WorldWideScience

Sample records for high-starch agricultural effluents

  1. Biogas Production From Cassava Starch Effluent Using Microalgae As Biostabilisator

    Directory of Open Access Journals (Sweden)

    B. Budiyono

    2011-07-01

    Full Text Available The rapid growing of Indonesian population is emerging several critical national issues i.e. energy, food, environmental, water, transportation, as well as law and human right. As an agricultural country, Indonesia has abundant of biomass wastes such as agricultural wastes include the cassava starch wastes. The problem is that the effluent from cassava starch factories is released directly into the river before properly treatment. It has been a great source of pollution and has caused environmental problems to the nearby rural population. The possible alternative to solve the problem is by converting waste to energy biogas in the biodigester. The main problem of the biogas production of cassava starch effluent is acid forming-bacteria quickly produced acid resulting significantly in declining pH below the neutral pH and diminishing growth of methane bacteria. Hence, the only one of the method to cover this problem is by adding microalgae as biostabilisator of pH. Microalgae can also be used as purifier agent to absorb CO2.The general objective of this research project was to develop an integrated process of biogas production and purification from cassava starch effluent by using biostabilisator agent microalgae. This study has been focused on the used of urea, ruminant, yeast, microalgae, the treatment of gelled and ungelled feed for biogas production, pH control during biogas production using buffer Na2CO3, and feeding management in the semi-continuous process of biogas production. The result can be concluded as follows: i The biogas production increased after cassava starch effluent and yeast was added, ii Biogas production with microalgae and cassava starch effluent, yeast, ruminant bacteria, and urea were 726.43 ml/g total solid, iii Biogas production without  microalgae was 189 ml/g total solid.

  2. Preparation of high water-swelling agricultural starch hydrogels by 60Co γ-radiation grafting

    International Nuclear Information System (INIS)

    Wang Qingjun; Quan Yiwu; Chen Qingmin

    2003-01-01

    The starch grafted acrylic acid was used to synthesize water-swelling hydrogels by 60 Co γ-radiation grafting technique. With radiation dose of about 7 kGy, the crosslinking reagent amount of 0.001%-0.1%, the pH value 5-8 and the starch amount of 10%-30%, we can produce 600 times water-swelling hydrogels which are of high performance, low cost and suitable for agriculture

  3. Biogas Production Using Anaerobic Biodigester from Cassava Starch Effluent

    Directory of Open Access Journals (Sweden)

    S. Sunarso

    2010-12-01

    Full Text Available IKMs’ factory activity in Margoyoso produces liquid and solid wastes. The possible alternative was to use the liquid effluent as biogas raw material. This study focuses on the used of urea, ruminant, yeast, microalgae, the treatment of gelled and ungelled feed for biogas production, pH control during biogas production using buffer Na2CO3, and feeding management in the semi-continuous process of biogas production that perform at ambient temperature for 30 days. Ruminant bacteria, yeast, urea, and microalgae was added 10% (v/v, 0.08% (w/v, 0.04% (w/v, 50% (v/v of mixing solution volume, respectively. The pH of slurry was adjusted with range 6.8-7.2 and was measured daily and corrected when necessary with Na2CO3. The total biogas production was measured daily by the water displacement technique. Biogas production from the ungelling and gelling mixture of cassava starch effluent, yeast, ruminant bacteria, and urea were 726.43 ml/g total solid and 198 ml/g total solid. Biogas production from ungelling mixture without yeast was 58.6 ml/g total solid. Biogas production from ungelling mixture added by microalgae without yeast was 58.72 ml/g total solid and that with yeast was 189 ml/g total solid. Biogas production from ungelling mixture of cassava starch effluent, yeast, ruminant bacteria, and urea in semi-continuous process was 581.15 ml/g total solid. Adding of microalgae as nitrogen source did not give significant effect to biogas production. But adding of yeast as substrate activator was very helpful to accelerate biogas production. The biogas production increased after cassava starch effluent and yeast was added. Requirement of sodium carbonate (Na2CO3 to increase alkalinity or buffering capacity of fermenting solution depends on pH-value

  4. Microbiological Production of Surfactant from Agricultural Residuals for IOR Application

    Energy Technology Data Exchange (ETDEWEB)

    Bala, Greg Alan; Bruhn, Debby Fox; Fox, Sandra Lynn; Noah, Karl Scott; Thompson, David Neal

    2002-04-01

    Utilization of surfactants for improved oil recovery (IOR) is an accepted technique with high potential. However, technology application is frequently limited by cost. Biosurfactants (surface-active molecules produced by microorganisms) are not widely utilized in the petroleum industry due to high production costs associated with use of expensive substrates and inefficient product recovery methods. The economics of biosurfactant production could be significantly impacted through use of media optimization and application of inexpensive carbon substrates such as agricultural process residuals. Utilization of biosurfactants produced from agricultural residuals may 1) result in an economic advantage for surfactant production and technology application, and 2) convert a substantial agricultural waste stream to a value-added product for IOR. A biosurfactant with high potential for use is surfactin, a lipopeptide biosurfactant, produced by Bacillus subtilis. Reported here is the production and potential IOR utilization of surfactin produced by Bacillus subtilis (American Type Culture Collection (ATCC) 21332) from starch-based media. Production of surfactants from microbiological growth media based on simple sugars, chemically pure starch medium, simulated liquid and solid potato-process effluent media, a commercially prepared potato starch in mineral salts, and process effluent from a potato processor is discussed. Additionally, the effect of chemical and physical pretreatments on starchy feedstocks is discussed.

  5. Heavy-metal contamination of agricultural soils irrigated with industrial effluents

    International Nuclear Information System (INIS)

    Nabi, G.; Ashraf, M.; Aslam, M. R.

    2001-01-01

    Pakistan is facing a thread of degradation of water and land-resources by industrial effluents. To evaluated the suitability of these effluents as a source of irrigation for agriculture and the study their effects on soil chemical properties, experiments were conducted in the industrial area of Sheikhupura, where effluent from Paper and Board Mill (PBM), Leather Industry (LI) and Fertilizer Industry (FI) were being used for irrigation. At each site, two fields were selected, one irrigated with industrial effluents and the other with tube-well/canal water. The soil samples were collected and analyzed for pH, ECe, SAR and for heavy metals, such as Cu, Cd, Cr, Zn, Pb, Mn, Fe, Al and Ni. Soil receiving effluent from LI showed higher ECe and SAR values, as compared to the soils receiving other effluents. The concentration of Al was high in the soil irrigated with LI effluent. The Mn and Fe contents were higher in soils irrigated with PBM effluent. Effluent from LI is not fit for irrigation, since its recipient soil showed high concentration of Cr and also high sodicity values. Except Cr, the heavy metals were not of environmental concern. (author)

  6. Agricultural utilization of industrial thermal effluents

    International Nuclear Information System (INIS)

    Guillermin, P.; Delmas, J.; Grauby, A.

    1976-01-01

    An assessment is made of the utilization of thermal effluent for agricultural purpose (viz. early vegetables, cereals, trees). Heated waters are being used in field experiments on soil heating, improvement of agricultural procedures and crop yields. Thermal pollution cannot be removed yet it is reduced to acceptable limits. New prospects are open to traditional agriculture, leading towards a more competitive industrial model [fr

  7. 40 CFR 427.33 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Science.gov (United States)

    2010-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Asbestos Paper (Starch Binder) Subcategory § 427.33 Effluent limitations guidelines representing the degree of effluent...

  8. Inducing PLA/starch compatibility through butyl-etherification of waxy and high amylose starch.

    Science.gov (United States)

    Wokadala, Obiro Cuthbert; Emmambux, Naushad Mohammad; Ray, Suprakas Sinha

    2014-11-04

    In this study, waxy and high amylose starches were modified through butyl-etherification to facilitate compatibility with polylactide (PLA). Fourier transform infrared spectroscopy, proton nuclear magnetic resonance spectroscopy and wettability tests showed that hydrophobic butyl-etherified waxy and high amylose starches were obtained with degree of substitution values of 2.0 and 2.1, respectively. Differential scanning calorimetry, tensile testing, and scanning electron microscopy (SEM) demonstrated improved PLA/starch compatibility for both waxy and high amylose starch after butyl-etherification. The PLA/butyl-etherified waxy and high amylose starch composite films had higher tensile strength and elongation at break compared to PLA/non-butyl-etherified composite films. The morphological study using SEM showed that PLA/butyl-etherified waxy starch composites had a more homogenous microstructure compared to PLA/butyl-etherified high amylose starch composites. Thermogravimetric analysis showed that PLA/starch composite thermal stability decreased with starch butyl-etherification for both waxy and high amylose starches. This study mainly demonstrates that PLA/starch compatibility can be improved through starch butyl-etherification. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Using biomass of starch-rich transgenic Arabidopsis vacuolar as feedstock for fermentative hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Lo, Yung-Chung; Cheng, Chieh-Lun; Chen, Chun-Yen [National Cheng Kung Univ., Tainan, Taiwan (China). Dept. of Chemical Engineering; Huang, Li-Fen; Chang, Jo-Shu [Yuan Ze Univ., Tao-yuan, Taiwan (China). Graduate School of Biotechnology and Bioengineering

    2010-07-01

    Cellulose is the major constitute of plant biomass and highly available in agricultural wastes and industrial effluents, thereby being a cost-effective feedstock for bioenergy production. However, most hydrogen producing bacteria (HPB) could not directly convert cellulosic materials (such as rice husk and rice straw) into hydrogen whereas most HPB could utilize sugar and starch for hydrogen production. In this work, we used an indigenous bacterial isolate Clostridium butyricum CGS2 as HPB, which could directly convert soluble starch into H2 with a maximum H2 production rate and a H2 yield of 205.07 ml H2/h/l and 6.46 mmol H2/g starch, respectively. However, C. butyricum CGS2 could not ferment pure cellulosic materials such as carboxymethyl cellulose and xylan. Moreover, we found that C. butyricum CGS2 could utilize rich husk to produce H2 at a rate of 13.19 ml H2/h/l due to the starch content in rice husk (H2 yield = 1.49 mmol H2/g rice husk). In contrast, since lacking starch content, rice straw cannot be converted to H2 by C. butyricum CGS2. The foregoing results suggest that increasing the starch content in the natural agricultural wastes may make them better feedstock for fermentative H2 production. Hence, a genetically modified plant (Arabidopsis vacuolar) was constructed to enhance its starch concentration. The starch concentration of mutant plant S1 increased to 10.67 mg/fresh weight, which is four times higher than that of wild type plant. Using mutant plant S1 as carbon source, C. butyricum CGS2 was able to give a high cumulative H2 production and H2 production rate of 285.4 ml H2/l and 43.6 ml/h/l, respectively. The cumulative H2 production and H2 production rate both increased when the concentration of the transgenic plant was increased. Therefore, this study successful demonstrated the feasibility of expressing starch on genetically-modified plants to create a more effective feedstock for dark H2 fermentation. (orig.)

  10. Heavy metals in handloom-dyeing effluents and their biosorption by agricultural byproducts.

    Science.gov (United States)

    Nahar, Kamrun; Chowdhury, Md Abul Khair; Chowdhury, Md Akhter Hossain; Rahman, Afzal; Mohiuddin, K M

    2018-03-01

    The Madhabdi municipality in the Narsingdi district of Bangladesh is a well-known area for textile, handloom weaving, and dyeing industries. These textile industries produce a considerable amount of effluents, sewage sludge, and solid waste materials every day that they directly discharge into surrounding water bodies and agricultural fields. This disposal poses a serious threat to the overall epidemic and socio-economic pattern of the locality. This research entailed the collection of 34 handloom-dyeing effluent samples from different handloom-dyeing industries of Madhabdi, which were then analyzed to determine the contents of the heavy metals iron (Fe), zinc (Zn), copper (Cu), chromium (Cr), manganese (Mn), lead (Pb), and cadmium (Cd). Average concentrations of Fe, Cr, Cu, Pb, Mn, and Zn were 3.81, 1.35, 1.70, 0.17, 0.75, and 0.73 mg L -1 , respectively, whereas Cd content was below the detectable limit of the atomic adsorption spectrophotometer. The concentrations of Fe, Cr, Cu, Pb, and Mn exceed the industrial effluent discharge standards (IEDS) for inland surface water and irrigation water guideline values. A biosorption experiment of the heavy metals (Fe, Cr, Cu, Mn, and Zn) was conducted without controlling for any experimental parameters (e.g., pH, temperature, or other compounds present in the effluent samples) by using four agricultural wastes or byproducts, namely rice husk, sawdust, lemon peel, and eggshell. Twenty grams of each biosorbent was added to 1 L of effluent samples and stored for 7 days. The biosorption capacity of each biosorbent is ranked as follows: eggshell, sawdust, rice husk, and lemon peel. Furthermore, the biosorption affinity of each metal ion was found in the following order: Cu and Cr (both had similar biosorption affinity), Zn, Fe, Mn. The effluents should not be discharged before treatment, and efficient treatment of effluents is possible with eggshell powder or sawdust at a rate of 20 g of biosorbent per liter of effluents.

  11. Starch modification with microbial alpha-glucanotransferase enzymes

    NARCIS (Netherlands)

    van der Maarel, Marc J. E. C.; Leemhuis, Hans

    2013-01-01

    Starch is an agricultural raw material used in many food and industrial products. It is present in granules that vary in shape in the form of amylose and amylopectin. Starch-degrading enzymes are used on a large scale in the production of sweeteners (high fructose corn syrup) and concentrated

  12. The Effect of Pretreatments on Surfactin Production From Potato Process Effluent by Bacillus Subtilis

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, David Neal; Fox, Sandra Lynn; Bala, Greg Alan

    2000-05-01

    Pretreatment of low-solids (LS) potato process effluent was tested for potential to increase surfactin yield. Pretreatments included heat, removal of starch particulates, and acid hydrolysis. Elimination of contaminating vegetative cells was necessary for surfactin production. After autoclaving, 0.40 g/L of surfactin was produced from the effluent in 72 h, versus 0.24 g/L in the purified potato starch control. However, surfactin yields per carbon consumed were 76% lower from process effluent. Removal of starch particulates had little effect on the culture. Acid hydrolysis decreased growth and surfactant production, except 0.5 wt% acid, which increased the yield by 25% over untreated effluent.

  13. The effect of pretreatments on surfactin production from potato process effluent by Bacillus subtilis

    Energy Technology Data Exchange (ETDEWEB)

    D. N. Thompson; S. L. Fox; G. A. Bala

    2000-05-07

    Pretreatment of low-solids (LS) potato process effluent was tested for potential to increase surfactin yield. Pretreatments included heat, removal of starch particulates, and acid hydrolysis. Elimination of contaminating vegetative cells was necessary for surfactin production. After autoclaving, 0.40 g/L of surfactin was produced from the effluent in 72 h, versus 0.24 g/L in the purified potato starch control. However, surfactin yields per carbon consumed were 76% lower from process effluent. Removal of starch particulates had little effect on the culture. Acid hydrolysis decreased growth and surfactant production, except 0.5 wt% acid, which increased the yield by 25% over untreated effluent.

  14. Starch Biosynthesis in Crop Plants

    Directory of Open Access Journals (Sweden)

    Ian J. Tetlow

    2018-05-01

    Full Text Available Starch is a water-insoluble polyglucan synthesized inside the plastids of plant tissues to provide a store of carbohydrate. Starch harvested from plant storage organs has probably represented the major source of calories for the human diet since before the dawn of civilization. Following the advent of agriculture and the building of complex societies, humans have maintained their dependence on high-yielding domesticated starch-forming crops such as cereals to meet food demands, livestock production, and many non-food applications. The top three crops in terms of acreage are cereals, grown primarily for the harvestable storage starch in the endosperm, although many starchy tuberous crops also provide an important source of calories for various communities around the world. Despite conservation in the core structure of the starch granule, starches from different botanical sources show a high degree of variability, which is exploited in many food and non-food applications. Understanding the factors underpinning starch production and its final structure are of critical importance in guiding future crop improvement endeavours. This special issue contains reviews on these topics and is intended to be a useful resource for researchers involved in improvement of starch-storing crops.

  15. Barley starch bioengineering for high phosphate and amylose

    DEFF Research Database (Denmark)

    Blennow, Per Gunnar Andreas; Carciofi, Massimiliano; Shaik, Shahnoor Sultana

    2011-01-01

    Starch is a biological polymer that can be industrially produced in massive amounts in a very pure form. Cereals is the main source for starch production and any improvement of the starch fraction can have a tremendous impact in food and feed applications. Barley ranks number four among cereal...... crops and barley is a genetically very well characterized. Aiming at producing new starch qualities in the cereal system, we used RNAi and overexpression strategies to produce pure amylose and high-phosphate starch, respectively, using the barley kernel as a polymer factory. By simultaneous silencing...... of the three genes encoding the starch-branching enzymes SBEI, SBEIIa, and SBEIIb using a triple RNAi chimeric hairpin construct we generated a virtually amylopectin-free barley. The grains of the transgenic lines were shrunken and had a yield of around 80% of the control line. The starch granules were...

  16. Use of enzymes to minimize the rheological dough problems caused by high levels of damaged starch in starch-gluten systems.

    Science.gov (United States)

    Barrera, Gabriela N; León, Alberto E; Ribotta, Pablo D

    2016-05-01

    During wheat milling, starch granules can experience mechanical damage, producing damaged starch. High levels of damaged starch modify the physicochemical properties of wheat flour, negatively affecting the dough behavior as well as the flour quality and cookie and bread making quality. The aim of this work was to evaluate the effect of α-amylase, maltogenic amylase and amyloglucosidase on dough rheology in order to propose alternatives to reduce the issues related to high levels of damaged starch. The dough with a high level of damaged starch became more viscous and resistant to deformations as well as less elastic and extensible. The soluble fraction of the doughs influenced the rheological behavior of the systems. The α-amylase and amyloglucosidase reduced the negative effects of high damaged starch contents, improving the dough rheological properties modified by damaged starch. The rheological behavior of dough with the higher damaged-starch content was related to a more open gluten network arrangement as a result of the large size of the swollen damaged starch granules. We can conclude that the dough rheological properties of systems with high damaged starch content changed positively as a result of enzyme action, particularly α-amylase and amyloglucosidase additions, allowing the use of these amylases and mixtures of them as corrective additives. Little information was reported about amyloglucosidase activity alone or combined with α-amylase. The combinations of these two enzymes are promising to minimize the negative effects caused by high levels of damaged starch on product quality. More research needs to be done on bread quality combining these two enzymes. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  17. Harvesting Microalgal Biomass grown in Anaerobic Sewage Treatment Effluent by the Coagulation-Flocculation Method: Effect of pH

    Directory of Open Access Journals (Sweden)

    Servio Tulio Cassini

    2017-03-01

    Full Text Available ABSTRACT Harvesting is a critical step in microalgal biomass production process for many reasons. Among the existing techniques available for harvesting and dewatering microalgal biomass, recovery from aqueous medium by coagulation-flocculation has been the most economically viable process, althoughit is highly dependent on pH. This study aims to assess alternative coagulants compared to the standard coagulant aluminum sulfate for microalgal biomass recovery from anaerobic effluent of domestic sewage treatment. The effluent quality was also analyzed after biomass recovery. Coagulants represented by modified tannin, cationic starch and aluminum sulfate recovered more than 90% of algae biomass, at concentrations greater than 80 mg/L, in the pH range 7-10. Cationic starch promoted higher microalgal biomass recovery with a wider pH range. Powdered seeds of Moringa oleifera and Hibiscus esculentus(okra gum promoted biomass removal of 50%, only in the acidic range of pH. After sedimentation of the microalgal biomass, the effluents showed a removal of >80% for phosphorus and nitrogen values and >50% for BOD and COD when using aluminum sulfate, cationic starch and modified tannin as coagulants. Natural organic coagulants in a wide pH range can replace aluminum sulfate, a reference coagulant in microalgal biomass recovery, without decreasing microalgal biomass harvesting efficiency and the quality of the final effluent.

  18. Sewage-effluent phosphorus: A greater risk to river eutrophication than agricultural phosphorus?

    International Nuclear Information System (INIS)

    Jarvie, Helen P.; Neal, Colin; Withers, Paul J.A.

    2006-01-01

    Phosphorus (P) concentrations from water quality monitoring at 54 UK river sites across seven major lowland catchment systems are examined in relation to eutrophication risk and to the relative importance of point and diffuse sources. The over-riding evidence indicates that point (effluent) rather than diffuse (agricultural) sources of phosphorus provide the most significant risk for river eutrophication, even in rural areas with high agricultural phosphorus losses. Traditionally, the relative importance of point and diffuse sources has been assessed from annual P flux budgets, which are often dominated by diffuse inputs in storm runoff from intensively managed agricultural land. However, the ecological risk associated with nuisance algal growth in rivers is largely linked to soluble reactive phosphorus (SRP) concentrations during times of ecological sensitivity (spring/summer low-flow periods), when biological activity is at its highest. The relationships between SRP and total phosphorus (TP; total dissolved P + suspended particulate P) concentrations within UK rivers are evaluated in relation to flow and boron (B; a tracer of sewage effluent). SRP is the dominant P fraction (average 67% of TP) in all of the rivers monitored, with higher percentages at low flows. In most of the rivers the highest SRP concentrations occur under low-flow conditions and SRP concentrations are diluted as flows increase, which is indicative of point, rather than diffuse, sources. Strong positive correlations between SRP and B (also TP and B) across all the 54 river monitoring sites also confirm the primary importance of point source controls of phosphorus concentrations in these rivers, particularly during spring and summer low flows, which are times of greatest eutrophication risk. Particulate phosphorus (PP) may form a significant proportion of the phosphorus load to rivers, particularly during winter storm events, but this is of questionable relevance for river eutrophication

  19. High throughput screening of starch structures using carbohydrate microarrays

    DEFF Research Database (Denmark)

    Tanackovic, Vanja; Rydahl, Maja Gro; Pedersen, Henriette Lodberg

    2016-01-01

    In this study we introduce the starch-recognising carbohydrate binding module family 20 (CBM20) from Aspergillus niger for screening biological variations in starch molecular structure using high throughput carbohydrate microarray technology. Defined linear, branched and phosphorylated...

  20. Performance of high amylose starch-composited gelatin films influenced by gelatinization and concentration.

    Science.gov (United States)

    Wang, Wenhang; Wang, Kun; Xiao, Jingdong; Liu, Yaowei; Zhao, Yana; Liu, Anjun

    2017-01-01

    In order to study the impact of starch in film performance, high amylose corn starch was composited in gelatin films under different gelatinization conditions and, in high and low concentrations (10 and 50wt.%). It was found that hot water gelatinized starch (Gel-Shw) increased film mechanical strength and was dependent upon the starch concentration. The addition of an alkali component to the starch significantly enhanced the swelling of the starch granules and expedited the gelatinization process. Incorporation of starch, especially the alkalized starch (Sha), into the gelatin films decreased film solubility which improved its water resistance and water vapor permeability (WVP). Multiple techniques (DSC, TGA, FT-IR, and XRD) were used to characterize the process and results, including the crosslinking of the dissolved starch molecules and the particles formed from gelatinized starch during retrogradation process, which played an important role in improving the thermal stability of the composited gelatin films. Overall, the starch-gelatin composition provides a potential approach to improve gelatin film performance and benefit its applications in the food industry. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Decentralised wastewater treatment effluent fertigation: preliminary ...

    African Journals Online (AJOL)

    Decentralised wastewater treatment effluent fertigation: preliminary technical assessment. ... living in informal settlements with the effluent produced being used on agricultural land. ... Banana and taro required 3 514 mm of irrigation effluent.

  2. High-yield pulping effluent treatment technologies

    International Nuclear Information System (INIS)

    Su, W.X.; Hsieh, J.S.

    1993-03-01

    The objective of this report is to examine the high-yield (mechanical) pulp processes with respect to environmental issues affected by the discharge of their waste streams. Various statistics are given that support the view that high-yield pulping processes will have major growth in the US regions where pulp mills are located, and sites for projects in the development phase are indicated. Conventional and innovative effluent-treatment technologies applicable to these processes are reviewed. The different types of mechanical pulping or high-yield processes are explained, and the chemical additives are discussed. The important relationship between pulp yield and measure of BOD in the effluent is graphically presented. Effluent contaminants are identified, along with other important characteristics of the streams. Current and proposed environmental limitations specifically related to mechanical pulp production are reviewed. Conventional and innovative effluent-treatment technologies are discussed, along with their principle applications, uses, advantages, and disadvantages. Sludge management and disposal techniques become an intimate part of the treatment of waste streams. The conclusion is made that conventional technologies can successfully treat effluent streams under current waste-water discharge limitations, but these systems may not be adequate when stricter standards are imposed. At present, the most important issue in the treatment of pulp-mill waste is the management and disposal of the resultant sludge

  3. Structural and functional properties of alkali-treated high-amylose rice starch.

    Science.gov (United States)

    Cai, Jinwen; Yang, Yang; Man, Jianmin; Huang, Jun; Wang, Zhifeng; Zhang, Changquan; Gu, Minghong; Liu, Qiaoquan; Wei, Cunxu

    2014-02-15

    Native starches were isolated from mature grains of high-amylose transgenic rice TRS and its wild-type rice TQ and treated with 0.1% and 0.4% NaOH for 7 and 14 days at 35 °C. Alkali-treated starches were characterised for structural and functional properties using various physical methods. The 0.1% NaOH treatment had no significant effect on structural and functional properties of starches except that it markedly increased the hydrolysis of starch by amylolytic enzymes. The 0.4% NaOH treatment resulted in some changes in structural and functional properties of starches. The alkali treatment affected granule morphology and decreased the electron density between crystalline and amorphous lamellae of starch. The effect of alkali on the crystalline structure including long- and short-range ordered structure was not pronounced. Compared with control starch, alkali-treated TRS starches had lower amylose content, higher onset and peak gelatinisation temperatures, and faster hydrolysis of starch by HCl and amylolytic enzymes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Inducing PLA/starch compatibility through butyl-etherification of waxy and high amylose starch

    CSIR Research Space (South Africa)

    Wokadala, OC

    2014-06-01

    Full Text Available In this study, waxy and high amylose starches were modified through butyl-etherification to facilitatecompatibility with polylactide (PLA). Fourier transform infrared spectroscopy, proton nuclear magneticresonance spectroscopy and wettability tests...

  5. Rheological Properties and Electrospinnability of High-Amylose Starch in Formic Acid.

    Science.gov (United States)

    Lancuški, Anica; Vasilyev, Gleb; Putaux, Jean-Luc; Zussman, Eyal

    2015-08-10

    Starch derivatives, such as starch-esters, are commonly used as alternatives to pure starch due to their enhanced mechanical properties. However, simple and efficient processing routes are still being sought out. In the present article, we report on a straightforward method for electrospinning high-amylose starch-formate nanofibers from 17 wt % aqueous formic acid (FA) dispersions. The diameter of the electrospun starch-formate fibers ranged from 80 to 300 nm. The electrospinnability window between starch gelatinization and phase separation was determined using optical microscopy and rheological studies. This window was shown to strongly depend on the water content in the FA dispersions. While pure FA rapidly gelatinized starch, yielding solutions suitable for electrospinning within a few hours at room temperature, the presence of water (80 and 90 vol % FA) significantly delayed gelatinization and dissolution, which deteriorated fiber quality. A complete destabilization of the electrospinning process was observed in 70 vol % FA dispersions. Optical micrographs showed that FA induced a disruption of starch granule with a loss of crystallinity confirmed by X-ray diffraction. As a result, starch fiber mats exhibited a higher elongation at break when compared to brittle starch films.

  6. Application of ultra high pressure (UHP) in starch chemistry.

    Science.gov (United States)

    Kim, Hyun-Seok; Kim, Byung-Yong; Baik, Moo-Yeol

    2012-01-01

    Ultra high pressure (UHP) processing is an attractive non-thermal technique for food treatment and preservation at room temperature, with the potential to achieve interesting functional effects. The majority of UHP process applications in food systems have focused on shelf-life extension associated with non-thermal sterilization and a reduction or increase in enzymatic activity. Only a few studies have investigated modifications of structural characteristics and/or protein functionalities. Despite the rapid expansion of UHP applications in food systems, limited information is available on the effects of UHP on the structural and physicochemical properties of starch and/or its chemical derivatives included in most processed foods as major ingredients or minor additives. Starch and its chemical derivatives are responsible for textural and physical properties of food systems, impacting their end-use quality and/or shelf-life. This article reviews UHP processes for native (unmodified) starch granules and their effects on the physicochemical properties of UHP-treated starch. Furthermore, functional roles of UHP in acid-hydrolysis, hydroxypropylation, acetylation, and cross-linking reactions of starch granules, as well as the physicochemical properties of UHP-assisted starch chemical derivatives, are discussed.

  7. Starch bioengineering

    DEFF Research Database (Denmark)

    Blennow, Andreas

    2018-01-01

    Application of starch in industry frequently requires extensive modification. This is usually achieved by chemical and/or physical modification that is time-consuming and often expensive and polluting. To impart functionality as early as possible in the starch production chain, modification can...... be achieved directly as part of the developing starch storage roots, tubers, and seeds and grains of the crop. Starch has been a strong driver for human development and is now the most important energy provider in the diet forcing the development of novel and valuable starch qualities for specific...... applications. Among the most important structures that can be targeted include starch phosphorylation chain transfer/branching generating chemically substituted and chain length-modified starches such as resistant and health-promoting high-amylose starch. Starch bioengineering has been employed for more than...

  8. In vitro utilization of amylopectin and high-amylose maize (Amylomaize) starch granules by human colonic bacteria.

    Science.gov (United States)

    Wang, X; Conway, P L; Brown, I L; Evans, A J

    1999-11-01

    It has been well established that a certain amount of ingested starch can escape digestion in the human small intestine and consequently enters the large intestine, where it may serve as a carbon source for bacterial fermentation. Thirty-eight types of human colonic bacteria were screened for their capacity to utilize soluble starch, gelatinized amylopectin maize starch, and high-amylose maize starch granules by measuring the clear zones on starch agar plates. The six cultures which produced clear zones on amylopectin maize starch- containing plates were selected for further studies for utilization of amylopectin maize starch and high-amylose maize starch granules A (amylose; Sigma) and B (Culture Pro 958N). Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was used to detect bacterial starch-degrading enzymes. It was demonstrated that Bifidobacterium spp., Bacteroides spp., Fusobacterium spp., and strains of Eubacterium, Clostridium, Streptococcus, and Propionibacterium could hydrolyze the gelatinized amylopectin maize starch, while only Bifidobacterium spp. and Clostridium butyricum could efficiently utilize high-amylose maize starch granules. In fact, C. butyricum and Bifidobacterium spp. had higher specific growth rates in the autoclaved medium containing high-amylose maize starch granules and hydrolyzed 80 and 40% of the amylose, respectively. Starch-degrading enzymes were cell bound on Bifidobacterium and Bacteroides cells and were extracellular for C. butyricum. Active staining for starch-degrading enzymes on SDS-PAGE gels showed that the Bifidobacterium cells produced several starch-degrading enzymes with high relative molecular (M(r)) weights (>160,000), medium-sized relative molecular weights (>66,000), and low relative molecular weights (spp. and C. butyricum degraded and utilized granules of amylomaize starch.

  9. The influence of agro-industrial effluents on River Nile pollution

    Directory of Open Access Journals (Sweden)

    Sayeda M. Ali

    2011-01-01

    Full Text Available The major agro-industrial effluents of sugarcane and starch industries pose a serious threat to surface waters. Their disposal in the River Nile around Cairo city transitionally affected the microbial load. In situ bacterial enrichment (50–180% was reported and gradually diminished downstream; the lateral not vertical effect of the effluent disposal was evident. Disposed effluents increased BOD and COD, and then progressively decreased downstream. Ammoniacal N was elevated, indicating active biological ammonification and in situ biodegradability of the effluents. In vitro, the nitrogen-fixing rhizobacteria Crysomonas luteola, Azospirillum spp., Azomonas spp. and K. pneumoniae successfully grew in batch cultures prepared from the crude effluents. This was supported by adequate growth parameters and organic matter decomposition. Therefore, such biodegradability of the tested agro-industrial effluents strongly recommends their use for microbial biomass necessary for the production of bio-preparates.

  10. Retrogradation of Maize Starch after High Hydrostatic Pressure Gelation: Effect of Amylose Content and Depressurization Rate

    KAUST Repository

    Yang, Zhi; Swedlund, Peter; Gu, Qinfen; Hemar, Yacine; Chaieb, Saharoui

    2016-01-01

    High hydrostatic pressure (HHP) has been employed to gelatinize or physically modify starch dispersions. In this study, waxy maize starch, normal maize starch, and two high amylose content starch were processed by a HHP of the order of 600 MPa

  11. Retrogradation of Maize Starch after High Hydrostatic Pressure Gelation: Effect of Amylose Content and Depressurization Rate

    KAUST Repository

    Yang, Zhi

    2016-05-24

    High hydrostatic pressure (HHP) has been employed to gelatinize or physically modify starch dispersions. In this study, waxy maize starch, normal maize starch, and two high amylose content starch were processed by a HHP of the order of 600 MPa, at 25°C for 15min. The effect of HHP processing on the crystallization of maize starches with various amylose content during storage at 4°C was investigated. Crystallization kinetics of HHP treated starch gels were investigated using rheology and FTIR. The effect of crystallization on the mechanical properties of starch gel network were evaluated in terms of dynamic complex modulus (G*). The crystallization induced increase of short-range helices structures were investigated using FTIR. The pressure releasing rate does not affect the starch retrogradation behaviour. The rate and extent of retrogradation depends on the amylose content of amylose starch. The least retrogradation was observed in HHP treated waxy maize starch. The rate of retrogradation is higher for HHP treated high amylose maize starch than that of normal maize starch. A linear relationship between the extent of retrogradation (phase distribution) measured by FTIR and G* is proposed.

  12. Retrogradation of Maize Starch after High Hydrostatic Pressure Gelation: Effect of Amylose Content and Depressurization Rate

    Science.gov (United States)

    Yang, Zhi; Swedlund, Peter; Gu, Qinfen; Hemar, Yacine; Chaieb, Sahraoui

    2016-01-01

    High hydrostatic pressure (HHP) has been employed to gelatinize or physically modify starch dispersions. In this study, waxy maize starch, normal maize starch, and two high amylose content starch were processed by a HHP of the order of 600 MPa, at 25°C for 15min. The effect of HHP processing on the crystallization of maize starches with various amylose content during storage at 4°C was investigated. Crystallization kinetics of HHP treated starch gels were investigated using rheology and FTIR. The effect of crystallization on the mechanical properties of starch gel network were evaluated in terms of dynamic complex modulus (G*). The crystallization induced increase of short-range helices structures were investigated using FTIR. The pressure releasing rate does not affect the starch retrogradation behaviour. The rate and extent of retrogradation depends on the amylose content of amylose starch. The least retrogradation was observed in HHP treated waxy maize starch. The rate of retrogradation is higher for HHP treated high amylose maize starch than that of normal maize starch. A linear relationship between the extent of retrogradation (phase distribution) measured by FTIR and G* is proposed. PMID:27219066

  13. Retrogradation of Maize Starch after High Hydrostatic Pressure Gelation: Effect of Amylose Content and Depressurization Rate.

    Directory of Open Access Journals (Sweden)

    Zhi Yang

    Full Text Available High hydrostatic pressure (HHP has been employed to gelatinize or physically modify starch dispersions. In this study, waxy maize starch, normal maize starch, and two high amylose content starch were processed by a HHP of the order of 600 MPa, at 25°C for 15min. The effect of HHP processing on the crystallization of maize starches with various amylose content during storage at 4°C was investigated. Crystallization kinetics of HHP treated starch gels were investigated using rheology and FTIR. The effect of crystallization on the mechanical properties of starch gel network were evaluated in terms of dynamic complex modulus (G*. The crystallization induced increase of short-range helices structures were investigated using FTIR. The pressure releasing rate does not affect the starch retrogradation behaviour. The rate and extent of retrogradation depends on the amylose content of amylose starch. The least retrogradation was observed in HHP treated waxy maize starch. The rate of retrogradation is higher for HHP treated high amylose maize starch than that of normal maize starch. A linear relationship between the extent of retrogradation (phase distribution measured by FTIR and G* is proposed.

  14. Fragrant starch-based films with limonene

    Directory of Open Access Journals (Sweden)

    Adrian K. Antosik

    2017-02-01

    Full Text Available Novel fragrant starch-based films with limonene were successfully prepared. Biodegradable materials of natural origin were used and the process was relatively simple and inexpensive. The effect of limonene on physicochemical properties of starch-based films (moisture absorption, solubility in water, wettability, mechanical properties were compared to glycerol plasticized system. Taking into consideration that the obtained materials could also exhibit bactericidal and fungicidal properties, the studies with Escherichia coli, Candida albicans and Aspergillus niger were performed. Such a material could potentially find application in food packaging (e.g. masking unpleasant odors, hydrophilic starch film would prevent food drying, or in agriculture (e.g. for seed encapsulated tapes.

  15. A new generation of starch products as excipient in pharmaceutical tablets .1. Preparation and binding properties of high surface area potato starch products

    NARCIS (Netherlands)

    Wierik, GHPT; ArendsScholte, AW; Eissens, AC; Lerk, CF

    1996-01-01

    A new pharmaceutical excipient with a high binding capacity was prepared from potato starch by enzymatic degradation, followed by suitable dehydration of the precipitated and filtered retrograded starch to produce high specific surface area products. Thermal dehydration methods like drying at room

  16. Synthesis of Potato Starch-Acrylic-Acid Hydrogels by Gamma Radiation and Their Application in Dye Adsorption

    Directory of Open Access Journals (Sweden)

    Md. Murshed Bhuyan

    2016-01-01

    Full Text Available Several kinds of acrylic-acid-grafted-starch (starch/AAc hydrogels were prepared at room temperature (27°C by applying 5, 10, 15, 20, and 25 kGy of gamma radiation to 15% AAc aqueous solutions containing 5, 7.5, and 15% of starch. With increment of the radiation dose, gel fraction became higher and attained the maximum (96.5% at 15 kGy, above which the fraction got lowered. On the other hand, the gel fraction monotonically increased with the starch content. Swelling ratios were lower for the starch/AAc hydrogels prepared with higher gamma-ray doses and so with larger starch contents. Significant promotions of the swelling ratios were demonstrated by hydrolysis with NaOH: 13632±10% for 15 kGy radiation-dosed [5% starch/15% AAc] hydrogel, while the maximum swelling ratio was ~200% for those without the treatment. The authors further investigated the availability of the starch/AAc hydrogel as an adsorbent recovering dye waste from the industrial effluents by adopting methylene blue as a model material; the hydrogels showed high dye-capturing coefficients which increase with the starch ratio. The optimum dye adsorption was found to be 576 mg per g of the hydrogel having 7.5 starch and 15% AAc composition. Two kinetic models, (i pseudo-first-order and (ii pseudo-second-order kinetic models, were applied to test the experimental data. The latter provided the best correlation of the experimental data compared to the pseudo-first-order model.

  17. Development of highly-transparent protein/starch-based bioplastics.

    Science.gov (United States)

    Gonzalez-Gutierrez, J; Partal, P; Garcia-Morales, M; Gallegos, C

    2010-03-01

    Striving to achieve cost-competitive biomass-derived materials for the plastics industry, the incorporation of starch (corn and potato) to a base formulation of albumen and glycerol was considered. To study the effects of formulation and processing, albumen/starch-based bioplastics containing 0-30 wt.% starch were prepared by thermo-plastic and thermo-mechanical processing. Transmittance measurements, DSC, DMTA and tensile tests were performed on the resulting bioplastics. Optical and tensile properties were strongly affected by starch concentration. However, DMTA at low deformation proved to be insensitive to starch addition. Thermo-mechanical processing led to transparent albumen/starch materials with values of strength at low deformation comparable to commodity plastics. Consequently, albumen biopolymers may become a biodegradable alternative to oil-derived plastics for manufacturing transparent packaging and other plastic stuffs. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  18. Effect of starch isolation method on properties of sweet potato starch

    Directory of Open Access Journals (Sweden)

    A. SURENDRA BABU

    2014-08-01

    Full Text Available Isolation method of starch with different agents influences starch properties, which provide attention for studying the most appropriate method for isolation of starch. In the present study sweet potato starch was isolated by Sodium metabisulphate (M1, Sodium chloride (M2, and Distilled water (M3 methods and these were assessed for functional, chemical, pasting and structural properties. M3 yielded the greatest recovery of starch (10.20%. Isolation methods significantly changed swelling power and pasting properties but starches exhibited similar chemical properties. Sweet potato starches possessed C-type diffraction pattern. Small size granules of 2.90 μm were noticed in SEM of M3 starch. A high degree positive correlation was found between ash, amylose, and total starch content. The study concluded that isolation methods brought changes in yield, pasting and structural properties of sweet potato starch.

  19. DISINTEGRATION EFFICIENCY OF SODIUM STARCH GLYCOLATES, PREPARED FROM DIFFERENT NATIVE STARCHES

    NARCIS (Netherlands)

    BOLHUIS, GK; ARENDSCHOLTE, AW; STUUT, GJ; DEVRIES, JA

    1994-01-01

    In a comparative evaluation, the disintegration efficiency of sodium starch glycolates prepared from seven different native starches (potato, maize, waxy maize, wheat, rice, sago and tapioca) were compared. All the sodium starch glycolates tested had a high swelling capacity, but the rate of water

  20. In situ study starch gelatinization under ultra-high hydrostatic pressure using synchrotron SAXS

    KAUST Repository

    Yang, Zhi

    2015-12-13

    The gelatinization of waxy (very low amylose) corn and potato starches by high hydrostatic pressure (HHP) (up to ∼1 GPa) was investigated in situ using synchrotron small-angle X-ray scattering (SAXS) on samples held in a diamond anvil cell (DAC). The starch pastes, made by mixing starch and water in a 1:1 ratio (by weight), were pressurized and measured at room temperature. During HHP, both SAXS peak areas (corresponding to the lamellar phase) of waxy corn and potato starches decreased suggesting the starch gelatinization increases with increasing pressure. As pressure increased, lamellar peak broadened and the power law exponent increased in low q region. 1D linear correlation function was further employed to analyse SAXS data. For both waxy potato and waxy corn starches, the long period length and the average thickness of amorphous layers decreased when the pressure increased. While for both of waxy starches, the thickness of the crystalline layer first increased, then decreased when the pressure increased. The former is probably due to the out-phasing of starch molecules, and the latter is due to the water penetrating into the crystalline region during gelatinization and to pressure induced compression.

  1. Starch behaviors and mechanical properties of starch blend films with different plasticizers.

    Science.gov (United States)

    Nguyen Vu, Hoang Phuong; Lumdubwong, Namfone

    2016-12-10

    The main objective of the study was to gain insight into structural and mechanical starch behaviors of the plasticized starch blend films. Mechanical properties and starch behaviors of cassava (CS)/and mungbean (MB) (50/50, w/w) starch blend films containing glycerol (Gly) or sorbitol (Sor) at 33% weight content were investigated. It was found that tensile strength TS and %E of the Gly-CSMB films were similar to those of MB films; but%E of all Sor-films was identical. TS of plasticized films increased when AM content and crystallinity increased. When Sor was substituted for Gly, crystallinity of starch films and their TS increased. The CSMB and MB films had somewhat a similar molecular profile and comparable mechanical properties. Therefore, it was proposed the starch molecular profile containing amylopectin with high M¯w, low M¯w of amylose, and the small size of intermediates may impart the high TS and%E of starch films. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Super water absorbent by radiation graft polymerization of acrylic monomers onto cassava starch

    International Nuclear Information System (INIS)

    Doan Binh

    2008-01-01

    Water superabsorbent gel has been applying in personal care, agriculture, medical supplies and water purification. In agricultural application, the gel will help to control soil erosion, limit loss of nutrients and slit for plants, decrease irrigation frequency, improve infiltration, and increase water retention in prolonged arid soil and droughts. The gel absorbs many times its weight in available water. The gel from poly(acrylamide) was developed in the 60's to grow plants in the deserts. The other gel from poly(acrylic acid) was used to absorb rapidly in baby diapers, sanitary napkins. These polymers are commonly produced from natural gas, which have recently been introduced as a soil conditioner with great success. Prior to these polymers, peat moss, agro-waste (sugar-cane waste, coffee-shell, etc.), activated kaolin were the alternative soil additives to hold water (20 times its weight), but poly(acrylamide) absorbs 400 times its weight and polyacrylate is capable of absorbing greater amounts of liquid than poly(acrylamide). In addition, starch and cellulose are biodegradable naturally occurring polymers, which are not capable of holding a great amount of water, but their modification by graft polymerization or crosslinking through radiation or chemical initiation techniques, they become the potential superabsorbent polymers. Radiation initiation of chemical reactions has been widely known for making novel materials because the degree of polymerization, grafting and crosslinking process can easily be controlled. Recently, it was shown that the starch and cellulose derivatives such as carboxymethyl starch, carboxymethyl starch can be synthesized by radiation-induced crosslinking at high concentrations. Their utilization in agriculture seems to be appropriately evaluated. In this article, the graft polymerization and crosslinking of acrylic acid onto cassava starch and field trial of its product (GAM-Sorb S) are reported. (author)

  3. Fermentation Results and Chemical Composition of Agricultural Distillates Obtained from Rye and Barley Grains and the Corresponding Malts as a Source of Amylolytic Enzymes and Starch.

    Science.gov (United States)

    Balcerek, Maria; Pielech-Przybylska, Katarzyna; Dziekońska-Kubczak, Urszula; Patelski, Piotr; Strąk, Ewelina

    2016-10-01

    The objective of this study was to determine the efficiency of rye and barley starch hydrolysis in mashing processes using cereal malts as a source of amylolytic enzymes and starch, and to establish the volatile profile of the obtained agricultural distillates. In addition, the effects of the pretreatment method of unmalted cereal grains on the physicochemical composition of the prepared mashes, fermentation results, and the composition of the obtained distillates were investigated. The raw materials used were unmalted rye and barley grains, as well as the corresponding malts. All experiments were first performed on a semi-technical scale, and then verified under industrial conditions in a Polish distillery. The fermentable sugars present in sweet mashes mostly consisted of maltose, followed by glucose and maltotriose. Pressure-thermal treatment of unmalted cereals, and especially rye grains, resulted in higher ethanol content in mashes in comparison with samples subjected to pressureless liberation of starch. All agricultural distillates originating from mashes containing rye and barley grains and the corresponding malts were characterized by low concentrations of undesirable compounds, such as acetaldehyde and methanol. The distillates obtained under industrial conditions contained lower concentrations of higher alcohols (apart from 1-propanol) than those obtained on a semi-technical scale.

  4. Fermentation Results and Chemical Composition of Agricultural Distillates Obtained from Rye and Barley Grains and the Corresponding Malts as a Source of Amylolytic Enzymes and Starch

    Directory of Open Access Journals (Sweden)

    Maria Balcerek

    2016-10-01

    Full Text Available The objective of this study was to determine the efficiency of rye and barley starch hydrolysis in mashing processes using cereal malts as a source of amylolytic enzymes and starch, and to establish the volatile profile of the obtained agricultural distillates. In addition, the effects of the pretreatment method of unmalted cereal grains on the physicochemical composition of the prepared mashes, fermentation results, and the composition of the obtained distillates were investigated. The raw materials used were unmalted rye and barley grains, as well as the corresponding malts. All experiments were first performed on a semi-technical scale, and then verified under industrial conditions in a Polish distillery. The fermentable sugars present in sweet mashes mostly consisted of maltose, followed by glucose and maltotriose. Pressure-thermal treatment of unmalted cereals, and especially rye grains, resulted in higher ethanol content in mashes in comparison with samples subjected to pressureless liberation of starch. All agricultural distillates originating from mashes containing rye and barley grains and the corresponding malts were characterized by low concentrations of undesirable compounds, such as acetaldehyde and methanol. The distillates obtained under industrial conditions contained lower concentrations of higher alcohols (apart from 1-propanol than those obtained on a semi-technical scale.

  5. Development of silver and clay-starch bio-nanocomposites

    OpenAIRE

    Abreu, Ana S.; Oliveira, M.; Machado, A. V.

    2014-01-01

    Starch, among biopolymers is that had the lowest production cost, wide availability, fully biodegradability and is a renewable agriculture resource. Starch due to its sensitivity to humidity and poor mechanical properties cannot be used in many applications. For that, the dispersion of clays in this material improves their physical and mechanical properties, at very low filler loadings. On the other hand, the incorporation of silver nanoparticles into biocompatible and biod...

  6. Chemically Modified Starch; Allyl- and Epoxy-Starch Derivatives: Their Synthesis and Characterization

    NARCIS (Netherlands)

    Franssen, M.C.R.; Boeriu, C.

    2014-01-01

    Both native and modified starches, such as starch that is pregelatinized, extruded, acid-converted, cross-linked, and substituted, are widely used in industry. This chapter describes a mild two-step process for the synthesis of novel, highly reactive granular epoxy-starch derivatives. Via this

  7. The effect of high hydrostatic pressure treatment on the molecular structure of starches with different amylose content.

    Science.gov (United States)

    Szwengiel, Artur; Lewandowicz, Grażyna; Górecki, Adrian R; Błaszczak, Wioletta

    2018-02-01

    The effect of high hydrostatic pressure processing (650MPa/9min) on molecular mass distribution, and hydrodynamic and structural parameters of amylose (maize, sorghum, Hylon VII) and amylopectin (waxy maize, amaranth) starches was studied. The starches were characterized by high-performance size-exclusion chromatography (HPSEC) equipped with static light scattering and refractive index detectors and by Fourier Transform Infrared (FTIR) spectroscopy. Significant changes were observed in molecular mass distribution of pressurized waxy maize starch. Changes in branches/branch frequency, intrinsic viscosity, and radius of gyration were observed for all treated starches. The combination of SEC and FTIR data showed that α-1,6-glycosidic bonds are more frequently split in pressurized amaranth, Hylon VII, and waxy maize starch, while in sorghum and maize starches, the α-1,4 bonds are most commonly split. Our results show that the structural changes found for pressurized starches were more strongly determined by the starch origin than by the processing applied. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Preparation and properties of thermoplastic poly(caprolactone) composites containing high amount of esterified starch without plasticizer.

    Science.gov (United States)

    Sun, Yujie; Hu, Qiongen; Qian, Jiangtao; Li, Ting; Ma, Piming; Shi, Dongjian; Dong, Weifu; Chen, Mingqing

    2016-03-30

    Based on stearyl chloride and native starch, esterified starch were prepared and the chemical structure was characterized by (1)H NMR and FTIR. It was found that stearyl chloride was an efficient agent to fabricate esterified starch with high degree of substitution (DS). During the melt blending of esterified starch (80 wt%) and poly(caprolactone) (PCL, 20 wt%), it was shown the torque of PCL/esterified starch was much lower than that of PCL/native starch without any plasticizer, and further decreased with increasing DS. Compared with PCL/native starch, the tensile properties of PCL/esterified starch composites were significantly enhanced. The tensile strength and elongation at break were increased from 2.7 MPa to 56% for PCL/native starch composites to 9.1 MPa and 626% for PCL/esterified starch ones with DS of 1.50, respectively. SEM observation revealed the esterified starch particles in matrix became smaller and more uniform. In addition, the water resistance and hydrophobic character of PCL/esterified starch composites were improved. PCL composites containing 80 wt% esterified starch with favorable mechanical properties would have great potential applications in broad areas. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. A new generation of starch products as excipient in pharmaceutical tablets .2. High surface area retrograded pregelatinized potato starch products in sustained-release tablets

    NARCIS (Netherlands)

    TeWierik, GHP; Eissens, AC; ArendsScholte, AW; Lerk, CF

    1997-01-01

    A new linear short-chain starch product was prepared by gelatinization of potato starch followed by enzymatic degradation, precipitation (retrogradation) and filtration. A high specific surface area was subsequently created by washing with ethanol or acetone or freeze-drying. Tablets compressed from

  10. Effect of maize starch concentration in the diet on starch and cell wall digestion in the dairy cow.

    Science.gov (United States)

    van Vuuren, A M; Hindle, V A; Klop, A; Cone, J W

    2010-06-01

    An in vivo experiment was performed to determine the effect of level of maize starch in the diet on digestion and site of digestion of organic matter, starch and neutral detergent fibre (NDF). In a repeated change-over design experiment, three cows fitted with a rumen cannula and T-piece cannulae in duodenum and ileum received a low-starch (12% of ration dry matter) and a high-starch (33% of ration dry matter) diet. Starch level was increased by exchanging dried sugar beet pulp by ground maize. After a 2-week adaptation period, feed intake, rumen fermentation parameters (in vivo and in situ), intestinal flows, faecal excretion of organic matter, starch and NDF were estimated. When the high-starch diet was fed, dry matter intake was higher (19.0 kg/day vs. 17.8 kg/day), and total tract digestibility of organic matter, starch and NDF was lower when the low-starch diet was fed. Maize starch concentration had no significant effect on rumen pH and volatile fatty acid concentration nor on the site of digestion of organic matter and starch and rate of passage of ytterbium-labelled forage. On the high-starch diet, an extra 1.3 kg of maize starch was supplied at the duodenum in relation to the low-starch diet, but only an extra 0.3 kg of starch was digested in the small intestine. Digestion of NDF was only apparent in the rumen and was lower on the high-starch diet than on the low-starch diet, mainly attributed to the reduction in sugar beet pulp in the high-starch diet. It was concluded that without the correction for the reduction in NDF digestion in the rumen, the extra supply of glucogenic (glucose and propionic acid) and ketogenic nutrients (acetic and butyric acid) by supplemented starch will be overestimated. The mechanisms responsible for these effects need to be addressed in feed evaluation.

  11. Mechanical properties and solubility in water of corn starch-collagen composite films: Effect of starch type and concentrations.

    Science.gov (United States)

    Wang, Kun; Wang, Wenhang; Ye, Ran; Liu, Anjun; Xiao, Jingdong; Liu, Yaowei; Zhao, Yana

    2017-02-01

    This study investigated the possibility of enhancing the properties of collagen with three different maize starches: waxy maize starch, normal starch, and high amylose starch. Scanning electron microscopy images revealed that starch-collagen films had a rougher surface compared to pure collagen films which became smoother upon heating. Amylose starch and normal starch increased the tensile strength of unheated collagen films in both dry and wet states, while all starches increased tensile strength of collagen film by heating. Depending upon the amylose content and starch concentrations, film solubility in water decreased with the addition of starch. DSC thermograms demonstrated that addition of all starches improved the thermal stability of the collagen film. Moreover, X-ray diffraction results indicated that except for high amylose starch, the crystallinity of both starch and collagen was significantly decreased when subject to heating. FTIR spectra indicated that intermolecular interactions between starch and collagen were enhanced upon heating. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Starch Bioengineering in Barley

    DEFF Research Database (Denmark)

    Shaik, Shahnoor Sultana

    , the effects of engineering high levels of phosphate and amylose content on starch physico-chemical properties were evaluated by various biochemical and morphological studies. As a result, a substantial increase of 10-fold phosphate content and ~99% amylose content with high-resistant starch was observed...... in storage reserve accumulation, metabolite accumulation in AO but no significant differences were observed in HP compared to WT. Scanning electron microscopy and confocal microscopy revealed the details in topography and internal structures of the starch granules in these lines. The results demonstrated......Starch represents the most important carbohydrate used for food and feed purposes. Increasingly, it is also used as a renewable raw material, as a source of biofuel, and for many different industrial applications. Progress in understanding starch biosynthesis, and investigations of the genes...

  13. Agricultural programs for energy: High margin coproducts strategy

    International Nuclear Information System (INIS)

    Villet, R.H.

    1993-01-01

    The Agricultural Research Service (ARS) is the in-house research arm of the U.S. Department of Agriculture (USDA). The research program bias is toward crop production, the historical focus of agricultural research. There is, however, an existing realization that, in order to maintain and strengthen the competitiveness of the United States in global agriculture, new uses must be found, developed, and commercialized for raw bulk agricultural commodities such as maize (corn), soybeans, and wheat. Biofuels such as ethanol from cornstarch, and biodiesel from soybean oil are being promoted strongly as a way of utilizing agricultural commodities more profitably to the farmer. Over the years, ARS has maintained a bioenergy program which has had fluctuating support, and thus a variation in dimensions. At present, there is strong political and departmental backing; in fact there is a fruitful collaboration being developed between the USDA and the U.S. Department of Energy through a Memorandum of Understanding. Ethanol from starch and other less tractable forms of biomass have been subjected to a barrage of economic evaluations, not exactly overoptimistic. In these studies, the large contribution by feedstock cost to the overall cost of production is pointed out. This has led to research programs on biomass production and also attempts at lowering costs of ethanol production by improved pretreatment, conversion, and product recovery. Progress toward lowering production costs has been undeniable, but slow

  14. Effect of high hydrostatic pressure and retrogradation treatments on structural and physicochemical properties of waxy wheat starch.

    Science.gov (United States)

    Hu, Xiao-Pei; Zhang, Bao; Jin, Zheng-Yu; Xu, Xue-Ming; Chen, Han-Qing

    2017-10-01

    In this study, the effects of high hydrostatic pressure and retrogradation (HHPR) treatments on in vitro digestibility, structural and physicochemical properties of waxy wheat starch were investigated. The waxy wheat starch slurries (10%, w/v) were treated with high hydrostatic pressures of 300, 400, 500, 600MPa at 20°C for 30min, respectively, and then retrograded at 4°C for 4d. The results indicated that the content of slowly digestible starch (SDS) in HHPR-treated starch samples increased with increasing pressure level, and it reached the maximum (31.12%) at 600MPa. HHPR treatment decreased the gelatinization temperatures, the gelatinization enthalpy, the relative crystallinity and the peak viscosity of the starch samples. Moreover, HHPR treatment destroyed the surface and interior structures of starch granules. These results suggest that the in vitro digestibility, physicochemical, and structural properties of waxy wheat starch are effectively modified by HHPR. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Studies on gamma-irradiation of high amylose corn starch, 1

    International Nuclear Information System (INIS)

    Watanabe, Yukio; Ayano, Yuko; Obara, Tetsujiro.

    1976-01-01

    Amylomaize 7, amylomaize 5, normal corn, waxy corn and potato starches were irradiated with 60 Co-gamma rays at the dose levels from 2x10 4 to 100x10 4 rad to determine the changes in physicochemical properties by irradiation. Irradiated starches were characterized by determination of amylography, specific viscosity, blue value, pH, acidity, carbonyl content, reducing value and limit of β-amylolysis. Irradiated starches showed a decrease in viscosity and blue value, and an increase in reducing value with increasing dose levels. These results were seemed to indicate the degradation of starch molecule. A slight oxidation of starch was suggested by a decrease in pH and an increase in acidity and carbonyl content. Amylomaize 7 and amylomaize 5 starches were less sensitive than the other starches in terms of irradiation effects. The rheological properties determined by amylography and Ostwald viscometer changed at the lowest dose (5x10 4 rad) and the other properties changed above 20x10 4 rad. The limits of β-amylase hydrolysis of normal corn, waxy corn and potato starches increased slightly by irradiation (100x10 4 rad). On the other hand, β-amylolysis limits of amylomaize 7 and amylomaize 5 starches were lower about 5.5% and 2.5% respectively than that of nonirradiated samples. The decrease of β-amylolysis limit enlarged with increasing amylose content. (auth.)

  16. Effect of starch types on properties of biodegradable polymer based on thermoplastic starch process by injection molding technique

    Directory of Open Access Journals (Sweden)

    Yossathorn Tanetrungroj

    2015-04-01

    Full Text Available In this study effects of different starch types on the properties of biodegradable polymer based on thermoplastic starch (TPS were investigated. Different types of starch containing different contents of amylose and amylopectin were used, i.e. cassava starch, mungbean starch, and arrowroot starch. The TPS polymers were compounded and shaped using an internal mixer and an injection molding machine, respectively. It was found that the amount of amylose and amylopectin contents on native starch influence the properties of the TPS polymer. A high amylose starch of TPMS led to higher strength, hardness, degree of crystallization than the high amylopectin starch of TPCS. In addition, function group analysis by Fourier transforms infrared spectrophotometer, water absorption, and biodegradation by soil burial test were also examined.

  17. Effects of effluent water on the abundance of cowpea insect pests.

    Science.gov (United States)

    Tiroesele, Bamphitlhi; Sitwane, Monametsi; Obopile, M; Ullah, Muhammad Irfan; Ali, Sajjad

    2017-10-03

    Botswana experiences low and unreliable rainfall. Thus, the use of effluent water in agriculture is increasingly important. Insect damage is the major constraint for cowpea grain production in the most cowpea-producing lands. We investigated the effects of effluent water on insect pest abundance on cowpea (Vigna unguiculata) under field conditions. The experiment was laid out in a randomized complete block design with 100, 75, 50, and 25% of effluent water and 0% (control-clean tap water) treatments. Treatments with 100% effluent water resulted in a significant increase in insect pest populations as compared with the control. These results show that the use of effluent water to irrigate crops may increase incidence, abundance, and damage caused by insect pests possibly by decreasing plant vigor. The use of effluent water in agriculture should be addressed in a wise way.

  18. The influence of starch molecular mass on the properties of extruded thermoplastic starch

    NARCIS (Netherlands)

    Vliegenthart, J.F.G.; Soest, J.J.G. van; Benes, K.; Wit, D. de

    1996-01-01

    The mechanical properties of a low and a high molecular mass thermoplastic starch (TPS) were monitored at water contents in the range of 5–30% (w/w). The granular starches were plasticized by extrusion processing with glycerol and water. The low molecular mass starch was prepared by partial acid

  19. Barley grain constituents, starch composition, and structure affect starch in vitro enzymatic hydrolysis.

    Science.gov (United States)

    Asare, Eric K; Jaiswal, Sarita; Maley, Jason; Båga, Monica; Sammynaiken, Ramaswami; Rossnagel, Brian G; Chibbar, Ravindra N

    2011-05-11

    The relationship between starch physical properties and enzymatic hydrolysis was determined using ten different hulless barley genotypes with variable carbohydrate composition. The ten barley genotypes included one normal starch (CDC McGwire), three increased amylose starches (SH99250, SH99073, and SB94893), and six waxy starches (CDC Alamo, CDC Fibar, CDC Candle, Waxy Betzes, CDC Rattan, and SB94912). Total starch concentration positively influenced thousand grain weight (TGW) (r(2) = 0.70, p starch concentration (r(2) = -0.80, p hydrolysis of pure starch (r(2) = -0.67, p starch concentration (r(2) = 0.46, p starch (RS) in meal and pure starch samples. The rate of starch hydrolysis was high in pure starch samples as compared to meal samples. Enzymatic hydrolysis rate both in meal and pure starch samples followed the order waxy > normal > increased amylose. Rapidly digestible starch (RDS) increased with a decrease in amylose concentration. Atomic force microscopy (AFM) analysis revealed a higher polydispersity index of amylose in CDC McGwire and increased amylose genotypes which could contribute to their reduced enzymatic hydrolysis, compared to waxy starch genotypes. Increased β-glucan and dietary fiber concentration also reduced the enzymatic hydrolysis of meal samples. An average linkage cluster analysis dendrogram revealed that variation in amylose concentration significantly (p starch concentration in meal and pure starch samples. RS is also associated with B-type granules (5-15 μm) and the amylopectin F-III (19-36 DP) fraction. In conclusion, the results suggest that barley genotype SH99250 with less decrease in grain weight in comparison to that of other increased amylose genotypes (SH99073 and SH94893) could be a promising genotype to develop cultivars with increased amylose grain starch without compromising grain weight and yield.

  20. Starch degradation by irradiation

    International Nuclear Information System (INIS)

    Pruzinec, J.; Hola, O.

    1987-01-01

    The effect of high energy irradiation on various starch samples was studied. The radiation dose varied between 43 and 200.9 kGy. The viscosity of starch samples were determined by Hoeppler's method. The percentual solubility of the matter in dry starch was evaluated. The viscosity and solubility values are presented. (author) 14 refs

  1. Dynamic development of starch granules and the regulation of starch biosynthesis in Brachypodium distachyon: comparison with common wheat and Aegilops peregrina.

    Science.gov (United States)

    Chen, Guanxing; Zhu, Jiantang; Zhou, Jianwen; Subburaj, Saminathan; Zhang, Ming; Han, Caixia; Hao, Pengchao; Li, Xiaohui; Yan, Yueming

    2014-08-06

    Thorough understanding of seed starch biosynthesis and accumulation mechanisms is of great importance for agriculture and crop improvement strategies. We conducted the first comprehensive study of the dynamic development of starch granules and the regulation of starch biosynthesis in Brachypodium distachyon and compared the findings with those reported for common wheat (Chinese Spring, CS) and Aegilops peregrina. Only B-granules were identified in Brachypodium Bd21, and the shape variation and development of starch granules were similar in the B-granules of CS and Bd21. Phylogenetic analysis showed that most of the Bd21 starch synthesis-related genes were more similar to those in wheat than in rice. Early expression of key genes in Bd21 starch biosynthesis mediate starch synthesis in the pericarp; intermediate-stage expression increases the number and size of starch granules. In contrast, these enzymes in CS and Ae. peregrina were mostly expressed at intermediate stages, driving production of new B-granules and increasing the granule size, respectively. Immunogold labeling showed that granule-bound starch synthase (GBSSI; related to amylose synthesis) was mainly present in starch granules: at lower levels in the B-granules of Bd21 than in CS. Furthermore, GBSSI was phosphorylated at threonine 183 and tyrosine 185 in the starch synthase catalytic domain in CS and Ae. peregrina, but neither site was phosphorylated in Bd21, suggesting GBSSI phosphorylation could improve amylose biosynthesis. Bd21 contains only B-granules, and the expression of key genes in the three studied genera is consistent with the dynamic development of starch granules. GBSSI is present in greater amounts in the B-granules of CS than in Bd21; two phosphorylation sites (Thr183 and Tyr185) were found in Triticum and Aegilops; these sites were not phosphorylated in Bd21. GBSSI phosphorylation may reflect its importance in amylose synthesis.

  2. Low cost methods of treatment of agricultural effluents in warm climates

    Energy Technology Data Exchange (ETDEWEB)

    Parker, C.D.

    Treatment of effluents by anaerobic-aerobic lagoons, flood and spray irrigation and grass filtration is outlined and there are 4 examples of plants disposing respectively of waste from a domestic population with a cannery, vegetable and milk processing plants and a slaughterhouse; 2 wineries and a brandy distillery; a milk processing plant; and a potato processing plant. In the 3rd example high-strength dairy factory effluent (12,000 mg BOD/1) is fermented to methane and CO/sub 2/ with a daily yield of 59,000 cubic feet gas from 35,000 gal of waste; the outflow from fermenters and low strength waste (2500 mg BOD/1) is treated in a lagoon which removes greater than 90% BOD and passes to an oxidation ditch before irrigating pasture. A cost comparison of the various systems is included.

  3. Design starch: stochastic modeling of starch granule biogenesis.

    Science.gov (United States)

    Raguin, Adélaïde; Ebenhöh, Oliver

    2017-08-15

    Starch is the most widespread and abundant storage carbohydrate in plants and the main source of carbohydrate in the human diet. Owing to its remarkable properties and commercial applications, starch is still of growing interest. Its unique granular structure made of intercalated layers of amylopectin and amylose has been unraveled thanks to recent progress in microscopic imaging, but the origin of such periodicity is still under debate. Both amylose and amylopectin are made of linear chains of α-1,4-bound glucose residues, with branch points formed by α-1,6 linkages. The net difference in the distribution of chain lengths and the branching pattern of amylose (mainly linear), compared with amylopectin (racemose structure), leads to different physico-chemical properties. Amylose is an amorphous and soluble polysaccharide, whereas amylopectin is insoluble and exhibits a highly organized structure of densely packed double helices formed between neighboring linear chains. Contrarily to starch degradation that has been investigated since the early 20th century, starch production is still poorly understood. Most enzymes involved in starch growth (elongation, branching, debranching, and partial hydrolysis) are now identified. However, their specific action, their interplay (cooperative or competitive), and their kinetic properties are still largely unknown. After reviewing recent results on starch structure and starch growth and degradation enzymatic activity, we discuss recent results and current challenges for growing polysaccharides on granular surface. Finally, we highlight the importance of novel stochastic models to support the analysis of recent and complex experimental results, and to address how macroscopic properties emerge from enzymatic activity and structural rearrangements. © 2017 The Author(s).

  4. Design starch: stochastic modeling of starch granule biogenesis

    Science.gov (United States)

    Ebenhöh, Oliver

    2017-01-01

    Starch is the most widespread and abundant storage carbohydrate in plants and the main source of carbohydrate in the human diet. Owing to its remarkable properties and commercial applications, starch is still of growing interest. Its unique granular structure made of intercalated layers of amylopectin and amylose has been unraveled thanks to recent progress in microscopic imaging, but the origin of such periodicity is still under debate. Both amylose and amylopectin are made of linear chains of α-1,4-bound glucose residues, with branch points formed by α-1,6 linkages. The net difference in the distribution of chain lengths and the branching pattern of amylose (mainly linear), compared with amylopectin (racemose structure), leads to different physico-chemical properties. Amylose is an amorphous and soluble polysaccharide, whereas amylopectin is insoluble and exhibits a highly organized structure of densely packed double helices formed between neighboring linear chains. Contrarily to starch degradation that has been investigated since the early 20th century, starch production is still poorly understood. Most enzymes involved in starch growth (elongation, branching, debranching, and partial hydrolysis) are now identified. However, their specific action, their interplay (cooperative or competitive), and their kinetic properties are still largely unknown. After reviewing recent results on starch structure and starch growth and degradation enzymatic activity, we discuss recent results and current challenges for growing polysaccharides on granular surface. Finally, we highlight the importance of novel stochastic models to support the analysis of recent and complex experimental results, and to address how macroscopic properties emerge from enzymatic activity and structural rearrangements. PMID:28673938

  5. The influence of extruded starch molecular mass on the properties of extruded thermoplastic starch

    NARCIS (Netherlands)

    Soest, van J.J.G.; Benes, K.; Wit, de D.; Vliegenthart, J.F.G.

