and rise in temperature at plastic flow should be taken into account in order to explain the above relations. (orig.)

  17. Powder metallurgy processing of high strength turbine disk alloys

    Science.gov (United States)

    Evans, D. J.

    1976-01-01

    Using vacuum-atomized AF2-1DA and Mar-M432 powders, full-scale gas turbine engine disks were fabricated by hot isostatically pressing (HIP) billets which were then isothermally forged using the Pratt & Whitney Aircraft GATORIZING forging process. While a sound forging was produced in the AF2-1DA, a container leak had occurred in the Mar-M432 billet during HIP. This resulted in billet cracking during forging. In-process control procedures were developed to identify such leaks. The AF2-1DA forging was heat treated and metallographic and mechanical property evaluation was performed. Mechanical properties exceeded those of Astroloy, one of the highest temperature capability turbine disk alloys presently used.

  18. Ion Vapour Deposited (IVD) Aluminium Coatings for the Corrosion Protection of High Strength Steel

    Science.gov (United States)

    1991-04-01

    iron rust is detected within many of the pits (Figure 17). This rust forms as the aluminium loses its effectiveness to act as a sacrificial anode ...Cadmium possesses a low rate of corrosion and is therefore a very durable coating. It also provides sacrificial corrosion protection to the underlying...appeared to be remnants of rust (Figure 11). Energy dispersive X- Ray analysis identified silicon, aluminium, iron, manganese and calcium in this

  19. Small-crack effects in high-strength aluminum alloys

    Science.gov (United States)

    Newman, J. C., Jr.; Wu, X. R.; Venneri, S. L.; Li, C. G.

    1994-01-01

    The National Aeronautics and Space Administration and the Chinese Aeronautical Establishment participated in a Fatigue and Fracture Mechanics Cooperative Program. The program objectives were to identify and characterize crack initiation and growth of small cracks (10 microns to 2 mm long) in commonly used US and PRC aluminum alloys, to improve fracture mechanics analyses of surface- and corner-crack configurations, and to develop improved life-prediction methods. Fatigue and small-crack tests were performed on single-edgenotch tension (SENT) specimens and large-crack tests were conducted on center-crack tension specimens for constant-amplitude (stress ratios of -1, 0, and 0.5) and Mini-TWIST spectrum loading. The plastic replica method was used to monitor the initiation and growth of small fatigue cracks at the semicircular notch. Crack growth results from each laboratory on 7075-T6 bare and LC9cs clad aluminum alloys agreed well and showed that fatigue life was mostly crack propagation from a material defect (inclusion particles or void) or from the cladding layer. Finite-element and weight-function methods were used to determine stress intensity factors for surface and corner cracks in the SENT specimens. Equations were then developed and used in a crack growth and crack-closure model to correlate small- and large-crack data and to make life predictions for various load histories. The cooperative program produced useful experimental data and efficient analysis methods for improving life predictions. The results should ultimately improve aircraft structural reliability and safety.

  20. Steam Assisted Accelerated Growth of Oxide Layer on Aluminium Alloys

    DEFF Research Database (Denmark)

    Din, Rameez Ud; Yuksel, Serkan; Jellesen, Morten Stendahl

    2013-01-01

    Corrosion resistance of aluminium alloys is related to the composition and morphology of the oxide film on the surface of aluminium. In this paper we investigated the use of steam on the surface modification of aluminium to produce boehmite films. The study reveals a detailed investigation...

  1. Advanced Gear Alloys for Ultra High Strength Applications

    Science.gov (United States)

    Shen, Tony; Krantz, Timothy; Sebastian, Jason

    2011-01-01

    Single tooth bending fatigue (STBF) test data of UHS Ferrium C61 and C64 alloys are presented in comparison with historical test data of conventional gear steels (9310 and Pyrowear 53) with comparable statistical analysis methods. Pitting and scoring tests of C61 and C64 are works in progress. Boeing statistical analysis of STBF test data for the four gear steels (C61, C64, 9310 and Pyrowear 53) indicates that the UHS grades exhibit increases in fatigue strength in the low cycle fatigue (LCF) regime. In the high cycle fatigue (HCF) regime, the UHS steels exhibit better mean fatigue strength endurance limit behavior (particularly as compared to Pyrowear 53). However, due to considerable scatter in the UHS test data, the anticipated overall benefits of the UHS grades in bending fatigue have not been fully demonstrated. Based on all the test data and on Boeing s analysis, C61 has been selected by Boeing as the gear steel for the final ERDS demonstrator test gearboxes. In terms of potential follow-up work, detailed physics-based, micromechanical analysis and modeling of the fatigue data would allow for a better understanding of the causes of the experimental scatter, and of the transition from high-stress LCF (surface-dominated) to low-stress HCF (subsurface-dominated) fatigue failure. Additional STBF test data and failure analysis work, particularly in the HCF regime and around the endurance limit stress, could allow for better statistical confidence and could reduce the observed effects of experimental test scatter. Finally, the need for further optimization of the residual compressive stress profiles of the UHS steels (resulting from carburization and peening) is noted, particularly for the case of the higher hardness C64 material.

  2. Aerospace Patented High-Strength Aluminum Alloy Used in Commercial Industries

    Science.gov (United States)

    2004-01-01

    NASA structural materials engineer, Jonathan Lee, displays blocks and pistons as examples of some of the uses for NASA's patented high-strength aluminum alloy originally developed at Marshall Space Flight Center in Huntsville, Alabama. NASA desired an alloy for aerospace applications with higher strength and wear-resistance at elevated temperatures. The alloy is a solution to reduce costs of aluminum engine pistons and lower engine emissions for the automobile industry. The Boats and Outboard Engines Division at Bombardier Recreational Products of Sturtevant, Wisconsin is using the alloy for pistons in its Evinrude E-Tec outboard engine line.

  3. A low-cost hierarchical nanostructured beta-titanium alloy with high strength

    Science.gov (United States)

    Devaraj, Arun; Joshi, Vineet V.; Srivastava, Ankit; Manandhar, Sandeep; Moxson, Vladimir; Duz, Volodymyr A.; Lavender, Curt

    2016-04-01

    Lightweighting of automobiles by use of novel low-cost, high strength-to-weight ratio structural materials can reduce the consumption of fossil fuels and in turn CO2 emission. Working towards this goal we achieved high strength in a low cost β-titanium alloy, Ti-1Al-8V-5Fe (Ti185), by hierarchical nanostructure consisting of homogenous distribution of micron-scale and nanoscale α-phase precipitates within the β-phase matrix. The sequence of phase transformation leading to this hierarchical nanostructure is explored using electron microscopy and atom probe tomography. Our results suggest that the high number density of nanoscale α-phase precipitates in the β-phase matrix is due to ω assisted nucleation of α resulting in high tensile strength, greater than any current commercial titanium alloy. Thus hierarchical nanostructured Ti185 serves as an excellent candidate for replacing costlier titanium alloys and other structural alloys for cost-effective lightweighting applications.

  4. Combined Corrosion and Wear of Aluminium Alloy 7075-T6

    NARCIS (Netherlands)

    Liu, Y.; Mol, J.M.C.; Janssen, G.C.A.M.

    2016-01-01

    The aluminium alloy 7075-T6 is widely used in engineering. In some applications, like slurry transport, corrosion and abrasion occur simultaneously, resulting in early material failure. In the present work, we investigated the combined effect of corrosion and wear on the aluminium alloy 7075-T6. We

  5. Deviatoric response of the aluminium alloy, 5083

    Science.gov (United States)

    Appleby-Thomas, Gareth; Hazell, Paul; Millett, Jeremy; Bourne, Neil

    2009-06-01

    Aluminium alloys such as 5083 are established light weight armour materials. As such, the shock response of these materials is of great importance. The shear strength of a material under shock loading provides an insight into its ballistic performance. In this investigation embedded manganin stress gauges have been employed to measure both the longitudinal and lateral components of stress during plate impact experiments over a range of impact stresses. In turn, these results were used to determine the shear strength and to investigate the time dependence of lateral stress behind the shock front to give an indication of material response.

  6. High Strength and Compatible Aluminum Alloy for Hydrogen-Peroxide Fuel Tanks

    Science.gov (United States)

    Lee, Jonathan A.

    2004-01-01

    This paper describes the development of a new high strength and Hydrogen Peroxide (HP) propellant compatible aluminum alloy for NASA Hyper-X vehicle's fuel tanks and structures. The tensile strength of the new alloy is more than 3 times stronger than the conventional 5254 alloy while it still maintains HP compatibility similar to 5254 (Class 1 category). The alloy development strategy consists of selecting certain rare earth and transition metals, with unique electrochemical properties, that will not act as catalysts to decompose liquid HP at the atomic level. Such elements will added to the aluminum alloy and the mixture will be cast and rolled into thin sheet metals. Test coupons are machined from sheet metals for HP long-term exposure testing and mechanical properties testing. In addition, the ability to weld the new alloy using Friction Stir Welding has also been explored. Currently, aluminum alloy 5254 is the state-of-the-art material for HP storage, but its yield strength is very low (420 ksi) and may not be suitable for the development of light-weight fuel tanks for Hyper-X vehicles. The new high strength and HP compatible alloy could represent an enabling material technology for NASA's Hyper-X vehicles, where flight weight reduction is a critical requirement. These X-planes are currently under studied as air-breathing hypersonic research vehicles featuring a lifting body configuration with a Rocket Based Combined Cycle (RBCC) engine system.

  7. RECYCLING AND PROPERTIES OF RECYCLED ALUMINIUM ALLOYS USED IN THE TRANSPORTATION INDUSTRY

    Directory of Open Access Journals (Sweden)

    Lenka KUCHARIKOVÁ

    2016-06-01

    Full Text Available Nowadays, a transportation industry creates a lot of metal scrap because production and use of cars are on the increase worldwide. This is based on the fact that increase in the production of cars increases usage of aluminium alloys in transportation applications. Therefore, it is necessary to reduce the production of components from primary aluminium alloy and increase their replacement with secondary—recycled—aluminium alloys because the production of recycled aluminium alloys is less expensive and less energy-intensive than the creation of new aluminium alloy through the electrolysis. In addition, the recycled aluminium alloys have comparable microstructural parameters and properties as the same primary aluminium alloys.

  8. Commercialization of NASA's High Strength Cast Aluminum Alloy for High Temperature Applications

    Science.gov (United States)

    Lee, Jonathan A.

    2003-01-01

    In this paper, the commercialization of a new high strength cast aluminum alloy, invented by NASA-Marshall Space Flight Center, for high temperature applications will be presented. Originally developed to meet U.S. automotive legislation requiring low- exhaust emission, the novel NASA aluminum alloy offers dramatic improvement in tensile and fatigue strengths at elevated temperatures (450 F-750 F), which can lead to reducing part weight and cost as well as improving performance for automotive engine applications. It is an ideal low cost material for cast components such as pistons, cylinder heads, cylinder liners, connecting rods, turbo chargers, impellers, actuators, brake calipers and rotors. NASA alloy also offers greater wear resistance, dimensional stability, and lower thermal expansion compared to conventional aluminum alloys, and the new alloy can be produced economically from sand, permanent mold and investment casting. Since 2001, this technology was licensed to several companies for automotive and marine internal combustion engines applications.

  9. Friction factor of CP aluminium and aluminium–zinc alloys

    Indian Academy of Sciences (India)

    zinc alloys using ring compression test at different temperatures from 303 K to 773 K. It is found that CP aluminium exhibits stick- ing whereas Al–Zn alloys do not exhibit sticking at elevated temperatures. Hot working of Al–Zn alloy is easier.

  10. Development of High-Strength Nanostructured Magnesium Alloys for Light-Weight Weapon Systems and Vehicles

    Science.gov (United States)

    2014-01-13

    University of California - Los Angeles Office of Contract and Grant Administration 11000 Kinross Avenue, Suite 102 Los Angeles, CA 90095 -1406...Wollersheim, and R. Wurschum. Acta Mater. 49, 737 (2001). 2. Y. Champion, C. Langlois, S. Guerin -Mailly, P. Langlois, J.-L. Bonnentien, and M.J. Hytch...Angeles, Los Angeles, CA 90095 Development of High-Strength Nanostructured Magnesium Alloys for Light-Weight Weapon Systems and Vehicles

  11. Stress corrosion cracking of several high strength ferrous and nickel alloys

    Science.gov (United States)

    Nelson, E. E.

    1971-01-01

    The stress corrosion cracking resistance of several high strength ferrous and nickel base alloys has been determined in a sodium chloride solution. Results indicate that under these test conditions Multiphase MP35N, Unitemp L605, Inconel 718, Carpenter 20Cb and 20Cb-3 are highly resistant to stress corrosion cracking. AISI 410 and 431 stainless steels, 18 Ni maraging steel (250 grade) and AISI 4130 steel are susceptible to stress corrosion cracking under some conditions.

  12. Experimental Investigation and FE Analysis on Constitutive Relationship of High Strength Aluminum Alloy under Cyclic Loading

    OpenAIRE

    Yuanqing Wang; Zhongxing Wang

    2016-01-01

    Experiments of 17 high strength aluminum alloy (7A04) specimens were conducted to investigate the constitutive relationship under cyclic loading. The monotonic behavior and hysteretic behavior were focused on and the fracture surface was observed by scanning electron microscope (SEM) to investigate the microfailure modes. Based on Ramberg-Osgood model, stress-strain skeleton curves under cyclic loading were fitted. Parameters of combined hardening model including isotropic hardening and kinem...

  13. Corrosion of Metal-Matrix Composites with Aluminium Alloy Substrate

    Directory of Open Access Journals (Sweden)

    B. Bobic

    2010-03-01

    Full Text Available The corrosion behaviour of MMCs with aluminium alloy matrix was presented. The corrosion characteristics of boron-, graphite-, silicon carbide-, alumina- and mica- reinforced aluminium MMCs were reviewed. The reinforcing phase influence on MMCs corrosion rate as well as on various corrosion forms (galvanic, pitting, stress corrosion cracking, corrosion fatique, tribocorrosion was discussed. Some corrosion protection methods of aluminium based MMCs were described

  14. Aging Behavior of High-Strength Al Alloy 2618 Produced by Selective Laser Melting

    Science.gov (United States)

    Casati, Riccardo; Lemke, Jannis Nicolas; Alarcon, Adrianni Zanatta; Vedani, Maurizio

    2017-02-01

    High Si-bearing Al alloys are commonly used in additive manufacturing, but they have moderate mechanical properties. New high-strength compositions are necessary to spread the use of additively manufactured Al parts for heavy-duty structural applications. This work focuses on the microstructure, mechanical behavior, and aging response of an Al alloy 2618 processed by selective laser melting. Calorimetric analysis, electron microscopy, and compression tests were performed in order to correlate the mechanical properties with the peculiar microstructure induced by laser melting and thermal treatments

  15. aluminium alloy by ultrasonic cavitation peening

    Directory of Open Access Journals (Sweden)

    Janka Styková

    2017-01-01

    Full Text Available This article presents first results of the experimental investigation of the influence of the cavitation shot less peening process on the properties of stainless steel and aluminium alloy specimens. The cavitation field was generated by an ultrasonic horn submerged in water and operated by an ultrasonic generator. The temperature of the water was controlled by thermometer and adjusted by separate water cooling system. The mass loss, the mass loss rate and the modification of the surface hardness are evaluated for different cavitation exposure intervals. The mass loss was measured by micro weighing scale and the surface hardness by the micro-hardness meter. The presented results indicates the significant improvement in the surface hardness for both tested materials.

  16. Brazing of Titanium with Aluminium Alloys

    Directory of Open Access Journals (Sweden)

    Winiowski A.

    2017-06-01

    Full Text Available This study presents results of vacuum diffusion brazing of Grade 2 titanium with 6082 (AlMg1Si0.6Cu0.3 aluminium alloy using B-Ag72Cu-780 (Ag72Cu28 grade silver brazing metal as an interlayer. Brazed joints underwent shear tests, light-microscopy-based metallographic examinations and structural examinations using scanning electron microscopy (SEM and X-ray energy dispersive spectrometry (EDS. The highest quality and shear strength of 20 MPa was characteristic of joints brazed at 530°C with a 30-minute hold. The structural examinations revealed that in diffusion zone near the boundary with titanium the braze contained solid solutions based on hard and brittle Ti-Al type intermetallic phases determining the strength of the joints.

  17. Experimental Investigation and FE Analysis on Constitutive Relationship of High Strength Aluminum Alloy under Cyclic Loading

    Directory of Open Access Journals (Sweden)

    Yuanqing Wang

    2016-01-01

    Full Text Available Experiments of 17 high strength aluminum alloy (7A04 specimens were conducted to investigate the constitutive relationship under cyclic loading. The monotonic behavior and hysteretic behavior were focused on and the fracture surface was observed by scanning electron microscope (SEM to investigate the microfailure modes. Based on Ramberg-Osgood model, stress-strain skeleton curves under cyclic loading were fitted. Parameters of combined hardening model including isotropic hardening and kinematic hardening were calibrated from test data according to Chaboche model. The cyclic tests were simulated in finite element software ABAQUS. The test results show that 7A04 aluminum alloy has obvious nonlinearity and ultra-high strength which is over 600 MPa, however, with relatively poor ductility. In the cyclic loading tests, 7A04 aluminum alloy showed cyclic hardening behavior and when the compressive strain was larger than 1%, the stiffness degradation and strength degradation occurred. The simulated curves derived by FE model fitted well with experimental curves which indicates that the parameters of this combined model can be used in accurate calculation of 7A04 high strength aluminum structures under cyclic loading.

  18. Numerical Modelling of Drawbeads for Forming of Aluminium Alloys

    DEFF Research Database (Denmark)

    Joshi, Y; Christiansen, Peter; Masters, I

    2016-01-01

    The drawbeads in stamping tools are usually designed based on experience from the forming of steel. However, aluminium alloys display different forming behaviour to steels, which is not reflected in the drawbead design for tools used for stamping aluminium. This paper presents experimental results...

  19. Three body abrasion of laser surface alloyed aluminium AA1200

    CSIR Research Space (South Africa)

    Mabhali, Luyolo AB

    2012-06-01

    Full Text Available Laser surface alloying of aluminium AA1200 was performed with a 4 kW Nd:YAG laser to improve the abrasion wear resistance. Aluminium surfaces reinforced with metal matrix composites and intermetallic phases were achieved. The phases present depended...

  20. A new tribological system test for integrated hot forming and die quenching of aluminium alloy sheets

    Science.gov (United States)

    Snilsberg, Knut Erik; Welo, Torgeir; Moen, Knut Erling; Holmedal, Bjørn; Jensrud, Ola; Koroschetz, Christian

    2017-10-01

    The automotive industry is searching for alternative powertrain and lightweight solutions to meet steadily stricter emission standards and regulations. To leverage the use of high-strength age-hardening aluminium alloys, new processes such as hot forming and in-die quenching are under development in a number of different groups. 0ne of the challenges with in-die quenching is controlling the friction regime stability due to rapidly changing temperatures at both the tool and the blank surfaces under complex deformation modes. In this paper, a cup-based test method is developed and tested for combinations of draw ring materials and lubricants on AA6070 aluminium sheets. Qualitative investigations of formed cups indicate reduced adhesion of aluminium at the tool surface can be obtained by choosing the right combination of tool and lubrication parameters. A correlation between maximum punch force, formed cup height and average Coulomb friction coefficient is observed in both physical experiments and forming simulation.

  1. Adhesive Bonding of Aluminium Alloy A5754 by Epoxy Resins

    Directory of Open Access Journals (Sweden)

    Ivan Michalec

    2013-01-01

    Full Text Available Joining thin sheets of aluminium and its alloys is a promising area in the field of joining materials. Nowadays, joining methods that do not melt the material itself are increasingly being utilised. This paper deals with adhesive bonding of aluminium alloy A5754 by two-component epoxy resins. Theresults show that joints bonded by Hysol 9466 have appropriate mechanical properties, but that joints bonded by Hysol 9492 have better thermal stability.

  2. Influence of Chemical Composition on Porosity in Aluminium Alloys

    OpenAIRE

    Kucharčík L.; Brůna M.; Sládek A.

    2014-01-01

    Porosity is one of the major defects in aluminum castings, which results is a decrease of a mechanical properties. Porosity in aluminum alloys is caused by solidification shrinkage and gas segregation. The final amount of porosity in aluminium castings is mostly influenced by several factors, as amount of hydrogen in molten aluminium alloy, cooling rate, melt temperature, mold material, or solidification interval. This article deals with effect of chemical composition on porosity in Al-Si alu...

  3. Enhancement of wear and ballistic resistance of armour grade AA7075 aluminium alloy using friction stir processing

    Directory of Open Access Journals (Sweden)

    I. Sudhakar

    2015-03-01

    Full Text Available Industrial applications of aluminium and its alloys are restricted because of their poor tribological properties. Thermal spraying, laser surfacing, electron beam welding are the most widely used techniques to alter the surface morphology of base metal. Preliminary studies reveal that the coating and layering of aluminium alloys with ceramic particles enhance the ballistic resistance. Furthermore, among aluminium alloys, 7075 aluminium alloy exhibits high strength which can be compared to that of steels and has profound applications in the designing of lightweight fortification structures and integrated protection systems. Having limitations such as poor bond integrity, formation of detrimental phases and interfacial reaction between reinforcement and substrate using fusion route to deposit hard particles paves the way to adopt friction stir processing for fabricating surface composites using different sizes of boron carbide particles as reinforcement on armour grade 7075 aluminium alloy as matrix in the present investigation. Wear and ballistic tests were carried out to assess the performance of friction stir processed AA7075 alloy. Significant improvement in wear resistance of friction stir processed surface composites is attributed to the change in wear mechanism from abrasion to adhesion. It has also been observed that the surface metal matrix composites have shown better ballistic resistance compared to the substrate AA7075 alloy. Addition of solid lubricant MoS2 has reduced the depth of penetration of the projectile to half that of base metal AA7075 alloy. For the first time, the friction stir processing technique was successfully used to improve the wear and ballistic resistances of armour grade high strength AA7075 alloy.

  4. Formation of the structure of thin-sheet rolled product from a high-strength sparingly alloyed aluminum alloy ``nikalin''

    Science.gov (United States)

    Shurkin, P. K.; Belov, N. A.; Akopyan, T. K.; Alabin, A. N.; Aleshchenko, A. S.; Avxentieva, N. N.

    2017-09-01

    The regime of thermomechanical treatment of flat ingots of a high-strength sparingly alloyed alloy based on the Al-Zn-Mg-Ni-Fe system upon the production of thin-sheet rolled products with a reduction of more than 97% has been substantiated. Using experimental and calculated methods, the structure and phase composition of the experimental alloy in the as cast and deformed state and after heat treatment including quenching with subsequent aging have been studied. It has been found that the structure of the wrought semi-finished products after aging according to T and T1 regimes consists of the precipitation-hardened aluminum matrix and uniformly distributed isolated particles of Al9FeNi with a size of 1-2 μm, which provides a combination of high strength and satisfactory plasticity at the level of standard high-strength aluminum alloys of the Al-Zn-Mg-Cu system. The fractographic analysis confirmed that the tested samples underwent a ductile fracture.

  5. Effect of Fe and Si content in Aluminium Alloys as a result of increased recycling: Testing of high purity Aluminium Alloys in uniaxial tension

    OpenAIRE

    Slagsvold, Marius

    2011-01-01

    The recycling of aluminium from used aluminium scrap leads to an unavoidable presence of pollutions in the form of elements of various amounts. Two such elements are iron and silicon. These will always be present to some extent in an aluminium alloy as they are introduced to the alloy during processing. Iron and silicon are accumulative elements, meaning that they can never be completely eliminated once introduced into the aluminium. Some alloys have very narrow compositional windows, they ha...

  6. Hydrogen induced cracking tests of high strength steels and nickel-iron base alloys using the bolt-loaded specimen

    Energy Technology Data Exchange (ETDEWEB)

    Vigilante, G.N.; Underwood, J.H.; Crayon, D.; Tauscher, S.; Sage, T.; Troiano, E. [Army Armament RD and E Center, Watervliet, NY (United States). Benet Labs.

    1997-12-31

    Hydrogen induced cracking tests were conducted on high strength steels and nickel-iron base alloys using the constant displacement bolt-loaded compact specimen. The bolt-loaded specimen was subjected to both acid and electrochemical cell environments in order to produce hydrogen. The materials tested were A723, Maraging 200, PH 13-8 Mo, Alloy 718, Alloy 706, and A286, and ranged in yield strength from 760--1400 MPa. The effects of chemical composition, refinement, heat treatment, and strength on hydrogen induced crack growth rates and thresholds were examined. In general, all high strength steels tested exhibited similar crack growth rates and thresholds were examined. In general, all high strength steels tested exhibited similar crack growth rates and threshold levels. In comparison, the nickel-iron base alloys tested exhibited up to three orders of magnitude lower crack growth rates than the high strength steels tested. It is widely known that high strength steels and nickel base alloys exhibit different crack growth rates, in part, because of their different crystal cell structure. In the high strength steels tested, refinement and heat treatment had some effect on hydrogen induced cracking, though strength was the predominant factor influencing susceptibility to cracking. When the yield strength of one of the high strength steels tested was increased moderately, from 1130 MPa to 1275 MPa, the incubation times decreased by over two orders of magnitude, the crack growth rates increased by an order of magnitude, and the threshold stress intensity was slightly lower.

  7. Experimental and numerical thermo-mechanical analysis of friction stir welding of high-strength alluminium alloy

    Directory of Open Access Journals (Sweden)

    Veljić Darko M.

    2014-01-01

    Full Text Available This paper presents experimental and numerical analysis of the change of temperature and force in the vertical direction during the friction stir welding of high-strength aluminium alloy 2024 T3. This procedure confirmed the correctness of the numerical model, which is subsequently used for analysis of the temperature field in the welding zone, where it is different to determine the temperature experimentally. 3D finite element model is developed using the software package Abaqus; arbitrary Lagrangian-Eulerian formulation is applied. Johnson-Cook material law and Coulomb’s Law of friction are used for modelling the material behaviour. Temperature fields are symmetrical with respect to the welding line. The temperature values below the tool shoulder, i.e. in the welding zone, which are reached during the plunge stage, are approximately constant during the entire welding process and lie within the interval 430-502°C. The temperature of the material in the vicinity of the tool is about 500°C, while the values on the top surface of the welding plates (outside the welding zone, but close to the tool shoulder are about 400°C. The temperature difference between the top and bottom surface of the plates is small, 10-15°C. [Projekat Ministarstva nauke Republike Srbije, br. TR 34018 and ON 174004

  8. Local electrochemical behaviour of 7xxx aluminium alloys

    NARCIS (Netherlands)

    Andreatta, F.

    2004-01-01

    Aluminium alloys of the 7xxx series (Al-Zn-Mg-Cu) are susceptible to localized types of corrosion like pitting, intergranular corrosion and exfoliation corrosion. This represents a limitation for the application of these alloys in the aerospace components because localized corrosion might have a

  9. Local electrochemical behaviour of 7xxx aluminium alloys

    NARCIS (Netherlands)

    De Wit, J.H.W.; Terryn, H.; Andreatta, F.

    Aluminium alloys of the 7xxx series (Al-Zn-Mg-Cu) are susceptible to localized types of corrosion like pitting, intergranular corrosion and exfoliation corrosion. This represents a limitation for the application of these alloys in the aerospace components because localized corrosion might have a

  10. Cold weld cracking susceptibility of high strength low alloyed (HSLA steel NIONIKRAL 70

    Directory of Open Access Journals (Sweden)

    A. S. Tawengi

    2014-10-01

    Full Text Available In view of the importance of high strength low alloy (HSLA steels, particularly for critical applications such as offshore plat forms, pipeline and pressure vessels, this paper reports on an investigation of how to weld this type of steel without cold cracking. Using manual metal arc welding process and Tekken test (Y - Grove test has been carried out both to observe the cold cracking phenome non, and to investigate the influencing factors, such as preheating temperature and energy input, as well as electrode strength and diameter. How ever the results of the experiments show that there is a risk of cold cracking.

  11. High Shear Deformation to Produce High Strength and Energy Absorption in Mg Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Vineet V.; Jana, Saumyadeep; Li, Dongsheng; Garmestani, Hamid; Nyberg, Eric A.; Lavender, Curt A.

    2014-02-01

    Magnesium alloys have the potential to reduce the mass of transportation systems however to fully realize the benefits it must be usable in more applications including those that require higher strength and ductility. It has been known that fine grain size in Mg alloys leads to high strength and ductility. However, the challenge is how to achieve this optimal microstructure in a cost effective way. This work has shown that by using optimized high shear deformation and second phase particles of Mg2Si and MgxZnZry the energy absorption of the extrusions can exceed that of AA6061. The extrusion process under development described in this presentation appears to be scalable and cost effective. In addition to process development a novel modeling approach to understand the roles of strain and state-of-strain on particle fracture and grain size control has been developed

  12. Ultrasonic-promoted rapid TLP bonding of fine-grained 7034 high strength aluminum alloys.

    Science.gov (United States)

    Guo, Weibing; Leng, Xuesong; Luan, Tianmin; Yan, Jiuchun; He, Jingshan

    2017-05-01

    High strength aluminum alloys are extremely sensitive to the thermal cycle of welding. An ultrasonic-promoted rapid TLP bonding with an interlayer of pure Zn was developed to join fine-grained 7034 aluminum alloys at the temperature of lower 400°C. The oxide film could be successfully removed with the ultrasonic vibration, and the Al-Zn eutectic liquid phase generated once Al and Zn contacted with each other. Longer ultrasonic time can promote the diffusion of Zn into the base metal, which would shorten the holding time to complete isothermal solidification. The joints with the full solid solution of α-Al can be realized with the ultrasonic action time of 60s and holding time of only 3min at 400°C, and the shear strength of joints could reach 223MPa. The joint formation mechanism and effects of ultrasounds were discussed in details. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Investigation of Material Performance Degradation for High-Strength Aluminum Alloy Using Acoustic Emission Method

    Directory of Open Access Journals (Sweden)

    Yibo Ai

    2015-02-01

    Full Text Available Structural materials damages are always in the form of micro-defects or cracks. Traditional or conventional methods such as micro and macro examination, tensile, bend, impact and hardness tests can be used to detect the micro damage or defects. However, these tests are destructive in nature and not in real-time, thus a non-destructive and real-time monitoring and characterization of the material damage is needed. This study is focused on the application of a non-destructive and real-time acoustic emission (AE method to study material performance degradation of a high-strength aluminum alloy of high-speed train gearbox shell. By applying data relative analysis and interpretation of AE signals, the characteristic parameters of materials performance were achieved and the failure criteria of the characteristic parameters for the material tensile damage process were established. The results show that the AE method and signal analysis can be used to accomplish the non-destructive and real-time detection of the material performance degradation process of the high-strength aluminum alloy. This technique can be extended to other engineering materials.

  14. Metal-Ceramic Interfaces in Laser Coated Aluminium Alloys

    NARCIS (Netherlands)

    Zhou, X.B.; Hosson, J.Th.M. De

    1994-01-01

    A novel process was developed to firmly coat an aluminium alloy, Al6061, with α-Al2O3 by means of laser processing. In this approach a mixture of SiO2 and Al powder was used to inject in the laser melted surface of aluminium. A reaction product α-Al2O3 layer of a thickness of 100 µm was created

  15. The use of Spark Plasma Sintering method for high-rate diffusion welding of high-strength UFG titanium alloys

    Science.gov (United States)

    Nokhrin, A. V.; Chuvil'deev, V. N.; Boldin, M. S.; Piskunov, A. V.; Kozlova, N. A.; Chegurov, M. K.; Popov, A. A.; Lantcev, E. A.; Kopylov, V. I.; Tabachkova, N. Yu

    2017-07-01

    The article provides an example of applying the technology of spark plasma sintering (SPS) to ensure high-rate diffusion welding of high-strength ultra-fine-grained UFG titanium alloys. Weld seams produced from Ti-5Al-2V UFG titanium alloy and obtained through SPS are characterized by high density, hardness and corrosion resistance.

  16. Effect of thermal ageing on mechanical properties of a high-strength ODS alloy

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sung Hoon; Kim, Sung Hwan; Jang, Chang Heui [Dept. of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Kim, Tae Kyu [Nuclear Materials DivisionKorea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    A new high-strength ODS alloy, ARROS, was recently developed for the application as the cladding material of a Sodium-cooled fast reactor (SFR). To assess the long-term integrity under thermal ageing, ARROS was thermally aged in air at 650°C for 1000 h. The degree of thermal ageing was assessed by mechanical tests such as uniaxial tensile, hardness, and small punch tests at from room temperature to 650°C. Tensile strength was slightly decreased but elongation, hardness, and small punch energy were hardly changed at all test temperatures for the specimen aged at 650°C for 1000 h. However, the variation in mechanical properties such as hardness and small punch energy increased after thermal ageing. Using the test results, the correlation between tensile strength and maximum small punch load was established.

  17. Dissimilar ultrasonic spot welding of Mg-Al and Mg-high strength low alloy steel

    Directory of Open Access Journals (Sweden)

    V.K. Patel

    2014-01-01

    Full Text Available Sound dissimilar lap joints were achieved via ultrasonic spot welding (USW, which is a solid-state joining technique. The addition of Sn interlayer during USW effectively blocked the formation of brittle al12Mg17 intermetallic compound in the Mg-Al dissimilar joints without interlayer, and led to the presence of a distinctive composite-like Sn and Mg2Sn eutectic structure in both Mg-Al and Mg-high strength low alloy (HSLA steel joints. The lap shear strength of both types of dissimilar joints with a Sn interlayer was significantly higher than that of the corresponding dissimilar joints without interlayer. Failure during the tensile lap shear tests occurred mainly in the mode of cohesive failure in the Mg-Al dissimilar joints and in the mode of partial cohesive failure and partial nugget pull-out in the Mg-HSLA steel dissimilar joints.

  18. Influence of Chemical Composition on Porosity in Aluminium Alloys

    Directory of Open Access Journals (Sweden)

    Kucharčík L.

    2014-06-01

    Full Text Available Porosity is one of the major defects in aluminum castings, which results is a decrease of a mechanical properties. Porosity in aluminum alloys is caused by solidification shrinkage and gas segregation. The final amount of porosity in aluminium castings is mostly influenced by several factors, as amount of hydrogen in molten aluminium alloy, cooling rate, melt temperature, mold material, or solidification interval. This article deals with effect of chemical composition on porosity in Al-Si aluminum alloys. For experiment was used Pure aluminum and four alloys: AlSi6Cu4, AlSi7Mg0, 3, AlSi9Cu1, AlSi10MgCu1.

  19. Effect of surface modification, microstructure, and trapping on hydrogen diffusion coefficients in high strength alloys

    Science.gov (United States)

    Jebaraj Johnley Muthuraj, Josiah

    Cathodic protection is widely used for corrosion prevention. However, this process generates hydrogen at the protected metal surface, and diffusion of hydrogen through the metal may cause hydrogen embrittlement or hydrogen induced stress corrosion cracking. Thus the choice of a metal for use as fasteners depends upon its hydrogen uptake, permeation, diffusivity and trapping. The diffusivity of hydrogen through four high strength alloys (AISI 4340, alloy 718, alloy 686, and alloy 59) was analyzed by an electrochemical method developed by Devanathan and Stachurski. The effect of plasma nitriding and microstructure on hydrogen permeation through AISI 4340 was studied on six different specimens: as-received (AR) AISI 4340, nitrided samples with and without compound layer, samples quenched and tempered (Q&T) at 320° and 520°C, and nitrided samples Q&T 520°C. Studies on various nitrided specimens demonstrate that both the gamma'-Fe 4N rich compound surface layer and the deeper N diffusion layer that forms during plasma nitriding reduce the effective hydrogen diffusion coefficient, although the gamma'-Fe4N rich compound layer has a larger effect. Multiple permeation transients yield evidence for the presence of only reversible trap sites in as-received, Q&T 320 and 520 AISI 4340 specimens, and the presence of both reversible and irreversible trap sites in nitrided specimens. Moreover, the changes in microstructure during the quenching and tempering process result in a significant decrease in the diffusion coefficient of hydrogen compared to as-received specimens. In addition, density functional theory-based molecular dynamics simulations yield hydrogen diffusion coefficients through gamma'- Fe4N one order of magnitude lower than through α-Fe, which supports the experimental measurements of hydrogen permeation. The effect of microstructure and trapping was also studied in cold rolled, solutionized, and precipitation hardened Inconel 718 foils. The effective hydrogen

  20. Hardfacing of aluminium alloys by means of metal matrix composites produced by laser surface alloying

    CSIR Research Space (South Africa)

    Pityana, SL

    2009-06-01

    Full Text Available Metal matrix composite layers were formed on an aluminium substrate by means of laser surface alloying method. Aluminium 1200 was used as a host material and TiC particles were used as the reinforcement. The microstructure of the modified layer...

  1. Contribution to comprehensive study of aluminium alloy Aa 5083 ...

    African Journals Online (AJOL)

    Corrosion induced by elemental mercury in aqueous media of industrial Aluminium alloys AA5083 used in heat exchanger industries of natural gas liquefaction has been studied by linear sweep voltammétry on rotating amalgamated disk electrode. Corrosion process depends on: • Chemical processes of amalgamation of ...

  2. Structure analysis of 3104 aluminium alloy applied to deep drawing

    Energy Technology Data Exchange (ETDEWEB)

    Klyszewski, A.; Lech-Grega, M.; Zelechowski, J.; Szymanski, W. [Light Metals Div., Skawina (Poland). Inst. of Non-Ferrous Metals

    2000-07-01

    Optical and electron microscopy observations and X-ray investigations of 3104 aluminium alloy ingots and bands after experimental heat treatment were carried out. The influence of ingots homogenisation temperature and parameters of material heat treatment after hot rolling on structure, texture and earing of band 0.3 mm thick was analysed. (orig.)

  3. Laser alloying of aluminium to improve surface properties - MSSA 2010

    CSIR Research Space (South Africa)

    Mabhali, Luyolo AB

    2010-07-01

    Full Text Available Aluminium is vastly used in industry due to its low cost, light weight and excellent workability, but lacks in wear resistance and hardness. Laser alloying is used to improve the surface properties such as hardness by modifying the composition...

  4. Study of fatigue behaviour of 7475 aluminium alloy

    Indian Academy of Sciences (India)

    Unknown

    very competitive materials for aircraft structural applica- tions. However, they are generally considered to have higher initial cost, require more manual labour in their production and are more expensive to maintain. The 2024 aluminium alloy remains as an important aircraft structural material due to its extremely good.

  5. Evaluation of the stress corrosion cracking resistance of several high strength low alloy steels

    Science.gov (United States)

    Humphries, T. S.; Nelson, E. E.

    1980-01-01

    The stress corrosion cracking resistance was studied for high strength alloy steels 4130, 4340, for H-11 at selected strength levels, and for D6AC and HY140 at a single strength. Round tensile and C-ring type specimens were stressed up to 100 percent of their yield strengths and exposed to alternate immersion in salt water, salt spray, the atmosphere at Marshall Space Flight Center, and the seacoast at Kennedy Space Center. Under the test conditions, 4130 and 4340 steels heat treated to a tensile strength of 1240 MPa (180 ksi), H-11 and D6AC heat treated to a tensile strength of 1450 MPa (210 ksi), and HY140 (1020 MPa, 148 ksi) are resistant to stress corrosion cracking because failures were not encountered at stress levels up to 75 percent of their yield strengths. A maximum exposure period of one month for alternate immersion in salt water or salt spray and three months for seacoast is indicated for alloy steel to avoid false indications of stress corrosion cracking because of failure resulting from severe pitting.

  6. Fatigue in a heat treatable high silicon containing aluminium alloy

    Science.gov (United States)

    González, J. A.; Talamantes-Silva, J.; Valtierra, S.; Colás, Rafael

    2017-05-01

    The use of cast aluminium alloys in automobiles contributes to reductions in weight and fuel consumption without impairing the safety for the occupants or the performance of the car. Most of the alloys used are heat treatable hypoeutectic Al-Si alloys, which have the drawback of exhibiting low wear resistance. So industry relies in wear resistant alloys, such as grey iron, for the liners of the combustion chambers in engine blocks, which increase the weight of the engine. Therefore, it is of interest to cast high silicon containing alloys into engine components that are able to resist wear while maintaining the mechanical properties required by the components. This work presents the result of the work carried out in a high silicon containing heat treatable aluminium alloy as it is subjected to high cycle fatigue. The alloy was prepared and cast in ingots designed to promote one dimensional solidification gradient to obtain samples to study the high cycle fatigue. The material was machined into hour-glass specimens that were tested at room temperature in a servohydraulic machine under load control following the stair case method. The results show that the resistance to fatigue depends on the microstructure of the sample, as the fatigue cracks originate in pores close to the surface of the sample and propagate through the eutectic aggregate. The results from this work are compared with those from previously obtained with hypoeutectic alloys.

  7. Crystallographic orientation-spray formed hypereutectic aluminium-silicon alloys

    Directory of Open Access Journals (Sweden)

    Hamilta de Oliveira Santos

    2005-06-01

    Full Text Available Aluminium-silicon alloys have been wide accepted in the automotive, electric and aerospace industries. Preferred orientation is a very common condition for metals and alloys. Particularly, aluminium induces texture during the forming process. The preparation of an aggregate with completely random crystal orientation is a difficult task. The present work was undertaken to analyse the texture by X-ray diffraction techniques, of three spray formed hypereutectic Al-Si alloys. Samples were taken from a billet of an experimental alloy (alloy 1 and were subsequently hot-rolled and cold-rolled (height reduction, 72% and 70%, respectively. The other used samples, alloys 2 and 3, were taken from cylinders liners. The results from the Laue camera showed texture just in the axial direction of alloy 3. The pole figures also indicated the presence of a typical low intensity deformation texture, especially for alloy 3. The spray formed microstructure, which is very fine, hinders the Al-Si texture formation during mechanical work.

  8. Intermetallic particles-induced pitting corrosion in 6061-T651 aluminium alloy

    CSIR Research Space (South Africa)

    Mutombo, K

    2011-07-01

    Full Text Available -Induced Pitting Corrosion in 6061-T651 Aluminium Alloy Kalenda Mutombo Council for Scientific and Industrial Research (CSIR), South Africa kmutombo@csir.co.za Keywords: pitting corrosion, 6061-T651 aluminium alloy, intermetallic particles, 3.5% Na... extrudability, reasonable weldability and good corrosion resistance. This alloy finds widespread application in ship building and in the fabrication of tank containers for transporting various liquids. 6061-T651 aluminium alloy is, however, prone to pitting...

  9. Cold cracking in DC-cast high strength aluminum alloy ingots : An intrinsic problem intensified by casting process parameters

    NARCIS (Netherlands)

    Lalpoor, M.; Eskin, D.G.; Ruvalcaba, D.; Fjaer, H.G.; Ten Cate, A.; Ontijt, N.; Katgerman, L.

    2011-01-01

    For almost half a century the catastrophic failure of direct chill (DC) cast high strength aluminum alloys has been challenging the production of sound ingots. To overcome this problem, a criterion is required that can assist the researchers in predicting the critical conditions which facilitate the

  10. Corrosion of aluminium and aluminium alloys in nitric acid. Zur Korrosion von Aluminium-Werkstoffen in Salpetersaeure

    Energy Technology Data Exchange (ETDEWEB)

    Horn, E.M.; Schoeller, K. (Bayer AG, Leverkusen (Germany, F.R.)); Doelling, H. (Vereinigte Aluminium-Werke AG, Bonn (Germany, F.R.). Leichtmetall-Forschungsinstitut)

    1990-06-01

    A literature survey was made to show the suitability of aluminium and aluminium alloys in contact with highly concentrated nitric acid, particularly with regard to the corrosion behaviour of weld joints made using various welding processes. The corrosion resistance of Al99.5 in nitric acid was investigated as functions of temperature and acid concentrations. The linear corrosion rates are plotted in an Arrhenius diagram. Decreasing nitric acid concentrations are causing a parallel shift of the lines in the Arrhenius diagram towards higher corrosion rates. Starting with Al99.5, the corrosion rates in nitric acid at and above 99.8 concentration decrease as the Al contents of the materials increase. Doping with copper should be avoided. After exposure of wrought as well as continuously cast Al and Al alloys to highly concentrated technical grade nitric acid at 30deg C (1 year test period), the corrosion behaviour of a number of alloys was comparable to that of pure aluminium grades. (orig.).

  11. Inhibition of Ce3+ on Stress Corrosion Crack of High Strength Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    LI Wen-ting

    2017-05-01

    Full Text Available The stress corrosion cracking (SCC susceptibility of 7A04 high strength aluminum alloy in 3.5% (mass fraction NaCl solution and the Ce3+ inhibition of SCC were investigated by slow stress rate test(SSRT, using constant current polarization, electrochemical noise (ECN and electrochemical impedance spectroscopy (EIS techniques. The inhibition mechanism of Ce3+ ions on the initiation and propagation of cracking was also analyzed. The results indicate that both anodic and cathodic galvanostatic polarizations can accelerate the SCC of 7A04, the former increases anodic dissolution but the latter accelerates hydrogen embrittlement of crack tip. SCC susceptibility of 7A04 can be reduced effectively by the addition of cerium ions, the fracture time is delayed and slowed down, but only during the initiation other than the propagation stage of cracking. Ce3+ ions can restrain the initiation of metastable pitting on the surface of 7A04 specimen, which therefore increase the induction time of the cracking since that the micro pits are usually the source of cracking.However, once the crack begins to propagate or the specimen is notched, the addition of cerium ions can rarely inhibit the cracking process. This is possibly attributed to that the radius of Ce3+ ion is too large to diffuse into the crack tip or it is hard to form protective CeO2 layer, Ce3+ ion therefore fails to rehabilitate the active alloy at the crack tip and further reduce the SCC developing rate of 7A04. SEM also indicates that the crack initiation of smooth 7A04 specimens is mainly induced by metastable or stable pits.

  12. Non-contact sheet forming using lasers applied to a high strength aluminum alloy

    Directory of Open Access Journals (Sweden)

    Rafael Humberto Mota Siqueira

    2016-07-01

    Full Text Available Laser beam forming (LBF is a contactless mechanical process accomplished by the introduction of thermal stresses on the surface of a material using a laser in order to induce plastic deformation. In this work, LBF was performed on 1.6 mm thick sheets of a high strength aluminum alloy, AA6013-T4 class by using a defocused continuous Yb-fiber laser beam of 0.6 mm in diameter on the sheet top surface. The laser power and process speed were varied from 200 W to 2000 W and from 3 to 30 mm/s, respectively. For these experimental conditions, the bending angle of the sheet ranged from 0.1° to 2.5° per run. In the highest bending angle condition, 1000 W and 30 mm/s, the depth of remelted pool was 0.6 mm and the microstructure near the plate bottom surface remained unaltered. For the whole set of experimental conditions, the hardness remained constant at approximately 100 HV, which is similar to the base material. In order to verify the applicability of the method, some previously T-welded sheets were straightened. The method was efficient in correcting the distortion of the sheets with a bending angle up to 5°.

  13. Recycling of aluminium scrap for secondary Al-Si alloys.

    Science.gov (United States)

    Velasco, Eulogio; Nino, Jose

    2011-07-01

    An increasing amount of recycled aluminium is going into the production of aluminium alloy used for automotive applications. In these applications, it is necessary to control and remove alloy impurities and inclusions. Cleaning and fluxing processes are widely used during processing of the alloys for removal of inclusions, hydrogen and excess of magnesium. These processes use salt fluxes based in the system NaCl-KCl, injection of chlorine or mixture of chlorine with an inert gas. The new systems include a graphite wand and a circulation device to force convection in the melt and permit the bubbling and dispersion of reactive and cleaning agents. This paper discusses the recycling of aluminium alloys in rotary and reverberatory industrial furnaces. It focuses on the removal of magnesium during the melting process. In rotary furnaces, the magnesium lost is mainly due to the oxidation process at high temperatures. The magnesium removal is carried out by the reaction between chlorine and magnesium, with its efficiency associated to kinetic factors such as concentration of magnesium, mixing, and temperature. These factors are also related to emissions generated during the demagging process. Improvements in the metallic yield can be reached in rotary furnaces if the process starts with a proper salt, with limits of addition, and avoiding long holding times. To improve throughput in reverberatories, start the charging with high magnesium content material and inject chlorine gas if the molten metal is at the right temperature. Removal of magnesium through modern technologies can be efficiently performed to prevent environmental problems.

  14. Corrosion behaviour of laser-cleaned AA7024 aluminium alloy

    Science.gov (United States)

    Zhang, F. D.; Liu, H.; Suebka, C.; Liu, Y. X.; Liu, Z.; Guo, W.; Cheng, Y. M.; Zhang, S. L.; Li, L.

    2018-03-01

    Laser cleaning has been considered as a promising technique for the preparation of aluminium alloy surfaces prior to joining and welding and has been practically used in the automotive industry. The process is based on laser ablation to remove surface contaminations and aluminium oxides. However the change of surface chemistry and oxide status may affect corrosion behaviour of aluminium alloys. Until now, no work has been reported on the corrosion characteristics of laser cleaned metallic surfaces. In this study, we investigated the corrosion behaviour of laser-cleaned AA7024-T4 aluminium alloy using potentiodynamic polarisation, electrochemical impedance spectroscopy (EIS) and scanning vibrating electrode technique (SVET). The results showed that the laser-cleaned surface exhibited higher corrosion resistance in 3.5 wt.% NaCl solution than as-received hot-rolled alloy, with significant increase in impedance and decrease in capacitance, while SVET revealed that the active anodic points appeared on the as-received surface were not presented on the laser-cleaned surfaces. Such corrosion behaviours were correlated to the change of surface oxide status measured by glow discharge optical emission spectrometry (GDOES) and X-ray photoelectron spectroscopy (XPS). It was suggested that the removal of the original less protective oxide layer consisting of MgO and MgAl2O4 on the as-received surfaces and the newly formed more protective oxide layer containing mainly Al2O3 and MgO by laser cleaning were responsible for the improvement of the corrosion performance.

  15. Recycling of Glass Fibre Reinforced Aluminium Laminates and Silicon Removal from Aerospace Al Alloy

    NARCIS (Netherlands)

    Zhu, G.

    2012-01-01

    Aerospace aluminium alloys (7xxx and 2xxx series Al alloy) is one of the important Al alloys in our life. The recycling of aerospace Al alloy plays a significant role in sustainable development of Al industry. The fibre reinforced metal laminates GLARE including 67 wt.% 2024 Al alloy was used as

  16. Studying the compactibility of the VT22 high-strength alloy powder obtained by the PREP method

    Science.gov (United States)

    Kryuchkov, D. I.; Berezin, I. M.; Nesterenko, A. V.; Zalazinsky, A. G.; Vichuzhanin, D. I.

    2017-12-01

    Compression curves are plotted for VT22 high-strength alloy powder under conditions of uniaxial compression at room temperature. The density of the compacted briquette at the loading and unloading stages is determined. It is demonstrated that strong interparticle bonds are formed in the area of the action of shear deformation. The results are supposed to be used to identify the flow model of the material studied and to perform the subsequent numerical modeling of the compaction process.

  17. INFLUENCE OF HIGH SPEED OF CRYSTALLIZATION ON THE STRUCTURE OF ALUMINIUM ALLOYS

    Directory of Open Access Journals (Sweden)

    G. V. Dovnar

    2010-01-01

    Full Text Available The aim of the work is development of new compositions of aluminium alloys with refractory metals of transition group and cremnium due to range extension of alloying at usage of high speed of melts cooling.

  18. APPLICATION OF MODIFYING ALLOYING ALLOY CONTAINING NANOSIZED POWDERS OF ACTIVE ELEMENTS IN PRODUCTION OF HIGH-STRENGTH CAST IRON WITH GLOBULAR GRAPHITE

    Directory of Open Access Journals (Sweden)

    A. S. Kalinichenko

    2015-01-01

    Full Text Available Scientific and practical interest is the application of alloying alloy-modifiers for secondary treatment of high-strength cast iron to stabilize the process of spheroidization graphite and achieving higher physical-mechanical properties of castings. The peculiarity of the high-strength cast irons manufacturing technology is their tendency to supercooling during solidification in the mold. This leads to the formation of shrinkage defects and structurally free cementite, especially in thin-walled sections of the finished castings. To minimize these effects in foundry practice during production of ductile iron the secondary inoculation is widely used. In this regard, the question of the choice of the additives with effective impact not only on the graphitization process but also on the formation of the metallic base of ductile iron is relevant. The aim of the present work is to study the peculiarities of structure formation in cast iron with nodular graphite when alloying alloy-modifier based on tin with additions of nanoparticles of titanium carbide, yttrium oxide and graphite nano-pipes is used for secondary treatment. Melting of iron in laboratory conditions was performed in crucible induction furnace IST-006 with an acid lining held. Spheroidizing treatment of melt was realized with magnesium containing alloying alloy FeSiMg7 by means of ladle method. Secondary treatment of high strength cast iron was carried out by addition of alloying alloy-modifier in an amount of 0.1% to the bottom of the pouring ladle. Cast samples for chemical composition analysis, study of microstructure, technological and mechanical properties of the resultant alloy were made. Studies have shown that the secondary treatment of high strength cast iron with developed modifier-alloying alloy results in formation of the perlite metallic base due to the tin impact and nodular graphite with regular shape under the influence of titanium carbide, yttrium oxide and graphite nano

  19. Recovery of Actinides from Actinide-Aluminium Alloys: Chlorination Route

    Energy Technology Data Exchange (ETDEWEB)

    Mendes, E.; Malmbeck, R.; Soucek, P.; Jardin, R.; Glatz, J.P. [European Commission, JRC, Institute for Transuranium Elements, Postfach 2340, 76125 Karlsruhe (Germany); Cassayre, L. [Laboratoire de Genie Chimique (LGC), Universite Paul Sabatier, UMR CNRS 5503, 118 route de Narbonne, 31062 Toulouse Cedex 04 (France)

    2008-07-01

    A method for recovery of actinides (An) from An-Al alloys formed by electrochemical separation of metallic spent nuclear fuel on solid aluminium electrodes in molten chloride salts is described. The proposed route consists of three main steps: -) vacuum distillation of salt adhered on the electrodes, -) chlorination of An-Al alloy by pure chlorine gas and -) sublimation of formed AlCl{sub 3}. A thermochemical study of the route was performed to determine important chemical reactions and to find optimum experimental conditions for all process steps. Vacuum distillation of the electrode is efficient for complete removal of remaining salt and most fission products, full chlorination of the An-Al alloys is possible at any working temperature and evaporation of AlCl{sub 3} is achieved by heating under argon. Experiments have been carried out using U-Al alloy in order to define parameters providing full alloy chlorination without formation of volatile UCl{sub 5} and UCl{sub 6}. It was shown that full chlorination of An-Al alloys without An losses should be possible at a temperature approx. 150 deg. C. (authors)

  20. Emeraldine base as corrosion protective layer on aluminium alloy AA5182, effect of the surface microstructure

    DEFF Research Database (Denmark)

    Cecchetto, L; Ambat, Rajan; Davenport, A.J.

    2007-01-01

    AA5182 aluminium alloy cold rolled samples were coated by thin Wlms of emeraldine base (EB) obtained from a 5% solution in N-methylpyrrolidinone. Accelerated corrosion tests prove this coating very eVective for corrosion protection of aluminium alloys in neutral environment. This study underlines...

  1. Microstructures of alloyed and dispersed hard particles in the aluminium surface

    CSIR Research Space (South Africa)

    Pityana, S

    2010-03-01

    Full Text Available Laser surface alloying of A1200 aluminium alloy was carried out using a 4.4 kW Nd:YAG laser. Powder mixtures of SiC and TiC hard particles were injected into the laser generated melt pool on the aluminium substrate using a commercial powder feeder...

  2. Microstructural features of intergranular brittle fracture and cold cracking in high strength aluminum alloys

    NARCIS (Netherlands)

    Lalpoor, M.; Eskin, D. G.; ten Brink, Gert; Katgerman, L.

    2010-01-01

    Intergranular brittle fracture has been mainly observed and reported in steel alloys and precipitation hardened At-alloys where intergranular precipitates cover a major fraction of the grain boundary area. 7xxx series aluminum alloys suffer from this problem in the as-cast condition when brittle

  3. Aluminium. II - A review of deformation properties of high purity aluminium and dilute aluminium alloys.

    Science.gov (United States)

    Reed, R. P.

    1972-01-01

    The elastic and plastic deformation behavior of high-purity aluminum and of dilute aluminum alloys is reviewed. Reliable property data, including elastic moduli, elastic coefficients, tensile, creep, fatigue, hardness, and impact are presented. Single crystal tensile results are discussed. Rather comprehensive reference lists, containing publications of the past 20 years, are included for each of the above categories. Defect structures and mechanisms responsible for mechanical behavior are presented. Strengthening techniques (alloys, cold work, irradiation, quenching, composites) and recovery are briefly reviewed.

  4. ''Ventilated brake discs manufactured in aluminium matrix composites and hypereutectic aluminium alloys''

    Energy Technology Data Exchange (ETDEWEB)

    Goni, J.; Coleto, J.; Eguizabal, P.; Rubio, A. [Fundacion INASMET, San Sebastian (Spain); Garcia, A.; Sanchez, J. [Inst. Univ. de investigacion del Automovil, Madrid (Spain)

    2003-07-01

    Two different aluminium alloy materials have been used to produce ventilated brake discs, on one hand, AS17G0.6 hypereutectic alloy and on the other hand, AS7G0.6 reinforced with 20% in wt. of SiC particles. The casting production technique used has been low pressure casting (LPC) and some of the brake discs have been heat treated using a T6 treatment. Once the ventilated brake discs were produced and machined, they were tested in a dynamometer in order to compare the performance under service conditions of the aluminium alloy and grey cast iron (GCI) discs currently used in the market. (orig.)

