WorldWideScience

Sample records for high-spin isomer beams

  1. Development of high-spin isomer beams

    International Nuclear Information System (INIS)

    Zhou Xiaohong

    2000-01-01

    The physical motivations with high-spin isomer beams were introduced. Taking HSIB of RIKEN as an example, the methods to produce, separate, transport and purity high-spin isomer beams were described briefly, and the detection of γ rays emitted from the reactions induced by the high-spin isomer beams was presented. Finally, the progress to develop the high-spin isomers in the N = 83 isotones as second beams was stressed

  2. High spin isomer beam line at RIKEN

    Energy Technology Data Exchange (ETDEWEB)

    Kishida, T.; Ideguchi, E.; Wu, H.Y. [Institute of Physical and Chemical Research, Saitama (Japan)] [and others

    1996-12-31

    Nuclear high spin states have been the subject of extensive experimental and theoretical studies. For the production of high spin states, fusion reactions are usually used. The orbital angular momentum brought in the reaction is changed into the nuclear spin of the compound nucleus. However, the maximum induced angular momentum is limited in this mechanism by the maximum impact parameter of the fusion reaction and by the competition with fission reactions. It is, therefore, difficult to populate very high spin states, and as a result, large {gamma}-detector arrays have been developed in order to detect subtle signals from such very high spin states. The use of high spin isomers in the fusion reactions can break this limitation because the high spin isomers have their intrinsic angular momentum, which can bring the additional angular momentum without increasing the excitation energy. There are two methods to use the high spin isomers for secondary reactions: the use of the high spin isomers as a target and that as a beam. A high spin isomer target has already been developed and used for several experiments. But this method has an inevitable shortcoming that only {open_quotes}long-lived{close_quotes} isomers can be used for a target: {sup 178}Hf{sup m2} (16{sup +}) with a half-life of 31 years in the present case. By developing a high spin isomer beam, the authors can utilize various short-lived isomers with a short half-life around 1 {mu}s. The high spin isomer beam line of RIKEN Accelerator Facility is a unique apparatus in the world which provides a high spin isomer as a secondary beam. The combination of fusion-evaporation reaction and inverse kinematics are used to produce high spin isomer beams; in particular, the adoption of `inverse kinematics` is essential to use short-lived isomers as a beam.

  3. Observation of a new high-spin isomer in 94Pd

    International Nuclear Information System (INIS)

    Brock, T. S.; Nara Singh, B. S.; Wadsworth, R.; Boutachkov, P.; Gorska, M.; Grawe, H.; Pietri, S.; Domingo-Pardo, C.; Caceres, L.; Engert, T.; Farinon, F.; Gerl, J.; Goel, N.; Kojuharov, I.; Kurz, N.; Nociforo, C.; Prochazka, A.; Schaffner, H.; Weick, H.; Braun, N.

    2010-01-01

    A second γ-decaying high-spin isomeric state, with a half-life of 197(22)ns, has been identified in the N=Z+2 nuclide 94 Pd as part of a stopped-beam Rare Isotope Spectroscopic INvestigation at GSI (RISING) experiment. Weisskopf estimates were used to establish a tentative spin/parity of 19 - , corresponding to the maximum possible spin of a negative parity state in the restricted (p 1/2 , g 9/2 ) model space of empirical shell model calculations. The reproduction of the E3 decay properties of the isomer required an extension of the model space to include the f 5/2 and p 3/2 orbitals using the CD-Bonn potential. This is the first time that such an extension has been required for a high-spin isomer in the vicinity of 100 Sn and reveals the importance of such orbits for understanding the decay properties of high-spin isomers in this region. However, despite the need for the extended model space for the E3 decay, the dominant configuration for the 19 - state remains (πp 1/2 -1 g 9/2 -3 ) 11 x (νg 9/2 -2 ) 8 . The half-life of the known, 14 + , isomer was remeasured and yielded a value of 499(13) ns.

  4. A new high-spin isomer in {sup 195}Bi

    Energy Technology Data Exchange (ETDEWEB)

    Roy, T.; Mukherjee, G.; Rana, T.K.; Bhattacharya, Soumik; Asgar, Md.A.; Bhattacharya, C.; Bhattacharya, S.; Bhattacharyya, S.; Pai, H. [Variable Energy Cyclotron Centre, Kolkata (India); Madhavan, N.; Bala, I.; Gehlot, J.; Gurjar, R.K.; Jhingan, A.; Kumar, R.; Muralithar, S.; Nath, S.; Singh, R.P.; Varughese, T. [Inter University Acclerator Centre, New Delhi (India); Basu, K.; Bhattacharjee, S.S.; Ghugre, S.S.; Raut, R.; Sinha, A.K. [UGC-DAE-CSR Kolkata Centre, Kolkata (India); Palit, R. [Tata Institute of Fundamental Research, Department of Nuclear and Atomic Physics, Mumbai (India)

    2015-11-15

    A new high-spin isomer has been identified in {sup 195}Bi at the focal plane of the HYbrid Recoil mass Analyser (HYRA) used in the gas-filled mode. The fusion evaporation reactions {sup 169}Tm ({sup 30}Si, x n) {sup 193,} {sup 195}Bi were used with the beam energies on targets of 168 and 146MeV for 6n and 4n channels, respectively. The evaporation residues, separated from the fission fragments, and their decays were detected at the focal plane of HYRA using MWPC, Si-Pad and clover HPGe detectors. The half-life of the new isomer in {sup 195}Bi has been measured to be 1.6(1) μs. The configuration of the new isomer has been proposed and compared with the other isomers in this region. The Total Routhian Surface (TRS) calculations for the three-quasiparticle configurations corresponding to the new isomer suggest an oblate deformation for this isomeric state. The same calculations for different configurations in {sup 195}Bi and for the even-even {sup 194}Pb core indicate that the proton i{sub 13/2} orbital has a large shape driving effect towards oblate shape in these nuclei. (orig.)

  5. Application of the high-spin isomer beams to the secondary fusion reaction and the measurement of g-factor

    International Nuclear Information System (INIS)

    Watanabe, H.; Asahi, K.; Kishida, T.; Ueno, H.; Sato, W.; Yoshimi, A.; Kobayashi, Y.; Kameda, D.; Miyoshi, H.; Fukuchi, T.; Wakabayashi, Y.; Sasaki, T.; Kibe, M.; Hokoiwa, N.; Odahara, A.; Cederwall, B.; Lagergren, K.; Podolyak, Zs.; Ishihara, M.; Gono, Y.

    2004-01-01

    A technique for providing high-spin isomers as probes of the fusion reaction and the measurement of g-factor has been worked out at RIKEN. In the study of the fusion reaction 12 C( 145m Sm,xn) 157-x Er, the γ rays emitted from the fusion-evaporation residue 154 Er have been successfully observed. The nuclear g-factor of the T 1/2 = 28 ns high-spin isomer in 149 Dy has been measured with the γ-ray TDPAD method

  6. Study of the odd-${A}$, high-spin isomers in neutron-deficient trans-lead nuclei with ISOLTRAP

    CERN Multimedia

    Herfurth, F; Blaum, K; Beck, D; Kowalska, M; Schwarz, S; Stanja, J; Huyse, M L; Wienholtz, F

    We propose to measure the excitation energy of the $\\frac{13^{+}}{2}$ isomers in the neutron-deficient isotopes $^{193,195,197}$Po with the ISOLTRAP mass spectrometer. The assignment of the low- and high-spin isomers will be made by measuring the energy of the $\\alpha$- particles emitted in the decay of purified beams implanted in a windmill system. Using $\\alpha$-decay information, it is then also possible to determine the excitation energy of the similar isomers in the $\\alpha$-daughter nuclei $^{189,191,193}$Pb, $\\alpha$-parent nuclei $^{197,199,201}$Rn, and $\\alpha$-grand-parent nuclei $^{201,203,205}$Ra. The polonium beams are produced with a UC$_{\\textrm{x}}$ target and using the RILIS.

  7. High-spin, multiparticle isomers in 121,123Sb

    International Nuclear Information System (INIS)

    Jones, G. A.; Walker, P. M.; Podolyak, Zs.; Cullen, I. J.; Garnsworthy, A. B.; Liu, Z.; Thompson, N. J.; Williams, S. J.; Zhu, S.; Carpenter, M. P.; Janssens, R. V. F.; Khoo, T. L.; Seweryniak, D.; Carroll, J. J.; Chakrawarthy, R. S.; Hackman, G.; Chowdhury, P.; Dracoulis, G. D.; Lane, G. J.; Kondev, F. G.

    2008-01-01

    Isomers in near-spherical Z=51, antimony isotopes are reported here for the first time using fusion-fission reactions between 27 Al and a pulsed 178 Hf beam of energy, 1150 MeV. γ rays were observed from the decay of isomeric states with half-lives, T 1/2 =200(30) and 52(3)μs, and angular momenta I=((25/2)) and I π =(23/2) + , in 121,123 Sb, respectively. These states are proposed to correspond to ν(h (11/2) ) 2 configurations, coupled to an odd d (5/2) or g (7/2) proton. Nanosecond isomers were also identified at I π =(19/2) - [T 1/2 =8.5(5) ns] in 121 Sb and I π =((15/2) - ) [T 1/2 =37(4) ns] in 123 Sb. Information on spins and parities of states in these nuclei was obtained using a combination of angular correlation and intensity-balance measurements. The configurations of states in these nuclei are discussed using a combination of spin/energy systematics and shell-model calculations for neighboring tin isotones and antimony isotopes

  8. Decay of the high-spin isomer in 160Re: Changing single-particle structure beyond the proton drip line

    International Nuclear Information System (INIS)

    Darby, I.G.; Page, R.D.; Joss, D.T.; Simpson, J.; Bianco, L.; Cooper, R.J.; Eeckhaudt, S.; Ertuerk, S.; Gall, B.; Grahn, T.; Greenlees, P.T.; Hadinia, B.; Jones, P.M.; Judson, D.S.; Julin, R.; Juutinen, S.; Ketelhut, S.; Leino, M.; Leppaenen, A.-P.; Nyman, M.

    2011-01-01

    A new high-spin isomeric state (t 1/2 =2.8±0.1 μs) in 160 Re has been identified. This high-spin isomer is unique in that it only decays by γ-decay and not by proton or α-particle emission as is the case in every other proton emitter between Z=64 and 80. Shell model calculations indicate how the convergence of the h 9/2 and f 7/2 neutron levels in this region could open up a γ-decay path from the high-spin isomer to the low-spin ground state of 160 Re, providing a natural explanation for this anomalous absence of charged-particle emission. The consequences of these observations for future searches for proton emission from even more exotic nuclei and in-beam spectroscopic studies are considered.

  9. Comparison of the Weisskopf estimates in spin and K-isomers

    International Nuclear Information System (INIS)

    Garg, Swati; Maheshwari, B.; Rajput, Rohit; Srivastava, P.C.; Jain, A.K.

    2014-01-01

    Nuclear isomers are the excited metastable states, which exist due to the hindrance on their decay. Study of isomers has recently become very popular due to advances in the experimental techniques and also the arrival of radioactive beams. Large amount of new experimental data is becoming available. The very first 'Atlas of nuclear isomers' lists more than 2460 nuclear isomers with the half-life cut off at 10 ns. Spin isomers mostly exist due to the difficulty in meeting the spin selection rules and cluster around the semi-magic regions. The isomers far from the magic-numbers, which lie in the well-deformed region, mostly exist due to the goodness of the K-quantum number and large K-difference between the decaying states. They are known as K-isomers

  10. Properties of neutron-rich hafnium high-spin isomers

    CERN Multimedia

    Tungate, G; Walker, P M; Neyens, G; Billowes, J; Flanagan, K; Koester, U H; Litvinov, Y

    It is proposed to study highly-excited multi-quasiparticle isomers in neutron-rich hafnium (Z=72) isotopes. Long half-lives have already been measured for such isomers in the storage ring at GSI, ensuring their accessibility with ISOL production. The present proposal focuses on:\\\\ (i) an on-line experiment to measure isomer properties in $^{183}$Hf and $^{184}$Hf, and\\\\ (ii) an off-line molecular breakup test using REXTRAP, to provide Hf$^{+}$ beams for future laser spectroscopy and greater sensitivity for the future study of more neutron-rich isotopes.

  11. Electric quadruple moments of high-spin isomers in 209Po

    International Nuclear Information System (INIS)

    Ivanov, E.A.; Nicolescu, G.; Plostinaru, D.

    1998-01-01

    The electric quadrupole interaction of the 209 Po (17/2) - and (13/2) - isomers in a Bi single-crystal was measured. The results for the quadrupole moments are connected with studies of isomers in Po isotopes. A two level analysis procedure was employed for the combined data of (17/2) - and (13/2) - isomers. The quadrupole moments of the Po isotopes are of special interest for testing nuclear models because of supposed simple nuclear structure with two protons outside a closed magic number shell. While the g-factors are significant for the predominant few-particle structures often present at high spins, the quadrupole moments are sensitive to additional contributions arising from core deformation effects. A systematic study of quadrupole moments of 12 + isomers in Pb isotopes has indeed demonstrated that the valence neutron effective charge increases as more particle pairs are removed from the 208 Pb core. In the present work, quadrupole coupling constants were measured for the isomers by the time-differential perturbed angular distribution (TDPAD) technique, in the presence of quadrupole interactions from the internal electric field gradient (EFG) in Bi crystal. The experiments were performed using a pulsed deuteron-beam of 13 MeV. The (17/2) - isomer state (T 1/2 = 88 ns) and the (13/2) - isomer state (T 1/2 = 24 ns) were populated and aligned by the 209 Bi(d,2n) reaction. The repetition time of the pulse was 10 μs and the width was around 5 ns (FWHM). The rather low bombardment energy was chosen to reduce population of higher spin isomers and to optimize the population of 209 Po((17/2) - ) and 209 Po((13/2) - ). The 209 Po single crystal target was held at a temperature of 470 K in order to reduce possible radiation damage effects. The experiments have been performed with the c axis of the single crystal at 45 angle and 90 angle to the beam direction. We chose to use a calibration based on isomers with well-understood nuclear structure allowing a reliable

  12. Studies on the decay of high-spin isomers in the W and Os isotopes

    International Nuclear Information System (INIS)

    Kraemer-Flecken, A.

    1988-01-01

    From the two experiments performed on the nucleus 180 Os the properties of the new high-spin isomer could be found. The excitation energy amounts to 5208 keV and the spin of the isomer amounts probably to I=19ℎ. The new measured half-life amounts to T 1/2 =41±10 ns. It is populated with an intensity of 1.6±0.4% relative to the (4 + → 2 +) transition in the Yrast band in an experiment with out use of the recoil-shadow technique. A preliminary decay scheme could be established from the sum spectra and exhibits similarities with the decay of the high-spin isomer in 182 Os. From the analysis of the experiment on the nucleus 178 W a new isomer with an excitation energy of 5271 keV and a half-life of T 1/2 =39±10 ns could be identified. The spin of the level has been determined to I=20±1. The half-life of the 3527 keV isomer has been determined to T 1/2 =28±4 ns. The spin of the isomer could be determined from the analysis of DCO ratios to I π =14 - . The configuration of the isomer could be fixed to ν6 + 5/2 - 5 512 7 x 7/2 5 514 7 +π8 - 7/2 + 5 404 7 x 9/2 5 514 7 because of the comparison with the 14 - isomer in 176 Hf and the comparison of the excitation energy for certain configurations with I π =14 - . (orig./HSI)

  13. Island of high-spin isomers near N = 82

    International Nuclear Information System (INIS)

    Pedersen, J.; Back, B.B.; Bernthal, F.M.; Bjornholm, S.; Borggreen, J.; Christensen, O.; Folkmann, F.; Herskind, B.; Khoo, T.L.; Neiman, M.; Puehlhofer, F.; Sletten, G.

    1977-01-01

    Experiments aimed at testing for the existence of yrast traps are reported. A search for delayed γ radiation of lifetimes longer than approx. 10 ns and of high multiplicity has been performed by producing more than 100 compound nuclei between Ba and Pb in bombardments with 40 Ar, 50 Ti, and 65 Cu projectiles. An island of high-spin isomers is found to exist in the region 64 or approx. = 71 and N < or approx. = 82

  14. Toroidal high-spin isomers in the nucleus 304120

    Science.gov (United States)

    Staszczak, A.; Wong, Cheuk-Yin; Kosior, A.

    2017-05-01

    Background: Strongly deformed oblate superheavy nuclei form an intriguing region where the toroidal nuclear structures may bifurcate from the oblate spheroidal shape. The bifurcation may be facilitated when the nucleus is endowed with a large angular moment about the symmetry axis with I =Iz . The toroidal high-K isomeric states at their local energy minima can be theoretically predicted using the cranked self-consistent Skyrme-Hartree-Fock method. Purpose: We use the cranked Skyrme-Hartree-Fock method to predict the properties of the toroidal high-spin isomers in the superheavy nucleus 120304184. Method: Our method consists of three steps: First, we use the deformation-constrained Skyrme-Hartree-Fock-Bogoliubov approach to search for the nuclear density distributions with toroidal shapes. Next, using these toroidal distributions as starting configurations, we apply an additional cranking constraint of a large angular momentum I =Iz about the symmetry z axis and search for the energy minima of the system as a function of the deformation. In the last step, if a local energy minimum with I =Iz is found, we perform at this point the cranked symmetry- and deformation-unconstrained Skyrme-Hartree-Fock calculations to locate a stable toroidal high-spin isomeric state in free convergence. Results: We have theoretically located two toroidal high-spin isomeric states of 120304184 with an angular momentum I =Iz=81 ℏ (proton 2p-2h, neutron 4p-4h excitation) and I =Iz=208 ℏ (proton 5p-5h, neutron 8p-8h) at the quadrupole moment deformations Q20=-297.7 b and Q20=-300.8 b with energies 79.2 and 101.6 MeV above the spherical ground state, respectively. The nuclear density distributions of the toroidal high-spin isomers 120304184(Iz=81 ℏ and 208 ℏ ) have the maximum density close to the nuclear matter density, 0.16 fm-3, and a torus major to minor radius aspect ratio R /d =3.25 . Conclusions: We demonstrate that aligned angular momenta of Iz=81 ℏ and 208 ℏ arising from

  15. Structure of high-spin isomers in trans-lead nuclei

    International Nuclear Information System (INIS)

    Dracoulis, G.D.

    1990-01-01

    The structure of core-excited high-spin isomers in the N ≤ 126 isotopes of At, Rn and Fr is reviewed. New results for high-spin states in 211 Rn and 212 Rn, approaching the limit of the available angular momentum from the valence particles, are presented. The recurring experimental feature is decay by very enhanced E3 transitions. These, and other properties are explained in a natural way by inclusion of particle-octupole vibration coupling, in a semi-empirical shell model. The deformed independent particle model is not successful in explaining these features. 40 refs., 4 tabs., 11 figs

  16. High-spin isomer in 211Rn, and the shape of the yrast line

    International Nuclear Information System (INIS)

    Dracoulis, G.D.; Fahlander, C.; Poletti, A.R.

    1981-08-01

    High spin yrast states in 211 Rn have been identified. A 61/2 - , 380 ns isomer found at 8856 keV is characterised as a core-excited configuration. The average shape of the yrast line shows a smooth behaviour with spin, in contrast to its neighbour 212 Rn. This difference is attributed to the presence of the neutron hole

  17. Medium-spin levels and the character of the 20.4 ns 13/2+ isomer in 145Gd

    International Nuclear Information System (INIS)

    Pakkanen, A.; Muhonen, J.; Piiparinen, M.

    1981-06-01

    Levels of the N = 81 nucleus 145 Gd have been investigated by in-beam γ-ray and conversion electron spectroscopy with the 144 Sm( 3 He,2n) reaction. Fourteen new low- and medium-spin states between 1.0 and 2.4 MeV excitation, the known yrast levels up to spin (21/2) + , five other high-spin non-yrast states and a new 20.4 ns (13/2) + isomer at 2200.2 keV in 145 Gd have been observed. The isomer decays via a fast 927.3 keV E3 transition with B(E3) = 48 +- 7 W.u. Another weaker decay branch is a mixed, strongly hindered E1+M2+E3 transition to the νhsub(11/2)sup(-1) state. We propose an octupole νfsub(7/2)jsub(0)sup(-2)x3 - main configuration for the isomer, analogous to the 997 keV (13/2) + isomer in 147 Gd. The levels of 145 Gd are discussed on the basis of the spherical shell model. (author)

  18. High spin states and Yrast isomers in 211Rn

    International Nuclear Information System (INIS)

    Poletti, A.R.; Dracoulis, G.D.; Fahlander, C.; Morrison, I.

    1981-01-01

    Excited states in 211 Rn with spins up to 53/2 have been identified using (HI,xn) reactions and γ-ray techniques. A shell model calculation can reproduce the ordering of the yrast sequence up to spin 41/2 - . Several yrast isomers have been identified. Enhanced E3 transitions are observed and their systematic occurrence in this region discussed. The influence of the neutron hole, and possible core excitations on the effective moment of inertia are also pointed out

  19. High spin states and yrast isomers in 211Rn

    International Nuclear Information System (INIS)

    Poletti, A.R.; Dracoulis, G.D.; Fahlander, C.; Morrison, I.

    1980-12-01

    Excited states in 211 Rn with spins up to 53/2 have been identified using (HI,xn) reactions and γ-ray techniques. A shell model calculation can reproduce the ordering of the yrast sequence up to spin 41/2. Several yrast isomers have been identified. Enhanced E3 transitions are observed and their systematic occurrence in this region discussed. The influence of the neutron hole, and possible core excitations on the effective moment of inertia are also pointed out

  20. High spin structure of nuclei near N = 50 shell gap and search for high-spin isomers using time stamped data

    International Nuclear Information System (INIS)

    Saha, S.; Palit, R.; Trivedi, T.; Sethi, J.; Joshi, P.K.; Naidu, B.S.; Donthi, R.; Jadhav, S.; Nanal, V.; Pillay, R.G.; Jain, H.C.; Kumar, S.; Biswas, D.C.; Mukherjee, G.; Saha, S.

    2011-01-01

    Information on the high-spin states of nuclei promises to provide stringent test of the interaction of the Hamiltonian used in the calculation due to smaller basis space for high J-values. It is reported in a recent shell model review that no interaction is optimized for the region of interest around N = 50 and Z = 40 shell closure. The detailed spectroscopic information of the medium and high spin states in these nuclei is required to understand the shape transition between spherical and deformed shapes at N =60 as the higher orbitals are filled. Structure of isomers near shell closure carries important information of, for example, the extent of core excitation. In the present work, the spectroscopic study of the high spin states of 89 Zr isotope have been discussed

  1. A high-spin isomer at high excitation energy in the neutron deficient nucleus $^{152}$Dy

    CERN Document Server

    Jansen, J F W; Chmielewska, D; De Meijer, R J

    1976-01-01

    A T/sub 1/2/=60+or-5 ns isomer at E/sub x/ approximately=5 MeV is found in the /sup 154/Gd( alpha ,6n)/sup 152/Dy reaction. The possible spin values are 15isomer are observed. The isomer may be interpreted as a four-quasi-particle state situated on the yrast line. The regular level sequence above the isomer may then be an evidence for a decoupled rotational band built on top of this state. (10 refs).

  2. Isomeric and high-spin states of 94Tc and the search for yrast isomers near Napprox.50

    International Nuclear Information System (INIS)

    Lee, I.Y.; Johnson, N.R.; McGowan, F.K.; Young, G.R.; Guidry, M.W.; Yates, S.W.

    1981-01-01

    A search for isomers in the Napprox.50 region has produced no evidence of high-spin yrast isomerism. A new 4.5-ns low-multiplicity isomer has been identified and assigned to 94 Tc, while the yrast sequence of 94 Tc has been established to more than 5 MeV in excitation energy

  3. Discovery of a 7.6-hour high-spin isomer of einsteinium-256

    International Nuclear Information System (INIS)

    Hoffman, D.C.; Daniels, W.R.; Wilhelmy, J.B.; Bunker, M.E.; Starner, J.W.; Jackson, S.V.; Lougheed, R.W.; Landrum, J.H.

    1976-01-01

    A 7.6-hour, beta-emitting isomer of 256 Es has been produced via the (t,p) reaction by bombarding /sup 254g/Es with 16-MeV tritons. No evidence for an alpha branch was found. A number of gamma rays were observed, on the basis of which a partial decay scheme is proposed. It is concluded that the isomer has spin 7 or 8

  4. High-spin states in sd-shell nuclei

    International Nuclear Information System (INIS)

    Poel, C.J. van der.

    1982-01-01

    A systematic picture of the structure of high-spin states in the mass range A = 29 - 41 is developed on the basis of experimental results for the nuclei 34 Cl, 38 K and 39 K. It is shown that for 34 Cl the difficulties induced by the relatively low cross section can be overcome. Combination of the data obtained from a γ-γ coincidence experiment with the 24 Mg + 12 C reaction, using the LACSS, and from threshold measurements in the 31 P + α reaction, establishes an unambiguous level scheme. By means of accurate angular-distribution measurements unambiguous spin and parity assignments are made to the high-spin levels. From the results a rather simple shell-model picture for the structure of the high-spin states evolves. Several authors have published experimental work on high-spin states in 39 K, with seriously conflicting conclusions, however, for the spin-parity assignments. The powerful coincidence set-up with the LACSS enables a discrimination between the conflicting results from the previous studies. In this way, unambiguous, model-independent, spin-parity assignments to the high-spin levels are established. Highly selective experimental methods are used to identify the high-spin states of 38 K. It is shown that with a pulsed beam in the reaction 24 Mg + 16 O advantage can be taken of the presence of a long-lived high-spin isomeric level in this nucleus. The gamma-decay of the isomer is extensively studied. With the pulsed beam, also some states above the isomer could be located. The subsequent use of two Compton-suppression spectrometers in a γ-γ coincidence experiment reveals a number of high-spin levels at higher excitation energies. (Auth.)

  5. Isomer beam elastic scattering: 26mAl(p, p) for astrophysics

    Science.gov (United States)

    Kahl, D.; Shimizu, H.; Yamaguchi, H.; Abe, K.; Beliuskina, O.; Cha, S. M.; Chae, K. Y.; Chen, A. A.; Ge, Z.; Hayakawa, S.; Imai, N.; Iwasa, N.; Kim, A.; Kim, D. H.; Kim, M. J.; Kubono, S.; Kwag, M. S.; Liang, J.; Moon, J. Y.; Nishimura, S.; Oka, S.; Park, S. Y.; Psaltis, A.; Teranishi, T.; Ueno, Y.; Yang, L.

    2018-01-01

    The advent of radioactive ground-state beams some three decades ago ultimately sparked a revolution in our understanding of nuclear physics. However, studies with radioactive isomer beams are sparse and have often required sophisticated apparatuses coupled with the technologies of ground-state beams due to typical mass differences on the order of hundreds of keV and vastly different lifetimes for isomers. We present an application of a isomeric beam of 26mAl to one of the most famous observables in nuclear astrophysics: galactic 26Al. The characteristic decay of 26Al in the Galaxy was the first such specific radioactivity to be observed originating from outside the Earth some four decades ago. We present a newly-developed, novel technique to probe the structure of low-spin states in 27Si. Using the Center for Nuclear Study low-energy radioisotope beam separator (CRIB), we report on the measurement of 26mAl proton resonant elastic scattering conducted with a thick target in inverse kinematics. The preliminary results of this on-going study are presented.

  6. High-spin isomers in 212Rn in the region of triple neutron core-excitations

    Science.gov (United States)

    Dracoulis, G. D.; Lane, G. J.; Byrne, A. P.; Davidson, P. M.; Kibédi, T.; Nieminen, P.; Watanabe, H.; Wilson, A. N.

    2008-04-01

    The level scheme of 212Rn has been extended to spins of ∼ 38 ℏ and excitation energies of about 13 MeV using the 204Hg(13C, 5n)212Rn reaction and γ-ray spectroscopy. Time correlated techniques have been used to obtain sensitivity to weak transitions and channel selectivity. The excitation energy of the 22+ core-excited isomer has been established at 6174 keV. Two isomers with τ = 25 (2) ns and τ = 12 (2) ns are identified at 12211 and 12548 keV, respectively. These are the highest-spin nuclear isomers now known, and are attributed to configurations involving triple neutron core-excitations coupled to the aligned valence protons. Semi-empirical shell-model calculations can account for most states observed, but with significant energy discrepancies for some configurations.

  7. High-spin isomers in 212Rn in the region of triple neutron core-excitations

    International Nuclear Information System (INIS)

    Dracoulis, G.D.; Lane, G.J.; Byrne, A.P.; Davidson, P.M.; Kibedi, T.; Nieminen, P.; Watanabe, H.; Wilson, A.N.

    2008-01-01

    The level scheme of 212 Rn has been extended to spins of ∼38h and excitation energies of about 13 MeV using the 204 Hg( 13 C, 5n) 212 Rn reaction and γ-ray spectroscopy. Time correlated techniques have been used to obtain sensitivity to weak transitions and channel selectivity. The excitation energy of the 22 + core-excited isomer has been established at 6174 keV. Two isomers with τ=25(2) ns and τ=12(2) ns are identified at 12211 and 12548 keV, respectively. These are the highest-spin nuclear isomers now known, and are attributed to configurations involving triple neutron core-excitations coupled to the aligned valence protons. Semi-empirical shell-model calculations can account for most states observed, but with significant energy discrepancies for some configurations

  8. Isomeric and high-spin states of 94Tc and the search for yrast isomers near N~50

    Science.gov (United States)

    Lee, I. Y.; Johnson, N. R.; McGowan, F. K.; Young, G. R.; Guidry, M. W.; Yates, S. W.

    1981-07-01

    A search for isomers in the N~50 region has produced no evidence of high-spin yrast isomerism. A new 4.5-ns low-multiplicity isomer has been identified and assigned to 94Tc, while the yrast sequence of 94Tc has been established to more than 5 MeV in excitation energy. [NUCLEAR REACTIONS 76Ge, 78Se(20Ne,xnypγ), E=80.9 MeV, 89Y, 93Nb(10B,xnypγ), E=52.0,58.4,62.8 MeV; measured Eγ, Iγ, γ-γ prompt and delayed coin, γ-X coin; deduced levels, t12 of 94Tc isomer, yrast states.

  9. Investigation of nuclei near N = 82 and Z = 64 VIA radioactive decay of high-spin isomers

    International Nuclear Information System (INIS)

    Toth, K.S.

    1979-01-01

    An island of very high spin isomers was found recently in neutron-deficient Gd-Lu nuclei near the N = 82 closed shell in (H.I.,xn) measurements. This exciting discovery has led to a large number of experiments trying to identify the structures of these isomers and the nuclei in which they occur. These attempts have been helped in many instances by available spectroscopic information at low excitation energies. A systematic investigation of the low-lying structure of nuclei near N = 82 and Z greater than or equal to 64 was carried out. Heavy-ion beams were used to produce proton-rich isotopes which were then transported, with the use of gas-jet systems, to shielded areas where singles and coincidence γ-ray measurements could be made. Earlier investigations dealt with the decay of terbium ( 146-149 Tb) and dysprosium ( 147-152 Dy) nuclei. During the past two years the research program was extended to holmium nuclides (A less than or equal to 152) produced in 10 B bombardments of samarium. Two new isotopes, 149 Ho and 148 Ho, were identified. The decay data of 21-s 149 Ho supplement in-beam results and locate the hg/ 2 neutron state in 149 Dy to be at 1091 keV. The most intense γ-ray associated with 9-s 148 Ho has an energy of 1688 keV. It is possibly the first-excited to ground-state transition in 148 Dy. Recent in-beam measurements have shown that the first-excited state in 146 Gd is, unespectedly, 3 - in contrast to doubly evenN = 82 nuclei below gadolinium where it is 2 + . It would be interesting to determine whether the 1688-keV level in 148 Dy, the next nucleus in this isotonic series, is 2reverse arrow or 3 - in character. 12 references

  10. High-spin states in 136La and possible structure change in the N =79 region

    Science.gov (United States)

    Nishibata, H.; Leguillon, R.; Odahara, A.; Shimoda, T.; Petrache, C. M.; Ito, Y.; Takatsu, J.; Tajiri, K.; Hamatani, N.; Yokoyama, R.; Ideguchi, E.; Watanabe, H.; Wakabayashi, Y.; Yoshinaga, K.; Suzuki, T.; Nishimura, S.; Beaumel, D.; Lehaut, G.; Guinet, D.; Desesquelles, P.; Curien, D.; Higashiyama, K.; Yoshinaga, N.

    2015-05-01

    High-spin states in the odd-odd nucleus 136La, which is located close to the β -stability line, have been investigated in the radioactive-beam-induced fusion-evaporation reaction 124Sn(17N,5 n ). The use of the radioactive beam enabled a highly sensitive and successful search for a new isomer [14+,T1 /2=187 (27 ) ns] in 136La. In the A =130 -140 mass region, no such long-lived isomer has been observed at high spin in odd-odd nuclei. The 136La level scheme was revised, incorporating the 14+ isomer and six new levels. The results were compared with pair-truncated shell model (PTSM) calculations which successfully explain the level structure of the π h11 /2⊗ν h11/2 -1 bands in 132La and 134La. The isomerism of the 14+ state was investigated also by a collective model, the cranked Nilsson-Strutinsky (CNS) model, which explains various high-spin structures in the medium-heavy mass region. It is suggested that a new type of collective structure is induced in the PTSM model by the increase of the number of π g7 /2 pairs, and/or in the CNS model by the configuration change associated with the shape change in 136La.

  11. High spin studies with radioactive ion beams

    International Nuclear Information System (INIS)

    Garrett, J.D.

    1992-01-01

    The variety of new research possibilities afforded by the culmination of the two frontier areas of nuclear structure: high spin and studies far from nuclear stability (utilizing intense radioactive ion beams) are discussed. Topics presented include: new regions of exotic nuclear shape (e.g. superdeformation, hyperdeformation, and reflection-asymmetric shapes); the population of and consequences of populating exotic nuclear configurations; and complete spectroscopy (i.e. the overlap of state of the art low-and high-spin studies in the same nucleus)

  12. High spin studies with radioactive ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Garrett, J D [Oak Ridge National Lab., TN (United States)

    1992-08-01

    The variety of new research possibilities afforded by the culmination of the two frontier areas of nuclear structure: high spin and studies far from nuclear stability (utilizing intense radioactive ion beams) are discussed. Topics presented include: new regions of exotic nuclear shape (e.g. superdeformation, hyperdeformation, and reflection-asymmetric shapes); the population of and consequences of populating exotic nuclear configurations; and, complete spectroscopy (i.e. the overlap of state of the art low- and high-spin studies in the same nucleus). (author). 47 refs., 8 figs.

  13. Study on gamma-ray transitions induced in nuclear spin isomers by X-rays

    International Nuclear Information System (INIS)

    Yang Tianli; Hao Fanhua; Liu Xiaoya; Gong Jian

    2005-10-01

    The development of induced X-ray has been summarized for high spin isomer. the radiation model, transition mechanism and experiment plan have been introduced. The experiments about isomers 180m Ta and 178m2 Hf have been narrated in detail respectively, and the analysis between those results have been obtained. The reasonable theoretical frame and good experimental data have offered the powerful technique base for pumping γ-ray laser with low energy. (authors)

  14. Isomer 103Rh excitation in the electron beam

    International Nuclear Information System (INIS)

    Alpatov, V.G.; Berezkin, V.V.; Vysotskij, S.A.

    1993-01-01

    Rhodium foil targets were irradiated by a beam of electrons from a linear accelerator containing a minor impurity of bremsstrahlung. X-ray and γ-quanta from decay of 103m Rh isomer states were detected. The ratio of isomer cross section activation by bremsstrahlung, formed in the target, and electrons, equals 89. 7 refs.; 3 figs.; 2 tabs

  15. Studies of high-K isomers in hafnium nuclei

    International Nuclear Information System (INIS)

    Sletten, G.; Gjoerup, N.L.

    1991-01-01

    K-isomeric states built on high-Ω Nilsson orbitals from deformation-aligned high-j levels near the Fermi surface are found to cluster in the neutron rich Hf, W and Os nuclei. It has been shown that some of the high seniority states of this type have decay properties that indicate strong mixing of configurations and that in Osmium nuclei γ-softness cause strong deviations from the well established K-selection rule. Also in the Hafnium nuclei is the expected forbiddenness in isomeric decays an order of magnitude smaller than expected from the K-selection rule. A new 9 quasiparticle isomer has been discovered in 175 Hf at I=57/2. This isomer has the anomalous decay as the dominant mode. Other lower seniority states are also identified. At spin 35/2 and 45/2 the deformation aligned states become yrast, but the structure of the yrast line to even higher spins is not yet understood. (author)

  16. In-Beam Studies of High-Spin States in Mercury -183 and MERCURY-181

    Science.gov (United States)

    Shi, Detang

    The high-spin states of ^{183 }Hg were studied by using the reaction ^{155}Gd(^{32}S, 4n)^{183}Hg at a beam energy of 160 MeV with the tandem-linac accelerator system and the multi-element gamma-ray detection array at Florida State University. Two new bands, consisting of stretched E2 transitions and connected by M1 inter-band transitions, were identified in ^{183}Hg. Several new levels were added to the previously known bands at higher spin. The spins and parities to the levels in ^{183}Hg were determined from the analysis of their DCO ratios and B(M1)/B(E2) ratios. While the two pairs of previously known bands in ^ {183}Hg were proposed to 7/2^ -[514] and 9/2^+ [624], the two new bands are assigned as the 1/2^-[521] ground state configuration based upon the systematics of Nilsson orbitals in this mass region. The 354-keV transition previously was considered to be an E2 transition and assigned as the only transition from a band which is built on an oblate deformed i_{13/2} isomeric state. However, our DCO ratio analysis indicates that the 354-keV gamma-ray is an M1 transition. This changes the decay pattern of the 9/2^+[624 ] prolate structure in ^ {183}Hg, so it is seen to feed only into the i_{13/2} isomer band head. Our knowledge of the mercury nuclei far from stability was then extended through an in-beam study of the reaction ^{144}Sm(^{40 }Ar, 3n)^{181}Hg by using the Fragment Mass Analyzer (FMA) and the ten-Compton-suppressed -germanium-detector system at Argonne National Laboratory. Band structures to high-spin states are established for the first time in ^{181}Hg in the present experiment. The observed level structure of ^{181}Hg is midway between those in ^{185}Hg and in ^{183}Hg. The experimental results are analyzed in the framework of the cranking shell model (CSM). Alternative theoretical explanations are also presented and discussed. Systematics of neighboring mercury isotopes and N = 103 isotones is analyzed.

  17. High spin states in 143Sm

    International Nuclear Information System (INIS)

    Raut, R.; Ganguly, S.; Kshetri, R.; Banerjee, P.; Bhattacharya, S.; Dasmahapatra, B.; Mukherjee, A.; Mukherjee, G.; Sarkar, M. Saha; Goswami, A.; Gangopadhyay, G.; Mukhopadhyay, S.; Krishichayan,; Chakraborty, A.; Ghughre, S. S.; Bhattacharjee, T.; Basu, S. K.

    2006-01-01

    The high spin states of 143 Sm have been studied by in-beam γ-spectroscopy following the reaction 130 Te( 20 Ne,7n) 143 Sm at E lab =137 MeV, using a Clover detector array. More than 50 new gamma transitions have been placed above the previously known J π =23/2 - , 30 ms isomer at 2795 keV. The level scheme of 143 Sm has been extended up to 12 MeV and spin-parity assignments have been made to most of the newly proposed level. Theoretical calculation with the relativistic mean field approach using blocked BCS method, has been performed. A sequence of levels connected by M1 transitions have been observed at an excitation energy ∼8.6 MeV. The sequence appears to be a magnetic rotational band from systematics

  18. The Creation and Destruction of Hf-178m2 Isomer by Neutron Interaction

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Hsiao-Hua [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); TechSource, Inc. Los Alamos, NM (United States); Talbert, Willard L. [TechSource, Inc. Los Alamos, NM (United States); Ward, Tom [TechSource, Inc. Los Alamos, NM (United States)

    2017-03-06

    The property of the isomer state in 178m2Hf was an interesting topic in nuclear structure studies during the time period 1970 to 1980. The state at 2.446 MeV with spin and parity Kπ = 16+, has a half-life of 31 years. The isomer is described as a four-quasi-particle state. The K forbidden deexcitatiion by gamma emission is the reason for long half-life. During 1980, the isomer became a troublesome issue for radiation safety workers, because this isomer can also be produced in the first wall of a fussion reactor containing tungsten and also in a tungsten beam stop of a high-energy accelerator.

  19. B(E2)s of high-spin isomers in generalized seniority scheme

    International Nuclear Information System (INIS)

    Maheshwari, Bhoomika; Jain, Ashok Kumar

    2015-01-01

    In this paper, we focus on the isomers that arise due to the seniority selection rules and the role played by generalized seniority when multi-j configurations are involved. In particular, we concentrate on explaining the B(E2) values in the semi-magic isomeric chains by using a simple approach. In this paper, we study the B(E2) variation of these isomers by using the generalized seniority scheme, applicable to many-j degenerate orbits. We show that the isomers known to arise mainly from the high-j intruder orbitals, do require the configuration mixing as an essential requirement

  20. Spins, Electromagnetic Moments, and Isomers of 107-129Cd

    CERN Document Server

    Yordanov, D T; Bieron, J; Bissell, M L; Blaum, K; Budincevic, I; Fritzsche, S; Frommgen, N; Georgiev, G; Geppert, Ch; Hammen, M; Kowalska, M; Kreim, K; Krieger, A; Neugart, R; Nortershauser, W; Papuga, J; Schmidt, S

    2013-01-01

    The neutron-rich isotopes of cadmium up to the N=82 shell closure have been investigated by high-resolution laser spectroscopy. Deep-UV excitation at 214.5 nm and radioactive-beam bunching provided the required experimental sensitivity. Long-lived isomers are observed in 127Cd and 129Cd for the first time. One essential feature of the spherical shell model is unambiguously confirmed by a linear increase of the 11/2- quadrupole moments. Remarkably, this mechanism is found to act well beyond the h11/2 shell.

  1. Long-lived high-spin isomers in the neutron-deficient 1g sub(9/2)-shell nuclei

    International Nuclear Information System (INIS)

    Ogawa, K.

    1981-09-01

    The neutron-deficient 1g sub(9/2)-shell nuclei are studied in the framework of the shell model with active nucleons occuping the 1g sub(9/2) and 2p sub(1/2) shells. The calculated result for 95 Pd shows good agreement with the recent experiment by Nolte and Hick. Many ''spin-gap'' Isomers are predicted in the region of A = 76 -- 84 and A = 95 -- 100. (author)

  2. The high-spin {sup 178m2}Hf isomer: production, chemical and isotopic separations, gamma spectrometry and internal conversion electrons spectrometry; L`isomere de haut spin {sup 178m2}Hf: production, separations chimiques et isotopiques, spectrometrie gamma et spectrometrie d`electrons de conversion interne

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J B

    1993-10-13

    The high-spin isometric state of the nucleus 178Hf is a challenge for new and exotic nuclear physics studies. With its long half-life of 31 years, the production of a reasonable micro-weight quantity, with an isometric to ground state ratio as high as 5 per cent, is now regularly performed by intensive irradiations of ytterbium targets with helium ions of 36 MeV. Using sur-enriched, at 99,998 per cent, ytterbium 176 that we have prepared at the PARIS mass separator, the isomer purity has been improved. Targets of such material but also of enriched stable isotopes of hafnium have been prepared by electro-spraying of methanolic and acetic solutions. By inelastic diffusion of protons and deuton on these targets, the energy of the first state of the rotation band built on the isomer has been measured. Isotopic separations of the isomer have been performed, with a yield greater than 20 per cent, by the use of isotopically pure hafnium 176 as carrier. The separated beam of the mass 178 allowed to record the complete hyperfine spectrum of the isomer and to measure, for the first time, the magnetic dipole moment and the electric quadrupole moment. Isomer targets, implanted in various materials like copper, iron and hafnium monocrystal, provide the opportunity to accurately measure gamma and internal conversion decay of this nuclei and so to precise the multipolarity mixing of all transitions from K=16{sup +} to K=8{sup -}. (author). 49 refs., 47 figs., 11 tabs.

  3. The role of core excitations in the structure and decay of the 16+ spin-gap isomer in 96Cd

    Directory of Open Access Journals (Sweden)

    P.J. Davies

    2017-04-01

    Full Text Available The first evidence for β-delayed proton emission from the 16+ spin gap isomer in 96Cd is presented. The data were obtained from the Rare Isotope Beam Factory, at the RIKEN Nishina Center, using the BigRIPS spectrometer and the EURICA decay station. βp branching ratios for the ground state and 16+ isomer have been extracted along with more precise lifetimes for these states and the lifetime for the ground state decay of 95Cd. Large scale shell model (LSSM calculations have been performed and WKB estimates made for ℓ=0,2,4 proton emission from three resonance-like states in 96Ag, that are populated by the β decay of the isomer, and the results compared to the new data. The calculations suggest that ℓ=2 proton emission from the resonance states, which reside ∼5 MeV above the proton separation energy, dominates the proton decay. The results highlight the importance of core-excited wavefunction components for the 16+ state.

  4. Development of spin polarized electron beam

    International Nuclear Information System (INIS)

    Nakanishi, Tsutomu

    2001-01-01

    Physical structure of the polarized electron beam production is explained in this paper. Nagoya University group has been improving the quality of beam. The present state of quality and the development objects are described. The new results of the polarized electron reported in 'RES-2000 Workshop' in October 2000, are introduced. The established ground of GaAs type polarized electron beam source, observation of the negative electron affinity (NEA) surface, some problems of NEA surface of high energy polarized electron beam such as the life, time response, the surface charge limited phenomena of NEA surface are explained. The interested reports in the RES-2000 Workshop consisted of observation by SPLEEM (Spin Low Energy Electron Microscope), Spin-STM and Spin-resolved Photoelectron Spectroscopy. To increase the performance of the polarized electron source, we will develop low emittance and large current. (S.Y.)

  5. High-efficiency resonant rf spin rotator with broad phase space acceptance for pulsed polarized cold neutron beams

    Directory of Open Access Journals (Sweden)

    P.-N. Seo

    2008-08-01

    Full Text Available High precision fundamental neutron physics experiments have been proposed for the intense pulsed spallation neutron beams at JSNS, LANSCE, and SNS to test the standard model and search for new physics. Certain systematic effects in some of these experiments have to be controlled at the few ppb level. The NPDGamma experiment, a search for the small parity-violating γ-ray asymmetry A_{γ} in polarized cold neutron capture on parahydrogen, is one example. For the NPDGamma experiment we developed a radio-frequency resonant spin rotator to reverse the neutron polarization in a 9.5  cm×9.5  cm pulsed cold neutron beam with high efficiency over a broad cold neutron energy range. The effect of the spin reversal by the rotator on the neutron beam phase space is compared qualitatively to rf neutron spin flippers based on adiabatic fast passage. We discuss the design of the spin rotator and describe two types of transmission-based neutron spin-flip efficiency measurements where the neutron beam was both polarized and analyzed by optically polarized ^{3}He neutron spin filters. The efficiency of the spin rotator was measured at LANSCE to be 98.8±0.5% for neutron energies from 3 to 20 meV over the full phase space of the beam. Systematic effects that the rf spin rotator introduces to the NPDGamma experiment are considered.

  6. New isomers and medium-spin structure of the 95Y nucleus

    International Nuclear Information System (INIS)

    Urban, W.; Sieja, K.; Simpson, G. S.; Faust, H.; Rzaca-Urban, T.; Zlomaniec, A.; Lukasiewicz, M.; Smith, A. G.; Durell, J. L.; Smith, J. F.; Varley, B. J.; Nowacki, F.; Ahmad, I.

    2009-01-01

    Excited states in 95 Y, populated following the spontaneous fission of 248 Cm and 252 Cf and following fission of 235 U induced by thermal neutrons, were studied by means of γ spectroscopy using the EUROGAM2 and GAMMASPHERE multidetector Ge arrays and the LOHENGRIN fission-fragment separator, respectively. We have found a new (17/2 - ) isomer in 95 Y at 3142.2 keV with a half-life of T 1/2 =14.9(5) ns. Another isomer was identified in 95 Y at 5022.1 keV and it was assigned a spin-parity (27/2 - ). For this isomer a half-life of T 1/2 =65(4) ns was determined and four decay branches were found, including an E3 decay. A new E3 decay branch was also found for the known, 1087.5-keV isomer in 95 Y, for which we measured a half-life of 51.2(9) μs. The B(E3) and B(E1) transition rates, of 2.0 and 3.8x10 -7 W.u., respectively, observed in 95 Y are significantly lower than in the neighboring 96 Zr core, suggesting that octupole correlations in this region are mainly due to the coupling of proton Δj=3 orbitals. Shell-model calculations indicate that the (27/2 - ) isomer in 95 Y corresponds to the πg 9/2 ν(g 7/2 h 11/2 ) maximally aligned configuration and that all three isomers in 95 Y decay, primarily, by M2 transitions between proton g 9/2 and f 5/2 orbitals.

  7. Polarizing a stored proton beam by spin-flip?

    International Nuclear Information System (INIS)

    Oellers, Dieter Gerd Christian

    2010-01-01

    The present thesis discusses the extraction of the electron-proton spin-flip cross-section. The experimental setup, the data analysis and the results are pictured in detail. The proton is described by a QCD-based parton model. In leading twist three functions are needed. The quark distribution, the helicity distribution and the transversity distribution. While the first two are well-known, the transversity distribution is largely unknown. A self-sufficient measurement of the transversity is possible in double polarized proton-antiproton scattering. This rises the need of a polarized antiproton beam. So far spin filtering is the only tested method to produce a polarized proton beam, which may be capable to hold also for antiprotons. In-situ polarization build-up of a stored beam either by selective removal or by spin-flip of a spin-(1)/(2) beam is mathematically described. A high spin-flip cross-section would create an effective method to produce a polarized antiproton beam by polarized positrons. Prompted by conflicting calculations, a measurement of the spin-flip cross-section in low-energy electron-proton scattering was carried out. This experiment uses the electron beam of the electron cooler at COSY as an electron target. The depolarization of the stored proton beam is detected. An overview of the experiment is followed by detailed descriptions of the cycle setup, of the electron target and the ANKE silicon tracking telescopes acting as a beam polarimeter. Elastic protondeuteron scattering is the analyzing reaction. The event selection is depicted and the beam polarization is calculated. Upper limits of the two electron-proton spin-flip cross-sections σ parallel and σ perpendicular to are deduced using the likelihood method. (orig.)

  8. A white beam neutron spin splitter

    International Nuclear Information System (INIS)

    Krist, T.; Klose, F.; Felcher, G.P.

    1997-01-01

    The polarization of a narrow, highly collimated polychromatic neutron beam is tested by a neutron spin splitter that permits the simultaneous measurement of both spin states. The device consists of a Si-Co 0.11 Fe 0.89 supermirror, which totally reflects one spin state up to a momentum transfer q=0.04 angstrom -1 , whilst transmits neutrons of the opposite spin state. The supermirror is sandwitched between two thick silicon wafers and is magnetically saturated by a magnetic field of 400 Oe parallel to its surface. The neutron beam enters through the edge of one of the two silicon wavers, its spin components are split by the supermirror and exit from the opposite edges of the two silicon wafers and are recorded at different channels of a position-sensitive detector. The device is shown to have excellent efficiency over a broad range of wavelengths

  9. A white beam neutron spin splitter

    Energy Technology Data Exchange (ETDEWEB)

    Krist, T. [Hahn Meitner Institute, Berlin (Germany); Klose, F.; Felcher, G.P. [Argonne National Lab., IL (United States)

    1997-07-23

    The polarization of a narrow, highly collimated polychromatic neutron beam is tested by a neutron spin splitter that permits the simultaneous measurement of both spin states. The device consists of a Si-Co{sub 0.11} Fe{sub 0.89} supermirror, which totally reflects one spin state up to a momentum transfer q=0.04 {angstrom}{sup -1}, whilst transmits neutrons of the opposite spin state. The supermirror is sandwitched between two thick silicon wafers and is magnetically saturated by a magnetic field of 400 Oe parallel to its surface. The neutron beam enters through the edge of one of the two silicon wavers, its spin components are split by the supermirror and exit from the opposite edges of the two silicon wafers and are recorded at different channels of a position-sensitive detector. The device is shown to have excellent efficiency over a broad range of wavelengths.

  10. A Study of Particle Beam Spin Dynamics for High Precision Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Fiedler, Andrew J. [Northern Illinois Univ., DeKalb, IL (United States)

    2017-05-01

    In the search for physics beyond the Standard Model, high precision experiments to measure fundamental properties of particles are an important frontier. One group of such measurements involves magnetic dipole moment (MDM) values as well as searching for an electric dipole moment (EDM), both of which could provide insights about how particles interact with their environment at the quantum level and if there are undiscovered new particles. For these types of high precision experiments, minimizing statistical uncertainties in the measurements plays a critical role. \\\\ \\indent This work leverages computer simulations to quantify the effects of statistical uncertainty for experiments investigating spin dynamics. In it, analysis of beam properties and lattice design effects on the polarization of the beam is performed. As a case study, the beam lines that will provide polarized muon beams to the Fermilab Muon \\emph{g}-2 experiment are analyzed to determine the effects of correlations between the phase space variables and the overall polarization of the muon beam.

  11. High-spin states in 214Rn, 216Ra and a study of even-even N = 128 systematics

    International Nuclear Information System (INIS)

    Loennroth, T.; Horn, D.; Baktash, C.; Lister, C.J.; Young, G.R.

    1983-01-01

    High-spin states in 214 Rn and 216 Ra have been studied by means of the reaction 208 Pb( 13 C, α 3n #betta#) 214 Rn and 208 Pb( 13 C, 5n #betta#) 216 Ra at beam energies in the range 75--95 MeV. In-beam spectroscopy techniques, including #betta#-decay excitation functions, α-#betta# coincidences, #betta#-#betta# coincidences, #betta#-ray angular distributions, and pulsed-beam-#betta# timing, were utilized to establish level energies, #betta#-ray multipolarities, J/sup π/ assignments, and isomeric lifetimes. Excited states with spins up to 23h in 214 Rn and roughly-equal30h in 216 Ra were observed. Isomers were found in 214 Rn at 1625 keV (T/sub 1/2/ = 9 ns, J/sup π/ = 8 + ), 1787 keV (22 ns, 10 + ), 3485 keV (95 ns, 16), 4509 keV (230 ns, 20), and 4738 keV (8 ns, 22), and in 216 Ra at 1708 keV (8 ns, 8 + ) and 5868 keV (10 ns, approx.24). B(EL) values were deduced and compared to previously known lead-region electric transition rates. Shell-model calculations were performed and used to make configurational assignments. The absence of major α-decay branching in the isomers is explained and the systematic behavior of N = 128 even-even nuclei is discussed

  12. High-spin states in 214Rn, 216Ra and a study of even-even N = 128 systematics

    International Nuclear Information System (INIS)

    Loennroth, T.; Horn, D.; Baktash, C.; Lister, C.J.; Young, G.R.

    1981-09-01

    High-spin states in 214 Rn and 216 Ra have been studied by means of the reaction 208 Pb( 13 C,α3nγ) 214 Rn and 208 Pb( 13 C,5nγ) 216 Ra at beam energies in the range 75-95 MeV. In-beam spectroscopy techniques, including γ-decay excitation functions, α-γ coincidences, γ-γ coincidences, γ-ray angular distributions and pulsed-beam-γ timing, were utilized to establish level energies, γ-ray multipolarities, JHπ assignments and isomeric lifetimes. Excited states with spins up to 23 h/2π in 214 Rn and 30 h/2π in 216 Ra were established. Isomers are found in 214 Rn at 1625 keV (9 ns, 8 + ), 1787 keV (22 ns, 10 + ), 3485 keV (95 ns, 16 + ), 4509 keV (230 ns, 20 + ) and 4735 keV (8.0 ns, 22 + ) and in 216 Ra at 1710 keV (8 ns, 8 + ) and 5868 keV (10 ns, 24 - ). B(EL) values are derived and compared to previously known lead-region electric transition rates. Shell-model calculations are performed on the basis of which configuration assignment is made. The absence of α-decay branching in the isomers is explained. The systematical behaviour of N = 128 even-even nuclei is discussed. Effective moments of inertia are derived. (author)

  13. Atlas of nuclear isomers and their systematics

    International Nuclear Information System (INIS)

    Jain, Ashok Kumar; Maheshwari, Bhoomika

    2015-01-01

    Isomers can be viewed as a separate class of nuclei and offer interesting possibilities to study the behavior of nuclei under varied conditions of excitation energy, spin, life-time and particle configuration. We have completed a horizontal evaluation of nuclear isomers and the resulting data set contains a wealth of information which offers new insights in the nuclear structure of a wide range of configurations, nuclei approaching the drip lines etc. We now have reliable data on approximately 2460 isomers having a half-life ≥ 10 ns. A few of the systematics of the properties of nuclear isomers like excitation energy, half-life, spin, abundance etc. will be presented. The data set of semi-magic isomers strongly supports the existence of seniority isomers originating from the higher spin orbitals. (author)

  14. Spin-orbit beams for optical chirality measurement

    Science.gov (United States)

    Samlan, C. T.; Suna, Rashmi Ranjan; Naik, Dinesh N.; Viswanathan, Nirmal K.