    1996-01-01

    The mechanical properties of a low and a high molecular mass thermoplastic starch (TPS) were monitored at water contents in the range of 5-30% (w/w). The granular starches were plasticized by extrusion processing with glycerol and water. The low molecular mass starch was prepared by partial acid

  6. Preparation of Edible Corn Starch Phosphate with Highly Reactive ...

    African Journals Online (AJOL)

    1Food & Bioengineering Department, Henan University of Science and Technology, Luoyang, Henan 471003 ... Purpose: To prepare edible corn starch phosphate under optimized experimental conditions. ... In food industry, starch phosphate.

  7. In vitro digestibility of banana starch cookies.

    Science.gov (United States)

    Bello-Pérez, Luis A; Sáyago-Ayerdi, Sonia G; Méndez-Montealvo, Guadalupe; Tovar, Juscelino

    2004-01-01

    Banana starch was isolated and used for preparation of two types of cookies. Chemical composition and digestibility tests were carried out on banana starch and the food products, and these results were compared with corn starch. Ash, protein, and fat levels in banana starch were higher than in corn starch. The high ash amount in banana starch could be due to the potassium content present in this fruit. Proximal analysis was similar between products prepared with banana starch and those based on corn starch. The available starch content of the banana starch preparation was 60% (dmb). The cookies had lower available starch than the starches while banana starch had lower susceptibility to the in vitro alpha-amylolysis reaction. Banana starch and its products had higher resistant starch levels than those made with corn starch.

  8. Physicochemical properties and in vitro digestibility of sorghum starch altered by high hydrostatic pressure.

    Science.gov (United States)

    Liu, Hang; Fan, Huanhuan; Cao, Rong; Blanchard, Christopher; Wang, Min

    2016-11-01

    A nonthermal processing technology, high hydrostatic pressure (HHP) treatment, was investigated to assess its influence on the physicochemical properties and in vitro digestibility of sorghum starch (SS). There was no change in the 'A'-type crystalline pattern of SS after the pressure treatments at 120-480MPa. However, treatment at 600MPa produced a pattern similar to 'B'-type crystalline. HHP treatment also resulted in SS granules with rough surfaces. Measured amylose content, water absorption capacity, alkaline water retention, pasting temperature and thermostability increased with increasing pressure levels, while the oil absorption capacity, swelling power, relative crystallinity and viscosity decreased. Compared with native starch, HHP-modified SS samples had lower in vitro hydrolysis, reduced amount of rapidly digestible starch, as well as increased levels of slowly digestible starch and resistant starch. These results indicate that HHP treatment is an effective modification method for altering in vitro digestibility and physicochemical properties of SS. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Effect of temperature to the properties of sago starch

    Science.gov (United States)

    Mustafa Kamal, M.; Baini, R.; Mohamaddan, S.; Selaman, O. S.; Zauzi, N. Ahmad; Rahman, M. R.; Rahman, N. Abdul; Chong, K. H.; Atan, M. F.; Samat, N. A. S. Abdul; Taib, S. N. L.; Othman, A. K.

    2017-06-01

    Recently, the importance of sago starch has increased, as it has become one of the main economically important agricultural crops to the most Southeast Asia countries. In the present work, an analysis on drying process of sago starch (Metroxylon sagu Rottb.) underwent various temperature has been made by using four empirical equations. The main goal of this analysis is to suggest the most accurate equation, in order to model and simulate the mechanical drying of sago starch. The experimental investigations were carried out in a gravity convection lab oven; and ±50g of sago starch (sample heights of 1 cm) was dried through four different temperatures, which were 50, 60, 70 and 80ºC. The effect of drying temperature on the drying kinetics, as well as various qualities attributes of sago starch, such as microstructure, colour and functional properties were investigated. The results suggested that drying temperature has significant effect on sago starch drying kinetic; therefore, drying temperature would be the basis to select drying condition. Meanwhile, it was found that the various drying temperature ranging from 50 to 80ºC affected the product quality especially in term of colour.

  10. High efficiency and low cost preparation of size controlled starch nanoparticles through ultrasonic treatment and precipitation.

    Science.gov (United States)

    Chang, Yanjiao; Yan, Xiaoxia; Wang, Qian; Ren, Lili; Tong, Jin; Zhou, Jiang

    2017-07-15

    The purpose of this work was to develop an approach to produce size controlled starch nanoparticles (SNPs), via precipitation with high efficiency and low cost. High concentration starch aqueous pastes (up to 5wt.%) were treated by ultrasound. Viscosity measurements and size exclusion chromatography characterization revealed that, after 30min ultrasonic treatment, viscosity of the starch pastes decreased two orders of magnitude and the weight average molecular weight of the starch decreased from 8.4×10 7 to 2.7×10 6 g/mol. Dynamic light scattering measurements and scanning electron microscopy observations showed that the SNPs prepared from the starch pastes with ultrasonic treatments were smaller (∼75nm) and more uniform. Moreover, SNPs could be obtained using less non-solvents. X-ray diffraction results indicated that effect of the ultrasonic treatment on crystalline structure of the SNPs was negligible. Ultrasound can be utilized to prepare smaller SNPs through nanoprecipitation with higher efficiency and lower cost. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Preparation and characterization of jackfruit seed starch/poly (vinyl alcohol) (PVA) blend film

    Science.gov (United States)

    Sarifuddin, N.; Shahrim, N. A.; Rani, N. N. S. A.; Zaki, H. H. M.; Azhar, A. Z. A.

    2018-01-01

    From the environmental point of view, biodegradable materials have been rapidly developed in the past years. PVA is one of the biodegradable synthetic polymers commonly used, but its degradation rate is slow. As an alternative to reduce plastic waste and accelerate the degradation process, PVA frequently blended with other natural polymers to improve its biodegradability. The natural polymer such as starch has high potential in enhancing PVA biodegradability by blending both components. The usage of starch extracted from agriculture wastes such as jackfruit seed is quite promising. In this study, jackfruit seed starch (JFSS)/poly (vinyl alcohol) (PVA) blend films were prepared using the solution casting method. The effect of starch content on the mechanical (tensile strength and elongation to break %) and physical properties of the tested films were investigated. The optimum tensile strength was obtained at 10.45 MPa when 4 wt. % of starch added to the blend. But, decreasing trend of tensile strength was found upon increasing the amount of starch beyond 4 wt. % in starch/PVA blend films. Nevertheless, elongation at break decreases with the increase in starch content. The mechanical properties of the blend films are supported by the Field Emission Scanning Electron Microscopy (FESEM), in which the native JFSS granules are wetted by PVA continuous phase with good dispersion and less agglomeration. The incorporation of JFSS in PVA has also resulted in the appearance of hydrogen bond peak, which evidenced by Fourier Transform Infrared (FTIR). Additionally, the biodegradation rate of JFSS/PVA was evaluated through soil burial test.

  12. Enzymatic modification of starch

    DEFF Research Database (Denmark)

    Jensen, Susanne Langgård

    In the food industry approaches for using bioengineering are investigated as alternatives to conventional chemical and physical starch modification techniques in development of starches with specific properties. Enzyme-assisted post-harvest modification is an interesting approach to this, since...... it is considered a clean and energy saving technology. This thesis aimed to investigate the effect of using reaction conditions, simulating an industrial process, for enzymatic treatment of starch with branching enzyme (BE) from Rhodothermus obamensis. Thus treatements were conducted at 70°C using very high...... substrate concentration (30-40% dry matter (DM)) and high enzyme activity (750-2250 BE units (BEU)/g sample). Starches from various botanical sources, representing a broad range of properties, were used as substrates. The effects of the used conditions on the BE-reaction were evaluated by characterization...

  13. High surface area starch products as filler-binder in direct compression tablets

    NARCIS (Netherlands)

    te Wierik, G.HP; Ramaker, J.S; Eissens, A.C; Bergsma, J; Arends-Scholte, A.W.; Lerk, C.F

    Amylodextrin and modified starch products were prepared from amylose-free starches and from (amylose containing) potato starch by enzymatic degradation, followed by precipitation and filtration. The intermediate retrograded starch products were dehydrated by drying at room temperature or washing

  14. Quantification of high-power ultrasound induced damage on potato starch granules using light microscopy.

    Science.gov (United States)

    Zuo, Yue Yue J; Hébraud, Pascal; Hemar, Yacine; Ashokkumar, Muthupandian

    2012-05-01

    A simple light microscopic technique was developed in order to quantify the damage inflicted by high-power low-frequency ultrasound (0-160 W, 20 kHz) treatment on potato starch granules in aqueous dispersions. The surface properties of the starch granules were modified using ethanol and SDS washing methods, which are known to displace proteins and lipids from the surface of the starch granules. The study showed that in the case of normal and ethanol-washed potato starch dispersions, two linear regions were observed. The number of defects first increased linearly with an increase in ultrasound power up to a threshold level. This was then followed by another linear dependence of the number of defects on the ultrasound power. The power threshold where the change-over occurred was higher for the ethanol-washed potato dispersions compared to non-washed potato dispersions. In the case of SDS-washed potato starch, although the increase in defects was linear with the ultrasound power, the power threshold for a second linear region was not observed. These results are discussed in terms of the different possible mechanisms of cavitation induced-damage (hydrodynamic shear stresses and micro-jetting) and by taking into account the hydrophobicity of the starch granule surface. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Toxicity of two effluents from agricultural activity: Comparing the genotoxicity of sugar cane and orange vinasse.

    Science.gov (United States)

    Garcia, Camila Fernandes H; Souza, Raphael B de; de Souza, Cleiton Pereira; Christofoletti, Cintya Ap; Fontanetti, Carmem S

    2017-08-01

    Vinasse, produced by several countries as a by-product of agricultural activity, has different alternatives for its reuse, mainly fertirrigation. Several monocultures, such as sugar cane and orange crops, produce this effluent. Sugar cane vinasse is already widely used in fertirrigation and orange vinasse has potential for this intention. However, its use as a fertilizer has caused great concern. Thus, ecotoxicological evaluation is extremely important in order to assess the possible effects on the environment. Therefore, the aim of this study was to evaluate the potential toxicity of vinasse of two different crops: sugar cane and orange. For this purpose, bioassays with Allium cepa as a test organism were performed with two vinasse dilutions (2.5% and 5%) to detect chromosomal aberrations and micronucleus induction. The results showed that both types of vinasse are able to induce chromosomal aberrations in meristematic cells, mainly nuclear and anaphasic bridges, suggesting genotoxic potential. The induction of micronuclei in cells of the F 1 region suggests that the two residues have mutagenic potential. Thus, caution is advised when applying these effluents in the environment. Copyright © 2017. Published by Elsevier Inc.

  16. Effect of waxy rice flour and cassava starch on freeze-thaw stability of rice starch gels.

    Science.gov (United States)

    Charoenrein, Sanguansri; Preechathammawong, Nutsuda

    2012-10-01

    Repeatedly frozen and thawed rice starch gel affects quality. This study investigated how incorporating waxy rice flour (WF) and cassava starch (CS) in rice starch gel affects factors used to measure quality. When rice starch gels containing 0-2% WF and CS were subjected to 5 freeze-thaw cycles, both WF and CS reduced the syneresis in first few cycles. However CS was more effective in reducing syneresis than WF. The different composite arrangement of rice starch with WF or CS caused different mechanisms associated with the rice starch gel retardation of retrogradation, reduced the spongy structure and lowered syneresis. Both swollen granules of rice starch and CS caused an increase in the hardness of the unfrozen and freeze-thawed starch gel while highly swollen WF granules caused softer gels. These results suggested that WF and CS were effective in preserving quality in frozen rice starch based products. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Physical and structural changes induced by high pressure on corn starch, rice flour and waxy rice flour.

    Science.gov (United States)

    Cappa, Carola; Lucisano, Mara; Barbosa-Cánovas, Gustavo V; Mariotti, Manuela

    2016-07-01

    The impact of high pressure (HP) processing on corn starch, rice flour and waxy rice flour was investigated as a function of pressure level (400MPa; 600MPa), pressure holding time (5min; 10min), and temperature (20°C; 40°C). Samples were pre-conditioned (final moisture level: 40g/100g) before HP treatments. Both the HP treated and the untreated raw materials were evaluated for pasting properties and solvent retention capacity, and investigated by differential scanning calorimetry, X-ray diffractometry and environmental scanning electron microscopy. Different pasting behaviors and solvent retention capacities were evidenced according to the applied pressure. Corn starch presented a slower gelatinization trend when treated at 600MPa. Corn starch and rice flour treated at 600MPa showed a higher retention capacity of carbonate and lactic acid solvents, respectively. Differential scanning calorimetry and environmental scanning electron microscopy investigations highlighted that HP affected the starch structure of rice flour and corn starch. Few variations were evidenced in waxy rice flour. These results can assist in advancing the HP processing knowledge, as the possibility to successfully process raw samples in a very high sample-to-water concentration level was evidenced. This work investigates the effect of high pressure as a potential technique to modify the processing characteristics of starchy materials without using high temperature. In this case the starches were processed in the powder form - and not as a slurry as in previously reported studies - showing the flexibility of the HP treatment. The relevance for industrial application is the possibility to change the structure of flour starches, and thus modifying the processability of the mentioned products. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. High sensitivity on-line monitor for radioactive effluent

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Toshimi [Tohoku Electric Power Co. Ltd., Sendai (Japan); Ishizuka, Akira; Abe, Eisuke; Inoue, Yasuhiko; Fujii, Masaaki; Kitaguchi, Hiroshi; Doi, Akira

    1983-04-01

    A new approach for a highly sensitive effluent monitor is presented. The free flow type monitor, which consists of a straightener, nozzle, monitoring section and ..gamma..-ray detector, is demonstrated to be effective in providing long term stability. The 160 start-and-stop cycles of effluent discharge were repeated in a 120-h testing period. Results showed a background increase was not observed for the free flow type monitor. The background count rate was calibrated to the lowest detection limit to be 2.2 x 10/sup -2/ Bq/ml for a 300 s measurement time.

  19. Heavy metals hazard in agriculture in NWFP

    International Nuclear Information System (INIS)

    Bhatti, A.; Perveen, S.

    2005-01-01

    Metals contamination is a persistent problem at many contaminated sites. In the U.S., the most commonly occurring metals at Superfund sites are lead, chromium, arsenic, zinc, cadmium, copper and mercury. The presence of metals in surface and ground waters, and soils can pose a significant threat to human health and ecological systems. Surface water and groundwater many be contaminated with metals from wastewater discharges or by direct contact with metals contaminated soils, sludges, mining wastes and debris. Due to use of sewage water and industrial effluents for agriculture in NWFP, there is a great threat to the human and animal health. In a survey of sewage water from three channels, it was found that 10 out of 18 samples ha lead content above the safe limits, while two in cadmium and 8 in chromium. While in soils irrigated with these channels, all the 18 samples were high in Cu and Pb, and 6 in Mn. As regards plants growing on these soils, samples of garlic, 4 of wheat and 3 of berseem were high in Pb. Cd content was high in 5 garlic samples, 5 wheat and 3 berseem. Effluents from two industries were high in Pb and four in Ni. In another study, all the nine water samples were high in Cu, 3 in Cd, and 6 in Pb. A survey of 20 Industries in Industrial Estate Hattar showed that all the effluent samples collected from these Industries were above the safe limits in Ni, Pb, Cd and Cr. From these studies, it seems that use of sewage water and industrial effluents for longer period can create heavy metals hazard in agriculture in NWFP. (author)

  20. SACCHARIFICATION OF NATIVE CASSAVA STARCH AT HIGH DRY SOLIDS IN AN ENZYMATIC MEMBRANE REACTOR

    Directory of Open Access Journals (Sweden)

    I Nyoman Widiasa

    2012-02-01

    Full Text Available This study is aimed to develop a novel process scheme for hydrolysis of native cassava starch at high dry solids using an enzymatic membrane reactor (EMR. Firstly, liquefied cassava starch having solids content up to 50% by weight was prepared by three stage liquefactions in a conventional equipment using a commercially available heat stable a-amylase (Termamyl 120L. The liquefied cassava starch was further saccharified in an EMR using glucoamylase (AMG E. By using the developed process scheme, a highly clear hydrolysate with dextrose equivalent (DE approximately 97 could be produced, provided the increase of solution viscosity during the liquefaction was precisely controlled. The excessive space time could result in reduction in conversion degree of starch. Moreover, a residence time distribution study confirmed that the EMR could be modelled as a simple continuous stirred tank reactor (CSTR. Using Lineweaver-Burk analysis, the apparent Michaelis-Menten constant (Km and glucose production rate constant (k2 were 552 (g/l and 4.04 (min-1, respectively. Application of simple CSTR model with those kinetic parameters was quietly appropriate to predict the reactor’s performance at low space time.

  1. Properties of lotus seed starch-glycerin monostearin complexes formed by high pressure homogenization.

    Science.gov (United States)

    Chen, Bingyan; Zeng, Shaoxiao; Zeng, Hongliang; Guo, Zebin; Zhang, Yi; Zheng, Baodong

    2017-07-01

    Starch-lipid complexes were prepared using lotus seed starch (LS) and glycerin monostearate (GMS) via a high pressure homogenization (HPH) process, and the effect of HPH on the physicochemical properties of LS-GMS complexes was investigated. The results of Fourier transform infrared spectroscopy and complex index analysis showed that LS-GMS complexes were formed at 40MPa by HPH and the complex index increased with the increase of homogenization pressure. Scanning electron microscopy displayed LS-GMS complexes present more nest-shape structure with increasing homogenization pressure. X-ray diffraction and differential scanning calorimetry results revealed that V-type crystalline polymorph was formed between LS and GMS, with higher homogenization pressure producing an increasingly stable complex. LS-GMS complex inhibited starch granules swelling, solubility and pasting development, which further reduced peak and breakdown viscosity. During storage, LS-GMS complexes prepared by 70-100MPa had higher Avrami exponent values and lower recrystallization rates compared with native starch, which suggested a lower retrogradation trendency. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. The impact of Palm Oil Mill Effluent (POME) application on the ...

    African Journals Online (AJOL)

    Palm Oil Mill Effluent (POME) is considered an efficient soil conditioner due to its high organic contents but the presence of phenol compounds limits their widespread use in agriculture. In the present study, POME was subjected to both aerobic and anaerobic decomposition to reduce its organic strength and degrade its ...

  3. French studies on the thermal effluents of electric power plants

    International Nuclear Information System (INIS)

    Dezes-Cadiere, H.

    1976-01-01

    This report presents a synthesis of studies made in France in the thermal effluent field: thermal power plant cooling systems, transfer and dispersion of thermal effluents in the receptive media, effects of thermal effluents on water physicochemistry and biochemistry, effects of thermal effluents on aquatic ecosystems, and, possibilities of waste heat recovery with the view of utilization in agriculture, aquaculture and district heating. A catalogue of French organizations working or having data on thermal effluents is presented, as also an alphabetical list of the contacted persons. A bibliography of French documents concerning the previously mentioned studies is finally given (193 refs.) [fr

  4. Tetracycline resistance in semi-arid agricultural soils under long-term swine effluent application.

    Science.gov (United States)

    Popova, Inna E; Josue, Rosemarie D R; Deng, Shiping; Hattey, Jeffory A

    2017-05-04

    Annually, millions pounds of antibiotics are released unmetabolized into environment along with animal wastes. Accumulation of antibiotics in soils could potentially induce the persistence of antibiotic resistant bacteria. Antibiotics such as tetracyclines and tetracycline-resistant bacteria have been previously detected in fields fertilized with animal manure. However, little is known about the accumulation of tetracyclines and the development of tetracycline resistance in semi-arid soils. Here we demonstrate that continuous land application with swine effluent, containing trace amounts of chlortetracycline, does not necessarily induce tetracycline resistance in soil bacteria. Based on the testing of more than 3,000 bacteria isolated from the amended soils, we found no significant increase in the occurrence and level of chlortetracycline resistant bacteria in soils after 15 years of continuous swine effluent fertilization. To account for a possible transfer of tetracycline-resistant bacteria originated from the swine effluent to soils, we analyzed two commonly found tetracycline resistant genes, tet(O) and tet(M), in the swine effluent and fertilized soils. Both genes were present in the swine effluent, however, they were not detectable in soils applied with swine effluent. Our data demonstrate that agronomic application of manure from antibiotic treated swine effluent does not necessarily result in the development of antibiotic bacterial resistance in soils. Apparently, concentrations of chlortetracycline present in manure are not significant enough to induce the development of antibiotic bacterial resistance.

  5. Physio-Chemical Analysis of Industrial Effluents in parts of Edo ...

    African Journals Online (AJOL)

    Physio-Chemical Analysis of Industrial Effluents in parts of Edo States Nigeria. ... Journal of Applied Sciences and Environmental Management ... particularly, surface water results from all activities of man involving indiscriminate waste disposal from industry such as effluents into waterways, waste, agricultural waste, and all ...

  6. Functional properties of irradiated starch

    International Nuclear Information System (INIS)

    Laouini, Wissal

    2011-01-01

    Irradiation is an effective method capable of modifying the functional properties of starches. Its effect depends on the specific structural and molecular organization of starch granules from different botanical sources. In this study, we have studied the effect of gamma irradiation (3, 5, 10, 20, 35, 50 kGy) on the rheological properties of some varieties of starch (potato, cassava and wheat). First, we were interested in determining dry matter content; the results showed that the variation in dry matter compared to the control (native starch) is almost zero. So it does not depend on the dose of irradiation. Contrariwise, it differs from a botanical species to another. The viscometer has shown that these starches develop different behaviors during shearing. The native potato starch gave the highest viscosity followed by wheat and cassava which have almost similar viscosities. For all varieties, the viscosity of starch decreases dramatically with an increasing dose of irradiation. At high doses (35 and 50 kGy) the behavior of different starch is similar to that of a viscous pure liquid. The textural analysis via the back-extrusion test showed that increasing the dose of radiation causes a decrease in extrusion force and the energy spent of the different starch throughout the test. Indeed, the extrusion resistance decreases with increasing dose.

  7. Starch and Free Sugars during Kernel Development of Bomi Barley and its High-Lysine Mutant 1508

    DEFF Research Database (Denmark)

    Kreis, Michael

    1978-01-01

    At maturity the high-lysine barley (Hordeum vulgare L.) Ris0 mutants 1508, 527 and 29 kernels contained about 20% less starch and twice as much free sugars as the parent varieties Bomi and Carlsberg II. An enhanched effect on starch reduction and free sugar accumulation was observed during kernel...

  8. Powder and compaction characteristics of pregelatinized starches.

    Science.gov (United States)

    Rojas, J; Uribe, Y; Zuluaga, A

    2012-06-01

    Pregelatinized starch is widely used as a pharmaceutical aid, especially as a filler-binder. It is known that the tableting performance of excipients could be affected by their source. The aim of this study was to evaluate the powder and tableting properties of pregelatinized starches obtained from yucca, corn and rice and compare those properties with those of Starch 1500. This material had the lowest particle size, and porosity and largest density and best flow. However, yucca starch and corn starch showed an irregular granule morphology, better compactibility and compressibility than Starch 1500. Their onset of plastic deformation and their strain rate sensitivity was comparable to that of Starch 1500. These two materials showed compact disintegration slower that Starch 1500. Conversely, rice starch showed a high elasticity, and friability, low compactibility, which are undesirable for direct compression. This study demonstrated the potential use of pregelatinized starches, especially those obtained from yucca and corn as direct compression filler-binders.

  9. Characteristics of cassava starch fermentation wastewater based on structural degradation of starch granules

    Directory of Open Access Journals (Sweden)

    Juliane Mascarenhas Pereira

    2016-01-01

    Full Text Available ABSTRACT: Sour cassava starch is a naturally modified starch produced by fermentation and sun drying, achieving the property of expansion upon baking. Sour cassava starch' bakery products can be prepared without the addition of yeast and it is gluten free. The fermentation process associated with this product has been well studied, but the wastewater, with high acidity and richness in other organic compounds derived from starch degradation, requires further investigation. In this study, the structure of solids present in this residue was studied, seeking to future applications for new materials. The solids of the wastewater were spray dried with maltodextrin (MD with dextrose equivalent (DE of 5 and 15 and the structure of the powder was evaluated by scanning electron microscopy. A regular structure with a network arrangement was observed for the dried material with MD of 5 DE, in contrast to the original and fermented starches structure, which suggests a regular organization of this new material, to be studied in future applications.

  10. Microstructure, thermal properties and crystallinity of amadumbe starch nanocrystals.

    Science.gov (United States)

    Mukurumbira, Agnes; Mariano, Marcos; Dufresne, Alain; Mellem, John J; Amonsou, Eric O

    2017-09-01

    Amadumbe (Colocasia esculenta), commonly known as taro is a tropical tuber that produces starch-rich underground corms. In this study, the physicochemical properties of starch nanocrystals (SNC) prepared by acid hydrolysis of amadumbe starches were investigated. Two varieties of amadumbe corms were used for starch extraction. Amadumbe starches produced substantially high yield (25%) of SNC's. These nanocrystals appeared as aggregated and individual particles and possessed square-like platelet morphology with size: 50-100nm. FTIR revealed high peak intensities corresponding to OH stretch, CH stretch and H 2 O bending vibrations for SNCs compared to their native starch counterparts. Both the native starch and SNC exhibited the A-type crystalline pattern. However, amadumbe SNCs showed higher degree of crystallinity and slightly reduced melting temperatures than their native starches. Amadumbe SNCs presented similar thermal decomposition property as their native starches. Amadumbe starch nanocrystals may have potential application in biocomposite films due to their square-like platelet morphology. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Acetylation and characterization of banana (Musa paradisiaca) starch.

    Science.gov (United States)

    Bello-Pérez, L A; Contreras-Ramos, S M; Jìmenez-Aparicio, A; Paredes-López, O

    2000-01-01

    Banana native starch was acetylated and some of its functional properties were evaluated and compared to corn starch. In general, acetylated banana starch presented higher values in ash, protein and fat than corn acetylated starch. The modified starches had minor tendency to retrogradation assessed as % transmittance of starch pastes. At high temperature acetylated starches presented a water retention capacity similar to their native counterpart. The acetylation considerably increased the solubility of starches, and a similar behavior was found for swelling power. When freeze-thaw stability was studied, acetyl banana starch drained approximately 60% of water in the first and second cycles, but in the third and fourth cycles the percentage of separated water was low. However, acetyl corn starch showed lower freeze-thaw stability than the untreated sample. The modification increased the viscosity of banana starch pastes.

  12. Influence of distillery effluent on germination and growth of mung bean (Vigna radiata) seeds

    Energy Technology Data Exchange (ETDEWEB)

    Kannan, A. [Biomembrane Toxicology Division, Industrial Toxicology Research Centre, Post Box No. 80, M.G. Marg, Lucknow 226001 (India); Upreti, Raj K. [Biomembrane Toxicology Division, Industrial Toxicology Research Centre, Post Box No. 80, M.G. Marg, Lucknow 226001 (India)], E-mail: upretirk@rediffmail.com

    2008-05-01

    Distillery effluent or spent wash discharged as waste water contains various toxic chemicals that can contaminate water and soil and may affect the common crops if used for agricultural irrigation. Toxic nature of distillery effluent is due to the presence of high amounts of organic and inorganic chemical loads and its high-acidic pH. Experimental effects of untreated (Raw) distillery effluent, discharged from a distillery unit (based on fermentation of alcohol from sugarcane molasses), and the post-treatment effluent from the outlet of conventional anaerobic treatment plant (Treated effluent) of the distillery unit were studied in mung bean (Vigna radiata, L.R. Wilczek). Mung bean is a commonly used legume crop in India and its neighboring countries. Mung bean seeds were presoaked for 6 h and 30 h, respectively, in different concentrations (5-20%, v/v) of each effluent and germination, growth characters, and seedling membrane enzymes and constituents were investigated. Results revealed that the leaching of carbohydrates and proteins (solute efflux) were much higher in case of untreated effluent and were also dependent to the presoaking time. Other germination characters including percentage of germination, speed of germination index, vigor index and length of root and embryonic axis revealed significant concentration-dependent decline in untreated effluent. Evaluation of seedlings membrane transport enzymes and structural constituents (hexose, sialic acid and phospholipids) following 6 h presoaking of seeds revealed concentration-dependent decline, which were much less in treated effluent as compared to the untreated effluent. Treated effluent up to 10% (v/v) concentration reflected low-observed adverse effect levels.

  13. Cassava starch in the Brazilian food industry

    Directory of Open Access Journals (Sweden)

    Ivo Mottin Demiate

    2011-06-01

    Full Text Available Cassava starch is a valued raw material for producing many kinds of modified starches for food applications. Its physicochemical properties, as well as its availability, have made it an interesting and challenging ingredient for the food industry. In the present work, food grade modified cassava starches were purchased from producers and analyzed for selected physicochemical characteristics. Samples of sour cassava starch were included, as well as one sample of native cassava starch. Results showed that almost all modified starches were resistant to syneresis, produced pastes more stable to stirred cooking, and some of them were difficult to cook. The sour cassava starches presented high acidity and resulted in clear and unstable pastes during stirred cooking, susceptible to syneresis.

  14. High amylose resistant starch diet ameliorates oxidative stress, inflammation, and progression of chronic kidney disease.

    Directory of Open Access Journals (Sweden)

    Nosratola D Vaziri

    Full Text Available Inflammation is a major mediator of CKD progression and is partly driven by altered gut microbiome and intestinal barrier disruption, events which are caused by: urea influx in the intestine resulting in dominance of urease-possessing bacteria; disruption of epithelial barrier by urea-derived ammonia leading to endotoxemia and bacterial translocation; and restriction of potassium-rich fruits and vegetables which are common sources of fermentable fiber. Restriction of these foods leads to depletion of bacteria that convert indigestible carbohydrates to short chain fatty acids which are important nutrients for colonocytes and regulatory T lymphocytes. We hypothesized that a high resistant starch diet attenuates CKD progression. Male Sprague Dawley rats were fed a chow containing 0.7% adenine for 2 weeks to induce CKD. Rats were then fed diets supplemented with amylopectin (low-fiber control or high fermentable fiber (amylose maize resistant starch, HAM-RS2 for 3 weeks. CKD rats consuming low fiber diet exhibited reduced creatinine clearance, interstitial fibrosis, inflammation, tubular damage, activation of NFkB, upregulation of pro-inflammatory, pro-oxidant, and pro-fibrotic molecules; impaired Nrf2 activity, down-regulation of antioxidant enzymes, and disruption of colonic epithelial tight junction. The high resistant starch diet significantly attenuated these abnormalities. Thus high resistant starch diet retards CKD progression and attenuates oxidative stress and inflammation in rats. Future studies are needed to explore the impact of HAM-RS2 in CKD patients.

  15. Lanthanum-modified bentonite: potential for efficient removal of phosphates from fishpond effluents.

    Science.gov (United States)

    Kurzbaum, Eyal; Raizner, Yasmin; Cohen, Oded; Rubinstein, Guy; Bar Shalom, Oded

    2017-06-01

    Adsorption has been suggested as an effective method for removing phosphates from agricultural wastewater effluents that contain relatively high phosphate concentrations. The present study focused on the use of a bentonite-lanthanum clay (Phoslock ® ) for reducing the dissolved phosphate concentration in fishpond effluents. Batch experiments with synthetic phosphate-spiked solutions and with fishpond effluents were performed in order to determine adsorption equilibrium isotherms and kinetics as well as to determine the efficiency of Phoslock ® in removing phosphate from these solutions. In the synthetic phosphate-spiked solution, the mean maximum phosphate adsorption capacity was 92 mg Phoslock ® /mg phosphate removal. A ratio of 50, 100, and 200 mg Phoslock ® /mg phosphate removal was found for complete phosphate removal from the fishpond effluents, where higher doses of Phoslock ® led to a faster removal rate (94% removal within the first 150 min). These results show that bentonite-lanthanum clay can be employed for designing a treatment process for efficient phosphate removal from fishpond effluents.

  16. Relationships between dry matter content, ensiling, ammonia-nitrogen, and ruminal in vitro starch digestibility in high-moisture corn samples.

    Science.gov (United States)

    Ferraretto, L F; Taysom, K; Taysom, D M; Shaver, R D; Hoffman, P C

    2014-05-01

    The objectives of the study were (1) to determine relationships between high-moisture corn (HMC) dry matter (DM), ammonia-N [% of crude protein (CP)], and soluble CP concentrations, and pH, with 7-h ruminal in vitro starch digestibility (ivStarchD), and (2) to evaluate the effect of ensiling on pH, ammonia-N, soluble CP, and ivStarchD measurements in HMC. A data set comprising 6,131 HMC samples (55 to 80% DM) obtained from a commercial feed analysis laboratory was used for this study. Month of sample submittal was assumed to be associated with length of the ensiling period. Data for month of sample submittal were analyzed using Proc Mixed in SAS (SAS Institute Inc., Cary, NC) with month as a fixed effect. Regressions to determine linear and quadratic relationships between ivStarchD and ammonia-N, soluble CP, pH, and DM content were performed using Proc Mixed. The ivStarchD increased by 9 percentage units from October to August of the following year. Similar results were observed for ammonia-N and soluble CP with increases from 1.8 to 4.6% of CP and 31.3 to 46.4% of CP, respectively, from October to August of the following year. Ammonia-N was positively related to ivStarchD (R(2)=0.61). The DM content of HMC at silo removal was negatively related (R(2)=0.47) to ivStarchD with a decrease of 1.6 percentage units in ivStarchD per 1-percentage-unit increase in DM content. The pH of HMC was negatively related to ammonia-N (R(2)=0.53), soluble CP (R(2)=0.57), and ivStarchD (R(2)=0.51). Combined, ammonia-N, DM, soluble CP, and pH provided a good prediction of ivStarchD (adjusted R(2)=0.70). Increasing pH, ammonia-N, soluble CP, and ivStarchD values indicate that HMC may need up to 10 mo of ensiling to reach maximum starch digestibility. Ammonia-N, DM content, soluble CP concentration, and pH are good indicators of ruminal in vitro starch digestibility for high-moisture corn. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights

  17. Use of drum driers for processing various industrial wastes into high-grade animal feeding stuffs

    Energy Technology Data Exchange (ETDEWEB)

    Fritze, H

    1976-01-01

    Strict anti-pollution legislation governing admissible effluent concentrations and high charges are forcing certain industries (potato starch and dried potato flake factories, sugar factories and dairies) to install facilities for recovering valuable substances, which are used mainly as fodder. In this way the effluent charges can be reduced and a return is obtained on the investment and operating costs. Processes are described whereby such substances can be extracted efficiently when using Escher Wyss drum driers.

  18. ENZYME RESISTANCE OF GENETICALLY MODIFIED STARCH POTATOES

    Directory of Open Access Journals (Sweden)

    A. Sh. Mannapova

    2015-01-01

    Full Text Available Here in this article the justification of expediency of enzyme resistant starch use in therapeutic food products is presented . Enzyme resistant starch is capable to resist to enzymatic hydrolysis in a small intestine of a person, has a low glycemic index, leads to decrease of postprandial concentration of glucose, cholesterol, triglycerides in blood and insulin reaction, to improvement of sensitivity of all organism to insulin, to increase in sense of fulness and to reduction of adjournment of fats. Resistant starch makes bifidogenшс impact on microflora of a intestine of the person, leads to increase of a quantity of lactobacillus and bifidobacterium and to increased production of butyric acid in a large intestine. In this regard the enzyme resistant starch is an important component in food for prevention and curing of human diseases such as diabetes, obesity, colitis, a cancer of large and direct intestine. One method is specified by authors for imitation of starch digestion in a human body. This method is based on the definition of an enzyme resistance of starch in vitro by its hydrolysis to glucose with application of a glucoamylase and digestive enzyme preparation Pancreatin. This method is used in researches of an enzyme resistance of starch, of genetically modified potato, high amylose corn starch Hi-Maize 1043 and HYLON VII (National Starch Food Innovation, USA, amylopectin and amylose. It is shown that the enzyme resistance of the starch emitted from genetically modified potatoes conforms to the enzyme resistance of the high amylose corn starch “Hi-Maize 1043 and HYLON VII starch”, (National Starch Food Innovation, the USA relating to the II type of enzyme resistant starch. It is established that amylopectin doesn't have the enzyme resistant properties. The results of researches are presented. They allow us to make the following conclusion: amylose in comparison with amylopectin possesses higher enzyme resistance and gives to

  19. Concerted suppression of all starch branching enzyme genes in barley produces amylose-only starch granules

    DEFF Research Database (Denmark)

    Carciofi, Massimiliano; Blennow, Per Gunnar Andreas; Jensen, Susanne Langgård

    2012-01-01

    is preferentially derived from amylose, which can be increased by suppressing amylopectin synthesis by silencing of starch branching enzymes (SBEs). However all the previous works attempting the production of high RS crops resulted in only partly increased amylose-content and/or significant yield loss. Results...... In this study we invented a new method for silencing of multiple genes. Using a chimeric RNAi hairpin we simultaneously suppressed all genes coding for starch branching enzymes (SBE I, SBE IIa, SBE IIb) in barley (Hordeum vulgare L.), resulting in production of amylose-only starch granules in the endosperm...... yield in a living organism. This was achieved by a new method of simultaneous suppression of the entire complement of genes encoding starch branching enzymes. We demonstrate that amylopectin is not essential for starch granule crystallinity and integrity. However the slower initial growth of shoots from...

  20. SIMULTANEOUS PRETREATMENT OF LIGNOCELLULOSE AND HYDROLYSIS OF STARCH IN MIXTURES TO SUGARS

    OpenAIRE

    Hamzeh Hoseinpour; Keikhosro Karimi; Hamid Zilouei; Mohammad J. Taherzadeh

    2010-01-01

    Mixtures of starch and lignocelluloses are available in many industrial, agricultural, and municipal wastes and residuals. In this work, dilute sulfuric acid was used for simultaneous pretreatment of lignocellulose and hydrolysis of starch, to obtain a maximum amount of fermentable sugar after enzymatic hydrolysis with cellulase and β-glucosidase. The acid treatment was carried out at 70-150°C with 0-1% (v/v) acid concentration and 5-15% (w/v) solids concentration for 0-40 minutes. Under the ...

  1. Characterization of effluents from a high-temperature gas-cooled reactor fuel refabrication plant

    International Nuclear Information System (INIS)

    Judd, M.S.; Bradley, R.A.; Olsen, A.R.

    1975-12-01

    The types and quantities of chemical and radioactive effluents that would be released from a reference fuel refabrication facility for the High-Temperature Gas-Cooled Reactor (HTGR) have been determined. This information will be used to predict the impact of such a facility on the environment, to identify areas where additional development work needs to be done to further identify and quantify effluent streams, and to limit effluent release to the environment

  2. Effects of water on starch-g-polystyrene and starch-g-poly(methyl acrylate) extrudates

    International Nuclear Information System (INIS)

    Henderson, A.M.; Rudin, A.

    1982-01-01

    Polystyrene and poly(methyl acrylate) were grafted onto wheat starch by gamma radiation and chemical initiation, respectively. The respective percent add-on values were 46 and 45; 68% of the polystyrene formed was grafted to starch, and corresponding proportion of poly(methyl acrylate) was 41%. The molecular weight distributions of the homopolymer and graft portions were characterized, and extrusion conditions were established for production of ribbon samples of starch-g-PS and starch-g-PMA. Both copolymer types were considerably weakened by soaking in water, and this effect was more immediate and drastic for starch-g-poly(methyl acrylate). Both graft copolymers regained their original tensile strengths on drying, but the poly(methyl acrylate) specimens did not recover their original unswollen dimensions and retained high breaking elongations characteristic of soaked specimens. Tensile and dynamic mechanical properties of extruded and molded samples of both graft polymers are reported, and plasticizing effects of water are summarized

  3. Characterization of chestnut (Castanea sativa, mill starch for industrial utilization

    Directory of Open Access Journals (Sweden)

    Demiate Ivo Mottin

    2001-01-01

    Full Text Available Studies were conducted to characterize the chestnut and its starch. Chemical composition of the chestnuts showed high level of starch. Moisture level in the raw nuts was around 50g/100g in wet basis and starch content, around 80g/100g in dry basis; other nut flour components were protein (5.58 g/100g, lipid (5.39 g/100g, crude fiber (2.34 g/100g and ash (2.14 g/100g. Starch fraction was chemically characterized in order to identify the granule quality as compared with those of cassava and corn. This fraction showed more lipids and proteins than the other starches. Chestnut starch granules showed peculiar shape, smaller than the control starches and low amount of damaged units. Chemical composition concerning amylose : amylopectin ratio was intermediate to that presented by cassava and corn starch granules. Water absorption at different temperatures as well as solubility were also intermediate but closer to that presented by cassava granules. The same behavior was observed in the interaction with dimethyl-sulfoxide. Native starch granules and those submitted to enzymatic treatment with commercial alpha-amylase and also with enzymes from germinated wheat were observed by scanning electronic microscopy. Water suspensions of chestnut starch granules were heated to form pastes that were studied comparatively to those obtained with cassava and corn starches. Viscographic pattern of chestnut starch pastes showed a characteristic profile with high initial viscosity but peak absence, high resistance to mechanical stirring under hot conditions and high final viscosity. There was no way to compare it with the paste viscographic profiles obtained with the control starches. Chestnut starch pastes were stable down to pH 4 but unstable at pH 3. The water losses observed in the chestnut starch pastes after freeze-thaw cycles showed more similarity to the pattern observed in corn starch pastes as well as clarity and strength of the gel. In general the results

  4. Effect of high temperature on grain filling period, yield, amylose content and activity of starch biosynthesis enzymes in endosperm of basmati rice.

    Science.gov (United States)

    Ahmed, Nisar; Tetlow, Ian J; Nawaz, Sehar; Iqbal, Ahsan; Mubin, Muhammad; Nawaz ul Rehman, Muhammad Shah; Butt, Aisha; Lightfoot, David A; Maekawa, Masahiko

    2015-08-30

    High temperature during grain filling affects yield, starch amylose content and activity of starch biosynthesis enzymes in basmati rice. To investigate the physiological mechanisms underpinning the effects of high temperature on rice grain, basmati rice was grown under two temperature conditions - 32 and 22 °C - during grain filling. High temperature decreased the grain filling period from 32 to 26 days, reducing yield by 6%, and caused a reduction in total starch (3.1%) and amylose content (22%). Measurable activities of key enzymes involved in sucrose to starch conversion, sucrose synthase, ADP-glucose pyrophosphorylase, starch phosphorylase and soluble starch synthase in endosperms developed at 32 °C were lower than those at 22 °C compared with similar ripening stage on an endosperm basis. In particular, granule-bound starch synthase (GBSS) activity was significantly lower than corresponding activity in endosperms developing at 22 °C during all developmental stages analyzed. Results suggest changes in amylose/amylopectin ratio observed in plants grown at 32 °C was attributable to a reduction in activity of GBSS, the sole enzyme responsible for amylose biosynthesis. © 2014 Society of Chemical Industry.

  5. Hyperphosphorylation of cereal starch

    DEFF Research Database (Denmark)

    Carciofi, Massimiliano; Shaik, Shahnoor Sultana; Jensen, Susanne Langgård

    2011-01-01

    Plant starch is naturally phosphorylated at a fraction of the C6 and the C3 hydroxyl groups during its biosynthesis in plastids. Starch phosphate esters are important in starch metabolism and they also generate specific industrial functionality. Cereal grains starch contains little starch bound...... phosphate compared with potato tuber starch and in order to investigate the effect of increased endosperm starch phosphate, the potato starch phosphorylating enzyme glucan water dikinase (StGWD) was overexpressed specifically in the developing barley endosperm. StGWD overexpressors showed wild......-type phenotype. Transgenic cereal grains synthesized starch with higher starch bound phosphate content (7.5 (±0.67) nmol/mg) compared to control lines (0.8 (±0.05) nmol/mg) with starch granules showing altered morphology and lower melting enthalpy. Our data indicate specific action of GWD during starch...

  6. Utilization of Cassava Starch in Copolymerisation of Superabsorbent Polymer Composite (SAPC

    Directory of Open Access Journals (Sweden)

    Akhmad Zainal Abidin

    2014-09-01

    Full Text Available Cassava starch was used as the main chain in the copolymerization of a superabsorbent polymer composite (SAPC based on acrylic acid and bentonite. The SAPC was synthesized through graft polymerization using nano-sized bentonite as reinforcement. The variables in this experiment were: bentonite concentration, acrylic acid to starch weight ratio, concentration of initiator, and cross linker. The product was characterized using FTIR, SEM and TGA-DSC. The results show that the polymerization reactions involved processes of incorporating starch chains as polymer backbone and grafting acrylic acid monomers onto it. The use of cassava starch in the polymerisation produced a very short reaction time (10-15 minutes, which led to SAPC production with higher efficiency and lower cost. Bentonite interacts with monomers via hydrogen and weak bonding, thus improving the thermal properties of the product. The maximum absorbance capacity obtained was at an acrylic acid to starch weight ratio of 5 and a concentration of initiator, cross linker and bentonite of 0.5, 0.05 and 2 weight percent, respectively. The product is suitable for agricultural and medical applications as well as common superabsorbent polymer applications.

  7. Physicochemical properties of starches isolated from pumpkin compared with potato and corn starches.

    Science.gov (United States)

    Przetaczek-Rożnowska, Izabela

    2017-08-01

    The aim of the study was to characterize the selected physicochemical, thermal and rheological properties of pumpkin starches and compared with the properties of potato and corn starches used as control samples. Pumpkin starches could be used in the food industry as a free gluten starch. Better thermal and rheological properties could contribute to reduce the costs of food production. The syneresis of pumpkin starches was similar to that of potato starch but much lower than that for corn starch. Pasting temperatures of pumpkin starches were lower by 17-21.7°C and their final viscosities were over 1000cP higher than corn paste, but were close to the values obtained for potato starch. The thermodynamic characteristic showed that the transformation temperatures of pumpkin starches were lower than those measured for control starches. A level of retrogradation was much lower in pumpkin starch pastes (32-48%) than was in the case of corn (59%) or potato (77%) starches. The pumpkin starches gels were characterized by a much greater hardness, cohesiveness and chewiness, than potato or corn starches gels. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Effects of ruminally degradable starch levels on performance, nitrogen balance, and nutrient digestibility in dairy cows fed low corn-based starch diets

    Directory of Open Access Journals (Sweden)

    Guobin Luo

    2017-05-01

    Full Text Available Objective This trial was performed to examine the effects of ruminally degradable starch (RDS levels in total mixed ration (TMR with low corn-based starch on the milk production, whole-tract nutrient digestibility and nitrogen balance in dairy cows. Methods Eight multiparous Holstein cows (body weight [BW]: 717±63 kg; days in milk [DIM]: 169±29 were assigned to a crossover design with two dietary treatments: a diet containing 62.3% ruminally degradable starch (% of total starch, low RDS or 72.1% ruminally degradable starch (% of total starch, high RDS. Changes to the ruminally degradable levels were conducted by using either finely ground corn or steam-flaked corn as the starch component. Results The results showed that dry matter intake, milk yield and composition in dairy cows were not affected by dietary treatments. The concentration of milk urea nitrogen was lower for cows fed high RDS TMR than low RDS TMR. The whole-tract apparent digestibility of neutral detergent fiber, acid detergent fiber and crude protein decreased, and that of starch increased for cows fed high RDS TMR over those fed low RDS TMR, with no dietary effect on the whole-tract apparent digestibility of dry matter and organic matter. The proportion of urinary N excretion in N intake was lower and that of fecal N excretion in N intake was higher for cows fed high RDS TMR than those fed low RDS TMR. The N secretion in milk and the retention of N were not influenced by the dietary treatments. Total purine derivative was similar in cows fed high RDS TMR and low RDS TMR. Consequently, estimated microbial N flow to the duodenum was similar in cows fed high RDS TMR and low RDS TMR. Conclusion Results of this study show that ruminally degradable starch levels can influence whole-tract nutrient digestibility and nitrogen balance in dairy cows fed low corn-based starch diets, with no influence on performance.

  9. Starch phosphorylation plays an important role in starch biosynthesis

    NARCIS (Netherlands)

    Xu, Xuan; Dees, Dianka; Dechesne, Annemarie; Huang, Xing Feng; Visser, Richard G.F.; Trindade, Luisa M.

    2017-01-01

    Starch phosphate esters are crucial in starch metabolism and render valuable functionality to starches for various industrial applications. A potato glucan, water dikinase (GWD1) was introduced in tubers of two different potato genetic backgrounds: an amylose-containing line Kardal and the

  10. Design and operation of UASB—A/O process for treatment starch and VB12 wastewater

    Directory of Open Access Journals (Sweden)

    Yuanyuan CHEN

    2016-12-01

    Full Text Available Starch and VB12 wastewater with higher COD and ammonia nitrogen concentration, contains a large number of difficult biodegradable material, complex composition, is difficult to deal with. In recent years, with the increasingly stringent wastewater discharge standards, require the use of a stable and efficient wastewater treatment process for purification treatment of high concentration of ammonia nitrogen in wastewater and the refractory organic pollutants, to achieve discharge standards. Upflow Anaerobic Sludge Blanket (UASB—Anoxic/Oxic(A/O process was employed in a wastewater treatment of starch and Vitamin B12 wastewater, which was 5 000 m3/d with highly concentrated organic pollutants and ammonia. The efficiency and reliability of the process has been proven. The results of the system operation show that the concentration of the effluent COD, ammonia and total nitrogen (TN were at 78.4 mg/L, 18.7 mg/L and 41.1 mg/L, and the treatment efficiencies of COD, ammonia and TN reached over 99%, 92.1%, 82.7%, respectively, when the influent COD and TN concentration were in the ranges of 8 544~9 720 mg/L and 240~250 mg/L. The quality of the treated wastewater met the first-class discharge standards in Integrated Wastewater Discharge Standard(GB 8978—1996.

  11. Digestion and Interaction of Starches with α-Amylases: I. Mutational analysis of Carbohydrate Binding Sites in barley. II. In Vitro Starch Digestion of Legumes

    DEFF Research Database (Denmark)

    Nielsen, Morten Munch

    2006-01-01

    the hydrolysis of internal 1,4-α-D-glucosidic bonds in starch and related polysaccharides. The present thesis concerns studies of two α-amylases: 1) secondary substrate binding sites in barley α-amylase 1 (AMY1), and 2) the involvement of anti-nutrients in in vitro digestion of starch in legumes by porcine...... in morphology between high amylose starch granules and normal starch granules. Legumes (beans, peas, and lentils) are characterised by low blood glucose raising potential, which is proportional to the in vitro starch digestion rates. The high amount of anti-nutritional factors (phytate, proteinaceous inhibitors......, tannins, and lectins) in legumes has been associated with the slow starch digestion. However, it is still debated in literature to which extent the legume starch digestibility is affected by anti-nutritional factors. The in vitro starch digestion (hydrolytic index, HI) of pea (Pisum sativum) and mixtures...

  12. Aroma interactions with starch

    DEFF Research Database (Denmark)

    Jørgensen, Anders Dysted

    Starches are used to enhance aroma perception in low-fat foods. Aroma compounds can bind physically to the starch in grooves on the surface or they can form complexes inside amylose helices. This study has been divided into two parts: one part regarding binding of aromas to starches and their aroma......-release, and another part regarding stimulation of a fungal secretome using different carbohydrates. In the first part, nine aromas and one aroma-mixture were mixed with nine different starches, including genetically modified starches. The objective of this sub-project was to bind aromas to the starches to 15 weight......-percent. Aroma binding was tested on both amorphous starches and on native starch granules. A series of aldehydes and alcohols were also tested for binding to the starches. The aromas with the highest volatility were positively retained by starch, whereas for aromas with a lower volatility the starch had...

  13. Method for the recovery of Cr and Co species from effluents using ...

    African Journals Online (AJOL)

    Method for the recovery of Cr and Co species from effluents using agricultural adsorbent ... International Journal of Biological and Chemical Sciences ... recovery of Cr and Co species in microbial-treated industrial wastewater using agricultural ...

  14. Green synthesis of highly concentrated aqueous colloidal solutions of large starch-stabilised silver nanoplatelets.

    Science.gov (United States)

    Cheng, Fei; Betts, Jonathan W; Kelly, Stephen M; Hector, Andrew L

    2015-01-01

    A simple, environmentally friendly and cost-effective method has been developed to prepare a range of aqueous silver colloidal solutions, using ascorbic acid as a reducing agent, water-soluble starch as a combined crystallising, stabilising and solubilising agent, and water as the solvent. The diameter of silver nanoplatelets increases with higher concentrations of AgNO3 and starch. The silver nanoparticles are also more uniform in shape the greater the diameter of the nanoparticles. Colloidal solutions with a very high concentration of large, flat, hexagonal silver nanoplatelets (~230 nm in breadth) have been used to deposit and fix an antibacterial coating of these large starch-stabilised silver nanoplates on commercial cotton fibres, using a simple dip-coating process using water as the solvent, in order to study the dependence of the antibacterial properties of these nanoplatelets on their size. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Insight into the applications of palm oil mill effluent: A renewable utilization of the industrial agricultural waste

    International Nuclear Information System (INIS)

    Foo, K.Y.; Hameed, B.H.

    2010-01-01

    Water scarcity and pollution rank equal to climate change as the most intricate environmental turmoil for the 21st century. Today, the percolation of palm oil mill effluents into the waterways and ecosystems, remain a fastidious concern towards the public health and food chain interference. With the innovation of palm oil residue into a high valuable end commodity, there has been a steadily growing interest in this research field. Confirming the assertion, this paper presents a state of art review of palm oil mill effluent industry, its fundamental characteristics and environmental implications. Moreover, the key advance of its implementations, major challenges together with the future expectation are summarized and discussed. Conclusively, the expanding of palm oil mill effluent in numerous field of application represents a plausible and powerful circumstance, for accruing the worldwide environmental benefit and shaping the national economy. (author)

  16. Morphology and mechanical properties of PA12/plasticized starch blends prepared by high-shear extrusion

    International Nuclear Information System (INIS)

    Teyssandier, F.; Cassagnau, P.; Gérard, J.F.; Mignard, N.; Mélis, F.

    2012-01-01

    Highlights: ► High shear rate processing was found to greatly impact PA12/starch blend morphologies. ► The morphology was observed to be stable under subsequent processing conditions. ► The mechanical properties of the blends under high-shear rate were greatly improved. ► Polymer blend preparation via high-shear processing has proved to be very effective. ► Finally, polymer blends with improved mechanical properties were obtained. - Abstract: PA12/plasticized starch blends (PA12/TPS) were prepared by high-shear twin screw extruder. The morphology development and the mechanical properties of the blends were investigated as a function of the apparent shear rate. High-shear processing has proved to be an efficient method to finely disperse thermoplastic starch in polyamide 12 matrix. Blends containing TPS domains with a size at the nano-scale (R n ∼ 150 nm) homogeneously dispersed in PA12 matrix were obtained. From a modeling point of view, the variation of the droplet radius is closer to the Wu's predictions compared to the Serpe's predictions. From the basic hypothesis of these models, it can be then assumed that compatibilization between both phases occurs during the blend processing. Furthermore, this morphology of the blends has been proved to be stable after a reprocessing step in an internal mixer most likely due to either strong hydrogen bonds between the hydroxyl groups of starch and amide groups of polyamide 12 or to potentially cross reactions between macroradicals accounting for in situ formation of graft copolymers with the potential function of compatibilizers. Mechanical properties of the blends were found to be strongly dependent on the shear rate parameter of blend processing as the mechanical properties increase with shear rate. In agreement to the blend morphology, the elongation at break of the blends was greatly improved attesting of a good adhesion between both phases.

  17. Mechanical, barrier and morphological properties of starch nanocrystals-reinforced pea starch films.

    Science.gov (United States)

    Li, Xiaojing; Qiu, Chao; Ji, Na; Sun, Cuixia; Xiong, Liu; Sun, Qingjie

    2015-05-05

    To characterize the pea starch films reinforced with waxy maize starch nanocrystals, the mechanical, water vapor barrier and morphological properties of the composite films were investigated. The addition of starch nanocrystals increased the tensile strength of the composite films, and the value of tensile strength of the composite films was highest when starch nanocrystals content was 5% (w/w). The moisture content (%), water vapor permeability, and water-vapor transmission rate of the composite films significantly decreased as starch nanocrystals content increased. When their starch nanocrystals content was 1-5%, the starch nanocrystals dispersed homogeneously in the composite films, resulting in a relatively smooth and compact film surface and better thermal stability. However, when starch nanocrystals content was more than 7%, the starch nanocrystals began to aggregate, which resulted in the surface of the composite films developing a longitudinal fibrous structure. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Unexpected High Digestion Rate of Cooked Starch by the Ct-Maltase-Glucoamylase Small Intestine Mucosal α-Glucosidase Subunit

    Science.gov (United States)

    Lin, Amy Hui-Mei; Nichols, Buford L.; Quezada-Calvillo, Roberto; Avery, Stephen E.; Sim, Lyann; Rose, David R.; Naim, Hassan Y.; Hamaker, Bruce R.

    2012-01-01

    For starch digestion to glucose, two luminal α-amylases and four gut mucosal α-glucosidase subunits are employed. The aim of this research was to investigate, for the first time, direct digestion capability of individual mucosal α-glucosidases on cooked (gelatinized) starch. Gelatinized normal maize starch was digested with N- and C-terminal subunits of recombinant mammalian maltase-glucoamylase (MGAM) and sucrase-isomaltase (SI) of varying amounts and digestion periods. Without the aid of α-amylase, Ct-MGAM demonstrated an unexpected rapid and high digestion degree near 80%, while other subunits showed 20 to 30% digestion. These findings suggest that Ct-MGAM assists α-amylase in digesting starch molecules and potentially may compensate for developmental or pathological amylase deficiencies. PMID:22563462

  19. Potential of Starch Nanocomposites for Biomedical Applications

    Science.gov (United States)

    Zakaria, N. H.; Muhammad, N.; Abdullah, M. M. A. B.

    2017-06-01

    In recent years, the development of biodegradable materials from renewable sources based on polymeric biomaterials have grown rapidly due to increase environmental concerns and the shortage of petroleum sources. In this regard, naturally renewable polymers such as starch has shown great potential as environmental friendly materials. Besides, the unique properties of starch such as biodegradable and non-toxic, biocompatible and solubility make them useful for a various biomedical applications. Regardless of their unique properties, starch materials are known to have limitations in term of poor processability, low mechanical properties, poor long term stability and high water sensitivity. In order to overcome these limitations, the incorporation of nano size fillers into starch materials (nanocomposites) has been introduced. This review aims to give an overview about structure and characteristics of starch, modification of starch by nanocomposites and their potential for biomedical applications.

  20. Hot-melt extrusion of sugar-starch-pellets.

    Science.gov (United States)

    Yeung, Chi-Wah; Rein, Hubert

    2015-09-30

    Sugar-starch-pellets (syn. sugar spheres) are usually manufactured through fluidized bed granulation or wet extrusion techniques. This paper introduces hot-melt extrusion (HME) as an alternative method to manufacture sugar-starch-pellets. A twin-screw extruder coupled with a Leistritz Micro Pelletizer (LMP) cutting machine was utilized for the extrusion of different types (normal-, waxy-, and high-amlyose) of corn starch, blended with varying amounts of sucrose. Pellets were characterized for their physicochemical properties including crystallinity, particle size distribution, tensile strength, and swelling expansion. Furthermore, the influence of sugar content and humidity on the product was investigated. Both sucrose and water lowered the Tg of the starch system allowing a convenient extrusion process. Mechanical strength and swelling behavior could be associated with varying amylose and amylopectin. X-ray powder diffractometric (XRPD) peaks of increasing sucrose contents appeared above 30%. This signified the oversaturation of the extruded starch matrix system with sucrose. Otherwise, had the dissolved sucrose been embedded into the molten starch matrix, no crystalline peak could have been recognized. The replacement of starch with sucrose reduced the starch pellets' swelling effect, which resulted in less sectional expansion (SEI) and changed the surface appearance. Further, a nearly equal tensile strength could be detected for sugar spheres with more than 40% sucrose. This observation stands in good relation with the analyzed values of the commercial pellets. Both techniques (fluidized bed and HME) allowed a high yield of spherical pellets (less friability) for further layering processes. Thermal influence on the sugar-starch system is still an obstacle to be controlled. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Substituent distribution within cross-linked and hydroxypropylated sweet potato starch and potato starch

    NARCIS (Netherlands)

    Zhao, J.; Schols, H.A.; Chen Zenghong,; Jin Zhengyu,; Buwalda, P.L.; Gruppen, H.

    2012-01-01

    Revealing the substituents distribution within starch can help to understand the changes of starch properties after modification. The distribution of substituents over cross-linked and hydroxypropylated sweet potato starch was investigated and compared with modified potato starch. The starches were

  2. Chemical investigation of sewage effluents of Hyderabad city

    International Nuclear Information System (INIS)

    Laghari, A.; Chandio, S.N.; Khushawar, M.Y.; Laghari, M.Y.

    2000-01-01

    Water samples of sewage effluents were collected from sewage collection points located at Latifabad units 9-11, Husainabad and Qasimabad sewage pumping stations. The sewage is pumped towards Southern Sewage treatment plant (SSTP) or is used for agricultural purposes. The water samples from SSTP were also collected and analyzed for pH, conducively, salinity, alkalinity, chlorides, hardness, total, volatile and fixed residues, dissolved oxygen, chemical oxygen demand, nitrogen and phosphorous contents. Variation in the results between sewage water and effluents were noted. (author)

  3. Thermoplastic starch materials prepared from rice starch

    International Nuclear Information System (INIS)

    Pontes, Barbara R.B.; Curvelo, Antonio A.S.

    2009-01-01

    Rice starch is a source still little studied for the preparation of thermoplastic materials. However, its characteristics, such as the presence of proteins, fats and fibers may turn into thermoplastics with a better performance. The present study intends the evaluation of the viability of making starch thermoplastic from rice starch and glycerol as plasticizer. The results of X-ray diffraction and scanning electronic microscopy demonstrate the thermoplastic acquisition. The increase of plasticizer content brings on more hydrophilic thermoplastics with less resistance to tension and elongation at break. (author)

  4. Process development for gelatinisation and enzymatic hydrolysis of starch at high concentrations

    OpenAIRE

    Baks, T.

    2007-01-01

    cum laude graduation (with distinction) Enzymatic hydrolysis of starch is encountered in day-to-day life for instance in the dishwasher during removal of stains with detergents or in our mouth during chewing of starch-based foods in the presence of saliva. The reaction is also important for the (food) industry, for example for the production of beer or bio-ethanol. In industry, it is usually preceded by gelatinisation to make the starch molecules available for the enzymes. Both gelatinisation...

  5. Immobilization of α-amylase and amyloglucosidase onto ion-exchange resin beads and hydrolysis of natural starch at high concentration.

    Science.gov (United States)

    Gupta, Kapish; Jana, Asim Kumar; Kumar, Sandeep; Maiti, Mithu

    2013-11-01

    α-Amylase was immobilized on Dowex MAC-3 with 88 % yield and amyloglucosidase on Amberlite IRA-400 ion-exchange resin beads with 54 % yield by adsorption process. Immobilized enzymes were characterized to measure the kinetic parameters and optimal operational parameters. Optimum substrate concentration and temperature were higher for immobilized enzymes. The thermal stability of the enzymes enhanced after the immobilization. Immobilized enzymes were used in the hydrolysis of the natural starch at high concentration (35 % w/v). The time required for liquefaction of starch to 10 dextrose equivalent (DE) and saccharification of liquefied starch to 96 DE increased. Immobilized enzymes showed the potential for use in starch hydrolysis as done in industry.

  6. Impact of pressure on physicochemical properties of starch dispersions

    KAUST Repository

    Yang, Zhi; Chaib, Sahraoui; Gu, Qinfen; Hemar, Yacine

    2016-01-01

    High hydrostatic pressure (HHP) can be employed as a non-thermal sterilization technique in the food industry while inducing structure and physicochemical changes of the food macromolecules like starch. The effect of HHP on starch depends on various factors including starch type and concentration, pressurization temperature, time, and suspending media. In this review, we summarize the influence of HHP on the structure, gelatinization, retrogradation, and modification of starches from different botanical origins. Suggestions for future research are provided to better understand the mechanism of HHP on starch, and on how HHP can be used in the starch industry. © 2016 Elsevier Ltd.

  7. Impact of pressure on physicochemical properties of starch dispersions

    KAUST Repository

    Yang, Zhi

    2016-09-02

    High hydrostatic pressure (HHP) can be employed as a non-thermal sterilization technique in the food industry while inducing structure and physicochemical changes of the food macromolecules like starch. The effect of HHP on starch depends on various factors including starch type and concentration, pressurization temperature, time, and suspending media. In this review, we summarize the influence of HHP on the structure, gelatinization, retrogradation, and modification of starches from different botanical origins. Suggestions for future research are provided to better understand the mechanism of HHP on starch, and on how HHP can be used in the starch industry. © 2016 Elsevier Ltd.

  8. SIMULTANEOUS PRETREATMENT OF LIGNOCELLULOSE AND HYDROLYSIS OF STARCH IN MIXTURES TO SUGARS

    Directory of Open Access Journals (Sweden)

    Hamzeh Hoseinpour

    2010-11-01

    Full Text Available Mixtures of starch and lignocelluloses are available in many industrial, agricultural, and municipal wastes and residuals. In this work, dilute sulfuric acid was used for simultaneous pretreatment of lignocellulose and hydrolysis of starch, to obtain a maximum amount of fermentable sugar after enzymatic hydrolysis with cellulase and β-glucosidase. The acid treatment was carried out at 70-150°C with 0-1% (v/v acid concentration and 5-15% (w/v solids concentration for 0-40 minutes. Under the optimum conditions, obtained at 130°C, 1% acid, and 7.5% solids loading for 30 min, the starch was almost completely converted to glucose. However, the acid treatment was not successful for efficient hydrolysis of pure cellulose. A mixture of pine softwood and potato as representatives of lignocellulosic and starch components, respectively, were treated at the optimum conditions for acid hydrolysis of starch. The dilute-acid treatment resulted in 1.2, 60.5, and 23.6% hydrolysis of glucan, xylan, and mannan of pine wood and 67% of potato starch to fermentable sugars. After the acid treatment, the solid residue of the mixture was subjected to enzymatic hydrolysis. The enzymatic hydrolysis under the optimum conditions resulted in conversion of 76% of the glucan in the treated softwood. Therefore, using acid treatment of the mixture is a promising process for pretreatment of wood in addition to the hydrolysis of starch.

  9. Effect of carboxymethyl cellulose concentration on physical properties of biodegradable cassava starch-based films

    Directory of Open Access Journals (Sweden)

    Sriburi Pensiri

    2011-02-01

    Full Text Available Abstract Background Cassava starch, the economically important agricultural commodity in Thailand, can readily be cast into films. However, the cassava starch film is brittle and weak, leading to inadequate mechanical properties. The properties of starch film can be improved by adding plasticizers and blending with the other biopolymers. Results Cassava starch (5%w/v based films plasticized with glycerol (30 g/100 g starch were characterized with respect to the effect of carboxymethyl cellulose (CMC concentrations (0, 10, 20, 30 and 40%w/w total solid and relative humidity (34 and 54%RH on the mechanical properties of the films. Additionally, intermolecular interactions were determined by Fourier transform infrared spectroscopy (FT-IR, melting temperature by differential scanning calorimetry (DSC, and morphology by scanning electron microscopy (SEM. Water solubility of the films was also determined. Increasing concentration of CMC increased tensile strength, reduced elongation at break, and decreased water solubility of the blended films. FT-IR spectra indicated intermolecular interactions between cassava starch and CMC in blended films by shifting of carboxyl (C = O and OH groups. DSC thermograms and SEM micrographs confirmed homogeneity of cassava starch-CMC films. Conclusion The addition of CMC to the cassava starch films increased tensile strength and reduced elongation at break of the blended films. This was ascribed to the good interaction between cassava starch and CMC. Cassava starch-CMC composite films have the potential to replace conventional packaging, and the films developed in this work are suggested to be suitable for low moisture food and pharmaceutical products.

  10. Starch and starch hydrolysates are favorable carbon sources for bifidobacteria in the human gut.

    Science.gov (United States)

    Liu, Songling; Ren, Fazheng; Zhao, Liang; Jiang, Lu; Hao, Yanling; Jin, Junhua; Zhang, Ming; Guo, Huiyuan; Lei, Xingen; Sun, Erna; Liu, Hongna

    2015-03-01

    Bifidobacteria are key commensals in human gut, and their abundance is associated with the health of their hosts. Although they are dominant in infant gut, their number becomes lower in adult gut. The changes of the diet are considered to be main reason for this difference. Large amounts of whole-genomic sequence data of bifidobacteria make it possible to elucidate the genetic interpretation of their adaptation to the nutrient environment. Among the nutrients in human gut, starch is a highly fermentable substrate and can exert beneficial effects by increasing bifidobacteria and/or being fermented to short chain fatty acids. In order to determine the potential substrate preference of bifidobacteria, we compared the glycoside hydrolase (GH) profiles of a pooled-bifidobacterial genome (PBG) with a representative microbiome (RM) of the human gut. In bifidobacterial genomes, only 15% of GHs contained signal peptides, suggesting their weakness in utilization of complex carbohydrate, such as plant cell wall polysaccharides. However, compared with other intestinal bacteria, bifidobacteiral genomes encoded more GH genes for degrading starch and starch hydrolysates, indicating that they have genetic advantages in utilizing these substrates. Bifidobacterium longum subsp. longum BBMN68 isolated from centenarian's faeces was used as a model strain to further investigate the carbohydrate utilization. The pathway for degrading starch and starch hydrolysates was the only complete pathway for complex carbohydrates in human gut. It is noteworthy that all of the GH genes for degrading starch and starch hydrolysates in the BBMN68 genome were conserved in all studied bifidobacterial strains. The in silico analyses of BBMN68 were further confirmed by growth experiments, proteomic and real-time quantitative PCR (RT-PCR) analyses. Our results demonstrated that starch and starch hydrolysates were the most universal and favorable carbon sources for bifidobacteria. The low amount of these

  11. Adaptation to the digestion of nutrients of a starch diet or a non-starch polysaccharide diet in group-housed pregnant sows

    NARCIS (Netherlands)

    Peet-Schwering, van der C.M.C.; Kemp, B.; Hartog, den L.A.; Schrama, J.W.; Verstegen, M.W.A.