  5. Anodization of cast aluminium alloys produced by different casting methods

    Directory of Open Access Journals (Sweden)

    K. Labisz

    2008-08-01

    Full Text Available In this paper the usability of two casting methods, of sand and high pressure cast for the anodization of AlSi12 and AlSi9Cu3 aluminium cast alloys was investigated. With defined anodization parameters like electrolyte composition and temperature, current type and value a anodic alumina surface layer was produced. The quality, size and properties of the anodic layer was investigated after the anodization of the chosen aluminium cast alloys. The Alumina layer was observed used light microscope, also the mechanical properties were measured as well the abrasive wear test was made with using ABR-8251 equipment. The researches included analyze of the influence of chemical composition, geometry and roughness of anodic layer obtained on aluminum casts. Conducted investigations shows the areas of later researches, especially in the direction of the possible, next optimization anodization process of aluminum casting alloys, for example in the range of raising resistance on corrosion to achieve a suitable anodic surface layer on elements for increasing applications in the aggressive environment for example as materials on working building constructions, elements in electronics and construction parts in air and automotive industry.

  6. The fracture of boron fibre-reinforced 6061 aluminium alloy

    Science.gov (United States)

    Wright, M. A.; Welch, D.; Jollay, J.

    1979-01-01

    The fracture of 6061 aluminium alloy reinforced with unidirectional and cross-plied 0/90 deg, 0/90/+ or - 45 deg boron fibres has been investigated. The results have been described in terms of a critical stress intensity, K(Q). Critical stress intensity factors were obtained by substituting the failure stress and the initial crack length into the appropriate expression for K(Q). Values were obtained that depended on the dimensions of the specimens. It was therefore concluded that, for the size of specimen tested, the values of K(Q) did not reflect any basic materials property.

  7. Role of acidic chemistries in steam treatment of aluminium alloys

    DEFF Research Database (Denmark)

    Din, Rameez Ud; Jellesen, Morten Stendahl; Ambat, Rajan

    2015-01-01

    The effect of acidic chemistry on the accelerated growth of oxide on aluminium alloys Peraluman 706TM and AA6060 under exposure to high temperature steam was investigated. Studied chemistries were based on citrates and phosphates. Results showed that the presence of citrate and phosphate anions...... initiate doxide growth at the intermetallic particles while growth and corrosion performance of oxide was found tobe a function of anions type and their concentration. Further, steam treatment with phosphates exhibited better performance under acetic acid salt spray and filiform corrosion test whereas...

  8. Deviatoric Response of AN Armour-Grade Aluminium Alloy

    Science.gov (United States)

    Appleby-Thomas, G. J.; Hazell, P. J.; Millett, J.; Bourne, N. K.

    2009-12-01

    Aluminium alloys such as 5083 H32 are established light-weight armour materials. As such, the shock response of these materials is of great importance. The shear strength of a material under shock loading provides an insight into its ballistic performance. In this investigation embedded manganin stress gauges have been employed to measure both the longitudinal and lateral components of stress during plate-impact experiments over a range of impact stresses. In turn, these results were used to determine the shear strength and to investigate the time dependence of lateral stress behind the shock front to give an indication of material response.

  9. Laser surface alloying of aluminium-transition metal alloys

    Directory of Open Access Journals (Sweden)

    Almeida, A.

    1998-04-01

    Full Text Available Laser surface alloying has been used as a tool to produce hard and corrosion resistant Al-transition metal (TM alloys. Cr and Mo are particularly interesting alloying elements to produce stable highstrength alloys because they present low diffusion coefficients and solid solubility in Al. To produce Al-TM surface alloys a two-step laser process was developed: firstly, the material is alloyed using low scanning speed and secondly, the microstructure is modified by a refinement step. This process was used in the production of Al-Cr, Al-Mo and Al-Nb surface alloys by alloying Cr, Mo or Nb powder into an Al and 7175 Al alloy substrate using a CO2 laser. This paper presents a review of the work that has been developed at Instituto Superior Tecnico on laser alloying of Al-TM alloys, over the last years.

    En el presente trabajo se estudia la aleación superficial mediante láser de aluminio con metales de transición. El cromo y el molibdeno son particularmente interesantes porque producen aleaciones de alta resistencia y por el bajo coeficiente de difusión y solución sólida en aluminio. Para producir estas aleaciones se ha seguido un procedimiento desarrollado en dos partes. En primer lugar, el material se alea usando una baja velocidad de procesado y en segundo lugar la estructura se modifica mediante un refinamiento posterior. Este procedimiento se ha empleado en la producción de aleaciones Al-Cr, Al-Mo y Al-Nb mediante aleación con láser de CO2 de polvos de Cr, Mo o Nb en aluminio y la aleación 7175. Este trabajo es una revisión del desarrollado en el Instituto Superior Técnico de Lisboa en los últimos años.

  10. Impact behaviors of poly-lactic acid based biocomposite reinforced with unidirectional high-strength magnesium alloy wires

    Directory of Open Access Journals (Sweden)

    Xuan Li

    2014-10-01

    Full Text Available A novel poly-lactic acid (PLA based biocomposite reinforced with unidirectional high-strength magnesium alloy (Mg-alloy wires for bone fracture fixation was fabricated by hot-compressing process. The macroscopical and microscopical impact behaviors of the biocomposite were investigated using impact experiments and finite element method (FEM, respectively. The results indicated that the biocomposite had favorable impact properties due to the plastic deformation behavior of Mg-alloy wires during impact process. While the content of Mg-alloy wires reached 20 vol%, the impact strength of the composite could achieve 93.4 kJ/m2, which is approximate 16 times larger than that of pure PLA fabricated by the same process. According to FEM simulation results, the complete destruction life of the composites during impact process increased with increasing volume fraction of Mg-alloy wires, indicating a high impact-bearing ability of the composite for bone fracture fixation. Simultaneously, the energy absorbed by Mg-alloy wires in the composites had a corresponding increase. In addition, it denoted that the impact properties of the composites are sensitive to the initial properties of the matrix material.

  11. High-strength Ti Alloy Prepared via Promoting Interstitial-Carbon Diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bo-Young; Lee, Jae-Chul [Korea University, Seoul (Korea, Republic of); Ko, Se-Hyun [KITECH, Incheon (Korea, Republic of)

    2017-05-15

    Feasibility studies are performed to determine the suitability of a novel simple synthesis technique for fabricating a new Ti alloy with improved strength and ductility, while exhibiting lower cell toxicity. Through consolidating pure Ti powders under a C atmosphere at elevated temperatures, a bulk form of the Ti alloy, in which a quantifiable amount of C is dissolved, is synthesized. While the alloy is free from toxic elements such as Al and V, the strength and ductility of the developed alloy are comparable to, or better than, those of its commercial Ti-6Al-4V alloy counterpart. In this study, the method to design the alloy, its synthesis, and the resultant properties are reported.

  12. Demonstration of Ultra High-Strength Nanocrystalline Copper Alloys for Military Applications

    Science.gov (United States)

    2012-01-22

    response of the generated microstructure: including melting, and several exothermic events such as intermetallic formation, phase separation and grain...alloys are easily machined and welded . These alloys are commonly found in applications where parts are subjected to severe forming conditions in the...boundary area of nanocrystalline alloys can be extensive, far above that predicted by equilibrium phase diagrams. Furthermore, the very act of grain

  13. Influence of friction stir welding parameters on properties of 2024 T3 aluminium alloy joints

    Directory of Open Access Journals (Sweden)

    Eramah Abdsalam M.

    2014-01-01

    Full Text Available The aim of this work is to analyse the process of friction stir welding (FSW of 3mm thick aluminium plates made of high strength aluminium alloy - 2024 T3, as well as to assess the mechanical properties of the produced joints. FSW is a modern procedure which enables joining of similar and dissimilar materials in the solid state, by the combined action of heat and mechanical work. This paper presents an analysis of the experimental results obtained by testing the butt welded joints. Tensile strength of the produced joints is assessed, as well as the distribution of hardness, micro-and macrostructure through the joints (in the base material, nugget, heat affected zone and thermo-mechanically affected zone. Different combinations of the tool rotation speed and the welding speed are used, and the dependence of the properties of the joints on these parameters of welding technology is determined. [Projekat Ministarstva nauke Republike Srbije, br. TR 34018 i br. TR 35006

  14. Failures of dies for die-casting of aluminium alloys

    Directory of Open Access Journals (Sweden)

    Kosec, B.

    2008-01-01

    Full Text Available Die-casting dies for casting of aluminum alloys fail because of a great number of different and simultaneously operating factors. Material selection, die design, and thermal stress fatigue generated by the cyclic working process (heat checking, as well as to low and inhomogeneous initial die temperature contribute to the failures and cracks formation on/in dies for die-casting of aluminium alloys. In the frame of the presented investigation work the intensity and homogeneity of the temperature fields on the working surface of the testing die were checked through thermographic measurements, and failures and cracks on the working surface of the die were analysed with non-destructive metallographic examination methods.

  15. Development of High Strength Low Alloy Steel for Nuclear Reactor Vessel

    Energy Technology Data Exchange (ETDEWEB)

    Lee, B. S.; Kim, M. C.; Yoon, J. H; Choi, K. J.; Kim, J. M.; Hong, J. H.

    2013-11-15

    SA508 Gr. 4N Ni-Cr-Mo low alloy steel has an improved strength and fracture toughness, compared to commercial low alloy steels such as SA508 Gr. 3 Mn-Mo-Ni low alloy steel. In this study, the microstructural observation and baseline test were carried out using SA508 Gr. 4N model alloy of 1 ton scale. Thermal embrittlement and neutron irradiation embrittlement behaviors of SA508 Gr. 4N model alloy were also evaluated. The yield strength of 540MPa, Charpy transition temperature, T{sub 41J} of -132 .deg. C, Reference temperature, T{sub 0} of -146 .deg. C, and RT{sub NDT} of -105 .deg. C were obtained from large scale SA508 Gr. 3 low alloy steel. Effect of alloy elements on thermal embrittlement was carefully evaluated and embrittlement mechanism was characterized using small scale model alloys with various alloy composition. Neutron irradiation behavior at high fluence level up to 1.5x10{sup 20} n/cm{sup 2} corresponding over 80 years operation of RPV were investigated using irradiated samples from research reactor 'HANARO'. The irradiation embrittlement behavior of SA508 Gr. 4N model alloy was similar to that of commercial RPV steel. However, after neutron irradiation up to 1.3x10{sup 20} n/cm{sup 2}, SA508 Gr. 4N model alloy shows lower transition temperature(T{sub 41J} = -63 .deg. C) than unirradiated commercial RPV steel because it has a superior initial toughness.

  16. Hydrogen adsorption and diffusion, and subcritical-crack growth in high strength steels and nickel base alloys

    Science.gov (United States)

    Wei, R. P.; Klier, K.; Simmons, G. W.; Chornet, E.

    1973-01-01

    Embrittlement, or the enhancement of crack growth by gaseous hydrogen in high strength alloys, is of primary interest in selecting alloys for various components in the space shuttle. Embrittlement is known to occur at hydrogen gas pressures ranging from fractions to several hundred atmospheres, and is most severe in the case of martensitic high strength steels. Kinetic information on subcritical crack growth in gaseous hydrogen is sparse at this time. Corroborative information on hydrogen adsorption and diffusion is inadequate to permit a clear determination of the rate controlling process and possible mechanism in hydrogen enhanced crack growth, and for estimating behavior over a range of temperatures and pressures. Therefore, coordinated studies of the kinetics of crack growth, and adsorption and diffusion of hydrogen, using identical materials, have been initiated. Comparable conditions of temperature and pressure will be used in the chemical and mechanical experiments. Inconel 718 alloy and 18Ni(200) maraging steel have been selected for these studies. Results from these studies are expected to provide not only a better understanding of the gaseous hydrogen embrittlement phenomenon itself, but also fundamental information on hydrogen adsorption and diffusion, and crack growth information that can be used directly for design.

  17. Fabrication of superhydrophobic aluminium alloy surface with excellent corrosion resistance by a facile and environment-friendly method

    Science.gov (United States)

    Feng, Libang; Che, Yanhui; Liu, Yanhua; Qiang, Xiaohu; Wang, Yanping

    2013-10-01

    This work develops a facile and environment-friendly method for preparing the superhydrophobic aluminium alloy surface with excellent corrosion resistance. The superhydrophobic aluminium alloy surface is fabricated by the boiling water treatment and stearic acid (STA) modification. Results show that the boiling water treatment endows the aluminium alloy surface with a porous and rough structure, while STA modification chemically grafts the long hydrophobic alkyl chains onto the aluminium alloy surface. Just grounded on the micro- and nano-scale hierarchical structure along with the hydrophobic chemical composition, the superhydrophobic aluminium alloy surface is endued the excellent corrosion resistance.

  18. High-strength and high-RRR Al-Ni alloy for aluminum-stabilized superconductor

    CERN Document Server

    Wada, K; Sakamoto, H; Yamamoto, A; Makida, Y

    2000-01-01

    The precipitation type aluminum alloys have excellent performance as the increasing rate in electric resistivity with additives in the precipitation state is considerably low, compared to that of the aluminum alloy with additives in the solid-solution state. It is possible to enhance the mechanical strength without remarkable degradation in residual resistivity ratio (RRR) by increasing content of selected additive elements. Nickel is the suitable additive element because it has very low solubility in aluminum and low increasing rate in electric resistivity, and furthermore, nickel and aluminum form intermetallic compounds which effectively resist the motion of dislocations. First, Al-0.1wt%Ni alloy was developed for the ATLAS thin superconducting solenoid. This alloy achieved high yield strength of 79 MPa (R.T.) and 117 MPa (4.2 K) with high RRR of 490 after cold working of 21% in area reduction. These highly balanced properties could not be achieved with previously developed solid-solution aluminum alloys. ...

  19. Assessing Heat-to-Heat Variations Affecting Mechanism Based Modeling of Hydrogen Environment Cracking (HEAC) in High Strength Alloys for Marine Applications: Monel K-500

    Science.gov (United States)

    2016-01-28

    shafts, oil-well tools and instruments, surgical blades and scrapers, springs, valve trim, fasteners, and marine propeller shafts. These Ni-based...34Assessing Heat-to-Heat Variations Affecting Mechanism Based Modeling of Hydrogen Environment Cracking (HEAC) in High Strength Alloys for Marine ...Environment Cracking (HEAC) in High Strength Alloys for Marine Applications: Monel K-500 5a. CONTRACT NUMBER N00014-12-1-0506 5b. GRANT NUMBER N/A 5c

  20. Effect of Temperature on the Galvanic Corrosion of Cu-Ni Alloy/High Strength Steel in Seawater

    Directory of Open Access Journals (Sweden)

    Wang Chun Li

    2016-01-01

    Full Text Available The galvanic corrosion behavior of Cu-Ni Alloy(B10/high strength steel (921A has been studied using a zero-resistance ammeter (ZRA in seawater at different temperatures. As well as it was systemically investigated by weight loss measurements, electrochemical methods and scanning electron microscope.Results showed 921A acts as the anode and B10 act as the cathodes. The effect of temperature on the galvanic corrosion is important, the corrosion rate became higher with the temperature increased.

  1. FEATURES OF SPHEROIDIZING MODIFICATION OF HIGH-STRENGTH CAST IRON WITH MASTER ALLOYS BASED ON COPPER

    Directory of Open Access Journals (Sweden)

    A. S. Kalinichenko

    2016-01-01

    Full Text Available The increase of efficiency of modification process for ductile iron is topically, thereby increasing its mechanical and operational properties. For these purposes, in practice, various magnesium containing alloys are used, including «heavy» ones on the basis of Copper and Nickel. The analysis has shown that the application of bulk inoculating alloys based on copper basis were not effectively due to long dissolution period. From this point of view, the interest is high-speed casting, allowing the production of inoculating alloys in the form of strips – chips that are characterized by a low dissolution time and low piroeffekt. The aim of this work is to study the features of structure formation in nodular cast iron using different spheroidizing alloys based on copper. Studies have shown that the transition from the use of briquetted form alloys based on copper and magnesium to the «chips-inoculating alloys» allowed increasing the efficiency of the spheroidizing process. Further improvement in the quality of ductile iron can be achieved by the use in «chip-inoculating alloys» additives of nanosized yttrium oxide powder. 

  2. Lubricated wear resistance of Al-Cu-Mn-Mg-Si and Al-Si-Cu-Mn-Mg alloys against JIS ADC12 aluminium diecast alloy

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, T. [Junior Coll., Hikone, Shiga (Japan)

    1995-03-01

    Aluminium alloys are light, easy to shape by plastic working, and in the case of casting alloys, can give better products and higher productivity by diecasting. Accordingly, the demand for mechanical components made from aluminium alloys has increased. In addition to strength, wear resistance is often required since moving aluminium components that make sliding contact with each other are becoming more common as machinery becomes lighter. For such applications the wear resistance of aluminium alloys is not generally sufficient unless greatly improved by the use of a lubricant. Thus, designs in which aluminium alloy components slide against one another can be used when the contact conditions are appropriate. (orig.)

  3. Performance of commercial aluminium alloys as anodes in gelled electrolyte aluminium-air batteries

    Science.gov (United States)

    Pino, M.; Chacón, J.; Fatás, E.; Ocón, P.

    2015-12-01

    The evaluation of commercial aluminium alloys, namely, Al2024, Al7475 and Al1085, for Al-air batteries is performed. Pure Al cladded Al2024 and Al7475 are also evaluated. Current rates from 0.8 mA cm-2 to 8.6 mA cm-2 are measured in a gel Al-air cell composed of the commercial alloy sample, a commercial air-cathode and an easily synthesizable gelled alkaline electrolyte. The influence of the alloying elements and the addition to the electrolyte of ZnO and ZnCl2, as corrosion inhibitors is studied and analysed via EDX/SEM. Specific capacities of up to 426 mAh/g are obtained with notably flat potential discharges of 1.3-1.4 V. The competition between self-corrosion and oxidation reactions is also discussed, as well as the influence of the current applied on that process. Al7475 is determined to have the best behaviour as anode in Al-air primary batteries, and cladding process is found to be an extra protection against corrosion at low current discharges. Conversely, Al1085 provided worse results because of an unfavourable metallic composition.

  4. Corrosion and inhibition of medium-strength aluminium alloys; Corrosion e inhibicion en aleaciones de aluminio de media resistencia

    Energy Technology Data Exchange (ETDEWEB)

    Davo, B.; Damborenea, J. J.

    2004-07-01

    The use of chromates in aluminium alloys with aeronautical applications has been limited because of the high toxicity of these compounds. This has spurred intensive efforts to develop alternative effective and innocuous inhibitors. In this work, corrosion inhibition of a light and high strength. Al-Li-Cu alloy (8090) is studied in NaCl solutions with CeCl{sub 3} and LaCl{sub 3} lanthanide salts added. The corrosion rate is reduced at least one order of magnitude with concentrations between 100-10,000 ppm. SEM, EDS and XPS techniques are used to characterize the rare earth cations incorporated into the surface as oxide and hydroxides. (Author) 9 refs.

  5. Tailored Welding Technique for High Strength Al-Cu Alloy for Higher Mechanical Properties

    Science.gov (United States)

    Biradar, N. S.; Raman, R.

    AA2014 aluminum alloy, with 4.5% Cu as major alloying element, offers highest strength and hardness values in T6 temper and finds extensive use in aircraft primary structures. However, this alloy is difficult to weld by fusion welding because the dendritic structure formed can affect weld properties seriously. Among the welding processes, AC-TIG technique is largely used for welding. As welded yield strength was in the range of 190-195 MPa, using conventional TIG technique. Welding metallurgy of AA2014 was critically reviewed and factors responsible for lower properties were identified. Square-wave AC TIG with Transverse mechanical arc oscillation (TMAO) was postulated to improve the weld strength. A systematic experimentation using 4 mm thick plates produced YS in the range of 230-240 MPa, has been achieved. Through characterization including optical and SEM/EDX was conducted to validate the metallurgical phenomena attributable to improvement in weld properties.

  6. High Strength and Wear Resistant Aluminum Alloy for High Temperature Applications

    Science.gov (United States)

    Lee, Jonathan A.; Chen, Po Shou

    2003-01-01

    Originally developed by NASA as high performance piston alloys to meet U.S. automotive legislation requiring low exhaust emission, the novel NASA alloys now offer dramatic increase in tensile strength for many other applications at elevated temperatures from 450 F (232 C) to about 750 F (400 C). It is an ideal low cost material for cast automotive components such as pistons, cylinder heads, cylinder liners, connecting rods, turbo chargers, impellers, actuators, brake calipers and rotors. It can be very economically produced from conventional permanent mold, sand casting or investment casting, with silicon content ranging from 6% to 18%. At high silicon levels, the alloy exhibits excellent thermal growth stability, surface hardness and wear resistant properties.

  7. Development of advanced high strength tantalum base alloys. Part 1: Screening investigation

    Science.gov (United States)

    Buckman, R. W., Jr.

    1971-01-01

    Five experimental tantalum alloy compositions containing 13-18% W+Re+Hf solid solution solute additions with dispersed phase strengthening achieved by carbon or nitrogen additions were prepared as 1.4 inch diameter ingot processed to 3/8 inch diameter rod and evaluated. Elevated temperature tensile and creep strength increased monotonically with increasing solute content. Room temperature elongation decreased for 20% to less than 2% as the solute content was increased above 16%. Phase identification indicated that the precipitating phase in the carbide containing alloys was Ta2C.

  8. Corrosion resistance of Zn-Co-Fe alloy coatings on high strength steel

    NARCIS (Netherlands)

    Lodhi, Z.F.; Mol, J.M.C.; Hovestad, A.; Hoen-Velterop, L. 't; Terryn, H.; Wit, J.H.W.de

    2009-01-01

    The corrosion properties of electrodeposited zinc-cobalt-iron (Zn-Co-Fe) alloys (up to 40 wt.% Co and 1 wt.% Fe) on steel were studied by using various electrochemical techniques and compared with zinc (Zn) and cadmium (Cd) coatings in 3.5% NaCl solution. It was found that with an increase in Co

  9. High Strength of Mg-9%Al-1%Zn Alloys Achieved by Severe Working

    Science.gov (United States)

    Okayasu, Mitsuhiro; Muranaga, Takuya

    2017-10-01

    To obtain the excellent mechanical properties of AZ91 magnesium alloy (Mg-8.9%Al-0.6%Zn-0.2%Mn), the microstructural characteristics of AZ91 alloys are modified by various forging and heating processes. High tensile properties (ultimate tensile strength σ UTS = 420 MPa and fracture strain ɛ f = 3%) are obtained for the alloy made by the following process: solution treatment (ST) at 410 °C for 24 h plus water quenching, multidirectional forging (MDF) with 5% strain applied in 15 forgings at room temperature, and warm unidirectional forging (WUF) at a forging rate of 75% at 225 °C. The high tensile strength is a reflection of improved microstructural characteristics, namely a fine α-Mg phase and a high dislocation density. Moreover, brittle β-phase is significantly attributed to the mechanical properties of AZ91 alloy. Because of the severe deformation undergone by the alloy during the MDF process, the solution treatment is important to achieve high ductility with low internal strain, i.e., normalization. In fact, the ɛ f value for the ST sample is as high as 10%, leading to severe work hardening during the tensile test, with deformation twins and slips. The WUF process is conducted immediately after the sample has been heated to 225 °C, for less than 5 min, to avoid material softening. A relatively high tensile strength ( σ UTS = 305 MPa) is also achieved using the WUF process (with a forging rate of 75% at 200 °C) after the ST and aging process (200 °C for 12 h) although low ductility is found ( ɛ f = 0.7%), with hard and brittle β-phases being precipitated around the grain boundaries.

  10. Analysis of the tool plunge in friction stir welding - comparison of aluminium alloys 2024 T3 and 2024 T351

    Directory of Open Access Journals (Sweden)

    Veljić Darko

    2016-01-01

    Full Text Available Temperature, plastic strain and heat generation during the plunge stage of the friction stir welding (FSW of high-strength aluminium alloys 2024 T3 and 2024 T351 are considered in this work. The plunging of the tool into the material is done at different rotating speeds. A three-dimensional finite element (FE model for thermomechanical simulation is developed. It is based on arbitrary Lagrangian-Eulerian formulation, and Johnson-Cook material law is used for modelling of material behaviour. From comparison of the numerical results for alloys 2024 T3 and 2024 T351, it can be seen that the former has more intensive heat generation from the plastic deformation, due to its higher strength. Friction heat generation is only slightly different for the two alloys. Therefore, temperatures in the working plate are higher in the alloy 2024 T3 for the same parameters of the plunge stage. Equivalent plastic strain is higher for 2024 T351 alloy, and the highest values are determined under the tool shoulder and around the tool pin. For the alloy 2024 T3, equivalent plastic strain is the highest in the influence zone of the tool pin. [Projekat Ministarstva nauke Republike Srbije, br. TR 34016 i br. TR 35006

  11. Extraordinary high strength Ti-Zr-Ta alloys through nanoscaled, dual-cubic spinodal reinforcement.

    Science.gov (United States)

    Biesiekierski, Arne; Ping, Dehai; Li, Yuncang; Lin, Jixing; Munir, Khurram S; Yamabe-Mitarai, Yoko; Wen, Cuie

    2017-04-15

    While titanium alloys represent the current state-of-the-art for orthopedic biomaterials, concerns still remain over their modulus. Circumventing this via increased porosity requires high elastic admissible strains, yet also limits traditional thermomechanical strengthening techniques. To this end, a novel β-type Ti-Zr-Ta alloy system, comprised of Ti-45Zr-10Ta, Ti-40Zr-14Ta, Ti-35Zr-18Ta and Ti-30Zr-22Ta, was designed and characterized mechanically and microstructurally. As-cast, this system displayed extremely high yield strengths and elastic admissible strains, up to 1.4GPa and potentially 1.48%, respectively. This strength was attributed to a nanoscaled, cuboidal structure of semi-coherent, dual body-centered cubic (BCC) phases, arising from the thermodynamics of interaction between Ta and Zr; this morphology occurring with dual BCC-phases is heretofore unreported in Ti-based alloys. Further, cell proliferation investigated by MTS assay suggests this was achieved without sacrificing biocompatibility, with no significant difference to either empty-well or commercially-pure Ti controls noted. The current research details microstructural, mechanical, and biological investigations into four novel biomedical alloys in a hitherto uninvestigated region of the Ti-Zr-Ta alloy system; Ti-45Zr-10Ta, Ti-40Zr-14Ta, Ti-35Zr-18Ta and Ti-30Zr-22Ta. We find that the investigated alloys display 0.2% yield strengths of up to 1.40GPa and elastic admissible strains of up to 1.48%, along with biological properties comparable to that seen in the conventional metallic biomaterial ASTM Grade-2 CP-Ti, achieved in the complete absence of traditional thermomechanical processing techniques. This is attributed to the presence of a dual-BCC cuboidal nanostructure, achieved via spinodal decomposition; while similar structures have been reported in e.g. Ni-based superalloys, we believe this is the first such structure investigated in a Ti-based material. As such, this work is felt to be of

  12. PRODUCTION OF CASTING COMPOSITION MATERIALS OF ALUMINIUM ALLOYS IN HETEROPHASE STATE WITH DISPERSE FILLERS

    Directory of Open Access Journals (Sweden)

    I. V. Rafalskij

    2011-01-01

    Full Text Available The methods of production of foundry composition materials on the basis of aluminium alloys are described and new classification of technologies of their production is offered. The theoretical analysis of conditions of penetration of filling dispersion particles, which are moistened by aluminium melt, is carried out.

  13. Microstructure and interfaces of a reaction coating on aluminium alloys by laser processing

    NARCIS (Netherlands)

    Zhou, X.B.; Hosson, J.Th.M. De

    1993-01-01

    This paper reports an approach to coat a ceramic layer on aluminium alloys by means of chemical reaction. The reaction product of Al2O3 layer of 100 µm in thickness has been formed using a powder mixture of silicon oxide and aluminium by laser processing. It turns out that the large amount of heat

  14. The role of magnesium in the electrochemical behaviour of 5XXX aluminium-magnesium alloys

    NARCIS (Netherlands)

    Flores Ramirez, J.R.

    2006-01-01

    An investigation concerning the effects of magnesium on the intergranular corrosion susceptibility of AA5XXX aluminium alloys was carried out. In the present work, magnesium is found to be highly mobile in the bulk metal as well as in the aluminium oxide. This mobility is also found to be dependent

  15. Development of Advanced High Strength Cast Alloys for Heavy Duty Engines

    Energy Technology Data Exchange (ETDEWEB)

    Barlow, James [Caterpillar Inc., Mossville, IL (United States)

    2017-06-13

    Gray iron has been the primary alloy for heavy duty diesel engine core castings for decades. During recent decades the limitations of gray iron have been reached in some applications, leading to the use of compacted graphite iron in engine blocks and heads. Caterpillar has had compacted graphite designs in continuous production since the late 1980’s. Due to the drive for higher power density, decreased emissions and increased fuel economy, cylinder pressures and temperatures continue to increase. Currently no viable replacement for today’s compacted graphite irons exist at an acceptable cost level. This project explored methods to develop the next generation of heavy duty diesel engine materials as well as demonstrated some results on new alloy designs although cost targets will likely not be met.

  16. Development of advanced high strength tantalum base alloys. Part 2: Scale-up investigation

    Science.gov (United States)

    Ammon, R. L.; Buckman, R. W., Jr.

    1970-01-01

    Three experimental tantalum alloy compositions containing 14-16% W, 1% Re, 0.7% Hf, 0.025% C or 0.015% C and 0.015% N were prepared as two inch diameter ingots by consumable electrode vacuum arc melting. The as-cast ingots were processed by extrusion and swaging to one inch and 0.4 inch diameter rod and evaluated. Excellent high temperature forging behavior was exhibited by all three compositions. Creep strength at 2000 F to 2400 F was enhanced by higher tungsten additions as well as substitution of nitrogen for carbon. Weldability of all three compositions was determined to be adequate. Room temperature ductility was retained in the advanced tantalum alloy compositions as well as a notched/unnotched strength ratio of 1.4 for a notched bar having a K sub t = 2.9.

  17. Dual-phase nanostructuring as a route to high-strength magnesium alloys

    Science.gov (United States)

    Wu, Ge; Chan, Ka-Cheung; Zhu, Linli; Sun, Ligang; Lu, Jian

    2017-04-01

    It is not easy to fabricate materials that exhibit their theoretical ‘ideal’ strength. Most methods of producing stronger materials are based on controlling defects to impede the motion of dislocations, but such methods have their limitations. For example, industrial single-phase nanocrystalline alloys and single-phase metallic glasses can be very strong, but they typically soften at relatively low strains (less than two per cent) because of, respectively, the reverse Hall-Petch effect and shear-band formation. Here we describe an approach that combines the strengthening benefits of nanocrystallinity with those of amorphization to produce a dual-phase material that exhibits near-ideal strength at room temperature and without sample size effects. Our magnesium-alloy system consists of nanocrystalline cores embedded in amorphous glassy shells, and the strength of the resulting dual-phase material is a near-ideal 3.3 gigapascals—making this the strongest magnesium-alloy thin film yet achieved. We propose a mechanism, supported by constitutive modelling, in which the crystalline phase (consisting of almost-dislocation-free grains of around six nanometres in diameter) blocks the propagation of localized shear bands when under strain; moreover, within any shear bands that do appear, embedded crystalline grains divide and rotate, contributing to hardening and countering the softening effect of the shear band.

  18. High strength alloys for high temperature service in liquid-salt cooled energy systems

    Science.gov (United States)

    Holcomb, David E.; Muralidharan, Govindarajan; Wilson, Dane F.

    2017-01-10

    An essentially cobalt-free alloy consists essentially of, in terms of weight percent: 6.3 to 7.2 Cr, 0.5 to 2 Al, 0 to 5 Fe, 0.7 to 0.8 Mn, 9 to 12.5 Mo, 0 to 6 Ta, 0.75 to 3.5 Ti, 0.01 to 0.25 Nb, 0.2 to 0.6 W, 0.02 to 0.04 C, 0 to 0.001 B, 0.0001 to 0.002 N, balance Ni. The alloy is characterized by a .gamma.' microstructural component in the range of 3 to 17.6 weight percent of the total composition. The alloy is further characterized by, at 850.degree. C., a yield strength of at least 60 Ksi, a tensile strength of at least 70 Ksi, a creep rupture life at 12 Ksi of at least 700 hours, and a corrosion rate, expressed in weight loss [g/(cm.sup.2sec)]10.sup.-11 during a 1000 hour immersion in liquid FLiNaK at 850.degree. C., in the range of 5.5 to 17.

  19. High strength alloys for high temperature service in liquid-salt cooled energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, David E.; Muralidharan, Govindarajan; Wilson, Dane F.

    2017-01-10

    An essentially cobalt-free alloy consists essentially of, in terms of weight percent: 6.3 to 7.2 Cr, 0.5 to 2 Al, 0 to 5 Fe, 0.7 to 0.8 Mn, 9 to 12.5 Mo, 0 to 6 Ta, 0.75 to 3.5 Ti, 0.01 to 0.25 Nb, 0.2 to 0.6 W, 0.02 to 0.04 C, 0 to 0.001 B, 0.0001 to 0.002 N, balance Ni. The alloy is characterized by a .gamma.' microstructural component in the range of 3 to 17.6 weight percent of the total composition. The alloy is further characterized by, at 850.degree. C., a yield strength of at least 60 Ksi, a tensile strength of at least 70 Ksi, a creep rupture life at 12 Ksi of at least 700 hours, and a corrosion rate, expressed in weight loss [g/(cm.sup.2sec)]10.sup.-11 during a 1000 hour immersion in liquid FLiNaK at 850.degree. C., in the range of 5.5 to 17.

  20. The improvement of the surface hardness of stainless steel and aluminium alloy by ultrasonic cavitation peening

    National Research Council Canada - National Science Library

    Janka Styková; Miloš Müller; Jan Hujer

    2017-01-01

    This article presents first results of the experimental investigation of the influence of the cavitation shot less peening process on the properties of stainless steel and aluminium alloy specimens...

  1. In-situ electron microscopy studies on the tensile deformation mechanisms in aluminium 5083 alloy

    CSIR Research Space (South Africa)

    Motsi, G

    2014-10-01

    Full Text Available In this study tensile deformation mechanisms of aluminium alloy 5083 were investigated under observations made from SEM equipped with a tensile stage. Observations during tensile testing revealed a sequence of surface deformation events...

  2. Cleavage Fracture Toughness of SA508 Gr.4N High Strength Low Alloy Steel with Different Phase Fraction

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ki Hyoung; Kim, Min Chul; Choi, Kwon Jae; Lee, Bong Sang [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    Materials for reactor pressure vessel (RPV) are required to have good mechanical properties to endure the severe operating conditions inside the reactor. Various researches have focused on improving mechanical properties by the controlling the heat treatment process of commercial SA508 Gr.3 RPV steel. Some studies for identifying new material with high strength and toughness for larger capacity and longer lifetime of reactor are being performed. SA508 Gr.4N low alloy steel may be a promising RPV material due to its excellent mechanical properties from its tempered martensitic microstructure. Recently, some research showed that F/M steel composed of the tempered martensite has a steeper temperature dependency of the fracture toughness than the master curve expression. We have also focused on the steep transition properties of tempered martensitic SA508 Gr.4N steel in previous research. However, it has not yet confirmed that the transition behavior including temperature dependency with tempered martensite fraction. This investigation aims to evaluate the relationship between cleavage fracture toughness and tempered martensite fraction for SA508 Gr.4N low alloy steel. For this purpose, the model alloys were prepared by controlling the cooling rate from the austenitization temperature. The cleavage fracture toughness was characterized in transition temperature region by 3-point bending tests. Based on the test results and a stress distribution near crack tip calculated in FE analysis, the relationship between the carbide size distributions and the transition properties are analyzed

  3. Experimental study on the warm forming and quenching behavior for hot stamping of high-strength aluminum alloys

    Science.gov (United States)

    Degner, J.; Horn, A.; Merklein, M.

    2017-09-01

    Within the last decades, stringent regulations on fuel consumption, CO2 emissions and product recyclability forced the automotive sector to implement new strategies within the field of car body manufacturing. Due to their low density and good corrosion resistance, aluminum became one of the most relevant lightweight materials. Recently, especially high- strength aluminum alloys for structural components gained importance. Since the low formability of these alloys limits their application, there is a need for novel process strategies in order to enhance the forming behavior. One promising approach is the hot stamping of aluminum alloys. The combination of quenching and forming in one step after solution heat treatment leads to a significant improvement of the formability. Furthermore, higher manufacturing accuracy can be achieved due to reduced spring back. Within this contribution, the influence of forming temperature on the subsequent material behavior and the heat transfer during quenching will be analyzed. Therefore, the mechanical and thermal material characteristics such as flow behavior and heat transfer coefficient during hot stamping are investigated.

  4. Alloy and composition dependence of hydrogen embrittlement susceptibility in high-strength steel fasteners

    Science.gov (United States)

    Brahimi, S. V.; Yue, S.; Sriraman, K. R.

    2017-06-01

    High-strength steel fasteners characterized by tensile strengths above 1100 MPa are often used in critical applications where a failure can have catastrophic consequences. Preventing hydrogen embrittlement (HE) failure is a fundamental concern implicating the entire fastener supply chain. Research is typically conducted under idealized conditions that cannot be translated into know-how prescribed in fastener industry standards and practices. Additionally, inconsistencies and even contradictions in fastener industry standards have led to much confusion and many preventable or misdiagnosed fastener failures. HE susceptibility is a function of the material condition, which is comprehensively described by the metallurgical and mechanical properties. Material strength has a first-order effect on HE susceptibility, which increases significantly above 1200 MPa and is characterized by a ductile-brittle transition. For a given concentration of hydrogen and at equal strength, the critical strength above which the ductile-brittle transition begins can vary due to second-order effects of chemistry, tempering temperature and sub-microstructure. Additionally, non-homogeneity of the metallurgical structure resulting from poorly controlled heat treatment, impurities and non-metallic inclusions can increase HE susceptibility of steel in ways that are measurable but unpredictable. Below 1200 MPa, non-conforming quality is often the root cause of real-life failures. This article is part of the themed issue 'The challenges of hydrogen and metals'.

  5. The Effect of Microstructure on the Properties of High Strength Aluminum Alloys

    Science.gov (United States)

    1980-02-01

    Repor)8 0-1 SU6L.NTR NOTESN OG EPR NME 79. KEY WORDS( Cotiu on c Eid Af (a)ar n Iet yblc ubr Geo. hi r ogi a wasitiaue f Te dhnoon y 1RE Jaur 1978...associated with the change in the deformation mode of the alloy. The effect of copper in strongly improving the region II kinetics is attributed to the...length was modified by the presence of manganese dispersoids (A1 2 0 Mn3 Cu2 ). However, when the slip band transversed the grain, the fracture was

  6. Guide for Recommended Practices to Perform Crack Tip Opening Displacement Tests in High Strength Low Alloy Steels

    Directory of Open Access Journals (Sweden)

    Julián A. Ávila

    Full Text Available Abstract: Fracture mechanics approach is important for all mechanical and civil projects that might involve cracks in metallic materials, and especially for those using welding as a structural joining process. This methodology can enhance not only the design but also the service life of the structures being constructed. This paper includes detailed consideration of several practical issues related to the experimental procedures to assess the fracture toughness in high strength low alloy steels (HSLA using the crack tip opening displacement (CTOD parameter, specifically pipeline steels for oil and gas transportation. These considerations are important for engineers who are new in the field, or for those looking for guidelines performing different procedures during the experimentation, which usually are difficult to understand from the conventional standards. We discuss on topics including geometry selection, number of replicate tests, fatigue precracking, test procedure selection and realization, reports of results and other aspects.

  7. Effect of welding processes on mechanical and microstructural characteristics of high strength low alloy naval grade steel joints

    Directory of Open Access Journals (Sweden)

    S. Ragu Nathan

    2015-09-01

    Full Text Available Naval grade high strength low alloy (HSLA steels can be easily welded by all types of fusion welding processes. However, fusion welding of these steels leads to the problems such as cold cracking, residual stress, distortion and fatigue damage. These problems can be eliminated by solid state welding process such as friction stir welding (FSW. In this investigation, a comparative evaluation of mechanical (tensile, impact, hardness properties and microstructural features of shielded metal arc (SMA, gas metal arc (GMA and friction stir welded (FSW naval grade HSLA steel joints was carried out. It was found that the use of FSW process eliminated the problems related to fusion welding processes and also resulted in the superior mechanical properties compared to GMA and SMA welded joints.

  8. Mackay icosahedron explaining orientation relationship of dispersoids in aluminium alloys.

    Science.gov (United States)

    Muggerud, Astrid Marie F; Li, Yanjun; Holmestad, Randi; Andersen, Sigmund J

    2014-10-01

    The orientation relations (ORs) of the cubic icosahedral quasicrystal approximant phase α-Al(Fe,Mn)Si have been studied after low temperature annealing of a 3xxx wrought aluminium alloy by transmission electron microscopy. From diffraction studies it was verified that the most commonly observed OR for the α-Al(Fe,Mn)Si dispersoids is [1\\bar 11]α // [1\\bar 11]Al, (5\\bar 2\\bar 7)α // (011)Al. This orientation could be explained by assuming that the internal Mackay icosahedron (MI) in the α-phase has a fixed orientation in relation to Al, similar to that of the icosahedral quasi-crystals existing in this alloy system. It is shown that mirroring of the normal-to-high-symmetry icosahedral directions of the MI explains the alternative orientations, which are therefore likely to be caused by twinning of the fixed MI. Only one exception was found, which was related to the Bergman icosahedron internal to the T-phase of the Al-Mg-Zn system.

  9. Tensile and electrical properties of high-strength high-conductivity copper alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zinkle, S.J.; Eatherly, W.S. [Oak Ridge National Lab., TN (United States)

    1998-09-01

    Electrical conductivity and tensile properties have been measured on an extruded and annealed CuCrNb dispersion strengthened copper alloy which has been developed for demanding aerospace high heat flux applications. The properties of this alloy are somewhat inferior to GlidCop dispersion strengthened copper and prime-aged CuCrZr over the temperature range of 20--500 C. However, if the property degradation in CuCrZr due to joining operations and the anisotropic properties of GlidCop in the short transverse direction are taken into consideration, CuCrNb may be a suitable alternative material for high heat flux structural applications in fusion energy devices. The electrical conductivity and tensile properties of CuCrZr that was solution annealed and then simultaneously aged and diffusion bonded are also summarized. A severe reduction in tensile elongation is observed in the diffusion bonded joint, particularly if a thin copper shim is not placed in the diffusion bondline.

  10. Effect of post weld heat treatment on tensile properties and microstructure characteristics of friction stir welded armour grade AA7075-T651 aluminium alloy

    Directory of Open Access Journals (Sweden)

    P. Sivaraj

    2014-03-01

    Full Text Available This paper reports the effects of post weld heat treatments, namely artificial ageing and solution treatment followed by artificial ageing, on microstructure and mechanical properties of 12 mm thick friction stir welded joints of precipitation hardenable high strength armour grade AA7075-T651 aluminium alloy. The tensile properties, such as yield strength, tensile strength, elongation and notch tensile strength, are evaluated and correlated with the microhardness and microstructural features. The scanning electron microscope is used to characterie the fracture surfaces. The solution treatment followed by ageing heat treatment cycle is found to be marginally beneficial in improving the tensile properties of friction stir welds of AA7075-T651 aluminium alloy.

  11. Development of High-Strength High-Temperature Cast Al-Ni-Cr Alloys Through Evolution of a Novel Composite Eutectic Structure

    Science.gov (United States)

    Pandey, P.; Kashyap, S.; Tiwary, C. S.; Chattopadhyay, K.

    2017-12-01

    Aiming to develop high-strength Al-based alloys with high material index (strength/density) for structural application, this article reports a new class of multiphase Al alloys in the Al-Ni-Cr system that possess impressive room temperature and elevated temperature (≥ 200 °C) mechanical properties. The ternary eutectic and near eutectic alloys display a complex microstructure containing intermetallic phases displaying hierarchically arranged plate and rod morphologies that exhibit extraordinary mechanical properties. The yield strengths achieved at room temperatures are in excess of 350 MPa with compressive plastic strains of more than 30 pct (without fracturing) for these alloys. The stability of the complex microstructure also leads to a yield stress of 191 ± 8 to 232 ± 5 MPa at 250 °C. It is argued that the alloys derive their high strength and impressive plasticity through synergic effects of refined nanoeutectics of two different morphologies forming a core shell type of architecture.

  12. Core-shell structured titanium-nitrogen alloys with high strength, high thermal stability and good plasticity

    Science.gov (United States)

    Zhang, Y. S.; Zhao, Y. H.; Zhang, W.; Lu, J. W.; Hu, J. J.; Huo, W. T.; Zhang, P. X.

    2017-01-01

    Multifunctional materials with more than two good properties are widely required in modern industries. However, some properties are often trade-off with each other by single microstructural designation. For example, nanostructured materials have high strength, but low ductility and thermal stability. Here by means of spark plasma sintering (SPS) of nitrided Ti particles, we synthesized bulk core-shell structured Ti alloys with isolated soft coarse-grained Ti cores and hard Ti-N solid solution shells. The core-shell Ti alloys exhibit a high yield strength (~1.4 GPa) comparable to that of nanostructured states and high thermal stability (over 1100 °C, 0.71 of melting temperature), contributed by the hard Ti-N shells, as well as a good plasticity (fracture plasticity of 12%) due to the soft Ti cores. Our results demonstrate that this core-shell structure offers a design pathway towards an advanced material with enhancing strength-plasticity-thermal stability synergy.

  13. Influence of Temperature on Mechanical Behavior During Static Restore Processes of Al-Zn-Mg-Cu High Strength Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    ZHANG Kun

    2017-06-01

    Full Text Available Flow stress behaviors of as-cast Al-Zn-Mg-Cu high strength aluminum alloy during static restore processes were investigated by: Isothermal double-pass compression tests at temperatures of 300-400℃, strain rates of 0.01-1 s-1, strains of 33% +20% with the holding times of 0~900 s after the first pass compression. The results indicate that the deformation temperature has a dramatical effect on mechanical behaviors during static restore processes of the alloy. (1 At 300 ℃ and 330 ℃ lower temperatures, the recovery during the deformation is slow, and deformation energy stored in matrix is higher, flow stresses at the second pass deformation decreased during the recovery and recrystallization, and the stress softening phenomena is observed. Stress softening is increased with the increasing holding time; Precipitation during the holding time inhibites the stress softening. (2 At 360 ℃ and 400 ℃ higher temperatures, the recovery during deformation is rapid, and deformation energy stored in matrix is lower. Solid solubility is higher after holding, so that flow stress at the second pass deformation is increased, stress hardening phenomena is observed. Stress hardening decreased with the increasing holding time duo to the recovery and recrystallization during holding period at 360 ℃; Precipitation during holding also inhibited the stress softening. However, Stress hardening remains constant with the increasing holding time duo to the reasanenal there are no recovery and recrystallization during holding period at 400 ℃.

  14. Core-shell structured titanium-nitrogen alloys with high strength, high thermal stability and good plasticity.

    Science.gov (United States)

    Zhang, Y S; Zhao, Y H; Zhang, W; Lu, J W; Hu, J J; Huo, W T; Zhang, P X

    2017-01-06

    Multifunctional materials with more than two good properties are widely required in modern industries. However, some properties are often trade-off with each other by single microstructural designation. For example, nanostructured materials have high strength, but low ductility and thermal stability. Here by means of spark plasma sintering (SPS) of nitrided Ti particles, we synthesized bulk core-shell structured Ti alloys with isolated soft coarse-grained Ti cores and hard Ti-N solid solution shells. The core-shell Ti alloys exhibit a high yield strength (~1.4 GPa) comparable to that of nanostructured states and high thermal stability (over 1100 °C, 0.71 of melting temperature), contributed by the hard Ti-N shells, as well as a good plasticity (fracture plasticity of 12%) due to the soft Ti cores. Our results demonstrate that this core-shell structure offers a design pathway towards an advanced material with enhancing strength-plasticity-thermal stability synergy.

  15. Corrosion and Fatigue Behavior of High-Strength Steel Treated with a Zn-Alloy Thermo-diffusion Coating

    Science.gov (United States)

    Mulligan, C. P.; Vigilante, G. N.; Cannon, J. J.

    2017-09-01

    High and low cycle fatigue tests were conducted on high-strength steel using four-point bending. The materials tested were ASTM A723 steel in the as-machined condition, grit-blasted condition, MIL-DTL-16232 heavy manganese phosphate-coated condition, and ASTM A1059 Zn-alloy thermo-diffusion coated (Zn-TDC). The ASTM A723 steel base material exhibits a yield strength of 1000 MPa. The effects of the surface treatments versus uncoated steel were examined. The fatigue life of the Zn-TDC specimens was generally reduced on as-coated specimens versus uncoated or phosphate-coated specimens. Several mechanisms are examined including the role of compressive residual stress relief with the Zn-TDC process as well as fatigue crack initiation from the hardened Zn-Fe alloy surface layer produced in the gas-metal reaction. Additionally, the effects of corrosion pitting on the fatigue life of coated specimens are explored as the Zn-TDC specimens exhibit significantly improved corrosion resistance over phosphate-coated and oiled specimens.

  16. A Method to Determine Lankford Coefficients (R-Values) for Ultra High Strength Low Alloy (Uhsla) Steels

    Science.gov (United States)

    Gösling, M.

    2017-09-01

    For Ultra High Strength Low Alloy Steels (UHSLAS) it is difficult to determine Lankford parameters, since the measurement of a stable strain ratio is often not possible. This report presents a method for determining Lankford coefficients for UHSLA Steels. The method is based on a combination of a theoretical material model and on experiences from a material data base. The Hill’48 yield condition is used to calculate the Lankford coefficients as a function of the yield stress. An empirical model based on the BILSTEIN material data base is used to predict the anisotropy. The result from earing test is used as an input parameter for the empirical model. The method is first checked using data from tensile tests. The predicted Lankford coefficients are compared with measured Lankford coefficients. In a further step, this method is applied to low alloyed steels with a yield stress of more than 900 MPa. For these materials the Lankford coefficients could not be measured by tensile tests. Predicted Lankford coefficients are used in the numerical simulation of earing test and compared with experimental results. In summary, it can be stated that the method presented here is suitable for predicting Lankford coefficients in case of an impossible direct measurement.

  17. Corrosion and Fatigue Behavior of High-Strength Steel Treated with a Zn-Alloy Thermo-diffusion Coating

    Science.gov (United States)

    Mulligan, C. P.; Vigilante, G. N.; Cannon, J. J.

    2017-11-01

    High and low cycle fatigue tests were conducted on high-strength steel using four-point bending. The materials tested were ASTM A723 steel in the as-machined condition, grit-blasted condition, MIL-DTL-16232 heavy manganese phosphate-coated condition, and ASTM A1059 Zn-alloy thermo-diffusion coated (Zn-TDC). The ASTM A723 steel base material exhibits a yield strength of 1000 MPa. The effects of the surface treatments versus uncoated steel were examined. The fatigue life of the Zn-TDC specimens was generally reduced on as-coated specimens versus uncoated or phosphate-coated specimens. Several mechanisms are examined including the role of compressive residual stress relief with the Zn-TDC process as well as fatigue crack initiation from the hardened Zn-Fe alloy surface layer produced in the gas-metal reaction. Additionally, the effects of corrosion pitting on the fatigue life of coated specimens are explored as the Zn-TDC specimens exhibit significantly improved corrosion resistance over phosphate-coated and oiled specimens.

  18. A β-type TiNbZr alloy with low modulus and high strength for biomedical applications

    Directory of Open Access Journals (Sweden)

    Qingkun Meng

    2014-04-01

    Full Text Available The effect of thermo-mechanical treatment on the mechanical properties of a novel β-type Ti–36Nb–5Zr (wt% alloy has been investigated. The solution treated alloy consists of β and α″ phases and exhibits a two-stage yielding with a low yield stress (around 100 MPa. After cold rolling at a reduction of 87.5% and subsequent annealing treatment at 698 K for 25 min, a fine microstructure with nanosized α precipitates distributed in small β grains as well as high density of dislocations was obtained to achieve a yield strength of 720 MPa and a ultimate tensile strength of 860 MPa. In spite of the formation of α precipitates, the β-stabilizers are not enriched in the parent β matrix due to the short duration and low temperature of the thermal treatment, resulting in a low chemical stability of β phase. The low stability of β phase and the small volume fraction of α precipitates produce a low Young׳s modulus of 48 GPa. Such an excellent combination of low elastic modulus and high strength in mechanical properties indicates great potential for biomedical applications.

  19. Process development of two high strength tantalum base alloys (ASTAR-1211C and ASTAR-1511C)

    Science.gov (United States)

    Ammon, R. L.

    1974-01-01

    Two tantalum base alloys, Ta-12W-1.0Re-0.7Hf-0.025C(ASTAR-1211C) and Ta-15W-1.0Re-0.7Hf-0.025C(ASTAR-1511C), were cast as 12.5 cm (5 inch) diameter ingots and processed to swaged rod, sheet, forged plate, and tubing. Swaged rod was evaluated with respect to low temperature ductility, elevated temperature tensile properties, and elevated temperature creep behavior. A standard swaging process and final annealing schedule were determined. Elevated temperature tensile properties, low temperature impact properties, low temperature DBTT behavior, and extended elevated temperature creep properties were determined. A process for producing ASTAR-1211C and ASTAR-1511C sheet were developed. The DBTT properties of GTA and EB weld sheet given post-weld anneal and thermal aging treatments were determined using bend and tensile specimens. High and low temperature mechanical properties of forging ASTAR-1211C and ASTAR-1511C plate were determined as well as elevated temperature creep properties. Attempts to produce ASTAR-1211C tubing were partially successful while attempts to make ASTAR-1511C tubing were completely unsuccessful.

  20. Origin of high strength, low modulus superelasticity in nanowire-shape memory alloy composites

    Science.gov (United States)

    Zhang, Xudong; Zong, Hongxiang; Cui, Lishan; Fan, Xueling; Ding, Xiangdong; Sun, Jun

    2017-04-01

    An open question is the underlying mechanisms for a recent discovered nanocomposite, which composed of shape memory alloy (SMA) matrix with embedded metallic nanowires (NWs), demonstrating novel mechanical properties, such as large quasi-linear elastic strain, low Young’s modulus and high yield strength. We use finite element simulations to investigate the interplay between the superelasticity of SMA matrix and the elastic-plastic deformation of embedded NWs. Our results show that stress transfer plays a dominated role in determining the quasi-linear behavior of the nanocomposite. The corresponding microstructure evolution indicate that the transfer is due to the coupling between plastic deformation within the NWs and martensitic transformation in the matrix, i.e., the martensitic transformation of the SMA matrix promotes local plastic deformation nearby, and the high plastic strain region of NWs retains considerable martensite in the surrounding SMA matrix, thus facilitating continues martensitic transformation in subsequent loading. Based on these findings, we propose a general criterion for achieving quasi-linear elasticity.

  1. Surface changes of metal alloys and high-strength ceramics after ultrasonic scaling and intraoral polishing.

    Science.gov (United States)

    Yoon, Hyung-In; Noh, Hyo-Mi; Park, Eun-Jin

    2017-06-01

    This study was to evaluate the effect of repeated ultrasonic scaling and surface polishing with intraoral polishing kits on the surface roughness of three different restorative materials. A total of 15 identical discs were fabricated with three different materials. The ultrasonic scaling was conducted for 20 seconds on the test surfaces. Subsequently, a multi-step polishing with recommended intraoral polishing kit was performed for 30 seconds. The 3D profiler and scanning electron microscopy were used to investigate surface integrity before scaling (pristine), after scaling, and after surface polishing for each material. Non-parametric Friedman and Wilcoxon signed rank sum tests were employed to statistically evaluate surface roughness changes of the pristine, scaled, and polished specimens. The level of significance was set at 0.05. Surface roughness values before scaling (pristine), after scaling, and polishing of the metal alloys were 3.02±0.34 µm, 2.44±0.72 µm, and 3.49±0.72 µm, respectively. Surface roughness of lithium disilicate increased from 2.35±1.05 µm (pristine) to 28.54±9.64 µm (scaling), and further increased after polishing (56.66±9.12 µm, Pscaling (from 1.65±0.42 µm to 101.37±18.75 µm), while its surface roughness decreased after polishing (29.57±18.86 µm, Pscaling significantly changed the surface integrities of lithium disilicate and zirconia. Surface polishing with multi-step intraoral kit after repeated scaling was only effective for the zirconia, while it was not for lithium disilicate.