    2018-01-01

    Accurate measurement of chirality is essential for the advancement of natural and pharmaceutical sciences. We report here a method to measure chirality using non-separable states of light with geometric phase-gradient in the circular polarization basis, which we refer to as spin-orbit beams. A modified polarization Sagnac interferometer is used to generate spin-orbit beams wherein the spin and orbital angular momentum of the input Gaussian beam are coupled. The out-of-phase interference between counter-propagating Gaussian beams with orthogonal spin states and lateral-shear or/and linear-phase difference between them results in spin-orbit beams with linear and azimuthal phase gradient. The spin-orbit beams interact efficiently with the chiral medium, inducing a measurable change in the center-of-mass of the beam, using the polarization rotation angle and hence the chirality of the medium are accurately calculated. Tunable dynamic range of measurement and flexibility to introduce large values of orbital angular momentum for the spin-orbit beam, to improve the measurement sensitivity, highlight the techniques' versatility.

  15. High-spin nuclear structure studies with radioactive ion beams

    International Nuclear Information System (INIS)

    Baktash, C.

    1992-01-01

    Two important developments in the sixties, namely the advent of heavy-ion accelerators and fabrication of Ge detectors, opened the way for the experimental studies of nuclear properties at high angular momentum. Addition of a new degree of freedom, namely spin, made it possible to observe such fascinating phenomena as occurrences and coexistence of a variety of novel shapes, rise, fall and occasionally rebirth of nuclear collectivity, and disappearance of pairing correlations. Today, with the promise of development of radioactive ion beams (RIB) and construction of the third-generation Ge-detection systems (GAMMASPHERE and EUROBALL), nuclear physicists are poised to explore new and equally fascinating phenomena that have been hitherto inaccessible. With the addition of yet another dimension, namely the isospin, they will be able to observe and verify predictions for exotic shapes as varied as rigid triaxiality, hyperdeformation and triaxial-octupole shapes, or to investigate the T=O pairing correlations. In this paper, the author reviews, separately for neutron-deficient and neutron-rich nuclei, these and a few other new high-spin physics opportunities that may be realized with RIB. Following this discussion, a list of the beam species, intensities and energies that are needed to fulfill these goals is presented. The paper concludes with a description of the experimental techniques and instrumentations that are required for these studies

  16. Spin dynamics of electron beams in circular accelerators

    International Nuclear Information System (INIS)

    Boldt, Oliver

    2014-04-01

    Experiments using high energy beams of spin polarized, charged particles still prove to be very helpful in disclosing a deeper understanding of the fundamental structure of matter. An important aspect is to control the beam properties, such as brilliance, intensity, energy, and degree of spin polarization. In this context, the present studies show various numerical calculations of the spin dynamics of high energy electron beams in circular accelerators. Special attention has to be paid to the emission of synchrotron radiation, that occurs when deflecting charged particles on circular orbits. In the presence of the fluctuation of the kinetic energy due to the photon emission, each electron spin moves non-deterministically. This stochastic effect commonly slows down the speed of all numeric estimations. However, the shown simulations cover - using appropriate approximations - trackings for the motion of thousands of electron spins for up to thousands of turns. Those calculations are validated and complemented by empirical investigations at the electron stretcher facility ELSA of the University of Bonn. They can largely be extended to other boundary conditions and thus, can be consulted for new accelerator layouts.

  17. Polarizing a stored proton beam by spin-flip?

    Energy Technology Data Exchange (ETDEWEB)

    Oellers, Dieter Gerd Christian

    2010-04-15

    The present thesis discusses the extraction of the electron-proton spin-flip cross-section. The experimental setup, the data analysis and the results are pictured in detail. The proton is described by a QCD-based parton model. In leading twist three functions are needed. The quark distribution, the helicity distribution and the transversity distribution. While the first two are well-known, the transversity distribution is largely unknown. A self-sufficient measurement of the transversity is possible in double polarized proton-antiproton scattering. This rises the need of a polarized antiproton beam. So far spin filtering is the only tested method to produce a polarized proton beam, which may be capable to hold also for antiprotons. In-situ polarization build-up of a stored beam either by selective removal or by spin-flip of a spin-(1)/(2) beam is mathematically described. A high spin-flip cross-section would create an effective method to produce a polarized antiproton beam by polarized positrons. Prompted by conflicting calculations, a measurement of the spin-flip cross-section in low-energy electron-proton scattering was carried out. This experiment uses the electron beam of the electron cooler at COSY as an electron target. The depolarization of the stored proton beam is detected. An overview of the experiment is followed by detailed descriptions of the cycle setup, of the electron target and the ANKE silicon tracking telescopes acting as a beam polarimeter. Elastic protondeuteron scattering is the analyzing reaction. The event selection is depicted and the beam polarization is calculated. Upper limits of the two electron-proton spin-flip cross-sections {sigma} {sub parallel} and {sigma} {sub perpendicular} {sub to} are deduced using the likelihood method. (orig.)

  18. Polarizing a stored proton beam by spin flip? - A high statistic reanalysis

    International Nuclear Information System (INIS)

    Oellers, Dieter

    2011-01-01

    Prompted by recent, conflicting calculations, we have carried out a measurement of the spin flip cross section in low-energy electron-proton scattering. The experiment uses the cooling electron beam at COSY as an electron target. A reanalysis of the data leeds to a reduced statistical errors resulting in a factor of 4 reduced upper limit for the spin flip cross section. The measured cross sections are too small for making spin flip a viable tool in polarizing a stored beam.

  19. High spin states in 181Ir and backbending phenomena in the Os-Pt region

    Science.gov (United States)

    Kaczarowski, R.; Garg, U.; Funk, E. G.; Mihelich, J. W.

    1992-01-01

    The 169Tm(16O,4n)181Ir reaction has been employed to investigate the high spin states of 181Ir using in-beam γ spectroscopy. A well-developed system of levels built on the h9/2 subshell was identified up to a maximum spin of (41/2-). Two rotational bands built on the isomeric states with τ1/2=0.33 μs (Ex=289.2 keV) and 0.13 μs (Ex=366.2 keV), respectively, were observed. The deduced gK values of 1.19+/-0.11 and 1.50+/-0.12 indicate Nilsson assignments of 9/2-[514] and 5/2+[402], respectively, for the bandheads of these bands. A high spin (I>=19/2) isomer with τ1/2=22 ns was found at an excitation energy above 1.96 MeV. The experimental results are discussed in terms of rotational models including Coriolis coupling and providing for a stable triaxial shape of the 181Ir nucleus.

  20. IFR channel-guiding of spinning beams

    International Nuclear Information System (INIS)

    O'Brien, K.J.

    1986-06-01

    A simple model is adopted to study the Ion Focussed Regime (IFR) laser channel-guiding of a spinning relativistic electron beam. It is discovered that spinning beams precess about the IFR axis as they damp; whereas, nonspinning beams remain planarly polarized

  1. Beam Splitter for Spin Waves in Quantum Spin Network

    OpenAIRE

    Yang, S.; Song, Z.; Sun, C. P.

    2005-01-01

    We theoretically design and analytically study a controllable beam splitter for the spin wave propagating in a star-shaped (e.g., a $Y$-shaped beam) spin network. Such a solid state beam splitter can display quantum interference and quantum entanglement by the well-aimed controls of interaction on nodes. It will enable an elementary interferometric device for scalable quantum information processing based on the solid system.

  2. High spin spectroscopy of near spherical nuclei: Role of intruder orbitals

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharyya, S.; Bhattacharjee, T.; Mukherjee, G. [Variable Energy Cyclotron Centre, 1/AF Bidhan Nagar, Kolkata - 700064 (India); Chanda, S. [Fakir Chand College, Diamond Herbour, West Bengal (India); Banerjee, D.; Das, S. K.; Guin, R. [Radiochemistry Division, Variable Energy Cyclotron Centre, BARC, Kolkata - 700064 (India); Gupta, S. Das [Variable Energy Cyclotron Centre, 1/AF Bidhan Nagar, Kolkata - 700064, India and Saha Institute of Nuclear Physics, Kolkata-700064 (India); Pai, H. [Variable Energy Cyclotron Centre, 1/AF Bidhan Nagar, Kolkata - 700064, India and Institut für Kernphysik, Technische Universität Darmstadt, Schlossgartenstrasse 9, 64289 Darmstadt (Germany)

    2014-08-14

    High spin states of nuclei in the vicinity of neutron shell closure N = 82 and proton shell closure Z = 82 have been studied using the Clovere Ge detectors of Indian National Gamma Array. The shape driving effects of proton and neutron unique parity intruder orbitals for the structure of nuclei around the above shell closures have been investigated using light and heavy ion beams. Lifetime measurements of excited states in {sup 139}Pr have been done using pulsed-beam-γ coincidence technique. The prompt spectroscopy of {sup 207}Rn has been extended beyond the 181μs 13/2{sup +} isomer. Neutron-rich nuclei around {sup 132}Sn have been produced from proton induced fission of {sup 235}U and lifetime measurement of low-lying states of odd-odd {sup 132}I have been performed from offline decay.

  3. Spin-flipping a stored polarized proton beam with an rf dipole

    International Nuclear Information System (INIS)

    Blinov, B.B.; Derbenev, Ya.S.; Kageya, T.; Kantsyrev, D.Yu.; Krisch, A.D.; Morozov, V.S.; Sivers, D.W.; Wong, V.K.; Anferov, V.A.; Schwandt, P.; Przewoski, B. von

    2000-01-01

    Frequent polarization reversals, or spin-flips, of a stored polarized high-energy beam may greatly reduce systematic errors of spin asymmetry measurements in a scattering asymmetry experiment. We studied the spin-flipping of a 120 MeV horizontally-polarized proton beam stored in the IUCF Cooler Ring by ramping an rf-dipole magnet's frequency through an rf-induced depolarizing resonance in the presence of a nearly-full Siberian snake. After optimizing the frequency ramp parameters, we used multiple spin-flips to measure a spin-flip efficiency of 86.5±0.5%. The spin-flip efficiency was apparently limited by the rf-dipole's field strength. This result indicates that an efficient spin-flipping a stored polarized beam should be possible in high energy rings such as RHIC and HERA where Siberian snakes are certainly needed and only dipole rf-flipper-magnets are practical

  4. High-K isomers in {sup 176}W and mechanisms of K-violation

    Energy Technology Data Exchange (ETDEWEB)

    Crowell, B.; Janssens, R.V.F.; Blumenthal, D.J. [and others

    1995-08-01

    K-isomers are states in deformed nuclei whose {gamma}-decay is hindered by selection rules involving K, the projection of the angular momentum along the axis of symmetry of the nucleus. Previous work with the Argonne Notre Dame BGO Array delineated the existence of two K-isomers in {sup 176}W, one of which had a very unusual pattern of decay. A short description of this work was published as a letter, and a more complete account is being readied for submission. These results provided evidence that quantum-mechanical fluctuations in the nuclear shape may be responsible for some of the observed K-violating transitions. In addition, hints were present in the data of the existence of another K-isomer with an even higher in. An experiment was performed in September 1994 to observe this isomer, using the reaction {sup 50}Ti({sup 130}Te,4n), and a technique in which recoiling {sup 176}W nuclei were created 17-cm upstream of the center of the array and caught on a Pb catcher foil at the center. Intense ({approximately} 3 pnA) beams of {sup 130}Te were supplied by the ECR source using a new sputtering technique. The recoil-shadow geometry was highly successful at removing the background from non-isomeric decays, allowing the weakly populated K-isomers to be detected cleanly. In addition, the availability of pulsed beams from ATLAS and the timing data from the BGO array provided a second technique for isolating the decays of interest, by selecting events in which a given number of BGO detectors fired between beam pulses. This method was used in the previous experiment, and was also applied in this experiment as a second level of selection. As a result, gamma-ray transitions were detected in the present experiment with intensities as small as {approximately} 0.02 % of the {sup 176}W reaction channel. The existence of the new isomer was confirmed, and a partial level-scheme was constructed.

  5. The Search for High Spin State Isomers in the Atomic Mass Region 178-192

    International Nuclear Information System (INIS)

    Ellahrah, M.S.; Arfa, N.S.

    2007-01-01

    Isomers for elements far a way from line of stability are a new field for research to produce artificial isomers that can store considerable amount of energy in small amount of mass without the dangerous hazards on life and environment. These isomers could have very short life time or very long one 10th and 100th of years. It will be possible to get the stored energy by stimulated emission . The purpose of this work to use a theorical model based on Bcs method to find out the possible isomers in the mass reg on 178-192 even -even isotopes so that experimentalists can concentrate their research on these predicted isomers.

  6. Medium-spin levels and a 360 ns Isup(π)=19-/2 isomer in the N=80 nucleus 137La

    International Nuclear Information System (INIS)

    Kortelahti, M.; Pakkanen, A.; Piiparinen, M.; Komppa, T.; Komu, R.

    1981-03-01

    The level structure of 137 La has been studied using the 138 Ba(p,2n) reaction and methods of in-beam γ-ray and conversion-electron spectroscopy. The 137 La level scheme has been established with 21 new levels with spins up to (19/2) - . A 360 ns (19/2) - isomer at 1870 keV has been identified and a (πgsub(7/2)(νhsub(11/2)sup(-1)dsub(3/2)sup(-1)sub(7 - ))sub(19/2) - configuration is suggested for it. The level ordering of the πhsub(11/2)x2 + multiplet has been discussed on the basis of the triaxial rotor-plus-particle model which suggests a slightly oblate triaxial shape to the 137 La nucleus. (author)

  7. High spin levels in 151Ho

    International Nuclear Information System (INIS)

    Gizon, J.; Gizon, A.; Andre, S.; Genevey, J.; Jastrzebski, J.; Kossakowski, R.; Moszinski, M.; Preibisz, Z.

    1981-02-01

    We report here on the first study of the level structure of 151 Ho. High spin levels in 151 Ho have been populated in the 141 Pr + 16 O and 144 Sm + 12 C reactions. The level structure has been established up to 6.6 MeV energy and the spins and particles determined up to 49/2 - . Most of the proposed level configurations can be explained by the coupling of hsub(11/2) protons to fsub(7/2) and/or hsub(9/2) neutrons. An isomer with 14 +- 3 ns half-life and a delayed gamma multiplicity equal to 17 +- 2 has been found. Its spin is larger than 57/2 h units

  8. Spin-polarized free electron beam interaction with radiation and superradiant spin-flip radiative emission

    Directory of Open Access Journals (Sweden)

    A. Gover

    2006-06-01

    Full Text Available The problems of spin-polarized free-electron beam interaction with electromagnetic wave at electron-spin resonance conditions in a magnetic field and of superradiant spin-flip radiative emission are analyzed in the framework of a comprehensive classical model. The spontaneous emission of spin-flip radiation from electron beams is very weak. We show that the detectivity of electron spin resonant spin-flip and combined spin-flip/cyclotron-resonance-emission radiation can be substantially enhanced by operating with ultrashort spin-polarized electron beam bunches under conditions of superradiant (coherent emission. The proposed radiative spin-state modulation and the spin-flip radiative emission schemes can be used for control and noninvasive diagnostics of polarized electron/positron beams. Such schemes are of relevance in important scattering experiments off nucleons in nuclear physics and off magnetic targets in condensed matter physics.

  9. A new isomer in 195Bi identified at the focal plane of HYRA

    International Nuclear Information System (INIS)

    Roy, T.; Mukherjee, G.; Asgar, Md. A.

    2014-01-01

    Due to the presence of high-j (h 9/2 and i 13/2 ) orbitals near the proton and neutron Fermi levels, high spin isomers are expected to occur for neutron deficient Bismuth nuclei (Z = 83) in A = 190 region. A 750 ns isomer has been known for a long time in 195 Bi whose excitation energy and decay path have been reported recently. A rotational band has been reported in this nucleus based on 13/2 + isomer, originated from the deformation driving i 13/2 orbital. This band reported to have prompt feeding through a 457 keV γ-ray apart from a strong feeding from the 750 ns isomer. In 193 Bi, the 29/2 - state is a 3μs isomer, another isomer with half-life >10μs is also known in this nucleus but its excitation energy, spin and parity are not known. Similar isomer has not yet been observed in 195 Bi. The aim of the present work was to find isomers and their decays in 193,195 Bi

  10. K isomers as probes of nuclear structure

    Science.gov (United States)

    Tandel, S. K.

    2014-08-01

    K isomers are studied in Pu and Cm isotopes, and also in Hf and W nuclei. Many high-K states, several of which are isomeric, are identified. Lifetime measurements spanning the ns-s range have been performed, and decay paths of isomers established. Rotational bands built on high-K states are also identified in many cases. Isomer decays are considerably hindered in many instances, both in the A≈180 and 250 regions indicating that K is an approximately conserved quantum number. High-K states become the favored excitation mode at high spins in the A≈180 region. The energies of the 2-quasiparticle high-K states in Cm isotopes suggest the presence of a deformed subshell gap at N=152.

  11. K isomers as probes of nuclear structure

    Energy Technology Data Exchange (ETDEWEB)

    Tandel, S. K., E-mail: sujit.tandel@cbs.ac.in [UM-DAE Centre for Excellence in Basic Sciences, Mumbai 400098 (India)

    2014-08-14

    K isomers are studied in Pu and Cm isotopes, and also in Hf and W nuclei. Many high-K states, several of which are isomeric, are identified. Lifetime measurements spanning the ns-s range have been performed, and decay paths of isomers established. Rotational bands built on high-K states are also identified in many cases. Isomer decays are considerably hindered in many instances, both in the A≈180 and 250 regions indicating that K is an approximately conserved quantum number. High-K states become the favored excitation mode at high spins in the A≈180 region. The energies of the 2-quasiparticle high-K states in Cm isotopes suggest the presence of a deformed subshell gap at N=152.

  12. High-spin states in 214Rn, 216Ra and a study of even-even N=128 systematics

    Science.gov (United States)

    Lönnroth, T.; Horn, D.; Baktash, C.; Lister, C. J.; Young, G. R.

    1983-01-01

    High-spin states in 214Rn and 216Ra have been studied by means of the reaction 208Pb(13C, α 3n γ)214Rn and 208Pb(13C, 5n γ)216Ra at beam energies in the range 75-95 MeV. In-beam spectroscopy techniques, including γ-decay excitation functions, α-γ coincidences, γ-γ coincidences, γ-ray angular distributions, and pulsed-beam-γ timing, were utilized to establish level energies, γ-ray multipolarities, Jπ assignments, and isomeric lifetimes. Excited states with spins up to 23ℏ in 214Rn and ~30ℏ in 216Ra were observed. Isomers were found in 214Rn at 1625 keV (T12=9 ns, Jπ=8+), 1787 keV (22 ns, 10+), 3485 keV (95 ns, 16), 4509 keV (230 ns, 20), and 4738 keV (8 ns, 22), and in 216Ra at 1708 keV (8 ns, 8+) and 5868 keV (10 ns, ~24). B(EL) values were deduced and compared to previously known lead-region electric transition rates. Shell-model calculations were performed and used to make configurational assignments. The absence of major α-decay branching in the isomers is explained and the systematic behavior of N=128 even-even nuclei is discussed. NUCLEAR STRUCTURE 208Pb(13C, α 3n γ)214Rn, 208Pb(13C, 5n γ) 216Ra, Elab=75-95 MeV. Measured α-γ coin, γ-γ(t) coin, I(θ), pulsed-beam-γ timing. Deduced level schemes, Jπ, T12, B(EL), multipolarities. Shell model calculations, Ge(Li) and Si detectors, enriched target.

  13. Coexisting shape- and high-K isomers in the shape transitional nucleus 188Pt

    Science.gov (United States)

    Mukhopadhyay, S.; Biswas, D. C.; Tandel, S. K.; Danu, L. S.; Joshi, B. N.; Prajapati, G. K.; Nag, Somnath; Trivedi, T.; Saha, S.; Sethi, J.; Palit, R.; Joshi, P. K.

    2014-12-01

    A high-spin study of the shape transitional nucleus 188Pt reveals the unusual coexistence of both shape- and K-isomeric states. Reduced B (E2) transition probabilities for decays from these states inferred from the data clearly establish their hindered character. In addition to other excited structures, a rotational band built upon the K isomer is identified, and its configuration has been assigned through an analysis of alignments and branching ratios. The shape evolution with spin in this nucleus has been inferred from both experimental observables and cranking calculations. The yrast positive parity structure appears to evolve from a near-prolate deformed shape through triaxial at intermediate excitation, and eventually to oblate at the highest spins.

  14. Energy of the 4(+) isomer and new bands in the odd-odd nucleus 74Br

    International Nuclear Information System (INIS)

    Doering, J.; Holcomb, J.W.; Johnson, T.D.; Riley, M.A.; Tabor, S.L.; Womble, P.C.; Winter, G.

    1993-01-01

    High-spin states of the odd-odd nucleus 74 Br were investigated via the reactions 58 Ni ( 19 F,2pn) 74 Br and 65 Cu( 12 C,3n) 74 Br at beam energies of 62 and 50 MeV, respectively. On the basis of coincidence data new levels have been introduced and partly grouped into rotational bands. Some of these new states decay to known levels of negative-parity bands built on both the ground state and the long-lived 4 (+) isomer. Thus, an excitation energy of 13.8 keV has been deduced for the long-lived isomer in 74 Br. The level sequences observed are interpreted in terms of Nilsson configurations in conjunction with collective excitations

  15. Spin flipping a stored polarized proton beam

    International Nuclear Information System (INIS)

    Caussyn, D.D.; Derbenev, Y.S.; Ellison, T.J.P.; Lee, S.Y.; Rinckel, T.; Schwandt, P.; Sperisen, F.; Stephenson, E.J.; von Przewoski, B.; Blinov, B.B.; Chu, C.M.; Courant, E.D.; Crandell, D.A.; Kaufman, W.A.; Krisch, A.D.; Nurushev, T.S.; Phelps, R.A.; Ratner, L.G.; Wong, V.K.; Ohmori, C.

    1994-01-01

    We recently studied the spin flipping of a vertically polarized, stored 139-MeV proton beam. To flip the spin, we induced an rf depolarizing resonance by sweeping our rf solenoid magnet's frequency through the resonance frequency. With multiple spin flips, we found a polarization loss of 0.0000±0.0005 per spin flip under the best conditions; this loss increased significantly for small changes in the conditions. Minimizing the depolarization during each spin flip is especially important because frequent spin flipping could significantly reduce the systematic errors in stored polarized-beam experiments

  16. Production of isomers in compound and transfer reactions with 4He ions

    International Nuclear Information System (INIS)

    Karamyan, S.A.; Aksenov, N.V.; Albin, Yu.A.; Bozhikov, G.A.; Dmitriev, S.N.; Starodub, G.Ya.; Vostokin, G.K.; Carroll, J.J.

    2011-01-01

    A well-known island of nuclear isomerism appears near A = 175-180 due to the deformation alignment of single-particle orbits at high angular momentum. This sometimes results in the formation of multi-quasiparticle states with record spin that are long-lived because of 'K-hindrance', i.e., symmetry rearrangement. Production methods and spectroscopic studies of these isomers remain a challenge for modern nuclear reaction and nuclear structure physics. Activities were produced by irradiation of 176 Yb(97.6%) enriched and nat Lu targets with 35-MeV 4 He ions from the internal beam of the U200 cyclotron. Induced activities were analyzed applying methods of radiochemistry and gamma spectroscopy. Yields of compound and nucleon-transfer reactions were measured and the isomer-to-ground state ratios were deduced. Calculated results were obtained using standard procedures to reproduce the (α, xn) cross sections, and the systematic behavior of the nucleon-transfer yields was established. The isomer-to-ground state ratios for direct reactions with 4 He ions were examined, resulting in a new characterization of the reaction mechanism

  17. Spin-dependent Goos–Hänchen shift and spin beam splitter in gate-controllable ferromagnetic graphene

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y. [School of Physics and Engineering, Sun Yat-sen University, Guangzhou 510275 (China); Liu, Y., E-mail: stslyl@mail.sysu.edu.cn [School of Engineering, Sun Yat-sen University, Guangzhou 510275 (China); Wang, B., E-mail: wangbiao@mail.sysu.edu.cn [School of Physics and Engineering, Sun Yat-sen University, Guangzhou 510275 (China)

    2014-03-15

    The transmission and Goos–Hänchen (GH) shift for charge carriers in gate-controllable ferromagnetic graphene induced by ferromagnetic insulator are investigated theoretically. Numerical results demonstrate that spin-up and spin-down electrons exhibit remarkably different transmission and GH shifts. The spin-dependent GH shifts directly demonstrate the spin beam splitting effect, which can be controlled by the voltage of gate. We attribute the spin beam splitting effect to the combination of tunneling through potential barrier and Zeeman interaction from the magnetic field and the exchange proximity interaction between the ferromagnetic insulator and graphene. In view of the spin beam splitting effect and the spin-dependent GH shifts, the gate-controllable ferromagnetic graphene might be utilized to design spin beam splitter.

  18. Spin-dependent Goos–Hänchen shift and spin beam splitter in gate-controllable ferromagnetic graphene

    International Nuclear Information System (INIS)

    Wang, Y.; Liu, Y.; Wang, B.

    2014-01-01

    The transmission and Goos–Hänchen (GH) shift for charge carriers in gate-controllable ferromagnetic graphene induced by ferromagnetic insulator are investigated theoretically. Numerical results demonstrate that spin-up and spin-down electrons exhibit remarkably different transmission and GH shifts. The spin-dependent GH shifts directly demonstrate the spin beam splitting effect, which can be controlled by the voltage of gate. We attribute the spin beam splitting effect to the combination of tunneling through potential barrier and Zeeman interaction from the magnetic field and the exchange proximity interaction between the ferromagnetic insulator and graphene. In view of the spin beam splitting effect and the spin-dependent GH shifts, the gate-controllable ferromagnetic graphene might be utilized to design spin beam splitter

  19. Coexisting shape- and high-K isomers in the shape transitional nucleus {sup 188}Pt

    Energy Technology Data Exchange (ETDEWEB)

    Mukhopadhyay, S., E-mail: somm@barc.gov.in [Nuclear Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Biswas, D.C. [Nuclear Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Tandel, S.K. [UM-DAE Centre for Excellence in Basic Sciences, Mumbai 400098 (India); Danu, L.S.; Joshi, B.N.; Prajapati, G.K. [Nuclear Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Nag, Somnath [Dept. of Physics, IIT Kharagpur, Kharagpur 721302 (India); Trivedi, T.; Saha, S.; Sethi, J.; Palit, R. [Dept. of Nuclear and Atomic Physics, TIFR, Mumbai 400005 (India); Joshi, P.K. [Homi Bhabha Centre for Science Education, TIFR, Mumbai 400088 (India)

    2014-12-12

    A high-spin study of the shape transitional nucleus {sup 188}Pt reveals the unusual coexistence of both shape- and K-isomeric states. Reduced B(E2) transition probabilities for decays from these states inferred from the data clearly establish their hindered character. In addition to other excited structures, a rotational band built upon the K isomer is identified, and its configuration has been assigned through an analysis of alignments and branching ratios. The shape evolution with spin in this nucleus has been inferred from both experimental observables and cranking calculations. The yrast positive parity structure appears to evolve from a near-prolate deformed shape through triaxial at intermediate excitation, and eventually to oblate at the highest spins.

  20. High-spin yrast states in the 206Po, 208Po, 209At and 210At nuclei

    International Nuclear Information System (INIS)

    Rahkonen, Vesa.

    1980-08-01

    High-spin yrast states in the 206 , 208 Po and 209 , 210 At nuclei have been studied with methods of in-beam γ-ray and conversion-electron spectroscopy and with the (α,3n), (α,4n), (p,2n) and ( 3 He,3n) reactions. Several new high-spin states have been identified up to angular momenta of 18-19 h/2π in these nuclei except in 206 Po where the highest spin was (13 - ). In the course of this work two new isomers with half-lives of 15+-3 ns and 4+-2 μs have been observed at 1689 and 4028 keV in 210 At, which have been interpreted as (10 - ) and 19 + states. The previously-known half-lives of 29+-2 and 680+-75 ns have been established for the three-proton states of Jsup(π)=21/2 - and 29/2 + at 1428 and 2429 keV in 209 At, respectively. A half-life of 1.0+-0.2 μs was measured for the 9 - isomer in 206 Po. Shell-model calculations based on the use of the empirical single- and two-particle interaction energies or of the experimental excitation energies belonging to the relevant one-, two- and three-particle states, have been carried out for these 4-6 particle nuclei. Most of the medium-spin yrast states in 206 Po, 208 Po and 209 At have been successfully described assuming the core for these nuclei being 204 Pb or 206 Pb rather than 208 Pb, and including an extra core polarization interaction described by the P 2 force. (author)

  1. Photo-Induced depopulation of the 180mTa isomer

    Science.gov (United States)

    Bhike, Megha; Krishichayan, Fnu; Tornow, W.

    2015-10-01

    The 180mTa nucleus is the rarest isotope in the universe, existing only in an isomeric state at 77.2 keV (Jπ = 9-) with half-life of greater than 7.1 ×1015 years. The stellar production of this high-spin isomer has been a challenging astrophysical problem. Cross-section measurements for the depopulation of the 180mTa isomer with monoenergetic photon beams of energies 2.5 and 3.1 MeV have been carried out at the HI γS facility. The activated Ta foils of natural abundance and containing 14.4 mg of 180mTa were γ-ray counted at TUNL's low background facility using a 13% planar HPGe detector. A 8'' ×12'' NaI detector in combination with the standard HI γS scintillator paddle system was employed for absolute photon-flux determination. Preliminary results will be discussed, and measurements at lower energies are planned. This work was supported by the U.S. DOE under Grant NO. DE-FG02-97ER41033.

  2. Spin-valley splitting of electron beam in graphene

    Directory of Open Access Journals (Sweden)

    Yu Song

    2016-11-01

    Full Text Available We study spatial separation of the four degenerate spin-valley components of an electron beam in a EuO-induced and top-gated ferromagnetic/pristine/strained graphene structure. We show that, in a full resonant tunneling regime for all beam components, the formation of standing waves can lead sudden phase jumps ∼−π and giant lateral Goos-Hänchen shifts as large as the transverse beam width, while the interplay of the spin and valley imaginary wave vectors in the modulated regions can lead differences of resonant angles for the four spin-valley flavors, manifesting a spin-valley beam splitting effect. The splitting effect is found to be controllable by the gating and strain.

  3. Polarizing a stored proton beam by spin flip?

    International Nuclear Information System (INIS)

    Oellers, D.; Barion, L.; Barsov, S.; Bechstedt, U.; Benati, P.; Bertelli, S.; Chiladze, D.; Ciullo, G.; Contalbrigo, M.; Dalpiaz, P.F.; Dietrich, J.; Dolfus, N.; Dymov, S.; Engels, R.; Erven, W.; Garishvili, A.; Gebel, R.; Goslawski, P.

    2009-01-01

    We discuss polarizing a proton beam in a storage ring, either by selective removal or by spin flip of the stored ions. Prompted by recent, conflicting calculations, we have carried out a measurement of the spin-flip cross section in low-energy electron-proton scattering. The experiment uses the cooling electron beam at COSY as an electron target. The measured cross sections are too small for making spin flip a viable tool in polarizing a stored beam. This invalidates a recent proposal to use co-moving polarized positrons to polarize a stored antiproton beam.

  4. Beam and spin dynamics of hadron beams in intermediate-energy ring accelerators

    International Nuclear Information System (INIS)

    Lehrach, Andreas

    2008-01-01

    In this thesis beam and spin dynamics of ring accelerators are described. After a general theoretical treatment methods for the beam optimization and polarization conservation are discussed. Then experiments on spin manipulation at the COSY facility are considered. Finally the beam simulation and accelerator lay-out for the HESR with regards to the FAIR experiment are described. (HSI)

  5. Measurements of quadrupole interaction frequencies of long-lived isomers with the level mixing spectroscopy (LEMS) method

    International Nuclear Information System (INIS)

    Neyens, G.; Nouwen, R.; S'heeren, G.; Bergh, M. van den; Coussement, R.

    1993-01-01

    The level mixing spectroscopy (LEMS) method has proven to be a very useful method to determine the quadrupole interaction frequency of an isomer in a solid host. Especially in the 'difficult' cases, e.g. when the isomeric lifetime is very long or its spin is very high, the method yields valuable information which is not accessible with other methods (such as TDPAD). Since the development of the method some years ago, many experiments have been performed on high spin isomers in the lead region. The static quadrupole moment of isomers with lifetimes ranging from 20 ns up to 13 ms and spins up to 65/2h have been determined in neutron deficient isotopes of Bi, At, Fr and Ra. (orig.)

  6. In-beam γ-ray spectroscopy in the vicinity of 100Sn

    International Nuclear Information System (INIS)

    Seweryniak, D.

    1998-01-01

    In recent years, in-beam x-ray experiments supplied a vast amount of data on high-spin states in nuclei in the vicinity of 100 Sn. The present contribution reviews spectroscopic information obtained recently for N ≥ 50 nuclei around 100 Sn, with emphasis on isomer studies, and discusses selected results in the frame of the shell model

  7. Superdeformed and high-spin nuclear structure data on the INTERNET

    International Nuclear Information System (INIS)

    Singh, B.; Firestone, R.B.; Chu, S.Y.F.

    1997-01-01

    With the advent of the large detector arrays GAMMASPHERE, EUROGAM, and GASP, a wealth of new information about the properties of nuclei at high spin has become available. Superdeformed and high-spin nuclear structure data and associated bibliographic information made available on INTERNET by the Isotopes Project at LBNL are described. The Table of Superdeformed Bands and Fission Isomers on the INTERNET will be updated continuously, and new recent reference lists will be provided approximately every three months. This information will also be published annually in the Table of Isotopes CD-ROM updates. (author)

  8. Spin Depolarization due to Beam-Beam Interaction in NLC

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Kathleen A

    2001-01-04

    Calculations of spin depolarization effects due to the beam-beam interaction are presented for several NLC designs. The depolarization comes from both classical (Bargmann-Michel-Telegdi precession) and quantum (Sokolov-Ternov spin-flip) effects. It is anticipated that some physics experiments at future colliders will require a knowledge of the polarization to better than 0.5% precision. We compare the results of CAIN simulations with the analytic estimates of Yokoya and Chen for head-on collisions. We also study the effects of transverse offsets and beamstrahlung-induced energy spread.

  9. Spin polarisation with electron Bessel beams

    Energy Technology Data Exchange (ETDEWEB)

    Schattschneider, P., E-mail: schattschneider@ifp.tuwien.ac.at [Institut für Festkörperphysik, Technische Universität Wien, A-1040 Wien (Austria); USTEM, Technische Universität Wien, A-1040 Wien (Austria); Grillo, V. [CNR-Istituto Nanoscienze, Centro S3, Via G Campi 213/a, I-41125 Modena (Italy); CNR-IMEM, Parco delle Scienze 37a, I-43100 Parma (Italy); Aubry, D. [Centrale Supelec, MSSMast CNRS 8579, F-92295 Châtenay-Malabry (France)

    2017-05-15

    The theoretical possibility to use an electron microscope as a spin polarizer is studied. It turns out that a Bessel beam passing a standard magnetic objective lens is intrinsically spin polarized when post-selected on-axis. In the limit of infinitely small detectors, the spin polarisation tends to 100 %. Increasing the detector size, the polarisation decreases rapidly, dropping below 10{sup −4} for standard settings of medium voltage microscopes. For extremely low voltages, the Figure of Merit increases by two orders of magnitude, approaching that of existing Mott detectors. Our findings may lead to new desings of spin filters, an attractive option in view of its inherent combination with the electron microscope, especially at low voltage. - Highlights: • TEM round magnetic lenses can act as spin polarizers when a Bessel beam is sent through. • This is found on theoretical grounds and demonstrated numerically for a few cases. • The effect is small, but can reach a Figure of Merit similar to existing Mott detectors. • This opens the possibility to construct nanometer-sized spin filters or detectors.

  10. High-spin nuclear target of 178m2Hf: creation and nuclear reaction studies

    International Nuclear Information System (INIS)

    Oganessyan, Yu.Ts.; Karamyan, S.A.; Gangrskij, Yu.P.

    1993-01-01

    A long-lived (31 years) four-quasiparticle isomer 178m 2 Hf(I,K π =16,16 + ) was produced in microweight quantities using the nuclear reaction 176 Yb( 4 He, 2n). Methods of precision chemistry and mass-separation for the purification of the produced Hf material have been developed. Thin targets of isomeric hafnium-178 on carbon backings were prepared and used in experiments on a neutron, proton and deuteron beams. First results on nuclear reactions on a high-spin exotic target were obtained. Experiments on electromagnetic interactions of the isomeric hafnium using methods of the collinear laser spectroscopy as well as of the nuclear orientation of hafnium implanted into a crystalline media were started. 11 refs.; 11 figs.; 2 tabs

  11. High-spin excitations of atomic nuclei

    International Nuclear Information System (INIS)

    Xu Furong; National Laboratory of Heavy Ion Physics, Lanzhou; Chinese Academy of Sciences, Beijing

    2004-01-01

    The authors used the cranking shell model to investigate the high-spin motions and structures of atomic nuclei. The authors focus the collective rotations of the A∼50, 80 and 110 nuclei. The A∼50 calculations show complicated g spectroscopy, which can have significant vibration effects. The A≅80 N≅Z nuclei show rich shape coexistence with prolate and oblate rotational bands. The A≅110 nuclei near the r-process path can have well-deformed oblate shapes that become yrast and more stable with increasing rotational frequency. As another important investigation, the authors used the configuration-constrained adiabatic method to calculate the multi-quasiparticle high-K states in the A∼130, 180 and superheavy regions. The calculations show significant shape polarizations due to quasi-particle excitations for soft nuclei, which should be considered in the investigations of high-K states. The authors predicted some important high-K isomers, e.g., the 8 - isomers in the unstable nuclei of 140 Dy and 188 Pb, which have been confirmed in experiments. In superheavy nuclei, our calculations show systematic existence of high-K states. The high-K excitations can increase the productions of synthesis and the survival probabilities of superheavy nuclei. (authors)

  12. K-Isomers as a Probe of Nuclear Structure and Advanced Applications

    Science.gov (United States)

    Kondev, F. G.

    2005-05-01

    Nuclear K-isomers play a pivotal role in understanding the structure of deformed, axially symmetric nuclei. Examples are presented of recent studies of exotic multi-quasiparticle isomers in the A˜180 rare-earth region at the extreme of angular momentum and neutron number. A specific band-mixing scenario is invoked to explain the unusual decay path of the Kπ=57/2- isomer (T1/2=22 ns) in 175Hf, the highest spin K-isomer known in nature. The discovery of a suite of high-K isomers, above the previously known Kπ=23/2- (T1/2=160 d) state in 177Lu, using deep-inelastic and multi-nucleon transfer reactions is discussed.

  13. K-Isomers as a Probe of Nuclear Structure and Advanced Applications

    International Nuclear Information System (INIS)

    Kondev, F.G.

    2005-01-01

    Nuclear K-isomers play a pivotal role in understanding the structure of deformed, axially symmetric nuclei. Examples are presented of recent studies of exotic multi-quasiparticle isomers in the A∼180 rare-earth region at the extreme of angular momentum and neutron number. A specific band-mixing scenario is invoked to explain the unusual decay path of the Kπ=57/2- isomer (T1/2=22 ns) in 175Hf, the highest spin K-isomer known in nature. The discovery of a suite of high-K isomers, above the previously known Kπ=23/2- (T1/2=160 d) state in 177Lu, using deep-inelastic and multi-nucleon transfer reactions is discussed

  14. 16th Workshop on High Energy Spin Physics

    CERN Document Server

    2016-01-01

    The Workshop will cover a wide range of spin phenomena at high and intermediate energies such as: recent experimental data on spin physics the nucleon spin structure and GPD's spin physics and QCD spin physics in the Standard Model and beyond T-odd spin effects polarization and heavy ion physics spin in gravity and astrophysics the future spin physics facilities spin physics at NICA polarimeters for high energy polarized beams acceleration and storage of polarized beams the new polarization technology related subjects The Workshop will be held in the Bogoliubov Laboratory of Theoretical Physics of the Joint Institute for Nuclear Research, 141980 Dubna, Moscow Region, Russia. The program of the workshop will include plenary and parallel (if necessary) sessions. Plenary sessions will be held in the Conference Hall. Parallel sections will take place in the same building. There will be invited talks (up to 40 min) and original reports (20 min). The invited speakers will present new experimental and theoretical re...

  15. The unusual high-spin isomer in 182Os and the proton-neutron interaction in high-j orbitals

    International Nuclear Information System (INIS)

    Tajima, Naoki; Onishi, Naoki

    1986-01-01

    An intermediate-coupling model of particle-plus-γ-soft-rotor is applied to a qualitative interpretation of the recently observed isomer of 182 Os and the characteristic decay pattern. In the model h 11/2 protons and i 13/2 neutrons are incorporated at the same time. The isomer is realized as the bandhead of a two-proton - two-neutron-aligned band from the present calculation. (orig.)

  16. g-factor of the Kπ = 14+ isomer in 176 W

    International Nuclear Information System (INIS)

    Ionescu-Bujor, M.; Iordachescu, A.; Marginean, N.; Brandolini, F.; Pavan, P.; Lenzi, S.M.; De Poli, M.; Gadea, A.; Martinez, T.; Medina, N.H.; Ribas, R.V.; Podolyak, Zs.

    2000-01-01

    In the deformed A ≅ 180 nuclei with β 2 ≅ 0.25 multi-quasiparticle intrinsic states are able to compete with rotational structures as both proton and neutron Fermi surfaces are close to nucleon orbits with large projections Ω on the prolate symmetry axis. Due to the approximate conservation of the K quantum number, these states often have hindered decays with half-lives ranging from nanoseconds to years. The decay characteristics of the high-K isomers, as well as the properties of the collective bands built on them, were subject of detailed experimental studies over the last decade. Particular attention has been devoted to the apparent breakdown of the K-selection rule observed experimentally in the decay of several high-spin isomeric states of the A ≅ 180 region. A very interesting high-K isomer showing in its decay a severe violation of the K-selection rule has been recently found in 176 W. The isomeric state, with K π = 14 + , T 1/2 = 35(10) ns and E x =3746 keV, de-excites predominantly to states with K=0, bypassing available levels of intermediate K. To elucidate the isomer underlying structure, an experiment to determine its the g-factor has been performed at the LNL XTU-tandem, by applying the time-differential perturbed angular distribution (TDPAD) method in an external magnetic field. The isomer was populated in the 164 Dy( 16 O,4n) 176 W reaction at a bombarding energy of 83 MeV. The 16 O beam has been pulsed with a pulse width of 1.5 ns at a repetition period of 800 ns. In view of the very low isomer population (about 2% of the 4n channel), a high suppression of the continuous beam in-between the beam bursts was necessary for a proper observation of the isomeric decay γ-lines. The target consisted of 0.5 mg/cm 2 metallic 164 Dy on thick Pb backing in which both the recoiling 176 W nuclei and the projectiles were stopped. Two planar Ge detectors and two Ge detectors of 25% efficiency placed at the angles ± 135 angle and ± 45 angle with respect

  17. Spin dynamics of electron beams in circular accelerators; Spindynamik von Elektronenstrahlen in Kreisbeschleunigern

    Energy Technology Data Exchange (ETDEWEB)

    Boldt, Oliver

    2014-04-15

    Experiments using high energy beams of spin polarized, charged particles still prove to be very helpful in disclosing a deeper understanding of the fundamental structure of matter. An important aspect is to control the beam properties, such as brilliance, intensity, energy, and degree of spin polarization. In this context, the present studies show various numerical calculations of the spin dynamics of high energy electron beams in circular accelerators. Special attention has to be paid to the emission of synchrotron radiation, that occurs when deflecting charged particles on circular orbits. In the presence of the fluctuation of the kinetic energy due to the photon emission, each electron spin moves non-deterministically. This stochastic effect commonly slows down the speed of all numeric estimations. However, the shown simulations cover - using appropriate approximations - trackings for the motion of thousands of electron spins for up to thousands of turns. Those calculations are validated and complemented by empirical investigations at the electron stretcher facility ELSA of the University of Bonn. They can largely be extended to other boundary conditions and thus, can be consulted for new accelerator layouts.

  18. New decay modes of the high-spin isomer of 124Cs

    Science.gov (United States)

    Radich, A. J.; Garrett, P. E.; Andreoiu, C.; Ball, G. C.; Bianco, L.; Bildstein, V.; Chagnon-Lessard, S.; Cross, D. S.; Demand, G. A.; Diaz Varela, A.; Dunlop, R.; Finlay, P.; Garnsworthy, A. B.; Hackman, G.; Hadinia, B.; Jigmeddorj, B.; Laffoley, A. T.; Leach, K. G.; McGee, E.; Michetti-Wilson, J.; Orce, J. N.; Rajabali, M. M.; Rand, E. T.; Starosta, K.; Sumithrarachchi, C. S.; Svensson, C. E.; Triambak, S.; Wang, Z. M.; Williams, S. J.; Wong, J.; Wood, J. L.; Yates, S. W.

    2017-09-01

    A new β+/EC branch of 0.11± 0.02% from the (7)+ isomer of 124Cs was identified in a measurement of the decay of 124Cs using the 8π spectrometer at TRIUMF. Combinations of γ-γ, γ-e-, and e--e- coincidence data were used to further investigate the isomeric decay. Six new transitions were observed and their branching ratios were measured.

  19. Polarized beams in high energy storage rings

    Energy Technology Data Exchange (ETDEWEB)

    Montague, B W [European Organization for Nuclear Research, Geneva (Switzerland)

    1984-11-01

    In recent years there has been a considerable advance in understanding the spin motion of particles in storage rings and accelerators. The survey presented here outlines the early historical development in this field, describes the basic ideas governing the kinetics of polarized particles in electromagnetic fields and shows how these have evolved into the current description of polarized beam behaviour. Orbital motion of particles influences their spin precession, and depolarization of a beam can result from excitation of spin resonances by orbit errors and oscillations. Electrons and positrons are additionally influenced by the quantized character of synchrotron radiation, which not only provides a polarizing mechanism but also enhances depolarizing effects. Progress in the theoretical formulation of these phenomena has clarified the details of the physical processes and suggested improved methods of compensating spin resonances. Full use of polarized beams for high-energy physics with storage rings requires spin rotators to produce longitudinal polarization in the interaction regions. Variants of these schemes, dubbed Siberian snakes, provide a curious precession topology which can substantially reduce depolarization in the high-energy range. Efficient polarimetry is an essential requirement for implementing polarized beams, whose utility for physics can be enhanced by various methods of spin manipulation.

  20. Effects of high-order deformation on high-K isomers in superheavy nuclei

    International Nuclear Information System (INIS)

    Liu, H. L.; Bertulani, C. A.; Xu, F. R.; Walker, P. M.

    2011-01-01

    Using, for the first time, configuration-constrained potential-energy-surface calculations with the inclusion of β 6 deformation, we find remarkable effects of the high-order deformation on the high-K isomers in 254 No, the focus of recent spectroscopy experiments on superheavy nuclei. For shapes with multipolarity six, the isomers are more tightly bound and, microscopically, have enhanced deformed shell gaps at N=152 and Z=100. The inclusion of β 6 deformation significantly improves the description of the very heavy high-K isomers.

  1. Isomer shift and magnetic moment of the long-lived 1/2$^{+}$ isomer in $^{79}_{30}$Zn$_{49}$: signature of shape coexistence near $^{78}$Ni

    CERN Document Server

    Yang, X.F.; Xie, L.; Babcock, C.; Billowes, J.; Bissell, M.L.; Blaum, K.; Cheal, B.; Flanagan, K.T.; Garcia Ruiz, R. F.; Gins, W.; Gorges, C.; Grob, L.K.; Heylen, H.; Kaufmann, S.; Kowalska, M.; Kraemer, J.; Malbrunot-Ettenauer, S.; Neugart, R.; Neyens, G.; Nörtershäuser, W.; Papuga, J.; Sánchez, R.; Yordanov, D.T.

    2016-01-01

    Collinear laser spectroscopy has been performed on the $^{79}_{30}$Zn$_{49}$ isotope at ISOLDE-CERN. The existence of a long-lived isomer with a few hundred milliseconds half-life was confirmed, and the nuclear spins and moments of the ground and isomeric states in $^{79}$Zn as well as the isomer shift were measured. From the observed hyperfine structures, spins $I = 9/2$ and $I = 1/2$ are firmly assigned to the ground and isomeric states. The magnetic moment $\\mu$ ($^{79}$Zn) = $-$1.1866(10) $\\mu_{\\rm{N}}$, confirms the spin-parity $9/2^{+}$ with a $\

  2. Polarization of a stored beam by spin filtering

    International Nuclear Information System (INIS)

    Weidemann, C.

    2014-01-01

    In 2011 the PAX Collaboration has performed a successful spin-filtering test using protons at Tp = 49.3 MeV at the COSY ring, which confirms that spin filtering is a viable method to polarize a stored beam and that the present interpretation of the mechanism in terms of the proton-proton interaction is correct. The equipment and the procedures to produce stored polarized beams was successfully commissioned and are established. The outcome of the experiment is of utmost importance in view of the possible application of the method to polarize a beam of stored antiprotons. (author)

  3. Isomeric Targets and Beams

    International Nuclear Information System (INIS)

    Oganesyan, Yu.Ts.; Karamyan, S.A.

    1994-01-01

    One of the main topics of modern nuclear physics is the investigation of exotic nuclei including hyper-nuclei, trans fermium elements, proton and neutron rich isotopes near drip lines as well as high-spin excited states and states with anomalous deformation. The isomerism of nuclei is closely related with such phenomena as the alignment of single-particle orbitals, the coexistence of various deformations and the manifestation of intruder-levels from neighbouring shells. The investigation of electromagnetic and nuclear interactions of isomers could give important information on their shell structure and its role in the mechanism of nuclear reactions. For such experiments one can either make isomeric targets (sufficiently long-lived) or use the methods of acceleration of isomeric nuclei. Recently, an exotic 16 + four-quasiparticle isomer of 178 Hf m 2 was produced in a micro weight quantity and the first nuclear reactions on it were successfully observed. The talk describes these experiments as well as new ideas for the continuation of the studies and some advantageous ways for the isomeric beams production by the method of direct acceleration or by the secondary beam method. 35 refs., 15 figs., 8 tabs

  4. Investigation of high spin structure of N ∼ 28 nuclei with PHF model

    International Nuclear Information System (INIS)

    Naik, Z.

    2016-01-01

    Nucleus in 50 mass shows verity of high spin phenomena. Some of them are K-Isomer, Band termination, States Beyond Band termination, Superdeformed Structure, Shape co-existence and many more. Some of these phenomena with Projected Hartree-Fock (PHF) model are addressed and the microscopic structure associate with them is discussed

  5. Antihydrogen atom formation in a CUSP trap towards spin polarized beams

    Energy Technology Data Exchange (ETDEWEB)

    Kuroda, N., E-mail: kuroda@radphys4.c.u-tokyo.ac.jp [University of Tokyo, Graduate School of Arts and Sciences (Japan); Enomoto, Y. [RIKEN Advanced Science Institute (Japan); Michishio, K. [Tokyo University of Science, Department of Physics (Japan); Kim, C. H. [University of Tokyo, Graduate School of Arts and Sciences (Japan); Higaki, H. [Hiroshima University, Graduate School of Advanced Science of Matter (Japan); Nagata, Y.; Kanai, Y. [RIKEN Advanced Science Institute (Japan); Torii, H. A. [University of Tokyo, Graduate School of Arts and Sciences (Japan); Corradini, M.; Leali, M.; Lodi-Rizzini, E.; Venturelli, L.; Zurlo, N. [Universita di Brescia and Instituto Nazionale di Fisica Nucleare, Dipartimento di Chimica e Fisica per l' Ingegneria e per i Materiali (Italy); Fujii, K.; Ohtsuka, M.; Tanaka, K. [University of Tokyo, Graduate School of Arts and Sciences (Japan); Imao, H. [RIKEN Nishina Center for Accelerator-Based Science (Japan); Nagashima, Y. [Tokyo University of Science, Department of Physics (Japan); Matsuda, Y. [University of Tokyo, Graduate School of Arts and Sciences (Japan); Juhasz, B. [Stefan Meyer Institut fuer Subatomare Physik (Austria); and others

    2012-12-15

    The ASACUSA collaboration has been making a path to realize high precision microwave spectroscopy of ground-state hyperfine transitions of antihydrogen atom in flight for stringent test of the CPT symmetry. For this purpose, an efficient extraction of a spin polarized antihydrogen beam is essential. In 2010, we have succeeded in synthesizing our first cold antihydrogen atoms employing a CUSP trap. The CUSP trap confines antiprotons and positrons simultaneously with its axially symmetric magnetic field to form antihydrogen atoms. It is expected that antihydrogen atoms in the low-field-seeking states are preferentially focused along the cusp magnetic field axis whereas those in the high-field-seeking states are defocused, resulting in the formation of a spin-polarized antihydrogen beam.

  6. Neutron beam effects on spin-exchange-polarized 3He.

    Science.gov (United States)

    Sharma, M; Babcock, E; Andersen, K H; Barrón-Palos, L; Becker, M; Boag, S; Chen, W C; Chupp, T E; Danagoulian, A; Gentile, T R; Klein, A; Penttila, S; Petoukhov, A; Soldner, T; Tardiff, E R; Walker, T G; Wilburn, W S

    2008-08-22

    We have observed depolarization effects when high intensity cold neutron beams are incident on alkali-metal spin-exchange-polarized 3He cells used as neutron spin filters. This was first observed as a reduction of the maximum attainable 3He polarization and was attributed to a decrease of alkali-metal polarization, which led us to directly measure alkali-metal polarization and spin relaxation over a range of neutron fluxes at Los Alamos Neutron Science Center and Institute Laue-Langevin. The data reveal a new alkali-metal spin-relaxation mechanism that approximately scales as sqrt[phi_{n}], where phi_{n} is the neutron capture-flux density incident on the cell. This is consistent with an effect proportional to the concentration of electron-ion pairs but is much larger than expected from earlier work.

  7. Magnetic moment of the fragmentation-aligned F61e (9/2+) isomer

    International Nuclear Information System (INIS)

    Matea, I.; Georgiev, G.; Lewitowicz, M.; Santos, F. de Oliveira; Daugas, J.M.; Belier, G.; Goutte, H.; Meot, V.; Roig, O.; Hass, M.; Baby, L.T.; Goldring, G.; Neyens, G.; Borremans, D.; Himpe, P.; Astabatyan, R.; Lukyanov, S.; Penionzhkevich, Yu.E.; Balabanski, D.L.; Sawicka, M.

    2004-01-01

    We report on the g factor measurement of an isomer in the neutron-rich F 26 61 e (E * =861 keV and T 1/2 =239(5) ns). The isomer was produced and spin aligned via a projectile-fragmentation reaction at intermediate energy, the time dependent perturbed angular distribution method being used for the measurement of the g factor. For the first time, due to significant improvements of the experimental technique, an appreciable residual alignment of the nuclear spin ensemble has been observed, allowing a precise determination of its g factor, including the sign: g=-0.229(2). In this way we open the possibility to study moments of very neutron-rich short-lived isomers, not accessible via other production and spin-orientation methods

  8. Spectroscopy of high-spin states of 206Po

    International Nuclear Information System (INIS)

    Baxter, A.M.; Byrne, A.P.; Dracoulis, G.D.; Bark, R.A.; Riess, F.; Stuchbery, A.E.; Kruse, M.C.; Poletti, A.R.