    2002-01-01

    A trial was conducted with twenty group-housed pregnant sows to study the adaptation in nutrient digestibility to a starch-rich diet or a diet with a high level of fermentable non-starch polysaccharides (NSP) during a time period of 6 weeks. The starch-rich diet was primarily composed of wheat, peas

  12. Membrane technology for sustainable treated wastewater reuse: agricultural, environmental and hydrological considerations.

    Science.gov (United States)

    Oron, Gideon; Gillerman, Leonid; Bick, Amos; Manor, Yossi; Buriakovsky, Nisan; Hagin, Joseph

    2008-01-01

    Field experiments were conducted in agricultural fields in which secondary wastewater of the City of Arad (Israel) is reused for irrigation. For sustainable agricultural production and safe groundwater recharge the secondary effluent is further polished by a combined two-stage membrane pilot system. The pilot membrane system consists of two main in row stages: Ultrafiltration (UF) and Reverse Osmosis (RO). The UF stage is efficient in the removal of the pathogens and suspended organic matter while the successive RO stage provides safe removal of the dissolved solids (salinity). Effluents of various qualities were applied for agricultural irrigation along with continuous monitoring of the membrane system performance. Best agricultural yields were obtained when applying effluent having minimal content of dissolved solids (after the RO stage) as compared with secondary effluent without any further treatment and extended storage. In regions with shallow groundwater reduced soil salinity in the upper productive layers, maintained by extra membrane treatment, will guarantee minimal dissolved solids migration to the aquifers and minimize salinisation processes. (c) IWA Publishing 2008.

  13. In situ study starch gelatinization under ultra-high hydrostatic pressure using synchrotron SAXS

    KAUST Repository

    Yang, Zhi; Gu, Qinfen; Lam, Elisa; Tian, Feng; Chaieb, Saharoui; Hemar, Yacine

    2015-01-01

    The gelatinization of waxy (very low amylose) corn and potato starches by high hydrostatic pressure (HHP) (up to ∼1 GPa) was investigated in situ using synchrotron small-angle X-ray scattering (SAXS) on samples held in a diamond anvil cell (DAC

  14. Production of amorphous starch powders by solution spray drying

    NARCIS (Netherlands)

    Niazi, Muhammad B. K.; Broekhuis, Antonius A.

    2012-01-01

    The spray drying of starch/maltodextrin formulations was evaluated as a potential technology for the manufacturing of amorphous thermoplastic starches. Mixtures of starches with high to low amylose (Am)amylopectin (Ap) ratios were spray-dried from water-based solutions and granular dispersions. The

  15. Preparation of calcium- and magnesium-fortified potato starches with altered pasting properties.

    Science.gov (United States)

    Noda, Takahiro; Takigawa, Shigenobu; Matsuura-Endo, Chie; Ishiguro, Koji; Nagasawa, Koichi; Jinno, Masahiro

    2014-09-15

    Calcium- and magnesium-fortified potato starches were prepared by immersion in various concentrations of CaCl2 and MgCl2 aqueous solutions, respectively. The pasting properties, i.e., peak viscosity and breakdown, of all the starches obtained above were analyzed using a Rapid Visco Analyzer. Furthermore, the gelatinization properties and in vitro digestibility of the representative calcium- and magnesium-fortified starches were tested. The maximum calcium content of the fortified potato starches was as high as 686 ppm with the addition of a high-concentration CaCl2 solution, while the calcium content of the control potato starch was 99 ppm. The magnesium content increased from 89 to 421 ppm by treatment of the potato starch with an MgCl2 solution. Markedly lower values of peak viscosity and breakdown were observed in calcium- and magnesium-fortified potato starches than in the control potato starch. However, the gelatinization temperature and enthalpy as well as resistant starch content of calcium- and magnesium-fortified potato starches were similar to those of the control potato starch. It is concluded that potato starches with altered pasting properties can be easily manufactured by the use of solutions containing high levels of calcium and magnesium.

  16. Preparation and Effect of Gamma Radiation on The Properties and Biodegradability of Poly(Styrene/Starch) Blends

    Science.gov (United States)

    Ali, H. E.; Abdel Ghaffar, A. M.

    2017-01-01

    Biodegradable blends based on Poly(styrene/starch) Poly(Sty/Starch) were prepared by the casting method using different contents of starch in the range of 0-20 wt% aiming at preparing disposable packaging materials. The prepared bio-blends were Characterized by Fourier transform infrared (FTIR), swelling behavior, mechanical properties, thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). It was found that the swelling behavior slightly increased with increasing starch content and not exceeding 7.5%. The results showed that by increasing irradiation dose up to 5 kGy, the mechanical properties of the prepared PSty/10 wt% Starch blend film modified than other blend films, and hence it is selected. Also the water resistant increased, by irradiation of the selected PSty/10 wt% Starch blend film. The intermolecular hydrogen bonding interaction between Starch and PSty of the PSty/10 wt% Starch blend film promote a more homogenous blend film as shown in scanning electron microscopy (SEM). The prepared Poly(Sty/Starch) blends with different compositions and the selected irradiated PSty/10 wt% Starch blend were subjected to biodegradation in soil burial tests for 6 months using two different types of soils; agricultural and desert soils, then analyzed gravimetrically and by scanning electron microscopy (SEM). The results suggested that there is a possibility of using irradiated PSty/10 wt% Starch at a dose of 5 kGy as a potential candidate for packaging material.

  17. Modified Starch of Sorghum Mutant Line Zh-30 for High Fiber Muffin Products

    Directory of Open Access Journals (Sweden)

    D.D.S. Santosa

    2009-01-01

    Full Text Available Sorghum mutant line Zh-30 is a breeding line developed at the Center for the Application of Isotope and Radiation Technology, BATAN by using mutation techniques. Gamma irradiation with the dose of 300 Gy was used to induce sorghum genetic variation. Through selection processes in several generations, the mutant line Zh-30 was identified to have better agronomic characteristics, better grain quality and higher grain yield than the original variety. Research on modified starch quality of this mutant line was done to identify its potential use in food industry. Functionality of pregelatinized, hydroxypropyl and crosslinked starch of this mutant line (Mutant TexInstant 30 has been studied for its use in high fiber muffin products. Characteristics of high fiber muffins containing 1.50; 3.50 and 5.50% of Mutant Tex-Instant 30 replacement levels to wheat flour were evaluated using both sensory panel and physical test methods. With regard to the sensory parameters, the high fiber muffins containing 1.50 - 5.50 % Mutant Tex-Instant 30 in general were not significantly different compared to the standard reference muffin. Results of physical evaluations showed that all Mutant Tex-Instant 30 containing products retained more moisture during baking than the standard reference. Tenderness of all products decreased at similar rate following 24 and 48 hr of room temperature storage and seven days at freezer temperature. These results suggested that sorghum mutant line Zh-30 starch could be modified and potentially used in food industry as a subtitute of wheat flour.

  18. Modified Starch of Sorghum Mutant Line Zh-30 For High Fiber Muffin Products

    International Nuclear Information System (INIS)

    Santosa, D. D. S; Human, S

    2009-01-01

    Sorghum mutant line Zh-30 is a breeding line developed at the Center for the Application of Isotope and Radiation Technology, BATAN by using mutation techniques. Gamma irradiation with the dose of 300 Gy was used to induce sorghum genetic variation. Through selection processes in several generations, the mutant line Zh-30 was identified to have better agronomic characteristics, better grain quality and higher grain yield than the original variety. Research on modified starch quality of this mutant line was done to identify its potential use in food industry. Functionality of pregelatinized, hydroxypropyl and crosslinked starch of this mutant line (Mutant TexInstant 30) has been studied for its use in high fiber muffin products. Characteristics of high fiber muffins containing 1.50; 3.50 and 5.50% of Mutant Tex-Instant 30 replacement levels to wheat flour were evaluated using both sensory panel and physical test methods. With regard to the sensory parameters, the high fiber muffins containing 1.50 - 5.50 % Mutant Tex-Instant 30 in general were not significantly different compared to the standard reference muffin. Results of physical evaluations showed that all Mutant Tex-Instant 30 containing products retained more moisture during baking than the standard reference. Tenderness of all products decreased at similar rate following 24 and 48 hr of room temperature storage and seven days at freezer temperature. These results suggested that sorghum mutant line Zh-30 starch could be modified and potentially used in food industry as a subtitute of wheat flour (author)

  19. Overview of Ecological Agriculture with High Efficiency

    OpenAIRE

    Huang, Guo-qin; Zhao, Qi-guo; Gong, Shao-lin; Shi, Qing-hua

    2012-01-01

    From the presentation, connotation, characteristics, principles, pattern, and technologies of ecological agriculture with high efficiency, we conduct comprehensive and systematic analysis and discussion of the theoretical and practical progress of ecological agriculture with high efficiency. (i) Ecological agriculture with high efficiency was first advanced in China in 1991. (ii) Ecological agriculture with high efficiency highlights "high efficiency", "ecology", and "combination". (iii) Ecol...

  20. Environmental impact assessment of six starch plastics focusing on wastewater-derived starch and additives

    NARCIS (Netherlands)

    Broeren, Martijn L.M.; Kuling, Lody; Worrell, Ernst; Shen, Li

    2017-01-01

    Starch plastics are developed for their biobased origin and potential biodegradability. To assist the development of sustainable starch plastics, this paper quantifies the environmental impacts of starch plastics produced from either virgin starch or starch reclaimed from wastewater. A

  1. Creation of a high-amylose durum wheat through mutagenesis of starch synthase II (SSIIa)

    Science.gov (United States)

    In cereal seeds mutations in one or more starch synthases lead to decreased amylopectin and increased amylose content. Here, the impact of starch synthase IIa (SSIIa or SGP-1) mutations upon durum starch was investigated. A screen of durum accessions identified two lines lacking SGP-A1, the A geno...

  2. Evaluation of an integrated sponge--granular activated carbon fluidized bed bioreactor for treating primary treated sewage effluent.

    Science.gov (United States)

    Xing, W; Ngo, H H; Guo, W S; Listowski, A; Cullum, P

    2011-05-01

    An integrated fluidized bed bioreactor (iFBBR) was designed to incorporate an aerobic sponge FBBR (ASB-FBBR) into an anoxic granular activated carbon FBBR (GAC-FBBR). This iFBBR was operated with and without adding a new starch based flocculant (NSBF) to treat synthetic primary treated sewage effluent (PTSE). The NSBF contains starch based cationic flocculants and trace nutrients. The results indicate that the iFBBR with NSBF addition could remove more than 93% dissolved organic carbon (DOC), 61% total nitrogen (T-N) and 60% total phosphorus (T-P) at just a very short hydraulic retention time of 50 min. The optimum frequency of adding NSBF to the iFFBR is four times per day. As a pretreatment to microfiltration, the iFFBR could increase 5L/m(2)h of critical flux thus reducing the membrane fouling. In addition, better microbial activity was also observed with high DO consumption (>66%) and specific oxygen uptake rate (>35 mg O(2)/g VSS h). Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. The effect of starch-garlic powder ratio on degradation rate of Gadung starch bioplastic

    Science.gov (United States)

    Mairiza, L.; Mariana; Ramadhany, M.; Feviyussa, C. A.

    2018-03-01

    Bioplastic is one of the solutions for environmental problems caused by plastics waste. Utilization of toxic gadung starch in the manufacturing of bioplastic would be as an alternative, due to gadung bulb has high starch content, and it is still not used optimally. This research aimed to learn about the using of gadung starch-mixed with garlic powder of making biodegradable plastic packaging. Also, to observe the duration of degradation, as a level of biodegradability of plastic film produced. The method used making this bioplastic was casting method. The variables used in this study were the ratios of starch and powdered garlic, were 10:0; 8:2; 6:4, and the concentration of garlic powder were 2%; 4%; 6%; and 8 %. The degradation test was done by soil burial test. The results of the soil burial test shown that the film was more rapidly degraded at ratio of 6: 4 compared to the ratio of 8: 2 and 10: 0. The results shown that bioplastic at the starch-garlic powder ratio of 10: 0 was decomposed in 21 days, at the the ratio of 8:2 was 15 days, while at the ratio of 6:4, the plastic film was degraded in the 11 days.

  4. The enzymatic determination of starch in food, feed and raw materials of the starch industry

    NARCIS (Netherlands)

    Brunt, K.; Sanders, P.; Rozema, T.

    1998-01-01

    An enzymatic starch determination which can be used for the analysis of starch in a very broad range of different samples is evaluated, ranging from starch in plants, feed and food to industrial applications as starch in starch. The method is based on a complete enzymatic conversion of the starch

  5. Structural and molecular basis of starch viscosity in hexaploid wheat.

    Science.gov (United States)

    Ral, J-P; Cavanagh, C R; Larroque, O; Regina, A; Morell, M K

    2008-06-11

    Wheat starch is considered to have a low paste viscosity relative to other starches. Consequently, wheat starch is not preferred for many applications as compared to other high paste viscosity starches. Increasing the viscosity of wheat starch is expected to increase the functionality of a range of wheat flour-based products in which the texture is an important aspect of consumer acceptance (e.g., pasta, and instant and yellow alkaline noodles). To understand the molecular basis of starch viscosity, we have undertaken a comprehensive structural and rheological analysis of starches from a genetically diverse set of wheat genotypes, which revealed significant variation in starch traits including starch granule protein content, starch-associated lipid content and composition, phosphate content, and the structures of the amylose and amylopectin fractions. Statistical analysis highlighted the association between amylopectin chains of 18-25 glucose residues and starch pasting properties. Principal component analysis also identified an association between monoesterified phosphate and starch pasting properties in wheat despite the low starch-phosphate level in wheat as compared to tuber starches. We also found a strong negative correlation between the phosphate ester content and the starch content in flour. Previously observed associations between internal starch granule fatty acids and the swelling peak time and pasting temperature have been confirmed. This study has highlighted a range of parameters associated with increased starch viscosity that could be used in prebreeding/breeding programs to modify wheat starch pasting properties.

  6. Inhibition of raw starch digestion by one glucoamylase preparation from black Aspergillus at high enzyme concentration

    Energy Technology Data Exchange (ETDEWEB)

    Saka, B C; Veda, S

    1981-09-01

    Raw starch digestion by glucoamylase I (Ab. G-I) preparation from black Aspergillus was inhibited significantly at relatively high concentration of the enzyme. The properties of this enzyme were studied together with those of another glucoamylase I (Nor. G-I), also from black Aspergillus. The two glucoamylases do not differ so much in their physico-chemical properties such as molecular weight, pH and thermal stability, pH and temperature optimum, substrate specificity, debranching activity, isoelectric point etc. The adsorption rate of both enzymes on raw starch increased by the increase of enzyme concentration. The raw starch digestion rate by adsorbed Ab. G-I, however, was decreased with the increase of concentration of enzyme whereas the same was increased in case of Nor. G-I. The inhibitory effect was weaker at 60 deg. Celcius or above. (Refs. 11).

  7. Starch hydrolysis modeling: application to fuel ethanol production.

    Science.gov (United States)

    Murthy, Ganti S; Johnston, David B; Rausch, Kent D; Tumbleson, M E; Singh, Vijay

    2011-09-01

    Efficiency of the starch hydrolysis in the dry grind corn process is a determining factor for overall conversion of starch to ethanol. A model, based on a molecular approach, was developed to simulate structure and hydrolysis of starch. Starch structure was modeled based on a cluster model of amylopectin. Enzymatic hydrolysis of amylose and amylopectin was modeled using a Monte Carlo simulation method. The model included the effects of process variables such as temperature, pH, enzyme activity and enzyme dose. Pure starches from wet milled waxy and high-amylose corn hybrids and ground yellow dent corn were hydrolyzed to validate the model. Standard deviations in the model predictions for glucose concentration and DE values after saccharification were less than ± 0.15% (w/v) and ± 0.35%, respectively. Correlation coefficients for model predictions and experimental values were 0.60 and 0.91 for liquefaction and 0.84 and 0.71 for saccharification of amylose and amylopectin, respectively. Model predictions for glucose (R2 = 0.69-0.79) and DP4+ (R2 = 0.8-0.68) were more accurate than the maltotriose and maltose for hydrolysis of high-amylose and waxy corn starch. For yellow dent corn, simulation predictions for glucose were accurate (R2 > 0.73) indicating that the model can be used to predict the glucose concentrations during starch hydrolysis.

  8. Characterization of starch films containing starch nanoparticles: part 1: physical and mechanical properties.

    Science.gov (United States)

    Shi, Ai-Min; Wang, Li-Jun; Li, Dong; Adhikari, Benu

    2013-07-25

    We report, for the first time, the preparation method and characteristics of starch films incorporating spray dried and vacuum freeze dried starch nanoparticles. Physical properties of these films such as morphology, crystallinity, water vapor permeability (WVP), opacity, and glass transition temperature (Tg) and mechanical properties (strain versus temperature, strain versus stress, Young's modulus and toughness) were measured. Addition of both starch nanoparticles in starch films increased roughness of surface, lowered degree of crystallinity by 23.5%, WVP by 44% and Tg by 4.3°C, respectively compared to those of starch-only films. Drying method used in preparation of starch nanoparticles only affected opacity of films. The incorporation of nanoparticles in starch films resulted into denser films due to which the extent of variation of strain with temperature was much lower. The toughness and Young's modulus of films containing both types of starch nanoparticles were lower than those of control films especially at <100°C. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Highly phosphorylated functionalized rice starch produced by transgenic rice expressing the potato GWD1 gene

    DEFF Research Database (Denmark)

    Chen, Yaling; Sun, Xiao; Zhou, Xin Mao

    2017-01-01

    Starch phosphorylation occurs naturally during starch metabolism in the plant and is catalysed by glucan water dikinases (GWD1) and phosphoglucan water dikinase/glucan water dikinase 3 (PWD/GWD3). We generated six stable individual transgenic lines by over-expressing the potato GWD1 in rice....... Transgenic rice grain starch had 9-fold higher 6-phospho (6-P) monoesters and double amounts of 3-phospho (3-P) monoesters, respectively, compared to control grain. The shape and topography of the transgenic starch granules were moderately altered including surface pores and less well defined edges....... The gelatinization temperatures of both rice flour and extracted starch were significantly lower than those of the control and hence negatively correlated with the starch phosphate content. The 6-P content was positively correlated with amylose content and relatively long amylopectin chains with DP25-36, and the 3-P...

  10. 1H-13C NMR-based profiling of biotechnological starch utilization

    DEFF Research Database (Denmark)

    Sundekilde, Ulrik K.; Meier, Sebastian

    2016-01-01

    Starch is used in food-and non-food applications as a renewable and degradable source of carbon and energy. Insight into the chemical detail of starch degradation remains challenging as the starch constituents amylose and amylopectin are homopolymers. We show that considerable molecular detail...... of starch fragmentation can be obtained from multivariate analysis of spectral features in optimized 1H-13C NMR spectroscopy of starch fragments to identify relevant features that distinguish processes in starch utilization. As a case study, we compare the profiles of starch fragments in commercial beer...... samples. Spectroscopic profiles of homooligomeric starch fragments can be excellent indicators of process conditions. In addition, differences in the structure and composition of starch fragments have predictive value for down-stream process output such as ethanol production from starch. Thus, high...

  11. Starch Digestibility and Functional Properties of Rice Starch Subjected to Gamma Radiation

    Directory of Open Access Journals (Sweden)

    Luís Fernando Polesi

    2018-01-01

    Full Text Available This study investigated the effect of gamma radiation on the digestibility and functional properties of rice starch. Rice cultivars IRGA417 and IAC202 were used for isolation of starch by the alkaline method. Starch samples were irradiated with 1, 2 and 5 kGy doses of 60Co at a rate of 0.4 kGy/h. A control sample, which was not irradiated, was used for comparison. Irradiated and control starches were characterized by in vitro starch digestibility, total dietary fiber, color, water absorption index, water solubility index, syneresis, swelling factor, amylose leaching, pasting properties and gel firmness. Irradiations changed starch digestibility differently in either cultivar. Increasing radiation doses promoted increase in the color parameter b* (yellow, elevation in the capacity to absorb water, and solubility in water as well as the amylose leached from granules for both cultivars. Pasting properties showed a decrease that was proportional to the dose applied, caused by the depolymerization of starch molecules. Gel firmness of the starch from IAC202 was inversely proportional to the radiation dose applied, whereas for IRGA417, there was a reduction at 5 kGy dose. Rice starches can be modified by irradiation to exhibit different functional characteristics and they can be used by the food industries in products such as soups, desserts, flans, puddings and others.

  12. Process development for gelatinisation and enzymatic hydrolysis of starch at high concentrations

    NARCIS (Netherlands)

    Baks, T.

    2007-01-01

    cum laude graduation (with distinction) Enzymatic hydrolysis of starch is encountered in day-to-day life for instance in the dishwasher during removal of stains with detergents or in our mouth during chewing of starch-based foods in the presence of saliva. The reaction is also important for the

  13. Physicochemical properties of starches and proteins in alkali-treated mungbean and cassava starch granules.

    Science.gov (United States)

    Israkarn, Kamolwan; Na Nakornpanom, Nantarat; Hongsprabhas, Parichat

    2014-05-25

    This study explored the influences of envelope integrity of cooked starch granules on physicochemical and thermophysical properties of mungbean and cassava starches. Alkali treatment was used to selectively leach amylose from the amorphous region of both starches and partially fragmented starch molecules into lower-molecular-weight polymers. It was found that despite the loss of 40% of the original content of amylose, both mungbean and cassava starches retained similar crystallinities, gelatinization temperature ranges, and pasting profiles compared to the native starches. However, the loss of granule-bound starch synthases during alkali treatment and subsequent alkali cooking in excess water played significant roles in determining granular disintegration. The alterations in envelope integrity due to the negative charge repulsion among polymers within the envelope of swollen granules, and the fragmentation of starch molecules, were responsible for the alterations in thermophysical properties of mungbean and cassava starches cooked under alkaline conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Starch meets biotechnology : in planta modification of starch composition and functionalities

    NARCIS (Netherlands)

    Xu, Xuan

    2016-01-01

    Storage starch is an energy reservoir for plants and the major source of calories in the human diet. Starch is used in a broad range of industrial applications, as a cheap, abundant, renewable and biodegradable biopolymer. However, starch needs to be modified before it can fulfill the required

  15. Starch as a source, starch as a sink: the bifunctional role of starch in carbon allocation.

    Science.gov (United States)

    MacNeill, Gregory J; Mehrpouyan, Sahar; Minow, Mark A A; Patterson, Jenelle A; Tetlow, Ian J; Emes, Michael J

    2017-07-20

    Starch commands a central role in the carbon budget of the majority of plants on earth, and its biological role changes during development and in response to the environment. Throughout the life of a plant, starch plays a dual role in carbon allocation, acting as both a source, releasing carbon reserves in leaves for growth and development, and as a sink, either as a dedicated starch store in its own right (in seeds and tubers), or as a temporary reserve of carbon contributing to sink strength, in organs such as flowers, fruits, and developing non-starchy seeds. The presence of starch in tissues and organs thus has a profound impact on the physiology of the growing plant as its synthesis and degradation governs the availability of free sugars, which in turn control various growth and developmental processes. This review attempts to summarize the large body of information currently available on starch metabolism and its relationship to wider aspects of carbon metabolism and plant nutrition. It highlights gaps in our knowledge and points to research areas that show promise for bioengineering and manipulation of starch metabolism in order to achieve more desirable phenotypes such as increased yield or plant biomass. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  16. Characteristics of Fluid Composition of Left Displaced Abomasum in Beef Cattle Fed High-Starch Diets

    Science.gov (United States)

    ICHIJO, Toshihiro; SATOH, Hiroshi; YOSHIDA, Yuki; MURAYAMA, Isao; KIKUCHI, Tomoko; SATO, Shigeru

    2014-01-01

    ABSTRACT To clarify the pathophysiology of left displaced abomasum (LDA), beef cattle fed high-starch diets were examined. The abomasal pH in beef cattle with LDA was lower than that in non-LDA reference animals (data from beef cattle at an abattoir), suggesting that it facilitated acidity. Bacteriological examinations of the abomasal fluid in cattle with LDA revealed the presence of Pseudomonas spp., Clostridium spp. and Candida spp., presumably reflecting the accelerated influx of ruminal fluid into the abomasum. Biochemical analyses of serum revealed that LDA cattle had higher lactic acid and lower vitamin A and E levels than non-LDA reference animals. These results indicate that beef cattle with LDA may suffer from vitamin A and E deficiencies due to maldigestion of starch and the high acidity of abomasal fluid. PMID:24813464

  17. Studies on rye starch properties and modification. Pt. 1. Composition and properties of rye starch granules

    Energy Technology Data Exchange (ETDEWEB)

    Schierbaum, F; Radosta, S; Richter, M; Kettlitz, B [Zentralinstitut fuer Ernaehrung, Potsdam (Germany); Gernat, C [Zentralinstitut fuer Molekularbiologie, Berlin (Germany)

    1991-09-01

    Rye is considered as a potential raw material for starch industry. Starting from a survey of technical procedures of isolating starches from rye-flour and -grits investigations will be reported, which were performed on pilot plant- and laboratory-isolated rye starches. The present paper deals with its granule appearance and composition. A distribution of granule size between small granules ({<=} 10 {mu}m - 15%) and large granules ({>=} 11 ... {<=} 40 {mu}m = 85%) is typical for the totality of the starches. Differing distributions depend on the conditions of isolation: The entity of starch containing samples resulted from the latoratory procedures under investigation. Large-granule starch preparations were isolated in the pilot plant: The centrifuge-overflow contains the small-granule fraction which is high in impurities. Granule crystallinity amounts to 16%. The crystalline component - like in wheat and triticale starches - consists predominantly of A-polymorph - with up to 9% of the B-type. The isotherms of water exchange are of the cereal type. The contents of minor constituents largely relate to the small granule fraction which assembles the majority of crude protein, pentosans and lipids, which are difficult to remove. Lipid components in all fractions influence the results of linear chain-iodine interactions and they must be removed to proceed from apparent to absolute polysaccharide indices. The absolute amylose contents amount to {approx equal} 25% for large granule samples and to 20-21% for small granule samples. The average chain-length of iodine binding helical regions was determined with 220-240 AGU. (orig.).

  18. Starch and oil in the donor cow diet and starch in substrate differently affect the in vitro ruminal biohydrogenation of linoleic and linolenic acids.

    Science.gov (United States)

    Zened, A; Troegeler-Meynadier, A; Nicot, M C; Combes, S; Cauquil, L; Farizon, Y; Enjalbert, F

    2011-11-01

    Trans isomers of fatty acids exhibit different health properties. Among them, trans-10,cis-12 conjugated linoleic acid has negative effects on milk fat production and can affect human health. A shift from the trans-11 to the trans-10 pathway of biohydrogenation (BH) can occur in the rumen of dairy cows receiving high-concentrate diets, especially when the diet is supplemented with highly unsaturated fat sources. The differences of BH patterns between linoleic acid (LeA) and linolenic acid (LnA) in such ruminal conditions remain unknown; thus, the aim of this work was to investigate in vitro the effects of starch and sunflower oil in the diet of the donor cows and starch level in the incubates on the BH patterns and efficiencies of LeA and LnA. The design was a 4 × 4 Latin square design with 4 cows, 4 periods, and 4 diets with combinations of 21 or 34% starch and 0 or 5% sunflower oil. The rumen content of each cow during each period was incubated with 4 substrates, combining 2 starch levels and either LeA or LnA addition. Capillary electrophoresis single-strand conformation polymorphism of incubates showed that dietary starch decreased the diversity of the bacterial community and the high-starch plus oil diet modified its structure. High-starch diets poorly affected isomerization and first reduction of LeA and LnA, but decreased the efficiencies of trans-11,cis-15-C18:2 and trans C18:1 reduction. Dietary sunflower oil increased the efficiency of LeA isomerization but decreased the efficiency of trans C18:1 reduction. An interaction between dietary starch and dietary oil resulted in the highest trans-10 isomers production in incubates when the donor cow received the high-starch plus oil diet. The partition between trans-10 and trans-11 isomers was also affected by an interaction between starch level and the fatty acid added to the incubates, showing that the trans-10 shift only occurred with LeA, whereas LnA was mainly hydrogenated via the more usual trans-11

  19. Food product models developed to evaluate starch as a food ingredient

    DEFF Research Database (Denmark)

    Wischmann, Bente; Bergsøe, Merete Norsker; Adler-Nissen, Jens

    2002-01-01

    Three highly reproducible food models have been developed to evaluate rheological and functional properties of starches. The food models are dutch vla, dressing, and white sauce, and they vary in pH, serving temperature, oil content, and content of other functional ingredients than starch (milk...... with starch concentration in dutch vla. In dressing and white sauce most of the rheological parameters depended on the starch concentration. In addition, it was found that results from the empirical rheological method (USDA consistometer) correlate well with fundamental rheological parameters. Syneresis...... was measured for a period of time up to 15 days. The degree of syneresis of dressing was highly dependent on starch concentration, while the syneresis of the white sauce was dependent on time but not on starch concentration. The dutch vla showed no syneresis at all....

  20. Resistant starch in cassava products

    Directory of Open Access Journals (Sweden)

    Bruna Letícia Buzati Pereira

    2014-06-01

    Full Text Available Found in different foods, starch is the most important source of carbohydrates in the diet. Some factors present in starchy foods influence the rate at which the starch is hydrolyzed and absorbed in vivo. Due the importance of cassava products in Brazilian diet, the objective of this study was to analyze total starch, resistant starch, and digestible starch contents in commercial cassava products. Thirty three commercial cassava products from different brands, classifications, and origin were analyzed. The method used for determination of resistant starch consisted of an enzymatic process to calculate the final content of resistant starch considering the concentration of glucose released and analyzed. The results showed significant differences between the products. Among the flours and seasoned flours analyzed, the highest levels of resistant starch were observed in the flour from Bahia state (2.21% and the seasoned flour from Paraná state (1.93%. Starch, tapioca, and sago showed levels of resistant starch ranging from 0.56 to 1.1%. The cassava products analyzed can be considered good sources of resistant starch; which make them beneficial products to the gastrointestinal tract.

  1. PROTEIN TARGETING TO STARCH is required for localising GRANULE-BOUND STARCH SYNTHASE to starch granules and for normal amylose synthesis in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    David Seung

    2015-02-01

    Full Text Available The domestication of starch crops underpinned the development of human civilisation, yet we still do not fully understand how plants make starch. Starch is composed of glucose polymers that are branched (amylopectin or linear (amylose. The amount of amylose strongly influences the physico-chemical behaviour of starchy foods during cooking and of starch mixtures in non-food manufacturing processes. The GRANULE-BOUND STARCH SYNTHASE (GBSS is the glucosyltransferase specifically responsible for elongating amylose polymers and was the only protein known to be required for its biosynthesis. Here, we demonstrate that PROTEIN TARGETING TO STARCH (PTST is also specifically required for amylose synthesis in Arabidopsis. PTST is a plastidial protein possessing an N-terminal coiled coil domain and a C-terminal carbohydrate binding module (CBM. We discovered that Arabidopsis ptst mutants synthesise amylose-free starch and are phenotypically similar to mutants lacking GBSS. Analysis of granule-bound proteins showed a dramatic reduction of GBSS protein in ptst mutant starch granules. Pull-down assays with recombinant proteins in vitro, as well as immunoprecipitation assays in planta, revealed that GBSS physically interacts with PTST via a coiled coil. Furthermore, we show that the CBM domain of PTST, which mediates its interaction with starch granules, is also required for correct GBSS localisation. Fluorescently tagged Arabidopsis GBSS, expressed either in tobacco or Arabidopsis leaves, required the presence of Arabidopsis PTST to localise to starch granules. Mutation of the CBM of PTST caused GBSS to remain in the plastid stroma. PTST fulfils a previously unknown function in targeting GBSS to starch. This sheds new light on the importance of targeting biosynthetic enzymes to sub-cellular sites where their action is required. Importantly, PTST represents a promising new gene target for the biotechnological modification of starch composition, as it is

  2. Effectiveness of incorporating citric acid in cassava starch edible coatings to preserve quality of Martha tomatoes

    Science.gov (United States)

    Ambarsari, I.; Oktaningrum, G. N.; Endrasari, R.

    2018-01-01

    Tomato as an agricultural product is extremely perishable. Coatings of tomatoes with edible starch extend quality and storage life of the fruits. Incorporation of citric acid as antimicrobial agent in the edible starch coatings is expected to preserve the quality of tomatoes during storage. The aim of this study was to verify the effectiveness of citric acid incorporated in cassava starch coating to preserve quality of tomatoes. The edible coatings formula consisted of cassava starch solutions (1; 2; 3%), citric acid (0.5; 1.0%) and glycerol (10%). Tomatoes were dipped to the coating solution for 10 seconds, then air-dried and stored at room temperature during 18 days. All the treatments were carried out in triplicates. Experimental data were analyzed using One Way ANOVA. The results showed that coating treatments did not affect the weight loss, moisture content, color characteristic, carotene and vitamin C content on Martha tomatoes. The low concentration of starch coating on Martha tomatoes are indicated to be the reason why there was no significant difference between coated and coated tomatoes for some parameters. However, incorporating citric acid in cassava starch-based coatings could prevent tomato fruits from firmness reduction and spoilage during storage.

  3. Efficiency of domestic wastewater treatment plant for agricultural reuse

    Directory of Open Access Journals (Sweden)

    Claudinei Fonseca Souza

    2015-07-01

    Full Text Available The increasing demand for water has made the treatment and reuse of wastewater a topic of global importance. This work aims to monitor and evaluate the efficiency of a wastewater treatment plant’s (WWTP physical and biological treatment of wastewater by measuring the reduction of organic matter content of the effluent during the treatment and the disposal of nutrients in the treated residue. The WWTP has been designed to treat 2500 liters of wastewater per day in four compartments: a septic tank, a microalgae tank, an upflow anaerobic filter and wetlands with cultivation of Zantedeschia aethiopica L. A plant efficiency of 90% of organic matter removal was obtained, resulting in a suitable effluent for fertigation, including Na and Ca elements that showed high levels due to the accumulation of organic matter in the upflow anaerobic filter and wetlands. The WWTP removes nitrogen and phosphorus by the action of microalgae and macrophytes used in the process. The final effluent includes important agricultural elements such as nitrogen, phosphorus, calcium and potassium and, together with the load of organic matter and salts, meets the determination of NBR 13,969/1997 (Standard of the Brazilian Technical Standards Association for reuse in agriculture, but periodic monitoring of soil salinity is necessary.

  4. Phytotoxicity of effluents from swine slaughterhouses using lettuce and cucumber seeds as bioindicators.

    Science.gov (United States)

    Gerber, Michel David; Lucia, Thomaz; Correa, Luciara; Neto, José Eduardo Pereira; Correa, Érico Kunde

    2017-08-15

    This study evaluated the phytotoxic effects of raw and treated effluents from a swine slaughterhouse on cucumber and lettuce seeds and determined correlations among physicochemical characteristics of such effluents and the germination of seeds used as bioindicators. Physicochemical parameters were characterized for both effluents and their phytotoxicity was determined through the germination index (GI), the root length (RL) and the number of germinated seeds (SG) for both plant species. The effluents treatment system was efficient to reduce the concentration of some physicochemical parameters to levels within those recommended by the Brazilian legislation, except for P, ammoniacal N and TKN concentration. Although phytotoxicity of the treated effluent was less in comparison to the raw effluent, the GI for cucumber and lettuce seeds submitted to each of the tested effluents was lower than 80%. Thus, both effluents were phytotoxic for the tested bioindicators (peffluent. The Zn concentration in the treated effluent showed a negative correlation (peffluents from swine slaughterhouses may impair the germination of the evaluated plant species if used for agricultural purposes. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Slowly digestible properties of lotus seed starch-glycerine monostearin complexes formed by high pressure homogenization.

    Science.gov (United States)

    Chen, Bingyan; Jia, Xiangze; Miao, Song; Zeng, Shaoxiao; Guo, Zebin; Zhang, Yi; Zheng, Baodong

    2018-06-30

    Starch-lipid complexes were prepared using lotus seed starch (LS) and glycerin monostearate (GMS) via a high-pressure homogenization process, and the effect of high pressure homogenization (HPH) on the slow digestion properties of LS-GMS was investigated. The digestion profiles showed HPH treatment reduced the digestive rate of LS-GMS, and the extent of this change was dependent on homogenized pressure. Scanning electron microscopy displayed HPH treatment change the morphology of LS-GMS, with high pressure producing more compact block-shape structure to resist enzyme digestion. The results of Gel-permeation chromatography and Small-angle X-ray scattering revealed high homogenization pressure impacted molecular weight distribution and semi-crystalline region of complexes, resulting in the formation of new semi-crystalline with repeat unit distance of 16-18 nm and molecular weight distribution of 2.50-2.80 × 10 5  Da, which displayed strong enzymatic resistance. Differential scanning calorimeter results revealed new semi-crystalline lamellar may originate from type-II complexes that exhibited a high transition temperature. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Long-term performance and behavior of sows fed high levels of non-starch polysaccharides

    NARCIS (Netherlands)

    Peet-Schwering, van der C.M.C.

    2004-01-01

    The main objective of this thesis was to investigate the long-term effects of feeding sows high levels of dietary fermentable non-starch polysaccharides CNSP) (i.e., NSP from sugar beet pulp) restrictedly or ad libitum during gestation or ad libitum during lactation on behavior, reproductive

  7. Effects of cooking methods and starch structures on starch hydrolysis rates of rice.

    Science.gov (United States)

    Reed, Michael O; Ai, Yongfeng; Leutcher, Josh L; Jane, Jay-lin

    2013-07-01

    This study aimed to understand effects of different cooking methods, including steamed, pilaf, and traditional stir-fried, on starch hydrolysis rates of rice. Rice grains of 3 varieties, japonica, indica, and waxy, were used for the study. Rice starch was isolated from the grain and characterized. Amylose contents of starches from japonica, indica, and waxy rice were 13.5%, 18.0%, and 0.9%, respectively. The onset gelatinization temperature of indica starch (71.6 °C) was higher than that of the japonica and waxy starch (56.0 and 56.8 °C, respectively). The difference was attributed to longer amylopectin branch chains of the indica starch. Starch hydrolysis rates and resistant starch (RS) contents of the rice varieties differed after they were cooked using different methods. Stir-fried rice displayed the least starch hydrolysis rate followed by pilaf rice and steamed rice for each rice variety. RS contents of freshly steamed japonica, indica, and waxy rice were 0.7%, 6.6%, and 1.3%, respectively; those of rice pilaf were 12.1%, 13.2%, and 3.4%, respectively; and the stir-fried rice displayed the largest RS contents of 15.8%, 16.6%, and 12.1%, respectively. Mechanisms of the large RS contents of the stir-fried rice were studied. With the least starch hydrolysis rate and the largest RS content, stir-fried rice would be a desirable way of preparing rice for food to reduce postprandial blood glucose and insulin responses and to improve colon health of humans. © 2013 Institute of Food Technologists®

  8. Effects of Sorghum [Sorghum bicolor (L. Moench] Crude Extracts on Starch Digestibility, Estimated Glycemic Index (EGI, and Resistant Starch (RS Contents of Porridges

    Directory of Open Access Journals (Sweden)

    Dilek Lemlioglu-Austin

    2012-09-01

    Full Text Available Bran extracts (70% aqueous acetone of specialty sorghum varieties (tannin, black, and black with tannin were used to investigate the effects of sorghum phenolic compounds on starch digestibility, Estimated Glycemic Index (EGI, and Resistant Starch (RS of porridges made with normal corn starch, enzyme resistant high amylose corn starch, and ground whole sorghum flours. Porridges were cooked with bran extracts in a Rapid Visco-analyser (RVA. The cooking trials indicated that bran extracts of phenolic-rich sorghum varieties significantly reduced EGI, and increased RS contents of porridges. Thus, there could be potential health benefits associated with the incorporation of phenolic-rich sorghum bran extracts into foods to slow starch digestion and increase RS content.

  9. Extraction and properties of starches from the non-traditional vegetables Yam and Taro

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Luan Alberto; Barbosa, Natalia Alves; Pereira, Joelma, E-mail: luandrade87@yahoo.com.br [Universidade Federal de Lavras (UFLA), Lavras, MG (Brazil)

    2017-04-15

    The objective of this study was to assess the chemical, physical, morphological, crystalline and thermal properties of starch from two non-traditional vegetables, yam and taro. The analyses included proximate composition percent, amylose and mineral content, water absorption capacity, absolute density, morphological properties, X-ray diffractometry, thermal properties, pasting properties and infrared spectrum. The extracted starch exhibited a high purity level with low lipid, fiber and ash contents. The electron micrographs suggested that the taro starch granules were smaller than the yam starch granules. The results for the experimental conditions used in this study indicated that the studied starches differed, especially the amylose content, granule size and crystallinity degree and the pattern of the starches. Due to the high amylose content of yam starch, this type of starch can be used for film preparation, whereas the taro starch can be used as a fat substitute due to its small granule size. (author)

  10. Hydrolysis of native and heat-treated starches at sub-gelatinization temperature using granular starch hydrolyzing enzyme.

    Science.gov (United States)

    Uthumporn, U; Shariffa, Y N; Karim, A A

    2012-03-01

    The effect of heat treatment below the gelatinization temperature on the susceptibility of corn, mung bean, sago, and potato starches towards granular starch hydrolysis (35°C) was investigated. Starches were hydrolyzed in granular state and after heat treatment (50°C for 30 min) by using granular starch hydrolyzing enzyme for 24 h. Hydrolyzed heat-treated starches showed a significant increase in the percentage of dextrose equivalent compared to native starches, respectively, with corn 53% to 56%, mung bean 36% to 47%, sago 15% to 26%, and potato 12% to 15%. Scanning electron microscopy micrographs showed the presence of more porous granules and surface erosion in heat-treated starch compared to native starch. X-ray analysis showed no changes but with sharper peaks for all the starches, suggested that hydrolysis occurred on the amorphous region. The amylose content and swelling power of heat-treated starches was markedly altered after hydrolysis. Evidently, this enzyme was able to hydrolyze granular starches and heat treatment before hydrolysis significantly increased the degree of hydrolysis.

  11. Extrusion induced low-order starch matrices: Enzymic hydrolysis and structure.

    Science.gov (United States)

    Zhang, Bin; Dhital, Sushil; Flanagan, Bernadine M; Luckman, Paul; Halley, Peter J; Gidley, Michael J

    2015-12-10

    Waxy, normal and highwaymen maize starches were extruded with water as sole plasticizer to achieve low-order starch matrices. Of the three starches, we found that only high-amylose extrudate showed lower digestion rate/extent than starches cooked in excess water. The ordered structure of high-amylose starches in cooked and extruded forms was similar, as judged by NMR, XRD and DSC techniques, but enzyme resistance was much greater for extruded forms. Size exclusion chromatography suggested that longer chains were involved in enzyme resistance. We propose that the local molecular density of packing of amylose chains can control the digestion kinetics rather than just crystallinity, with the principle being that density sufficient to either prevent/limit binding and/or slow down catalysis can be achieved by dense amorphous packing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Multi-objective optimization of bioethanol production during cold enzyme starch hydrolysis in very high gravity cassava mash.

    Science.gov (United States)

    Yingling, Bao; Li, Chen; Honglin, Wang; Xiwen, Yu; Zongcheng, Yan

    2011-09-01

    Cold enzymatic hydrolysis conditions for bioethanol production were optimized using multi-objective optimization. Response surface methodology was used to optimize the effects of α-amylase, glucoamylase, liquefaction temperature and liquefaction time on S. cerevisiae biomass, ethanol concentration and starch utilization ratio. The optimum hydrolysis conditions were: 224 IU/g(starch) α-amylase, 694 IU/g(starch) glucoamylase, 77°C and 104 min for biomass; 264 IU/g(starch) α-amylase, 392 IU/g(starch) glucoamylase, 60°C and 85 min for ethanol concentration; 214 IU/g(starch) α-amylase, 398 IU/g(starch) glucoamylase, 79°C and 117 min for starch utilization ratio. The hydrolysis conditions were subsequently evaluated by multi-objectives optimization utilizing the weighted coefficient methods. The Pareto solutions for biomass (3.655-4.380×10(8)cells/ml), ethanol concentration (15.96-18.25 wt.%) and starch utilization ratio (92.50-94.64%) were obtained. The optimized conditions were shown to be feasible and reliable through verification tests. This kind of multi-objective optimization is of potential importance in industrial bioethanol production. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Compositional analysis and projected biofuel potentials from common West African agricultural residues

    DEFF Research Database (Denmark)

    Thomsen, Sune Tjalfe; Kádár, Zsófia; Schmidt, Jens Ejbye

    2014-01-01

    In recent years the focus on sustainable biofuel production from agricultural residues has increased considerably. However, the scientific work within this field has predominantly been concentrated upon bioresources from industrialised and newly industrialised countries, while analyses of the res......In recent years the focus on sustainable biofuel production from agricultural residues has increased considerably. However, the scientific work within this field has predominantly been concentrated upon bioresources from industrialised and newly industrialised countries, while analyses......, cassava stalks, plantain peelings, plantain trunks, plantain leaves, cocoa husks, cocoa pods, maize cobs, maize stalks, rice straw, groundnut straw and oil palm empty fruit bunches. The yam peelings showed the highest methane and bioethanol potentials, with 439 L methane (kg Total Solids)−1 and 0.61 L...... bioethanol (kg TS)−1 based on starch and cellulose alone due to their high starch content and low content of un-biodegradable lignin and ash. A complete biomass balance was done for each of the 13 residues, providing a basis for further research into the production of biofuels or biorefining from West...

  14. A Study of Moisture Sorption and Dielectric Processes of Starch and Sodium Starch Glycolate : Theme: Formulation and Manufacturing of Solid Dosage Forms Guest Editors: Tony Zhou and Tonglei Li.

    Science.gov (United States)

    Hiew, Tze Ning; Huang, Rongying; Popov, Ivan; Feldman, Yuri; Heng, Paul Wan Sia

    2017-12-01

    This study explored the potential of combining the use of moisture sorption isotherms and dielectric relaxation profiles of starch and sodium starch glycolate (SSG) to probe the location of moisture in dried and hydrated samples. Starch and SSG samples, dried and hydrated, were prepared. For hydrated samples, their moisture contents were determined. The samples were probed by dielectric spectroscopy using a frequency band of 0.1 Hz to 1 MHz to investigate their moisture-related relaxation profiles. The moisture sorption and desorption isotherms of starch and SSG were generated using a vapor sorption analyzer, and modeled using the Guggenheim-Anderson-de Boer equation. A clear high frequency relaxation process was detected in both dried and hydrated starches, while for dried starch, an additional slower low frequency process was also detected. The high frequency relaxation processes in hydrated and dried starches were assigned to the coupled starch-hydrated water relaxation. The low frequency relaxation in dried starch was attributed to the local chain motions of the starch backbone. No relaxation process associated with water was detected in both hydrated and dried SSG within the frequency and temperature range used in this study. The moisture sorption isotherms of SSG suggest the presence of high energy free water, which could have masked the relaxation process of the bound water during dielectric measurements. The combined study of moisture sorption isotherms and dielectric spectroscopy was shown to be beneficial and complementary in probing the effects of moisture on the relaxation processes of starch and SSG.

  15. Efficacy of Bioremediation of Agricultural Runoff Using Bacterial Communities in Woodchip Bioreactors.

    Science.gov (United States)

    Mortensen, Z. H.; Leandro, M.; Silveus, J. M.

    2016-12-01

    California's agricultural sector is fundamental in the State's economic growth and is responsible for supplying a large portion of the country's produce. In order to meet the market's demand for crop production the region's agrarian landscape requires an abundance of nutrient rich irrigation. The resultant agricultural effluent is a source of increased nutrient content in California's watershed and groundwater systems, promoting eutrophication and contributing to negative impacts on local ecosystems and human health. Previous studies have examined the denitrification potential of woodchip bioreactors. However, research has been deficient regarding specific variables that may affect the remediation process. To evaluate the efficacy of woodchip bioreactors in remediating waters containing high nitrate concentrations, denitrification rates were examined and parameters such as temperature, laminar flow, and hydraulic residence times were measured to identify potential methods for increasing denitrification efficiency. By measuring the rate of denitrification in a controlled environment where potentially confounding factors can be manipulated, physical components affecting the efficiency of woodchip bioreactors were examined to assess effects. Our research suggests the implementation of woodchip bioreactors to treat agricultural runoff would significantly reduce the concentration of nitrate in agricultural effluent and contribute to the mitigation of negative impacts associated with agricultural irrigation. Future research should focus on the ability of woodchip bioreactors to successfully remediate other agricultural pollutants, such as phosphates and pesticides, to optimize the efficiency of the bioremediation process.

  16. Pre-anthesis high temperature acclimation alleviates the negative effects of postanthesis heat stress on stem stored carbohydrates remobilization and grain starch accumulation in wheat

    DEFF Research Database (Denmark)

    Wang, Xiao; Cai, Jian; Liu, Fulai

    2012-01-01

    The potential role of pre-anthesis high temperature acclimation in alleviating the negative effects of post-anthesis heat stress on stem stored carbohydrate remobilization and grain starch accumulation in wheat was investigated. The treatments included no heat-stress (CC), heat stress at pre...... had much higher starch content, and caused less modified B-type starch granule size indicators than the CH plants. Our results indicated that, compared with the non-acclimated plants, the pre-anthesis high temperature acclimation effectively enhanced carbohydrate remobilization from stems to grains...

  17. Peracetic acid for secondary effluent disinfection: a comprehensive performance assessment.

    Science.gov (United States)

    Antonelli, M; Turolla, A; Mezzanotte, V; Nurizzo, C

    2013-01-01

    The paper is a review of previous research on secondary effluent disinfection by peracetic acid (PAA) integrated with new data about the effect of a preliminary flash-mixing step. The process was studied at bench and pilot scale to assess its performance for discharge in surface water and agricultural reuse (target microorganisms: Escherichia coli and faecal coliform bacteria). The purposes of the research were: (1) determining PAA decay and disinfection kinetics as a function of operating parameters, (2) evaluating PAA suitability as a disinfectant, (3) assessing long-term disinfection efficiency, (4) investigating disinfected effluent biological toxicity on some aquatic indicator organisms (Vibrio fischeri, Daphnia magna and Selenastrum capricornutum), (5) comparing PAA with conventional disinfectants (sodium hypochlorite, UV irradiation). PAA disinfection was capable of complying with Italian regulations on reuse (10 CFU/100 mL for E. coli) and was competitive with benchmarks. No regrowth phenomena were observed, as long as needed for agricultural reuse (29 h after disinfection), even at negligible concentrations of residual disinfectant. The toxic effect of PAA on the aquatic environment was due to the residual disinfectant in the water, rather than to chemical modification of the effluent.

  18. First principles insight into the α-glucan structures of starch

    DEFF Research Database (Denmark)

    Damager, Iben; Engelsen, Søren Balling; Blennow, Andreas

    2010-01-01

    A study was conducted to demonstrate the synthesis, conformation, and hydration of the α-glucan structures of starch. Starch and glycogen were synthesized by sets of specific enzyme activities that directly determined their molecular structures and physical properties. It was demonstrated...... that the extent of crystallinity, aggregation and hydration was of fundamental importance for starch and its human analogue glycogen. Starch was deposited in the plant as a stable form in highly organized and semicrystalline granules having specific crystalline polymorphs as determined by powder X......-ray crystallography. The investigations mainly focused on the bottom-up approach of synthesis, conformation, and hydration of starch. Starch and glycogen were found to be polymers that were built up from a single monomer, D-glucopyranose, or for short D-glucose....

  19. Properties of retrograded and acetylated starch produced via starch extrusion or starch hydrolysis with pullulanase.

    Science.gov (United States)

    Kapelko, M; Zięba, T; Gryszkin, A; Styczyńska, M; Wilczak, A

    2013-09-12

    The aim of the present study was to determine the impact of serial modifications of starch, including firstly starch extrusion or hydrolysis with pullulanase, followed by retrogradation (through freezing and defrosting of pastes) and acetylation (under industrial conditions), on its susceptibility to amylolysis. The method of production had a significant effect on properties of the resultant preparations, whilst the direction and extent of changes depended on the type of modification applied. In the produced starch esters, the degree of substitution, expressed by the per cent of acetylation, ranged from 3.1 to 4.4 g/100 g. The acetylation had a significant impact on contents of elements determined with the atomic emission spectrometry, as it contributed to an increased Na content and decreased contents of Ca and K. The DSC thermal characteristics enabled concluding that the modifications caused an increase in temperatures and a decrease in heat of transition (or its lack). The acetylation of retrograded starch preparations increased their solubility in water and water absorbability. The modifications were found to exert various effects on the rheological properties of pastes determined based on the Brabender's pasting characteristics and flow curves determined with the use of an oscillatory-rotating viscosimeter. All starch acetates produced were characterized by ca. 40% resistance to amylolysis. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Highly phosphorylated functionalized rice starch produced by transgenic rice expressing the potato GWD1 gene

    DEFF Research Database (Denmark)

    Chen, Yaling; Sun, Xiao-Feng; Zhou, Xin

    2017-01-01

    Starch phosphorylation occurs naturally during starch metabolism in the plant and is catalysed by glucan water dikinases (GWD1) and phosphoglucan water dikinase/glucan water dikinase 3 (PWD/GWD3). We generated six stable individual transgenic lines by over-expressing the potato GWD1 in rice....... Transgenic rice grain starch had 9-fold higher 6-phospho (6-P) monoesters and double amounts of 3-phospho (3-P) monoesters, respectively, compared to control grain. The shape and topography of the transgenic starch granules were moderately altered including surface pores and less well defined edges...... content was positively correlated with short chains of DP6-12. The starch pasting temperature, peak viscosity and the breakdown were lower but the setback was higher for transgenic rice flour. The 6-P content was negatively correlated with texture adhesiveness but positively correlated...

  1. Influence of nanoparticles on the properties of bionanocomposites from cassava starch

    International Nuclear Information System (INIS)

    Paglicawan, Marissa A.; Emolaga, Carlo S.; Navarro, Ma. Teresa V.; Celorico, Josefina; Basilia, Blessie A.

    2015-01-01

    Plastics are widely used packaging materials for food and non-food products due to their desirable material properties and low cost. However, the merits of plastic products have been overshadowed by its non-degradable nature, thereby leading to waste disposal problems. Because of the environmental problem, many researchers are facing to minimize non-degradable to biodegradable materials. Starch is one of the most promising natural polymers because of its inherent biodegradability, overwhelming abundance and its renewability. One of the abundant starch is cassava. The Manihot exculenta Crantz, is known as camoteng-kahoy or balinghoy in the Philippines. The production of thermoplastic starch (also known as plasticized starch or TPS) basically involves three essential components, namely: starch, plasticizer and thermomechanical energy. However, this material has high water solubility and may lose their mechanical properties in humid conditions. One of the possible ways to overcome this problem is through nanocomposite in which consist of a polymer matrix reinforced with nano-dimensional particles. This research involves the processing of cassava starch into thermoplastic starch for packaging application that can be biodegraded in soil or compostable after its usage. Thermoplastic starchs from cassava starch and different nanomaterials were processed by melt-blending method in a twin-screw extruder. The four nanofillers - nanoclay (NC), halloysite nanotube (HNT), nanozeolite (NZ), and nanocalcium carbonate (NCC) were incorporated into the starch matrix in a 3 phr concentration. The resulting biocomposites were characterized in terms of mechanical properties, morphology, thermal properties, moisture absorption, and crystallinity. The newly developed technology based on cassava starch/nano-scale particles nanocomposites upgrade the hdydrophylic and mechanical properties of starch based films. Homogeneously dispersing nanometer size materials, with high length

  2. Films based on oxidized starch and cellulose from barley.

    Science.gov (United States)

    El Halal, Shanise Lisie Mello; Colussi, Rosana; Deon, Vinícius Gonçalves; Pinto, Vânia Zanella; Villanova, Franciene Almeida; Carreño, Neftali Lenin Villarreal; Dias, Alvaro Renato Guerra; Zavareze, Elessandra da Rosa

    2015-11-20

    Starch and cellulose fibers were isolated from grains and the husk from barley, respectively. Biodegradable films of native starch or oxidized starches and glycerol with different concentrations of cellulose fibers (0%, 10% and 20%) were prepared. The films were characterized by morphological, mechanical, barrier, and thermal properties. Cellulose fibers isolated from the barley husk were obtained with 75% purity and high crystallinity. The morphology of the films of the oxidized starches, regardless of the fiber addition, was more homogeneous as compared to the film of the native starch. The addition of cellulose fibers in the films increased the tensile strength and decreased elongation. The water vapor permeability of the film of oxidized starch with 20% of cellulose fibers was lower than the without fibers. However the films with cellulose fibers had the highest decomposition with the initial temperature and thermal stability. The oxidized starch and cellulose fibers from barley have a good potential for use in packaging. The addition of cellulose fibers in starch films can contribute to the development of films more resistant that can be applied in food systems to maintain its integrity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Relationship between residual feed intake and digestibility for lactating Holstein cows fed high and low starch diets.

    Science.gov (United States)

    Potts, S B; Boerman, J P; Lock, A L; Allen, M S; VandeHaar, M J

    2017-01-01

    We determined if differences in digestibility among cows explained variation in residual feed intake (RFI) in 4 crossover design experiments. Lactating Holstein cows (n=109; 120±30d in milk; mean ± SD) were fed diets high (HS) or low (LS) in starch. The HS diets were 30% (±1.8%) starch and 27% (±1.2%) neutral detergent fiber (NDF); LS diets were 14% (±2.2%) starch and 40% (±5.3%) NDF. Each experiment consisted of two 28-d treatment periods, with apparent total-tract digestibility measured using indigestible NDF as an internal marker during the last 5d of each period. Individual cow dry matter (DM) intake and milk yield were recorded daily, body weight was measured 3 to 5 times per week, and milk components were analyzed 2 d/wk. Individual DM intake was regressed on milk energy output, metabolic body weight, body energy gain, and fixed effects of parity, experiment, cohort (a group of cows that received treatments in the same sequence) nested within experiment, and diet nested within cohort and experiment, with the residual being RFI. High RFI cows ate more than expected and were deemed less efficient. Residual feed intake correlated negatively with digestibility of starch for both HS (r=-0.31) and LS (r=-0.23) diets, and with digestibilities of DM (r=-0.30) and NDF (r=-0.23) for LS diets but was not correlated with DM or NDF digestibility for HS diets. For each cohort within an experiment, cows were classified as high RFI (HRFI; >0.5 SD), medium RFI (MRFI; ±0.5 SD), and low RFI (LRFI; Digestibility of DM was similar (~66%) among HRFI and LRFI for HS diets but greater for LRFI when fed LS diets (64 vs. 62%). For LS diets, digestibility of DM could account for up to 31% of the differences among HRFI and LRFI for apparent diet energy density, as determined from individual cow performance, indicating that digestibility explains some of the between-animal differences for the ability to convert gross energy into net energy. Some of the differences in digestibility

  4. Natural and Synthetic Estrogens in Wastewater Treatment Plant Effluent and the Coastal Ocean

    Science.gov (United States)

    2013-09-01

    isotopes (12C, 13C) is used routinely to identify synthetic steroid doping in athletics and livestock applications. 36 Chapter 4 will present...Suri (2009). "Presence of steroid hormones and antibiotics in surface water of agricultural, suburban and mixed- use areas." Environmental Monitoring...halogenated estrogens at picomolar levels in wastewater effluent and coastal seawater. The method was validated using treated effluent from the

  5. All-natural bio-plastics using starch-betaglucan composites.

    Science.gov (United States)

    Sagnelli, Domenico; Kirkensgaard, Jacob J K; Giosafatto, Concetta Valeria L; Ogrodowicz, Natalia; Kruczała, Krzysztof; Mikkelsen, Mette S; Maigret, Jean-Eudes; Lourdin, Denis; Mortensen, Kell; Blennow, Andreas

    2017-09-15

    Grain polysaccharides represent potential valuable raw materials for next-generation advanced and environmentally friendly plastics. Thermoplastic starch (TPS) is processed using conventional plastic technology, such as casting, extrusion, and molding. However, to adapt the starch to specific functionalities chemical modifications or blending with synthetic polymers, such as polycaprolactone are required (e.g. Mater-Bi). As an alternative, all-natural and compostable bio-plastics can be produced by blending starch with other polysaccharides. In this study, we used a maize starch (ST) and an oat β-glucan (BG) composite system to produce bio-plastic prototype films. To optimize performing conditions, we investigated the full range of ST:BG ratios for the casting (100:0, 75:25, 50:50, 25:75 and 0:100 BG). The plasticizer used was glycerol. Electron Paramagnetic Resonance (EPR), using TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl) as a spin probe, showed that the composite films with high BG content had a flexible chemical environment. They showed decreased brittleness and improved cohesiveness with high stress and strain values at the break. Wide-angle X-ray diffraction displayed a decrease in crystallinity at high BG content. Our data show that the blending of starch with other natural polysaccharides is a noteworthy path to improve the functionality of all-natural polysaccharide bio-plastics systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Synthesis and properties of fatty acid starch esters.

    Science.gov (United States)

    Winkler, Henning; Vorwerg, Waltraud; Wetzel, Hendrik

    2013-10-15

    Being completely bio-based, fatty acid starch esters (FASEs) are attractive materials that represent an alternative to crude oil-based plastics. In this study, two synthesis methods were compared in terms of their efficiency, toxicity and, especially, product solubility with starch laurate (C12) as model compound. Laurates (DS>2) were obtained through transesterification of fatty acid vinylesters in DMSO or reaction with fatty acid chlorides in pyridine. The latter lead to higher DS-values in a shorter reaction time. But due to the much better solubility of the products compared to lauroyl chloride esterified ones, vinylester-transesterification was preferred to optimize reaction parameters, where reaction time could be shortened to 2h. FASEs C6-C18 were also successfully prepared via transesterification. To determine the DS of the resulting starch laurates, the efficient ATR-IR method was compared with common methods (elementary analysis, (1)H NMR). Molar masses (Mw) of the highly soluble starch laurates were analyzed using SEC-MALLS (THF). High recovery rates (>80%) attest to the outstanding solubility of products obtained through transesterification, caused by a slight disintegration during synthesis. Particle size distributions (DLS) demonstrated stable dissolutions in CHCl3 of vinyl laurate esterified - contrary to lauroyl chloride esterified starch. For all highly soluble FASEs (C6-C18), formation of concentrated solutions (10 wt%) is feasible. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Comparison of gamma radiation effects on natural corn and potato starches and modified cassava starch

    Science.gov (United States)

    Teixeira, Bruna S.; Garcia, Rafael H. L.; Takinami, Patricia Y. I.; del Mastro, Nelida L.

    2018-01-01

    The objective of this work was to evaluate the effect of irradiation treatment on physicochemical properties of three natural polymers, i.e. native potato and corn starches and a typical Brazilian product, cassava starch modified through fermentation -sour cassava- and also to prepare composite hydrocolloid films based on them. Starches were irradiated in a 60Co irradiation chamber in doses up to 15 kGy, dose rate about 1 kGy/h. Differences were found in granule size distribution upon irradiation, mainly for corn and cassava starch but radiation did not cause significant changes in granule morphology. The viscosity of the potato, corn and cassava starches hydrogels decreased as a function of absorbed dose. Comparing non-irradiated and irradiated starches, changes in the Fourier transform infrared (FTIR) spectra in the 2000-1500 cm-1 region for potato and corn starches were observed but not for the cassava starch. Maximum rupture force of the starch-based films was affected differently for each starch type; color analysis showed that doses of 15 kGy promoted a slight rise in the parameter b* (yellow color) while the parameter L* (lightness) was not significantly affected; X-ray diffraction patterns remained almost unchanged by irradiation.

  8. Sugarcane starch: quantitative determination and characterization

    Directory of Open Access Journals (Sweden)

    Joelise de Alencar Figueira

    2011-09-01

    Full Text Available Starch is found in sugarcane as a storage polysaccharide. Starch concentrations vary widely depending on the country, variety, developmental stage, and growth conditions. The purpose of this study was to determine the starch content in different varieties of sugarcane, between May and November 2007, and some characteristics of sugarcane starch such as structure and granules size; gelatinization temperature; starch solution filterability; and susceptibility to glucoamylase, pullulanase, and commercial bacterial and fungal α-amylase enzymes. Susceptibility to debranching amylolytic isoamylase enzyme from Flavobacterium sp. was also tested. Sugarcane starch had spherical shape with a diameter of 1-3 µm. Sugarcane starch formed complexes with iodine, which showed greater absorption in the range of 540 to 620 nm. Sugarcane starch showed higher susceptibility to glucoamylase compared to that of waxy maize, cassava, and potato starch. Sugarcane starch also showed susceptibility to debranching amylolytic pullulanases similar to that of waxy rice starch. It also showed susceptibility to α-amylase from Bacillus subtilis, Bacillus licheniformis, and Aspergillus oryzae similar to that of the other tested starches producing glucose, maltose, maltotriose, maltotetraose, maltopentose and limit α- dextrin.

  9. Colour removal and carbonyl by-production in high dose ozonation for effluent polishing.

    Science.gov (United States)

    Mezzanotte, V; Fornaroli, R; Canobbio, S; Zoia, L; Orlandi, M

    2013-04-01

    Experimental tests have been conducted to investigate the efficiency and the by-product generation of high dose ozonation (10-60 mg O3 L(-1)) for complete colour removal from a treated effluent with an important component of textile dyeing wastewater. The effluent is discharged into an effluent-dominated stream where no dilution takes place, and, thus, the quality requirement for the effluents is particularly strict. 30, 60 and 90 min contact times were adopted. Colour was measured as absorbance at 426, 558 and 660 nm wavelengths. pH was monitored throughout the experiments. The experimental work showed that at 50 mg L(-1) colour removal was complete and at 60 mg O3 L(-1) the final aldehyde concentration ranged between 0.72 and 1.02 mg L(-1). Glyoxal and methylglyoxal concentrations were directly related to colour removal, whereas formaldehyde, acetaldehyde, acetone and acrolein were not. Thus, the extent of colour removal can be used to predict the increase in glyoxal and methylglyoxal concentrations. As colour removal can be assessed by a simple absorbance measurement, in contrast to the analysis of specific carbonyl compounds, which is much longer and complex, the possibility of using colour removal as an indicator for predicting the toxic potential of ozone by-products for textile effluents is of great value. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Mice fed a high-fat diet supplemented with resistant starch display marked shifts in the liver metabolome concurrent with altered gut bacteria

    Science.gov (United States)

    High-amylose maize resistant starch type 2 (HAMRS2) is a fermentable dietary fiber known to alter the gut milieu, including the gut microbiota, which may explain reported effects of resistant starch to ameliorate obesity-associated metabolic dysfunction. Our working hypothesis is that HAMRS2-induced...

  11. Starch Spherulites Prepared by a Combination of Enzymatic and Acid Hydrolysis of Normal Corn Starch.

    Science.gov (United States)

    Shang, Yaqian; Chao, Chen; Yu, Jinglin; Copeland, Les; Wang, Shuo; Wang, Shujun

    2018-06-13

    This paper describes a new method to prepare spherulites from normal corn starch by a combination of enzymatic (mixtures of α-amylase and amyloglucosidase) and acid hydrolysis followed by recrystallization of the hydrolyzed products. The resulting spherulites contained a higher proportion of chains with a degree of polymerization (DP) of 6-12 and a lower proportion of chains with DP of 25-36, compared to those of native starch. The spherulites had an even particle size of about 2 μm and a typical B-type crystallinity. The amounts of long- and short-range molecular order of double helices in starch spherulites were larger, but the quality of starch crystallites was poorer, compared to that of native starch. This study showed an efficient method for preparing starch spherulites with uniform granule morphology and small particle size from normal corn starch. The ratios of α-amylase and amyloglucosidase in enzymatic hydrolysis had little effect on the structure of the starch spherulites.

  12. High-level ethanol production from starch by a flocculent Saccharomyces cerevisiae strain displaying cell-surface glucoamylase

    Energy Technology Data Exchange (ETDEWEB)

    Kondo, A.; Shigechi, H.; Abe, M.; Uyama, K. [Dept. of Chemical Science and Engineering, Kobe Univ., Nadaku, Kobe (Japan); Matsumoto, T.; Fukuda, H. [Div. of Molecular Science, Kobe Univ., Nadaku, Kobe (Japan); Takahashi, S.; Ueda, M.; Tanaka, A. [Dept. of Synthetic Chemistry and Biological Chemistry, Kyoto Univ., Sakyoku, Kyoto (Japan); Kishimoto, M. [Dept. of Biotechnology, Osaka Univ., Osaka (Japan)

    2002-07-01

    A Strain of host yeast YF207, which is a tryptophan auxotroph and shows strong flocculation ability, was obtained from Saccharomyces diastaticus ATCC60712 and S. cerevisiae W303-1B by tetrad analysis. The plasmid pGA11, which is a multicopy plasmid for cell-surface expression of the Rhyzopus oryzae glucoamylase/{alpha}-agglutinin fusion protein, was then introduced into this flocculent yeast strain (YF207/pGA11). Yeast YF207/pGA11 grew rapidly under aerobic condition (dissolved oxygen 2.0 ppm), using soluble starch. The harvested cells were used for batch fermentation of soluble starch to ethanol under anaerobic condition and showed high ethanol production rates (0.71 g h{sup -1} I{sup -1}) without a time lag, because glucoamylase was immobilized on the yeast cell surface. During repeated utilization of cells for fermentation, YF207/pGA11 maintained high ethanol production rates over 300 h. Moreover, in fed-batch fermentation with YF207/pGA11 for approximately 120 h, the ethanol concentration reached up to 50 g I{sup -1}. In conclusion, flocculent yeast cells displaying cell-surface glucoamylase are considered to be very effective for the direct fermentation of soluble starch to ethanol. (orig.)