  2. Surface changes of metal alloys and high-strength ceramics after ultrasonic scaling and intraoral polishing

    Science.gov (United States)

    Noh, Hyo-Mi

    2017-01-01

    PURPOSE This study was to evaluate the effect of repeated ultrasonic scaling and surface polishing with intraoral polishing kits on the surface roughness of three different restorative materials. MATERIALS AND METHODS A total of 15 identical discs were fabricated with three different materials. The ultrasonic scaling was conducted for 20 seconds on the test surfaces. Subsequently, a multi-step polishing with recommended intraoral polishing kit was performed for 30 seconds. The 3D profiler and scanning electron microscopy were used to investigate surface integrity before scaling (pristine), after scaling, and after surface polishing for each material. Non-parametric Friedman and Wilcoxon signed rank sum tests were employed to statistically evaluate surface roughness changes of the pristine, scaled, and polished specimens. The level of significance was set at 0.05. RESULTS Surface roughness values before scaling (pristine), after scaling, and polishing of the metal alloys were 3.02±0.34 µm, 2.44±0.72 µm, and 3.49±0.72 µm, respectively. Surface roughness of lithium disilicate increased from 2.35±1.05 µm (pristine) to 28.54±9.64 µm (scaling), and further increased after polishing (56.66±9.12 µm, Pscaling (from 1.65±0.42 µm to 101.37±18.75 µm), while its surface roughness decreased after polishing (29.57±18.86 µm, Pscaling significantly changed the surface integrities of lithium disilicate and zirconia. Surface polishing with multi-step intraoral kit after repeated scaling was only effective for the zirconia, while it was not for lithium disilicate. PMID:28680550

  3. Effect of alloying with zinc on SFE of aluminium by study of lattice ...

    Indian Academy of Sciences (India)

    Unknown

    315. Effect of alloying with zinc on SFE of aluminium by study of lattice imperfections in cold worked Al–Zn alloys. G KARMAKAR, R SEN†, S K CHATTOPADHYAY, A K MEIKAP and. S K CHATTERJEE*. Regional Engineering College, Durgapur 713 209, India. †Bidhan Chandra Institution, Durgapur 713 205, India.

  4. Pitting corrosion of A357 aluminium alloy obtained by semisolid processing

    Energy Technology Data Exchange (ETDEWEB)

    Bastidas, J.M.; Polo, J.L.; Torres, C.L. [National Centre for Metallurgical Research (CSIC), Madrid (Spain); Forn, A.; Baile, M.T. [Polytechnic Univ. of Catalonia, Vilanova i la Geltru (Spain)

    2001-09-01

    This paper studies the pitting corrosion of a structural component of A357 aluminium alloy obtained by a semisolid metal forming process. The mechanical properties of the A357 alloy were improved by applying standard heat treatments T5 and T6. Impedance measurements were conducted at the rest potential and polarisation curves were plotted using a 3% NaCl test solution. After polarisation experiments the specimens were analysed by scanning electron microscopy. The corrosion process is favoured through the eutectic regions. The results show that T6 heat treatment improved the corrosion resistance of the A357 aluminium alloy. (orig.)

  5. High strength aluminum cast alloy: A Sc modification of a standard Al–Si–Mg cast alloy

    Energy Technology Data Exchange (ETDEWEB)

    Muhammad, Arfan, E-mail: engr.arfan@gmail.com [Key Laboratory of Aerospace Advanced Materials and Performance of Ministry of Education, School of Material Science and Engineering, Beihang University, Beijing 100191 (China); Xu, Cong; Xuejiao, Wang [Key Laboratory of Aerospace Advanced Materials and Performance of Ministry of Education, School of Material Science and Engineering, Beihang University, Beijing 100191 (China); Hanada, Shuji [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Yamagata, Hiroshi [Center for Advanced Die Engineering and Technology, Gifu University, 1-1 Yanagido, Gifu City, Gifu 501-1193 (Japan); Hao, LiRong [Hebei Sitong New Metal Material Co., Ltd., Baoding 071105 (China); Chaoli, Ma [Key Laboratory of Aerospace Advanced Materials and Performance of Ministry of Education, School of Material Science and Engineering, Beihang University, Beijing 100191 (China)

    2014-05-01

    A standard Aluminum–Silicon–Magnesium cast alloy (A357 foundry alloy without Beryllium) modified with different weight percentages of Scandium (Sc), has been studied to evaluate the effects of Sc contents on microstructure and strength. Study has been conducted under optimized parameters of melting, casting and heat treatment. Characterization techniques like optical microscopy, SEM, TEM and tensile testing were employed to analyze the microstructure and mechanical properties. Results obtained in this research indicate that with the increase of Sc contents up to 0.4 wt%, grain size is decreased by 80% while ultimate tensile strength and hardness are increased by 28% and 19% respectively. Moreover along with the increase in strength, elongation to failure is also increased up to 165%. This is quite interesting behavior because usually strength and ductility have inverse relationship.

  6. Spall fracture in aluminium alloy at high strain rates

    Science.gov (United States)

    Joshi, K. D.; Rav, Amit; Sur, Amit; Kaushik, T. C.; Gupta, Satish C.

    2016-05-01

    Spall fracture strength and dynamic yield strength has been measured in 8mm thick target plates of aluminium alloy Al2024-T4 at high strain rates generated in three plate impact experiments carried out at impact velocities of 180 m/s, 370 m/s and 560m/s, respectively, using single stage gas gun facility. In each experiment, the free surface velocity history of the Al2024-T4 sample plate measured employing velocity interferometer system for any reflector (VISAR) is used to determine the spall strength and dynamic yield strength of this material. The spall strength of 1.11 GPa, 1.16 GPa and 1.43 GPa, determined from measured free surface velocity history of sample material in three experiments performed at impact velocity of 180 m/s, 370 m/s and 560 m/s, respectively, are higher than the quasi static value of 0.469 GPa and display almost linearly increasing trend with increasing impact velocity or equivalently with increasing strain rates. The average strain rates just ahead of the spall fracture are determined to be 1.9×10 4/s, 2.0×104/s and 2.5×104/s, respectively. The dynamic yield strength determined in the three experiments range from 0.383 GPa to 0.407 GPa, which is higher than the quasi static value of 0.324GPa.

  7. Enhancing elevated temperature strength of copper containing aluminium alloys by forming L12 Al3Zr precipitates and nucleating θ″ precipitates on them.

    Science.gov (United States)

    Kumar Makineni, Surendra; Sugathan, Sandeep; Meher, Subhashish; Banerjee, Rajarshi; Bhattacharya, Saswata; Kumar, Subodh; Chattopadhyay, Kamanio

    2017-09-11

    Strengthening by precipitation of second phase is the guiding principle for the development of a host of high strength structural alloys, in particular, aluminium alloys for transportation sector. Higher efficiency and lower emission demands use of alloys at higher operating temperatures (200 °C-250 °C) and stresses, especially in applications for engine parts. Unfortunately, most of the precipitation hardened aluminium alloys that are currently available can withstand maximum temperatures ranging from 150-200 °C. This limit is set by the onset of the rapid coarsening of the precipitates and consequent loss of mechanical properties. In this communication, we present a new approach in designing an Al-based alloy through solid state precipitation route that provides a synergistic coupling of two different types of precipitates that has enabled us to develop coarsening resistant high-temperature alloys that are stable in the temperature range of 250-300 °C with strength in excess of 260 MPa at 250 °C.

  8. Gas accumulation at grain boundaries during 800 MeV proton irradiation of aluminium and aluminium-alloys

    DEFF Research Database (Denmark)

    Singh, Bachu Narain; Horsewell, Andy; Sommer, W. F.

    1986-01-01

    Samples of pure aluminium (99.9999%) and commercial Al-2.7%Mg(AlMg3) and Al-1.1%Mg-0.5%Si(Al6061) alloys were irradiated with 800 MeV protons at the Los Alamos Meson Physics Facility (LAMPF) at a temperature between 40-100°C to a maximum dose of 0.2 dpa. Transmission electron microscopy (TEM) sho...... higher than in the pure Al. The amount of gas accumulation at grain boundaries was found to depend on gas generation rate, alloying and cold-work microstructure...

  9. Braze Welding TIG of Titanium and Aluminium Alloy Type Al – Mg

    OpenAIRE

    Winiowski A.; Majewski D.

    2016-01-01

    The article presents the course and the results of technological tests related to TIG-based arc braze welding of titanium and AW-5754 (AlMg3) aluminium alloy. The tests involved the use of an aluminium filler metal (Al99.5) and two filler metals based on Al-Si alloys (AlSi5 and AlSi12). Braze welded joints underwent tensile tests, metallographic examinations using a light microscope as well as structural examinations involving the use of a scanning electron microscope and an X-ray energy disp...

  10. Effect of different stages of tensile deformation on micromagnetic parameters in high-strength, low-alloy steel

    Energy Technology Data Exchange (ETDEWEB)

    Vaidyanathan, S.; Moorthy, V.; Kalyanasundaram, P.; Jayakumar, T.; Raj, B. [Indira Gandhi Centre for Atomic Research, Kalpakkam (India). Metallurgy and Materials Group

    1999-08-01

    The influence of tensile deformation on the magnetic Barkhausen emissions (MBE) and hysteresis loop has been studied in a high-strength, low-alloy steel (HSLA) and its weldment. The magnetic measurements were made both in loaded and unloaded conditions for different stress levels. The root-mean-square (RMS) voltage of the MBE has been used for analysis. This study shows that the preyield and postyield deformation can be identified from the change in the MBE profile. The initial elastic deformation showed a linear increase in the MBE level in the loaded condition, and the MBE level remained constant in the unloaded condition. The microplastic yielding, well below the macroyield stress, significantly reduces the MBE, indicating the operation of grain-boundary dislocation sources below the macroyield stress. This is indicated by the slow increase in the MBE level in the loaded condition and the decrease in the MBE level in the unloaded condition. The macroyielding resulted in a significant increase in the MBE level in the loaded condition and, more clearly, in the unloaded condition. The increase in the MBE level during macroyielding has been attributed to the grain rotation phenomenon, in order to maintain the boundary integrity between adjacent grains, which would preferentially align the magnetic domains along the stress direction. This study shows that MBE during tensile deformation can be classified into four stages: (1) perfectly elastic, (2) microplastic yielding, (3) macroyielding, and (4) progressive plastic deformation. A multimagnetic parameter approach, combining the hysteresis loop and MBE, has been suggested to evaluate the residual stresses.

  11. The influence of high heat input and inclusions control for rare earth on welding in low alloy high strength steel

    Science.gov (United States)

    Chu, Rensheng; Mu, Shukun; Liu, Jingang; Li, Zhanjun

    2017-09-01

    In the current paper, it is analyzed for the influence of high heat input and inclusions control for rare earth on welding in low alloy high strength steel. It is observed for the structure for different heat input of the coarse-grained area. It is finest for the coarse grain with the high heat input of 200 kJ / cm and the coarse grain area with 400 kJ / cm is the largest. The performance with the heat input of 200 kJ / cm for -20 °C V-shaped notch oscillatory power is better than the heat input of 400 kJ / cm. The grain structure is the ferrite and bainite for different holding time. The grain structure for 5s holding time has a grain size of 82.9 μm with heat input of 200 kJ/cm and grain size of 97.9 μm for 10s holding time. For the inclusions for HSLA steel with adding rare earth, they are Al2O3-CaS inclusions in the Al2O3-CaS-CaO ternary phase diagram. At the same time, it can not be found for low melting calcium aluminate inclusions compared to the inclusions for the HSLA steel without rare earth. Most of the size for the inclusions is between 1 ~ 10μm. The overall grain structure is smaller and the welding performance is more excellent for adding rare earth.

  12. Appearance of anodised aluminium: Effect of alloy composition and prior surface finish

    DEFF Research Database (Denmark)

    Aggerbeck, Martin; Canulescu, Stela; Dirscherl, Kai

    2014-01-01

    Effect of alloy composition and prior surface finish on the optical appearance of the anodised layer on aluminium alloys was investigated. Four commercial alloys namely AA1050, Peraluman 706, AA5754, and AA6082 were used for the investigation. Microstructure and surface morphology of the substrate...... prior to anodising were analysed using scanning electron microscopy and atomic force microscopy. The optical appearance of the anodised surface with and without sealing was investigated using a photography setup, photospectrometry and bidirectional reflectance distribution function. It was found...... appearance was kept for alloys of high purity. Sealing made the specular reflection of the mechanically polished specimens more distinct....

  13. MICROSTRUCTURAL AND MECHANICAL STUDY OF ALUMINIUM ALLOYS SUBMITTED TO DISTINCT SOAKING TIMES DURING SOLUTION HEAT TREATMENT

    Directory of Open Access Journals (Sweden)

    Valmir Martins Monteiro

    2014-12-01

    Full Text Available This work studies the microstructural characteristics and mechanical properties for different aluminium alloys (1100, 3104 and 8011 hot rolled sheets that were subjected to a solution heat treatment with distinct soaking times, in order to promote microstructural and mechanical changes on these alloys with solute fractions slightly above the maximum solubility limit. Scanning Electronic Microscopy (SEM / Energy Dispersive Spectroscopy X-Ray (EDS, X-Ray Diffraction (XRD and Hardness Tests were employed to observe the microstructural / compositional and mechanical evaluation. For the 1100 and 8011 alloys the more suitable soaking time occur between 1 and 2 hours, and for the 3104 alloy occurs between 2 and 3 hours.

  14. Evaluation of the mechanical properties of microarc oxidation coatings and 2024 aluminium alloy substrate

    CERN Document Server

    Xue Wen Bin; Deng Zhi Wei; Chen Ru Yi; Li Yong Liang; Zhang Ton Ghe

    2002-01-01

    A determination of the phase constituents of ceramic coatings produced on Al-Cu-Mg alloy by microarc discharge in alkaline solution was performed using x-ray diffraction. The profiles of the hardness, H, and elastic modulus, E, across the ceramic coating were determined by means of nanoindentation. In addition, a study of the influence of microarc oxidation coatings on the tensile properties of the aluminium alloy was also carried out. The results show that the H-and E-profiles are similar, and both of them exhibit a maximum value at the same depth of coating. The distribution of the alpha-Al sub 2 O sub 3 phase content determines the H- and E-profiles of the coatings. The tensile properties of 2024 aluminium alloy show less change after the alloy has undergone microarc discharge surface treatment.

  15. High Pressure Die Casting of Aluminium and Magnesium Alloys: Grain Structure and Segregation Characteristics

    OpenAIRE

    Laukli, Hans Ivar

    2004-01-01

    Cold chamber high pressure die casting, (HPDC), is an important commercial process for the production of complex near net shape aluminium and magnesium alloy castings. The work presented in the thesis was aimed at investigating the microstructure formation in this type of casting. The solidification characteristics related to the process and the alloys control the formation of grains and defects. This again has a significant impact on the mechanical properties of the castings. The investi...

  16. Surface Chemistry of Aluminium Alloy Slid against Steel Lubricated by Organic Friction Modifier in Hydrocarbon Oil

    Directory of Open Access Journals (Sweden)

    Ichiro Minami

    2012-01-01

    Full Text Available The lubrication mechanism of aluminium alloy slid against steel was investigated from the standpoint of surface chemistry. Low friction and low wear were observed using glycerol mono-olate in a hydrocarbon as lubricant. Increase in the silicon content in the aluminium alloy during rubbing was observed by surface analyses using (1 Auger electron spectroscopy, (2 scanning electron microscopy along with energy dispersive X-ray spectroscopy, and (3 X-ray photoelectron spectroscopy. Mild removal of the passive state (aluminium oxide from the uppermost surface by the additive during the running-in process was proposed as the lubrication mechanism. The importance of additive chemistry that improves the running-in process was pointed out.

  17. Experimental Analysis of the Behaviour of Aluminium Alloy EN 6082AW T6 at High Temperature

    Directory of Open Access Journals (Sweden)

    Neno Torić

    2017-04-01

    Full Text Available The paper presents test results for the mechanical and creep properties of European aluminium alloy EN 6082AW T6 at high temperatures. Mechanical properties of the aluminium alloy were determined by means of two types of test: constant stress-rate and stationary creep tests. Mechanical properties were determined up to a temperature of 350 °C, while the creep tests were conducted within the temperature interval 150–300 °C. The creep tests conducted identified the critical temperature interval for creep development, which represents an important factor when analysing creep behaviour of aluminium structures. This temperature interval was found to be within the range 200–300 °C. Test results for stress at 0.2% strain and modulus of elasticity at different temperatures showed good agreement with the codified values from Eurocode 9 and with other comparable studies.

  18. Emeraldine base as corrosion protective layer on aluminium alloy AA5182, effect of the surface microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Cecchetto, L. [Laboratoire d' Electrochimie et de Physicochimie des Materiaux et des Interfaces, CNRS-UJF-INP-Grenoble (UMR 5631), ENSEEG, BP 75, 38402 St. Martin d' Heres (France); Ambat, R. [School of Engineering Metallurgy and Materials, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Davenport, A.J. [School of Engineering Metallurgy and Materials, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Delabouglise, D. [Laboratoire d' Electrochimie et de Physicochimie des Materiaux et des Interfaces, CNRS-UJF-INP-Grenoble (UMR 5631), ENSEEG, BP 75, 38402 St. Martin d' Heres (France)]. E-mail: Didier.Delabouglise@lepmi.inpg.fr; Petit, J.-P. [Laboratoire d' Electrochimie et de Physicochimie des Materiaux et des Interfaces, CNRS-UJF-INP-Grenoble (UMR 5631), ENSEEG, BP 75, 38402 St. Martin d' Heres (France); Neel, O. [Centre de Recherche de Voreppe, Pechiney, Parc economique Centr' Alp, 38340 Voreppe (France)

    2007-02-15

    AA5182 aluminium alloy cold rolled samples were coated by thin films of emeraldine base (EB) obtained from a 5% solution in N-methylpyrrolidinone. Accelerated corrosion tests prove this coating very effective for corrosion protection of aluminium alloys in neutral environment. This study underlines the prominent role of surface cathodic intermetallic particles in pit initiation and coating break down in enhanced corrosion conditions and suggest that, beside the EB barrier properties, the enhanced corrosion resistance observed on the EB coated samples could partly arise from two other mains factors:- a weak redox activity of the polymer which passivate the metal, - a proton involving self-healing process taking place at the polymer-metal interface, which contributes to delay local acidification in first steps of corrosion on EB coated aluminium surfaces.

  19. Anti-corrosive Conversion Coating on Aluminium Alloys Using High Temperature Steam

    DEFF Research Database (Denmark)

    Din, Rameez Ud; Jellesen, Morten Stendahl; Ambat, Rajan

    and heterogeneity of native oxide layer does not provide long time corrosion resistance and adhesion of organic coating for a particular function in different environments. In order to enhance the corrosion resistance and adhesion of organic coating, the aluminium native oxide layer is treated to transform...... or convert to a functional conversion coating. In the last several decades chromate conversion coating (CrCCs) have been the most common conversion coatings used for aluminium alloys. Due to the toxicity of the hexavalent chrome, however, environmental friendly alternatives to CrCCs have been investigated...... extensively. Despite the intense research no equivalent substitute for (CrCCs) has been found. For these reasons, alternative conversion coatings are sought for substituting existing ones. Aluminium alloys AA 1090, Peraluman 706, and AA 6060 were subjected to high pressure steam treatment and various...

  20. Aluminium Alloy AA6060 surface treatment with high temperature steam containing chemical additives

    DEFF Research Database (Denmark)

    Din, Rameez Ud; Tabrizian, Naja; Jellesen, Morten S.

    2015-01-01

    The steam treatment process was employed to produce a conversion coating on aluminium alloy AA6060. The changes in microstructure and its effect on corrosion resistance properties were investigated. Various concentrations of KMnO4 containing Ce(NO3)3 was injected into the steam and its effect...

  1. (VI) from water by micro-alloyed aluminium composite (MAlC)

    African Journals Online (AJOL)

    driniev

    2004-07-03

    Jul 3, 2004 ... This paper deals with Cr(VI) ion removal from water, by micro-alloyed aluminium composite (MAlC), under flow conditions. In a water environment the MAlC acts as a strong reducing agent. Dissolving it in water is accompanied by the generation of Al(III) ions and reduction of water to H2, with OH– ions.

  2. Solution Hardening in Aluminium-Magnesium Alloys : A Nuclear Magnetic Resonance and Transmission Electron Microscopic Study

    NARCIS (Netherlands)

    Schlagowski, U.; Kanert, O.; Hosson, J.Th.M. De; Boom, G.

    1988-01-01

    Pulsed nuclear magnetic resonance techniques as well as transmission electron microscopy have been applied to study dislocation motion in aluminium magnesium alloys (0.2-1.6 at.% Mg). The spin lattice relaxation rate in the rotating frame of 27Al has been been measured at 77 K as a function of

  3. Characterization of steam generated anti-corrosive oxide films on Aluminium alloys

    DEFF Research Database (Denmark)

    Din, Rameez Ud; Jellesen, Morten Stendahl; Ambat, Rajan

    2014-01-01

    alloy surfaces were exposed to high pressure steam produced by an autoclave at a temperature of 107 – 121 °C and pressure of 15 -17 psi for 10 minutes to produce a thin coating of aluminium oxide. The aim of this study is to understand the effect of high pressure steam with and without different...

  4. Laser surface alloying of aluminium with WC+Co+NiCr for improved wear resistance

    CSIR Research Space (South Africa)

    Nath, S

    2012-03-01

    Full Text Available In the present study, laser surface alloying of aluminium with WC + Co + NiCr (in the ratio of 70:15:15) has been conducted using a 5 kW continuous wave (CW) Nd:YAG laser (at a beam diameter of 0.003 m), with the output power ranging from 3 to 3.5 k...

  5. Corrosion behaviour of 6063 aluminium alloy in acidic and in alkaline media

    Directory of Open Access Journals (Sweden)

    Prabhu Deepa

    2017-05-01

    Full Text Available The corrosion behaviour of 6063 aluminium alloy was investigated in different concentrations of phosphoric acid medium and sodium hydroxide medium at different temperatures. The study was done by electrochemical method, using Tafel polarization technique and electrochemical impedance spectroscopy (EIS technique. The surface morphology was investigated using scanning electron microscope (SEM with Energy-dispersive X-ray spectroscopy (EDX. The results showed that the 6063 aluminium alloy undergoes severe corrosion in sodium hydroxide medium than in phosphoric acid medium. The corrosion rate of 6063 aluminium alloy increased with an increase in the concentration of acid as well as with alkali. The corrosion rate was increased with an increase in temperature. The kinetic parameters and thermodynamic parameters were calculated using Arrhenius theory and transition state theory. Suitable mechanism was proposed for the corrosion of 6063 aluminium alloy in phosphoric acid medium and sodium hydroxide medium. The results obtained by Tafel polarization and electrochemical impedance spectroscopy (EIS techniques were in good agreement with each other.

  6. (VI) from water by micro-alloyed aluminium composite (MAlC)

    African Journals Online (AJOL)

    driniev

    2004-07-03

    Jul 3, 2004 ... Abstract. This paper deals with Cr(VI) ion removal from water, by micro-alloyed aluminium composite (MAlC), under flow conditions. In a water ... Cr(VI) were below the maximal allowed concentrations for drinking water, in all model solutions. ... mucous membrane irritant and some of these hexavalent com-.

  7. Comparison of the axial stiffness of carbon composite and aluminium alloy circular external skeletal fixator rings.

    Science.gov (United States)

    Gauthier, C M; Kowaleski, M P; Gerard, P D; Rovesti, G L

    2013-01-01

    The purpose of this study was to compare the axial stiffness of aluminium alloy and carbon composite single-ring constructs. Single-ring constructs were made with rings of different material compositions (aluminium alloy and carbon composite), diameters (55 mm, 85 mm, and 115 mm), and thicknesses (6 mm for the single-ring, 12 mm for the double-ring) with all other components remaining constant. Stiffness of each construct was determined under loading in axial compression with a materials testing machine. The axial stiffness of each group was compared using a three-factor factorial analysis of variance investigating all main effects and interactions between ring diameter, ring thickness, and ring material composition; p <0.05 was considered significant. Carbon composite constructs were 16-55% as stiff as corresponding aluminium alloy constructs. Within each combination of ring material composition and ring diameter, stiffness did not significantly increase when the ring thickness was doubled. Within each combination of ring material composition and ring thickness, stiffness significantly decreased with increased ring diameter. Aluminium alloy rings were found to be significantly stiffer than carbon composite rings. Although the carbon composite rings were considerably less stiff, clinical recommendations cannot be made from a single-ring in vitro analysis. Further studies are needed to evaluate the behaviour of these rings in vivo.

  8. Laser welding of SSM Cast A356 aluminium alloy processed with CSIR-Rheo technology

    CSIR Research Space (South Africa)

    Akhter, R

    2006-01-01

    Full Text Available Samples of aluminium alloy A356 were manufactured by Semi Solid Metals HPDC technology, developed recently in CSIR, Pretoria. They were butt welded in as cast conditions using as Nd: YAG laser. The best metal and weld microstructure were presented...

  9. Laser assisted cold spraying of aluminium alloy powder on stainless steel substrate

    CSIR Research Space (South Africa)

    Tlotleng, Monnamme

    2012-12-01

    Full Text Available International Conference on Information Warfare and Security, Denver, USA 25-26 March 2013 LASER ASSISTED COLD SPRAYING OF ALUMINIUM ALLOY POWDER ON STAINLESS STEEL SUBSTRATE M. Tlotleng1, 2; E.O. Olakanmi2; C. Meacock; Sisa Pityana1, 3; E.T. Akinlabi2...

  10. Improvement of hardness of aluminium AA1200 by laser surface alloying

    CSIR Research Space (South Africa)

    Mabhali, Luyolo AB

    2010-07-01

    Full Text Available Aluminium is vastly used in industry due to its low cost, light weight and excellent workability, but lacks in wear resistance and hardness. Laser alloying is used to improve the surface properties such as hardness by modifying the composition...

  11. Structure and selected properties of high-aluminium Zn alloy with silicon addition

    Directory of Open Access Journals (Sweden)

    A. Zyska

    2011-07-01

    Full Text Available The results of examinations concerning the abrasive wear resistance, hardness, and thermal expansion of high-aluminium zinc alloys are presented. The examinations were carried out for five synthetic ZnAl28 alloys with variable silicon content ranging from 0.5% to 3.5%, and – for the purpose of comparison – for the standardised ZnAl28Cu4 alloy. It was found that silicon efficiently increases the tribological properties and decreases the coefficient of thermal expansion of zinc alloys. The most advantageous set of the examined properties is exhibited by the alloys containing over 2.5% Si. They are characterised by higher parameters as compared with the standardised alloy. Observations of microstructures reveal that silicon precipitates as a separate compact phase, and its morphology depends on t he Si content in the alloy. The performed examinations show that silicon can satisfactorily replace copper in high aluminium Zn alloys, thus eliminating the problem of dimensional instability of castings.

  12. Microstructure and mechanical properties of laser treated aluminium alloys

    NARCIS (Netherlands)

    deHosson, JTM; vanOtterloo, LDM; Noordhuis, J; Mazumder, J; Conde, O; Villar, R; Steen, W

    1996-01-01

    Al-Cu alloys and an Al-Cu-Mg alloy, Al 2024-T3, were exposed to laser treatments at various scan velocities. In this paper the microstructural features and mechanical properties are reported. As far as the mechanical property of the Al-Cu-Mg alloy is concerned a striking observation is a minimum in

  13. Alloy by design : A materials genome approach to advanced high strength stainless steels for low and high temperature applications

    NARCIS (Netherlands)

    Lu, Q.; Xu, W.; Van der Zwaag, S.

    2016-01-01

    We report a computational 'alloy by design' approach which can significantly accelerate the design process and substantially reduce the development costs. This approach allows simultaneously optimization of alloy composition and heat treatment parameters based on the integration of thermodynamic,

  14. Recovery of aluminium, nickel-copper alloys and salts from spent fluorescent lamps.

    Science.gov (United States)

    Rabah, Mahmoud A

    2004-01-01

    This study explores a combined pyro-hydrometallurgical method to recover pure aluminium, nickel-copper alloy(s), and some valuable salts from spent fluorescent lamps (SFLs). It also examines the safe recycling of clean glass tubes for the fluorescent lamp industry. Spent lamps were decapped under water containing 35% acetone to achieve safe capture of mercury vapour. Cleaned glass tubes, if broken, were cut using a rotating diamond disc to a standard shorter length. Aluminium and copper-nickel alloys in the separated metallic parts were recovered using suitable flux to decrease metal losses going to slag. Operation variables affecting the quality of the products and the extent of recovery with the suggested method were investigated. Results revealed that total loss in the glass tube recycling operation was 2% of the SFLs. Pure aluminium meeting standard specification DIN 1712 was recovered by melting at 800 degrees C under sodium chloride/carbon flux for 20 min. Standard nickel-copper alloys with less than 0.1% tin were prepared by melting at 1250 degrees C using a sodium borate/carbon flux. De-tinning of the molten nickel-copper alloy was carried out using oxygen gas. Tin in the slag as oxide was recovered by reduction using carbon or hydrogen gas at 650-700 degrees C. Different valuable chloride salts were also obtained in good quality. Further research is recommended on the thermodynamics of nickel-copper recovery, yttrium and europium recovery, and process economics.

  15. Recovery of actinides from actinide-aluminium alloys by chlorination: Part I

    Energy Technology Data Exchange (ETDEWEB)

    Cassayre, L., E-mail: cassayre@chimie.ups-tlse.fr [Laboratoire de Genie Chimique (LGC), Departement Procedes Electrochimiques, CNRS-UMR 5503, Universite de Toulouse III - Paul Sabatier, 31062 Toulouse (France); Soucek, P.; Mendes, E.; Malmbeck, R.; Nourry, C.; Eloirdi, R.; Glatz, J.-P. [European Commission, JRC, Institute for Transuranium Elements, Postfach 2340, 76125 Karlsruhe (Germany)

    2011-07-01

    Pyrochemical processes in molten LiCl-KCl are being developed in ITU for recovery of actinides from spent nuclear fuel. The fuel is anodically dissolved to the molten salt electrolyte and actinides are electrochemically reduced on solid aluminium cathodes forming solid actinide-aluminium alloys. A chlorination route is being investigated for recovery of actinides from the alloys. This route consists in three steps: Vacuum distillation for removal of the salt adhered on the electrode, chlorination of the actinide-aluminium alloys by chlorine gas and sublimation of the formed AlCl{sub 3}. A thermochemical study showed thermodynamic feasibility of all three steps. On the basis of the conditions identified by the calculations, experiments using pure UAl{sub 3} alloy were carried out to evaluate and optimise the chlorination step. The work was focused on determination of the optimal temperature and Cl{sub 2}/UAl{sub 3} molar ratio, providing complete chlorination of the alloy without formation of volatile UCl{sub 5} and UCl{sub 6}. The results showed high efficient chlorination at a temperature of 150 deg. C.

  16. The effect of different shot peening intensities on fatigue life of AW 7075 aluminium alloy

    Directory of Open Access Journals (Sweden)

    Libor Trško

    2013-12-01

    Full Text Available In this study the effect of different shot peening intensities, from very light peening with ceramic beads to severe shot peening with high coverage, on the fatigue life of aircraft AW 7075 aluminium alloy was investigated. Results were discussed in means of surface roughness, character of deformed surface layer and residual stress profile measured by XRD methods. Light peening intensity creates high and shallow compression residual stress field in the subsurface layers of material and increases the fatigue life of studied alloy. Increasing the peening intensity increases the depth of residual stress field, however the surface damage created by impact of shots at high velocity causes significant surface damage and rapidly degrade the fatigue properties of AW 7075 aluminium alloy.

  17. Anodic behaviour of aluminium and its alloys in sodium chlorate solutions

    Directory of Open Access Journals (Sweden)

    A. V. Nechaev

    2017-05-01

    Full Text Available The effect of chlorate ions on the anodic dissolution of aluminium and its alloys with magnesium under conditions of high current densities and intensive electrolyte mixing is investigated using the method of anodic polarisation curve removal on a rotating disk electrode. It is shown that at relatively low anodic potential values the process is limited by the capacity of the electrochemical reaction, but with a further potential shift and a venting of the reaction products from the surface of the anode. The effective smoothing of the surface microrelief of aluminium alloys in solutions of chlorates is due to the periodic formation and destruction on the treated surface of a specific oxide film and inhibition due to the electrochemical heterogeneity of the structural components of the alloys.

  18. Steam assisted oxide growth on aluminium alloys using oxidative chemistries: Part II corrosion performance

    DEFF Research Database (Denmark)

    Din, Rameez Ud; Jellesen, Morten Stendahl; Ambat, Rajan

    2015-01-01

    the protection provided by steam treatment with HNO3was a function of the concentration of NO3−ions. The coating generated by inclusion of KMnO4showed highest resistance to filiform corrosion. Overall, the performance of the steam treated surfaces under filiform corrosion and AASS test was a result of the local......Surface treatment of aluminium alloys using steam with oxidative chemistries, namely KMnO4 and HNO3 resulted in accelerated growth of oxide on aluminium alloys. Detailed investigation of the corrosion performance of the treated surfaces was carried out using potentiodynamic polarisation...... and standard industrial test methods such as acetic acid salt spray (AASS) and filiform corrosion on commercial AA6060 alloy. Barrier properties of the film including adhesion were evaluated using tape test under wet and dry conditions. Electrochemical results showed reduced cathodic and anodic activity, while...

  19. Diamond turning and polishing tests on new RSP aluminium alloys

    NARCIS (Netherlands)

    Horst, R. ter; Haan, M. de; Gubbels, G.P.H.; Senden, R.; Venrooy, B.W.H. van; Hoogstrate, A.M.

    2012-01-01

    For years now conventional aluminium 6061 T6 has widely been used for mirrors in astronomical instruments, being diamond turned or since a few years also being optically polished. This allows the development of optical systems that can be tested and operated at any temperature, without being

  20. A multiple buckling curve formulation for design of aluminium alloy ...

    African Journals Online (AJOL)

    The paper refers to the overall stability design of aluminium structural elements. Buckling curves for members subjected to compression and members subjected to bending are dealt with. The formulation is based on probabilistic considerations of two random events, namely the elastic buckling of a perfect member and the ...

  1. Cavitation-aided grain refinement in aluminium alloys

    NARCIS (Netherlands)

    Atamanenko, T.V.

    2010-01-01

    This thesis deals with grain refinement under the influence of ultrasonic-driven cavitation in aluminium casting processes. Three major goals of this research were: (1) to identify the mechanism of the cavitation-aided grain refinement at different stages of solidification; (2) to reveal the

  2. Reducing non value adding aluminium alloy in production of parts through high pressure die casting

    CSIR Research Space (South Africa)

    Pereira, MFVT

    2010-10-01

    Full Text Available temperature alloy, in the runner area. The die design was of a modular approach which makes provision for replaceable inserts in the runner and biscuit area. These inserts were manufactured from standard hot work steels and special heat resistant materials... temperature was raised to above 400°C, which was required to minimize the mean temperature difference (∆T) between the aluminium melt and the surface of the inserts containing the biscuit and runner. Processing aluminium with tungsten inserts should be kept...

  3. APPLICATION OF SPHEROIDIZING «CHIPS»-MASTER ALLOY ON COPPER BASE CONTAINING NANOSCALE PARTICLES OF YTTRIUM OXIDE FOR HIGH-STRENGTH CAST IRON

    Directory of Open Access Journals (Sweden)

    A. S. Kalinichenko

    2016-01-01

    Full Text Available The peculiarity of the technology of obtaining high-strength cast iron is application in out-furnace treatment various inoculants containing magnesium. In practice of foundry production spheroidizing master alloys based on ferrosilicon (Fe-Si-Mg type and «heavy» alloying alloys on copper and nickel base are widespread. The urgent issue is to improve their efficiency by increasing the degree of magnesium assimilation, reduction of specific consumption of additives, and minimizing dust and gas emissions during the process of spheroidizing treatment of liquid iron. One method of solving this problem is the use of inoculants in a compact form in which the process of dissolution proceeds more efficiently. For example, rapidly quenched granules or «chip»-inoculants are interesting to apply.The aim of present work was to study the peculiarities of production and application of «Chips»-inoculants on copper and magnesium base with additions of yttrium oxide. The principle of mechatronics was used, including the briquetting inoculants’ components after their mixing with the subsequent high-speed mechanical impact and obtaining plates with a thickness of 1–2 mm.Spheroidizing treatment of molten metal has been produced by ladle method using «Chips»-inoculants in the amount of 0.8%. Secondary graphitization inoculation was not performed. Studies have shown that when the spheroidizing treatment of ductile iron was performed with inoculants developed, the process of interaction of magnesium with the liquid melt runs steadily without significant pyroeffect and emissions of metal outside of the ladle.This generates a structure of spheroidal graphite of regular shape (SGf5. The presence in the inoculant of yttrium oxide has a positive impact on the spheroidal graphite counts and the tendency of high-strength cast iron to form «white» cast iron structure. Mechanical properties of the obtained alloy correspond to high-strength cast iron HSCI60.

  4. Effect of notch location on fatigue crack growth behavior of strength-mismatched high-strength low-alloy steel weldments

    Science.gov (United States)

    Ravi, S.; Balasubramanian, V.; Nasser, S. Nemat

    2004-12-01

    Welding of high-strength low-alloy (HSLA) steels involves the use of low-strength, equal-strength, and high-strength filler materials (electrodes) compared with the parent material, depending on the application of the welded structures and the availability of filler material. In the present investigation, the fatigue crack growth behavior of weld metal (WM) and the heat-affected zone (HAZ) of undermatched (UM), equally matched (EM), and overmatched (OM) joints has been studied. The base material used in this investigation is HSLA-80 steel of weldable grade. Shielded metal arc welding (SMAW) has been used to fabricate the butt joints. A center-cracked tension (CCT) specimen has been used to evaluate the fatigue crack growth behavior of welded joints, utilizing a servo-hydraulic-controlled fatigue-testing machine at constant amplitude loading (R=0). The effect of notch location on the fatigue crack growth behavior of strength mismatched HSLA steel weldments also has been analyzed.

  5. Joining of Aluminium Alloy and Steel by Laser Assisted Reactive Wetting

    Science.gov (United States)

    Liedl, Gerhard; Vázquez, Rodrigo Gómez; Murzin, Serguei P.

    2017-12-01

    Compounds of dissimilar materials, like aluminium and steel offer an interesting opportunity for the automotive industry to reduce the weight of a car body. Thermal joining of aluminium and steel leads to the formation of brittle intermetallic compounds, which negatively affects the properties of the welded joint. Amongst others, growth of such intermetallic compounds depends on maximum temperature and on the time at certain temperatures. Laser welding with its narrow well seam and its fast heating and cooling cycles provides an excellent opportunity to obtain an ultrathin diffusion zone. Joining of sheet metal DC01 with aluminium alloy AW6016 has been chosen for research. The performed experimental studies showed that by a variation of the beam power and scanning speed it is possible to obtain an ultrathin diffusion zone with narrow intermetallic interlayers. With the aim of supporting further investigation of laser welding of the respective and other dissimilar pairings a multi-physical simulation model has been developed.

  6. Thermodynamics of liquid aluminium-copper-silicon alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kanibolotsky, D.S.; Bieloborodova, O.A.; Stukalo, V.A.; Kotova, N.V.; Lisnyak, V.V

    2004-03-23

    In this paper, thermodynamic properties of liquid Al-Cu-Si alloys were studied by electromotive force method with liquid electrolyte at 920-1250 K and by high-temperature isoperibolic calorimetry at 1750{+-}5 K. The integral enthalpy of mixing in ternary Al-Cu-Si melts was estimated by Bonnier model for definition of boundary binary systems contribution to ternary alloys thermodynamics. The satisfactory agreement between experimental and estimated data demonstrates that thermodynamic properties of ternary liquid alloys are mainly defined by thermodynamic behaviour of boundary binary systems. Analysis of concentration and thermal dependencies of thermodynamic functions of mixing in liquid Al-Cu-Si alloys has been performed. It has been established that increasing of temperature results in decreasing of the integral enthalpy of mixing. This fact is probably associated with contribution of silicon clusters into ternary alloys thermodynamics.

  7. Characterization of a high strength Al-alloy interlayer for mechanical bonding of Ti to AZ31 and associated tri-layered clad

    Directory of Open Access Journals (Sweden)

    Yasser Fouad

    2014-06-01

    Full Text Available The Al 6081 alloy is proposed as a favorable interlayer alloy with satisfactory deformability characteristics; high strength; least reactivity and melting temperature for high temperature joining of pure Ti and AZ 31. Titanium and Magnesium sheets with Al–0.81 Mg–0.9 Si alloy interlayer plate were joined by cold-roll bonding and subsequent annealing treatment. The maximum strength after annealing at 550 °C is due to the combined effect of the precipitation strengthening of Al–Mg–Zn interlayer and static strain aging. The most pronounced increase in the Vickers microhardness (from 49.2 to 74.5 Hv was observed in the Al 6081 interface with AZ31 and Ti, thus indicating Al 6081 as a sound bonding interlayer with a lower melting temperature, initial excellent deformability and high strength after joining. With the increase in heat-treatment temperature, the tensile strength increased initially up to 550 °C and then decreased with the increase in annealing temperature to levels above 550 °C. The threshold deformation is about 44% of the total rolling reduction in a single rolling pass. The highest mechanical properties were 35 MPa in the composite – which was obtained by 550 °C/2 h annealing treatment.

  8. Effect of Cooling Rate on Microstructures and Mechanical Properties in SA508 Gr4N High Strength Low Alloy Steel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Minchul; Park, Sanggyu; Choi, Kwonjae; Lee, Bongsang [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    The microstructure of Ni-Cr-Mo low alloy steel is a mixture of tempered martensite and tempered lower bainite and that of Mn-Mo-Ni low alloy steel is predominantly tempered upper bainite. Higher strength and toughness steels are very attractive as an eligible RPV steel, so several researchers have studied to use the Ni-Cr-Mo low alloy steel for the NPP application. Because of the thickness of reactor vessel, there are large differences in austenitizing cooling rates between the surface and the center locations of thickness in RPV. Because the cooling rates after austenitization determine the microstructure, it would affect the mechanical properties in Ni-Cr-Mo low alloy steel, and it may lead to inhomogeneous characteristics when the commercial scale of RPV is fabricated. In order to apply the Ni-Cr-Mo low alloy steel to RPV, it is necessary to evaluate the changes of microstructure and mechanical properties with varying phase fractions in Ni-Cr-Mo low alloy steel. In this study, the effects of martensite and bainite fractions on mechanical properties in Ni-Cr-Mo low alloy steel were examined by controlling the cooling rate after austenitization. First of all, continuous cooling transformation(CCT) diagram was established from the dilatometric analyses. Then, the phase fractions at each cooling rate were quantitatively evaluated. Finally, the mechanical properties were correlated with the phase fraction, especially fraction of martensite in Ni-Cr-Mo low alloy steel.

  9. INFLUENCE OF THE THICKNESS OF JOINED ELEMENTS ON LAP LENGTH OF ALUMINIUM ALLOY SHEET BONDED JOINTS

    Directory of Open Access Journals (Sweden)

    Anna Rudawska

    2015-08-01

    Full Text Available This work features the results of experimental research in determining the limiting length of the bonded single-lap joint of materials of the same thickness, different thicknesses and of hybrid systems of different aluminium alloy sheets. The length of the bonded lap joint is just one of the structural features, critical to the strength of bonded joints, this length depending on the thickness and type of the bonded elements. In the case of single-lap bonded joints there is a limiting lap length exceeding of which should not increase the strength of such joints. This is why the length of a bonded lap joint is critical in terms of strength and application concerns. The length of the lap is not always reflected in practice due to simplification of the analytical relations. What is required is experimental verification of the derived theoretical relations. The tested materials are aluminium alloy sheets, widely used in the machinery, aviation and construction industries.

  10. Braze Welding TIG of Titanium and Aluminium Alloy Type Al – Mg

    Directory of Open Access Journals (Sweden)

    Winiowski A.

    2016-03-01

    Full Text Available The article presents the course and the results of technological tests related to TIG-based arc braze welding of titanium and AW-5754 (AlMg3 aluminium alloy. The tests involved the use of an aluminium filler metal (Al99.5 and two filler metals based on Al-Si alloys (AlSi5 and AlSi12. Braze welded joints underwent tensile tests, metallographic examinations using a light microscope as well as structural examinations involving the use of a scanning electron microscope and an X-ray energy dispersive spectrometer (EDS. The highest strength and quality of welds was obtained when the Al99.5 filler metal was used in a braze welding process. The tests enabled the development of the most convenient braze welding conditions and parameters.

  11. RESEARCH OF FATIGUE AND MECHANICAL PROPERTIES AlMg1SiCu ALUMINIUM ALLOYS

    Directory of Open Access Journals (Sweden)

    Mária Mihaliková

    2015-11-01

    Full Text Available The paper is concerned with an analysis of utility and fatigue properties of industrially produced aluminium alloy, specifically EN AW 6061 (AlMg1SiCu, reinforced with the particles of SiC. The following properties were subject to evaluation: microstructure and sub-structure, mechanical characteristics. All of these mechanical properties in pre- and post- equal channel angular pressed (ECAP state have been studied. The hardness was evaluated by Vickers hardness test at the load of HV10. The significant part the thesis was devoted to the fatigue properties at cyclic load in torsion. The presented results demonstrate well that the combination of fractography and microscopy can give a significant contribution to the knowledge of initiation and propagation crack in the aluminium alloy.

  12. Impact of choice of stabilized hysteresis loop on the end result of investigation of high-strength low-alloy (HSLA steel on low cycle fatigue

    Directory of Open Access Journals (Sweden)

    S. Bulatović

    2014-10-01

    Full Text Available High strength low-alloy steel under low cycle fatigue at a certain level of strain controlled achieve stabilized condition. During the fatigue loading stabilized hysteresis loop is determined, which typical cycle of stabilization is calculated as half number of cycles to failure. Stabilized hysteresis loop is a representative of all hysteresis and it’s used to determine all of the parameters for the assessment of low cycle fatigue. This paper shows comparison of complete strain-life curves of low cycle fatigue for two chosen stabilized hysteresis loop cycles of base metal HSLA steel marked as Nionikral 70.

  13. Effect of metal coatings on mechanical properties of aluminium alloy

    Science.gov (United States)

    Ravi Kumar, V.; Dileep, B. P.; Mohan Kumar, S.; Phanibhushana, M. V.

    2017-07-01

    This investigation mainly targeted on study of hardness and tensile properties of Al 7075 with different metal coatings like Nickel, Zinc and cadmium. Coating of these metals on Al 7075 is successfully achieved by time dependent electroplating method for different thicknesses of 10, 15 and 20 Microns. These metal coated Al-7075 specimens were tested for hardness and tensile properties according to the ASTM standards. It's found that Nickel coated alloy shows excellent hardness and tensile properties compared to Zinc and Cadmium coated alloys. 20 µm Nickel coated alloy exhibits highest hardness number of 102 HRB and Maximum Tensile Strength of 603 MPa than Zinc and Cadmium coated alloy. The microstructural studies authenticated that the coating of Nickel, zinc and cadmium on Al 7075 is homogeneous.

  14. High-Cycle Fatigue of High-Strength Low Alloy Steel Q345 Subjected to Immersion Corrosion for Mining Wheel Applications

    Science.gov (United States)

    Dicecco, Sante; Altenhof, William; Hu, Henry; Banting, Richard

    2017-04-01

    In an effort to better understand the impact of material degradation on the fatigue life of mining wheels made of a high-strength low alloy carbon steel (Q345), this study seeks to evaluate the effect of surface corrosion on the high-cycle fatigue behavior of the Q345 alloy. The fatigue behavior of the polished and corroded alloy was investigated. Following exposure to a 3.5 wt.% NaCl saltwater solution, polished and corroded fatigue specimens were tested using an R.R. Moore rotating-bending fatigue apparatus. Microstructural analyses via both optical microscopy and scanning electron microscopy (SEM) revealed that one major phase, α-iron phase, ferrite, and one minor phase, colony pearlite, existed in the extracted Q345 alloy. The results of the fatigue testing showed that the polished and corroded specimens had an endurance strength of approximately 295 and 222 MPa, respectively, at 5,000,000 cycles. The corroded surface condition resulted in a decrease in the fatigue strength of the Q345 alloy by 24.6%. Scanning electron microscope fractography indicated that failure modes for polished and corroded fatigue specimens were consistent in the high-cycle low loading fatigue regime. Conversely, SEM fractography of low-cycle high-loading fatigue specimens found considerable differences in fracture surfaces between the corroded and polished fatigue specimens.

  15. Heat input effect of friction stir welding on aluminium alloy AA 6061-T6 welded joint

    Directory of Open Access Journals (Sweden)

    Sedmak Aleksandar

    2016-01-01

    Full Text Available This paper deals with the heat input and maximum temperature developed during friction stir welding with different parameters. Aluminium alloy (AA 6061-T6 has been used for experimental and numerical analysis. Experimental analysis is based on temperature measurements by using infrared camera, whereas numerical analysis was based on empirical expressions and finite element method. Different types of defects have been observed in respect to different levels of heat input.

  16. Tensile behaviour of aluminium 7017 alloy at various temperatures and strain rates

    Directory of Open Access Journals (Sweden)

    Ravindranadh Bobbili

    2016-04-01

    Full Text Available The objective of the present study is to carry out high strain rate tensile tests on 7017 aluminium alloy under different strain rates ranging from 0.01, 500, 1000 and 1500 s−1 and at temperatures of 25, 100, 200 and 300 °C. Quasi-Static tensile stress–strain curves were generated using INSTRON 8500 machine. Johnson-Cook (J-C constitutive model was developed for 7017 aluminium alloy based on high strain rate tensile data generated from split Hopkinson tension bar (SHTB at various temperatures. This study evidently showed an improvement in dynamic strength as the strain rate increases. The predictions of J-C model are observed to be in consistence with the experimental data for all strain rates and temperatures. The fracture surfaces of specimens tested were studied under SEM. The change in fracture mode has been observed at different strain rates. The shear mode of fracture is dominant at lower strain rates (0.01 and 500 s−1; whereas cup- and cone-like surface representing dimple structure is found at the higher strain rates (1000 and 1500 s−1. The numbers of dimples at high strain rates are more than the quasi-static and intermediate strain rates. It is also observed that the flow stress decreases with increase in temperature. The 7017 aluminium alloy demonstrates thermal softening at higher temperatures. So when the temperature is more than 200 °C at these strain rates, thermal softening is predominant mode of deformation mechanism. It is found that when the temperature increases to 200 °C, the number of dimples rises and the dimple size of 7017 aluminium alloy is larger than at lower temperatures.

  17. Laser surface treatments for adhesion improvement of aluminium alloys structural joints

    Energy Technology Data Exchange (ETDEWEB)

    Spadaro, Chiara [Dipartimento di Ingegneria Chimica dei Processi e dei Materiali, Universita di Palermo, Viale delle Scienze, 90128 Palermo (Italy)]. E-mail: c.spadaro@dicpm.unipa.it; Sunseri, Carmelo [Dipartimento di Ingegneria Chimica dei Processi e dei Materiali, Universita di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Centro Interdipartimentale di Ricerca sui Materiali Compositi, Universita di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Dispenza, Clelia [Dipartimento di Ingegneria Chimica dei Processi e dei Materiali, Universita di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Centro Interdipartimentale di Ricerca sui Materiali Compositi, Universita di Palermo, Viale delle Scienze, 90128 Palermo (Italy)

    2007-08-15

    Laser technology is proposed as a friendly alternative treatment to chemicals involved in conventional prebonding adherend treatments. Aluminium alloy 2024 substrates were laser treated with different beam diameters and energy densities, and bonded using a structural epoxy adhesive. The influence of irradiation conditions on adherends morphology and adhesive joints' fracture energy was investigated. On the basis of different morphologies observed, an explanation of the effect of the surface treatment upon joint mechanical behaviour is attempted.

  18. High-temperature mechanical properties of aluminium alloys reinforced with boron carbide particles

    Energy Technology Data Exchange (ETDEWEB)

    Onoro, J. [Dept. Ingenieria y Ciencia de los Materiales, ETSI Industriales, Universidad Politecnica de Madrid, c/Jose Gutierrez Abascal 2, 28006 Madrid (Spain)], E-mail: javier.onoro@upm.es; Salvador, M.D. [Dept. Ingenieria Mecanica y de Materiales, ETSI Industriales, Universidad Politecnica de Valencia, Camino de Vera s/n, 46071 Valencia (Spain); Cambronero, L.E.G. [Dept. Ingenieria de Materiales, ETSI Minas, Universidad Politecnica de Madrid, c/Rios Rosas 21, 28003 Madrid (Spain)

    2009-01-15

    The mechanical properties of particulate-reinforced metal-matrix composites based on aluminium alloys (6061 and 7015) at high temperatures were studied. Boron carbide particles were used as reinforcement. All composites were produced by hot extrusion. The tensile properties and fracture analysis of these materials were investigated at room temperature and at high temperature to determine their ultimate strength and strain to failure. The fracture surface was analysed by scanning electron microscopy.

  19. Removal of chromium (VI) from water by micro-alloyed aluminium ...

    African Journals Online (AJOL)

    This paper deals with Cr(VI) ion removal from water, by micro-alloyed aluminium composite (MAlC), under flow conditions. In a water environment the MAlC acts as a strong reducing agent. Dissolving it in water is accompanied by the generation of Al(III) ions and reduction of water to H2, with OH- ions. The final product is ...

  20. Study of quality of nine aluminium alloys surfaces created using abrasiv waterjet

    Czech Academy of Sciences Publication Activity Database

    Klichová, Dagmar; Klich, Jiří; Gurková, Lucie

    2016-01-01

    Roč. 2016, March 2016 (2016), s. 892-895 ISSN 1805-0476 R&D Projects: GA MŠk(CZ) LO1406; GA MŠk ED2.1.00/03.0082 Institutional support: RVO:68145535 Keywords : abrasive waterjet * aluminium alloy * optical profilometer Subject RIV: JQ - Machines ; Tools http://www.mmscience.eu/content/file/archives/MM_Science_201608.pdf

  1. THE EFFECT OF THE ALUMINIUM ALLOY SURFACE ROUGHNESS ON THE RESTITUTION COEFFICIENT

    Directory of Open Access Journals (Sweden)

    Stanisław Bławucki

    2015-08-01

    Full Text Available The paper presents the results of research on the effect of the surface roughness of aluminum alloy on its coefficient of restitution. It describes the current method of finishing the workpiece surface layer after cutting and innovative measuring device which was used in the research. The material used in the research was aluminium alloy EN AW 7075. The paper also presents a relationship between the coefficient of restitution and surface roughness of the milled samples as well as impressions left by bead in function of velocity and a sample surface roughness.

  2. The structure and properties of autogenous laser beam welds in aluminium alloys

    OpenAIRE

    Whitaker, Iain Robert

    1994-01-01

    Autogenous laser beam welds were made in sheets of the aluminium alloys 8090, 8009 and 6061. The Al-Li based alloy 8090 was subjected to both continuous wave CO2 and pulsed Nd:YAG thermal cycles with average powers of 1.5-3.8 kW and 0.8- 0.9 kW respectively. The two techniques were compared for their influence on the 8090 solidified weld pool shape, the fusion zone microstructure and microhardness, the HAZ and the susceptibility of the fusion zone to post-weld heat treatment. It was found tha...

  3. The Interaction between Particles and Low Angle Boundaries during Recovering of Aluminium-Alumina Alloys

    DEFF Research Database (Denmark)

    Jones, A.R.; Hansen, Niels

    1981-01-01

    Certain quantitative and qualitative aspects both of subgrain growth and of the interaction between particles and low angle grain boundaries during recovery have been investigated in two aluminium alloys containing low volume fractions of small alumina particles. Quantitative data have been...... boundaries during recovery involves effects in addition to those of simple Zener pinning of migrating boundaries. For the current alloys it is found that a determination of the limits to normal subgrain growth in terms of a modified Zener analysis produces an underestimate of the true extent of particle...

  4. Mechanical properties of a high-strength Al{sub 90}Mn{sub 8}Ce{sub 2} alloy

    Energy Technology Data Exchange (ETDEWEB)

    Li, J.C.; Zhao, Z.K.; Jiang, Q. [Key Laboratory of Automobile Materials, Ministry of Education and Department of Materials Science and Engineering, Jilin University, Changchun 130025 (China)

    2003-03-01

    A lightweight alloy with excellent strength and wear resistance, Al{sub 90}Mn{sub 8}Ce{sub 2}, has been manufactured in bulk by powder metallurgy. The best colligative mechanical properties of the alloy made by this technique are achieved by pressing at 753 K, where the porosity reaches a minimum, and the plasticity a maximum. (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  5. Effects of the Microstructure on Segregation behavior of Ni-Cr-Mo High Strength Low Alloy RPV Steel

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sang Gyu; Wee, Dang Moon [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Kim, Min Chul; Lee, Bong Sang [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-10-15

    SA508 Gr.4N Ni-Cr-Mo low alloy steel has an improved fracture toughness and strength, compared to commercial Mn-Mo-Ni low alloy RPV steel SA508 Gr.3. Higher strength and fracture toughness of low alloy steels could be achieved by adding Ni and Cr. So there are several researches on SA508 Gr.4N low alloy steel for a RPV application. The operation temperature and time of a reactor pressure vessel is more than 300 .deg. C and over 40 years. Therefore, in order to apply the SA508 Gr.4N low alloy steel for a reactor pressure vessel, it requires a resistance of thermal embrittlement in the high temperature range including temper embrittlement resistance. S. Raoul reported that the susceptibility to temper embrittlement was increasing a function of the cooling rate in SA533 steel, which suggests the martensitic microstructures resulting from increased cooling rates are more susceptible to temper embrittlement. However, this result has not been proved yet. So the comparison of temper embrittlement behavior was made between martensitic microstructure and bainitic microstructure with a viewpoint of boundary features in SA508 Gr.4N, which have mixture of tempered bainite/martensite. In this study, we have compared temper embrittlement behaviors of SA508 Gr.4N low alloy steel with changing volume fraction of martensite. The mechanical properties of these low alloy steels) were evaluated after a long-term heat treatment(450 .deg. C, 2000hr. Then, the images of the segregated boundaries were observed and segregation behavior was analyzed by AES. In order to compare the misorientation distributions of model alloys, grain boundary structures were measured with EBSD

  6. Influence of Hot Plastic Deformation in γ and (γ + α) Area on the Structure and Mechanical Properties of High-Strength Low-Alloy (HSLA) Steel.