    1990-05-01

    The yrast and near-yrast energy levels of 206 Po have been investigated to over 9 MeV excitation and up to spins with J=24. The measure-ments consisted of γ-γ coincidence data, internal-conversion-electron spectra, time spectra of γ-rays relative to a pulsed beam, excitation functions and γ-ray angular distributions. Two new isomers, with lifetime in the one-nonasecond range,were found. The observed structure is compared with the predictions of empirical shell-model calculations in which 206 Po is regarded as a 208 Pb core with two valence protons and four valence neutron holes. The agreement is generaly satisfactory for the observed odd-parity levels and for even parity levels with J > 12; those with J = 6 to 12 are better accounted for by weak coupling of two valence protons to a 204 Pb core in its 0 + 1, 2 + 1 and 4 + 1 states. 33 refs., 7 tabs., 12 figs

  9. Yrast spectroscopy: status of yrast isomers, oblate shapes and feeding of yrast states

    International Nuclear Information System (INIS)

    Khoo, T.L.

    1980-01-01

    The properties of very-high-spin states at the yrast line are addressed. Three different but related topics are discussed: the status of yrast isomers (mainly in the A approx. 150 region); the nuclear shape along the yrast line; and the feeding of the yrast states as a function of spin. A recurrent theme is the response of the core to the polarizing effects of a successively increasing number of valence particles and how the investigation of very-high-spin states bears on this problem. 10 figures, 1 table

  10. High spin states of 141Pm

    Science.gov (United States)

    Bhattacharyya, Sarmishtha; Chanda, Somen; Bhattacharjee, Tumpa; Basu, Swapan Kumar; Bhowmik, R. K.; Muralithar, S.; Singh, R. P.; Ghugre, S. S.

    2004-01-01

    The high spin states in the N=80 odd- A141Pm nucleus have been investigated by in-beam γ-spectroscopic techniques following the reaction 133Cs( 12C, 4n) 141Pm at E=65 MeV using a modest γ detector array, consisting of seven Compton-suppressed high purity germanium detectors and a multiplicity ball of 14 bismuth germanate elements. Thirty new γ rays have been assigned to 141Pm on the basis of γ-ray singles and γγ-coincidence data. The level scheme of 141Pm has been extended upto an excitation energy of 5.2 MeV and spin {35}/{2}ℏ and 16 new levels have been proposed. Spin-parity assignments for most of the newly proposed levels have been made on the basis of the deduced directional correlation orientation ratios for strong transitions. The meanlives of a few excited states have been determined from the pulsed beam- γγ coincidence data using the generalised centroid-shift method. The level structure is discussed in the light of known systematics of neighbouring N=80 isotonic nuclei.

  11. New high spin states and isomers in the {sup 208}Pb and {sup 207}Pb nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Broda, R.; Wrzesinski, J.; Pawlat, T. [and others

    1996-12-31

    The two most prominent examples of the heavy doubly closed shell (DCS) nuclei, {sup 208}Pb and {sup 132}Sn, are not accessible by conventional heavy-ion fusion processes populating high-spin states. This experimental difficulty obscured for a long time the investigation of yrast high-spin states in both DCS and neighboring nuclei and consequently restricted the study of the shell model in its most attractive regions. Recent technical development of multidetector gamma arrays opened new ways to exploit more complex nuclear processes which populate the nuclei of interest with suitable yields for gamma spectroscopy and involve population of moderately high spin states. This new possibility extended the range of accessible spin values and is a promising way to reach new yrast states. Some of these states are expected to be of high configurational purity and can be a source of important shell model parameters which possibly can be used later to check the validity of the spherical shell model description at yet higher spin and higher excitation energy. The nuclei in the closest vicinity of {sup 132}Sn are produced in spontaneous fission and states with spin values up to I=14 can be reached in fission gamma spectroscopy studies with the presently achieved sensitivity of gamma arrays. New results on yrast states in the {sup 134}Te and {sup 135}I nuclei populated in fission of the {sup 248}Cm presented at this conference illustrate such application of the resolving power offered by modern gamma techniques.

  12. New decay modes of the high-spin isomer of {sup 124}Cs

    Energy Technology Data Exchange (ETDEWEB)

    Radich, A.J.; Garrett, P.E.; Bianco, L.; Bildstein, V.; Chagnon-Lessard, S.; Demand, G.A.; Diaz Varela, A.; Dunlop, R.; Finlay, P.; Hadinia, B.; Jigmeddorj, B.; Laffoley, A.T.; Leach, K.G.; McGee, E.; Michetti-Wilson, J.; Rand, E.T.; Svensson, C.E.; Wong, J. [University of Guelph, Department of Physics, Guelph, ON (Canada); Andreoiu, C.; Cross, D.S.; Starosta, K. [Simon Fraser University, Department of Chemistry, Burnaby, BC (Canada); Ball, G.C.; Garnsworthy, A.B.; Hackman, G.; Rajabali, M.M. [TRIUMF, Vancouver, BC (Canada); Orce, J.N. [TRIUMF, Vancouver, BC (Canada); University of the Western Cape, Department of Physics, Bellville (South Africa); Sumithrarachchi, C.S. [University of Guelph, Department of Physics, Guelph, ON (Canada); Michigan State University, National Superconducting Cyclotron Laboratory, East Lansing, MI (United States); Triambak, S. [TRIUMF, Vancouver, BC (Canada); University of the Western Cape, Department of Physics, Bellville (South Africa); iThemba LABS, Somerset West (South Africa); Wang, Z.M. [Simon Fraser University, Department of Chemistry, Burnaby, BC (Canada); TRIUMF, Vancouver, BC (Canada); Williams, S.J. [TRIUMF, Vancouver, BC (Canada); Michigan State University, National Superconducting Cyclotron Laboratory, East Lansing, MI (United States); Wood, J.L. [Georgia Institute of Technology, School of Physics, Atlanta, GA (United States); Yates, S.W. [University of Kentucky, Departments of Chemistry and Physics and Astronomy, Lexington, KY (United States)

    2017-09-15

    A new β{sup +}/EC branch of 0.11 ± 0.02 % from the (7){sup +} isomer of {sup 124}Cs was identified in a measurement of the decay of {sup 124}Cs using the 8 π spectrometer at TRIUMF. Combinations of γ-γ, γ-e{sup -}, and e{sup -}-e{sup -} coincidence data were used to further investigate the isomeric decay. Six new transitions were observed and their branching ratios were measured. (orig.)

  13. Proton-neutron interaction at N≅Z. First observation of the Tz = 1 nucleus 4694Pd48 in beam

    International Nuclear Information System (INIS)

    Gorska, M.; Grzywacz, R.; Rejmund, M.; Foltescu, D.; Roth, H.; Skeppstedt, Oe.; Schubart, R.; Grawe, H.; Heese, J.; Maier, K.H.; Spohr, K.; Fossan, D.B.

    1996-01-01

    Neutron deficient nuclei close to N ≅ Z are expected to exhibit a new kind of pairing based on the T=0, I=1, I max configuration, which in the (p 1/2 , g 9/2 )shell model space below 100 Sn is governed by the g 2 9/2 proton (π)-neutron(ν) interaction. The experimental data exhibit strongly bound g 2 9/2 , T=0, I=1 + ,9 + . In the experimentally barely studied far from stability upper πg 9/2 shell due to the hole-hole character of the πν interaction spin gap isomers are expected. For this reason the γ decay of isomers produced in the 58 Ni ion beams interaction with 40 Ca target. The 94 Pd isomer has been found as an example of mentioned above spin gap isomers

  14. Spin flipping a stored polarized proton beam at the IUCF cooler ring

    International Nuclear Information System (INIS)

    Phelps, R.A.

    1995-01-01

    We recently studied the spin flip of a vertically polarized 139 MeV proton beam stored in the IUCF Cooler Ring. We used an rf solenoid to induce a depolarizing resonance in the ring; we flipped the spin by varying the solenoid field's frequency through this resonance. We found a polarization loss after multiple spin flips less than 0.1% per flip; we also found that this loss increased for very slow frequency changes. This spin flip could reduce systematic errors in stored polarization beam experiments by allowing frequent beam polarization reversals during the experiment. copyright 1995 American Institute of Physics

  15. Atlas of Nuclear Isomers

    International Nuclear Information System (INIS)

    Jain, Ashok Kumar; Maheshwari, Bhoomika; Garg, Swati; Patial, Monika; Singh, Balraj

    2015-01-01

    We present an atlas of nuclear isomers containing the experimental data for the isomers with a half-life ≥ 10 ns together with their various properties such as excitation-energy, half-life, decay mode(s), spin-parity, energies and multipolarities of emitted gamma transitions, etc. The ENSDF database complemented by the XUNDL database has been extensively used in extracting the relevant data. Recent literature from primary nuclear physics journals, and the NSR bibliographic database have been searched to ensure that the compiled data Table is as complete and current as possible. The data from NUBASE-12 have also been checked for completeness, but as far as possible original references have been cited. Many interesting systematic features of nuclear isomers emerge, some of them new; these are discussed and presented in various graphs and figures. The cutoff date for the extraction of data from the literature is August 15, 2015

  16. Atlas of Nuclear Isomers

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Ashok Kumar, E-mail: ajainfph@iitr.ac.in [Department of Physics, Indian Institute of Technology, Roorkee-247667 (India); Maheshwari, Bhoomika; Garg, Swati; Patial, Monika [Department of Physics, Indian Institute of Technology, Roorkee-247667 (India); Singh, Balraj [Department of Physics and Astronomy, McMaster University, Hamilton, Ontario-L8S 4M1 (Canada)

    2015-09-15

    We present an atlas of nuclear isomers containing the experimental data for the isomers with a half-life ≥ 10 ns together with their various properties such as excitation-energy, half-life, decay mode(s), spin-parity, energies and multipolarities of emitted gamma transitions, etc. The ENSDF database complemented by the XUNDL database has been extensively used in extracting the relevant data. Recent literature from primary nuclear physics journals, and the NSR bibliographic database have been searched to ensure that the compiled data Table is as complete and current as possible. The data from NUBASE-12 have also been checked for completeness, but as far as possible original references have been cited. Many interesting systematic features of nuclear isomers emerge, some of them new; these are discussed and presented in various graphs and figures. The cutoff date for the extraction of data from the literature is August 15, 2015.

  17. Quadrupole moments of high spin states in the trans lead region

    International Nuclear Information System (INIS)

    Neyens, G.; Hardeman, F.; Nouwen, R.; S'heeren, G.; Van Den Bergh, M.; Cousement, R.

    1990-01-01

    The last few years, a lot of attention has been paid to the trans lead region. A reason for this has to be found in the fact that 208 Pb is a double magic core: both its proton and neutron shell are closed. This means that all nuclei in the lead region can be described well by the shell model, using a spherical 208 Pb core (spherical symmetric potential) and some valence particles or holes around it. The question is whether this model is also correct for high spin states. In this region, isomers with high angular momenta can only be created by alignment of all the spins of the valence particles and holes. And in some cases, alignment is not enough: core excitations are necessary to build up the large spin value of the isomeric state (e.g. the 63/2-isomer in 211 Rn. This means that a neutron pair from the closed N = 126 shell is broken up and one or both neutrons are excited to a level with higher energy and spin. The alignment of the valence-particle-spins causes an increase of the interactions between the valence particles (holes) on one hand, and between the valence particles (holes) and the hard core on the other hand. The latter interaction can cause a deformation of the core. The two interactions are taken into account in two different models: The SERI model (Spherical shell model with Empirical Residual Interactions) and the DIPM (Deformed Independent Particle Model). This paper reports that the effect of alignment of the spins of the valence particles in an isomeric state has been taken into account in the shell model by using residual interactions between the valence particles. These interactions are introduced in the theory in an empirical way or are calculated. Another model, the DIPM, takes into account the effect of alignment in a natural way: it starts from a deformed core (e.g. an axial symmetric potential) in which the valence particles are moving independently from each other)

  18. Spin Hall effect of a light beam in left-handed materials

    International Nuclear Information System (INIS)

    Luo Hailu; Wen Shuangchun; Shu Weixing; Tang Zhixiang; Zou Yanhong; Fan Dianyuan

    2009-01-01

    We establish a general propagation model to describe the spin Hall effect of light beam in left-handed materials (LHMs). A spin-dependent shift of the beam centroid perpendicular to the refractive index gradient for the light beam through an air-LHM interface is demonstrated. For a certain circularly polarized component, whether the transverse shift is positive or negative depends on the magnitude of the refractive index gradient. Very surprisingly, the spin Hall effect in the LHM is unreversed, although the sign of refractive index gradient is reversed. The physics underlying this counterintuitive effect is that the spin angular momentum of photons is unreversed. Further, we reveal that the angular shift in the LHM is reversed due to the negative diffraction. These findings provide alternative evidence for that the linear momentum of photons is reversed, while the spin angular momentum is unreversed in the LHM.

  19. A spin-transport system for a longitudinally polarized epithermal neutron beam

    International Nuclear Information System (INIS)

    Crawford, B.E.; Bowman, J.D.; Penttilae, S.I.; Roberson, N.R.

    2001-01-01

    The TRIPLE (Time Reversal and Parity at Low Energies) collaboration uses a polarized epithermal neutron beam and a capture γ-ray detector to study parity violation in neutron-nucleus reactions. In order to preserve the spin polarization of the neutrons as they travel the 60-m path to the target, the beam pipes are wrapped with wire to produce a solenoidal magnetic field of about 10 G along the beam direction. The flanges and bellows between sections of the beam pipe cause gaps in the windings which in turn produce radial fields that can depolarize the neutron spins. A computer code has been developed that numerically evaluates the effect of these gaps on the polarization. A measurement of the neutron depolarization for neutrons in the actual spin-transport system agrees with a calculation of the neutron depolarization for the TRIPLE system. Features that will aid in designing similar spin-transport systems are discussed

  20. Formation of the high-spin Hf-179m2 isomer in reactor irradiations

    Czech Academy of Sciences Publication Activity Database

    Karamian, S. A.; Carroll, J. J.; Adam, Jindřich; Kulagin, EN.; Shabalin, EP.

    2004-01-01

    Roč. 14, č. 4 (2004), s. 438-441 ISSN 1054-660X R&D Projects: GA MŠk(CZ) ME 134 Keywords : reactor irradiation * high-spin Hf-179m2 Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 0.836, year: 2004

  1. Deep inelastic reactions and isomers in neutron-rich nuclei across the perimeter of the A = 180 - 190 deformed region

    International Nuclear Information System (INIS)

    Dracoulis, G.D.; Lane, G.J.; Byrne, A.P.; Watanabe, H.; Hughes, R.O.; Kondev, F.G.; Carpenter, M.P.; Janssens, R.V.F.; Lauritsen, T.; Lister, C.J.; Seweryniak, D.; Zhu, S.; Chowdhury, P.; Shi, Y.; Xu, F.R.

    2014-01-01

    Recent results on high-spin isomers populated in deep-inelastic reactions in the transitional tungsten-osmium region are outlined with a focus on 190 Os, 192 Os and 194 Os. As well as the characterization of several two-quasineutron isomers, the 12 + and 20 + isomers in 192 Os are interpreted as manifestations of maximal rotation alignment within the neutron i(13/2) and possibly proton h(11/2) shells at oblate deformation. (authors)

  2. Spin transfer matrix formulation and snake resonances for polarized proton beams

    International Nuclear Information System (INIS)

    Tepikian, S.

    1986-01-01

    The polarization of a spin polarized proton beam in a circular accelerator is described by a spin transfer matrix. Using this method, they investigate three problems: (1) the crossing of multiple spin resonances, (2) resonance jumping and (3) an accelerator with Siberian snakes. When crossing two (or more) spin resonances, there are no analytic solutions available. However, they can obtain analytic expressions if the two spin resonances are well separated (nonoverlapping) or very close together (overlapping). Between these two extremes they resort to numerical solution of the spin equations. Resonance jumping can be studied using the tools developed for analyzing the cross of multiple spin resonances. These theoretical results compare favorably with experimental results obtained from the AGS at Brookhaven. For large accelerators, resonance jumping becomes impractical and other methods such as Siberian snakes must be used to keep the beam spin polarized. An accelerator with Siberian snakes and isolated spin resonances can be described with a spin transfer matrix. From this, they find a new type of spin depolarizing resonance, called snake resonances

  3. Measurements of Short-Lived Fission Isomers

    Science.gov (United States)

    Finch, Sean; Bhike, Megha; Howell, Calvin; Krishichayan, Fnu; Tornow, Werner

    2016-09-01

    Fission yields of the short lived isomers 134mTe (T1 / 2 = 162 ns) and 136mXe (T1 / 2 = 2 . 95 μs) were measured for 235U and 238U. The isomers were detected by the γ rays associated with the decay of the isomeric states using high-purity germanium detectors. Fission was induced using both monoenergetic γ rays and neutrons. At TUNL's High-Intensity Gamma-ray Source (HI γS), γ rays of 9 and 11 MeV were produced . Monoenergetic 8 MeV neutrons were produced at TUNL's tandem accelerator laboratory. Both beams were pulsed to allow for precise time-gated spectroscopy of both prompt and delayed γ rays following fission. This technique offers a non-destructive probe of special nuclear materials that is sensitive to the isotopic identity of the fissile material.

  4. Negative optical spin torque wrench of a non-diffracting non-paraxial fractional Bessel vortex beam

    International Nuclear Information System (INIS)

    Mitri, F.G.

    2016-01-01

    An absorptive Rayleigh dielectric sphere in a non-diffracting non-paraxial fractional Bessel vortex beam experiences a spin torque. The axial and transverse radiation spin torque components are evaluated in the dipole approximation using the radiative correction of the electric field. Particular emphasis is given on the polarization as well as changing the topological charge α and the half-cone angle of the beam. When α is zero, the axial spin torque component vanishes. However, when α becomes a real positive number, the vortex beam induces left-handed (negative) axial spin torque as the sphere shifts off-axially from the center of the beam. The results show that a non-diffracting non-paraxial fractional Bessel vortex beam is capable of inducing a spin reversal of an absorptive Rayleigh sphere placed arbitrarily in its path. Potential applications are yet to be explored in particle manipulation, rotation in optical tweezers, optical tractor beams, and the design of optically-engineered metamaterials to name a few areas. - Highlights: • Optical nondiffracting nonparaxial fractional Bessel vortex beam is considered. • Negative spin torque on an absorptive dielectric Rayleigh sphere is predicted numerically. • Negative spin torque occurs as the sphere departs from the center of the beam.

  5. Spin flipping a stored polarized proton beam with an rf magnetic field

    International Nuclear Information System (INIS)

    Hu, S.Q.; Blinov, B.B.; Caussyn, D.D.

    1995-01-01

    The authors studied the spin flipping of a vertically polarized, stored 139 MeV proton beam with an rf solenoid magnetic field. By sweeping the rf frequency through an rf depolarizing resonance, they made the spin flip. The spin flipping was more efficient for slower ramp times, and the spin flip efficiency peaked at some optimum ramp time that is not yet fully understood. Since frequent spin flipping could significantly reduce the systematic errors in scattering experiments using a stored polarized beam, it is very important to minimize the depolarization after each spin flip. In this experiment, with multiple spin flips, the authors found a polarization loss of 0.0000 ± 0.0005 per spin flip under the best conditions; this loss increased significantly for small changes in the conditions

  6. Recent developments in high-spin calculations in atomic nuclei

    International Nuclear Information System (INIS)

    Szymanski, Z.

    1980-01-01

    A brief introduction to the recent achievements in the high-spin domain in nuclear physics is given. Results of the calculations in highly developed rotational bands in deformed nuclei, as well as the calculations in the structure of the yrast isomers are presented. The calculations fail in two aspects: local minima in the yrast line are not confirmed experimentally, the overall slope of the yrast line in 152 Dy is considerably overestimated. The calculations of the yrast line with new Woods-Saxon parameters are now in progress. The parameters are chosen to reproduce the large gap in the levels at proton number Z=64. (M.H.)

  7. High spin structures in 194Hg

    International Nuclear Information System (INIS)

    Fotiades, N.; Vlastou, R.; Serris, M.; Sharpey-Schafer, J.F.; Fallon, P.; Riley, M.A.; Clark, R.M.; Hauschild, K.; Wadsworth, R.

    1996-01-01

    High spin states in the isotope 194 Hg were populated using the 150 Nd( 48 Ca,4n) reaction at a beam energy of 213 MeV. The analysis of γ-γ coincidences has revealed two new structures at excitation energies above 6 MeV and at moderate spin. The two structures are a manifestation of the deviation of nucleus from the collective rotation which dominates its lower excitation behaviour. A comparison with similar structures in the neighbouring Hg isotopes is also attempted. (orig.)

  8. Three- and five-quasiparticle isomers, rotational bands and residual interactions in 175Hf

    International Nuclear Information System (INIS)

    Dracoulis, G.D.; Walker, P.M.

    1980-03-01

    Two 3-quasiparticle isomers with spins, parities and half lives of 19/2 + , 1.1 μ and 23/2 - , 1.2 ns have been identified at 1433 and 1766 keV in 175 Hf. A third isomer possibly 35/2 - with a 1.2 μs half-life is found at 3015 keV. The first two are characterised as a 7/2 + (633) neutron coupled to the known 6 + and 8 - 2-proton isomers of the core nuclei. Rotational bands based on the 3-qp isomers are highly perturbed, due to Coriolis mixing, and their structure is reproduced in a band mixing calculation. The energy depression of the 3-quasiparticle states relative to the 2-quasiproton core states is attributed mainly to the residual proton-neutron interaction, and possibly also to blocking effects through neutron admixtures

  9. POLARIZED BEAMS: 1 - Longitudinal electron spin polarization at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1994-09-15

    Wednesday 4 May marked a turning point in the art of the manipulation of spins in electron storage rings: longitudinal electron spin polarization (with the spins oriented along the electrons' direction of motion) was established in the electron ring of HERA, the electronproton collider at DESY in Hamburg. A polarization level of about 55% was obtained and polarizations of over 60% were reproducibly obtained in the following days. The beam energy was 27.52 GeV, corresponding to half integer spin tune of 62.5.

  10. Spin Filters as High-Performance Spin Polarimeters

    International Nuclear Information System (INIS)

    Rougemaille, N.; Lampel, G.; Peretti, J.; Drouhin, H.-J.; Lassailly, Y.; Filipe, A.; Wirth, T.; Schuhl, A.

    2003-01-01

    A spin-dependent transport experiment in which hot electrons pass through a ferromagnetic metal / semiconductor Schottky diode has been performed. A spin-polarized free-electron beam, emitted in vacuum from a GaAs photocathode, is injected into the thin metal layer with an energy between 5 and 1000 eV above to the Fermi level. The transmitted current collected in the semiconductor substrate increases with injection energy because of secondary - electron multiplication. The spin-dependent part of the transmitted current is first constant up to about 100 eV and then increases by 4 orders of magnitude. As an immediate application, the solid-state hybrid structure studied here leads to a very efficient and compact device for spin polarization detection

  11. Negative optical spin torque wrench of a non-diffracting non-paraxial fractional Bessel vortex beam

    Science.gov (United States)

    Mitri, F. G.

    2016-10-01

    An absorptive Rayleigh dielectric sphere in a non-diffracting non-paraxial fractional Bessel vortex beam experiences a spin torque. The axial and transverse radiation spin torque components are evaluated in the dipole approximation using the radiative correction of the electric field. Particular emphasis is given on the polarization as well as changing the topological charge α and the half-cone angle of the beam. When α is zero, the axial spin torque component vanishes. However, when α becomes a real positive number, the vortex beam induces left-handed (negative) axial spin torque as the sphere shifts off-axially from the center of the beam. The results show that a non-diffracting non-paraxial fractional Bessel vortex beam is capable of inducing a spin reversal of an absorptive Rayleigh sphere placed arbitrarily in its path. Potential applications are yet to be explored in particle manipulation, rotation in optical tweezers, optical tractor beams, and the design of optically-engineered metamaterials to name a few areas.

  12. High-energy polarized proton beams a modern view

    CERN Document Server

    Hoffstaetter, Georg Heinz

    2006-01-01

    This monograph begins with a review of the basic equations of spin motion in particle accelerators. It then reviews how polarized protons can be accelerated to several tens of GeV using as examples the preaccelerators of HERA, a 6.3 km long cyclic accelerator at DESY / Hamburg. Such techniques have already been used at the AGS of BNL / New York, to accelerate polarized protons to 25 GeV. But for acceleration to energies of several hundred GeV as in RHIC, TEVATRON, HERA, LHC, or a VLHC, new problems can occur which can lead to a significantly diminished beam polarization. For these high energies, it is necessary to look in more detail at the spin motion, and for that the invariant spin field has proved to be a useful tool. This is already widely used for the description of high-energy electron beams that become polarized by the emission of spin-flip synchrotron radiation. It is shown that this field gives rise to an adiabatic invariant of spin-orbit motion and that it defines the maximum time average polarizat...

  13. In-Beam Studies of High Spin States in Mercury -182 and MERCURY-184

    Science.gov (United States)

    Bindra, Kanwarjit Singh

    The high spin states in ^{182 }Hg were studied by using the reaction ^{154}Gd(^{32}S, 4n) at the Holifield Heavy Ion Research Facility. In addition, the in-beam gamma-rays in ^{183}Hg were identified for the first time using the reaction ^{155}Gd(^{32}S, 4n) at the Argonne BGO-FMA facility. Five new bands were observed for the first time in ^{182}Hg by studying the gamma-gamma coincidence relationships. The spins and parities of the nuclear levels were assigned on the basis of the measured ratios of directional correlations for oriented nuclei (DCO ratios). Shape co-existence similar to that observed in ^{184{-}186}Hg was established. The well deformed prolate band was extended to a state with tentative spin (20^+). The 2^+ state of the prolate band was identified at an energy of 548.6 keV which is higher in energy than in ^{184}Hg. A two parameter band mixing calculation yielded an interaction strength of 87 keV between the prolate 2^+ and the oblate 2^+ states. Four of the five new bands were found to be similar in behavior to ones seen in ^{184}Hg. An attempt was made to study the behavior of some of these bands at high spins by analyzing their kinematic and dynamic moments of inertia. The gamma-ray transitions in ^{183}Hg were identified from fragment-gamma and gamma-gamma coincidence measurements. A total of five bands of levels were identified and the spins and parities of the levels were assigned by comparing the level scheme of ^{138 }Hg obtained with that of ^ {185}Hg established previously. The interpretation of these bands in terms of associated quasi-particle configurations also relies on noted similarities with the structure of ^{185}Hg. Shape co-existence was established in ^{183}Hg as a result of this study. Two of the bands associated with the (624) 9/2^+ orbital were found to exhibit signature splitting, as expected for i _{13/2} excitations built on the prolate shape with moderate deformation. Two other bands which do not show signature splitting

  14. Search for isomers in nuclei near N = 50

    International Nuclear Information System (INIS)

    Taras, P.; Haas, B.; Merdinger, J.C.; Styczen, J.

    1979-01-01

    Targets of sup (58, 60, 61, 62, 64) Ni, Co, and Cu have been bombarded with 42 MeV 16 O beams. Several isomers were produced but no new isomer was found, in particular in 74 Kr which is expected to be a good candidate for yrast traps in the N = 50 region. (author)

  15. Low and High Temperature Combustion Chemistry of Butanol Isomers in Premixed Flames and Autoignition Systems

    Energy Technology Data Exchange (ETDEWEB)

    Sarathy, S M; Pitz, W J; Westbrook, C K; Mehl, M; Yasunaga, K; Curran, H J; Tsujimura, T; Osswald, P; Kohse-Hoinghaus, K

    2010-12-12

    Butanol is a fuel that has been proposed as a bio-derived alternative to conventional petroleum derived fuels. The structural isomer in traditional 'bio-butanol' fuel is n-butanol, but newer conversion technologies produce iso-butanol as a fuel. In order to better understand the combustion chemistry of bio-butanol, this study presents a comprehensive chemical kinetic model for all the four isomers of butanol (e.g., 1-, 2-, iso- and tert-butanol). The proposed model includes detailed high temperature and low temperature reaction pathways. In this study, the primary experimental validation target for the model is premixed flat low-pressure flame species profiles obtained using molecular beam mass spectrometry (MBMS). The model is also validated against previously published data for premixed flame velocity and n-butanol rapid compression machine and shock tube ignition delay. The agreement with these data sets is reasonably good. The dominant reaction pathways at the various pressures and temperatures studied are elucidated. At low temperature conditions, we found that the reaction of alphahydroxybutyl with O{sub 2} was important in controlling the reactivity of the system, and for correctly predicting C{sub 4} aldehyde profiles in low pressure premixed flames. Enol-keto isomerization reactions assisted by HO{sub 2} were also found to be important in converting enols to aldehydes and ketones in the low pressure premixed flames. In the paper, we describe how the structural features of the four different butanol isomers lead to differences in the combustion properties of each isomer.

  16. High spin spectroscopy of 34Cl

    International Nuclear Information System (INIS)

    Bisoi, Abhijit; Ray, S.; Kshetri, R.; Goswami, A.; Saha Sarkar, M.; Pramanik, D.; Sarkar, S.; Nag, S.; Selva Kumar, K.; Singh, P.; Saha, S.; Sethi, J.; Trivedi, T.; Naidu, B.S.; Donthi, R.; Nanal, V.; Palit, R.

    2011-01-01

    Spectroscopic information for 34 Cl is of interest for understanding the large 33 S abundance observed in nova. This nucleus has been extensively studied using proton, light ions and alpha beams but there are few experiments where heavy ions were used. In the present work, heavy ion beams are used to extract spectroscopic data for high spin states above ∼ 5 MeV, important for astrophysical scenario. Spherical shell model calculations have been done to interpret the experimental data. Several options of truncation adopted have provided useful insight into the sd - fp cross-shell calculations

  17. Transverse spin in the scattering of focused radially and azimuthally polarized vector beams

    Science.gov (United States)

    Singh, Ankit Kumar; Saha, Sudipta; Gupta, Subhasish Dutta; Ghosh, Nirmalya

    2018-04-01

    We study the effect of focusing of the radially and azimuthally polarized vector beams on the spin angular momentum (SAM) density and Poynting vector of scattered waves from a Mie particle. Remarkably, the study reveals that the SAM density of the scattered field is solely transverse in nature for radially and azimuthally polarized incident vector beams; however, the Poynting vector shows the usual longitudinal character. We also demonstrate that the transverse SAM density can further be tuned with wavelength and focusing of the incident beam by exploiting the interference of different scattering modes. These results may stimulate further experimental techniques to detect the transverse spin and Belinfante's spin-momentum densities.

  18. A Spin-Light Polarimeter for Multi-GeV Longitudinally Polarized Electron Beams

    Energy Technology Data Exchange (ETDEWEB)

    Mohanmurthy, Prajwal [Mississippi State University, Starkville, MS (United States); Dutta, Dipangkar [Mississippi State University, Starkville, MS (United States) and Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)

    2014-02-01

    The physics program at the upgraded Jefferson Lab (JLab) and the physics program envisioned for the proposed electron-ion collider (EIC) include large efforts to search for interactions beyond the Standard Model (SM) using parity violation in electroweak interactions. These experiments require precision electron polarimetry with an uncertainty of < 0.5 %. The spin dependent Synchrotron radiation, called "spin-light," can be used to monitor the electron beam polarization. In this article we develop a conceptual design for a "spin-light" polarimeter that can be used at a high intensity, multi-GeV electron accelerator. We have also built a Geant4 based simulation for a prototype device and report some of the results from these simulations.

  19. Determination of the spin polarization of a 4He+ ion beam

    International Nuclear Information System (INIS)

    Suzuki, T.; Yamauchi, Y.

    2008-01-01

    It was demonstrated that the spin polarization of a 4 He + ion beam (P He + ) can be determined from the spin dependence of the electron emission in the deexcitation process of spin-polarized He metastable atoms (He*, 2 3 S 1 ) and spin-polarized He + ions on Fe (100) surfaces. On Fe (100) surfaces, both He* and He + deexcite via Auger neutralization, and therefore, the spin asymmetry obtained from spin-polarized He + ion neutralization spectroscopy should be equal to that from spin-polarized metastable He* deexcitation spectroscopy. The spin polarization of He* was obtained from Stern-Gerlach measurements. P He + was finally determined to be 0.19±0.02

  20. High-spin states in 82Sr

    International Nuclear Information System (INIS)

    Baktash, C.; Halper, M.L.; Garcia Bermudez, G.J.

    1989-01-01

    As recent theoretical calculations that predicted the onset of superdeformation in the A ≅ 80 region, the 52 Cr( 34 S,2p2n) reaction at 130 MeV beam energy was employed to populate the high-spin states in 82 Sr. The detection system consisted of the ORNL Compton-Suppression Spectrometer System (18 Ge detectors), the Spin Spectrometer, and the 4 φ CsI Dwarf Ball of Washington University. Off-line analysis of the proton-gated data resulted in nearly 170 million Ge-Ge pairs, which were mostly due to the 2p2n channel. A decay scheme extending to spin I=27h has been established. No strong evidence for the presence of superdeformed states in 82 Sr was found in a preliminary analysis of the data. (Author) [es

  1. High spin states in 63Cu. 17/2+ isomeric yrast state

    International Nuclear Information System (INIS)

    Tsan Ung Chan; Bruandet, J.F.; Dauchy, A.; Giorni, A.; Glasser, F.; Morand, C.; Chambon, B.; Drain, D.

    1979-01-01

    The 63 Cu nucleus has been studied via the reaction 61 Ni(α, pnγ), using different in beam γ spectroscopy techniques. An isomeric high-spin Yrast state 17/2 + (tau = 6.1 +- 0.6ns) is located at 4498 keV. The gsub(9/2) shell must be involved to explain positive high-spin states established in this work [fr

  2. Four-quasiparticle isomers and K-forbidden transitions in 176Lu

    International Nuclear Information System (INIS)

    McGoram, T.R.; Dracoulis, G.D.; Kibedi, T.; Mullins, M.; Byrne, A.P.; Baxter, A.M.

    2000-01-01

    Full text: The odd-odd nucleus 176 Lu has been the subject of extensive experimental and theoretical investigation over the last forty years. Much of this interest has stemmed from the role of 176 Lu in the s-process in nucleosynthesis. From a nuclear structure perspective, 176 Lu resides in a region of the nuclear chart where collective rotation and high-K, multi-quasiparticle states compete to form the yrast line (the locus of state with the lowest energy at a given angular momentum). The electromagnetic decay of intermediate and high-K states is often hindered due to the K-selection rule, while apparent violations of this selection rule have been ascribed to Coriolis mixing, shape changes in the gamma-degree of freedom, and so-called 'statistical' mixing. The relative importance of these mechanisms remains an open question. We present here the results of gamma-ray and conversion-electron spectroscopic measurements, performed at the Heavy Ion Facility at the Australian National University in Canberra, using the reaction 176 Yb( 7 Li, α3n) at a beam energy of 45 MeV. Two new four-quasiparticle isomers have been established, with mean lives of 400(100)ns and 58(5)μs, and spin projections and parities of 12 + and (14 + ) respectively. The shorter--lived isomer displays both normal and anomalous K-forbidden decays, which we show is the result of two-state mixing between the isomeric state and a member of a two-quasiparticle rotational band. The implied mixing matrix element of only 5 eV shows explicitly that very small mixing matrix elements may be responsible for anomalous K-hindered decays

  3. Spin Flipping and Polarization Lifetimes of a 270 MeV Deuteron Beam

    International Nuclear Information System (INIS)

    Morozov, V.S.; Crawford, M.Q.; Etienne, Z.B.; Kandes, M.C.; Krisch, A.D.; Leonova, M.A.; Sivers, D.W.; Wong, V.K.; Yonehara, K.; Anferov, V.A.; Meyer, H.O.; Schwandt, P.; Stephenson, E.J.; Przewoski, B. von

    2003-01-01

    We recently studied the spin flipping of a 270 MeV vertically polarized deuteron beam stored in the IUCF Cooler Ring. We swept an rf solenoid's frequency through an rf-induced spin resonance and observed the effect on the beam's vector and tensor polarizations. After optimizing the resonance crossing rate and setting the solenoid's voltage to its maximum value, we obtained a spin-flip efficiency of about 94 ± 1% for the vector polarization; we also observed a partial spin-flip of the tensor polarization. We then used the rf-induced resonance to measure the vector and tensor polarizations' lifetimes at different distances from the resonance; the polarization lifetime ratio τvector/τtensor was about 1.9 ± 0.4

  4. Isomer separation of $^{70g}Cu$ and $^{70m}Cu$ with a resonance ionization laser ion source

    CERN Document Server

    Köster, U; Mishin, V I; Weissman, L; Huyse, M; Kruglov, K; Müller, W F; Van Duppen, P; Van Roosbroeck, J; Thirolf, P G; Thomas, H C; Weisshaar, D W; Schulze, W; Borcea, R; La Commara, M; Schatz, H; Schmidt, K; Röttger, S; Huber, G; Sebastian, V; Kratz, K L; Catherall, R; Georg, U; Lettry, Jacques; Oinonen, M; Ravn, H L; Simon, H

    2000-01-01

    Radioactive copper isotopes were ionized with the resonance ionization laser ion source at the on-line isotope separator ISOLDE (CERN). Using the different hyperfine structure in the 3d/sup 10/ 4s /sup 2/S/sub 1/2/-3d/sup 10/ 4p /sup 2/P/sub 1/2//sup 0/ transition the low- and high-spin isomers of /sup 70/Cu were selectively enhanced by tuning the laser wavelength. The light was provided by a narrow-bandwidth dye laser pumped by copper vapor lasers and frequency doubled in a BBO crystal. The ground state to isomeric state intensity ratio could be varied by a factor of 30, allowing to assign gamma transitions unambiguously to the decay of the individual isomers. It is shown that the method can also be used to determine magnetic moments. In a first experiment for the 1/sup +/ ground state of /sup 70/Cu a magnetic moment of (+)1.8(3) mu /sub N/ and for the high-spin isomer of /sup 70/Cu a magnetic moment of (+or-)1.2(3) mu /sub N/ could be deduced. (20 refs).

  5. Bounds on the maximum attainable equilibrium spin polarization of protons at high energy in HERA

    International Nuclear Information System (INIS)

    Vogt, M.

    2000-12-01

    For some years HERA has been supplying longitudinally spin polarised electron and positron (e ± ) beams to the HERMES experiment and in the future longitudinal polarisation will be supplied to the II1 and ZEUS experiments. As a result there has been a development of interest in complementing the polarised e ± beams with polarised protons. In contrast to the case of e ± where spin flip due to synchrotron radiation in the main bending dipoles leads to self polarisation owing to an up-down asymmetry in the spin flip rates (Sokolov-Ternov effect), there is no convincing self polarisation mechanism for protons at high energy. Therefore protons must be polarised almost at rest in a source and then accelerated to the working energy. At HERA, if no special measures are adopted, this means that the spins must cross several thousand ''spin-orbit resonances''. Resonance crossing can lead to loss of polarisation and at high energy such effects are potentially strong since spin precession is very pronounced in the very large magnetic fields needed to contain the proton beam in HERA-p. Moreover simple models which have been successfully used to describe spin motion at low and medium energies are no longer adequate. Instead, careful numerical spin-orbit tracking simulations are needed and a new, mathematically rigorous look at the theoretical concepts is required. This thesis describes the underlying theoretical concepts, the computational tools (SPRINT) and the results of such a study. In particular strong emphasis is put on the concept of the invariant spin field and its non-perturbative construction. The invariant spin field is then used to define the amplitude dependent spin tune and to obtain numerical non-perturbative estimates of the latter. By means of these two key concepts the nature of higher order resonances in the presence of snakes is clarified and their impact on the beam polarisation is analysed. We then go on to discuss the special aspects of the HERA-p ring

  6. High energy polarized electron beams

    International Nuclear Information System (INIS)

    Rossmanith, R.

    1987-01-01

    In nearly all high energy electron storage rings the effect of beam polarization by synchrotron radiation has been measured. The buildup time for polarization in storage rings is of the order of 10 6 to 10 7 revolutions; the spins must remain aligned over this time in order to avoid depolarization. Even extremely small spin deviations per revolution can add up and cause depolarization. The injection and the acceleration of polarized electrons in linacs is much easier. Although some improvements are still necessary, reliable polarized electron sources with sufficiently high intensity and polarization are available. With the linac-type machines SLC at Stanford and CEBAF in Virginia, experiments with polarized electrons will be possible

  7. Application of in-beam perturbed angular distribution to the study of high-Tc oxides

    International Nuclear Information System (INIS)

    Komori, Fumio; Katsumoto, Shingo; Kobayashi, Shun-ichi; Ikehata, Seiichiro; Ikeda, Nobuo; Hashimoto, Osamu; Fukuda, Tomokazu; Nomura, Toru; Yamazaki, Toshimitsu.

    1990-04-01

    The time differential perturbed angular distribution method was applied to the study of high-T c oxides. Spin rotation signals of the 19 F isomer (τ = 128 nsec) produced from oxygen nuclei via 16 O(α,p) 19 F were observed in various high-T c oxides above T c . The internal field was determined with the accuracy of about 1%. This method is an alternative to the 17 O substituted NMR. (author)

  8. High spin structure functions

    International Nuclear Information System (INIS)

    Khan, H.

    1990-01-01

    This thesis explores deep inelastic scattering of a lepton beam from a polarized nuclear target with spin J=1. After reviewing the formation for spin-1/2, the structure functions for a spin-1 target are defined in terms of the helicity amplitudes for forward compton scattering. A version of the convolution model, which incorporates relativistic and binding energy corrections is used to calculate the structure functions of a neutron target. A simple parameterization of these structure functions is given in terms of a few neutron wave function parameters and the free nucleon structure functions. This allows for an easy comparison of structure functions calculated using different neutron models. (author)

  9. Observation of high-spin states in the N=84 nucleus 152Er and comparison with shell-model calculations

    International Nuclear Information System (INIS)

    Kuhnert, A.; Alber, D.; Grawe, H.; Kluge, H.; Maier, K.H.; Reviol, W.; Sun, X.; Beck, E.M.; Byrne, A.P.; Huebel, H.; Bacelar, J.C.; Deleplanque, M.A.; Diamond, R.M.; Stephens, F.S.

    1992-01-01

    High-spin states in 152 Er have been populated through the 116 Sn( 40 Ar,4n) 152 Er reaction. Prompt and delayed γ-γ-γ-t and γ-e-t coincidences have been measured. Levels and transitions are assigned up to an excitation energy of 15 MeV and spin and parities up to 28 + at 9.7 MeV. A new isomer [t 1/2 =11(1) ns] has been observed at 13.4 MeV. The results are discussed in comparison with neighboring nuclei and with shell-model calculations

  10. Level Structure of 103Ag at high spins

    OpenAIRE

    Ray, S.; Pattabiraman, N. S.; Krishichayan; Chakraborty, A.; Mukhopadhyay, S.; Ghugre, S. S.; Chintalapudi, S. N.; Sinha, A. K.; Garg, U.; Zhu, S.; Kharraja, B.; Almehed, D.

    2007-01-01

    High spin states in $^{103}$Ag were investigated with the Gammasphere array, using the $^{72}$Ge($^{35}$Cl,$2p2n$)$^{103}$Ag reaction at an incident beam energy of 135 MeV. A $\\Delta J$=1 sequence with predominantly magnetic transitions and two nearly-degenerate $\\Delta J=1$ doublet bands have been observed. The dipole band shows a decreasing trend in the $B(M1)$ strength as function of spin, a well established feature of magnetic bands. The nearly-degenerate band structures satisfy the three...

  11. Two-hole structure outside 78Ni: Existence of a μ s isomer of 76Co and β decay into 76Ni

    Science.gov (United States)

    Söderström, P.-A.; Nishimura, S.; Xu, Z. Y.; Sieja, K.; Werner, V.; Doornenbal, P.; Lorusso, G.; Browne, F.; Gey, G.; Jung, H. S.; Sumikama, T.; Taprogge, J.; Vajta, Zs.; Watanabe, H.; Wu, J.; Baba, H.; Dombradi, Zs.; Franchoo, S.; Isobe, T.; John, P. R.; Kim, Y.-K.; Kojouharov, I.; Kurz, N.; Kwon, Y. K.; Li, Z.; Matea, I.; Matsui, K.; Martínez-Pinedo, G.; Mengoni, D.; Morfouace, P.; Napoli, D. R.; Niikura, M.; Nishibata, H.; Odahara, A.; Ogawa, K.; Pietralla, N.; Şahin, E.; Sakurai, H.; Schaffner, H.; Sohler, D.; Stefan, I. G.; Suzuki, D.; Taniuchi, R.; Yagi, A.; Yoshinaga, K.

    2015-11-01

    In the EURICA campaign aimed at exploration of the 78Ni region, an isomeric state of 76Co has been observed via γ -ray spectroscopy. The nuclei were produced by in-flight fission of a 238U beam at the Radioactive Isotope-Beam Factory. Two coincident γ rays of 192.02 (30 ) and 446.4 (7 ) keV from the decay of a t1 /2=2.96 (2529) μ s isomeric state of 76Co have been observed. The decay of the isomer was assigned to an E 1 transition with a reduced transition probability of B (E 1 ;3+→2-) =1.79 (16 ) ×10-8 W.u. A β -decaying state with spin-parity 1- and a half-life of 16 (4 ) ms was also observed in the data, and the known state with a half-life of 22 (57) ms was assigned to have a spin-parity of 8-. Furthermore, the isomer of 76Ni has been remeasured to 547.8 (33 ) ns giving a B (E 2 ;8+→6+) value of 0.786 (5 ) W.u. A new excited state at 2994.6 (5 ) keV, decaying via a γ ray of 2004.5(4) keV, has also been observed. This is in agreement with either of the predicted 02+ or 22+ states. These results are discussed in terms of the shell model and the interaction of the ν p1 /2 and π f7 /2 orbitals.

  12. High-spin states in 60Cu

    International Nuclear Information System (INIS)

    Tsan, U.C.; Agard, M.; Bruandet, J.F.; Dauchy, A.; Giorni, A.; Glasser, F.; Morand, C.; Chambon, B.; Drain, D.

    1981-04-01

    The 60 Cu nucleus has been studied via the 58 Ni(α, pnγ) reaction using different in-beam γ spectroscopy techniques. As for the other odd-odd Cu, the gsub(9/2) shell plays an important role for the explanation of observed high-spin states. Some of them (in particular 6 - and 9 + states) could be interpreted as two-nucleon states in the framework of a crude shell model

  13. On the structure and spin states of Fe(III)-EDDHA complexes.

    Science.gov (United States)

    Gómez-Gallego, Mar; Fernández, Israel; Pellico, Daniel; Gutiérrez, Angel; Sierra, Miguel A; Lucena, Juan J

    2006-07-10

    DFT methods are suitable for predicting both the geometries and spin states of EDDHA-Fe(III) complexes. Thus, extensive DFT computational studies have shown that the racemic-Fe(III) EDDHA complex is more stable than the meso isomer, regardless of the spin state of the central iron atom. A comparison of the energy values obtained for the complexes under study has also shown that high-spin (S = 5/2) complexes are more stable than low-spin (S = 1/2) ones. These computational results matched the experimental results of the magnetic susceptibility values of both isomers. In both cases, their behavior has been fitted as being due to isolated high-spin Fe(III) in a distorted octahedral environment. The study of the correlation diagram also confirms the high-spin iron in complex 2b. The geometry optimization of these complexes performed with the standard 3-21G* basis set for hydrogen, carbon, oxygen, and nitrogen and the Hay-Wadt small-core effective core potential (ECP) including a double-xi valence basis set for iron, followed by single-point energy refinement with the 6-31G* basis set, is suitable for predicting both the geometries and the spin-states of EDDHA-Fe(III) complexes. The presence of a high-spin iron in Fe(III)-EDDHA complexes could be the key to understanding their lack of reactivity in electron-transfer processes, either chemically or electrochemically induced, and their resistance to photodegradation.

  14. Theoretical studies on nuclear spin selective quantum dynamics of non-linear molecules; Theoretische Untersuchung zur Quantendynamik der Kernspinisomere nicht-linearer Molekuele

    Energy Technology Data Exchange (ETDEWEB)

    Grohmann, Thomas

    2012-05-31

    In this thesis the wave packet dynamics of nuclear spin isomers of polyatomic molecules after interaction with static and time-dependent magnetic fields and moderate intense nonresonant laser pulses is investigated. In particular, the process of inducing (internal) molecular rotation as well as alignment of molecules by manipulating their rotational or rotational-torsional degrees of freedom is studied. In the first part of the thesis all theoretical concepts for identifying nuclear spin isomers and for describing their quantum dynamics will be discussed. Especially the symmetrization postulate and themolecular symmetry group will be introduced and illustrated for some examples of molecules. These concepts will be extended to the case of identifying nuclear spin isomers in the presence of an external field. In the second part it is shown for nitromethane that magnetic fields are able to induce unidirectional rotations in opposite directions for different nuclear spin isomers of molecules containing methyl groups if the dipolar interaction is included. Additionally, it is demonstrated that different nuclear spin isomers of a chemical compound may show different alignment after the interaction with a moderate intense laser pulse. As shown for the rigid symmetric top propadien and the rigid asymmetric tops ethene and analogues, distinct pairs of nuclear spin isomers show at certain points in time a complementary behavior: while one isomer is showing alignment the partner isomer is showing anti-alignment. Moreover, it is illustrated that not every nuclear spin isomer can be aligned equally efficient. The alignment of non-rigid molecules is considered as well. As an example for a molecule with feasible torsion in the electronic ground state, the alignment of diboron tetrafluoride is investigated. It becomes apparent that not only rotational but also the torsional dynamics of the molecules is nuclear spin selective; different nuclear spin isomers have at distinct points

  15. Beam spin asymmetry in deep and exclusive pi0 electroproduction

    International Nuclear Information System (INIS)

    R. De Masi

    2007-01-01

    The beam spin asymmetry (BSA) in the exclusive reaction ep->ep pi0 was measured with the CEBAF 5.77 GeV polarized electron beam and Large Acceptance Spectrometer(CLAS). The xB, Q2, t and phi dependences of the pi0 BSA are presented in the deep inelastic regime. The asymmetries are fitted with a sin(phi) function and their amplitudes are extracted. Overall, they are of the order of 0.04 - 0.11 and roughly independent of t. This is the signature of a non-zero longitudinal-transverse interference. The implications concerning the applicability of a formalism based on generalized parton distributions, as well as the extension of a Regge formalism at high photon virtualities, are discussed

  16. Construction of the spin-polarized slow positron beam with the RI source

    Energy Technology Data Exchange (ETDEWEB)

    Nakajyo, Terunobu; Tashiro, Mutsumi; Kanazawa, Ikuzo [Tokyo Gakugei Univ., Koganei (Japan); Komori, Fumio; Murata, Yoshimasa; Ito, Yasuo

    1997-03-01

    The electrostatic slow-positron beam is constructed by using {sup 22}Na source. We design the electrostatic lens, the system of the detector, and the Wien filter for the experiment`s system of the spin-polarized slow positron beam. The reemitted spin-polarized slow-positron spectroscopy is proposed for studying magnetic thin films and magnetic multilayers. We calculated the depolarized positron fractions in the Fe thin film Fe(10nm)/Cu(substrate) and the multilayers Cu(1nm)/Fe(10nm)/Cu(substrate). (author)

  17. Polarization measurement of atomic hydrogen beam spin-exchanged with optically oriented sodium atoms

    International Nuclear Information System (INIS)

    Ueno, Akira; Ogura, Kouichi; Wakuta, Yoshihisa; Kumabe, Isao

    1988-01-01

    The spin-exchange reaction between hydrogen atoms and optically oriented sodium atoms was used to produce a polarized atomic hydrogen beam. The electron-spin polarization of the atomic hydrogen beam, which underwent the spin-exchange reaction with the optically oriented sodium atoms, was measured. A beam polarization of -(8.0±0.6)% was obtained when the thickness and polarization of the sodium target were (5.78±0.23)x10 13 atoms/cm 2 and -(39.6±1.6)%, respectively. The value of the spin-exchange cross section in the forward scattering direction, whose scattering angle in the laboratory system was less than 1.0 0 , was obtained from the experimental results as Δσ ex =(3.39±0.34)x10 -15 cm 2 . This value is almost seven times larger than the theoretical value calculated from the Na-H potential. The potential was computed quantum mechanically in the space of the appropriate wave functions of the hydrogen and the sodium atoms. (orig./HSI)

  18. Spinning Earth and its Coriolis effect on the circuital light beams ...

    Indian Academy of Sciences (India)

    2016-10-06

    Oct 6, 2016 ... spinning motion between ether and Earth at and near its surface and has reached the well-known formula of. Sagnac effect for the circuital opposing light beams on the surface of the spinning Earth as given above. But unfortunately, the same formula arises in the case of electromagnetic fields (originating ...

  19. MODELING AND ANALYSIS OF COUPLED FLEXURAL-TORSIONAL SPINNING BEAMS WITH UNSYMMETRICAL CROSS SECTIONS

    OpenAIRE

    Wang, Jie; Li, Dongxu; Jiang, Jianping

    2017-01-01

    The structural modeling and dynamic properties of a spinning beam with an unsymmetrical cross section are studied. Due to the eccentricity and spinning, transverse deflections along the two principal directions and the torsional motion about the longitudinal axis are coupled. The structural model of the beam is established based on the Hamilton principle and by incorporating the torsional inertia. Moreover, because of its significant influence on characteristics for the non-circular cross-sec...

  20. Study of superdeformation at zero spin with Skyrme-Hartree-Fock method

    Energy Technology Data Exchange (ETDEWEB)

    Takahara, S; Tajima, N; Onishi, N [Tokyo Univ. (Japan)

    1998-03-01

    Superdeformed (SD) bands have been studied extensively both experimentally and theoretically in the last decade. Since the first observation in {sup 152}Dy in 1986, SD bands have been found in four mass regions, i.e., A {approx} 80, 130, 150 and 190. While these SD bands have been observed only at high spins so far, they may also be present at zero spin like fission isomers in actinide nuclei: The familiar generic argument on the strong shell effect at axis ratio 2:1 does not assume rotations. If non-fissile SD isomers exist at zero spin, they may be utilized to develop new experimental methods to study exotic states, in a similar manner as short-lived high-spin isomers are planned to be utilized as projectiles of fusion reactions in order to populate very high-spin near-yrast states. They will also be useful to test theoretical models whether the models can describe correctly the large deformations of rare-earth nuclei without further complications due to rotations. In this report, we employ the Skyrme-Hartree-Fock method to study the SD states at zero spin. First, we compare various Skyrme force parameter sets to test whether they can reproduce the extrapolated excitation energy of the SD band head of {sup 194}Hg. Second, we systematically search large-deformation solutions with the SkM{sup *} force. The feature of our calculations is that the single-particle wavefunctions are expressed in a three-dimensional-Cartesian-mesh representation. This representation enables one to obtain solutions of various shapes (including SD) without preparing a basis specific to each shape. Solving the mean-field equations in this representation requires, however, a large amount of computation which can be accomplished only with present supercomputers. (author)

  1. SLAC workshop on high energy electroproduction and spin physics

    International Nuclear Information System (INIS)

    1992-01-01

    These Proceedings contain copies of the transparencies presented at the Workshop on High Energy Electroproduction and Spin Physics held at SLAC on February 5--8, 1992. The purpose of this Workshop was to bring people together to discuss the possibilities for new experiments using the SLAC high intensity electron and photon beams and the facilities of End Station A

  2. Structure of high-spin states in A {approx} 60 region

    Energy Technology Data Exchange (ETDEWEB)

    Nakada, Hitoshi [Chiba Univ. (Japan); Furutaka, K; Hatsukawa, Y [and others

    1998-03-01

    High-spin states in the proton-rich Cu-Zn nuclei are investigated by the experiments at JAERI. New levels and {gamma}-rays are identified by the particle-{gamma}-{gamma} coincidence, and J{sup P} assignments are made via the DCO ratio analysis. Yrast sequences are observed up to J {approx} 18 for {sup 62}Zn, and {sup 64}Zn, J {approx} 27/2 for {sup 61}Cu and J {approx} 23/2 for {sup 63}Cu. Though we cannot settle new J{sup P} values for {sup 61,63}Zn, their yrast sequence is also extended. In {sup 64}Zn, a doublet of {gamma}-rays is discovered at 1315 keV, clarifying the similarity in the level scheme between {sup 62}Zn and {sup 64}Zn. We reproduce the yrast levels by a shell-model calculation, by which structure of the high-spin states is further studied. A parity change in the yrast sequence is established, in which the unique-parity orbit 0g{sub 9/2} plays an essential role; one nucleon excitation to g{sub 9/2} gains high angular momentum with low seniority, at the cost of the single-parity energy. Second parity-change is also suggested by the calculation. Such parity change seems characteristic to spherical or nearly spherical nuclei. In {sup 61}Cu, concentration of the {gamma}-ray intensity is observed. This happens because a stretched 3-quasiparticle configuration including 0g{sub 9/2} is relatively stable, similarly to some isomers. Thus, by studying the structure of the high-spin states of the A {approx} 60 nuclei, we have clarified the role of unique-parity orbit in high-spin states, which may be generic to spherical and nearly spherical nuclei. (J.P.N.)