  13. Dilute solution properties of canary seed (Phalaris canariensis) starch in comparison to wheat starch.

    Science.gov (United States)

    Irani, Mahdi; Razavi, Seyed M A; Abdel-Aal, El-Sayed M; Hucl, Pierre; Patterson, Carol Ann

    2016-06-01

    Dilute solution properties of an unknown starch are important to understand its performance and applications in food and non-food industries. In this paper, rheological and molecular properties (intrinsic viscosity, molecular weight, shape factor, voluminosity, conformation and coil overlap parameters) of the starches from two hairless canary seed varieties (CO5041 & CDC Maria) developed for food use were evaluated in the dilute regime (Starch dispersions in DMSO (0.5g/dl)) and compared with wheat starch (WS). The results showed that Higiro model is the best among five applied models for intrinsic viscosity determination of canary seed starch (CSS) and WS on the basis of coefficient of determination (R(2)) and root mean square error (RMSE). WS sample showed higher intrinsic viscosity value (1.670dl/g) in comparison to CSS samples (1.325-1.397dl/g). Berry number and the slope of master curve demonstrated that CSS and WS samples were in dilute domain without entanglement occurrence. The shape factor suggested spherical and ellipsoidal structure for CO5041 starch and ellipsoidal for CDC Maria starch and WS. The molecular weight, coil radius and coil volume of CSSs were smaller than WS. The behavior and molecular characterization of canary seed starch showed its unique properties compared with wheat starch. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Analytical Aspects of Total Starch Polarimetric Determination in Some Cereals

    Directory of Open Access Journals (Sweden)

    Rodica Caprita

    2016-10-01

    Full Text Available Starch is the most important digestible polysaccharide present in foods and feeds. The starch concentration in cereals cannot be determined directly, because the starch is contained within a structurally and chemically complex matrix. Fine grinding and boiling in dilute HCl are preparative steps necessary for complete release of the starch granules from the protein matrix. Starch can be determined using simple and inexpensive physical methods, such as density, refractive index or optical rotation assessment. The polarimetric method allows the determination even of small starch contents due to its extremely high specific rotation. For more accurate results, the contribution of free sugars is eliminated by dissolution in 40% (V/V ethanol. The influence of other optically active substances, which might interfere, is removed by filtration/clarification prior to the optical rotation measurement.

  15. Lima Bean Starch-Based Hydrogels | Oladebeye | Nigerian Journal ...

    African Journals Online (AJOL)

    Hydrogels were prepared by crosslinking native lima bean starch and polyvinyl alcohol (PVA) with glutaraldehyde (GA) at varying proportions in an acidic medium. The native starch (N-LBS) and hydrogels (L-GA (low glutaraldehyde) and H-GA (high glutaraldehyde)) were examined for their water absorption capacity (WAC) ...

  16. Thermomechanical treatment of starch

    NARCIS (Netherlands)

    Goot, van der A.J.; Einde, van den R.M.

    2006-01-01

    Starch is used as a major component in many food and nonfood applications and determines the overall product properties to a large extent. It is therefore important to understand the effect of processing on starch. Many starch-based products are produced using a thermal as well as a mechanical

  17. Change in digestibility of gamma-irradiated starch by low temperature cooking

    International Nuclear Information System (INIS)

    Kume, T.; Ishigaki, I.; Rahman, S.

    1988-01-01

    Combination effect of irradiation and low temperature cooking on starch digestibility has been investigated as a basic research for application of radiosterilization on starch fermentation. The digestion of corn starch by glucoamylase after cooking at low temperature was enhanced by γ-irradiation and the required cooking temperature was decreased from 75-80 0 C to 65 0 C by 25 kGy. Gelatinization of starches except tapioca starch was enhanced by irradiation and it corresponds to the digestibility. The digestibility of potato starch which has a high viscosity was especially enhanced at low temperature cooking because the viscosity was markedly decreased by irradiation. These results show that the irradiation of starches is useful not only for the sterilization of fermentation broth but also for the enhancement of digestion. (orig.) [de

  18. Change in digestibility of gamma-irradiated starch by low temperature cooking

    Energy Technology Data Exchange (ETDEWEB)

    Kume, T.; Ishigaki, I.; Rahman, S.

    1988-04-01

    Combination effect of irradiation and low temperature cooking on starch digestibility has been investigated as a basic research for application of radiosterilization on starch fermentation. The digestion of corn starch by glucoamylase after cooking at low temperature was enhanced by ..gamma..-irradiation and the required cooking temperature was decreased from 75-80/sup 0/C to 65/sup 0/C by 25 kGy. Gelatinization of starches except tapioca starch was enhanced by irradiation and it corresponds to the digestibility. The digestibility of potato starch which has a high viscosity was especially enhanced at low temperature cooking because the viscosity was markedly decreased by irradiation. These results show that the irradiation of starches is useful not only for the sterilization of fermentation broth but also for the enhancement of digestion.

  19. Physicochemical properties of maca starch.

    Science.gov (United States)

    Zhang, Ling; Li, Guantian; Wang, Sunan; Yao, Weirong; Zhu, Fan

    2017-03-01

    Maca (Lepidium meyenii Walpers) is gaining research attention due to its unique bioactive properties. Starch is a major component of maca roots, thus representing a novel starch source. In this study, the properties of three maca starches (yellow, purple and black) were compared with commercially maize, cassava, and potato starches. The starch granule sizes ranged from 9.0 to 9.6μm, and the granules were irregularly oval. All the maca starches presented B-type X-ray diffraction patterns, with the relative degree of crystallinity ranging from 22.2 to 24.3%. The apparent amylose contents ranged from 21.0 to 21.3%. The onset gelatinization temperatures ranged from 47.1 to 47.5°C as indicated by differential scanning calorimetry. Significant differences were observed in the pasting properties and textural parameters among all of the studied starches. These characteristics suggest the utility of native maca starch in products subjected to low temperatures during food processing and other industrial applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Synthesis and Characterization of Polyethylene/Starch Nanocomposites: A Spherical Starch-Supported Catalyst and In Situ Ethylene Polymerization.

    Science.gov (United States)

    Zhanga, Hao; Xi, Shixia; Wang, Shuwei; Liu, Jingsheng; Yoon, Keun-Byoung; Lee, Dong-Ho; Zhang, Hexin; Zhang, Xuequan

    2017-01-01

    In the present article, a novel spherical starch-supported vanadium (V)-based Ziegler-Natta catalyst was synthesized. The active centers of the obtained catalyst well dispersed in the starch through the SEM-EDX analysis. The effects of reaction conditions on ethylene polymerization were studied. The synthesized catalyst exhibited high activity toward ethylene polymerization in the presence of ethylaluminium sesquichloride (EASC) cocatalyst. Interestingly, the fiber shape PE was obtained directly during the polymerization process.

  1. Design and development of effluent treatment plants for the Sellafield reprocessing factory

    International Nuclear Information System (INIS)

    Howden, M.

    1989-01-01

    The reprocessing of spent nuclear fuel has been carried out at Sellafield since the early 1950s. The storage of fuel in water filled ponds prior to reprocessing and the reprocessing operation itself results in the generation of a number of radioactive liquid effluents. The highly active liquors are stored in stainless steel tanks and will, with the commissioning of the Windscale Vitrification Plant, be converted into glass for long term storage and disposal. The medium and low active liquors are, after appropriate treatment, discharged to sea well below the Authorised Limits which are set by the appropriate Regulatory Bodies. Since 1960 these have been the Department of the Environment and the Ministry of Agriculture, Fisheries and Food. Even though the discharges have been well below the limits set, BNFL have for many years adopted a policy of reducing the levels of activity still further. Considerable progress has already been made, by changing reprocessing operations regimes but more importantly by the development and construction of specialised effluent treatment plants. Further reductions are, however, planned. Two major effluent treatment plants form the main basis of BNFL's policy to reduce activity discharges from Sellafield. The first, the Site Ion Exchange Effluent Plant, to treat storage pond water was brought into operation in 1985. The second, the enhanced Actinide Removal Plant to treat medium and low active effluents, is programmed to operate in 1992. (author)

  2. Genetic Engineering of Cereal Grains with Starch Consisting of More Than 99% Amylase

    DEFF Research Database (Denmark)

    Hebelstrup, Kim; Carciofi, Massimiliano; Blennow, Andreas

    2013-01-01

    Numerous textbooks tell us that plant starches are a mix of two starch types: amylopectin and amylose. We recently succeeded in engineering a cereal crop – a barley line – producing grain starch consisting of more than 99% amylose1. This amylose-only starch contains a high residual fraction...

  3. Energy production from agricultural residues: High methane yields in pilot-scale two-stage anaerobic digestion

    International Nuclear Information System (INIS)

    Parawira, W.; Read, J.S.; Mattiasson, B.; Bjoernsson, L.

    2008-01-01

    There is a large, unutilised energy potential in agricultural waste fractions. In this pilot-scale study, the efficiency of a simple two-stage anaerobic digestion process was investigated for stabilisation and biomethanation of solid potato waste and sugar beet leaves, both separately and in co-digestion. A good phase separation between hydrolysis/acidification and methanogenesis was achieved, as indicated by the high carbon dioxide production, high volatile fatty acid concentration and low pH in the acidogenic reactors. Digestion of the individual substrates gave gross energy yields of 2.1-3.4 kWh/kg VS in the form of methane. Co-digestion, however, gave up to 60% higher methane yield, indicating that co-digestion resulted in improved methane production due to the positive synergism established in the digestion liquor. The integrity of the methane filters (MFs) was maintained throughout the period of operation, producing biogas with 60-78% methane content. A stable effluent pH showed that the methanogenic reactors had good ability to withstand the variations in load and volatile fatty acid concentrations that occurred in the two-stage process. The results of this pilot-scale study show that the two-stage anaerobic digestion system is suitable for effective conversion of semi-solid agricultural residues as potato waste and sugar beet leaves

  4. Process optimization for bioethanol production from cassava starch using novel eco-friendly enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Shanavas, S.; Padmaja, G.; Moorthy, S.N.; Sajeev, M.S.; Sheriff, J.T. [Division of Crop Utilization, Central Tuber Crops Research Institute, Thiruvananthapuram, 695 017 Kerala (India)

    2011-02-15

    Although cassava (Manihot esculenta Crantz) is a potential bioethanol crop, high operational costs resulted in a negative energy balance in the earlier processes. The present study aimed at optimizing the bioethanol production from cassava starch using new enzymes like Spezyme {sup registered} Xtra and Stargen trademark 001. The liquefying enzyme Spezyme was optimally active at 90 C and pH 5.5 on a 10% (w/v) starch slurry at levels of 20.0 mg (280 Amylase Activity Units) for 30 min. Stargen levels of 100 mg (45.6 Granular Starch Hydrolyzing Units) were sufficient to almost completely hydrolyze 10% (w/v) starch at room temperature (30 {+-} 1 C). Ethanol yield and fermentation efficiency were very high (533 g/kg and 94.0% respectively) in the Stargen + yeast process with 10% (w/v) starch for 48 h. Raising Spezyme and Stargen levels to 560 AAU and 91.2 GSHU respectively for a two step loading [initial 20% (w/v) followed by 20% starch after Spezyme thinning]/initial higher loading of starch (40% w/v) resulted in poor fermentation efficiency. Upscaling experiments using 1.0 kg starch showed that Stargen to starch ratio of 1:100 (w/w) could yield around 558 g ethanol/kg starch, with a high fermentation efficiency of 98.4%. The study showed that Spezyme level beyond 20.0 mg for a 10% (w/v) starch slurry was not critical for optimizing bioethanol yield from cassava starch, although an initial thinning of starch for 30 min by Spezyme facilitated rapid saccharification-fermentation by Stargen + yeast system. The specific advantage of the new process was that the reaction could be completed within 48.5 h at 30 {+-} 1 C. (author)

  5. ANAEROBIC EFFLUENT POST-TREATMENT APPLYING PHOTOLYTIC REACTOR PRIOR TO AGRICULTURAL USE IN BRAZILIAN'S SEMIARID REGION

    Directory of Open Access Journals (Sweden)

    José Tavares de Sousa

    2013-01-01

    Full Text Available This work applied a Compact System consisting of a Reactor Up flow Sludge Blanket (UASB in conjunction with s Submerged Anaerobic Filter containing polyurethane cubes as support media, followed by a Solar Photolytic R eactor. The compact anaerobic system produced a clarified effluent with low concentration of organic matter, especially dissolved (20 mg .VSS/L, and free of helminthes eggs. These low concentrations of suspended solids facilitated photolytic disinfection process producing a good quality final effluent, of which 90% of the samples were thoroughly disinfected, while the other fraction showed concentration of Thermotolerant Coliform (TTC at or below 100 CFU/100 mL and high concentrations of nutrients (48 mg . NH 4 + -N/L and 6,4mg PO 4 -3 - P/L enabling the use of irrigation for productive purposes. Another advantages of the compact anaerobic treatment consisted of low sludge production, and relatively simple operation without energy consumption. These advantages results in a significant reduction in operational costs of sewage treatment, and, indeed, an outlet for developing countries in tropical climate.

  6. Mixture design of rice flour, maize starch and wheat starch for optimization of gluten free bread quality.

    Science.gov (United States)

    Mancebo, Camino M; Merino, Cristina; Martínez, Mario M; Gómez, Manuel

    2015-10-01

    Gluten-free bread production requires gluten-free flours or starches. Rice flour and maize starch are two of the most commonly used raw materials. Over recent years, gluten-free wheat starch is available on the market. The aim of this research was to optimize mixtures of rice flour, maize starch and wheat starch using an experimental mixture design. For this purpose, dough rheology and its fermentation behaviour were studied. Quality bread parameters such as specific volume, texture, cell structure, colour and acceptability were also analysed. Generally, starch incorporation reduced G* and increased the bread specific volume and cell density, but the breads obtained were paler than the rice flour breads. Comparing the starches, wheat starch breads had better overall acceptability and had a greater volume than maize-starch bread. The highest value for sensorial acceptability corresponded to the bread produced with a mixture of rice flour (59 g/100 g) and wheat starch (41 g/100 g).

  7. Dynamic moisture sorption characteristics of enzyme-resistant recrystallized cassava starch.

    Science.gov (United States)

    Mutungi, Christopher; Schuldt, Stefan; Onyango, Calvin; Schneider, Yvonne; Jaros, Doris; Rohm, Harald

    2011-03-14

    The interaction of moisture with enzyme-resistant recrystallized starch, prepared by heat-moisture treatment of debranched acid-modified or debranched non-acid-modified cassava starch, was investigated in comparison with the native granules. Crystallinities of the powdered products were estimated by X-ray diffraction. Moisture sorption was determined using dynamic vapor sorption analyzer and data fitted to various models. Percent crystallinities of native starch (NS), non-acid-modified recrystallized starch (NAMRS), and acid-modified recrystallized starch (AMRS) were 39.7, 51.9, and 56.1%, respectively. In a(w) below 0.8, sorption decreased in the order NS > NAMRS > AMRS in line with increasing sample crystallinities but did not follow this crystallinity dependence at higher a(w) because of condensation and polymer dissolution effects. Adsorbed moisture became internally absorbed in NS but not in NAMRS and AMRS, which might explain the high resistance of the recrystallized starches to digestion because enzyme and starch cannot approach each other over fairly sufficient surface at the molecular level.

  8. High insoluble fibre content increases in vitro starch digestibility in partially baked breads.

    Science.gov (United States)

    Ronda, Felicidad; Rivero, Pablo; Caballero, Pedro A; Quilez, Joan

    2012-12-01

    Wheat breads prepared from frozen partially baked breads were characterized by their content of rapidly digestible starch (RDS) and slowly digestible starch (SDS) by the in vitro starch digestibility method developed by Englyst. Breads with different contents and types of fibre and breads prepared with different fermentation processes were studied. Bread with inulin and with a double fermentation had the lowest RDS content of 58.8 ± 1.7 and 60.0 ± 1.9 (% dry matter), respectively. Wheat bran bread, seeded bread, triple fermentation white bread and baguette-type bread showed values of RDS between 63.1 ± 1.7 and 65.7 ± 1.7 with no significant differences between them (p breads than in breads with added fibre. The highest values of the starch digestive rate index (SDRI) were obtained by the three types of breads with added fibre, which ranged from 91.8 ± 3.5 to 95.8 ± 3.5 versus 80.2 ± 3.5 to 87.5 ± 3.5 for white wheat breads. A significant (p bread crumbs corroborated this statement.

  9. Characterization of starch nanoparticles

    Science.gov (United States)

    Szymońska, J.; Targosz-Korecka, M.; Krok, F.

    2009-01-01

    Nanomaterials already attract great interest because of their potential applications in technology, food science and medicine. Biomaterials are biodegradable and quite abundant in nature, so they are favoured over synthetic polymer based materials. Starch as a nontoxic, cheap and renewable raw material is particularly suitable for preparation of nanoparticles. In the paper, the structure and some physicochemical properties of potato and cassava starch particles of the size between 50 to 100 nm, obtained by mechanical treatment of native starch, were presented. We demonstrated, with the aim of the Scanning Electron Microscopy (SEM) and the non-contact Atomic Force Microscopy (nc-AFM), that the shape and dimensions of the obtained nanoparticles both potato and cassava starch fit the blocklets - previously proposed as basic structural features of native starch granules. This observation was supported by aqueous solubility and swelling power of the particles as well as their iodine binding capacity similar to those for amylopectin-type short branched polysaccharide species. Obtained results indicated that glycosidic bonds of the branch linkage points in the granule amorphous lamellae might be broken during the applied mechanical treatment. Thus the released amylopectin clusters could escape out of the granules. The starch nanoparticles, for their properties qualitatively different from those of native starch granules, could be utilized in new applications.

  10. Effect of starch binder on charcoal briquette properties

    Science.gov (United States)

    Borowski, Gabriel; Stępniewski, Witold; Wójcik-Oliveira, Katarzyna

    2017-10-01

    The paper shows the results of a study on the effect of starch binder on the mechanical, physical and burning properties of charcoal briquettes. Two types of binders were repeatedly used to make briquettes of native wheat starch and modified wheat starch, at 8% of the whole. Briquetting was performed in a roller press unit, and pillow-shaped briquettes were made. The moisture of the mixed material ranged from 28 to 32%. The product, whether the former or the latter, was characterized by very good mechanical properties and satisfactory physical properties. Moreover, the type of starch binder had no effect on toughness, calorific heating value, volatiles, fixed carbon content and ash content. However, the combustion test showed quite different burning properties. As briquettes should have short firing up time and lower smokiness, as well as high maximum temperature and long burning time, we have concluded that briquettes with native wheat starch as a binder are more appropriate for burning in the grill.

  11. Structural properties and digestibility of pulsed electric field treated waxy rice starch.

    Science.gov (United States)

    Zeng, Feng; Gao, Qun-Yu; Han, Zhong; Zeng, Xin-An; Yu, Shu-Juan

    2016-03-01

    Waxy rice starch was subjected to pulsed electric field (PEF) treatment at intensity of 30, 40 and 50kVcm(-1). The impact of PEF treatment on the granular morphology, molecular weight, semi-crystalline structure, thermal properties, and digestibility were investigated. The micrographs suggested that electric energy could act on the granule structure of starch granule, especially at high intensity of 50kVcm(-1). Gelatinization onset temperature, peak temperature, conclusion temperature and enthalpy value of PEF treated starches were lower than that of native starch. The 9nm lamellar peak of PEF treated starches decreased as revealed by small angle X-ray scattering. The relative crystallinity of treated starches decreased as the increase of electric field intensity. Increased rapidly digestible starch level and decreased slowly digestible starch level was found on PEF treated starches. These results would imply that PEF treatment induced structural changes in waxy rice starch significantly affected its digestibility. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Future cereal starch bioengineering

    DEFF Research Database (Denmark)

    Blennow, Andreas; Jensen, Susanne Langgård; Shaik, Shahnoor Sultana

    2013-01-01

    The importance of cereal starch production worldwide cannot be overrated. However, the qualities and resulting values of existing raw and processed starch do not fully meet future demands for environmentally friendly production of renewable, advanced biomaterials, functional foods, and biomedical...... additives. New approaches for starch bioengineering are needed. In this review, we discuss cereal starch from a combined universal bioresource point of view. The combination of new biotechniques and clean technology methods can be implemented to replace, for example, chemical modification. The recently...... released cereal genomes and the exploding advancement in whole genome sequencing now pave the road for identifying new genes to be exploited to generate a multitude of completely new starch functionalities directly in the cereal grain, converting cereal crops to production plants. Newly released genome...

  13. Process for the production of starch and alcohol from substances containing starch

    Energy Technology Data Exchange (ETDEWEB)

    Smith, N B; McFate, H A; Eubanks, E M

    1969-01-01

    Almost complete extraction of starch from wheat, rice, maize, etc., is achieved more economically then by conventional processes. Starch-containing cereal is soaked, the magma is broken and the seed removed. The magma is then drained and separated into a liquid filtrate consisting of starch, gluten and fine fibers, and a solid residue made up of coarse fibers, husks and grit. The liquid filtrate is sieved to remove the fine fibers, and then centrifuged to obtain pure, gluten-free starch. The solid residue is treated with a mineral acid in a converter to give sugar, thus forming a material which is fermented and distilled to give alcohol.

  14. TBP production plant effluent treatment process

    International Nuclear Information System (INIS)

    Sriniwas, C.; Sugilal, G.; Wattal, P.K.

    2004-06-01

    TBP production facility at Heavy Water Plant, Talcher generates about 2000 litres of effluent per 200 kg batch. The effluent is basically an aqueous solution containing dissolved and dispersed organics such as dibutyl phosphate, butanol etc. The effluent has high salinity, chemical oxygen demand (30-80 g/L) and pungent odour. It requires treatment before discharge. A chemical precipitation process using ferric chloride was developed for quantitative separation of organics from the aqueous part of the effluent. This process facilitates the discharge of the aqueous effluent. Results of the laboratory and bench scale experiments on actual effluent samples are presented in this report. (author)

  15. Polycaprolactone/starch composite: Fabrication, structure, properties, and applications.

    Science.gov (United States)

    Ali Akbari Ghavimi, Soheila; Ebrahimzadeh, Mohammad H; Solati-Hashjin, Mehran; Abu Osman, Noor Azuan

    2015-07-01

    Interests in the use of biodegradable polymers as biomaterials have grown. Among the different polymeric composites currently available, the blend of starch and polycaprolactone (PCL) has received the most attention since the 1980s. Novamont is the first company that manufactured a PCL/starch (SPCL) composite under the trademark Mater-Bi®. The properties of PCL (a synthetic, hydrophobic, flexible, expensive polymer with a low degradation rate) and starch (a natural, hydrophilic, stiff, abundant polymer with a high degradation rate) blends are interesting because of the composite components have completely different structures and characteristics. PCL can adjust humidity sensitivity of starch as a biomaterial; while starch can enhance the low biodegradation rate of PCL. Thus, by appropriate blending, SPCL can overcome important limitations of both PCL and starch components and promote controllable behavior in terms of mechanical properties and degradation which make it suitable for many biomedical applications. This article reviewed the different fabrication and modification methods of the SPCL composite; different properties such as structural, physical, and chemical as well as degradation behavior; and different applications as biomaterials. © 2014 Wiley Periodicals, Inc.

  16. Formation of inclusion complexes between high amylose starch and octadecyl ferulate via steam jet cooking.

    Science.gov (United States)

    Kenar, James A; Compton, David L; Little, Jeanette A; Peterson, Steve C

    2016-04-20

    Amylose-ligand inclusion complexes represent an interesting approach to deliver bioactive molecules. However, ferulic acid has been shown not to form single helical inclusion complexes with amylose from high amylose maize starch. To overcome this problem a lipophilic ferulic acid ester, octadecyl ferulate, was prepared and complexed with amylose via excess steam jet cooking. Jet-cooking octadecyl ferulate and high amylose starch gave an amylose-octadecyl ferulate inclusion complex in 51.0% isolated yield. X-ray diffraction (XRD) and differential scanning calorimetry (DSC) confirmed that a 61 V-type inclusion complex was formed. Amylose and extraction assays showed the complex to be enriched in amylose (91.9±4.3%) and contain 70.6±5.6mgg(-1) octadecyl ferulate, although, minor hydrolysis (∼4%) of the octadecyl ferulate was observed under the excess steam jet-cooking conditions utilized. This study demonstrates that steam jet cooking is a rapid and scalable process in which to prepare amylose-octadecyl ferulate inclusion complexes. Published by Elsevier Ltd.

  17. Starch Origin and Thermal Processing Affect Starch Digestion in a Minipig Model of Pancreatic Exocrine Insufficiency.

    Science.gov (United States)

    Mößeler, Anne; Vagt, Sandra; Beyerbach, Martin; Kamphues, Josef

    2015-01-01

    Although steatorrhea is the most obvious symptom of pancreatic exocrine insufficiency (PEI), enzymatic digestion of protein and starch is also impaired. Low praecaecal digestibility of starch causes a forced microbial fermentation accounting for energy losses and meteorism. To optimise dietetic measures, knowledge of praecaecal digestibility of starch is needed but such information from PEI patients is rare. Minipigs fitted with an ileocaecal fistula with (n = 3) or without (n = 3) pancreatic duct ligation (PL) were used to estimate the rate of praecaecal disappearance (pcD) of starch. Different botanical sources of starch (rice, amaranth, potato, and pea) were fed either raw or cooked. In the controls (C), there was an almost complete pcD (>92%) except for potato starch (61.5%) which was significantly lower. In PL pcD of raw starch was significantly lower for all sources of starch except for amaranth (87.9%). Thermal processing increased pcD in PL, reaching values of C for starch from rice, potato, and pea. This study clearly underlines the need for precise specification of starch used for patients with specific dietetic needs like PEI. Data should be generated in suitable animal models or patients as tests in healthy individuals would not have given similar conclusions.

  18. Starch Origin and Thermal Processing Affect Starch Digestion in a Minipig Model of Pancreatic Exocrine Insufficiency

    Directory of Open Access Journals (Sweden)

    Anne Mößeler

    2015-01-01

    Full Text Available Although steatorrhea is the most obvious symptom of pancreatic exocrine insufficiency (PEI, enzymatic digestion of protein and starch is also impaired. Low praecaecal digestibility of starch causes a forced microbial fermentation accounting for energy losses and meteorism. To optimise dietetic measures, knowledge of praecaecal digestibility of starch is needed but such information from PEI patients is rare. Minipigs fitted with an ileocaecal fistula with (n=3 or without (n=3 pancreatic duct ligation (PL were used to estimate the rate of praecaecal disappearance (pcD of starch. Different botanical sources of starch (rice, amaranth, potato, and pea were fed either raw or cooked. In the controls (C, there was an almost complete pcD (>92% except for potato starch (61.5% which was significantly lower. In PL pcD of raw starch was significantly lower for all sources of starch except for amaranth (87.9%. Thermal processing increased pcD in PL, reaching values of C for starch from rice, potato, and pea. This study clearly underlines the need for precise specification of starch used for patients with specific dietetic needs like PEI. Data should be generated in suitable animal models or patients as tests in healthy individuals would not have given similar conclusions.

  19. Influence of starch origin on rheological properties of concentrated aqueous solutions

    Directory of Open Access Journals (Sweden)

    Stojanović Željko P.

    2011-01-01

    Full Text Available The rheological properties of corn and potato starch concentrated aqueous solutions were investigated at 25ºC. The starches were previously dispersed in water and the solutions were obtained by heating of dispersions at 115-120ºC for 20 minutes. The solutions of potato starch were transparent, while the corn starch solutions were opalescent. The results of dynamic mechanical measurements showed that the values of viscosity, h, storage modulus, G′, and loss modulus, G″, of the corn starch solutions increased with the storage time. This phenomenon was not observed for the potato starch solutions. It was assumed that the increase of h, G′ and G″ is the result of starch solutions retrogradation. The potato starch solutions retrogradation did not occur probably because of the phosphates presence. The viscosity of 2 mass % corn starch solution is less than the viscosity of 2 mass % potato starch solution. By increasing the concentration of corn starch solution the gel with elastic behavior was formed. The corn starch solutions formed gel as early as at 4 mass % concentration, while potato starch solutions achieved the gel state at the concentration of 5 mass %. The value of exponent m (G′ and G″ µ wm during the transition of potato starch solutions to gel is 0.414, which gives the fractal dimensions for corn starch of 2.10. The obtained value of fractal dimension corresponds to slow aggregation. The corn starch solutions with the starch concentrations higher than 4 mass % form weak gels. For these solutions the values of modulus in rubber plateau were determined. It was found that the modulus in rubber plateau increased with the concentration by the exponent of 4.36. Such high exponent value was obtained in the case when the tridimensional network is formed, i.e. when supermolecular structures like associates or crystal domains are formed.

  20. Physicochemical and functional properties of starches of two quality ...

    African Journals Online (AJOL)

    SARAH

    2013-06-30

    Jun 30, 2013 ... water expelled from white QPM starch was 40.39% at -15°C and 37.05% at 4°C after the first week of storage ... include starch, high-fructose corn syrup and livestock ... associations of 40–70 glucose units whereas.

  1. Detoxifying of high strength textile effluent through chemical and bio-oxidation processes.

    Science.gov (United States)

    Manekar, Pravin; Patkar, Guarav; Aswale, Pawan; Mahure, Manisha; Nandy, Tapas

    2014-04-01

    Small-scale textile industries (SSTIs) in India struggled for the economic and environmental race. A full-scale common treatment plant (CETP) working on the principle of destabilising negative charge colloidal particles and bio-oxidation of dissolved organic failed to comply with Inland Surface Waters (ISW) standards. Thus, presence of intense colour and organics with elevated temperature inhibited the process stability. Bench scale treatability studies were conducted on chemical and biological processes for its full-scale apps to detoxify a high strength textile process effluent. Colour, SS and COD removals from the optimised chemical process were 88%, 70% and 40%, respectively. Heterotrophic bacteria oxidised COD and BOD more than 84% and 90% at a loading rate 0.0108kgm(-3)d(-1) at 3h HRT. The combined chemical and bio-oxidation processes showed a great promise for detoxifying the toxic process effluent, and implemented in full-scale CETP. The post-assessment of the CETP resulted in detoxify the toxic effluent. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Elucidation of substituted ester group position in octenylsuccinic anhydride modified sugary maize soluble starch.

    Science.gov (United States)

    Ye, Fan; Miao, Ming; Huang, Chao; Lu, Keyu; Jiang, Bo; Zhang, Tao

    2014-12-03

    The octenylsuccinic groups in esterification-modified sugary maize soluble starches with a low (0.0191) or high (0.0504) degree of substitution (DS) were investigated by amyloglucosidase hydrolysis followed by a combination of chemical and physical analysis. The results showed the zeta-potential remained at approximately the same value regardless of excessive hydrolysis. The weight-average molecular weight decreased rapidly and reached 1.22 × 10(7) and 1.60 × 10(7) g/mol after 120 min for low-DS and high-DS octenylsuccinic anhydride (OSA) modified starch, respectively. The pattern of z-average radius of gyration as well as particle size change was similar to that of Mw, and z-average radius of gyration decreased much more slowly, especially for high-DS OSA starch. Compared to native starch, two characteristic absorption peaks at 1726.76 and 1571.83 cm(-1) were observed in FT-IR spectra, and the intensity of absorption peaks increased with increasing DS. The NMR results showed that OSA starch had several additional peaks at 0.8-3.0 ppm and a shoulder at 5.56 ppm for OSA substituents, which were grafted at O-2 and O-3 positions in soluble starch. The even distribution of OSA groups in the center area of soluble starch particle has been directly shown under CLSM. Most substitutions were located near branching points of soluble starch particles for a low-DS modified starch, whereas the substituted ester groups were located near branching points as well as at the nonreducing ends in OSA starch with a high DS.

  3. Effect of pH on paste properties of irradiated corn starch by gamma-rays

    International Nuclear Information System (INIS)

    Kume, Tamikazu; Aoki, Shohei; Kobayashi, Nobuo; Okuaki, Akira.

    1979-01-01

    The degradation of starch by γ-irradiation and the effect of pH on gelatinization of starch after irradiation were investigated. Paste viscosities were markedly affected by pH on gelatinization and a decrease in the viscosity of irradiated starch was stimulated by increasing pH. On the other hand, the solubility of irradiated starch increased significantly at the high pH. The granule structure of irradiated starch easily disintegrated at alkaline pH. Remarkable dissolution from the surface of the irradiated starch granules was observed after heating at high pH only a filamentous network frame remained, but the unirradiated one collapsed and folded. It was seen that alkali treatment after irradiation reduces the required dose to obtain low viscosity starch. The required dose to produce a low viscosity starch, for example Ajinomoto Essan Sizer 600 grade, was ca. 3 Mrad at pH 11.0 and ca. 5 Mrad at pH 7.0, whereas it was ca. 7 Mrad without pH adjustment. (author)

  4. Interphase vs confinement in starch-clay bionanocomposites.

    Science.gov (United States)

    Coativy, Gildas; Chevigny, Chloé; Rolland-Sabaté, Agnès; Leroy, Eric; Lourdin, Denis

    2015-03-06

    Starch-clay bionanocomposites containing 1-10% of natural montmorillonite were elaborated by melt processing in the presence of water. A complex macromolecular dynamics behavior was observed: depending on the clay content, an increase of the glass transition temperature and/or the presence of two overlapped α relaxation peaks were detected. Thanks to a model allowing the prediction of the average interparticle distance, and its comparison with the average size of starch macromolecules, it was possible to associate these phenomena to different populations of macromolecules. In particular, it seems that for high clay content (10%), the slowdown of segmental relaxation due to confinement of the starch macromolecules between the clay tactoïds is the predominant phenomenon. While for lower clay contents (3-5%), a significant modification of chain relaxation seems to occur, due to the formation of an interphase by the starch macromolecules in the vicinity of clay nanoparticles coexisting with the bulk polymer. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Silver precipitation from electrolytic effluents

    International Nuclear Information System (INIS)

    Rivera, I.; Patino, F.; Cruells, M.; Roca, A.; Vinals, J.

    2004-01-01

    The recovery of silver contained in electrolytic effluents is attractive due to its high economic value. These effluents are considered toxic wastes and it is not possible to dump them directly without any detoxification process. One of the most important way for silver recovery is the precipitation with sodium ditionite, sodium borohidride or hydrazine monohidrate. In this work, the most significant aspects related to the use of these reagents is presented. Results of silver precipitation with sodium ditionite from effluents containing thiosulfate without previous elimination of other species are also presented. silver concentration in the final effluents w <1 ppm. (Author) 15 refs

  6. Preparation and Characterization of Some Polyethylene Modified- Starch Biodegradable Films

    International Nuclear Information System (INIS)

    Badrana, A.S.; Ramadanb, A.M.; Ibrahim, N.A.; Kahild, T.; Hussienc, H.A.

    2005-01-01

    Blends of LDPE with soluble starch, wheat flour and commercial starch were prepared by mixing starch (or flour) with styrene then blending the mixture with LDPE, The starch percents vary between 5 and 50% of the total weight. Their physical and mechanical properties were recorded and compared with pure LDPE. It was observed that the increase in starch or wheat flour contents of the mixture was reversibly proportional to the tensile strength and % elongation. Samples were tested for water absorption. All of the samples were insoluble in cold and boiling water. Moisture uptake increased with immersion time and increasing starch content. The changes in the tensile strength of LDPE/starch (or wheat flour) after the course of thermal oxidation was measured. These results show negligible changes in the tensile strength of the control sample as compared to that of the samples containing the additives. Oxidation processes take advantage of the high temperatures (40-50 degree C) and the time. It was also observed that after 10 weeks of soil burial, the mechanical properties of the films decrease, mainly, due to starch removal from the films. Also, for the weight loss a drastic decrease was observed after 10 weeks of soil burial thereafter it preceded slowly. The LDPE/ starch strips showed weight loss after treating with a-amylase this due to hydrolysis and leaching of the starch. The rate of starch hydrolysis increases with the increase in starch content of the sample. The influence of addition of starch on the overall migration of these films, with different food simulant, was studied, at different temperatures (-4 degree. 25 degree and 40 degree C). All values were significantly lower than the upper limit for overall migration set by the EU (10 mg/dirf) for food grade plastics packaging materials

  7. The connotation interpretation of high-efficiency agriculture under the perspective of a combined agriculture with tourism

    Science.gov (United States)

    Zhou, Jie; Zhang, Feng-tai; Gai, Yuan-jin; Deng, Bao-kun; Shao, Ji-xin; An, You-zhi

    2017-08-01

    Through literature review, the article points out that the existing of the high-efficiency agriculture definition is limited to results oriented thinking, apparently lack of process oriented thinking. Combined with the connotation of fusion agriculture and tourism, respectively from the time and space utilization efficiency, cash cost, elements of input and output form, etc, gives high-efficiency agriculture a new connotation. Under the perspective of a combined agriculture with tourism, efficient use of time and space, low realized cost, less costs and output form of agriculture, this is highly effective agriculture.

  8. Starch and fibre intake and glucose postprandial response of dogs

    Directory of Open Access Journals (Sweden)

    Mariana Monti

    2016-02-01

    Full Text Available ABSTRACT: Fibre has been studied to reduce the postprandial glucose response of dogs, but the results are inconsistent. Starch intake, however, was not properly considered in the published studies. The effects of starch and fibre intake on the postprandial glucose response were studied in non-obese adult dogs. Cellulose (CEL, carboxymethylcellulose (CMC, pea fibre (PE and sugarcane fibre (SCF were combined to form six diets with starch contents ranging from 33% to 42%: SCF+CEL and PE+CEL diets, both with high insoluble fibre (IF=22% and low soluble fibre (SF=2.5% content; SCF+CMC and PE+CMC diets with high SF (SF=4.5%; IF=19% content; and CMC and CEL diets with low dietary fibre (14% content. The diets were fed in two amounts, providing an intake of 9.5g or 12.5g of starch (kg0.75-1 day-1, totaling 12 treatments. Each diet was fed to six dogs conditioned to consume all of the daily food in 10min. Their plasma glucose levels were measured before and during 480min after food intake. Results of fibre and starch intake and their interactions were compared by repeated measures ANOVA and the Tukey test (P0.05. High-dose starch intake, however, induced a higher glycaemia at 180 and 240min after the meal and a greater maximal glycaemia and greater area under the glucose curve (P<0.05. A range in insoluble and soluble fibre intake does not change postprandial glucose response, and the amount of starch intake is a main factor for the postprandial glucose response of healthy non-obese dogs.

  9. Potato starch synthases

    NARCIS (Netherlands)

    Nazarian-Firouzabadi, Farhad; Visser, Richard G.F.

    2017-01-01

    Starch, a very compact form of glucose units, is the most abundant form of storage polyglucan in nature. The starch synthesis pathway is among the central biochemical pathways, however, our understanding of this important pathway regarding genetic elements controlling this pathway, is still

  10. Sensory characteristics of high-amylose maize-resistant starch in three food products

    OpenAIRE

    Maziarz, Mindy; Sherrard, Melanie; Juma, Shanil; Prasad, Chandan; Imrhan, Victorine; Vijayagopal, Parakat

    2012-01-01

    Type 2 resistant starch from high-amylose maize (HAM-RS2) is considered a functional ingredient due to its positive organoleptic and physiochemical modifications associated with food and physiological benefits related to human health. The sensory characteristics of three types of food products (muffins, focaccia bread, and chicken curry) with and without HAM-RS2 were evaluated using a 9-point hedonic scale. The HAM-RS2-enriched muffins, focaccia bread, and chicken curry contained 5.50 g/100 g...

  11. Organic acid profile of commercial sour cassava starch

    Directory of Open Access Journals (Sweden)

    DEMIATE I.M.

    1999-01-01

    Full Text Available Organic acids are present in sour cassava starch ("polvilho azedo" and contribute with organoleptic and physical characteristics like aroma, flavor and the exclusive baking property, that differentiate this product from the native cassava starch. Samples of commercial sour cassava starch collected in South and Southeast Brazil were prepared for high performance liquid chromatography (HPLC analysis. The HPLC equipment had a Biorad Aminex HPX-87H column for organic acid analysis and a refractometric detector. Analysis was carried out with 0.005M sulfuric acid as mobile phase, 0.6ml/min flow rate and column temperature of 60° C. The acids quantified were lactic (0.036 to 0.813 g/100g, acetic (0 to 0.068 g/100g, propionic (0 to 0.013 g/100g and butyric (0 to 0.057 g/100g, that are produced during the natural fermentation of cassava starch. Results showed large variation among samples, even within the same region. Some samples exhibited high acid levels, mainly lactic acid, but in these neither propionic nor butyric acids were detected. Absence of butyric acid was not expected because this is an important component of the sour cassava starch aroma, and the lack of this acid may suggest that such samples were produced without the natural fermentation step.

  12. Chemical Modifications of Starch: Microwave Effect

    Directory of Open Access Journals (Sweden)

    Kamila Lewicka

    2015-01-01

    Full Text Available This paper presents basic methods of starch chemical modification, the effect of microwave radiation on the modification process, and the physicochemical properties of starch. It has been shown that the modifications contribute to improvement of the material performance and likewise to significant improvement of its mechanical properties. As a result, more and more extensive use of starch is possible in various industries. In addition, methods of oxidized starch and starch esters preparation are discussed. Properties of microwave radiation and its impact on starch (with particular regard to modifications described in literature are characterized.

  13. Acetylated rice starches films with different levels of amylose: Mechanical, water vapor barrier, thermal, and biodegradability properties.

    Science.gov (United States)

    Colussi, Rosana; Pinto, Vânia Zanella; El Halal, Shanise Lisie Mello; Biduski, Bárbara; Prietto, Luciana; Castilhos, Danilo Dufech; Zavareze, Elessandra da Rosa; Dias, Alvaro Renato Guerra

    2017-04-15

    Biodegradable films from native or acetylated starches with different amylose levels were prepared. The films were characterized according to the mechanical, water vapor barrier, thermal, and biodegradability properties. The films from acetylated high amylose starches had higher moisture content and water solubility than the native high amylose starch film. However, the acetylation did not affect acid solubility of the films, regardless of the amylose content. Films made from high and medium amylose rice starches were obtained; however low amylose rice starches, whether native or acetylated, did not form films with desirable characteristics. The acetylation decreased the tensile strength and increased the elongation of the films. The acetylated starch-based films had a lower decomposition temperature and higher thermal stability than native starch films. Acetylated starches films exhibited more rapid degradation as compared with the native starches films. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Thermal Behavior of Tacca leontopetaloides Starch-Based Biopolymer

    Directory of Open Access Journals (Sweden)

    Nurul Shuhada Mohd Makhtar

    2013-01-01

    Full Text Available Starch is used whenever there is a need for natural elastic properties combined with low cost of production. However, the hydrophilic properties in structural starch will decrease the thermal performance of formulated starch polymer. Therefore, the effect of glycerol, palm olein, and crude palm oil (CPO, as plasticizers, on the thermal behavior of Tacca leontopetaloides starch incorporated with natural rubber in biopolymer production was investigated in this paper. Four different formulations were performed and represented by TPE1, TPE2, TPE3, and TPE4. The compositions were produced by using two-roll mill compounding. The sheets obtained were cut into small sizes prior to thermal testing. The addition of glycerol shows higher enthalpy of diffusion in which made the material easily can be degraded, leaving to an amount of 6.6% of residue. Blending of CPO with starch (TPE3 had a higher thermal resistance towards high temperature up to 310°C and the thermal behavior of TPE2 only gave a moderate performance compared with other TPEs.

  15. Control of Reactive Species Generated by Low-frequency Biased Nanosecond Pulse Discharge in Atmospheric Pressure Plasma Effluent

    Science.gov (United States)

    Takashima, Keisuke; Kaneko, Toshiro

    2016-09-01

    The control of hydroxyl radical and the other gas phase species generation in the ejected gas through air plasma (air plasma effluent) has been experimentally studied, which is a key to extend the range of plasma treatment. Nanosecond pulse discharge is known to produce high reduced electric field (E/N) discharge that leads to efficient generation of the reactive species than conventional low frequency discharge, while the charge-voltage cycle in the low frequency discharge is known to be well-controlled. In this study, the nanosecond pulse discharge biased with AC low frequency high voltage is used to take advantages of these discharges, which allows us to modulate the reactive species composition in the air plasma effluent. The utilization of the gas-liquid interface and the liquid phase chemical reactions between the modulated long-lived reactive species delivered from the air plasma effluent could realize efficient liquid phase chemical reactions leading to short-lived reactive species production far from the air plasma, which is crucial for some plasma agricultural applications.

  16. [Yield of starch extraction from plantain (Musa paradisiaca). Pilot plant study].

    Science.gov (United States)

    Flores-Gorosquera, Emigdia; García-Suárez, Francisco J; Flores-Huicochea, Emmanuel; Núñez-Santiago, María C; González-Soto, Rosalia A; Bello-Pérez, Luis A

    2004-01-01

    In México, the banana (Musa paradisiaca) is cooked (boiling or deep frying) before being eaten, but the consumption is not very popular and a big quantity of the product is lost after harvesting. The unripe plantain has a high level of starch and due to this the use of banana can be diversified as raw material for starch isolation. The objective of this work was to study the starch yield at pilot plant scale. Experiments at laboratory scale were carried out using the pulp with citric acid to 0,3 % (antioxidant), in order to evaluate the different unitary operations of the process. The starch yield, based on starch presence in the pulp that can be isolated, were between 76 and 86 %, and the values at pilot plant scale were between 63 and 71 %, in different lots of banana fruit. Starch yield values were similar among the diverse lots, showing that the process is reproducible. The lower values of starch recovery at pilot plant scale are due to the loss during sieving operations; however, the amount of starch recovery is good.

  17. Characterization of starch-based bioplastics from jackfruit seed plasticized with glycerol.

    Science.gov (United States)

    Santana, Renata Ferreira; Bonomo, Renata Cristina Ferreira; Gandolfi, Olga Reinert Ramos; Rodrigues, Luciano Brito; Santos, Leandro Soares; Dos Santos Pires, Ana Clarissa; de Oliveira, Cristiane Patrícia; da Costa Ilhéu Fontan, Rafael; Veloso, Cristiane Martins

    2018-01-01

    Biodegradable films based on starches from different botanical sources exhibited physicochemical and functional properties which were related with the starch characteristics. However, had inadequate mechanical properties and were hard and brittle. In this research, jackfruit seed starch plasticized with glycerol were developed and characterized. The starch and glycerol concentrations ranged from 2 to 6% w/w and 20 to 60 g/100 g starch, respectively. Bioplastics were obtained by the casting method and characterized in terms of color, mechanical properties, solubility, water vapor permeability ( WVP ), morphology and free energy of the hydrophobic interaction. Electronic micrographics showed the presence of some intact starch granules. The bioplastics were hydrophilic and those of 6% starch and 40% glycerol were the most hydrophilic ([Formula: see text] = 41.35 mJ m -1 ). The solubility of the films presented a direct relationship with the starch concentration ranging from 16.42 to 23.26%. Increased opacity and color difference were observed with increasing starch concentration. The WVP ranged from 1.374 × 10 -3 to 3.07 × 10 -4  g m/day m 2 which was positively related with the concentration of starch and glycerol. Tensile strength, percent elongation and Young's Modulus indicated that the jackfruit starch and glycerol provided a film with good mechanical properties. The results replaced that jackfruit starch can be used to develop films, with low opacity, moderate WVP and relatively high mechanical stability, by using glycerol in the gelatinized starch dispersions.

  18. Chemical Modifications of Starch: Microwave Effect

    OpenAIRE

    Lewicka, Kamila; Siemion, Przemysław; Kurcok, Piotr

    2015-01-01

    This paper presents basic methods of starch chemical modification, the effect of microwave radiation on the modification process, and the physicochemical properties of starch. It has been shown that the modifications contribute to improvement of the material performance and likewise to significant improvement of its mechanical properties. As a result, more and more extensive use of starch is possible in various industries. In addition, methods of oxidized starch and starch esters preparation ...

  19. Mechanical and barrier properties of maize starch-gelatin composite films: effects of amylose content.

    Science.gov (United States)

    Wang, Kun; Wang, Wenhang; Ye, Ran; Xiao, Jingdong; Liu, Yaowei; Ding, Junsheng; Zhang, Shaojing; Liu, Anjun

    2017-08-01

    In order to obtain new reinforcing bio-fillers to improve the physicochemical properties of gelatin-based films, three types of maize starch, waxy maize starch (Ap), normal starch (Ns) and high-amylose starch (Al), were incorporated into gelatin film and the resulting film properties were investigated, focusing on the impact of amylose content. The thickness, opacity and roughness of gelatin film increased depending on the amylose content along with the starch concentration. The effects of the three starches on the mechanical properties of gelatin film were governed by amylose content, starch concentration as well as environmental relative humidity (RH). At 75% RH, the presence of Al and Ns in the gelatin matrix increased the film strength but decreased its elongation, while Ap exhibited an inverse effect. Starch addition decreased the oxygen permeability of the film, with the lowest value at 20% Al and Ns. All starches, notably at 30% content, led to a decrease in the water vapor permeability of the film at 90% RH, especially Ns starch. Furthermore, the starches improved the thermal stability of the film to some extent. Fourier transform infrared spectra indicated that some weak intermolecular interactions such as hydrogen bonding occurred between gelatin and starch. Moreover, a high degree of B-type crystallinity of starch was characterized in Gel-Al film by X-ray diffraction. Tailoring the properties of gelatin film by the incorporation of different types of maize starch provides the potential to extend its applications in edible food packaging. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  20. Hydroxyethyl starch for resuscitation

    DEFF Research Database (Denmark)

    Haase, Nicolai; Perner, Anders

    2013-01-01

    PURPOSE OF REVIEW: Resuscitation with hydroxyethyl starch (HES) is controversial. In this review, we will present the current evidence for the use of HES solutions including data from recent high-quality randomized clinical trials. RECENT FINDINGS: Meta-analyses of HES vs. control fluids show clear...

  1. Progress in the production of bioethanol on starch-based feedstocks

    Directory of Open Access Journals (Sweden)

    Dragiša Savić

    2009-10-01

    Full Text Available Bioethanol produced from renewable biomass, such as sugar, starch, or lignocellulosic materials, is one of the alternative energy resources, which is both renewable and environmentally friendly. Although, the priority in global future ethanol production is put on lignocellulosic processing, which is considered as one of the most promising second-generation biofuel technologies, the utilizetion of lignocellulosic material for fuel ethanol is still under improvement. Sugar- based (molasses, sugar cane, sugar beet and starch-based (corn, wheat, triticale, potato, rice, etc. feedstock are still currently predominant at the industrial level and they are, so far, economically favorable compared to lingocelluloses. Currently, approx. 80 % of total world ethanol production is obtained from the fermentation of simple sugars by yeast. In Serbia, one of the most suitable and available agricultural raw material for the industrial ethanol production are cereals such as corn, wheat and triticale. In addition, surpluses of this feedstock are being produced in our country constantly. In this paper, a brief review of the state of the art in bioethanol production and biomass availability is given, pointing out the progress possibilities on starch-based production. The progress possibilities are discussed in the domain of feedstock choice and pretreatment, optimization of fermentation, process integration and utilization of the process byproducts.

  2. Controlling rheology and structure of sweet potato starch noodles with high broccoli powder content by hydrocolloids

    NARCIS (Netherlands)

    Silva, E.; Birkenhake, M.; Scholten, E.; Sagis, L.M.C.; Linden, van der E.

    2013-01-01

    Incorporating high volume fractions of broccoli powder in starch noodle dough has a major effect on its shear modulus, as a result of significant swelling of the broccoli particles. Several hydrocolloids with distinct water binding capacity (locust bean gum (LBG), guar gum, konjac glucomannan (KG),

  3. Development of stereotypic behaviour in sows fed a starch diet or a non-starch polysaccharide diet during gestation and lactation over two parities

    NARCIS (Netherlands)

    Peet-Schwering, van der C.M.C.; Spoolder, H.A.M.; Kemp, B.; Binnendijk, G.P.; Hartog, den L.A.; Verstegen, M.W.A.

    2003-01-01

    The effect of feeding sows a starch diet or a diet with a high level of fermentable non-starch polysaccharides (NSP) during gestation, lactation or both gestation and lactation over the first two parities on the development of stereotypic behaviour was studied in sows housed in groups during

  4. Chemical, morphological and functional properties of Brazilian jackfruit (Artocarpus heterophyllus L.) seeds starch.

    Science.gov (United States)

    Madruga, Marta Suely; de Albuquerque, Fabíola Samara Medeiros; Silva, Izis Rafaela Alves; do Amaral, Deborah Silva; Magnani, Marciane; Queiroga Neto, Vicente

    2014-01-15

    Starches used in food industry are extracted from roots, tubers and cereals. Seeds of jackfruit are abundant and contain high amounts of starch. They are discarded during the fruit processing or consumption and can be an alternative source of starch. The starch was extract from the jackfruit seeds and characterised to chemical, morphological and functional properties. Soft and hard jackfruit seeds showed starch content of 92.8% and 94.5%, respectively. Starch granules showed round and bell shape and some irregular cuts on their surface with type-A crystallinity pattern, similar to cereals starches. The swelling power and solubility of jackfruit starch increased with increasing temperature, showing opaque pastes. The soft seeds starch showed initial and final gelatinisation temperature of 36°C and 56°C, respectively; while hard seeds starch presented initial gelatinisation at 40°C and final at 61°C. These results suggest that the Brazilian jackfruit seeds starches could be used in food products. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Starch Granule Re-Structuring by Starch Branching Enzyme and Glucan Water Dikinase Modulation Affects Caryopsis Physiology and Metabolism

    DEFF Research Database (Denmark)

    Shaik, Shahnoor S.; Obata, Toshihiro; Hebelstrup, Kim H

    2016-01-01

    in starch granule morphology at maturity. The results demonstrate that decreasing the storage starch branching resulted in metabolic adjustments and re-directions, tuning to evade deleterious effects on caryopsis physiology and plant performance while only little effect was evident by increasing starch......Starch is of fundamental importance for plant development and reproduction and its optimized molecular assembly is potentially necessary for correct starch metabolism. Re-structuring of starch granules in-planta can therefore potentially affect plant metabolism. Modulation of granule micro...

  6. Starch Granule Re-Structuring by Starch Branching Enzyme and Glucan Water Dikinase Modulation Affects Caryopsis Physiology and Metabolism

    DEFF Research Database (Denmark)

    Shaik, Shahnoor S.; Obata, Toshihiro; Hebelstrup, Kim H

    2016-01-01

    Starch is of fundamental importance for plant development and reproduction and its optimized molecular assembly is potentially necessary for correct starch metabolism. Re-structuring of starch granules in-planta can therefore potentially affect plant metabolism. Modulation of granule micro...... in starch granule morphology at maturity. The results demonstrate that decreasing the storage starch branching resulted in metabolic adjustments and re-directions, tuning to evade deleterious effects on caryopsis physiology and plant performance while only little effect was evident by increasing starch...

  7. Potential chemical and microbiological risks on human health from urban wastewater reuse in agriculture. Case study of wastewater effluents in Spain.

    Science.gov (United States)

    Muñoz, Ivan; Tomàs, Núria; Mas, Jordi; García-Reyes, Juan Fracisco; Molina-Díaz, Antonio; Fernández-Alba, Amadeo R

    2010-05-01

    Potential health risks derived from wastewater reuse in agriculture have been evaluated with Risk Assessment modelling techniques, in a case study involving the effluents of two Spanish wastewater treatment plants. One of the plants applies primary and secondary treatment, and the other one applies an additional tertiary treatment. Health risks were assessed on the basis of ingesting contaminated food, due to exposure to: (i) 22 chemical pollutants, namely pharmaceuticals and personal care products (PPCPs), and priority pollutants included in the European Framework Directive, and (ii) microorganisms, namely enterovirus. Chemical Risk Assessment has been carried out following the European Commission's technical guidelines, while risks from exposure to viruses have been evaluated by means of Quantitative Microbial Risk Assessment, assuming a virus to coliform ratio of 1:10(5). The results of the chemical assessment show that there is a margin of safety above 100 for all substances, with the exception of gemfibrozil, for which the mean margin of safety (MOS) is above 100, but the lower bound of MOS with a 95 % confidence interval lies in the 3-4 range. A MOS under 100 was also found for 2,3,7,8-TCDD in one of the effluents. The assessment of risks from viruses shows a very low probability of infection. The overall results show that risks are lower for the plant applying tertiary treatment, especially concerning microbiological parameters.

  8. Effects of acid-hydrolysis and hydroxypropylation on functional properties of sago starch.

    Science.gov (United States)

    Fouladi, Elham; Mohammadi Nafchi, Abdorreza

    2014-07-01

    In this study, sago starch was hydrolyzed by 0.14M HCl for 6, 12, 18, and 24h, and then modified by propylene oxide at a concentration of 0-30% (v/w). The effects of hydrolysis and etherification on molecular weight distribution, physicochemical, rheological, and thermal properties of dually modified starch were estimated. Acid hydrolysis of starch decreased the molecular weight of starch especially amylopectin, but hydroxypropylation had no effect on the molecular weight distribution. The degree of Molar substitution (DS) of hydroxypropylated starch after acid hydrolysis ranged from 0.007 to 0.15. Dually modified starch with a DS higher than 0.1 was completely soluble in cold water at up to 25% concentration of the starch. This study shows that hydroxypropylation and hydrolysis have synergistic effects unlike individual modifications. Dually modified sago starch can be applied to dip-molding for food and pharmaceutical processing because of its high solubility and low tendency for retrogradation. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Liquid effluent processing group. Activity details 1963

    International Nuclear Information System (INIS)

    1964-08-01

    This report first gives a quantitative overview of volumes of effluents of high activity, medium activity and low activity which passed through the department for effluent processing. It also makes the distinction between the shape or type of container of these effluents. A table indicates their origin and another indicates their destination. The β and α decontamination rates are determined, and the assessment of stored aqueous and organic effluents on the 31 December 1963 is given. The next part proposes an assessment of laboratory activities: control operations (input controls, control of processed effluent before discarding), controls related to processing (processing types, radiochemical and chemical dosing performed on effluent mixes before processing). Tables indicate the characteristics of medium activity effluents collected in 1963, the results of high activity liquid analysis, and Beryllium dosing results. A summary of ALEA processing, a table of the characteristics of stored oils and solvents are given. The third part reports data related to transport activities, and various works performed in the Saclay plant to improve exploitation conditions and results

  10. A new generation starch product as excipient in pharmaceutical tablets .3. Parameters affecting controlled drug release from tablets based on high surface area retrograded pregelatinized potato starch

    NARCIS (Netherlands)

    TeWierik, GHP; Eissens, AC; ArendsScholte, AW; Bolhuis, GK

    1997-01-01

    This paper describes the general applicability of a new pregelatinized starch product in directly compressible controlled-release matrix systems. It was prepared by enzymatic degradation of potato starch followed by precipitation (retrogradation), filtration and washing with ethanol. The advantages

  11. Water in the Mendoza, Argentina, food processing industry: water requirements and reuse potential of industrial effluents in agriculture

    Directory of Open Access Journals (Sweden)

    Alicia Elena Duek

    2016-04-01

    Full Text Available This paper estimates the volume of water used by the Mendoza food processing industry considering different water efficiency scenarios. The potential for using food processing industry effluents for irrigation is also assessed. The methodology relies upon information collected from interviews with qualified informants from different organizations and food-processing plants in Mendoza selected from a targeted sample. Scenarios were developed using local and international secondary information sources. The results show that food processing plants in Mendoza use 19.65 hm3 of water per year; efficient water management practices would make it possible to reduce water use by 64%, i.e., to 7.11 hm3. At present, 70% of the water is used by the fruit and vegetable processing industry, 16% by wineries, 8% by mineral water bottling plants, and the remaining 6% by olive oil, beer and soft drink plants. The volume of effluents from the food processing plants in Mendoza has been estimated at 16.27 hm3 per year. Despite the seasonal variations of these effluents, and the high sodium concentration and electrical conductivity of some of them, it is possible to use them for irrigation purposes. However, because of these variables and their environmental impact, land treatment is required.

  12. Understanding shape and morphology of unusual tubular starch nanocrystals.

    Science.gov (United States)

    Gong, Bei; Liu, Wenxia; Tan, Hua; Yu, Dehai; Song, Zhaoping; Lucia, Lucian A

    2016-10-20

    Starch nanocrystals (SNC) are aptly described as the insoluble degradation byproducts of starch granules that purportedly display morphologies that are platelet-like, round, square, and oval-like. In this work, we reported the preparation of SNC with unprecedented tubular structures through sulfuric acid hydrolysis of normal maize starch, subsequent exposure to ammonia and relaxation at 4°C. High-resolution transmission electron microscopy observation clearly proved that the SNCs possess tubular nanostructures with polygonal cross-section. After further reviewing the transformations of SNC by acid hydrolysis, ammonia treatment, and curing time at 4°C, a mechanism for T-SNC formation is suggested. It is conjectured that T-SNC gradually self-assembles by combination of smaller platelet-like/square nanocrystals likely loosely aggregated by starch molecular chains from residual amorphous regions. This work paves the way for the pursuit of new approaches for the preparation of starch-based nanomaterials possessing unique morphologies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Retention of Cationic Starch onto Cellulose Fibres

    Science.gov (United States)

    Missaoui, Mohamed; Mauret, Evelyne; Belgacem, Mohamed Naceur

    2008-08-01

    Three methods of cationic starch titration were used to quantify its retention on cellulose fibres, namely: (i) the complexation of CS with iodine and measurement of the absorbency of the ensuing blue solution by UV-vis spectroscopy; (ii) hydrolysis of the starch macromolecules followed by the conversion of the resulting sugars to furan-based molecules and quantifying the ensuing mixture by measuring their absorbance at a Ι of 490 nm, using the same technique as previous one and; finally (iii) hydrolysis of starch macromolecules by trifluoro-acetic acid and quantification of the sugars in the resulting hydrolysates by high performance liquid chromatography. The three methods were found to give similar results within the range of CS addition from 0 to 50 mg per g of cellulose fibres.

  14. Cassava starch films containing acetylated starch nanoparticles as reinforcement: Physical and mechanical characterization.

    Science.gov (United States)

    Teodoro, Ana Paula; Mali, Suzana; Romero, Natália; de Carvalho, Gizilene Maria

    2015-08-01

    This paper reports the use of acetylated starch nanoparticles (NPAac) as reinforcement in thermoplastic starch films. NPAac with an average size of approximately 500 nm were obtained by nanoprecipitation. Fourier transform infrared (FTIR) and thermogravimetric analysis (TGA) indicated that NPAac are more thermally stable and essentially amorphous when compared with acetylated starch. Thermoplastic starch films with different proportions of NPAac (0.5, 1.0, 1.5, 10.0%, w/w) were obtained and characterized by scanning electron microscopy (SEM), water vapor permeability (WVP), adsorption isotherms, TGA and mechanical tests. The inclusion of reinforcement caused changes in film properties: WVP was lowered by 41% for film with 1.5% (w/w) of NPAac and moisture adsorption by 33% for film with 10% (w/w) of NPAac; and the Young's modulus and thermal stability were increased by 162% and 15%, respectively, for film with 0.5% (w/w) of NPAac compared to the starch film without the addition of NPAac. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Determinants of Aggregate Agricultural Productivity among High ...

    African Journals Online (AJOL)

    African Journal of Food, Agriculture, Nutrition and Development ... Determinants of Aggregate Agricultural Productivity among High External Input Technology Farms in a ... of aggregate agricultural productivity in an environment where policy on ... to increase the farm sizes through re-examination of the existing land laws.

  16. Heterologous expression of two Arabidopsis starch dikinases in potato

    NARCIS (Netherlands)

    Xu, Xuan; Dees, Dianka; Huang, Xing Feng; Visser, Richard G.F.; Trindade, Luisa M.

    2018-01-01

    Starch phosphate esters influence physiochemical properties of starch granules that are essential both for starch metabolism and industrial use of starches. To modify properties of potato starch and understand the effect of starch phosphorylation on starch metabolism in storage starch, the starch

  17. Effect of α-Amylase Degradation on Physicochemical Properties of Pre-High Hydrostatic Pressure-Treated Potato Starch

    Science.gov (United States)

    Mu, Tai-Hua; Zhang, Miao; Raad, Leyla; Sun, Hong-Nan; Wang, Cheng

    2015-01-01

    The effect of high hydrostatic pressure (HHP) on the susceptibility of potato starch (25%, w/v) suspended in water to degradation by exposure to bacterial α-amylase (0.02%, 0.04% and 0.06%, w/v) for 40 min at 25°C was investigated. Significant differences (p starch (PS) exposed to α-amylase (0.06%, w/v) showed a significantly greater degree of hydrolysis and amount of reducing sugar released compared to α-amylase at a concentration of 0.04% (w/v) or 0.02% (w/v). Native PS (NPS) granules have a spherical and elliptical form with a smooth surface, whereas the hydrolyzed NPS (hNPS) and hydrolyzed HHP-treated PS granules showed irregular and ruptured forms with several cracks and holes on the surface. Hydrolysis of HHP-treated PS by α-amylase could decrease the average granule size significantly (p starch in both the ordered and the amorphous structure, especially in hydrolyzed HHP600 PS. The B-type of hydrolyzed HHP600 PS with α-amylase at a concentration 0.06% (w/v) changed to a B+V type with an additional peak at 2θ = 19.36°. The HHP600 starch with 0.06% (w/v) α-amylase displayed the lowest value of T o (onset temperature), T c (conclusion temperature) and ΔH gel (enthalpies of gelatinization). These results indicate the pre-HHP treatment of NPS leads to increased susceptibility of the granules to enzymatic degradation and eventually changes of both the amorphous and the crystalline structures. PMID:26642044

  18. Reduced starch granule number per chloroplast in the dpe2/phs1 mutant is dependent on initiation of starch degradation.

    Science.gov (United States)

    Malinova, Irina; Fettke, Joerg

    2017-01-01

    An Arabidopsis double knock-out mutant lacking cytosolic disproportionating enzyme 2 (DPE2) and the plastidial phosphorylase (PHS1) revealed a dwarf-growth phenotype, reduced starch content, an uneven distribution of starch within the plant rosette, and a reduced number of starch granules per chloroplast under standard growth conditions. In contrast, the wild type contained 5-7 starch granules per chloroplast. Mature and old leaves of the double mutant were essentially starch free and showed plastidial disintegration. Several analyses revealed that the number of starch granules per chloroplast was affected by the dark phase. So far, it was unclear if it was the dark phase per se or starch degradation in the dark that was connected to the observed decrease in the number of starch granules per chloroplast. Therefore, in the background of the double mutant dpe2/phs1, a triple mutant was generated lacking the initial starch degrading enzyme glucan, water dikinase (GWD). The triple mutant showed improved plant growth, a starch-excess phenotype, and a homogeneous starch distribution. Furthermore, the number of starch granules per chloroplast was increased and was similar to wild type. However, starch granule morphology was only slightly affected by the lack of GWD as in the triple mutant and, like in dpe2/phs1, more spherical starch granules were observed. The characterized triple mutant was discussed in the context of the generation of starch granules and the formation of starch granule morphology.

  19. Physicochemical properties of black pepper (Piper nigrum) starch.

    Science.gov (United States)

    Zhu, Fan; Mojel, Reuben; Li, Guantian

    2018-02-01

    Black pepper (Piper nigrum) is among the most popular spices around the world. Starch is the major component of black pepper. However, little is known about functional properties of this starch. In this study, swelling, solubility, thermal properties, rheology, and enzyme susceptibility of 2 black pepper starches were studied and compared with those of maize starch. Pepper starch had lower water solubility and swelling power than maize starch. It had higher viscosity during pasting event. In dynamic oscillatory analysis, pepper starch had lower storage modulus. Thermal analysis showed that pepper starch had much higher gelatinization temperatures (e.g., conclusion temperature of 94°C) than maize starch. The susceptibility to α-amylolysis of pepper starch was not very different from that of maize starch. Overall, the differences in the physicochemical properties of the 2 pepper starches are non-significant. The relationships between structure (especially amylopectin internal molecular structure) and properties of starch components are highlighted. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Greenhouse Gases and Animal Agriculture

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, J. (ed.) [Department of Animal Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido (Japan); Young, B.A. (ed.) [The University of Queensland, Gatton, Queensland 4343 (Australia)

    2002-07-01

    Reports from interdisciplinary areas including microbiology, biochemistry, animal nutrition, agricultural engineering and economics are integrated in this proceedings. The major theme of this book is environmental preservation by controlling release of undesirable greenhouse gases to realize the sustainable development of animal agriculture. Technology exists for the effective collection of methane generated from anaerobic fermentation of animal effluent and its use as a biomass energy source. Fossil fuel consumption can be reduced and there can be increased use of locally available energy sources. In addition, promoting environmentally-conscious agriculture which does not rely on the chemical fertilizer can be realized by effective use of animal manure and compost products.