    Science.gov (United States)

    Sas, Jan; Kvačkaj, Tibor; Milkovič, Ondrej; Zemko, Michal

    2016-11-30

    The main goal of this study was to develop a new processing technology for a high-strength low-alloy (HSLA) steel in order to maximize the mechanical properties attainable at its low alloy levels. Samples of the steel were processed using thermal deformation schedules carried out in single-phase (γ) and dual-phase (γ + α) regions. The samples were rolled at unconventional finishing temperatures, their final mechanical properties were measured, and their strength and plasticity behavior was analyzed. The resulting microstructures were observed using optical and transmission electron microscopy (TEM). They consisted of martensite, ferrite and (NbV)CN precipitates. The study also explored the process of ferrite formation and its influence on the mechanical properties of the material.

  7. Influence of Hot Plastic Deformation in γ and (γ + α Area on the Structure and Mechanical Properties of High-Strength Low-Alloy (HSLA Steel

    Directory of Open Access Journals (Sweden)

    Jan Sas

    2016-11-01

    Full Text Available The main goal of this study was to develop a new processing technology for a high-strength low-alloy (HSLA steel in order to maximize the mechanical properties attainable at its low alloy levels. Samples of the steel were processed using thermal deformation schedules carried out in single-phase (γ and dual-phase (γ + α regions. The samples were rolled at unconventional finishing temperatures, their final mechanical properties were measured, and their strength and plasticity behavior was analyzed. The resulting microstructures were observed using optical and transmission electron microscopy (TEM. They consisted of martensite, ferrite and (NbVCN precipitates. The study also explored the process of ferrite formation and its influence on the mechanical properties of the material.

  8. Effect of Laser Feeding on Heat Treated Aluminium Alloy Surface Properties

    Directory of Open Access Journals (Sweden)

    Labisz K.

    2016-06-01

    Full Text Available In this paper are presented the investigation results concerning microstructure as well as mechanical properties of the surface layer of cast aluminium-silicon-copper alloy after heat treatment alloyed and/ or remelted with SiC ceramic powder using High Power Diode Laser (HPDL. For investigation of the achieved structure following methods were used: light and scanning electron microscopy with EDS microanalysis as well as mechanical properties using Rockwell hardness tester were measured. By mind of scanning electron microscopy, using secondary electron detection was it possible to determine the distribution of ceramic SiC powder phase occurred in the alloy after laser treatment. After the laser surface treatment carried out on the previously heat treated aluminium alloys, in the structure are observed changes concerning the distribution and morphology of the alloy phases as well as the added ceramic powder, these features influence the hardness of the obtained layers. In the structure, there were discovered three zones: the remelting zone (RZ the heat influence zone (HAZ and transition zone, with different structure and properties. In this paper also the laser treatment conditions: the laser power and ceramic powder feed rate were investigated. The surface laser structure changes in a manner, that there zones are revealed in the form of. This carried out investigations make it possible to develop, interesting technology, which could be very attractive for different branches of industry.

  9. Increasing of founding properties of secondary aluminium alloys

    Directory of Open Access Journals (Sweden)

    O.V. Lyutova

    2013-06-01

    Full Text Available Purpose. To study the influence of metallurgical factors of production on casting properties of secondary aluminum alloy АК9М2. Methodology. For the experimental melts shaving amount in a charge, iron content and the quantity of modifier additive were chosen as independent variables. The components of modifier were being changed in the intervals of 25…40 % Na2CO3, 12…20 % SiC, 3…8 % Ti, the other – S. The microstructure of alloys was investigated under a light microscope, using the method of quantitative metallography. Influence analysis of certain parameters of alloys was conducted by mathematical statistics methods. The influence of shaving additions, iron and modifier amount on liquidity and porosity of the resulting alloys was studied. Findings. The paper shows that the increase of shaving content in the charge from 1 to 19 % and iron content in alloy from 0.66 to 2.34 % resulted in the decline of alloy liquidity on 30…35 %. Simultaneously the linear shrinkage reduction for 18…20 % and the porosity increase from 0.5 to 2.5 points were observed. The presented changes of alloy casting properties are conditioned by the amount of intermetallic phases of unfavorable form and its capacity for aeration. Increase of modifier additive from 0.02 to 0.15 % resulted in the liquidity increase on 10…15 %, the increase of linear shrinkage on 30…35 % and porosity decline from 2.5 to 0.5 points. At the same time a change of form of intermetallic phases and increase of their evenness were observed. Originality. The increase of iron concentration in silumin composition is accompanied by the decline of its liquidity. Thus, the rate of decline of alloy liquidity is proportional to the amount of dissolved iron. The character of iron influence is caused by formation of high temperature intermetallic compounds of the type Al3Fe, Al5SiFe, which promote the metal viscidity. Practical value. Practical use of the obtained scientific results would

  10. The influence of the corrosion product layer generated on the high strength low-alloy steels welded by underwater wet welding with stainless steel electrodes in seawater

    Science.gov (United States)

    Bai, Qiang; Zou, Yan; Kong, Xiangfeng; Gao, Yang; Dong, Sheng; Zhang, Wei

    2017-02-01

    The high strength low-alloy steels are welded by underwater wet welding with stainless steel electrodes. The micro-structural and electrochemical corrosion study of base metal (BM), weld zone (WZ) and heat affected zone (HAZ) are carried out to understand the influence of the corrosion product layer generated on the high strength low-alloy steels welded by underwater wet welding with stainless steel electrodes, methods used including, potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and scanning electron microscope (SEM). The results indicate that the WZ acts as a cathode and there is no corrosion product on it throughout the immersion period in seawater. The HAZ and BM acts as anodes. The corrosion rates of the HAZ and BM change with the immersion time increasing. In the initial immersion period, the HAZ has the highest corrosion rate because it has a coarse tempered martensite structure and the BM exhibites a microstructure with very fine grains of ferrite and pearlite. After a period of immersion, the BM has the highest corrosion rate. The reason is that the corrosion product layer on the HAZ is dense and has a better protective property while that on the BM is loose and can not inhibit the diffusion of oxygen.

  11. Microstructural Characterization of Clad Interface in Welds of Ni-Cr-Mo High Strength Low Alloy Steel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hong-Eun; Kim, Min-Chul; Lee, Ho-Jin; Kim, Keong-Ho [KAERI, Daejeon (Korea, Republic of); Lee, Ki-Hyoung [KAIST, Daejeon (Korea, Republic of); Lee, Chang-Hee [Hanyang Univ., Seoul (Korea, Republic of)

    2011-08-15

    SA508 Gr.4N Ni-Cr-Mo low alloy steel, in which Ni and Cr contents are higher than in commercial SA508 Gr.3 Mn-Mo-Ni low alloy steels, may be a candidate reactor pressure vessel (RPV) material with higher strength and toughness from its tempered martensitic microstructure. The inner surface of the RPV is weld-cladded with stainless steels to prevent corrosion. The goal of this study is to evaluate the microstructural properties of the clad interface between Ni-Cr-Mo low alloy steel and stainless weldment, and the effects of post weld heat treatment (PWHT) on the properties. The properties of the clad interface were compared with those of commercial Mn-Mo-Ni low alloy steel. Multi-layer welding of model alloys with ER308L and ER309L stainless steel by the SAW method was performed, and then PWHT was conducted at 610°C for 30 h. The microstructural changes of the clad interface were analyzed using OM, SEM and TEM, and micro-Vickers hardness tests were performed. Before PWHT, the heat affected zone (HAZ) showed higher hardness than base and weld metals due to formation of martensite after welding in both steels. In addition, the hardness of the HAZ in Ni-Cr-Mo low alloy steel was higher than that in Mn-Mo-Ni low alloy steel due to a comparatively high martensite fraction. The hardness of the HAZ decreased after PWHT in both steels, but the dark region was formed near the fusion line in which the hardness was locally high. In the case of Mn-Mo-Ni low alloy steel, formation of fine Cr-carbides in the weld region near the fusion line by diffusion of C from the base metal resulted in locally high hardness in the dark region. However, the precipitates of the region in the Ni-Cr-Mo low alloy steel were similar to that in the base metal, and the hardness in the region was not greatly different from that in the base metal.

  12. Ballistic impact velocity response of carbon fibre reinforced aluminium alloy laminates for aero-engine

    Science.gov (United States)

    Mohammed, I.; Abu Talib, A. R.; Sultan, M. T. H.; Saadon, S.

    2017-12-01

    Aerospace and other industries use fibre metal laminate composites extensively due to their high specific strength, stiffness and fire resistance, in addition to their capability to be tailored into different forms for specific purposes. The behaviours of such composites under impact loading is another factor to be considered due to the impacts that occur in take-off, landing, during maintenance and operations. The aim of the study is to determine the specific perforation energy and impact strength of the fibre metal laminates of different layering pattern of carbon fibre reinforced aluminium alloy and hybrid laminate composites of carbon fibre and natural fibres (kenaf and flax). The composites are fabricated using the hand lay-up method in a mould with high bonding polymer matrix and compressed by a compression machine, cured at room temperature for one day and post cure in an oven for three hours. The impact tests are conducted using a gun tunnel system with a flat cylindrical bullet fired using a helium gas at a distance of 14 inches to the target. Impact and residual velocity of the projectile are recorded by high speed video camera. Specific perforation energy of carbon fibre reinforced aluminium alloy (CF+AA) for both before and after fire test are higher than the specific perforation energy of the other composites considered before and after fire test respectively. CF +AA before fire test is 55.18% greater than after. The same thing applies to impact strength of the composites where CF +AA before the fire test has the highest percentage of 11.7%, 50.0% and 32.98% as respectively compared to carbon fibre reinforced aluminium alloy (CARALL), carbon fibre reinforced flax aluminium alloy (CAFRALL) and carbon fibre reinforced kenaf aluminium alloy (CAKRALL), and likewise for the composites after fire test. The considered composites in this test can be used in the designated fire zone of an aircraft engine to protect external debris from penetrating the engine

  13. Microstructure and Properties of Composite Coatings Obtained on Aluminium Alloys

    Directory of Open Access Journals (Sweden)

    Bara M.

    2016-09-01

    Full Text Available This paper presents methods of modifying the anode surface layers of Al2O3 by introducing carbon to their microstructure. Composite coatings were prepared using two different methods. In the first, coatings were formed by means of oxidation under constant current conditions. Anodic oxidation of aluminium was conducted in a multicomponent electrolyte with the addition of organic acids and graphite. The second method was based on the formation of oxide coatings in an electrolyte without the addition of graphite or heat treatment of the layers of succinic acid. The obtained coatings were tested using SEM, TEM, and GDOES (glow discharge optical emission spectrometry and their tribological and stereometric properties were measured. The study demonstrated the beneficial effects of the methods when used to improve the tribological properties of sliding couples.

  14. The Effect of Laser Surface Treatment on Structure and Mechanical Properties Aluminium Alloy ENAC-AlMg9

    Directory of Open Access Journals (Sweden)

    Pakieła W.

    2016-09-01

    Full Text Available In this work, the influence of a high power diode laser surface treatment on the structure and properties of aluminium alloy has been determined. The aim of this study was to improve the mechanical and tribological properties of the surface layer of the aluminium alloy by simultaneously melting and feeding tungsten carbide particles into the molten pool. During the process was used high-power diode laser HPDL. In order to remelt the aluminium alloy surface the HPDL laser of 1.8, 2.0 and 2.2 kW laser beam power has been used. The linear laser scan rate of the beam was set 0.5 cm/s. In order to protect the liquid metal during laser treatment was used argon. As a base material was used aluminium alloy ENAC-AlMg9. To improve the surface mechanical and wear properties of the applied aluminium alloy was used biphasic tungsten carbide WC/W2C. The size of alloying powder was in the range 110-210 µm. The ceramic powder was introduced in the remelting zone by a gravity feeder at a constant rate of 8 g/m.

  15. Effects of environmental variables on the crack initiation stages of corrosion fatigue of high strength aluminum alloys

    Science.gov (United States)

    Poteat, L. E.

    1981-01-01

    Fatigue initiation in six aluminum alloys used in the aircraft industry was investigated. Cyclic loading superimposed on a constant stress was alternated with atmospheric corrosion. Tests made at different stress levels revealed that a residual stress as low as 39% of the yield strength caused stress corrosion cracking in some of the alloys. An atmospheric corrosion rate meter developed to measure the corrosivity of the atmosphere is described. An easily duplicated hole in the square test specimen with a self-induced residual stress was developed.

  16. A β-type TiNbZr alloy with low modulus and high strength for biomedical applications

    OpenAIRE

    Meng, Qingkun; Guo, Shun; Liu, Qing; Hu, Liang; Zhao, Xinqing

    2014-01-01

    The effect of thermo-mechanical treatment on the mechanical properties of a novel β-type Ti–36Nb–5Zr (wt%) alloy has been investigated. The solution treated alloy consists of β and α″ phases and exhibits a two-stage yielding with a low yield stress (around 100 MPa). After cold rolling at a reduction of 87.5% and subsequent annealing treatment at 698 K for 25 min, a fine microstructure with nanosized α precipitates distributed in small β grains as well as high density of dislocations was obtai...

  17. Numerical simulation of early stages of oxide formation in molten aluminium magnesium alloys in a reverberatory furnace

    Science.gov (United States)

    Kanti De, Anindya; Mukhopadhyay, Achintya; Sen, Swarnendu; Puri, Ishwar K.

    2004-05-01

    A significant amount of aluminium is processed by melting aluminium scrap that contains small amounts of magnesium. A major drawback of aluminium production in secondary melt furnaces is the formation of dross or aluminium oxide by the oxidation of the molten metal. Since aluminium scrap forms a major source of the metal in secondary aluminium processing, the presence of alloying elements plays a key role in the oxidation process. Here, we consider the early stage of oxidation of an Al-Mg alloy during which primarily the oxidation of magnesium to its oxide occurs. Our model simulates the process in an aluminium melting furnace and considers metal oxidation to be diffusion limited. The phenomenon is assumed to be one-dimensional and the reaction of Al/Mg with O2 to be infinitely fast. We are able to obtain a closed form analytical solution of the evaporation rate and the amount of oxide that is formed. We find that the evaporation of the metal vapour and its oxidation depend on the furnace size, melt composition, melt temperature, gas temperature and oxygen concentration in the gas. Oxide formation decreases with increasing furnace height and with decreasing oxygen concentration and melt temperature. Dross formation is weakly dependent on the ambient temperature and alloy composition. The results indicate that there are essentially two parameters, namely, the equivalence ratio of the fuel-air mixture (which controls the ambient oxygen concentration) and the melt temperature that can be manipulated to influence oxide formation in practical furnaces.

  18. Experimental investigation of hardness of FSW and TIG joints of Aluminium alloys of AA7075 and AA6061

    Directory of Open Access Journals (Sweden)

    Chetan Patil

    2016-07-01

    Full Text Available This paper reports hardness testing conducted on welded butt joints by FSW and TIG welding process on similar and dissimilar aluminium alloys. FSW joints were produced for similar alloys of AA7075T651 and dissimilar alloys of AA7075T651- AA6061T6. The Friction stir welds of AA7075 & AA6061 aluminium alloy were produced at different tool rotational speeds of 650,700, 800, 900, 1000 and transverse speed of 30, 35, 40 mm/min. TIG welding was conducted along the rolling direction of similar and dissimilar aluminium plates. The Brinell hardness testing techniques were employed to conduct the tests; these tests were conducted on the welds to ascertain the joint integrity before characterization to have an idea of the quality of the welds

  19. Silk-fibronectin protein alloy fibres support cell adhesion and viability as a high strength, matrix fibre analogue

    Science.gov (United States)

    Jacobsen, Matthew M.; Li, David; Gyune Rim, Nae; Backman, Daniel; Smith, Michael L.; Wong, Joyce Y.

    2017-01-01

    Silk is a natural polymer with broad utility in biomedical applications because it exhibits general biocompatibility and high tensile material properties. While mechanical integrity is important for most biomaterial applications, proper function and integration also requires biomaterial incorporation into complex surrounding tissues for many physiologically relevant processes such as wound healing. In this study, we spin silk fibroin into a protein alloy fibre with whole fibronectin using wet spinning approaches in order to synergize their respective strength and cell interaction capabilities. Results demonstrate that silk fibroin alone is a poor adhesive surface for fibroblasts, endothelial cells, and vascular smooth muscle cells in the absence of serum. However, significantly improved cell attachment is observed to silk-fibronectin alloy fibres without serum present while not compromising the fibres’ mechanical integrity. Additionally, cell viability is improved up to six fold on alloy fibres when serum is present while migration and spreading generally increase as well. These findings demonstrate the utility of composite protein alloys as inexpensive and effective means to create durable, biologically active biomaterials. PMID:28378749

  20. Characterization of high strength and high toughness Ni-Mo-Cr low alloy steels for nuclear application

    Energy Technology Data Exchange (ETDEWEB)

    Lee, B.S., E-mail: BONGSL@kaeri.re.k [KAERI, Dukjin-dong 150, Yuseong, Daejeon (Korea, Republic of); Kim, M.C.; Yoon, J.H.; Hong, J.H. [KAERI, Dukjin-dong 150, Yuseong, Daejeon (Korea, Republic of)

    2010-01-15

    The reactor pressure vessels of PWRs have mostly been made of SA508 Grade 3 (Class 1) low alloy steels which have revealed moderate mechanical properties and a moderate radiation resistance for a 40 or 60 year operation. The specified minimum yield strength of the material is 345 MPa with a ductile-brittle transition temperature of about 0 deg. C. While other materials, most of which are non-ferrous alloys or high alloyed steels for a higher temperature application, are being developed for the Generation-4 reactors, low alloy steels with a higher strength and toughness can help to increase the safety and economy of the advanced PWR systems which will be launched in the near future. The ASME specification for SA508 Grade 4N provides a way to increase both the strength and toughness by a chemistry modification, especially by increasing the Ni and Cr contents. However, a higher strength steel has a deficiency due to a lack of operating data for nuclear power plants. In this study, experimental heats of SA508 Grade 4N steels with different chemical compositions were characterized mechanically. The preliminary results for an irradiation embrittlement and the HAZ properties are discussed in addition to their superior baseline properties.

  1. Silk-fibronectin protein alloy fibres support cell adhesion and viability as a high strength, matrix fibre analogue

    Science.gov (United States)

    Jacobsen, Matthew M.; Li, David; Gyune Rim, Nae; Backman, Daniel; Smith, Michael L.; Wong, Joyce Y.

    2017-04-01

    Silk is a natural polymer with broad utility in biomedical applications because it exhibits general biocompatibility and high tensile material properties. While mechanical integrity is important for most biomaterial applications, proper function and integration also requires biomaterial incorporation into complex surrounding tissues for many physiologically relevant processes such as wound healing. In this study, we spin silk fibroin into a protein alloy fibre with whole fibronectin using wet spinning approaches in order to synergize their respective strength and cell interaction capabilities. Results demonstrate that silk fibroin alone is a poor adhesive surface for fibroblasts, endothelial cells, and vascular smooth muscle cells in the absence of serum. However, significantly improved cell attachment is observed to silk-fibronectin alloy fibres without serum present while not compromising the fibres’ mechanical integrity. Additionally, cell viability is improved up to six fold on alloy fibres when serum is present while migration and spreading generally increase as well. These findings demonstrate the utility of composite protein alloys as inexpensive and effective means to create durable, biologically active biomaterials.

  2. Precipitation in an AA6111 aluminium alloy and cosmetic corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Y. [Corrosion and Protection Centre, School of Materials, University of Manchester, Manchester M60 1QD (United Kingdom); Zhou, X. [Corrosion and Protection Centre, School of Materials, University of Manchester, Manchester M60 1QD (United Kingdom)]. E-mail: xiaorong.zhou@manchester.ac.uk; Thompson, G.E. [Corrosion and Protection Centre, School of Materials, University of Manchester, Manchester M60 1QD (United Kingdom); Hashimoto, T. [Corrosion and Protection Centre, School of Materials, University of Manchester, Manchester M60 1QD (United Kingdom); Scamans, G.M. [Innoval Technology, Beaumont Close, Banbury, Oxon OX16 1TQ (United Kingdom); Afseth, A. [Novelis Technology and Management, 8212 Neuhausen (Switzerland)

    2007-01-15

    The near-surface deformed layer on AA6111 automotive closure sheet alloy, generated by mechanical grinding during rectification, has an ultrafine grain microstructure, of 50-150 nm diameter, and a sharp transition with the underlying bulk alloy microstructure. Grinding and heat treatment to simulate rectification and paint baking processes result in the nucleation and growth of {approx}20 nm diameter precipitates at grain boundaries within the near-surface deformed layer. High-resolution transmission electron microscopy has shown Q phase precipitates in the deformed layer, giving dramatically increased corrosion susceptibility compared with the bulk microstructure, and this is responsible for the rapid-onset filiform corrosion. Transmission electron microscopy of the corrosion attack showed directly that the mode of corrosion was intergranular and that the Q phase precipitates were preserved after the passage of the corrosion front.

  3. Analysis of wear properties of aluminium based journal bearing alloys with and without lubrication.

    Science.gov (United States)

    Mathavan, J. Joy; Patnaik, Amar

    2016-09-01

    Apart from classical bearing materials, Aluminium alloys are used as bearing materials these days because of their superior quality. In this analysis, new Aluminium based bearing materials, with filler metals Si, Ni, and Cr are prepared by metal mould casting in burnout furnace machine, and tribological properties of these alloys with and without lubrication were tested. The experiments for wear with lubrication are conducted on multiple specimen tester and experiments without lubrication is conducted on Pin on disk tribometer. The disc material used was SAE 1050 steel. Wear tests were conducted at a sliding speed of 0.785 m/s and at a normal load of 20 N. Coefficient of friction values, temperature changes and wear of the specimens were plotted on graph according to the above mentioned working conditions. Hardness and weight losses of the specimens were calculated. The obtained results demonstrate how the friction and wear properties of these samples have changed with the % addition of Silicon, Chromium and Nickel to the base metal aluminium.

  4. Premature Cracking of Dies for Aluminium Alloy Die-Casting

    Directory of Open Access Journals (Sweden)

    Pawłowski B.

    2013-12-01

    Full Text Available Dwie identyczne matryce do ciśnieniowego odlewania stopów aluminium zostały przedwcześnie wycofane z eksploatacji z powodu wystąpienia na ich powierzchniach roboczych szeregu równoległych pęknięć. Kierunek propagacji pęknięć pokry w ał się z kierunkiem pasmowości mikrostrukturalnej a samo tworzenie się pęknięć było skutkiem niewłaściwej obróbki cieplnej matryc. Stwierdzono nieprawidłową orientację geometryczną matrycy wrzględem kierunku włókien struktury pierwotnej. Badania przy użyciu skaningowego mikroskopu elektronowego z wykorzystaniem techniki EDS wykazały, że przyczyną powstawania pęknięć matryc była nieprawidłową przeprowadzona obróbki cieplna matryc.

  5. 3D study of intermetallics and their effect on the corrosion morphology of rheocast aluminium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Mingo, B. [Departamento de Ciencia de Materiales, Facultad de Ciencias Químicas, Universidad Complutense, 28040, Madrid (Spain); Arrabal, R., E-mail: rarrabal@ucm.es [Departamento de Ciencia de Materiales, Facultad de Ciencias Químicas, Universidad Complutense, 28040, Madrid (Spain); Pardo, A.; Matykina, E. [Departamento de Ciencia de Materiales, Facultad de Ciencias Químicas, Universidad Complutense, 28040, Madrid (Spain); Skeldon, P. [Corrosion and Protection Group, School of Materials, The University of Manchester, Manchester M13 9PL (United Kingdom)

    2016-02-15

    In the present study, the effect of heat treatment T6.1 on the microstructure and corrosion behaviour of rheocast aluminium alloy A356 is investigated on the basis of 2D/3D characterization techniques and electrochemical and SKPFM measurements. Heat treatment strengthens the α-Al matrix, modifies the intermetallic particles and spheroidizes eutectic Si. These changes do not modify significantly the corrosion behaviour of the alloy. 3D SEM-Tomography clearly shows that the corrosion advances in the shape of narrow paths between closely spaced intermetallics without a major influence of eutectic Si. - Highlights: • T6.1 spheroidizes Si, strengthens the matrix and modifies the intermetallics. • Electrochemical behaviour of untreated and heat-treated alloys is similar. • 3D SEM-Tomography provides additional information on the corrosion morphology. • Corrosion advances as paths between intermetallics with little influence of Si.

  6. Properties of experimental copper-aluminium-nickel alloys for dental post-and-core applications.

    Science.gov (United States)

    Rittapai, Apiwat; Urapepon, Somchai; Kajornchaiyakul, Julathep; Harniratisai, Choltacha

    2014-06-01

    This study aimed to develop a copper-aluminium-nickel alloy which has properties comparable to that of dental alloys used for dental post and core applications with the reasonable cost. Sixteen groups of experimental copper alloys with variants of 3, 6, 9, 12 wt% Al and 0, 2, 4, 6 wt% Ni were prepared and casted. Their properties were tested and evaluated. The data of thermal, physical, and mechanical properties were analyzed using the two-way ANOVA and Tukey's test (α=0.05). The alloy toxicity was evaluated according to the ISO standard. The solidus and liquidus points of experimental alloys ranged from 1023℃ to 1113℃ and increased as the nickel content increased. The highest ultimate tensile strength (595.9 ± 14.2 MPa) was shown in the Cu-12Al-4Ni alloy. The tensile strength was increased as the both elements increased. Alloys with 3-6 wt% Al exhibited a small amount of 0.2% proof strength. Accordingly, the Cu-9Al-2Ni and Cu-9Al-4Ni alloys not only demonstrated an appropriate modulus of elasticity (113.9 ± 8.0 and 122.8 ± 11.3 GPa, respectively), but also had a value of 0.2% proof strength (190.8 ± 4.8 and 198.2 ± 3.4 MPa, respectively), which complied with the ISO standard requirement (>180 MPa). Alloys with the highest contents of nickel (6 wt% Ni) revealed a widespread decolourisation zone (5.0-5.9 mm), which correspondingly produced the largest cell response, equating positive control. The copper alloys fused with 9 wt% Al and 2-4 wt% Ni can be considered for a potential use as dental post and core applications.

  7. Neutron irradiation effects on mechanical properties in SA508 Gr4N high strength low alloy steel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Minchul; Lee, Kihyoung; Park, Sanggyu; Choi, Kwonjae; Lee, Bongsang [Korea Atomic Energy Research Institute, Nuclear Material Research Div., Daejeon (Korea, Republic of)

    2012-10-15

    The Reactor Pressure Vessel (RPV) is the key component in determining the lifetime of nuclear power plants because it is subject to the significant aging degradation by irradiation and thermal aging, and there is no practical method for replacing that component. Advanced reactors with much larger capacity than current reactor require the usage of higher strength materials inevitably. The SA508 Gr.4N Ni Cr Mo low alloy steel, in which Ni and Cr contents are larger than in conventional RPV steels, could be a promising RPV material offering improved strength and toughness from its tempered martensitic microstructure. For a structural integrity of RPV, the effect of neutron irradiation on the material property is one of the key issues. The RPV materials suffer from the significant degradation of transition properties by the irradiation embrittlement when its strength is increased by a hardening mechanism. Therefore, the potential for application of SA508 Gr.4N steel as the structural components for nuclear power reactors depends on its ability to maintain adequate transition properties against the operating neutron does. However, it is not easy to fine the data on the irradiation effect on the mechanical properties of SA508 Gr.4N steel. In this study, the irradiation embrittlement of SA508 Gr.4N Ni Cr Mo low alloy steel was evaluated by using specimens irradiated in research reactor. For comparison, the variations of mechanical properties by neutron irradiation for commercial SA508 Gr.3 Mn Mo Ni low alloy steel were also evaluated.

  8. Effects of Sc and Zr on mechanical property and microstructure of tungsten inert gas and friction stir welded aerospace high strength Al–Zn–Mg alloys

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Ying, E-mail: csudengying@163.com [School of Metallurgy and Environment, Central South University, Hunan, Changsha 410083 (China); School of Materials Science and Engineering, Central South University, Hunan, Changsha 410083 (China); State Key Laboratory for Power Metallurgy, Central South University, Hunan, Changsha 410083 (China); Peng, Bing [School of Metallurgy and Environment, Central South University, Hunan, Changsha 410083 (China); Xu, Guofu, E-mail: csuxgf66@csu.edu.cn [School of Materials Science and Engineering, Central South University, Hunan, Changsha 410083 (China); State Key Laboratory for Power Metallurgy, Central South University, Hunan, Changsha 410083 (China); Pan, Qinglin; Yin, Zhimin; Ye, Rui [School of Materials Science and Engineering, Central South University, Hunan, Changsha 410083 (China); Wang, Yingjun; Lu, Liying [Northeast Light Alloy Co. Ltd., Hei Longjiang, Harbin 150060 (China)

    2015-07-15

    New aerospace high strength Al–Zn–Mg and Al–Zn–Mg–0.25Sc–0.10Zr (wt%) alloys were welded by tungsten inert gas (TIG) process using a new Al–6.0Mg–0.25Sc–0.10Zr (wt%) filler material, and friction stir welding (FSW) process, respectively. Mechanical property and microstructure of the welded joints were investigated comparatively by tensile tests and microscopy methods. The results show that Sc and Zr can improve the yield strength and ultimate tensile strength of Al–Zn–Mg alloy by 59 MPa (23.3%) and 16 MPa (4.0%) in TIG welded joints, and by 77 MPa (23.8%) and 54 MPa (11.9%) in FSW welded joints, respectively. The ultimate tensile strength and elongation of new Al–Zn–Mg–Sc–Zr alloy FSW welded joint are 506±4 MPa and 6.34±0.2%, respectively, showing superior post welded performance. Mechanical property of welded joint is mainly controlled by its “weakest microstructural zone”. TIG welded Al–Zn–Mg and Al–Zn–Mg–Sc–Zr alloys reinforced with weld bead both failed at fusion boundaries. Secondary Al{sub 3}Sc{sub x}Zr{sub 1−x} particles originally present in parent alloy coarsen during TIG welding process, but they can restrain the grain growth and recrystallization here, thus improving welding performance. For two FSW welded joints, fracture occurred in weld nugget zone. Secondary Al{sub 3}Sc{sub x}Zr{sub 1−x} nano-particles almost can keep unchangeable size (20–40 nm) across the entire FSW welded joint, and thus provide effective Orowan strengthening, grain boundary strengthening and substructure strengthening to strengthen FSW joints. The positive effect from Sc and Zr additions into base metals can be better preserved by FSW process than by TIG welding process.

  9. Fabrication of self-healing super-hydrophobic surfaces on aluminium alloy substrates

    Directory of Open Access Journals (Sweden)

    Yang Wang

    2015-04-01

    Full Text Available We present a method to fabricate a super-hydrophobic surface with a self-healing ability on an aluminium alloy substrate. The coatings are obtained by combining a two-step process (first, the substrate is immersed in a solution of HCl, HF and H2O, and then in boiling water and succeeding surface fluorination with a solution of poly(vinylidene-fluoride-co-hexafluoropropylene and a fluoroalkyl silane. The morphological features and chemical composition were studied by scanning electron micrometry and energy-dispersive X-ray spectroscopy. The prepared super-hydrophobic aluminium surfaces showed hierarchical structures forming pores, petals and particles with a contact angle of 161° and a sliding angle of 3°.

  10. Steam assisted oxide growth on aluminium alloys using oxidative chemistries: Part I Microstructural investigation

    DEFF Research Database (Denmark)

    Din, Rameez Ud; Piotrowska, Kamila; Gudla, Visweswara Chakravarthy

    2015-01-01

    The surface treatment of aluminium alloys under steam containing KMnO4 and HNO3resulted in the formation of an oxide layer having a thickness of up to 825 nm. The use of KMnO4 and HNO3 in the steam resulted in incorporation of the respective chemical species into the oxide layer. Steam treatment...... with solution containing HNO3 caused dissolution of Cu and Si from the intermetallic particles in the aluminium substrate. The growth rate of oxide layer was observed to be a function of MnO4−and NO3−ions present in the aqueous solution. The NO3−ions exhibit higher affinity towards the intermetallic particles...

  11. Development of nano cerium oxide incorporated aluminium alloy sacrificial anode for marine applications

    Energy Technology Data Exchange (ETDEWEB)

    Shibli, S.M.A. [Department of Chemistry, University of Kerala, Thiruvananthapuram, Kerala 695 581 (India)], E-mail: smashibli@yahoo.com; Archana, S.R. [Department of Chemistry, University of Kerala, Thiruvananthapuram, Kerala 695 581 (India); Muhamed Ashraf, P. [Central Institute of Fisheries Technology, Cochin, Kerala 682 029 (India)

    2008-08-15

    Aluminium-zinc alloy sacrificial anodes are extensively used for cathodic protection. The performance of the sacrificial anodes can be significantly improved by incorporation of microalloying elements in the aluminium matrix. In the present work nano cerium oxide particles of different concentrations, ranging from 0 to 1 wt% were incorporated for activating and improving the performance of the anode. The electrochemical test results revealed the increased efficiency of the anode. The electrochemical impedance spectroscopy revealed the information that the presence of nano cerium oxide in the anode matrix caused effective destruction of the passive alumina film, which facilitated enhancement of galvanic performance of the anode. Moreover, the biocidal activity of cerium oxide prevented the bio accumulation considerably which enables the anodes to be used in aggressive marine conditions.

  12. The microstructure and precipitation kinetics of a cast aluminium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Ovono, D. Ovono [Laboratoire Roberval, University of Technology of Compiegne, 60205 Compiegne (France)]. E-mail: delavand.ovono-ovono@utc.fr; Guillot, I. [Centre d' Etudes de Chimie Metallurgie, UPR2801 CNRS, 94407 Vitry-sur-Seine (France); Massinon, D. [Fonderie Montupet, 60181 Nogent-sur-Oise (France)

    2006-08-15

    The microstructure of a cast Al-Si-Cu alloy was studied quantitatively in detail by a combination of differential scanning calorimetry, scanning electron microscopy, scanning tunnelling microscopy and transmission electron microscopy. The kinetics of coarsening can be described by the classical ripening theory. The plot of the rate constant of coarsening and the temperature follows an Arrhenius behaviour with an activation energy of about 140.4 kJ/mol{sup -1}, which is approximately the activation energy for diffusion of Cu and/or Si in Al, indicating diffusion-controlled precipitate growth.

  13. The effect of natural pre-ageing on the mechanical properties of Rheo-High pressure die cast aluminium alloy 2139

    CSIR Research Space (South Africa)

    Chauke, L

    2015-07-01

    Full Text Available Near-net shape casting of wrought aluminium alloys has proven to be difficult due to hot tearing. The Council for Scientific and Industrial Research (CSIR) has successfully processed wrought aluminium alloy 2139 into plate castings using the Rheo...

  14. Fabrication and Performance Test of Aluminium Alloy-Rice Husk Ash Hybrid Metal Matrix Composite as Industrial and Construction Material

    Directory of Open Access Journals (Sweden)

    Md. Rahat Hossain

    2017-12-01

    Full Text Available Aluminium matrix composites (AMCs used extensively in various engineering fields due to their exceptional mechanical properties. In this present study, aluminium matrix composites (AMCs such as aluminium alloy (A356 reinforced with rice husk ash particles (RHA are made to explore the possibilities of reinforcing aluminium alloy. The stir casting method was applied to produce aluminium alloy (A356 reinforced with various amounts of (2%, 4%, and 6% rice husk ash (RHA particles. Physical treatment was carried out before the rice husk ash manufacturing process. The effect of mechanical strength of the fabricated hybrid composite was investigated. Therefore, impact test, tensile stress, compressive stress, and some other tests were carried out to analyse the mechanical properties. From the experimental results, it was found that maximum tensile, and compressive stress were found at 6% rice husk ash (RHA and aluminium matrix composites (AMCs. In future, the optimum percentages of rice husk ash (RHA to fabricate the hybrid composites will be determined. Also, simulation by finite element method (FEM will be applied for further investigation.

  15. Effect of prestrain on stretch-zone formation during ductile fracture of Cu-strengthened high-strength low-alloy steels

    Science.gov (United States)

    Sivaprasad, S.; Tarafder, S.; Ranganath, V. R.; Das, S. K.; Ray, K. K.

    2002-12-01

    The effects of prestrain on the ductile fracture behavior of two varieties of Cu-strengthened high-strength low-alloy (HSLA) steels have been investigated through stretch-zone geometry measurements. It is noted that the ductile fracture-initiation toughness of both the steels remained unaltered up to prestrains of ˜2 pct, beyond which the toughness decreased sharply. A methodology for estimating the stretch-zone dimensions is proposed. Fracture-toughness estimations through stretch-zone width (SZW) and stretch-zone depth (SZD) measurements revealed that the nature of the variation of ductile fracture toughness with prestrain can be better predicted through SZD rather than the SZW measurements. However, for the specimen geometries and prestrain levels that were investigated, none of these methods were found suitable for quantifying the initiation fracture toughness.

  16. Temperature field in the hot-top during casting a new super-high strength Al-Zn-Mg-Cu alloy by low frequency electromagnetic process

    Directory of Open Access Journals (Sweden)

    Yubo ZUO

    2005-08-01

    Full Text Available The billets of a new super-high strength Al-Zn-Mg-Cu alloy in 200 mm diameter were produced by the processed of low frequency electromagnetic casting (LFEC and conventional direct chill(DCcasting, respectively. The effects of low frequency electromagnetic field on temperature field of the melt in the hot-top were investigated by temperature thermocouples into the casting during the processes. The results show that during LFEC process the temperature field in the melt applying the hot-top is very uniform, which is helpful to reduce the difference of thermal gradients between the surface and the center, and then to reduce the thermal stress and to eliminate casting crack.

  17. Oxidation behavior of FeCr and FeCrY alloys coated with an aluminium based paint

    Directory of Open Access Journals (Sweden)

    Marina Fuser Pillis

    2008-09-01

    Full Text Available A variety of metallic components rely on properties that are specific to the alloy and its surface. Coatings have been extensively used to protect metallic surfaces from the aggressive effects of the environment to which it is exposed. In this investigation, the high temperature oxidation behavior of a FeCr and a FeCrY alloy coated with an aluminium based paint has been studied. The objective was to form the more resistant alumina surface layer on an aluminium free alloy. Aluminium based paint coated and uncoated specimens of the two alloys were oxidized for up to 200 hours at 1000 °C in air. The oxidized specimens were examined in a scanning electron microscope coupled to an energy dispersive system and the surfaces were analyzed by X ray diffraction analysis. The aluminium based paint coating increased the oxidation resistance of the alloys, mainly over extended periods. The FeCrY alloy coated with the Al based paint exhibited the highest oxidation resistance.

  18. Hydrogen adsorption and diffusion, and subcritical-crack growth in high-strength steels and nickel base alloys

    Science.gov (United States)

    Wei, R. P.; Klier, K.; Simmons, G. W.

    1974-01-01

    Coordinated studies of the kinetics of crack growth and of hydrogen adsorption and diffusion were initiated to develop information that is needed for a clearer determination of the rate controlling process and possible mechanism for hydrogen enhanced crack growth, and for estimating behavior over a range of temperatures and pressures. Inconel 718 alloy and 18Ni(200) maraging steel were selected for these studies. 18Ni(250) maraging steel, 316 stainless steel, and iron single crystal of (111) orientation were also included in the chemistry studies. Crack growth data on 18Ni(250) maraging steel from another program are included for comparison. No sustained-load crack growth was observed for the Inconel 718 alloy in gaseous hydrogen. Gaseous hydrogen assisted crack growth in the 18Ni maraging steels were characterized by K-independent (Stage 2) extension over a wide range of hydrogen pressures (86 to 2000 torr or 12 kN/m2 to 266 kN/m2) and test temperatures (-60 C to +100 C). The higher strength 18Ni(250) maraging steel was more susceptible than the lower strength 200 grade. A transition temperature was observed, above which crack growth rates became diminishingly small.

  19. Stress corrosion cracking susceptibility of a high strength Mg-7%Gd-5%Y-1%Nd-0.5%Zr alloy

    Directory of Open Access Journals (Sweden)

    S.D. Wang

    2014-12-01

    Full Text Available Through performing the tensile tests with different strain rates in 3.5 wt.% NaCl solution, the stress corrosion cracking (SCC behavior and the effect of strain rate on the SCC susceptibility of an extruded Mg-7%Gd-5%Y-1%Nd-0.5%Zr (EW75 alloy have been investigated. Results demonstrate that the alloy is susceptible to SCC when the strain rate is lower than 5 × 10−6 s−1. At the strain rate of 1 × 10−6 s−1, the SCC susceptibility index (ISCC is 0.96 and the elongation-to-failure (εf is only 0.11%. Fractography indicates that the brittle quasi-cleavage feature is very obvious and become more pronounced with decreasing the strain rate. Further analysis confirms that the cracking mode is predominantly transgranular, but the partial intergranular cracking at some localized area can also occur. Meanwhile, it seems that the crack propagation path is unrelated to the existing phase particles.

  20. Low-cost, high-strength Fe--Ni--Cr alloys for high temperature exhaust valve application

    Science.gov (United States)

    Muralidharan, Govindarajan

    2017-09-05

    An Fe--Ni--Cr alloy is composed essentially of, in terms of wt. %: 2.4 to 3.7 Al, up to 1.05 Co, 14.8 to 15.9 Cr, 25 to 36 Fe, up to 1.2 Hf, up to 4 Mn, up to 0.6 Mo, up to 2.2 Nb, up to 1.05 Ta, 1.9 to 3.6 Ti, up to 0.08 W, up to 0.03 Zr, 0.18 to 0.27 C, up to 0.0015 N, balance Ni, wherein, in terms of atomic percent: 8.5.ltoreq.Al+Ti+Zr+Hf+Ta.ltoreq.11.5, 0.53.ltoreq.Al/(Al+Ti+Zr+Hf+Ta).ltoreq.0.65, and 0.16.ltoreq.Cr/(Fe+Ni+Cr+Mn).ltoreq.0.21, the alloy being essentially free of Cu, Si, and V.

  1. Peculiarities of welding pool degassing at surface deposition of aluminium alloys with powder wire

    Directory of Open Access Journals (Sweden)

    Володимир Якович Зусін

    2016-11-01

    Full Text Available The article contains the analysis of the conventional methods of surface deposition of aluminium alloys. It was shown that at surface deposition of aluminium alloys interstices, arising at hydrogen bubbles formation in the weld pool lat the moment of its crystallization are the most probable defects. An additional source of hydrogen supply into the weld pool springs up at surface deposition of aluminium alloys-this is the powder electrode charge. So, a model of formation of gas bubbles with due regard to this factor was developed. Presence of various surface defects, like cavities, shears, and micro-cracks is a factor, promoting formation of gaseous hydrogen phase inside a drop of electrode metal. Further development of gas bubbles, entrapped into the weld pool goes on by their consolidation and hydrogen diffusion from the molten metal into gaseous section. Intensification of bubble degassing, both at the stage of molten metal drop and at the welding pool stage is the most efficient way. The process of degassing depends on the amount of hydrogen, introduced into the weld pool. Proposed was an analytical dependence of evaluation of the original hydrogen concentration in the weld pool upon the coefficient of powder wire filling and dimensions of the charge particles. Experimental research of the influence of the parameters of powder wire upon the porosity of deposited metal made it possible to determine an optimal range of charge granulation and the coefficient of powder wire filling, ensuring intensive degassing during the period of its existence in liquid state and reaching deposited metal with sufficient density

  2. ANN & ANFIS Models for Prediction of Abrasive Wear of 3105 Aluminium Alloy with Polyurethane Coating

    Directory of Open Access Journals (Sweden)

    H. Alimam

    2016-06-01

    Full Text Available The quest for safety and reliability has increased significantly after Industrial revolution, so is the case for coating industries. In this paper 3105 Aluminium alloy sheet is coated with organic polyurethane coating. After the implementation of coating, various processes are undergone to check its reliability under elevated conditions. ANN & ANFIS model were developed and trained with an objective to find abrasive wear during the process. ANN & ANFIS model were compared with the experimental results. It is observed that the abrasive wear of a coated specimen can be predicted accurately and precisely using ANN and ANFIS models.

  3. INFLUENCE OF THE THICKNESS OF JOINED ELEMENTS ON LAP LENGTH OF ALUMINIUM ALLOY SHEET BONDED JOINTS

    OpenAIRE

    Anna Rudawska

    2015-01-01

    This work features the results of experimental research in determining the limiting length of the bonded single-lap joint of materials of the same thickness, different thicknesses and of hybrid systems of different aluminium alloy sheets. The length of the bonded lap joint is just one of the structural features, critical to the strength of bonded joints, this length depending on the thickness and type of the bonded elements. In the case of single-lap bonded joints there is a limiting lap leng...

  4. Investigation on local ductility of 6xxx-aluminium sheet alloys

    Science.gov (United States)

    Henn, P.; Liewald, M.; Sindel, M.

    2017-09-01

    Within the scope of this paper influence of localization of loading conditions on the ductility of two different 6xxx-aluminium sheet alloys is investigated. In order to improve the prediction of sheet material crash performance, material parameters based on uniaxial tensile and notched tensile tests are determined with varying consolidation areas. Especially evaluation methods based on the localized necking behaviour in tensile tests are investigated. The potential of local ductility characterisation is validated with results of Edge-Compression Tests (ECT) which applies load conditions that occur in actual crash events.

  5. Characterising ductility of 6xxx-series aluminium sheet alloys at combined loading conditions

    Science.gov (United States)

    Henn, Philipp; Liewald, Mathias; Sindel, Manfred

    2017-10-01

    This paper presents a new approach to characterise material ductility when combined, three dimensional loading conditions occurring during vehicle crash are applied. So called "axial crush test" of closed hat sections is simplified by reducing it down to a two-dimensional testing procedure. This newly developed edge-compression test (ECT) provides the opportunity to investigate a defined characteristic axial folding behaviour of a profile edge. The potential to quantify and to differentiate crashworthiness of material by use of new edge-compression test is investigated by carrying out experimental studies with two different 6xxx-aluminium sheet alloys.

  6. A comparative study of leaves extracts for corrosion inhibition effect on aluminium alloy in alkaline medium

    Directory of Open Access Journals (Sweden)

    Namrata Chaubey

    2017-12-01

    Full Text Available This paper deals with the comparative inhibition study of some plants leaves extract namely Cannabis sativa (CS, Rauwolfia serpentina (RS, Cymbopogon citratus (CC, Annona squamosa (AS and Adhatoda vasica (AV on the corrosion of aluminium alloy (AA in 1 M NaOH. The corrosion tests were performance by using gravimetric, electrochemical impedance spectroscopy (EIS, potentiodynamic polarization and linear polarization resistance (LPR techniques. RS showed maximum inhibition efficiency (η%, 97% at 0.2 g L−1. Potentiodynamic polarization curves justified that all the inhibitors are mixed-type. Surface morphology of AA is carried by scanning electron microscopy (SEM and atomic force microscopy (AFM.

  7. SOLIDIFICATION CHARACTERISTIC OF TITANIUM CARBIDE PARTICULATE REINFORCED ALUMINIUM ALLOY MATRIX COMPOSITES

    Directory of Open Access Journals (Sweden)

    N. FATCHURROHMAN

    2012-04-01

    Full Text Available In this research solidification characteristic of metal matrix composites consisted of titanium carbide particulate reinforced aluminium-11.8% silicon alloy matrix is performed. Vortex mixing and permanent casting method are used as the manufacturing method to produce the specimens. Temperature measurements during the casting process are captured and solidification graphs are plotted to represent the solidification characteristic. The results show, as volume fraction of particulate reinforcement is increased, solidification time is faster. Particulate reinforcement promotes rapid solidification which will support finer grain size of the casting specimen. Hardness test is performed and confirmed that hardness number increased as more particulate are added to the system.

  8. Tribological Potential of Hybrid Composites Based on Zinc and Aluminium Alloys Reinforced with SiC and Graphite Particles

    Directory of Open Access Journals (Sweden)

    D. Džunić

    2012-12-01

    Full Text Available The paper reviews contemporary research in the area of hybrid composites based on zinc and aluminium alloys reinforced with SiC and graphite particles. Metal matrix composites (MMCs based on ZA matrix are being increasingly applied as light-weight and wear resistant materials. Aluminium matrix composites with multiple reinforcements (hybrid AMCsare finding increased applications because of improved mechanical and tribological properties and hence are better substitutes for single reinforced composites. The results of research show that the hybrid composites possess higher hardness, higher tensile strength, better wear resistance and lower coefficient of friction when compared to pure alloys.

  9. Mechanical Behaviour Investigation Of Aluminium Alloy Tailor Welded Blank Developed By Using Friction Stir Welding Technique

    Science.gov (United States)

    Dwi Anggono, Agus; Sugito, Bibit; Hariyanto, Agus; Subroto; Sarjito

    2017-10-01

    The objective on the research was to investigate the mechanical properties and microstructure of tailor welded blank (TWB) made from AA6061-T6 and AA1100 using friction stir welding (FSW) process. Due to the dissimilar mechanical properties of the two aluminium alloys, microhardness test was conducted to measure the hardness distribution across the weld nugget. The mixing of two distinct materials was influenced by tool rotation speed. Therefore, microstructure analysis was carried out to investigate the grain size and shape. The grain size of AA6061-T6 has increased in the heat affected zone (HAZ) while for AA1100 has decreased. In the weld nugget, it has found a hook defects in the dissimilar aluminium joining. By using monotonic tensile load, the different weld line direction was observed with the expansion in tool rotation. The joints failure were consistently on the area of AA1100 series. Furthermore, two specimens were investigated, one through the dissimilar aluminium and the other through similiar material. Inspection of the weld nugget hardness was shown that nonhomogen material intermixing during the stiring process as confirmed by microhardness measurement.

  10. Effect of Lubrication on Sliding Wear of Red Mud Particulate Reinforced Aluminium Alloy 6061

    Directory of Open Access Journals (Sweden)

    N. Panwar

    2017-09-01

    Full Text Available In present study, Red mud, an industrial waste, has been utilized as a reinforcement material to fabricate Aluminium 6061 matrix based metal matrix composite. Taguchi L18 orthogonal array has been employed for fabrication of composite castings and for conducting the tribological experimentation. ANOVA analysis has been applied to examine the effect of individual parameters such as sliding condition: dry and wet, reinforcement weight fraction, load, speed, and sliding distance on specific wear rate obtained experimentally. It has been found that tensile strength and impact energy increases while elongation decreases, with increasing weight fraction and decrease in particle size of red mud. The percentage contribution of the effect of factors on SWR is Sliding condition (73.17, speed (7.84, percentage reinforcement (7.35, load (5.75, sliding distance (2.24, and particle size (1.25. It has also been observed that specific wear rate is very low in wet condition. However, it decreases with increase in weight fraction of reinforcement, decrease in load and sliding speed. Al6061/red mud metal matrix composites have shown reasonable strength and wear resistance. The use of red mud in Aluminium composite provides the solution for disposal of red mud and can possibly become an economic replacement of Aluminium and its alloys.

  11. Relationship Between Solidification Microstructure and Hot Cracking Susceptibility for Continuous Casting of Low-Carbon and High-Strength Low-Alloyed Steels: A Phase-Field Study

    Science.gov (United States)

    Böttger, B.; Apel, M.; Santillana, B.; Eskin, D. G.

    2013-08-01

    Hot cracking is one of the major defects in continuous casting of steels, frequently limiting the productivity. To understand the factors leading to this defect, microstructure formation is simulated for a low-carbon and two high-strength low-alloyed steels. 2D simulation of the initial stage of solidification is performed in a moving slice of the slab using proprietary multiphase-field software and taking into account all elements which are expected to have a relevant effect on the mechanical properties and structure formation during solidification. To account for the correct thermodynamic and kinetic properties of the multicomponent alloy grades, the simulation software is online coupled to commercial thermodynamic and mobility databases. A moving-frame boundary condition allows traveling through the entire solidification history starting from the slab surface, and tracking the morphology changes during growth of the shell. From the simulation results, significant microstructure differences between the steel grades are quantitatively evaluated and correlated with their hot cracking behavior according to the Rappaz-Drezet-Gremaud (RDG) hot cracking criterion. The possible role of the microalloying elements in hot cracking, in particular of traces of Ti, is analyzed. With the assumption that TiN precipitates trigger coalescence of the primary dendrites, quantitative evaluation of the critical strain rates leads to a full agreement with the observed hot cracking behavior.

  12. Microstructure evolution in a 2618 aluminium alloy during creep-fatigue tests

    Energy Technology Data Exchange (ETDEWEB)

    Novy, Frantisek; Hadzima, Branislav [Zilina Univ. (Slovakia). Dept. of Materials Engineering; Janecek, Milos; Kral, Robert [Charles Univ., Prague (Czech Republic). Dept. of Physics of Materials

    2012-06-15

    Microstructure changes in the 2 618 aluminium alloy during creep-fatigue tests were studied. These tests simulate the conditions of the application of this alloy in devices for the exhaustion of hot gasses generated during fire in closed or difficultly accessible areas. Creep-fatigue tests result in high dislocation density in subgrains and narrow subgrain boundaries, in contrast to creep tests reported in our previous work where large subgrains were observed with relatively wide subgrain boundaries and relatively low dislocation density in grains. Extensive precipitation occurred with denuded (precipitate-free) zones along grain boundaries. The coherent S-phase (Al{sub 2}CuMg) transformed into partially coherent needle-shaped S' precipitates. Superior stress amplitude caused reduced lifetime and wider denuded zones. A model of the formation of denuded zones along (sub)-grain boundaries was proposed. (orig.)

  13. Microstructural characterization of fly ash particulate reinforced AA6063 aluminium alloy for aerospace applications

    Science.gov (United States)

    Razzaq, A. M.; Majid, D. L. Abang Abdul; Ishak, M. R.; Uday, M. B.

    2017-12-01

    Aluminium-fly ash (FA) particulate reinforced composites (AA6063-FA) have been used in automotive and aerospace industries because of their low density and good mechanical properties. Three different weight fraction of FA: 2%, 4% and 6% are added to AA6063 alloy using compocasting method. The effect of FA particulates on microstructure, density and compression strength of AA6063- FA composites are investigated. Field Emission Scanning Electron Microscope (FESEM) micrographs reveal that the FA particulates are uniformly distributed in AA6063 alloy. The results also show that density, compression strength and microstructure of the AA6063-FA composites are significantly influenced by the FA amount. The increase in the weight fraction of FA will improve the microstructure and enhance the compression strength. The density of AA6063-FA composites decreases as the incorporation of FA increases.

  14. Corrosion protection of Mg/Al alloys by thermal sprayed aluminium coatings

    Energy Technology Data Exchange (ETDEWEB)

    Pardo, A., E-mail: anpardo@quim.ucm.es [Departamento de Ciencia de Materiales, Facultad de Quimicas, Universidad Complutense, 28040 Madrid (Spain); Casajus, P.; Mohedano, M.; Coy, A.E.; Viejo, F. [Departamento de Ciencia de Materiales, Facultad de Quimicas, Universidad Complutense, 28040 Madrid (Spain); Torres, B. [Departamento de Ciencia e Ingenieria de Materiales, ESCET, Universidad Rey Juan Carlos, 28933 Mostoles, Madrid (Spain); Matykina, E. [Corrosion and Protection Centre, School of Materials, The University of Manchester, P.O. Box 88, Sackville Street, Manchester M60 1QD (United Kingdom)

    2009-05-15

    The protective features of thermal sprayed Al-coatings applied on AZ31, AZ80 and AZ91D magnesium/aluminium alloys were evaluated in 3.5 wt.% NaCl solution by electrochemical and gravimetric measurements. The changes in the morphology and corrosion behaviour of the Al-coatings induced by a cold-pressing post-treatment were also examined. The specimens were characterized by scanning electron microscopy, energy dispersive X-ray analysis and low-angle X-ray diffraction. The as-sprayed Al-coatings revealed a high degree of porosity and poor corrosion protection, which resulted in galvanic acceleration of the corrosion of the magnesium substrates. The application of a cold-pressing post-treatment produced more compact Al-coatings with better bonding at the substrate/coating interface and higher corrosion resistance regardless of the nature of the magnesium alloy.