  3. Summary of the 8th international symposium on high energy spin physics

    International Nuclear Information System (INIS)

    Bunce, G.

    1988-01-01

    The series of conferences on high energy spin physics dates back to Argonne, 1974, and the first use of the polarized proton beam at the ZGS. This conference is unique in that it is concerned both with the technology of spin and with particle physics: particle physicists need to know what experiments might be possible and target/beam/source physicists want to know what their work will lead to, and get new ideas. In many cases, and I believe that this is central to the success of spin physics and of this conference series, these are the same people. This summary will have three basic parts: where we are now relative to Argonne in 1974; a discussion of new experiments and theory---there were many new and intriguing results presented here; and new ideas for polarized sources, beams, and targets which point toward an exciting future program of particle physics. 13 refs., 2 figs., 4 tabs

  4. Experimental investigation shell model excitations of 89Zr up to high spin and its comparison with 88,90Zr

    International Nuclear Information System (INIS)

    Saha, S.; Palit, R.; Sethi, J.

    2012-01-01

    The excited states of nuclei near N=50 closed shell provide suitable laboratory for testing the interactions of shell model states, possible presence of high spin isomers and help in understanding the shape transition as the higher orbitals are occupied. In particular, the structure of N = 49 isotones (and Z =32 to 46) with one hole in N=50 shell gap have been investigated using different reactions. Interestingly, the high spin states in these isotones have contribution from particle excitations across the respective proton and neutron shell gaps and provide suitable testing ground for the prediction of shell model interactions describing theses excitations across the shell gap. In the literature, extensive study of the high spin states of heavier N = 49 isotones starting with 91 Mo up to 95 Pd are available. Limited information existed on the high spin states of lighter isotones. Therefore, the motivation of the present work is to extend the high spin structure of 89 Zr and to characterize the structure of these levels through comparison with the large scale shell model calculations based on two new residual interactions in f 5/2 pg 9/2 model space

  5. Testing proton spin models with polarized beams

    International Nuclear Information System (INIS)

    Ramsey, G.P.

    1991-01-01

    We review models for spin-weighted parton distributions in a proton. Sum rules involving the nonsinglet components of the structure function xg 1 p help narrow the range of parameters in these models. The contribution of the γ 5 anomaly term depends on the size of the integrated polarized gluon distribution and experimental predictions depend on its size. We have proposed three models for the polarized gluon distributions, whose range is considerable. These model distributions give an overall range is considerable. These model distributions give an overall range of parameters that can be tested with polarized beam experiments. These are discussed with regard to specific predictions for polarized beam experiments at energies typical of UNK

  6. High-spin yrast isomers in 211Rn and 212Rn with enhanced E3 decays

    International Nuclear Information System (INIS)

    Dracoulis, G.D.; Byrne, A.P.; Fabricius, B.

    1990-01-01

    New isomeric states with J π =69/2 + ,τ m = 13 (1) ns in 211 Rn and J π =33 - ,τ m = 7(1) ns in 212 Rn have been identified. They decay by enchanced E3 transitions with strengths of 33(3) and 43(6) single particle units to the known 63/2 - and 30 + isomers 211 Rn and 212 Rn, respectively. The excitation energies and transition strengths agree well with predictions of the multi-particle, octupole-vibration coupled model. 13 refs., 2 tabs., 3 figs

  7. Level structure of 68149Er81 and high-spin isomerism in proton-rich N=81, 82, 83 nuclei

    International Nuclear Information System (INIS)

    Broda, R.; Daly, P.J.; McNeill, J.; Janssens, R.V.F.; Radford, D.C.

    1987-01-01

    The level structure of the N=81 nucleus 149 Er has been studied by γ-ray spectroscopy following the reaction 92 Mo+255 MeV 60 Ni. Yrast levels in 149 Er are established up to ≅ 3.3 MeV, including 0.61 and 4.8 μs isometric states. Most of the observed levels are interpreted as seniority-three states arising from the coupling of s 1/2 , d 3/2 and h 11/2 neutron holes with πh n 11/2 . Isomers identified in the reaction 96 Ru+255 MeV 58 Ni are tentatively assigned to 151 Yb. The B(E2) values of high-spin isomers in Z=66-70, N=81-83 nuclei are surveyed. (orig.)

  8. A Monte-Carlo simulation of the equilibrium beam polarization in ultra-high energy electron (positron) storage rings

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Zhe, E-mail: zhe.duan@ihep.ac.cn [Key Laboratory of Particle Acceleration Physics and Technology, Institute of High Energy Physics, Chinese Academy of Sciences, 100049 Beijing (China); University of Chinese Academy of Sciences, 100049 Beijing (China); Bai, Mei [Forschungszentrum Jülich GmbH, 52428 Jülich (Germany); Barber, Desmond P. [Deutsches Elektronen-Synchrotron, DESY, 22607 Hamburg (Germany); Qin, Qing [Key Laboratory of Particle Acceleration Physics and Technology, Institute of High Energy Physics, Chinese Academy of Sciences, 100049 Beijing (China)

    2015-09-01

    With the recently emerging global interest in building a next generation of circular electron–positron colliders to study the properties of the Higgs boson, and other important topics in particle physics at ultra-high beam energies, it is also important to pursue the possibility of implementing polarized beams at this energy scale. It is therefore necessary to set up simulation tools to evaluate the beam polarization at these ultra-high beam energies. In this paper, a Monte-Carlo simulation of the equilibrium beam polarization based on the Polymorphic Tracking Code (PTC) (Schmidt et al., 2002 [1]) is described. The simulations are for a model storage ring with parameters similar to those of proposed circular colliders in this energy range, and they are compared with the suggestion (Derbenev et al., 1979 [2]) that there are different regimes for the spin dynamics underlying the polarization of a beam in the presence of synchrotron radiation at ultra-high beam energies. In particular, it has been suggested that the so-called “correlated” crossing of spin resonances during synchrotron oscillations at current energies evolves into “uncorrelated” crossing of spin resonances at ultra-high energies.

  9. A Monte-Carlo simulation of the equilibrium beam polarization in ultra-high energy electron (positron) storage rings

    International Nuclear Information System (INIS)

    Duan, Zhe; Bai, Mei; Barber, Desmond P.; Qin, Qing

    2015-04-01

    With the recently emerging global interest in building a next generation of circular electron-positron colliders to study the properties of the Higgs boson, and other important topics in particle physics at ultra-high beam energies, it is also important to pursue the possibility of implementing polarized beams at this energy scale. It is therefore necessary to set up simulation tools to evaluate the beam polarization at these ultra-high beam energies. In this paper, a Monte-Carlo simulation of the equilibrium beam polarization based on the Polymorphic Tracking Code(PTC) (Schmidt et al., 2002) is described. The simulations are for a model storage ring with parameters similar to those of proposed circular colliders in this energy range, and they are compared with the suggestion (Derbenev et al., 1978) that there are different regimes for the spin dynamics underlying the polarization of a beam in the presence of synchrotron radiation at ultra-high beam energies. In particular, it has been suggested that the so-called ''correlated'' crossing of spin resonances during synchrotron oscillations at current energies, evolves into ''uncorrelated'' crossing of spin resonances at ultra-high energies.

  10. pp spin correlations at high p/sub T/

    International Nuclear Information System (INIS)

    Auer, I.P.; Colton, E.; Ditzler, W.R.

    1980-01-01

    New data are presented for measurements of the spin correlation in pp reactions with longitudinally polarized beam and target. Data were obtained at 11.75 GeV/c for both elastic scattering and for π + - and π - -production at high p/sub T/ in pp reactions at 11.75 GeV/c. A comparison is made with recent predictions of quark-parton models

  11. Overview of spin physics

    International Nuclear Information System (INIS)

    Yokosawa, A.

    1992-01-01

    Spin physics activities at medium and high energies became significantly active when polarized targets and polarized beams became accessible for hadron-hadron scattering experiments. My overview of spin physics will be inclined to the study of strong interaction using facilities at Argonne ZGS, Brookhaven AGS (including RHIC), CERN, Fermilab, LAMPF, an SATURNE. In 1960 accelerator physicists had already been convinced that the ZGS could be unique in accelerating a polarized beam; polarized beams were being accelerated through linear accelerators elsewhere at that time. However, there was much concern about going ahead with the construction of a polarized beam because (i) the source intensity was not high enough to accelerate in the accelerator, (ii) the use of the accelerator would be limited to only polarized-beam physics, that is, proton-proton interaction, and (iii) p-p elastic scattering was not the most popular topic in high-energy physics. In fact, within spin physics, π-nucleon physics looked attractive, since the determination of spin and parity of possible πp resonances attracted much attention. To proceed we needed more data beside total cross sections and elastic differential cross sections; measurements of polarization and other parameters were urgently needed. Polarization measurements had traditionally been performed by analyzing the spin of recoil protons. The drawbacks of this technique are: (i) it involves double scattering, resulting in poor accuracy of the data, and (ii) a carbon analyzer can only be used for a limited region of energy

  12. Spin structure in high energy processes: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    DePorcel, L.; Dunwoodie, C. [eds.

    1994-12-01

    This report contains papers as the following topics: Spin, Mass, and Symmetry; physics with polarized Z{sup 0}s; spin and precision electroweak physics; polarized electron sources; polarization phenomena in quantum chromodynamics; polarized lepton-nucleon scattering; polarized targets in high energy physics; spin dynamics in storage rings and linear accelerators; spin formalism and applications to new physics searches; precision electroweak physics at LEP; recent results on heavy flavor physics from LEP experiments using 1990--1992 data; precise measurement of the left-right cross section asymmetry in Z boson production by electron-positron collisions; preliminary results on heavy flavor physics at SLD; QCD tests with SLD and polarized beams; recent results from TRISTAN at KEK; recent B physics results from CLEO; searching for the H dibaryon at Brookhaven; recent results from the compton observatory; the spin structure of the deuteron; spin structure of the neutron ({sup 3}HE) and the Bjoerken sum rule; a consumer`s guide to lattice QCD results; top ten models constrained by b {yields} sy; a review of the Fermilab fixed target program; results from the D0 experiment; results from CDF at FNAL; quantum-mechanical suppression of bremsstrahlung; report from the ZEUS collaboration at HERA; physics from the first year of H1 at HERA, and hard diffraction. These papers have been cataloged separately elsewhere.

  13. Spin structure in high energy processes: Proceedings

    International Nuclear Information System (INIS)

    DePorcel, L.; Dunwoodie, C.

    1994-12-01

    This report contains papers as the following topics: Spin, Mass, and Symmetry; physics with polarized Z 0 s; spin and precision electroweak physics; polarized electron sources; polarization phenomena in quantum chromodynamics; polarized lepton-nucleon scattering; polarized targets in high energy physics; spin dynamics in storage rings and linear accelerators; spin formalism and applications to new physics searches; precision electroweak physics at LEP; recent results on heavy flavor physics from LEP experiments using 1990--1992 data; precise measurement of the left-right cross section asymmetry in Z boson production by electron-positron collisions; preliminary results on heavy flavor physics at SLD; QCD tests with SLD and polarized beams; recent results from TRISTAN at KEK; recent B physics results from CLEO; searching for the H dibaryon at Brookhaven; recent results from the compton observatory; the spin structure of the deuteron; spin structure of the neutron ( 3 HE) and the Bjoerken sum rule; a consumer's guide to lattice QCD results; top ten models constrained by b → sy; a review of the Fermilab fixed target program; results from the D0 experiment; results from CDF at FNAL; quantum-mechanical suppression of bremsstrahlung; report from the ZEUS collaboration at HERA; physics from the first year of H1 at HERA, and hard diffraction. These papers have been cataloged separately elsewhere

  14. Hyperfine interaction studies with pulsed heavy-ion beams

    International Nuclear Information System (INIS)

    Raghavan, P.

    1985-01-01

    Heavy-ion reactions using pulsed beams have had a strong impact on the study of hyperfine interactions. Unique advantages offered by this technique have considerably extended the scope, detail and systematic range of its applications beyond that possible with radioactivity or light-ion reaction. This survey will cover a brief description of the methodological aspects of the field and recent applications to selected problems in nuclear and solid state physiscs illustrating its role. These include measurements of nuclear magnetic and electric quadrupole moments of high spin isomers, measurements of hyperfine magnetic fields at impurities in 3d and rare-earths ferromagnetic hosts, studies of paramagnetic systems, especially those exhibiting valence instabilities, and investigations of electric field gradients of impurities in noncubic metals. Future prospects of this technique will be briefly assessed. (orig.)

  15. Development of spin-polarized transmission electron microscope

    International Nuclear Information System (INIS)

    Kuwahara, M; Saitoh, K; Tanaka, N; Takeda, Y; Ujihara, T; Asano, H; Nakanishi, T

    2011-01-01

    In order to study spin related phenomena in nano-size materials, spin-polarized electron source (PES) has been employed for the incident beam in transmission electron microscope (TEM). The PES has been designed and constructed with optimizing for spin-polarized TEM. The illuminating system of TEM is also designed to focus the spin-polarized electron beam emitted from a semiconductor photocathode with a negative electron affinity (NEA) surface. The beam energy is set to below 40 keV which is lower energy type as a TEM, because the spin interaction with condensed matters is very small corresponding with a Coulomb interaction. The polarized electron gun has realized in an extra high vacuum (XHV) condition and high field gradient of 4 MV/m on a surface of photocathode. Furthermore, it demonstrated that 40-keV polarized electron beam was operated with a sub-milli second pulse mode by using the backside excitation type photocathode. This high performance PES will make it possible to observe dynamically a magnetic field images with high contrast and highspeed temporal imaging in TEM.

  16. HiFSA fingerprinting applied to isomers with near-identical NMR spectra: the silybin/isosilybin case.

    Science.gov (United States)

    Napolitano, José G; Lankin, David C; Graf, Tyler N; Friesen, J Brent; Chen, Shao-Nong; McAlpine, James B; Oberlies, Nicholas H; Pauli, Guido F

    2013-04-05

    This study demonstrates how regio- and diastereo-isomers with near-identical NMR spectra can be distinguished and unambiguously assigned using quantum mechanical driven (1)H iterative Full Spin Analysis (HiFSA). The method is illustrated with four natural products, the flavonolignans silybin A, silybin B, isosilybin A, and isosilybin B, which exhibit extremely similar coupling patterns and chemical shift differences well below the commonly reported level of accuracy of 0.01 ppm. The HiFSA approach generated highly reproducible (1)H NMR fingerprints that enable distinction of all four isomers at (1)H frequencies from 300 to 900 MHz. Furthermore, it is demonstrated that the underlying numeric (1)H NMR profiles, combined with iterative computational analysis, allow parallel quantification of all four isomers, even in difficult to characterize reference materials and mixtures. The results shed new light on the historical challenges to the qualitative and quantitative analysis of these therapeutically relevant flavonolignans and open new opportunities to explore hidden diversity in the chemical space of organic molecules.

  17. Spin at Lausanne

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    From 25 September to 1 October, some 150 spin enthusiasts gathered in Lausanne for the 1980 International Symposium on High Energy Physics with Polarized Beams and Polarized Targets. The programme was densely packed, covering physics interests with spin as well as the accelerator and target techniques which make spin physics possible

  18. Nuclear Structure Studies of Microsecond Isomers Near A=100

    Science.gov (United States)

    Simpson, G.; Genevey, J.; Pinston, J. A.; Urban, W.; Zlomaniec, A.; Orlandi, R.; Scherillo, A.; Tsekhanovich, I.; Smith, A. G.; Thallon, A.; Varley, B. J.; Jolie, J.; Warr, N.

    2007-04-01

    A large variety of shapes may be observed in Sr and Zr nuclei of the A = 100 region when the number of neutrons increases from N = 58 to N = 64. The lighter isotopes are rather spherical. It is also well established that three shapes co-exist in the transitional odd-A, N = 59, Sr and Zr nuclei. For N > 59, strongly deformed axially symmetric bands are observed. Recently, a new isomer of half-life 1.4(2) mu s was observed in 95Kr, the odd-odd 96Rb has been reinvestigated and a new high-spin isomer observed in the even-even 98Zr. These nuclei were studied by means of prompt gamma -ray spectroscopy of the spontaneous fission of 248Cm using the EUROGAM 2 Ge array and/or measurements of mu s isomers produced by fission of 239,241Pu with thermal neutrons at the ILL (Grenoble). To allow spectroscopic studies of isomeric states with lifetimes around 100 ns, across a broad range of medium-heavy neutron-rich nuclei, an experiment was performed at a neutron guide of the ILL using thermal-neutron-induced fission. Fission fragments were identified using a small spectrometer consisting of a section to measure time-of-flight and an ionization chamber. Isomeric gamma rays emitted from complementary fragments were detected in an array of Ge detectors.

  19. Gamma-ray Spectroscopy of Nano-second Isomers in Neutron-rich Ni Region Produced by Deep-inelastic Collisions

    Science.gov (United States)

    Ishii, Tetsuro; Asai, Masato; Kleinheinz, Peter; Matsuda, Makoto; Ichikawa, Shinichi; Makishima, Akiyasu; Ogawa, Masao

    2001-10-01

    We have been studying nuclear structure of neutron-rich nuclei produced by heavy-ion deep-inelastic collisions at the JAERI Tandem Booster facility. In our method using an `isomer-scope', γ-rays only from isomers with T_1/2 > 1ns are measured by shielding Ge detectors from prompt γ rays emitted at the target position. Atomic numbers of isomers can be also identified by detecting projectile-like fragments with Si Δ E-E detectors. Until now, we have found several new isomers in neutron-rich Ni region using about 8 MeV/nucleon ^70Zn, ^76Ge and ^82Se beams and a ^198Pt target of 4.3 mg/cm^2 thickness. In the doubly magic ^68_28Ni_40, the (ν g_9/2^2 ν p_1/2-2)8^+ isomer with T_1/2=23(1) ns was found. In its neighbor nuclei ^69,71Cu, the 19/2^- isomers were found and the energy levels decaying from the isomers can be calculated very accurately by a parameter-free shell model calculation using experimental energy levels as two-body residual interactions. I will also briefly discuss nano-second isomers in ^32,33Si and ^34P produced by 9 MeV/nucleon ^37Cl beams.

  20. Fully aligned high-spin states in 86Zr

    International Nuclear Information System (INIS)

    Doring, J.; Hohns, G.D.; Sylvan, G.N.

    1995-01-01

    To study multi-quasiparticle excitations and their interplay with collective degrees of freedom at very high spins, a new in-beam investigation of the even-even 86 Zr has been performed via the 58 Ni( 32 S,4p) reaction at 135 MeV using the early implementation of GAMMASPHERE combined with the 47π charged particle detector system MICROBALL. The yrast positive- and negative-parity sequences have been extended up to 30 + and 27 - levels, respectively. Calculations within the configuration-dependent shell-correction method using a cranked Nilsson potential have shown that the highest spins are built from the six g 9 /2 neutrons and at most four protons excited from the p 1/2 , p 3/2 , f 5/2 subshells to the g 9 /2 subshell at a small deformation. The 30 + and 27 - states are the highest possible fully-aligned states based on holes in the N = 3 shell. Higher spins can be built by promotion of one neutron from the g 9 /2 to the g 7 /2 subshell but with a quite high energy cost

  1. Low Temperature Electrical Spin Injection from Highly Spin Polarized Co₂CrAl Heusler Alloy into p-Si.

    Science.gov (United States)

    Kar, Uddipta; Panda, J; Nath, T K

    2018-06-01

    The low temperature spin accumulation in p-Si using Co2CrAl/SiO2 tunnel junction has been investigated in detail. The heterojunction has been fabricated using electron beam evaporation (EBE) technique. The 3-terminal contacts in Hanle geometry has been made for spin transport measurements. The electrical transport properties have been investigated at different isothermal conditions in the temperature range of 10-300 K. The current-voltage characteristics of the junction shows excellent rectifying magnetic diode like behaviour in lower temperature range (below 200 K). At higher temperature, the junction shows nonlinear behaviour without rectifying characteristics. We have observed spin accumulation signal in p-Si semiconductor using SiO2/Co2CrAl tunnel junction in the low temperature regime (30-100 K). Hence the highly spin polarized Full Heusler alloys compounds, like Co2CrAl etc., are very attractive and can act as efficient tunnel device for spin injection in the area of spintronics devices in near future. The estimated spin life time is τ = 54 pS and spin diffusion length inside p-Si is LSD = 289 nm at 30 K for this heterostructure.

  2. The Impact of Dissociator Cooling on the Beam Intensity and Velocity in the SpinLab ABS

    Science.gov (United States)

    Stancari, M.; Barion, L.; Bonomo, C.; Capiluppi, M.; Contalbrigo, M.; Ciullo, G.; Dalpiaz, P. F.; Giordano, F.; Lenisa, P.; Pappalardo, L.; Statera, M.; Wang, M.

    2007-06-01

    At the SpinLab laboratory (University of Ferrara, Italy), a three stage cooling system was installed along the dissociator tube of an atomic beam source (ABS). With this tool, it is possible to observe correlations between the measured temperatures and the atomic beam intensity. The existence of such correlations is suggested by the larger intensity of the RHIC ABS, the only other source with additional cooling stages. An increased intensity at lower cooling temperatures was observed in SpinLab, while no change in the beam's velocity distribution was observed.

  3. Helical spin rotators and snakes for RHIC

    International Nuclear Information System (INIS)

    Ptitsin, V.I.; Shatunov, Yu.M.; Peggs, S.

    1995-01-01

    The RHIC collider, now under construction at BNL, will have the possibility of polarized proton-proton collisions up to a beam energy of 250 Gev. Polarized proton beams of such high energy can be only obtained with the use of siberian snakes, a special kind of spin rotator that rotates the particle spin by 180 degree around an axis lying in the horizontal plane. Siberian snakes help to preserve the beam polarization while numerous spin depolarizing resonances are crossed, during acceleration. In order to collide longitudinally polarized beams, it is also planned to install spin rotators around two interaction regions. This paper discusses snake and spin rotator designs based on sequences of four helical magnets. The schemes that were chosen to be applied at RHIC are presented

  4. Spin Tracking Studies for Beam Polarization Preservation in the NLC Main Damping Rings

    International Nuclear Information System (INIS)

    Wolski, Andrzej; Bates, Daniel

    2004-01-01

    We report results from studies of spin dynamics in the NLC Main Damping. Our studies have been based on spin tracking particles through the lattice under a range of conditions. We find that there are a number of spin resonances close to the nominal operating energy of 1.98 GeV; however, the effects of the resonances are weak, and the widths are narrow. We do not expect that any significant depolarization of the beam will occur during the store time

  5. Bell-like inequality for the spin-orbit separability of a laser beam

    International Nuclear Information System (INIS)

    Borges, C. V. S.; Hor-Meyll, M.; Khoury, A. Z.; Huguenin, J. A. O.

    2010-01-01

    In analogy with Bell's inequality for two-qubit quantum states, we propose an inequality criterion for the nonseparability of the spin-orbit degrees of freedom of a laser beam. A definition of separable and nonseparable spin-orbit modes is used in consonance with the one presented in Phys. Rev. Lett. 99, 160401 (2007). As the usual Bell's inequality can be violated for entangled two-qubit quantum states, we show both theoretically and experimentally that the proposed spin-orbit inequality criterion can be violated for nonseparable modes. The inequality is discussed in both the classical and quantum domains.

  6. Determination of nuclear spins of short-lived isotopes by laser induced fluorescence

    International Nuclear Information System (INIS)

    Buchinger, F.; Dabkiewicz, P.; Kremmling, H.; Kuehl, T.; Mueller, A.C.; Schuessler, H.A.

    1980-01-01

    The spins of several nuclear ground and isomeric states have been measured for a number of mercury isotopes. The fluorescent light from the 6s6p 3 P 1 state is observed at 2537 Angstroem after excitation with the frequency doubled output of a pulsed dye laser. Four different laser induced fluorescence techniques were tested for their applicability: double resonance, Hanle effect, time delayed integral Hanle beats, and time resolved quantum beats. The sensitivity and selectivity of these models are compared with emphasis on the determination of spins of nuclei far from beta-stability, where short half lives and low production yields restrict the number of available atoms. The experiments were carried out on-line with the ISOLDE isotope separator at CERN at densities as low as 10 6 atoms/cm 3 . Results for the very neutron deficient high spin mercury isomers with half lives of several seconds, but also for the ground states of the abundant low spin stable mercury isotopes, are given as examples. The test measurements determined the nuclear spins of the odd sup(185m-191m)Hg isomers to be I = 13/2. (orig.)

  7. Studies on the separation of hydrogen isotopes and spin isomers by gas chromatography

    International Nuclear Information System (INIS)

    Pushpa, K.K.; Annaji Rao, K.

    2000-08-01

    Separation and analysis of mixture of hydrogen isotopes has gained considerable importance because of various applications needing different isotopes in lasers, nuclear reactions and tracer or labelled compounds. In the literature gas chromatographic methods are reported using columns packed with partly dehydrated or thoroughly dehydrated alumina/molecular sieve stationary phase at 77 deg K with helium, neon and even hydrogen or deuterium as carrier gas. In the present study an attempt is made to compare the chromatographic behaviour of these two stationary phases using virgin and Fe doped form in partly dehydrated and thoroughly dehydrated state, using helium, neon, hydrogen and deuterium as carrier gas. The results of this study show that helium or neon carrier gas behave similarly broad peaks with some tailing. Sharp symmetric peaks are obtained with hydrogen or deuterium carrier gas. This is attributed to large hold up capacity for H 2 or D 2 at 77 deg K in these materials as compared to helium or neon. Spin isomers of H 2 or D 2 are separated on Fe free stationary phases, though ortho H 2 and HD are not resolved. Using a combination of Fe doped short column and plain alumina column, both maintained in dehydrated form, the effect of Fe doping on thermal equilibrium of ortho/para forms at 77 deg K is clearly demonstrated. (author)

  8. Isomer Information from Ion Mobility Separation of High-Mannose Glycan Fragments.

    Science.gov (United States)

    Harvey, David J; Seabright, Gemma E; Vasiljevic, Snezana; Crispin, Max; Struwe, Weston B

    2018-05-01

    Extracted arrival time distributions of negative ion CID-derived fragments produced prior to traveling-wave ion mobility separation were evaluated for their ability to provide structural information on N-linked glycans. Fragmentation of high-mannose glycans released from several glycoproteins, including those from viral sources, provided over 50 fragments, many of which gave unique collisional cross-sections and provided additional information used to assign structural isomers. For example, cross-ring fragments arising from cleavage of the reducing terminal GlcNAc residue on Man 8 GlcNAc 2 isomers have unique collision cross-sections enabling isomers to be differentiated in mixtures. Specific fragment collision cross-sections enabled identification of glycans, the antennae of which terminated in the antigenic α-galactose residue, and ions defining the composition of the 6-antenna of several of the glycans were also found to have different cross-sections from isomeric ions produced in the same spectra. Potential mechanisms for the formation of the various ions are discussed and the estimated collisional cross-sections are tabulated. Graphical Abstract ᅟ.

  9. Observation of high spin states in 117Xe

    International Nuclear Information System (INIS)

    Liu, Z.; Yuan, G.J.; Li, G.S.; Yang, C.X.; Luo, W.D.; Chen, Y.S.

    1995-01-01

    High spin states of 117 Xe have been investigated by means of in-beam γ-ray spectroscopy using the reaction 92 Mo( 28 Si, 2pn) at beam energies of 100 to 120 MeV. The previously known νh 11/2 bands are confirmed and the νg 7/2 favored-signature band is extended up to 47/2 + , in which two band crossings are observed at hω=0.33 and 0.44 MeV, respectively. Two new positive-parity bands have been established, one of which is most likely the νg 7/2 unfavored-signature band. A new transition cascade with irregular level spacings is also observed. (orig.)

  10. High spin structure in 130,131Ba

    International Nuclear Information System (INIS)

    Kaur, Navneet; Kumar, A.; Singh, Amandeep; Kumar, S.; Kaur, Rajbir; Singh, Varinderjit; Behera, B.R.; Singh, K.P.; Singh, G.; Mukherjee, G.; Sharma, H.P.; Kumar, Suresh; Kumar Raju, M.; Madhusudhan Rao, P.V.; Muralithar, S.; Singh, R.P.; Kumar, Rakesh; Madhvan, N.; Bhowmik, R.K.

    2014-01-01

    High spin states of 130,131 Ba have been investigated via fusion evaporation reactions 122 Sn( 13 C,4n) 131 Ba and 122 Sn( 13 C, 5n) 130 Ba at E beam =65 MeV. The level schemes of 130,131 Ba have been extended by placing several new γ transitions. A few interband transitions connecting two negative-parity bands, which are the experimental fingerprints of signature partners, have been established in 130 Ba. Spin and parity of a side band have been assigned in 131 Ba and this dipole band is proposed to have a three-quasiparticle configuration, νh 11/2 x πh 11/2 x πg 7/2 . The observed band structures and nuclear shape evolution as a function of the angular momentum have been discussed in the light of Total-Routhian-Surface calculations. (orig.)

  11. Orbital rotation without orbital angular momentum: mechanical action of the spin part of the internal energy flow in light beams

    DEFF Research Database (Denmark)

    Angelsky, O. V.; Bekshaev, A. Ya; Maksimyak, P. P.

    2012-01-01

    flow upon tight focusing of the beam, usually applied for energy flow detection by means of the mechanical action upon probe particles. We propose a two-beam interference technique that results in an appreciable level of spin flow in moderately focused beams and detection of the orbital motion of probe...... particles within a field where the transverse energy circulation is associated exclusively with the spin flow. This result can be treated as the first demonstration of mechanical action of the spin flow of a light field....

  12. Observation of a γ-decaying millisecond isomeric state in 128Cd80

    Directory of Open Access Journals (Sweden)

    A. Jungclaus

    2017-09-01

    Full Text Available A new high-spin isomer in the neutron-rich nucleus 128Cd was populated in the projectile fission of a 238U beam at the Radioactive Isotope Beam Factory at RIKEN. A half-life of T1/2=6.3(8 ms was measured for the new state which was tentatively assigned a spin/parity of (15−. The experimental results are compared to shell model calculations performed using state-of-the-art realistic effective interactions and to the neighbouring nucleus 129Cd. In the present experiment no evidence was found for the decay of a 18+ E6 spin-trap isomer, based on the complete alignment of the two-neutron and two-proton holes in the 0h11/2 and the 0g9/2 orbit, respectively, which is predicted to exist by the shell model.

  13. Feeding of the 1 1/2- isomers in stable Ir and Au isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Fotiadis, Nikolaos [Los Alamos National Laboratory; Nelson, Ronald O [Los Alamos National Laboratory; Devlin, Matthew [Los Alamos National Laboratory; Holloway, Shannon T [Los Alamos National Laboratory; Kawano, Toshihiko [Los Alamos National Laboratory; Talou, Patrick [Los Alamos National Laboratory; Chadwick, Mark B [Los Alamos National Laboratory; Becker, John A [LLNL; Garrett, Paul E [U GUELPH, CANADA

    2008-01-01

    Excited states were studied and absolute partial {gamma}-ray cross sections were measured using the ({eta}, {eta}'{gamma}) reaction in {sup 191}Ir, {sup 193}Ir and {sup 197}Au. A Compton-suppressed germanium-detector array (GEANIE) for {gamma}-ray spectroscopy and the broad-spectrum pulsed neutron source of the Los Alamos Neutron Science Center's WNR facility were used for the measurement. The energy of the incident neutrons was determined using the time-of-flight technique. Absolute partial {gamma}-ray cross sections were measured up to incident neutron energy of 20 MeV for several transitions feeding directly the 1 1/2- isomers and ground states in {sup 191}Ir, {sup 193}Ir and {sup 197}Au. The feeding of the 1 1/2- isomers, which originate from the odd proton occupying the h{sub 1 1/2} orbital, was found for the three targets to be very similar and increasing relative to the feeding of the corresponding ground state with increasing neutron energy up to E{sub n} {approx} 10 MeV. Above this neutron energy the opening of the (n, 2{sub n}) reaction channel strongly affects the population of the isomers and leads to a decrease of their relative population compared to the population of the ground states. The experimental results are compared with theoretical predictions from the GNASH reaction model calculation implementing a version of the spin distribution for the pre-equilibrium reaction piece with either a compound nucleus spin distribution (CN-GNASH) or a Feshbach-Kerman-Koonin (FKK-GNASH) quantum mechanical spin distribution. The effects of the spin cutoff parameter values on the population of states are examined. Evidence is presented that FKK-GNASH provides a description of the experimental data that mitigates the need for adjustment of the level density parameter to fit the data.

  14. Measurement of ep-->ep[pi]0 beam spin asymmetries above the resonance region

    Energy Technology Data Exchange (ETDEWEB)

    De Masi, Rita; Garcon, Michel; Zhao, Bo; Amaryan, Moscov; Amaryan, Moskov; Ambrozewicz, Pawel; Anghinolfi, Marco; Asryan, Gegham; Avagyan, Harutyun; Baghdasaryan, Hovhannes; Baillie, Nathan; Ball, J.P.; Ball, Jacques; Ball, J.P.; Ball, Jacques; Ball, James; Baltzell, Nathan; Baturin, Vitaly; Battaglieri, Marco; Bedlinskiy, Ivan; Bellis, Matthew; Benmouna, Nawal; Berman, Barry; Bertin, Pierre; Biselli, Angela; Blaszczyk, Lukasz; Bouchigny, Sylvain; Boyarinov, Sergey; Bradford, Robert; Branford, Derek; Briscoe, William; Brooks, William; Bultmann, S.; Bueltmann, Stephen; Bultmann, S.; Bueltmann, Stephen; Burkert, Volker; Butuceanu, Cornel; Calarco, John; Careccia, Sharon; Carman, Daniel; Casey, Liam; Chen, Shifeng; Cheng, Lu; Cole, Philip; Collins, Patrick; Coltharp, Philip; Crabb, Donald; Crede, Volker; Dashyan, Natalya; De Sanctis, Enzo; De Vita, Raffaella; Degtiarenko, Pavel; Deur, Alexandre; Dharmawardane, Kahanawita; Dickson, Richard; Djalali, Chaden; Dodge, Gail; Donnelly, Joseph; Doughty, David; Dugger, Michael; Dzyubak, Oleksandr; Egiyan, Hovanes; Egiyan, Kim; Elfassi, Lamiaa; Elouadrhiri, Latifa; Eugenio, Paul; Fedotov, Gleb; Feldman, Gerald; Fradi, Ahmed; Funsten, Herbert; Gavalian, Gagik; Gilfoyle, Gerard; Giovanetti, Kevin; Girod, Francois-Xavier; Goetz, John; Gonenc, Atilla; Gothe, Ralf; Griffioen, Keith; Guidal, Michel; Guler, Nevzat; Guo, Lei; Gyurjyan, Vardan; Hafidi, Kawtar; Hakobyan, Hayk; Hanretty, Charles; Hersman, F.; Hicks, Kenneth; Hleiqawi, Ishaq; Holtrop, Maurik; Hyde, Charles; Ilieva, Yordanka; Ireland, David; Ishkhanov, Boris; Isupov, Evgeny; Ito, Mark; Jenkins, David; Jo, Hyon-Suk; Johnstone, John; Joo, Kyungseon; Juengst, Henry; Kalantarians, Narbe; Kellie, James; Khandaker, Mahbubul; Kim, Wooyoung; Klein, Andreas; Klein, Franz; Klimenko, Alexei; Kossov, Mikhail; Krahn, Zebulun; Kramer, Laird; Kubarovsky, Valery; Kuhn, Joachim; Kuhn, Sebastian; Kuleshov, Sergey; Lachniet, Jeff; Laget, Jean; Langheinrich, Jorn; Lawrence, David; Lee, Tsung-Shung; Livingston, Kenneth; Lu, Haiyun; MacCormick, Marion; Markov, Nikolai; Mattione, Paul; Mazouz, Malek; McKinnon, Bryan; Mecking, Bernhard; Mestayer, Mac; Meyer, Curtis; Mibe, Tsutomu; Michel, Bernard; Mikhaylov, Konstantin; Mirazita, Marco; Miskimen, Rory; Mokeev, Viktor; Moreno, Brahim; Moriya, Kei; Morrow, Steven; Moteabbed, Maryam; Munevar Espitia, Edwin; Mutchler, Gordon; Nadel-Turonski, Pawel; Nasseripour, Rakhsha; Niccolai, Silvia; Niculescu, Gabriel; Niculescu, Maria-Ioana; Niczyporuk, Bogdan; Niroula, Megh; Niyazov, Rustam; Nozar, Mina; Osipenko, Mikhail; Ostrovidov, Alexander; Park, Kijun; Pasyuk, Evgueni; Paterson, Craig; Pereira, Sergio; Pierce, Joshua; Pivnyuk, Nikolay; Pocanic, Dinko; Pogorelko, Oleg; Pozdnyakov, Sergey; Price, John; Procureur, Sebastien; Prok, Yelena; Protopopescu, Dan; Raue, Brian; Ricco, Giovanni; Ripani, Marco; Ritchie, Barry; Ronchetti, Federico; Rosner, Guenther; Rossi, Patrizia; Sabatie, Franck; Salamanca, Julian; Salgado, Carlos; Santoro, Joseph; Sapunenko, Vladimir; Schumacher, Reinhard; Serov, Vladimir; Sharabian, Youri; Sharov, Dmitri; Shvedunov, Nikolay; Smith, Elton; Smith, Lee; Sober, Daniel; Sokhan, Daria; Stavinsky, Aleksey; Stepanyan, Samuel; Stepanyan, Stepan; Stokes, Burnham; Stoler, Paul; Strakovski, Igor; Strauch, Steffen; Taiuti, Mauro; Tedeschi, David; Tkabladze, Avtandil; Tkachenko, Svyatoslav; Tur, Clarisse; Ungaro, Maurizio; Vineyard, Michael; Vlassov, Alexander; Voutier, Eric; Watts, Daniel; Weinstein, Lawrence; Weygand, Dennis; Williams, Michael; Wolin, Elliott; Wood, Michael; Yegneswaran, Amrit; Zana, Lorenzo; Zhang, Jixie; Zhao, Zhiwen

    2008-04-01

    The beam spin asymmetry (BSA) in the exclusive reaction e-vector p-->eppi0 was measured with the CEBAF 5.77 GeV polarized electron beam and Large Acceptance Spectrometer (CLAS). The xB,Q2,t, and phi dependences of the pi0 BSA are presented in the deep inelastic regime. The asymmetries are fitted with a sinphi function and their amplitudes are extracted. Overall, they are of the order of 0.04â 0.11 and roughly independent of t. This is the signature of a nonzero longitudinal-transverse interference. The implications concerning the applicability of a formalism based on generalized parton distributions, as well as the extension of a Regge formalism at high photon virtualities, are discussed.

  15. Large Logarithms in the Beam Normal Spin Asymmetry of Elastic Electron--Proton Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Andrei Afanasev; Mykola Merenkov

    2004-06-01

    We study a parity-conserving single-spin beam asymmetry of elastic electron-proton scattering induced by an absorptive part of the two-photon exchange amplitude. It is demonstrated that excitation of inelastic hadronic intermediate states by the consecutive exchange of two photons leads to logarithmic and double-logarithmic enhancement due to contributions of hard collinear quasi-real photons. The asymmetry at small electron scattering angles is expressed in terms of the total photoproduction cross section on the proton, and is predicted to reach the magnitude of 20-30 parts per million. At these conditions and fixed 4-momentum transfers, the asymmetry is rising logarithmically with increasing electron beam energy, following the high-energy diffractive behavior of total photoproduction cross section on the proton.

  16. Realization of tunable spin-dependent splitting in intrinsic photonic spin Hall effect

    Energy Technology Data Exchange (ETDEWEB)

    Ling, Xiaohui [SZU-NUS Collaborative Innovation Center for Optoelectronic Science and Technology, and Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060 (China); Laboratory for spin photonics, College of Physics and Microelectronic Science, Hunan University, Changsha 410082 (China); Department of Physics and Electronic Information Science, Hengyang Normal University, Hengyang 421002 (China); Yi, Xunong [SZU-NUS Collaborative Innovation Center for Optoelectronic Science and Technology, and Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060 (China); Zhou, Xinxing; Liu, Yachao; Shu, Weixing; Wen, Shuangchun [Laboratory for spin photonics, College of Physics and Microelectronic Science, Hunan University, Changsha 410082 (China); Luo, Hailu, E-mail: hailuluo@hnu.edu.cn [SZU-NUS Collaborative Innovation Center for Optoelectronic Science and Technology, and Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060 (China); Laboratory for spin photonics, College of Physics and Microelectronic Science, Hunan University, Changsha 410082 (China)

    2014-10-13

    We report the realization of tunable spin-dependent splitting in intrinsic photonic spin Hall effect. By breaking the rotational symmetry of a cylindrical vector beam, the intrinsic vortex phases that the two spin components of the vector beam carries, which is similar to the geometric Pancharatnam-Berry phase, are no longer continuous in the azimuthal direction, and leads to observation of spin accumulation at the opposite edge of the beam. Due to the inherent nature of the phase and independency of light-matter interaction, the observed photonic spin Hall effect is intrinsic. Modulating the topological charge of the vector beam, the spin-dependent splitting can be enhanced and the direction of spin accumulation is switchable. Our findings may provide a possible route for generation and manipulation of spin-polarized photons, and enables spin-based photonics applications.

  17. Spin-crossover in an iron(III)-bispidine-alkylperoxide system.

    Science.gov (United States)

    Bautz, Jochen; Comba, Peter; Que, Lawrence

    2006-09-04

    The iron(II) complex of a tetradentate bispidine ligand with two tertiary amines and two pyridine groups (L = dimethyl [3,7-dimethyl-9,9'-dihydroxy-2,4-di-(2-pyridyl)-3,7-diazabicyclo nonan-1,5-dicaboxylate]) is oxidized with tert-butyl hydroperoxide to the corresponding end-on tert-butylperoxo complex [Fe(III)(L)(OOtBu)(X)]n+ (X = solvent, anion). UV-vis, resonance Raman, and EPR spectroscopy, as a function of the solvent, show that this is a spin-crossover compound. The experimentally observed Raman vibrations for both low-spin and high-spin isomers are in good agreement with those computed by DFT.

  18. Production of a Beam of Highly Vibrationally Excited CO Using Perturbations

    Science.gov (United States)

    Bartels, N.; Schäfer, T.; Hühnert, J.; Wodtke, A. M.; Field, R. W.

    2012-06-01

    For many experimentalists (especially those, who are not spectroscopists), molecular pertubations are a curse, as they make assignments and analysis of spectral data more difficult. Nevertheless, they can also be a boon! In this talk we will show how a molecular beam of CO in high vibrational states (v=17,18) can be prepared by an optical pumping scheme that we call PUMP-PUMP-PERTURB and DUMP (P^3D). P^3D exploits the loaning, via spin-orbit perturbations, of the large oscillator strength of the 4th positive system, A ^1 π ← X ^1 Σ ^+, to the triplet manifold. This allows some nominally spin-forbidden transitions to be exploited in multistep optical pumping schemes. The ability to {state-selectively} prepare CO in high vibrational states opens up new opportunities for molecular beam scattering experiments.

  19. High spin levels in 62Zn, 64Zn, 66Zn, and 68Zn

    International Nuclear Information System (INIS)

    Bruandet, J.-F.

    1976-01-01

    Investigation by in-beam gamma spectroscopy of high-spin states in the even zinc isotopes has been made using the Ni(α,2nγ)Zn reactions at Esub(α) approximately equal to 30MeV for 62 Zn, 64 Zn and 66 Zn, and the 65 Cu(α,pγ) reaction at Esub(α) approximately equal to 18MeV for 68 Zn. The high-spin states feeding by varying the incident particles: p, 3 He,α, 12 C is discussed. It is pointed out that the gsub(9/2) orbital plays an important role in the structure of the high-spin states. The variation of the inertia momentum throughout the yrast line shows a backbending behavior and a shape transition associated to the occurence, for J>6, of rotational states is speculated [fr

  20. Three-quasiparticle isomer in 173Ta and the excitation energy dependence of K -forbidden transition rates

    OpenAIRE

    Wood, RT; Walker, PM; Lane, G J; Carroll, R. J.; Cullen, David; Dracoulis, G D; Hota, S. S.; Kibédi, T.; Palalani, N; Podolyak, Zs.; Reed, MW; Schiffl, K; Wright, A.M

    2017-01-01

    Using the 168Er(10B,5n) reaction at a beam energy of 68 MeV, new data have been obtained for the population and decay of a T1/2=148ns, Kπ=21/2− three-quasiparticle isomer at 1717 keV in 173Ta. Revised decay energies and intensities have been determined, together with newly observed members of a rotational band associated with the isomer. By comparison with other isomers in the A≈180 deformed region, the 173Ta isomer properties help to specify the key degrees of freedom that determine K-forbid...

  1. Spin Conference

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    The 5th International Symposium on High Energy Spin Physics met in September at Brookhaven. The symposium has evolved to include a number of diverse specialities: theory, including parity violations and proposed quantum chromodynamics (QCD) tests with polarized beams; experiment, including the large spin effects discovered in high transverse momentum elastic scattering and hyperon production, dibaryons, and magnetic moments; acceleration and storage of polarized protons and electrons; and development of polarized sources and targets

  2. High spin structure of 35Cl and the sd-fp shell gap

    International Nuclear Information System (INIS)

    Kshetri, Ritesh; Saha Sarkar, M.; Ray, Indrani; Banerjee, P.; Sarkar, S.; Raut, Rajarshi; Goswami, A.; Chatterjee, J.M.; Chattopadhyay, S.; Datta Pramanik, U.; Mukherjee, A.; Dey, C.C.; Bhattacharya, S.; Dasmahapatra, B.; Bhowal, Samit; Gangopadhyay, G.; Datta, P.; Jain, H.C.; Bhowmik, R.K.; Muralithar, S.; Singh, R.P.; Kumar, R.

    2007-01-01

    The high spin states of 35 Cl have been studied by in-beam γ-spectroscopy following the fusion-evaporation reaction 12 C( 28 Si,αp) 35 Cl at E lab =70 and 88 MeV, using the Indian National Gamma (Clover) Array (INGA). Lifetimes of six new excited states have been estimated for the first time. To understand the underlying structure of the levels and transition mechanisms, experimental results have been compared with those from the large basis cross-shell shell model calculations. Involvement of orbitals from fp shell and squeezing of the sd-fp shell gap seem to be essential for reliable reproduction of high spin states

  3. Observation of a γ -decaying millisecond isomeric state in 128 Cd 80

    Energy Technology Data Exchange (ETDEWEB)

    Jungclaus, A.; Grawe, H.; Nishimura, S.; Doornenbal, P.; Lorusso, G.; Simpson, G. S.; Söderström, P. -A.; Sumikama, T.; Taprogge, J.; Xu, Z. Y.; Baba, H.; Browne, F.; Fukuda, N.; Gernhäuser, R.; Gey, G.; Inabe, N.; Isobe, T.; Jung, H. S.; Kameda, D.; Kim, G. D.; Kim, Y. -K.; Kojouharov, I.; Kubo, T.; Kurz, N.; Kwon, Y. K.; Li, Z.; Sakurai, H.; Schaffner, H.; Shimizu, Y.; Steiger, K.; Suzuki, H.; Takeda, H.; Vajta, Zs.; Watanabe, H.; Wu, J.; Yagi, A.; Yoshinaga, K.; Benzoni, G.; Bönig, S.; Chae, K. Y.; Coraggio, L.; Daugas, J. -M.; Drouet, F.; Gadea, A.; Gargano, A.; Ilieva, S.; Itaco, N.; Kondev, F. G.; Kröll, T.; Lane, G. J.; Montaner-Pizá, A.; Moschner, K.; Mücher, D.; Naqvi, F.; Niikura, M.; Nishibata, H.; Odahara, A.; Orlandi, R.; Patel, Z.; Podolyák, Zs.; Wendt, A.

    2017-09-01

    A new high-spin isomer in the neutron-rich nucleus 128Cd was populated in the projectile fission of a 238U beam at the Radioactive Isotope Beam Factory at RIKEN. A half-life of T1/2 = 6.3(8) ms was measured for the new state which was tentatively assigned a spin/parity of (15-). The experimental results are compared to shell model calculations performed using state-of-the-art realistic effective interactions and to the neighbouring nucleus 129Cd. In the present experiment no evidence was found for the decay of a 18+ E6 spin-trap isomer, based on the complete alignment of the two-neutron and two-proton holes in the 0h11/2 and the 0g9/2 orbit, respectively, which is predicted to exist by the shell model.

  4. Broadband and high-efficiency vortex beam generator based on a hybrid helix array.

    Science.gov (United States)

    Fang, Chaoqun; Wu, Chao; Gong, Zhijie; Zhao, Song; Sun, Anqi; Wei, Zeyong; Li, Hongqiang

    2018-04-01

    The vortex beam which carries the orbital angular momentum has versatile applications, such as high-resolution imaging, optical communications, and particle manipulation. Generating vortex beams with the Pancharatnam-Berry (PB) phase has drawn considerable attention for its unique spin-to-orbital conversion features. Despite the PB phase being frequency independent, an optical element with broadband high-efficiency circular polarization conversion feature is still needed for the broadband high-efficiency vortex beam generation. In this work, a broadband and high-efficiency vortex beam generator based on the PB phase is built with a hybrid helix array. Such devices can generate vortex beams with arbitrary topological charge. Moreover, vortex beams with opposite topological charge can be generated with an opposite handedness incident beam that propagates backward. The measured efficiency of our device is above 65% for a wide frequency range, with the relative bandwidth of 46.5%.

  5. High spin polarisation at the HERA electron storage ring

    International Nuclear Information System (INIS)

    Barber, D.P.; Boege, M.; Bremer, H.D.; Brinkmann, R.; Gianfelice-Wendt, E.; Kaiser, R.; Klanner, R.; Lewin, H.C.; Meyners, N.; Ripken, G.; Zapfe, K.; Boettcher, H.; Dueren, M.; Steffens, E.; Lomperski, M.; Rith, K.; Westphal, D.; Zetsche, F.

    1993-04-01

    This paper describes the progress made in 1992 towards increasing the vertical electron beam polarization at HERA. Utilizing harmonic spin-orbit corrections and beam tuning, the vertical polarization has been increased from 15% to nearly 60% at a beam energy of 26.7 GeV. The long-term reproducibility of the polarization is excellent. Measurements of the build-up time and the energy dependence of the polarization are also described. (orig.)

  6. A 3% Measurement of the Beam Normal Single Spin Asymmetry in Forward Angle Elastic Electron-Proton Scattering using the Qweak Setup

    Energy Technology Data Exchange (ETDEWEB)

    Waidyawansa, Dinayadura Buddhini [Ohio Univ., Athens, OH (United States)

    2013-08-01

    The beam normal single spin asymmetry generated in the scattering of transversely polarized electrons from unpolarized nucleons is an observable of the imaginary part of the two-photon exchange process. Moreover, it is a potential source of false asymmetry in parity violating electron scattering experiments. The Q{sub weak} experiment uses parity violating electron scattering to make a direct measurement of the weak charge of the proton. The targeted 4% measurement of the weak charge of the proton probes for parity violating new physics beyond the Standard Model. The beam normal single spin asymmetry at Q{sub weak} kinematics is at least three orders of magnitude larger than 5 ppb precision of the parity violating asymmetry. To better understand this parity conserving background, the Q{sub weak} Collaboration has performed elastic scattering measurements with fully transversely polarized electron beam on the proton and aluminum. This dissertation presents the analysis of the 3% measurement (1.3% statistical and 2.6% systematic) of beam normal single spin asymmetry in electronproton scattering at a Q2 of 0.025 (GeV/c)2. It is the most precise existing measurement of beam normal single spin asymmetry available at the time. A measurement of this precision helps to improve the theoretical models on beam normal single spin asymmetry and thereby our understanding of the doubly virtual Compton scattering process.

  7. Polarized proton beams

    International Nuclear Information System (INIS)

    Roser, T.

    1995-01-01

    The acceleration of polarized proton beams in circular accelerators is complicated by the presence of numerous depolarizing spin resonances. Careful and tedious minimization of polarization loss at each of these resonances allowed acceleration of polarized proton beams up to 22 GeV. It has been the hope that Siberian Snakes, which are local spin rotators inserted into ring accelerators, would eliminate these resonances and allow acceleration of polarized beams with the same ease and efficiency that is now routine for unpolarized beams. First tests at IUCF with a full Siberian Snake showed that the spin dynamics with a Snake can be understood in detail. The author now has results of the first tests of a partial Siberian Snake at the AGS, accelerating polarized protons to an energy of about 25 GeV. These successful tests of storage and acceleration of polarized proton beams open up new possibilities such as stored polarized beams for internal target experiments and high energy polarized proton colliders

  8. Beam-spin asymmetries from semi-inclusive pion electroproduction

    Science.gov (United States)

    Gohn, W.; Avakian, H.; Joo, K.; Ungaro, M.; Adhikari, K. P.; Aghasyan, M.; Amaryan, M. J.; Anderson, M. D.; Anefalos Pereira, S.; Ball, J.; Baltzell, N. A.; Battaglieri, M.; Biselli, A. S.; Bono, J.; Briscoe, W. J.; Brooks, W. K.; Burkert, V. D.; Carman, D. S.; Celentano, A.; Chandavar, S.; Charles, G.; Cole, P. L.; Contalbrigo, M.; Cortes, O.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Djalali, C.; Doughty, D.; Dupre, R.; El Alaoui, A.; El Fassi, L.; Eugenio, P.; Fedotov, G.; Fleming, J. A.; Forest, T.; Garçon, M.; Ghandilyan, Y.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Gothe, R. W.; Griffioen, K. A.; Guegan, B.; Guo, L.; Hafidi, K.; Hanretty, C.; Harrison, N.; Hattawy, Mohammad; Hicks, K.; Ho, D.; Holtrop, M.; Hyde, C.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Jo, H. S.; Keller, D.; Khandaker, M.; Khetarpal, P.; Kim, W.; Klein, F. J.; Koirala, S.; Kubarovsky, V.; Kuhn, S. E.; Kuleshov, S. V.; Lenisa, P.; Livingston, K.; Lu, H. Y.; MacGregor, I. J. D.; Markov, N.; Mayer, M.; McKinnon, B.; Mineeva, T.; Mirazita, M.; Mokeev, V.; Movsisyan, A.; Nadel-Turonski, P.; Niccolai, S.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Pappalardo, L. L.; Paremuzyan, R.; Park, K.; Pasyuk, E.; Peng, P.; Phillips, J. J.; Pisano, S.; Pozdniakov, S.; Price, J. W.; Procureur, S.; Prok, Y.; Puckett, A. J. R.; Raue, B. A.; Ripani, M.; Ritchie, B. G.; Rizzo, A.; Rosner, G.; Rossi, P.; Roy, P.; Sabatié, F.; Salgado, C.; Schott, D.; Schumacher, R. A.; Seder, E.; Seraydaryan, H.; Sharabian, Y. G.; Simonyan, A.; Smith, G. D.; Sober, D. I.; Sokhan, D.; Stoler, P.; Strakovsky, I. I.; Stepanyan, S.; Strauch, S.; Tang, W.; Tkachenko, S.; Vernarsky, B.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D. P.; Weinstein, L. B.; Wood, M. H.; Zachariou, N.; Zana, L.; Zhang, J.; Zonta, I.; CLAS Collaboration

    2014-04-01

    We have measured the moment ALUsinϕ corresponding to the polarized electron beam-spin asymmetry in semi-inclusive deep inelastic scattering. ALUsinϕ is a twist-3 quantity providing information about quark-gluon correlations. Data were taken with the CLAS Spectrometer at Jefferson Lab using a 5.498 GeV longitudinally polarized electron beam and an unpolarized liquid hydrogen target. All three pion channels (π+, π0 and π-) were measured simultaneously over a large range of kinematics within the virtuality range Q2≈ 1.0-4.5 GeV2. The observable was measured with better than 1% statistical precision over a large range of z, PT, xB, and Q2, which permits comparison with several reaction models. The discussed measurements provide an upgrade in statistics over previous measurements, and serve as the first evidence for the negative sign of the π- sinϕ moment.

  9. Lifetime and g-factor of a new isomer in 130 La

    International Nuclear Information System (INIS)

    Ionescu-Bujor, M.; Iordachescu, A.; Brandolini, F.; Pavan, P.; Rossi Alvarez, C.; De Poli, M.; Medina, N.H.; Rao, M.N.