  1. Utilization of a Biodegradable Mulch Sheet Produced from Poly(Lactic Acid/Ecoflex®/Modified Starch in Mandarin Orange Groves

    Directory of Open Access Journals (Sweden)

    Yasukatsu Maeda

    2009-08-01

    Full Text Available We have developed a mulch sheet made by inflation molding of PLA, Ecoflex® and modified starch, which all have different biodegradabilities. A field test of use as an agricultural mulch sheet for mandarin oranges was carried out over two years. The mechanical properties of the mulch sheet were weakened with time during the field test, but the quality of the mandarin oranges increased, a result of the controlled degradation of the sheet. The most degradable modified starch degraded first, allowing control of the moisture on the soil. Accelerator mass spectroscopy was used for evaluation of the biomass carbon ratio. The biomass carbon ratio decreased by degradation of the biobased materials, PLA and modified starch in the mulch sheet.

  2. Structural properties and gelatinisation characteristics of potato and cassava starches and mutants thereof

    NARCIS (Netherlands)

    Gomand, S.V.; Lamberts, L.; Derde, L.J.; Groesaert, H.; Vandeputte, G.E.; Goderis, B.; Visser, R.G.F.; Delcour, J.A.

    2010-01-01

    The molecular size of amylopectin (AP) and amylose (AM), AP chain length distribution, crystallinity and granular structure (morphology and granule size distribution) of five wild type potato starches (wtps), five AM free potato starches (amfps), four high-AM potato starches (haps), one wild type

  3. Resistant starch: promise for improving human health.

    Science.gov (United States)

    Birt, Diane F; Boylston, Terri; Hendrich, Suzanne; Jane, Jay-Lin; Hollis, James; Li, Li; McClelland, John; Moore, Samuel; Phillips, Gregory J; Rowling, Matthew; Schalinske, Kevin; Scott, M Paul; Whitley, Elizabeth M

    2013-11-01

    Ongoing research to develop digestion-resistant starch for human health promotion integrates the disciplines of starch chemistry, agronomy, analytical chemistry, food science, nutrition, pathology, and microbiology. The objectives of this research include identifying components of starch structure that confer digestion resistance, developing novel plants and starches, and modifying foods to incorporate these starches. Furthermore, recent and ongoing studies address the impact of digestion-resistant starches on the prevention and control of chronic human diseases, including diabetes, colon cancer, and obesity. This review provides a transdisciplinary overview of this field, including a description of types of resistant starches; factors in plants that affect digestion resistance; methods for starch analysis; challenges in developing food products with resistant starches; mammalian intestinal and gut bacterial metabolism; potential effects on gut microbiota; and impacts and mechanisms for the prevention and control of colon cancer, diabetes, and obesity. Although this has been an active area of research and considerable progress has been made, many questions regarding how to best use digestion-resistant starches in human diets for disease prevention must be answered before the full potential of resistant starches can be realized.

  4. Plant-crafted starches for bioplastics production

    DEFF Research Database (Denmark)

    Sagnelli, Domenico; Hebelstrup, Kim H.; Leroy, Eric

    2016-01-01

    Transgenically-produced amylose-only (AO) starch was used to manufacture bioplastic prototypes. Extruded starch samples were tested for crystal residues, elasticity, glass transition temperature, mechanical properties, molecular mass and microstructure. The AO starch granule crystallinity was both...... in the storage modulus (E') for AO samples compared to the control. The data support the use of pure starch-based bioplastics devoid of non-polysaccharide fillers....... of the B- and Vh-type, while the isogenic control starch was mainly A-type. The first of three endothermic transitions was attributed to gelatinization at about 60°C. The second and third peaks were identified as melting of the starch and amylose-lipid complexes, respectively. After extrusion, the AO...

  5. Poly(Lactic Acid) Filled with Cassava Starch-g-Soybean Oil Maleate

    Science.gov (United States)

    Kiangkitiwan, Nopparut; Srikulkit, Kawee

    2013-01-01

    Poly(lactic acid), PLA, is a biodegradable polymer, but its applications are limited by its high cost and relatively poorer properties when compared to petroleum-based plastics. The addition of starch powder into PLA is one of the most promising efforts because starch is an abundant and cheap biopolymer. However, the challenge is the major problem associated with poor interfacial adhesion between the hydrophilic starch granules and the hydrophobic PLA, leading to poorer mechanical properties. In this paper, soybean oil maleate (SOMA) was synthesized by grafting soybean oil with various weight percents of maleic anhydride (MA) using dicumyl peroxide (DCP) as an initiator. Then, SOMA was employed for the surface modifying of cassava starch powder, resulting in SOMA-g-STARCH. The obtained SOMA-g-STARCH was mixed with PLA in various weight ratios using twin-screw extruder, resulting in PLA/SOMA-g-STARCH. Finally, the obtained PLA/SOMA-g-STARCH composites were prepared by a compression molding machines. The compatibility, thermal properties, morphology properties, and mechanical properties were characterized and evaluated. The results showed that the compatibility, surface appearance, and mechanical properties at 90 : 10 and 80 : 20 ratios of PLA/SOMA-g-STARCH were the best. PMID:24307883

  6. CONCAWE effluent speciation project

    Energy Technology Data Exchange (ETDEWEB)

    Leonards, P.; Comber, M.; Forbes, S.; Whale, G.; Den Haan, K.

    2010-09-15

    In preparation for the implementation of the EU REACH regulation, a project was undertaken to transfer the high-resolution analytical method for determining hydrocarbon blocks in petroleum products by comprehensive two-dimensional gas chromatography (GCxGC) to a laboratory external to the petroleum industry (Institute for Environmental Studies (IVM) of the VU University of Amsterdam). The method was validated and used for the analysis of petroleum hydrocarbons extracted from refinery effluents. The report describes the technology transfer and the approaches used to demonstrate the successful transfer and application of the GCxGC methodology from analysing petroleum products to the quantitative determination of hydrocarbon blocks in refinery effluents. The report describes all the methods used for all the determinations on the effluent samples along with an overview of the results obtained which are presented in summary tables and graphs. These data have significantly improved CONCAWE's knowledge of what refineries emit in their effluents. A total of 111 Effluent Discharge Samples from 105 CONCAWE refineries in Europe were obtained in the period June 2008 to March 2009. These effluents were analysed for metals, standard effluent parameters (including COD, BOD), oil in water, BTEX and volatile organic compounds. The hydrocarbon speciation determinations and other hydrocarbon analyses are also reported. The individual refinery analytical results are included into this report, coded as per the CONCAWE system. These data will be, individually, communicated to companies and refineries. The report demonstrates that it is feasible to conduct a research programme to investigate the fate and effects of hydrocarbon blocks present in discharged refinery effluents.

  7. Characterisation of hydroxypropylated crosslinked sago starch as compared to commercial modified starches

    Directory of Open Access Journals (Sweden)

    Saowakon Wattanachant

    2002-07-01

    Full Text Available The characteristics of hydroxypropylated crosslinked sago starch (HPST were determined and compared with five types of commercial modified starches (CMST in order to evaluate its quality for further applications. The HPST was prepared on a large scale having molar substitution (MS and degree substitution (DS values in the range of 0.038 to 0.045 and 0.004 to 0.005, respectively. The properties of HPST in terms of sediment volume, swelling power, solubility and paste clarity were 15.75%, 16.7, 8.62% and 5.18%T650 , respectively. The MS value, phosphorus content, paste clarity, swelling power and syneresis after six freeze-thaw cycles of HPST when compared to that of commercially available modified starches which are normally used or incorporated in acidic, frozen and canned foods did not differ significantly. The pasting characteristic of HPST exhibited thin to thick viscosity which was similar (P>0.05 to that of commercial hydroxypropylated crosslinked tapioca starch (NAT 8. The acid stability, solubility and freeze-thaw stability of both starches were also similar (P>0.05 but the swelling power of HPST was slightly lower (P<0.05 than that of NAT 8 .

  8. Rheological and gelation properties of rice starch modified with 4-alpha-glucanotransferase.

    Science.gov (United States)

    Lee, Kwang Yeon; Kim, Yong-Ro; Park, Kwan Hwa; Lee, Hyeon Gyu

    2008-04-01

    Rheological measurements were performed to characterize rice starch modified with 4-alpha-glucanotransferase (4alphaGTase) isolated from Thermus scotoductus, in terms of effects of the enzyme and starch concentration on flow behavior, gel strength, and melting and gelling kinetics of the modified rice starch. Consistency index decreased and flow behavior index increased with the level of enzyme treatment, and at high level of enzyme treatment, it demonstrated Bingham plastic behavior. As the level of enzyme decreased and the starch concentration increased, gelation time decreased and the final gel strength increased significantly. Regardless of treatment variables, all the modified starch gels melted at similar temperature.

  9. Effects of starch synthase IIa gene dosage on grain, protein and starch in endosperm of wheat.

    Science.gov (United States)

    Konik-Rose, Christine; Thistleton, Jenny; Chanvrier, Helene; Tan, Ihwa; Halley, Peter; Gidley, Michael; Kosar-Hashemi, Behjat; Wang, Hong; Larroque, Oscar; Ikea, Joseph; McMaugh, Steve; Regina, Ahmed; Rahman, Sadequr; Morell, Matthew; Li, Zhongyi

    2007-11-01

    Starch synthases (SS) are responsible for elongating the alpha-1,4 glucan chains of starch. A doubled haploid population was generated by crossing a line of wheat, which lacks functional ssIIa genes on each genome (abd), and an Australian wheat cultivar, Sunco, with wild type ssIIa alleles on each genome (ABD). Evidence has been presented previously indicating that the SGP-1 (starch granule protein-1) proteins present in the starch granule in wheat are products of the ssIIa genes. Analysis of 100 progeny lines demonstrated co-segregation of the ssIIa alleles from the three genomes with the SGP-1 proteins, providing further evidence that the SGP-1 proteins are the products of the ssIIa genes. From the progeny lines, 40 doubled haploid lines representing the eight possible genotypes for SSIIa (ABD, aBD, AbD, ABd, abD, aBd, Abd, abd) were characterized for their grain weight, protein content, total starch content and starch properties. For some properties (chain length distribution, pasting properties, swelling power, and gelatinization properties), a progressive change was observed across the four classes of genotypes (wild type, single nulls, double nulls and triple nulls). However, for other grain properties (seed weight and protein content) and starch properties (total starch content, granule morphology and crystallinity, granule size distribution, amylose content, amylose-lipid dissociation properties), a statistically significant change only occurred for the triple nulls, indicating that all three genes had to be missing or inactive for a change to occur. These results illustrate the importance of SSIIa in controlling grain and starch properties and the importance of amylopectin fine structure in controlling starch granule properties in wheat.

  10. Sixth taste – starch taste?

    Directory of Open Access Journals (Sweden)

    Zygmunt Zdrojewicz

    2017-06-01

    Full Text Available Scientists from Oregon State University, USA, came up with the newest theory of the sixth taste – starch taste that might soon join the basic five tastes. This argument is supported by studies done on both animals and humans, the results of which seem to indicate the existence of separate receptors for starch taste, others than for sweet taste. Starch is a glucose homopolymer that forms an α-glucoside chain called glucosan or glucan. This polysaccharide constitutes the most important source of carbohydrates in food. It can be found in groats, potatoes, legumes, grains, manioc and corn. Apart from its presence in food, starch is also used in textile, pharmaceutical, cosmetic and stationery industries as well as in glue production. This polysaccharide is made of an unbranched helical structure – amylose (15–20%, and a structure that forms branched chains – amylopectin (80–85%. The starch structure, degree of its crystallisation or hydration as well as its availability determine the speed of food-contained starch hydrolysis by amylase. So far, starch has been considered tasteless, but the newest report shows that for people of different origins it is associated with various aliments specific for each culture. Apart from a number of scientific experiments using sweet taste inhibitors, the existence of the sixth taste is also confirmed by molecular studies. However, in order to officially include starch taste to the basic human tastes, it must fulfil certain criteria. The aim of the study is to present contemporary views on starch.

  11. Preparation and characterization of dialdehyde starch urea (DASU ...

    African Journals Online (AJOL)

    Dialdehyde starch urea (DASU) was prepared by the reaction of dialdehyde starch (DAS) from periodate oxidized cassava starch with urea, which was then used to adsorb Co(II), Pb(II) and Zn(II) ions from aqueous solution. Starch modified starches and starch complexes were characterized by Fourier transform infrared ...

  12. Rapid and efficient treatment of wastewater with high-concentration heavy metals using a new type of hydrogel-based adsorption process.

    Science.gov (United States)

    Zhou, Guiyin; Liu, Chengbin; Chu, Lin; Tang, Yanhong; Luo, Shenglian

    2016-11-01

    In this study, a new type of double-network hydrogel sorbent was developed to remove heavy metals in wastewater. The amino-functionalized Starch/PAA hydrogel (NH2-Starch/PAA) could be conducted in a wide pH and the adsorption process could rapidly achieve the equilibrium. The adsorption capacity got to 256.4mg/g for Cd(II). Resultantly, even though Cd(II) concentration was as high as 180mg/L, the Cd(II) could be entirely removed using 1g/L sorbent. Furthermore, the desirable mechanical durability of the adsorbent allowed easy separation and reusability. In the fixed-bed column experiments, the treatment volume of the effluent with a high Cd(II) concentration of 200mg/L reached 2400BV (27.1L) after eight times cycle. The NH2-Starch/PAA overcame the deficiency of conventional sorbents that could not effectively treat the wastewater with relatively high metal concentrations. This work provides a new insight into omnidirectional enhancement of sorbents for removing high-concentration heavy metals in wastewater. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Long branch-chains of amylopectin with B-type crystallinity in rice seed with inhibition of starch branching enzyme I and IIb resist in situ degradation and inhibit plant growth during seedling development : Degradation of rice starch with inhibition of SBEI/IIb during seedling development.

    Science.gov (United States)

    Pan, Ting; Lin, Lingshang; Wang, Juan; Liu, Qiaoquan; Wei, Cunxu

    2018-01-08

    Endosperm starch provides prime energy for cereal seedling growth. Cereal endosperm with repression of starch branching enzyme (SBE) has been widely studied for its high resistant starch content and health benefit. However, in barley and maize, the repression of SBE changes starch component and amylopectin structure which affects grain germination and seedling establishment. A high resistant starch rice line (TRS) has been developed through inhibiting SBEI/IIb, and its starch has very high resistance to in vitro hydrolysis and digestion. However, it is unclear whether the starch resists in situ degradation in seed and influences seedling growth after grain germination. In this study, TRS and its wild-type rice cultivar Te-qing (TQ) were used to investigate the seedling growth, starch property changes, and in situ starch degradation during seedling growth. The slow degradation of starch in TRS seed restrained the seedling growth. The starch components including amylose and amylopectin were simultaneously degraded in TQ seeds during seedling growth, but in TRS seeds, the amylose was degraded faster than amylopectin and the amylopectin long branch-chains with B-type crystallinity had high resistance to in situ degradation. TQ starch was gradually degraded from the proximal to distal region of embryo and from the outer to inner in endosperm. However, TRS endosperm contained polygonal, aggregate, elongated and hollow starch from inner to outer. The polygonal starch similar to TQ starch was completely degraded, and the other starches with long branch-chains of amylopectin and B-type crystallinity were degraded faster at the early stage of seedling growth but had high resistance to in situ degradation during TRS seedling growth. The B-type crystallinity and long branch-chains of amylopectin in TRS seed had high resistance to in situ degradation, which inhibited TRS seedling growth.

  14. Preparation of crystalline starch nanoparticles using cold acid hydrolysis and ultrasonication.

    Science.gov (United States)

    Kim, Hee-Young; Park, Dong June; Kim, Jong-Yea; Lim, Seung-Taik

    2013-10-15

    Waxy maize starch in an aqueous sulfuric acid solution (3.16 M, 14.7% solids) was hydrolyzed for 2-6 days, either isothermally at 40 °C or 4 °C, or at cycled temperatures of 4 and 40 °C (1 day each). The starch hydrolyzates were recovered as precipitates after centrifuging the dispersion (10,000 rpm, 10 min). The yield of starch hydrolyzates depended on the hydrolysis temperature and time, which varied from 6.8% to 78%. The starch hydrolyzed at 40 °C or 4/40 °C exhibited increased crystallinity determined by X-ray diffraction analysis, but melted in broader temperature range (from 60 °C to 110 °C). However, the starch hydrolyzed at 4 °C displayed the crystallinity and melting endotherm similar to those of native starch. The starch hydrolyzates recovered by centrifugation were re-dispersed in water (15% solids), and the dispersion was treated by an ultrasonic treatment (60% amplitude, 3min). The ultrasonication effectively fragmented the starch hydrolyzates to nanoparticles. The hydrolyzates obtained after 6 days of hydrolysis were more resistant to the ultrasonication than those after 2 or 4 days, regardless of hydrolysis temperatures. The starch nanoparticles could be prepared with high yield (78%) and crystallinity by 4 °C hydrolysis for 6 days followed by ultrasonication. Scanning electron microscopy revealed that the starch nanoparticles had globular shapes with diameters ranging from 50 to 90 nm. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Lack of effect of dietary fiber on serum lipids, glucose, and insulin in healthy young men fed high starch diets.

    Science.gov (United States)

    Ullrich, I H; Albrink, M J

    1982-07-01

    Eight healthy young men were fed a 72% carbohydrate high starch diet either high or low in dietary fiber for 4 days in a double cross-over design. Both groups showed a slight transient increase in plasma triglyceride level and a decrease in total and high-density lipoprotein cholesterol. There were few differences in glucose and insulin levels after glucose and meal tolerance tests after each diet. Fasting triglycerides and high-density lipoprotein cholesterol were inversely related at base-line; insulin response to oral glucose was inversely related to high-density lipoprotein cholesterol levels at the end of the study. We conclude that a high carbohydrate high starch diet, whether high or low in fiber, caused little increase in triglycerides, with little difference between the high and low fiber diets. Dietary fiber did not influence the fall in plasma cholesterol or high-density lipoprotein cholesterol concentrations over and above that seen after the low fiber diet.

  16. Strength of biodegradable polypropylene tapes filled with a modified starch

    Science.gov (United States)

    Vinidiktova, N. S.; Ermolovich, O. A.; Goldade, V. A.; Pinchuk, L. S.

    2006-05-01

    The possibility of creating composite materials with high deformation and strength characteristics based on polypropylene (PP) and a natural polysaccharide in the form of a modified starch (MS) has been studied. The modified starch is shown to interact chemically with functional groups of PP, thereby positively affecting the physicomechanical properties, structure, and water absorption properties of films and oriented flat fibers based on starch-filled PP. The strength characteristics of both oriented and unoriented composites are 1.5-2.0 times as high as those of the initial PP. The water absorption ability of the materials varies symbatically with content of MS, which points to the dominant contribution of interactions at the PP-MS interface. The introduction of MS into synthetic polymers offers a possibility of producing new ecologically safe materials with high strength characteristics.

  17. Poly(Lactic Acid) Filled with Cassava Starch-g-Soybean Oil Maleate

    OpenAIRE

    Kiangkitiwan, Nopparut; Srikulkit, Kawee

    2013-01-01

    Poly(lactic acid), PLA, is a biodegradable polymer, but its applications are limited by its high cost and relatively poorer properties when compared to petroleum-based plastics. The addition of starch powder into PLA is one of the most promising efforts because starch is an abundant and cheap biopolymer. However, the challenge is the major problem associated with poor interfacial adhesion between the hydrophilic starch granules and the hydrophobic PLA, leading to poorer mechanical properties....

  18. Ovary starch reserves and pistil development in avocado (Persea americana).

    Science.gov (United States)

    Alcaraz, M Librada; Hormaza, J Ignacio; Rodrigo, Javier

    2010-12-01

    In avocado, only a very small fraction of the flowers are able to set fruit. Previous work in other woody perennial plant species has shown the importance of carbohydrates accumulated in the flower in the reproductive process. Thus, in order to explore the implications of the nutritive status of the flower in the reproductive process in avocado, the starch content in the pistil has been examined in individual pollinated and non-pollinated flowers at anthesis and during the days following anthesis. Starch content in different pistilar tissues in each flower was quantified with the help of an image analysis system attached to a microscope. Flowers at anthesis were rich in highly compartmentalized starch. Although no external morphological differences could be observed among flowers, the starch content varied widely at flower opening. Starch content in the ovary is largely independent of flower size because these differences were not correlated with ovary size. Differences in the progress of starch accumulation within the ovule integuments between pollinated and non-pollinated flowers occurred concomitantly with the triggering of the progamic phase. The results suggest that starch reserves in the ovary could play a significant role in the reproductive process in avocado. Copyright © Physiologia Plantarum 2010.

  19. Atomic force microscopy of pea starch: origins of image contrast.

    Science.gov (United States)

    Ridout, Michael J; Parker, Mary L; Hedley, Cliff L; Bogracheva, Tatiana Y; Morris, Victor J

    2004-01-01

    Atomic force microscopy (AFM) has been used to image the internal structure of pea starch granules. Starch granules were encased in a nonpenetrating matrix of rapid-set Araldite. Images were obtained of the internal structure of starch exposed by cutting the face of the block and of starch in sections collected on water. These images have been obtained without staining, or either chemical or enzymatic treatment of the granule. It has been demonstrated that contrast in the AFM images is due to localized absorption of water within specific regions of the exposed fragments of the starch granules. These regions swell, becoming "softer" and higher than surrounding regions. The images obtained confirm the "blocklet model" of starch granule architecture. By using topographic, error signal and force modulation imaging modes on samples of the wild-type pea starch and the high amylose r near-isogenic mutant, it has been possible to demonstrate differing structures within granules of different origin. These architectural changes provide a basis for explaining the changed appearance and functionality of the r mutant. The growth-ring structure of the granule is suggested to arise from localized "defects" in blocklet distribution within the granule. It is proposed that these defects are partially crystalline regions devoid of amylose.

  20. Impact of treated urban wastewater for reuse in agriculture on crop response and soil ecotoxicity.

    Science.gov (United States)

    Belhaj, Dalel; Jerbi, Bouthaina; Medhioub, Mounir; Zhou, John; Kallel, Monem; Ayadi, Habib

    2016-08-01

    The scarcity of freshwater resources is a serious problem in arid regions, such as Tunisia, and marginal quality water is gradually being used in agriculture. This study aims to study the impact of treated urban wastewater for reuse in agriculture on the health of soil and food crops. The key findings are that the effluents of Sfax wastewater treatment plant (WWTP) did not meet the relevant guidelines, therefore emitting a range of organic (e.g., up to 90 mg L(-1) COD and 30 mg L(-1) BOD5) and inorganic pollutants (e.g., up to 0.5 mg L(-1) Cu and 0.1 mg L(-1) Cd) in the receiving aquatic environments. Greenhouse experiments examining the effects of wastewater reuse on food plants such as tomato, lettuce, and radish showed that the treated effluent adversely affected plant growth, photosynthesis, and antioxidant enzyme contents. However, the pollution burden and biological effects on plants were substantially reduced by using a 50 % dilution of treated sewage effluent, suggesting the potential of reusing treated effluent in agriculture so long as appropriate monitoring and control is in place.

  1. Modification of rice starch by gamma irradiation to produce soluble starch of low viscosity for industrial purposes

    International Nuclear Information System (INIS)

    El Saadany, R.M.A.; El Saadany, F.M.; Foda, Y.H.

    1974-01-01

    Because starch of low viscosity is important for industrial purposes this research was carried out to study the possibility of producing this sort of starch by treating rice starch with γ-irradiation. Results indicated than when rice starch was modified by γ-irradiation, the reducing power increased and degradation as well as molecular breakdown occured followed by sharp decrease of its viscosity, specific viscosity and intrisinc viscosity. Results showed that starch became more soluble by treating with γ-irradiation and lost its resistance to water as its swelling capacity decreased. All these changes were proportional to the doses of γ-irradiation. (orig.) [de

  2. In vitro Starch Hydrolysis Rate, Physico-chemical Properties and Sensory Evaluation of Butter Cake Prepared Using Resistant Starch Type III Substituted for Wheat Flour.

    Science.gov (United States)

    Pongjanta, J; Utaipattanaceep, A; Naivikul, O; Piyachomkwan, K

    2008-09-01

    Resistant starch type III (RS III) derived from enzymatically debranched high amylose rice starch was prepared and used to make butter cake at different levels (0, 5, 10, 15 and 20%) in place of wheat flour. Physico-chemical properties, sensory evaluation, and in vitro starch hydrolysis rate of the developed butter cake were investigated. This study showed that the content of resistant starch in butter cake increased significantly (Pcake with RS III replacement had a significantly lower in vitro starch hydrolysis rate compared to the control cake (0% RS III). The rates of starch hydrolysis from 0 to 180 min digestion time for 0, 5, 10 15, and 20% RS III in place of wheat flour in butter cakes were 3.70 to 67.65%, 2.97 to 64.86%, 2.86 to 59.99%, 2.79 to 55.96 and 2.78 to 53.04% respectively. The physico-chemical properties of 5 to 10% RS III substituted with wheat flour in the butter cake were not significantly different from the control cake and were moderately accepted by panellists in the sensory evaluation test.

  3. Preparation, characterization and utilization of starch nanoparticles.

    Science.gov (United States)

    Kim, Hee-Young; Park, Sung Soo; Lim, Seung-Taik

    2015-02-01

    Starch is one of the most abundant biopolymers in nature and is typically isolated from plants in the form of micro-scale granules. Recent studies reported that nano-scale starch particles could be readily prepared from starch granules, which have unique physical properties. Because starch is environmentally friendly, starch nanoparticles are suggested as one of the promising biomaterials for novel utilization in foods, cosmetics, medicines as well as various composites. An overview of the most up-to-date information regarding the starch nanoparticles including the preparation processes and physicochemical characterization will be presented in this review. Additionally, the prospects and outlooks for the industrial utilization of starch nanoparticles will be discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. 13CO2 breath test to measure the hydrolysis of various starch formulations in healthy subjects.

    OpenAIRE

    Hiele, M; Ghoos, Y; Rutgeerts, P; Vantrappen, G; de Buyser, K

    1990-01-01

    13CO2 starch breath test was used to study the effect of physicochemical characteristics of starch digestion. As starch is hydrolysed to glucose, which is subsequently oxidised to CO2, differences in 13CO2 excretion after ingestion of different starch products must be caused by differences in hydrolysis rate. To study the effect of the degree of chain branching, waxy starch, containing 98% amylopectin, was compared with high amylose starch, containing 30% amylopectin, and normal crystalline s...

  5. Physicochemical Properties of Gamma-Irradiated Corn Starch

    International Nuclear Information System (INIS)

    Lee, Y.J.; Lim, S.T.; Kim, S.Y.; Han, S.M.; Kim, H.M.; Kang, I.J.

    2006-01-01

    Structural modification of corn starch by gamma irradiation was evaluated for under dry conditions at varied intensities from 0 to 40 kGy. Under scanning electron microscopy, the granule shape of corn starch was not significantly affected by the irradiation up to 40 kGy. In addition, X-ray diffraction and melting patterns of the irradiated starches were similar to those of the native starch, indicating that crystalline regions in the starch granules were not changed by irradiation. However, the pattern of gel permeation column chromatography showed a significant increase in partial hydrolysis of gamma irradiated starch samples

  6. Plant-crafted starches for bioplastics production.

    Science.gov (United States)

    Sagnelli, Domenico; Hebelstrup, Kim H; Leroy, Eric; Rolland-Sabaté, Agnès; Guilois, Sophie; Kirkensgaard, Jacob J K; Mortensen, Kell; Lourdin, Denis; Blennow, Andreas

    2016-11-05

    Transgenically-produced amylose-only (AO) starch was used to manufacture bioplastic prototypes. Extruded starch samples were tested for crystal residues, elasticity, glass transition temperature, mechanical properties, molecular mass and microstructure. The AO starch granule crystallinity was both of the B- and Vh-type, while the isogenic control starch was mainly A-type. The first of three endothermic transitions was attributed to gelatinization at about 60°C. The second and third peaks were identified as melting of the starch and amylose-lipid complexes, respectively. After extrusion, the AO samples displayed Vh- and B-type crystalline structures, the B-type polymorph being the dominant one. The AO prototypes demonstrated a 6-fold higher mechanical stress at break and 2.5-fold higher strain at break compared to control starch. Dynamic mechanical analysis showed a significant increase in the storage modulus (E') for AO samples compared to the control. The data support the use of pure starch-based bioplastics devoid of non-polysaccharide fillers. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Green starch conversions : Studies on starch acetylation in densified CO2

    NARCIS (Netherlands)

    Muljana, Henky; Picchioni, Francesco; Heeres, Hero J.; Janssen, Leon P. B. M.

    2010-01-01

    The acetylation of potato starch with acetic anhydride (AAH) and sodium acetate (NaOAc) as catalyst in densified CO2 was explored in a batch reactor setup. The effects of process variables such as pressure (6-9.8 MPa), temperature (40-90 degrees C), AAH to starch ratio (2-5 mol/mol AGU), NaOAc to

  8. Starch Characteristics Linked to Gluten-Free Products

    Directory of Open Access Journals (Sweden)

    Stefan W. Horstmann

    2017-04-01

    Full Text Available The increasing prevalence of coeliac disease (CD and gluten-related disorders has led to increasing consumer demand for gluten-free products with quality characteristics similar to wheat bread. The replacement of gluten in cereal-based products remains a challenge for scientists, due to its unique role in network formation, which entraps air bubbles. When gluten is removed from a flour, starch is the main component left. Starch is used as gelling, thickening, adhesion, moisture-retention, stabilizing, film forming, texturizing and anti-staling ingredient. The extent of these properties varies depending on the starch source. The starches can additionally be modified increasing or decreasing certain properties of the starch, depending on the application. Starch plays an important role in the formulation of bakery products and has an even more important role in gluten-free products. In gluten-free products, starch is incorporated into the food formulation to improve baking characteristics such as the specific volume, colour and crumb structure and texture. This review covers a number of topics relating to starch; including; an overview of common and lesser researched starches; chemical composition; morphology; digestibility; functionality and methods of modification. The emphasis of this review is on starch and its properties with respect to the quality of gluten-free products.

  9. Starch Characteristics Linked to Gluten-Free Products.

    Science.gov (United States)

    Horstmann, Stefan W; Lynch, Kieran M; Arendt, Elke K

    2017-04-06

    The increasing prevalence of coeliac disease (CD) and gluten-related disorders has led to increasing consumer demand for gluten-free products with quality characteristics similar to wheat bread. The replacement of gluten in cereal-based products remains a challenge for scientists, due to its unique role in network formation, which entraps air bubbles. When gluten is removed from a flour, starch is the main component left. Starch is used as gelling, thickening, adhesion, moisture-retention, stabilizing, film forming, texturizing and anti-staling ingredient. The extent of these properties varies depending on the starch source. The starches can additionally be modified increasing or decreasing certain properties of the starch, depending on the application. Starch plays an important role in the formulation of bakery products and has an even more important role in gluten-free products. In gluten-free products, starch is incorporated into the food formulation to improve baking characteristics such as the specific volume, colour and crumb structure and texture. This review covers a number of topics relating to starch; including; an overview of common and lesser researched starches; chemical composition; morphology; digestibility; functionality and methods of modification. The emphasis of this review is on starch and its properties with respect to the quality of gluten-free products.

  10. Studies on the Gases Emission under High Temperature Condition from Moulding Sands Bonded by Modified Starch CMS-Na

    Directory of Open Access Journals (Sweden)

    Kaczmarska K.

    2017-03-01

    Full Text Available Emission of gases under high temperature after pouring molten metal into moulds, which contain the organic binder or other additives (solvents or curing agent, may be an important factor influencing both on the quality of the produced castings, and on the state of environment. Therefore, a comprehensive study of the emitted gases would allow to determine restrictions on the use of the moulding sands in foundry technologies, eg. the probability of occurrence of casting defects, and identify the gaseous pollutants emitted to the environment. The aim of the research presented in this paper was to determine the amount of gases that are released at high temperatures from moulding sands bonded by biopolymer binder and the quantitative assessment of the emitted pollutants with particular emphasis on chemical compounds: benzene, toluene, ethylbenzene and xylenes (BTEX. The water-soluble modified potato starch as a sodium carboxymethyl starch with low (CMS-NaL or high (CMS-NaH degree of substitution was a binder in the tested moulding sands. A tests of gases emission level were conducted per the procedure developed at the Faculty of Foundry Engineering (AGH University of Science and Technology involving gas chromatography method (GC. The obtained results of the determination of amount of BTEX compounds generated during the decomposition process of starch binders showed lower emission of aromatic hydrocarbons in comparison with binder based on resin Kaltharz U404 with the acidic curing agent commonly used in the foundries.

  11. Systematic study of the contamination of wastewater treatment plant effluents by organic priority compounds in Almeria province (SE Spain).

    Science.gov (United States)

    Barco-Bonilla, Nieves; Romero-González, Roberto; Plaza-Bolaños, Patricia; Martínez Vidal, José L; Garrido Frenich, Antonia

    2013-03-01

    The occurrence of priority organic pollutants in wastewater (WW) effluents was evaluated in a semi-arid area, characterized by a high agricultural and tourism activity, as Almeria province (Southeastern Spain). Twelve wastewater treatment plants (WWTPs) were sampled in three campaigns during 2011, obtaining a total of 33 WW samples, monitoring 226 compounds, including pesticides, polycyclic aromatic hydrocarbons (PAHs), phenolic compounds and volatile organic compounds (VOCs). Certain banned organochlorine pesticides such as aldrin, pentachlorobenzene, o,p'-DDD and endosulfan lactone were found, and the most frequently detected pesticides were herbicides (diuron, triazines). PAHs and VOCs were also detected, noting that some of these pollutants were ubiquitous. Regarding phenolic compounds, 4-tertoctylphenol was found in all the WW samples at high concentration levels (up to 89.7 μg/L). Furthermore, it was observed that WW effluent samples were less contaminated in the second and third sampling periods, which corresponded to dry season. This evaluation revealed that despite the WW was treated in the WWTP, organic contaminants are still being detected in WW effluents and therefore they are released into the environment. Finally the risk of environmental threat due to the presence of some compounds in WWTP effluents, especially concerning 4-tertoctylphenol must be indicated. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Rheological and microstructural properties of Irradiated starch

    International Nuclear Information System (INIS)

    Atrous Turki, Hager

    2011-01-01

    Gamma irradiation ia s fast and efficient method to improve the functional properties of straches. Wheat and potato starches were submitted, in the present study, at 3,5,10 and 20 kGy radiation dose. The changes induced by irradiation on the rheological properties of these starches showed a decrease in the viscosity with increasing radiation dose. Chemicals bond's hydrolysis has been induced by free radicals that have been identified by EPR. Wheat starch presents five EPR signals after irradiation, whiles potato starch has a weak EPR signal. On the other hand, irradiation caused decrease in amylose content. This decrease is more pronounced in potato starch. Dry irradiated starch's MEB revealed no change in the shape, size and distribution of the granules. While, the observation of wheat starch allowed the complete disappearance of the granular structure and the dissolution of its macromolecules after irradiation which justifies the significant decrease in wheat starch's viscosity irradiated at 20 kGy.

  13. Engineering Potato Starch with a Higher Phosphate Content.

    Directory of Open Access Journals (Sweden)

    Xuan Xu

    Full Text Available Phosphate esters are responsible for valuable and unique functionalities of starch for industrial applications. Also in the cell phosphate esters play a role in starch metabolism, which so far has not been well characterized in storage starch. Laforin, a human enzyme composed of a carbohydrate-binding module and a dual-specificity phosphatase domain, is involved in the dephosphorylation of glycogen. To modify phosphate content and better understand starch (dephosphorylation in storage starch, laforin was engineered and introduced into potato (cultivar Kardal. Interestingly, expression of an (engineered laforin in potato resulted in significantly higher phosphate content of starch, and this result was confirmed in amylose-free potato genetic background (amf. Modified starches exhibited altered granule morphology and size compared to the control. About 20-30% of the transgenic lines of each series showed red-staining granules upon incubation with iodine, and contained higher phosphate content than the blue-stained starch granules. Moreover, low amylose content and altered gelatinization properties were observed in these red-stained starches. Principle component and correlation analysis disclosed a complex correlation between starch composition and starch physico-chemical properties. Ultimately, the expression level of endogenous genes involved in starch metabolism was analysed, revealing a compensatory response to the decrease of phosphate content in potato starch. This study provides a new perspective for engineering starch phosphate content in planta by making use of the compensatory mechanism in the plant itself.

  14. Starch degradability of dry and ensiled high-moisture grains of corn hybrids with different textures at different grinding degrees

    Directory of Open Access Journals (Sweden)

    Wagner dos Reis

    2011-02-01

    Full Text Available This research evaluated corn grains with flint and dent texture (ensiled high-moisture or dried, submitted to grinding degrees, using the in situ ruminal degradation technique. Three rumen canulated adult sheeps were used in a complete randomized design, using a factorial outline 2 x 2 x 3, with two corn hybrids (flint and dent texture, two conservation methods (ensiled high-moisture and dry and three grinding degress (whole, coarsely and finely ground, corresponding to the sieve of 12; 10 and 8 mm. Starch soluble fraction (A of the dent hybrid ensiled corn grains was greater comparing to the dry materials and in both conservation forms this fraction was reduced in the flint texture hybrid, while the insoluble fraction potentially degradable (B the opposite occurred. The degradation potential was higher in grains ensiled in two textures. The ensiled allowed more starch effective degradation in relation to dry grain in two textures and the grains dent texture hybrid also increased such degradation in both conservation methods. The dent texture and the ensiled high-moisture grains proved the best option considering the starch degradability. Regardless of the conservation forms, the grains of corn hybrid flint texture should be finely ground, for providing higher ruminal degradation, while for the dent texture hybrid, the coarsely and whole grinding are the most suitable for ensiled and dry grain, respectively.

  15. Potential applications of Pseudomonas sp. (strain CPSB21) to ameliorate Cr6+ stress and phytoremediation of tannery effluent contaminated agricultural soils.

    Science.gov (United States)

    Gupta, Pratishtha; Rani, Rupa; Chandra, Avantika; Kumar, Vipin

    2018-03-20

    Contamination of agricultural soil with heavy metals has become a serious concern worldwide. In the present study, Cr 6+ resistant plant growth promoting Pseudomonas sp. (strain CPSB21) was isolated from the tannery effluent contaminated agricultural soils and evaluated for the plant growth promoting activities, oxidative stress tolerance, and Cr 6+ bioremediation. Assessment of different plant growth promotion traits, such as phosphate solubilization, indole-3-acetic acid production, siderophores, ammonia and hydrogen cyanide production, revealed that the strain CPSB21 served as an efficient plant growth promoter under laboratory conditions. A pot experiment was performed using sunflower (Helianthus annuus L.) and tomato (Solanum lycopersicum L.) as a test crop. Cr 6+ toxicity reduced plant growth, pigment content, N and P uptake, and Fe accumulation. However, inoculation of strain CPSB21 alleviated the Cr 6+ toxicity and enhanced the plant growth parameters and nutrient uptake. Moreover, Cr toxicity had varied response on oxidative stress tolerance at graded Cr 6+ concentration on both plants. An increase in superoxide dismutase (SOD) and catalase (CAT) activity and reduction in malonialdehyde (MDA) was observed on inoculation of strain CPSB21. Additionally, inoculation of CPSB21 enhanced the uptake of Cr 6+ in sunflower plant, while no substantial enhancement was observed on inoculation in tomato plant.

  16. Regulatory effect of amino acids on the pasting behavior of potato starch is attributable to its binding to the starch chain.

    Science.gov (United States)

    Ito, Azusa; Hattori, Makoto; Yoshida, Tadashi; Watanabe, Ayako; Sato, Ryoichi; Takahashi, Koji

    2006-12-27

    The binding of an amino acid, glycine (Gly), alanine (Ala), epsilon-aminocaproic acid (-AC), monosodium glutamate (GluNa), or lysine (Lys), to starch was examined by a biomolecular interaction analyzer (IAsys). A starch sample (ATS) hydrolyzed to an extent of 1% hydrolysis rate with 15% sulfuric acid was used as a model starch for the binding examination. The reducing end of ATS was oxidized by the Somogyi reagent, and the conversion of the reducing end to the carboxyl group of ATS was confirmed by a carboxylic acid fluorescence labeling reagent. The oxidized ATS was immobilized to the amino group of a sensor cuvette by using water-soluble carbodiimide and N-hydroxysuccinimide through an amide bond. The IAsys examination showed that Gly, Ala, and epsilon-AC scarcely bound to the immobilized starch chains but that GluNa and Lys favorably bound with their increasing concentrations. The relative binding index (RBI) of each amino acid was defined by the ratio of the slope of the linear regression equation between the binding response and the concentration for each amino acid to that for Gly. Because the relationships between the RBI and the pasting characteristics (pasting temperature, peak viscosity, breakdown, and swelling index) could each be expressed by a linear regression equation with a high correlation coefficient, it is concluded that the regulation of the pasting behavior of starch with an amino acid is caused by binding of the amino acid to the starch chains.

  17. Kinetic modelling of enzymatic starch hydrolysis

    NARCIS (Netherlands)

    Bednarska, K.A.

    2015-01-01

    Kinetic modelling of enzymatic starch hydrolysis – a summary

    K.A. Bednarska

    The dissertation entitled ‘Kinetic modelling of enzymatic starch hydrolysis’ describes the enzymatic hydrolysis and kinetic modelling of liquefaction and saccharification of wheat starch.

  18. The role of Aspergillus flavus veA in the production of extracellular proteins during growth on starch substrates.

    Science.gov (United States)

    Duran, Rocio M; Gregersen, Scott; Smith, Timothy D; Bhetariya, Preetida J; Cary, Jeffrey W; Harris-Coward, Pamela Y; Mattison, Christopher P; Grimm, Casey; Calvo, Ana M

    2014-06-01

    The aflatoxin-producer and opportunistic plant pathogenic, filamentous fungus Aspergillus flavus is responsible for the contamination of corn and other important agricultural commodities. In order to obtain nutrients from the host A. flavus produces a variety of extracellular hydrolytic enzymes. Interestingly, A. flavus amylase and protease activity are dependent on the global regulator veA, a gene known to regulate morphogenesis and secondary metabolism in numerous fungi. Analysis of starch degradation by fungal enzymes secreted into broths of starch- or corn kernel-based media showed a notable accumulation of glucose in samples of the A. flavus control strain while the deletion veA sample accumulated high levels of maltose and maltotriose and only a small amount of glucose. Furthermore, SDS-PAGE and proteomics analysis of culture broths from starch- or corn kernel-based media demonstrated differential production of a number of proteins that included a reduction in the amount of a glucoamylase protein in the veA mutant compared to the control strain, while an alpha-amylase was produced in greater quantities in the veA mutant. Quantitative real-time PCR and western blot analyses using anti-glucoamylase or alpha-amylase antisera supported the proteomics results. Additionally, an overall reduction in protease activity was observed in the veA mutant including production of the alkaline protease, oryzin, compared to the control strain. These findings contribute to our knowledge of mechanisms controlling production of hydrolases and other extracellular proteins during growth of A. flavus on natural starch-based substrates.

  19. Microbial production of hydrogen from starch-manufacturing wastes

    Energy Technology Data Exchange (ETDEWEB)

    Yokoi, H.; Maki, R.; Hirose, J.; Hayashi, S. [Miyazaki Univ. (Japan). Dept. of Applied Chemistry

    2002-05-01

    Effective hydrogen production from starch-manufacturing wastes by microorganisms was investigated. Continuous hydrogen production in high yield of 2.7 mol H{sub 2} mol{sup -1} glucose was attained by a mixed culture of Clostridium butyricum and Enterobacter aerogenes HO-39 in the starch waste medium consisting of sweet potato starch residue as a carbon source and corn steep liquor as a nitrogen source in a repeated batch culture. Rhodobacter sp. M-19 could produce hydrogen from the supernatant of the culture broth obtained in the repeated batch culture of C. butyricum and E. aerogenes HO-39. Hydrogen yield of 4.5 mol H{sub 2} mol{sup -1} glucose was obtained by culturing Rhodobacter sp. M-19 in the supernatant supplemented with 20{mu}gl{sup -1} Na{sub 2}MoO{sub 4} 2H{sub 2}O and 10mgl{sup -1} EDTA in a repeated batch culture with pH control at 7.5. Therefore, continuous hydrogen production with total hydrogen yield of 7.2 mol H{sub 2} mol{sup -1} glucose from the starch remaining in the starch residue was attained by the repeated batch culture with C. butyricum and E. aerogenes HO-39 and by the successive repeated batch culture with Rhodobacter sp. M-19. (Author)

  20. Oxidative stress markers in fish (Astyanax sp. and Danio rerio) exposed to urban and agricultural effluents in the Brazilian Pampa biome.

    Science.gov (United States)

    Costa-Silva, D G; Nunes, M E M; Wallau, G L; Martins, I K; Zemolin, A P P; Cruz, L C; Rodrigues, N R; Lopes, A R; Posser, T; Franco, J L

    2015-10-01

    Aquatic ecosystems are under constant risk due to industrial, agricultural, and urban activities, compromising water quality and preservation of aquatic biota. The assessment of toxicological impacts caused by pollutants to aquatic environment using biomarker measurements in fish can provide reliable data to estimate sublethal effects posed by chemicals in contaminated areas. In this study, fish (Astyanax sp. and Danio rerio) exposed to agricultural and urban effluents at the Vacacaí River, Brazil, were tested for potential signs of aquatic contamination. This river comprehends one of the main watercourses of the Brazilian Pampa, a biome with a large biodiversity that has been neglected in terms of environmental and social-economic development. Sites S1 and S2 were chosen by their proximity to crops and wastewater discharge points, while reference site was located upstream of S1 and S2, in an apparently non-degraded area. Fish muscle and brain tissues were processed for determination of acetylcholinesterase as well as oxidative stress-related biomarkers. The results showed signs of environmental contamination, hallmarked by significant changes in cholinesterase activity, expression of metallothionein, antioxidant enzymes, glutathione levels, and activation of antioxidant/cell stress response signaling pathways in fish exposed to contaminated sites when compared to reference. Based on these results, it is evidenced that urban and agricultural activities are posing risk to the environmental quality of water resources at the studied area. It is also demonstrated that cell stress biomarkers may serve as important tools for biomonitoring and development of risk assessment protocols in the Pampa biome.

  1. A REVIEW ON BIODEGRADABLE STARCH BASED FILM

    Directory of Open Access Journals (Sweden)

    Hooman Molavi

    2015-04-01

    Full Text Available In recent years, biodegradable edible films have become very important in research related to food, due to their compatibility with the environment and their use in the food packaging industry. Various sources can be used in the production of biopolymers as biodegradable films that include polysaccharides, proteins and lipids. Among the various polysaccharides, starch due to its low price and its abundance in nature is of significant importance. Several factors affect the properties of starch films; such as the source which starch is obtained from, as well as the ratio of constituents of the starch. Starch films have advantages such as low thickness, flexibility and transparency though; there are some downsides to mention, such as the poor mechanical properties and water vapor permeability. Thus, using starch alone to produce the film will led to restrictions on its use. To improve the mechanical properties of starch films and also increases resistance against humidity, several methods can be used; including the starch modifying techniques such as cross linking of starch and combining starch with other natural polymers. Other methods such as the use of lipid in formulations of films to increase the resistance to moisture are possible, but lipids are susceptible to oxidation. Therefore, new approaches are based on the integration of different biopolymers in food packaging.

  2. Evaluation of dairy effluent management options using multiple criteria analysis.

    Science.gov (United States)

    Hajkowicz, Stefan A; Wheeler, Sarah A

    2008-04-01

    This article describes how options for managing dairy effluent on the Lower Murray River in South Australia were evaluated using multiple criteria analysis (MCA). Multiple criteria analysis is a framework for combining multiple environmental, social, and economic objectives in policy decisions. At the time of the study, dairy irrigation in the region was based on flood irrigation which involved returning effluent to the river. The returned water contained nutrients, salts, and microbial contaminants leading to environmental, human health, and tourism impacts. In this study MCA was used to evaluate 11 options against 6 criteria for managing dairy effluent problems. Of the 11 options, the MCA model selected partial rehabilitation of dairy paddocks with the conversion of remaining land to other agriculture. Soon after, the South Australian Government adopted this course of action and is now providing incentives for dairy farmers in the region to upgrade irrigation infrastructure and/or enter alternative industries.

  3. Radiation treatment of sewage effluent, (2)

    International Nuclear Information System (INIS)

    Sawai, Teruko; Sekiguchi, Masayuki; Sawai, Takeshi; Shimokawa, Toshinari; Tanabe, Hiroko

    1991-01-01

    The water demand of the past several years has increased rapidly. Recycling of municipal waste water is an effective mean of coping with the water shortage in Tokyo. We studied the radiation treatment method of further purification of the effluent from sewage treatment plants. By gamma irradiation the refractory organic substances in the effluent were decomposed and the COD values decreased with increasing dose. The high molecular weight components in the effluent were degraded to lower molecular weight substances and were decomposed finally to carbon dioxide. In this paper we studied on the fading color and the reducing of order of sewage effluent. (author)

  4. Influence of botanic origin and amylose content on the morphology of starch nanocrystals

    Science.gov (United States)

    LeCorre, Déborah; Bras, Julien; Dufresne, Alain

    2011-12-01

    Starch nanocrystals (SNC) are crystalline platelets resulting from the disruption of the semi-crystalline structure of starch granules by the acid hydrolysis of amorphous parts. The aim of this study was to assess the influence of botanic origin and amylose content of native starches on the morphology and properties of resulting nanoparticles. SNC were prepared from five different starches normal maize, high amylose maize, waxy maize, potato, and wheat; covering three botanic origins, two crystalline types, and three range of amylose content (0, 25, and 70%) for maize starch. Different types of nanocrystals were obtained with a thickness ranging between 4 and 8 nm and diameter from about 50 to 120 nm depending on the source. The comparison of their morphology, crystallinity, and rheological properties is proposed for the first time. For the same amylose content, maize, potato, and wheat resulted in rather similar size and crystallinity of SNC proving the limited influence of the botanic origin. For the same botanic origin (maize), differences in size were more important indicating the influence of the amylopectin content. Also, particles tended to show square shapes with increasing native starch's amylopectin content and A-type crystalinity. Thus, only high amylose content starches should be avoided to prepare SNC.

  5. Starch-assisted synthesis and optical properties of ZnS nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Xiuying, E-mail: xiuyingt@yahoo.com; Wen, Jin; Wang, Shumei; Hu, Jilin; Li, Jing; Peng, Hongxia

    2016-05-15

    Highlights: • ZnS spherical nanostructure was prepared via starch-assisted method. • The crystalline lattice structure, morphologies, chemical and optical properties of ZnS nanoparticles. • The forming mechanism of ZnS nanoparticles. • ZnS spherical nano-structure can show blue emission at 460–500 nm. - Abstract: ZnS nanoparticles are fabricated via starch-assisted method. The effects of different starch amounts on structure and properties of samples are investigated, and the forming mechanism of ZnS nanoparticles is discussed. By X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), ultraviolet–visible (UV–vis) spectroscopy and fluorescence (FL) spectrometer, their phases, crystalline lattice structure, morphologies, chemical and optical properties are characterized. The results show that ZnS has polycrystalline spherical structure with the mean diameter of 130 nm. Sample without starch reveals irregular aggregates with particle size distribution of 0.5–2 μm. The band gap value of ZnS is 3.97 eV. The chemical interaction exists between starch molecules and ZnS nanoparticles by hydrogen bonds. The stronger FL emission peaks of ZnS synthesized with starch, indicate a larger content of sulfur vacancies or defects than ZnS synthesized without starch.

  6. Starch-assisted synthesis and optical properties of ZnS nanoparticles

    International Nuclear Information System (INIS)

    Tian, Xiuying; Wen, Jin; Wang, Shumei; Hu, Jilin; Li, Jing; Peng, Hongxia

    2016-01-01

    Highlights: • ZnS spherical nanostructure was prepared via starch-assisted method. • The crystalline lattice structure, morphologies, chemical and optical properties of ZnS nanoparticles. • The forming mechanism of ZnS nanoparticles. • ZnS spherical nano-structure can show blue emission at 460–500 nm. - Abstract: ZnS nanoparticles are fabricated via starch-assisted method. The effects of different starch amounts on structure and properties of samples are investigated, and the forming mechanism of ZnS nanoparticles is discussed. By X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), ultraviolet–visible (UV–vis) spectroscopy and fluorescence (FL) spectrometer, their phases, crystalline lattice structure, morphologies, chemical and optical properties are characterized. The results show that ZnS has polycrystalline spherical structure with the mean diameter of 130 nm. Sample without starch reveals irregular aggregates with particle size distribution of 0.5–2 μm. The band gap value of ZnS is 3.97 eV. The chemical interaction exists between starch molecules and ZnS nanoparticles by hydrogen bonds. The stronger FL emission peaks of ZnS synthesized with starch, indicate a larger content of sulfur vacancies or defects than ZnS synthesized without starch.

  7. Comparison of starch granule development and physicochemical properties of starches in wheat pericarp and endosperm.

    Science.gov (United States)

    Yu, Xurun; Zhou, Liang; Zhang, Jing; Yu, Heng; Xiong, Fei; Wang, Zhong

    2015-01-01

    The objectives of this study were: (i) to characterize structural development of starch granule in pericarp and endosperm during wheat caryopsis growth; (ii) to compare physicochemical properties of starches in pericarp and endosperm; (iii) to further discover the relationships between pericarp starches and endosperm starches. Wheat pericarp and endosperm at different development stages were observed by light microscopy and scanning electron microscopy, respectively. Structural properties of starches were determined using X-ray power diffraction and (13) C solid nuclear magnetic resonance. Pericarp starch granules (PSG) accumulated in amyloplasts and chloroplasts, and showed a typical accumulation peak at 5 days after fertilization (DAF), and then gradually decomposed during 5-22 DAF. PSG in the abdominal region showed a higher rate of decomposition compared to the dorsal region of pericarp. Endosperm starch granules (ESG) accumulated in amyloplasts, and occurred in endosperm cells at 5 DAF, then rapidly enriched the endosperm cells until 22 DAF. Compared with ESG, PSG were compound granules of irregular shape and small size distribution. The results also suggested lower amylose content and V-type single-helix content and higher proportions of double helices for PSG compared to ESG. Based on the structural development of PSG and ESG, we speculated that the saccharides resulting from decomposition of PSG, on one hand, enabled the pericarp to survive before maturity of wheat caryopsis and, on the other hand, provided extra nutrition for the growth of ESG. © 2014 Society of Chemical Industry.

  8. Ultrasonic assisted production of starch nanoparticles: Structural characterization and mechanism of disintegration.

    Science.gov (United States)

    Boufi, Sami; Bel Haaj, Sihem; Magnin, Albert; Pignon, Frédéric; Impéror-Clerc, Marianne; Mortha, Gérard

    2018-03-01

    In this paper, the disintegration of starch (waxy and standard starch) granules into nanosized particles under the sole effect of high power ultrasonication treatment in water/isopropanol is investigated, by using wide methods of analysis. The present work aims at a fully characterization of the starch nanoparticles produced by ultrasonication, in terms of size, morphology and structural properties, and the proposition of a possible mechanism explaining the top-down generation of starch nanoparticles (SNPs) via high intensity ultrasonication. Dynamic light scattering measurements have indicated a leveling of the particle size to about 40nm after 75min of ultrasonication. The WAXD, DSC and Raman have revealed the amorphous character of the SNPs. FE-SEM. AFM observations have confirmed the size measured by DLS and suggested that SNPs exhibited 2D morphology of platelet-like shapes. This morphology is further supported by SAXS. On the basis of data collected from the different characterization techniques, a possible mechanism explaining the disintegration process of starch granules into NPs is proposed. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. A structured approach to target starch solubilisation and hydrolysis for the sugarcane industry.

    Science.gov (United States)

    Cole, Marsha R; Rose, Ingrid; Chung, Yoo Jin; Eggleston, Gillian

    2015-01-01

    In sugarcane processing, starch is considered an impurity that negatively affects processing and reduces the quality of the sugar end-product. In the last decade, there has been a general world-wide increase in starch concentrations in sugarcane. Industrial α-amylases have been used for many years to mitigate issues arising from starch in the sugarcane industry. Mixed results have prompted further studies of the behaviour of different physical forms of starch and their interactions with α-amylases during processing. By using corn starch as a reference in model juices and syrups, processing parameters, activities, and hydrolysis of insoluble, swollen, and soluble starch forms were evaluated for two commercial α-amylases with high (HT) and intermediate (IT) temperature stability, respectively. The ability of starch to solubilise across a sugarcane factory is largely limited by increased Brix values. Optimum target locations and conditions for the application of α-amylases in sugarcane processing are discussed in detail. Published by Elsevier Ltd.

  10. Source terms for airborne effluents

    International Nuclear Information System (INIS)

    Blomeke, J.O.; Perona, J.J.

    1976-01-01

    The origin and nature of fuel cycle wastes are discussed with regard to high-level wastes, cladding, noble gases, iodine, tritium, 14 C, low-level and intermediate-level transuranic wastes, non-transuranic wastes, and ore tailings. The current practice for gaseous effluent treatment is described for light water reactors and high-temperature gas-cooled reactors. Other topics discussed are projections of nuclear power generation; projected accumulation of gaseous wastes; the impact of nuclear fuel cycle centers; and global buildup of airborne effluents

  11. "Green technology": Bio-stimulation by an electric field for textile reactive dye contaminated agricultural soil.

    Science.gov (United States)

    Annamalai, Sivasankar; Santhanam, Manikandan; Selvaraj, Subbulakshmi; Sundaram, Maruthamuthu; Pandian, Kannan; Pazos, Marta

    2018-05-15

    The aim of the study is to degrade pollutants as well as to increase the fertility of agricultural soil by starch enhancing electrokinetic (EKA) and electro-bio-stimulation (EBS) processes. Starch solution was used as an anolyte and voltage gradient was about 0.5V/cm. The influence of bacterial mediated process was evaluated in real contaminated farming soil followed by pilot scale experiment. The in-situ formation of β-cyclodextrin from starch in the treatments had also influence on the significant removal of the pollutants from the farming soil. The conductivity of the soil was effectively reduced from 15.5dS/m to 1.5dS/m which corroborates well with the agricultural norms. The bio-stimulation was confirmed by the increase of the phosphorus content in the treated soil. Finally, phytotoxicity assays demonstrated the viability of the developed technique for soil remediation because plant germination percentage was higher in the treated soil in comparison to untreated soil. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Application of co-anaerobic digester's effluent for sustainable agriculture and aquaculture in the Mekong Delta, Vietnam.

    Science.gov (United States)

    Nguyen, V C N; Fricke, K

    2015-01-01

    This investigation studied the application of digester effluent from co-digestion of pig manure and spent mushroom substrate as a fertilizer for leaf mustard planting and as feed for Tilapia fish growing. The fish raising experiment was set up in 1 × 1 × 1 m hapa conditions (triplicate for each treatment) with the density of 10 individiual per hapa; the fish weight and length were measured every 10 days for 50 continuous days. The leaf mustard was planted in real conditions at farmer's garden with normal cultivation style, and the weight and length of the plant were measured four times during the growing period. The study result shows that the harvest yield of leaf mustard fertilized by the digester effluent was 5.4 times higher than that by an inorganic fertilizer (IF). In addition to its contribution to a higher yield, the digester effluent accelerated the flower formation and shortened cultivation duration. For Tilapia fish culture, the growing rate of fish in the treatments supplied with 50% digester effluent + 50% commercial food (CF) was not significantly different in comparison to the fish cultivation with 100% CF. The result strongly confirms that the digester effluent from a co-digestion biogas plant of pig dung and spent mushroom compost is possible to be used as an organic fertilizer well for not only vegetable planting but also fish culture.

  13. Application of radiation technology in starch modification

    International Nuclear Information System (INIS)

    Chen Huiyuan; Peng Zhigang; Ding Zhongmin; Lu Jiajiu

    2007-01-01

    In order to commercialize the radiation modification of starch, corn starch was irradiated with different dose of 60 Co gamma radiations. Some basic physical and chemical properties of the resulted modified starch paste were measured with emphasis on the viscosity stability and tensile strength. The results indicate that irradiation of corn starch with a dose of 4-10 kGy can decrease its viscosity to 5-14 mPa·s, and the tensile strength can meet the standard set up for textile paste. In comparison with chemical modification for starch, radiation modification is simpler in technology, more convenient in operation, more stable in modification quality, and easier to control. The mechanism of radiation modification of starch was also discussed. (authors)

  14. Defining Starch Binding by Glucan Phosphatases

    DEFF Research Database (Denmark)

    Auger, Kyle; Raththagala, Madushi; Wilkens, Casper

    2015-01-01

    Starch is a vital energy molecule in plants that has a wide variety of uses in industry, such as feedstock for biomaterial processing and biofuel production. Plants employ a three enzyme cyclic process utilizing kinases, amylases, and phosphatases to degrade starch in a diurnal manner. Starch...... is comprised of the branched glucan amylopectin and the more linear glucan amylose. Our lab has determined the first structures of these glucan phosphatases and we have defined their enzymatic action. Despite this progress, we lacked a means to quickly and efficiently quantify starch binding to glucan...

  15. Modified broken rice starch as fat substitute in sausages

    Directory of Open Access Journals (Sweden)

    Valéria Maria Limberger

    2011-09-01

    Full Text Available The demand for low-fat beef products has led the food industry to use fat substitutes such as modified starch. About 14% of broken rice is generated during processing. Nevertheless, this by-product contains high levels of starch; being therefore, great raw material for fat substitution. This study evaluated the applicability of chemically and physically modified broken rice starch as fat substitute in sausages. Extruded and phosphorylated broken rice was used in low-fat sausage formulation. All low-fat sausages presented about 55% reduction in the fat content and around 28% reduction in the total caloric value. Fat replacement with phosphorylated and extruded broken rice starch increased the texture acceptability of low-fat sausages, when compared to low-fat sausages with no modified broken rice. Results suggest that modified broken rice can be used as fat substitute in sausage formulations, yielding lower caloric value products with acceptable sensory characteristics.

  16. Effect of heat moisture treatment (HMT) on product quality of sorghum starch

    Science.gov (United States)

    Haryani, Kristinah; Hadiyanto, Handayani, Noera; Nugraheni, Dwi; Suryanto

    2015-12-01

    Sorghum is a cereal plant that rich of nutrition contents. The high content of carbohydrate in sorghum make this plant can be processed into one of the processed food i.e vermicelli. To give better quality, it is necessary to use flour substitution from sorghum starch. The aim of this study was to evaluate the treatment of natural sorghum starch substitution, the addition of CMC, and a comparison of the natural starch with starch sorghum forage sorghum against solid losses value, rehydration weight and texture profiles. The variable used in this study: amount of natural sorghum starch subtituion (10%, 20%, 30%, 40%, 50%), the addition of CMC (0.1%; 0.2%; 0.3%; 0.4%; 0.5%) and substituting sorghum starch Natural: HMT sorghum starch (1: 1; 1: 2; 1: 3; 1: 4; 1: 5) and the quality parameters were evaluated. The result indicated that to substitute sorghum starch naturally at a rate of 50% had the best results with a value of solid losses 5.1% (white sorghum) 5.83% (red sorghum) and weighing rehydration 301.82% (white sorghums) 293.16% (red sorghum), the addition of CMC with 0.5% concentration of 3.96% solid losses value (red sorghum) 4:21% (white sorghums) and weight rehydration 252.71% (white sorghums) 244.45% (red sorghums).

  17. The activity of barley alpha-amylase on starch granules is enhanced by fusion of a starch binding domain from Aspergillus niger glucoamylase

    DEFF Research Database (Denmark)

    Juge, N.; Nøhr, J.; Le Gal-Coëffet, M.-F.

    2006-01-01

    High affinity for starch granules of certain amylolytic enzymes is mediated by a separate starch binding domain (SBD). In Aspergillus niger glucoamylase (GA-I), a 70 amino acid O-glycosylated peptide linker connects SBD with the catalytic domain. A gene was constructed to encode barley alpha......-amylase 1 (AMY1) fused C-terminally to this SBD via a 37 residue GA-I linker segment. AMY1-SBD was expressed in A. niger, secreted using the AMY1 signal sequence at 25 mg x L(-1) and purified in 50% yield. AMY1-SBD contained 23% carbohydrate and consisted of correctly N-terminally processed multiple forms...... in A. niger). AMY1-SBD showed a 2-fold increased activity for soluble starch at low (0.5%) but not at high (1%) concentration. AMY1-SBD hydrolysed amylose DP440 with an increased degree of multiple attack of 3 compared to 1.9 for rAMY1. Remarkably, at low concentration (2 nM), AMY1-SBD hydrolysed...

  18. Effluent salinity of pipe drains and tube-wells : a case study from the Indus plain

    NARCIS (Netherlands)

    Kelleners, T.J.

    2001-01-01

    Keywords: anisotropy, aquifer, desalinization, effluent salinity, groundwater, irrigation, salt-water upconing, soil salinity, stream-function, subsurface drainage

    Irrigated agriculture in arid and semi-arid zones often suffers from waterlogging and salinity problems.

  19. Potential Water Retention Capacity as a Factor in Silage Effluent Control: Experiments with High Moisture By-product Feedstuffs.

    Science.gov (United States)

    Razak, Okine Abdul; Masaaki, Hanada; Yimamu, Aibibula; Meiji, Okamoto

    2012-04-01

    The role of moisture absorptive capacity of pre-silage material and its relationship with silage effluent in high moisture by-product feedstuffs (HMBF) is assessed. The term water retention capacity which is sometimes used in explaining the rate of effluent control in ensilage may be inadequate, since it accounts exclusively for the capacity of an absorbent incorporated into a pre-silage material prior to ensiling, without consideration to how much the pre-silage material can release. A new terminology, 'potential water retention capacity' (PWRC), which attempts to address this shortcoming, is proposed. Data were pooled from a series of experiments conducted separately over a period of five years using laboratory silos with four categories of agro by-products (n = 27) with differing moisture contents (highest 96.9%, lowest 78.1% in fresh matter, respectively), and their silages (n = 81). These were from a vegetable source (Daikon, Raphanus sativus), a root tuber source (potato pulp), a fruit source (apple pomace) and a cereal source (brewer's grain), respectively. The pre-silage materials were adjusted with dry in-silo absorbents consisting wheat straw, wheat or rice bran, beet pulp and bean stalks. The pooled mean for the moisture contents of all pre-silage materials was 78.3% (±10.3). Silage effluent decreased (p<0.01), with increase in PWRC of pre-silage material. The theoretical moisture content and PWRC of pre-silage material necessary to stem effluent flow completely in HMBF silage was 69.1% and 82.9 g/100 g in fresh matter, respectively. The high correlation (r = 0.76) between PWRC of ensiled material and silage effluent indicated that the latter is an important factor in silage-effluent relationship.

  20. Graft polymerization of vinyl acetate onto starch. Saponification to starch-g-poly(vinyl alcohol)

    International Nuclear Information System (INIS)

    Fanta, G.F.; Burr, R.C.; Doane, W.M.; Russell, C.R.

    1979-01-01

    Graft polymerizations of vinyl acetate onto granular cornstarch were initiated by cobalt-60 irradiation of starch-monomer-water mixtures, and ungrafted poly(vinyl acetate) was separated from the graft copolymer by benzene extraction. Conversions of monomer to polymer were quantitative at a radiation dose of 1.0 Mrad. Over half of the polymer was present as ungrafted poly(vinyl acetate) (grafting efficiency less than 50%), and the graft copolymer contained only 34% grafted synthetic polymer (34% add-on). Lower irradiation doses produced lower conversions of monomer to polymer and gave graft copolymers with lower % add-on. Addition of minor amounts of acrylamide, methyl acrylate, and methacrylic acid as comonomers produced only small increases in % add-on and grafting efficency. Grafting efficiency was increased to 70% when a monomer mixture containing about 10% methyl methacrylate was used. Grafting efficiency could be increased to over 90% if the graft polymerization of vinyl acetate--methyl methacrylate was carried out near 0 0 C; although conversion of monomers to polymer was low and grafted polymer contained 40 to 50% poly(methyl methacrylate). Selected graft copolymers were treated with methanolic sodium hydroxide to convert starch-g-poly(vinyl acetate) to starch-g-poly(vinyl alcohol). The molecular weight of the poly(vinyl alcohol) moiety was about 30,000. The solubility of starch-g-poly(vinyl alcohol) in hot water was less than 50; however, solubility could be increased by substituting either acid-modified or hypochlorite-oxidized for unmodified starch in the graft polymerization reaction. Vinyl acetate was also graft polymerized onto acid-modified starch which had been dispersed and partially solubilized by heating in water. A total irradiation dose of either 1.0 or 0.5 Mrad gave starch-g-poly

  1. Physicochemical and digestibility properties of double-modified banana ( Musa paradisiaca L.) starches.

    Science.gov (United States)

    Carlos-Amaya, Fandila; Osorio-Diaz, Perla; Agama-Acevedo, Edith; Yee-Madeira, Hernani; Bello-Pérez, Luis Arturo

    2011-02-23

    Banana starch was chemically modified using single (esterification or cross-linking) and dual modification (esterification-cross-linking and cross-linking-esterification), with the objective to increase the slowly digestible starch (SDS) and resistant starch (RS) concentrations. Physicochemical properties and in vitro digestibility were analyzed. The degree of substitution of the esterified samples ranged from 0.006 to 0.020. The X-ray diffraction pattern of the modified samples did not show change; however, an increase in crystallinity level was determined (from 23.79 to 32.76%). The ungelatinized samples had low rapidly digestible starch (RDS) (4.23-9.19%), whereas the modified starches showed an increase in SDS (from 10.79 to 16.79%) and had high RS content (74.07-85.07%). In the cooked samples, the esterified starch increased the SDS content (21.32%), followed by cross-linked starch (15.13%). Dual modified starch (cross-linked-esterified) had the lowest SDS content, but the highest RS amount. The esterified and cross-linked-esterified samples had higher peak viscosity than cross-linked and esterified-cross-linked. This characteristic is due to the fact that in dual modification, the groups introduced in the first modification are replaced by the functional group of the second modification. Temperature and enthalpy of gelatinization decreased in modified starches (from 75.37 to 74.02 °C and from 10.42 to 8.68 J/g, respectively), compared with their unmodified starch (76.15 °C and 11.05 J/g). Cross-linked-esterified starch showed the lowest enthalpy of gelatinization (8.68 J/g). Retrogradation temperature decreased in modified starches compared with unmodified (59.04-57.47 °C), but no significant differences were found among the modified samples.