  15. Property Evaluation of Friction Stir Welded Dissimilar Metals : AA6101-T6 and AA1350 Aluminium Alloys

    Directory of Open Access Journals (Sweden)

    Rajendran ASHOK KUMAR

    2017-02-01

    Full Text Available Next to copper, aluminium alloys are widely used in electrical industries, because of their high electrical conductivity. AA6101-T6 and AA1350 aluminium alloys are widely used in electrical bus bars. As these alloys are joined by mechanical fasteners in electrical bus bars, the conductive area has been reduced. To avoid this problem, they should be joined without removal of metal as well as their properties. Friction stir welding technique is mainly invented for joining similar and dissimilar aluminium alloys. In this investigation, friction stir welding of AA6101-T6 and AA1350 aluminium alloys was done by varying tool traversing speed, rotational speed and tilt angle with hexagonal pin profiled tool. The analysis of variance was employed to study the effect of above parameters on mechanical properties of welded joints. From the experimental results, it is observed that welded joint with the combination of 1070 rpm rotating speed, 78 mm/min traversing speed and 2° tilt angle provides better mechanical properties. Analysis of variance shows that most significant impact on tensile strength is made by variation in tool rotating speed while tool tilt angle makes the most significant impact on elongation and bending strength.DOI: http://dx.doi.org/10.5755/j01.ms.23.1.14132

  16. High-Strength Ultra-Fine-Grained Hypereutectic Al-Si-Fe-X (X = Cr, Mn Alloys Prepared by Short-Term Mechanical Alloying and Spark Plasma Sintering

    Directory of Open Access Journals (Sweden)

    Filip Průša

    2016-11-01

    Full Text Available In this work, Al-20Si-10Fe-6Cr and Al-20Si-10Fe-6Mn (wt % alloys were prepared by a combination of short-term mechanical alloying and spark plasma sintering. The microstructure was composed of homogeneously dispersed intermetallic particles forming composite-like structures. X-ray diffraction analysis and TEM + EDS analysis determined that the α-Al along with α-Al15(Fe,Cr3Si2 or α-Al15(Fe,Mn3Si2 phases were present, with dimensions below 130 nm. The highest hardness of 380 ± 7 HV5 was observed for the Al-20Si-10Fe-6Mn alloy, exceeding the hardness of the reference as-cast Al-12Si-1Cu-1 Mg-1Ni alloy (121 ± 2 HV5 by nearly a factor of three. Both of the prepared alloys showed exceptional thermal stability with the hardness remaining almost the same even after 100 h of annealing at 400 °C. Additionally, the compressive strengths of the Al-20Si-10Fe-6Cr and Al-20Si-10Fe-6Mn alloys reached 869 MPa and 887 MPa, respectively, and had virtually the same values of 870 MPa and 865 MPa, respectively, even after 100 h of annealing. More importantly, the alloys showed an increase in ductility at 400 °C, reaching several tens of percent. Thus, both of the investigated alloys showed better mechanical properties, including superior hardness, compressive strength and thermal stability, as compared to the reference Al-10Si-1Cu-1Mg-1Ni alloy, which softened remarkably, reducing its hardness by almost 50% to 63 ± 8 HV5.

  17. Investigating the Acid Failure of Aluminium Alloy in 2 M Hydrochloric Acid Using Vernonia amygdalina

    Directory of Open Access Journals (Sweden)

    Olugbenga A. Omotosho

    2012-04-01

    Full Text Available The acid failure of aluminium alloy in 2 M hydrochloric acid solution in the presence of Vernonia amygdalina extract was investigated using gasometric technique. Aluminium alloy coupons of dimension 4 cm by 1 cm were immersed in test solutions of free acid and also those containing extract volumes of 2, 3, 4 and 5 cm3 at ambient temperature for 30 minutes. The volumes of hydrogen gas evolved as a result of the rate of reaction were recorded and analyzed. Analysis revealed that maximum inhibitor efficiency which corresponds to the lowest corrosion rate was obtained at optimum inhibitor volumes of 5 cm3, with reduction in the corrosion rate observed to follow in order of increasing extract volumes. Adsorption study revealed that Temkin isotherm best described the metal surface interaction with the extract phytochemicals, with 12 minutes becoming the best exposure time for the phytochemicals to adsorb to the metal surface at all volumes. Statistical modelling of the corrosion rate yielded an important relationship suitable for estimating corrosion rate values once volumes of the extract is known. Microstructural studies, showed an indirect relationship between crack growth rates and extract volumes, while consistency of the irregular intermetallic phases increases with increasing extract volumes.

  18. Microstructures de précipitation et mécanismes de corrosion feuilletante dans les alliages d'aluminium de la série 7000 à très hautes caractéristiques mécaniques

    OpenAIRE

    Marlaud, Thorsten

    2008-01-01

    High strength 7XXX series aluminium alloys, composed of the major alloying elements Zn, Mg, and Cu, are used especially for aircraft applications. However, the ageing process, maximizing the mechanical properties, returns alloys sensitive to structural corrosion, and particularly to exfoliation corrosion. New developments in high strength alloys, for strength optimization, lead an overall increase in solute saturation, which could modify their corrosion susceptibility.The objective of the stu...

  19. Corrosion behaviour of ion implanted aluminium alloy in 0.1 M NaCl electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Chu, J.W.; Evans, P.J. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia); Sood, D.K. [Royal Melbourne Inst. of Tech., VIC (Australia)

    1993-12-31

    Aluminum and its alloys are widely used in industry because of their light weight, high strength and good corrosion resistance which is due to the formation of a protective oxide layer. However, under saline conditions such as those encountered in marine environments, this group of metals are vulnerable to localised degradation in the form of pitting corrosion. This type of corrosion involves the adsorption of an anion, such as chlorine, at the oxide solution interface. Ion implantation of metal ions has been shown to improve the corrosion resistance of a variety of materials. This effect occurs : when the implanted species reduces anion adsorption thereby decreasing the corrosion rate. In this paper we report on the pitting behavior of Ti implanted 2011 Al alloy in dilute sodium chloride solution. The Ti implanted surfaces exhibited an increased pitting potential and a reduced oxygen uptake. 5 refs., 3 figs.

  20. Thermodynamic calculation and observation of microstructural change in Ni-Mo-Cr high strength low alloy RPV steels with alloying elements

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sang Gyu; Wee, Dang Moon [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Kim, Min Chul; Lee, Bong Sang [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-12-15

    An effective way of increasing the strength and fracture toughness of reactor pressure vessel steels is to change the material specification from that of Mn-Mo-Ni low alloy steel (SA508 Gr.3) to Ni-Mo-Cr low alloy steel(SA508 Cr.4N). In this study, we evaluate the effects of alloying elements on the microstructural characteristics of Ni-Mo-Cr low alloy steel. The changes in the stable phase of the SA508 Gr.4N low alloy steel with alloying elements were evaluated by means of a thermodynamic calculation conducted with the software ThermoCalc. The changes were then compared with the observed microstructural results. The calculation of Ni-Mo-Cr low alloy steels confirms that the ferrite formation temperature decreases as the Ni content increases because of the austenite stabilization effect. Consequently, in the microscopic observation, the lath martensitic structure becomes finer as the Ni content increases. However, Ni does not affect the carbide phases such as M{sub 23}C{sub 6} and M{sub 7}C{sub 3}. When the Cr content decreases, the carbide phases become unstable and carbide coarsening can be observed. With an increase in the Mo content, the M{sub 2}C phase becomes stable instead of the M{sub 7}C{sub 3} phase. This behavior is also observed in TEM. From the calculation results and the observation results of the microstructure, the thermodynamic calculation can be used to predict the precipitation behavior.

  1. Comparative study on laser welding and TIG welding of semi-solid high pressure die cast A356 aluminium alloy

    CSIR Research Space (South Africa)

    Govender, G

    2007-07-01

    Full Text Available components. The low porosity levels in SSM high pressure die castings (HPDC) improves the weldability of these components. The aim of the current research was to perform a comparative study of laser and TIG welding of SSM HPDC aluminium alloy A356. SSM...

  2. Precipitation of Silicon in a Solid Quenched Aluminium- ilicon (1.3 at yo) Alloy Studied by Positron Annihilation

    NARCIS (Netherlands)

    Seegers, D.; Van Mourik, P.; Van Wijngaarden, M.H.; Rao, B.M.

    1984-01-01

    Doppler broadening of the positron annihilation line was measured for quenched and aged specimens of an aluminium-silicon (1.29 at%Si) alloy. One set of specimens was aged at room temperature (set A) and one set was isochronally (t = 30 min) aged at temperatures ranging from 347 to 884 K (set B).

  3. Wear behaviour of A356 aluminium alloy reinforced with micron and nano size SiC particles

    CSIR Research Space (South Africa)

    Camagu, ST

    2013-07-01

    Full Text Available A method for producing metal matrix composites MMC was successfully implemented for mixing nano and low micron (“Hybrid”) sized SiC reinforcing particles in an aluminium alloy matrix. Due to the improved specific modulus and strength, MMC...

  4. Study of the Impact of Heat Treatment Modes on Formation of Microstructure and a Given Set of Mechanical Properties of High-Strength Flat Products with Guaranteed Hardness (400 to 450 HB) from Low-Alloyed Steel

    Science.gov (United States)

    Matrosov, M. Yu; Martynov, P. G.; Goroshko, T. V.; Zvereva, M. I.; Mitrofanov, A. V.; Barabash, K. Yu

    2017-12-01

    The results of the study of influence of heat treatment modes on microstructure, size and shape of grains, mechanical properties of high-strength flat products from low-alloyed C-Mn-Cr-Si-Mo steel microalloyed by boron are presented. Heat treatment modes, which provide a combination of high impact viscosity at negative temperatures and guaranteed hardness, are determined.

  5. Accelerated growth of oxide film on aluminium alloys under steam: Part I: Effects of alloy chemistry and steam vapour pressure on microstructure

    DEFF Research Database (Denmark)

    Din, Rameez Ud; Gudla, Visweswara C.; Jellesen, Morten S.

    2015-01-01

    Aluminium alloys were treated with steam of varying vapour pressures which resulted in the growth of aluminium oxyhydroxide layers of an average thickness of ~450–825 nm. The microstructure and composition of the generated layers were characterised by GD-OES, FEG-SEM, GI-XRD and TEM. The thicknes...... of alkaline etching pre-treatment influenced the thickness and growth of theoxide. Moreover the steam treatment resulted in the partial oxidation of second phase intermetallic particles present in the aluminium alloy microstructure....... of the oxide layeras well as the compactness increased with steam vapour pressure. The increase in vapour pressure also resulted in a better coverage over the intermetallic particles. Oxide layer showed a layered structure with more compact layer at the Al interface and a nano-scale needle like structure...

  6. An improved billet on billet extrusion process of continuous aluminium alloy shapes for cryogenic applications in the Compact Muon Solenoid experiment

    CERN Document Server

    Tavares, S S

    2003-01-01

    The Compact Muon Solenoid (CMS) is one of the experiments being designed in the framework of the Large Hadron Collider accelerator at CERN. CMS will contain the largest and the most powerful superconducting solenoid magnet ever built in terms of stored energy. It will work at 4.2 K, will have a magnetic length of 12.5 m, with a free bore of 6m and will be manufactured as a layered and modular structure of NbTi cables embedded in a high purity (99.998%) Al- stabiliser. Each layer consists of a wound continuous length of 2.55 km. In order to withstand the high electromagnetic forces, two external aluminium alloy reinforcing sections are foreseen. These reinforcements, of 24 mm multiplied by 18 mm cross-section, will be continuously electron beam (EB) welded to the pure Al-stabiliser. The alloy EN AW-6082 has been selected for the reinforcements due to its excellent extrudability, high strength in the precipitation hardened state, high toughness and strength at cryogenic temperatures and ready EB weldability. Ea...

  7. A silanol-based nanocomposite coating for protection of AA-2024 aluminium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, E.; Pavez, J.; Azocar, I.; Zagal, J.H. [Departamento de Quimica de los Materiales, Facultad de Quimica y Biologia, Universidad de Santiago de Chile, Avenida Bernardo O' Higgins 3363, Casilla 40, Correo 33, Santiago (Chile); Zhou, X. [Corrosion and Protection Centre, School of Materials, University of Manchester, Manchester M13 9PL (United Kingdom); Melo, F. [Departamento de Fisica, Facultad de Ciencias, Universidad de Santiago de Santiago de Chile, Avenida Bernardo O' Higgins 3363, Santiago (Chile); Thompson, G.E. [Corrosion and Protection Centre, School of Materials, University of Manchester, Manchester M13 9PL (United Kingdom); Paez, M.A., E-mail: maritza.paez@usach.cl [Departamento de Quimica de los Materiales, Facultad de Quimica y Biologia, Universidad de Santiago de Chile, Avenida Bernardo O' Higgins 3363, Casilla 40, Correo 33, Santiago (Chile)

    2011-09-01

    Highlights: {center_dot} A new silanol-based hybrid coating has been synthesized. {center_dot} The incorporation of CeO{sub 2} and ZrO{sub 2} nanoparticles into the coating greatly improves the corrosion resistance of the coated aluminium alloy. {center_dot} The effectiveness of the coating is increasingly evident for long term exposure to the sodium chloride solution. {center_dot} The silanol-based nanocomposite coatings have self-healing ability. - Abstract: A new hybrid sol-gel type film, composed of tetraethylorthosilicate (TEOS) and tetraocthylorthosilicate (TEOCS), and modified with different nanoparticle systems, has been investigated as a coating for protection of AA-2024-T3 aluminium alloy. The nanoparticle systems considered were either ZrO{sub 2} or CeO{sub 2} or their combination{sub .} The zirconia nanoparticles were prepared from a Zr (IV) propoxide sol (TPOZ), using an organic stabilizer, and the CeO{sub 2} nanoparticles were developed spontaneously after adding cerium nitrate solution to the hybrid sol. The chemical composition and the structure of the hybrid sol-gel films were examined by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The corrosion resistance of the coated AA-2024 alloy was examined by potentiodynamic polarization. The results revealed that, for short exposure times in the electrolyte, incorporation of ZrO{sub 2} or CeO{sub 2} nanoparticles in the hybrid film does not provide an increase in the corrosion resistance of the coated AA-2024 alloy. Further, the resistance was significantly reduced by increasing the nanoparticle content. Conversely, by incorporating both nanoparticles (ZrO{sub 2} and CeO{sub 2}), the corrosion resistance of the resulting hybrid films increased slightly. The behavior changed significantly when the coated alloy was exposed to the electrolyte for 5 days. The corrosion resistance of the coatings, unmodified and modified with CeO{sub 2} or Zr

  8. Effect of nano-particulate sol-gel coatings on the oxidation resistance of high-strength steel alloys during the press-hardening process

    Energy Technology Data Exchange (ETDEWEB)

    Yekehtaz, M.; Benfer, S.; Fuerbeth, W. [DECHEMA-Forschungsinstitut, Theodor-Heuss-Allee 25, D-60486 Frankfurt am Main (Germany); Klesen, C.; Bleck, W. [Institut fuer Eisenhuettenkunde der RWTH Aachen, Intzestrasse 1, D-52072 Aachen (Germany)

    2012-10-15

    The need for lighter constructional materials in automotive industries has increased the use of high-strength steel alloys. To enhance passenger's safety press hardening may be applied to steel parts. However, as the steel parts are heated up to 950 C during this process they have to be protected by some kind of coating against the intense oxide formation usually taking place. As the coating systems used so far all have certain disadvantages in this work the ability of nano-particulate thin coatings obtained by the sol-gel process to improve the oxidation resistance of 22MnB5 steel is investigated. The coatings obtained from three sols containing lithium aluminum silicate and potassium aluminum silicate showed the best performance against oxidation. The structural properties of the coating materials were characterized using different methods like XRD and differential thermal analysis. Comparison of the oxidation rate constants proved the ability of the coatings to protect against oxidation at temperatures up to 800 C. Press-hardening experiments in combination with investigations on the thermal shock resistance of the coated samples also showed the ability of the coatings to stay intact during press hardening with only slight spalling of the coatings in the bending areas. The absence of any secondary intermetallic phases and layer residues during laser beam welding experiments on coated samples proves the suitability of the nano-particulate coatings for further industrial processing. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Improvement of the oxidation resistance of Tribaloy T-800 alloy by the additions of yttrium and aluminium

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y.-D.; Zhang, C.; Lan, H. [State Key Laboratory of New Ceramics and Fine Processing, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Hou, P.Y. [Material Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Yang, Z.-G., E-mail: zgyang@tsinghua.edu.c [State Key Laboratory of New Ceramics and Fine Processing, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2011-03-15

    Research highlights: {yields} The additions of yttrium (Y) reduced the oxidation rate of Tribaloy T-800 alloy. {yields} Y promoted selective oxidation of Cr due to refinement of alloy phase size. {yields} The oxidation rate was further reduced by Y plus Al with a protective Al{sub 2}O{sub 3} scale. {yields} The positive effect of Y and Al being more pronounced at the higher temperature. - Abstract: The microstructures and oxidation behaviour of the modified Tribaloy T-800 alloys by additions of yttrium and yttrium plus aluminium have been studied. At the presence of yttrium alone, the oxidation rate decreased, and the selective oxidation of chromium was promoted, which was related to the refinement of alloy phase size. The addition of yttrium plus aluminium further reduced the oxidation rate. The selective oxidation of chromium and aluminium were both promoted significantly. The benefits were especially pronounced at 1000 {sup o}C, with the formation of protective alumina external layer and no internal oxides, which may be detrimental to the alloy mechanical property.

  10. Characterization of semi-solid processing of aluminium alloy 7075 with Sc and Zr additions

    Energy Technology Data Exchange (ETDEWEB)

    Rogal, Ł., E-mail: l.rogal@imim.pl [Institute of Metallurgy and Materials Science of the Polish Academy of Sciences, 25 Reymonta St., 30-059 Krakow (Poland); Dutkiewicz, J. [Institute of Metallurgy and Materials Science of the Polish Academy of Sciences, 25 Reymonta St., 30-059 Krakow (Poland); Atkinson, H.V. [The University of Leicester, Department of Engineering University Road, Leicester, LE1 7RH (United Kingdom); Lityńska-Dobrzyńska, L.; Czeppe, T. [Institute of Metallurgy and Materials Science of the Polish Academy of Sciences, 25 Reymonta St., 30-059 Krakow (Poland); Modigell, M. [RWTH Aachen—Department of Mechanical Process Engineering, 55 Templergraben St., Aachen (Germany)

    2013-09-15

    For thixoforming (semi-solid processing) it is necessary to have a fine globular microstructure in a semi-solid range. Here this has been obtained for 7075 aluminium alloy by addition of modifying agents: 0.5 weight % of scandium and zirconium. The thixoforming process was carried out at 632 °C which gave about 23 volume % of liquid phase. The microstructure of the thixo-formed part (a rotor) consisted of globular grains surrounded by precipitates of secondary phase. The average hardness of thixo-formed parts was 105 HV{sub 5} and the tensile strength 300 MPa. T6 heat treatments were performed with solutionisation at 450 °C for 30 min and 10 h. In both cases the ageing time was set as 18 h at 120 °C. The heat treatments led to an increase in average tensile strength up to 495 MPa. Transmission Electron Microscopy (TEM) analysis enabled the identification of precipitates of the metastable dispersoids of L1{sub 2}–Al{sub 3} (Zr, Sc) and η′ (MgZn{sub 2}) phases in the alloy after the thixoforming and T6 treatment. The measurements of rheological properties of 7075Al alloy with Sc and Zr additions in the semi-solid range indicated an increase of particle size and spheroidization leading to an observable decrease of viscosity during isothermal shearing. A shear rate jump experiment showed that with increasing shear rate the viscosity rapidly falls.

  11. Galvanic corrosion of rare earth modified AM50 and AZ91D magnesium alloys coupled to steel and aluminium alloys

    Directory of Open Access Journals (Sweden)

    Mohedano, Marta

    2014-03-01

    Full Text Available Electrochemical and gravimetric measurements were used to examine the effects of neodymium and gadolinium additions on the galvanic corrosion behaviour of AM50 and AZ91D magnesium alloys coupled to A 570 Gr 36 carbon steel and AA2011-AA6082 aluminium alloys. Rare earth modified alloys showed Al2Nd/Al2Gd and Al-Mn-Nd/Al-Mn-Gd intermetallics, reduced area fraction of β-Mg17Al12 phase and increased corrosion resistance due to increased surface passivity and suppression of micro-galvanic couples. Neodymium and gadolinium additions improved the galvanic corrosion resistance of AM50 alloy, but were less effective in case of the AZ91D alloy. The AA6082 alloy was the most compatible material and the AA2011 alloy was the least compatible.Se emplearon medidas electroquímicas y gravimétricas para examinar el efecto de la adición de neodimio y gadolinio en el comportamiento a la corrosión galvánica de las aleaciones AM50 y AZ91D en contacto con acero al carbono A 570 Gr 36 y aleaciones de aluminio AA2011 y AA6082. Las aleaciones modificadas con tierras raras mostraron intermetálicos Al2Nd/Al2Gd y Al-Mn-Nd/Al-Mn-Gd, menor fracción de fase β-Mg17Al12 y un incremento de la resistencia a la corrosión debido al aumento de la pasividad de la superficie y a la eliminación de micro pares galvánicos. Las adiciones de neodimio y gadolinio mejoraron la resistencia a la corrosión galvánica de la aleación AM50, pero fueron menos efectivas en el caso de la aleación AZ91D. La aleación AA6082 fue el material más compatible y la aleación AA2011 el menos compatible.

  12. Influence of surface liquid segregation on corrosion behavior of semi-solid metal high pressure die cast aluminium alloys

    CSIR Research Space (South Africa)

    Masuku, EP

    2010-09-01

    Full Text Available of the major advantages of SSM processing is that high strength wrought alloys such as 7075 and 2024 can be used to produce near-net shape products. Corrosion is a surface phenomenon, and since the surface compositions of the SSM-processed components...

  13. Microstructure of friction stir welded joints of 2017A aluminium alloy sheets.

    Science.gov (United States)

    Mroczka, K; Dutkiewicz, J; Pietras, A

    2010-03-01

    The present study examines a friction stir welded 2017A aluminium alloy. Transmission electron microscope investigations of the weld nugget revealed the average grain size of 5 microm, moderate density of dislocations as well as the presence of nanometric precipitates located mostly in grains interiors. Scanning electron microscope observations of fractures showed the presence of ductile fracture in the region of the weld nugget with brittle precipitates in the lower part. The microhardness analysis performed on the cross-section of the joints showed fairly small changes; however, after the artificial ageing process an increase in hardness was observed. The change of the joint hardness subject to the ageing process indicates partial supersaturation in the material during friction stir welding and higher precipitation hardening of the joint.

  14. Mechanical spectroscopy of thermal stress relaxation in aluminium alloys reinforced with short alumina fibres

    Energy Technology Data Exchange (ETDEWEB)

    Carreno-Morelli, E.; Schaller, R. [Ecole Polytechnique Federale, Lausanne (Switzerland). Inst. de Genie Atomique; Urreta, S.E.

    1998-05-01

    The mechanical behaviour under low temperature thermal cycling of aluminium-based composites reinforced with short Al{sub 2}O{sub 3} SAFFIL fibres has been investigated by mechanical spectroscopy (mechanical loss and elastic shear modulus measurements). A mechanical loss maximum has been observed during cooling which originates in the relaxation of thermal stresses at the interfaces due to the differential thermal expansion between matrix and reinforcement. The maximum height increases with the volumetric fibre content. In addition, if the matrix strength is increased by the appropriated choice of alloy and thermal treatment, the maximum diminishes and shifts to lower temperatures. No damage accumulation at the interfaces has been detected during long period thermal cycling in the range 100 to 500 K. A description of the damping behaviour is made in terms of the development of microplastic zones which surround the fibres. (orig.) 9 refs.

  15. The improvement of the surface hardness of stainless steel and aluminium alloy by ultrasonic cavitation peening

    Science.gov (United States)

    Janka, Styková; Miloš, Müller; Jan, Hujer

    This article presents first results of the experimental investigation of the influence of the cavitation shot less peening process on the properties of stainless steel and aluminium alloy specimens. The cavitation field was generated by an ultrasonic horn submerged in water and operated by an ultrasonic generator. The temperature of the water was controlled by thermometer and adjusted by separate water cooling system. The mass loss, the mass loss rate and the modification of the surface hardness are evaluated for different cavitation exposure intervals. The mass loss was measured by micro weighing scale and the surface hardness by the micro-hardness meter. The presented results indicates the significant improvement in the surface hardness for both tested materials.

  16. Optimizing the control process parameters for the induction soldering of aluminium alloy waveguide paths1

    Science.gov (United States)

    Tynchenko, V. S.; Murygin, A. V.; Petrenko, V. E.; Emilova, O. A.; Bocharov, A. N.

    2017-10-01

    The paper describes the problem of selecting the optimal initial values of algorithm parameters for the process of the induction soldering of aluminium alloy waveguide paths. The authors consider some factors influencing the quality of waveguide soldered joint elements. These factors depend on the correct choice of initial values for control parameters. The problem of optimizing such parameters for further analytical and numerical studies is researched by authors. For solving the stated task, the random search method is selected, allowing for an acceptable field study within the stated time to solve the problem of control optimization with the level of accuracy required by the technological process. Therefore, optimal initial values of the induction soldering technological process were found for three sizes of waveguide tubes and flanges.

  17. Investigation of photocatalytic activity of titanium dioxide coating deposited on aluminium alloy substrate by plasma technique

    DEFF Research Database (Denmark)

    Daviðsdóttir, Svava; Soyama, Juliano; Dirscherl, Kai

    2011-01-01

    . The photocatalytic process is initiated by UV-light in TiO2 which creates electron-/hole pairs in the conduction band (CB) and valence band (VB) of TiO2, respectively. The electron/hole pairs generated have sufficient energy to cause reduction and oxidation on its surface providing the self-cleaning effect....... Literature consists of large number of publications on titanium dioxide coating for self-cleaning applications, with glass as the main substrate. Only little work is available on TiO2 coating of metallic alloys used for engineering applications. Engineering materials, such as light-weight aluminium and steel...... of the coating strongly influences the photocatalytic properties. In general, the photocatalytic activity increased with thickness. Quantification of images scanned with Atomic Force Microscope (AFM) revealed that there is a linear relationship between the thickness of the coating and the average cell size...

  18. Finite element modelling of deformation behaviour in incremental sheet forming of aluminium alloy

    Directory of Open Access Journals (Sweden)

    Huang Tsung-Han

    2015-01-01

    Full Text Available In this paper, the finite element method (FEM is used to study the incremental sheet forming process of pyramidal shape. The material used is aluminium alloy 5052. The tool, a hemispherical ball-head with a diameter (d = 4 mm made of HSS tool steel, is used to press down on the sheet metal causing locally plastic deformation. The comparison between spiral tool path, spiral-step tool path and z-level tool path is carried out. Moreover, the final thickness distribution is investigated. The results indicate that the minimal thickness can be found on the corner of wall angle in SPIF process. Under the same step over, spiral-step tool path can obtain the deepest depth for pyramidal shape. The maximum formability for successful forming of the pyramidal shape with depth 60 mm is wall angles 65∘.

  19. Microstructure strengthening mechanisms in an Al–Mg–Si–Sc–Zr equal channel angular pressed aluminium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Cabibbo, Marcello, E-mail: m.cabibbo@univpm.it [Dipartimento di Ingegneria Meccanica e Scienze Matematiche (DIISM), Università Politecnica delle Marche, 60131 Ancona (Italy)

    2013-09-15

    Microstructure dislocation strengthening mechanisms in severely deformed aluminium strongly depend on the different boundary evolutions. Thereafter, models of proof stress determination should take into account the different nature of the boundaries that form during severe plastic deformation. In the last few decades, Hall–Petch modified relationship and other proof stress modelling were extensively discussed. This paper deals with further insights into the Hansen's and other authors approach to the modelling of aluminium poof stress after equal channel angular pressing. The present model is based on a detailed transmission electron microscopy microstructure characterization of the different strengthening contributions in an age-hardened Al–Mg–Si–Sc–Zr alloy.

  20. Microstructure and high temperature stability of age hardenable AA2219 aluminium alloy modified by Sc, Mg and Zr additions

    Energy Technology Data Exchange (ETDEWEB)

    Naga Raju, P. [Metallurgical and Materials Engineering Department, IIT-Madras, Chennai 600036 (India)], E-mail: puvvala_nagaraju@yahoo.com; Srinivasa Rao, K. [Metallurgical Engineering Department, Andhra University, Visakapatnam 530003 (India); Reddy, G.M. [Defence Metallurgical Research Laboratory, Hyderabad 500258 (India); Kamaraj, M.; Prasad Rao, K. [Metallurgical and Materials Engineering Department, IIT-Madras, Chennai 600036 (India)

    2007-08-25

    The present work pertains to the improvement of high temperature stability of age hardenable AA2219 aluminium-copper (6.3%) alloy. Addition of scandium, magnesium and zirconium to the base metal AA2219 was adopted to improve this high temperature stability. These additions were systematically varied by preparing alloys of different composition using gas tungsten arc melting. Long time ageing studies and impression creep technique were used to study the high temperature stability of the alloys. These modified compositions of the alloy resulted in fine equiaxed grains, refined eutectics, large number of high temperature stable and finer precipitates. Among all the compositions, 0.8% Sc + 0.45% Mg + 0.2% Zr addition was found to be significant in improving the high temperature stability of AA2219 alloy. This may be attributed to the possible microstructural changes, solute enrichment of the matrix and pinning of the grain boundaries by the finer precipitates.

  1. Pitting corrosion resistance and bond strength of stainless steel overlay by friction surfacing on high strength low alloy steel

    Directory of Open Access Journals (Sweden)

    Amit Kumar Singh

    2015-09-01

    Full Text Available Surface modification is essential for improving the service properties of components. Cladding is one of the most widely employed methods of surface modification. Friction surfacing is a candidate process for depositing the corrosion resistant coatings. Being a solid state process, it offers several advantages over conventional fusion based surfacing process. The aim of this work is to identify the relationship between the input variables and the process response and develop the predictive models that can be used in the design of new friction surfacing applications. In the current work, austenitic stainless steel AISI 304 was friction surfaced on high strength low alloy steel substrate. Friction surfacing parameters, such as mechtrode rotational speed, feed rate of substrate and axial force on mechtrode, play a major role in determining the pitting corrosion resistance and bond strength of friction surfaced coatings. Friction surfaced coating and base metal were tested for pitting corrosion by potentio-dynamic polarization technique. Coating microstructure was characterized using optical microscopy, scanning electron microscopy and X-ray diffraction. Coatings in the as deposited condition exhibited strain-induced martensite in austenitic matrix. Pitting resistance of surfaced coatings was found to be much lower than that of mechtrode material and superior to that of substrate. A central composite design with three factors (mechtrode rotational speed, substrate traverse speed, axial load on mechtrode and five levels was chosen to minimize the number of experimental conditions. Response surface methodology was used to develop the model. In the present work, an attempt has been made to develop a mathematical model to predict the pitting corrosion resistance and bond strength by incorporating the friction surfacing process parameters.

  2. Material modelling and its application to creep-age forming of aluminium alloy 7B04

    Directory of Open Access Journals (Sweden)

    Lam Aaron C.L.

    2015-01-01

    Full Text Available Creep-ageing behaviour of aluminium alloy 7B04-T651 at 115 °C under a range of tensile stress levels has been experimentally investigated and numerically modelled for creep-age forming (CAF applications. Creep strain, yield strength evolution and precipitate growth of creep-aged specimens were investigated. The alloy was modelled using a set of unified constitutive equations, which captures its creep deformation and takes into account yield strength contributions from three creep-age hardening mechanisms. Applications of the present work are demonstrated by implementing the determined material model into a commercial finite element analysis solver to analyse CAF operations carried out in a novel flexible CAF tool. Stress relaxation, yield strength, precipitate size and springback were predicted for the creep-age formed plates. The predicted springback were further quantified and compared with experimental measurements and a good agreement of 2.5% deviation was achieved. This material model now enables further investigations of 7B04 under various CAF scenarios to be conducted inexpensively via computational modelling.

  3. Oxide growth on aluminium alloys in the presence of ammonium fluoborate

    Energy Technology Data Exchange (ETDEWEB)

    Oliver, J.; Paterson, P.; Flavell, T. [Royal Melbourne Inst. of Tech., VIC (Australia); Biddle, G. [Alcoa Rolled Products (Australia)

    1996-12-31

    The aim of this study as to determine the mechanisms involved in using ammonium fluoborate as a reducing atmosphere when preheating a high magnesium content aluminium alloy. Rutherford Backscattering (RBS) has been the major technique used in the analysis of samples, it revealed significant reduction in both the diffusion of magnesium to the surface and the calculated oxide thickness in the presence of NH{sub 4}BF{sub 4}. At temperatures above 500 deg C in air, SEM images revealed depressions and voids due to incipient melting at various stages, around the grain boundaries. Grain boundaries effectively acted as pipes aiding the diffusion of magnesium to the surface. These results have been verified through compositional analysis with both RBS and auger electron spectroscopy (AES). Results from NH{sub 4}BF{sub 4} atmosphere preheat conditions showed significant improvements. It was verified experimentally that above 500 deg C , AA5182 alloys undergo incipient melting at the grain boundaries with magnesium diffusing through to the surface. 5 refs., 1 fig.

  4. Modeling and Simulating Material Behavior during Hot Blank - Cold Die (HB-CD) Stamping of Aluminium Alloy Sheets

    Science.gov (United States)

    Zhang, Nan; Abu-Farha, Fadi

    2016-08-01

    Hot blank - cold die (HB-CD) stamping, non-isothermal hot stamping, of aluminium alloy sheets offers great opportunities for high production rates at low cost, while overcoming limited material formability issues. Yet developing an accurate model that can describe the complex material behavior over the wide ranging conditions of HB-CD stamping (temperatures ranging between 25 and 350 °C) is challenging. Moreover, validation of the developed models under transient conditions is problematic. This work presents he results of a comprehensive characterization, material modeling, FE simulation and experimental validation effort to capture the behavior of an aluminium alloy sheet during HB-CD stamping. In particular, we highlight the integration between temperature measurements (thermography) and strain measurements (digital image correlation) for the accurate validation of model predictions of non-isothermal material deformation.

  5. The effect of palm kernel shell ash on the mechanical properties of as-cast aluminium alloy matrix composites

    Directory of Open Access Journals (Sweden)

    Isiaka Oluwole OLADELE

    2016-06-01

    Full Text Available The present work describes the effect of palm kernel shell ash (PKSA as reinforcement on the mechanical properties of As-cast aluminium alloy. Recycled aluminium alloy from cylinder of an automotive engine block was degreased by using premium motor spirit (PMS also known as petrol, washed thoroughly with soap and water and sun dried for 5 days. The palm kernel shell was screened of dirt and other unwanted foreign materials before being roasted in furnace. The ash was further pulverized by laboratory ball mill machine followed by sieving to obtain particle sizes of 106 µm and divided into two parts. One portion was treated with NaOH solution while the other part was left as untreated before they are used to reinforced molten aluminium alloy in predetermined proportions. The newly developed composites were characterized with respect to their mechanical properties in response to the tests that were carried out on them. The results indicate that palm kernel shell ash can be used as potential reinforcing material for automobile applications.

  6. Weldability of AA 5052 H32 aluminium alloy by TIG welding and FSW process - A comparative study

    Science.gov (United States)

    Shanavas, S.; Raja Dhas, J. Edwin

    2017-10-01

    Aluminium 5xxx series alloys are the strongest non-heat treatable aluminium alloy. Its application found in automotive components and body structures due to its good formability, good strength, high corrosion resistance, and weight savings. In the present work, the influence of Tungsten Inert Gas (TIG) welding parameters on the quality of weld on AA 5052 H32 aluminium alloy plates were analyzed and the mechanical characterization of the joint so produced was compared with Friction stir (FS) welded joint. The selected input variable parameters are welding current and inert gas flow rate. Other parameters such as welding speed and arc voltage were kept constant throughout the study, based on the response from several trial runs conducted. The quality of the weld is measured in terms of ultimate tensile strength. A double side V-butt joints were fabricated by double pass on one side to ensure maximum strength of TIG welded joints. Macro and microstructural examination were conducted for both welding process.

  7. Study of the Fatigue Life and Weight Optimization of an Automobile Aluminium Alloy Part under Random Road Excitation

    Directory of Open Access Journals (Sweden)

    A. Saoudi

    2010-01-01

    Full Text Available Weight optimization of aluminium alloy automobile parts reduces their weight while maintaining their natural frequency away from the frequency range of the power spectral density (PSD that describes the roadway profile. We present our algorithm developed to optimize the weight of an aluminium alloy sample relative to its fatigue life. This new method reduces calculation time; It takes into account the multipoint excitation signal shifted in time, giving a tangle of the constraint signals of the material mesh elements; It also reduces programming costs. We model an aluminium alloy lower vehicle suspension arm under real conditions. The natural frequencies of the part are inversely proportional to the mass and proportional to flexural stiffness, and assumed to be invariable during the process of optimization. The objective function developed in this study is linked directly to the notion of fatigue. The method identifies elements that have less than 10% of the fatigue life of the part's critical element. We achieved a weight loss of 5 to 11% by removing the identified elements following the first iteration.

  8. Analysis of the solidification and microstructure of two aluminium alloys reinforced with TiB{sub 2} particles

    Energy Technology Data Exchange (ETDEWEB)

    Egizabal, Pedro; Garcia de Cortazar, Maider [Fundacion Inasmet E-20009 Donostia-San Sebastian (Spain); Torregaray, Amaia [University of Basque Country UPV/EHU E-48012, Bilbo-Bilbao (Spain); Veillere, Amelie; Silvain, Jean-Francois [CNRS, Universite de Bordeaux, ICMCB 87 Avenue du Docteur Albert Schweitzer, 33608 Pessac (France); Douin, Joel [CEMES-CNRS 29 Rue Jeanne Marvig, BP 94347, 31055 Toulouse Cedex 4 (France)

    2011-09-15

    Two aluminium alloys with 6 wt% TiB{sub 2} particles are studied for applications where increased wear resistance and mechanical strength at high temperature are required. The incorporation of hard ceramic particles has a strong influence on the microstructure and properties of the alloys. TiB{sub 2} particles play an important role in the nucleation of the different phases of the alloys during solidification, and in the reduction of grain size and porosity. The solidification patterns of Al-Si{sub 7}Mg{sub 0.3} + TiB{sub 2} (6 wt%) and Al-Cu{sub 5}MgTi+TiB{sub 2} (6 wt%) materials are compared to their corresponding non-reinforced alloys, and the microstructures are analyzed. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Effects of surface treatment of aluminium alloy 1050 on the adhesion and anticorrosion properties of the epoxy coating

    Energy Technology Data Exchange (ETDEWEB)

    Sharifi Golru, S., E-mail: samanesharifi@aut.ac.ir [Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, P.O. Box 15875-4413 Tehran (Iran, Islamic Republic of); Attar, M.M., E-mail: attar@aut.ac.ir [Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, P.O. Box 15875-4413 Tehran (Iran, Islamic Republic of); Ramezanzadeh, B. [Department of Surface Coating and Corrosion, Institute for Color Science and Technology, No. 59,Vafamanesh St, Hosainabad Sq, Lavizan, Tehran (Iran, Islamic Republic of)

    2015-08-01

    Highlights: • Aluminium alloy 1050 was treated by zirconium-based (Zr) conversion coating. • The surface morphology and surface free energy of the samples were obtained. • The adhesion properties of the epoxy coating was studied on the treated samples. • The corrosion resistance of the epoxy coating was enhanced on treated samples. - Abstract: The objective of this work is to investigate the effects of zirconium-based (Zr) conversion coating on the adhesion properties and corrosion resistance of an epoxy/polyamide coating applied on the aluminium alloy 1050 (AA1050). Field emission scanning electron microscope (FE-SEM), energy dispersive X-ray spectrum (EDS), atomic force microscope (AFM) and contact angle measuring device were employed in order to characterize the surface characteristics of the Zr treated AA1050 samples. The epoxy/polyamide coating was applied on the untreated and Zr treated samples. The epoxy coating adhesion to the aluminium substrate was evaluated by pull-off test before and after 30 days immersion in 3.5% w/w NaCl solution. In addition, the electrochemical impedance spectroscopy (EIS) and salt spray tests were employed to characterize the corrosion protection properties of the epoxy coating applied on the AA1050 samples. Results revealed that the surface treatment of AA1050 by zirconium conversion coating resulted in the increase of surface free energy and surface roughness. The dry and recovery (adhesion strength after 30 days immersion in the 3.5 wt% NaCl solution) adhesion strengths of the coatings applied on the Zr treated aluminium samples were greater than untreated sample. In addition, the adhesion loss of the coating applied on the Zr treated aluminium substrate was lower than other samples. Also, the results obtained from EIS and salt spray test clearly revealed that the Zr conversion coating could enhance the corrosion protective performance of the epoxy coating significantly.

  10. The effect of heat treatment conditions on the structure evolution and mechanical properties of two binary Al-Mg aluminium alloys

    Directory of Open Access Journals (Sweden)

    P. Snopiński

    2017-01-01

    Full Text Available The presented investigation results were carried out on two binary aluminium-magnesium alloys. The article focuses on the influence of heat treatment conditions on the precipitation response of AlMg3 and AlMg5 aluminium alloy, microstructure evolution and strength of the alloys. The microstructure variation was analysed using a scanning electron microscope and an optical microscope in order to characterise the microstructure in a heat treated condition. Tensile tests and hardness measurements were carried out to investigate the effect of heat treatment on the mechanical properties.

  11. Elastic and plastic properties of iron-aluminium alloys. Special problems raised by the brittleness of alloys of high aluminium content; Proprietes elastiques et plastiques des alliages fer-aluminium. Problemes particuliers poses par la fragilite des alliages a forte teneur en aluminium

    Energy Technology Data Exchange (ETDEWEB)

    Mouturat, P. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1966-06-01

    The present study embodies the results obtained with iron-aluminium alloys whose composition runs from 0 to nearly 50 atoms per cent aluminium. Conditions of elaboration and transformation have been studied successively, as well as the Young's modulus and the flow stress; the last chapter embodies, a study of the Portevin-le-Chatelier effect in alloys of 40 atoms per cent of aluminium. I) The principal difficulty to clear up consisted in the intergranular brittleness of ordered alloys; this brittleness has been considerably reduced with appropriate conditions of elaboration and transformation. II) The studies upon the Young's modulus are in connection with iron-aluminium alloys; transformation temperatures are well shown up. The formation of covalent bonds on and after 25 atoms per cent show the highest values of the modulus. III) The analysis of variations of the flow stress according to the temperature show some connection with ordered structures, the existence of antiphase domains and the existence of sur-structure dislocations. IV) In the ordered Fe Al domain the kinetics of the Portevin-le-Chatelier effect could be explained by a mechanism of diffusion of vacancies. The role they play has been specified by the influence they exert upon the dislocations; this has led us to the inhomogeneous Rudman order; this inhomogeneous order could explain the shape of the traction curves. (author) [French] Cette etude comporte les resultats obtenus avec des alliages fer-aluminium dont la composition s'etend de 0 a pres de 50 atomes pour cent d'aluminium. Nous avons etudie successivement les conditions d'elaboration et de transformation, le module elastique et la limite elastique; un dernier chapitre est consacre a l'etude du phenomene Portevin-le-Chatelier dans les alliages a 40 atomes pour cent d'aluminium. I) La principale difficulte a resoudre residait dans la fragilite intergranulaire des alliages ordonnes; celle-ci a ete

  12. Effect of heat treatment on gravity die-cast Sc-A356 aluminium alloy

    Directory of Open Access Journals (Sweden)

    Lim Ying Pio

    2017-01-01

    Full Text Available The effects of scandium addition (0.00 wt.%, 0.2 wt.%, 0.4 wt.% and 0.6 wt.% and T6 heat treatment on the microstructure and mechanical properties of A356 aluminium alloy have been investigated in the research reported in this paper. The Sc inoculated specimens were prepared by gravity die-casting, according to ASTM B557-06 standard. The cast samples were then subjected to heat treatment at solutionizing temperature of 540 °C for 8 h followed by water quenching and artificial aging at 160 °C for 6 h. The microstructure, microhardness and tensile strength of the heat-treated samples were examined with use of scanning electron microscope (SEM, optical microscope, Vicker’s hardness tester, and Instron static machine respectively. Heat treatment was found to be able to effectively reduce grain size down to 16 μm (0.6 wt.% Sc, from 40 μm (original A356. The tensile strength was significantly improved, up to 338 MPa for heat treated 0.6 wt.% Sc-A356 having been achieved. The microhardness of 118 HV has been obtained for heat treated 0.6 wt.%Sc-A356.

  13. Electrochemical preparation of aluminium-nickel alloys by under-potential deposition in molten fluorides

    Energy Technology Data Exchange (ETDEWEB)

    Gibilaro, M. [Laboratoire de Genie Chimique UMR 5503, Departement Procedes Electrochimiques, Universite Paul Sabatier, 31062 Toulouse Cedex 9 (France); Massot, L. [Laboratoire de Genie Chimique UMR 5503, Departement Procedes Electrochimiques, Universite Paul Sabatier, 31062 Toulouse Cedex 9 (France)], E-mail: massot@chimie.ups-tlse.fr; Chamelot, P.; Taxil, P. [Laboratoire de Genie Chimique UMR 5503, Departement Procedes Electrochimiques, Universite Paul Sabatier, 31062 Toulouse Cedex 9 (France)

    2009-03-05

    The electrochemical behaviour of AlF{sub 3} was investigated in LiF-CaF{sub 2} medium first with inert tungsten and then with reactive nickel electrodes. Cyclic voltammetry, square-wave voltammetry and chronopotentiometry indicated that the reduction of Al(III) in Al(0) is a single-step process exchanging three electrons: Al(III) + 3e{sup -} = Al The electrochemical reduction is controlled by the diffusion of AlF{sub 3} in the solution. On a nickel electrode, a depolarisation effect for Al(III) reduction was observed in cyclic voltammetry due to the formation of Al-Ni alloys when aluminium ions react with the nickel substrate. Galvanostatic and potentiostatic electrolyses on a nickel electrode led to the formation of four nickel aluminides characterised by SEM: AlNi{sub 3}, AlNi, Al{sub 3}Ni{sub 2} and Al{sub 3}Ni. Layers with a uniform composition of AlNi{sub 3}, AlNi and Al{sub 3}Ni{sub 2} were prepared by varying the electrolysis potential, the current density and duration of intermetallic diffusion.

  14. Design and Analysis of Wind Turbine Blade Hub using Aluminium Alloy AA 6061-T6

    Science.gov (United States)

    Ravikumar, S.; Jaswanthvenkatram, V.; Sai kumar, Y. J. N. V.; Sohaib, S. Md.

    2017-05-01

    This work presents the design and analysis of horizontal axis wind turbine blade hub using different material. The hub is very crucial part of the wind turbine, which experience the loads from the blades and the loads were transmitted to the main shaft. At present wind turbine is more expensive and weights more than a million pounds, with the nacelle, rotor hub and blades accounting for most of the weight. In this work Spheroidal graphite cast iron GGG 40.3 is replaced by aluminium alloy 6061-T6 to enhance the casting properties and also to improve the strength-weight ratio. This transition of material leads to reduction in weight of the wind turbine. All the loads caused by wind and extreme loads on the blades are transferred to the hub. Considering the IEC 61400-1 standard for defining extreme loads on the hub the stress and deflection were calculated on the hub by using Finite element Analysis. Result obtained from ANSYS is compared and discussed with the existing design.

  15. Material modelling for creep-age forming of aluminium alloy 7B04

    Directory of Open Access Journals (Sweden)

    Lam Aaron C.L.

    2015-01-01

    Full Text Available This paper presents a study on the creep-ageing behaviour of a peak-aged aluminium alloy 7B04 under different tensile loads at 115oC and subsequently modelling it for creep-age forming (CAF applications. Mechanical properties and microstructural evolutions of creep-aged specimens were investigated. The material was modelled using a set of unified constitutive equations, which not only captures the material's creep deformation but also takes into account yield strength contributions from solid solution hardening, age hardening and dislocation hardening during creep-ageing. A possible application of the present work is demonstrated by implementing the determined material model into a commercial finite element analysis solver via a user-defined subroutine for springback prediction of creep-age formed plates. A good agreement is observed between the simulated springback values and experimental results. This material model now enables further investigations of 7B04 under various CAF scenarios to be conducted inexpensively via computational modelling.

  16. Best Cutting Conditions for Pocket Milling in Aluminium Alloy Body Parts

    Directory of Open Access Journals (Sweden)

    S. V. Grubyy

    2015-01-01

    .The optimum milling modes are advisable for using in technological processing of the MSE parts from high-strength aluminum alloys.

  17. Experimental investigations of visco-plastic properties of the aluminium and tungsten alloys used in KE projectiles

    Directory of Open Access Journals (Sweden)

    Magier M.

    2012-08-01

    Full Text Available The main aim of studies on dynamic behaviour of construction materials at high strain rates is to determine the variation of mechanical properties (strength, plasticity in function of the strain rate and temperature. On the basis of results of dynamic tests on the properties of constructional materials the constitutive models are formulated to create numerical codes applied to solve constructional problems with computer simulation methods. In the case of military applications connected with the phenomena of gunshot and terminal ballistics it’s particularly important to develop a model of strength and armour penetration with KE projectile founded on reliable results of dynamic experiments and constituting the base for further analyses and optimization of projectile designs in order to achieve required penetration depth. Static and dynamic results of strength investigations of the EN AW-7012 aluminium alloy (sabot and tungsten alloy (penetrator are discussed in this paper. Static testing was carried out with the INSTRON testing machine. Dynamic tests have been conducted using the split Hopkinson pressure bars technique at strain rates up to 1,2 ⋅ 104s−1 (for aluminium alloy and 6 ⋅ 103s−1 (for tungsten alloy.

  18. Comparison of self-healing ionomer to aluminium-alloy bumpers for protecting spacecraft equipment from space debris impacts

    Science.gov (United States)

    Francesconi, A.; Giacomuzzo, C.; Grande, A. M.; Mudric, T.; Zaccariotto, M.; Etemadi, E.; Di Landro, L.; Galvanetto, U.

    2013-03-01

    This paper discusses the impact behavior of a self-healing ionomeric polymer and compares its protection capability against space debris impacts to that of simple aluminium-alloy bumpers. To this end, 14 impact experiments on both ionomer and Al-7075-T6 thin plates with similar surface density were made with 1.5 mm aluminium spheres at velocity between 1 and 4 km/s.First, the perforation extent in both materials was evaluated vis-à-vis the prediction of well known hole-size equations; then, attention was given to the damage potential of the cloud of fragments ejected from the rear side of the target by analysing the craters pattern and the momentum transferred to witness plates mounted on a ballistic pendulum behind the bumpers.Self-healing was completely successful in all but one ionomer samples and the primary damage on ionomeric polymers was found to be significantly lower than that on aluminium. On the other hand, aluminium plates exhibited slightly better debris fragmentation abilities, even though the protecting performance of ionomers seemed to improve at increasing impact speed.

  19. Soudage homogène MIG de l'alliage d'aluminium 6061 MIG homogeneous welding of 6061 aluminium alloy

    Directory of Open Access Journals (Sweden)

    Benoit Alexandre

    2013-11-01

    Full Text Available Le soudage homogène (métal d'apport identique au métal de base de l'alliage d'aluminium 6061 avec un procédé dit semi-automatique (MIG n'a jamais été reporté jusqu'à maintenant dans la littérature. Nous montrons ici que l'utilisation d'un dérivé du procédé de soudage MIG, le MIG CMT (Cold Metal Transfer permet d'obtenir des cordons de soudures sains (sans fissuration à chaud. De plus des traitements thermiques ont permis de retrouver partiellement ou de restaurer totalement les propriétés de la soudure. Nos résultats sont comparés à des essais de soudage MIG CMT avec le métal d'apport préconisé pour le soudage de l'alliage 6061. The homogeneous welding (same filler metal as base metal of the 6061 aluminium alloy with MIG process has never been reported in the open access literature. This work shows that the CMT (Cold Metal Transfer MIG, a derivative of MIG, allows producing welds without hot-cracking. Moreover, further heat treatments partially increased or fully restore the mechanical properties of the weld. These results are compared with 6061 heterogeneous welds usually met in the industry.

  20. Electrorefining of U-Pu-Zr-alloy fuel onto solid aluminium cathodes in molten LiCl-KCl

    Energy Technology Data Exchange (ETDEWEB)

    Soucek, P.; Malmbeck, R.; Mendes, E.; Jardin, R.; Glatz, J.P. [European Commission, JRC, Karlsruhe (Germany). Inst. for Transuranium Elements; Cassayre, L. [Lab. de Genie Chimique (LGC), Univ. Paul Sabatier, UMR CNRS 5503, Toulouse (France)

    2008-07-01

    An electrorefining process in molten chloride salts using solid aluminium cathodes is being developed at ITU to recover actinides (An) from the spent nuclear fuel. The maximum possible loading of aluminium electrodes with actinides was investigated during the electrorefining of U-Pu-Zr alloy in a LiCl-KCl eutectic at 450 C. Two different electrolytic techniques were applied during the experiment and almost 6000 C has been passed, corresponding to 3.7 g of deposited actinides. A very high capacity of aluminium to retain actinides has been proven as the average Al: An mass ratio was 1: 1.58 for galvanostatic and 1: 2.25 for potentiostatic mode. The obtained deposits were characterized by XRD and SEM-EDX analysis and alloys composed of (U,Pu)Al{sub 3} were detected. The influence of zirconium co-oxidation during the process was also investigated and the presence of dissolved Zr ions in the melt yielded a significant deterioration of the quality of the deposit. (orig.)

  1. In-vitro characterization of stress corrosion cracking of aluminium-free magnesium alloys for temporary bio-implant applications.

    Science.gov (United States)

    Choudhary, Lokesh; Singh Raman, R K; Hofstetter, Joelle; Uggowitzer, Peter J

    2014-09-01

    The complex interaction between physiological stresses and corrosive human body fluid may cause premature failure of metallic biomaterials due to the phenomenon of stress corrosion cracking. In this study, the susceptibility to stress corrosion cracking of biodegradable and aluminium-free magnesium alloys ZX50, WZ21 and WE43 was investigated by slow strain rate tensile testing in a simulated human body fluid. Slow strain rate tensile testing results indicated that each alloy was susceptible to stress corrosion cracking, and this was confirmed by fractographic features of transgranular and/or intergranular cracking. However, the variation in alloy susceptibility to stress corrosion cracking is explained on the basis of their electrochemical and microstructural characteristics. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Modification of aluminium alloys with rare metals – the basis for advanced materials in construction and transport

    Directory of Open Access Journals (Sweden)

    Skachkov Vladimir Mikchaylovich

    2016-06-01

    Full Text Available The method of process powder injection into aluminum melt shows much promise. Scandium is injected by the high-temperature exchange reaction between the salt melt and aluminum. The best salt compositions were selected. The results of the process are considered to depend on the initial salts. A series of fusions was performed under production conditions at the Kamensk-Uralskii metallurgical plant. It was shown that the injection method for production of aluminoscandium master alloys is technologically feasible. To protect intellectual property of authors, employees of the Institute of Solid State Chemistry, Ural branch of RAS (Russia a patent «Method of alloying of aluminium or alloys on its basis» RU № 2534182 of 27.11.2014 was registered.

  3. Resistance welding of aluminium diecasting; Widerstandspressschweissen von Aluminiumdruckguss

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, K.; Grobelin, K. [Hess Engineering AG, Frauenfeld (Switzerland)

    2001-07-01

    Components consist of die cast with aluminium are used in many machines and vehicles. From economical point of view die casting is a very interesting method to produce moulded components. Aluminium belongs to the most important materials utilized for lightweight construction. It is possible to produce components having high strengths as well as high elongation at rupture by applying new die cast alloys. Since about ten years ago, one is able to weld aluminium die cast successfully. This has become possible because of the improvement of the die cast process after extensive research work. Now components contain only less than the prior common quantities of gas. Resistance suits very well for assembling components consisting of aluminium die cast. High strength is in existence. The porosity has less influence on quality of weld while applying the method of butt welding than applying that one of fusion welding because of occurrences of pressure during butt welding. From the economical view of point, the methods are very suitable for series manufacturing because of the short execution time. Moreover it is an advantage that knowledge gathered for resistance welding of aluminium wrought materials can be mostly applied to aluminium die cast. (orig.)

  4. The effect of cutting process on surface microstructure and hardness of pure and Al 6061 aluminium alloy

    Directory of Open Access Journals (Sweden)

    Adnan Akkurt

    2015-09-01

    Full Text Available In this study pure aluminium and Al 6061 aluminium alloy material had been cut with saw, milling, submerged plasma, plasma, laser, wire electric discharge machining, oxyfuel and Abrasive water jet. Microstructures and hardness variations of cut surfaces which obtained with different processes have been investigated. Results of the study show that the hardness and surface quality of the cut surface is affected from the kind of cutting process. Microstructure of cut surfaces is affected from the kind of cutting process. Microstructural changes during cutting of the materials are observed with all of the cutting process other than Abrasive water jet. Abrasive water jet method can be effectively used in industrial applications where no microstructural changes and hardness reduction is essential.

  5. Tribological Properties of Aluminium Alloy Composites Reinforced with Multi-Layer Graphene-The Influence of Spark Plasma Texturing Process.

    Science.gov (United States)

    Kostecki, Marek; Woźniak, Jarosław; Cygan, Tomasz; Petrus, Mateusz; Olszyna, Andrzej

    2017-08-10

    Self-lubricating composites are designed to obtain materials that reduce energy consumption, improve heat dissipation between moving bodies, and eliminate the need for external lubricants. The use of a solid lubricant in bulk composite material always involves a significant reduction in its mechanical properties, which is usually not an optimal solution. The growing interest in multilayer graphene (MLG), characterised by interesting properties as a component of composites, encouraged the authors to use it as an alternative solid lubricant in aluminium matrix composites instead of graphite. Aluminium alloy 6061 matrix composite reinforced with 2-15 vol % of MLG were synthesised by the spark plasma sintering process (SPS) and its modification, spark plasma texturing (SPT), involving deformation of the pre-sintered body in a larger diameter matrix. It was found that the application of the SPT method improves the density and hardness of the composites, resulting in improved tribological properties, particularly in the higher load regime.