    1999-01-01

    Pulsed-beam measurements have been recently performed at the XTU-tandem of the National Laboratory of Legnaro with the aim to investigate short-lived isomeric states in neutron-deficient nuclei of the A∼130 region. Isotopically enriched tin targets were irradiated with a 70 MeV 16 O beam (pulse width of 3 ns at a repetition rate of 800 ns) and the γ-ray angular distributions perturbed in magnetic or electric interaction were observed time-differentially. Static electromagnetic moments were thus determined for several known short-lived isomers in 129,130,131 Ce and 129 Ba. In these experiments a new isomeric decay has been also identified and its properties are reported in the present work. The isomer has been observed on a target containing 116 Sn (87%), 117 Sn (8%) and 118 Sn (5%). The tin target of 0.6 mg/cm 2 thickness evaporated on a Pb foil was placed in an external magnetic field of 32 kG whose orientation was periodically reversed. Two planar HPGe detectors positioned at ±135 deg. with respect to the beam direction were used for the γ-ray detection. In the delayed spectra a γ-ray of 105.2 keV has been observed and a half-life of 32(5)ns has been determined for it. The experimental and calculated R(t) modulation ratios of the 105.2 keV γ-ray in the external magnetic field are given. From the derived Larmor frequency a value g = + 0.48(3) has been determined for the isomeric state g-factor. A dipole character has been established for the delayed 105.2 keV γ-transition based on the determined negative A 2 coefficient. The new isomer was tentatively assigned to the odd-odd 130 La populated in the 116,117,118 Sn ( 16 O,pxn) reaction. In this nucleus a state at (150.3 + x) keV de-excited by a 105.2 keV transition is known and it was identified with the isomer. Further experiments are in progress for the definite assignment and the elucidation of the isomer configuration. (authors)

  10. /sup 13/C-/sup 13/C spin-spin coupling constants in structural investigations. I. New method of determining the configuration of oximes and their derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Krivdin, L.B.; Shcherbakov, V.V.; Kalabin, G.A.

    1986-07-10

    It was shown that the direct /sup 13/C-/sup 13/C spin-spin coupling constants can be used for the unambiguous identification of the configurational isomers of oximes and their derivatives. The stereospecificity of the constants is explained by the additional contribution from the unshared electron pair of the nitrogen atom to the spin-spin coupling constant between the adjacent carbon nuclei in the cis position.

  11. Simple and efficient method of spin-polarizing a metastable helium beam by diode laser optical pumping

    International Nuclear Information System (INIS)

    Granitza, B.; Salvietti, M.; Torello, E.; Mattera, L.; Sasso, A.

    1995-01-01

    Diode laser optical pumping to produce a highly spin-polarized metastable He beam to be used in a spin-polarized metastable atom deexcitation spectroscopy experiment on magnetized surfaces is described. Efficient pumping of the beam is performed by means of an SDL-6702 distributed Bragg reflector diode laser which yields 50 mW of output power in a single longitudinal mode at 1083 nm, the resonance wavelength for the 2 3 S→2 3 P 0,1,2 (D 0 , D 1 , and D 2 ) transitions of He*. The light is circularly polarized by a quarter-wave plate, allowing easy change of the sense of atomic polarization. The laser frequency can be locked to the atomic transition for several hours by phase-sensitive detection of the saturated absorption signal in a He discharge cell. Any of the three transitions of the triplet system can be pumped with the laser but the maximum level of atomic polarization of 98.5% is found pumping the D 2 line. copyright 1995 American Institute of Physics

  12. Spin-resolved magnetic studies of focused ion beam etched nano-sized magnetic structures

    International Nuclear Information System (INIS)

    Li Jian; Rau, Carl

    2005-01-01

    Scanning ion microscopy with polarization analysis (SIMPA) is used to study the spin-resolved surface magnetic structure of nano-sized magnetic systems. SIMPA is utilized for in situ topographic and spin-resolved magnetic domain imaging as well as for focused ion beam (FIB) etching of desired structures in magnetic or non-magnetic systems. Ultra-thin Co films are deposited on surfaces of Si(1 0 0) substrates, and ultra-thin, tri-layered, bct Fe(1 0 0)/Mn/bct Fe(1 0 0) wedged magnetic structures are deposited on fcc Pd(1 0 0) substrates. SIMPA experiments clearly show that ion-induced electrons emitted from magnetic surfaces exhibit non-zero electron spin polarization (ESP), whereas electrons emitted from non-magnetic surfaces such as Si and Pd exhibit zero ESP, which can be used to calibrate sputtering rates in situ. We report on new, spin-resolved magnetic microstructures, such as magnetic 'C' states and magnetic vortices, found at surfaces of FIB patterned magnetic elements. It is found that FIB milling has a negligible effect on surface magnetic domain and domain wall structures. It is demonstrated that SIMPA can evolve into an important and efficient tool to study magnetic domain, domain wall and other structures as well as to perform magnetic depth profiling of magnetic nano-systems to be used in ultra-high density magnetic recording and in magnetic sensors

  13. Spin transport at high temperatures in epitaxial Heusler alloy/n-GaAs lateral spin valves

    Science.gov (United States)

    Peterson, Timothy A.; Christie, Kevin D.; Patel, Sahil J.; Crowell, Paul A.; Palmstrøm, Chris J.

    2015-03-01

    We report on electrical injection and detection of spin accumulation in ferromagnet/ n-GaAs lateral spin-valve devices, observed up to and above room temperature. The ferromagnet in these measurements is the Heusler alloy Co2FeSi, and the semiconductor channel is GaAs doped at 3 ×1016 cm-3. The spin signal is enhanced by operating the detection contact under forward bias. The enhancement originates from drift effects at low-temperatures and an increase of the detection efficiency at all temperatures. The detector bias dependence of the observed spin-valve signal is interpreted by taking into account the quantum well (QW) which forms in the degenerately doped region immediately behind the Schottky tunnel barrier. In particular, we believe the QW is responsible for the minority spin accumulation (majority spin current) under large forward bias. The spin diffusion length and lifetime are determined by measuring the separation dependence of the non-local spin valve signal in a family of devices patterned by electron beam lithography. A spin diffusion length of 700 nm and lifetime of 46 picoseconds are found at a temperature of 295 K. This work was supported by the NSF under DMR-1104951, the NSF MRSEC program and C-SPIN, a SRC STARNET center sponsored by MARCO and DARPA.

  14. Isomer spectroscopy in 92Ru and 95Pd

    International Nuclear Information System (INIS)

    Gorska, M.; Rejmund, M.; Schubart, R.; Grawe, H.; Heese, J.; Maier, K.H.; Spohr, K.; Fitzgerald, J.B.; Fossan, D.B.

    1996-01-01

    The parity changing γ-transitions like E1, M2, E3 in 92 Ru and 95 Pd nuclei have been investigated to probe the purity of the Shell Model. Two isomers of 92 Ru and 95 Pd have been produced in the 58 Ni + 40 Ca heavy ion reaction at 58 Ni beams energy 215 MeV. The gamma-ray transition strength have been deduced

  15. A new and unifying approach to spin dynamics and beam polarization in storage rings

    International Nuclear Information System (INIS)

    Heinemann, K.; Ellison, J.A.

    2014-09-01

    With this paper we extend our studies on polarized beams by distilling tools from the theory of principal bundles. Four major theorems are presented, one which ties invariant fields with the notion of normal form, one which allows one to compare different invariant fields, and two that relate the existence of invariant fields to the existence of certain invariant sets and relations between them. We then apply the theory to the dynamics of spin-1/2 and spin-1 particles and their density matrices describing statistically the particle-spin content of bunches. Our approach thus unifies the spin-vector dynamics from the T-BMT equation with the spin-tensor dynamics and other dynamics. This unifying aspect of our approach relates the examples elegantly and uncovers relations between the various underlying dynamical systems in a transparent way.

  16. Note: A new design for a low-temperature high-intensity helium beam source

    Science.gov (United States)

    Lechner, B. A. J.; Hedgeland, H.; Allison, W.; Ellis, J.; Jardine, A. P.

    2013-02-01

    A high-intensity supersonic beam source is a key component of any atom scattering instrument, affecting the sensitivity and energy resolution of the experiment. We present a new design for a source which can operate at temperatures as low as 11.8 K, corresponding to a beam energy of 2.5 meV. The new source improves the resolution of the Cambridge helium spin-echo spectrometer by a factor of 5.5, thus extending the accessible timescales into the nanosecond range. We describe the design of the new source and discuss experiments characterizing its performance. Spin-echo measurements of benzene/Cu(100) illustrate its merit in the study of a typical slow-moving molecular adsorbate species.

  17. A spin-filter polarimeter for low energy hydrogen and deuterium ion beams

    International Nuclear Information System (INIS)

    Lemieux, S.K.; Clegg, T.B.; Karwowski, H.J.; Thompson, W.J.; Crosson, E.R.

    1993-01-01

    An efficient polarimeter which reveals populations of individual hyperfine states of nuclear-spin-polarized H ± (or D ± ) ion beams has been tested. This device is based on unique properties of a three-level interaction in the 2S 1/2 and 2P 1/2 states of hydrogen (or deuterium) atoms, created when the incident, polarized ion beams undergo electron pickup in cesium vapour. Used on a polarized ion source, its efficiency faciy facilitates both rapid optimization and continual monitoring of parameters that affect the beam polarization. With such sources, and perhaps in applications with polarized gas jet targets, the device has potential for an absolute accuracy of better than 2%. (orig.)

  18. Topologically guided tuning of Zr-MOF pore structures for highly selective separation of C6 alkane isomers

    KAUST Repository

    Wang, Hao; Dong, Xinglong; Lin, Junzhong; Teat, Simon J.; Jensen, Stephanie; Cure, Jeremy; Alexandrov, Eugeny V.; Xia, Qibin; Tan, Kui; Wang, Qining; Olson, David H.; Proserpio, Davide M.; Chabal, Yves J.; Thonhauser, Timo; Sun, Junliang; Han, Yu; Li, Jing

    2018-01-01

    As an alternative technology to energy intensive distillations, adsorptive separation by porous solids offers lower energy cost and higher efficiency. Herein we report a topology-directed design and synthesis of a series of Zr-based metal-organic frameworks with optimized pore structure for efficient separation of C6 alkane isomers, a critical step in the petroleum refining process to produce gasoline with high octane rating. Zr6O4(OH)4(bptc)3 adsorbs a large amount of n-hexane but excluding branched isomers. The n-hexane uptake is ~70% higher than that of a benchmark adsorbent, zeolite-5A. A derivative structure, Zr6O4(OH)8(H2O)4(abtc)2, is capable of discriminating all three C6 isomers and yielding a high separation factor for 3-methylpentane over 2,3-dimethylbutane. This property is critical for producing gasoline with further improved quality. Multicomponent breakthrough experiments provide a quantitative measure of the capability of these materials for separation of C6 alkane isomers. A detailed structural analysis reveals the unique topology, connectivity and relationship of these compounds.

  19. Topologically guided tuning of Zr-MOF pore structures for highly selective separation of C6 alkane isomers

    KAUST Repository

    Wang, Hao

    2018-04-25

    As an alternative technology to energy intensive distillations, adsorptive separation by porous solids offers lower energy cost and higher efficiency. Herein we report a topology-directed design and synthesis of a series of Zr-based metal-organic frameworks with optimized pore structure for efficient separation of C6 alkane isomers, a critical step in the petroleum refining process to produce gasoline with high octane rating. Zr6O4(OH)4(bptc)3 adsorbs a large amount of n-hexane but excluding branched isomers. The n-hexane uptake is ~70% higher than that of a benchmark adsorbent, zeolite-5A. A derivative structure, Zr6O4(OH)8(H2O)4(abtc)2, is capable of discriminating all three C6 isomers and yielding a high separation factor for 3-methylpentane over 2,3-dimethylbutane. This property is critical for producing gasoline with further improved quality. Multicomponent breakthrough experiments provide a quantitative measure of the capability of these materials for separation of C6 alkane isomers. A detailed structural analysis reveals the unique topology, connectivity and relationship of these compounds.

  20. Possible measurements of the spin one observables in elastic dN, dd collisions at the NICA deuteron beams

    International Nuclear Information System (INIS)

    Sharov, V I

    2016-01-01

    The report shows the possibilities of studying the spin one observables in the elastic dN and dd interactions at the NICA collider of the VBLHEP JINR. The use of the colliding deuteron beams would allow us to carry out the measurements of the differential cross sections I 0 (dN, dd) of the elastic scattering of unpolarized deuterons and the differential cross sections I pol (dN,dd) and the vector A y (Ed,θ) and tensor A yy (Ed,θ) and A xx (E d .θ) analyzing powers in elastic collisions of the vector and tensor polarized deuterons. The planned luminosity of the colliding polarized deuteron beams will provide sufficiently high elastic events counting rate. The use of the colliding beams of the polarized deuterons for the spin one >dN and dd observables research has a number of significant advantages in comparison with the experiments with the “fixed” target. The angular acceptance of the collider detector covers the full solid angle 4π radians while the wide ranges of the energies of the dN, dd interactions and the 4-momentum transfer squared are available. (paper)

  1. Optically pumped electron spin polarized targets for use in the production of polarized ion beams

    International Nuclear Information System (INIS)

    Anderson, L.W.

    1979-01-01

    The production of relatively dense electron spin polarized alkali metal vapor targets by optical pumping with intense cw dye lasers is discussed. The target density and electron spin polarization depend on the dye laser intensity and bandwidth, the magnetic field at the target, and the electron spin depolarization time. For example in a magnetic field of 1.5 x 10 3 G, and using 1 W dye laser with a bandwidth of 10 10 Hz one can construct an electron spin polarized Na vapor target with a target thickness of 1.6 x 10 13 atoms/cm 2 and an average electron spin polarization of about 90% even though the Na atoms are completely depolarized at every wall collision. Possible uses of the electron spin polarized targets for the production of intense beams of polarized H - or 3 He - ions are discussed. (orig.)

  2. Novel method for the production of spin-aligned RI beams in projectile fragmentation reaction with the dispersion matching technique

    Energy Technology Data Exchange (ETDEWEB)

    Ichikawa, Y., E-mail: yuichikawa@phys.titech.ac.jp [Tokyo Institute of Technology, Department of Physics (Japan); Ueno, H. [RIKEN Nishina Center (Japan); Ishii, Y. [Tokyo Institute of Technology, Department of Physics (Japan); Furukawa, T. [Tokyo Metropolitan University, Department of Physics (Japan); Yoshimi, A. [Okayama University, Research Core for Extreme Quantum World (Japan); Kameda, D.; Watanabe, H.; Aoi, N. [RIKEN Nishina Center (Japan); Asahi, K. [Tokyo Institute of Technology, Department of Physics (Japan); Balabanski, D. L. [Bulgarian Academy of Sciences, Institute for Nuclear Research and Nuclear Energy (Bulgaria); Chevrier, R.; Daugas, J. M. [CEA, DAM, DIF (France); Fukuda, N. [RIKEN Nishina Center (Japan); Georgiev, G. [CSNSM, IN2P3-CNRS, Universite Paris-sud (France); Hayashi, H.; Iijima, H. [Tokyo Institute of Technology, Department of Physics (Japan); Inabe, N. [RIKEN Nishina Center (Japan); Inoue, T. [Tokyo Institute of Technology, Department of Physics (Japan); Ishihara, M.; Kubo, T. [RIKEN Nishina Center (Japan); and others

    2013-05-15

    A novel method to produce spin-aligned rare-isotope (RI) beam has been developed, that is the two-step projectile fragmentation method with a technique of dispersion matching. The present method was verified in an experiment at the RIKEN RIBF, where an RI beam of {sup 32}Al with spin alignment of 8(1) % was successfully produced from a primary beam of {sup 48}Ca, with {sup 33}Al as an intermediate nucleus. Figure of merit of the present method was found to be improved by a factor larger than 50 compared with a conventional method employing single-step projectile fragmentation.

  3. Beam and spin dynamics in the fast ramping storage ring ELSA: Concepts and measures to increase beam energy, current and polarization

    Science.gov (United States)

    Hillert, Wolfgang; Balling, Andreas; Boldt, Oliver; Dieckmann, Andreas; Eberhardt, Maren; Frommberger, Frank; Heiliger, Dominik; Heurich, Nikolas; Koop, Rebecca; Klarner, Fabian; Preisner, Oliver; Proft, Dennis; Pusch, Thorsten; Roth, André; Sauerland, Dennis; Schedler, Manuel; Schmidt, Jan Felix; Switka, Michael; Thiry, Jens-Peter; Wittschen, Jürgen; Zander, Sven

    2017-01-01

    The electron accelerator facility ELSA has been operated for almost 30 years serving nuclear physics experiments investigating the sub-nuclear structure of matter. Within the 12 years funding period of the collaborative research center SFB/TR 16, linearly and circularly polarized photon beams with energies up to more than 3 GeV were successfully delivered to photoproduction experiments. In order to fulfill the increasing demands on beam polarization and intensity, a comprehensive research and upgrade program has been carried out. Beam and spin dynamics have been studied theoretically and experimentally, and sophisticated new devices have been developed and installed. The improvements led to a significant increase of the available beam polarization and intensity. A further increase of beam energy seems feasible with the implementation of superconducting cavities.

  4. Observation of the new isomer 32mAl

    International Nuclear Information System (INIS)

    Robinson, M.; Halse, P.; Lewitowicz, M.; Saint-Laurent, M.G.

    1995-01-01

    A new isomer in the neutron-rich isotope 32 Al has been identified among the fragmentation products of a 40 Ar 16+ beam using the LISE spectrometer at GANIL. The population of the isomeric state was inferred from the detection of γ-radiation following its decay in coincidence with its respective heavy-ion implantation signal. The half-life of 32m Al was determined to be 240 ± 30 ns. (author)

  5. Proposed method to produce a highly polarized e+ beam for future linear colliders

    International Nuclear Information System (INIS)

    Okugi, Toshiyuki; Chiba, Masami; Kurihara, Yoshimasa

    1996-01-01

    We propose a method to produce a spin-polarized e + beam using e + e - pair-creation by circularly polarized photons. Assuming Compton scattering of an unpolarized e - beam and circularly polarized laser light, scattered γ-rays at the high end of the energy spectrum are also circularly polarized. If those γ-rays are utilized to create e ± pairs on a thin target, the spin-polarization is preserved for e + 's at the high end of their energy spectrum. By using the injector linac of Accelerator Test Facility at KEK and a commercially available Nd:YAG pulse laser, we can expect about 10 5 polarized e + 's per second with a degree of polarization of 80% and a kinetic energy of 35-80 MeV. The apparatus for creation and measurement of polarized e + 's is being constructed. We present new idea for possible application of our method to future linear colliders by utilizing a high-power CO 2 laser. (author)

  6. High spin structure of {sup 35}Cl and the sd-fp shell gap

    Energy Technology Data Exchange (ETDEWEB)

    Kshetri, Ritesh [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata 700064 (India); Saha Sarkar, M. [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata 700064 (India)]. E-mail: maitrayee.sahasarkar@saha.ac.in; Ray, Indrani [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata 700064 (India); Banerjee, P. [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata 700064 (India); Sarkar, S. [Department of Physics, Bengal Engineering and Science University, Shibpur, Howrah 711103 (India); Raut, Rajarshi [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata 700064 (India); Goswami, A. [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata 700064 (India); Chatterjee, J.M. [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata 700064 (India); Chattopadhyay, S. [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata 700064 (India); Datta Pramanik, U. [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata 700064 (India); Mukherjee, A. [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata 700064 (India); Dey, C.C. [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata 700064 (India); Bhattacharya, S. [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata 700064 (India); Dasmahapatra, B. [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata 700064 (India); Bhowal, Samit [Department of Physics, Surendranath Evening College, Kolkata 700009 (India); Gangopadhyay, G. [University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata 700009 (India); Datta, P. [Anandamohan College, 102/1, Raja Rammohan Sarani, Kolkata 700009 (India); Jain, H.C. [Tata Institute of Fundamental Research, Mumbai 400005 (India); Bhowmik, R.K. [Inter-University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India); Muralithar, S.; Singh, R.P.; Kumar, R. [Inter-University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India)

    2007-01-15

    The high spin states of {sup 35}Cl have been studied by in-beam {gamma}-spectroscopy following the fusion-evaporation reaction {sup 12}C({sup 28}Si,{alpha}p){sup 35}Cl at E{sub lab}=70 and 88 MeV, using the Indian National Gamma (Clover) Array (INGA). Lifetimes of six new excited states have been estimated for the first time. To understand the underlying structure of the levels and transition mechanisms, experimental results have been compared with those from the large basis cross-shell shell model calculations. Involvement of orbitals from fp shell and squeezing of the sd-fp shell gap seem to be essential for reliable reproduction of high spin states.

  7. High-spin states of 39K and 42Ca, ch. 4

    International Nuclear Information System (INIS)

    Eggenhuisen, H.H.; Elstrom, L.P.; Engelbertink, G.A.P.; Aarts, H.J.M.

    1978-01-01

    High-spin states of 39 K and 42 Ca have been investigated with the 28 Si( 16 O, αpγ) 39 K and 28 Si( 16 O, 2pγ) 42 Ca reactions at a beam energy of 45 MeV. Gamma-gamma coincidence, γ-ray angular distribution and linear polarization measurements were performed with a Ge(Li)-NaI(Tl) Compton suppression spectrometer and a three-crystal Ge(Li) Compton polarimeter. High-spin states of 39 K at Esub(x)=7.14, 7.78 and 8.03 and of 42 Ca at Esub(x)=7.75 MeV are established. Unambiguous spin-parity assignments of Jsup(π)=11/2 - , 13/2 - , 15/2 + , 15/2 - , 17/2 + and 19/2 - to the 39 K levels at Esub(x)=5.35, 5.72, 6.48, 7.14, 7.78 and 8.03 MeV and of 6 - , 7 - , 8 - , 9 - and (8,10) to the 42 Ca levels at Esub(x)=5.49, 6.15, 6.41, 6.55 and 7.37 MeV, respectively, have been obtained. Further spin-parity restrictions, lifetime limits, excitation energies, branching ratios and multipole mixing ratios are reported. Discrepancies with previous Jsup(π) assignments are discussed in detail. (Auth.)

  8. Short-lived isomers in 94Rb

    International Nuclear Information System (INIS)

    Tsekhanovich, I.; Dare, J. A.; Smith, A. G.; Varley, B. J.; Simpson, G. S.; Urban, W.; Soldner, T.; Jolie, J.; Linnemann, A.; Orlandi, R.; Smith, J. F.; Scherillo, A.; Rzaca-Urban, T.; Zlomaniec, A.; Dorvaux, O.; Gall, B. J. P.; Roux, B.

    2008-01-01

    The medium-spin structure of the neutron-rich, odd-odd nucleus 94 Rb was studied by means of γ-ray spectroscopy. Excited levels were populated in the neutron-induced fission of 235 U and in the spontaneous fission of 252 Cf and 248 Cm. Two isomeric states were found at 1485.2 and 2074.8 keV with half-lives of 18 and 107 ns, respectively. The probable structures of the two isomers involve the fully aligned, proton-neutron configurations [π(g 9/2 ) x ν(g 7/2 )] 8 + and [π(g 9/2 ) x ν(h 11/2 )] 10 - , respectively. These new data give information on the single-particle energies in the region

  9. High-spin states in the A=39 mirror nuclei 39Ca and 39K

    International Nuclear Information System (INIS)

    Andersson, T.; Rudolph, D.; Fahlander, C.; Eberth, J.; Thomas, H.G.; Haslip, D.; Svensson, C.E.; Waddington, J.C.; LaFosse, D.R.; Sarantites, D.G.; Weintraub, W.; Wilson, J.N.; Brown, B.A.

    1999-01-01

    High-spin states of the mass A=39 mirror pair 39 K and 39 Ca were investigated via the fusion-evaporation reaction 28 Si+ 16 O at 125 MeV beam energy. The gammasphere array in conjunction with the 4π charged-particle detector array microball and neutron detectors was used to detect γ rays in coincidence with evaporated light particles. The results of the first high-spin study of the T z =-1/2 nucleus 39 Ca are discussed in terms of mirror symmetry and compared to spherical shell-model calculations in the 1d 3/2 -1f 7/2 configuration space. (orig.)

  10. High spin rotational bands in 65 Zn

    Indian Academy of Sciences (India)

    The nucleus 30 65 Zn was studied using the 52Cr(16O, 2)65Zn reaction at a beam energy of 65 MeV. The level scheme is extended up to an excitation energy of 10.57 MeV for spin-parity (41/2ħ) with several newly observed transitions placed in it.

  11. Highly efficient high-performance liquid chromatographic separation of xylene isomers and phthalate acid esters on a homemade DUT-67(Zr) packed column.

    Science.gov (United States)

    Chen, Sha; Li, Xiao-Xin; Feng, Fan; Li, Sumei; Han, Jia-Hui; Jia, Zi-Yi; Shu, Lun; Somsundaran, P; Li, Jian-Rong

    2018-04-16

    In this study, the baseline separations of xylene isomers and phthalate acid esters on a homemade DUT-67(Zr) packed column were achieved, respectively. The high selectivity for xylene isomers and phthalate acid esters was obtained with the increase of temperature and decrease of the retention time. The hydrophobicity of xylene isomers and phthalate acid esters caused the different separation time on the DUT-67(Zr) packed column. The relative standard deviation values of retention time, peak area, peak height and half peak width for five repeat separation of the xylene isomers were 0.26-0.35, 2.11-2.26, 1.51-2.03, and 0.29-0.77%, and the values of the phthalate acid esters on DUT-67(Zr) column were 0.1-0.4, 4.4-5.2, 3.9-6.3, and 0.6-2.1%, respectively. The thermodynamic properties indicated that the separation of xylene isomers was controlled by ΔH and ΔS, but the separation of phthalate acid esters was mainly controlled by ΔS. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  12. Correlating states across isomers in 152Ho isotope

    International Nuclear Information System (INIS)

    Pramanik, Dibyadyuti; Dey, G.; Sarkar, S.; Bisoi, A.; Ray, S.; Kshetri, R.; Ray, I.; Pradhan, M.K.; Goswami, A.; Banerjee, P.; Mukherjee, A.; Bhattacharya, S.; Saha Sarkar, M.; Chakraborty, A.; Krishichayan; Ganguly, S.; Ray Basu, M.; Ganguly, G.; Raut, R.; Ghugre, S.S.; Sinha, A.K.; Basu, S.K.

    2011-01-01

    The odd-odd 152 Ho (N = 85) is a very interesting candidate for investigation of interplay of single - particle oblate states and prolate collective states, because it is situated between the N=82 shell closure and the strongly collective N > 87 region. It has been shown that there is a possibility of shape coexistence even at lower spins in 153 Ho. The structural evolution of Ho isotopes from A = 151 to 154 has also been studied. The features observed have been interpreted theoretically using shell model as well as Total Routhian surface calculations. Results have been combined with that for 153 Ho to study the evolution of structural features in these Ho isotopes with increasing neutron numbers and increasing spin. In the present work, experimental data on 152 Ho have been analysed to connect the three groups of transitions and confirm the possibility of a fourth isomer in the excitation spectrum

  13. RHIC spin program

    International Nuclear Information System (INIS)

    Bunce, G.

    1995-01-01

    Colliding beams of high energy polarized protons at RHIC is an excellent way to probe the polarization of gluons, u and d quarks in a polarized proton. RHIC is the Relativistic Heavy Ion Collider being built now at Brookhaven in the ISABELLE tunnel. It is designed to collide gold ions on gold ions at 100 GeV/nucleon. Its goal is to discover the quark-gluon plasma, and the first collisions are expected in March, 1999. RHIC will also make an ideal polarized proton collider with high luminosity and 250 GeV x 250 GeV collisions. The RHIC spin physics program is: (1) Use well-understood perturbative QCD probes to study non-perturbative confining dynamics in QCD. We will measure - gluon and sea quark polarization in a polarized proton, polarization of quarks in a transversely polarized proton. (2) Look for additional surprises using the first high energy polarized proton collider. We will - look for the expected maximal parity violation in W and Z boson production, - search for parity violation in other processes, - test parton models with spin. This lecture is organized around a few of the key ideas: Siberian Snakes--What are they? High energy proton-proton collisions are scatters of quarks and leptons, at high x, a polarized proton beam is a beam of polarized u quarks, quark and gluon collisions are very sensitive to spin. We will discuss two reactions: how direct photon production measures gluon polarization, and how W + boson production measures u and d quark polarization

  14. RHIC spin program

    Energy Technology Data Exchange (ETDEWEB)

    Bunce, G.

    1995-12-31

    Colliding beams of high energy polarized protons at RHIC is an excellent way to probe the polarization of gluons, u and d quarks in a polarized proton. RHIC is the Relativistic Heavy Ion Collider being built now at Brookhaven in the ISABELLE tunnel. It is designed to collide gold ions on gold ions at 100 GeV/nucleon. Its goal is to discover the quark-gluon plasma, and the first collisions are expected in March, 1999. RHIC will also make an ideal polarized proton collider with high luminosity and 250 GeV x 250 GeV collisions. The RHIC spin physics program is: (1) Use well-understood perturbative QCD probes to study non-perturbative confining dynamics in QCD. We will measure - gluon and sea quark polarization in a polarized proton, polarization of quarks in a transversely polarized proton. (2) Look for additional surprises using the first high energy polarized proton collider. We will - look for the expected maximal parity violation in W and Z boson production, - search for parity violation in other processes, - test parton models with spin. This lecture is organized around a few of the key ideas: Siberian Snakes--What are they? High energy proton-proton collisions are scatters of quarks and leptons, at high x, a polarized proton beam is a beam of polarized u quarks, quark and gluon collisions are very sensitive to spin. We will discuss two reactions: how direct photon production measures gluon polarization, and how W{sup +} boson production measures u and d quark polarization.

  15. Spin dynamics in electron synchrotrons

    International Nuclear Information System (INIS)

    Schmidt, Jan Felix

    2017-01-01

    Providing spin polarized particle beams with circular accelerators requires the consideration of depolarizing resonances which may significantly reduce the desired degree of polarization at specific beam energies. The corresponding spin dynamical effects are typically analyzed with numerical methods. In case of electron beams the influence of the emission of synchrotron radiation has to be taken into account. On short timescales, as in synchrotrons with a fast energy ramp or in damping rings, spin dynamics are investigated with spin tracking algorithms. This thesis presents the spin tracking code Polematrix as a versatile tool to study the impact of synchrotron radiation on spin dynamics. Spin tracking simulations have been performed based on the well established particle tracking code Elegant. The numerical studies demonstrate effects which are responsible for beam depolarization: Synchrotron side bands of depolarizing resonances and decoherence of spin precession. Polematrix can be utilized for any electron accelerator with minimal effort as it imports lattice files from the tracking programs MAD-X or Elegant. Polematrix has been published as open source software. Currently, the Electron Stretcher Accelerator ELSA at Bonn University is the only electron synchrotron worldwide providing a polarized beam. Integer and intrinsic depolarizing resonances are compensated with dedicated countermeasures during the fast energy ramp. Polarization measurements from ELSA demonstrate the particular spin dynamics of electrons and confirm the results of the spin tracking code Polematrix.

  16. Nuclear isomers and their possible applications

    International Nuclear Information System (INIS)

    Jain, Ashok Kumar

    2016-01-01

    Nuclear isomers are the long lived excited states of nuclei having half-lives much larger than the half-lives of normal excited states. They are also known as the meta-stable states of atomic nuclei which are formed in nuclear reactions or, in radioactive decay of nuclei. Typical half-lives of isomers may range from nanoseconds to years. One of the most direct applications of nuclear isomers is in nuclear medicine. Radioisotopes are being widely used for imaging and therapeutic applications. They are particularly suitable for Single Photon Emission Computer Tomography (SPECT) imaging, where a single and relatively low energy γ ray photon is emitted. The most common example is "9"9"mTc (T_1_/_2 = 6 hours) which decays via a 142 keV γ ray photon. Examples of other isomers that are used in medical applications will be presented. Relatively long-lived isomers, such as "1"9"3"mPt and "1"9"5"mPt, for example, are being used in certain cancer treatments. Because of the high multi-pole order of the decaying transitions, most of the decays occur via internal conversion electrons, with subsequent emission of Auger electrons that can be used to kill various cancer cells. There are also some cases where the isomer decays by positron emission and is used for Positron Emission Tomography (PET) imaging

  17. Target and beam-target spin asymmetries in exclusive π+ and π- electroproduction with 1.6- to 5.7-GeV electrons

    Science.gov (United States)

    Bosted, P. E.; Biselli, A. S.; Careccia, S.; Dodge, G.; Fersch, R.; Guler, N.; Kuhn, S. E.; Pierce, J.; Prok, Y.; Zheng, X.; Adhikari, K. P.; Adikaram, D.; Akbar, Z.; Amaryan, M. J.; Anefalos Pereira, S.; Asryan, G.; Avakian, H.; Badui, R. A.; Ball, J.; Baltzell, N. A.; Battaglieri, M.; Batourine, V.; Bedlinskiy, I.; Boiarinov, S.; Briscoe, W. J.; Bültmann, S.; Burkert, V. D.; Cao, T.; Carman, D. S.; Celentano, A.; Chandavar, S.; Charles, G.; Chetry, T.; Ciullo, G.; Clark, L.; Colaneri, L.; Cole, P. L.; Contalbrigo, M.; Cortes, O.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; Deur, A.; Djalali, C.; Dupre, R.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Eugenio, P.; Fanchini, E.; Fedotov, G.; Filippi, A.; Fleming, J. A.; Forest, T. A.; Fradi, A.; Garçon, M.; Gevorgyan, N.; Ghandilyan, Y.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Gleason, C.; Gohn, W.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guo, L.; Hafidi, K.; Hanretty, C.; Harrison, N.; Hattawy, M.; Heddle, D.; Hicks, K.; Holtrop, M.; Hughes, S. M.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jenkins, D.; Jiang, H.; Jo, H. S.; Joo, K.; Joosten, S.; Keller, D.; Khandaker, M.; Kim, W.; Klein, A.; Klein, F. J.; Kubarovsky, V.; Kuleshov, S. V.; Lanza, L.; Lenisa, P.; Livingston, K.; Lu, H. Y.; MacGregor, I. J. D.; Markov, N.; McCracken, M. E.; McKinnon, B.; Meyer, C. A.; Minehart, R.; Mirazita, M.; Mokeev, V.; Movsisyan, A.; Munevar, E.; Munoz Camacho, C.; Nadel-Turonski, P.; Net, L. A.; Ni, A.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Paremuzyan, R.; Park, K.; Pasyuk, E.; Peng, P.; Phelps, W.; Pisano, S.; Pogorelko, O.; Price, J. W.; Procureur, S.; Protopopescu, D.; Puckett, A. J. R.; Raue, B. A.; Ripani, M.; Rizzo, A.; Rosner, G.; Rossi, P.; Roy, P.; Sabatié, F.; Salgado, C.; Schumacher, R. A.; Seder, E.; Sharabian, Y. G.; Simonyan, A.; Skorodumina, Iu.; Smith, G. D.; Sparveris, N.; Stankovic, Ivana; Stepanyan, S.; Strakovsky, I. I.; Strauch, S.; Sytnik, V.; Taiuti, M.; Tian, Ye; Torayev, B.; Ungaro, M.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D. P.; Wei, X.; Weinstein, L. B.; Wood, M. H.; Zachariou, N.; Zana, L.; Zhang, J.; Zhao, Z. W.; Zonta, I.; CLAS Collaboration

    2016-11-01

    Beam-target double-spin asymmetries and target single-spin asymmetries in exclusive π+ and quasiexclusive π- electroproduction were obtained from scattering of 1.6- to 5.7-GeV longitudinally polarized electrons from longitudinally polarized protons (for π+) and deuterons (for π-) using the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Lab. The kinematic range covered is 1.1 1.5 GeV. Very large target-spin asymmetries are observed for W >1.6 GeV. When combined with cross-section measurements, the present results can provide powerful constraints on nucleon resonance amplitudes at moderate and large values of Q2, for resonances with masses as high as 2.3 GeV.

  18. Molecular spinning by a chiral train of short laser pulses

    Science.gov (United States)

    Floß, Johannes; Averbukh, Ilya Sh.

    2012-12-01

    We provide a detailed theoretical analysis of molecular rotational excitation by a chiral pulse train, a sequence of linearly polarized pulses with the polarization direction rotating from pulse to pulse by a controllable angle. Molecular rotation with a preferential rotational sense (clockwise or counterclockwise) can be excited by this scheme. We show that the directionality of the rotation is caused by quantum interference of different excitation pathways. The chiral pulse train is capable of selective excitation of molecular isotopologs and nuclear spin isomers in a mixture. We demonstrate this using 14N2 and 15N2 as examples for isotopologs and para- and ortho-nitrogen as examples for nuclear-spin isomers.

  19. Rotational bands on few-particle excitations of very high spin

    International Nuclear Information System (INIS)

    Andersson, C.G.; Krumlinde, J.; Leander, G.; Szymanski, Z.

    1980-01-01

    An RPA formalism is developed to investigate the existence and properties of slow collective rotation around a non-symmetry axis, when there already exists a large angular momentum K along the symmetry axis built up by aligned single-particle spins. It is found necessary to distinguish between the collectivity and the repeatability of the rotational excitations. First the formalism is applied to bands on hihg-K isomers in the well-deformed nucleus 176 Hf, where the rotational-model picture is reproduced for intermediate K-values in agreement with experiment. At high K there is a suppression of the collectivity corresponding to the diminishing vector-coupling coefficient of the rotational model, but the repeatability actually improves. The moment of inertia is predicted to remain substantially smaller than the rigid-body value so the bands slope up steeply from the yrast line at spins where pairing effects are gone. A second application is to the initially spherical nucleus 212 Rn, which is believed to acquire an oblate deformation that increases steadily with K due to the oblate shape of the aligned orbitals. In this case the repeatable excitations come higher above the yrast line than in 176 Hf, even at comparable deformations. Some collective states may occur very close to yrast, but these are more like dressed singleparticle excitations. The main differences between the two nuclei studied is interpreted as a general consequence of their different shell structure. (author)

  20. Isomer-specific combustion chemistry in allene and propyne flames

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Nils; Miller, James A. [Combustion Research Facility, Sandia National Laboratories, Livermore, CA 94551 (United States); Westmoreland, Phillip R. [Department of Chem. Engineering, University of Massachusetts, Amherst, MA 01003 (United States); Kasper, Tina [Combustion Research Facility, Sandia National Laboratories, Livermore, CA 94551 (United States); Department of Chemistry, Bielefeld University, D-33615 Bielefeld (Germany); Kohse-Hoeinghaus, Katharina [Department of Chemistry, Bielefeld University, D-33615 Bielefeld (Germany); Wang, Juan; Cool, Terrill A. [School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853 (United States)

    2009-11-15

    A combined experimental and modeling study is performed to clarify the isomer-specific combustion chemistry in flames fueled by the C{sub 3}H{sub 4} isomers allene and propyne. To this end, mole fraction profiles of several flame species in stoichiometric allene (propyne)/O{sub 2}/Ar flames are analyzed by means of a chemical kinetic model. The premixed flames are stabilized on a flat-flame burner under a reduced pressure of 25 Torr (=33.3 mbar). Quantitative species profiles are determined by flame-sampling molecular-beam mass spectrometry, and the isomer-specific flame compositions are unraveled by employing photoionization with tunable vacuum-ultraviolet synchrotron radiation. The temperature profiles are measured by OH laser-induced fluorescence. Experimental and modeled mole fraction profiles of selected flame species are discussed with respect to the isomer-specific combustion chemistry in both flames. The emphasis is put on main reaction pathways of fuel consumption, of allene and propyne isomerization, and of isomer-specific formation of C{sub 6} aromatic species. The present model includes the latest theoretical rate coefficients for reactions on a C{sub 3}H{sub 5} potential [J.A. Miller, J.P. Senosiain, S.J. Klippenstein, Y. Georgievskii, J. Phys. Chem. A 112 (2008) 9429-9438] and for the propargyl recombination reactions [Y. Georgievskii, S.J. Klippenstein, J.A. Miller, Phys. Chem. Chem. Phys. 9 (2007) 4259-4268]. Larger peak mole fractions of propargyl, allyl, and benzene are observed in the allene flame than in the propyne flame. In these flames virtually all of the benzene is formed by the propargyl recombination reaction. (author)

  1. RHIC SPIN PROGRAM: MACHINE ASPECTS AND RECENT PROGRESS

    International Nuclear Information System (INIS)

    ROSER, T.

    1999-01-01

    High energy polarized beam collisions will open up the unique physics opportunities of studying spin effects in hard processes. However, the acceleration of polarized beams in circular accelerators is complicated by the numerous depolarizing spin resonances. Using a partial Siberian Snake and a rf dipole that ensure stable adiabatic spin motion during acceleration has made it possible to accelerate polarized protons to 25 GeV at the Brookhaven AGS. Full Siberian Snakes and polarimeters are being developed for RHIC to make the acceleration of polarized protons to 250 GeV possible

  2. Topologically guided tuning of Zr-MOF pore structures for highly selective separation of C6 alkane isomers

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hao [Rutgers Univ., Piscataway, NJ (United States). Department of Chemistry and Chemical Biology; Dong, Xinglong [King Abdullah University of Science and Technology, Thuwal (Saudi Arabia). Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division; Lin, Junzhong [Peking University, Beijing (China). College of Chemistry and Molecular Engineering; Teat, Simon J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS); Jensen, Stephanie [Wake Forest University, Winston-Salem, NC (United States). Department of Physics; Cure, Jeremy [Univ. of Texas-Dallas, Richardson, TX (United States). Department of Materials Science & Engineering; Alexandrov, Eugeny V. [Samara University (Russia). Samara Center for Theoretical Materials Science (SCTMS; Xia, Qibin [Rutgers Univ., Piscataway, NJ (United States). Department of Chemistry and Chemical Biology; South China University of Technology, Guangzhou (China). School of Chemistry and Chemical Engineering; Tan, Kui [Univ. of Texas-Dallas, Richardson, TX (United States). Department of Materials Science & Engineering; Wang, Qining [Rutgers Univ., Piscataway, NJ (United States). Department of Chemistry and Chemical Biology; Olson, David H. [Rutgers Univ., Piscataway, NJ (United States). Department of Chemistry and Chemical Biology; Proserpio, Davide M. [Samara University (Russia). Samara Center for Theoretical Materials Science (SCTMS; Università degli Studi di Milano, Milano (Italy). Dipartimento di Chimica; Chabal, Yves J. [Univ. of Texas-Dallas, Richardson, TX (United States). Department of Materials Science & Engineering; Thonhauser, Timo [Wake Forest University, Winston-Salem, NC (United States). Department of Physics; Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Department of Chemistry; Sun, Junliang [Peking University, Beijing (China). College of Chemistry and Molecular Engineering; Han, Yu [King Abdullah University of Science and Technology, Thuwal (Saudi Arabia). Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division; Li, Jing [Rutgers Univ., Piscataway, NJ (United States). Department of Chemistry and Chemical Biology

    2018-05-01

    As an alternative technology to energy intensive distillations, adsorptive separation by porous solids offers lower energy cost and higher efficiency. Herein we report a topology-directed design and synthesis of a series of Zr-based metal-organic frameworks with optimized pore structure for efficient separation of C6 alkane isomers, a critical step in the petroleum refining process to produce gasoline with high octane rating. Zr6O4(OH)4(bptc)3 adsorbs a large amount of n-hexane but excluding branched isomers. The n-hexane uptake is ~70% higher than that of a benchmark adsorbent, zeolite-5A. A derivative structure, Zr6O4(OH)8(H2O)4(abtc)2, is capable of discriminating all three C6 isomers and yielding a high separation factor for 3-methylpentane over 2,3-dimethylbutane. This property is critical for producing gasoline with further improved quality. Multicomponent breakthrough experiments provide a quantitative measure of the capability of these materials for separation of C6 alkane isomers. A detailed structural analysis reveals the unique topology, connectivity and relationship of these compounds.

  3. High-spin lifetime measurements in the N=Z nucleus Kr72

    Science.gov (United States)

    Andreoiu, C.; Svensson, C. E.; Afanasjev, A. V.; Austin, R. A. E.; Carpenter, M. P.; Dashdorj, D.; Finlay, P.; Freeman, S. J.; Garrett, P. E.; Greene, J.; Grinyer, G. F.; Görgen, A.; Hyland, B.; Jenkins, D.; Johnston-Theasby, F.; Joshi, P.; Machiavelli, A. O.; Moore, F.; Mukherjee, G.; Phillips, A. A.; Reviol, W.; Sarantites, D. G.; Schumaker, M. A.; Seweryniak, D.; Smith, M. B.; Valiente-Dobón, J. J.; Wadsworth, R.

    2007-04-01

    High-spin states in the N=Z nucleus Kr72 have been populated in the Ca40(Ca40, 2α)Kr72 fusion-evaporation reaction at a beam energy of 165 MeV using the Gammasphere array for γ-ray detection coupled to the Microball array for charged particle detection. The previously observed bands in Kr72 were extended to an excitation energy of ˜24 MeV and angular momentum of 30ℏ. Using the Doppler shift attenuation method the lifetimes of high-spin states were measured for the first time. Excellent agreement between the results of calculations within the isovector mean field theory and experiment is observed both for rotational and deformation properties. No enhancement of quadrupole deformation expected in the presence of isoscalar t=0 np pairing is observed. Current data do not show any evidence for the existence of the isoscalar np pairing.

  4. 1H, 13C and 13N chemical shifts and 1H-15N and 13C-15N heteronuclear spin-spin coupling constants n the NMR spectra of 5-substituted furfural oximes

    International Nuclear Information System (INIS)

    Popelis, Yu.Yu.; Liepin'sh, E.E.; Lukevits, E.Ya.

    1986-01-01

    The 1 H, 13 C, and 15 N NMR spectra of 15 N-enriched 5-substituted furfural oximes were investigated. It was shown that the chemical shifts of the ring atoms and the oxime group correlate satisfactorily with the F and R substituent constants, whereas their sensitivity to the effect of the substituents is lower than in monosubstituted furan derivatives. The constants of spin-spin coupling between the ring protons and the oxime group were determined. An analysis of the 1 H- 1 H spin-spin coupling constants (SSCC) on the basis of their stereospecificity indicates that the E isomers have primarily an s-trans conformation in polar dimethyl sulfoxide, whereas the Z isomers, on the other hand, have an s-cis conformation. The signs of the direct and geminal 13 C- 15 N SSCC were determined for 5-trimethylsilylfurfural oxime

  5. A measurement of the absolute neutron beam polarization produced by an optically pumped 3He neutron spin filter

    International Nuclear Information System (INIS)

    Rich, D.R.; Bowman, J.D.; Crawford, B.E.; Delheij, P.P.J.; Espy, M.A.; Haseyama, T.; Jones, G.; Keith, C.D.; Knudson, J.; Leuschner, M.B.; Masaike, A.; Masuda, Y.; Matsuda, Y.; Penttilae, S.I.; Pomeroy, V.R.; Smith, D.A.; Snow, W.M.; Szymanski, J.J.; Stephenson, S.L.; Thompson, A.K.; Yuan, V.

    2002-01-01

    The capability of performing accurate absolute measurements of neutron beam polarization opens a number of exciting opportunities in fundamental neutron physics and in neutron scattering. At the LANSCE pulsed neutron source we have measured the neutron beam polarization with an absolute accuracy of 0.3% in the neutron energy range from 40 meV to 10 eV using an optically pumped polarized 3 He spin filter and a relative transmission measurement technique. 3 He was polarized using the Rb spin-exchange method. We describe the measurement technique, present our results, and discuss some of the systematic effects associated with the method

  6. Abrupt relaxation in high-spin molecules

    International Nuclear Information System (INIS)

    Chang, C.-R.; Cheng, T.C.

    2000-01-01

    Mean-field model suggests that the rate of resonant quantum tunneling in high-spin molecules is not only field-dependent but also time-dependent. The relaxation-assisted resonant tunneling in high-spin molecules produces an abrupt magnetization change during relaxation. When the applied field is very close to the resonant field, a time-dependent interaction field gradually shifts the energies of different collective spin states, and magnetization tunneling is observed as two energies of the spin states coincide

  7. Nuclear spin polarized alkali beams (Li and Na): Production and acceleration

    International Nuclear Information System (INIS)

    Jaensch, H.; Becker, K.; Blatt, K.; Leucker, H.; Fick, D.

    1987-01-01

    Recent improvements of the Heidelberg source for polarized heavy ions (PSI) are described. By means of optical pumping in combination with the existing multipole separation magnet the beam figure of merit (polarization 2 x intensity) was doubled. 7 Li and 23 Na atomic beams can now be produced in pure hyperfine magnetic substates. Fast switching of the polarization is achieved by an adiabatic medium field transition. The hyperfine magnetic substate population is determined by laser-induced fluorescence spectroscopy. In routine operation atomic beams with nuclear polarization p α ≥0.85 (α=z, zz) are obtained. The acceleration of polarized 23 Na - ions by a 12 MV tandem accelerator introduces a new problem: the energy at the terminal stripper foil is not sufficient to produce a usable yield of naked ions. For partially stripped ions hyperfine interaction of the remaining electrons with the nuclear spin reduces the nuclear polarization. Using in addition the Heidelberg postaccelerator 23 Na 9+ beams of energies between 49 and 184 MeV were obtained with an alignment on target of P zz ≅0.45. 7 Li beams have also been accelerated up to 45 MeV with an alignment of P zz =0.69. (orig.)

  8. Nuclear spectroscopic studies. Progress report, June 1, 1979-May 31, 1980

    International Nuclear Information System (INIS)

    Bingham, C.R.; Riedinger, L.L.; Guidry, M.W.

    1980-01-01

    Research conducted during the year ending May 31, 1980 is reported. Work is described in the following areas: radioactive decay studies, in-beam spectroscopy of high-spin states, inelastic scattering and reactions of heavy ions from deformed nuclei, and alpha decay of high-spin short-lived isomers. Particularly significant results were obtained on the band structure of light Yb nuclei. Activities relating to facilities development and administrative matters are also included, along with lists of references and publications. 14 figures

  9. Neutron spin optics: Fundamentals and verification

    Energy Technology Data Exchange (ETDEWEB)

    Pleshanov, N.K., E-mail: pleshanov_nk@pnpi.nrcki.ru

    2017-05-01

    Neutron spin optics (NSO) based on quantum aspects of the neutron interaction with magnetically anisotropic layers signifies transition in polarized neutron optics from 1D (spin selection) to 3D (spin manipulations). It may essentially widen the functionality of neutron optics. Among the advantages of NSO are compactness, zero-field option (guide fields are optional) and multi-functionality (beam spectrum, beam divergence and spin manipulations can be handled at the same time). Prospects in improving and developing neutron mirror spin turners (incl. flippers) are discussed. Two approaches to measurement of the efficiency of mirror flippers are introduced. The efficiency of a multilayer-backed neutron mirror flipper for monochromatic beams was found to be 97.5±0.5%. Such mirror flippers can combine monochromatization of a polarized beam with flipping spins of the monochromatized neutrons. To improve their performance, account of the spin-dependent refraction in the magnetic layer should be taken. For a monochromatic beam, supermirror-backed flippers are shown to be more advantageous, with a gain in intensity up to 4 times.

  10. Spin Physics at COMPASS

    International Nuclear Information System (INIS)

    Schill, Christian

    2012-01-01

    The COMPASS experiment is a fixed target experiment at the CERN SPS using muon and hadron beams for the investigation of the spin structure of the nucleon and hadron spectroscopy. The main objective of the muon physics program is the study of the spin of the nucleon in terms of its constituents, quarks and gluons. COMPASS has accumulated data during 6 years scattering polarized muons off longitudinally or transversely polarized deuteron ( 6 LiD) or proton (NH 3 ) targets. Results for the gluon polarization are obtained from longitudinal double spin cross section asymmetries using two different channels, open charm production and high transverse momentum hadron pairs, both proceeding through the photon-gluon fusion process. Also, the longitudinal spin structure functions of the proton and the deuteron were measured in parallel as well as the helicity distributions for the three lightest quark flavours. With a transversely polarized target, results were obtained with proton and deuteron targets for the Collins and Sivers asymmetries for charged hadrons as well as for identified kaons and pions. The Collins asymmetry is sensitive to the transverse spin structure of the nucleon, while the Sivers asymmetry reflects correlations between the quark transverse momentum and the nucleon spin. Recently, a new proposal for the COMPASS II experiment was accepted by the CERN SPS which includes two new topics: Exclusive reactions like DVCS and DVMP using the muon beam and a hydrogen target to study generalized parton distributions and Drell-Yan measurements using a pion beam and a polarized NH 3 target to study transverse momentum dependent distributions.

  11. Energetics and Vibrational Analysis of Methyl Salicylate Isomers

    Science.gov (United States)

    Massaro, Richard D.; Dai, Yafei; Blaisten-Barojas, Estela

    2009-08-01

    Energetics and vibrational analysis study of six isomers of methyl salicylate in their singlet ground state and first excited triple state is put forward in this work at the density functional theory level and large basis sets. The ketoB isomer is the lowest energy isomer, followed by its rotamer ketoA. For both ketoB and ketoA their enolized tautomers are found to be stable as well as their open forms that lack the internal hydrogen bond. The calculated vibrational spectra are in excellent agreement with IR experiments of methyl salicylate in the vapor phase. It is demonstrated that solvent effects have a weak influence on the stability of these isomers. The ionization reaction from ketoB to ketoA shows a high barrier of 0.67 eV ensuring that thermal and chemical equilibria yield systems containing mostly the ketoB isomer at normal conditions.

  12. Anaerobic Degradation of Lindane and Other HCH Isomers

    NARCIS (Netherlands)

    Mehboob, F.; Langenhoff, A.A.M.; Schraa, G.; Stams, A.J.M.

    2013-01-01

    Lindane (¿-HCH) is a pesticide that has mainly been used in agriculture. Lindane and the other HCH isomers are highly chlorinated hydrocarbons. The presence of a large number of electron withdrawing chlorine groups makes some of the HCH isomers rather recalcitrant in oxic environments. Especially

  13. Measurements of isomers at the FRS ion catcher

    Energy Technology Data Exchange (ETDEWEB)

    Hornung, Christine [Justus-Liebig Universitaet Giessen (Germany); Collaboration: FRS Ion Catcher-Collaboration

    2016-07-01

    Projectile fragmentation and fission reactions at in-flight facilities are important production mechanisms to access short-lived exotic nuclei. It is a challenge to describe the angular momentum distribution after the collision of relativistic nuclei. This can be experimentally accessed by measuring the population of isomeric states. Isomeric ratios and excitation energies of isomers of short-lived exotic nuclei can be determined at the FRS Ion Catcher at GSI. At the FRS, projectile and fission fragments are produced at relativistic energies, separated in-flight and range-focused. They are slowed down and thermalized in a cryogenic stopping cell. In a multi-purpose RFQ beamline alpha spectroscopy can be performed. Alternatively the ions can be transported to a multiple-reflection time-of-flight mass spectrometer (MR-TOF-MS), where masses of the ground and isomeric states can be measured simultaneously with high resolving power. The MR-TOF-MS can also be used to spatially separate the ions in order to provide isomerically clean ion beams. During a recent experiment isomer-to-ground state ratios and excitation energies of uranium projectile and fission fragments produced at 1 GeV/u were measured. The ratios, measured with the MR-TOF-MS, were verified by alpha spectroscopy. Furthermore the ratios were compared to calculations based on an abrasion-ablation model of fragmentation.

  14. Spin dynamics of electrons in strong fields studied via bremsstrahlung from a polarized electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Tashenov, Stanislav [Royal Institute of Technology, Stockholm (Sweden); Stockholm University (Sweden); Physikalisches Institut, Universitaet Heidelberg (Germany); Baeck, Torbjoern; Cederwall, Bo; Khaplanov, Anton; Schaessburger, Kai-Uwe [Royal Institute of Technology, Stockholm (Sweden); Barday, Roman; Enders, Joachim; Poltoratska, Yuliya [Institut fuer Kernphysik, Technische Universitaet, Darmstadt (Germany); Surzhykov, Andrey [Physikalisches Institut, Universitaet Heidelberg (Germany); GSI, Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany)

    2011-07-01

    Linear polarization of the photons emitted in the process of the atomic field electron bremsstrahlung has been studied at the newly developed 100 keV polarized electron source of TU Darmstadt. A correlation between the initial orientation of the electron spin and the degree and the angle of photon linear polarization has been measured for the first time. For this purpose a hard x-ray Compton polarimeter consisting of a segmented high purity germanium detector and an external passive photon scattering target have been applied. Linear polarization sensitive Compton and Rayleigh photon scattering distributions have been sampled by the segmented detector. The observed polarization correlation reveals a precession of the electron spin as it moves in the field of the nucleus. The full-relativistic calculations for the case of radiative recombination into a Rydberg series limit have been corroborated by the measurement. The results of this experiment suggest a new method for electron beam polarimetry.