  2. The Research on Thermal Properties and Hydrophobility of the Native Starch/hydrolysis Starch Blends with Treated CaCO3 Powder

    Science.gov (United States)

    Liu, Chia-I.; Huang, Chi-Yuan

    2008-08-01

    In this research, hydrolysis starch was added into the starch blends to study the thermal properties. The enthalpy of blends had a significant decrease to 109J/g as content of treated CaCO3 increased to 5wt%. The modified starch was degraded slightly to produce glucose in the hydrolysis treatment. The amount of glucose in native starch and hydrolysis starch was 0.09 μmol and 0.14 μmol by the DNS measurement. Moreover, CaCO3 treated with titanium coupling agent was also added to improve miscibility and hydrophobility in the starch blends. The contact angle of the blends increased from 60° to 95° when 15wt% treated CaCO3 was added. Treated CaCO3 was confirmed to improve the hydrophobility of starch blends effectively.

  3. THE RESEARCH ON THERMAL PROPERTIES AND HYDROPHOBILITY OF THE NATIVE STARCH/HYDROLYSIS STARCH BLENDS WITH TREATED CaCO3 POWDER

    International Nuclear Information System (INIS)

    Liu, C.-I; Huang, C.-Y.

    2008-01-01

    In this research, hydrolysis starch was added into the starch blends to study the thermal properties. The enthalpy of blends had a significant decrease to 109J/g as content of treated CaCO 3 increased to 5wt%. The modified starch was degraded slightly to produce glucose in the hydrolysis treatment. The amount of glucose in native starch and hydrolysis starch was 0.09 μmol and 0.14 μmol by the DNS measurement. Moreover, CaCO 3 treated with titanium coupling agent was also added to improve miscibility and hydrophobility in the starch blends. The contact angle of the blends increased from 60 deg. to 95 deg. when 15wt% treated CaCO 3 was added. Treated CaCO 3 was confirmed to improve the hydrophobility of starch blends effectively

  4. Starch films from a novel (Pachyrhizus ahipa) and conventional sources: Development and characterization

    International Nuclear Information System (INIS)

    López, Olivia V.; García, María A.

    2012-01-01

    Biodegradable films from ahipa, cassava and corn native starches were developed by casting method and their physicochemical, mechanical and barrier properties were analyzed taking into account the different starch botanical sources. Filmogenic suspensions were prepared; their rheological behaviors were studied and all of them exhibited film-forming ability. However, mechanical assays demonstrated that unplasticized films were too rigid, limiting their technological applications. Thus, 1.5% w/w of glycerol as plasticizer was added to filmogenic suspensions and film flexibility and extensibility were improved, this effect was more significant for ahipa and cassava starch films. Furthermore, thickness, moisture content and water solubility of the developed films were increased when plasticizer was incorporated. Glycerol addition reduced film water vapor permeability and the lowest reduction corresponded to cassava starch films due to the high viscosity of its filmogenic suspensions. Plasticized starch films resulted to be UV radiation barriers; ahipa starch films had the lowest light absorption capacity and higher transparency than cassava and corn starch films. Dynamic-mechanical analysis indicated that plasticized films were partially miscible systems exhibiting two relaxations, one attributed to the starch-rich phase and the other to the glycerol-rich one. Likewise, it could be demonstrated that glycerol exerted a major plasticizing effect on ahipa starch matrixes. Highlights: ► Ahipa, cassava and corn starch films were developed by casting method. ► Glycerol effect on film mechanical behavior was major for tuberous starch films. ► Ahipa starch films resulted to be more transparent with lower UV absorption capacity. ► Plasticized films were partially miscible systems: with a glycerol-rich and a starch-rich phase. ► Glycerol exerted a major plasticizing effect on ahipa starch films.

  5. Effect of dual modification with hydroxypropylation and cross-linking on physicochemical properties of taro starch.

    Science.gov (United States)

    Hazarika, Bidyut Jyoti; Sit, Nandan

    2016-04-20

    Dual modification of taro starch by hydroxypropylation and cross-linking was carried out and the properties of the modified starches were investigated. Two different levels of hydroxypropylation (5 and 10%) and cross-linking (0.05 and 0.10%) were used in different sequences. The amylose contents of the starch decreased due to single and dual modification. For the dual-modified starches, the swelling, solubility and clarity was found to increase with level of hydroxypropylation and decrease with level of cross-linking. The freeze-thaw stability of the dual-modified starches was also affected by the sequence of modification. The viscosities of the cross-linked and dual-modified starches were more than native and hydroxypropylated starches. The firmness of the dual-modified starches was also higher than native and single modified starches. The dual-modified starches have benefits of both type of modifications and could be used for specific purposes e.g. food products requiring high viscosity as well as freeze-thaw stability. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Thermal Characterization of Modified Tacca Leontopetaloides Starch and Natural Rubber Based Thermoplastic Elastomer

    International Nuclear Information System (INIS)

    Ainatul Mardhiah Mohd Amin; Nur Shahidah Ab Aziz; Nurul Shuhada Mohd Makhtar; Miradatul Najwa Mohd Rodhi; Suhaila Mohd Sauid

    2014-01-01

    The purpose of this study is to identify the potential of Tacca leontopetaloides starch as bio-based thermoplastic elastomers, TPEs. Starch based polymer had been recognized to have highly potential in replace existing source of conventional elastomeric polymer. The modification process of blending starch with natural rubber, plasticizers, additives, and filler contribute to the enhancement and improvement for the properties of starch in order to produce biopolymers by approaching the properties of TPEs. Thermal properties of starch based thermoplastic was studied to evaluate the decomposition and degradation of the samples by using Thermogravimetric Analysis, TGA while the properties of endothermic reactions of the samples were thermally analyzed via Differential Scanning Calorimetry, DSC. From the analysis, it was found that the thermal properties of samples were revealed by recognizing GM-2 (green materials, GM) has high thermal resistance towards high temperature up to 480.06 degree Celsius with higher amount of residue which is 4.97 mg compared to other samples. This indicates GM-2 comprises of superior combination of ratio between natural rubbers and glycerol (plasticizer) in purpose of approaching the properties of Thermoplastic Elastomers, TPEs. (author)

  7. Modification of potato starch granule structure and morphology in planta by expression of starch binding domain fusion proteins

    NARCIS (Netherlands)

    Huang, X.

    2010-01-01

    Producing starches with altered composition, structure and novel physico-chemical properties in planta by manipulating the enzymes which are involved in starch metabolism or (over)expressing heterologous enzymes has huge advantages such as broadening the range of starch applications and reducing the

  8. Effect of phytase application during high gravity (HG) maize mashes preparation on the availability of starch and yield of the ethanol fermentation process.

    Science.gov (United States)

    Mikulski, D; Kłosowski, G; Rolbiecka, A

    2014-10-01

    Phytic acid present in raw materials used in distilling industry can form complexes with starch and divalent cations and thus limit their biological availability. The influence of the enzymatic hydrolysis of phytate complexes on starch availability during the alcoholic fermentation process using high gravity (HG) maize mashes was analyzed. Indicators of the alcoholic fermentation as well as the fermentation activity of Saccharomyces cerevisiae D-2 strain were statistically evaluated. Phytate hydrolysis improved the course of the alcoholic fermentation of HG maize mashes. The final ethanol concentration in the media supplemented with phytase applied either before or after the starch hydrolysis increased by 1.0 and 0.6 % v/v, respectively, as compared to the control experiments. This increase was correlated with an elevated fermentation yield that was higher by 5.5 and 2.0 L EtOH/100 kg of starch, respectively. Phytate hydrolysis resulted also in a statistically significant increase in the initial concentration of fermenting sugars by 14.9 mg/mL of mash, on average, which was a consequence of a better availability of starch for enzymatic hydrolysis. The application of phytase increased the attenuation of HG media fermentation thus improving the economical aspect of the ethanol fermentation process.

  9. Effects of alpha-amylase reaction mechanisms on analysis of resistant-starch contents.

    Science.gov (United States)

    Moore, Samuel A; Ai, Yongfeng; Chang, Fengdan; Jane, Jay-lin

    2015-01-22

    This study aimed to understand differences in the resistant starch (RS) contents of native and modified starches obtained using two standard methods of RS content analysis: AOAC Method 991.43 and 2002.02. The largest differences were observed in native potato starch, cross-linked wheat distarch phosphate, and high-amylose corn starch stearic-acid complex (RS5) between using AOAC Method 991.43 with Bacillus licheniformis α-amylase (BL) and AOAC Method 2002.02 with porcine pancreatic α-amylase (PPA). To determine possible reasons for these differences, we hydrolyzed raw-starch granules with BL and PPA with equal activity at pH 6.9 and 37°C for up to 84 h and observed the starch granules displayed distinct morphological differences after the hydrolysis. Starches hydrolyzed by BL showed erosion on the surface of the granules; those hydrolyzed by PPA showed pitting on granule surfaces. These results suggested that enzyme reaction mechanisms, including the sizes of the binding sites and the reaction patterns of the two enzymes, contributed to the differences in the RS contents obtained using different methods of RS analysis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Some rheological properties of sodium caseinate-starch gels.

    Science.gov (United States)

    Bertolini, Andrea C; Creamer, Lawrence K; Eppink, Mieke; Boland, Mike

    2005-03-23

    The influence of sodium caseinate on the thermal and rheological properties of starch gels at different concentrations and from different botanical sources was evaluated. In sodium caseinate-starch gels, for all starches with the exception of potato starch, the sodium caseinate promoted an increase in the storage modulus and in the viscosity of the composite gel when compared with starch gels. The addition of sodium caseinate resulted in an increase in the onset temperature, the gelatinization temperature, and the end temperature, and there was a significant interaction between starch and sodium caseinate for the onset temperature, the peak temperature, and the end temperature. Microscopy results suggested that sodium caseinate promoted an increase in the homogeneity in the matrix of cereal starch gels.

  11. Computational modeling of biodegradable starch based polymer composites

    Science.gov (United States)

    Joshi, Sachin Sudhakar

    2007-12-01

    Purpose. The goal of this study is to improve the favorable molecular interactions between starch and PPC by addition of grafting monomers MA and ROM as compatibilizers, which would advance the mechanical properties of starch/PPC composites. Methodology. DFT and semi-empirical methods based calculations were performed on three systems: (a) starch/PPC, (b) starch/PPC-MA, and (c) starch-ROM/PPC. Theoretical computations involved the determination of optimal geometries, binding-energies and vibrational frequencies of the blended polymers. Findings. Calculations performed on five starch/PPC composites revealed hydrogen bond formation as the driving force behind stable composite formation, also confirmed by the negative relative energies of the composites indicating the existence of binding forces between the constituent co-polymers. The interaction between starch and PPC is also confirmed by the computed decrease in stretching CO and OH group frequencies participating in hydrogen bond formation, which agree qualitatively with the experimental values. A three-step mechanism of grafting MA on PPC was proposed to improve the compatibility of PPC with starch. Nine types of 'blends' produced by covalent bond formation between starch and MA-grafted PPC were found to be energetically stable, with blends involving MA grafted at the 'B' and 'C' positions of PPC indicating a binding-energy increase of 6.8 and 6.2 kcal/mol, respectively, as compared to the non-grafted starch/PPC composites. A similar increase in binding-energies was also observed for three types of 'composites' formed by hydrogen bond formation between starch and MA-grafted PPC. Next, grafting of ROM on starch and subsequent blend formation with PPC was studied. All four types of blends formed by the reaction of ROM-grafted starch with PPC were found to be more energetically stable as compared to the starch/PPC composite and starch/PPC-MA composites and blends. A blend of PPC and ROM grafted at the '

  12. Application of agricultural fibers in pollution removal from aqueous solution

    International Nuclear Information System (INIS)

    Mahvi, A. H.

    2008-01-01

    Discharging different kinds of wastewater and polluted waters such as domestic, industrial and agricultural wastewaters into environment, especially to surface water, can cause heavy pollution of this body sources. With regard to increasing effluent discharge standards to the environment, high considerations should be made when selecting proper treatment processes. Any of chemical, biological and physical treatment processes have its own advantages and disadvantages. It should be kept in mind that economical aspects are important, too. In addition, employing environment friendly methods for treatment is emphasized much more these days. Application of some waste products that could help in this regard, in addition to reuse of these waste materials, can be an advantage, Agricultural fibers are agricultural wastes and are generated in high amounts. The majority of such materials is generated in developing countries and, since they are very cheap, they can be employed as bio sorbents in water and wastewater applications. Polluted surface waters, different wastewaters and partially treated wastewater may be contaminated by heavy metals or some organic matters and these waters should be treated to reduce pollution. The results of investigations show high efficiency of agricultural fibers in heavy metal and phenol removal. In this paper, some studies conducted by the author of this article and other investigators are reviewed

  13. Biological effects and bioaccumulation of steroidal and phenolic endocrine disrupting chemicals in high-back crucian carp exposed to wastewater treatment plant effluents

    International Nuclear Information System (INIS)

    Liu Jingliang; Wang Renmin; Huang Bin; Lin Chan; Zhou Jiali; Pan Xuejun

    2012-01-01

    Endocrine disrupting chemicals (EDCs) found in wastewater treatment plant (WWTP) effluents have been shown to cause adverse effects, but the uptake of EDCs from effluents (measured in fish muscle) are not known. In this study, the biological effects and bioaccumulation of steroidal and phenolic EDCs were assessed in high-back crucian carp (Carassius auratus) exposed to WWTP effluents for 141 days. Compared with fish controls caged in Dianchi Lake, a significant reduction in gonadosomatic index (GSI) and increase in hepatosomatic index (HSI) and plasma vitellogenin (VTG) levels were observed in effluent-exposed fish. The concentrations of steroids and phenols in effluent-exposed fish showed time-dependent increase during the exposure. In addition, bioconcentration factors (BCFs) for steroids and phenols were between 17 and 59 on day 141. The results confirm that steroids and phenols bioconcentrate in fish muscle and this accumulation may account for the biological effects associated with exposures to WWTP effluents. - Highlights: ► We assess the potential risk of WWTP effluents to fish. ► We investigate the biological responses of EDCs in fish exposed to effluents. ► We estimate the uptake of EDCs originating from WWTP effluents in fish. ► The bioaccumulation of EDCs may account for the biological effects of effluents. - Bioaccumulation of endocrine disrupting chemicals in WWTP effluent-exposed fish.

  14. Enzyme-Catalyzed Regioselective Modification of Starch Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Soma [Polytechnic Univ., Brooklyn, NY (United States). National Science Foundation (NSF) Center for Biocatalysis and Bioprocessing of Macromolecules, Othmer Dept. of Chemical and Biological Science and Engineering; Sahoo, Bishwabhusan [Polytechnic Univ., Brooklyn, NY (United States). National Science Foundation (NSF) Center for Biocatalysis and Bioprocessing of Macromolecules, Othmer Dept. of Chemical and Biological Science and Engineering; Teraoka, Iwao [Polytechnic Univ., Brooklyn, NY (United States). National Science Foundation (NSF) Center for Biocatalysis and Bioprocessing of Macromolecules, Othmer Dept. of Chemical and Biological Science and Engineering; Miller, Lisa M. [Brookhaven National Lab. (BNL), Upton, NY (United States). National Synchrotron Light Source (NSLS); Gross, Richard A. [Polytechnic Univ., Brooklyn, NY (United States). National Science Foundation (NSF) Center for Biocatalysis and Bioprocessing of Macromolecules, Othmer Dept. of Chemical and Biological Science and Engineering

    2004-12-13

    The selective esterification of starch nanoparticles was performed using as catalyst Candida antartica Lipase B (CAL-B) in its immobilized (Novozym 435) and free (SP-525) forms. The starch nanoparticles were made accessible for acylation reactions by formation of Aerosol-OT (AOT, bis(2-ethylhexyl)sodium sulfosuccinate) stabilized microemulsions. Starch nanoparticles in microemulsions were reacted with vinyl stearate, ε-caprolactone, and maleic anhydride at 40 °C for 48 h to give starch esters with degrees of substitution (DS) of 0.8, 0.6, and 0.4, respectively. Substitution occurred regioselectively at the C-6 position of the glucose repeat units. Infrared microspectroscopy (IRMS) revealed that AOT-coated starch nanoparticles diffuse into the outer 50 μm shell of catalyst beads. Thus, even though CAL-B is immobilized within a macroporous resin, CAL-B is sufficiently accessible to the starch nanoparticles. When free CAL-B was incorporated along with starch within AOT-coated reversed micelles, CAL-B was also active and catalyzed the acylation with vinyl stearate (24 h, 40 °C) to give DS = 0.5. After removal of surfactant from the modified starch nanoparticles, they were dispersed in DMSO or water and were shown to retain their nanodimensions.

  15. Characterisation and enzymic degradation of non-starch polysccharides in lignocellulosic by-products : a study on sunflower meal and palm-kernel meal

    NARCIS (Netherlands)

    Duesterhoeft, E.M.

    1993-01-01

    Non-starch polysaccharides (NSP) constitute a potentially valuable part of plant by- products deriving from the food and agricultural industries. Their use for various applications (fuel, feed, food) requires the degradation and modification of the complex plant materials. This can be

  16. Development of oxidised and heat-moisture treated potato starch film.

    Science.gov (United States)

    Zavareze, Elessandra da Rosa; Pinto, Vânia Zanella; Klein, Bruna; El Halal, Shanise Lisie Mello; Elias, Moacir Cardoso; Prentice-Hernández, Carlos; Dias, Alvaro Renato Guerra

    2012-05-01

    This study investigated the effects of sodium hypochlorite oxidation and a heat-moisture treatment of potato starch on the physicochemical, pasting and textural properties of potato starches in addition to the water vapour permeability (WVP) and mechanical properties of potato starch films produced from these starches. The carbonyl contents, carboxyl contents, swelling power, solubility, pasting properties and gel texture of the native, oxidised and heat-moisture treated (HMT) starches were evaluated. The films made of native, oxidised and HMT starches were characterised by thickness, water solubility, colour, opacity, mechanical properties and WVP. The oxidised and HMT starches had lower viscosity and swelling power compared to the native starch. The films produced from oxidised potato starch had decreased solubility, elongation and WVP values in addition to increased tensile strength compared to the native starch films. The HMT starch increased the tensile strength and WVP of the starch films compared to the native starch. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Physicochemical and Mechanical Properties of Bambara Groundnut Starch Films Modified with Stearic Acid.

    Science.gov (United States)

    Oyeyinka, Samson A; Singh, Suren; Amonsou, Eric O

    2017-01-01

    The physicochemical and mechanical properties of biofilm prepared from bambara starch modified with varying concentrations of stearic acid (0%, 2.5%, 3.5%, 5%, 7%, and 10%) were studied. By scanning electron microscopy, bambara starch films modified with stearic acid (≥3.5%) showed a progressively rough surface compared to those with 2.5% stearic acid and the control. Fourier transform infrared spectroscopy spectra revealed a peak shift of approximately 31 cm -1 , suggesting the promotion of hydrogen bond formation between hydroxyl groups of starch and stearic acid. The addition of 2.5% stearic acid to bambara starch film reduced water vapor permeability by approximately 17%. Bambara starch films modified with higher concentration of stearic acid were more opaque and showed significantly high melting temperatures. However, mechanical properties of starch films were generally negatively affected by stearic acid. Bambara starch film may be modified with 2.5% stearic acid for improved water vapor permeability and thermal stability with minimal effect on tensile strength. © 2016 Institute of Food Technologists®.

  18. Direct conversion of starch to ethanol using recombınant Saccharomyces cerevisiae containing glucoamylase gene

    Science.gov (United States)

    Purkan, P.; Baktir, A.; Puspaningsih, N. N. T.; Ni'mah, M.

    2017-09-01

    Saccharomyces cerevisiae is known for its high fermentative capacity, high ethanol yield and its high ethanol tolerance. The yeast is inability converting starch (relatively inexpensive substrate) into biofuel ethanol. Insertion of glucoamylase gene in yeast cell of Saccharomyces cerevisiae had been done to increase the yeast function in ethanol fermentation from starch. Transformation of yeast of S. cerevisiae with recombinant plasmid yEP-GLO1 carrying gene encoding glucoamylase (GLO1) produced the recombinant yeast which enable to degrade starch. Optimizing of bioconversion process of starch into ethanol by the yeast of recombinant Saccharomyces cerevisiae [yEP-GLO1] had been also done. Starch concentration which could be digested by recombinant yeast of S. cerevisiae [yEP-GLO1] was 10% (w/v). Bioconversion of starch having concentration 10% (b/v) using recombinant yeast of S. cerevisiae BY5207 [yEP-GLO1] could result ethanol as 20% (v/v) to alcoholmeter and 19,5% (v/v) to gas of chromatography. Otherwise, using recombinant yeast S. cerevisiae S. cerevisiae AS3324 [yEP-GLO1] resulted ethanol as 17% (v/v) to alcoholmeter and 17,5% (v/v) to gas of chromatography. The highest ethanol in starch bioconversion using both recombinant yeasts BY5207 and AS3324 could be resulted on 144 hours of fermentation time as well as in pH 5.

  19. The Starch Granule-Associated Protein EARLY STARVATION1 Is Required for the Control of Starch Degradation in Arabidopsis thaliana Leaves[OPEN

    Science.gov (United States)

    Feike, Doreen; Seung, David; Graf, Alexander; Bischof, Sylvain; Ellick, Tamaryn; Coiro, Mario; Soyk, Sebastian; Eicke, Simona; Mettler-Altmann, Tabea; Lu, Kuan Jen; Trick, Martin; Zeeman, Samuel C.

    2016-01-01

    To uncover components of the mechanism that adjusts the rate of leaf starch degradation to the length of the night, we devised a screen for mutant Arabidopsis thaliana plants in which starch reserves are prematurely exhausted. The mutation in one such mutant, named early starvation1 (esv1), eliminates a previously uncharacterized protein. Starch in mutant leaves is degraded rapidly and in a nonlinear fashion, so that reserves are exhausted 2 h prior to dawn. The ESV1 protein and a similar uncharacterized Arabidopsis protein (named Like ESV1 [LESV]) are located in the chloroplast stroma and are also bound into starch granules. The region of highest similarity between the two proteins contains a series of near-repeated motifs rich in tryptophan. Both proteins are conserved throughout starch-synthesizing organisms, from angiosperms and monocots to green algae. Analysis of transgenic plants lacking or overexpressing ESV1 or LESV, and of double mutants lacking ESV1 and another protein necessary for starch degradation, leads us to propose that these proteins function in the organization of the starch granule matrix. We argue that their misexpression affects starch degradation indirectly, by altering matrix organization and, thus, accessibility of starch polymers to starch-degrading enzymes. PMID:27207856

  20. Treatment of high salt oxidized modified starch waste water using micro-electrolysis, two-phase anaerobic aerobic and electrolysis for reuse

    Science.gov (United States)

    Yi, Xuenong; Wang, Yulin

    2017-06-01

    A combined process of micro-electrolysis, two-phase anaerobic, aerobic and electrolysis was investigated for the treatment of oxidized modified starch wastewater (OMSW). Optimum ranges for important operating variables were experimentally determined and the treated water was tested for reuse in the production process of corn starch. The optimum hydraulic retention time (HRT) of micro-electrolysis, methanation reactor, aerobic process and electrolysis process were 5, 24, 12 and 3 h, respectively. The addition of iron-carbon fillers to the acidification reactor was 200 mg/L while the best current density of electrolysis was 300 A/m2. The biodegradability was improved from 0.12 to 0.34 by micro-electrolysis. The whole treatment was found to be effective with removal of 96 % of the chemical oxygen demand (COD), 0.71 L/day of methane energy recovery. In addition, active chlorine production (15,720 mg/L) was obtained by electrolysis. The advantage of this hybrid process is that, through appropriate control of reaction conditions, effect from high concentration of salt on the treatment was avoided. Moreover, the process also produced the material needed in the production of oxidized starch while remaining emission-free and solved the problem of high process cost.

  1. Potential Water Retention Capacity as a Factor in Silage Effluent Control: Experiments with High Moisture By-product Feedstuffs

    Science.gov (United States)

    Razak, Okine Abdul; Masaaki, Hanada; Yimamu, Aibibula; Meiji, Okamoto

    2012-01-01

    The role of moisture absorptive capacity of pre-silage material and its relationship with silage effluent in high moisture by-product feedstuffs (HMBF) is assessed. The term water retention capacity which is sometimes used in explaining the rate of effluent control in ensilage may be inadequate, since it accounts exclusively for the capacity of an absorbent incorporated into a pre-silage material prior to ensiling, without consideration to how much the pre-silage material can release. A new terminology, ‘potential water retention capacity’ (PWRC), which attempts to address this shortcoming, is proposed. Data were pooled from a series of experiments conducted separately over a period of five years using laboratory silos with four categories of agro by-products (n = 27) with differing moisture contents (highest 96.9%, lowest 78.1% in fresh matter, respectively), and their silages (n = 81). These were from a vegetable source (Daikon, Raphanus sativus), a root tuber source (potato pulp), a fruit source (apple pomace) and a cereal source (brewer’s grain), respectively. The pre-silage materials were adjusted with dry in-silo absorbents consisting wheat straw, wheat or rice bran, beet pulp and bean stalks. The pooled mean for the moisture contents of all pre-silage materials was 78.3% (±10.3). Silage effluent decreased (p<0.01), with increase in PWRC of pre-silage material. The theoretical moisture content and PWRC of pre-silage material necessary to stem effluent flow completely in HMBF silage was 69.1% and 82.9 g/100 g in fresh matter, respectively. The high correlation (r = 0.76) between PWRC of ensiled material and silage effluent indicated that the latter is an important factor in silage-effluent relationship. PMID:25049587

  2. Potential Water Retention Capacity as a Factor in Silage Effluent Control: Experiments with High Moisture By-product Feedstuffs

    Directory of Open Access Journals (Sweden)

    Okine Abdul Razak

    2012-04-01

    Full Text Available The role of moisture absorptive capacity of pre-silage material and its relationship with silage effluent in high moisture by-product feedstuffs (HMBF is assessed. The term water retention capacity which is sometimes used in explaining the rate of effluent control in ensilage may be inadequate, since it accounts exclusively for the capacity of an absorbent incorporated into a pre-silage material prior to ensiling, without consideration to how much the pre-silage material can release. A new terminology, ‘potential water retention capacity’ (PWRC, which attempts to address this shortcoming, is proposed. Data were pooled from a series of experiments conducted separately over a period of five years using laboratory silos with four categories of agro by-products (n = 27 with differing moisture contents (highest 96.9%, lowest 78.1% in fresh matter, respectively, and their silages (n = 81. These were from a vegetable source (Daikon, Raphanus sativus, a root tuber source (potato pulp, a fruit source (apple pomace and a cereal source (brewer’s grain, respectively. The pre-silage materials were adjusted with dry in-silo absorbents consisting wheat straw, wheat or rice bran, beet pulp and bean stalks. The pooled mean for the moisture contents of all pre-silage materials was 78.3% (±10.3. Silage effluent decreased (p<0.01, with increase in PWRC of pre-silage material. The theoretical moisture content and PWRC of pre-silage material necessary to stem effluent flow completely in HMBF silage was 69.1% and 82.9 g/100 g in fresh matter, respectively. The high correlation (r = 0.76 between PWRC of ensiled material and silage effluent indicated that the latter is an important factor in silage-effluent relationship.

  3. Size control synthesis of starch capped-gold nanoparticles

    International Nuclear Information System (INIS)

    Tajammul Hussain, S.; Iqbal, M.; Mazhar, M.

    2009-01-01

    Metallic gold nanoparticles have been synthesized by the reduction of chloroaurate anions [AuCl 4 ] - solution with hydrazine in the aqueous starch and ethylene glycol solution at room temperature and at atmospheric pressure. The characterization of synthesized gold nanoparticles by UV-vis spectroscopy, high resolution transmission electron microscopy (HRTEM), electron diffraction analysis, X-ray diffraction (XRD), and X-rays photoelectron spectroscopy (XPS) indicate that average size of pure gold nanoparticles is 3.5 nm, they are spherical in shape and are pure metallic gold. The concentration effects of [AuCl 4 ] - anions, starch, ethylene glycol, and hydrazine, on particle size, were investigated, and the stabilization mechanism of Au nanoparticles by starch polymer molecules was also studied by FT-IR and thermogravimetric analysis (TGA). FT-IR and TGA analysis shows that hydroxyl groups of starch are responsible of capping and stabilizing gold nanoparticles. The UV-vis spectrum of these samples shows that there is blue shift in surface plasmon resonance peak with decrease in particle size due to the quantum confinement effect, a supporting evidence of formation of gold nanoparticles and this shift remains stable even after 3 months.

  4. Effect of pH on Physicochemical Properties of Cassava Starch Modification Using Ozone

    Directory of Open Access Journals (Sweden)

    Pudjihastuti Isti

    2018-01-01

    Full Text Available Nowadays, starch modification is carried out in order to change the native properties into the better ones, such as high stability, brightness, and better texture. The objectives of this study are to investigate the effect of pH on carboxyl content, swelling power, and water solubility of starch. This research was divided into two main stages, i.e. starch modification by ozone oxidation and analysis. The physicochemical properties of modified cassava starch were investigated under various reaction pH of 7-10 and the reaction time between 0-240 minutes. Reaction condition at pH 10 provided the higher value of carboxyl content and water solubility, but the lower of swelling power. This increase in solubility indicates that the modified oxidation starch readily dissolves in water, due to its small size granules and high amylose content. The significant changes of both parameters were achieved in the first 120 minutes of ozone reaction times. The graphic pattern of water solubility was in contrast with swelling power.

  5. Influence of botanic origin and amylose content on the morphology of starch nanocrystals

    International Nuclear Information System (INIS)

    LeCorre, Déborah; Bras, Julien; Dufresne, Alain

    2011-01-01

    Starch nanocrystals (SNC) are crystalline platelets resulting from the disruption of the semi-crystalline structure of starch granules by the acid hydrolysis of amorphous parts. The aim of this study was to assess the influence of botanic origin and amylose content of native starches on the morphology and properties of resulting nanoparticles. SNC were prepared from five different starches normal maize, high amylose maize, waxy maize, potato, and wheat; covering three botanic origins, two crystalline types, and three range of amylose content (0, 25, and 70%) for maize starch. Different types of nanocrystals were obtained with a thickness ranging between 4 and 8 nm and diameter from about 50 to 120 nm depending on the source. The comparison of their morphology, crystallinity, and rheological properties is proposed for the first time. For the same amylose content, maize, potato, and wheat resulted in rather similar size and crystallinity of SNC proving the limited influence of the botanic origin. For the same botanic origin (maize), differences in size were more important indicating the influence of the amylopectin content. Also, particles tended to show square shapes with increasing native starch’s amylopectin content and A-type crystalinity. Thus, only high amylose content starches should be avoided to prepare SNC.

  6. Characterization of Native and Modified Starches by Potentiometric Titration

    OpenAIRE

    Soto, Diana; Urdaneta, Jose; Pernia, Kelly

    2014-01-01

    The use of potentiometric titration for the analysis and characterization of native and modified starches is highlighted. The polyelectrolytic behavior of oxidized starches (thermal and thermal-chemical oxidation), a graft copolymer of itaconic acid (IA) onto starch, and starch esters (mono- and diester itaconate) was compared with the behavior of native starch, the homopolymer, and the acid employed as a graft monomer and substituent. Starch esters showed higher percentages of acidity, follo...

  7. Characterization of starch films containing starch nanoparticles. Part 2: viscoelasticity and creep properties.

    Science.gov (United States)

    Shi, Ai-Min; Wang, Li-Jun; Li, Dong; Adhikari, Benu

    2013-07-25

    Starch films were successfully produced by incorporating spray dried and vacuum-freeze dried starch nanoparticles. The frequency sweep, creep-recovery behavior and time-temperature superposition (TTS) on these films were studied. All these films exhibited dominant elastic behavior (than viscous behavior) over the entire frequency range (0.1-100 rad/s). The incorporation of both types of starch nanoparticles increased the storage and loss modulus, tanδ, creep strain, creep compliance and creep rate at long time frame and reduced the recovery rate of films while the effect of different kinds of starch nanoparticles on these parameters was similar both in magnitude and trend. TTS method was successfully used to predict long time (over 20 days) creep behavior through the master curves. The addition of these nanoparticles could increase the activation energy parameter used in TTS master curves. Power law and Burger's models were capable of fitting storage and loss modulus (R(2)>0.79) and creep data (R(2)>0.96), respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Atomic force microscopy of starch systems.

    Science.gov (United States)

    Zhu, Fan

    2017-09-22

    Atomic force microscopy (AFM) generates information on topography, adhesion, and elasticity of sample surface by touching with a tip. Under suitable experimental settings, AFM can image biopolymers of few nanometers. Starch is a major food and industrial component. AFM has been used to probe the morphology, properties, modifications, and interactions of starches from diverse botanical origins at both micro- and nano-structural levels. The structural information obtained by AFM supports the blocklet structure of the granules, and provides qualitative and quantitative basis for some physicochemical properties of diverse starch systems. It becomes evident that AFM can complement other microscopic techniques to provide novel structural insights for starch systems.

  9. Wastewater retreatment and reuse system for agricultural irrigation in rural villages.

    Science.gov (United States)

    Kim, Minyoung; Lee, Hyejin; Kim, Minkyeong; Kang, Donghyeon; Kim, Dongeok; Kim, YoungJin; Lee, Sangbong

    2014-01-01

    Climate changes and continuous population growth increase water demands that will not be met by traditional water resources, like surface and ground water. To handle increased water demand, treated municipal wastewater is offered to farmers for agricultural irrigation. This study aimed to enhance the effluent quality from worn-out sewage treatment facilities in rural villages, retreat effluent to meet water quality criteria for irrigation, and assess any health-related and environmental impacts from using retreated wastewater irrigation on crops and in soil. We developed the compact wastewater retreatment and reuse system (WRRS), equipped with filters, ultraviolet light, and bubble elements. A pilot greenhouse experiment was conducted to evaluate lettuce growth patterns and quantify the heavy metal concentration and pathogenic microorganisms on lettuce and in soil after irrigating with tap water, treated wastewater, and WRRS retreated wastewater. The purification performance of each WRRS component was also assessed. The study findings revealed that existing worn-out sewage treatment facilities in rural villages could meet the water quality criteria for treated effluent and also reuse retreated wastewater for crop growth and other miscellaneous agricultural purposes.

  10. Microbial production of raw starch digesting enzymes | Sun | African ...

    African Journals Online (AJOL)

    Raw starch digesting enzymes refer to enzymes that can act directly on raw starch granules below the gelatinization temperature of starch. With the view of energy-saving, a worldwide interest has been focused on raw starch digesting enzymes in recent years, especially since the oil crisis of 1973. Raw starch digesting ...

  11. ( Phaseolus lunatus ) starch as a tablet disintegrant

    African Journals Online (AJOL)

    ) was evaluated. The starch from the seeds was extracted and its disintegrant ability was compared with that of maize starch BP in paracetamol based tablets at concentrations of 0, 2.5, 5, 7.5 and 10 %w/w. The following properties of the starch ...

  12. Antimicrobial nanostructured starch based films for packaging.

    Science.gov (United States)

    Abreu, Ana S; Oliveira, M; de Sá, Arsénio; Rodrigues, Rui M; Cerqueira, Miguel A; Vicente, António A; Machado, A V

    2015-09-20

    Montmorillonite modified with a quaternary ammonium salt C30B/starch nanocomposite (C30B/ST-NC), silver nanoparticles/starch nanocomposite (Ag-NPs/ST-NC) and both silver nanoparticles/C30B/starch nanocomposites (Ag-NPs/C30B/ST-NC) films were produced. The nanoclay (C30B) was dispersed in a starch solution using an ultrasonic probe. Different concentrations of Ag-NPs (0.3, 0.5, 0.8 and 1.0mM) were synthesized directly in starch and in clay/starch solutions via chemical reduction method. Dispersion of C30B silicate layers and Ag-NPs in ST films characterized by X-ray and scanning electron microscopy showed that the presence of Ag-NPs enhanced clay dispersion. Color and opacity measurements, barrier properties (water vapor and oxygen permeabilities), dynamic mechanical analysis and contact angle were evaluated and related with the incorporation of C30B and Ag-NPs. Films presented antimicrobial activity against Staphylococcus aureus, Escherichia coli and Candida albicans without significant differences between Ag-NPs concentrations. The migration of components from the nanostructured starch films, assessed by food contact tests, was minor and under the legal limits. These results indicated that the starch films incorporated with C30B and Ag-NPs have potential to be used as packaging nanostructured material. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Comprehensive evaluation of nitrogen removal rate and biomass, ethanol, and methane production yields by combination of four major duckweeds and three types of wastewater effluent.

    Science.gov (United States)

    Toyama, Tadashi; Hanaoka, Tsubasa; Tanaka, Yasuhiro; Morikawa, Masaaki; Mori, Kazuhiro

    2018-02-01

    To assess the potential of duckweeds as agents for nitrogen removal and biofuel feedstocks, Spirodela polyrhiza, Lemna minor, Lemna gibba, and Landoltia punctata were cultured in effluents of municipal wastewater, swine wastewater, or anaerobic digestion for 4 days. Total dissolved inorganic nitrogen (T-DIN) of 20-50 mg/L in effluents was effectively removed by inoculating with 0.3-1.0 g/L duckweeds. S. polyrhiza showed the highest nitrogen removal (2.0-10.8 mg T-DIN/L/day) and biomass production (52.6-70.3 mg d.w./L/day) rates in all the three effluents. Ethanol and methane were produced from duckweed biomass grown in each effluent. S. polyrhiza and L. punctata biomass showed higher ethanol (0.168-0.191, 0.166-0.172 and 0.174-0.191 g-ethanol/g-biomass, respectively) and methane (340-413 and 343-408 NL CH 4 /kg VS, respectively) production potentials than the others, which is related to their higher carbon and starch contents and calorific values. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  14. EVALUACIÓN DE LAS PROPIEDADES QUÍMICAS Y FUNCIONALES DEL ALMIDÓN NATIVO DE ÑAME CONGO ( Dioscorea bulbifera L. PARA PREDECIR SUS POSIBLES USOS TECNOLÓGICOS I EVALUATION OF CHEMICAL AND FUNCTIONAL PROPERTIES OF NATIVE STARCH OF CONGO YAM ( Dioscorea bulbifera L. TO PREDICT ITS POSSIBLE TECHNOLOGICAL USES

    Directory of Open Access Journals (Sweden)

    Ninoska Meaño Correa

    2018-04-01

    Full Text Available In Venezuela, the starches are mostly obtained from corn, potato, yuca and rice. Nonetheless, there are other sources for starch production and local consumption whose potential could be exploited, seeking alternatives to increase the added value to local agricultural products. Question arose about to evaluate chemical and functional properties of native starch from congo yam in order to predict its possible uses. With this purpose, bulbs of congo yam were collected in the town of Santa Ana of Anzoategui state, Venezuela, and starch was extracted from them for evaluating the yield, purity, chemical composition, amylose content, gel clarity, swelling power and solubility. The starch yield was 7.44%, and its purity was 99.29%. The chemical composition (on dry basis was of 11.29% moisture, 0.29% protein, 0.21% fat, 0.21% ash and 0.0047% phosphorus. The average content of amylose and amylopectin was 30.63 and 69.37%, respectively. As to the functional properties of starchits swelling power had a maximum of 49.05 g gel/g of starch at 95°C, clear gel formation with a transmittance rate of 91 % and a solubility that increases as the temperature rises. These results indicate that the yam congo is a source of starch with advantageous properties, a high amylose content, a clear gel with high swelling power

  15. The treatment of effluents

    International Nuclear Information System (INIS)

    Wormser, G.; Rodier, J.; Robien, E. de; Fernandez, N.

    1964-01-01

    For several years the French Atomic Energy Commission has been studying with interest problems presented by radio-active effluents. Since high activities have not yet received a definite solution we will deal only, in this paper, with the achievements and research concerning low and medium activity effluents. In the field of the achievements, we may mention the various effluent treatment stations which have been built in France; a brief list will be given together with an outline of their main new features. Thus in particular the latest treatment stations put into operation (Grenoble, Fontenay-aux-Roses, Cadarache) will be presented. From all these recent achievements three subjects will be dealt with in more detail. 1 - The workshop for treating with bitumen the sludge obtained after concentration of radionuclides. 2 - The workshop for treating radioactive solid waste by incineration. 3 - A unit for concentrating radio-active liquid effluents by evaporation. In the field of research, several topics have been undertaken, a list will be given. In most cases the research concerns the concentration of radionuclides with a view to a practical and low cost storage, a concentration involving an efficient decontamination of the aqueous liquids in the best possible economic conditions. For improving the treatments leading to the concentration of nuclides, our research has naturally been concerned with perfecting the treatments used in France: coprecipitation and evaporation. In our work we have taken into account in particular two conditions laid down in the French Centres. 1 - A very strict sorting out of the effluents at their source in order to limit in each category the volume of liquid to be dealt with. 2 - The necessity for a very complete decontamination due to the high population density in our country. In the last past we present two original methods for treating liquid effluents. 1 - The use of ion-exchange resins for liquids containing relatively many salts. The

  16. Ruthenium recovery from acetic acid industrial effluent using chemically stable and high-performance polyethylenimine-coated polysulfone-Escherichia coli biomass composite fibers

    International Nuclear Information System (INIS)

    Kim, Sok; Choi, Yoon-E; Yun, Yeoung-Sang

    2016-01-01

    Highlights: • The PEI-PSBF was fabricated and used for Ru recovery from industrial effluent. • PEI-PSBF was not swollen nor dissolved in the effluent. • PEI-PSBF showed superior sorption capacity to commercial resins. • Thin fiber type PEI-PSBF could be successfully applied in flow-through column. - Abstract: Recovery of precious metal ions from waste effluents is of high concern. In general, ruthenium (Ru) is used in the Cativa process as promoter for carbonylation catalyst and discharged into acetic acid effluent. In the present work, we have designed and developed polyethylenimine-coated polysulfone-bacterial biomass composite fiber (PEI-PSBF) to recover Ru from industrial effluent. The sorbent was manufactured by electrostatic attachment of polyethylenimine (PEI) to the surface of polysulfone-biomass composite fiber (PSBF), which was prepared through spinning of the mixture of polysulfone and Escherichia coli biomass in N,N-dimethylformamide (DMF) into water. Developed PEI-PSBF was highly stable in the acetic acid effluent. The maximum sorption capacity of the developed sorbent PEI-PSBF, coated with PEI (with M.W. of 75,000), was 121.28 ± 13.15 mg/g, which was much higher than those of ion exchange resins, TP214, Amberjet 4200, and M500. The PEI-PSBF could be successfully applied in the flow-through column system, showing 120 beds of breakthrough volume.

  17. Ruthenium recovery from acetic acid industrial effluent using chemically stable and high-performance polyethylenimine-coated polysulfone-Escherichia coli biomass composite fibers

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sok [Division of Environmental Science and Ecological Engineering, College of Life Sciences and Biotechnology, Korea University, Seoul 02841 (Korea, Republic of); Division of Semiconductor and Chemical Engineering, Chonbuk National University, Jeonbuk 54896 (Korea, Republic of); Choi, Yoon-E, E-mail: yechoi@korea.ac.kr [Division of Environmental Science and Ecological Engineering, College of Life Sciences and Biotechnology, Korea University, Seoul 02841 (Korea, Republic of); Yun, Yeoung-Sang, E-mail: ysyun@jbnu.ac.kr [Division of Semiconductor and Chemical Engineering, Chonbuk National University, Jeonbuk 54896 (Korea, Republic of); Department of Bioprocess Engineering, Chonbuk National University, Jeonbuk 54896 (Korea, Republic of)

    2016-08-05

    Highlights: • The PEI-PSBF was fabricated and used for Ru recovery from industrial effluent. • PEI-PSBF was not swollen nor dissolved in the effluent. • PEI-PSBF showed superior sorption capacity to commercial resins. • Thin fiber type PEI-PSBF could be successfully applied in flow-through column. - Abstract: Recovery of precious metal ions from waste effluents is of high concern. In general, ruthenium (Ru) is used in the Cativa process as promoter for carbonylation catalyst and discharged into acetic acid effluent. In the present work, we have designed and developed polyethylenimine-coated polysulfone-bacterial biomass composite fiber (PEI-PSBF) to recover Ru from industrial effluent. The sorbent was manufactured by electrostatic attachment of polyethylenimine (PEI) to the surface of polysulfone-biomass composite fiber (PSBF), which was prepared through spinning of the mixture of polysulfone and Escherichia coli biomass in N,N-dimethylformamide (DMF) into water. Developed PEI-PSBF was highly stable in the acetic acid effluent. The maximum sorption capacity of the developed sorbent PEI-PSBF, coated with PEI (with M.W. of 75,000), was 121.28 ± 13.15 mg/g, which was much higher than those of ion exchange resins, TP214, Amberjet 4200, and M500. The PEI-PSBF could be successfully applied in the flow-through column system, showing 120 beds of breakthrough volume.

  18. Radiation processing of starch

    International Nuclear Information System (INIS)

    Kamaruddin Hashim

    2008-01-01

    Starch is a polysaccharide material and generally, it is non-toxic, biocompatible and biodegradable. It mainly use as foodstuff, food additives, production of sugar and flavouring. Sago palm with scientific name Genus Metroxylon belonging to family Palmae is an important resource in the production of sago starch in Malaysia. Nearly 90% of sago planting areas is found in Sarawak State of Malaysia. It can easily grow under the harsh swampy environment. The sago starch content 4% polyphenol, which is an active compound with antioxidant property that has potential benefit in health and skin care applications. Renewal resources and environmental friendly of natural polymer reason for the researcher to explore the potential of this material in order to improve our quality of live. (author)

  19. Silica removal in industrial effluents with high silica content and low hardness.

    Science.gov (United States)

    Latour, Isabel; Miranda, Ruben; Blanco, Angeles

    2014-01-01

    High silica content of de-inked paper mill effluents is limiting their regeneration and reuse after membrane treatments such as reverse osmosis (RO). Silica removal during softening processes is a common treatment; however, the effluent from the paper mill studied has a low hardness content, which makes the addition of magnesium compounds necessary to increase silica removal. Two soluble magnesium compounds (MgCl₂∙6H₂O and MgSO₄∙7H₂O) were tested at five dosages (250-1,500 mg/L) and different initial pH values. High removal rates (80-90%) were obtained with both products at the highest pH tested (11.5). With these removal efficiencies, it is possible to work at high RO recoveries (75-85%) without silica scaling. Although pH regulation significantly increased the conductivity of the waters (at pH 11.5 from 2.1 to 3.7-4.0 mS/cm), this could be partially solved by using Ca(OH)₂ instead of NaOH as pH regulator (final conductivity around 3.0 mS/cm). Maximum chemical oxygen demand (COD) removal obtained with caustic soda was lower than with lime (15 vs. 30%). Additionally, the combined use of a polyaluminum coagulant during the softening process was studied; the coagulant, however, did not significantly improve silica removal, obtaining a maximum increase of only 10%.

  20. Effluent standards

    Energy Technology Data Exchange (ETDEWEB)

    Geisler, G C [Pennsylvania State University (United States)

    1974-07-01

    At the conference there was a considerable interest in research reactor standards and effluent standards in particular. On the program, this is demonstrated by the panel discussion on effluents, the paper on argon 41 measured by Sims, and the summary paper by Ringle, et al. on the activities of ANS research reactor standards committee (ANS-15). As a result, a meeting was organized to discuss the proposed ANS standard on research reactor effluents (15.9). This was held on Tuesday evening, was attended by members of the ANS-15 committee who were present at the conference, participants in the panel discussion on the subject, and others interested. Out of this meeting came a number of excellent suggestions for changes which will increase the utility of the standard, and a strong recommendation that the effluent standard (15.9) be combined with the effluent monitoring standard. It is expected that these suggestions and recommendations will be incorporated and a revised draft issued for comment early this summer. (author)

  1. Development of starch-based materials

    NARCIS (Netherlands)

    Habeych Narvaez, E.A.

    2009-01-01

    Starch-based materials show potential as fully degradable plastics. However, the current
    applicability of these materials is limited due to their poor moisture tolerance and
    mechanical properties. Starch is therefore frequently blended with other polymers to make
    the material more

  2. Starch bioengineering affects cereal grain germination and seedling establishment

    DEFF Research Database (Denmark)

    Shaik, Shahnoor Sultana; Carciofi, Massimiliano; Martens, Helle Juel

    2014-01-01

    Cereal grain germination is central for plant early development, and efficient germination has a major role in crop propagation and malting. Endosperm starch is the prime energy reserve in germination and seedling establishment. In this study, it was hypothesized that optimized starch granule...... structure, and not only the endosperm starch content per se, is important for germination and seedling establishment. For that purpose, wild-type (WT), and specifically engineered degradable hyperphosphorylated (HP) starch and more resistant amylose-only (AO) starch barley lines were used. The transgenics...... showed no severe phenotypes and the WT and HP lines degraded the starch similarly, having 30% residual starch after 12 d of germination. However, the AO line showed significant resistance to degradation, having 57% residual starch. Interestingly, protein and β-glucan (BG) degradation was stimulated...

  3. Effect of genotype and environment on the concentrations of starch and protein in, and the physicochemical properties of starch from, field pea and fababean.

    Science.gov (United States)

    Hood-Niefer, Shannon D; Warkentin, Thomas D; Chibbar, Ravindra N; Vandenberg, Albert; Tyler, Robert T

    2012-01-15

    The effects of genotype and environment and their interaction on the concentrations of starch and protein in, and the amylose content and thermal and pasting properties of starch from, pea and fababean are not well known. Differences due to genotype were observed in the concentrations of starch and protein in pea and fababean, in the onset temperature (To) and peak temperature (Tp) of gelatinization of fababean starch, and in the pasting, trough, cooling and final viscosities of pea starch and fababean starch. Significant two-way interactions (location × genotype) were observed for the concentration of starch in fababean and the amylose content, To, endothermic enthalpy of gelatinization (ΔH) and trough viscosity of fababean starch. Significant three-way interactions (location × year × genotype) were observed for the concentration of starch in pea and the pasting, trough, cooling and final viscosities of pea starch. Differences observed in the concentrations of starch and protein in pea and fababean were sufficient to be of practical significance to end-users, but the relatively small differences in amylose content and physicochemical properties of starch from pea and fababean were not. Copyright © 2011 Society of Chemical Industry.

  4. Towards an optimal process for gelatinisation and hydrolysis of highly concentrated starch-water mixtures with alpha-amylase from B. licheniformis

    NARCIS (Netherlands)

    Baks, T.; Kappen, F.H.J.; Janssen, A.E.M.; Boom, R.M.

    2008-01-01

    The enzymatic hydrolysis of starch is usually carried out with 30¿35 w/w% starch in water. Higher substrate concentrations (50¿70 w/w%) were reached by using a twin-screw extruder for gelatinisation and for mixing enzyme with gelatinised starch prior to enzymatic hydrolysis in a batch reactor. The

  5. Microbial diversity in a full-scale anaerobic reactor treating high ...

    African Journals Online (AJOL)

    DR. NJ TONUKARI

    2012-03-22

    Mar 22, 2012 ... nitrogen (TN), total phosphorus (TP) and acetic acid of influent and effluent from the plant ... Mean treatment results for various parameters of water quality by the plant. Parameter .... in the metabolism of proteins, peptides and starch. They might ... methylovorans hollandica strain DMS1T were methanol, ...

  6. Genome mining for new α-amylase and glucoamylase encoding sequences and high level expression of a glucoamylase from Talaromyces stipitatus for potential raw starch hydrolysis.

    Science.gov (United States)

    Xiao, Zhizhuang; Wu, Meiqun; Grosse, Stephan; Beauchemin, Manon; Lévesque, Michelle; Lau, Peter C K

    2014-01-01

    Mining fungal genomes for glucoamylase and α-amylase encoding sequences led to the selection of 23 candidates, two of which (designated TSgam-2 and NFamy-2) were advanced to testing for cooked or raw starch hydrolysis. TSgam-2 is a 66-kDa glucoamylase recombinantly produced in Pichia pastoris and originally derived for Talaromyces stipitatus. When harvested in a 20-L bioreactor at high cell density (OD600 > 200), the secreted TSgam-2 enzyme activity from P. pastoris strain GS115 reached 800 U/mL. In a 6-L working volume of a 10-L fermentation, the TSgam-2 protein yield was estimated to be ∼8 g with a specific activity of 360 U/mg. In contrast, the highest activity of NFamy-2, a 70-kDa α-amylase originally derived from Neosartorya fischeri, and expressed in P. pastoris KM71 only reached 8 U/mL. Both proteins were purified and characterized in terms of pH and temperature optima, kinetic parameters, and thermostability. TSgam-2 was more thermostable than NFamy-2 with a respective half-life (t1/2) of >300 min at 55 °C and >200 min at 40 °C. The kinetic parameters for raw starch adsorption of TSgam-2 and NFamy-2 were also determined. A combination of NFamy-2 and TSgam-2 hydrolyzed cooked potato and triticale starch into glucose with yields, 71-87 %, that are competitive with commercially available α-amylases. In the hydrolysis of raw starch, the best hydrolysis condition was seen with a sequential addition of 40 U of a thermostable Bacillus globigii amylase (BgAmy)/g starch at 80 °C for 16 h, and 40 U TSgam-2/g starch at 45 °C for 24 h. The glucose released was 8.7 g/10 g of triticale starch and 7.9 g/10 g of potato starch, representing 95 and 86 % of starch degradation rate, respectively.

  7. Adipogenic and energy metabolism gene networks in longissimus lumborum during rapid post-weaning growth in Angus and Angus × Simmental cattle fed high-starch or low-starch diets

    Science.gov (United States)

    Graugnard, Daniel E; Piantoni, Paola; Bionaz, Massimo; Berger, Larry L; Faulkner, Dan B; Loor, Juan J

    2009-01-01

    Background Transcriptional networks coordinate adipocyte differentiation and energy metabolism in rodents. The level of fiber and starch in diets with adequate energy content fed to young cattle has the potential to alter intramuscular adipose tissue development in skeletal muscle. Post-weaning alterations in gene expression networks driving adipogenesis, lipid filling, and intracellular energy metabolism provide a means to evaluate long-term effects of nutrition on longissimus muscle development across cattle types. Results Longissimus lumborum (LL) from Angus (n = 6) and Angus × Simmental (A × S; n = 6) steer calves (155 ± 10 days age) fed isonitrogenous high-starch (HiS; 1.43 Mcal/kg diet dry matter; n = 6) or low-starch (LoS; 1.19 Mcal/kg diet dry matter; n = 6) diets was biopsied at 0, 56, and 112 days of feeding for transcript profiling of 31 genes associated with aspects of adipogenesis and energy metabolism. Intake of dietary energy (9.44 ± 0.57 Mcal/d) across groups during the study did not differ but feed efficiency (weight gain/feed intake) during the first 56 days was greater for steers fed HiS. Expression of PPARG increased ca. 2-fold by day 56 primarily due to HiS in A × S steers. Several potential PPARG-target genes (e.g., ACACA, FASN, FABP4, SCD) increased 2.5-to-25-fold by day 56 across all groups, with responses (e.g., FASN, FABP4) being less pronounced in A × S steers fed LoS. This latter group of steers had markedly greater blood plasma glucose (0.99 vs. 0.79 g/L) and insulin (2.95 vs. 1.17 μg/L) by day 112, all of which were suggestive of insulin resistance. Interactions were observed for FABP4, FASN, GPAM, SCD, and DGAT2, such that feeding A × S steers high-starch and Angus steers low-starch resulted in greater fold-changes by day 56 or 112 (GPAM). Marked up-regulation of INSIG1 (4-to-8-fold) occurred throughout the study across all groups. SREBF1 expression, however, was only greater on day 112 namely due to LoS in A × S steers. The

  8. Adipogenic and energy metabolism gene networks in longissimus lumborum during rapid post-weaning growth in Angus and Angus x Simmental cattle fed high-starch or low-starch diets.

    Science.gov (United States)

    Graugnard, Daniel E; Piantoni, Paola; Bionaz, Massimo; Berger, Larry L; Faulkner, Dan B; Loor, Juan J

    2009-03-31

    Transcriptional networks coordinate adipocyte differentiation and energy metabolism in rodents. The level of fiber and starch in diets with adequate energy content fed to young cattle has the potential to alter intramuscular adipose tissue development in skeletal muscle. Post-weaning alterations in gene expression networks driving adipogenesis, lipid filling, and intracellular energy metabolism provide a means to evaluate long-term effects of nutrition on longissimus muscle development across cattle types. Longissimus lumborum (LL) from Angus (n = 6) and Angus x Simmental (A x S; n = 6) steer calves (155 +/- 10 days age) fed isonitrogenous high-starch (HiS; 1.43 Mcal/kg diet dry matter; n = 6) or low-starch (LoS; 1.19 Mcal/kg diet dry matter; n = 6) diets was biopsied at 0, 56, and 112 days of feeding for transcript profiling of 31 genes associated with aspects of adipogenesis and energy metabolism. Intake of dietary energy (9.44 +/- 0.57 Mcal/d) across groups during the study did not differ but feed efficiency (weight gain/feed intake) during the first 56 days was greater for steers fed HiS. Expression of PPARG increased ca. 2-fold by day 56 primarily due to HiS in A x S steers. Several potential PPARG-target genes (e.g., ACACA, FASN, FABP4, SCD) increased 2.5-to-25-fold by day 56 across all groups, with responses (e.g., FASN, FABP4) being less pronounced in A x S steers fed LoS. This latter group of steers had markedly greater blood plasma glucose (0.99 vs. 0.79 g/L) and insulin (2.95 vs. 1.17 microg/L) by day 112, all of which were suggestive of insulin resistance. Interactions were observed for FABP4, FASN, GPAM, SCD, and DGAT2, such that feeding A x S steers high-starch and Angus steers low-starch resulted in greater fold-changes by day 56 or 112 (GPAM). Marked up-regulation of INSIG1 (4-to-8-fold) occurred throughout the study across all groups. SREBF1 expression, however, was only greater on day 112 namely due to LoS in A x S steers. The lipogenic

  9. Adipogenic and energy metabolism gene networks in longissimus lumborum during rapid post-weaning growth in Angus and Angus × Simmental cattle fed high-starch or low-starch diets

    Directory of Open Access Journals (Sweden)

    Graugnard Daniel E

    2009-03-01

    Full Text Available Abstract Background Transcriptional networks coordinate adipocyte differentiation and energy metabolism in rodents. The level of fiber and starch in diets with adequate energy content fed to young cattle has the potential to alter intramuscular adipose tissue development in skeletal muscle. Post-weaning alterations in gene expression networks driving adipogenesis, lipid filling, and intracellular energy metabolism provide a means to evaluate long-term effects of nutrition on longissimus muscle development across cattle types. Results Longissimus lumborum (LL from Angus (n = 6 and Angus × Simmental (A × S; n = 6 steer calves (155 ± 10 days age fed isonitrogenous high-starch (HiS; 1.43 Mcal/kg diet dry matter; n = 6 or low-starch (LoS; 1.19 Mcal/kg diet dry matter; n = 6 diets was biopsied at 0, 56, and 112 days of feeding for transcript profiling of 31 genes associated with aspects of adipogenesis and energy metabolism. Intake of dietary energy (9.44 ± 0.57 Mcal/d across groups during the study did not differ but feed efficiency (weight gain/feed intake during the first 56 days was greater for steers fed HiS. Expression of PPARG increased ca. 2-fold by day 56 primarily due to HiS in A × S steers. Several potential PPARG-target genes (e.g., ACACA, FASN, FABP4, SCD increased 2.5-to-25-fold by day 56 across all groups, with responses (e.g., FASN, FABP4 being less pronounced in A × S steers fed LoS. This latter group of steers had markedly greater blood plasma glucose (0.99 vs. 0.79 g/L and insulin (2.95 vs. 1.17 μg/L by day 112, all of which were suggestive of insulin resistance. Interactions were observed for FABP4, FASN, GPAM, SCD, and DGAT2, such that feeding A × S steers high-starch and Angus steers low-starch resulted in greater fold-changes by day 56 or 112 (GPAM. Marked up-regulation of INSIG1 (4-to-8-fold occurred throughout the study across all groups. SREBF1 expression, however, was only greater on day 112 namely due to LoS in A

  10. Up-Scaling Production of Carboxymethyl Starch

    International Nuclear Information System (INIS)

    Mohd Hafiz Abdul Nasir; Zainon Othman; Kamaruddin Hashim; Siti Khadijah Abu Hadin; Nurul Nadia Shaaban

    2015-01-01

    Carboxymethyl starch (CMS) is a starch derivative formed by its reaction with sodium monochloroacetate which consist of OH-groups that are partially or completely replaced by ether substitution. Characteristic of CMSS defined by the degree of substitution (DS). DS is defined as the average number of substituents per anhydro glucose unit (AGU), the monomer unit of starch. The upgrading of CMSS production from 10L to 30L requires several experiments with different variable such as amount NaOH, amount of Sago Starch and reaction time. Each will give different DS. Quality control for the product cover moisture, viscosity and paste clarity. Therefore, SOP has been established to control the quality final product. (author)

  11. Simultaneous saccharification of inulin and starch using commercial glucoamylase and the subsequent bioconversion to high titer sorbitol and gluconic acid.

    Science.gov (United States)

    An, Kehong; Hu, Fengxian; Bao, Jie

    2013-12-01

    A new bioprocess for production of sorbitol and gluconic acid from two low-cost feedstocks, inulin and cassava starch, using a commercially available enzyme was proposed in this study. The commercial glucoamylase GA-L NEW from Genencor was found to demonstrate a high inulinase activity for hydrolysis of inulin into fructose and glucose. The glucoamylase was used to replace the expensive and not commercially available inulinase enzyme for simultaneous saccharification of inulin and starch into high titer glucose and fructose hydrolysate. The glucose and fructose in the hydrolysate were converted into sorbitol and gluconic acid using immobilized whole cells of the recombinant Zymomonas mobilis strain. The high gluconic acid concentration of 193 g/L and sorbitol concentration of 180 g/L with the overall yield of 97.3 % were obtained in the batch operations. The present study provided a practical production method of sorbitol and gluconic acid from low cost feedstocks and enzymes.

  12. Comparison of CO(2) and bicarbonate as inorganic carbon sources for triacylglycerol and starch accumulation in Chlamydomonas reinhardtii.

    Science.gov (United States)

    Gardner, Robert D; Lohman, Egan; Gerlach, Robin; Cooksey, Keith E; Peyton, Brent M

    2013-01-01

    Microalgae are capable of accumulating high levels of lipids and starch as carbon storage compounds. Investigation into the metabolic activities involved in the synthesis of these compounds has escalated since these compounds can be used as precursors for food and fuel. Here, we detail the results of a comprehensive analysis of Chlamydomonas reinhardtii using high or low inorganic carbon concentrations and speciation between carbon dioxide and bicarbonate, and the effects these have on inducing lipid and starch accumulation during nitrogen depletion. High concentrations of CO(2) (5%; v/v) produced the highest amount of biofuel precursors, transesterified to fatty acid methyl esters, but exhibited rapid accumulation and degradation characteristics. Low CO(2) (0.04%; v/v) caused carbon limitation and minimized triacylglycerol (TAG) and starch accumulation. High bicarbonate caused a cessation of cell cycling and accumulation of both TAG and starch that was more stable than the other experimental conditions. Starch accumulated prior to TAG and then degraded as maximum TAG was reached. This suggests carbon reallocation from starch-based to TAG-based carbon storage. Copyright © 2012 Wiley Periodicals, Inc.

  13. Preparation and characterization of biodegradable composites based on brazilian cassava starch, corn starch and green coconut fibers

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez, Maria Guadalupe Lomeli; Muniz, Graciela I. Bolzon de.; Satyanarayana, Kestur G.; Tanobe, Valcineide; Iwakiri, Setsuo, E-mail: glomeli12@hotmail.com [Universidade Federal do Parana (UFPR), Curitiba, Parana (Brazil). Centro de Ciencias Florestais e da Madeira

    2010-07-01

    Increasing search for new materials with high premium on eco-friendliness, new trend is emerging in materials development such as composites, which are well established for a wide variety of applications. With growing interest and importance of renewable bioresources has led to more stress on the use of locally available materials. This paper presents preliminary results on the preparation and characterization of composites based on Brazilian coconut fibers and starches of cassava and corn. The raw materials were characterized for their morphology, chemical composition, and thermal properties and X-ray diffraction studies. Coir fibers were also tested for their tensile properties showing increasing strength and Young's modulus with decreasing diameter, while the % elongation remaining constant. Lignin content of coir was found to be 35%. Structure and properties of composites containing 0, 5 10, 15% fibers in both the matrices and prepared by compression molding would be compared. For the 2 types of starch, there was an increase in the tensile strength by the increasing proportion of fiber. The effect of moisture in the composite stress affects the strength and percentage elongation. The water absorption was higher in the composites made from cassava starch. (author)

  14. Preparation and characterization of biodegradable composites based on brazilian cassava starch, corn starch and green coconut fibers

    International Nuclear Information System (INIS)

    Ramirez, Maria Guadalupe Lomeli; Muniz, Graciela I. Bolzon de.; Satyanarayana, Kestur G.; Tanobe, Valcineide; Iwakiri, Setsuo

    2010-01-01

    Increasing search for new materials with high premium on eco-friendliness, new trend is emerging in materials development such as composites, which are well established for a wide variety of applications. With growing interest and importance of renewable bioresources has led to more stress on the use of locally available materials. This paper presents preliminary results on the preparation and characterization of composites based on Brazilian coconut fibers and starches of cassava and corn. The raw materials were characterized for their morphology, chemical composition, and thermal properties and X-ray diffraction studies. Coir fibers were also tested for their tensile properties showing increasing strength and Young's modulus with decreasing diameter, while the % elongation remaining constant. Lignin content of coir was found to be 35%. Structure and properties of composites containing 0, 5 10, 15% fibers in both the matrices and prepared by compression molding would be compared. For the 2 types of starch, there was an increase in the tensile strength by the increasing proportion of fiber. The effect of moisture in the composite stress affects the strength and percentage elongation. The water absorption was higher in the composites made from cassava starch. (author)

  15. Production and Perception of Agricultural Reuse in a Rural Community

    Directory of Open Access Journals (Sweden)

    Valmir Cristiano Marques Arruda

    2017-07-01

    Full Text Available There is a growing competition among the various sectors of society in the world for the use of water where agriculture stands out as a major consumer. Since it is carried out in a controlled manner, irrigation with effluents from a Sewage Treatment Plant (STP is a very attractive practice, as it allows a greater supply of water for nobler purposes. This work had the general objective of evaluating the perception of a rural community in the municipality of Pesqueira, Pernambuco, Brasil, in terms of consumption and production of products cultivated with the practice of agricultural reuse. The local population showed acceptance for the cultivation and consumption of products through agricultural reuse, above all, with reliable information on the appropriate quality of the effluents used for irrigation. In the estimated data, the same community had a potential of production of corn, beans and cotton in the order of 19.8 tons, 3.4 tons and 7.7 tons respectively, with the use of treated sewage in irrigation.

  16. Microscopic Analysis of Corn Fiber Using Corn Starch- and Cellulose-Specific Molecular Probes

    Energy Technology Data Exchange (ETDEWEB)

    Porter, S. E.; Donohoe, B. S.; Beery, K. E.; Xu, Q.; Ding, S.-Y.; Vinzant, T. B.; Abbas, C. A.; Himmel, M. E.

    2007-09-01

    Ethanol is the primary liquid transportation fuel produced from renewable feedstocks in the United States today. The majority of corn grain, the primary feedstock for ethanol production, has been historically processed in wet mills yielding products such as gluten feed, gluten meal, starch, and germ. Starch extracted from the grain is used to produce ethanol in saccharification and fermentation steps; however the extraction of starch is not 100% efficient. To better understand starch extraction during the wet milling process, we have developed fluorescent probes that can be used to visually localize starch and cellulose in samples using confocal microscopy. These probes are based on the binding specificities of two types of carbohydrate binding modules (CBMs), which are small substrate-specific protein domains derived from carbohydrate degrading enzymes. CBMs were fused, using molecular cloning techniques, to a green fluorescent protein (GFP) or to the red fluorescent protein DsRed (RFP). Using these engineered probes, we found that the binding of the starch-specific probe correlates with starch content in corn fiber samples. We also demonstrate that there is starch internally localized in the endosperm that may contribute to the high starch content in corn fiber. We also surprisingly found that the cellulose-specific probe did not bind to most corn fiber samples, but only to corn fiber that had been hydrolyzed using a thermochemical process that removes the residual starch and much of the hemicellulose. Our findings should be of interest to those working to increase the efficiency of the corn grain to ethanol process.

  17. Starch characteristics of transgenic wheat (Triticum aestivum L.) overexpressing the Dx5 high molecular weight glutenin subunit are substantially equivalent to those in nonmodified wheat.