  6. Tribological Properties of Aluminium Alloy Composites Reinforced with Multi-Layer Graphene—The Influence of Spark Plasma Texturing Process

    Science.gov (United States)

    Kostecki, Marek; Woźniak, Jarosław; Cygan, Tomasz; Petrus, Mateusz; Olszyna, Andrzej

    2017-01-01

    Self-lubricating composites are designed to obtain materials that reduce energy consumption, improve heat dissipation between moving bodies, and eliminate the need for external lubricants. The use of a solid lubricant in bulk composite material always involves a significant reduction in its mechanical properties, which is usually not an optimal solution. The growing interest in multilayer graphene (MLG), characterised by interesting properties as a component of composites, encouraged the authors to use it as an alternative solid lubricant in aluminium matrix composites instead of graphite. Aluminium alloy 6061 matrix composite reinforced with 2–15 vol % of MLG were synthesised by the spark plasma sintering process (SPS) and its modification, spark plasma texturing (SPT), involving deformation of the pre-sintered body in a larger diameter matrix. It was found that the application of the SPT method improves the density and hardness of the composites, resulting in improved tribological properties, particularly in the higher load regime. PMID:28796172

  7. Tribological Properties of Aluminium Alloy Composites Reinforced with Multi-Layer Graphene—The Influence of Spark Plasma Texturing Process

    Directory of Open Access Journals (Sweden)

    Marek Kostecki

    2017-08-01

    Full Text Available Self-lubricating composites are designed to obtain materials that reduce energy consumption, improve heat dissipation between moving bodies, and eliminate the need for external lubricants. The use of a solid lubricant in bulk composite material always involves a significant reduction in its mechanical properties, which is usually not an optimal solution. The growing interest in multilayer graphene (MLG, characterised by interesting properties as a component of composites, encouraged the authors to use it as an alternative solid lubricant in aluminium matrix composites instead of graphite. Aluminium alloy 6061 matrix composite reinforced with 2–15 vol % of MLG were synthesised by the spark plasma sintering process (SPS and its modification, spark plasma texturing (SPT, involving deformation of the pre-sintered body in a larger diameter matrix. It was found that the application of the SPT method improves the density and hardness of the composites, resulting in improved tribological properties, particularly in the higher load regime.

  8. Effect of friction time on the properties of friction welded YSZ‐alumina composite and 6061 aluminium alloy

    Directory of Open Access Journals (Sweden)

    Uday M. Basheer

    2012-03-01

    Full Text Available The aim of this work was to study the effect of friction time on the microstructure and mechanical properties of alumina 0, 25, 50 wt% yttria stabilized zirconia (YSZ composite and 6061 aluminium alloy joints formed by friction welding. The alumina-YSZ composites were prepared through slip casting in plaster of Paris molds (POP and subsequently sintered at 1600°C, while the aluminium rods were machined down using a lathe machine to the dimension required. The welding process was carried out under different rotational speeds and friction times, while friction force (0.5 ton-force was kept constant. Scanning electron microscopy was used to characterize the interface of the joints structure. The experimental results showed that the friction time has a significant effect on joint structure and mechanical properties.

  9. Hydrogen analysis and effect of filtration on final quality of castings from aluminium alloy AlSi7Mg0,3

    Directory of Open Access Journals (Sweden)

    M. Brůna

    2011-01-01

    Full Text Available The usage of aluminium and its alloys have increased in many applications and industries over the decades. The automotive industry is the largest market for aluminium castings and cast products. Aluminium is widely used in other applications such as aerospace, marine engines and structures. Parts of small appliances, hand tools and other machinery also use thousands of different aluminium castings. The applications grow as industry seeks new ways to save weight and improve performance and recycling of metals has become an essential part of a sustainable industrial society. The process of recycling has therefore grown to be of great importance, also another aspect has become of critical importance: the achievement of quality and reliability of the products and so is very important to underst and the mechanisms of the formation of defects in aluminium melts, and also to have a reliable and simple means of detection.

  10. High-Strength Aluminum Casting Alloy for High-Temperature Applications (MSFC Center Director's Discretionary Fund Final Project No. 97-10)

    Science.gov (United States)

    Lee, J. A.

    1998-01-01

    A new aluminum-silicon alloy has been successfully developed at Marshall Space Flight Center that has a significant improvement in tensile strength at elevated temperatures (550 to 700 F). For instance, the new alloy shows in average tensile strength of at least 90 percent higher than the current 390 aluminum piston alloy tested at 500 F. Compared to conventional aluminum alloys, automotive engines using the new piston alloy will have improved gas mileage, and may produce less air pollution in order to meet the future U.S. automotive legislative requirements for low hydrocarbon emissions. The projected cost for this alloy is less than $0.95/lb, and it readily allows the automotive components to be cast at a high production volume with a low, fully accounted cost. It is economically produced by pouring molten metal directly into conventional permanent steel molds or die casting.

  11. Accelerated growth of oxide film on aluminium alloys under steam: Part II: Effects of alloy chemistry and steam vapour pressure on corrosion and adhesion performance

    DEFF Research Database (Denmark)

    Din, Rameez Ud; Bordo, Kirill; Jellesen, Morten Stendahl

    2015-01-01

    The steam treatment of aluminium alloys with varying vapour pressure of steamresulted in the growth of aluminium oxyhydroxide films of thickness range between 450 - 825nm. The surface composition, corrosion resistance, and adhesion of the produced films was characterised by XPS, potentiodynamic...... polarization, acetic acid salt spray, filiform corrosion test, and tape test. The oxide films formed by steam treatment showed good corrosion resistance in NaCl solution by significantly reducing anodic and cathodic activities. The pitting potential of the surface treated with steam was a function...... of the vapour pressure of the steam. The accelerated corrosion and adhesion tests on steam generated oxide films with commercial powder coating verified that the performance of the oxide coating is highly dependent on the vapour pressure of the steam....

  12. Effects of processing parameters on laser cutting of aluminium-copper alloys using off-axial supersonic nozzles

    Science.gov (United States)

    Riveiro, A.; Quintero, F.; Lusquiños, F.; Comesaña, R.; Pou, J.

    2011-04-01

    Conventional laser cutting involves the utilization of converging coaxial nozzles to inject the assist gas used to remove the molten material. This processing system prevents the utilization of this technique to cut aluminium alloys for aerospace applications. The inefficient removal of molten material by the assist gas produces cuts with poor quality; very rough cuts, with a large amount of dross, and a large heat affected zone (HAZ) are obtained. An alternative to increase the assist gas performance is the utilization of off-axial supersonic nozzles. Removal of molten material is substantially increased and cuts with high quality are obtained. On the other hand, pulsed laser cutting offers superior results during the processing of high reflectivity materials as aluminium alloys. However, there are no experimental studies which explore the pulsed laser cutting of aluminium alloys by means of a cutting head assisted by an off-axis supersonic nozzle. The present work constitutes a quantitative experimental study to determine the influence of processing parameters on the cutting speed and quality criteria during processing by means of off-axial supersonic nozzles. Cutting experiments were performed in pulsed mode and the results explained under the basis of the molten material removal mechanisms. Performed experiments indicate a reduction in cutting speed as compared to continuous wave (CW) mode processing and the existence of two processing regimes as a function of the pulse frequency. Best results are obtained under the high pulse frequency one ( f > 100 Hz) because the superior capabilities of molten material removal of the supersonic jets are completely exploited in this processing regime.

  13. THREE DIMENSIONAL COMPLEX SHAPES ANALYSIS FROM 3D LOCAL CURVATURE MEASUREMENTS. APPLICATION TO INTERMETALLIC PARTICLES IN ALUMINIUM ALLOY 5XXX

    Directory of Open Access Journals (Sweden)

    Estelle Parra-Denis

    2011-05-01

    Full Text Available The studied material is a 5xxx aluminium alloys containing 2 types of intermetallic particles : Alx(Fe;Mn and Mg2Si. It is usually used in car industry as reinforcement pieces or in packaging industry, such as bottle liquid box lid. Scanning electronic microscope coupled with EDX analysis shows complex shapes of intermetallic particles. The particle shape is obtained during the solidification of alloys. Particles fill vacant spaces between aluminium grains. Therefore final sheet properties depend on intermetallic particles shapes and notably on the matrix-particle interface properties. The goal of the present study is to classify intermetallic particles versus their shapes using local curvature information. The aluminium alloys sample is observed by X ray micro tomography performed at the ESRF. Three dimensional images are segmented, and intermetallic particles are identified in a data base. Each particle is stored as a set of voxels. The surface of each particle is meshed by a marching cubes triangular meshing with the software Amira©. A simplification of the surface is performed by an algorithm contracting the edges. Finally, principal curvatures: kmin and kmax are estimated by Amira© on each facet centre of the mesh. From the full intermetallic population, the bivariate distribution of kmin and kmax is estimated. The obtained graph kmin ¡kmax shows geometrical properties of interface portions of the surface of particles. A factorial correspondence analysis is performed to summarize the information on all intermetallic particles. In the obtained subspace, particles are classified into five shape families, in relation with their interface geometrical properties.

  14. Comparison of the Microstructure and Segregation behavior between SA508 Gr.3 and SA508 Gr.4N High Strength Low Alloy RPV Steel

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sang Gyu; Wee, Dang Moon [KAIST, Daejeon (Korea, Republic of); Kim, Min Chul; Lee, Bong Sang [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-05-15

    It is generally known that SA508 Gr.4N low alloy steel has an improved fracture toughness and strength, compared to commercial low alloy steels such as SA508 Gr.3 which have lower than 1% Ni. Higher strength and fracture toughness of low alloy steels could be achieved by adding Ni and Cr. So there are several researches on SA508 Gr.4N low alloy steel for a RPV application. The operation temperature and time of a reactor pressure vessel is more than 300 .deg. C and over 40 years. Therefore, in order to apply the SA508 Gr.4N low alloy steel for a reactor pressure vessel, it requires a phase stability in the high temperature range including temper embrittlement resistance. S. Raoul reported that the susceptibility to temper embrittlement was increasing an function of the cooling rate in SA533 steel, which suggests the martensitic microstructures resulting from increased cooling rates are more susceptible to temper embrittlement. However, this result has not been proved yet. So comparison was made between the temper embrittlement behaviors of SA508 Gr.3 and Gr.4N low alloy steel with a viewpoint of boundary features, which have different microstructures of tempered bainite(SA508 Gr.3) and tempered martensite(SA508 Gr.4N). In this study, we have compared temper embrittlement behaviors of SA508 Gr.3 and SA508 Gr.4N low alloy steel. The mechanical properties of these low alloy steels after a long-term heat treatment(450 .deg. C, 2000hr) were evaluated. Then, the images of the fracture surfaces were observed and grain boundary segregation was analyzed by AES. In order to compare the misorientation distributions of two model alloys, the grain boundary structures of the low alloy steels with EBSD were measured

  15. Effect of Welding Thermal Cycles on Microstructure and Mechanical Properties of Simulated Heat Affected Zone for a Weldox 1300 Ultra-High Strength Alloy Steel

    Directory of Open Access Journals (Sweden)

    Węglowski M. St.

    2016-03-01

    Full Text Available In the present study, the investigation of weldability of ultra-high strength steel has been presented. The thermal simulated samples were used to investigate the effect of welding cooling time t8/5 on microstructure and mechanical properties of heat affected zone (HAZ for a Weldox 1300 ultra-high strength steel. In the frame of these investigation the microstructure was studied by light and transmission electron microscopies. Mechanical properties of parent material were analysed by tensile, impact and hardness tests. In details the influence of cooling time in the range of 2,5 ÷ 300 sec. on hardness, impact toughness and microstructure of simulated HAZ was studied by using welding thermal simulation test. The microstructure of ultra-high strength steel is mainly composed of tempered martensite. The results show that the impact toughness and hardness decrease with increase of t8/5 under condition of a single thermal cycle in simulated HAZ. The increase of cooling time to 300 s causes that the microstructure consists of ferrite and bainite mixture. Lower hardness, for t8/5 ≥ 60 s indicated that low risk of cold cracking in HAZ for longer cooling time, exists.

  16. Comparison of the segregation behavior between tempered martensite and tempered bainite in Ni-Cr-Mo high strength low alloy RPV steel

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sang Gyu; Kim, Min Chul; Kim, Hyung Jun; Lee, Bong Sang [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    SA508 Gr.4N Ni-Cr-Mo low alloy steel has an superior fracture toughness and strength, compared to commercial Mn-Mo-Ni low alloy RPV steel SA508 Gr.3. Higher strength and fracture toughness of low alloy steels could be obtained by adding Ni and Cr. So several were performed on researches on SA508 Gr.4N low alloy steel for a RPV application. The operation temperature and term of a reactor pressure vessel is more than 300 .deg. C and over 40 years. Therefore, in order to apply the SA508 Gr.4N low alloy steel for a reactor pressure vessel, the resistance of thermal embrittlement in the high temperature range including temper embrittlement is required. S. Raoul reported that the susceptibility to temper embrittlement was increasing a function of the cooling rate in SA533 steel, which suggests the martensitic microstructures resulting from increased cooling rates are more susceptible to temper embrittlement. However, this result has not been proved yet. So the comparison of temper embrittlement behavior was made between martensitic microstructure and bainitic microstructure with a viewpoint of boundary features in SA508 Gr.4N, which have mixture of tempered bainite/martensite. We have compared temper embrittlement behaviors of SA508 Gr.4N low alloy steel with changing volume fraction of martensite. The mechanical properties of these low alloy steels were evaluated after a long-term heat treatment. Then, the the segregated boundaries were observed and segregation behavior was analyzed by AES. In order to compare the misorientation distributions of model alloys, grain boundary structures were measured with EBSD

  17. Effects of the phase fractions on the carbide morphologies, Charpy and tensile properties in SA508 Gr.4N High Strength Low Alloy RPV Steel

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sang Gyu; Wee, Dang Moon [KAIST, Daejeon (Korea, Republic of); Kim, Min Chul; Lee, Bong Sang [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-05-15

    To improve the strength and toughness of RPV (reactor pressure vessel) steels for nuclear power plants, an effective way is the change of material specification from tempered bainitic SA508 Gr.3 Mn-Mo-Ni low alloy steel into tempered martensitic/bainitic SA508 Gr.4N Ni-Cr-Mo low alloy steel. It is known that the phase fractions of martensitic/bainitic steels are very sensitive to the austenitizing cooling rates. Kim reported that there are large differences of austenitizing cooling rates between the surface and the center locations in RPV due to its thickness of 250mm. Hence, the martensite/bainite fractions would be changed in different locations, and it would affect the microstructure and mechanical properties in Ni-Cr-Mo low alloy steel. These results may lead to inhomogeneous characteristics after austenitizing. Therefore, it is necessary to evaluate the changes of microstructure and mechanical properties with varying phase fractions in Ni-Cr-Mo low alloy steel. In this study, the effects of martensite/bainite fractions on microstructure and mechanical properties in Ni-Cr-Mo low alloy steel were examined. The changes in phase fractions of Ni-Cr-Mo low alloy steel with different cooling rates were analyzed, and then the phase fractions were correlated with its microstructural observation and mechanical properties

  18. Experimental and numerical investigation on under-water friction stir welding of armour grade AA2519-T87 aluminium alloy

    Directory of Open Access Journals (Sweden)

    S. Sree Sabari

    2016-08-01

    Full Text Available Friction stir welding (FSW is a promising welding process that can join age hardenable aluminium alloys with high joint efficiency. However, the thermal cycles experienced by the material to be joined during FSW resulted in the deterioration of mechanical properties due to the coarsening and dissolution of strengthening precipitates in the thermo-mechanical affected zone (TMAZ and heat affected zone (HAZ. Under water friction stir welding (UWFSW is a variant of FSW process which can maintain low heat input as well as constant heat input along the weld line. The heat conduction and dissipation during UWFSW controls the width of TMAZ and HAZ and also improves the joint properties. In this investigation, an attempt has been made to evaluate the mechanical properties and microstructural characteristics of AA2519-T87 aluminium alloy joints made by FSW and UWFSW processes. Finite element analysis has been used to estimate the temperature distribution and width of TMAZ region in both the joints and the results have been compared with experimental results and subsequently correlated with mechanical properties.

  19. Contribution on Taguchi's Method Application on the Surface Roughness Analysis in End Milling Process on 7136 Aluminium Alloy

    Science.gov (United States)

    ȚÎȚU, M. A.; POP, A. B.

    2016-11-01

    The resulting surface quality after the cutting process is one of the most important characteristics of product quality and also the most frequent customer requirement. Previous research was focused on the effect investigation of machining parameters: cutting speed [1] and feed per tooth [2] on surface roughness. This paper is in itself a continuation of a previous research [3], in which, with Taguchi's method it was determined the level of influence of the cutting parameters on surface roughness of 7136 aluminium alloy in end milling process. The purpose of this paper is to highlight the importance of Taguchi's method use to analyse the surface roughness of 7136 aluminium alloy in end milling process. To conduct the experiments, three cutting parameters were used: cutting speed, feed per tooth and cutting depth. To analyse the surface quality, the surface roughness Ra (the arithmetic average of the absolute values) was measured. It was determined the recommended configuration regarding the optimum values of each machining parameter and the interactions between them, in order to obtain the better cutting process performance and to reduce the surface roughness sensitivity to uncontrollable factors. Based on a full factorial experiment were confirmed the obtained results by applying the Taguchi's method. Final results are a starting point for further research.

  20. Local zone-wise elastic-plastic constitutive parameters of Laser-welded aluminium alloy 6061 using digital image correlation

    Science.gov (United States)

    Bai, Ruixiang; Wei, Yuepeng; Lei, Zhenkun; Jiang, Hao; Tao, Wang; Yan, Cheng; Li, Xiaolei

    2018-02-01

    The mechanical properties of aluminium alloys can be affected by the local high temperature in laser welding. In this paper, an inversion identification method of local zone-wise elastic-plastic constitutive parameters for laser welding of aluminium alloy 6061 was proposed based on full-field optical measurement data using digital image correlation (DIC). Three regions, i.e., the fusion zone, heat-affected zone, and base zone, of the laser-welded joint were distinguished by means of microstructure optical observation and micrometer hardness measurement. The stress data were obtained using a laser-welded specimen via a uniaxial tensile test. Meanwhile, the local strain data of the laser-welded specimen were obtained by the DIC technique. Thus, the stress-strain relationship for different local regions was established. Finally, the constitutive parameters of the Ramberg-Osgood model were identified by least-square fitting to the experimental stress-strain data. Experimental results revealed that the mechanical properties of the local zones of the welded joints clearly weakened, and these results are consistent with the results of the hardness measurement.

  1. Design considerations for HFQ® hot stamped aluminium structural panels

    Directory of Open Access Journals (Sweden)

    Foster Alistair

    2015-01-01

    Full Text Available HFQ is a deep drawing process for alloyed aluminium sheet that can be used to produce complex-stamped forms while maintaining the high-strength of 6xxx and 7xxx alloys. By adopting a strategy to design for HFQ at the platform level, designers can reduce part count (thereby reducing cost and weight, reduce gauge (thereby reducing weight, and improve part packaging. Two simple design examples are given to assist designers in evolving traditionally formed panel designs to HFQ formed solutions. Example features are used to illustrate the effect of geometry, thickness and strength on the final structural component.

  2. Ejection Performance of Coated Core Pins Intended for Application on High Pressure Die Casting Tools for Aluminium Alloys Processing

    Directory of Open Access Journals (Sweden)

    P. Terek

    2017-09-01

    Full Text Available In high pressure die casting (HPDC process of aluminium alloys cast alloy soldering severely damages tool surfaces. It hampers casting ejection, reduces the casting quality and decreases the overall production efficiency. Thin ceramic PVD (physical vapor deposition coatings applied on tool surfaces successfully reduce these effects. However, their performance is still not recognised for surfaces with various topographies. In this investigation, soldering tendency of Al-Si-Cu alloy toward EN X27CrMoV51 steel, plasma nitrided steel, CrN and TiAlN duplex PVD coatings is evaluated using ejection test. The coatings were prepared to a range of surface roughness and topographies. After the tests sample surfaces were analysed by different microscopy techniques and profilometry. It was found that the ejection performance is independent of the chemical composition of investigated materials. After the ejection, the cast alloy soldering layer was found on surfaces of all tested materials. This built-up layer formed by effects of mechanical soldering, without corrosion reactions. Coated samples displayed a pronounced dependence of ejection force on surface roughness and topography. By decreasing roughness, ejection force increased, which is a consequence of intensified adhesion effects. Presented findings are a novel information important for efficient application of PVD coatings intendent for protection of HPDC tools.

  3. Improvement of the surface properties of aluminium by the formation of intermetallic phases and metal matrix composites during laser surface alloying

    CSIR Research Space (South Africa)

    Mabhali, Luyolo AB

    2011-05-01

    Full Text Available Aluminium is widely used in industry due to its low cost, light weight and excellent workability, but is lacking in wear resistance and hardness. Laser alloying is used to improve the surface properties, such as hardness, by modifying...

  4. Fatigue performance of matching and dissimilar joints in aluminium alloys 5083-H111 and 6061-T651 after fully automatic pulsed GAMW using ER5356 filler wire

    CSIR Research Space (South Africa)

    Mutombo, K

    2010-08-31

    Full Text Available The tensile strength and fatigue properties of Al5083-H111 welded with aluminium-magnesium alloyed ER5356 filler wire appeared similar to those of the base metal. This joint failed in the weld metal as a result of a slight reduction in hardness...

  5. Spectrophotometric determination of titanium with ascorbic acid in aluminium alloys and other materials. Determinacion espectrofotometrica de titanio con acido ascorbico en aleaciones de base aluminio y otros materiales

    Energy Technology Data Exchange (ETDEWEB)

    Bosch Serrat, F. (Departamento de Quimica Analitica. Facultad de Qauimica. Valencia (Spain))

    1994-01-01

    A spectrophotometric determination of titanium with ascorbic acid in aluminium alloys and bauxite is described. The proposed procedures permit to determine levels of titanium down to 5.10 ''3% with a good accuracy and precision. (Author) 13 refs.

  6. Interfacial Reaction Characteristics and Mechanical Properties of Welding-brazing Bonding Between AZ31B Magnesium Alloy and PRO500 Ultra-high Strength Steel

    Directory of Open Access Journals (Sweden)

    CHEN Jian-hua

    2017-11-01

    Full Text Available Experiments were carried out with TIG welding-brazing of AZ31B magnesium alloy to PRO500 steel using TIG arc as heat source. The interfacial reaction characteristics and mechanical properties of the welding-brazing bonding were investigated. The results show that an effective bonding is achieved between AZ31B magnesium alloy and PRO500 steel by using TIG welding-brazing method. Some spontaneous oxidation reactions result in the formation of a transition zone containing AlFe3 phase with rich oxide. The micro-hardness value of the interfacial transition zone is between that of the AZ31B and the PRO500. Temper softening zone appears due to the welding thermal cycle nearby the bonding position in the interface. A higher heat input makes an increase of the brittle phases and leads to an obvious decrease of the bonding strength.

  7. Microstructure and mechanical properties of nanocrystalline high strength Al-Mg-Si (AA6061) alloy by high energy ball milling and spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Rana, Jatinkumar Kumar [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600036 (India); Sivaprahasam, D. [International Advanced Research Centre for Powder Metallurgy and New Materials, Hyderabad 500005 (India); Seetharama Raju, K. [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600036 (India); Subramanya Sarma, V., E-mail: vsarma@iitm.ac.in [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600036 (India)

    2009-12-15

    In the present paper, the microstructure and mechanical properties of nanostructured Al-Mg-Si based AA6061 alloy obtained by high energy ball milling and spark plasma sintering were reported. Gas atomized microcrystalline powder of AA6061 alloy was ball milled under wet condition at room temperature to obtain nanocrystalline powder with grain size of {approx}30 nm. The nanocrystalline powder was consolidated to fully dense compacts by spark plasma sintering (SPS) at 500 deg. C. The grain size after SPS consolidation was found to be {approx}85 nm. The resultant SPS compacts exhibited microhardness of 190-200 HV{sub 100g}, compressive strength of {approx}800 MPa and strain to fracture of {approx}15%.

  8. Design of Laser Welding Parameters for Joining Ti Grade 2 and AW 5754 Aluminium Alloys Using Numerical Simulation

    Directory of Open Access Journals (Sweden)

    Mária Behúlová

    2017-01-01

    Full Text Available Joining of dissimilar Al-Ti alloys is very interesting from the point of view of weight reduction of components and structures in automotive or aerospace industries. In the dependence on cooling rate and chemical composition, rapid solidification of Al-Ti alloys during laser welding can lead to the formation of metastable phases and brittle intermetallic compounds that generally reduce the quality of produced weld joints. The paper deals with design and testing of welding parameters for preparation of weld joints of two sheets with different thicknesses from titanium Grade 2 and AW 5754 aluminium alloy. Temperature fields developed during the formation of Al-Ti butt joints were investigated by numerical simulation in ANSYS software. The influence of laser welding parameters including the laser power and laser beam offset on the temperature distribution and weld joint formation was studied. The results of numerical simulation were verified by experimental temperature measurement during laser beam welding applying the TruDisk 4002 disk laser. The microstructure of produced weld joints was assessed by light microscopy and scanning electron microscopy. EDX analysis was applied to determine the change in chemical composition across weld joints. Mechanical properties of weld joints were evaluated using tensile tests and Vickers microhardness measurements.

  9. Cr(VI)-free pre-treatments for adhesive bonding of aerospace aluminium alloys

    NARCIS (Netherlands)

    Abrahami, S.T.

    2016-01-01

    For more than six decades, chromic acid anodizing (CAA) has been the central process in the surface pre-treatment of aluminium for adhesively bonded aircraft structures in Europe. Unfortunately, this electrolyte contains hexavalent chromium (Cr(VI)), a compound known for its toxicity and

  10. Laser surface alloying of aluminium with WC+Co+NiCr for improved wear resistance

    CSIR Research Space (South Africa)

    Nath, S

    2012-03-01

    Full Text Available In the present study, laser surfac ealloying of aluminium with WC + Co + NiCr (in the ratio of 70:15:15) has been conducted using a 5 kW continuous wave (CW) Nd:YAG laser (at a beam diameter of 0.003 m), with the output power ranging from 3 to 3.5 k...

  11. Damage and fracture loci for a dual-phase steel and a high-strength low-alloyed steel: Revealing the different plastic localization-damage-ductile fracture pattern

    Science.gov (United States)

    Lian, Junhe; Münstermann, Sebastian; Bleck, Wolfgang

    2016-10-01

    The ductile fracture locus has been developed in the recent years as a relevant tool to predict the ductile fracture and assess the structure safety. In the various developed models, the occurrence of the final fracture or the initiation of the fracture is considered as the critical phase of deformation for materials or structures. However, in the application of high-strength steels, the damage onset and evolution are of significant importance in the forming processes, as they are naturally interacting with the plastic localization and ductile fracture and eventually creating various possible failure patterns. The present study contributes to a demonstration of the differences of these features in different steels by quantitatively comparing the material parameters of a hybrid damage mechanics model. A dual-phase steel sheet (DP600) and a high-strength low-alloy steel plate (S355J2+N), which show very different relation patterns between damage and fracture, are investigated. The aim of this study is to compare the plastic localization, damage and fracture loci of them and reveal the differences in their localization-damage initiation-ductile fracture patterns. The reasons for the observed different patterns are discussed and it is concluded that the microstructural features are ultimately contributing to the different patterns and the criteria for evaluating the cold formability of these steels shall be varied depending on their failure patterns.

  12. Analysis of Thermo-Elastic Fracture Problem during Aluminium Alloy MIG Welding Using the Extended Finite Element Method

    Directory of Open Access Journals (Sweden)

    Kuanfang He

    2017-01-01

    Full Text Available The thermo-elastic fracture problem and equations are established for aluminium alloy Metal Inert Gas (MIG welding, which include a moving heat source and a thermoelasticity equation with the initial and boundary conditions for a plate structure with a crack. The extended finite element method (XFEM is implemented to solve the thermo-elastic fracture problem of a plate structure with a crack under the effect of a moving heat source. The combination of the experimental measurement and simulation of the welding temperature field is done to verify the model and solution method. The numerical cases of the thermomechanical parameters and stress intensity factors (SIFs of the plate structure in the welding heating and cooling processes are investigated. The research results provide reference data and an approach for the analysis of the thermomechanical characteristics of the welding process.

  13. Multi-Objective Optimization of Friction Stir Welding of Aluminium Alloy Using Grey Relation Analysis with Entropy Measurement Method

    Directory of Open Access Journals (Sweden)

    SAURABH KUMAR GUPTA

    2015-01-01

    Full Text Available The present research focus on optimization of Friction Stir Welding (FSW process parameters for joining of AA6061 aluminium alloy using hybrid approach. The FSW process parameters considered are tool rotational speed, welding speed and axial force. The quality characteristics considered are tensile strength (TS and percentage of tensile elongation (TE. Taguchi based experimental design L9 orthogonal array is used for determining the experimental results. The value of weights corresponding to each quality characteristic is determined by using the entropy measurement method so that their importance can be properly explained. Analysis of Variance (ANOVA is used to determine the contribution of FSW process parameters. The confirmation tests also have been done for verifying the results.

  14. Characterization of AA7050 aluminium alloy processed by ECAP; Caracterizacao da liga de aluminio AA7050 processada por ECAP

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, K.R.; Guido, V. [Universidade do Vale do Paraiba (UNIVAP), Sao Jose dos Campos, SP (Brazil). Inst. de Pesquisa e Desenvolvimento; Travessa, D.N. [Empresa Brasileira de Aeronautica (EMBRAER), Sao Jose dos Campos, SP (Brazil); Jorge Junior, A.M. [Universidade Federal de Sao Carlos (DEMa/UFSCar), SP (Brazil). Dept. de Engenharia de Materiais

    2010-07-01

    The commercial AA7050 aluminium alloy in the solution heat treated condition (W) was processed by ECAP through route A. Two pressing temperatures (room and 150 deg C and velocities (5 and 30mm/min) were used, as well as different number of passes. The effect of such variables on the microstructure evolution was evaluated using optical and transmission electron microscopy with EDX microanalysis, and xray diffraction. It was found that the microstructure has been refined by ECAP, as a result of subgrains formed within deformation bands. ECAP at 150 deg C resulted in intense precipitation of plate like {eta} phase, which evolves to equiaxial morphology as the number of passes increases. (author)

  15. Study of the local and global deformation process of an aluminium alloy using full-field measurements

    Science.gov (United States)

    Rossi, Marco; Chiappini, Gianluca; Mattucci, Luca M.; Amodio, Dario

    2017-10-01

    The yielding process of some aluminium alloys is often characterized by an inhomogeneous diffusion of shear bands during deformation, which cause oscillations in both the force level and the strain history. This phenomenon can be observed during a tensile test, however, in order to describe the mechanical behaviour of components at the continuum level, the hardening behaviour is usually calibrated according to the averaged stress vs strain curve. In this paper an inverse method and full-field measurement were used to identify the hardening behaviour in different zones of the specimen. Different stress/strain curves were obtained at different zones of the test, showing that, at the mesoscopic level, the material can be described as a heterogenous material. The difference in the hardening curves is consistent with the occurrence of the strain bands during deformation.

  16. Modelling of plastic flow localization and damage development in friction stir welded 6005A aluminium alloy using physics based strain hardening law

    DEFF Research Database (Denmark)

    Nielsen, Kim Lau; Pardoen, Thomas; Tvergaard, Viggo

    2010-01-01

    Plastic flow localisation and ductile failure during tensile testing of friction stir welded aluminium spec- imens are investigated with a specific focus on modelling the local, finite strain, hardening response. In the experimental part, friction stir welds in a 6005A-T6 aluminium alloy were...... prepared and analysed using digital image correlation (DIC) during tensile testing as well as scanning electron microscopy (SEM) on polished samples and on fracture surfaces. The locations of the various regions of the weld were determined based on hardness measurements, while the flow behaviour...

  17. Determination of Optimal Parameters for Diffusion Bonding of Semi-Solid Casting Aluminium Alloy by Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Kaewploy Somsak

    2015-01-01

    Full Text Available Liquid state welding techniques available are prone to gas porosity problems. To avoid this solid state bonding is usually an alternative of preference. Among solid state bonding techniques, diffusion bonding is often employed in aluminium alloy automotive parts welding in order to enhance their mechanical properties. However, there has been no standard procedure nor has there been any definitive criterion for judicious welding parameters setting. It is thus a matter of importance to find the set of optimal parameters for effective diffusion bonding. This work proposes the use of response surface methodology in determining such a set of optimal parameters. Response surface methodology is more efficient in dealing with complex process compared with other techniques available. There are two variations of response surface methodology. The one adopted in this work is the central composite design approach. This is because when the initial upper and lower bounds of the desired parameters are exceeded the central composite design approach is still capable of yielding the optimal values of the parameters that appear to be out of the initially preset range. Results from the experiments show that the pressing pressure and the holding time affect the tensile strength of jointing. The data obtained from the experiment fits well to a quadratic equation with high coefficient of determination (R2 = 94.21%. It is found that the optimal parameters in the process of jointing semi-solid casting aluminium alloy by using diffusion bonding are the pressing pressure of 2.06 MPa and 214 minutes of the holding time in order to achieve the highest tensile strength of 142.65 MPa

  18. Experimental determination of TRIP-parameter K for mild- and high-strength low-alloy steels and a super martensitic filler material.

    Science.gov (United States)

    Neubert, Sebastian; Pittner, Andreas; Rethmeier, Michael

    2016-01-01

    A combined experimental numerical approach is applied to determine the transformation induced plasticity (TRIP)-parameter K for different strength low-alloy steels of grade S355J2+N and S960QL as well as the super martensitic filler CN13-4-IG containing 13 wt% chromium and 4 wt% nickel. The thermo-physical analyses were conducted using a Gleeble (®) 3500 facility. The thermal histories of the specimens to be tested were extracted from corresponding simulations of a real gas metal arc weldment. In contrast to common TRIP-experiments which are based on complex specimens a simple flat specimen was utilized together with an engineering evaluation method. The evaluation method was validated with literature values for the TRIP-parameter. It could be shown that the proposed approach enables a correct description of the TRIP behavior.

  19. INFLUENCE OF MECHANICAL ALLOYING AND LEAD CONTENT ON MICROSTRUCTURE, HARDNESS AND TRIBOLOGICAL BEHAVIOR OF 6061 ALUMINIUM ALLOYS

    Directory of Open Access Journals (Sweden)

    M. Paidpilli

    2017-03-01

    Full Text Available In the present work, one batch of prealloyed 6061Al powder was processed by mixing and another one was ball milled with varying amount of lead content (0-15 vol. %. These powders were compacted at 300MPa and sintered at 590˚C under N2. The instrumented hardness and the young’s modulus of as-sintered 6061Al-Pb alloys were examined as a function of lead content and processing route. The wear test under dry sliding condition has been performed at varying loads (10-40 N using pin-on-disc tribometer. The microstructure and worn surfaces have been investigated using SEM to evaluate the change in topographical features due to mechanical alloying and lead content. The mechanically alloyed materials showed improved wear characteristics as compared to as-mixed counterpart alloys. Delamination of 6061Al-Pb alloys decreases up to an optimum lead composition in both as-mixed and ball-milled 6061Al-Pb alloys. The results indicated minimum wear rate for as-mixed and ball-milled 6061Al alloy at 5 and 10 vol. % Pb, respectively.

  20. Optimization of Process Parameters to enhance the Hardness on Squeeze Cast Aluminium Alloy AA6061

    OpenAIRE

    M. Thirumal Azhagan; B. Mohan; A. Rajadurai

    2014-01-01

    The automotive and aerospace industries have been the main driving force behind the search of new production processes which are capable of producing components with high integrity. Squeeze casting is one such novel metal processing technique which combines the advantages of both casting and forging in one operation. Squeeze casting process is suited for all melting ranges of metals varying from lead to iron. But nowadays, light weight materials like aluminium and magnesium are mostly used in...

  1. On the effects of thermomechanical processing on failure mode in precipitation-hardened aluminium alloys

    NARCIS (Netherlands)

    Haas, M. de; Hosson, J.Th.M. De

    2002-01-01

    This paper concentrates on the influences of thermomechanical processing on fracture behaviour of Al-Mg-Si-Cu (AA6061) alloys. Important factors are grain boundary structure and extent of matrix- and grain boundary precipitation. Large grain boundary phases in the as-air-cooled alloy, explains its

  2. XPS Study of Chemical Changes on the La/Ce Treated Surface of A361 Aluminium Alloy Exposed to Air at Temperatures up to 500∘C

    Directory of Open Access Journals (Sweden)

    A. Pardo

    2009-01-01

    Full Text Available The chemical changes that take place on the rare earth treated surface of the A361 aluminium alloy exposed to air at temperatures between 100 and 500∘C have been examined using X-ray photoelectron spectroscopy (XPS. The most notable features discussed in this work are the disappearance of Mg and Si signals at the tested temperatures and disappearance of the Ce signal at temperatures of 400–500∘C. The biphasic microstructure of the A361 alloy, constituted by close to 12 wt% Si and the Al matrix, plays an important role in many of the results obtained. The notable growth of aluminium oxide across the conversion coating in the case of the Ce-treated surface is related to the structural transformation experienced by the cerium oxide coating at 400–500∘C.

  3. Computer simulations of martensitic transformations in iron-nickel and nickel-aluminium alloys

    CERN Document Server

    Meyer, R J

    1998-01-01

    This thesis focuses on the martensitic transformations in iron-nickel and nickel-aluminum alloys. Molecular-dynamics simulations have been done, employing potentials based on the so-called embedded-atom method (EAM). These potentials were obtained by a fit of parameterized functions to experimental data of the elements iron, nickel, and aluminum as well as the intermetallic compound NiAl. Many aspects of the austenitic transformation in iron-nickel alloys and both, the martensitic and austenitic transformations, in nickel-aluminum alloys were reproduced well by the simulations. The results allow to draw conclusions on the reasons of differences and similarities in the behavior of both alloy systems.

  4. Research of gas release during crystallization of aluminium and its alloys

    OpenAIRE

    Трегубенко, Геннадий Николаевич

    2015-01-01

    The problem of gas porosity formation in the manufacture of aluminum structural or cast porous alloys is discussed and some results of our research in this area are shown in the article. The main aim of the research is to investigate the influence of various technological, physical and chemical factors on the process of hydrogen gas release during crystallization of aluminum and its alloys. Using system simulation allows a scientist to investigate fully the flow of a process. In this paper to...

  5. Effect of Silicon on Mechanical and Wear Properties of Aluminium-Alloyed Gray Cast Iron

    Science.gov (United States)

    Vadiraj, Aravind; Tiwari, Shashank

    2014-08-01

    Influence of Si on mechanical and wear properties of Al-alloyed gray cast iron has been investigated in this work. The Si content is varied from 1.27 to 2.1% in five different alloys with nearly 2% Al additions. Alloy with 2.1% Si and 1.9% Al shows maximum ferrite matrix with highest flake volume (17.3%). It also has the lowest hardness and strength. Rest of the alloys with Si content equal to or less than 1.7% and 2% Al content shows maximum pearlite matrix with higher hardness and strength. They have also shown a tendency for oxide formation and reduced wear during sliding probably due to higher friction heat and lower heat dissipation tendency due to lower flake volume and Al addition which reduces thermal conductivity of the matrix. The same oxide layer was not evident in alloy with 2.1% Si and 1.9% Al alloy having the highest flake volume (17.3%).

  6. Fatigue behavior of GMAW welded Aluminium alloy AA7020; Comportamiento a fatiga de uniones soldadas GMAW de la aleacion de aluminio AA 7020

    Energy Technology Data Exchange (ETDEWEB)

    Bloem, C. A.; Salvador, M. D.; Amigo, V.; Vicente, A.

    2007-07-01

    The aim of this investigation is to evaluate the influence on the fatigue behavior by the finishing of the bulge in a welded aluminium-zinc-magnesium alloy AA7020. It was determined that total or partial elimination of the bulge has very little influence on its behavior, giving a very similar result on both cases, where one is better than the other by only 3%. (Author) 20 refs.

  7. APPLICATION OF CHEMICAL PRE-TREATMENT ON THE POLISHED SURFACE OF ALUMINIUM ALLOYS

    Directory of Open Access Journals (Sweden)

    Pavel Kraus

    2016-12-01

    Full Text Available This paper reports the preparation and characterization of thin transparent nanolayers with phase composition ZrF4 and different modification of SiO2 with special focus on affecting the surface roughness of the material and the way of exclusion of the thin nanolayer on the surface of the polished aluminium material. The thin nanolayer was prepared by the sol-gel method. The final treatment based on PTFE was applied on the surface of some samples. This treatment is suitable for increasing wear resistance. The films were characterized with help of SEM microscopy and EDS analysis. The surface roughness was measured with classical surface roughness tester. The results on this theme have already published but not on the polished surface of the aluminium material. The results from the experiment show the problems with application of these nanolayers because a cracks were found on the surface of the material and deformations of the layer after application of the PTFE final layer. The surface layer formation is discussed.

  8. Light-weight steels based on iron-aluminium - influence of micro alloying elements (B, Ti, Nb) on microstructures, textures and mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Bruex, U.; Frommeyer, G. [Dept. of Materials Technology, Max-Planck-Inst. fuer Eisenforschung GmbH, Duesseldorf (Germany); Jimenez, J. [Centro Nacional de Investigaciones Metalurgicas (C.S.I.C.), Madrid (Spain)

    2002-12-01

    The influence of the micro alloying elements B, Ti and Nb on the recrystallization texture and mechanical properties of iron aluminium light-weight steels, particularly with reference to their improved deep drawing properties was investigated. Depending on the combination of the alloying elements the microstructures of the investigated micro alloyed Fe-6Al steels are influenced by grain refinement. Likewise, variable combinations of micro alloying elements differently affect the texture. Generally, the mechanical properties are improved. However, small amounts of B, Ti and Nb cause superior deep drawing and stretch forming properties of these iron aluminium light-weight steels. The microstructures of various micro alloyed cold rolled Fe-6Al steel sheets were evaluated by optical microscopy, scanning electron microscopy (SEM) inclusively EDAX and X-ray diffraction. Texture measurements were performed using a goniometer with a closed Eulerian cradle and analysed by ODF calculations. Tensile tests were carried out at room temperature and 200 C, respectively. The deep drawing behaviour was determined by performing cupping tests and digitalised strain analysis. (orig.)

  9. Computation material science of structural-phase transformation in casting aluminium alloys

    Science.gov (United States)

    Golod, V. M.; Dobosh, L. Yu

    2017-04-01

    Successive stages of computer simulation the formation of the casting microstructure under non-equilibrium conditions of crystallization of multicomponent aluminum alloys are presented. On the basis of computer thermodynamics and heat transfer during solidification of macroscale shaped castings are specified the boundary conditions of local heat exchange at mesoscale modeling of non-equilibrium formation the solid phase and of the component redistribution between phases during coalescence of secondary dendrite branches. Computer analysis of structural - phase transitions based on the principle of additive physico-chemical effect of the alloy components in the process of diffusional - capillary morphological evolution of the dendrite structure and the o of local dendrite heterogeneity which stochastic nature and extent are revealed under metallographic study and modeling by the Monte Carlo method. The integrated computational materials science tools at researches of alloys are focused and implemented on analysis the multiple-factor system of casting processes and prediction of casting microstructure.

  10. Higher dimensional numerical simulations of precipitate dissolution in multi-component aluminium alloys

    NARCIS (Netherlands)

    Javierre, E.; Vuik, C.; Vermolen, F.J.; Segal, A.; Van der Zwaag, S.

    2006-01-01

    In thermal processing of alloys, homogenization of the as-cast microstructure by annealing at such a high temperature that unwanted precipitates are fully dissolved, is required to obtain a microstructure suited to undergo heavy plastic deformation. This process is governed by Fickian diffusion and

  11. Galvanostatic response of AA2024 aluminium alloy in 3.5% NaCl ...

    Indian Academy of Sciences (India)

    and G E THOMPSON. Corrosion and Protection Centre, School of Materials, The University of Manchester, Manchester M13 9PL, UK. MS received 5 August 2015; accepted 15 April 2016. Abstract. Galvanostatic responses of AA2024T3 alloy in de-aerated and naturally aerated 3.5% NaCl solution have been investigated.

  12. Galvanostatic response of AA2024 aluminium alloy in 3.5% NaCl ...

    Indian Academy of Sciences (India)

    Galvanostatic responses of AA2024T3 alloy in de-aerated and naturally aerated 3.5% NaCl solution have been investigated. In the de-aerated condition, two distinct stages of polarization were revealed. From the first stage, the relationships between the pitting incubation time, pitting potential and applied current density for ...

  13. Laser welding of aluminium-magnesium alloys sheets process optimization and welds characterization

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, C. [GEMPPM (CALFETMAT), 69 - Villeurbanne (France); Fouquet, F. [GEMPPM (CALFETMAT), 69 - Villeurbanne (France); Robin, M. [GEMPPM (CALFETMAT), 69 - Villeurbanne (France)

    1996-12-31

    The purpose of the present study was to obtain good quality welds using a CO2 laser with Al-Mg alloys sheet. Defects formation mechanisms were analyzed and a welding procedure was defined, using several characterization technics, in order to realize low defects welding seams. After laser welding optimization, comparative tensile tests and microstructural analysis were carried out. (orig.)

  14. Plasma brazing of magnesium- and aluminium-alloys; Plasmaloeten von Magnesium- und Aluminiumlegierungen

    Energy Technology Data Exchange (ETDEWEB)

    Bobzin, K.; Ernst, F.; Roesing, J. [RWTH Aachen (Germany)

    2007-07-01

    The increasing demand for light metals in all fields of industry necessitates the further development of economically efficient and ecologically acceptable brazed joints. Plasma brazing is an interesting alternative to established technologies as it offers the possibility of joining Mg and Al alloys with a thick oxide layer without fluxes and with comparatively low thermal stress of the base material. (orig.)

  15. Application of the Materials-by-Design Methodology to Redesign a New Grade of the High-Strength Low-Alloy Class of Steels with Improved Mechanical Properties and Processability

    Science.gov (United States)

    Grujicic, M.; Snipes, J. S.; Ramaswami, S.

    2016-01-01

    An alternative to the traditional trial-and-error empirical approach for the development of new materials is the so-called materials-by-design approach. Within the latter approach, a material is treated as a complex system and its design and optimization is carried out by employing computer-aided engineering analyses, predictive tools, and available material databases. In the present work, the materials-by-design approach is utilized to redesign a grade of high-strength low-alloy (HSLA) class of steels with improved mechanical properties (primarily strength and fracture toughness), processability (e.g., castability, hot formability, and weldability), and corrosion resistance. Toward that end, a number of material thermodynamics, kinetics of phase transformations, and physics of deformation and fracture computational models and databases have been developed/assembled and utilized within a multi-disciplinary, two-level material-by-design optimization scheme. To validate the models, their prediction is compared against the experimental results for the related steel HSLA100. Then the optimization procedure is employed to determine the optimal chemical composition and the tempering schedule for a newly designed grade of the HSLA class of steels with enhanced mechanical properties, processability, and corrosion resistance.

  16. SCC investigation of low alloy ultra-high strength steel 30CrMnSiNi2A in 3.5wt% NaCl solution by slow strain rate technique

    Directory of Open Access Journals (Sweden)

    Liu Jianhua

    2014-10-01

    Full Text Available To evaluate stress corrosion cracking (SCC mechanism of low alloy ultra-high strength steel 30CrMnSiNi2A in environment containing NaCl, SCC behavior of the steel in 3.5wt% NaCl solution is investigated by slow strain rate technique (SSRT with various strain rates and applied potentials, surface analysis technique, and electrochemical measurements. SCC susceptibility of the steel increases rapidly with strain rate decreasing from 1 × 10−5 s−1 to 5 × 10−7 s−1, and becomes stable when strain rate is lower than 5 × 10−7 s−1. SCC propagation of the steel in the solution at open circuit potential (OCP needs sufficient hydrogen which is supplied at a certain strain rate. Fracture surface at OCP has similar characteristics with that at cathodic polarization −1000 mVSCE, which presents characteristic fractography of hydrogen induced cracking (HIC. All of these indicate that SCC behavior of the steel in the solution at OCP is mainly controlled by HIC rather than anodic dissolution (AD.

  17. Corrosion and Corrosion Inhibition of High Strength Low Alloy Steel in 2.0 M Sulfuric Acid Solutions by 3-Amino-1,2,3-triazole as a Corrosion Inhibitor

    Directory of Open Access Journals (Sweden)

    El-Sayed M. Sherif

    2014-01-01

    Full Text Available The corrosion and corrosion inhibition of high strength low alloy (HSLA steel after 10 min and 60 min immersion in 2.0 M H2SO4 solution by 3-amino-1,2,4-triazole (ATA were reported. Several electrochemical techniques along with scanning electron microscopy (SEM and energy dispersive X-ray (EDS were employed. Electrochemical impedance spectroscopy indicated that the increase of immersion time from 10 min to 60 min significantly decreased both the solution and polarization resistance for the steel in the sulfuric acid solution. The increase of immersion time increased the anodic, cathodic, and corrosion currents, while it decreased the polarization resistance as indicated by the potentiodynamic polarization measurements. The addition of 1.0 mM ATA remarkably decreased the corrosion of the steel and this effect was found to increase with increasing its concentration to 5.0 mM. SEM and EDS investigations confirmed that the inhibition of the HSLA steel in the 2.0 M H2SO4 solutions is achieved via the adsorption of the ATA molecules onto the steel protecting its surface from being dissolved easily.

  18. Behaviour and modelling of aluminium alloy AA6060 subjected to a wide range of strain rates and temperatures

    Directory of Open Access Journals (Sweden)

    Vilamosa Vincent

    2015-01-01

    Full Text Available The thermo-mechanical behaviour in tension of an as-cast and homogenized AA6060 alloy was investigated at a wide range of strains (the entire deformation process up to fracture, strain rates (0.01–750 s−1 and temperatures (20–350 ∘C. The tests at strain rates up to 1 s−1 were performed in a universal testing machine, while a split-Hopkinson tension bar (SHTB system was used for strain rates from 350 to 750 s−1. The samples were heated with an induction-based heating system. A typical feature of aluminium alloys at high temperatures is that necking occurs at a rather early stage of the deformation process. In order to determine the true stress-strain curve also after the onset of necking, all tests were instrumented with a digital camera. The experimental tests reveal that the AA6060 material has negligible strain-rate sensitivity (SRS for temperatures lower than 200 ∘C, while both yielding and work hardening exhibit a strong positive SRS at higher temperatures. The coupled strain-rate and temperature sensitivity is challenging to capture with most existing constitutive models. The paper presents an outline of a new semi-physical model that expresses the flow stress in terms of plastic strain, plastic strain rate and temperature. The parameters of the model were determined from the tests, and the stress-strain curves from the tests were compared with the predictions of the model. Good agreement was obtained over the entire strain rate and temperature range.

  19. Study of Relation between Shot Peening Parameters and Fatigue Fracture Surface Character of an AW 7075 Aluminium Alloy

    Directory of Open Access Journals (Sweden)

    Libor Trško

    2018-02-01

    Full Text Available Shot peening is a well-known surface treatment method used for fatigue life improvement of cyclically loaded structural components. Since three main variables are considered in the peening process (peening intensity, coverage and peening media type, there is no direct way to choose the best combination of treatment parameters for the best performance, thus it has to be based on experience and laboratory tests. When shot peening is performed with inadequate parameters, or the peening process is not stable in time (decrease of the peening pressure, deterioration of the peening media and so on, it can result in significant degradation of the treated component fatigue properties, what is commonly called as the “overpeening” effect. When a premature fatigue fracture occurs in operation, the fracture surface analysis is usually the most important method of revealing the damage mechanism. This work is aimed at the study of the relation between the shot peening parameters and the fatigue fracture surface character on an AW 7075 aluminium alloy with an objective of identifying marks of overpeening and investigating the fatigue crack initiation mechanism. After performing the tests, it was observed that shot peening with optimized parameters creates a surface layer that is able to change the mechanism of the fatigue crack propagation and improve fatigue strength. On the other hand, using extensive peening parameters decrease the fatigue strength due to the creation of surface cracks and surface layer delamination.

  20. Collected studies on interfaces and interphases as related to the behaviour of fibre-reinforced aluminium alloy composites

    Science.gov (United States)

    Scott; Chen

    1999-11-01

    This paper is an essentially practical treatment of interphases and interfaces and of their influence on the properties of a number of metal matrix composites (MMCs). The illustrations are drawn from the authors' experiences and have been chosen to underline the importance of detailed microstructural analysis for elucidating the fabrication behaviour and the mechanical performance of this group of materials. The work involves a series of MMCs based upon different combinations of aluminium alloy and ceramic/carbon fibre (both continuous and short) and made using the method of low-pressure liquid metal infiltration (LMI). Detailed analyses of the composite microstructures are given, with particular attention being paid to the interface regions. The data are used to categorize an interface according to the type of bond, that is a mechanical bond resulting from thermal mismatch between the fibre and metal matrix, or a chemical bond, with or without second phase, caused by chemical reaction. The information is then employed to account for aspects of composite fabrication, such as the cast microstructure produced by the LMI method and the effect of heat treatment, and to elucidate composite properties such as stiffness, yield stress and failure strength.

  1. Microstructure and mechanical properties of similar and dissimilar joints of aluminium alloy and pure copper by friction stir welding

    Directory of Open Access Journals (Sweden)

    V.C. Sinha

    2016-09-01

    Full Text Available In the present study, the microstructure and mechanical properties of similar and dissimilar friction stir welded joints of aluminium alloy (AlA and pure copper (Cu were evaluated at variable tool rotational speeds from 150 to 900 rpm in steps of 150 rpm at 60 mm/min travel speed and constant tilt angle 2°. The interfacial microstructures of the joints were characterised by optical and scanning electron microscopy. The Al4Cu9, AlCu, Al2Cu and Al2Cu3 intermetallic compounds have been observed at the interface and stir zone region of dissimilar Al/Cu FSWed joints. Variation in the grain size was observed in the stir zone depending upon the heat input value. Axial force, traverse force and torque value were analysed with variation in tool rotational speed. Residual stresses were measured at the stir zone by X-ray diffraction technique. Maximum ultimate tensile strength of ∼75% of AlA strength for AlA–AlA joints has been obtained at 750 rpm and for Cu–Cu joint tensile strength of ∼100% of tensile strength of Cu was obtained at 300 rpm. However, for Cu–AlA joint when processed at 600 rpm tool rotational speed achieved maximum ultimate tensile strength of ∼77% of AlA.

  2. Influence of process parameters on physical dimensions of AA6063 aluminium alloy coating on mild steel in friction surfacing

    Directory of Open Access Journals (Sweden)

    B. Vijaya Kumar

    2015-09-01

    Full Text Available An attempt is made in the present study to obtain the relationships among process parameters and physical dimensions of AA6063 aluminium alloy coating on IS2062 mild steel obtained through friction surfacing and their impact on strength and ductility of the coating. Factorial experimental design technique was used to investigate and select the parameter combination to achieve a coating with adequate strength and ductility. Spindle speed, axial force and table traverse speed were observed to be the most significant factors on physical dimensions. It was observed that the thickness of the coating decreased as the coating width increased. In addition, the width and thickness of the coatings are higher at low and high torques. At intermediate torque values, when the force is high, the width of the coating is high, and its thickness is thin; and when the force is low, the width and thickness are low. The interaction effect between axial force (F – table traverse speed (Vx and spindle speed (N – table traverse speed (Vx produced an increasing effect on coating width and thickness, but other interactions exhibited decreasing influence. It has also been observed that sound coatings could be obtained in a narrow set of parameter range as the substrate-coating materials are metallurgically incompatible and have a propensity to form brittle intermetallics.

  3. Effect of Processing Parameters on the Protective Quality of Electroless Nickel-Phosphorus on Cast Aluminium Alloy

    Directory of Open Access Journals (Sweden)

    Olawale Olarewaju Ajibola

    2015-01-01

    Full Text Available The effects of temperature, pH, and time variations on the protective amount and quality of electroless nickel (EN deposition on cast aluminium alloy (CAA substrates were studied. The temperature, pH, and plating time were varied while the surface condition of the substrate was kept constant in acid or alkaline bath. Within solution pH of 5.0–5.5 range, the best quality is obtained in acid solution pH of 5.2. At lower pH (5.0–5.1, good adhesion characterised the EN deposition. Within the range of plating solution pH of 7.0 to 11.5, the highest quantity and quality of EN deposition are obtained on CAA substrate in solution pH of 10.5. It is characterised with few pores and discontinuous metallic EN film. The quantity of EN deposition is time dependent, whereas the adhesion and brightness are not time controlled. The best fit models were developed from the trends of result data obtained from the experiments. The surface morphologies and the chemical composition of the coating were studied using the Jeol JSM-7600F field emission scanning electron microscope.

  4. Hydrogen Assisted Cracking of High Strength Alloys

    Science.gov (United States)

    2003-08-01

    Speidel reported simple Arrhenius behavior for lower strength Nimonic 105 (ays = 825 MPa) for 0C < T < 1000C (Speidel, 1974). The very high temperature... 115 of 194 L (a) R 250 nm 250 nm L (b) R Figure 43: Matching field emission SEM images of an IG facet in cz~hardened j3-Ti (Beta-C) cracked in aqueous...Thompson, ASM International, Materials Park, OH, 1974, pp. 115 -147. W.W. Gerberich, Y.T. Chen and C. St. John, A short-time diffusion correlation for

  5. Hydrogen Assisted Cracking of High Strength Alloys

    National Research Council Canada - National Science Library

    Gangloff, Richard P

    2003-01-01

    ... (Irwin and Wells, 1997; Paris, 1998). Second, materials scientists developed metals with outstanding balances of high tensile strength and high fracture toughness (Garrison, 1990; Wells, 1993; Boyer, 1993...