  15. STANFORD: Highly polarized SLC electron beams

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Full text: Using specialized photocathodes made with 'strained' gallium arsenide, physicists at the Stanford Linear Accelerator Center (SLAC) have generated electron beams with polarizations in excess of 60 percent a year ahead of schedule. Together with recent luminosity increases, this breakthrough will have a major impact on the physics output of the Stanford Linear Collider (SLC). Beam polarization was almost tripled using photocathodes in which a gallium arsenide layer was grown epitaxially over a substrate of gallium arsenide phosphide. The mismatch between these two layers deforms the crystal structure and removes a degeneracy in the valence band structure, permitting selective optical pumping of one unique spin state. Whereas conventional gallium arsenide photocathodes are limited to 50 percent polarization because of this degeneracy (and realistic cathodes fall substantially below this theoretical limit), such strained crystal lattices have the potential to yield polarizations close to 100 percent. Polarization enhancement with strained lattices was first demonstrated in 1991 by a SLAC/Wisconsin/ Berkeley group (May 1991, page 6) with a 71 percent polarization in a laboratory experiment. More recently this group has achieved polarization in excess of 90 percent, reported last November at the Nagoya Spin Symposium. (In a complementary development, a Japanese KEK/ Nagoya/KEK obtains polarized beams using a 'superlattice' - May 1991, page 4.) The 1993 SLC run, the strained gallium arsenide photocathode technique's debut in an operating particle accelerator, has proved to be a resounding, unqualified success - as have physics experiments on the Z particles produced by the highly polarized beam. A conservative approach was called for, due to concerns about possible charge saturation effects. A relatively thick (0.3 micron) gallium arsenide layer was used for the photocathode in the SLC polarized electron source. With a titanium

  16. IV. Workshop on High Energy Spin Physics

    International Nuclear Information System (INIS)

    Nurushev, S.

    1992-01-01

    In this proceedings the results on high energy spin physics are summarized. The theory of spin phenomenon and the experimental results at intermediate energy and at high energy spin physics and new technical developments in polarization experiments are presented

  17. Static quadrupole moment of the Kπ = 14+ isomer in 176W

    International Nuclear Information System (INIS)

    Ionescu-Bujor, M.; Iordachescu, A.; Bucurescu, D.; Brandolini, F.; Lenzi, S. M.; Pavan, P.; Rossi Alvarez, C.; Marginean, N.; Medina, N.H.; Ribas, R.V.; De Poli, M.; Napoli, D. R.; Podolyak, Zs.; Ur, C. A.

    2001-01-01

    The investigation of high-K isomeric states in the deformed nuclei of the A∼180 region has found renewed interest in recent years. Much experimental and theoretical work was devoted to understand the mechanisms which govern their decay to lower-lying states, particularly the anomalous strong decays to low-K states. Other questions of great importance are the quenching of the pairing correlations and the shape polarization effects in the high-seniority multi-quasiparticle excitations. Our interest focused on the 41 ns K π =14 + 3746 keV isomeric state with anomalous decay in 176 W. On the basis of a precise g-factor measurement we assigned to this isomer a pure four-quasiparticle configuration, composed by two protons in the 7/2 + [404] and 9/2 - [514] orbitals and two neutrons in the 7/2 + [633] and 5/2 - [512] orbitals. In the present work the measurement of its static quadrupole moment has been performed. Prior to our experiment, static quadrupole moments have been measured only for three high-K isomeric states of seniority ≥ 4 in the A∼180 region: 16 + in 178 Hf, 35/2 - in 179 W and 25 + in 182 Os. A deformation very similar to that of the ground state has been deduced for the 16 + isomer in 178 Hf, while for the high-K isomers in 179 W and 182 Os significantly smaller deformations were reported. The quadrupole interaction of the 14 + isomeric state in 176 W has been investigated in the electric field gradient (EFG) of the polycrystalline lattice of metallic Tl by applying the time-differential perturbed angular distribution method. For W impurities in Tl host the EFG strength and its temperature dependence have been recently reported. The isomer was populated in the 164 Dy( 16 O,4n) 176 W reaction using a 83 MeV 16 O pulsed beam (pulse width 1.5 ns, repetition period 800 ns) delivered by the XTU-Tandem of Laboratori Nazionali di Legnaro. The target consisted of 0.5 mg/cm 2 metallic 164 Dy on thick Tl backing in which both the recoiling 176 W nuclei and

  18. Cylindrical particle manipulation and negative spinning using a nonparaxial Hermite-Gaussian light-sheet beam

    Science.gov (United States)

    Mitri, F. G.

    2016-10-01

    Based on the angular spectrum decomposition method (ASDM), a nonparaxial solution for the Hermite-Gaussian (HG m ) light-sheet beam of any order m is derived. The beam-shape coefficients (BSCs) are expressed in a compact form and computed using the standard Simpson’s rule for numerical integration. Subsequently, the analysis is extended to evaluate the longitudinal and transverse radiation forces as well as the spin torque on an absorptive dielectric cylindrical particle in 2D without any restriction to a specific range of frequencies. The dynamics of the cylindrical particle are also examined based on Newton’s second law of motion. The numerical results show that a Rayleigh or Mie cylindrical particle can be trapped, pulled or propelled in the optical field depending on its initial position in the cross-sectional plane of the HG m light-sheet. Moreover, negative or positive axial spin torques can arise depending on the choice of the non-dimensional size parameter ka (where k is the wavenumber and a is the radius of the cylinder) and the location of the absorptive cylinder in the beam. This means that the HG m light-sheet beam can induce clockwise or anti-clockwise rotations depending on its shift from the center of the cylinder. In addition, individual vortex behavior can arise in the cross-sectional plane of wave propagation. The present analysis presents an analytical model to predict the optical radiation forces and torque induced by a HG m light-sheet beam on an absorptive cylinder for applications in optical light-sheet tweezers, optical micro-machines, particle manipulation and opto-fluidics to name a few areas of research.

  19. High spin states in 62Cu

    International Nuclear Information System (INIS)

    Tsan Ung Chan; Agard, M.; Bruandet, J.F.; Giorni, A.; Glasser, F.; Longequeue, J.P.; Morand, C.

    1977-06-01

    The 62 Cu nucleus has been studied via the reactions 60 Ni(α,pnγ), 63 Cu(p,pnγ), 52 Cr( 14 N,2p2nγ) using different in beam γ-spectroscopy techniques. The intensity of the principal γ-lines observed in different reactions leading to the 62 Cu has been compared. A brief discussion is made in terms of the independent particle model. A level scheme including levels with spin up to 9 + is proposed [fr

  20. Laser spectroscopic studies along the Al isotopic chain and the isomer-shift of the self-conjugate $^{26}$Al nucleus

    CERN Multimedia

    We propose to measure the isomer shift in the self-conjugate $^{26}$Al ($\\textit{N = Z}$ = 13) nucleus along with the isotope shifts of $^{24-33}$Al using bunched-beam collinear laser spectroscopy at the COLLAPS beam line at ISOLDE. These isomer and isotope shifts allow the extraction of precise mean-square charge radii, in particular the difference in charge radius between the $\\textit{I}$ = 5$^{+}$; $\\textit{T}$ = 0 ground state and $\\textit{I}$= 0$^{+}$;$\\textit{T}$= 1 isomer in $^{26}$Al. This charge radius difference, in comparison with the odd-even staggering in the Al-chain, is an excellent probe to study proton-neutron pairing correlations, as was previously illustrated for $^{38}_{19}$K$_{19}$. Furthermore, accurate knowledge of the mean-square charge radius in $^{26m}$Al is essential to reliably calculate its isospin-symmetry-breaking correction which is important to extract the CKM matrix element V$_{ud}$ from the 0$^{+}$ $\\rightarrow$ 0$^{+}$ super-allowed $\\beta$-decay data. Finally, the charge ...

  1. X-ray laser implementation by means of a strong source of high-spin metastable atoms

    International Nuclear Information System (INIS)

    Helman, J.S.; Rau, C.; Bunge, C.F.

    1983-01-01

    High-spin metastable atomic beams of high density and extremely small divergence can be produced by electron capture during grazing-angle scattering of ion beams at ferromagnetic surfaces. This can be used to generate a long-lived reservoir of Li 1s2s2p 4 P/sub 5/2//sup ts0/ with enough density of metastables so that after laser-induced transfer to Li 1s2p/sup ts2/P strong lasing at 207 A should occur. This novel technique can also be used to produce a variety of other metastables known as potential candidates for lasing at shorter wavelengths

  2. LISS: Planning for spin physics with multi-GeV nucleon beams at IUCF

    International Nuclear Information System (INIS)

    Vigdor, S.E.

    1995-01-01

    The technology developed in recent years to facilitate experiments with stored, cooled polarized beams bombarding internal targets (including polarized gaseous targets) has natural and novel applications at multi-GeV energies. At IUCF we are preparing a proposal for a Light-Ion Spin Synchrotron (LISS) that would adapt this technology to the exploration of nucleon spin physics in the non-perturbative QCD regime from 1 endash 20 GeV. I will describe the research goals of such a facility, with emphasis on a few contemplated experiments, chosen to illustrate both the range of physics issues to be addressed and the considerable advantages offered by storage ring techniques. copyright 1995 American Institute of Physics

  3. Technology spin-offs from the magnetic fusion energy program

    International Nuclear Information System (INIS)

    1982-05-01

    A description is given of 138 possible spin-offs from the magnetic fusion program. The spin-offs cover the following areas: (1) superconducting magnets, (2) materials technology, (3) vacuum systems, (4) high frequency and high power rf, (5) electronics, (6) plasma diagnostics, (7) computers, and (8) particle beams

  4. Low-relaxation spin waves in laser-molecular-beam epitaxy grown nanosized yttrium iron garnet films

    Energy Technology Data Exchange (ETDEWEB)

    Lutsev, L. V., E-mail: l-lutsev@mail.ru; Korovin, A. M.; Bursian, V. E.; Gastev, S. V.; Fedorov, V. V.; Suturin, S. M.; Sokolov, N. S. [Ioffe Physical-Technical Institute, Russian Academy of Sciences, 194021 St. Petersburg (Russian Federation)

    2016-05-02

    Synthesis of nanosized yttrium iron garnet (Y{sub 3}Fe{sub 5}O{sub 12}, YIG) films followed by the study of ferromagnetic resonance (FMR) and spin wave propagation in these films is reported. The YIG films were grown on gadolinium gallium garnet substrates by laser molecular beam epitaxy. It has been shown that spin waves propagating in YIG deposited at 700 °C have low damping. At the frequency of 3.29 GHz, the spin-wave damping parameter is less than 3.6 × 10{sup −5}. Magnetic inhomogeneities of the YIG films give the main contribution to the FMR linewidth. The contribution of the relaxation processes to the FMR linewidth is as low as 1.2%.

  5. Measurement of Spin Observables in Inclusive Lambda and Neutral Kaon (short) Production with a 200 GEV Polarized Proton Beam.

    Science.gov (United States)

    Bravar, Alessandro

    The considerable polarization of hyperons produced at high x_ F has been known for a long time and has been interpreted in various theoretical models in terms of the constituents' spin. The spin dependence in inclusive Lambda and K _sp{s}{circ} production has been studied for the first time at high energy using the Fermilab 200 GeV/c polarized proton beam and a large forward spectrometer. The spin observables analyzing power A_ N, polarization P_0 and depolarization D _{NN} in inclusive Lambda production has been measured in the kinematic range of rm 0.2current picture of spin effects in hadronic interactions is much more complex than naively thought. The data on the spin dependence of the Lambda inclusive production indicate a substantial negative asymmetry A_ N at large x _ F and moderate p_ T, the polarization results P_0 are in fair agreement with previous measurements, and the double spin parameter D_ {NN} increases with x_ F and p_ T to relatively large positive values. The trend of the Lambda A_ N, which shows a kinematical behavior similar to P_0 with same sign but smaller in magnitude, might be suggestive of a common interpretation. These results, however, are difficult to accommodate within the present quark fragmentation models for hyperon polarization, based on SU(6) wave functions where the produced strange quark carries all the spin information of the Lambda, unless spectator di-quarks in the recombination process play a more significant role than generally expected. These results can further test the current ideas on the underlying mechanisms for the hyperon polarization and meson production asymmetry.

  6. High spin-filter efficiency and Seebeck effect through spin-crossover iron–benzene complex

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Qiang; Zhou, Liping, E-mail: zhoulp@suda.edu.cn; Cheng, Jue-Fei; Wen, Zhongqian; Han, Qin; Wang, Xue-Feng [College of Physics, Optoelectronics and Energy and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006 (China)

    2016-04-21

    Electronic structures and coherent quantum transport properties are explored for spin-crossover molecule iron-benzene Fe(Bz){sub 2} using density functional theory combined with non-equilibrium Green’s function. High- and low-spin states are investigated for two different lead-molecule junctions. It is found that the asymmetrical T-shaped contact junction in the high-spin state behaves as an efficient spin filter while it has a smaller conductivity than that in the low-spin state. Large spin Seebeck effect is also observed in asymmetrical T-shaped junction. Spin-polarized properties are absent in the symmetrical H-shaped junction. These findings strongly suggest that both the electronic and contact configurations play significant roles in molecular devices and metal-benzene complexes are promising materials for spintronics and thermo-spintronics.

  7. Charged particle spin flip in a storage ring with HF-electromagnetic field

    International Nuclear Information System (INIS)

    Polunin, A.A.; Shatupov, Yu.M.

    1982-01-01

    An experiment for revealing a possibility of adiabatic electron spin flip in the VEPP-2M storage ring is described. High frequency longitudinal magnetic field up to 100 Gs at the length of 40 cm and frequency of 7.95 MHz was produced by a spiral of 10 coils supplied from HF-generator with 5 kW power. The control system permitted to vary generator frequency within +-3x10 - 3 f range during 10 - 3 -10 s. Determination of beam polarization degree was exercised by detection of electron elastic scattering inside the bunch. A possibility of changing the polarization sign at preservation of other beam parameters (dimensions, currents, energy, etc.) is of interest in experiments with polarized particles in storage rings. Spin flip can be exercised by effect on the beam of high frequency electromagnetic field, resonance with spin precession frequency around the leading field of the storage ring. The polarized 5 mA beam was produced due to radiation polarization at which electron spins are alinged along the direction of the magnetic field. Processing of the experimental results revealed good correspondence to analytical dependence. The depolarization value at the spin flip did not exceed 10%

  8. High-field spin dynamics of antiferromagnetic quantum spin chains

    DEFF Research Database (Denmark)

    Enderle, M.; Regnault, L.P.; Broholm, C.

    2000-01-01

    present recent work on the high-field spin dynamics of the S = I antiferromagnetic Heisenberg chains NENP (Haldane ground state) and CsNiCl3 (quasi-1D HAF close to the quantum critical point), the uniform S = 1/2 chain CTS, and the spin-Peierls system CuGeO3. (C) 2000 Elsevier Science B,V. All rights...

  9. Spin Dynamics in Highly Spin Polarized Co1-xFexS2

    Science.gov (United States)

    Hoch, Michael J. R.; Kuhns, Philip L.; Moulton, William G.; Reyes, Arneil P.; Lu, Jun; Wang, Lan; Leighton, Chris

    2006-09-01

    Highly spin polarized or half-metallic systems are of considerable current interest because of their potential for spin injection in spintronics applications. The ferromagnet (FM) CoS2 is close to being a half-metal. Recent theoretical and experimental work has shown that the alloys Co1-xFexS2 (0.07 < x < 0.9) are highly spin polarized at low temperatures. The Fe concentration may be used to tune the spin polarization. Using 59Co FM- NMR we have investigated the spin dynamics in this family of alloys and have obtained information on the evolution of the d-band density of states at the Fermi level with x in the range 0 to 0.3. The results are compared with available theoretical predictions.

  10. Experimental determination of the complete spin structure for anti-proton + proton -> anti-\\Lambda + \\Lambda at anti-proton beam momentum of 1.637 GeV/c

    CERN Document Server

    Paschke, K.D.; Berdoz, A.; Franklin, G.B.; Khaustov, P.; Meyer, C.A.; Bradtke, C.; Gehring, R.; Goertz, S.; Harmsen, J.; Meier, A.; Meyer, W.; Radtke, E.; Reicherz, G.; Dutz, H.; Pluckthun, M.; Schoch, B.; Dennert, H.; Eyrich, W.; Hauffe, J.; Metzger, A.; Moosburger, M.; Stinzing, F.; Wirth, St.; Fischer, H.; Franz, J.; Heinsius, F.H.; Kriegler, E.; Schmitt, H.; Bunker, B.; Hertzog, D.; Jones, T.; Tayloe, R.; Broders, R.; Geyer, R.; Kilian, K.; Oelert, W.; Rohrich, K.; Sachs, K.; Sefzick, T.; Bassalleck, B.; Eilerts, S.; Fields, D.E.; Kingsberry, P.; Lowe, J.; Stotzer, R.; Johansson, T.; Pomp, S.; Wirth, St.

    2006-01-01

    The reaction anti-proton + proton -> anti-\\Lambda + \\Lambda -> anti-proton + \\pi^+ + proton + \\pi^- has been measured with high statistics at anti-proton beam momentum of 1.637 GeV/c. The use of a transversely-polarized frozen-spin target combined with the self-analyzing property of \\Lambda/anti-\\Lambda decay allows access to unprecedented information on the spin structure of the interaction. The most general spin-scattering matrix can be written in terms of eleven real parameters for each bin of scattering angle, each of these parameters is determined with reasonable precision. From these results all conceivable spin-correlations are determined with inherent self-consistency. Good agreement is found with the few previously existing measurements of spin observables in anti-proton + proton -> anti-\\Lambda + \\Lambda near this energy. Existing theoretical models do not give good predictions for those spin-observables that had not been previously measured.

  11. High energy hadron spin-flip amplitude

    International Nuclear Information System (INIS)

    Selyugin, O.V.

    2016-01-01

    The high-energy part of the hadron spin-flip amplitude is examined in the framework of the new high-energy general structure (HEGS) model of the elastic hadron scattering at high energies. The different forms of the hadron spin-flip amplitude are compared in the impact parameter representation. It is shown that the existing experimental data of the proton-proton and proton-antiproton elastic scattering at high energy in the region of the diffraction minimum and at large momentum transfer give support in the presence of the energy-independent part of the hadron spin-flip amplitude with the momentum dependence proposed in the works by Galynskii-Kuraev. [ru

  12. Characterization of the isolated [Co3Ni (EtOH )] + cluster by IR spectroscopy and spin-dynamics calculations

    Science.gov (United States)

    Dutta, D.; Becherer, M.; Bellaire, D.; Dietrich, F.; Gerhards, M.; Lefkidis, G.; Hübner, W.

    2018-06-01

    We experimentally and theoretically study the geometry, as well as the electronic and vibrational properties, of the heterotetranuclear magnetic cluster [Co3Ni (EtOH )] +, which is prepared in the gas phase with molecular beam expansion. We characterize the cluster and identify possible isomers through the comparison of experimentally observed infrared spectra with state-of-the-art quantum chemistry calculations, more specifically by focusing on the OH stretching frequency. Furthermore, we suggest ultrafast, laser-induced, local spin-flip scenarios on every Co atom, and report a cooperative effect, in which the spin density is localized on one Co atom, gets transiently transferred to another, and then bounces back pointing in the opposite direction. Finally, we predict a tolerance of the suggested scenarios with respect to the laser detuning of about 20 meV, which lies within an experimentally applicable range. Our joint investigation is an additional step toward the implementation of laser-controlled nanospintronic devices.

  13. Neutron spin echo and high resolution inelastic spectroscopy

    International Nuclear Information System (INIS)

    Mezei, F.; Hungarian Academy of Sciences, Budapest. Central Research Inst. for Physics)

    1982-01-01

    The principles of neutrons spin echo (NSE) technique are considered. It is shown that the basis of NSE principle is a single step measurement of the change of the neutron velocity in the scattering process. The backscattering soectroscopy and the NSE techniques are compared. The NSF spectrometer is described. It is shown that 0.5 MeV energy resolution achieved in the NSE experiment is about 40 times superior to those achieved by the other techniques. The NSE technique has the unique feature that provides high resolution in neutron energy change independently of the monochromatization of the beam. The NSE instrument not only covers a wider dynamic range on a pulsed source that on a continuous one, but also collects data more efficiently

  14. Phenomena at very high spins

    International Nuclear Information System (INIS)

    Stephens, F.S.

    1980-03-01

    The present talk has three parts: first, a discussion of current ideas about the physics of very high spin states; second, some comments about noncollective behavior up to the highest spins where it is known, approx. 40 h; and finally, a presentation of the newest method for studying collective behavior up to spins of 60 to 70 h. The intention is that the overview presented in the first part will be sufficiently broad to indicate the relationship of the noncollective and collective behavior discussed in the other parts, and to provide some understanding of the compromise in behavior that seems to occur at the very highest spins. 13 figures

  15. Production of polarized negative deuterium ion beam with dual optical pumping in KEK

    Energy Technology Data Exchange (ETDEWEB)

    Kinsho, M.; Ikegami, K.; Takagi, A. [National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan); Mori, Y.

    1997-02-01

    To obtain highly nuclear-spin vector polarized negative deuterium ion beam, a dual optically pumped polarized negative deuterium ion source has been developed at KEK. It is possible to select a pure nuclear-spin state with this scheme, and negative deuterium ion beam with 100% nuclear-spin vector polarization can be produced in principle. We have obtained about 70% of nuclear-spin vector polarized negative deuterium ion beam so far. This result may open up a new possibilities for the optically pumped polarized ion source. (author)

  16. Study of shell evolution around the doubly magic $^{208}$Pb via a multinucleon transfer reaction with an unstable beam

    CERN Multimedia

    This proposal aims at the study of the neutron-rich region around the doubly-magic nucleus $^{208}$Pb populated via a multinucleon transfer reaction. An unstable $^{94}$Rb beam will be delivered by HIE-ISOLDE at 5.5 MeV$\\cdot$u onto a $^{208}$Pb 13.0 mg/cm$^{2}$ target. The $\\gamma$- rays will be recorded by the MINIBALL $\\gamma$-ray spectrometer. The aim of the experiment is twofold: \\\\ \\\\ i) firstly it will represent the proof of principle that multinucleon transfer reactions with neutron-rich unstable beams is efficient to populate neutron-rich heavy binary partners and represents a competitive method to cold fragmentation \\\\ ii) secondly we aim at populating medium- to high-spin states in $^{212;214}$Pb and $^{208;210}$Hg to elucidate the existence of the 16$^{+}$ isomer in the lead isotopes and at the same time to disentangle the puzzling case of a very low energy 3$^{-}$ state in $^{210}$Hg not described by any nuclear model. \\\\ \\\\ The experimental results will be compared with large-scale shell-model ...

  17. Superconducting magnetic Wollaston prism for neutron spin encoding

    Energy Technology Data Exchange (ETDEWEB)

    Li, F., E-mail: fankli@indiana.edu; Parnell, S. R.; Wang, T.; Baxter, D. V. [Center for Exploration of Energy and Matter, Indiana University, Bloomington, Indiana 47408 (United States); Hamilton, W. A. [Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830 (United States); Maranville, B. B. [National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Semerad, R. [Ceraco Ceramic Coating GmbH, Ismaning 85737 (Germany); Cremer, J. T. [Adelphi Technology Inc., Redwood City, California 94063 (United States); Pynn, R. [Center for Exploration of Energy and Matter, Indiana University, Bloomington, Indiana 47408 (United States); Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830 (United States)

    2014-05-15

    A magnetic Wollaston prism can spatially split a polarized neutron beam into two beams with different neutron spin states, in a manner analogous to an optical Wollaston prism. Such a Wollaston prism can be used to encode the trajectory of neutrons into the Larmor phase associated with their spin degree of freedom. This encoding can be used for neutron phase-contrast radiography and in spin echo scattering angle measurement (SESAME). In this paper, we show that magnetic Wollaston prisms with highly uniform magnetic fields and low Larmor phase aberration can be constructed to preserve neutron polarization using high temperature superconducting (HTS) materials. The Meissner effect of HTS films is used to confine magnetic fields produced electromagnetically by current-carrying HTS tape wound on suitably shaped soft iron pole pieces. The device is cooled to ∼30 K by a closed cycle refrigerator, eliminating the need to replenish liquid cryogens and greatly simplifying operation and maintenance. A HTS film ensures that the magnetic field transition within the prism is sharp, well-defined, and planar due to the Meissner effect. The spin transport efficiency across the device was measured to be ∼98.5% independent of neutron wavelength and energizing current. The position-dependent Larmor phase of neutron spins was measured at the NIST Center for Neutron Research facility and found to agree well with detailed simulations. The phase varies linearly with horizontal position, as required, and the neutron beam shows little depolarization. Consequently, the device has advantages over existing devices with similar functionality and provides the capability for a large neutron beam (20 mm × 30 mm) and an increase in length scales accessible to SESAME to beyond 10 μm. With further improvements of the external coupling guide field in the prototype device, a larger neutron beam could be employed.

  18. Superconducting magnetic Wollaston prism for neutron spin encoding

    Science.gov (United States)

    Li, F.; Parnell, S. R.; Hamilton, W. A.; Maranville, B. B.; Wang, T.; Semerad, R.; Baxter, D. V.; Cremer, J. T.; Pynn, R.

    2014-05-01

    A magnetic Wollaston prism can spatially split a polarized neutron beam into two beams with different neutron spin states, in a manner analogous to an optical Wollaston prism. Such a Wollaston prism can be used to encode the trajectory of neutrons into the Larmor phase associated with their spin degree of freedom. This encoding can be used for neutron phase-contrast radiography and in spin echo scattering angle measurement (SESAME). In this paper, we show that magnetic Wollaston prisms with highly uniform magnetic fields and low Larmor phase aberration can be constructed to preserve neutron polarization using high temperature superconducting (HTS) materials. The Meissner effect of HTS films is used to confine magnetic fields produced electromagnetically by current-carrying HTS tape wound on suitably shaped soft iron pole pieces. The device is cooled to ˜30 K by a closed cycle refrigerator, eliminating the need to replenish liquid cryogens and greatly simplifying operation and maintenance. A HTS film ensures that the magnetic field transition within the prism is sharp, well-defined, and planar due to the Meissner effect. The spin transport efficiency across the device was measured to be ˜98.5% independent of neutron wavelength and energizing current. The position-dependent Larmor phase of neutron spins was measured at the NIST Center for Neutron Research facility and found to agree well with detailed simulations. The phase varies linearly with horizontal position, as required, and the neutron beam shows little depolarization. Consequently, the device has advantages over existing devices with similar functionality and provides the capability for a large neutron beam (20 mm × 30 mm) and an increase in length scales accessible to SESAME to beyond 10 μm. With further improvements of the external coupling guide field in the prototype device, a larger neutron beam could be employed.

  19. High quality atomically thin PtSe2 films grown by molecular beam epitaxy

    Science.gov (United States)

    Yan, Mingzhe; Wang, Eryin; Zhou, Xue; Zhang, Guangqi; Zhang, Hongyun; Zhang, Kenan; Yao, Wei; Lu, Nianpeng; Yang, Shuzhen; Wu, Shilong; Yoshikawa, Tomoki; Miyamoto, Koji; Okuda, Taichi; Wu, Yang; Yu, Pu; Duan, Wenhui; Zhou, Shuyun

    2017-12-01

    Atomically thin PtSe2 films have attracted extensive research interests for potential applications in high-speed electronics, spintronics and photodetectors. Obtaining high quality thin films with large size and controlled thickness is critical. Here we report the first successful epitaxial growth of high quality PtSe2 films by molecular beam epitaxy. Atomically thin films from 1 ML to 22 ML have been grown and characterized by low-energy electron diffraction, Raman spectroscopy and x-ray photoemission spectroscopy. Moreover, a systematic thickness dependent study of the electronic structure is revealed by angle-resolved photoemission spectroscopy (ARPES), and helical spin texture is revealed by spin-ARPES. Our work provides new opportunities for growing large size single crystalline films to investigate the physical properties and potential applications of PtSe2.

  20. High spin states in 66,68Ge

    International Nuclear Information System (INIS)

    Hermkens, U.; Becker, F.; Eberth, J.; Freund, S.; Mylaeus, T.; Skoda, S.; Teichert, W.; Werth, A. v.d.

    1992-01-01

    High spin states of 66,68 Ge have been investigated at the FN Tandem accelerator of the University of Koeln via the reactions 40 Ca( 32 S,α2p,4p) 66,68 Ge at a beam energy of 100 MeV and 58 Ni( 16 O,α2p) 68 Ge at 65 MeV. The OSIRIS spectrometer with 12 escape suppressed Ge detectors was used to measure γγ coincidences and γ-ray angular distributions. In 66 Ge ( 68 Ge) 33 (22) new levels were found and 63 (62) new γ-transitions were placed in the level scheme. Both nuclei show a rather complicated but similar excitation pattern, ruled by the interplay of quasiparticle and collective degrees of freedom. The results are compared to the recently published EXVAM calculations for 68 Ge. (orig.)

  1. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP CIRCUM-PAN-PACIFIC RIKEN SYMPOSIUM ON HIGH ENERGY SPIN PHYSICS, VOLUME 25

    Energy Technology Data Exchange (ETDEWEB)

    KUMANO,S.; SHIBATA,T.A.; YAZAKI,K.

    2000-06-28

    The Circum-Pan-Pacific Riken Symposium on High Energy Spin Physics was held at Oukouchi Memorial Hall in Riken from November 3 through 6, 1999. It was held as a joint meeting of the 2nd Circum-Pan-Pacific Symposium on High Energy Spin Physics and the 3rd of the series of Riken Symposia related to the RHIC-SPIN. The 1st Circum-Pan-Pacific Symposium on High Energy Spin Physics was held at Kobe in 1996 and the RHIC-SPIN Riken Symposia had been held every two years since 1995. As Prof. Ozaki mentioned in his talk at the beginning of this meeting, the RHIC was ready for the first beam, physics experiments scheduled in 2000, and the RHIC-SPIN would start in 2001. It was therefore considered to be very timely for the researchers in the field of high energy spin physics to get together, clarifying the present status of the field and discussing interesting and important topics as well as experimental subjects to be pursued. It is especially important for the success of the RHIC-SPIN project that the researchers in the neighboring countries surrounding the Pacific are actively involved in it. This is why the above two series were joined in this. symposium. The subjects discussed in the symposium include: Hard processes probing spin-structure functions, polarization mechanisms in high energy reactions, lattice studies of polarized structure functions, theoretical models for the nucleon and its spin structure, RHIC and RHIC-SPIN projects, results and future projects of existing experimental facilities. Totally 73 scientists participated in the symposium, 27 from abroad and 46 from Japan. it consisted of 13 main sessions, with 33 invited and contributed talks, and 4 discussion sessions covering recent experimental and theoretical developments and important topics in high energy spin physics and closely related fields.

  2. Spin pumping in ion-beam sputtered C o2FeAl /Mo bilayers: Interfacial Gilbert damping

    Science.gov (United States)

    Husain, Sajid; Kumar, Ankit; Barwal, Vineet; Behera, Nilamani; Akansel, Serkan; Svedlindh, Peter; Chaudhary, Sujeet

    2018-02-01

    The spin-pumping mechanism and associated interfacial Gilbert damping are demonstrated in ion-beam sputtered C o2FeAl (CFA)/Mo bilayer thin films employing ferromagnetic resonance spectroscopy. The dependence of the net spin-current transportation on Mo layer thickness, 0 to 10 nm, and the enhancement of the net effective Gilbert damping are reported. The experimental data have been analyzed using spin-pumping theory in terms of spin current pumped through the ferromagnet/nonmagnetic metal interface to deduce the real spin-mixing conductance and the spin-diffusion length, which are estimated to be 1.56 (±0.30 ) ×1019m-2 and 2.61 (±0.15 )nm , respectively. The damping constant is found to be 8.8 (±0.2 ) ×10-3 in the Mo(3.5 nm)-capped CFA(8 nm) sample corresponding to an ˜69 % enhancement of the original Gilbert damping 5.2 (±0.6 ) ×10-3 in the Al-capped CFA thin film. This is further confirmed by inserting the Cu dusting layer which reduces the spin transport across the CFA/Mo interface. The Mo layer thickness-dependent net spin-current density is found to lie in the range of 1 -4 MA m-2 , which also provides additional quantitative evidence of spin pumping in this bilayer thin-film system.

  3. 99.9% Spin-Flip Efficiency in the Presence of a Strong Siberian Snake

    International Nuclear Information System (INIS)

    Morozov, V.S.; Blinov, B.B.; Etienne, Z.B.; Krisch, A.D.; Leonova, M.A.; Lin, A.M.T.; Lorenzon, W.; Peters, C.C.; Sivers, D.W.; Wong, V.K.; Yonehara, K.; Anferov, V. A.; Schwandt, P.; Stephenson, E.J.; Przewoski, B. von; Sato, H.

    2003-01-01

    We recently studied the spin-flipping efficiency of an rf-dipole magnet using a 120-MeV horizontally polarized proton beam stored in the Indiana University Cyclotron Facility Cooler Ring, which contained a full Siberian snake. We flipped the spin by ramping the rf dipole's frequency through an rf-induced depolarizing resonance. By adiabatically turning on the rf dipole, we minimized the beam loss, while preserving almost all of the beam's polarization. After optimizing the frequency ramp parameters, we used up to 400 multiple spin flips to measure a spin-flip efficiency of 99.93 ± 0.02%. This result indicates that spin flipping should be possible in very-high-energy polarized storage rings, where Siberian snakes are certainly needed and only dipole rf-flipper magnets are practical

  4. Treatment of isomers in nucleosynthesis codes

    Science.gov (United States)

    Reifarth, René; Fiebiger, Stefan; Göbel, Kathrin; Heftrich, Tanja; Kausch, Tanja; Köppchen, Christoph; Kurtulgil, Deniz; Langer, Christoph; Thomas, Benedikt; Weigand, Mario

    2018-03-01

    The decay properties of long-lived excited states (isomers) can have a significant impact on the destruction channels of isotopes under stellar conditions. In sufficiently hot environments, the population of isomers can be altered via thermal excitation or de-excitation. If the corresponding lifetimes are of the same order of magnitude as the typical time scales of the environment, the isomers have to be treated explicitly. We present a general approach to the treatment of isomers in stellar nucleosynthesis codes and discuss a few illustrative examples. The corresponding code is available online at http://exp-astro.de/isomers/.

  5. Separation behavior of octadecadienoic acid isomers and identification of cis- and trans-isomers using gas chromatography.

    Science.gov (United States)

    Shibamoto, Shigeaki; Gooley, Andrew; Yamamoto, Kouhei

    2015-01-01

    Using a strongly polar cyanopropyl capillary column we have investigated the gas chromatography (GC) separation behaviors of 24 octadecadienoic acid methyl ester (18:2ME) isomers compared against saturated methyl stearate (18:0ME) and arachidic acid methyl ester (20:0ME), and the dependency on the GC column temperature. The 24 isomers were obtained by performing cis-to trans-isomerization of six regioisomers: five of the 18:2ME isomers were prepared by the partial reduction of methyl α-linolenate and methyl γ-linolenate C18 trienoic acids with different double bond positions, whereas the sixth isomer, 18:2ME (c5, c9), was obtained from a raw constituent fatty acid methyl ester (FAME) sample extracted from Japanese yew seeds. There are no reference standards commercially available for 18:2ME isomers, and in elucidating the elution order of these isomers this study should help the future identification of cis- and trans-type of 18:2ME. We also report the identification method of cis- and trans-type of FAME using equivalent chain lengths and attempt the identification of cis- and trans-type of 18:2ME isomers from partially hydrogenated canola oil.

  6. Isotopic germanium targets for high beam current applications at GAMMASPHERE

    International Nuclear Information System (INIS)

    Greene, J. P.; Lauritsen, T.

    2000-01-01

    The creation of a specific heavy ion residue via heavy ion fusion can usually be achieved through a number of beam and target combinations. Sometimes it is necessary to choose combinations with rare beams and/or difficult targets in order to achieve the physics goals of an experiment. A case in point was a recent experiment to produce 152 Dy at very high spins and low excitation energy with detection of the residue in a recoil mass analyzer. Both to create the nucleus cold and with a small recoil-cone so that the efficiency of the mass analyzer would be high, it was necessary to use the 80 Se on 76 Ge reaction rather than the standard 48 Ca on 108 Pd reaction. Because the recoil velocity of the 152 Dy residues was very high using this symmetric reaction (5% v/c), it was furthermore necessary to use a stack of two thin targets to reduce the Doppler broadening. Germanium targets are fragile and do not withstand high beam currents, therefore the 76 Ge target stacks were mounted on a rotating target wheel. A description of the 76 Ge target stack preparation will be presented and the target performance described

  7. In-beam studies of high-spin states of actinide nuclei

    International Nuclear Information System (INIS)

    Stoyer, M.A.; California Univ., Berkeley, CA

    1990-01-01

    High-spin states in the actinides have been studied using Coulomb- excitation, inelastic excitation reactions, and one-neutron transfer reactions. Experimental data are presented for states in 232 U, 233 U, 234 U, 235 U, 238 Pu and 239 Pu from a variety of reactions. Energy levels, moments-of-inertia, aligned angular momentum, Routhians, gamma-ray intensities, and cross-sections are presented for most cases. Additional spectroscopic information (magnetic moments, M 1 /E 2 mixing ratios, and g-factors) is presented for 233 U. One- and two-neutron transfer reaction mechanisms and the possibility of band crossings (backbending) are discussed. A discussion of odd-A band fitting and Cranking calculations is presented to aid in the interpretation of rotational energy levels and alignment. In addition, several theoretical calculations of rotational populations for inelastic excitation and neutron transfer are compared to the data. Intratheory comparisons between the Sudden Approximation, Semi-Classical, and Alder-Winther-DeBoer methods are made. In connection with the theory development, the possible signature for the nuclear SQUID effect is discussed. 98 refs., 61 figs., 21 tabs

  8. Hot nuclei with high spin states in collisions between heavy nuclei

    International Nuclear Information System (INIS)

    Galin, J.

    1991-01-01

    In the first part of this contribution we have shown that pretty hot nuclei could be obtained in peripheral collisions of Kr+Au. The collisions considered in the chosen example give rise to a nucleus of Z=28 with a kinetic energy of 1600 MeV (i.e. a velocity close to 27 MeV/u to be compared with the 32 MeV/u of the beam). The excitation energy deposited in the non-detected target like-nucleus, deduced from the neutron multiplicity measurements, amounts to 700 MeV (T= 6 MeV). In the second part of the contribution one used the well known properties of fission, and particularly its sensitivity to spin, to show in a qualitative way that pretty high spin values are into play. A more quantitative analysis together with additional measurements are still needed in order to infer precise figures of spin. It can be noted that for the 29 MeV/u Pb+Au reaction 1 max amounts to 1700 ℎ. If we assume that the sticking or rolling conditions can be fulfilled for initial angular momenta of about 2/3 1 max , then a projectile-like (and its target partner) could acquire an intrinsic spin of about 160 ℎ. The behavior of a Pb-like nucleus brought in such an exotic state (T=6 MeV and J=160ℎ)) is certainly worth to be studied in detail. It is also worth recalling that, when obtained in peripheral collisions, the hot nuclei thus formed do not suffer much initial compression at variance with what happens in more central collisions. There is thus an interesting field to be explored of hot, high spin but uncompressed nuclei

  9. How It's Made - Polarized Proton Beam (444th Brookhaven Lecture)

    International Nuclear Information System (INIS)

    Zelenski, Anatoli

    2008-01-01

    Experiments with polarized beams at RHIC will provide fundamental tests of QCD, and the electro-weak interaction reveal the spin structure of the proton. Polarization asymmetries and parity violation are the strong signatures for identification of the fundamental processes, which are otherwise inaccessible. Such experiments require the maximum available luminosity and therefore polarization must be obtained as an extra beam quality without sacrificing intensity. There are proposals to polarize the high-energy proton beam in the storage rings by the Stern-Gerlach effect or spin-filter techniques. But so far, the only practically available option is acceleration of the polarized beam produced in the source and taking care of polarization survival during acceleration and storage. Two major innovations -- the 'Siberian Snake' technique for polarization preservation during acceleration and high current polarized proton sources make spin physics with the high-energy polarized beams feasible. The RHIC is the first high-energy collider, where the 'Siberian Snake' technique allowed of polarized proton beam acceleration up-to 250 GeV energy. The RHIC unique Optically Pumped Polarized Ion Source produces sufficient polarized beam intensity for complete saturation of the RHIC acceptance. This polarization technique is based on spin-transfer collisions between a proton or atomic hydrogen beam of a few keV beam energy and optically pumped alkali metal vapors. From the first proposal and feasibility studies to the operational source this development can be considered as example of successful unification of individual scientists ingenuity, international collaboration and modern technology application for creation of a new polarization technique, which allowed of two-to-three order of magnitude polarized beam intensity increase sufficient for loading the RHIC to its full capacity for polarization studies.

  10. A method for the accurate determination of the polarization of a neutron beam using a polarized 3He spin filter

    International Nuclear Information System (INIS)

    Greene, G.L.; Thompson, A.K.; Dewey, M.S.

    1995-01-01

    A new method for the accurate determination of the degree of polarization of a neutron beam which has been polarized by transmission through a spin polarized 3 He cell is given. The method does not require the use of an analyzer or spin flipper nor does it require an accurate independent determination of the 3 He polarization. The method provides a continuous on-line determination of the neutron polarization. The method may be of use in the accurate determination of correlation coefficients in neutron beta decay which provide a test of the standard model for the electroweak interaction. The method may also provide an accurate procedure for the calibration of polarized 3 He targets used in medium and high energy scattering experiments. ((orig.))

  11. Spin dynamics in electron synchrotrons; Spindynamik in Elektronensynchrotronen

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Jan Felix

    2017-07-14

    Providing spin polarized particle beams with circular accelerators requires the consideration of depolarizing resonances which may significantly reduce the desired degree of polarization at specific beam energies. The corresponding spin dynamical effects are typically analyzed with numerical methods. In case of electron beams the influence of the emission of synchrotron radiation has to be taken into account. On short timescales, as in synchrotrons with a fast energy ramp or in damping rings, spin dynamics are investigated with spin tracking algorithms. This thesis presents the spin tracking code Polematrix as a versatile tool to study the impact of synchrotron radiation on spin dynamics. Spin tracking simulations have been performed based on the well established particle tracking code Elegant. The numerical studies demonstrate effects which are responsible for beam depolarization: Synchrotron side bands of depolarizing resonances and decoherence of spin precession. Polematrix can be utilized for any electron accelerator with minimal effort as it imports lattice files from the tracking programs MAD-X or Elegant. Polematrix has been published as open source software. Currently, the Electron Stretcher Accelerator ELSA at Bonn University is the only electron synchrotron worldwide providing a polarized beam. Integer and intrinsic depolarizing resonances are compensated with dedicated countermeasures during the fast energy ramp. Polarization measurements from ELSA demonstrate the particular spin dynamics of electrons and confirm the results of the spin tracking code Polematrix.

  12. Identification of high-spin states in 235U

    International Nuclear Information System (INIS)

    Lorenz, A.; Makarenko, V.E.; Chukreev, F.E.

    1994-02-01

    The results of a 235 U high spin states study are analysed. A new way to assign newly observed gamma ray transitions is proposed. Such assignments deals with low spin parts of the level scheme without introducing high spin level states. (author)

  13. Physics in a spin. CERN Courier, Jan-Feb 1985, v. 25(1)

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    About two hundred physicists travelled to Marseille in September to attend the 6th International Symposium on High Energy Spin Physics, it gathered specialists in polarization physics from all over the world. The meeting reflected optimism about the future of spin physics, an optimism clearly driven by the successful start-up of many new polarized beam projects and by the discovery of several new spin effects. The topics covered included spin effects at large transverse momentum, hyperon polarization, analysing power in elastic processes, and experiments at intermediate energies including dibaryon resonances. There were reports on new polarized beam developments at many Laboratories and on perspectives, plans, and theoretical predictions for the spin physics in future machines

  14. Beam halo in high-intensity beams

    International Nuclear Information System (INIS)

    Wangler, T.P.

    1993-01-01

    In space-charge dominated beams the nonlinear space-charge forces produce a filamentation pattern, which in projection to the 2-D phase spaces results in a 2-component beam consisting of an inner core and a diffuse outer halo. The beam-halo is of concern for a next generation of cw, high-power proton linacs that could be applied to intense neutron generators for nuclear materials processing. The author describes what has been learned about beam halo and the evolution of space-charge dominated beams using numerical simulations of initial laminar beams in uniform linear focusing channels. Initial results are presented from a study of beam entropy for an intense space-charge dominated beam

  15. Spin and chirality effects in antler-topology processes at high energy e{sup +}e{sup -} colliders

    Energy Technology Data Exchange (ETDEWEB)

    Choi, S. Y. [Department of Physics, Chonbuk National University, 561-756, Jeonbuk (Korea, Republic of); Department of Physics and Astronomy, Pittsburgh Particle physics, Astrophysics, and Cosmology Center, University of Pittsburgh, 15260, Pittsburgh, PA (United States); Christensen, N. D. [Department of Physics, Illinois State University, 61790, Normal, IL (United States); Salmon, D.; Wang, X., E-mail: xiw77@pitt.edu [Department of Physics and Astronomy, Pittsburgh Particle physics, Astrophysics, and Cosmology Center, University of Pittsburgh, 15260, Pittsburgh, PA (United States)

    2015-10-06

    We perform a model-independent investigation of spin and chirality correlation effects in the antler-topology processes e{sup +}e{sup -}→P{sup +}P{sup -}→(ℓ{sup +}D{sup 0})(ℓ{sup -}D{sup -bar0}) at high-energy e{sup +}e{sup -} colliders with polarized beams. Generally the production process e{sup +}e{sup -}→P{sup +}P{sup -} can occur not only through the s-channel exchange of vector bosons, V{sup 0}, including the neutral Standard Model (SM) gauge bosons, γ and Z, but also through the s- and t-channel exchanges of new neutral states, S{sup 0} and T{sup 0}, and the u-channel exchange of new doubly charged states, U{sup --}. The general set of (non-chiral) three-point couplings of the new particles and leptons allowed in a renormalizable quantum field theory is considered. The general spin and chirality analysis is based on the threshold behavior of the excitation curves for P{sup +}P{sup -} pair production in e{sup +}e{sup -} collisions with longitudinal- and transverse-polarized beams, the angular distributions in the production process and also the production-decay angular correlations. In the first step, we present the observables in the helicity formalism. Subsequently, we show how a set of observables can be designed for determining the spins and chiral structures of the new particles without any model assumptions. Finally, taking into account a typical set of approximately chiral invariant scenarios, we demonstrate how the spin and chirality effects can be probed experimentally at a high-energy e{sup +}e{sup -} collider.

  16. Spin effects in high energy quark-quark scattering

    International Nuclear Information System (INIS)

    Goloskokov, S.V.; Selyugin, O.V.

    1993-01-01

    The spin amplitudes in high-energy quark-quark scattering at /t/>1 GeV 2 are analyzed. It is shown that the gluon contributions in the QCDα s 3 order lead to the spin-flip amplitude growing as s. This means the existence of the spin-flip part in pomeron exchange. The resulting T f is about few per cent of the spin-non-flip contribution. The factorization of the large-distance and high-energy effects in the spin-flip amplitude is obtained. 13 refs.; 2 figs.; 1 tab

  17. Comparative aerobic soil metabolism of fenvalerate isomers

    International Nuclear Information System (INIS)

    Lee, P.W.; Powell, W.R.; Stearns, S.M.; McConnell, O.J.

    1987-01-01

    An aerobic soil metabolism study was conducted to determine the degradation rate of individual isomer of fenvalerate and to assess the potential influence of the RS, SR, and RR isomers to the metabolism of the most insecticidally active SS isomer. Individual [phenoxyphenyl- 14 C]fenvalerate isomers degraded at different rates. The calculated half-lives for the SR, RS, SS, and RR isomers in fenvalerate (racemic mixture) were 155, 89, 108, and 178 days, respectively. The resolved SS isomer degraded at a faster rate with a calculated half-life of 74 days. Racemization of the resolved SS isomer did not occur. A qualitative difference in the chemical nature of soil metabolites between fenvalerate and the resolved SS isomer was not observed. Soil degradation products, phenoxybenzoic acid, 3-(4-hydroxyphenoxy)benzoic acid, and 4'-OH- and CONH 2 -fenvalerate, each accounted for less than 2% of the applied radioactivity. Extensive degradation of these soil metabolites was evident since approximately 50% of the applied radioactivity was recovered as 14 C 2 and as unextractable bound residues

  18. Spin waves and spin instabilities in quantum plasmas

    OpenAIRE

    Andreev, P. A.; Kuz'menkov, L. S.

    2014-01-01

    We describe main ideas of method of many-particle quantum hydrodynamics allows to derive equations for description of quantum plasma evolution. We also present definitions of collective quantum variables suitable for quantum plasmas. We show that evolution of magnetic moments (spins) in quantum plasmas leads to several new branches of wave dispersion: spin-electromagnetic plasma waves and self-consistent spin waves. Propagation of neutron beams through quantum plasmas is also considered. Inst...

  19. Long-range interaction between spins

    International Nuclear Information System (INIS)

    Naik, P.C.; Pradhan, T.

    1981-01-01

    It is shown that invariance of Lagrangian field theory under a class of the coordinate-dependent Lorentz group of transformations requires the introduction of a massless axial vector gauge field which gives rise to a super-weak long-range spin-spin force between particles in vacuum. Recent experiments demonstrating repulsion and attraction between circularly polarised laser beams are interpreted to be due to such a force enhanced by spin polarisation of sodium vapour, through which these beams pass. (author)

  20. Structural Identification of 19 Purified Isomers of the OPV Acceptor Material bisPCBM by 13C NMR and UV-Vis Absorption Spectroscopy and High-Performance Liquid Chromatography.

    Science.gov (United States)

    Liu, Tong; Abrahams, Isaac; Dennis, T John S

    2018-04-26

    The molecular structures of 19 purified isomers of bis-phenyl-C 62 -butyric acid methyl ester were identified by a combination of 13 C NMR and UV-vis absorption spectroscopies and high-performance liquid chromatography (HPLC) retention time analysis. All 19 isomers are dicyclopropafullerenes (none are homofullerenes). There were seven isomers with C 1 molecular point-group symmetry, four with C s , six with C 2 , one with C 2 v , and one with C 2 h symmetry. The C 2 h , C 2 v , and all five nonequatorial C 1 isomers were unambiguously assigned to their respective HPLC fractions. For the other 12 isomers, the 13 C NMR and UV-vis spectra placed them in six groups of two same-symmetry isomers. On the basis of the widely spaced HPLC retention times of the two isomers within each of these six groups, and the empirical inverse correlation between retention time and addend spacing, each isomer was assigned to its corresponding HPLC fraction. In addition, the missing trans-1 isomer was found, purified, and characterized.

  1. Beam Manipulation with an RF Dipole

    International Nuclear Information System (INIS)

    Bai, M.

    1999-01-01

    Coherent betatron motion adiabatically excited by an RF dipole has been successfully employed to overcome strong intrinsic spin depolarization resonances in the AGS, while a solenoid partial snake has been used to correct imperfection spin resonances. The experimental results showed that a full spin flip was obtained in passing through an intrinsic spin resonance when all the beam particles were forced to oscillate coherently at a large amplitude without diluting the beam emittance. With this method, they have successfully accelerated polarized beam up to 23.5 GeV/c. A new type of second order spin resonances was also discovered. As a non-destructive manipulation, this method can also be used for nonlinear beam dynamics studies and beam diagnosis such as measuring phase advance and betatron amplitude function

  2. Investigations of low- and high-spin states of sup 1 sup 3 sup 2 La

    CERN Document Server

    Kumar, V; Singh, R P; Muralithar, S; Bhowmik, R K

    2003-01-01

    The fusion evaporation reaction sup 1 sup 2 sup 2 Sn( sup 1 sup 4 N,4n) sup 1 sup 3 sup 2 La was used to populate the high-spin states of sup 1 sup 3 sup 2 La at the beam energy of 60 MeV. A new band consisting of mostly E2 transitions has been discovered. This band has the interesting links to the ground state 2 sup - and the isomeric state 6 sup -. A new transition of energy 351 keV connecting the low-spin states of the positive-parity band based on the pi h sub 1 sub 1 sub / sub 2 x nu h sub 1 sub 1 sub / sub 2 particle configuration, has been found. This has played a very important role in resolving the existing ambiguities and inconsistencies in the spin assignment of the band head. (orig.)

  3. Exact suppression of depolarisation by beam-beam interaction in an electron ring

    International Nuclear Information System (INIS)

    Buon, J.

    1983-03-01

    It is shown that depolarisation due to beam-beam interaction can be exactly suppressed in an electron storage ring. The necessary ''spin matching'' conditions to be fulfilled are derived for a planar ring. They depend on the ring optics, assumed linear, but not on the features of the beam-beam force, like intensity and non-linearity. Extension to a ring equipped with 90 0 spin rotators is straightorward

  4. Determination of the beam-spin asymmetry of deuteron photodisintegration in the energy region Eγ=1.1 -2.3 GeV

    Science.gov (United States)

    Zachariou, N.; Ilieva, Y.; Berman, B. L.; Ivanov, N. Ya.; Sargsian, M. M.; Avakian, R.; Feldman, G.; Nadel-Turonski, P.; Adhikari, K. P.; Adikaram, D.; Anderson, M. D.; Pereira, S. Anefalos; Avakian, H.; Badui, R. A.; Baltzell, N. A.; Battaglieri, M.; Baturin, V.; Bedlinskiy, I.; Biselli, A. S.; Briscoe, W. J.; Brooks, W. K.; Burkert, V. D.; Cao, T.; Carman, D. S.; Celentano, A.; Chandavar, S.; Charles, G.; Colaneri, L.; Cole, P. L.; Compton, N.; Contalbrigo, M.; Cortes, O.; Crede, V.; D'Angelo, A.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Dupre, R.; Egiyan, H.; Alaoui, A. El; Fassi, L. El; Elouadrhiri, L.; Fedotov, G.; Fegan, S.; Filippi, A.; Fleming, J. A.; Forest, T. A.; Fradi, A.; Gevorgyan, N.; Ghandilyan, Y.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Glazier, D. I.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Hafidi, K.; Hanretty, C.; Harrison, N.; Hattawy, M.; Hicks, K.; Ho, D.; Holtrop, M.; Hughes, S. M.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jiang, H.; Jo, H. S.; Joo, K.; Keller, D.; Khachatryan, G.; Khandaker, M.; Kim, A.; Kim, W.; Klein, F. J.; Kubarovsky, V.; Lenisa, P.; Livingston, K.; Lu, H. Y.; MacGregor, I. J. D.; Markov, N.; Mattione, P. T.; McKinnon, B.; Mineeva, T.; Mirazita, M.; Mokeeev, V. I.; Montgomery, R. A.; Moutarde, H.; Camacho, C. Munoz; Net, L. A.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Park, K.; Pasyuk, E.; Phelps, W.; Phillips, J. J.; Pisano, S.; Pogorelko, O.; Pozdniakov, S.; Price, J. W.; Procureur, S.; Prok, Y.; Protopopescu, D.; Puckett, A. J. R.; Ripani, M.; Rizzo, A.; Rosner, G.; Rossi, P.; Roy, P.; Sabatié, F.; Salgado, C.; Schott, D.; Schumacher, R. A.; Seder, E.; Senderovich, I.; Sharabian, Y. G.; Skorodumina, Iu.; Smith, G. D.; Sober, D. I.; Sokhan, D.; Sparveris, N.; Stepanyan, S.; Strauch, S.; Sytnik, V.; Taiuti, M.; Tian, Ye; Ungaro, M.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D.; Wei, X.; Wood, M. H.; Zana, L.; Zhang, J.; Zhao, Z. W.; Zonta, I.; CLAS Collaboration

    2015-05-01

    The beam-spin asymmetry, Σ , for the reaction γ d →p n has been measured using the CEBAF Large Acceptance Spectrometer (CLAS) at the Thomas Jefferson National Accelerator Facility (JLab) for six photon-energy bins, between 1.1 and 2.3 GeV, and proton angles in the center-of-mass frame, θc .m ., between 25∘ and 160∘. These are the first measurements of beam-spin asymmetries at θc .m .=90∘ for photon-beam energies above 1.6 GeV, and the first measurements for angles other than θc .m .=90∘ . The angular and energy dependence of Σ is expected to aid in the development of QCD-based models to understand the mechanisms of deuteron photodisintegration in the transition region between hadronic and partonic degrees of freedom, where both effective field theories and perturbative QCD cannot make reliable predictions.