    Science.gov (United States)

    Beckles, Diane M; Tananuwong, Kanitha; Shoemaker, Charles F

    2012-04-01

    The effects of engineering higher levels of the High Molecular Weight Glutenin Dx5 subunit on starch characteristics in transgenic wheat (Triticum aestivum L.) grain were evaluated. This is important because of the interrelationship between starch and protein accumulation in grain, the strong biotechnological interest in modulating Dx5 levels and the increasing likelihood that transgenic wheat will be commercialized in the U.S. Unintended effects of Dx5 overexpression on starch could affect wheat marketability and therefore should be examined. Two controls with native levels of Dx5 were used: (i) the nontransformed Bobwhite cultivar, and (ii) a transgenic line (Bar-D) expressing a herbicide resistant (bar) gene, and they were compared with 2 transgenic lines (Dx5G and Dx5J) containing bar and additional copies of Dx5. There were few changes between Bar-D and Dx5G compared to Bobwhite. However, Dx5J, the line with the highest Dx5 protein (×3.5) accumulated 140% more hexose, 25% less starch and the starch had a higher frequency of longer amylopectin chains. These differences were not of sufficient magnitude to influence starch functionality, because granule morphology, crystallinity, amylose-to-amylopectin ratio, and the enthalpy of starch gelatinization and the amylose-lipid complex melting were similar to the control (P > 0.05). This overall similarity was borne out by Partial Least Squares-Discriminant Function Analysis, which could not distinguish among genotypes. Collectively our data imply that higher Dx5 can affect starch accumulation and some aspects of starch molecular structure but that the starches of the Dx5 transgenic wheat lines are substantially equivalent to the controls. Transgenic manipulation of biochemical pathways is an effective way to enhance food sensory quality, but it can also lead to unintended effects. These spurious changes are a concern to Government Regulatory Agencies and to those Industries that market the product. In this study we

  18. Oligosaccharide and Substrate Binding in the Starch Debranching Enzyme Barley Limit Dextrinase

    DEFF Research Database (Denmark)

    Møller, Marie Sofie; Windahl, Michael Skovbo; Sim, Lyann

    2015-01-01

    Complete hydrolytic degradation of starch requires hydrolysis of both the α-1,4- and α-1,6-glucosidic bonds in amylopectin. Limit dextrinase (LD) is the only endogenous barley enzyme capable of hydrolyzing the α-1,6-glucosidic bond during seed germination, and impaired LD activity inevitably...... reduces the maltose and glucose yields from starch degradation. Crystal structures of barley LD and active-site mutants with natural substrates, products and substrate analogues were sought to better understand the facets of LD-substrate interactions that αconfine high activity of LD to branched...... starch synthesis....

  19. Exploring the potential of fungal-bacterial consortium for low-cost biodegradation and detoxification of textile effluent

    Directory of Open Access Journals (Sweden)

    Lade Harshad

    2016-12-01

    Full Text Available In the present study, the enrichment and isolation of textile effluent decolorizing bacteria were carried out in wheat bran (WB medium. The isolated bacterium Providencia rettgeri strain HSL1 was then tested for decolorization of textile effluent in consortium with a dyestuff degrading fungus Aspergillus ochraceus NCIM 1146. Decolorization study suggests that A. ochraceus NCIM 1146 and P. rettgeri strain HSL1 alone re moves only 6 and 32% of textile effluent American Dye Manufacturing Institute respectively in 30 h at 30 ±0.2°C of microaerophilic incubation, while the fungal-bacterial consortium does 92% ADMI removal within the same time period. The fungal-bacterial consortium exhibited enhanced decolorization rate due to the induction in activities of catalytic enzymes laccase (196%, lignin peroxidase (77%, azoreductase (80% and NADH-DCIP reductase (84%. The HPLC analysis confirmed the biodegradation of textile effluent into various metabolites. Detoxification studies of textile effluent before and after treatment with fungal-bacterial consortium revealed reduced toxicity of degradation metabolites. The efficient degradation and detoxification by fungal-bacterial consortium pre-grown in agricultural based medium thus suggest a promising approach in designing low-cost treatment technologies for textile effluent.

  20. Wastewater effluent dispersal in Southern California Bays

    KAUST Repository

    Uchiyama, Yusuke; Idica, Eileen Y.; McWilliams, James C.; Stolzenbach, Keith D.

    2014-01-01

    The dispersal and dilution of urban wastewater effluents from offshore, subsurface outfalls is simulated with a comprehensive circulation model with downscaling in nested grid configurations for San Pedro and Santa Monica Bays in Southern California during Fall of 2006. The circulation is comprised of mean persistent currents, mesoscale and submesoscale eddies, and tides. Effluent volume inflow rates at Huntington Beach and Hyperion are specified, and both their present outfall locations and alternative nearshore diversion sites are assessed. The effluent tracer concentration fields are highly intermittent mainly due to eddy currents, and their probability distribution functions have long tails of high concentration. The dilution rate is controlled by submesoscale stirring and straining in tracer filaments. The dominant dispersal pattern is alongshore in both directions, approximately along isobaths, over distances of more than 10. km before dilution takes over. The current outfall locations mostly keep the effluent below the surface and away from the shore, as intended, but the nearshore diversions do not. © 2014 Elsevier Ltd.

  1. Wastewater effluent dispersal in Southern California Bays

    KAUST Repository

    Uchiyama, Yusuke

    2014-03-01

    The dispersal and dilution of urban wastewater effluents from offshore, subsurface outfalls is simulated with a comprehensive circulation model with downscaling in nested grid configurations for San Pedro and Santa Monica Bays in Southern California during Fall of 2006. The circulation is comprised of mean persistent currents, mesoscale and submesoscale eddies, and tides. Effluent volume inflow rates at Huntington Beach and Hyperion are specified, and both their present outfall locations and alternative nearshore diversion sites are assessed. The effluent tracer concentration fields are highly intermittent mainly due to eddy currents, and their probability distribution functions have long tails of high concentration. The dilution rate is controlled by submesoscale stirring and straining in tracer filaments. The dominant dispersal pattern is alongshore in both directions, approximately along isobaths, over distances of more than 10. km before dilution takes over. The current outfall locations mostly keep the effluent below the surface and away from the shore, as intended, but the nearshore diversions do not. © 2014 Elsevier Ltd.

  2. Effect of gamma irradiation on thermophysical properties of plasticized starch and starch surfactant films

    Science.gov (United States)

    Cieśla, Krystyna; Watzeels, Nick; Rahier, Hubert

    2014-06-01

    In this work the influence of gamma irradiation on the thermomechanical properties of the films formed in potato starch-glycerol and potato starch-glycerol-surfactant systems were examined by Dynamic Mechanical Analysis, DMA, and Differential Scanning Calorimetry, DSC, and the results were correlated to the amount of the volatile fraction in the films.

  3. Facility effluent monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Gleckler, B.P.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the facility effluent monitoring programs and provides an evaluation of effluent monitoring data. These evaluations are useful in assessing the effectiveness of effluent treatment and control systems, as well as management practices.

  4. VAPOR MIXER FOR GELATINIZATION OF STARCH IN LIQUEFYING STATION

    Directory of Open Access Journals (Sweden)

    V. V. Ananskikh

    2015-01-01

    Full Text Available Starch hydrolysis is main technological process in production of starch sweeteners. Acid hydrolysis of starch using hydrochloric acid is carried out very fast but it does not allow to carry out full hydrolysis and to produce products with given carbohydrate composition. Bioconversion of starch allows to eliminate these limitations. At production of starch sweeteners from starch using enzymes starch hydrolysis is carried out in two stages At first starchstarch liquefaction the rapid increase of viscosity takes place which requires intensive mixing. Liquefying station consists of jet-cooker, holder, pressure regulator and evaporator. Jet-cooker of starch is its main part, starch is quickly turns into soluble (gelatinized state and it is partially liquefied by injection of starch suspension by flow of water vapor under pressure not less than 0,8 MPa. Heat and hydraulic calculation were carried out in order to determine constructive sizes of mixer for cooking of starch. The main hydraulic definable parameters are pressure drop in mixer, vapor pressure at mixer inlet, daily capacity of station by glucose syrup M, product consumption (starch suspension, diameter of inlet section of vapor nozzle. The goal of calculation was to determine vapor consumption M1, diameter d2 of outlet section of confuser injector, length l2 of gelatinization section. For heat calculation there was used Shukhov’s formula along with heat balance equation for gelatinization process. The numerical solution obtained with adopted assumptions given in applied mathematical package MATHCAD, for M = 50 t/day gives required daily vapor consumption M1 = 14,446 т. At hydraulic calculation of pressure drop in mixer there was used Bernoulli’s theorem. Solving obtained equations using MATHCAD found diameter of outlet section of consufer d2 = 0,023 м, vapor pressure inside of mixer p2 = 3,966·105 Па, l2 = 0,128 м. Developed method of calculation is used to determine

  5. Starch bioengineering in Brachypodium distachyon

    DEFF Research Database (Denmark)

    Tanackovic, Vanja; Svensson, Jan Tommy; Buleon, A

    2011-01-01

    Brachypodium distachyon was recently introduced as a model plant for temperate cereals (Opanowicz et al., 2008). We aim to establish Brachypodium as a model for cereal starch metabolism. Grain starch from two lines: Bd21 and Bd21-3 are being characterized. Microscopic, chemical and structural data...... including amylopectin chain length distribution, phosphate content and amylose content provided further evidence for the close relationship to temperate cereals even though starch content and starch granule size were considerably lower than that for barley (Hordeum vulgare). Bioinformatics analyses...... in temperate cereals....

  6. Impact of the Soak and the Malt on the Physicochemical Properties of the Sorghum Starches

    Directory of Open Access Journals (Sweden)

    Huiming Zhou

    2010-08-01

    Full Text Available Starches were isolated from soaked and malted sorghum and studied to understand their physicochemical and functional properties. The swelling power (SP and the water solubility index (WSI of both starches were nearly similar at temperatures below 50 °C, but at more than 50 °C, the starch isolated from malted sorghum showed lower SP and high WSI than those isolated from raw and soaked sorghum. The pasting properties of starches determined by rapid visco-analyzer (RVA showed that malted sorghum starch had a lower viscosity peak value (86 BU/RVU than raw sorghum starch (454 BU/RVU. For both sorghum, X-ray diffractograms exhibited an A-type diffraction pattern, typical of cereal starches and the relative degrees of crystallinity ranged from 9.62 to 15.50%. Differential scanning calorimetry (DSC revealed that raw sorghum starch showed an endotherm with a peak temperature (Tp at 78.06 °C and gelatinization enthalpies of 2.83 J/g whereas five-day malted sorghum starch had a Tp at 47.22 °C and gelatinization enthalpies of 2.06 J/g. Storage modulus (G′ and loss modulus (G″ of all starch suspensions increased steeply to a maximum at 70 °C and then decreased with continuous heating. The structural analysis of malted sorghum starch showed porosity on the granule’s surface susceptible to the amylolysis. The results showed that physicochemical and functional properties of sorghum starches are influenced by soaking and malting methods.

  7. Overcoming hydrolysis of raw corn starch under industrial conditions with Bacillus licheniformis ATCC 9945a α-amylase.

    Science.gov (United States)

    Šokarda Slavić, Marinela; Pešić, Milja; Vujčić, Zoran; Božić, Nataša

    2016-03-01

    α-Amylase from Bacillus licheniformis ATCC 9945a (BliAmy) was proven to be very efficient in hydrolysis of granular starch below the temperature of gelatinization. By applying two-stage feeding strategy to achieve high-cell-density cultivation of Escherichia coli and extracellular production of BliAmy, total of 250.5 U/mL (i.e. 0.7 g/L) of enzyme was obtained. Thermostability of amylase was exploited to simplify purification. The hydrolysis of concentrated raw starch was optimized using response surface methodology. Regardless of raw starch concentration tested (20, 25, 30 %), BliAmy was very effective, achieving the final hydrolysis degree of 91 % for the hydrolysis of 30 % starch suspension after 24 h. The major A-type crystalline structure and amorphous domains of the starch granule were degraded at the same rates, while amylose-lipid complexes were not degraded. BliAmy presents interesting performances on highly concentrated solid starch and could be of value for starch-consuming industries while response surface methodology (RSM) could be efficiently applied for the optimization of the hydrolysis.

  8. Mammalian mucosal α-glucosidases coordinate with α-amylase in the initial starch hydrolysis stage to have a role in starch digestion beyond glucogenesis.

    Science.gov (United States)

    Dhital, Sushil; Lin, Amy Hui-Mei; Hamaker, Bruce R; Gidley, Michael J; Muniandy, Anbuhkani

    2013-01-01

    Starch digestion in the human body is typically viewed in a sequential manner beginning with α-amylase and followed by α-glucosidase to produce glucose. This report indicates that the two enzyme types can act synergistically to digest granular starch structure. The aim of this study was to investigate how the mucosal α-glucosidases act with α-amylase to digest granular starch. Two types of enzyme extracts, pancreatic and intestinal extracts, were applied. The pancreatic extract containing predominantly α-amylase, and intestinal extract containing a combination of α-amylase and mucosal α-glucosidase activities, were applied to three granular maize starches with different amylose contents in an in vitro system. Relative glucogenesis, released maltooligosaccharide amounts, and structural changes of degraded residues were examined. Pancreatic extract-treated starches showed a hydrolysis limit over the 12 h incubation period with residues having a higher gelatinization temperature than the native starch. α-Amylase combined with the mucosal α-glucosidases in the intestinal extract showed higher glucogenesis as expected, but also higher maltooligosaccharide amounts indicating an overall greater degree of granular starch breakdown. Starch residues after intestinal extract digestion showed more starch fragmentation, higher gelatinization temperature, higher crystallinity (without any change in polymorph), and an increase of intermediate-sized or small-sized fractions of starch molecules, but did not show preferential hydrolysis of either amylose or amylopectin. Direct digestion of granular starch by mammalian recombinant mucosal α-glucosidases was observed which shows that these enzymes may work either independently or together with α-amylase to digest starch. Thus, mucosal α-glucosidases can have a synergistic effect with α-amylase on granular starch digestion, consistent with a role in overall starch digestion beyond their primary glucogenesis function.

  9. Mammalian mucosal α-glucosidases coordinate with α-amylase in the initial starch hydrolysis stage to have a role in starch digestion beyond glucogenesis.

    Directory of Open Access Journals (Sweden)

    Sushil Dhital

    Full Text Available Starch digestion in the human body is typically viewed in a sequential manner beginning with α-amylase and followed by α-glucosidase to produce glucose. This report indicates that the two enzyme types can act synergistically to digest granular starch structure. The aim of this study was to investigate how the mucosal α-glucosidases act with α-amylase to digest granular starch. Two types of enzyme extracts, pancreatic and intestinal extracts, were applied. The pancreatic extract containing predominantly α-amylase, and intestinal extract containing a combination of α-amylase and mucosal α-glucosidase activities, were applied to three granular maize starches with different amylose contents in an in vitro system. Relative glucogenesis, released maltooligosaccharide amounts, and structural changes of degraded residues were examined. Pancreatic extract-treated starches showed a hydrolysis limit over the 12 h incubation period with residues having a higher gelatinization temperature than the native starch. α-Amylase combined with the mucosal α-glucosidases in the intestinal extract showed higher glucogenesis as expected, but also higher maltooligosaccharide amounts indicating an overall greater degree of granular starch breakdown. Starch residues after intestinal extract digestion showed more starch fragmentation, higher gelatinization temperature, higher crystallinity (without any change in polymorph, and an increase of intermediate-sized or small-sized fractions of starch molecules, but did not show preferential hydrolysis of either amylose or amylopectin. Direct digestion of granular starch by mammalian recombinant mucosal α-glucosidases was observed which shows that these enzymes may work either independently or together with α-amylase to digest starch. Thus, mucosal α-glucosidases can have a synergistic effect with α-amylase on granular starch digestion, consistent with a role in overall starch digestion beyond their primary

  10. Mammalian Mucosal α-Glucosidases Coordinate with α-Amylase in the Initial Starch Hydrolysis Stage to Have a Role in Starch Digestion beyond Glucogenesis

    Science.gov (United States)

    Dhital, Sushil; Lin, Amy Hui-Mei; Hamaker, Bruce R.; Gidley, Michael J.; Muniandy, Anbuhkani

    2013-01-01

    Starch digestion in the human body is typically viewed in a sequential manner beginning with α-amylase and followed by α-glucosidase to produce glucose. This report indicates that the two enzyme types can act synergistically to digest granular starch structure. The aim of this study was to investigate how the mucosal α-glucosidases act with α-amylase to digest granular starch. Two types of enzyme extracts, pancreatic and intestinal extracts, were applied. The pancreatic extract containing predominantly α-amylase, and intestinal extract containing a combination of α-amylase and mucosal α-glucosidase activities, were applied to three granular maize starches with different amylose contents in an in vitro system. Relative glucogenesis, released maltooligosaccharide amounts, and structural changes of degraded residues were examined. Pancreatic extract-treated starches showed a hydrolysis limit over the 12 h incubation period with residues having a higher gelatinization temperature than the native starch. α-Amylase combined with the mucosal α-glucosidases in the intestinal extract showed higher glucogenesis as expected, but also higher maltooligosaccharide amounts indicating an overall greater degree of granular starch breakdown. Starch residues after intestinal extract digestion showed more starch fragmentation, higher gelatinization temperature, higher crystallinity (without any change in polymorph), and an increase of intermediate-sized or small-sized fractions of starch molecules, but did not show preferential hydrolysis of either amylose or amylopectin. Direct digestion of granular starch by mammalian recombinant mucosal α-glucosidases was observed which shows that these enzymes may work either independently or together with α-amylase to digest starch. Thus, mucosal α-glucosidases can have a synergistic effect with α-amylase on granular starch digestion, consistent with a role in overall starch digestion beyond their primary glucogenesis function. PMID

  11. Influence of phosphate esters on the annealing properties of starch

    DEFF Research Database (Denmark)

    Wischmann, Bente; Muhrbeck, Per

    1998-01-01

    The effects of annealing on native potato, waxy maize, and phosphorylated waxy maize starches were compared. Phosphorylated waxy maize starch responded to annealing in a manner between that of the naturally phosphorylated potato starch and that of the native waxy maize starch. The gelatinisation...... end-point temperature was increased, whereas in the native waxy maize it was decreased. On the other hand, the onset temperature change was much larger in potato starch than in the two waxy maize starches. Steeping also yielded intermediate effects on the phosphorylated waxy maize starch....... It was concluded that the phosphate groups have similar effects as they do in the native, naturally phosphorylated potato starch, although the substitution pattern is not entirely the same in the artificially phosphorylated starch....

  12. Characterization of Modified Tapioca Starch in Atmospheric Argon Plasma under Diverse Humidity by FTIR Spectroscopy

    Science.gov (United States)

    Deeyai, P.; Suphantharika, M.; Wongsagonsup, R.; Dangtip, S.

    2013-01-01

    Tapioca is economical crop grown in Thailand and continues to be one of the major sources of starch. Nowadays, tapioca starch has been widely used in industrial applications, however the native form of starch has limited the applications. Thus scientists try to modify the properties of starch for increasing the stability of the granules, pastes to low pH, heat, and shear during the food process. We modify the tapioca starch by plasma treatment under an argon atmosphere. The degree of modification is determined by following water content in the starch granules. The tablet samples of native starch are also prepared and compared with the plasma treated starch. Before plasma treatment, the starch tablets are stored under three different relative humilities (RH) including 11%, 68%, and 78%RH, respectively. The samples are characterized using FTIR spectroscopy associated with the degree of cross-linking. The results show that the water molecules are engulfed into the starch structure in two ways, a tight bond and a weak absorption of water molecules which is represented at two wave number of 1630 cm-1 and 3272 cm-1, respectively. The degree of cross-linking can be identified from the relative intensity of these two peaks with the C—O—H peak at 993 cm-1. The results show that the degree of cross-linking increase in the plasma treated starch. The degree of cross-linking of the treated starch with high relative humidity is less than that of the treated starch with low relative humidity.

  13. Characterization of Modified Tapioca Starch in Atmospheric Argon Plasma under Diverse Humidity by FTIR Spectroscopy

    International Nuclear Information System (INIS)

    Deeyai, P.; Suphantharika, M.; Wongsagonsup, R.; Dangtip, S.

    2013-01-01

    Tapioca is economical crop grown in Thailand and continues to be one of the major sources of starch. Nowadays, tapioca starch has been widely used in industrial applications, however the native form of starch has limited the applications. Thus scientists try to modify the properties of starch for increasing the stability of the granules, pastes to low pH, heat, and shear during the food process. We modify the tapioca starch by plasma treatment under an argon atmosphere. The degree of modification is determined by following water content in the starch granules. The tablet samples of native starch are also prepared and compared with the plasma treated starch. Before plasma treatment, the starch tablets are stored under three different relative humilities (RH) including 11%, 68%, and 78%RH, respectively. The samples are characterized using FTIR spectroscopy associated with the degree of cross-linking. The results show that the water molecules are engulfed into the starch structure in two ways, a tight bond and a weak absorption of water molecules which is represented at two wave number of 1630 cm −1 and 3272 cm −1 , respectively. The degree of cross-linking can be identified from the relative intensity of these two peaks with the C—O—H peak at 993 cm −1 . The results show that the degree of cross-linking increase in the plasma treated starch. The degree of cross-linking of the treated starch with high relative humidity is less than that of the treated starch with low relative humidity

  14. High-amylose sodium carboxymethyl starch matrices: development and characterization of tramadol hydrochloride sustained-release tablets for oral administration.

    Science.gov (United States)

    Nabais, Teresa; Leclair, Grégoire

    2014-01-01

    Substituted amylose (SA) polymers were produced from high-amylose corn starch by etherification of its hydroxyl groups with chloroacetate. Amorphous high-amylose sodium carboxymethyl starch (HASCA), the resulting SA polymer, was spray-dried to obtain an excipient (SD HASCA) with optimal binding and sustained-release (SR) properties. Tablets containing different percentages of SD HASCA and tramadol hydrochloride were produced by direct compression and evaluated for dissolution. Once-daily and twice-daily SD HASCA tablets containing two common dosages of tramadol hydrochloride (100 mg and 200 mg), a freely water-soluble drug, were successfully developed. These SR formulations presented high crushing forces, which facilitate further tablet processing and handling. When exposed to both a pH gradient simulating the pH variations through the gastrointestinal tract and a 40% ethanol medium, a very rigid gel formed progressively at the surface of the tablets providing controlled drug-release properties. These properties indicated that SD HASCA was a promising and robust excipient for oral, sustained drug-release, which may possibly minimize the likelihood of dose dumping and consequent adverse effects, even in the case of coadministration with alcohol.

  15. Comparison between apparent viscosity related to irradiation dose for corn starch and black pepper

    International Nuclear Information System (INIS)

    Casandroiu, T.; Oprita, N.; Ferdes, O.S.

    1999-01-01

    Dose-effect relationship was studied in the rheoviscometric behaviour of geliffied suspensions of irradiated corn starch and black pepper, as the variation of the apparent viscosity and the shear stress related to the dose. Irradiation has been performed up to 16 kGy. Black pepper was ground and sieved to three particle sizes to analyse also the influence of particle size on the apparent viscosity variation by dose. The rheoviscometric measurements have been carried out by a rotationary viscometer on geliffied suspensions of starch and black pepper, into equivalent starch concentration and alkalinised suspensions for pepper. For starch, shear stress variation by dose is exponential, where the coefficients depend on the shear rate. For black pepper, the curves of apparent viscosity relation to dose also fit an exponential equation and the influence of particle size is discussed, too. Viscometric behaviour similar to irradiation of both corn starch and black pepper could be attributed to starch degradation at relatively high doses and should be used to develop an identification and control method for the ionizing treatment of starch-based food materials. (author)

  16. Potential Application of Gamma Irradiated Polyvinyl Pyrrolidone (PVP) - Starch Hydrogel As Fever Cooling Plaster

    International Nuclear Information System (INIS)

    Darmawan Darwis; Lely Hardiningsih

    2010-01-01

    Research on the development of hydrogel for cooling fever by using gamma irradiation technique has been done. The hydrogel was prepared by irradiating the mixture of PVP with concentration of 7% (w/v) and starch with various concentrations using gamma ray at irradiation dose of 20 to 40 kGy. The results showed that optimum starch concentration to make solid constituent of PVP-starch prior to irradiation were 10-15%. Gel fraction of PVP-starch hydrogel showed an increase by increasing of irradiation dose up to 35 kGy, and acceleration of irradiation dose did not have any effect on gel fraction. At the same irradiation dose, there was no influence of starch concentration on gel fraction. Maximum gel fraction was achieved at 35 kGy irradiation dose. Water content of PVP-Starch hydrogel with starch concentration of 10 to 15% was in the range of 73 - 76%. Water content of hydrogel depends on starch concentration, while irradiation dose does not give any effect on water content of hydrogel. Hydrogel with high water content is potential to be used for fever cooling. Hydrogel PVP-Starch with starch concentration of 10% irradiated by gamma irradiation at the dose of 35 kGy had the ability to reduce water temperature from 40°C to 36°C in 21 minutes, while it took 24 minutes for the hydrogel with starch concentration of 12.5 and 15%. Commercial cooling pad hydrogel need 24 minutes to reduce temperature of water from 40°C to 36°C. Based on these results, it can be concluded that PVP hydrogel with 10% starch content showed faster cooling effect compared to hydrogel with 12.5 and 15 % starch content as well as the commercial hydrogel. Beside these advantages, the hydrogel obtained has some disadvantages such as low stickiness, brittle and opaque. (author)

  17. Sweetening syrup production by enzymatic hydrolysis of starch variety yam (Dioscorea rotundata

    Directory of Open Access Journals (Sweden)

    Carlos Ramón Vidal Tovar

    2011-04-01

    Full Text Available Sweeteners syrups produced by enzymatic hydrolysis from starch of hawthorn yam (Dioscorea rotundata. The starch was extracted by a scratched, washed, sedimented and drying; the yield was quantified taking into account the amount of initial raw material and was determined the concentration of starch, amylose, amylopectin, crude fiber, ash, protein, fat and humidity in accordance with the requirements of the AOAC standards, and ICONTEC COVENIN. Enzymatic hydrolysis of starch was conducted using ∂-amylase, glucoamylase and pullulanase in starch solutions at 36 and 46 % w/w varying the order of application of glucoamylase and pullulanase were determined pH, Brix, moisture, reducing sugars (AR, total sugar (TS and the dextrose equivalent (ED in the syrups obtained. In the liquefaction were obtained with an intermediate syrups sweeteners ED 18.81% and 22.15%. Syrups low and medium conversion with an ED between 34-45% in the first saccharification and high conversion syrups with a DE between 75-79% as a final product. The above values allow the use of hawthorn yam starch syrup production for multiple uses in different food industry processes.

  18. Primary effluent filtration for coastal discharges

    Energy Technology Data Exchange (ETDEWEB)

    Cooper-Smith, G.D. [Yorkshire Water Services, Huddersfield (United Kingdom); Rundle, H. [The Capital Controls Group, Nottingham (United Kingdom)

    1998-12-31

    The use of a Tetra Deep Bed filter demonstration unit to treat primary effluent (Primary Effluent Filtration, PEF) was investigated. PEF proved capable of achieving the UWWTD primary standard, even when the primary stage performs poorly, but is not a cost-effective alternative to chemically assisted settlement. Results demonstrated that using a 1.5 to 2.2 mm grade medium, a filtration rate of 5 m/h, three backwashes a day and dosing 40 mg/l of PAXXL60 (a polyaluminium silicte) an average effluent quality of 20 mg/l BOD and 15 mgl/l total solid could be achieved. UV disinfection produced an effluent which complied with the Bathing Water Directive imperative requirement. A high enterovirus kill was also achieved. However, considerable additional work would be required before PEF could be considered suitable for full-scale applications. (orig.)

  19. Characteristics of starch breads enriched with red potatoes

    Directory of Open Access Journals (Sweden)

    Dorota Gumul

    2017-01-01

    Full Text Available Starch breads may often be low in nutritional value, in comparison to traditional products, as they contain less dietary fibre, protein and micro and macro elements. As an effect a risk of mineral deficiencies and digestive problems caused by lack of dietary fibre could be expected in persons adhering to gluten free diet. To eliminate such problems, a continuous research on gluten-free bread nutritional enrichment, has been done in recent years. Raw material used to enrich gluten free products should include: inulin, lupine, radish, soy, lucerne sprouts, oilseeds, different type of dried fruits. Among the most commonly used raw materials, there are flours from gluten free cereals and pseudocereals such as buckwheat, amaranth and maize are very popular. It seem that valuable alternative could be considered a red, purple or pink potatoes as starch breads additives. The aim of this work was to investigate the effect addition of freeze-dried color potatoes on crude fiber, polyphenols, anthocyanins and flavonoids and nutritional value of gluten free breads. It could be concluded, that freeze-dried color (red, purple, pink potatoes enriched the gluten free breads (starch breads with health promoting bioactive components, like polyphenols, and highly valuable protein. The most promising additive was Magenta Love red potato variety lyophilisates, because gluten free breads enriched with this component were characterized by high protein content and the highest content of free and bound polyphenols, flavonoids, anthocyanins. The presence of all these components increased the nutritional and pro-health value of gluten free product as starch bread.

  20. Effect of Multiple Freezing/Thawing Cycles on the Structural and Functional Properties of Waxy Rice Starch

    Science.gov (United States)

    Tao, Han; Yan, Juan; Zhao, Jianwei; Tian, Yaoqi; Jin, Zhengyu; Xu, Xueming

    2015-01-01

    The structural and functional properties of non-gelatinized waxy rice starch were investigated after 1, 3, 7, and 10 freezing/thawing cycles. Freezing caused an increasing damaged starch from 1.36% in native waxy rice starch to 5.77% in 10 freezing/thawing-treated starch (FTS), as evidenced by the cracking surface on starch granules. More dry matter concentration was leached, which was characterized by high amylopectin concentration (4.34 mg/mL). The leaching was accompanied by a decrease in relative crystallinity from 35.19% in native starch to 31.34% in 10 FTS. Freezing treatment also led to significant deviations in the functional characteristics, for instance decreased gelatinization temperature range, enthalpy, and pasting viscosities. The resistant starch content of 10FTS significantly decreased from 58.9% to 19%, whereas the slowly digested starch content greatly increased from 23.8% in native starch to 50.3%. The increase in susceptibility to enzyme hydrolysis may be attributed to porous granular surface, amylopectin leaching, and the decrease in the relative crystallinity caused by freezing water. PMID:26018506

  1. Effect of multiple freezing/thawing cycles on the structural and functional properties of waxy rice starch.

    Directory of Open Access Journals (Sweden)

    Han Tao

    Full Text Available The structural and functional properties of non-gelatinized waxy rice starch were investigated after 1, 3, 7, and 10 freezing/thawing cycles. Freezing caused an increasing damaged starch from 1.36% in native waxy rice starch to 5.77% in 10 freezing/thawing-treated starch (FTS, as evidenced by the cracking surface on starch granules. More dry matter concentration was leached, which was characterized by high amylopectin concentration (4.34 mg/mL. The leaching was accompanied by a decrease in relative crystallinity from 35.19% in native starch to 31.34% in 10 FTS. Freezing treatment also led to significant deviations in the functional characteristics, for instance decreased gelatinization temperature range, enthalpy, and pasting viscosities. The resistant starch content of 10FTS significantly decreased from 58.9% to 19%, whereas the slowly digested starch content greatly increased from 23.8% in native starch to 50.3%. The increase in susceptibility to enzyme hydrolysis may be attributed to porous granular surface, amylopectin leaching, and the decrease in the relative crystallinity caused by freezing water.

  2. Electrocoagulation for the treatment of textile industry effluent--a review.

    Science.gov (United States)

    Khandegar, V; Saroha, Anil K

    2013-10-15

    Various techniques such as physical, chemical, biological, advanced oxidation and electrochemical are used for the treatment of industrial effluent. The commonly used conventional biological treatment processes are time consuming, need large operational area and are not effective for effluent containing toxic elements. Advanced oxidation techniques result in high treatment cost and are generally used to obtain high purity grade water. The chemical coagulation technique is slow and generates large amount of sludge. Electrocoagulation has recently attracted attention as a potential technique for treating industrial effluent due to its versatility and environmental compatibility. This technique uses direct current source between metal electrodes immersed in the effluent, which causes the dissolution of electrode plates into the effluent. The metal ions, at an appropriate pH, can form wide range of coagulated species and metal hydroxides that destabilize and aggregate particles or precipitate and adsorb the dissolved contaminants. Therefore, the objective of the present manuscript is to review the potential of electrocoagulation for the treatment of industrial effluents, mainly removal of dyes from textile effluent. © 2013 Elsevier Ltd. All rights reserved.

  3. Effects of charge-carrying amino acids on the gelatinization and retrogradation properties of potato starch.

    Science.gov (United States)

    Chen, Wenting; Zhou, Hongxian; Yang, Hong; Cui, Min

    2015-01-15

    The objective of this study was to evaluate the effects of charge-carrying amino acids (lysine (Lys), arginine (Arg), aspartic acid (Asp) and glutamic acid (Glu)) on the gelatinization and retrogradation properties of potato starch. Acidic amino acids (Asp and Glu) showed a decreasing trend in swelling power and granule size of potato starch, but increased amylose leaching and gelatinization temperature. Alkaline amino acid (Arg) showed an increasing trend in swelling power and granule size of potato starch, but decreasing amylose leaching and gelatinization temperature. Lys had no effect on the swelling power of potato starch, except at a high content (0.2 mol/kg). Like other two acidic amino acids, Lys also increased gelatinization temperature. Moreover, the addition of alkaline amino acids (Arg) decreased syneresis value of potato starch but acidic amino acids (Asp and Glu) increased it. Compared to Arg, the syneresis of potato starch with Lys was similar to that of its native starch. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Rheological properties of concentrated solutions of carboxymethyl starch

    Directory of Open Access Journals (Sweden)

    Stojanović Željko

    2003-01-01

    Full Text Available Carboxymethyl starch was synthesized by the esterification of starch with monochloroacetic acid in ethanol as a reaction medium. Three samples of carboxymethyl starch having different degrees of substitution were prepared. The influence of temperature on the viscosity of concentrated carboxymethyl starch solutions, as well as the dynamic-mechanical properties of the concentrated solutions were investigated. The activation energy of viscous flow was determined and it was found that it decreased with increasing degree of substitution. The results of the dynamic-mechanical measurements showed that solutions of starch and carboxymethyl starches with higher degrees of substitution behave as gels. Values of the storage modulus in the rubbery plateau were used to calculate the molar masses between two points of physical crosslinking, the density of crosslinking and the distance between two points of crosslinking.

  5. Mechanochemical degradation of potato starch paste under ultrasonic irradiation

    Institute of Scientific and Technical Information of China (English)

    LI Jian-bin; LI Lin; LI Bing; CHEN Ling; GUI Lin

    2006-01-01

    In the paper, changes in the molecular weight, the intrinsic viscosity and the polydispersity (molecular mass distribution) of treated potato starch paste were studied under different ultrasonic conditions which include irradiation time, ultrasonic intensity, potato starch paste concentration, and distance from probe tip on the degradation of potato starch paste. Intrinsic viscosity of potato starch paste was determined following the ASTM (American Society for Testing and Materials) standard practice for dilute solution viscosity of polymers. Molecular mass and polydispersity of potato starch paste were measured on GPC (Gel Permeation Chromatography). The results showed that the average molecular mass and the intrinsic viscosity of starch strongly depended on irradiation time. Degradation increased with prolonged ultrasonic irradiation time, and the increase of ultrasonic intensity could accelerate the degradation, resulting in a faster degradation rate, a lower limiting value and a higher degradation extent. Starch samples were degraded faster in dilute solutions than in concentrated solutions. The molecular mass and the intrinsic viscosity of starch increased with the increase of distance from probe tip. Our results also showed that the polydispersity decreased with ultrasonic irradiation under all ultrasonic conditions. Ultrasonic degradation of potato starch paste occured based on the mechanism of molecular relaxation of starch paste. In the initial stage, ultrasonic degradation of potato starch paste was a random process, and the molecular mass distribution was broad. After that, ultrasonic degradation of potato starch paste changed to a nonrandom process, and the molecular mass distribution became narrower. Finally, molecular mass distribution tended toward a saturation value.

  6. Nematode suppression and growth stimulation in corn plants (Zea mays L.) irrigated with domestic effluent.

    Science.gov (United States)

    Barros, Kenia Kelly; do Nascimento, Clístenes Williams Araújo; Florencio, Lourdinha

    2012-01-01

    Treated wastewater has great potential for agricultural use due to its concentrations of nutrients and organic matter, which are capable of improving soil characteristics. Additionally, effluents can induce suppression of plant diseases caused by soil pathogens. This study evaluates the effect of irrigation with effluent in a UASB reactor on maize (Zea mays L.) development and on suppression of the diseases caused by nematodes of the genus Meloidogyne. Twelve lysimeters of 1 m(3) each were arranged in a completely randomized design, with four treatments and three replicates. The following treatments were used: T1 (W+I), irrigation with water and infestation with nematodes; T2 (W+I+NPK), irrigation with water, infestation with nematodes and fertilization with nitrogen (N), phosphorus (P) and potassium (K); T3 (E+I), irrigation with effluent and infestation with nematodes; and T4 (E+I+P), irrigation with effluent, infestation with nematodes and fertilization with phosphorus. The plants irrigated with the effluent plus the phosphorus fertilizer had better growth and productivity and were more resistant to the disease symptoms caused by the nematodes. The suppression levels may have been due to the higher levels of Zn and NO(3)(-) found in the leaf tissue of the plants irrigated with the effluent and phosphorus fertilizer.

  7. Synthesis and characterization of polystyrene-starch polyblend

    International Nuclear Information System (INIS)

    Tetty Kemala; M Syaeful Fahmi; Suminar S Achmadi

    2010-01-01

    Polystyrene foam (PS) is a polymer that is widely used but not biodegradable. Therefore, PS-starch polyblend was developed. In this research the effect of glycerol as plasticizer was evaluated based on mechanical and thermal analyses. PS-starch polyblends were produced by mixing PS and starch solution with composition ratios of 60:40, 65:35, 70:30, 75:25, and 80:20 percent by weight. Polylactic acid (20 %) was added as compatibilizer. The polyblends were analyzed its tensile strength, thermal properties, and density. The PS-starch polyblends were white opaque in color and fragile. The properties of tensile strength and density of the polyblends were in the range of that of pure PS. The tensile strength and density increases as PS constituents increasing with the best composition ratio of 80 PS to 20 of starch. Peak of glass transition and melting point seen a single on composition ration 80 PS to 20 of starch. Additional amount of glycerol did not affect the thermal property, but has caused a slight decrease in tensile strength and density. (author)

  8. The Importance of Agriculture Science Course Sequencing in High Schools: A View from Collegiate Agriculture Students

    Science.gov (United States)

    Wheelus, Robin P.

    2009-01-01

    The objective of this study was to investigate the importance of Agriculture Science course sequencing in high schools, as a preparatory factor for students enrolled in collegiate agriculture classes. With the variety of courses listed in the Texas Essential Knowledge and Skills (TEKS) for Agriculture Science, it has been possible for counselors,…

  9. Characterization of Modified Tapioca Starch Solutions and Their Sprays for High Temperature Coating Applications

    Science.gov (United States)

    Naz, M. Y.; Sulaiman, S. A.; Ariwahjoedi, B.; Shaari, Ku Zilati Ku

    2014-01-01

    The objective of the research was to understand and improve the unusual physical and atomization properties of the complexes/adhesives derived from the tapioca starch by addition of borate and urea. The characterization of physical properties of the synthesized adhesives was carried out by determining the effect of temperature, shear rate, and mass concentration of thickener/stabilizer on the complex viscosity, density, and surface tension. In later stage, phenomenological analyses of spray jet breakup of heated complexes were performed in still air. Using a high speed digital camera, the jet breakup dynamics were visualized as a function of the system input parameters. The further analysis of the grabbed images confirmed the strong influence of the input processing parameters on full cone spray patternation. It was also predicted that the heated starch adhesive solutions generate a dispersed spray pattern by utilizing the partial evaporation of the spraying medium. Below 40°C of heating temperature, the radial spray cone width and angle did not vary significantly with increasing Reynolds and Weber numbers at early injection phases leading to increased macroscopic spray propagation. The discharge coefficient, mean flow rate, and mean flow velocity were significantly influenced by the load pressure but less affected by the temperature. PMID:24592165

  10. Enzymic conversion of starch to glucose

    Energy Technology Data Exchange (ETDEWEB)

    1964-08-19

    Corn is steeped in a SO/sub 2/ solution for 30 to 40 hours, coarsely ground, separated from the germ, and filtered. A 35% suspension of the germ-free corn, still containing fibers, hull, and gluten, is treated with Ca(OH)/sub 2/ to raise the pH to 6.5 to 7.0. A starch-liquifying enzyme is added and after a 2 hours treatment at 85/sup 0/ the liquefied starch is cooled to 60/sup 0/ and the pH is adjusted to 4.5 to 5.0 with H/sub 2/SO/sub 4/. A saccharifying enzyme is now added. After 40 to 81 hours, a raw glucose solution is obtained and is freed from fibers and gluten by filtration. The commercial starch-liquifying enzymes are designated HT-1000 and Neozyme 3 LC (liquid). The saccharifying enzymes are Diazyme or Diazyme L 30 (liquid). The solid enzymes are used at a level up to 0.1% by weight of the starch. Up to 100% conversion of starch into glucose is achieved.

  11. Method and apparatus for treating gaseous effluents from waste treatment systems

    Science.gov (United States)

    Flannery, Philip A.; Kujawa, Stephan T.

    2000-01-01

    Effluents from a waste treatment operation are incinerated and oxidized by passing the gases through an inductively coupled plasmas arc torch. The effluents are transformed into plasma within the torch. At extremely high plasma temperatures, the effluents quickly oxidize. The process results in high temperature oxidation of the gases without addition of any mass flow for introduction of energy.

  12. Some Nutritional Characteristics of Enzymatically Resistant Maltodextrin from Cassava (Manihot esculenta Crantz) Starch.

    Science.gov (United States)

    Toraya-Avilés, Rocío; Segura-Campos, Maira; Chel-Guerrero, Luis; Betancur-Ancona, David

    2017-06-01

    Cassava (Manihot esculenta Crantz) native starch was treated with pyroconversion and enzymatic hydrolysis to produce a pyrodextrin and an enzyme-resistant maltodextrin. Some nutritional characteristics were quantified for both compounds. Pyroconversion was done using a 160:1 (p/v) starch:HCl ratio, 90 °C temperature and 3 h reaction time. The resulting pyrodextrin contained 46.21% indigestible starch and 78.86% dietary fiber. Thermostable α-amylase (0.01%) was used to hydrolyze the pyrodextrin at 95 °C for 5 min. The resulting resistant maltodextrin contained 24.45% dextrose equivalents, 56.06% indigestible starch and 86.62% dietary fiber. Compared to the cassava native starch, the pyrodextrin exhibited 56% solubility at room temperature and the resistant maltodextrin 100%. The glycemic index value for the resistant maltodextrin was 59% in healthy persons. Its high indigestible starch and dietary fiber contents, as well as its complete solubility, make the resistant maltodextrin a promising ingredient for raising dietary fiber content in a wide range of foods, especially in drinks, dairy products, creams and soups.

  13. COORDINATION OF CASSAVA STARCH TO METAL IONS AND ...

    African Journals Online (AJOL)

    a

    starch. On the other hand, the decomposition proceeded at a lower rate than the decomposition of ... Metal salts influenced the thermal decomposition of starches [4, 5]. Thus, properly ..... reactions of starch resulting in dextrins. After the ...

  14. Newly-fixed carbon preferentially flows through starch in the unicellular alga Rhodella

    International Nuclear Information System (INIS)

    Kroen, W.K.; Ramus, J.S.

    1989-01-01

    Cells of the unicellular red alga Rhodella reticulata produce copious amounts of anionic extracellular polysaccharides. Previous experiments, comparing growing and non-growing cells, showed little difference in the pattern of initial 14 C partitioning, with a high percentage of label in starch. Short labelling periods, followed by chasing in unlabelled medium, showed rapid movement of carbon through the starch pool within the first 6 hrs, with an accompanying increase in both the protein and mucilage fractions. The overall pattern of carbon metabolism appears fixed throughout growth of the cells, with total carbon input changing with changing growth phase. As starch is extrachloroplastic in the red algae, input of fixed carbon directly into the starch pool may serve as a routing mechanism to direct subsequent carbon metabolism within the cell

  15. Biosysthesis of Corn Starch Palmitate by Lipase Novozym 435

    Directory of Open Access Journals (Sweden)

    Kai Lin

    2012-06-01

    Full Text Available Esterification of starch was carried out to expand the usefulness of starch for a myriad of industrial applications. Lipase B from Candida antarctica, immobilized on macroporous acrylic resin (Novozym 435, was used for starch esterification in two reaction systems: micro-solvent system and solvent-free system. The esterification of corn starch with palmitic acid in the solvent-free system and micro-solvent system gave a degree of substitution (DS of 1.04 and 0.0072 respectively. Esterification of corn starch with palmitic acid was confirmed by UV spectroscopy and IR spectroscopy. The results of emulsifying property analysis showed that the starch palmitate with higher DS contributes to the higher emulsifying property (67.6% and emulsion stability (79.6% than the native starch (5.3% and 3.9%. Modified starch obtained by esterification that possesses emulsifying properties and has long chain fatty acids, like palmitic acid, has been widely used in the food, pharmaceutical and biomedical applications industries.

  16. Isosorbide, a green plasticizer for thermoplastic starch that does not retrogradate.

    Science.gov (United States)

    Battegazzore, Daniele; Bocchini, Sergio; Nicola, Gabriele; Martini, Eligio; Frache, Alberto

    2015-03-30

    Isosorbide is a non-toxic biodegradable diol derived from bio-based feedstock. It can be used for preparing thermoplastic starch through a semi-industrial process of extrusion. Isosorbide allows some technological advantages with respect to classical plasticizers: namely, direct mixing with starch, energy savings for the low processing temperature required and lower water uptake. Indeed, maize starch was directly mixed with the solid plasticizer and direct fed in the main hopper of a co-rotating twin screw extruder. Starch plasticization was assessed by X-ray diffraction (XRD) and dynamic-mechanical analysis (DMTA). Oxygen permeability, water uptake and mechanical properties were measured at different relative humidity (R.H.) values. These three properties turned out to be highly depending on the R.H. No retrogradation and changing of the material properties were occurred from XRD and DMTA after 9 months. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Starch: chemistry, microstructure, processing and enzymatic degradation

    Science.gov (United States)

    Starch is recognized as one of the most abundant and important commodities containing value added attributes for a vast number of industrial applications. Its chemistry, structure, property and susceptibility to various chemical, physical and enzymatic modifications offer a high technological value ...

  18. Starches, Sugars and Obesity

    Directory of Open Access Journals (Sweden)

    Erik E. J. G. Aller

    2011-03-01

    Full Text Available The rising prevalence of obesity, not only in adults but also in children and adolescents, is one of the most important public health problems in developed and developing countries. As one possible way to tackle obesity, a great interest has been stimulated in understanding the relationship between different types of dietary carbohydrate and appetite regulation, body weight and body composition. The present article reviews the conclusions from recent reviews and meta-analyses on the effects of different starches and sugars on body weight management and metabolic disturbances, and provides an update of the most recent studies on this topic. From the literature reviewed in this paper, potential beneficial effects of intake of starchy foods, especially those containing slowly-digestible and resistant starches, and potential detrimental effects of high intakes of fructose become apparent. This supports the intake of whole grains, legumes and vegetables, which contain more appropriate sources of carbohydrates associated with reduced risk of cardiovascular and other chronic diseases, rather than foods rich in sugars, especially in the form of sugar-sweetened beverages.

  19. Concerted suppression of all starch branching enzyme genes in barley produces amylose-only starch granules

    DEFF Research Database (Denmark)

    Carciofi, Massimiliano; Blennow, Andreas; Jensen, Susanne L

    2012-01-01

    to glucose and rapidly absorbed in the small intestine. But a portion of dietary starch, termed "resistant starch" (RS) escapes digestion and reaches the large intestine, where it is fermented by colonic bacteria producing short chain fatty acids (SCFA) which are linked to several health benefits. The RS...

  20. Crystallinity changes in wheat starch during the bread-making process: Starch crystallinity in the bread crust

    NARCIS (Netherlands)

    Primo-Martín, C.; Nieuwenhuijzen, N.H. van; Hamer, R.J.; Vliet, T. van

    2007-01-01

    The crystallinity of starch in crispy bread crust was quantified using several different techniques. Confocal scanning laser microscopy (CSLM) demonstrated the presence of granular starch in the crust and remnants of granules when moving towards the crumb. Differential scanning calorimetry (DSC)

  1. Crystallinity changes in wheat starch during the bread-making process: starch crystallinity in the bread crust

    NARCIS (Netherlands)

    Primo-Martin, C.; Nieuwenhuijzen, van N.H.; Hamer, R.J.; Vliet, van T.

    2007-01-01

    The crystallinity of starch in crispy bread crust was quantified using several different techniques. Confocal scanning laser microscopy (CSLM) demonstrated the presence of granular starch in the crust and remnants of granules when moving towards the crumb. Differential scanning calorimetry (DSC)

  2. Structure of potato starch

    DEFF Research Database (Denmark)

    Bertoft, Eric; Blennow, Andreas

    2016-01-01

    Potato starch granules consist primarily of two tightly packed polysaccharides, amylose and amylopectin. Amylose, which amount for 20-30%, is the principal linear component, but a fraction is in fact slightly branched. Amylopectin is typically the major component and is extensively branched...... chains extending from the clusters. A range of enzymes is involved in the biosynthesis of the cluster structures and linear segments. These are required for sugar activation, chain elongation, branching, and trimming of the final branching pattern. As an interesting feature, potato amylopectin...... is substituted with low amounts of phosphate groups monoesterified to the C-3 and the C-6 carbons of the glucose units. They seem to align well in the granular structure and have tremendous effects on starch degradation in the potato and functionality of the refined starch. A specific dikinase catalyzes...

  3. Resistant Starch Contents of Native and Heat-Moisture Treated Jackfruit Seed Starch

    Directory of Open Access Journals (Sweden)

    Ornanong S. Kittipongpatana

    2015-01-01

    Full Text Available Native jackfruit seed starch (JFS contains 30% w/w type II resistant starch (RS2 and can potentially be developed as a new commercial source of RS for food and pharmaceutical application. Heat-moisture treatment (HMT was explored as a mean to increase RS content of native JFS. The effect of the conditions was tested at varied moisture contents (MC, temperatures, and times. Moisture levels of 20–25%, together with temperatures 80–110°C, generally resulted in increases of RS amount. The highest amount of RS (52.2% was achieved under treatment conditions of 25% MC and 80°C, for 16 h (JF-25-80-16. FT-IR peak ratio at 1047/1022 cm−1 suggested increases in ordered structure in several HMT-JFS samples with increased RS. SEM showed no significant change in the granule appearance, except at high moisture/temperature treatment. XRD revealed no significant change in peaks intensities, suggesting the crystallinity within the granule was mostly retained. DSC showed increases in Tg and, in most cases, ΔT, as the MC was increased in the samples. Slight but significant decreases in ΔH were observed in samples with low RS, indicating that a combination of high moisture and temperature might cause partial gelatinization. HMT-JFS with higher RS exhibited less swelling, while the solubility remained mostly unchanged.

  4. The effect of starch amylose content on the morphology andproperties of melt-processed butyl-etherified starch/poly[(butylenesuccinate)-co-adipate] blends

    CSIR Research Space (South Africa)

    Maubane, Lesego T

    2017-01-01

    Full Text Available structures. Thermogravimetric analysis revealed that the thermal stability of the blends decreased with increasing starch loading for all starch types with varying amylose content; however, the nature of the starch controlled the mechanical properties...

  5. A comparative study of the physicochemical properties of starches ...

    African Journals Online (AJOL)

    Some properties of starches from cassava, potato and sweet potato were compared with cereal starches from maize, wheat, millet and sorghum. The aim was to determine the properties of tuber and root crop starches and compare them with cereal starches in addition to unravelling the potential of commonly grown ...

  6. Effect of cellulose reinforcement on the properties of organic acid modified starch microparticles/plasticized starch bio-composite films.

    Science.gov (United States)

    Teacă, Carmen-Alice; Bodîrlău, Ruxanda; Spiridon, Iuliana

    2013-03-01

    The present paper describes the preparation and characterization of polysaccharides-based bio-composite films obtained by the incorporation of 10, 20 and 30 wt% birch cellulose (BC) within a glycerol plasticized matrix constituted by the corn starch (S) and chemical modified starch microparticles (MS). The obtained materials (coded as MS/S, respectively MS/S/BC) were further characterized. FTIR spectroscopy and X-ray diffraction were used to evidence structural and crystallinity changes in starch based films. Morphological, thermal, mechanical, and water resistance properties were also investigated. Addition of cellulose alongside modified starch microparticles determined a slightly improvement of the starch-based films water resistance. Some reduction of water uptake for any given time was observed mainly for samples containing 30% BC. Some compatibility occurred between MS and BC fillers, as evidenced by mechanical properties. Tensile strength increased from 5.9 to 15.1 MPa when BC content varied from 0 to 30%, while elongation at break decreased significantly. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Strategies to improve the mechanical properties of starch-based materials: plasticization and natural fibers reinforcement

    Directory of Open Access Journals (Sweden)

    A. Lopez-Gil

    2014-01-01

    Full Text Available Biodegradable polymers are starting to be introduced as raw materials in the food-packaging market. Nevertheless, their price is very high. Starch, a fully biodegradable and bioderived polymer is a very interesting alternative due to its very low price. However, the use of starch as the polymer matrix for the production of rigid food packaging, such as trays, is limited due to its poor mechanical properties, high hidrophilicity and high density. This work presents two strategies to overcome the poor mechanical properties of starch. First, the plasticization of starch with several amounts of glycerol to produce thermoplastic starch (TPS and second, the production of biocomposites by reinforcing TPS with promising fibers, such as barley straw and grape waste. The mechanical properties obtained are compared with the values predicted by models used in the field of composites; law of mixtures, Kerner-Nielsen and Halpin-Tsai. To evaluate if the materials developed are suitable for the production of food-packaging trays, the TPS-based materials with better mechanical properties were compared with commercial grades of oil-based polymers, polypropylene (PP and polyethylene-terphthalate (PET, and a biodegradable polymer, polylactic acid (PLA.

  8. Effect of Gamma Irradiation on the Physicochemical and Functional Properties of Cassava Starch

    International Nuclear Information System (INIS)

    Asare, I.K.

    2011-10-01

    Cassava (Manihot esculanta Crantz) is popularly consumed as a staple food crop in many tropical countries in Africa, South America and Asia. In Africa the crop has been recognized as more than a subsistence crop. The crop is very important and commercially serves as a raw material for industries with significant effect on the economy of a country. Cassava roots contain high starch content and approximately half of the total roots produced is used for the production of starch for industrial purposes. Limitation to utilization of cassava roots by processors is due to its high perishability and bulkness, while native starches are structurally too weak and funtionally restricted for a wide variety of industrial applications. The objective of the project was to determine the effect of gamma irradiation as a modifying agent on native starch from three cassava varieties namely Ankra, Bosome nsia and TME419. Gamma radiation doses applied ranged between 0 - 20kGy and changes in physicochemical, functional and pasting indices of the starch were measured. Physicochemical indices measured were moisture content, amylose content, carbohydrate content, pH, ash content, fat content, protein content and L*a*b* values. Functional indices mesured were water absorption capacity, solubility index, bulk density, swelling power, fat absorption capacity, emulsion capacity, emulsion stability and least gelation concentration. Pasting indices measured were gelatinzation temperature, peak viscosity, viscosity at 92 degrees C and 50 degrees C, breakdown viscosity and setback viscosity. The pH, amylose content, carbohydrate content and ash content of native starch from Ankra, Bosome nsia and TME 419 were respectively 8.06, 7.80 and 7.18, 17.62%, 19.46% and 23.54%, 56.11%, 52.43% and 35.70%, 0.11%, 0.19% and 0.12%. The water absortion capacity and least gelation concentration of native starch from Ankra, Bosome nsia and TME 419 were 12.3%, 13.0% and 10.0%, respectively, least gelation

  9. Rethinking the starch digestion hypothesis for AMY1 copy number variation in humans.

    Science.gov (United States)

    Fernández, Catalina I; Wiley, Andrea S

    2017-08-01

    Alpha-amylase exists across taxonomic kingdoms with a deep evolutionary history of gene duplications that resulted in several α-amylase paralogs. Copy number variation (CNV) in the salivary α-amylase gene (AMY1) exists in many taxa, but among primates, humans appear to have higher average AMY1 copies than nonhuman primates. Additionally, AMY1 CNV in humans has been associated with starch content of diets, and one known function of α-amylase is its involvement in starch digestion. Thus high AMY1 CNV is considered to result from selection favoring more efficient starch digestion in the Homo lineage. Here, we present several lines of evidence that challenge the hypothesis that increased AMY1 CNV is an adaptation to starch consumption. We observe that α- amylase plays a very limited role in starch digestion, with additional steps required for starch digestion and glucose metabolism. Specifically, we note that α-amylase hydrolysis only produces a minute amount of free glucose with further enzymatic digestion and glucose absorption being rate-limiting steps for glucose availability. Indeed α-amylase is nonessential for starch digestion since sucrase-isomaltase and maltase-glucoamylase can hydrolyze whole starch granules while releasing glucose. While higher AMY1 CN and CNV among human populations may result from natural selection, existing evidence does not support starch digestion as the major selective force. We report that in humans α-amylase is expressed in several other tissues where it may have potential roles of evolutionary significance. © 2017 Wiley Periodicals, Inc.

  10. Edible Film from Polyblend of Ginger Starch, Chitosan, and Sorbitol as Plasticizer

    Science.gov (United States)

    Sariningsih, N.; Putra, Y. P.; Pamungkas, W. P.; Kusumaningsih, T.

    2018-03-01

    Polyblend ginger starch/chitosan based edible film has been succesfully prepared and characterized. The purpose of this research was to produce edible film from polyblend of ginger starch, chitosan, and sorbitol as plasticizer. The resulted edible film were characterized by using FTIR, TGA and UTM. Edible film of ginger starch had OH vibration (3430 cm-1). Besides, edible film had elongation up to 15.63%. The thermal degradation of this material reached 208°C indicating high termal stability. The water uptake of the edible film was 42.85%. It concluded that edible film produce in this research has potential as a packaging.

  11. The future of starch bioengineering: GM microorganisms or GM plants?

    Directory of Open Access Journals (Sweden)

    Kim Henrik eHebelstrup

    2015-04-01

    Full Text Available Plant starches regularly require extensive modification to permit subsequent applications. Such processing is usually done by the use of chemical and/or physical treatments. The use of recombinant enzymes produced by large-scale fermentation of GM microorganisms is increasingly used in starch processing and modification, sometimes as an alternative to chemical or physical treatments. However, as a means to impart the modifications as early as possible in the starch production chain, similar recombinant enzymes may also be expressed in planta in the developing starch storage organ such as in roots, tubers and cereal grains to provide a GM crop as an alternative to the use of enzymes from GM microorganisms. We here discuss these techniques in relation to important structural features and modifications of starches such as: starch phosphorylation, starch hydrolysis, chain transfer/branching and novel concepts of hybrid starch-based polysaccharides. In planta starch bioengineering is generally challenged by yield penalties and inefficient production of the desired product. However in some situations, GM crops for starch bioengineering without deleterious effects have been achieved.

  12. Full-scale performance of selected starch-based biodegradable polymers in sludge dewatering and recommendation for applications.

    Science.gov (United States)

    Zhou, Kuangxin; Stüber, Johan; Schubert, Rabea-Luisa; Kabbe, Christian; Barjenbruch, Matthias

    2018-01-01

    Agricultural reuse of dewatered sludge is a valid route for sludge valorization for small and mid-size wastewater treatment plants (WWTPs) due to the direct utilization of nutrients. A more stringent of German fertilizer ordinance requires the degradation of 20% of the synthetic additives like polymeric substance within two years, which came into force on 1 January 2017. This study assessed the use of starch-based polymers for full-scale dewatering of municipal sewage sludge. The laboratory-scale and pilot-scale trials paved the way for full-scale trials at three WWTPs in Germany. The general feasibility of applying starch-based 'green' polymers in full-scale centrifugation was demonstrated. Depending on the sludge type and the process used, the substitution potential was up to 70%. Substitution of 20-30% of the polyacrylamide (PAM)-based polymer was shown to achieve similar total solids (TS) of the dewatered sludge. Optimization of operational parameters as well as machinery set up in WWTPs is recommended in order to improve the shear stability force of sludge flocs and to achieve higher substitution potential. This study suggests that starch-based biodegradable polymers have great potential as alternatives to synthetic polymers in sludge dewatering.

  13. Effect of dispersion parameters on the consolidation of starch-loaded hydroxyapatite slurry

    Directory of Open Access Journals (Sweden)

    Yasser M.Z. Ahmed

    2014-09-01

    Full Text Available The influence of some parameters controlling the hydroxyapatite (HA suspension rheology in terms of heat treatment of the HA powder prior to suspension preparation, suspension solid loading and the amount of corn starch addition was thoroughly investigated. The heat treatment of powder at 1100 °C prior to suspension preparation was found to be extremely efficient in preparing suspensions with high solid loading of 59 vol.%. In contrast, the highest solid loading that could be developed from the non-heat treated powder was 14 vol.%. This phenomenon is consequence of the changes in the physical and chemical properties of the powder after the heat treatment step. The amount of native corn starch addition has ranged from 10 to 40 vol.%. The addition of corn starch leads to the high retardation in the suspension viscosity, particularly at low shear rate. On the contrary, at higher shear rate the situation is completely different. The properties of the consolidated green sample (produced from suspensions containing various corn starch amounts in terms of relative density and compressive strength were studied. The results indicated that even though there were no considerable changes in the relative density, the compressive strength was sharply increased with increasing starch amount content until it reached a maximum at 30 vol.% and then decreased thereafter.

  14. Effects of dietary starch and protein levels on milk production and composition of dairy cows fed high concentrate diet

    Directory of Open Access Journals (Sweden)

    Mustafa Güçlü Sucak

    2017-07-01

    Full Text Available Abstract Twenty eight Holstein cows (averaged 41±31.5 and 82±24 days in milk, and 30.4±3.49 and 29.0±2.22 kg/d milk yield were fed a high concentrate diet (70:30 concentrate to forage to examine effects on milk production and composition. The cows were randomly assigned to receive four dietary treatments according to a 2 x 2 factorial arrangement. Factors were starch (14% and 22% and protein (15% and 18%. Wheat straw was used as forage source. The study lasted 6 weeks. Dry matter intake was not affected (P> 0.05 by the dietary treatments in the study. Milk yield increased with increased dietary protein level (P< 0.01. Milk urea nitrogen concentrations were affected by dietary protein and starch levels, but there was no interaction effect. Nitrogen efficiency (Milk N/N intake was decreased by increasing in dietary protein level (P< 0.01. In conclusion, the cows fed total mixed ration (TMR containing low level of wheat straw responded better when dietary protein increased. But, efficiency of N use and N excretion to the environment were worsened. Key words: Dairy cattle, milk composition, protein, starch, wheat straw

  15. Iron oxide/cassava starch-supported Ziegler-Natta catalysts for in situ ethylene polymerization.

    Science.gov (United States)

    Chancharoenrith, Sittikorn; Kamonsatikul, Choavarit; Namkajorn, Montree; Kiatisevi, Supavadee; Somsook, Ekasith

    2015-03-06

    Iron oxide nanoparticles were used as supporters for in situ polymerization to produce polymer nanocomposites with well-dispersed fillers in polymer matrix. Iron oxide could be sustained as colloidal solutions by cassava starch to produce a good dispersion of iron oxide in the matrix. New supports based on iron oxide/cassava starch or cassava starch for Ziegler-Natta catalysts were utilized as heterogeneous supporters for partially hydrolyzed triethylaluminum. Then, TiCl4 was immobilized on the supports as catalysts for polymerization of ethylene. High-density polyethylene (HDPE) composites were obtained by the synthesized catalysts. A good dispersion of iron oxide/cassava starch particles was observed in the synthesized polymer matrix promoting to good mechanical properties of HDPE. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Starch accumulation in hulless barley during grain filling.

    Science.gov (United States)

    Zheng, Xu-Guang; Qi, Jun-Cang; Hui, Hong-Shan; Lin, Li-Hao; Wang, Feng

    2017-12-01

    Starch consists of two types of molecules: amylose and amylopectin. The objective of this study was increase understanding about mechanisms related to starch accumulation in hulless barley (Hordeum vulgare L.) grain by measuring temporal changes in (i) grain amylose and amylopectin content, (ii) starch synthase activity, and (iii) the relative expressions of key starch-related genes. The amylopectin/amylose ratio gradually declined in both Beiqing 6 and Kunlun 12. In both cultivars, the activities of adenosine diphosphate glucose pyrophosphorylase, soluble starch synthase (SSS), granule bound starch synthase (GBSS), and starch branching enzyme (SBE) increased steadily during grain filling, reaching their maximums 20-25 days after anthesis. The activities of SSS and SBE were greater in Ganken 5 than in either Beiqing 6 or Kunlun 12. The expression of GBSS I was greater in Beiqing 6 and Kunlun 12 than in Ganken 5. In contrast, the expression of SSS I, SSS II and SBE I was greater in Ganken 5 than in Beiqing 6 and Kunlun 12. The peak in GBSS I expression was later than that of SSS I, SSS II, SBE IIa and SBE IIb. The GBSS I transcript in Kunlun 12 was expressed on average 90 times more than the GBSS II transcript. The results suggest that SBE and SSS may control starch synthesis at the transcriptional level, whereas GBSS I may control starch synthesis at the post transcriptional level. GBSS I is mainly responsible for amylose synthesis whereas SSS I and SBE II are mainly responsible for amylopectin synthesis in amyloplasts.

  17. Application of oxidized starch in bake-only chicken nuggets.

    Science.gov (United States)

    Purcell, Sarah; Wang, Ya-Jane; Seo, Han-Seok

    2014-05-01

    There is a need to reduce the fat content in fried foods because of increasing health concerns from consumers. Oxidized starches have been utilized in many coating applications for their adhesion ability. However, it is not known if they perform similarly in bake-only products. This study investigated the application of oxidized starch in bake-only chicken nuggets. Oxidized starches were prepared from 7 starches and analyzed for gelatinization and pasting properties. Chicken nuggets were prepared using batter containing wheat flour, oxidized starch, salt, and leavening agents prior to steaming, oven baking, freezing, and final oven baking for sensory evaluation. All nuggets were analyzed for hardness by a textural analyzer, crispness by an acoustic sound, and sensory characteristics by a trained panel. The oxidation level used in the study did not alter the gelatinization temperature of most starches, but increased the peak pasting viscosity of both types of corn and rice starches and decreased that of tapioca and potato starches. There were slight differences in peak force and acoustic reading between some treatments; however, the differences were not consistent with starch type or amylose content. There was no difference among the treatments as well as between the control with wheat flour and the treatments partially replaced with oxidized starches in all sensory attributes of bake-only nuggets evaluated by the trained panel. There is a need to reduce the fat content in fried food, such as chicken nuggets, because of increasing childhood obesity. Oxidized starches are widely used in coating applications for their adhesion ability. This study investigated the source of oxidized starches in steam-baked coated nuggets for their textural and sensorial properties. The findings from this research will provide an understanding of the contributions of starch source and oxidation to the texture and sensory attributes of bake-only nuggets, and future directions to improve

  18. Engineering potato starch with a higher phosphate content

    NARCIS (Netherlands)

    Xu, Xuan; Huang, Xing Feng; Visser, Richard G.F.; Trindade, Luisa M.

    2017-01-01

    Phosphate esters are responsible for valuable and unique functionalities of starch for industrial applications. Also in the cell phosphate esters play a role in starch metabolism, which so far has not been well characterized in storage starch. Laforin, a human enzyme composed of a

  19. Starch-based Foam Composite Materials: processing and bioproducts

    Science.gov (United States)

    Starch is an abundant, biodegradable, renewable and low-cost commodity that has been explored as a replacement for petroleum-based plastics. By itself, starch is a poor replacement for plastics because of its moisture sensitivity and brittle properties. Efforts to improve starch properties and funct...