  6. MODELING HIGH TEMPERATURE FLOW BEHAVIOR OF AN AL 6061 ALUMINIUM ALLOY

    Directory of Open Access Journals (Sweden)

    E. Badami

    2014-12-01

    Full Text Available Hot deformation behavior of a medium Cr/Mn Al6061 aluminum alloy was studied by isothermal compression test at temperatures range of 320 to 480 °C and strain rates range of 0.001 to 0.1 s −1. The true stresstrue strain curves were analyzed to characterize the flow stress of Al6061. Plastic behavior, as a function of both temperature and strain rate for Al6061, was also modeled using a hyperbolic sinusoidal type equation. For different values of material constant α in the range of 0.001 to 0.4, values of A, n and Q were calculated based on mathematical relationships. The best data fit with minimum error was applied to define constitutive equation for the alloy. The predicted results of the proposed model were found to be in reasonable agreement with the experimental results, which could be used to predict the required deformation forces in hot deformation processes

  7. Researches and studies regarding brazed aluminium alloys microstructure used in aeronautic industry

    Directory of Open Access Journals (Sweden)

    A. Dimitrescu

    2015-04-01

    Full Text Available Brazing is applied to the merge of the pieces which are most required, tensile strength of the solder can reach high values. By brazing there can be assembled pieces of most metals and ferrous and nonferrous alloys, with high melting temperature. This paper presents an analysis of the microstructure of materials from a brazed merge of aluminum alloy L103 which is often used to produce pieces of aeronautical industry. Brazing material was performed using several technologies, and after examination of the microstructure of materials from the merge area it was established as optimal technology the technology which consist of pickling in Aloclene 100 solution with the deposition of filler material on both sides of the base material and the use of spectral acetylene and neutral flame.

  8. Continuous sodium modification of nearly-eutectic aluminium alloys. Part II. Experimental studiem

    Directory of Open Access Journals (Sweden)

    Białobrzeski A.

    2007-01-01

    Full Text Available One of the possible means of continuous sodium modification of nearly-eutectic alloys may be continuous electrolysis of sodium compounds (salts, taking place directly in metal bath (in the crucible. For this process it is necessary to use a solid electrolyte conducting sodium ions. Under the effect of the applied direct current voltage, sodium salt placed in a retort made from the solid electrolyte undergoes dissociation, and next - electrolysis. The retort is immersed in liquid metal. The anode is sodium salt, at that temperature occurring in liquid state, connected to the direct current source through, e.g. a graphite electrode, while cathode is the liquid metal. Sodium ions formed during the sodium salt dissociation and electrolysis are transported through the wall of the solid electrolyte (the material of the retort and in contact with liquid alloy acting as a cathode, they are passing into atomic state, modifying the metal bath.

  9. Emission of nanoparticles during friction stir welding (FSW) of aluminium alloys.

    Science.gov (United States)

    Gomes, J F; Miranda, R M; Santos, T J; Carvalho, P A

    2014-01-01

    Friction stir welding (FSW) is now well established as a welding process capable of joining some different types of metallic materials, as it was (1) found to be a reliable and economical way of producing high quality welds, and (2) considered a "clean" welding process that does not involve fusion of metal, as is the case with other traditional welding processes. The aim of this study was to determine whether the emission of particles during FSW in the nanorange of the most commonly used aluminum (Al) alloys, AA 5083 and AA 6082, originated from the Al alloy itself due to friction of the welding tool against the item that was being welded. Another goal was to measure Al alloys in the alveolar deposited surface area during FSW. Nanoparticles dimensions were predominantly in the 40- and 70-nm range. This study demonstrated that microparticles were also emitted during FSW but due to tool wear. However, the biological relevance and toxic manifestations of these microparticles remain to be determined.

  10. Friction Stir Welding of three dissimilar aluminium alloy used in aeronautics industry

    Science.gov (United States)

    Boşneag, A.; Constantin, M. A.; Niţu, E.; Iordache, M.

    2017-10-01

    Friction Stir Welding (FSW) is an innovative solid-state joining process. This process was, in first time, develop to join the similar aluminum plates but now the technology can be used to weld a large area of materials similar or dissimilar. Taking these into account FSW process, for dissimilar materials are increasingly required, more than traditional arc welding, in industrial environment. More than that FSW is used in aeronautics industry because of very good result and very good weldability between aluminum alloy used at building of airplanes, where the body of airplane are 20% aluminum alloy and this percent can be increaser in future. In this paper is presented an experimental study which includes welding three dissimilar aluminum alloy, with different properties, used in aeronautics industry, this materials are: AA 2024, AA6061 and AA7075. After welding with different parameters, the welding join and welding process will be analyzed considering process temperature, process vertical force, and roughnessof welding seams, visual aspect and microhardness.

  11. Material properties of Al-Si-Cu aluminium alloy produced by the rotational cast technology

    Directory of Open Access Journals (Sweden)

    Muhammad Syahid

    2017-03-01

    Full Text Available The aim of the present study is to explore microstructural and mechanical properties of cast Al-Si-Cu aluminum alloy (ADC12. To obtain excellent material properties, the cast Al alloys were produced by an originally developed mold rotational machine, namely liquid aluminum alloy is solidified during high speed rotating. The casting process was conducted under various casting conditions, in which the following factors were altered, e.g., melt temperature, metal mold temperature and different rotational speed. Microstructural characteristics were examined by direct observation using an optical microscope and a scanning electron microscope (SEM, and the secondary dendrite arm spacing of alpha-Al phase (SDAS and the size of Si eutectic phase were identified. Mechanical properties were investigated by micro-hardness and tensile tests. Rotation speed and melt temperature were directly attributed to the SDAS, and severe shear stress arising from the rotation made fine and complicated grain structure, leading to the high mechanical properties. The extent of the shear stress was altered depending on the area of the sample due to the different shear stress. Furthermore, high melt temperature and high rotational speed decrease the size of Si eutectic phases. The high mechanical properties were detected for the cast samples produced by the casting condition as follows: melt temperature 700oC, mold temperature 400oC and rotation speed 400 rpm

  12. Effect of selected microadditives on the mechanical properties of aluminium alloys

    Directory of Open Access Journals (Sweden)

    Rzadkosz S.

    2007-01-01

    Full Text Available The effect of iron impurities on microstructure and mechanical properties of cast Al-Cu and Al-Zn-Mg alloys was discussed. The role of iron in the process of solutioning and ageing of these alloys was described. Basing on the results of investigations, a comparative analysis was made to disclose the effect of low content (microadditives of the elements, like Mn, Ti, Zr, B, Cr, Ni, Zn, Sn, Cd, In, Mg, Sb, and Ag on the primary structure of castings, mainly on the morphology of iron-bonding intermetallic phases. The studies also allowed for an effect of these elements on dispersion hardening of the examined alloys, reflected in an improvement of the principal mechanical properties (Rm, A5, HV, and on the kinetics of ageing. Tin, cadmium and indium, added in an amount of 0,1 – 0,15 %, were reported to have the strong-est effect on the process of dispersion hardening. Beneficial effect on the morphology of iron phases have manganese, chromium and nickel.

  13. Investigation on mechanical behaviour of ECAPed 2A12 aluminium alloy

    Directory of Open Access Journals (Sweden)

    Wang Cun-xian

    2015-01-01

    Full Text Available In the present work, the uniaxial compressive behavior of aluminum alloy processed by equal channel angular pressing (ECAP for 1–8 passes are investigated experimentally under both quasi-static and dynamic loading conditions via an electronic universal testing machine with a maximum load capacity of 10KN and the split Hopkinson pressure bar (SHPB. The strain hardening rate as well as strain rate sensitivity the ECAPed with different passes have been determined and compared with annealed coarse grained counterpart. The experimental results show a continuously increase of both flow stress and strain rate sensitivity for the aluminum alloy subjected to ECAP process as the pressing pass number increasing. It is proposed that the reduction in grain size plays an important role in the enhancement of flow stress and strain rate sensitivity. However, the strain hardening rate of the ECAPed materials decreases remarkably. Meanwhile, compressive experiments at elevated temperatures indicate the temperature sensitivity of the material increases as the grain size is refined into fine grain regime. Based on thermal activation theory, it is proposed that the enhanced temperature and strain rate sensitivity of ECAPed aluminum alloy can be related to the reduction in activation volume due to grain refinement.

  14. Investigation of microstructural and mechanical properties of cell walls of closed-cell aluminium alloy foams

    Energy Technology Data Exchange (ETDEWEB)

    Islam, M.A.; Kader, M.A.; Hazell, P.J.; Brown, A.D. [School of Engineering and Information Technology, UNSW Canberra, ACT 2610 (Australia); Saadatfar, M. [Department of Applied Mathematics, Australian National University, Canberra ACT 0200 (Australia); Quadir, M.Z [Electron Microscope Unit, Mark Wainwright Analytical Centre (MWAC), The University of New South Wales, Sydney, NSW 2052 (Australia); Microscopy and Microanalysis Facility (MMF), John de Laeter Centre (JdLC), Curtin University, WA 6102 (Australia); Escobedo, J.P., E-mail: J.Escobedo-Diaz@adfa.edu.au [School of Engineering and Information Technology, UNSW Canberra, ACT 2610 (Australia)

    2016-06-01

    This study investigates the influence of microstructure on the strength properties of individual cell walls of closed-cell stabilized aluminium foams (SAFs). Optical microscopy (OM), micro-computed X-ray tomography (µ-CT), electron backscattering diffraction (EBSD), and energy dispersive X-ray spectroscopy (EDS) analyses were conducted to examine the microstructural properties of SAF cell walls. Novel micro-tensile tests were performed to investigate the strength properties of individual cell walls. Microstructural analysis of the SAF cell walls revealed that the material consists of eutectic Al-Si and dendritic a-Al with an inhomogeneous distribution of intermetallic particles and micro-pores (void defects). These microstructural features affected the micro-mechanism fracture behaviour and tensile strength of the specimens. Laser-based extensometer and digital image correlation (DIC) analyses were employed to observe the strain fields of individual tensile specimens. The tensile failure mode of these materials has been evaluated using microstructural analysis of post-mortem specimens, revealing a brittle cleavage fracture of the cell wall materials. The micro-porosities and intermetallic particles reduced the strength under tensile loading, limiting the elongation to fracture on average to ~3.2% and an average ultimate tensile strength to ~192 MPa. Finally, interactions between crack propagation and obstructing intermetallic compounds during the tensile deformation have been elucidated.

  15. Reoxidation Processes Prediction in Gating System by Numerical Simulation for Aluminium Alloys

    Directory of Open Access Journals (Sweden)

    Brůna M.

    2017-09-01

    Full Text Available Pouring of liquid aluminium is typically accompanied by disturbance of the free surface. During these disturbances, the free surface oxide films can be entrained in the bulk of liquid, also pockets of air can be accidentally trapped in this oxide films. The resultant scattering of porosity in castings seems nearly always to originate from the pockets of entrained air in oxide films. Latest version of ProCast software allows to identify the amount of oxides formed at the free surface and where they are most likely to end-up in casts. During a filling calculation, ProCast can calculate different indicators which allow to better quantify the filling pattern. The fluid front tracking indicator “Free surface time exposure” has the units [cm2*s]. At each point of the free surface, the free surface area is multiplied by the time. This value is cumulated with the value of the previous timestep. In addition, this value is transported with the free surface and with the fluid flow. Experiments to validate this new functions were executed.

  16. Microstructural and mechanical investigation of aluminium alloy (Al 1050) melted by microwave hybrid heating

    Science.gov (United States)

    Shashank Lingappa, M.; Srinath, M. S.; Amarendra, H. J.

    2017-07-01

    Microwave processing of metals is an emerging area. Melting of bulk metallic materials through microwave irradiation is still immature. In view of this, the present paper discusses the melting of bulk Al 1050 metallic material through microwave irradiation. The melting process is carried out successfully in a domestic microwave oven with 900 W power at 2450 MHz frequency. Metallurgical and mechanical characterization of the processed and as-received material is carried out. Aluminium phase is found to be dominant in processed material when tested through x-ray diffraction (XRD). Microstructure study of as-cast metal through scanning electron microscopy (SEM) reveals the formation of uniform hexagonal grain structure free from pores and cavities. The average tensile strength of the cast material is found to be around 21% higher, when compared to as-received material. Vickers’ microhardness of the as-cast metal is measured and is 10% higher than that of the as-received metal. Radiography on as-cast metal shows no significant defects. Al 1050 material melted through microwave irradiation has exhibited superior properties than the as-received Al 1050.

  17. The effect of pre-straining and pre-ageing on a novel thermomechanical treatment for improving the mechanical properties of AA2139 aerospace aluminium alloys

    Science.gov (United States)

    Bakare, F.; Alsubhi, Y.; Ragkousis, A.; Ebomwonyi, O.; Damisa, J.; Okunzuwa, S.

    2017-07-01

    The novel thermomechanical treatment employed by Wang Z et al (2014 Mater. Sci. Eng. A 607 313-7) in enhancing the mechanical and microstructure properties of 6000 series aluminium alloys has been replicated for AA2139 aerospace aluminium alloys. The novel route which involves under-ageing, cold-rolling reductions and re-ageing at a fixed temperature has been carried out focusing on the effect of pre-straining and pre-ageing on the alloy properties. The influence of varying cold-rolling reductions and pre-ageing has been examined by tensile testing, hardness testing, differential scanning calorimetry, thermoelectric power measurements and scanning electron microscope (SEM). Further analyses were conducted with DSC and TEP measurements to check for precipitation sequence and solute retention respectively. On comparing the hardness and strength of the non pre-aged to the pre-aged samples, there is a remarkable increase in the hardness and strength of the aerospace alloy showing the huge influence of both pre-ageing and pre-straining stage of the novel thermomechanical treatment as observed in the 6000 series alloy, albeit at a higher rate. The treatments that exhibited the most promising mechanical properties (hardness, yield and ultimate tensile strength, elongation to failure) were found to be at a pre-ageing temperature of 175 °C for 1.5 h, 40% cold-rolling and re-ageing at 150 °C. The material was found to have yield strength of 590 MPa and 8.1% uniform elongation, which is well above the 5% acceptable value for structural applications and with strength levels adaptable for aerospace industries. The presence of higher volume fraction of well dispersed precipitates observed in the SEM further shows that intermediate cold-rolling reductions combines well with pre-ageing to give the best mechanical properties in this alloy.

  18. Microstructure and composition of rare earth-transition metal-aluminium-magnesium alloys

    Directory of Open Access Journals (Sweden)

    Lia Maria Carlotti Zarpelon

    2008-03-01

    Full Text Available The determination of the microstructure and chemical composition of La0.7-xPr xMg0.3Al 0.3Mn0.4Co0.5 Ni3.8 (0 < x < 0.7 metal hydride alloys has been carried out using scanning electron microscopy (SEM, energy dispersive X ray analysis (EDX and X ray diffraction analysis (XRD. The substitution of La with Pr changed the grain structure from equiaxial to columnar. The relative atomic ratio of rare earth to (Al, Mn, Co, Ni in the matrix phase was 1:5 (LaNi5-type structure. Magnesium was detected only in two other phases present. A grey phase revealed 11 at.% Mg and the concentration ratios of other elements indicated the composition to be close to PrMgNi4. A dark phase was very heterogeneous in composition, attributed to the as-cast state of these alloys. The phases identified by XRD analysis in the La0.7Mg0.3Al0.3Mn0.4Co 0.5Ni3.8 alloy were: La(Ni,Co5, LaAl(Ni,Co4, La2(Ni,Co7 and AlMn(Ni,Co2. Praseodymium favors the formation of a phase with a PuNi3-type structure. Cobalt substituted Ni in the structures and yielded phases of the type: Pr(Ni,Co5 and Pr(Ni,Co3.

  19. Observations on infiltration of silicon carbide compacts with an aluminium alloy

    Science.gov (United States)

    Asthana, R.; Rohatgi, P. K.

    1992-01-01

    The melt infiltration of ceramic particulates permits an opportunity to observe such fundamental materials phenomena as nucleation, dynamic wetting and growth in constrained environments. Experimental observations are presented on the infiltration behavior and matrix microstructures that form when porous compacts of platelet-shaped single crystals of alpha- (hexagonal) silicon carbide are infiltrated with a liquid 2014 Al alloy. The infiltration process involved counter gravity infiltration of suitably tamped and preheated compacts of silicon carbide platelets under an external pressure in a special pressure chamber for a set period, then by solidification of the infiltrant metal in the interstices of the bed at atmospheric pressure.

  20. Studies and research on the crack testing for brazed aluminium alloys specimens

    Science.gov (United States)

    Dimitescu, A.; Babiş, C.; Niţoi, D. F.; Radu, C.

    2017-08-01

    The scope of this paper is the identification of an optimum technological solution for brazing aluminum alloys using crack tested specimens. To obtain conclusive results, these tests are conducted on two sets of different specimens. Thus, we get two sets of data which we will compare. These tests are part of the standardized series of tests required by the ASME standards. These are called exfoliation tests. They are used to determine where the crack occurs: in the base material or in the filler material. Thus, we can determine whether the cracking is cohesive or adhesive.

  1. Comparison of accelerated SCC tests performed on the aluminium alloy 2024-T651

    Energy Technology Data Exchange (ETDEWEB)

    Braun, R. (Deutsche Forschungsanstalt fuer Luft- und Raumfahrt, Inst. fuer Werkstoff-Forschung, Koeln (Germany))

    1992-09-01

    The stress corrosion cracking (SCC) behaviour of plates of the Al-Cu-Si-Mn-Mg alloy 2014-T651 was investigated in short transverse direction performing various accelerated tests. Corrosive media used were: aqueous 3.5% NaCl solution, an aqueous solution of 2% NaCl + 0.5% Na[sub 2]CrO[sub 4] at pH = 3 (according to LN 65666), and substitute ocean water according to ASTM D1141. C-ring and tensile specimens were loaded under constant deformation, constant load and slow strain rate conditions. Alternate immersion tests in 3.5% NaCl solution clearly indicate the low SCC resistance of the alloy 2014-T651 in short transverse direction. Under continuous immersion conditions the acidified 2% NaCl solution containing chromate is an appropriate synthetic environment, while neutral 3.5% NaCl solution does not promote severe stress corrosion cracking. The SCC susceptibility of 2014-T651 is also observed in slow strain rate tests using substitute ocean water as well as acidified 2% NaCl solution inhibited by chromate. In 3.5% NaCl solution the evaluation of slow strain rate data is complicated by pre-exposure effects. (orig.).

  2. Determination of the activation energy in a cast aluminium alloy by TEM and DSC

    Energy Technology Data Exchange (ETDEWEB)

    Ovono Ovono, D. [Laboratoire Roberval, University of Technology of Compiegne, 60205 Compiegne (France)]. E-mail: delavand.ovono-ovono@utc.fr; Guillot, I. [Centre d' Etudes de Chimie Metallurgie, UPR2801 CNRS, 94407 Vitry-sur-Seine (France); Massinon, D. [Fonderie Montupet, 60181 Nogent-sur-Oise (France)

    2007-04-25

    The precipitation behaviour and microstructure development of the A319 alloy during ageing were investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM and STEM). During T5 treatment, {theta}' precipitates with an average size of about 18 nm were observed by TEM. The precipitate sizes increased with ageing temperature and attained an average size of 107 nm. In addition, there was a linear relationship between precipitate growth temperature and the cube of the precipitate size. This indicates that precipitate growth of the A319 alloy belongs to a thermal activated process of the Arrhenius type. The activation energy for the precipitate growth was calculated to be 140.4 {+-} 13.3 kJ/mol. However, under continuous heating conditions, the activation energy for the precipitate growth obtained by Kissinger plot was determined to be 119.5 {+-} 8.3 kJ/mol. Allowing for experimental error, both values are comparable and are related to the diffusion of Cu and/or Si in Al.

  3. Advanced characterization techniques in understanding the roles of nickel in enhancing strength and toughness of submerged arc welding high strength low alloy steel multiple pass welds in the as-welded condition

    Science.gov (United States)

    Sham, Kin-Ling

    Striving for higher strength along with higher toughness is a constant goal in material properties. Even though nickel is known as an effective alloying element in improving the resistance of a steel to impact fracture, it is not fully understood how nickel enhances toughness. It was the goal of this work to assist and further the understanding of how nickel enhanced toughness and maintained strength in particular for high strength low alloy (HSLA) steel submerged arc welding multiple pass welds in the as-welded condition. Using advanced analytical techniques such as electron backscatter diffraction, x-ray diffraction, electron microprobe, differential scanning calorimetry, and thermodynamic modeling software, the effect of nickel was studied with nickel varying from one to five wt. pct. in increments of one wt. pct. in a specific HSLA steel submerged arc welding multiple pass weldment. The test matrix of five different nickel compositions in the as-welded and stress-relieved condition was to meet the targeted mechanical properties with a yield strength greater than or equal to 85 ksi, a ultimate tensile strength greater than or equal to 105 ksi, and a nil ductility temperature less than or equal to -140 degrees F. Mechanical testing demonstrated that nickel content of three wt. pct and greater in the as-welded condition fulfilled the targeted mechanical properties. Therefore, one, three, and five wt. pct. nickel in the as-welded condition was further studied to determine the effect of nickel on primary solidification mode, nickel solute segregation, dendrite thickness, phase transformation temperatures, effective ferrite grain size, dislocation density and strain, grain misorientation distribution, and precipitates. From one to five wt. pct nickel content in the as-welded condition, the primary solidification was shown to change from primary delta-ferrite to primary austenite. The nickel partitioning coefficient increased and dendrite/cellular thickness was

  4. On the melt infiltration of copper coated silicon carbide with an aluminium alloy

    Science.gov (United States)

    Asthana, R.; Rohatgi, P. K.

    1992-01-01

    Pressure-assisted infiltration of porous compacts of Cu coated and uncoated single crystals of platelet shaped alpha (hexagonal) SiC was used to study infiltration dynamics and particulate wettability with a 2014 Al alloy. The infiltration lengths were measured for a range of experimental variables which included infiltration pressure, infiltration time, and SiC size. A threshold pressure (P(th)) for flow initiation through compacts was identified from an analysis of infiltration data; P(th) decreased while penetration lengths increased with increasing SiC size (more fundamentally, due to changes in interparticle pore size) and with increasing infiltration times. Cu coated SiC led to lower P(th) and 60-80 percent larger penetration lengths compared to uncoated SiC under identical processing conditions.

  5. Effects of welding parameters on the mechanical properties of inert gas welded 6063 Aluminium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ertan, Taner [MAKO Corporation (Turkey); Uguz, Agah [Uludag Univ. (Turkey). Mechnical Engineering Dept.; Ertan, Rukiye

    2012-07-01

    The influence of welding parameters, namely welding current and gas flow rate, on the mechanical properties of Gas Tungsten Arc Welding (GTAW) and Shielded Metal Arc Welding (SMAW) welded 6063 Aluminum alloy (AA 6063) has been investigated. In order to study the effect of the welding current and gas flow rate, microstructural examination, hardness measurements and room temperature tensile tests have been carried out. The experimental results show that the mechanical properties of GTAW welded joints have better mechanical properties than those of SMAW welded joints. Increasing the welding current appeared to have a beneficial effect on the mechanical properties. However, either increasing or decreasing the gas flow rate resulted in a decrease of hardness and tensile strength. It was also found that, the highest strength was obtained in GTAW welded samples at 220 A and 15 l/min gas flow rate.

  6. RETRACTED ARTICLE: Comparison on grain refinement efficiency of peritectic and eutectic alloying elements on pure aluminium

    Science.gov (United States)

    Haghayeghi, R.; Kapranos, P.

    2014-07-01

    The work investigated the grain refining efficiency of peritectic forming solutes as well as eutectic solutes on pure Al. Significant grain refinement for peritectic and small refinement for the eutectic elements were achieved and the mechanisms of refinement were studied. In order to investigate the grain structure and solidification phenomena for each set of alloys, a TP-1 test, as well as thermal analysis, was performed and back scattered images were used to analyze the phases that may contribute to the grain refinement. It appears that the significant grain refinement of peritectic elements is due to the formation of in-situ properitectic particles and their appropriate constitutional undercooling. The results suggest that the availability of potent nuclei and exogenous particles play major roles in the grain refinement efficiency. However, in the case of eutectic elements only segregation power contributes to refinement whilst the availability of potent nuclei is of paramount importance.

  7. Experimental investigation of cavitation fracture at very high strain rates in superplastic aluminium alloy matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Higashi, Kenji (Dept. of Mechanical Systems Engineering, Coll. of Engineering, Univ. of Osaka (Japan)); Mabuchi, Mamoru (National Industrial Research, Inst. of Nagoya (Japan))

    1994-03-31

    The level and rate of cavitation with superplastic strain were investigated for a powder metallurgically processed 20 vol.% Si[sub 3]N[sub 4p]-6061 composite (where the subscript p denotes particulate) and a mechanically alloyed 15 vol.% SiC[sub p]-IN9021 composite, in which large superplastic elongations of more than 500% were found at very high strain rates of 2 s[sup -1] and 5 s[sup -1] respectively. Cavities initiated at the poles of particulate reinforcements and parallel to the applied stress direction within initial small strains, and their subsequent growth and coalescence invariably leads to premature failure. Also, cavity growth seems to be plasticity controlled. It is concluded that cavitation in superplastically deformed Si[sub 3]N[sub 4p]-6061 and SiC[sub p]-IN9021 composites is very low, owing to the accommodation process to relieve the stress constraints from interfacial sliding by the presence of the liquid phase at interfaces at optimum superplastic temperatures. (orig.)

  8. Study of process parameters on aluminium foam formation in the Al-6Si-3Mg alloy

    Directory of Open Access Journals (Sweden)

    J. Juarez-Hernandez

    2014-04-01

    Full Text Available The aim of this research was to study the process parameters that promote foam formation by injecting N2 into Al-6Si-3Mg wt % molten alloy with silicon carbide particles additions (SiC. An experimental design was proposed, in which the contents of SiC particles were 0, 10, 30 and 50 wt %, and the overheating was defined as ΔT= TF - TL , where TL is the liquidus temperature and was determined by the cooling curve method and the foaming temperatures were selected as TF at 630, 610, 580 and 570 °C. Flow and pressure of air blow were constant, 2,0 lt/min and 4,0 atm, respectively. The foam formation was possible only under two experimental conditions, 10 wt % SiC at ΔT > 12 °C and 30 wt % SiC at ΔT > 10 °C. The foams obtained under these conditions were stable, while with other conditions of experiments, bubble coallesence occurred. Finally, it was concluded that the foam formation occurred by SiC contents lower than 30 wt % SiC and temperatures slightly above the liquidus.

  9. Market Opportunity of Some Aluminium Silicon Alloys Materials through Changing the Casting Process

    Directory of Open Access Journals (Sweden)

    Delfim SOARES

    2012-08-01

    Full Text Available Fatigue is considered to be the most common mechanism by which engineering components fail, and it accounts for at least 90% of all service failures attributed to mechanical causes. Mechanical properties (tensile strength, tensile strain, Young modulus, etc as well as fatigue properties (fatigue life are very dependent on casting method. The most direct effects of casting techniques are on the metallurgical microstructure that bounds the mechanical properties. One of the important variables affected by the casting technique is the cooling rate which is well known to strongly restrict the microstructure. In the present research has been done a comparison of fatigue properties of two aluminum silicon alloys obtained by two casting techniques. It was observed that the fatigue life is increasing with 24% for Al12Si and 31% for AL18Si by using centrifugal casting process instead of gravity casting. This increasing in fatigue life means that a component tailored from materials obtained by centrifugal casting will stay longer in service. It was made an estimation of the time required to recover the costs of technology in order to use the centrifuge process that will allow to obtain materials with improved properties. The amortization can be achieved by using two different marketing techniques: through the release of the product at the old price and with much longer life of the component which means "same price - longer life", or increasing price, by highlighting new product performance which means "higher price - higher properties".

  10. Investigation of Corrosion Behaviour of Aluminium Alloy Subjected to Laser Shock Peening without a Protective Coating

    Directory of Open Access Journals (Sweden)

    U. Trdan

    2015-01-01

    Full Text Available The effect of shock waves and strain hardening of laser shock peening without protective coating (LSPwC on alloy AA 6082-T651 was investigated. Analysis of residual stresses confirmed high compression in the near surface layer due to the ultrahigh plastic strains and strain rates induced by multiple laser shock waves. Corrosion tests in a chloride environment were carried out to determine resistance to localised attack, which was also verified on SEM/EDS. OCP transients confirmed an improved condition, that is, a more positive and stable potential after LSPwC treatment. Moreover, polarisation resistance of the LSPwC treated specimen was by a factor of 25 higher compared to the untreated specimen. Analysis of voltammograms confirmed an improved enhanced region of passivity and significantly smaller anodic current density of the LSPwC specimen compared to the untreated one. Through SEM, reduction of pitting attack at the LSPwC specimen surface was confirmed, despite its increased roughness.

  11. Effect of zinc addition on the performance of aluminium alloy sacrificial anode for marine application

    Science.gov (United States)

    Khan, Bharvez; Rosli, M. U.; Jahidi, H.; Ishak, Muhammad Ikman; Zakaria, M. S.; Jamalludin, Mohd Riduan; Khor, C. Y.; Faizal, W. M.; Rahim, W. M.; Nawi, M. A. M.

    2017-09-01

    In this work, the effect of zinc addition on the performance of aluminum-based sacrificial anode in seawater was investigated. The parameters used in assessing the performance of the cast anodes are anodic efficiency, protection efficiency and polarized potential. The content of zinc in the anodes was varied after die casting. The alloys produced were tested as sacrificial anode for the protection of mild steel for marine application at room temperature. Factors such as reactivity of zinc particles in the seawater, corrosion activity during the period of experiment, pH of seawater and the electronegativity potential of zinc were collected for analysis. Overall findings shows addition of zinc increases rate of corrosion to the sacrificial anode and the protection offered by the sacrificial anodes measured and collected in PIT shows the seawater react to sacrificial anode and no porosity reaction between the anodes. The microstructure showed the intermetallic structures of β-phase which breakdown the alumina passive film, thus enhancing the anode efficiency.

  12. Experimental and Numerical Study of Needle Peening Effects in Aluminium Alloy 2024-T3 Sheets

    Science.gov (United States)

    Mendez Romero, Julio Alberto

    Montreal as part of previous shot peening research. Saturation tests were done to determine the deflection at saturation for different peening parameters. The specimen deflection was measured using the standard Almen gauge used as part of routinary process control. Due to the aluminium magnetic incompatibility with the Almen gauge, the deformed specimen profile was measured using a Coordinate Measuring Machine (CMM). Repeatability of the process was demonstrated and the deflection at saturation, as well as the saturation time, was obtained. The indentation diameters created by impacts for different operating pressures were measured using microscopic photography. It was determined that the specimen deformation, as well as the indentation diameter, is larger when the operating pressure increases. Treatment of the test samples using the same peening parameters resulted in a variable indentation diameter. This is explained by the velocity variations detected during the equipment characterization. The added value that needle peening could provide to existing peening techniques is that, in principle, uniformity in the indentation diameters is easier to achieve as all impacts are normal and there is no loss of energy due to media interaction. The last experimental test was to determine the induced residual stress by means of X-ray Diffraction (XRD) for one specimen at saturation. An FE model heavily inspired by previous shot peening modeling was developed to simulate needle peening. The parameters obtained during the characterization of the equipment were taken as boundary conditions. Initially, the case of a single impacts was studied. Good accordance between the simulated and the average experimental indentation diameters was obtained, except for the lowest pressure studied. The overestimation of the indentation diameter could stem from the method used to measure the simulated diameter. Coverage estimation, and therefore indentation diameters remain an open line of research in

  13. Behaviour and fatigue damage study of cast aluminium alloys; Etude du comportement et de l'endommagement en fatigue d'alliages d'aluminium de fonderie

    Energy Technology Data Exchange (ETDEWEB)

    Barlas, B.

    2004-02-15

    This study is aimed at determining the influence of chemical composition and heat treatment of cast aluminium alloys Al-Si-Cu-Mg on mechanical behaviour and fatigue life of structures. The industrial frame of this study concerns cylinder-heads of high efficiency diesel engines, for Renault and Montupet companies. The experimental means involved in this work are as well microscopic (TEM, microhardness, image analysis), mechanical (LCF and aniso-thermal tests, macro-hardness) and numerical (simulation of the stability of the hardening phases, behaviour and damage model identification, cylinder-head life time calculation). The link between micro and macro approaches is provided by the means of an internal microscopic variable representing thermal aging through coarsening of the precipitates and implemented into the macroscopic model. (author)

  14. Design and operation of an aluminium alloy tank using doped Na3AlH6 in kg scale for hydrogen storage

    Science.gov (United States)

    Urbanczyk, R.; Peinecke, K.; Meggouh, M.; Minne, P.; Peil, S.; Bathen, D.; Felderhoff, M.

    2016-08-01

    In this publication the authors present an aluminium alloy tank for hydrogen storage using 1921 g of Na3AlH6 doped with 4 mol% of TiCl3 and 8 mol% of activated carbon. The tank and the heat exchangers are manufactured by extrusion moulding of Al-Mg-Si based alloys. EN AW 6082 T6 alloy is used for the tank and a specifically developed alloy with a composition similar to EN AW 6060 T6 is used for the heat exchangers. The three heat exchangers have a corrugated profile to enhance the surface area for heat transfer. The doped complex hydride Na3AlH6 is densified to a powder density of 0.62 g cm-3. The hydrogenation experiments are carried out at 2.5 MPa. During one of the dehydrogenation experiments approximately 38 g of hydrogen is released, accounting for gravimetric hydrogen density of 2.0 mass-%. With this tank 15 hydrogenation and 16 dehydrogenation tests are carried out.

  15. Recovery in aluminium

    DEFF Research Database (Denmark)

    Gundlach, Carsten

    2006-01-01

    In the present thesis the development of a unique experimental method for volume characterisation of individual embedded crystallites down to a radius of 150 nm is presented. This method is applied to in-situ studies of recovery in aluminium. The method is an extension of 3DXRD microscopy, an X...... by the combined use of X-ray micro focusing optics, new scanning algorithms and the use of foils. The ratio of foil thickness to crystallite size should be at least 10 such that the central ones are situated in a bulk environment. To avoid thermal drifts, gold reference markers are deposited onto the sample...... are represented as strings. To identify the strings a combination of a 5D connected component type algorithm and multi-peak fitting was found to be superior. The first use of the method was a study of recovery of a deformed aluminium alloy (AA1050). The aluminium alloy was deformed by cold rolling to a thickness...

  16. Effect of Al–5Ti–1B grain refiner on the microstructure, mechanical properties and acoustic emission characteristics of Al5052 aluminium alloy

    Directory of Open Access Journals (Sweden)

    Amulya Bihari Pattnaik

    2015-04-01

    Full Text Available In the present investigation, the effect of Al–5Ti–1B grain refiner on the microstructure, mechanical properties and acoustic emission characteristics of Al 5052 aluminium alloy have been studied. Microstructural analysis showed the presence of primary α solid solution. No Al–Mg phase was found to be formed due to the presence of magnesium in the solid solution. The results indicated that the addition of Al–5Ti–1B grain refiner into the alloy caused a significant improvement in ultimate tensile strength (UTS and elongation values from 114 MPa and 7.8% to 185 MPa and 18% respectively. The main mechanisms behind this improvement were found to be due to the grain refinement during solidification and segregation of Ti at primary α grain boundaries. Acoustic emission (AE results indicated that intensity of AE signals increased with increase in Al–5Ti–1B master alloy content, which had been attributed to the combined effect of dislocation motion and grain refinement. The field emission scanning electron microscopy (FESEM and energy dispersive X-ray (EDX analysis were used to study the microstructure and fracture surfaces of the samples.

  17. The influence of heat treatment on strain hardening and strain-rate sensitivity of aluminium alloys for aerospace; Influencia del tratamiento termico sobre el endurecimiento por deformacion y por velocidad dedeformacion en aleaciones de aluminio para aplicaciones aeronauticas

    Energy Technology Data Exchange (ETDEWEB)

    Piris, N. M.; Badia, J. M.; Antoranz, J. M.; Tarin, P.

    2004-07-01

    The importance of aluminium sheet forming in aero spatial industry makes it necessary to study those parameters that control the behaviour of material during the process. Tensile properties, strain hardening exponent n and strain rate sensitivity m in 7075 aluminium alloys have been studied to relate forming behaviour with control parameters. Tests on O, W, and T6 tempers have been performed, to determine the influence of heat treating. Finally, both longitudinal and long transverse directions tensile specimens have been obtained to analyze the anisotropy. (Author) 9 refs.

  18. Extraction spectrophotometric determination of vanadium in natural waters and aluminium alloys using pyridyl azo resorcinol (PAR) and iodo-nitro-tetrazolium chloride (INT).

    Science.gov (United States)

    Gavazov, K; Simeonova, Z; Alexandrov, A

    2000-06-30

    Extraction-spectrophotometric methods are developed for the determination of vanadium content in natural waters and aluminium alloys. They are based on the formation and subsequent extraction into chloroform of the ternary ion association complex of V(V) with PAR and INT in the presence of CDTA and NH(4)F as masking agents. Optimum pH range of the reaction is 5.5-7.5. Maximum absorbance of the extracted complex is at 560 nm. The method for determination of V(V) in drinking waters can be successfully applied at a concentration level of 3 ppb and higher without additional pre-concentration. Among studied more than 30 foreign ions potentially present in natural waters only Ca(II) can interfere. It is removed by precipitation as CaF(2) and filtration. A 40-fold excess of V(IV) does not interfere with determination of V(V) and can also be determined indirectly (after oxidation to V(V)). The proposed method is applied to analysis of model mixtures as well as to the analysis of tap and mineral waters. Beer's law is obeyed for up to 15 mug of V(V) in 40 ml aqueous phase. The accuracy and precision are reasonable. The RSD is in the range 6.5-23.2% for determination of 6.3 ppb V(V). The procedure for analysis of aluminium alloys differs from the procedure for analysis of waters by the order of introduction of the reagents. The macrocomponent does not interfere and is not separated. Mg, Mn, Cu, Zn, Fe, Cr, Ti and Zr do not interfere. A 25-fold excess of Ni interferes. The method is tested in the analysis of reference standards containing 0.005 and 0.007% V, respectively. The RSD is 1.4%.

  19. Simulation calculations for the positron annihilation in aluminium alloys for the study of the segregate formation; Simulationsrechnungen zur Positronenannihilation in Aluminiumlegierungen zur Untersuchung der Ausscheidungsbildung

    Energy Technology Data Exchange (ETDEWEB)

    Korff, Bjoern

    2010-11-29

    Highly solid aluminium alloys owe their properties to small, finely distributed segregations of alloy atoms. For the better understanding of the temperature treatment, which is required in order to control the segregate formation, it is important, to determine informations on the first early stages from few atoms. In the positron-annihilation spectroscopy (PAS) positrons are trapped in the vacancies of a solid and yield at their annihilation with surrounding electrons informations from their direct environment. because the formation of segregates requires a diffusion of the extraneous atoms by means of the vacancies, the PAS represents one of the few examination methods, by which already the formation of smallest segregations can be observed. By the comparison of measurement quantities of the PAS with simulations for different possible arrangements of extraneous atoms around the vacancy the atomic environment of the vacancy can be identified. In order to make this possible also in aluminium alloys, in which the number of the possible defect types is relatively large, a good description of the measurement values by the simulation is especially important. In the framework of this thesis the program AB2D was developed, by which the Doppler shift of the annihilation radiation can be determined. Contrarily to already existing approaches here valence-electron wave functions are used, which were calculated with the program ABINIT. By this way the main uncertainty by the description of the valence electrons in atomic superposition is cancelled. Because ABINIT is based on pseudopotentials, the projector augmented-wave method is used in order to describe the higher momenta of the electrons near the nuclei more realistically. With AB2D simulations for vacancy-extraneous-atom complexes and segregation phases in the alloy systems Al-Cu, Al-Mg-Cu, and Al-Mg-Si were performed. A comparison with measurements on samples, which were only few minutes stored at room temperature

  20. Low Cycle Mechanical and Fatigue Properties of AlZnMgCu Alloy

    Directory of Open Access Journals (Sweden)

    Pysz S.

    2016-03-01

    Full Text Available The article presents the analysis of properties of the high-strength AlZnMgCu (abbr AlZn aluminium alloy and estimates possibilities of its application for responsible structures with reduced weight as an alternative to iron alloy castings. The aim of the conducted studies was to develop and select the best heat treatment regime for a 7xx casting alloy based on high-strength materials for plastic working from the 7xxx series. For analysis, wrought AlZnMgCu alloy (7075 was selected. Its potential of the estimated as-cast mechanical properties indicates a broad spectrum of possible applications for automotive parts and in the armaments industry. The resulting tensile and fatigue properties support the thesis adopted, while the design works further confirm these assumptions.

  1. Effect of Tool Geometry and Welding Speed on Mechanical Properties and Microstructure of Friction Stir Welded Joints of Aluminium Alloys AA6082-T6

    Directory of Open Access Journals (Sweden)

    Patil Hiralal Subhash

    2014-12-01

    Full Text Available Friction stir welding is a solid state innovative joining technique, widely being used for joining aluminium alloys in aerospace, marine automotive and many other applications of commercial importance. The welding parameters and tool pin profile play a major role in deciding the weld quality. In this paper, an attempt has been made to understand the influences of welding speed and pin profile of the tool on friction stir welded joints of AA6082-T6 alloy. Three different tool pin profiles (tapered cylindrical four flutes, triangular and hexagonal have been used to fabricate the joints at different welding speeds in the range of 30 to 74 mm/min. Microhardness (HV and tensile tests performed at room temperature were used to evaluate the mechanical properties of the joints. In order to analyse the microstructural evolution of the material, the weld’s cross-sections were observed optically and SEM observations were made of the fracture surfaces. From this investigation it is found that the hexagonal tool pin profile produces mechanically sound and metallurgically defect free welds compared to other tool pin profiles.

  2. Quality Index of the AlSi7Mg0.3 Aluminium Casting Alloy Depending on the Heat Treatment Parameters

    Directory of Open Access Journals (Sweden)

    Czekaj E.

    2016-09-01

    Full Text Available Issues connected with high quality casting alloys are important for responsible construction elements working in hard conditions. Traditionally, the quality of aluminium casting alloy refers to such microstructure properties as the presence of inclusions and intermetallic phases or porosity. At present, in most cases, Quality index refers to the level of mechanical properties – especially strength parameters, e.g.: UTS, YS, HB, E (Young’s Modulus, K1c (stress intensity factor. Quality indexes are often presented as a function of density. However, generally it is known, that operating durability of construction elements depends both on the strength and plastic of the material. Therefore, for several years now, in specialist literature, the concept of quality index (QI was present, combines these two important qualities of construction material. The work presents the results of QI research for casting hypoeutectic silumin type EN AC-42100 (EN AC-AlSi7Mg0.3, depending on different variants of heat treatment, including jet cooling during solution treatment.

  3. Benefit of wider gap at brazing aluminium alloys to stainless steels in the air using the flux containing zinc

    Energy Technology Data Exchange (ETDEWEB)

    Ikeshoji, T.T.; Liu, S.; Suzumura, A.; Yamazaki, T. [Tokyo Institute of Technology (Japan)

    2007-07-01

    The brazing of aluminum alloys to stainless steel was conducted using the aluminum-silicon brazing filler in the air under the existence of the flux. Aluminum alloys and stainless steel easily form the strong oxide layers on the surface and they are the obstacle to accomplish their dissimilar brazing joint in the air. To remove those oxide layers, the water soluble active corrosion chloride flux including zinc chloride was pasted. In this experiment, Zn simultaneously diffused fast in the aluminum bulk. The EDX mapping showed the diffusion of Zn into Al alloys, on the other hand silicon was condensed in the residual molten brazing filler. The fast isothermal solidification from the Al alloys surface before the breakage of the oxide film on the stainless surface is considered the obstacle of brazing them in the air. The wetting time of the stainless steel surface using the flux with zinc and the aluminum-silicon brazing filler was measured. The numerical simulations on the Fickian diffusion of the Si into aluminum alloys is also conducted to estimate the isothermal solidification time from the Al alloys' surface. Combining the results of the wetting time and the isothermal solidification simulations, the gap width required for accomplishment of the brazing Al alloys and stainless steel was proposed. (orig.)

  4. Study of the uniform corrosion of an aluminium alloy used for the fuel cladding of the Jules Horowitz experimental reactor; Etude de la corrosion uniforme d'un alliage d'aluminium utilise comme gainage du combustible nucleaire du reacteur experimental Jules Horowitz

    Energy Technology Data Exchange (ETDEWEB)

    Wintergerst, M. [CEA Saclay, Dept. des Materiaux pour le Nucleaire (DEN/DANS/DMN/SEMI), 91 - Gif-sur-Yvette (France)

    2008-07-01

    For the Jules Horowitz new material testing reactor, an aluminium base alloy, AlFeNi, will be used for the cladding of the fuel plates. Taking into account the thermal properties of the alloy and of its oxide, the corrosion of the fuel cans presents many problems. The aim of this thesis is to provide a growing kinetic of the oxide layer at the surface of the AlFeNi fuel can in order to predict the life time of fuel element. Thus the mechanism of degradation of the cladding will be describe in order to integrate the different parameters of the operating reactor. (A.L.B.)

  5. Effects of as-cast and wrought Cobalt-Chrome-Molybdenum and Titanium-Aluminium-Vanadium alloys on cytokine gene expression and protein secretion in J774A.1 macrophages

    DEFF Research Database (Denmark)

    Jakobsen, Stig Storgaard; Larsen, Agnete; Stoltenberg, Meredin

    2007-01-01

    to the metal implant and wear-products. The aim of the present study was to compare surfaces of as-cast and wrought Cobalt-Chrome-Molybdenum (CoCrMo) alloys and Titanium-Aluminium-Vanadium (TiAlV) alloy when incubated with mouse macrophage J774A.1 cell cultures. Changes in pro- and anti-inflammatory cytokines...... transcription, the chemokine MCP-1 secretion, and M-CSF secretion by 77%, 36%, and 62%, respectively. Furthermore, we found that reducing surface roughness did not affect this reduction. The results suggest that as-cast CoCrMo alloy is more inert than wrought CoCrMo and wrought TiAlV alloys and could prove...

  6. Electron Conditioning of Technical Aluminium Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Le Pimpec, F

    2004-09-02

    The effect of electron conditioning on commercially aluminium alloys 1100 and 6063 were investigated. Contrary to the assumption that electron conditioning, if performed long enough, can reduce and stabilize the SEY to low values (= 1.3, value of many pure elements [1]), the SEY of aluminium did not go lower than 1.8. In fact, it reincreases with continued electron exposure dose.

  7. Investigation of the Wear and Hardness Behaviour of Aluminium Alloy Coated Using the Powder Flame Spraying Method

    Directory of Open Access Journals (Sweden)

    Nurullah KIRATLI

    2009-03-01

    Full Text Available In this study, the wear behavior of aluminum alloy AL 5754 ( Etial 53 coated with powders of 10Al-Cu alloy (RotoTec® 19850 and 15Cr7Fe-Ni alloy (RotoTec® 19985 using powder flame spraying method has been investigated. To avoid thermal expansions between substrate and coating materials, Ni-Al RotoTec® 51000 was used as binding material. The wear test was performed on a pin-on-disc test apparatus. As an abrasive material, a SiC, 800 sandpaper was used. The wear tests of coated materials were carried out at room temperature and at 1.0m/s sliding speed with 0.35 and 0.70MPa pressures. To characterize coated specimens, they have been examined with optical microscope. As a result, it is found that the both coating materials have improved wear resistance.

  8. Investigation of the T4 and T6 heat treatment cycles of semi-solid processed aluminium alloy A356

    CSIR Research Space (South Africa)

    Moller, H

    2008-01-01

    Full Text Available of the solution treatment time at 540 C from 6 hours to 1 hour does not alter the T4 or T6 tensile properties of the SSM processed A356 alloy. Slightly better impact properties are obtained with the shorter solution treatment. This could lead to time and energy...

  9. A Fundamental Approach to Developing Aluminium based Bulk Amorphous Alloys based on Stable Liquid Metal Structures and Electronic Equilibrium - 154041

    Science.gov (United States)

    2017-03-28

    whereby above the glass transition temperature they may be formed like plastics or regular ceramic glasses, hence these materials can be produced in...and its alloys are one of the most largely produced and recycled metals (second only to iron/steel). It is low cost, exceptionally light-weight and

  10. In Situ Synthesis of Al-Si-Cu Alloy During Brazing Process and Mechanical Property of Brazing Joint

    OpenAIRE

    LONG Wei-min; LU Quan-bin; He, Peng; XUE Song-bai; Wu, Ming-Fang; Xue, Peng

    2016-01-01

    The Al-Si-Cu alloy system is considered to be a promising choice of filler metal for aluminium alloys brazing due to its high strength and low melting point. The greatest obstacle is its lack of plastic forming ability and being difficult to be processed by conventional methods. This disadvantage is ascribed to the considerable amount of brittle CuAl2 intermetallic compound which forms when alloy composition is around the ternary eutectic point. In order to overcome this deficiency, authors o...

  11. Aluminium bridges, aluminium bridge decks

    NARCIS (Netherlands)

    Soetens, F.; Straalen, IJ.J. van

    2003-01-01

    Applications of aluminium have grown considerably in building and civil engineering the last decade. In building and civil engineering the increase of aluminium applications is due to various aspects like light weight, durability and maintenance, use of extrusions, and esthetics. The paper starts

  12. Effect of Welding Speed on Microstructure and Mechanical Properties due to The Deposition of Reinforcements on Friction Stir Welded Dissimilar Aluminium Alloys

    Directory of Open Access Journals (Sweden)

    Baridula Ravinder Reddy

    2017-01-01

    Full Text Available The strength of the welded joint obtained by solid state stir welding process was found to be improved as compared to fusion welding process. The deposition of reinforcements during friction stir welding process can further enhance the strength of the welded joint by locking the movement of grain boundaries. In the present study, the aluminium alloys AA2024 and AA7075 were welded effectively by depositing the multi-walled carbon nanotubes in to the stir zone. The mechanical properties and microstructures were studied by varying the traverse speed at constant rotational speed. The results show that rotating tool pin stirring action and heat input play an important role in controlling the grain size. The carbon nanotubes were found to be distributed uniformly at a welding speed (traverse speed of 80mm/min. This enhanced the mechanical properties of the welded joint. The microstructure and Electron dispersive X-ray analysis (EDX studies indicate that the deposition of carbon nanotubes in the stir zone was influenced by the traverse speed.

  13. Effect of Activation Function and Post Synaptic Potential on Response of Artificial Neural Network to Predict Frictional Resistance of Aluminium Alloy Sheets

    Science.gov (United States)

    Trzepiecinski, T.; Lemu, H. G.

    2017-11-01

    Many technological factors affect the friction phenomenon in sheet metal forming process. As a result, the determination of the analytical model describing the frictional resistance is very difficult. In this paper, a friction model was built based on the experimental results of strip drawing tests. Friction tests were carried out in order to determine the effect of surface and tool roughness parameters, the pressure force and mechanical parameters of the sheets on the value of coefficient of friction. The strip drawing friction tests were conducted on aluminium alloy sheets: AA5251-H14, AA5754-H14, AA5754-H18, AA5754-H24. The surface topography of the sheets was measured using Taylor Hobson Surtronic 3+ instrument. In order to describe complex relations between friction and factors influencing tribological conditions of sheet metal forming, the multilayer artificial network was built in Statistica Neural Network program. The effect of activation function and post synaptic potential function on the sensitivity of multilayer neural network to predict the friction coefficient value is presented. It has been found that the difference in the prediction of error of neural network for different approaches can reach 400%. So, the proper selection of activation and post synaptic potential functions is crucial in neural network modelling.

  14. Comparison of fatigue crack growth of riveted and bonded aircraft lap joints made of Aluminium alloy 2024-T3 substrates - A numerical study

    Science.gov (United States)

    Pitta, S.; Rojas, J. I.; Crespo, D.

    2017-05-01

    Aircraft lap joints play an important role in minimizing the operational cost of airlines. Hence, airlines pay more attention to these technologies to improve efficiency. Namely, a major time consuming and costly process is maintenance of aircraft between the flights, for instance, to detect early formation of cracks, monitoring crack growth, and fixing the corresponding parts with joints, if necessary. This work is focused on the study of repairs of cracked aluminium alloy (AA) 2024-T3 plates to regain their original strength; particularly, cracked AA 2024-T3 substrate plates repaired with doublers of AA 2024-T3 with two configurations (riveted and with adhesive bonding) are analysed. The fatigue life of the substrate plates with cracks of 1, 2, 5, 10 and 12.7mm is computed using Fracture Analysis 3D (FRANC3D) tool. The stress intensity factors for the repaired AA 2024-T3 plates are computed for different crack lengths and compared using commercial FEA tool ABAQUS. The results for the bonded repairs showed significantly lower stress intensity factors compared with the riveted repairs. This improves the overall fatigue life of the bonded joint.

  15. Recent Progress in High Strength Low Carbon Steels

    Directory of Open Access Journals (Sweden)

    Zrník J.

    2006-01-01

    Full Text Available Advanced High Strength (AHS steels, among them especially Dual Phase (DP steels, Transformation Induced Plasticity (TRIP steels, Complex Phase (CP steels, Partially Martensite (PM steels, feature promising results in the field. Their extraordinary mechanical properties can be tailored and adjusted by alloying and processing. The introduction of steels with a microstructure consisting at least of two different components has led to the enlargement of the strength level without a deterioration of ductility. Furthermore, the development of ultra fine-grained AHS steels and their service performance are reviewed and new techniques are introduced. Various projects have been devoted to develop new materials for flat and long steel products for structural applications. The main stream line is High Strength, in order to match the weight lightening requirements that concern the whole class of load bearing structures and/or steel components and one of the most investigated topics is grain refinement.

  16. Synergy of the Plastic Treatment HPT and Shot Peening in Aluminium Alloy Al-Mg-Mn-Sc-Zr

    Directory of Open Access Journals (Sweden)

    Stegliński M.

    2016-06-01

    Full Text Available An improvement in fatigue strength is one of the main factors enabling the use of high-durability Al-Mg-Mn-Sc-Zr alloys in functional components of mobile robots. As part of this study, a computer simulation was carried out using ANSYS LS-DYNA software that involved the hybridization of high pressure torsion (HPT and shot peening (SP forming processes. The numerical analysis was aimed at determining residual stresses and strains that affect the durability and stress characteristics of the analyzed Al alloy. Results of the study indicate that tensile stresses of σ = 300 MPa generated as a result of HPT are transformed into a beneficial stress of σ = 25 MPa resulting from plastic strains caused by SP surface treatment.

  17. Light-weight aluminium bridges and bridge decks. An overview of recent applications

    NARCIS (Netherlands)

    Maljaars, J.; Soetens, F.; Kluyver, D. de

    2008-01-01

    The last decades have shown a large increase in the application of aluminium alloys for light-weight bridges. For bridge construction, aluminium alloys have some specific advantages, but also some points of attention. This paper deals with some recent projects of aluminium bridges, and for these

  18. Solid state recycling of aluminium alloys via a porthole die hot extrusion process: Scaling up to production

    Science.gov (United States)

    Paraskevas, Dimos; Kellens, Karel; Deng, Yelin; Dewulf, Wim; Kampen, Carlos; Duflou, Joost R.

    2017-10-01

    Whereas industrial symbiosis has led to increased energy and resource efficiency in process industries, this concept has not yet been applied in discrete product manufacturing. Metal scrap is first conventionally recycled, for which substantial energy and resource efficiency losses have been reported. Recent research has however proven the feasibility of `meltless' recycling of light metal scrap, yielding a first glimpse of potential industrial symbiosis. Various solid state recycling techniques (such as recycling via hot extrusion or Spark Plasma Sintering) have been proposed for scrap consolidation directly into bulk products or semis by physical disruption and dispersion of the oxide surface film by imposing significant plastic and shear strain. Solid State Recycling (SSR) methods can omit substantial material losses as they bypass the metallurgical recycling step. In this context the case of direct production of bulk aluminium profiles via hot extrusion at industrial scale is demonstrated within this paper. The extrusion tests were performed directly into the production line, highlighting the scaling up potentials and the industrial relevance of this research. A significant amount of machining chips were collected, chemically cleaned and cold compacted into chip based billets with ˜80% relative density. Afterwards the scrap consolidation was achieved by imposing significant plastic and shear deformation into the material during hot extrusion through a modified 2-porthole extrusion die-set. The production process sequence along with microstructural investigations and mechanical properties comparison of the cast based profile used as reference versus the chip based profile are presented.