  5. High energy spin isospin modes in nuclei

    International Nuclear Information System (INIS)

    Chanfray, G.; Ericson, M.

    1984-01-01

    The high energy response of nuclei to a spin-isospin excitation is investigated. We show the existence of a strong contrast between the spin transverse and spin longitudinal responses. The second one undergoes a shadow effect in the Δ region and displays the occurrence of the pionic branch

  6. Beam Normal Single Spin Asymmetry in Forward Angle Inelastic Electron-Proton Scattering using the Q-Weak Apparatus

    Energy Technology Data Exchange (ETDEWEB)

    ., Nuruzzaman [Hampton Univ., Hampton, VA (United States)

    2014-12-01

    The Q-weak experiment in Hall-C at the Thomas Jefferson National Accelerator Facility has made the first direct measurement of the weak charge of the proton through the precision measurement of the parity-violating asymmetry in elastic electron-proton scattering at low momentum transfer. There is also a parity conserving Beam Normal Single Spin Asymmetry or transverse asymmetry (B_n) on H_2 with a sin(phi)-like dependence due to two-photon exchange. If the size of elastic B_n is a few ppm, then a few percent residual transverse polarization in the beam, combined with small broken azimuthal symmetries in the detector, would require a few ppb correction to the Q-weak data. As part of a program of B_n background studies, we made the first measurement of B_n in the N-to-Delta(1232) transition using the Q-weak apparatus. The final transverse asymmetry, corrected for backgrounds and beam polarization, was found to be B_n = 42.82 ± 2.45 (stat) ± 16.07 (sys) ppm at beam energy E_beam = 1.155 GeV, scattering angle theta = 8.3 deg, and missing mass W = 1.2 GeV. B_n from electron-nucleon scattering is a unique tool to study the gamma^* Delta Delta form factors, and this measurement will help to improve the theoretical models on beam normal single spin asymmetry and thereby our understanding of the doubly virtual Compton scattering process. To help correct false asymmetries from beam noise, a beam modulation system was implemented to induce small position, angle, and energy changes at the target to characterize detector response to the beam jitter. Two air-core dipoles separated by ~10 m were pulsed at a time to produce position and angle changes at the target, for virtually any tune of the beamline. The beam energy was modulated using an SRF cavity. The hardware and associated control instrumentation will be described in this dissertation. Preliminary detector sensitivities were extracted which helped to reduce the width of the measured asymmetry. The beam modulation system

  7. Ultrafast time-resolved absorption spectroscopy of geometric isomers of carotenoids

    International Nuclear Information System (INIS)

    Niedzwiedzki, Dariusz M.; Sandberg, Daniel J.; Cong, Hong; Sandberg, Megan N.; Gibson, George N.; Birge, Robert R.; Frank, Harry A.

    2009-01-01

    The structures of a number of stereoisomers of carotenoids have been revealed in three-dimensional X-ray crystallographic investigations of pigment-protein complexes from photosynthetic organisms. Despite these structural elucidations, the reason for the presence of stereoisomers in these systems is not well understood. An important unresolved issue is whether the natural selection of geometric isomers of carotenoids in photosynthetic pigment-protein complexes is determined by the structure of the protein binding site or by the need for the organism to accomplish a specific physiological task. The association of cis isomers of a carotenoid with reaction centers and trans isomers of the same carotenoid with light-harvesting pigment-protein complexes has led to the hypothesis that the stereoisomers play distinctly different physiological roles. A systematic investigation of the photophysics and photochemistry of purified, stable geometric isomers of carotenoids is needed to understand if a relationship between stereochemistry and biological function exists. In this work we present a comparative study of the spectroscopy and excited state dynamics of cis and trans isomers of three different open-chain carotenoids in solution. The molecules are neurosporene (n = 9), spheroidene (n = 10), and spirilloxanthin (n = 13), where n is the number of conjugated π-electron double bonds. The spectroscopic experiments were carried out on geometric isomers of the carotenoids purified by high performance liquid chromatography (HPLC) and then frozen to 77 K to inhibit isomerization. The spectral data taken at 77 K provide a high resolution view of the spectroscopic differences between geometric isomers. The kinetic data reveal that the lifetime of the lowest excited singlet state of a cis-isomer is consistently shorter than that of its corresponding all-trans counterpart despite the fact that the excited state energy of the cis molecule is typically higher than that of the trans

  8. Precise determination of the degree of polarization of a cold neutron beam

    International Nuclear Information System (INIS)

    Nastoll, H.; Schreckenbach, K.; Baglin, C.; Bussiere, A.; Guillaud, J.P.; Kossakowski, R.; Liaud, P.

    1991-01-01

    A cold neutron beam at the ILL High Flux Reactor was used to produce highly polarized neutrons by means of a bent supermirror polarizer. A following current sheet spin flipper allowed the change of the neutron spin direction relative to the guiding magnetic fields. The degree of polarization of the beam was measured as a function of the neutron velocity in the range 300-1500 m/s achieving an accuracy of 0.2% at typically 98% polarization. Two spin flippers and the permutation of three supermirror polarizers as polarizer/analyzer were employed. (orig.)

  9. Substitution effects on the absorption spectra of nitrophenolate isomers.

    Science.gov (United States)

    Wanko, Marius; Houmøller, Jørgen; Støchkel, Kristian; Suhr Kirketerp, Maj-Britt; Petersen, Michael Åxman; Nielsen, Mogens Brøndsted; Nielsen, Steen Brøndsted; Rubio, Angel

    2012-10-05

    Charge-transfer excitations highly depend on the electronic coupling between the donor and acceptor groups. Nitrophenolates are simple examples of charge-transfer systems where the degree of coupling differs between ortho, meta and para isomers. Here we report the absorption spectra of the isolated anions in vacuo to avoid the complications of solvent effects. Gas-phase action spectroscopy was done with two different setups, an electrostatic ion storage ring and an accelerator mass spectrometer. The results are interpreted on the basis of CC2 quantum chemical calculations. We identified absorption maxima at 393, 532, and 399 nm for the para, meta, and ortho isomer, respectively, with the charge-transfer transition into the lowest excited singlet state. In the meta isomer, this π-π* transition is strongly redshifted and its oscillator strength reduced, which is related to the pronounced charge-transfer character, as a consequence of the topology of the conjugated π-system. Each isomer's different charge distribution in the ground state leads to a very different solvent shift, which in acetonitrile is bathochromic for the para and ortho, but hypsochromic for the meta isomer.

  10. Multiphoton electronic-spin generation and transmission spectroscopy in n-type GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Idrish Miah, M., E-mail: m.miah@griffith.edu.a [Department of Physics, University of Chittagong, Chittagong 4331 (Bangladesh)

    2011-01-17

    Multiphoton electronic-spin generation in semiconductors was investigated using differential transmission spectroscopy. The generation of the electronic spins in the semiconductor samples were achieved by multiphoton pumping with circularly polarized light beam and was probed by the spin-resolved transmission of the samples. The electronic spin-polarization of conduction band was estimated and was found to depend on the delay of the probe beam, temperature as well as on the multiphoton pumping energy. The temperature dependence showed a decrease of the spin-polarization with increasing temperature. The electronic spin-polarization was found to depolarize rapidly for multiphoton pumping energy larger than the energy gap of the split-off band to the conduction band. The results were compared with those obtained in one-photon pumping, which shows that an enhancement of the electronic spin-polarization was achieved in multiphoton pumping. The findings resulting from this investigation might have potential applications in opto-spintronics, where the generation of highly polarized electronic spins is required.

  11. Multiphoton electronic-spin generation and transmission spectroscopy in n-type GaAs

    International Nuclear Information System (INIS)

    Idrish Miah, M.

    2011-01-01

    Multiphoton electronic-spin generation in semiconductors was investigated using differential transmission spectroscopy. The generation of the electronic spins in the semiconductor samples were achieved by multiphoton pumping with circularly polarized light beam and was probed by the spin-resolved transmission of the samples. The electronic spin-polarization of conduction band was estimated and was found to depend on the delay of the probe beam, temperature as well as on the multiphoton pumping energy. The temperature dependence showed a decrease of the spin-polarization with increasing temperature. The electronic spin-polarization was found to depolarize rapidly for multiphoton pumping energy larger than the energy gap of the split-off band to the conduction band. The results were compared with those obtained in one-photon pumping, which shows that an enhancement of the electronic spin-polarization was achieved in multiphoton pumping. The findings resulting from this investigation might have potential applications in opto-spintronics, where the generation of highly polarized electronic spins is required.

  12. Polarized muon beams for muon collider

    Energy Technology Data Exchange (ETDEWEB)

    Skrinsky, A.N. [Rossijskaya Akademiya Nauk, Novosibirsk (Russian Federation). Inst. Yadernoj Fiziki

    1996-11-01

    An option for the production of intense and highly polarized muon beams, suitable for a high-luminosity muon collider, is described briefly. It is based on a multi-channel pion-collection system, narrow-band pion-to-muon decay channels, proper muon spin gymnastics, and ionization cooling to combine all of the muon beams into a single bunch of ultimately low emittance. (orig.).

  13. Identification of (2-aminopropyl)indole positional isomers in forensic samples.

    Science.gov (United States)

    Scott, Kenneth R; Power, John D; McDermott, Seán D; O'Brien, John E; Talbot, Brian N; Barry, Michael G; Kavanagh, Pierce V

    2014-01-01

    In 2012, 5-(2-aminopropyl)indole (5-API, 5-IT) was reported by Norwegian authorities to the European Monitoring Centre for Drugs and Drug Addiction (EMCDDA) via the Early Warning System (EWS). The 3- isomer, 3-(2-aminopropyl)indole (3-API, AMT, alpha-methyltryptamine), has been available on the recreational drugs market for a somewhat longer time, having first been reported to the EMCDDA by Finnish authorities in 2001. Both isomers are available from online vendors of 'legal highs'. Recently, three forensic drug cases (two tablets and one powder) were presented for routine analysis and the active constituent was tentatively identified as an API isomer. The six positional isomers (2-, 3-, 4-, 5-, 6- and 7-(2-aminopropyl)indoles) were synthesized and analyses by a combination gas chromatography-mass spectrometry (GC-MS), and liquid chromatography-mass spectrometry (LC-MS) showed that these could be readily discriminated thus facilitating the identification of 3-API in the tablets and 5-API in the powder. With exception of 5- and 6-APIs, which co-eluted, it was found possible to separate the isomers by GC without derivatization. LC separation also proved to be a feasible method for the discrimination of the isomers. Although the 2- and 7- isomers were not fully resolved by LC, it was found possible to distinguish them using their product ion spectra as the 2- isomer produced the m/z 132 fragment ion formed by loss of vinylamine, whereas the 7- isomer formed m/z 158 through loss of methylamine. In the synthesis 2-API, a novel tricyclic by-product was formed in an annulation reaction where the reaction solvent, tetrahydrofuran, was incorporated into the molecule. Copyright © 2013 John Wiley & Sons, Ltd.

  14. High-spin research with HERA [High Energy-Resolution Array

    International Nuclear Information System (INIS)

    Diamond, R.M.

    1987-06-01

    The topic of this report is high spin research with the High Energy Resolution Array (HERA) at Lawrence Berkeley Laboratory. This is a 21 Ge detector system, the first with bismuth germanate (BGO) Compton suppression. The array is described briefly and some of the results obtained during the past year using this detector facility are discussed. Two types of studies are described: observation of superdeformation in the light Nd isotopes, and rotational damping at high spin and excitation energy in the continuum gamma ray spectrum

  15. Minimization of spin tune spread by matching dispersion prime at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Kewisch, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Huang, H. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2017-08-31

    At RHIC, the spin polarization is preserved with a pair of Siberian snakes on the oppo- site sides in each ring. The polarized proton beam with finite spin tune spread might cross spin resonances multiple times in two cases, one is when beam going through strong spin intrinsic resonances during acceleration, the other is when sweeping spin flipper’ frequency across the spin tune to flip the direction of spin polarization. The consequence is loss of spin polarization in both cases. Therefore, a scheme of min- imizing the spin tune spread by matching the dispersion primes at the two snakes was introduced based on the fact that the spin tune spread is proportional to the difference of dispersion primes at the two snakes. The scheme was implemented at fixed energies for the spin flipper study and during beam acceleration for better spin polarization transmission efficiency. The effect of minimizing the spin tune spread by matching the dispersion primes was observed and confirmed experimentally. The principle of minimizing the spin tune spread by matching the dispersion primes, the impact on the beam optics, and the effect of a narrower spin tune spread are presented in this report.

  16. The proportion of lycopene isomers in human plasma is modulated by lycopene isomer profile in the meal but not by lycopene preparation

    OpenAIRE

    Richelle, Myriam; Lambelet, Pierre; Rytz, Andreas; Tavazzi, Isabelle; Mermoud, Anne-France; Juhel, Christine; Borel, Patrick; Bortlik, Karlheinz

    2011-01-01

    Dietary lycopene consists mostly of the (all-E) isomer. Upon absorption, (all-E) lycopene undergoes isomerisation into various (Z)-isomers. Because these isomers offer potentially better health benefits than the (all-E) isomer, the aim of the present study was to investigate if the profile of lycopene isomers in intestinal lipoproteins is affected by the profile of lycopene isomers in the meal and by the tomato preparation. Six postprandial, crossover tests were performed in healthy men. Thre...

  17. Quasi-particle and collective magnetism: Rotation, pairing and blocking in high-K isomers

    International Nuclear Information System (INIS)

    Stone, N.J.; Stone, J.R.; Walker, P.M.; Bingham, C.R.

    2013-01-01

    For the first time, a wide range of collective magnetic g-factors g R , obtained from a novel analysis of experimental data for multi-quasi-particle configurations in high-K isomers, is shown to exhibit a striking systematic variation with the relative number of proton and neutron quasi-particles, N p −N n . Using the principle of additivity, the quasi-particle contribution to magnetism in high-K isomers of Lu–Re, Z=71–75, has been estimated. Based on these estimates, band-structure branching ratio data are used to explore the behavior of the collective contribution as the number and proton/neutron nature (N p , N n ), of the quasi-particle excitations, change. Basic ideas of pairing, its quenching by quasi-particle excitation and the consequent changes to moment of inertia and collective magnetism are discussed. Existing model calculations do not reproduce the observed g R variation adequately. The paired superfluid system of nucleons in these nuclei, and their excitations, present properties of general physics interest. The new-found systematic behavior of g R in multi-quasi-particle excitations of this unique system, showing variation from close to zero for multi-neutron states to above 0.5 for multi-proton states, opens a fresh window on these effects and raises the important question of just which nucleons contribute to the ‘collective’ properties of these nuclei

  18. On-chip spin-controlled orbital angular momentum directional coupling

    Science.gov (United States)

    Xie, Zhenwei; Lei, Ting; Si, Guangyuan; Du, Luping; Lin, Jiao; Min, Changjun; Yuan, Xiaocong

    2018-01-01

    Optical vortex beams have many potential applications in the particle trapping, quantum encoding, optical orbital angular momentum (OAM) communications and interconnects. However, the on-chip compact OAM detection is still a big challenge. Based on a holographic configuration and a spin-dependent structure design, we propose and demonstrate an on-chip spin-controlled OAM-mode directional coupler, which can couple the OAM signal to different directions due to its topological charge. While the directional coupling function can be switched on/off by altering the spin of incident beam. Both simulation and experimental measurements verify the validity of the proposed approach. This work would benefit the on-chip OAM devices for optical communications and high dimensional quantum coding/decoding in the future.

  19. Measurement of electron beam polarization at the SLC

    International Nuclear Information System (INIS)

    Steiner, H.

    1987-03-01

    The polarimeters needed to monitor and measure electron beam polarization at the Stanford Linear Collider are discussed. Two types of polarimeters, are to be used. The first is based on the spin dependent elastic scattering of photons from high energy electrons. The second utilizes the spin dependence of elastic electron-electron scattering. The plans of the SLC polarization group to measure and monitor electron beam polarization are discussed. A brief discussion of the physics and the demands it imposes on beam polarization measurements is presented. The Compton polarimeter and the essential characteristics of two Moeller polarimeters are presented

  20. Nuclear inelastic scattering and density functional theory studies of a one-dimensional spin crossover [Fe(1,2,4-triazole)2(1,2,4-triazolato)](BF4) molecular chain.

    Science.gov (United States)

    Jenni, Kevin; Scherthan, Lena; Faus, Isabelle; Marx, Jennifer; Strohm, Cornelius; Herlitschke, Marcus; Wille, Hans-Christian; Würtz, Peter; Schünemann, Volker; Wolny, Juliusz A

    2017-07-26

    Nuclear inelastic scattering (NIS) experiments have been performed in order to study the vibrational dynamics of the low- and high-spin states of the polynuclear 1D spin crossover compound [Fe(1,2,4-triazole) 2 (1,2,4-triazolato)](BF 4 ) (1). Density functional theory (DFT) calculations using the functional B3LYP* and the basis set CEP-31G for heptameric and nonameric models of the compound yielded the normal vibrations and electronic energies for high-spin and low-spin isomers of three models differing in the distribution of anionic trz - ligands and BF 4 - anions. On the basis of the obtained energies a structural model with a centrosymmetric Fe(trzH) 4 (trz - ) 2 coordination core of the mononuclear unit of the chain is proposed. The obtained distribution of the BF 4 - counteranions in the proposed structure is similar to that obtained on the basis of X-ray powder diffraction studies by Grossjean et al. (Eur. J. Inorg. Chem., 2013, 796). The NIS data of the system diluted to 10% Fe(ii) content in a 90% Zn(ii) matrix (compound (2)) show a characteristic change of the spectral pattern of the low-spin centres, compared to the low-spin phase of the parent Fe(ii) complex (1). DFT calculations reveal that this is caused by a change of the structure of the neighbours of the low-spin centres. The spectral pattern of the high-spin centres in (2) is within a good approximation identical to that of the high-spin Fe(ii) isomer of (1). The inspection of the molecular orbitals of the monomeric model systems of [Fe(trzH) 4 (trz - ) 2 ] and [Fe(trzH) 6 ], together with calculations of spin transition energies, point towards the importance of an electrostatic effect caused by the negatively charged ligands. This results in the stabilisation of the low-spin state of the complex containing the anionic ligand and shortening of the Fe-N(trz - ) compared to the Fe-N(trzH) bond in high-spin, but not in low-spin [Fe(trzH) 4 (trz - ) 2 ].

  1. The IBA Rhodotron: an industrial high-voltage high-powered electron beam accelerator for polymers radiation processing

    Science.gov (United States)

    Van Lancker, Marc; Herer, Arnold; Cleland, Marshall R.; Jongen, Yves; Abs, Michel

    1999-05-01

    The Rhodotron is a high-voltage, high-power electron beam accelerator based on a design concept first proposed in 1989 by J. Pottier of the French Atomic Agency, Commissariat à l'Energie Atomique (CEA). In December 1991, the Belgian particle accelerator manufacturer, Ion Beam Applications s.a. (IBA) entered into an exclusive agreement with the CEA to develop and industrialize the Rhodotron. Electron beams have long been used as the preferential method to cross-link a variety of polymers, either in their bulk state or in their final form. Used extensively in the wire and cable industry to toughen insulating jackets, electron beam-treated plastics can demonstrate improved tensile and impact strength, greater abrasion resistance, increased temperature resistance and dramatically improved fire retardation. Electron beams are used to selectively cross-link or degrade a wide range of polymers in resin pellets form. Electron beams are also used for rapid curing of advanced composites, for cross-linking of floor-heating and sanitary pipes and for cross-linking of formed plastic parts. Other applications include: in-house and contract medical device sterilization, food irradiation in both electron and X-ray modes, pulp processing, electron beam doping of semi-conductors, gemstone coloration and general irradiation research. IBA currently markets three models of the Rhodotron, all capable of 10 MeV and alternate beam energies from 3 MeV upwards. The Rhodotron models TT100, TT200 and TT300 are typically specified with guaranteed beam powers of 35, 80 and 150 kW, respectively. Founded in 1986, IBA, a spin-off of the Cyclotron Research Center at the University of Louvain (UCL) in Belgium, is a pioneer in accelerator design for industrial-scale production.

  2. The IBA Rhodotron: an industrial high-voltage high-powered electron beam accelerator for polymers radiation processing

    International Nuclear Information System (INIS)

    Lancker, Marc van; Herer, Arnold; Cleland, Marshall R.; Jongen, Yves; Abs, Michel

    1999-01-01

    The Rhodotron is a high-voltage, high-power electron beam accelerator based on a design concept first proposed in 1989 by J. Pottier of the French Atomic Agency, Commissariat a l'Energie Atomique (CEA). In December 1991, the Belgian particle accelerator manufacturer, Ion Beam Applications s.a. (IBA) entered into an exclusive agreement with the CEA to develop and industrialize the Rhodotron. Electron beams have long been used as the preferential method to cross-link a variety of polymers, either in their bulk state or in their final form. Used extensively in the wire and cable industry to toughen insulating jackets, electron beam-treated plastics can demonstrate improved tensile and impact strength, greater abrasion resistance, increased temperature resistance and dramatically improved fire retardation. Electron beams are used to selectively cross-link or degrade a wide range of polymers in resin pellets form. Electron beams are also used for rapid curing of advanced composites, for cross-linking of floor-heating and sanitary pipes and for cross-linking of formed plastic parts. Other applications include: in-house and contract medical device sterilization, food irradiation in both electron and X-ray modes, pulp processing, electron beam doping of semi-conductors, gemstone coloration and general irradiation research. IBA currently markets three models of the Rhodotron, all capable of 10 MeV and alternate beam energies from 3 MeV upwards. The Rhodotron models TT100, TT200 and TT300 are typically specified with guaranteed beam powers of 35, 80 and 150 kW, respectively. Founded in 1986, IBA, a spin-off of the Cyclotron Research Center at the University of Louvain (UCL) in Belgium, is a pioneer in accelerator design for industrial-scale production

  3. Decay of a three-quasiparticle isomer in the neutron-rich nucleus 183Ta

    Directory of Open Access Journals (Sweden)

    Zhu S.

    2012-10-01

    Full Text Available Excited states in neutron-rich tantalum isotopes have been studied with deep-inelastic reactions using 136Xe ions incident on a 186W target. New transitions observed below the τ=1.3 μs isomer in 183Ta have enabled the establishment of its energy and put limits on the spin and parity. On the basis of the reduced hindrances for the depopulating transitions, a 3-quasiparticle configuration of ν1/2−[510]11/2+[615] ⊗ π9/2−[514] is suggested.

  4. First spatial separation of a heavy ion isomeric beam with a multiple-reflection time-of-flight mass spectrometer

    Science.gov (United States)

    Dickel, T.; Plaß, W. R.; Ayet San Andres, S.; Ebert, J.; Geissel, H.; Haettner, E.; Hornung, C.; Miskun, I.; Pietri, S.; Purushothaman, S.; Reiter, M. P.; Rink, A.-K.; Scheidenberger, C.; Weick, H.; Dendooven, P.; Diwisch, M.; Greiner, F.; Heiße, F.; Knöbel, R.; Lippert, W.; Moore, I. D.; Pohjalainen, I.; Prochazka, A.; Ranjan, M.; Takechi, M.; Winfield, J. S.; Xu, X.

    2015-05-01

    211Po ions in the ground and isomeric states were produced via 238U projectile fragmentation at 1000 MeV/u. The 211Po ions were spatially separated in flight from the primary beam and other reaction products by the fragment separator FRS. The ions were energy-bunched, slowed-down and thermalized in a gas-filled cryogenic stopping cell (CSC). They were then extracted from the CSC and injected into a high-resolution multiple-reflection time-of-flight mass spectrometer (MR-TOF-MS). The excitation energy of the isomer and, for the first time, the isomeric-to-ground state ratio were determined from the measured mass spectrum. In the subsequent experimental step, the isomers were spatially separated from the ions in the ground state by an ion deflector and finally collected with a silicon detector for decay spectroscopy. This pioneering experimental result opens up unique perspectives for isomer-resolved studies. With this versatile experimental method new isomers with half-lives longer than a few milliseconds can be discovered and their decay properties can be measured with highest sensitivity and selectivity. These experiments can be extended to studies with isomeric beams in nuclear reactions.

  5. Spin and chirality effects in antler-topology processes at high energy e{sup +}e{sup -} colliders

    Energy Technology Data Exchange (ETDEWEB)

    Choi, S.Y. [Chonbuk National University, Department of Physics, Jeonbuk (Korea, Republic of); University of Pittsburgh, Department of Physics and Astronomy, Pittsburgh Particle physics, Astrophysics, and Cosmology Center, Pittsburgh, PA (United States); Christensen, N.D. [Illinois State University, Department of Physics, Normal, IL (United States); Salmon, D.; Wang, X. [University of Pittsburgh, Department of Physics and Astronomy, Pittsburgh Particle physics, Astrophysics, and Cosmology Center, Pittsburgh, PA (United States)

    2015-10-15

    We perform a model-independent investigation of spin and chirality correlation effects in the antler-topology processes e{sup +}e{sup -} → P{sup +}P{sup -} → (l{sup +}D{sup 0})(l{sup +} anti D{sup 0}) at highenergy e{sup +}e{sup -} colliders with polarized beams. Generally the production process e{sup +}e{sup -} → P{sup +}P{sup -} can occur not only through the s-channel exchange of vector bosons, V{sup 0}, including the neutral Standard Model (SM) gauge bosons, γ and Z, but also through the s- and t-channel exchanges of new neutral states, S{sup 0} and T{sup 0}, and the u-channel exchange of new doubly charged states, U{sup --}. The general set of (nonchiral) three-point couplings of the new particles and leptons allowed in a renormalizable quantum field theory is considered. The general spin and chirality analysis is based on the threshold behavior of the excitation curves for P{sup +}P{sup -} pair production in e{sup +}e{sup -} collisions with longitudinal- and transverse-polarized beams, the angular distributions in the production process and also the production-decay angular correlations. In the first step, we present the observables in the helicity formalism. Subsequently, we show how a set of observables can be designed for determining the spins and chiral structures of the new particles without any model assumptions. Finally, taking into account a typical set of approximately chiral invariant scenarios, we demonstrate how the spin and chirality effects can be probed experimentally at a high-energy e{sup +}e{sup -} collider. (orig.)

  6. High-Spin Structure in Odd-Odd 160Lu Nucleus

    International Nuclear Information System (INIS)

    Wang Lie-Lin; Lu Jing-Bin; Yang Dong; Ma Ke-Yan; Yin Li-Chang; Zhou Yin-Hang; Wu Xiao-Guang; Wen Shu-Xian; Li Guang-Sheng; Yang Chun-Xiang

    2012-01-01

    The high-spin states of 160 Lu are populated by the fusion-evaporation reaction 144 Sm( 19 F,3n) 160 Lu at beam energies of 90 and 106 MeV. A new level scheme of 160 Lu is established. A possible isomeric state based on the πh 11/2 νh 9/2 configuration is observed. The new decoupled band with the configuration of πd 3/2 [411]1/2 + νi 13/2 [660]1/2 + is established, and the configurations of these similar decoupled bands in the neighboring odd-odd 162−166 Lu nuclei are suggested. A positive parity coupled band is assigned as the πd 5/2 [402]5/2 + νi 13/2 [660]1/2 + configuration. (nuclear physics)

  7. Luminosity monitor topics for RHIC spin and AA, and pA interactions

    International Nuclear Information System (INIS)

    Underwood, D.

    1998-01-01

    This is a note to define topics to be studied in more depth for the Luminosity monitoring for Spin Asymmetries. My numerical examples here are to stimulate discussion and should be taken with a grain of salt. The RHIC Spin experiments will require a very high degree of coordination between the experiments and the accelerator. For example see AGS/RHIC/SN 035. In this note we list some of the issues to be considered in monitoring the relative luminosity between various beam-beam spin combinations and beam-gas combinations. We give simplified numerical examples of the problems encountered in doing the luminosity monitoring to the 10 -4 level. It is hoped that this will provide a framework for serious study of these problems with simulations and other means. Many of the issues may also be relevant to pA and AA running where there may be sizable beam-gas backgrounds

  8. G-factor for the K-6, Jsup(π) = 6+ isomer in 178Hf

    International Nuclear Information System (INIS)

    Faestermann, T.; Haeusser, O.; Ward, D.; Andrews, H.R.; Alexander, T.K.; Horn, D.

    1978-01-01

    High-K isomers are prevalent towards the end of the rare-earth region of deformed nuclei where the valence particles fill high Ω orbitals. Very little is known about the g-factors for these isomers mainly because in the half-life range encountered, 50 ns-50 μs, quadrupole and paramagnetic relaxation effects can destroy the nuclear alignment very rapidly. In 178 Hf a Isub(π)K=6 + 6 isomer with a half-life of 78 ns has recently been found. It decays predominantly to the ground band (K=O) 6 + and 4 + levels with gamma rays of 921.8 keV and 1247.3 keV respectively. The authors have measured the g-factor of this isomer with the method of perturbed angular distributions. (Auth.)

  9. Experimental status of high-spin states

    International Nuclear Information System (INIS)

    Stephens, F.S.

    1975-09-01

    Changes occurring in high spin nuclear states are discussed. Experimental methods for studying reduction and eventual quenching of pairing interactions, changes in nuclear shapes, and alignment of individual particle angular momenta with increasing spin are reviewed. Emphasis is placed on the study of continuum gamma rays following heavy ion reactions. (12 figures)

  10. RHIC spin flipper AC dipole controller

    Energy Technology Data Exchange (ETDEWEB)

    Oddo, P.; Bai, M.; Dawson, C.; Gassner, D.; Harvey, M.; Hayes, T.; Mernick, K.; Minty, M.; Roser, T.; Severino, F.; Smith, K.

    2011-03-28

    The RHIC Spin Flipper's five high-Q AC dipoles which are driven by a swept frequency waveform require precise control of phase and amplitude during the sweep. This control is achieved using FPGA based feedback controllers. Multiple feedback loops are used to and dynamically tune the magnets. The current implementation and results will be presented. Work on a new spin flipper for RHIC (Relativistic Heavy Ion Collider) incorporating multiple dynamically tuned high-Q AC-dipoles has been developed for RHIC spin-physics experiments. A spin flipper is needed to cancel systematic errors by reversing the spin direction of the two colliding beams multiple times during a store. The spin flipper system consists of four DC-dipole magnets (spin rotators) and five AC-dipole magnets. Multiple AC-dipoles are needed to localize the driven coherent betatron oscillation inside the spin flipper. Operationally the AC-dipoles form two swept frequency bumps that minimize the effect of the AC-dipole dipoles outside of the spin flipper. Both AC bumps operate at the same frequency, but are phase shifted from each other. The AC-dipoles therefore require precise control over amplitude and phase making the implementation of the AC-dipole controller the central challenge.

  11. Yrast and high spin states in 22Ne

    International Nuclear Information System (INIS)

    Szanto, E.M.; Toledo, A.S. de

    1982-08-01

    High spin states in 22 Ne have been investigated by the reactions 11 B( 13 C,d) 22 Ne and 13 C( 11 B,d) 22 Ne up to E* approximately=19 MeV. Yrast states were observed at 11.02 MeV (8 + ) and 15.46 MeV (10 + ) excitation energy. A backbending in 22 Ne is observed around spin 8 + . The location of high spin states I [pt

  12. Separation of Opiate Isomers Using Electrospray Ionization and Paper Spray Coupled to High-Field Asymmetric Waveform Ion Mobility Spectrometry

    Science.gov (United States)

    Manicke, Nicholas E.; Belford, Michael

    2015-05-01

    One limitation in the growing field of ambient or direct analysis methods is reduced selectivity caused by the elimination of chromatographic separations prior to mass spectrometric analysis. We explored the use of high-field asymmetric waveform ion mobility spectrometry (FAIMS), an ambient pressure ion mobility technique, to separate the closely related opiate isomers of morphine, hydromorphone, and norcodeine. These isomers cannot be distinguished by tandem mass spectrometry. Separation prior to MS analysis is, therefore, required to distinguish these compounds, which are important in clinical chemistry and toxicology. FAIMS was coupled to a triple quadrupole mass spectrometer, and ionization was performed using either a pneumatically assisted heated electrospray ionization source (H-ESI) or paper spray, a direct analysis method that has been applied to the direct analysis of dried blood spots and other complex samples. We found that FAIMS was capable of separating the three opiate structural isomers using both H-ESI and paper spray as the ionization source.

  13. Structure of neutron-rich nuclei around the N = 126 closed shell; the yrast structure of {sup 205}Au{sub 126} up to spin-parity I{sup {pi}} = (19/2{sup +})

    Energy Technology Data Exchange (ETDEWEB)

    Podolyak, Zs.; Steer, S.J.; Pietri, S.; Regan, P.H.; Brandau, C.; Catford, W.N.; Cullen, I.J.; Gelletly, W.; Jones, G.A.; Liu, Z.; Walker, P.M. [University of Surrey, Department of Physics, Guildford (United Kingdom); Gorska, M.; Gerl, J.; Wollersheim, H.J.; Grawe, H.; Becker, F.; Geissel, H.; Kelic, A.; Kojouharov, I.; Kurz, N.; Montes, F.; Prokopowicz, W.; Saito, T.; Schaffner, H.; Tashenov, S.; Werner-Malento, E. [GSI, Darmstadt (Germany); Rudolph, D.; Hoischen, R. [Lund University, Department of Physics, Lund (Sweden); Garnsworthy, A.B. [University of Surrey, Department of Physics, Guildford (United Kingdom); Yale University, WNSL, New Haven, CT (United States); Maier, K.H. [Institute of Nuclear Physics, Krakow (Poland); University of the West of Scotland, Dept. of Physics, Paisley (United Kingdom); Bednarczyk, P.; Grebosz, J. [GSI, Darmstadt (Germany); Institute of Nuclear Physics, Krakow (Poland); Caceres, L. [GSI, Darmstadt (Germany); Universidad Autonoma de Madrid, Dept. de Fisica Teorica, Madrid (Spain); Doornenbal, P. [GSI, Darmstadt (Germany); Universitaet zu Koeln, IKP, Koeln (Germany); Heinz, A. [Yale University, WNSL, New Haven, CT (United States); Kurtukian-Nieto, T. [Universidad de Santiago de Compostela, Santiago de Campostela (Spain); Benzoni, G.; Wieland, O. [Universita degli Studi di Milano (Italy); INFN, Milano (Italy); Pfuetzner, M. [Warsaw University, IEP, Warsaw (Poland); Jungclaus, A. [Universidad Autonoma de Madrid, Dept. de Fisica Teorica, Madrid (Spain); Balabanski, D.L. [Bulgarian Academy of Sciences, INRNE, Sofia (Bulgaria); Brown, B.A. [Univ. of Surrey, Dept. of Physics, Guildford (United Kingdom); Michigan State Univ., NSCL, East Lansing, MI (United States); Bruce, A.M.; Lalkovski, S. [Univ. of Brighton, School of Environment and Technology, Brighton (United Kingdom); Dombradi, Zs. [Institute for Nuclear Research, Debrecen (Hungary); Estevez, M.E. [Instituto de Fisica Corpuscular, Valencia (Spain)] [and others

    2009-12-15

    Heavy neutron-rich nuclei have been populated through the relativistic fragmentation of a {sup 208}{sub 82} Pb beam at E/A = 1 GeV on a 2.5 g/cm{sup 2} thick Be target. The synthesised nuclei were selected and identified in-flight using the fragment separator at GSI. Approximately 300 ns after production, the selected nuclei were implanted in an {proportional_to}8 mm thick perspex stopper, positioned at the centre of the RISING {gamma} -ray detector spectrometer array. A previously unreported isomer with a half-life T{sub 1/2} = 163(5) ns has been observed in the N=126 closed-shell nucleus {sup 205}{sub 79} Au. Through {gamma}-ray singles and {gamma}-{gamma} coincidence analysis a level scheme was established. The comparison with a shell model calculation tentatively identifies the spin-parity of the excited states, including the isomer itself, which is found to be I{sup {pi}} = (19/2{sup +}). (orig.)

  14. Spin crossover and high spin filtering behavior in Co-Pyridine and Co-Pyrimidine molecules

    Science.gov (United States)

    Wen, Zhongqian; Zhou, Liping; Cheng, Jue-Fei; Li, Shu-Jin; You, Wen-Long; Wang, Xuefeng

    2018-03-01

    We present a theoretical study on a series of cobalt complexes, which are constructed with cobalt atoms and pyridine/pyrimidine rings, using density functional theory. We investigate the structural and electric transport properties of spin crossover (SCO) Co complex with two spin states, namely low-spin configuration [LS] and high-spin configuration [HS]. Energy analyses of the two spin states imply that the SCO Co-Pyridine2 and Co-Pyrimidine2 complexes may display a spin transition process accompanied by a geometric modification driven by external stimuli. A nearly perfect spin filtering effect is observed in the Co-Pyrimidine2 complex with [HS] state. In addition, we also discover the contact-dependent transmission properties of Co-Pyridine2. These findings indicate that SCO Co complexes are promising materials for molecular spintronic devices.

  15. Mats and LaSpec: High-precision experiments using ion traps and lasers at Fair

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, D.; Lallena, A.M.; Blaum, K.; Bohm, C.; Cakirli, R.B.; Crespo Lopez-Urrutia, J.R.; Eliseev, S.; Ketelaer, J.; Kreim, M.S.; Kowalska, M.; Litvinov, Y.A.; Nagy, S.; Neidherr, D.; Repp, J.; Roux, C.; Schabinger, B.; Ullrich, J.; Nortershauser, W.; Eberhardt, K.; Geppert, C.; Kramer, J.; Krieger, A.; Sanchez, R.; Ahammed, M.; Das, P.; Ray, A.; Algora, A.; Rubio, B.; Tain, J.L.; Audi, G.; Lunney, D.; Naimi, S.; Aysto, J.; Jokinen, A.; Kolhinen, V.; Moore, I.; Beck, D.; Block, M.; Geissel, H.; Heinz, S.; Herfurth, F.; Litvinov, Y.A.; Minaya-Ramirez, E.; Plab, W.R.; Quint, W.; Scheidenberger, C.; Winkler, M.; Bender, M.; Billowes, J.; Campbell, P.; Flanagan, K.T.; Schwarz, S.; Bollen, G.; Ferrer, R.; George, S.; Kester, O.; Brodeur, M.; Brunner, T.; Delheij, P.; Dilling, J.; Ettenauer, S.; Lapierre, A.; Bushaw, B.A.; Cano-Ott, D.; Martinez, T.; Cortes, G.; Gomez-Hornillos, M.B.; Dax, A.; Herlert, A.; Yordanov, D.; De, A.; Dickel, T.; Geissel, H.; Jesch, C.; Kuhl, T.; Petrick, M.; PlaB, W.R.; Scheidenberger, C.; Garcia-Ramos, J.E.; Gartzke, E.; Habs, D.; Szerypo, J.; Thirolf, P.G.; Weber, C.; Gusev, Y.; Nesterenko, D.; Novikov, Y.N.; Popov, A.; Seliverstov, M.; Vasiliev, A.; Vorobjev, G.; Heenen, P.H.; Marx, G.; Schweikhard, L.; Ziegler, F.; Hobein, M.; Schuch, R.; Solders, A.; Suhonen, M.; Huber, G.; Wendt, K.; Huyse, M.; Koudriavtsev, I.; Neyens, G.; Van Duppen, P.; Le Blanc, F.; Matos, M.; Reinhard, P.G.; Schneider, D.

    2010-05-15

    Nuclear ground state properties including mass, charge radii, spins and moments can be determined by applying atomic physics techniques such as Penning-trap based mass spectrometry and laser spectroscopy. The MATS and LaSpec setups at the low-energy beamline at FAIR will allow us to extend the knowledge of these properties further into the region far from stability. With MATS (Precision Measurements of very short-lived nuclei using an Advanced Trapping System for highly-charged ions) at FAIR we aim to apply several techniques to very short-lived radionuclides: High-accuracy mass measurements, in-trap conversion electron and alpha spectroscopy, and trap-assisted spectroscopy. The experimental setup of MATS is a unique combination of an electron beam ion trap for charge breeding, ion traps for beam preparation, and a high-precision Penning trap system for mass measurements and decay studies. For the mass measurements, MATS offers both a high accuracy and a high sensitivity. A relative mass uncertainty of 10{sup -9} can be reached by employing highly-charged ions and a non-destructive Fourier-Transform Ion-Cyclotron-Resonance (FT-ICR) detection technique on single stored ions. Decay studies in ion traps will become possible with MATS. Laser spectroscopy of radioactive isotopes and isomers is an efficient and model-independent approach for the determination of nuclear ground and isomeric state properties. Hyperfine structures and isotope shifts in electronic transitions exhibit readily accessible information on the nuclear spin, magnetic dipole and electric quadrupole moments as well as root-mean-square charge radii. The accuracy of laser-spectroscopic-determined nuclear properties is very high while requirements concerning production rates are moderate. This Technical Design Report describes a new Penning trap mass spectrometry setup as well as a number of complementary experimental devices for laser spectroscopy. Since MATS and LaSpec require high-quality low

  16. Mats and LaSpec: High-precision experiments using ion traps and lasers at Fair

    International Nuclear Information System (INIS)

    Rodriguez, D.; Lallena, A.M.; Blaum, K.; Bohm, C.; Cakirli, R.B.; Crespo Lopez-Urrutia, J.R.; Eliseev, S.; Ketelaer, J.; Kreim, M.S.; Kowalska, M.; Litvinov, Y.A.; Nagy, S.; Neidherr, D.; Repp, J.; Roux, C.; Schabinger, B.; Ullrich, J.; Nortershauser, W.; Eberhardt, K.; Geppert, C.; Kramer, J.; Krieger, A.; Sanchez, R.; Ahammed, M.; Das, P.; Ray, A.; Algora, A.; Rubio, B.; Tain, J.L.; Audi, G.; Lunney, D.; Naimi, S.; Aysto, J.; Jokinen, A.; Kolhinen, V.; Moore, I.; Beck, D.; Block, M.; Geissel, H.; Heinz, S.; Herfurth, F.; Litvinov, Y.A.; Minaya-Ramirez, E.; Plab, W.R.; Quint, W.; Scheidenberger, C.; Winkler, M.; Bender, M.; Billowes, J.; Campbell, P.; Flanagan, K.T.; Schwarz, S.; Bollen, G.; Ferrer, R.; George, S.; Kester, O.; Brodeur, M.; Brunner, T.; Delheij, P.; Dilling, J.; Ettenauer, S.; Lapierre, A.; Bushaw, B.A.; Cano-Ott, D.; Martinez, T.; Cortes, G.; Gomez-Hornillos, M.B.; Dax, A.; Herlert, A.; Yordanov, D.; De, A.; Dickel, T.; Geissel, H.; Jesch, C.; Kuhl, T.; Petrick, M.; PlaB, W.R.; Scheidenberger, C.; Garcia-Ramos, J.E.; Gartzke, E.; Habs, D.; Szerypo, J.; Thirolf, P.G.; Weber, C.; Gusev, Y.; Nesterenko, D.; Novikov, Y.N.; Popov, A.; Seliverstov, M.; Vasiliev, A.; Vorobjev, G.; Heenen, P.H.; Marx, G.; Schweikhard, L.; Ziegler, F.; Hobein, M.; Schuch, R.; Solders, A.; Suhonen, M.; Huber, G.; Wendt, K.; Huyse, M.; Koudriavtsev, I.; Neyens, G.; Van Duppen, P.; Le Blanc, F.; Matos, M.; Reinhard, P.G.; Schneider, D.

    2010-01-01

    Nuclear ground state properties including mass, charge radii, spins and moments can be determined by applying atomic physics techniques such as Penning-trap based mass spectrometry and laser spectroscopy. The MATS and LaSpec setups at the low-energy beamline at FAIR will allow us to extend the knowledge of these properties further into the region far from stability. With MATS (Precision Measurements of very short-lived nuclei using an Advanced Trapping System for highly-charged ions) at FAIR we aim to apply several techniques to very short-lived radionuclides: High-accuracy mass measurements, in-trap conversion electron and alpha spectroscopy, and trap-assisted spectroscopy. The experimental setup of MATS is a unique combination of an electron beam ion trap for charge breeding, ion traps for beam preparation, and a high-precision Penning trap system for mass measurements and decay studies. For the mass measurements, MATS offers both a high accuracy and a high sensitivity. A relative mass uncertainty of 10 -9 can be reached by employing highly-charged ions and a non-destructive Fourier-Transform Ion-Cyclotron-Resonance (FT-ICR) detection technique on single stored ions. Decay studies in ion traps will become possible with MATS. Laser spectroscopy of radioactive isotopes and isomers is an efficient and model-independent approach for the determination of nuclear ground and isomeric state properties. Hyperfine structures and isotope shifts in electronic transitions exhibit readily accessible information on the nuclear spin, magnetic dipole and electric quadrupole moments as well as root-mean-square charge radii. The accuracy of laser-spectroscopic-determined nuclear properties is very high while requirements concerning production rates are moderate. This Technical Design Report describes a new Penning trap mass spectrometry setup as well as a number of complementary experimental devices for laser spectroscopy. Since MATS and LaSpec require high-quality low-energy beams

  17. Spin analysis of photoelectrons by using synchrotron radiation

    International Nuclear Information System (INIS)

    Yagishita, Akira

    1983-03-01

    This report is the proceedings of a workshop on ''Spin analysis of photoelectrons by using synchrotron radiation'' held at National Laboratory for High Energy Physics on October 21, 1982. The purpose of this workshop was to examine the feasibility of the experiment on the spin analysis of photoelectrons at the photon factory which has started the operation in 1982. The workshop covered the following subjects on the spin analysis of photoelectrons and on the detectors for spin polarization; the experiment and the theory on the spin analysis of photoelectrons emitted from gas and solid, the detectors for measuring the spin polarization of electron beam, the test experiment on a Mott detector, and further problems. The proceedings contain five papers related to the above subjects. (Asami, T.)

  18. Comparison of UVA induced cytotoxicity by iodoHoechst isomers

    International Nuclear Information System (INIS)

    Karagiannis, T.C.; Lobachevsky, P.N.; Martin, R.F.

    2003-01-01

    Full text: Isomers of the DNA minor groove binding ligand, iodoHoechst, have been shown to sensitise DNA to cleavage by ultraviolet type A (UVA). The DNA damage has been attributed to formation of a carbon-centred radical upon UVA induced dehalogenation of the drugs. Comparison of the efficacy of the ligands in inducing DNA single strand breaks in plasmid DNA has indicated that the ortho isomer is more efficient than the para- and meta-isomers, mainly due to a greater cross-section for dehalogenation, and to some extent from increased efficiency of DNA damage per dehalogenation event. In the present study, the efficiency of dehalogenation and cytotoxicity of the three iodoHoechst isomers has been compared in human erythroleukemic, K562 cells. The uptake of the iodoHoechst compounds in K562 nuclei has been measured, and the photoefficiency of the cellular associated dehalogenation by UVA has been established for the three isomers. The results indicate that the sensitivity to UVA mediated dehalogenation is much higher for the ortho analogue compared to the para and meta-analogues. Values of the UVA D37 doses for the ortho, para and meta isomers are 49 ± 2, 327 ± 29 and 251 ± 32 J/m 2 , respectively. Clonogenic survival assays have been used to compare the efficiency of sensitisation of cells to UVA irradiation by the analogues. The ortho analogue exhibits higher efficiency compared to the meta and para analogues. The numbers of dehalogenation events required for cell kill have been calculated from the clonogenic survival at various levels of drug uptake, and the results for the ortho, para and meta isomers are 1.2x10 4 , 3.9x10 4 and 11.6x10 4 , respectively. These results indicate that the ortho analogue is the most efficient isomer in sensitising cell kill by UVA irradiation due to both the high quantum yield for dehalogenation and the higher cytotoxic efficiency of dehalogenation events

  19. Transverse Beam Spin Asymmetries in Forward-Angle Elastic Electron-Proton Scattering

    Energy Technology Data Exchange (ETDEWEB)

    David Armstrong; Francois Arvieux; Razmik Asaturyan; Todd Averett; Stephanie Bailey; Guillaume Batigne; Douglas Beck; Elizabeth Beise; Jay Benesch; Louis Bimbot; James Birchall; Angela Biselli; Peter Bosted; Elodie Boukobza; Herbert Breuer; Roger Carlini; Robert Carr; Nicholas Chant; Yu-Chiu Chao; Swapan Chattopadhyay; Russell Clark; Silviu Covrig; Anthony Cowley; Daniel Dale; Charles Davis; Willie Falk; John Finn; Tony Forest; Gregg Franklin; Christophe Furget; David Gaskell; Joseph Grames; Keith Griffioen; Klaus Grimm; Benoit Guillon; Hayko Guler; Lars Hannelius; Richard HASTY; Alice Hawthorne Allen; Tanja Horn; Kathleen Johnston; Mark Jones; Peter Kammel; Reza Kazimi; Paul King; Ameya Kolarkar; Elie Korkmaz; Wolfgang Korsch; Serge Kox; Joachim Kuhn; Jeff Lachniet; Lawrence Lee; Jason Lenoble; Eric Liatard; Jianglai Liu; Berenice Loupias; Allison Lung; Dominique Marchand; Jeffery Martin; Kenneth McFarlane; David McKee; Robert McKeown; Fernand Merchez; Hamlet Mkrtchyan; Bryan Moffit; M. Morlet; Itaru Nakagawa; Kazutaka Nakahara; Retief Neveling; Silvia Niccolai; S. Ong; Shelley Page; Vassilios Papavassiliou; Stephen Pate; Sarah Phillips; Mark Pitt; Benard Poelker; Tracy Porcelli; Gilles Quemener; Brian Quinn; William Ramsay; Aamer Rauf; Jean-Sebastien Real; Julie Roche; Philip Roos; Gary Rutledge; Jeffery Secrest; Neven Simicevic; Gregory Smith; Damon Spayde; Samuel Stepanyan; Marcy Stutzman; Vince Sulkosky; Vincent Sulkosky; Vince Sulkosky; Vincent Sulkosky; Vardan Tadevosyan; Raphael Tieulent; Jacques Van de Wiele; Willem van Oers; Eric Voutier; William Vulcan; Glen Warren; Steven Wells; Steven Williamson; Stephen Wood; Chen Yan; Junho Yun; Valdis Zeps

    2007-08-01

    We have measured the beam-normal single-spin asymmetry in elastic scattering of transversely-polarized 3 GeV electrons from unpolarized protons at Q^2 values of 0.15 and 0.25 (GeV/c)^2 with results of A_n = -4.06 +- 0.99(stat) +- 0.63(syst) and A_n = -4.82 +- 1.87(stat) +- 0.98(syst) ppm. These results are inconsistent with calculations solely using the elastic nucleon intermediate state, and generally agree with calculations with significant inelastic hadronic intermediate state contributions. A_n provides a direct probe of the imaginary component of the two-photon exchange amplitude, the complete description of which is important in the interpretation of data from precision electron-scattering experiments.

  20. Effects of High-Energy Proton-Beam Irradiation on the Magnetic Properties of ZnO Nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jun Kue; Kwon, Hyeok-Jung; Cho, Yong Sub [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    There are still many problem for the application due to its unstable magnetism state and too small magnetization values. Here we investigate magnetic properties of ZnO nanorods after high-energy proton-beam irradiation. Electron spin resonance (ESR) measurement on temperature was made to identify intrinsic or extrinsic defects as well as to observe magnetic ordering after irradiation. Understanding the effects of proton beam irradiation on magnetic behavior may help to shed light on the mechanism responsible for the magnetic ordering in this material. We have investigated proton-beam irradiation effects on the magnetic properties of ZnO nanorods. After irradiation a broad ESR line is observed, indicating emergence of ferromagnetic ordering up to room temperature. In M-H curve, stronger coercive field is observed after irradiation.

  1. Optical absorption spectra of Ag-11 isomers

    DEFF Research Database (Denmark)

    Martinez, Jose Ignacio; Fernandez, E. M.

    2009-01-01

    The optical absorption spectra of the three most; stable structural isomers of the Ag-11 cluster were calculated using the time-dependent, density functional theory within the Casida formalism. The slightly different, spectra, of the isomers may permit the identification of the ground-stale confi......The optical absorption spectra of the three most; stable structural isomers of the Ag-11 cluster were calculated using the time-dependent, density functional theory within the Casida formalism. The slightly different, spectra, of the isomers may permit the identification of the ground...

  2. Circular motion of particles suspended in a Gaussian beam with circular polarization validates the spin part of the internal energy flow

    DEFF Research Database (Denmark)

    Angelsky, O. V.; Bekshaev, A. Ya.; Maksimyak, P. P.

    2012-01-01

    switching to the right (left) circular polarization, the particles performed spinning motion in agreement with the angular momentum imparted by the field, but they were involved in an orbital rotation around the beam axis as well, which in previous works [Y. Zhao et al, Phys. Rev. Lett. 99, 073901 (2007......Non-spherical dielectric microparticles were suspended in a water-filled cell and exposed to a coherent Gaussian light beam with controlled state of polarization. When the beam polarization is linear, the particles were trapped at certain off-axial position within the beam cross section. After...... of inhomogeneously polarized paraxial beams [A. Bekshaev et al, J. Opt. 13, 053001 (2011)]....

  3. Calorimetric study of bromoacetophenone isomers

    International Nuclear Information System (INIS)

    Amaral, Luísa M.P.F.; Ribeiro da Silva, Manuel A.V.

    2014-01-01

    Highlights: • A calorimetric study of bromoacetophenone isomers was performed. • Enthalpies of formation were derived by rotating-bomb combustion calorimetry. • Enthalpies of phase transition were determined by Calvet microcalorimetry. • Cox scheme was applied for the estimation of Δ f H m o (g) for the compounds. • The values of Δ f H m o (g) were compared with literature values for similar compounds. - Abstract: The standard (p o = 0.1 MPa) molar enthalpies of formation of 2-, 2′-, 3′- and 4′-bromoacetophenones were derived from the standard molar energies of combustion in oxygen, to yield CO 2 (g) and HBr·600H 2 O (l) at T = 298.15 K, measured by rotating bomb combustion calorimetry. The standard molar enthalpies associated with phase transitions of the isomers studied at T = 298.15 K, were obtained by high temperature Calvet microcalorimetry. The standard (p o = 0.1 MPa) molar enthalpies of formation of all the bromoacetophenone isomers in the gaseous phase at T = 298.15 K were derived from the experimental results. The gas-phase enthalpies of formation were also estimated by the empirical scheme developed by Cox and the values obtained were compared with the experimental ones. The results are interpreted in terms of the energetic increments for the introduction of the substituents in the benzene ring

  4. The design and performance of the FNAL high-energy polarized-beam facility

    Energy Technology Data Exchange (ETDEWEB)

    Grosnick, D P; Hill, D A; Laghai, M R; Lopiano, D; Ohashi, Y; Shima, T; Spinka, H; Stanek, R W; Underwood, D G; Yokosawa, A [Argonne National Lab. (USA); Lehar, F; Lesquen, A de; Rossum, L van [CEA Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France). Dept. de Physique des Particules Elementaires; Carey, D C; Coleman, R N; Cossairt, J D; Read, A L; Schailey, R [Fermi National Accelerator Lab., Batavia, IL (USA); Derevschikov, A A; Matulenko, Yu A; Meschanin, A P; Nurushev, S B; Rzaev, R A; Solovyanov, V L; Vasiliev, A N [Institut Fiziki Vysokikh Ehnergij, Serpukhov (USSR); Akchurin, N; Onel, Y [Iowa Univ., Iowa City (USA). Dept. of Physics and Astronomy; Imai, K; Makino, S; Masaike, A; Miyake, K; Nagamine, T; Tamura, N; Yoshida, T [Kyoto Univ. (Japan). Dept. of Physics; Takashima, R [Kyoto Univ. of Education, Fushimi (Japan); Takeutchi, F [Kyoto Sangyo Univ. (Japan); Maki, T [University of Occupational and Environmental; FNAL-E581/704 Collaboration

    1990-05-10

    A new polarized-proton and -antiproton beam with 185 GeV/c momentum has been built at Fermilab. The design uses the parity-nonconserving decays of lambda and antilambda hyperons to produce polarized protons and antiprotons, respectively, a beam-transport system that minimizes depolarization effects, and a set of twelve dipole magnets that rotate the beam-particle spin direction. A beam-tagging system determines the momentum and polarization of individual beam particles. This allows a selection of particles in definite intervals of momentum and polarization. Measurements performed by two different polarimeters showed that the beam is polarized and the determination of polarization by beam-particle tagging is verified. A new measurement of the analyzing power of large-x{sub F} {pi}{sup 0} production may lead to another beam polarimeter.