  20. Molecular structure, functionality and applications of oxidized starches: A review.

    Science.gov (United States)

    Vanier, Nathan Levien; El Halal, Shanise Lisie Mello; Dias, Alvaro Renato Guerra; da Rosa Zavareze, Elessandra

    2017-04-15

    During oxidation, the hydroxyl groups of starch molecules are first oxidized to carbonyl groups, then to carboxyl groups. The contents of the carbonyl and carboxyl groups in a starch molecule therefore indicate the extent of starch oxidation. The mechanisms of starch oxidation with different oxidizing agents, including sodium hypochlorite, hydrogen peroxide, ozone and sodium periodate, are described in this review. The effects of these oxidizing agents on the molecular, physicochemical, thermal, pasting and morphological properties of starch are described as well. In addition, the main industrial applications of oxidized starches are presented. The present review is important for understanding the effects of oxidation on starch properties, and this information may facilitate the development of novel oxidized starches for both food and non-food applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Investigating the Mechanisms of Amylolysis of Starch Granules by Solution-State NMR

    Science.gov (United States)

    2015-01-01

    Starch is a prominent component of the human diet and is hydrolyzed by α-amylase post-ingestion. Probing the mechanism of this process has proven challenging, due to the intrinsic heterogeneity of individual starch granules. By means of solution-state NMR, we demonstrate that flexible polysaccharide chains protruding from the solvent-exposed surfaces of waxy rice starch granules are highly mobile and that during hydrothermal treatment, when the granules swell, the number of flexible residues on the exposed surfaces increases by a factor of 15. Moreover, we show that these flexible chains are the primary substrates for α-amylase, being cleaved in the initial stages of hydrolysis. These findings allow us to conclude that the quantity of flexible α-glucan chains protruding from the granule surface will greatly influence the rate of energy acquisition from digestion of starch. PMID:25815624

  2. Preparation and Characterization of Potentially Antimicrobial Polymer Films Containing Starch Nano- and Microparticles

    Directory of Open Access Journals (Sweden)

    Paulius Pavelas DANILOVAS

    2014-09-01

    Full Text Available The forming conditions of biodegradable polymer films containing iodine-modified starch particles as well as the properties of the obtained films were investigated. Cationic cross-linked starch microparticles and cationic starch nanoparticles were dispersed in cellulose acetate and hydroxyethyl cellulose solution, respectively, and composite films were spin-casted. The obtained films were characterized and their mechanical properties were assessed. The cellulose acetate solution has been found to be an appropriate matrix for the dispersion of dry modified starch microparticles, but not in the case of nanoparticles. Starch nanoparticles were obtained in an aqueous medium, and the mechanical properties of the formed cellulose acetate films are significantly reduced by water present in the casting solution. It has been estimated that a fairly high amount of nanoparticles (18 wt% can be immobilized into films of water-soluble hydroxyethyl cellulose without markedly affecting the mechanical properties of the films. DOI: http://dx.doi.org/10.5755/j01.ms.20.3.5426

  3. The Growth and Yield of Sweet Corn Fertilized by Dairy Cattle Effluents Without Chemical Fertilizers in Inceptisols

    Directory of Open Access Journals (Sweden)

    Yudi Sastro

    2011-05-01

    Full Text Available Several research has proven the role of dairy cattle effluents in improving the growth and yield of some crops. However, its role in supporting the growth and yield of sweet corn, especialy in Inceptisols, has not been reported. The study aims to determine the effect of dairy cattle effluents on growth and yield of sweet corn in Inceptisols. The pot study was conducted in a greenhouse of the Assessment Institute for Agriculture Technology of Jakarta. The treatments were fertilization using dairy cattle effluents (without dilution, dilution with water 1:1 and 1:2, a mixture of Urea, SP-36 and KCl (NPK, and without fertilizer. The experimental design was a completely randomized design with five replications. Compared to a without fertilizer treatment, dairy cattle effluents were significantly increased plant height (114%, leaf number (136%, cob weight (131%, cob length (124%, and cob diameters (128%. Base on cob weight, relative agronomic effectiveness (RAE of dairy cattle effluents reached 38.4% (without dilution, 47.5% (dilution with water 1:1, and 62.1% (dilution with water 1:2.

  4. The potential use of treated brewery effluent as a water and nutrient source in irrigated crop production

    Directory of Open Access Journals (Sweden)

    Richard P. Taylor

    2018-06-01

    Full Text Available Brewery effluent (BE needs to be treated before it can be released into the environment, reused or used in down-stream activities. This study demonstrated that anaerobic digestion (AD followed by treatment in an integrated tertiary effluent treatment system transformed BE into a suitable solution for crop irrigation. Brewery effluent can be used to improve crop yields: Cabbage (Brassica oleracea cv. Star 3301, grew significantly larger when irrigated with post-AD, post-primary-facultative-pond (PFP effluent, compared with those irrigated with post-constructed-wetland (CW effluent or tap water only (p < 0.0001. However, cabbage yield when grown using BE was 13% lower than that irrigated with a nutrient-solution and fresh water; the electrical conductivity of BE (3019.05 ± 48.72 µs/cm2 may have been responsible for this. Post-CW and post-high-rate-algal-pond (HRAP BE was least suitable due to their higher conductivity and lower nutrient concentration. After three months, soils irrigated with post-AD and post-PFP BE had a significantly higher sodium concentration and sodium adsorption ratio (3919 ± 94.77 & 8.18 ± 0.17 mg/kg than soil irrigated with a commercial nutrient-solution (920.58 ± 27.46 & 2.20 ± 0.05 mg/kg. However, this was not accompanied by a deterioration in the soil's hydro-physical properties, nor a change in the metabolic community structure of the soil. The benefits of developing this nutrient and water resource could contribute to cost-reductions at the brewery, more efficient water, nutrient and energy management, and job creation. Future studies should investigate methods to reduce the build-up of salt in the soil when treated BE is used to irrigate crops. Keywords: Wastewater irrigation, Nutrient recovery, Agriculture, Brewery effluent

  5. Effect of thermostable α-amylase injection on mechanical and physiochemical properties for saccharification of extruded corn starch.

    Science.gov (United States)

    Myat, Lin; Ryu, Gi-Hyung

    2014-01-30

    In industry, a jet cooker is used to gelatinize starch by mixing the starch slurry with steam under pressure at 100-175 °C. A higher degree of starch hydrolysis in an extruder is possible with glucoamylase. Unfortunately, it is difficult to carry out liquefaction and saccharification in parallel, because the temperature of gelatinization will be too high and will inactivate glucoamylase. Since the temperature for liquefaction and saccharification is different, it is hard to change the temperature from high (required for liquefaction) to low (required for saccharification). The industrial gelatinization process is usually carried out with 30-35% (w/w) dry solids starch slurry. Conventional jet cookers cannot be used any more at high substrate concentrations owing to higher viscosity. In this study, therefore, corn starch was extruded at different melt temperatures to overcome these limitations and to produce the highest enzyme-accessible starch extrudates. Significant effects on physical properties (water solubility index, water absorption index and color) and chemical properties (reducing sugar and % increase in reducing sugar after saccharification) were achieved by addition of thermostable α-amylase at melt temperatures of 115 and 135 °C. However, there was no significant effect on % increase in reducing sugar of extruded corn starch at 95 °C. The results show the great potential of extrusion with thermostable α-amylase injection at 115 and 135 °C as an effective pretreatment for breaking down starch granules, because of the significant increase (P < 0.05) in % reducing sugar and enzyme-accessible extrudates for saccharification yield. © 2013 Society of Chemical Industry.

  6. Emulsion stabilizing capacity of intact starch granules modified by heat treatment or octenyl succinic anhydride.

    Science.gov (United States)

    Timgren, Anna; Rayner, Marilyn; Dejmek, Petr; Marku, Diana; Sjöö, Malin

    2013-03-01

    Starch granules are an interesting stabilizer candidate for food-grade Pickering emulsions. The stabilizing capacity of seven different intact starch granules for making oil-in-water emulsions has been the topic of this screening study. The starches were from quinoa; rice; maize; waxy varieties of rice, maize, and barley; and high-amylose maize. The starches were studied in their native state, heat treated, and modified by octenyl succinic anhydride (OSA). The effect of varying the continuous phase, both with and without salt in a phosphate buffer, was also studied. Quinoa, which had the smallest granule size, had the best capacity to stabilize oil drops, especially when the granules had been hydrophobically modified by heat treatment or by OSA. The average drop diameter (d 32) in these emulsions varied from 270 to 50 μm, where decreasing drop size and less aggregation was promoted by high starch concentration and absence of salt in the system. Of all the starch varieties studied, quinoa had the best overall emulsifying capacity, and OSA modified quinoa starch in particular. Although the size of the drops was relatively large, the drops themselves were in many instances extremely stable. In the cases where the system could stabilize droplets, even when they were so large that they were visible to the naked eye, they remained stable and the measured droplet sizes after 2 years of storage were essentially unchanged from the initial droplet size. This somewhat surprising result has been attributed to the thickness of the adsorbed starch layer providing steric stabilization. The starch particle-stabilized Pickering emulsion systems studied in this work has potential practical application such as being suitable for encapsulation of ingredients in food and pharmaceutical products.

  7. The future of starch bioengineering: GM microorganisms or GM plants?

    DEFF Research Database (Denmark)

    Hebelstrup, Kim; Sagnelli, Domenico; Blennow, Andreas

    2015-01-01

    , tubers and cereal grains to provide a GM crop as an alternative to the use of enzymes from GM microorganisms. We here discuss these techniques in relation to important structural features and modifications of starches such as: starch phosphorylation, starch hydrolysis, chain transfer/branching and novel...... concepts of hybrid starch-based polysaccharides. In planta starch bioengineering is generally challenged by yield penalties and inefficient production of the desired product. However, in some situations, GM crops for starch bioengineering without deleterious effects have been achieved....

  8. Performance evaluation of effluent treatment plant for automobile industry

    Energy Technology Data Exchange (ETDEWEB)

    Ansari, Farid [Department of Applied Science and Humanities, PDM College of Engineering, Bahadurgarh (Haryana) (India); Pandey, Yashwant K. [School of Energy and Environmental Studies, Devi Ahilya Vishwavidyalaya, Indore (India); Kumar, P.; Pandey, Priyanka [Department of Environmental Science, Post Graduate College Ghazipur (IN

    2013-07-01

    The automobile industry’s wastewater not only contains high levels of suspended and total solids such as oil, grease, dyestuff, chromium, phosphate in washing products, and coloring, at various stages of manufacturing but also, a significant amount of dissolved organics, resulting in high BOD or COD loads. The study reveals the performance, evaluation and operational aspects of effluent treatment plant and its treatability, rather than the contamination status of the real property. The Results revealed that the treated effluent shows most of the parameters are within permissible limits of Central Pollution Control Board (CPCB), India and based on the site visits, discussion with operation peoples, evaluation of process design, treatment system, existing effluent discharge, results of sample analyzed and found that effluent treatment plant of automobile industry are under performance satisfactory.

  9. In vitro starch digestion correlates well with rate and extent of starch digestion in broiler chickens

    NARCIS (Netherlands)

    Weurding, R.E.; Veldman, R.; Veen, W.A.G.; Aar, van der P.J.; Verstegen, M.W.A.

    2001-01-01

    Current feed evaluation systems for poultry are based on digested components (fat, protein and nitrogen-free extracts). Digestible starch is the most important energy source in broiler chicken feeds and is part of the nitrogen-free extract fraction. Digestible starch may be predicted using an in

  10. Polishing of Anaerobic Secondary Effluent and Symbiotic Bioremediation of Raw Municipal Wastewater by Chlorella Vulgaris

    KAUST Repository

    Cheng, Tuoyuan

    2016-05-01

    To assess polishing of anaerobic secondary effluent and symbiotic bioremediation of primary effluent by microalgae, bench scale bubbling column reactors were operated in batch modes to test nutrients removal capacity and associated factors. Chemical oxygen demand (COD) together with oil and grease in terms of hexane extractable material (HEM) in the reactors were measured after batch cultivation tests of Chlorella Vulgaris, indicating the releasing algal metabolites were oleaginous (dissolved HEM up to 8.470 mg/L) and might hazard effluent quality. Ultrafiltration adopted as solid-liquid separation step was studied via critical flux and liquid chromatography-organic carbon detection (LC-OCD) analysis. Although nutrients removal was dominated by algal assimilation, nitrogen removal (99.6% maximum) was affected by generation time (2.49 days minimum) instead of specific nitrogen removal rate (sN, 20.72% maximum), while phosphorus removal (49.83% maximum) was related to both generation time and specific phosphorus removal rate (sP, 1.50% maximum). COD increase was affected by cell concentration (370.90 mg/L maximum), specific COD change rate (sCOD, 0.87 maximum) and shading effect. sCOD results implied algal metabolic pathway shift under nutrients stress, generally from lipid accumulation to starch accumulation when phosphorus lower than 5 mg/L, while HEM for batches with initial nitrogen of 10 mg/L implied this threshold around 8 mg/L. HEM and COD results implied algal metabolic pathway shift under nutrients stress. Anaerobic membrane bioreactor effluent polishing showed similar results to synthetic anaerobic secondary effluent with slight inhibition while 4 symbiotic bioremediation of raw municipal wastewater with microalgae and activated sludge showed competition for ammonium together with precipitation or microalgal luxury uptake of phosphorus. Critical flux was governed by algal cell concentration for ultrafiltration membrane with pore size of 30 nm, while

  11. Rheological behavior of gamma-irradiated cassava (Manihot esculenta crantz) starch

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Orelio L.; Uehara, Vanessa B.; Mastro, Nelida L. del, E-mail: nlmastro@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    Cassava starch is the by-product of the process of pressing water out of cassava to make cassava meal. The juice has a fine starch, similar to rice or potato starch that, when dried, yields polvilho doce (sweet manioc starch); from the fermented juice comes polvilho azedo (sour manioc starch). Cassava starch can perform most of the functions where maize, rice and wheat starch are currently used. The aim of the present work was to determine the influence or ionizing radiation on the rheological behavior of aqueous preparations of gamma-irradiated cassava starch at different concentrations. Samples of polvilho doce and polvilho azedo were obtained at the local market and irradiated in plastic bags in a Gammacell 220 with doses of 1, 3 e 5 kGy, dose rate ∼ 1.2 kGy h-1. A Brooksfield viscometer was employed for the viscosity measurements. The results showed a strong dependence of the viscosity with the concentration of the starch solutions. In most of the cases there was a decrease of viscosity with the increase of the radiation dose usually seen in irradiated polysaccharides. Nevertheless, the dose response relation of the two kind of starch was different. (author)

  12. Rheological behavior of gamma-irradiated cassava (Manihot esculenta crantz) starch

    International Nuclear Information System (INIS)

    Silva, Orelio L.; Uehara, Vanessa B.; Mastro, Nelida L. del

    2013-01-01

    Cassava starch is the by-product of the process of pressing water out of cassava to make cassava meal. The juice has a fine starch, similar to rice or potato starch that, when dried, yields polvilho doce (sweet manioc starch); from the fermented juice comes polvilho azedo (sour manioc starch). Cassava starch can perform most of the functions where maize, rice and wheat starch are currently used. The aim of the present work was to determine the influence or ionizing radiation on the rheological behavior of aqueous preparations of gamma-irradiated cassava starch at different concentrations. Samples of polvilho doce and polvilho azedo were obtained at the local market and irradiated in plastic bags in a Gammacell 220 with doses of 1, 3 e 5 kGy, dose rate ∼ 1.2 kGy h-1. A Brooksfield viscometer was employed for the viscosity measurements. The results showed a strong dependence of the viscosity with the concentration of the starch solutions. In most of the cases there was a decrease of viscosity with the increase of the radiation dose usually seen in irradiated polysaccharides. Nevertheless, the dose response relation of the two kind of starch was different. (author)

  13. Lytic polysaccharide monooxygenases and other oxidative enzymes are abundantly secreted by Aspergillus nidulans grown on different starches

    DEFF Research Database (Denmark)

    Nekiunaite, Laura; Arntzen, Magnus Ø.; Svensson, Birte

    2016-01-01

    of Aspergillus nidulans grown on cereal starches from wheat and high-amylose (HA) maize, as well as legume starch from pea for 5 days. Aspergillus nidulans grew efficiently on cereal starches, whereas growth on pea starch was poor. The secretomes at days 3-5 were starch-type dependent as also reflected...... by amylolytic activity measurements. Nearly half of the 312 proteins in the secretomes were carbohydrate-active enzymes (CAZymes), mostly glycoside hydrolases (GHs) and oxidative auxiliary activities (AAs). The abundance of the GH13 α-amylase (AmyB) decreased with time, as opposed to other starch...

  14. Autoclave and beta-amylolysis lead to reduced in vitro digestibility of starch.

    Science.gov (United States)

    Hickman, B Elliot; Janaswamy, Srinivas; Yao, Yuan

    2009-08-12

    In this study, a combination of autoclave and beta-amylolysis was used to modulate the digestibility of normal corn starch (NCS) and wheat starch (WS). The modification procedure comprised three cycles of autoclave at 35% moisture content and 121 degrees C, beta-amylolysis, and one additional cycle of autoclave. Starch materials were sampled at each stage and characterized. The fine structure of starch was determined using high-performance size-exclusion chromatography, the micromorphology of starch dispersion was imaged using cryo-SEM, the crystalline pattern was evaluated using wide-angle X-ray powder diffraction, and the digestibility was measured using Englyst assay. After beta-amylolysis, amylose was enriched (from 25.4 to 33.2% for NCS and from 27.5 to 32.8% for WS) and the branch density was increased (from 5.2 to 7.7% for NCS and from 5.3 to 7.9% for WS). Cryo-SEM images showed that the autoclave treatment led to the formation of a low-swelling, high-density gel network, whereas beta-amylolysis nearly demolished the network structure. The loss of A-type crystalline structure and the formation of B- and V-type structures resulted from autoclave, which suggests the formation of amylose-based ordered structure. Englyst assay indicated that, due to beta-amylolysis, the resistant starch (RS) content was increased to 30 from 11% of native NCS and to 23 from 9% of native WS. In contrast, autoclave showed only minor impact on RS levels. The increase of RS observed in this study is associated with enhanced branch density, which is different from the four types of RS commonly defined.

  15. Mechanical Properties of Potato- Starch Linear Low Density ...

    African Journals Online (AJOL)

    The mechanical properties of potato-starch filled LLDPE such as Young's Modulus, tensile strength and elongation at break were studied. Apart from the Young's Modulus, the tensile strength and elongation at break reduced with increased starch content. This is attributed to poor adhesion between starch and the polymer ...

  16. Composition and Physicochemical Properties of Starch from Christ ...

    African Journals Online (AJOL)

    Starch was extracted from seeds of Christ Thorn by hot water extraction method. The composition and physicochemical properties of the extracted starch were determined using standard methods. The results obtained from the analyses revealed that the % yield of starch was 43.2%, while moisture content, ash content, ...

  17. Isolation and Characterization of Starches from eight Dioscorea ...

    African Journals Online (AJOL)

    AJB SERVER

    2006-09-04

    Sep 4, 2006 ... temperature, with Moonshine (895.551 ± 1.051%) having the highest swelling power ... The properties of the different Dioscorea alata starches may prove useful in nutritional applications. ..... coating. Starch/Starke 44: 393-398. Ayensu ES, Coursey DG (1972). ... World production and marketing of starch. In:.

  18. Resistant starch: an indigestible fraction of foods

    Directory of Open Access Journals (Sweden)

    Saura Calixto, F.

    1991-06-01

    Full Text Available Resistant starch (RS, the dietary starch that scape digestion in the small intestine, can yields up to 20% of the starch in cereal and legume products. Several fractions contribute to the total RS of foods: retrograded amylose, starch inaccessible to digestive enzymes because of mechanical barriers, chemically modified starch fragments, undigested starch due to α-amylase inhibitors and starch complexed with other food components. RS is formed in products processed following heat treatments (baking, extrusion, autoclaving, etc.. RS produces significant fecal bulking and is partially fermentable by anaerobic bacteria of the colon. On the other hand, the relation of resistant starch with the glucose and insulin response in human subjects is an important nutritional effect. RS analytical methods are reported.

    El almidón resistente (RS, fracción de almidón de la dieta que no es digerido en el intestino delgado, puede alcanzar hasta un 20% del almidón en productos derivados de cereales y legumbres. Varias fracciones contribuyen al contenido total de almidón resistente: amilosa retrogradada, almidón inaccesible físicamente a los enzimas digestivos, almidón indigestible debido a inhibición de α-amilasas y almidón complejado con otros constituyentes de los alimentos. El almidón resistente se forma en productos que han sufrido tratamientos térmicos (panificación, extrusión, autoclave, etc. El RS aumenta el volumen de heces y es fermentado parcialmente en el colon por bacterias anaeróbicas. Igualmente, está relacionado con los niveles de glucosa en sangre y la respuesta de insulina en humanos. Se describen los métodos analíticos para su determinación.

  19. Kinetic modeling and exploratory numerical simulation of chloroplastic starch degradation

    Directory of Open Access Journals (Sweden)

    Nag Ambarish

    2011-06-01

    lower coupling between metabolic subsystems in different compartments. Conclusions We find that in the reference steady state, starch cleavage is the most significant determinant of carbon flux, with turnover of oligosaccharides playing a secondary role. Independence of stationary point with respect to initial dynamic variable values confirms a unique stationary point in the phase space of dynamically varying concentrations of the model network. Stromal maltooligosaccharide metabolism was highly coupled to the available starch concentration. From the most highly converged trajectories, distances between unique fixed points of phase spaces show that cytosolic maltose levels depend on the total concentrations of arabinogalactan and glucose present in the cytosol. In addition, cellular compartmentalization serves to dampen much, but not all, of the effects of one subnetwork on another, such that kinetic modeling of single compartments would likely capture most dynamics that are fast on the timescale of the transport reactions.

  20. Synthesis and Characterization of Starch-based Aqueous Polymer Isocyanate Wood Adhesive

    Directory of Open Access Journals (Sweden)

    Shu-min Wang

    2015-09-01

    Full Text Available Modified starch was prepared in this work by acid-thinning and oxidizing corn starch with ammonium persulfate. Also, starch-based aqueous polymer isocyanate (API wood adhesive was prepared. The effect of the added amount of modified starch, styrene butadiene rubber (SBR, polymeric diphenylmethane diisocyanate (P-MDI, and the mass concentration of polyvinyl alcohol (PVOH on the bonding strength of starch-based API adhesives were determined by orthogonal testing. The starch-based API adhesive performance was found to be the best when the addition of modified starch (mass concentration 35% was 45 g, the amount of SBR was 3%, the PVOH mass concentration was 10%, and the amount of P-MDI was 18%. The compression shearing of glulam produced by starch-based API adhesive reached bonding performance indicators of I type adhesive. A scanning electron microscope (SEM was used to analyze the changes in micro-morphology of the starch surface during each stage. Fourier transform infrared spectroscopy (FT-IR was used to study the changes in absorption peaks and functional groups from starch to starch-based API adhesives. The results showed that during starch-based API adhesive synthesis, corn starch surface was differently changed and it gradually reacted with other materials.

  1. Establishing whether the structural feature controlling the mechanical properties of starch films is molecular or crystalline.

    Science.gov (United States)

    Li, Ming; Xie, Fengwei; Hasjim, Jovin; Witt, Torsten; Halley, Peter J; Gilbert, Robert G

    2015-03-06

    The effects of molecular and crystalline structures on the tensile mechanical properties of thermoplastic starch (TPS) films from waxy, normal, and high-amylose maize were investigated. Starch structural variations were obtained through extrusion and hydrothermal treatment (HTT). The molecular and crystalline structures were characterized using size-exclusion chromatography and X-ray diffractometry, respectively. TPS from high-amylose maize showed higher elongation at break and tensile strength than those from normal maize and waxy maize starches when processed with 40% plasticizer. Within the same amylose content, the mechanical properties were not affected by amylopectin molecular size or the crystallinity of TPS prior to HTT. This lack of correlation between the molecular size, crystallinity and mechanical properties may be due to the dominant effect of the plasticizer on the mechanical properties. Further crystallization of normal maize TPS by HTT increased the tensile strength and Young's modulus, while decreasing the elongation at break. The results suggest that the crystallinity from the remaining ungelatinized starch granules has less significant effect on the mechanical properties than that resulting from starch recrystallization, possibly due to a stronger network from leached-out amylose surrounding the remaining starch granules. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Morphological and mechanical properties of thermoplastic starch (TPS) and its blend with poly(lactic acid)(PLA) using cassava bagasse and starch

    International Nuclear Information System (INIS)

    Teixeira, Eliangela de M.; Correa, Ana C.; Campos, Adriana de; Marconcini, Jose M.; Mattoso, Luiz H.C.; Curvelo, Antonio A.S.

    2011-01-01

    This study aims the use of an agro waste coming from the industrialization of cassava starch, known as cassava bagasse (BG). This material contains residual starch and cellulose fibers which can be used to obtain thermoplastic starch (TPS) and /or blends reinforced with fibers. In this context, it was prepared a thermoplastic starch with BG (TPSBG) and evaluated the incorporation of 20wt% of it into the biodegradable polymer poly (lactic acid) (PLA), resulting in a blend PLA/TPSBG20. The materials were investigated through morphology (scanning electron microscopy with field emission gun (FEG), x-ray diffraction (XRD), and mechanical behavior (tensile test). Their properties were compared to the blend PLA/TPSI20 in which TPSI is obtained from commercial cassava starch. The results showed that the use of bagasse generates homogenous materials with higher mechanical strength if compared to TPS obtained from commercial cassava starch. The fiber in this residue acted as reinforcement for TPS and PLA/TPS systems. (author)

  3. Overexpression of antibiotic resistance genes in hospital effluents over time.

    Science.gov (United States)

    Rowe, Will P M; Baker-Austin, Craig; Verner-Jeffreys, David W; Ryan, Jim J; Micallef, Christianne; Maskell, Duncan J; Pearce, Gareth P

    2017-06-01

    Effluents contain a diverse abundance of antibiotic resistance genes that augment the resistome of receiving aquatic environments. However, uncertainty remains regarding their temporal persistence, transcription and response to anthropogenic factors, such as antibiotic usage. We present a spatiotemporal study within a river catchment (River Cam, UK) that aims to determine the contribution of antibiotic resistance gene-containing effluents originating from sites of varying antibiotic usage to the receiving environment. Gene abundance in effluents (municipal hospital and dairy farm) was compared against background samples of the receiving aquatic environment (i.e. the catchment source) to determine the resistome contribution of effluents. We used metagenomics and metatranscriptomics to correlate DNA and RNA abundance and identified differentially regulated gene transcripts. We found that mean antibiotic resistance gene and transcript abundances were correlated for both hospital ( ρ  = 0.9, two-tailed P  hospital effluent samples. High β-lactam resistance gene transcript abundance was related to hospital antibiotic usage over time and hospital effluents contained antibiotic residues. We conclude that effluents contribute high levels of antibiotic resistance genes to the aquatic environment; these genes are expressed at significant levels and are possibly related to the level of antibiotic usage at the effluent source. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy.

  4. Use of rice straw and radiation-modified maize starch/acrylonitrile in the treatment of wastewater

    International Nuclear Information System (INIS)

    Abdel-Aal, S.E.; Gad, Y.H.; Dessouki, A.M.

    2006-01-01

    Graft copolymerization of acrylonitrile onto maize starch by a simultaneous irradiation technique using gamma-rays as the initiator was studied with regard to the various parameters of importance: the monomer-to-maize starch ratio and total dose (kGy). The water absorption of the modified maize starch was measured. The starch modified by acrylonitrile gives low water absorbance. Conversion of the copolymer to the amidoxime form gives high swelling. The gel (%) and the grafting efficiency were measured. An investigation was carried out to study the adsorption of basic violet 7, basic blue 3, direct yellow 50 and acid red 37 from aqueous solutions by the water-insoluble modified starch containing amidoxime groups and rice straw. The effects of initial pH of the solution, pollutant concentration and treatment time on the adsorption were studied and it was found that the maximum adsorption was at 1:2 (starch/acrylonitrile) at irradiation dose 30 kGy

  5. Cultivar difference in physicochemical properties of starches and flours from temperate rice of Indian Himalayas.

    Science.gov (United States)

    Mir, Shabir Ahmad; Bosco, Sowriappan John Don

    2014-08-15

    Starch and flour of seven temperate rice cultivars grown in Himalayan region were evaluated for composition, granule structure, crystallinity, Raman spectrometry, turbidity, swelling power, solubility, pasting properties and textural properties. The rice cultivars showed medium to high amylose content for starch (24.69-32.76%) and flour (17.78-24.86%). SKAU-382 showed the highest amount of amylose (32.76%). Rice starch showed polyhedral granule shapes and differences in their mean granule size (2.3-6.5 μm) were noted among the samples. The starch and flour samples showed type A-pattern with strong reflection at 15, 18, and 23. Pasting profile and textural analysis of rice starch and flour showed that all the cultivars differences, probably due to variation in amylose content. The present study can be used for identifying differences between rice genotypes for starch and flour quality and could provide guidance to possible industries for their end use. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Investigating the phase transformations in starch during gelatinisation

    International Nuclear Information System (INIS)

    Tan, I.; Sopade, P.A.; Halley, P.J.

    2003-01-01

    Full text: Starch, a natural polymer of amylose and amylopectin, continues to be a prime material for biodegradable plastic applications as well as many food and non-food uses. Raw starch exists as semicrystalline granules with complex internal supramolecular packing and can be hierarchically organised on four length scales: molecular scale (∼ Angstroms), lamellar structure (∼90 Angstroms); growth rings (∼ 0.1 μm) and the whole granule morphology (∼μm). Starch can be converted into thermoplastic material (TPS) through destructurisation in the presence of plasticisers under specific extrusion conditions. During the transformation of granular starch into TPS, the complex granular supramolecular structure gives rise to the characteristic endothermic first order transition known as gelatinization. Despite advances in research on starch gelatinisation, the precise structural change and transitions involved are still a matter of debate. Moreover, structural variables such as botanical origins, amylose/amylopectin ratio, macromolecular sizes, etc, have been known to influence the physicochemical properties of starch and the transitions it undergoes.While understanding the linkage between structural characteristics and gelatinisation behaviour will provide fundamental knowledge that is critical for the development of next-generation starch biodegradable plastics, this has proved difficult mainly due to poor knowledge of the exact mechanism involved in gelatinisation. This is further complicated by the sketchy idea on the role of structure and organisation of the starch granule. Studies in our laboratory on four types of maize starches with different amylose/amylopectin ratio revealed that although there is a general trend on the variation of gelatinisation parameters with plasticisers concentration, the extent of the variation are different for different types of starch. It was also found that these differences are not a directly related to the variation in

  7. Partial characterization of chayotextle starch-based films added with ascorbic acid encapsulated in resistant starch.

    Science.gov (United States)

    Martínez-Ortiz, Miguel A; Vargas-Torres, Apolonio; Román-Gutiérrez, Alma D; Chavarría-Hernández, Norberto; Zamudio-Flores, Paul B; Meza-Nieto, Martín; Palma-Rodríguez, Heidi M

    2017-05-01

    Chayotextle starch was modified by subjecting it to a dual treatment with acid and heating-cooling cycles. This caused a decrease in the content of amylose, which showed values of 30.22%, 4.80%, 3.27% and 3.57% for native chayotextle starch (NCS), starch modified by acid hydrolysis (CMS), and CMS with one (CMS1AC) and three autoclave cycles (CMS3AC), respectively. The percentage of crystallinity showed an increase of 36.9%-62% for NCS and CMS3AC. The highest content of resistant starch (RS) was observed in CMS3AC (37.05%). The microcapsules were made with CMS3AC due to its higher RS content; the total content of ascorbic acid of the microcapsules was 82.3%. The addition of different concentrations of CMS3AC microcapsules (0%, 2.5%, 6.255% and 12.5%) to chayotextle starch-based films (CSF) increased their tensile strength and elastic modulus. The content of ascorbic acid and RS in CSF was ranged from 0% to 59.4% and from 4.84% to 37.05% in the control film and in the film mixed with CMS3AC microcapsules, respectively. Water vapor permeability (WVP) values decreased with increasing concentrations of microcapsules in the films. Microscopy observations showed that higher concentrations of microcapsules caused agglomerations due their poor distribution in the matrix of the films. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Effect of feeding a reduced-starch diet with or without amylase addition on lactation performance in dairy cows

    NARCIS (Netherlands)

    Gencoglu, H.; Shaver, R.D.; Steinberg, W.; Ensink, J.; Ferraretto, L.F.; Bertics, S.J.; Lopes, J.C.; Akins, M.S.

    2010-01-01

    The objective of this study was to determine lactation performance responses of high-producing dairy cows to a reduced-starch diet compared with a normal-starch diet and to the addition of exogenous amylase to the reduced-starch diet. Thirty-six multiparous Holstein cows (51 +/- 22 DIM and 643 +/-

  9. Assessment of the effluent quality from a gold mining industry in Ghana.

    Science.gov (United States)

    Acheampong, Mike A; Paksirajan, Kannan; Lens, Piet N L

    2013-06-01

    The physical and chemical qualities of the process effluent and the tailings dam wastewater of AngloGold-Ashanti Limited, a gold mining company in Ghana, were studied from June to September, 2010. The process effluent from the gold extraction plant contains high amounts of suspended solids and is therefore highly turbid. Arsenic, copper and cyanide were identified as the major pollutants in the process effluent with average concentrations of 10.0, 3.1 and 21.6 mg L(-1), respectively. Arsenic, copper, iron and free cyanide (CN(-)) concentrations in the process effluent exceeded the Ghana EPA discharge limits; therefore, it is necessary to treat the process effluent before it can be discharged into the environment. Principal component analysis of the data indicated that the process effluent characteristics were influenced by the gold extraction process as well as the nature of the gold-bearing ore processed. No significant correlation was observed between the wastewater characteristics themselves, except for the dissolved oxygen and the biochemical oxygen demand. The process effluent is fed to the Sansu tailings dam, which removes 99.9 % of the total suspended solids and 99.7 % of the turbidity; but copper, arsenic and cyanide concentrations were still high. The effluent produced can be classified as inorganic with a high load of non-biodegradable compounds. It was noted that, though the Sansu tailings dam stores the polluted effluent from the gold extraction plant, there will still be serious environmental problems in the event of failure of the dam.

  10. Physiochemical Treatment of Textile Industry Effluents

    International Nuclear Information System (INIS)

    Latif, M. I.; Qazi, M. A.; Khan, H.; Ahmad, N.

    2015-01-01

    The study mainly focuses on the application of chemical Coagulants (Lime, Alum and Ferrous Sulfate) and Advanced Oxidation Processes (AOPs) (Ozone Treatment and Fenton Process, alone and in combination) to treat textile industry effluents, optimization of coagulation process for various Coagulants in terms of process conditions, including coagulant dose, pH and settling time. The results revealed that Alum was most effective. The efficiency of coagulation process was dose dependent and 400 mg/L dose of Alum alone showed maximum color removal of 47%, 57% and 54% of yellow, red and blue dyes, respectively in addition to the COD removal of 44%. The combined applications of Alum and Lime (300:75 mg/L) and Lime and Alum (300:75 mg/L) showed slightly better COD removal of 51%. However, color removal efficiency of all coagulants was at par. The Ozonation process appeared the most promising for the treatment of waste water and color/COD removal, the efficiency of which increased with increasing the treatment time at constant Ozone dose. For less polluted effluents, 97% color removal was obtained after 1 minute and after 15 minutes for highly polluted effluents; The COD removal efficiency of the process for less polluted effluents was around 89% after 5 minutes Ozonation and for highly polluted effluents 88% COD removal after 40 minutes. The performance of Fenton process was extremely low as compared to Ozonation process. Increase in pH, significantly decreased the color removal efficiency of the process. COD removal efficiency of Fenton process increased with an increase in settling time. (author)

  11. Differential saliva-induced breakdown of starch filled protein gels in relation to sensory perception

    NARCIS (Netherlands)

    Janssen, A.M.; Pijpekamp, A.M. van de; Labiausse, D.

    2009-01-01

    In this study, the differential breakdown of protein gels containing four types of high and low cross-linked starch granules were studied. Susceptibility to saliva-induced breakdown of starch granules and the consequences of these for overall breakdown of the gel matrix were captured using a

  12. Thermal and mechanical properties of fatty acid starch esters.

    Science.gov (United States)

    Winkler, H; Vorwerg, W; Rihm, R

    2014-02-15

    The current study examined thermal and mechanical properties of fatty acid starch esters (FASEs). All highly soluble esters were obtained by the sustainable, homogeneous transesterification of fatty acid vinyl esters in dimethylsulfoxide (DMSO). Casted films of products with a degree of substitution (DS) of 1.40-1.73 were compared with highly substituted ones (DS 2.20-2.63). All films were free of any plasticizer additives. Hydrophobic surfaces were characterized by contact angle measurements. Dynamic scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA) revealed thermal transitions (T(g), T(m)) which were influenced by the internal plasticizing effect of the ester groups. Thermal gravimetric analysis (TGA) measurements showed the increased thermal stability toward native starch. Tensile tests revealed the decreasing strength and stiffness of the products with increasing ester-group chain length while the elongation increased up to the ester group laurate and after that decreased. Esters of the longest fatty acids, palmitate and stearate turned out to be brittle materials due to super molecular structures of the ester chains such as confirmed by X-ray. Summarized products with a DS 1.40-1.73 featured more "starch-like" properties with tensile strength up to outstanding 43 MPa, while products with a DS >2 behaved more "oil-like". Both classes of esters should be tested as a serious alternative to commercial starch blends and petrol-based plastics. The term Cnumber is attributed to the number of total C-Atoms of the fatty acid (e.g. C6=Hexanoate). Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Improvement of rice starch by gamma irradiation

    International Nuclear Information System (INIS)

    Duan Zhiying; Wu Dianxing; Shen Shengquan; Han Juanying; Xia Yingwu

    2003-01-01

    Three types of rice cultivars, Indica, Japonica and hybrid rice, with similar intermediate apparent amylose content (AAC) as well as early Indica rice cultivars with different amounts of AAC were selected for studying the effects of gamma irradiation on starch viscosity, physico-chemical properties and starch granule structure. Four major parameters of RVA profile, peak viscosity (PKV), hot paste viscosity (HPV), cool paste viscosity (CPV), setback viscosity (SBV) and consistence viscosity (CSV) were considerably decreased with increasing dose levels. Gamma irradiation reduced the amylose contents in the cultivars with low AAC, intermediate AAC, and glutinous rice, but had no effects on the high AAC cultivar. No visible changes in alkali spreading value (ASV) were detected after irradiation, but the peak time (PKT) were reduced with the dose level. Gel consistency (GC) were significantly increased in the tested cultivars, especially in the high AAC Indica rice, suggesting that it is promising to use gamma irradiation to improve eating and cooking quality of rice

  14. Preparation and Properties of Cassava Starch-based Wood Adhesives

    Directory of Open Access Journals (Sweden)

    Qing Xu

    2016-06-01

    Full Text Available A biodegradable, environmentally friendly starch-based wood adhesive with cassava starch as a raw material and butyl acrylate (BA as a co-monomer was synthesized. Results revealed that this cassava starch-based wood adhesive (SWA was more stable than corn starch-based wood adhesive, and its bonding performance was close to that of commercial PVAc emulsion, even after 90 days of storage. Further analysis found that the improved stability of the adhesive could be attributed to its low minimum film forming temperature (MFFT and glass transition temperature (Tg of cassava starch. Moreover, the amount of total volatile organic compounds (TVOCs emitted by the cassava starch-based wood adhesive were much lower than the Chinese national standard control criteria. Therefore, cassava SWA might be a potential alternative to traditional petrochemical-based wood adhesives.

  15. SNPs in genes functional in starch-sugar interconversion associate with natural variation of tuber starch and sugar content of potato (Solanum tuberosum L.).

    Science.gov (United States)

    Schreiber, Lena; Nader-Nieto, Anna Camila; Schönhals, Elske Maria; Walkemeier, Birgit; Gebhardt, Christiane

    2014-07-31

    Starch accumulation and breakdown are vital processes in plant storage organs such as seeds, roots, and tubers. In tubers of potato (Solanum tuberosum L.) a small fraction of starch is converted into the reducing sugars glucose and fructose. Reducing sugars accumulate in response to cold temperatures. Even small quantities of reducing sugars affect negatively the quality of processed products such as chips and French fries. Tuber starch and sugar content are inversely correlated complex traits that are controlled by multiple genetic and environmental factors. Based on in silico annotation of the potato genome sequence, 123 loci are involved in starch-sugar interconversion, approximately half of which have been previously cloned and characterized. By means of candidate gene association mapping, we identified single-nucleotide polymorphisms (SNPs) in eight genes known to have key functions in starch-sugar interconversion, which were diagnostic for increased tuber starch and/or decreased sugar content and vice versa. Most positive or negative effects of SNPs on tuber-reducing sugar content were reproducible in two different collections of potato cultivars. The diagnostic SNP markers are useful for breeding applications. An allele of the plastidic starch phosphorylase PHO1a associated with increased tuber starch content was cloned as full-length cDNA and characterized. The PHO1a-HA allele has several amino acid changes, one of which is unique among all known starch/glycogen phosphorylases. This mutation might cause reduced enzyme activity due to impaired formation of the active dimers, thereby limiting starch breakdown. Copyright © 2014 Schreiber et al.

  16. Deciphering the Diversities of Astroviruses and Noroviruses in Wastewater Treatment Plant Effluents by a High-Throughput Sequencing Method.

    Science.gov (United States)

    Prevost, B; Lucas, F S; Ambert-Balay, K; Pothier, P; Moulin, L; Wurtzer, S

    2015-10-01

    Although clinical epidemiology lists human enteric viruses to be among the primary causes of acute gastroenteritis in the human population, their circulation in the environment remains poorly investigated. These viruses are excreted by the human population into sewers and may be released into rivers through the effluents of wastewater treatment plants (WWTPs). In order to evaluate the viral diversity and loads in WWTP effluents of the Paris, France, urban area, which includes about 9 million inhabitants (approximately 15% of the French population), the seasonal occurrence of astroviruses and noroviruses in 100 WWTP effluent samples was investigated over 1 year. The coupling of these measurements with a high-throughput sequencing approach allowed the specific estimation of the diversity of human astroviruses (human astrovirus genotype 1 [HAstV-1], HAstV-2, HAstV-5, and HAstV-6), 7 genotypes of noroviruses (NoVs) of genogroup I (NoV GI.1 to NoV GI.6 and NoV GI.8), and 16 genotypes of NoVs of genogroup II (NoV GII.1 to NoV GII.7, NoV GII.9, NoV GII.12 to NoV GII.17, NoV GII.20, and NoV GII.21) in effluent samples. Comparison of the viral diversity in WWTP effluents to the viral diversity found by analysis of clinical data obtained throughout France underlined the consistency between the identified genotypes. However, some genotypes were locally present in effluents and were not found in the analysis of the clinical data. These findings could highlight an underestimation of the diversity of enteric viruses circulating in the human population. Consequently, analysis of WWTP effluents could allow the exploration of viral diversity not only in environmental waters but also in a human population linked to a sewerage network in order to better comprehend viral epidemiology and to forecast seasonal outbreaks. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  17. Effect of defatting on acid hydrolysis rate of maize starch with different amylose contents.

    Science.gov (United States)

    Wei, Benxi; Hu, Xiuting; Zhang, Bao; Li, Hongyan; Xu, Xueming; Jin, Zhengyu; Tian, Yaoqi

    2013-11-01

    The effect of defatting on the physiochemical properties and the acid hydrolysis rate of maize starch with different amylose contents was evaluated in this study. The increase in the number of pores and the stripping of starch surface layers were observed after defatting by scanning electron microscopy. X-ray diffraction spectrum showed that the peaks attributing to the amylose-lipid complex disappeared. The relative crystallinity increased by 19% for high-amylose maize starch (HMS) on defatting, while the other tested starches virtually unchanged. Differential scanning calorimetry study indicated an increase in the thermal stability for the defatted starches. Compared with native waxy maize starch, the acid hydrolysis rate of the defatted one increased by 6% after 10 days. For normal maize starch (NMS) and HMS, the higher rate of hydrolysis was observed during the first 5 days. Thereafter, the hydrolysis rate was lower than that of their native counterpart. The increase in susceptibility to acid hydrolysis (in the first 5 days) was mainly attributed to the defective and porous structures formed during defatting process, while the decrease of hydrolysis rate for NMS and HMS samples (after the first 5 days) probably resulted from the increase in the relative crystallinity. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  18. Recreating the synthesis of starch granules in yeast

    Science.gov (United States)

    Pfister, Barbara; Sánchez-Ferrer, Antoni; Diaz, Ana; Lu, Kuanjen; Otto, Caroline; Holler, Mirko; Shaik, Farooque Razvi; Meier, Florence; Mezzenga, Raffaele; Zeeman, Samuel C

    2016-01-01

    Starch, as the major nutritional component of our staple crops and a feedstock for industry, is a vital plant product. It is composed of glucose polymers that form massive semi-crystalline granules. Its precise structure and composition determine its functionality and thus applications; however, there is no versatile model system allowing the relationships between the biosynthetic apparatus, glucan structure and properties to be explored. Here, we expressed the core Arabidopsis starch-biosynthesis pathway in Saccharomyces cerevisiae purged of its endogenous glycogen-metabolic enzymes. Systematic variation of the set of biosynthetic enzymes illustrated how each affects glucan structure and solubility. Expression of the complete set resulted in dense, insoluble granules with a starch-like semi-crystalline organization, demonstrating that this system indeed simulates starch biosynthesis. Thus, the yeast system has the potential to accelerate starch research and help create a holistic understanding of starch granule biosynthesis, providing a basis for the targeted biotechnological improvement of crops. DOI: http://dx.doi.org/10.7554/eLife.15552.001 PMID:27871361

  19. Physicochemical studies on starches isolated from plantain cultivars, plantain hybrids and cooking bananas

    Energy Technology Data Exchange (ETDEWEB)

    Eggleston, G.; Akoni, S. (International Inst. of Tropical Agriculture, Ibadan (Nigeria)); Swennen, R. (Catholic Univ. of Leuven, Heverlee (Belgium). Lab. of Tropical Husbandry)

    1992-04-01

    Starches from mature, unripe fruit pulp of plantain cultivars (Musa supp., AAB group) representing the wide variability in Africa, tetraploid and diploid plantain hybrids and starchy cooking bananas (Musa spp., ABB group) were isolated and characterised. In general, studies revealed very compact irregularly shaped and sized granules, with low amylose content (9.11-17.16%), highly resistant to bacterial {alpha}-amylase attack; Brabender amylograms showed very restricted swelling type patterns with great stability and negligible retrogradation. Results indicate that differences in physico-chemical properties exist amongst the three Musa fruit group starches. Plantains represent a chemical/molecular homogeneous group, but heterogeneous for granule structure. Ploidy level affected hybrid properties. ABB cooking bananas starches exhibited highly pronounced restricted swelling and high gelatinisation and pasting temperatures, indicating a more ordered, very strongly bonded granule structure; chemical and physical properties varied considerably within the ABB genotype. (orig.).

  20. Lessons learned from a review of post-accident sampling systems, high range effluent monitors and high concentration particulate iodine samplers

    International Nuclear Information System (INIS)

    Hull, A.P.; Knox, W.H.; White, J.R.

    1987-01-01

    Post-accident sampling systems (PASS), high range gaseous effluent monitors and sampling systems for particulates and iodine in high concentrations have been reviewed at twenty-one licensee sites in Region I of the US Nuclear Regulatory Commission which includes fifteen BWR's and fourteen PWR's. Although most of the installed PASS met the criteria, the highest operational readiness was found in on-line systems that were also used for routine sampling and analysis. The detectors used in the gaseous effluent monitors included external ion chambers, GM tubes, organic scintillators and Cd-Te solid state crystals. Although all were found acceptable, each had its own inherent limitations in the conversion of detector output to the time varying concentration of a post-accident mixture of noble gases. None of the installed particulate and iodine samplers fully met all of the criteria. Their principal limitations included a lack of documentation showing that they could obtain a representative sample and that many of them would collect of an excessive amount of activity at the design criteria. 10 refs., 4 figs., 5 tabs

  1. Resistant Starch: Variation among High Amylose Rice Varieties and Its Relationship with Apparent Amylose Content, Pasting Properties and Cooking Methods

    Science.gov (United States)

    Resistant starch (RS), which is not hydrolyzed in the small intestines, has proposed health benefits. We evaluated a set of 40 high amylose rice varieties for RS levels in cooked rice and approximately a 1.9-fold difference was found. The highest ones had more than two-fold greater RS concentration ...

  2. Comparison of ambient solvent extraction methods for the analysis of fatty acids in non-starch lipids of flour and starch

    Science.gov (United States)

    Bahrami, Niloufar; Yonekura, Lina; Linforth, Robert; Carvalho da Silva, Margarida; Hill, Sandra; Penson, Simon; Chope, Gemma; Fisk, Ian Denis

    2014-01-01

    BACKGROUND Lipids are minor components of flours, but are major determinants of baking properties and end-product quality. To the best of our knowledge, there is no single solvent system currently known that efficiently extracts all non-starch lipids from all flours without the risk of chemical, mechanical or thermal damage. This paper compares nine ambient solvent systems (monophasic and biphasic) with varying polarities: Bligh and Dyer (BD); modified Bligh and Dyer using HCl (BDHCL); modified BD using NaCl (BDNaCl); methanol–chloroform–hexane (3:2:1, v/v); Hara and Radin (hexane–isopropanol, 3:2, v/v); water-saturated n-butanol; chloroform; methanol and hexane for their ability to extract total non-starch lipids (separated by lipid classes) from wheat flour (Triticum aestivum L.). Seven ambient extraction protocols were further compared for their ability to extract total non-starch lipids from three alternative samples: barley flour (Hordeum vulgare L.), maize starch (Zea mays L.) and tapioca starch (Manihot esculenta Crantz). RESULTS For wheat flour the original BD method and those containing HCl or NaCl tended to extract the maximum lipid and a significant correlation between lipid extraction yield (especially the glycolipids and phospholipids) and the polarity of the solvent was observed. For the wider range of samples BD and BD HCl repeatedly offered the maximum extraction yield and using pooled standardized (by sample) data from all flours, total non-starch lipid extraction yield was positively correlated with solvent polarity (r = 0.5682, P starches when compared to the flour samples, which is due to the differences in lipid profiles between the two sample types (flours and starches). PMID:24132804

  3. Dielectric spectroscopy of Ag-starch nanocomposite films

    Science.gov (United States)

    Meena; Sharma, Annu

    2018-04-01

    In the present work Ag-starch nanocomposite films were fabricated via chemical reduction route. The formation of Ag nanoparticles was confirmed using transmission electron microscopy (TEM). Further the effect of varying concentration of Ag nanoparticles on the dielectric properties of starch has been studied. The frequency response of dielectric constant (ε‧), dielectric loss (ε″) and dissipation factor tan(δ) has been studied in the frequency range of 100 Hz to 1 MHz. Dielectric data was further analysed using Cole-Cole plots. The dielectric constant of starch was found to be 4.4 which decreased to 2.35 in Ag-starch nanocomposite film containing 0.50 wt% of Ag nanoparticles. Such nanocomposites with low dielectric constant have potential applications in microelectronic technologies.

  4. Can constructed wetlands treat wastewater for reuse in agriculture? Review of guidelines and examples in South Europe.

    Science.gov (United States)

    Lavrnić, Stevo; Mancini, Maurizio L

    2016-01-01

    South Europe is one of the areas negatively affected by climate change. Issues with water shortage are already visible, and are likely to increase. Since agriculture is the biggest freshwater consumer, it is important to find new water sources that could mitigate the climate change impact. In order to overcome problems and protect the environment, a better approach towards wastewater management is needed. That includes an increase in the volume of wastewater that is treated and a paradigm shift towards a more sustainable system where wastewater is actually considered as a resource. This study evaluates the potential of constructed wetlands (CWs) to treat domestic wastewater and produce effluent that will be suitable for reuse in agriculture. In South Europe, four countries (Greece, Italy, Portugal and Spain) have national standards that regulate wastewater reuse in agriculture. Wastewater treatment plants (WWTPs) that are based on CWs in these four countries were analysed and their effluents compared with the quality needed for reuse. In general, it was found that CWs have trouble reaching the strictest standards, especially regarding microbiological parameters. However, their effluents are found to be suitable for reuse in areas that do not require water of the highest quality.

  5. Effect of Ultrasound on Physicochemical Properties of Wheat Starch

    Directory of Open Access Journals (Sweden)

    Mahsa Majzoobi

    2014-04-01

    Full Text Available Application of ultrasound process is growing in food industry for different purposes including homogenization, extraction, blanching and removal of microorganisms, etc. On the other hand, starch is a natural polymer which exists in many foods or added into the food as an additive. Therefore, determination of the effects of ultrasound on starch characteristics can be useful in interpretation of the properties of starch-containing products. The main aim of this study was to determine the physicochemical changes of wheat starch treated by ultrasound waves. Therefore, an ultrasound probe device was used which ran at 20 kHz, 100 W and 22°C. Starch suspension in distilled water (30% w/w was prepared and treated with ultrasound for 5, 10, 15 and 20 min. The results showed that increases in processing duration led to increases in water solubility of starch, water absorption and gel clarity (as determined by spectrophotometry. Starch intrinsic viscosity as measured using an Ostwald U-tube showed lower intrinsic viscosity with increases in ultrasound time. Gel strength of the samples as determined using a texture analyzer was reduced by longer processing time. The scanning electron microscopy revealed that increasing the duration time of the ultrasound treatment could produce some cracks and spots on the surface of the granules. In total, it was concluded that the ultrasound treatment resulted in some changes from the starch granular scale to molecular levels. Some of the starch molecules were degraded upon ultrasound processing. Such changes may be observed for the starch-containing foods treated with ultrasound and they are enhanced with increases in ultrasound time intervals.

  6. Supply of avocado starch (Persea americana mill) as bioplastic material

    Science.gov (United States)

    Ginting, M. H. S.; Hasibuan, R.; Lubis, M.; Alanjani, F.; Winoto, F. A.; Siregar, R. C.

    2018-02-01

    The purpose of this study was to determine the effect of time precipitation of avocado slurry seed to yield of starch. Starch analysis included starch content, moisture content, amylose content, amylopectin content, ash content, protein content, fat content, Fourier transform infra red analysis and rapid visco analyzer. Supply of starch from avocado seeds was used by extraction method. Every one hundred grams of avocado slurry was precipitated by gravity with variations for 4 hours, 8 hours, 12 hours, 16 hours, 20 hours and 24 hours. The Starch yield was washed, and dried using oven at 70°C for 30 minutes. Starch yield was the highest as 24.20 gram at 24 hours. The result of starch characterization was 73.62%, water content 16.6%, amylose 0.07%, amylopectin 73.55%, ash content 0.23%, protein content 2.16%, fat content 1.09%. Rapid visco analyzer obtained at 91.33°C of gelatinization temperature. Scanning electron microscopy analyzes obtained 20 μm oval-shaped starch granules. Fourier Transform Infra Red analysis of starch obtained the peak spectrum of O-H group of alcohols, C-H alkanes and C-O ether.

  7. Thermal treatment of starch slurry in Couette-Taylor flow apparatus

    Directory of Open Access Journals (Sweden)

    Hubacz Robert

    2017-09-01

    Full Text Available In this paper, thermal processing of starch slurry in a Couette-Taylor flow (CTF apparatus was investigated. Gelatinized starch dispersion, after treatment in the CTF apparatus, was characterized using such parameters like starch granule diameters (or average diameter, starch granule swelling degree (quantifying the amount of water absorbed by starch granules and concentration of dissolved starch. These parameters were affected mostly by the process temperature, although the impact of the axial flow or rotor rotation on them was also observed. Moreover, the analysis of results showed a relatively good correlation between these parameters, as well as, between those parameter and apparent viscosity of gelatinized starch dispersion. Meanwhile, the increase in the value of the apparent viscosity and in shear-tinning behaviour of dispersion was associated with the progress of starch processing in the CTF apparatus. Finally, the CTF apparatuses of different geometries were compared using numerical simulation of the process. The results of the simulation indicated that the apparatus scaling-up without increasing the width of the gap between cylinders results in higher mechanical energy consumption per unit of processed starch slurry.

  8. Swelling Kinetics of Waxy Maize Starch

    Science.gov (United States)

    Desam, Gnana Prasuna Reddy

    Starch pasting behavior greatly influences the texture of a variety of food products such as canned soup, sauces, baby foods, batter mixes etc. The annual consumption of starch in the U.S. is 3 million metric tons. It is important to characterize the relationship between the structure, composition and architecture of the starch granules with its pasting behavior in order to arrive at a rational methodology to design modified starch of desirable digestion rate and texture. In this research, polymer solution theory was applied to predict the evolution of average granule size of starch at different heating temperatures in terms of its molecular weight, second virial coefficient and extent of cross-link. Evolution of granule size distribution of waxy native maize starch when subjected to heating at constant temperatures of 65, 70, 75, 80, 85 and 90 C was characterized using static laser light scattering. As expected, granule swelling was more pronounced at higher temperatures and resulted in a shift of granule size distribution to larger sizes with a corresponding increase in the average size by 100 to 120% from 13 mum to 25-28 mum. Most of the swelling occurred within the first 10 min of heating. Pasting behavior of waxy maize at different temperatures was also characterized from the measurements of G' and G" for different heating times. G' was found to increase with temperature at holding time of 2 min followed by its decrease at larger holding times. This behavior is believed to be due to the predominant effect of swelling at small times. However, G" was insensitive to temperature and holding times. The structure of waxy maize starch was characterized by cryoscanning electron microscopy. Experimental data of average granule size vs time at different temperatures were compared with model predictions. Also the Experimental data of particle size distribution vs particle size at different times and temperatures were compared with model predictions.

  9. The effect of gamma irradiation on the functional properties of various starches: A comparative study

    International Nuclear Information System (INIS)

    Benbettaieb, Nasreddine

    2010-01-01

    Irradiation is one of the most effective methods able to change starch structure and its functional properties. Effects of irradiation are largely related to particular structure and molecular organisation of starch from various botanical sources. In this research, the effect of gamma irradiation (3, 5, 10, 20, 35 and 50kGy) on the rheological, structural, and morphological properties of three starch varieties (potato, tapioca and wheat) was studied. Rheological analyses show that all the starches develop different behaviours during gelatinization. Potato starch yielded the high swelling power (SP) and exhibited a maximum value of consistency during pasting, followed by that of tapioca one. The lower values of SP and maximum consistency were observed in the case of wheat starch. For all starch varieties, the pic consistency during pasting decrease with increasing irradiation dose. An increase in the SP was observed for all the studied starches irradiated with lower dose (until 20kGy). This parameter decreases at higher doses. On the other hand, irradiation improves the water solubility index (WSI) of all the studied starch. In addition, spectra of Fourier transformed infrared spectroscopy (FTIR) showed that the irradiated starch displayed a significant decrease in the intensity of the OH stretch (3000; 3600 cm -1 ), C H stretch (between 2800 and 3000 cm -1 ), bending mode of water (between 1600 and 1800 cm -1 ) and in the bending mode of glycosidic linkage (between 900 and 950cm -1 ). Structural analysis using electron spins resonance (ESR) illustrates the presence of three signals in 3490, 3500 and 3510 G, respectively. These signals confirm the presence of free radicals in the tapioca and wheat starches through radiation treatment. The X-ray diffraction (XRD) spectra showed that potato starch has B type morphology while tapioca and wheat starches have a crystalline A type morphology. In the same analysis, it was shown that irradiation treatment has no major

  10. Degradation of corn starch under the influence of gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    El Saadany, R M.A.; El Saadany, F M; Foda, Y H

    1976-01-01

    Irradiation of corn (maize) starch with different doses of gamma irradiation ranging from 1 x 10/sup 5/ rad to 1 x 10/sup 6/ rad resulted in the increase of starch acidity and reducing power. Molecular degradation was observed as a result of marked decrease in starch viscosity and intinsic viscosity as well as swelling capacity. The gelatinization time and temperature of the irradiated starch became shorter than in the control sample. Internal changes in the irradiated starch occured as a result of lowering the number of glucose unit per segment in the irradiated starch molecules. All changes were proportional to the doses of gamma irradiation used.

  11. Degradation of corn starch under the influence of gamma irradiation

    International Nuclear Information System (INIS)

    El Saadany, R.M.A.; El Saadany, F.M.; Foda, Y.H.

    1976-01-01

    Irradiation of corn (maize) starch with different doses of gamma irradiation ranging from 1 x 10 5 rad to 1 x 10 6 rad resulted in the increase of starch acidity and reducing power. Molecular degradation was observed as a result of marked decrease in starch viscosity and intinsic viscosity as well as swelling capacity. The gelatinization time and temperature of the irradiated starch became shorter than in the control sample. Internal changes in the irradiated starch occured as a result of lowering the number of glucose unit per segment in the irradiated starch molecules. All changes were proportional to the doses of gamma irradiation used. (orig.) [de

  12. Starch digestibility and predicted glycemic index of fried sweet potato cultivars

    Directory of Open Access Journals (Sweden)

    Amaka Odenigbo

    2012-07-01

    Full Text Available Background: Sweet potato (Ipomoea batatas L. is a very rich source of starch. There is increased interest in starch digestibility and the prevention and management of metabolic diseases.Objective: The aim of this study was to evaluate the levels of starch fractions and predicted glycemic index of different cultivars of sweet potato. Material and Method: French fries produced from five cultivars of sweet potato (‘Ginseng Red’, ‘Beauregard’, ‘White Travis’, ‘Georgia Jet clone #2010’ and ‘Georgia Jet’ were used. The level of total starch (TS, resistant starch (RS, digestible starch (DS, and starch digestion index starch digestion index in the samples were evaluated. In vitro starch hydrolysis at 30, 90, and 120 min were determined enzymatically for calculation of rapidly digestible starch (RDS, predicted glycemic index (pGI and slowly digestible starch (SDS respectively. Results: The RS content in all samples had an inversely significant correlation with pGI (-0.52; P<0.05 while RDS had positive and significant influence on both pGI (r=0.55; P<0.05 and SDI (r= 0.94; P<0.01. ‘White Travis’ and ‘Ginseng Red’ had higher levels of beneficial starch fractions (RS and SDS with low pGI and starch digestion Index (SDI, despite their higher TS content. Generally, all the cultivars had products with low to moderate GI values. Conclusion: The glycemic index of these food products highlights the health promoting characteristics of sweet potato cultivars.

  13. Population array and agricultural data arrays for the Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Jacobson, K.W.; Duffy, S.; Kowalewsky, K.

    1998-07-01

    To quantify or estimate the environmental and radiological impacts from man-made sources of radioactive effluents, certain dose assessment procedures were developed by various government and regulatory agencies. Some of these procedures encourage the use of computer simulations (models) to calculate air dispersion, environmental transport, and subsequent human exposure to radioactivity. Such assessment procedures are frequently used to demonstrate compliance with Department of Energy (DOE) and US Environmental Protection Agency (USEPA) regulations. Knowledge of the density and distribution of the population surrounding a source is an essential component in assessing the impacts from radioactive effluents. Also, as an aid to calculating the dose to a given population, agricultural data relevant to the dose assessment procedure (or computer model) are often required. This report provides such population and agricultural data for the area surrounding Los Alamos National Laboratory

  14. Hydrotalcites: a highly efficient ecomaterial for effluent treatment originated from carbon nanotubes chemical processing

    Energy Technology Data Exchange (ETDEWEB)

    Alves, O L; Stefani, D; Parizotto, N V; Filho, A G Souza, E-mail: oalves@iqm.unicamp.br [Solid State Chemistry Laboratory, Institute of Chemistry, University of Campinas - UNICAMP, P. O. Box 6154, 13083-970, Campinas-SP (Brazil)

    2011-07-06

    It has been reported that a mixture of carboxylated carbonaceous fragments (CCFs), so called oxidation debris, are generated during carbon nanotubes chemical processing using oxidant agents such as HNO{sub 3}. The elimination of these fragments from carbon nanotubes surface has been point out to be a crucial step for an effective functionalization of the nanotubes as well as for improving the material. However, this process can introduce a potential environmental problem related water contamination because these CCFs can be viewed as a mixture of carbonaceous polyaromatic systems similar to humic substances and dissolved organic matter (DOM). The negative aspects of humic substances and DOM to water quality and wastewater treatment are well known. Since carbon nanotubes industry expands at high rates it is expected that effluent containing oxidation debris will increase since HNO{sub 3} chemical processing is the most applied method for purification and functionalization of carbon nanotubes. In this work, we have demonstrated that Hydrotalcites (HT) are highly efficient to remove oxidation debris from effluent solution originated from HNO{sub 3}-treated multiwalled carbon nanotubes. The strategy presented here is a contribution towards green chemistry practices and life cycle studies in carbon nanotubes field.

  15. Effect of ionizing radiation on starch and cellulose

    International Nuclear Information System (INIS)

    Klenha, J.; Bockova, J.

    1973-09-01

    The investigation is reported of the effects of ionizing radiation both on macromolecular systems generally and on polysaccharides, starch and cellulose. Attention is focused on changes in the physical and physico-chemical properties of starch and cellulose, such as starch swelling, gelation, viscosity, solubility, reaction with iodine, UV, IR and ESR spectra, chemical changes resulting from radiolysis and from the effect of amylases on irradiated starch, changes in cellulose fibre strength, water absorption, stain affinity, and also the degradation of cellulose by radiation and the effect of cellulases on irradiated cellulose. Practical applications of the findings concerning cellulose degradation are discussed. (author)

  16. Isolation and characterization of starch from industrial fresh pasta by-product and its potential use in sugar-snap cookie making.

    Science.gov (United States)

    Ellouzi, Soumaya Zouari; Driss, Dorra; Maktouf, Sameh; Neifar, Mohamed; Kobbi, Ameni; Kamoun, Hounaida; Chaabouni, Semia Ellouze; Ghorbel, Raoudha Ellouze

    2015-09-01

    In this paper, starch was extracted from fresh pasta by-product (PS) and its chemical composition and physical and microscopic characteristics were determined. Commercial wheat starch (CS) was used as reference. In general, purity was similar between starches studied. However, others compounds such as protein, lipid and ash were significantly different. PS starch granules had large lenticular-shape (25-33 μm) and small spherical-shape (5-8 μm). The pH and color of PS starch were similar to those reported for CS starch. On the other hand, PS had higher water absorption capacity, viscosity and cooking stability than CS. The gelatinization temperature of PS was similar to that of CS (60 and 61 °C). At high temperature (90 °C) both starches had similar rheological behavior. The results achieved suggest that PS starch has potential for application in food systems requiring high processing temperatures such the manufacture of sugar snap cookie. The effects of PS starch addition on the dough making stage and the final cookie quality were analyzed. Improvements in dough cohesiveness (24 %) and springiness (10 %) were significant relative to those of CS dough. Texture profile analysis confirmed the rheological changes.

  17. Utilization of vinasse effluents from an anaerobic reactor

    Energy Technology Data Exchange (ETDEWEB)

    Costa, F J.C.B.; Rocha, B B.M.; Viana, C E; Toledo, A C

    1986-01-01

    An anaerobic reactor was developed to biodigest alcohol distillery wastes. A further post-treatment of the effluent reduced the level of pollution to the point of eventually discharging into streams and rivers. The present work also analyses the use of biodigested vinasse as a source of food for fish. Very high efficiencies were obtained during primary and secondary treatment of vinasse effluent, as demonstrated by the greatly reduced organic load. The utilization of the treated effluent as a source of fish food presents an excellent alternative for the Brazilian alcohol industry. (Refs. 6).

  18. Effects of effluents from a coal-fired, electric-generating powerplant on local ground water near Hayden, Colorado

    Science.gov (United States)

    Ellis, S.R.; Mann, P.G.

    1981-01-01

    Data were collected at the Hayden, Colo., powerplant for about a year during 1978-79 to monitor the effects of effluent and raw-water storage ponds on the local ground water, Sage Creek, and the Yampa River. The concentration of boron in wells downgradient from the effluent ponds indicated that the ponds were leaking, increasing the average boron concentrations in the ground water to a level in excess of the standards for agricultural use of water. Water from seeps, probably the best indicators of downgradient water quality, had average concentrations of boron two times that of the Colorado Department of Health (1977) standard for agricultural use of water. Chemical analyses of water from wells and the discharge weir downgradient from the raw-water storage ponds indicated these ponds are leaking. The effect of this leakage is that the water in wells downgradient from these ponds has a lower specific conductance and a lower boron concentration than the water in wells downgradient from the effluent ponds. The concentration of trace elements in the water from the wells and the discharge weir generally declined during the study, probably because the ground water was recovering from the effects of a plume from the raw-water pond previously used for fly-ash disposal. The effluents from the Hayden powerplant lowered the specific conductance and the iron and manganese concentrations, increased the concentration of boron, and had little or no effect on the selenium concentration in Sage Creek. Sage Creek had no discernible effect on the Yampa River because the volume of water in the Yampa River was so much greater. The effluents from the powerplant also had no discernible effect on the Yampa River. (USGS)

  19. In vitro starch hydrolysis and estimated glycemic index of tef porridge and injera.

    Science.gov (United States)

    Shumoy, Habtu; Raes, Katleen

    2017-08-15

    The aim of this study was to investigate the in vitro starch digestibility of injera and porridge from seven tef varieties and to estimate their glycemic index. The total starch, free glucose, apparent amylose, resistant, slowly digestible and rapidly digestible starches of the varieties ranged between 66 and 76, 1.8 and 2.4g/100g flour dry matter (DM), 29 and 31%, 17 and 68, 19 and 53, 12 and 30g/100g starch DM, respectively. After processing into injera and porridge, the rapidly digestible starch content increased by 60-85% and 3-69%, respectively. The estimated glycemic index of porridge and injera of the varieties ranged 79-99 and 94-137 when estimated based on model of Goni et al. (1997) whereas from 69 to 100 and 94 to 161, respectively based on Granfeldtet al. (1992). Tef porridge and injera samples studied here can be classified as medium- high GI foods, not to be considered as a proper food ingredient for diabetic people and patients in weight gain control. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Aqueous dispersion of red clay-based ceramic powder with the addition of starch

    Directory of Open Access Journals (Sweden)

    Maria Victoria Alcantar Umaran

    2013-04-01

    Full Text Available The optimum dispersion and rheological properties of red clay-based ceramic suspension loaded with unary and binary starch were investigated in aqueous medium. The aqueous ceramic suspension was prepared consisting of red clay, quartz, feldspar, and distilled water. Using a polyelectrolyte dispersant (Darvan 821A, the ternary ceramic powder was initially optimized to give the smallest average particle size at 0.8 wt. (% dispersant dosage as supported by sedimentation test. This resulted into an optimum high solid loading of 55 wt. (%. The addition of either unary or binary starches to the optimized ceramic slurry increased the viscosity but maintained an acceptable fluidity. The mechanism of such viscosity increase was found to be due to an adsorption of starch granules onto ceramic surfaces causing tolerable agglomeration. Correspondingly, the rheological evaluations showed that the flow behaviors of all starch-loaded ceramic slurries can be described using Herschel-Bulkley model. The parameters from this model indicated that all ceramic slurries loaded with starch are shear thinning that is required for direct casting process.