  19. Comparative study on transverse shrinkage, mechanical and metallurgical properties of AA2219 aluminium weld joints prepared by gas tungsten arc and gas metal arc welding processes

    Directory of Open Access Journals (Sweden)

    S. Arunkumar

    2015-09-01

    Full Text Available Aluminium alloy AA2219 is a high strength alloy belonging to 2000 series. It has been widely used for aerospace applications, especially for construction of cryogenic fuel tank. However, arc welding of AA2219 material is very critical. The major problems that arise in arc welding of AA2219 are the adverse development of residual stresses and the re-distribution as well as dissolution of copper rich phase in the weld joint. These effects increase with increase in heat input. Thus, special attention was taken to especially thick section welding of AA2219-T87 aluminium alloy. Hence, the present work describes the 25 mm-thick AA2219-T87 aluminium alloy plate butt welded by GTAW and GMAW processes using multi-pass welding procedure in double V groove design. The transverse shrinkage, conventional mechanical and metallurgical properties of both the locations on weld joints were studied. It is observed that the fair copper rich cellular (CRC network is on Side-A of both the weldments. Further, it is noticed that, the severity of weld thermal cycle near to the fusion line of HAZ is reduced due to low heat input in GTAW process which results in non dissolution of copper rich phase. Based on the mechanical and metallurgical properties it is inferred that GTAW process is used to improve the aforementioned characteristics of weld joints in comparison to GMAW process.

  20. Experimental Study of the Micro-Arc Oxide Coating Effect on Thermal Properties of an Aluminium Alloy Piston Head

    Directory of Open Access Journals (Sweden)

    N.Yu. Dudareva

    2015-09-01

    Full Text Available The purpose of the present study is to investigate the influence of differently sized microarc oxidation coatings, applied to the bottom of pistons made with an Al-12Si-Mg-Cu-Ni alloy, on its thermal properties by simulating the operation of a real engine. This study is based on the premise that the alumina coating thickness affects the heat transfer and temperature distribution in the piston. The analysis of thermal properties of pistons and suggestions for the optimal thermal barrier coating thickness are presented.

  1. The ‘full sleeve’ application in the horizontal cold-chamber machine for pressure die casting of aluminium alloys

    Directory of Open Access Journals (Sweden)

    Z. Konopka

    2008-04-01

    Full Text Available The ‘full sleeve’ construction has been designed and accomplished in the horizontal cold-chamber pressure die casting machine. Main part of this solution is a counter plunger placed in a movable die half which allows for full filling of the shot sleeve and precisely fixes the metal quantity needed for casting. The purpose of this new construction solution is mainly the reduction of the casting porosity caused by air entrapment and the improvement of both castability and accuracy of the die cavity reproduction. For such a redesigned machine there have been performed examinations consisting in pressure casting of AlSi9Cu alloy (EN AC-46000 at varying plunger velocity in the second stage of injection and varying intensification pressure. The alloy castability (the die filling ability has been measured for each parameter setting. For the purpose of comparison, similar measurements have been performed also for the conventional system without a counter plunger. The castability examination has been done by means of a specially designed die with an impression of a trial casting of variable wall thickness. The experiments have been held according to the assumed factor design 22, what allowed for determining the mathematical models describing the influence of die filling parameters on the castability and the die cavity reproduction level. Both alternatives of the experiment confirmed the positive influence of plunger velocity and intensification pressure increase on the improvement of castability, the measure of the latter being the filled length of the impression. Applying of the new ‘full sleeve’ solution has improved castability for each experiment by about 20% as compared with conventional alternative. Castability in the ‘full sleeve’ system has been increased even for low values of plunger velocity and intensification pressure. For both alternative systems the influence of plunger velocity has been found, as an average, by four times

  2. Circular economy: To be or not to be in a closed product loop? A Life Cycle Assessment of aluminium cans with inclusion of alloying elements

    DEFF Research Database (Denmark)

    Niero, Monia; Olsen, Stig Irving

    2016-01-01

    to a temporal interval of five years. Different aluminium packaging scrap sources were considered: mixed packaging aluminium scrap and used beverage can scrap. The outcomes of the mass balance were used to quantify the amount of Mn and primary Al that needs to be reintegrated in each scenario according...

  3. Effect of tool shape and welding parameters on mechanical properties and microstructure of dissimilar friction stir welded aluminium alloys

    Directory of Open Access Journals (Sweden)

    Chetan Aneja

    2016-07-01

    Full Text Available In the present experimental study, dissimilar aluminum alloy AA5083 and AA6082 were friction stir welded by varying tool shape, welding speed and rotary speed of the tool in order to investigate the effect of varying tool shape and welding parameters on the mechanical properties as well as microstructure. The friction stir welding (FSW process parameters have great influence on heat input per unit length of weld. The outcomes of experimental study prove that mechanical properties increases with decreasing welding speed. Furthermore mechanical properties were also found to improve as the rotary speed increases and the same phenomenon was found to happen while using straight cylindrical threaded pin profile tool. The microstructure of the dissimilar joints revealed that at low welding speeds, the improved material mixing was observed. The similar phenomenon was found to happen at higher rotational speeds using straight cylindrical threaded tool.

  4. Comparison between diffraction contrast tomography and high-energy diffraction microscopy on a slightly deformed aluminium alloy

    Directory of Open Access Journals (Sweden)

    Loïc Renversade

    2016-01-01

    Full Text Available The grain structure of an Al–0.3 wt%Mn alloy deformed to 1% strain was reconstructed using diffraction contrast tomography (DCT and high-energy diffraction microscopy (HEDM. 14 equally spaced HEDM layers were acquired and their exact location within the DCT volume was determined using a generic algorithm minimizing a function of the local disorientations between the two data sets. The microstructures were then compared in terms of the mean crystal orientations and shapes of the grains. The comparison shows that DCT can detect subgrain boundaries with disorientations as low as 1° and that HEDM and DCT grain boundaries are on average 4 µm apart from each other. The results are important for studies targeting the determination of grain volume. For the case of a polycrystal with an average grain size of about 100 µm, a relative deviation of about ≤10% was found between the two techniques.

  5. Parameter Design in Fusion Welding of AA 6061 Aluminium Alloy using Desirability Grey Relational Analysis (DGRA) Method

    Science.gov (United States)

    Adalarasan, R.; Santhanakumar, M.

    2015-01-01

    In the present work, yield strength, ultimate strength and micro-hardness of the lap joints formed with Al 6061 alloy sheets by using the processes of Tungsten Inert Gas (TIG) welding and Metal Inert Gas (MIG) welding were studied for various combinations of the welding parameters. The parameters taken for study include welding current, voltage, welding speed and inert gas flow rate. Taguchi's L9 orthogonal array was used to conduct the experiments and an integrated technique of desirability grey relational analysis was disclosed for optimizing the welding parameters. The ignored robustness in desirability approach is compensated by the grey relational approach to predict the optimal setting of input parameters for the TIG and MIG welding processes which were validated through the confirmation experiments.

  6. Residual stresses, defects and fatigue cycling in friction stir butt welds in 5383-H321 and 5083-H321 aluminium alloys

    Energy Technology Data Exchange (ETDEWEB)

    James, M.N.; Bradley, G.R. [Mechanical and Marine Engineering, Univ. of Plymouth, Plymouth (United Kingdom); Hattingh, D.G. [Mechanical Engineering, PE Technikon, Port Elizabeth (South Africa); Hughes, D.J.; Webster, P.J. [FaME38, ILL-ESRF, Grenoble (France)

    2003-07-01

    This paper presents results from a substantial investigation of residual stresses and defects associated with single pass and double pass friction stir welds in 5083-H321 and 5383-H321 aluminium alloys. The residual stress part of the paper summarises data on their as-welded magnitude and plate-to-plate variation, together with their modification during applied bending fatigue loading corresponding to cyclic lives of 10{sup 5} and 10{sup 7} cycles. Results indicate fairly low initial peak tensile stresses both parallel with, and perpendicular to, the weld run. Peak tensile stresses occur just outside the tool shoulder with values typically in the range 0-30 MPa. Peak compressive stresses have much higher magnitudes (typically in the range -50 MPa to -140 MPa) and occur at distances of up to 40 mm from the weld centreline. Significant plate-to-plate variability in residual stress magnitudes exists, and fatigue cycling can raise peak tensile stresses by as much as a factor of four (to around 80 MPa). This has significant potential influence on fatigue life prediction. The paper also presents data on the occurrence of partial-fusion defects (PFD's or so-called 'kissing bonds' or 'onion-skin' defects) as a function of tool travel speed (in the range 80-200 mm/min), and their influence on fatigue life. Results indicate that PFD's can sometimes be associated with crack initiation, but that their major effect is more likely to appear when levels of plastic deformation are high, i.e. during relatively fast fatigue crack growth or during fast fracture. (orig.)

  7. The corrosion protection of AA2024-T3 aluminium alloy by leaching of lithium-containing salts from organic coatings.

    Science.gov (United States)

    Visser, Peter; Liu, Yanwen; Zhou, Xiaorong; Hashimoto, Teruo; Thompson, George E; Lyon, Stuart B; van der Ven, Leendert G J; Mol, Arjan J M C; Terryn, Herman A

    2015-01-01

    Lithium carbonate and lithium oxalate were incorporated as leachable corrosion inhibitors in model organic coatings for the protection of AA2024-T3. The coated samples were artificially damaged with a scribe. It was found that the lithium-salts are able to leach from the organic coating and form a protective layer in the scribe on AA2024-T3 under neutral salt spray conditions. The present paper shows the first observation and analysis of these corrosion protective layers, generated from lithium-salt loaded organic coatings. The scribed areas were examined by scanning and transmission electron microscopy before and after neutral salt spray exposure (ASTM-B117). The protective layers typically consist of three different layered regions, including a relatively dense layer near the alloy substrate, a porous middle layer and a flake-shaped outer layer, with lithium uniformly distributed throughout all three layers. Scanning electron microscopy and white light interferometry surface roughness measurements demonstrate that the formation of the layer occurs rapidly and, therefore provides an effective inhibition mechanism. Based on the observation of this work, a mechanism is proposed for the formation of these protective layers.

  8. Aluminium alloyed iron-silicide/silicon solar cells: A simple approach for low cost environmental-friendly photovoltaic technology.

    Science.gov (United States)

    Kumar Dalapati, Goutam; Masudy-Panah, Saeid; Kumar, Avishek; Cheh Tan, Cheng; Ru Tan, Hui; Chi, Dongzhi

    2015-12-03

    This work demonstrates the fabrication of silicide/silicon based solar cell towards the development of low cost and environmental friendly photovoltaic technology. A heterostructure solar cells using metallic alpha phase (α-phase) aluminum alloyed iron silicide (FeSi(Al)) on n-type silicon is fabricated with an efficiency of 0.8%. The fabricated device has an open circuit voltage and fill-factor of 240 mV and 60%, respectively. Performance of the device was improved by about 7 fold to 5.1% through the interface engineering. The α-phase FeSi(Al)/silicon solar cell devices have promising photovoltaic characteristic with an open circuit voltage, short-circuit current and a fill factor (FF) of 425 mV, 18.5 mA/cm(2), and 64%, respectively. The significant improvement of α-phase FeSi(Al)/n-Si solar cells is due to the formation p(+-)n homojunction through the formation of re-grown crystalline silicon layer (~5-10 nm) at the silicide/silicon interface. Thickness of the regrown silicon layer is crucial for the silicide/silicon based photovoltaic devices. Performance of the α-FeSi(Al)/n-Si solar cells significantly depends on the thickness of α-FeSi(Al) layer and process temperature during the device fabrication. This study will open up new opportunities for the Si based photovoltaic technology using a simple, sustainable, and los cost method.

  9. Aluminium alloyed iron-silicide/silicon solar cells: A simple approach for low cost environmental-friendly photovoltaic technology

    Science.gov (United States)

    Kumar Dalapati, Goutam; Masudy-Panah, Saeid; Kumar, Avishek; Cheh Tan, Cheng; Ru Tan, Hui; Chi, Dongzhi

    2015-01-01

    This work demonstrates the fabrication of silicide/silicon based solar cell towards the development of low cost and environmental friendly photovoltaic technology. A heterostructure solar cells using metallic alpha phase (α-phase) aluminum alloyed iron silicide (FeSi(Al)) on n-type silicon is fabricated with an efficiency of 0.8%. The fabricated device has an open circuit voltage and fill-factor of 240 mV and 60%, respectively. Performance of the device was improved by about 7 fold to 5.1% through the interface engineering. The α-phase FeSi(Al)/silicon solar cell devices have promising photovoltaic characteristic with an open circuit voltage, short-circuit current and a fill factor (FF) of 425 mV, 18.5 mA/cm2, and 64%, respectively. The significant improvement of α-phase FeSi(Al)/n-Si solar cells is due to the formation p+−n homojunction through the formation of re-grown crystalline silicon layer (~5–10 nm) at the silicide/silicon interface. Thickness of the regrown silicon layer is crucial for the silicide/silicon based photovoltaic devices. Performance of the α-FeSi(Al)/n-Si solar cells significantly depends on the thickness of α-FeSi(Al) layer and process temperature during the device fabrication. This study will open up new opportunities for the Si based photovoltaic technology using a simple, sustainable, and los cost method. PMID:26632759

  10. ABRASION RESISTANCE ESTIMATION OF HIGH STRENGTH CONCRETE

    Directory of Open Access Journals (Sweden)

    Şemsi YAZICI

    2007-01-01

    Full Text Available This study gives the results of a laboratory investigation undertaken to determine the relationship between mechanical properties (compressive and flexural strengths and abrasion resistance of 65-85 MPa high strength concretes incorporating silica fume, fly ash and silica fume-fly ash mixtures as supplementary cementing materials. A series of six different concrete mixtures including a control high strength concrete mixture (C1, and five high strength concrete mixtures (C2, C3, C4, C5, C6 incorporating supplementary cementing materials, were manufactured. The compressive strength, flexural strength, and abrasion resistance were determined for each mixture at 28-days. Mathematical expressions were suggested to estimate the abrasion resistance of concrete regarding their compressive strength and flexural strength.

  11. Relation between feeding mechanisms and solidification mode in 380 aluminium alloy with different iron contents; Relacion entre los mecanismos de alimentacion y el modo de solidificacion en una aleacion de aluminio 380 con distintos contenidos de hierro

    Energy Technology Data Exchange (ETDEWEB)

    Tovio, D. O.; Gonzalez, A.C.; Mugica, G. W.; Cuyas, J. C.

    2003-07-01

    In the present work the effect of iron (0.15, 0.42 and 0.86%) content in feeding mechanisms for 380 aluminium alloy has been studied. The feeding capacity has been evaluated by a device that produces a barrier removable to allowing the movement of the inter dendritic liquid. The results show the flow of different quantity of liquid, it depends of the temperature of operating the device and of the iron content. For minimum and maximum iron content, the inter dendritic and bursts feeding mechanisms are fundamentally involved, for 0.42% of iron the feeding mechanisms was the inter dendritic. The authors establish this behavior by the solidification mode of alloy, which promotes the presence of particles of Si or plates of b-Al{sub 3}FeDi phase, in the inter dendritic channels and produce the different feeding mechanisms. (Author) 15 refs.

  12. Quantification of the impact of strontium on the solidification path of the aluminum-silicon-copper alloys using thermal analysis technique; Quantifizierung des Einflusses von Strontium auf den Erstarrungsweg der Aluminium-Silicium-Kupfer-Legierungen mit dem Thermoanalyseverfahren

    Energy Technology Data Exchange (ETDEWEB)

    Djurdjevic, Mile; Byczynski, Glenn [Nemak Europe, Dillingen (Germany); Schechowiak, Carola; Stieler, Hagen [Nemak Wernigerode (Germany); Pavlovic, Jelena [Magdeburg Univ. (Germany). Inst. fuer Fertigungstechnik und Qualitaetssicherung

    2009-07-01

    The impact of strontium on the solidification path of the AlSi6Cu4 aluminium alloy was examined. Strontium levels up to 210 ppm have been considered. The purpose of this study is: (i) to optimize the amount of strontium additions in AlSi6Cu4 melt in order to achieve the necessary degree of silicon modification and (ii) to observe the effects of strontium level on the other characteristic solidification temperatures of this alloy, with special emphasis on the nucleation temperature of copper rich phases. This investigation showed that a strontium level of approximately 140 ppm was sufficient to modify eutectic morphology of silicon in thermal analysis test samples. Increasing the strontium levels up to 210 ppm raises the nucleation temperature of copper rich phases, leading also to the higher area fraction of those phases. (orig.)

  13. Investigation of the aluminium-aluminium oxide reversible transformation as observed by hot stage electron microscopy.

    Science.gov (United States)

    Grove, C. A.; Judd, G.; Ansell, G. S.

    1972-01-01

    Thin foils of high purity aluminium and an Al-Al2O3 SAP type of alloy were oxidised in a specially designed hot stage specimen chamber in an electron microscope. Below 450 C, amorphous aluminium oxide formed on the foil surface and was first detectable at foil edges, holes, and pits. Islands of aluminium then nucleated in this amorphous oxide. The aluminium islands displayed either a lateral growth with eventual coalescence with other islands, or a reoxidation process which caused the islands to disappear. The aluminium island formation was determined to be related to the presence of the electron beam. A mechanism based upon electron charging due to the electron beam was proposed to explain the nucleation, growth, coalescence, disappearance, and geometry of the aluminium islands.

  14. Hydrogen diffusion into fatigue cracks of aluminium alloy 6013 in a corrosive environment; Wasserstoffeinlagerung an Ermuedungsrissen der Aluminiumlegierung 6013 unter korrosiver Umgebung

    Energy Technology Data Exchange (ETDEWEB)

    Lenk, Christian Alexander

    2009-08-13

    The author attempted a time-resolved detection of raised hydrogen concentrations in the plastic deformation region of fatigue cracks in an aluminium test piece deformed by cyclic stress in a corrosive environment. Mechanical material parameters like the crack propagation velocity under cyclic stress change dramatically in a corrosive environment. This is assumed to be caused by hydrogen diffusion, but so far there is no method that reliably measures additional hydrogen from the corrosive environment. For this reason, a special analytical configuration was set up which makes use of the thermal desorption method. First, chips with a thickness of about 20 micrometers are sawed out of the test specimen in high-vacuum conditions. The chips fall into a hot melting vessel in a UHV chamber, where the hydrogen contained in the chips is released. The resulting pressure increase is recorded by a mass spectrometer. A hydrogen profile of the test specimen is obtained by assigning the chip position to the signal. For the corrosive medium in which the test specimen is immersed during crack initiation, i.e. NaCl solution, heavy water was used. This makes it possible to distinguish between the hydrogen contained in a piece of technical aluminium alloy (AA6013) and the deuterium diffusing in from the corrosive fluid. The deuterium is found exclusively in the test piece volume in the strongly plastically deformed region surrounding the fatigue crack. (orig.) [German] Das Ziel der vorliegenden Arbeit besteht im ortsaufgeloesten Nachweis einer erhoehten Wasserstoffkonzentration im plastisch deformierten Bereich von Ermuedungsrissen einer unter korrosiver Umgebung zyklisch verformten Aluminiumprobe. Mechanische Materialparameter wie z.B. die Rissausbreitungsgeschwindigkeit unter zyklischer Belastung aendern sich drastisch in korrosiver Umgebung. Als Ursache fuer dieses Verhalten wird eine Eindiffusion von Wasserstoff vermutet, jedoch gibt es bisher keine Messung die den zusaetzlichen

  15. Durability improvement assessment in different high strength ...

    Indian Academy of Sciences (India)

    This paper provides an insight into a new biotechnological method based on calcite precipitation for achieving high strength bio-concrete durability. It is very clear that mineral precipitation has the potential to enhance construction material resistance towards degradation procedures. The appropriate microbial cell ...

  16. Effects of Process Conditions on the Mechanical Behavior of Aluminium Wrought Alloy EN AW-2219 (AlCu6Mn Additively Manufactured by Laser Beam Melting in Powder Bed

    Directory of Open Access Journals (Sweden)

    Michael Cornelius Hermann Karg

    2017-01-01

    Full Text Available Additive manufacturing is especially suitable for complex-shaped 3D parts with integrated and optimized functionality realized by filigree geometries. Such designs benefit from low safety factors in mechanical layout. This demands ductile materials that reduce stress peaks by predictable plastic deformation instead of failure. Al–Cu wrought alloys are established materials meeting this requirement. Additionally, they provide high specific strengths. As the designation “Wrought Alloys” implies, they are intended for manufacturing by hot or cold working. When cast or welded, they are prone to solidification cracks. Al–Si fillers can alleviate this, but impair ductility. Being closely related to welding, Laser Beam Melting in Powder Bed (LBM of Al–Cu wrought alloys like EN AW-2219 can be considered challenging. In LBM of aluminium alloys, only easily-weldable Al–Si casting alloys have succeeded commercially today. This article discusses the influences of boundary conditions during LBM of EN AW-2219 on sample porosity and tensile test results, supported by metallographic microsections and fractography. Load direction was varied relative to LBM build-up direction. T6 heat treatment was applied to half of the samples. Pronounced anisotropy was observed. Remarkably, elongation at break of T6 specimens loaded along the build-up direction exceeded the values from literature for conventionally manufactured EN AW-2219 by a factor of two.

  17. Impact toughness of high strength low alloy TMT reinforcement ...

    Indian Academy of Sciences (India)

    Unknown

    method requiring small investment, test specimens are of small size and simpler to machine (Wullaert 1970, 1974). The Charpy test data can be used to predict the perfor- mance of material in service condition. It reproduces the ductile to brittle transition of steel in about the same temperature range as it is actually observed ...

  18. High Strength, Nano-Structured Mg-Al-Zn Alloy

    Science.gov (United States)

    2011-01-01

    volume fraction and aspect ratio of the second phase in a composite, the Ramberg – Osgood equation can be used to describe the true strain, ε, during plastic...31 (2002) 912–915. [60] W. Ramberg , W.R. Osgood , NACA Technical Report, TN 902, 1943, p. 1. [61] E.O. Hall, Proc. Phys. Soc. (London) 64B (1951) 747

  19. Impact toughness of high strength low alloy TMT reinforcement ...

    Indian Academy of Sciences (India)

    ... of copper–molybdenum and copper–chromium rebars was 52 J. The lower toughness of phosphorus steel is attributed to solid solution strengthening and segregation of phosphorus to grain boundaries. Due to superior corrosion resistance, copper–phosphorus TMT rebar is a candidate material in the construction sector.

  20. Stress Corrosion Cracking of Certain Aluminum Alloys

    Science.gov (United States)

    Hasse, K. R.; Dorward, R. C.

    1983-01-01

    SC resistance of new high-strength alloys tested. Research report describes progress in continuing investigation of stress corrosion (SC) cracking of some aluminum alloys. Objective of program is comparing SC behavior of newer high-strength alloys with established SC-resistant alloy.

  1. Additively manufactured hierarchical stainless steels with high strength and ductility

    Science.gov (United States)

    Wang, Y. Morris; Voisin, Thomas; McKeown, Joseph T.; Ye, Jianchao; Calta, Nicholas P.; Li, Zan; Zeng, Zhi; Zhang, Yin; Chen, Wen; Roehling, Tien Tran; Ott, Ryan T.; Santala, Melissa K.; Depond, Philip J.; Matthews, Manyalibo J.; Hamza, Alex V.; Zhu, Ting

    2018-01-01

    Many traditional approaches for strengthening steels typically come at the expense of useful ductility, a dilemma known as strength-ductility trade-off. New metallurgical processing might offer the possibility of overcoming this. Here we report that austenitic 316L stainless steels additively manufactured via a laser powder-bed-fusion technique exhibit a combination of yield strength and tensile ductility that surpasses that of conventional 316L steels. High strength is attributed to solidification-enabled cellular structures, low-angle grain boundaries, and dislocations formed during manufacturing, while high uniform elongation correlates to a steady and progressive work-hardening mechanism regulated by a hierarchically heterogeneous microstructure, with length scales spanning nearly six orders of magnitude. In addition, solute segregation along cellular walls and low-angle grain boundaries can enhance dislocation pinning and promote twinning. This work demonstrates the potential of additive manufacturing to create alloys with unique microstructures and high performance for structural applications.

  2. New heat treatment process for advanced high-strength steels

    Science.gov (United States)

    Bublíková, D.; Jeníček, Š.; Vorel, I.; Mašek, B.

    2017-02-01

    Today’s advanced steels are required to possess high strength and ductility. It can be achieved by choosing an appropriate steel chemistry which has a substantial effect on the properties obtained by heat treatment. Mechanical properties influenced the presence of retained austenite in the final structure. Steels of this group typically require complicated heat treatment which places great demands on the equipment used. The present paper introduces new procedures aimed at simplifying the heat treatment of high-strength steels with the use of material-technological modelling. Four experimental steels were made and cast, whose main alloying additions were manganese, silicon, chromium, molybdenum and nickel. The steels were treated using the Q-P process with subsequent interrupted quenching. The resulting structure was a mixture of martensite and retained austenite. Strength levels of more than 2000 MPa combined with 10-15 % elongation were obtained. These properties thus offer potential for the manufacture of intricate closed-die forgings with a reduced weight. Intercritical annealing was obtained structure not only on the basis of martensite, but also with certain proportion of bainitic ferrite and retained austenite.

  3. VANADIUM ALLOYS

    Science.gov (United States)

    Smith, K.F.; Van Thyne, R.J.

    1959-05-12

    This patent deals with vanadium based ternary alloys useful as fuel element jackets. According to the invention the ternary vanadium alloys, prepared in an arc furnace, contain from 2.5 to 15% by weight titanium and from 0.5 to 10% by weight niobium. Characteristics of these alloys are good thermal conductivity, low neutron capture cross section, good corrosion resistance, good welding and fabricating properties, low expansion coefficient, and high strength.

  4. High Strength and High Modulus Electrospun Nanofibers

    OpenAIRE

    Jian Yao; Cees W. M. Bastiaansen; Ton Peijs

    2014-01-01

    Electrospinning is a rapidly growing polymer processing technology as it provides a viable and simple method to create ultra-fine continuous fibers. This paper presents an in-depth review of the mechanical properties of electrospun fibers and particularly focuses on methodologies to generate high strength and high modulus nanofibers. As such, it aims to provide some guidance to future research activities in the area of high performance electrospun fibers.

  5. Enhanced corrosion protection by microstructural control of aluminium brazing sheet

    NARCIS (Netherlands)

    Norouzi Afshar, F.

    2013-01-01

    Aluminium brazing sheet is a sandwich material made out of two aluminium alloys (AA4xxx/AA3xxx) and is widely used in automotive heat exchangers. One of the main performance criteria for heat exchanger units is the lifetime of the product. The lifetime of the heat exchanger units is determined by

  6. Pit nucleation on as-cast aluminiuim alloy AW-5083 in 0.01M NaCl

    Directory of Open Access Journals (Sweden)

    Dolić N.

    2011-01-01

    Full Text Available The use of aluminium alloys in a wide range of technical applications is related mostly to the two facts: they facilitate weight saving of final products (if compared to the steel and they are prone to spontaneous passivity due to the coherent surface oxide layer which impedes further reaction of aluminium with the environment. Among the commercial Al alloys, EN AW-5083 alloy is a representative non-heat treatable Al-Mg based alloy which possesses many interesting characteristics as a structural material, such as low price, moderately high strength, high formability in conjunction with superplasticity and good corrosion resistance in marine atmospheres. Aiming to enhance the knowledge of possible interactions of studied alloy EN AW-5083 in as-cast condition with chloride media, electrochemical measurements were used to follow the pitting behaviour in 0.01 M NaCl. The results of tests have shown that susceptibility of alloy to pitting corrosion is strongly influenced by the microstructural constituents of the alloy in as-cast condition.

  7. Influence of energy input in friction stir welding on structure evolution and mechanical behaviour of precipitation-hardening in aluminium alloys (AA2024-T351, AA6013-T6 and Al-Mg-Sc)

    Energy Technology Data Exchange (ETDEWEB)

    Weis Olea, Cesar Afonso [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Werkstofforschung

    2008-12-04

    Aluminium alloys AA2024 T351, AA6013 T6 and the recently developed Al-Mg-Sc for aircraft industry applications, which are usually considered difficult to weld by conventional fusion welding processes, demonstrate outstanding performance when joined by friction stir welding (FSW). The main feature of the process is to produce solid-state welds, where the maximum temperatures attained during the process are about 80 % that of the melting temperature of the base material. The process generates substantial plastic deformation, due to the solid-state stirring, and consequently creates a high dislocation density, which is a precursor to dynamic recrystallization, a metallurgical feature that characterizes the stir zone (weld centre). A relevant aspect considered, regarding precipitation-hardening aluminium alloys, is the deterioration of the mechanical properties in the weld zones, which are fundamentally attributed to changes in the characteristics of strengthening precipitates. Among the strengthening mechanisms acting in these aluminium alloys, the most important is basically dependent on the morphology, size and population of the precipitates. The thermal cycle and deformation generated during the FSW process alter the precipitation characteristics previously present in the base material. FSW input energy regulates the magnitude of the thermal cycle and the intensity of deformation taking place during the process, and it can be controlled by the welding parameters, affecting the precipitates evolution and consequently the mechanical properties of the joint. Nevertheless, there remains a lack of knowledge about the substructural evolution of these alloys during FSW, and its correlation with weld energy input and their respective mechanical properties, particularly for the Al-Mg-Sc alloy. The main objective of this work is to explain the micro and substructural evolution (emphasizing precipitates evolution) of AA2024- T351, AA6013-T6 and Al-Mg-Sc alloys in similar

  8. Influence of prior natural aging on the subsequent artificial aging response of aluminium alloy A356 with respective globular and dendritic microstructures

    CSIR Research Space (South Africa)

    Moller, H

    2011-01-01

    Full Text Available Alloy A356 is one of the most popular alloys used for semisolid metal forming. The heat treatment cycles that are currently applied to semisolid processed components are mostly those that are in use for dendritic casting alloys. The assumption has...

  9. Silica passivation layer on aluminium brazing sheets

    OpenAIRE

    Schäuble, Kathrin

    2010-01-01

    Abstract The request for more efficient fuel economy to save raw materials and to reduce air pollution becomes more and more crucial in the automotive industry. To fulfil this demand by weight reduction, conventional materials such as steel and copper are replaced by light metals. Due to its beneficial material properties e. g. low density, high strength, good formability and high thermal conductivity, aluminium becomes a frequently used candidate. Particularly in the heat-exchanger industry ...

  10. Microstructurally Controlled Mechanical Properties of Al-Mg-Si Alloys for Warm Forming Applications

    NARCIS (Netherlands)

    Ghosh, M.

    2011-01-01

    Owing to their light weight and excellent corrosion resistance the use of aluminium alloys in automotive industries is increasing progressively. However, aluminium alloys remain mainly handicapped by poor room temperature formability compared to steel. Increasing temperature during forming, but

  11. High-strength mineralized collagen artificial bone

    Science.gov (United States)

    Qiu, Zhi-Ye; Tao, Chun-Sheng; Cui, Helen; Wang, Chang-Ming; Cui, Fu-Zhai

    2014-03-01

    Mineralized collagen (MC) is a biomimetic material that mimics natural bone matrix in terms of both chemical composition and microstructure. The biomimetic MC possesses good biocompatibility and osteogenic activity, and is capable of guiding bone regeneration as being used for bone defect repair. However, mechanical strength of existing MC artificial bone is too low to provide effective support at human load-bearing sites, so it can only be used for the repair at non-load-bearing sites, such as bone defect filling, bone graft augmentation, and so on. In the present study, a high strength MC artificial bone material was developed by using collagen as the template for the biomimetic mineralization of the calcium phosphate, and then followed by a cold compression molding process with a certain pressure. The appearance and density of the dense MC were similar to those of natural cortical bone, and the phase composition was in conformity with that of animal's cortical bone demonstrated by XRD. Mechanical properties were tested and results showed that the compressive strength was comparable to human cortical bone, while the compressive modulus was as low as human cancellous bone. Such high strength was able to provide effective mechanical support for bone defect repair at human load-bearing sites, and the low compressive modulus can help avoid stress shielding in the application of bone regeneration. Both in vitro cell experiments and in vivo implantation assay demonstrated good biocompatibility of the material, and in vivo stability evaluation indicated that this high-strength MC artificial bone could provide long-term effective mechanical support at human load-bearing sites.

  12. Effect of ageing on the mechanical behaviour of aluminium alloy AA2009 reinforced with SIC particles; Influencia del estado de envejecimiento en el comportamiento mecanico de una aleacion de aluminio AA2009 reforzada con particulas de SiC

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigo, P.; Poza, P.; Utrilla, M. v.; Urena, A.

    2005-07-01

    A study of the mechanical behaviour of an aluminium matrix composite (AA2009) reinforced with 15 volume percent of SiC particles has been carried out. The ageing kinetic for this material has been evaluated at two different ageing temperatures (170 and 190 degree centigree). The hardness peaks for the two different precipitation sequences existing in the matrix alloy have been identified. The mechanical behaviour of the composite was also evaluated for the different thermal conditions (as-received and aged). This research has been completed with the identification of the fracture mechanisms by means of observation with scanning electron microscopy (SEM) both of the fracture surface and transversal sections of them. In addition, transmission electron microscopy (TEM) of the treated composites has been used to determine the influence of the SiC particles on the distribution of strengthening phases precipitated in the matrix. (Author) 14 refs.

  13. Aluminium in human sweat.

    Science.gov (United States)

    Minshall, Clare; Nadal, Jodie; Exley, Christopher

    2014-01-01

    It is of burgeoning importance that the human body burden of aluminium is understood and is measured. There are surprisingly few data to describe human excretion of systemic aluminium and almost no reliable data which relate to aluminium in sweat. We have measured the aluminium content of sweat in 20 healthy volunteers following mild exercise. The concentration of aluminium ranged from 329 to 5329μg/L. These data equate to a daily excretion of between 234 and 7192μg aluminium and they strongly suggest that perspiration is the major route of excretion of systemic aluminium in humans. Copyright © 2013 Elsevier GmbH. All rights reserved.

  14. IEC 61267: Feasibility of type 1100 aluminium and a copper/aluminium combination for RQA beam qualities.

    Science.gov (United States)

    Leong, David L; Rainford, Louise; Zhao, Wei; Brennan, Patrick C

    2016-01-01

    In the course of performance acceptance testing, benchmarking or quality control of X-ray imaging systems, it is sometimes necessary to harden the X-ray beam spectrum. IEC 61267 specifies materials and methods to accomplish beam hardening and, unfortunately, requires the use of 99.9% pure aluminium (Alloy 1190) for the RQA beam quality, which is expensive and difficult to obtain. Less expensive and more readily available filters, such as Alloy 1100 (99.0% pure) aluminium and copper/aluminium combinations, have been used clinically to produce RQA series without rigorous scientific investigation to support their use. In this paper, simulation and experimental methods are developed to determine the differences in beam quality using Alloy 1190 and Alloy 1100. Additional simulation investigated copper/aluminium combinations to produce RQA5 and outputs from this simulation are verified with laboratory tests using different filter samples. The results of the study demonstrate that although Alloy 1100 produces a harder beam spectrum compared to Alloy 1190, it is a reasonable substitute. A combination filter of 0.5 mm copper and 2 mm aluminium produced a spectrum closer to that of Alloy 1190 than Alloy 1100 with the added benefits of lower exposures and lower batch variability. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  15. Advanced high strength steels for automotive industry

    Directory of Open Access Journals (Sweden)

    Galán, J.

    2012-04-01

    Full Text Available The car industry is facing pressure because of the growing demand for more fuel-efficient passenger cars. In order to limit energy consumption and air pollution the weight of the carbody has to be reduced. At the same time, high levels of safety have to be guaranteed. In this situation, the choice of material becomes a key decision in car design. As a response to the requirements of the automotive sector, high strength steels and advanced high strength steels have been developed by the steel industry. These modern steel grades offer an excellent balance of low cost, light weight and mechanical properties.

    La industria del automóvil se enfrenta a una creciente demanda de vehículos de pasajeros más eficientes. Con el fin de disminuir el consumo de energía y la contaminación ambiental, el peso del vehículo tiene que ser reducido, al mismo tiempo que se garantizan altos niveles de seguridad. Ante esta situación, la elección de material se convierte en una decisión crucial en el diseño del vehículo. Como respuesta a las necesidades del sector automovilístico, nuevos aceros avanzados y de alta resistencia, han sido desarrollados por la industria siderúrgica. Dichos tipos de acero ofrecen un excelente equilibrio de precio, peso y propiedades mecánicas.

  16. Corrosion issues of powder coated AA6060 aluminium profiles

    DEFF Research Database (Denmark)

    Din, Rameez Ud; Valgarðsson, Smári; Jellesen, Morten Stendahl

    2015-01-01

    In this study detailed microstructural investigation of the reason for unexpected corrosion of powder coated aluminium alloy AA6060 windows profiles has been performed. The results from this study reveals that the failure of the window profiles was originated from the surface defects present...... on the extruded AA6060 aluminium profile after metallurgical process prior to powder coating. Surface defects are produced due to intermetallic particles in the alloy, which disturb the flow during the extrusion process. The corrosion mechanism leading to the failure of the powder coated AA6060 aluminium profiles...

  17. Time Dependent Development of Aluminium Pitting Corrosion

    Directory of Open Access Journals (Sweden)

    Robert E. Melchers

    2015-01-01

    Full Text Available Aluminium alloys have excellent corrosion resistance to a wide variety of exposure conditions. Usually they corrode by pitting rather than by uniform corrosion. For infrastructure applications long-term corrosion behaviour is of interest. The relatively limited long-term pitting data that is available shows that maximum and average pit depths do not follow the power law function as conventionally assumed but tend to follow a bimodal trend with exposure time. This is consistent with the bimodal trends observed previously for corrosion mass loss of aluminium alloys. Most likely it is the result of the accumulation of corrosion products over the pit mouths, leading to the gradual development of localised anoxic conditions within pits. In turn this permits the development within the pits of anoxic autocatalytic conditions, consistent with established theory for pitting corrosion of aluminium. It also is consistent with observations of hydrogen evolution from pits. The implications of this for practical applications are discussed.

  18. High strength air-dried aerogels

    Science.gov (United States)

    Coronado, Paul R.; Satcher, Jr., Joe H.

    2012-11-06

    A method for the preparation of high strength air-dried organic aerogels. The method involves the sol-gel polymerization of organic gel precursors, such as resorcinol with formaldehyde (RF) in aqueous solvents with R/C ratios greater than about 1000 and R/F ratios less than about 1:2.1. Using a procedure analogous to the preparation of resorcinol-formaldehyde (RF) aerogels, this approach generates wet gels that can be air dried at ambient temperatures and pressures. The method significantly reduces the time and/or energy required to produce a dried aerogel compared to conventional methods using either supercritical solvent extraction. The air dried gel exhibits typically less than 5% shrinkage.

  19. The influence of the surface distribution of Al{sub 6}(MnFe) intermetallic on the electrochemical response of AA5083 aluminium alloy in NaCl solutions

    Energy Technology Data Exchange (ETDEWEB)

    Bethencourt, M.; Botana, F.J.; Calvino, J.J.; Perez, J.; Rodriguez, M.A. [Cadiz Univ. (Spain). Dept. de Ciencia de los Materiales e Ingenieria Metalurgica y Quimica Inorganica; Marcos, M.

    1998-12-31

    In this paper the behaviour against pitting corrosion of different samples of AA5083 aluminium alloy has been studied. A correlation between the microstructure of the samples and their susceptibility to pitting has been established. Metallographic analysis combined with SEM and EDS techniques have allowed us to detect three intermetallic compounds in the samples. The particle size distribution and surface density of each intermetallic phase have been evaluated for the three AA5083 alloy samples coming from different suppliers. Significant differences in the microstructure of the three samples have been found. Full immersion test carried out in 3.5% aerated aqueous solutions showed that pitting starts at the locations of the Al{sub 6}(MnFe) intermetallic particles. As a consequence of this, the samples with higher Al{sub 6}(MnFe) content showed a higher pit density on its surface. The results of cyclic polarisation tests showed also a good correlation with the microstructural parameters. (orig.) 11 refs.

  20. Human exposure to aluminium.

    Science.gov (United States)

    Exley, Christopher

    2013-10-01

    Human activities have circumvented the efficient geochemical cycling of aluminium within the lithosphere and therewith opened a door, which was previously only ajar, onto the biotic cycle to instigate and promote the accumulation of aluminium in biota and especially humans. Neither these relatively recent activities nor the entry of aluminium into the living cycle are showing any signs of abating and it is thus now imperative that we understand as fully as possible how humans are exposed to aluminium and the future consequences of a burgeoning exposure and body burden. The aluminium age is upon us and there is now an urgent need to understand how to live safely and effectively with aluminium.

  1. AE Monitoring of Diamond Turned Rapidly Soldified Aluminium 443

    Science.gov (United States)

    Onwuka, G.; Abou-El-Hossein, K.; Mkoko, Z.

    2017-05-01

    The fast replacement of conventional aluminium with rapidly solidified aluminium alloys has become a noticeable trend in the current manufacturing industries involved in the production of optics and optical molding inserts. This is as a result of the improved performance and durability of rapidly solidified aluminium alloys when compared to conventional aluminium. Melt spinning process is vital for manufacturing rapidly solidified aluminium alloys like RSA 905, RSA 6061 and RSA 443 which are common in the industries today. RSA 443 is a newly developed alloy with few research findings and huge research potential. There is no available literature focused on monitoring the machining of RSA 443 alloys. In this research, Acoustic Emission sensing technique was applied to monitor the single point diamond turning of RSA 443 on an ultrahigh precision lathe machine. The machining process was carried out after careful selection of feed, speed and depths of cut. The monitoring process was achieved with a high sampling data acquisition system using different tools while concurrent measurement of the surface roughness and tool wear were initiated after covering a total feed distance of 13km. An increasing trend of raw AE spikes and peak to peak signal were observed with an increase in the surface roughness and tool wear values. Hence, acoustic emission sensing technique proves to be an effective monitoring method for the machining of RSA 443 alloy.

  2. A vector valued Stefan problem from aluminium industry

    NARCIS (Netherlands)

    F.J. Vermolen; C. Vuik

    1998-01-01

    textabstractDissolution of stoichiometric multi-component particles in ternary alloys is an important process occurring during the heat treatment of as-cast aluminium alloys prior to hot-extrusion. A mathematical model is proposed to describe such a process. In this model an equation is given to

  3. Cold forming of aluminium - State of the art

    DEFF Research Database (Denmark)

    Bay, Niels

    1997-01-01

    The ongoing development of cold forging technology has been manifested lately by the increasing application of components in cold forged aluminium alloys. Applying precipitation hardening alloys components with great strength/weight ratio can be produced with a strength comparable to that of unal...

  4. Aluminium leaching from utensils--a kinetic study.

    Science.gov (United States)

    Rao, K S; Rao, G V

    1995-02-01

    Aluminium leaching from low quality (Al-Pb alloy) and high quality (Al-Mn alloy) utensils by water has been studied under different conditions of pH, boiling time and NaF concentrations. High fluoride concentration and low pH were found to enhance the leaching of Al more from low quality utensils than from high quality utensils.

  5. Natural Aging Behaviour Of AA6111 Aluminium | Quainoo | Ghana ...

    African Journals Online (AJOL)

    In the continuing drive for weight reduction in new automobile designs, the 6000 series aluminium alloys have emerged as the most promising age-hardenable body sheet material in the automotive industry. Currently, one of the body sheet alloys used for its combination of strength and formability in the (T4) temper is ...

  6. Advanced High Strength Steel in Auto Industry: an Overview

    Directory of Open Access Journals (Sweden)

    N. Baluch

    2014-08-01

    Full Text Available The world’s most common alloy, steel, is the material of choice when it comes to making products as diverse as oil rigs to cars and planes to skyscrapers, simply because of its functionality, adaptability, machine-ability and strength. Newly developed grades of Advanced High Strength Steel (AHSS significantly outperform competing materials for current and future automotive applications. This is a direct result of steel’s performance flexibility, as well as of its many benefits including low cost, weight reduction capability, safety attributes, reduced greenhouse gas emissions and superior recyclability. To improve crash worthiness and fuel economy, the automotive industry is, increasingly, using AHSS. Today, and in the future, automotive manufacturers must reduce the overall weight of their cars. The most cost-efficient way to do this is with AHSS. However, there are several parameters that decide which of the AHSS types to be used; the most important parameters are derived from the geometrical form of the component and the selection of forming and blanking methods. This paper describes the different types of AHSS, highlights their advantages for use in auto metal stampings, and discusses about the new challenges faced by stampers, particularly those serving the automotive industry.

  7. Modeling-Based Processing of Al-Li Alloys for Delamination Resistance Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Al-Li alloys are of interest for use in aerospace structures due to the desirable combination of high strength and low density. However, high strength Al-Li alloys...

  8. Application of Anodization Process for Cast Aluminium Surface Properties Enhancement

    Directory of Open Access Journals (Sweden)

    Włodarczyk-Fligier A.

    2016-09-01

    Full Text Available An huge interest is observed in last years in metal matrix composite, mostly light metal based, which have found their applications in many industry branches, among others in the aircraft industry, automotive-, and armaments ones, as well as in electrical engineering and electronics, where one of the most important issue is related to the corrosion resistance, especially on the surface layer of the used aluminium alloys. This elaboration presents the influence of ceramic phase on the corrosion resistance, quality of the surface layer its thickness and structure of an anodic layer formed on aluminium alloys. As test materials it was applied the aluminium alloys Al-Si-Cu and Al-Cu-Mg, for which heat treatment processes and corrosion tests were carried out. It was presented herein grindability test results and metallographic examination, as well. Hardness of the treated alloys with those ones subjected to corrosion process were compared.

  9. The study of the interaction at interfaces in MMC{sub p} and MMC{sub f} composite materials based on the aluminium alloys with SiC

    Energy Technology Data Exchange (ETDEWEB)

    Aksenov, A.A.; Belov, N.A.; Medvedeva, S.V. [Moscow Inst. of Steel and Alloys (Russian Federation)

    2002-07-01

    Using the Al-Si-C, Al-Mg-Si-C, Al-Cu-Si-C, and Al-Zn-Si-C phase diagrams, we studied the interaction between the components at interfaces in composite materials based on aluminum and its alloys of various composition with silicon, magnesium, copper, and zinc, which contain particles or fibers of silicon carbide. The formation of the Al{sub 4}C{sub 3} phase depends on the silicon content in the matrix alloy and on the holding temperature; this phase can be revealed using the nonequilibrium polythermal sections constructed in the present study. (orig.)

  10. Variation of the residual resistivity ratio of the aluminium stabiliser for the Compact Muon Solenoid (CMS) conductor under dynamic stress at 4.2 K

    CERN Document Server

    Seeber, B; Flükiger, R; Horváth, I L; Neuenschwander, J

    2000-01-01

    Superconducting detector magnets are frequently manufactured with aluminium stabilised NbTi cables. Actually there are two new detectors in fabrication, namely the CMS and the ATLAS detector at CERN in Geneva, Switzerland. For the CMS project we have studied the variation of the residual resistivity ratio (RRR) of high purity aluminium (HPA) (99.998%) under dynamic mechanical stress, applied at 4.2 K, and in a transverse magnetic field of up to 6 T. This information is required for the design of the quench protection system. Because of the mechanical weakness of HPA, a high strength aluminium (HSA) alloy reinforces the CMS-conductor. According to the specification for CMS, the conductor at maximum field is strained up to 0.15%. At this strain the HSA is still in the elastic regime, whereas the HPA is already deformed plastically. Applying a full stress cycle (e.g. loading and unloading of the magnet), the HPA is deformed first under tension and then under compression, resulting in a decrease of the RRR. For m...

  11. In Situ Synthesis of Al-Si-Cu Alloy During Brazing Process and Mechanical Property of Brazing Joint

    Directory of Open Access Journals (Sweden)

    LONG Wei-min

    2016-06-01

    Full Text Available The Al-Si-Cu alloy system is considered to be a promising choice of filler metal for aluminium alloys brazing due to its high strength and low melting point. The greatest obstacle is its lack of plastic forming ability and being difficult to be processed by conventional methods. This disadvantage is ascribed to the considerable amount of brittle CuAl2 intermetallic compound which forms when alloy composition is around the ternary eutectic point. In order to overcome this deficiency, authors of this article proposed to synthesize Al-Si-Cu filler metal by using in situ synthesis method, and the structure and properties of brazing joints were studied. The results show that AlSi alloy is used as the wrap layer, and CuAl alloy is used as the powder core in the composite brazing wire, the two alloys have similar melting points. The machinability of the composite brazing wire is much superior to the traditional Al-Si-Cu filler metal. During the induction brazing of 3A21 alloy, when using AlSi-CuAl composite filler wire, AlSi and CuAl alloys melt almost simultaneously, then after short time holding, Al-Si-Cu braze filler is obtained, the brazing seam has uniform composition and good bonding interface, also, the shearing strength of the brazing joints is higher than the joint brazed by conventional Al-Si-Cu filler metal.

  12. Tailored Aluminium based Coatings for Optical Appearance and Corrosion Resistance

    DEFF Research Database (Denmark)

    Aggerbeck, Martin

    potential differences in the microstructure, and protection from the network of the Al3Ti phases precipitated during the heat treatment. Laser surface cladding of aluminium containing up to 20 wt. % Ti6Al4V were studied focusing on the microstructure and the alkaline corrosion properties. Due......The current project investigated the possibility of designing aluminium based coatings focusing on the effect of composition and surface finish on the optical appearance and on the alkaline corrosion properties using titanium as the main alloying element. The main results and discussions...... with aluminium. Unfortunately, aluminium corrodes heavily in the alkaline environments known e.g. from a brush less car wash (> pH 12). Today nickel salt sealing is used to protect e.g. aluminium wheel rims, but an alternative is needed due to environmental and health reasons. Investigations using the previously...

  13. Effects of aluminium surface morphology and chemical modification on wettability

    DEFF Research Database (Denmark)

    Rahimi, Maral; Fojan, Peter; Gurevich, Leonid

    2014-01-01

    Aluminium alloys are some of the predominant metals in industrial applications such as production of heat exchangers, heat pumps. They have high heat conductivity coupled with a low specific weight. In cold working conditions, there is a risk of frost formation on the surface of aluminium...... of a monolayer of fluorinated silane, and a combination of those. The effect of these surface modification techniques on roughness and wettability of the aluminium surfaces was elucidated by ellipsometry, contact angle measurements and atomic force microscopy. We demonstrated that by employing different types...

  14. Microstructural characterization aluminium alloys from the addition of boron; Caracterizacao microestrutural de ligas de aluminio a partir da adicao de boro

    Energy Technology Data Exchange (ETDEWEB)

    Nunes, A.G.P.; Pipano, T.F.; Mota, M.A.; Mariano, N.A.; Ramos, E.C.T. [Universidade Federal de Alfenas (UNIFAL), Pocos de Caldas, MG (Brazil). Instituto de Ciencias e Tecnologia

    2014-07-01

    In the electrical industry, the aluminum becomes attractive because it has excellent characteristics for transmitting electricity. The liquid aluminum has in its composition transition elements (zirconium, titanium, vanadium and chromium) that interfere negatively on the quality of the product. The addition of aluminum-boron alloys have been used to remove transition metals through the formation of borides, enabling an increase in electrical conductivity. However, no detailed reports of reactions between boron, transition metals and primary aluminum engines. However, the objective is to determine the stoichiometric composition that enables an increase in electrical conductivity of an aluminum alloy. Samples with different concentrations of boron were characterized by optical emission spectrometry, electrical conductivity and X-ray diffraction. The addition of boron in excess reduces the time in the formation of borides, and enable an increase in electrical conductivity. (author)

  15. The strain-rate sensitivity of high-strength high-toughness steels.

    Energy Technology Data Exchange (ETDEWEB)

    Dilmore, M.F. (AFRL/MNMW, Eglin AFB, FL); Crenshaw, Thomas B.; Boyce, Brad Lee

    2006-01-01

    The present study examines the strain-rate sensitivity of four high strength, high-toughness alloys at strain rates ranging from 0.0002 s-1 to 200 s-1: Aermet 100, a modified 4340, modified HP9-4-20, and a recently developed Eglin AFB steel alloy, ES-1c. A refined dynamic servohydraulic method was used to perform tensile tests over this entire range. Each of these alloys exhibit only modest strain-rate sensitivity. Specifically, the strain-rate sensitivity exponent m, is found to be in the range of 0.004-0.007 depending on the alloy. This corresponds to a {approx}10% increase in the yield strength over the 7-orders of magnitude change in strain-rate. Interestingly, while three of the alloys showed a concominant {approx}3-10% drop in their ductility with increasing strain-rate, the ES1-c alloy actually exhibited a 25% increase in ductility with increasing strain-rate. Fractography suggests the possibility that at higher strain-rates ES-1c evolves towards a more ductile dimple fracture mode associated with microvoid coalescence.

  16. STRUCTURE, PHASE COMPOSITION AND PROPERTIES OF GAS-THERMAL COVERINGS OF MECHANICALLY ALLOYED THERMOREACTING COMPOSITE POWDERS OF NICKEL-ALUMINIUM SYSTEM

    Directory of Open Access Journals (Sweden)

    F. G. Lovshenko

    2015-01-01

    Full Text Available The presented results show that coverings from mechanically alloyed thermoreacting powders of system «nickel–aluminum» are nonequilibrium multiphase systems which basis represents solid solution of aluminum in nickel. It has the microcrystalline type of structure which is characterized by an advanced surface of borders of the grains and subgrains stabilized by nanodimensional inclusions of oxides and alyuminid. These coverings surpass by 1,2–1,6 times analogs in durability, hardness and wear resistance.

  17. Thermo-kinetic prediction of metastable and stable phase precipitation in Al–Zn–Mg series aluminium alloys during non-isothermal DSC analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lang, Peter, E-mail: pl404@cam.ac.uk [Department of Materials Science and Metallurgy, University of Cambridge, Charles Babbage Road 27, Cambridge CB3 0FS (United Kingdom); Wojcik, Tomasz [Institute of Materials Science and Technology, Vienna University of Technology, Favoritenstraße 9-11, Vienna 1040 (Austria); Povoden-Karadeniz, Erwin [Institute of Materials Science and Technology, Vienna University of Technology, Favoritenstraße 9-11, Vienna 1040 (Austria); Christian Doppler Laboratory “Early Stages of Precipitation”, Institute of Materials Science and Technology, Vienna University of Technology, Favoritenstraße 9-11, Vienna 1040 (Austria); Falahati, Ahmad [Institute of Materials Science and Technology, Vienna University of Technology, Favoritenstraße 9-11, Vienna 1040 (Austria); Kozeschnik, Ernst [Institute of Materials Science and Technology, Vienna University of Technology, Favoritenstraße 9-11, Vienna 1040 (Austria); Christian Doppler Laboratory “Early Stages of Precipitation”, Institute of Materials Science and Technology, Vienna University of Technology, Favoritenstraße 9-11, Vienna 1040 (Austria)

    2014-10-01

    Highlights: • Comparison of laboratory Al–Zn–Mg alloy to industrial Al 7xxx series. • Heat flow evolution during non-isothermal DSC analysis is calculated. • TEM investigations of laboratory Al–Zn–Mg alloy at three pronounced temperatures. • Simulation and modelling of precipitation sequence. • Calculation and prediction of heat flow curves of Al 7xxx series. - Abstract: The technological properties of heat treatable Al–Zn–Mg alloys originate in the morphology and distribution of metastable particles. Starting from the solution-annealed condition, this paper describes the precipitate evolution during non-isothermal temperature changes, namely continuous heating differential scanning calorimetry (DSC) analysis. The distribution and the morphology of the metastable and stable precipitates and the heat flow accompanying the precipitation process is investigated experimentally and calculated by numerical thermo-kinetic simulations. The computer simulation results of the sizes and distributions are confirmed by transmission electron microscopy (TEM). The theoretical background and the results of the investigations are discussed.

  18. ALUHAB — The Superior Aluminium Foam

    Science.gov (United States)

    Babcsan, N.; Beke, S.; Makk, P.; Soki, P.; Számel, Gy; Degischer, H. P.; Mokso, R.

    A new metal foaming technology has been developed to produce aluminum foams with controlled cell sizes, a wide range of alloy compositions, and attractive mechanical properties. ALUHAB aluminium foams are manufactured from a special foamable aluminium alloy containing ultrafine particles (80-3000 nm). The technology uses high temperature ultrasonication to homogeneously disperse the particles and thus create a stable, foamable aluminum melt. Oscillating gas injector (loud-nozzle) technology permits the injection of optimally sized bubbles into the melt that are independent of the injector orifice diameter. Using this direct gas injection method, bubble size is regulated by the frequency and the power of the ultrasound, producing uniform bubble sizes in the sub-millimeter range. The technology results in extremely stable metal foams which can be cast into complex forms and re-melted without loss of foam integrity. Processing methods and properties of the ALUHAB foams will be discussed.

  19. Controlled Precipitation Gaseous Cavities in Aluminium Castings

    Directory of Open Access Journals (Sweden)

    Roučka J.

    2015-12-01

    Full Text Available At thermal junctions of aluminium alloy castings and at points where risering proves to be difficult there appear internal or external shrinkages, which are both functionally and aesthetically inadmissible. Applying the Probat Fluss Mikro 100 agent, which is based on nano-oxides of aluminium, results in the appearance of a large amount of fine microscopic pores, which compensate for the shrinking of metal. Experimental tests with gravity die casting of AlSi8Cu3 and AlSi10Mg alloys have confirmed that the effect of the agent can be of advantage in foundry practice, leading to the production of castings without local concentrations of defects and without the appearance of shrinkages and macroscopic gas pores. Also, beneficial effect on the mechanical properties of the metal has been observed.

  20. Behaviour of high-strength concrete incorporating ground ...

    African Journals Online (AJOL)

    of tests were carried out on concrete incorporating Ground Granulated Blast Furnace Slag (GGBFS) of “Mittal steel Annaba” (Algeria) ... Keywords: High strength concrete- fillers- high-temperature- polypropylene fibres- Ground granulated. Furnace Slag ..... hybrid fibre reinforced high strength concrete after heat exposition ...