  5. Soft spin-dipole resonances in 40Ca

    International Nuclear Information System (INIS)

    Stuhl, L; Krasznahorkay, A; Csatlós, M; Gulyás, J; Marketin, T; Litvinova, E; Adachi, T; Fujita, H; Hatanaka, K; Hirota, K; Ong, H J; Ishikawa, D; Matsubara, H; Algora, A; Estevez, E; Molina, F; Daeven, J; Guess, C; Meharchand, R; Fujita, Y

    2012-01-01

    High resolution experimental data has been obtained for the 40,42,44,48 Ca( 3 He,t)Sc charge exchange reaction at 420 MeV beam energy, which favors the spin-isospin excitations. The measured angular distributions were analyzed for each state separately, and the relative spin dipole strength has been extracted for the first time. The low-lying spin-dipole strength distribution in 40 Sc shows some interesting periodic gross feature. It resembles to a soft, damped multi-phonon vibrational band with hω= 1.8 MeV, which might be associated to pairing vibrations around 40 Ca.

  6. Catalystlike effect of orbital angular momentum on the conversion of transverse to three-dimensional spin states within tightly focused radially polarized beams

    Science.gov (United States)

    Han, Lei; Liu, Sheng; Li, Peng; Zhang, Yi; Cheng, Huachao; Zhao, Jianlin

    2018-05-01

    We report on the catalystlike effect of orbital angular momentum (OAM) on local spin-state conversion within the tightly focused radially polarized beams associated with optical spin-orbit interaction. It is theoretically demonstrated that the incident OAM can lead to a conversion of purely transverse spin state to a three-dimensional spin state on the focal plane. This conversion can be conveniently manipulated by altering the sign and value of the OAM. By comparing the total OAM and spin angular momentum (SAM) on the incident plane to those on the focal plane, it is indicated that the incident OAM have no participation in the angular momentum intertransfer, and just play a role as a catalyst of local SAM conversion. Such an effect of OAM sheds new light on the optical spin-orbit interaction in tight-focusing processes. The resultant three-dimensional spin states may provide more degrees of freedom in optical manipulation and spin-dependent directive coupling.

  7. High-Energy Beam Transport system

    International Nuclear Information System (INIS)

    Melson, K.E.; Farrell, J.A.; Liska, D.J.

    1979-01-01

    The High-Energy Beam Transport (HEBT) system for the Fusion Materials Irradiation Test (FMIT) Facility is to be installed at the Hanford Engineering Development Laboratory (HEDL) at Richland, Washington. The linear accelerator must transport a large emittance, high-current, high-power, continuous-duty deuteron beam with a large energy spread either to a lithium target or a beam stop. A periodic quadrupole and bending-magnet system provides the beam transport and focusing on target with small beam aberrations. A special rf cavity distributes the energy in the beam so that the Bragg Peak is distributed within the lithium target. Operation of the rf control system, the Energy Dispersion Cavity (EDC), and the beam transport magnets is tested on the beam stop during accelerator turn-on. Characterizing the beam will require extensions of beam diagnostic techniques and noninterceptive sensors. Provisions are being made in the facility for suspending the transport system from overhead supports using a cluster system to simplify maintenance and alignment techniques

  8. Studies of polarized beam acceleration and Siberian Snakes

    International Nuclear Information System (INIS)

    Lee, S.Y.

    1992-01-01

    We studied depolarization mechanisms of polarized proton acceleration in high energy accelerators with snakes and found that the perturbed spin tune due to the imperfection resonance plays an important role in beam depolarization at snake resonances. We also found that even order snake resonances exist in the overlapping intrinsic and imperfection resonances. Due to the perturbed spin tune of imperfection resonances, each snake resonance splits into two. Thus the available betatron tune space becomes smaller. Some constraints on polarized beam colliders were also examined

  9. Experimental thermochemical study of the monochloronitrobenzene isomers

    International Nuclear Information System (INIS)

    Ribeiro da Silva, Manuel A.V.; Lobo Ferreira, Ana I.M.C.; Moreno, Ana Rita G.

    2009-01-01

    The standard (p 0 = 0.1 MPa) molar enthalpies of formation of 2-, 3-, and 4-chloronitrobenzene isomers, in the crystalline state, at T = 298.15 K, were derived from the standard (p 0 = 0.1 MPa) massic energies of combustion, in oxygen, at T = 298.15 K, measured by rotating bomb combustion calorimetry. The standard molar enthalpies of sublimation of the isomers, at T = 298.15 K, were obtained by high temperature Calvet microcalorimetry. From the determined experimental data, the values of the gaseous standard (p 0 = 0.1 MPa) molar enthalpies of formation for the three monochloronitrobenzene isomers were derived. The gas-phase enthalpies of formation were also estimated by the empirical scheme developed by Cox showing that for meta- and para-chloronitrobenzene the estimated values are in close agreement with the experimental ones whereas, in the case of ortho-chloronitrobenzene it is shown that a different enthalpic interaction increment is needed, when the substituents in the adjacent carbon ring atoms are a chlorine atom and a nitro group

  10. Ultra-High Density Electron Beams for Beam Radiation and Beam Plasma Interaction

    CERN Document Server

    Anderson, Scott; Frigola, Pedro; Gibson, David J; Hartemann, Fred V; Jacob, Jeremy S; Lim, Jae; Musumeci, Pietro; Rosenzweig, James E; Travish, Gil; Tremaine, Aaron M

    2005-01-01

    Current and future applications of high brightness electron beams, which include advanced accelerators such as the plasma wake-field accelerator (PWFA) and beam-radiation interactions such as inverse-Compton scattering (ICS), require both transverse and longitudinal beam sizes on the order of tens of microns. Ultra-high density beams may be produced at moderate energy (50 MeV) by compression and subsequent strong focusing of low emittance, photoinjector sources. We describe the implementation of this method used at LLNL's PLEIADES ICS x-ray source in which the photoinjector-generated beam has been compressed to 300 fsec duration using the velocity bunching technique and focused to 20 μm rms size using an extremely high gradient, permanent magnet quadrupole (PMQ) focusing system.

  11. Development of a 3He nuclear spin flip system on an in-situ SEOP 3He spin filter and demonstration for a neutron reflectometer and magnetic imaging technique

    International Nuclear Information System (INIS)

    Hayashida, H; Kira, H; Miyata, N; Akutsu, K; Mizusawa, M; Parker, J D; Matsumoto, Y; Oku, T; Sakai, K; Hiroi, K; Shinohara, T; Takeda, M; Yamazaki, D; Oikawa, K; Harada, M; Ino, T; Imagawa, T; Ohkawara, M; Ohoyama, K; Kakurai, K

    2016-01-01

    We have been developing a 3 He neutron spin filter (NSF) using the spin exchange optical pumping (SEOP) technique. The 3 He NSF provides a high-energy polarized neutron beam with large beam size. Moreover the 3 He NSF can work as a π-flipper for a polarized neutron beam by flipping the 3 He nuclear spin using a nuclear magnetic resonance (NMR) technique. For NMR with the in-situ SEOP technique, the polarization of the laser must be reversed simultaneously because a non-reversed laser reduces the polarization of the spin-flipped 3 He. To change the polarity of the laser, a half-wavelength plate was installed. The rotation angle of the half-wavelength plate was optimized, and a polarization of 97% was obtained for the circularly polarized laser. The 3 He polarization reached 70% and was stable over one week. A demonstration of the 3 He nuclear spin flip system was performed at the polarized neutron reflectometer SHARAKU (BL17) and NOBORU (BL10) at J-PARC. Off-specular measurement from a magnetic Fe/Cr thin film and magnetic imaging of a magnetic steel sheet were performed at BL17 and BL10, respectively. (paper)

  12. High spin spectroscopy of 70Ge

    International Nuclear Information System (INIS)

    Kumar Raju, M.; Sugathan, P.; Seshi Reddy, T.; Thirumala Rao, B.V.; Madhusudhana Rao, P.V.; Muralithar, S.; Singh, R.P.; Bhowmik, R.K.

    2011-01-01

    Structure of nuclei in mass 70 region is of interest due to presence of a variety of complex phenomenon. In these nuclei rapid change of nuclear shape with proton and neutron numbers, spin and excitation energy. Valance nucleons in f-p-g shell configuration will drive the nuclei towards high deformations. Relatively large values of quadrupole deformation are evident in the even-even nuclei in this region. Present study is aimed to explore the high spin structure of the 70 Ge nucleus. A negative parity structure was reported in an earlier study

  13. New information on the T1/2=47 s isomer in the 136I nucleus

    International Nuclear Information System (INIS)

    Urban, W.; Rzaca-Urban, T.; Saha Sarkar, M.; Sarkar, S.; Durell, J.L.; Smith, A.G.; Genevey, J.A.; Pinston, J.A.; Simpson, G.S.; Ahmad, I.

    2006-01-01

    The 136 I nucleus, populated in the spontaneous fission of 248 Cm, was studied by means of prompt γ-ray spectroscopy using the EUROGAM2 array. The observation in this work of the 42.6 keV prompt-γ, M1+E2 transition de-exciting the 7 - level in 136 I indicates that this level, interpreted as the (πg 7/2 3 νf 7/2 ) 7- configuration, does not correspond to the T=47 s, β-decaying isomer in 136 I. The isomer is placed 42.6 keV below the 7 - level. It has spin 6 - and is interpreted as the (πg 7/2 2 d 5/2 νf 7/2 ) 6- configuration. This and other members of both multiplets can be reproduced properly only if one assumes that the πd 5/2 orbital in 136 I is located 400keV lower than in 133 Sb. Possible mechanisms causing this effect are discussed. (orig.)

  14. Nuclear structure via isomer tagging of fission fragments

    Science.gov (United States)

    Wu, C. Y.; Cline, D.; Simon, M. W.; Stoyer, M. A.

    1997-10-01

    The high efficiency for detecting high-fold γ rays by large Ge arrays makes it possible to study the detailed spectroscopy of many neutron-rich nuclei produced by fission. Major progress has been made using sealed spontaneous fission sources. Considerable improvement in selectivity is provided, with an open source, both by gating on isomers and by detection of both fission fragments in coincidence with the deexcitation γ rays (see the preceding contribution). The reconstructed kinematics allows a measure of fragment mass and the Doppler shift correction of γ rays. In a recent experiment, fission fragments were detected using half of the CHICO array and an annular PPAC in coincidence with deexcitation γ rays detected by the Rochester array of eight Compton-suppressed Ge detectors. The annular PPAC was located only 1.0" from a 3.7 μCi ^252Cf source for efficient isomer tagging. The correlation was studied between delayed, within a time window between 150 ns and 10 μs after a fission occurring, and prompt γ rays. Several prominent feeding patterns to isomers in the mass region around 100 and 130 are identified by such correlation study. Experimental details and results will be presented.

  15. Diagnostics for high-brightness beams

    International Nuclear Information System (INIS)

    Shafer, R.E.

    1990-01-01

    Special techniques are required for beam diagnostics on high-brightness particle beams. Examples of high-brightness beams include low-emittance proton linacs (either pulsed or CW), electron linacs suitable for free-electron-laser applications, and future linear colliders. Non-interceptive and minimally-interceptive techniques for measuring beam current, position, profile, and transverse and longitudinal emittance will be reviewed. Included will be stripline, wire scanner, laser neutralization, beam-beam scattering, interceptive microgratings, spontaneous emission, optical transition radiation, and other techniques. 24 refs

  16. High precision electron beam diagnostic system for high current long pulse beams

    International Nuclear Information System (INIS)

    Chen, Y J; Fessenden, T; Holmes, C; Nelson, S D; Selchow, N.

    1999-01-01

    As part of the effort to develop a multi-axis electron beam transport system using stripline kicker technology for DARHT II applications, it is necessary to precisely determine the position and extent of long high energy beams (6-40 MeV, 1-4 kA, 2 microseconds) for accurate position control. The kicker positioning system utilizes shot-to-shot adjustments for reduction of relatively slow (<20 MHz) motion of the beam centroid. The electron beams passing through the diagnostic systems have the potential for large halo effects that tend to corrupt measurements performed using capacitive pick-off probes. Likewise, transmission line traveling wave probes have problems with multi-bounce effects due to these longer pulse widths. Finally, the high energy densities experienced in these applications distort typical foil beam position measurements

  17. High spin structure in 130Ba

    International Nuclear Information System (INIS)

    Singh, Amandeep; Kaur, Navneet; Kumar, A.; Singh, Varinderjit; Sandal, Rohit; Kaur, Rajbir; Behera, B.R.; Singh, K.P.; Singh, G.; Shukla, Aaradhya; Sharma, H.P.; Kumar, Suresh; Kumar Raja, M.; Madhusudan Rao, P.V.; Muralithar, S.; Singh, R.P.; Kumar, Rakesh; Madhvan, M.; Bhowmik, R.K.

    2009-01-01

    Nuclei with mass A ∼130 has been of great interest to experimental studies on high spin states. This is particularly so for the nuclei in the A∼130 region which exhibit a softness to γ. Evidence for characteristics such as shape coexistence and γ-softness has been gathered during the last two decades for many nuclei from Xe to Nd. Another interesting feature of this mass region is the existence of a regular M1 band which has been considered to be a promising candidate for magnetic rotation. In several nuclei of the A ∼130 mass region M1 bands like those observed in the A < 200 mass region are known. One signature of magnetic rotation is the decrease of the B (M1) values with increasing spin. The aim of the work is to study the high spin states and lifetime measurements using the DSAM technique

  18. Experiments in the accelerator beam: change in the charge radius of 2+ rotational levels

    International Nuclear Information System (INIS)

    Hanna, S.S.

    1977-01-01

    The method of in-beam implantation is discussed and illustrated by implantation of 57 Fe into single crystals of semiconductors. The application to isotopes which cannot be produced by radioactive sources is illustrated by a study of the isomer shifts in isotopic series of rotational nuclei. Spectra obtained for implantation of 57 Fe into single crystals of germanium as a function of temperature are shown. Two well defined sites are observed. The right hand resonance can be identified with a substitutional site, while the left hand resonance is produced by either an interstitial or a ''damage'' site. A series of experiments are considered which illustrate the use of in-beam implantation to produce high-quality, single-line sources of nuclei which cannot be produced by radioactive parents. In particular, these experiments measure the isomer shifts in a complete series of isotopes. Usually only the proton-rich isotopes can be measured with radioactive sources; in-beam implantation can then be used to complete the series. The Gd and Yb series are completed in this way. 10 references

  19. Hadron beams and accelerators

    International Nuclear Information System (INIS)

    Roser, T.

    1994-01-01

    There were four sessions on Hadron Beams and Accelerators with 7 talks on Siberian Snakes and spin rotators, 3 talks on polarization build-up of unpolarized beams in storage rings and 5. 9, and 3 talks on low, medium, and high energy polarimeters, respectively. In this paper I will briefly describe a few highlights from these sessions, giving emphasis to topics which I think will play an important role in the future

  20. Trans-dinitroglycoluril isomers-A DFT treatment

    Directory of Open Access Journals (Sweden)

    Lemi Türker

    2017-02-01

    Full Text Available Isomers of trans-1,4-Dinitroglycoluril (trans-DINGU and their 1,3-tautomers are considered within the constraints of B3LYP/6-31++G (d,p and B3LYP/CC-PVTZ levels of DFT calculations. Additionally, the interactions of these isomers and proton in vacuum are investigated. The data have revealed that two of the three isomers undergo CH bond cleavage as the result of interaction with proton in vacuum. The total energies, some structural properties, the calculated IR and UV spectra are discussed.

  1. Comparison of 14 MeV isomer production of 178m2Hf and 179m2Hf using Feshbach-Kerman-Koonin and exciton preequilibrium models

    International Nuclear Information System (INIS)

    Chadwick, M.B.; Young, P.G.

    1993-01-01

    The 178m2 Hf(16+) isomeric state has a 31-yr half life and could pose serious radioactive problems in nuclear fusion reactors if its production in 14 MeV neutron-induced reactions is significant. We present statistical/preequilibrium model calculations for the production of this isomer in the 179 Hf(n, 2n) 178m2 Hf reaction, as well as the 25-days 12.5 - isomer in the 179 Hf(n,n') 179m2 Hf reaction, using two different preequilibrium models: the exciton model and the Feshbach-Kerman-Koonin (FKK) theory. Our calculations which use the exciton model agree well with measurements, but those with the FKK theory underestimate measurements. Our calculations axe the first to probe angular momentum transfer effects in the FKK theory and suggest that, as it is presently applied, high spin-transfer reactions are underestimated. We suggest modifications to the FKK statistical averaging procedure which may result in an improved agreement with experiment

  2. Proton spin tracking with symplectic integration of orbit motion

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States); Dutheil, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States); Huang, H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Meot, F. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ranjbar, V. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-03

    Symplectic integration had been adopted for orbital motion tracking in code SimTrack. SimTrack has been extensively used for dynamic aperture calculation with beam-beam interaction for the Relativistic Heavy Ion Collider (RHIC). Recently proton spin tracking has been implemented on top of symplectic orbital motion in this code. In this article, we will explain the implementation of spin motion based on Thomas-BMT equation, and the benchmarking with other spin tracking codes currently used for RHIC. Examples to calculate spin closed orbit and spin tunes are presented too.

  3. Nuclear high-spin data for A = 174, 176 and 184

    Energy Technology Data Exchange (ETDEWEB)

    Junde, Huo [Jilin Univ. (China). Dept. of Physics

    1996-06-01

    Nuclear high-spin data are important in the frontier areas of nuclear structure physics. The information on A = 174, 176 and 184 mass chains from various reaction experiments together with their adopted high-spin levels and gamma transition properties are presented and discussed. High-spin data for A = 174, 176 and 184 mass chains were evaluated in 1995.

  4. The study of very high spin states

    International Nuclear Information System (INIS)

    Nolan, P.J.

    1992-01-01

    Some examples are given of the study of very high spin states that decay by discrete line gamma-ray emission. States up to spin 70(h/2π) have been seen in superdeformed bands. In other bands with normal deformation the limit is near 50(h/2π). (Author)

  5. Development of new neutron spin echo spectrometer using multi-layer film spin splitter

    International Nuclear Information System (INIS)

    Tasaki, Seiji; Ebisawa, Toru; Hino, Masahiro; Achiwa, Norio

    2001-01-01

    Neutron spin echo spectrometry is a method using neutron Larmor precession motion in magnetic field, for the measurement of velocity change before and after quasi-elastic scattering of neutron by a sample, such as macromolecules, with high accuracy. The neutron spin echo spectrometer is an interferometer in quantum mechanics, which a neutron is arranged with a parallel or an antiparallel state against magnetic field direction. Intensities of neutron interaction with matters are measured by the superposition of the both spin state components. The contrast losses of interference fringes caused from velocity diversion of incident neutrons are protected by spin echo method, in which a phase shift between the parallel and anti-parallel state neutrons is reduced by reversion of the spin state on the way of neutron path. Neutron beam of high intensity can be measured with a high energy resolution. Strong magnetic field is usually needed to introduce the phase shift between the both spin state components. A multi-layer film spin splitter (MSS) is developed for introducing the phase shift instead of the strong magnetic fields. The MSS consists of three layers, non-magnetic mirror of Ni/Ti, gap layer of Ti (∼1 μm), and magnetic mirror of Permalloy/Ge. Surface roughness of the gap layer leads to diversions of the phase shift, because that the fluctuation of thickness of gap layer is proportional to the phase shift. Characteristics of the MSS are tested as follow: (1) reflectivity of polarized neutron, (2) function check of the MSS, (3) uniformity check of the gap layer, (4) evaluation of the gap layer-thickness. (Suetake, M.)

  6. Polarized target as analyzer of polarization of particle beam with spin Ssub(B)=1/2

    International Nuclear Information System (INIS)

    Golovin, V.M.; Golubeva, M.B.; Gornushkin, Yu.A.

    1982-01-01

    A possibility of using a polarized target as a target analyzer of beam particle polarization (Ssub(T)=1/2 Psub(T) vector) so that all the components of beam polarization Ssub(B)=1/2 anti Psub(B) should be determined in one experiment, is revealed. A proton polarization target is considered as a polarization target-analyzer. Asub(SK) and Asub(kk) asymmetry tensors are considered for elastic pp and pn scatterings by amplitudes of NN scattering which attain the values of 0.3-0.9 at 95-400 MeV. Asub(kk)(pp) and Asub(sk)(pp) are experimentally measured in the 445-576 MeV range. It is found that their highest absolute values are equal to 0.4-0.5 and 0.2-0.3 respectively. Elastic proton scattering on polarized electrons may be another variant of using polarized target for measuring proton beam polarization. Asub(sk) and Asub(kk) components of asymmetry tensor of elastic pe scattering are graphically presented. A possibility of using a polarized charge with spin I=1/2 as a target-analyzer of particle beam polarization is marked

  7. Chemometric deconvolution of gas chromatographic unresolved conjugated linoleic acid isomers triplet in milk samples.

    Science.gov (United States)

    Blasko, Jaroslav; Kubinec, Róbert; Ostrovský, Ivan; Pavlíková, Eva; Krupcík, Ján; Soják, Ladislav

    2009-04-03

    A generally known problem of GC separation of trans-7;cis-9; cis-9,trans-11; and trans-8,cis-10 CLA (conjugated linoleic acid) isomers was studied by GC-MS on 100m capillary column coated with cyanopropyl silicone phase at isothermal column temperatures in a range of 140-170 degrees C. The resolution of these CLA isomers obtained at given conditions was not high enough for direct quantitative analysis, but it was, however, sufficient for the determination of their peak areas by commercial deconvolution software. Resolution factors of overlapped CLA isomers determined by the separation of a model CLA mixture prepared by mixing of a commercial CLA mixture and CLA isomer fraction obtained by the HPLC semi-preparative separation of milk fatty acids methyl esters were used to validate the deconvolution procedure. Developed deconvolution procedure allowed the determination of the content of studied CLA isomers in ewes' and cows' milk samples, where dominant isomer cis-9,trans-11 is eluted between two small isomers trans-7,cis-9 and trans-8,cis-10 (in the ratio up to 1:100).

  8. Creating intense polarized electron beam via laser stripping and spin-orbit interaction

    International Nuclear Information System (INIS)

    Danilov, V.; Ptitsyn, V.; Gorlov, T.

    2010-01-01

    The recent advance in laser field make it possible to excite and strip electrons with definite spin from hydrogen atoms. The sources of hydrogen atoms with orders of magnitude higher currents (than that of the conventional polarized electron cathods) can be obtained from H - sources with good monochromatization. With one electron of H - stripped by a laser, the remained electron is excited to upper state (2P 3/2 and 2P 1/2 ) by a circular polarization laser light from FEL. Then, it is excited to a high quantum number (n=7) with mostly one spin direction due to energy level split of the states with a definite direction of spin and angular momentum in an applied magnetic field and then it is stripped by a strong electric field of an RF cavity. This paper presents combination of lasers and fields to get high polarization and high current electron source.

  9. Seniority isomers in nuclei

    International Nuclear Information System (INIS)

    Van Isacker, P

    2011-01-01

    Seniority isomers are nuclear states with an electromagnetic decay that is hindered by selection rules related to the seniority quantum number. A simple analysis is presented of their possible formation with reference to the nickel isotopes 70–76 Ni and the N = 50 isotones from molybdenum to cadmium. It is shown that the existence of seniority isomers in a j = 9/2 shell is predominantly governed by the quadrupole pairing matrix element of the nucleon-nucleon interaction. The analysis is generalized to shells with larger j.

  10. Moessbauer effect study of charge and spin transfer in Fe-Cr

    International Nuclear Information System (INIS)

    Dubiel, S.M.; Zukrowski, J.

    1981-01-01

    The influence of temperature and time of annealing on hyperfine fields and isomer shifts has been studied for a range of Fe-Cr alloys containing 1-45 at% Cr. It has been revealed that up to 15 at% Cr neither time or temperature of annealing practically does affect the hyperfine parameters. For more concentrated samples, however, both temperature and time of annealing are important. In particular, the Moessbauer spectrum of Fe-45.5 at% Cr annealed at 700 0 C for 5 h was a single-line indicating that the sample was paramagnetic. The observed changes of the hyperfine fields and the isomer shifts have been interpreted in terms of a spin and charge transfer, respectively. Strong linear correlations between the following quantities have been revealed: the hyperfine field H(0,0) and the isomer shift IS(0,0); the average hyperfine field anti H and the average isomer shift anti Ianti S; the average hyperfine field anti H and the average number of Cr atoms in the first two coordination spheres, anti N. It has been calculated from the first two correlations that a) a change of polarization of itinerant s-like electrons of one electron is equivalent to a change of the hyperfine field of 1602 kOe, and b) on average, a unit change of s-like electron polarization is equivalent to 3277 kOe. The two constants are very close to theoretical estimations, which can be found in literature. Correlation between the hyperfine field and the isomer shift led to a conclusion that the substitution of Fe atoms by Cr ones decreases the density of spin-up electrons on average by 0.026 electrons per one Cr atom in a unit cell. These electrons are most likely trapped by Cr atoms, because the hyperfine field at neighbouring Fe nuclei decreases and the density of charge at those nuclei increases at the rate of 0.029 electrons per one Cr atom in a unit cell. (orig./BHO)

  11. Independent isomer yield ratio of 90Rb

    International Nuclear Information System (INIS)

    Reeder, P.L.; Warner, R.A.; Ford, G.P.; Willmes, H.

    1985-05-01

    The independent isomer yield ratio for 90 Rb from thermal neutron fission of 235 U has been measured by use of a new technique involving a pulsed reactor and an on-line mass spectrometer facility. The apparent isomer yield ratio was measured for different ion collection time intervals and extrapolated to zero collection time to eliminate interference from 90 Kr decay. The observed isomer yield ratio of 8.7 +- 1.0 is one of the largest ratios measured for a low energy fission process. However, a statistical model analysis shows that the average angular momentum ( = 4.5) deduced from this isomer yield ratio is consistent with average angular momentum for other products from low energy fission. 7 refs

  12. Measuring the momentum distribution of the unpaired spin electrons in ferromagnets using synchrotron radiation

    International Nuclear Information System (INIS)

    Mills, D.M.

    1988-12-01

    The dominant term in the x-ray Compton cross-section of an electron is the interaction of the photon and the electron's charge. Platzman and Tsoar many years ago pointed out that there is also an interaction between an x-ray and the electron's spin and in principle this interaction can give information on the momentum distribution of the unpaired spin electrons in the solid. Unfortunately, the spin sensitive term is not only small compared to the charge term, but in addition couples to the photons in first order only with that components of the x-ray beam that is circularly polarized. A lack of intense sources of circularly polarized x-rays combined with the relative small size of the spin sensitive term makes measurements of the momentum distributions of unpaired spin electrons difficult, resulting in little experiment progress initially made in spin or magnetic Compton scattering. In the past several years, interest in spin sensitive Compton scattering has been revived due in large part to the availability of intense beams of high energy photons from synchrotron radiation sources. The radiation from storage ring sources has well defined polarization states; highly linearly polarized in the orbital plane and elliptically polarized above and below the plane of the orbit of the circulating particles. The high flux and unique polarization properties of synchrotron radiation sources have greatly facilitated measurements of the momentum distributions of the unpaired spin electrons in ferromagnetic solids. Recent results of the work of several groups will be presented, along with some thoughts on the impact that the next generation of storage rings, such as the Advanced Photon Source, and insertion devices specifically designed to produce circularly polarized x-ray beams will have on the field of magnetic Compton scattering. 21 refs., 6 figs

  13. Neutron spin precession in samples of polarised nuclei and neutron spin phase imaging

    Energy Technology Data Exchange (ETDEWEB)

    Piegsa, Florian Michael

    2009-07-09

    The doublet neutron-deuteron (nd) scattering length b{sub 2,d}, which is at present only known with an accuracy of 5%, is particularly well suited to fix three-body forces in novel effective field theories at low energies. The understanding of such few-nucleon systems is essential, e.g. for predictions of element abundances in the big-bang and stellar fusion. b{sub 2,d} can be obtained via a linear combination of the spin-independent nd scattering length b{sub c,d} and the spin-dependent one, b{sub i,d}. The aim of this thesis was to perform a high-accuracy measurement of the latter to improve the relative accuracy of b{sub 2,d} below 1%. The experiment was performed at the fundamental neutron physics beam line FUNSPIN at the Paul Scherrer Institute in Switzerland. It utilises the effect that the spin of a neutron passing through a target with polarised nuclei performs a pseudomagnetic precession proportional to the spin-dependent scattering length of the nuclei. An ideal method to measure this precession angle very accurately is Ramsey's atomic beam technique, adapted to neutrons. The most crucial part of the experimental setup is the so-called frozen spin target, which consists of a specially designed dilution refrigerator and contains a sample with dynamically polarised nuclear spins. The polarisation of the sample is determined by nuclear magnetic resonance (NMR) techniques. It turned out that the relaxation of the nuclear spins during the necessary ''cross-calibration'' of the two employed NMR systems is ultimately limiting the achievable accuracy of b{sub i,d}. During the extensive use of the Ramsey resonance method in the neutron-deuteron experiment, an idea emerged that the applied technique could be exploited in a completely different context, namely polarised neutron radiography. Hence, the second part of the thesis covers the development of a novel neutron radiography technique, based on the spin-dependent interaction of the

  14. Neutron spin precession in samples of polarised nuclei and neutron spin phase imaging

    International Nuclear Information System (INIS)

    Piegsa, Florian Michael

    2009-01-01

    The doublet neutron-deuteron (nd) scattering length b 2,d , which is at present only known with an accuracy of 5%, is particularly well suited to fix three-body forces in novel effective field theories at low energies. The understanding of such few-nucleon systems is essential, e.g. for predictions of element abundances in the big-bang and stellar fusion. b 2,d can be obtained via a linear combination of the spin-independent nd scattering length b c,d and the spin-dependent one, b i,d . The aim of this thesis was to perform a high-accuracy measurement of the latter to improve the relative accuracy of b 2,d below 1%. The experiment was performed at the fundamental neutron physics beam line FUNSPIN at the Paul Scherrer Institute in Switzerland. It utilises the effect that the spin of a neutron passing through a target with polarised nuclei performs a pseudomagnetic precession proportional to the spin-dependent scattering length of the nuclei. An ideal method to measure this precession angle very accurately is Ramsey's atomic beam technique, adapted to neutrons. The most crucial part of the experimental setup is the so-called frozen spin target, which consists of a specially designed dilution refrigerator and contains a sample with dynamically polarised nuclear spins. The polarisation of the sample is determined by nuclear magnetic resonance (NMR) techniques. It turned out that the relaxation of the nuclear spins during the necessary ''cross-calibration'' of the two employed NMR systems is ultimately limiting the achievable accuracy of b i,d . During the extensive use of the Ramsey resonance method in the neutron-deuteron experiment, an idea emerged that the applied technique could be exploited in a completely different context, namely polarised neutron radiography. Hence, the second part of the thesis covers the development of a novel neutron radiography technique, based on the spin-dependent interaction of the neutron with ferromagnetic samples and magnetic fields

  15. Analysis of co-eluted isomers of high-molecular weight polycyclic aromatic hydrocarbons in high performance liquid chromatography fractions via solid-phase nanoextraction and time-resolved Shpol'skii spectroscopy.

    Science.gov (United States)

    Wilson, Walter B; Campiglia, Andres D

    2011-09-28

    We present an accurate method for the determination of isomers of high-molecular weight polycyclic aromatic hydrocarbons co-eluted in HPLC fractions. The feasibility of this approach is demonstrated with two isomers of molecular weight 302 with identical mass fragmentation patterns, namely dibenzo[a,i]pyrene and naphtho[2,3-a]pyrene. Qualitative and quantitative analysis is carried out via laser-excited time-resolved Shpol'skii spectroscopy at liquid helium temperature. Unambiguous identification of co-eluted isomers is based on their characteristic 4.2 K line-narrowed spectra in n-octane as well as their fluorescence lifetimes. Pre-concentration of HPLC fractions prior to spectroscopic analysis is performed with the aid of gold nanoparticles via an environmentally friendly procedure. In addition to the two co-eluted isomers, the analytical figures of merit of the entire procedure were evaluated with dibenzo[a,l]pyrene, dibenzo[a,h]pyrene and dibenzo[a,e]pyrene. The analytical recoveries from drinking water samples varied between 98.2±5.5 (dibenzo[a,l]pyrene) and 102.7±3.2% (dibenzo[a,i]pyrene). The limits of detection ranged from 51.1 ng L(-1) (naphtho[2,3-a]pyrene) to 154 ng L(-1) (dibenzo[a,e]pyrene). The excellent analytical figures of merit associated to its HPLC compatibility makes this approach an attractive alternative for the analysis of co-eluted isomers with identical mass spectra. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. The design and performance of the FNAL high-energy polarized beam facility

    International Nuclear Information System (INIS)

    Tanaka, Nobuyuki.

    1989-01-01

    We describe a new polarized-proton and -antiproton beam with 185-GeV/c momentum in the Fermilab MP beam line which is currently operational. The design uses the parity-conserving decay of lambda and antilambda hyperons to produce polarized protons and antiprotons, respectively. A beam-transport system minimizes depolarization effects and uses a set of 12 dipole magnets that rotate the beam-particle spin direction. A beam-tagging system determines the momentum and polarization of individual beam particles, allowing a selection of particles in definite intervals at momentum and polarization. We measured polarization of the beam by using two types of polarimeters, which verified the determination of polarization by a beam-particle tagging system. Two of these processes are the inverse-Primakoff effect and the Coulomb-nuclear interference (CNI) in elastic proton-proton scattering. Another experiment measured the π 0 production asymmetry of large-x F values; this process may now be used as an on-line beam polarimeter. 9 refs., 9 figs

  17. Hadron beams and accelerators

    International Nuclear Information System (INIS)

    Roser, T.

    1995-01-01

    There were four sessions on Hadron Beams and Accelerators with 7 talks on Siberian Snakes and spin rotators, 3 talks on polarization build-up of unpolarized beams in storage rings and 5, 9, and 3 talks on low, medium, and high energy polarimeters, respectively. In this paper I will briefly describe a few highlights from these sessions, giving emphasis to topics which I think will play an important role in the future. copyright 1995 American Institute of Physics

  18. Stability of trans-fermium elements at high spin: Measuring the fission barrier of 254No

    International Nuclear Information System (INIS)

    Henning, Greg

    2012-01-01

    Super heavy nuclei provide opportunities to study nuclear structure near three simultaneous limits: in charge Z, spin I and excitation energy E*. These nuclei exist only because of a fission barrier, created by shell effects. It is therefore important to determine the fission barrier and its spin dependence B f (I), which gives information on the shell energy E(shell)(I). Theoretical calculations predict different fission barrier heights from B f (I = 0) = 6.8 MeV for a macro-microscopic model to 8.7 MeV for Density Functional Theory calculations using the Gogny or Skyrme interactions. Hence, a measurement of B f provides a test for theories.To investigate the fission barrier, an established method is to measure the rise of fission with excitation energy, characterized by the ratio of decay widths Γ(fission)/Γ(total), using transfer reactions. However, for heavy elements such as 254 No, there is no suitable target for a transfer reaction. We therefore rely on the complementary decay widths ratio Γ γ /Γ(fission) and its spin dependence, deduced from the entry distribution (I, E*).Measurements of the gamma-ray multiplicity and total energy for 254 No have been performed with beam energies of 219 and 223 MeV in the reaction 208 Pb( 48 Ca,2n) at ATLAS (Argonne Tandem Linac Accelerator System). The 254 No gamma rays were detected using the Gammasphere array as a calorimeter - as well as the usual high resolution γ-ray detector. Coincidences with evaporation residues at the Fragment Mass Analyzer focal plane separated 254 No gamma rays from those from fission fragments, which are ≥ 10 6 more intense. From this measurement, the entry distribution - i.e. the initial distribution of I and E* - is constructed. Each point (I,E*) of the entry distribution is a point where gamma decay wins over fission and, therefore, gives information on the fission barrier. The measured entry distributions show an increase in the maximum spin and excitation energy from 219 to 223 Me

  19. Target and beam-target spin asymmetries in exclusive pion electroproduction for Q2>1 GeV2. II. e p →e π0p

    Science.gov (United States)

    Bosted, P. E.; Kim, A.; Adhikari, K. P.; Adikaram, D.; Akbar, Z.; Amaryan, M. J.; Anefalos Pereira, S.; Avakian, H.; Badui, R. A.; Ball, J.; Balossino, I.; Battaglieri, M.; Bedlinskiy, I.; Biselli, A. S.; Boiarinov, S.; Briscoe, W. J.; Brooks, W. K.; Bültmann, S.; Burkert, V. D.; Cao, T.; Carman, D. S.; Celentano, A.; Chandavar, S.; Charles, G.; Chetry, T.; Ciullo, G.; Clark, L.; Colaneri, L.; Cole, P. L.; Contalbrigo, M.; Cortes, O.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Dupre, R.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Elouadrhiri, L.; Eugenio, P.; Fanchini, E.; Fedotov, G.; Fegan, S.; Fersch, R.; Filippi, A.; Fleming, J. A.; Forest, T. A.; Fradi, A.; Ghandilyan, Y.; Gilfoyle, G. P.; Girod, F. X.; Glazier, D. I.; Gohn, W.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guler, N.; Hakobyan, H.; Guo, L.; Hafidi, K.; Hakobyan, H.; Hanretty, C.; Harrison, N.; Hattawy, M.; Heddle, D.; Hicks, K.; Hollis, G.; Holtrop, M.; Hughes, S. M.; Ireland, D. G.; Isupov, E. L.; Jenkins, D.; Jiang, H.; Jo, H. S.; Joo, K.; Keller, D.; Khachatryan, G.; Khandaker, M.; Kim, W.; Klei, A.; Klein, F. J.; Koirala, S.; Kubarovsky, V.; Kuhn, S. E.; Lanza, L.; Lenisa, P.; Livingston, K.; Lu, H. Y.; MacGregor, I. J. D.; Markov, N.; Mayer, M.; McCracken, M. E.; McKinnon, B.; Mineeva, T.; Mirazita, M.; Mokeev, V. I.; Montgomery, R. A.; Movsisyan, A.; Munoz Camacho, C.; Murdoch, G.; Nadel-Turonski, P.; Ni, A.; Niccolai, S.; Niculescu, G.; Osipenko, M.; Ostrovidov, A. I.; Paolone, M.; Paremuzyan, R.; Park, K.; Pasyuk, E.; Phelps, W.; Pisano, S.; Pogorelko, O.; Price, J. W.; Prok, Y.; Protopopescu, D.; Puckett, A. J. R.; Raue, B. A.; Ripani, M.; Rizzo, A.; Rosner, G.; Rossi, P.; Roy, P.; Sabatié, F.; Saini, M. S.; Schumacher, R. A.; Seder, E.; Sharabian, Y. G.; Skorodumina, Iu.; Smith, G. D.; Sokhan, D.; Sparveris, N.; Stankovic, I.; Stepanyan, S.; Stoler, P.; Strakovsky, I. I.; Strauch, S.; Taiuti, M.; Tian, Ye; Torayev, B.; Ungaro, M.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D. P.; Wei, X.; Weinstein, L. B.; Zachariou, N.; Zhang, J.; Zhao, Z. W.; Zonta, I.; CLAS Collaboration

    2017-03-01

    Beam-target double-spin asymmetries and target single-spin asymmetries were measured for the exclusive π0 electroproduction reaction γ*p →p π0 , expanding an analysis of the γ*p →n π+ reaction from the same experiment. The results were obtained from scattering of 6-GeV longitudinally polarized electrons off longitudinally polarized protons using the CEBAF Large Acceptance Spectrometer at Jefferson Laboratory. The kinematic ranges covered are 1.1 beam-target asymmetries were found to generally be greater than zero, with relatively modest ϕ* dependence. The target asymmetries exhibit very strong ϕ* dependence, with a change in sign occurring between results at low W and high W , in contrast to π+ electroproduction. Reasonable agreement is found with phenomenological fits to previous data for W <1.6 GeV, but significant differences are seen at higher W . When combined with cross-sectional measurements, as well as π+ observables, the present results will provide powerful constraints on nucleon resonance amplitudes at moderate and large values of Q2, for resonances with masses as high as 2.4 GeV.

  20. Overview of the APT high-energy beam transport and beam expanders

    International Nuclear Information System (INIS)

    Shafer, R.E.; Blind, B.; Gray, E.R.

    1997-01-01

    The APT high energy beam transport (HEBT) and beam expanders convey the 1700-MeV, 100-mA cw proton beam from the linac to the tritium target/blanket assembly, or a tuning beam stop. The HEBT includes extensive beam diagnostics, collimators, and beam jitter correction, to monitor and control the 170-MW beam prior to expansion. A zero-degree beamline conveys the beam to the beam stop, and an achromatic bend conveys the beam to the tritium production target. Nonlinear beam expanders make use of higher-order multipole magnets and dithering dipoles to expand the beam to a uniform-density, 16-cm wide by 160-cm high rectangular profile on the tritium-production target. The overall optics design will be reviewed, and beam simulations will be presented

  1. Beam-spin asymmetry of pion, kaon, proton and antiproton production in semi-inclusive deep-inelastic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Zagrebelnyy, Vitaly [DESY Hamburg Notkestrasse 85 (Germany)

    2014-07-01

    Beam-spin asymmetries in the azimuthal distribution of pions, kaons, protons and antiprotons in semi-inclusive deep inelastic scattering (SIDIS) extracted from 2000-2007 HERMES data are presented. The asymmetries were measured in the kinematic region Q{sup 2}>1 GeV{sup 2}, W{sup 2} > 10 GeV{sup 2}, 0.1 spin-orbit correlations inside the nucleon and orbital angular momentum of quarks.

  2. Boson-mediated quantum spin simulators in transverse fields: X Y model and spin-boson entanglement

    Science.gov (United States)

    Wall, Michael L.; Safavi-Naini, Arghavan; Rey, Ana Maria

    2017-01-01

    The coupling of spins to long-wavelength bosonic modes is a prominent means to engineer long-range spin-spin interactions, and has been realized in a variety of platforms, such as atoms in optical cavities and trapped ions. To date, much of the experimental focus has been on the realization of long-range Ising models, but generalizations to other spin models are highly desirable. In this work, we explore a previously unappreciated connection between the realization of an X Y model by off-resonant driving of a single sideband of boson excitation (i.e., a single-beam Mølmer-Sørensen scheme) and a boson-mediated Ising simulator in the presence of a transverse field. In particular, we show that these two schemes have the same effective Hamiltonian in suitably defined rotating frames, and analyze the emergent effective X Y spin model through a truncated Magnus series and numerical simulations. In addition to X Y spin-spin interactions that can be nonperturbatively renormalized from the naive Ising spin-spin coupling constants, we find an effective transverse field that is dependent on the thermal energy of the bosons, as well as other spin-boson couplings that cause spin-boson entanglement not to vanish at any time. In the case of a boson-mediated Ising simulator with transverse field, we discuss the crossover from transverse field Ising-like to X Y -like spin behavior as a function of field strength.

  3. Facility for low-temperature spin-polarized-scanning tunneling microscopy studies of magnetic/spintronic materials prepared in situ by nitride molecular beam epitaxy.

    Science.gov (United States)

    Lin, Wenzhi; Foley, Andrew; Alam, Khan; Wang, Kangkang; Liu, Yinghao; Chen, Tianjiao; Pak, Jeongihm; Smith, Arthur R

    2014-04-01

    Based on the interest in, as well as exciting outlook for, nitride semiconductor based structures with regard to electronic, optoelectronic, and spintronic applications, it is compelling to investigate these systems using the powerful technique of spin-polarized scanning tunneling microscopy (STM), a technique capable of achieving magnetic resolution down to the atomic scale. However, the delicate surfaces of these materials are easily corrupted by in-air transfers, making it unfeasible to study them in stand-alone ultra-high vacuum STM facilities. Therefore, we have carried out the development of a hybrid system including a nitrogen plasma assisted molecular beam epitaxy/pulsed laser epitaxy facility for sample growth combined with a low-temperature, spin-polarized scanning tunneling microscope system. The custom-designed molecular beam epitaxy growth system supports up to eight sources, including up to seven effusion cells plus a radio frequency nitrogen plasma source, for epitaxially growing a variety of materials, such as nitride semiconductors, magnetic materials, and their hetero-structures, and also incorporating in situ reflection high energy electron diffraction. The growth system also enables integration of pulsed laser epitaxy. The STM unit has a modular design, consisting of an upper body and a lower body. The upper body contains the coarse approach mechanism and the scanner unit, while the lower body accepts molecular beam epitaxy grown samples using compression springs and sample skis. The design of the system employs two stages of vibration isolation as well as a layer of acoustic noise isolation in order to reduce noise during STM measurements. This isolation allows the system to effectively acquire STM data in a typical lab space, which during its construction had no special and highly costly elements included, (such as isolated slabs) which would lower the environmental noise. The design further enables tip exchange and tip coating without

  4. Facility for low-temperature spin-polarized-scanning tunneling microscopy studies of magnetic/spintronic materials prepared in situ by nitride molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Wenzhi; Foley, Andrew; Alam, Khan; Wang, Kangkang; Liu, Yinghao; Chen, Tianjiao; Pak, Jeongihm; Smith, Arthur R., E-mail: smitha2@ohio.edu [Department of Physics and Astronomy, Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, Ohio 45701 (United States)

    2014-04-15

    Based on the interest in, as well as exciting outlook for, nitride semiconductor based structures with regard to electronic, optoelectronic, and spintronic applications, it is compelling to investigate these systems using the powerful technique of spin-polarized scanning tunneling microscopy (STM), a technique capable of achieving magnetic resolution down to the atomic scale. However, the delicate surfaces of these materials are easily corrupted by in-air transfers, making it unfeasible to study them in stand-alone ultra-high vacuum STM facilities. Therefore, we have carried out the development of a hybrid system including a nitrogen plasma assisted molecular beam epitaxy/pulsed laser epitaxy facility for sample growth combined with a low-temperature, spin-polarized scanning tunneling microscope system. The custom-designed molecular beam epitaxy growth system supports up to eight sources, including up to seven effusion cells plus a radio frequency nitrogen plasma source, for epitaxially growing a variety of materials, such as nitride semiconductors, magnetic materials, and their hetero-structures, and also incorporating in situ reflection high energy electron diffraction. The growth system also enables integration of pulsed laser epitaxy. The STM unit has a modular design, consisting of an upper body and a lower body. The upper body contains the coarse approach mechanism and the scanner unit, while the lower body accepts molecular beam epitaxy grown samples using compression springs and sample skis. The design of the system employs two stages of vibration isolation as well as a layer of acoustic noise isolation in order to reduce noise during STM measurements. This isolation allows the system to effectively acquire STM data in a typical lab space, which during its construction had no special and highly costly elements included, (such as isolated slabs) which would lower the environmental noise. The design further enables tip exchange and tip coating without

  5. Facility for low-temperature spin-polarized-scanning tunneling microscopy studies of magnetic/spintronic materials prepared in situ by nitride molecular beam epitaxy

    International Nuclear Information System (INIS)

    Lin, Wenzhi; Foley, Andrew; Alam, Khan; Wang, Kangkang; Liu, Yinghao; Chen, Tianjiao; Pak, Jeongihm; Smith, Arthur R.

    2014-01-01

    Based on the interest in, as well as exciting outlook for, nitride semiconductor based structures with regard to electronic, optoelectronic, and spintronic applications, it is compelling to investigate these systems using the powerful technique of spin-polarized scanning tunneling microscopy (STM), a technique capable of achieving magnetic resolution down to the atomic scale. However, the delicate surfaces of these materials are easily corrupted by in-air transfers, making it unfeasible to study them in stand-alone ultra-high vacuum STM facilities. Therefore, we have carried out the development of a hybrid system including a nitrogen plasma assisted molecular beam epitaxy/pulsed laser epitaxy facility for sample growth combined with a low-temperature, spin-polarized scanning tunneling microscope system. The custom-designed molecular beam epitaxy growth system supports up to eight sources, including up to seven effusion cells plus a radio frequency nitrogen plasma source, for epitaxially growing a variety of materials, such as nitride semiconductors, magnetic materials, and their hetero-structures, and also incorporating in situ reflection high energy electron diffraction. The growth system also enables integration of pulsed laser epitaxy. The STM unit has a modular design, consisting of an upper body and a lower body. The upper body contains the coarse approach mechanism and the scanner unit, while the lower body accepts molecular beam epitaxy grown samples using compression springs and sample skis. The design of the system employs two stages of vibration isolation as well as a layer of acoustic noise isolation in order to reduce noise during STM measurements. This isolation allows the system to effectively acquire STM data in a typical lab space, which during its construction had no special and highly costly elements included, (such as isolated slabs) which would lower the environmental noise. The design further enables tip exchange and tip coating without

  6. Induced γ emission for nuclear isomer long-lived

    International Nuclear Information System (INIS)

    Yang Tianli; Hao Fanhua

    2007-06-01

    It is pointed that the induced 7 emission for long lived isomer 178m2 Hf by low energy X rays has been a topic subject in the nuclear field recently. The background and development status are described. A principle for T ray transitions induced by X rays and the theoretical about magnificent induced emission have been related. In addition, the possible method of 178m2 Hf produce has been introduced also. Although the argument has existed for the experimental results of induced 7 emission, it can push forward in solving energy crisis and in future military field after controlling effectively the releasing of high excited energy for isomer. (authors)

  7. Inverse spin-valve effect in nanoscale Si-based spin-valve devices

    Science.gov (United States)

    Hiep, Duong Dinh; Tanaka, Masaaki; Hai, Pham Nam

    2017-12-01

    We investigated the spin-valve effect in nano-scale silicon (Si)-based spin-valve devices using a Fe/MgO/Ge spin injector/detector deposited on Si by molecular beam epitaxy. For a device with a 20 nm Si channel, we observed clear magnetoresistance up to 3% at low temperature when a magnetic field was applied in the film plane along the Si channel transport direction. A large spin-dependent output voltage of 20 mV was observed at a bias voltage of 0.9 V at 15 K, which is among the highest values in lateral spin-valve devices reported so far. Furthermore, we observed that the sign of the spin-valve effect is reversed at low temperatures, suggesting the possibility of a spin-blockade effect of defect states in the MgO/Ge tunneling barrier.

  8. Spin and parity assignments to dipole excitations of the odd-mass nucleus {sup 207}Pb from nuclear resonance fluorescence experiments with linearly-polarized {gamma}-ray beams

    Energy Technology Data Exchange (ETDEWEB)

    Pietralla, N; Fritzsche, M; Savran, D [Institut fuer Kernphysik, Technische Universitaet Darmstadt, 64289 Darmstadt (Germany); Li, T C [Nuclear Structure Laboratory, SUNY at Stony Brook, Stony Brook, NY 11794-3800 (United States); Ahmed, M W; Tonchev, A P; Tornow, W; Weller, H R [Triangle Universities Nuclear Laboratory (TUNL), Duke University, Durham, NC 27708 (United States); Werner, V, E-mail: pietralla@ikp.tu-darmstadt.d [A.W. Wright Nuclear Structure Laboratory (WNSL), Yale University, New Haven, CT (United States)

    2010-01-01

    Pb({gamma}-vector ,{gamma}') photon scattering reactions were studied [1] with the nearly monochromatic, linearly polarized photon beams at the High Intensity {gamma}-ray Source (HI{gamma}S) at the DFELL. Azimuthal scattering intensity asymmetries measured with respect to the polarization plane of the beam have been used for the first time to assign both the spin and parity quantum numbers of dipole excited states of {sup 206,207,208}Pb at excitation energies in the vicinity of 5.5 MeV. Evidence for dominant particle-core coupling is deduced from these results along with information on excitation energies and electromagnetic transition matrix elements.

  9. Beam Spin Asymmetry Measurements for Two Pion Photoproduction at CLAS

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Mark D. [Univ. of Glasgow, Scotland (United Kingdom)

    2015-09-01

    The overarching goal of this analysis, and many like it, is to develop our understanding of the strong force interactions within the nucleon by examining the nature of their excitation spectra. As the resonances of these spectra have very short lifetimes (tau = 1x10-23 s) and often have very similar masses, it is often impossible to directly observe resonances in the excitation spectra of nucleons. Polarization observables allow us to study the resonances by looking at how they affect the spin state of final state particles. The beam asymmetry is a polarization observable that allows us to detect the sensitivity of these resonances, and other transition mechanisms, to the electric vector orientation of incident photons. Presented in this thesis are first measurements of the beam asymmetries in the resonant region for the reaction channel pgamma p --> p π+ π-focusing on the intermediate mesonic states rho^0 and f^0, and the final state pions. The analysis used data from the g8b experiment undertaken at the Thomas Jefferson National Accelerator Facility (JLab), the first experiment at JLab to use a linearly polarized photon beam. Using the coherent Bremsstrahlung facility and the CLAS detector of Hall B at JLab allowed for many multi-channel reactions to be detected and the first measurements of many polarization observables including those presented here. A brief overview of the theoretical framework used to undertake this analysis is given, followed by a description of the experimental details of the facilities used, then a description of the calibration of the Bremsstrahlung tagging facility which the author undertook, and finally the analysis is presented and the resulting measurements.

  10. Goos-Hänchen effect and bending of spin wave beams in thin magnetic films

    International Nuclear Information System (INIS)

    Gruszecki, P.; Krawczyk, M.; Romero-Vivas, J.; Dadoenkova, Yu. S.; Dadoenkova, N. N.; Lyubchanskii, I. L.

    2014-01-01

    For magnon spintronic applications, the detailed knowledge of spin wave (SW) beam dispersion, transmission (reflection) of SWs passing through (reflected from) interfaces, or borders or the scattering of SWs by inhomogeneities is crucial. These wave properties are decisive factors on the usefulness of a particular device. Here, we demonstrate, using micromagnetic simulations supported by an analytical model, that the Goos-Hänchen (GH) shift exists for SW reflecting from thin film edge and that with the effect becomes observable. We show that this effect will exist for a broad range of frequencies in the dipole-exchange range, with the magnetization degree of pinning at the film edge as the crucial parameter, whatever its nature. Moreover, we have also found that the GH effect can be accompanied or even dominating by a bending of the SW beam due to the inhomogeneity of the internal magnetic field. This inhomogeneity, created by demagnetizing field taking place at the film edge, causes gradual change of SWs refractive index. The refraction of the SW beams by the non-uniformity of the magnetic field enables the exploration of graded index magnonics and metamaterial properties for the transmission and processing of information at nanoscale

  11. Goos-Hänchen effect and bending of spin wave beams in thin magnetic films

    Energy Technology Data Exchange (ETDEWEB)

    Gruszecki, P., E-mail: pawel.gruszecki@amu.edu.pl; Krawczyk, M., E-mail: krawczyk@amu.edu.pl [Faculty of Physics, Adam Mickiewicz University in Poznań, Umultowska 85, Poznań 61-614 (Poland); Romero-Vivas, J. [Department of Electronic and Computer Engineering, University of Limerick, Limerick (Ireland); Dadoenkova, Yu. S.; Dadoenkova, N. N. [Donetsk Physical and Technical Institute of the National Academy of Sciences of Ukraine, 83114 Donetsk (Ukraine); Ulyanovsk State University, 42 Leo Tolstoy str., 432000 Ulyanovsk (Russian Federation); Lyubchanskii, I. L. [Donetsk Physical and Technical Institute of the National Academy of Sciences of Ukraine, 83114 Donetsk (Ukraine)

    2014-12-15

    For magnon spintronic applications, the detailed knowledge of spin wave (SW) beam dispersion, transmission (reflection) of SWs passing through (reflected from) interfaces, or borders or the scattering of SWs by inhomogeneities is crucial. These wave properties are decisive factors on the usefulness of a particular device. Here, we demonstrate, using micromagnetic simulations supported by an analytical model, that the Goos-Hänchen (GH) shift exists for SW reflecting from thin film edge and that with the effect becomes observable. We show that this effect will exist for a broad range of frequencies in the dipole-exchange range, with the magnetization degree of pinning at the film edge as the crucial parameter, whatever its nature. Moreover, we have also found that the GH effect can be accompanied or even dominating by a bending of the SW beam due to the inhomogeneity of the internal magnetic field. This inhomogeneity, created by demagnetizing field taking place at the film edge, causes gradual change of SWs refractive index. The refraction of the SW beams by the non-uniformity of the magnetic field enables the exploration of graded index magnonics and metamaterial properties for the transmission and processing of information at nanoscale.

  12. High-spin nuclear spectroscopy

    International Nuclear Information System (INIS)

    Diamond, R.M.

    1986-07-01

    High-spin spectroscopy is the study of the changes in nuclear structure, properties, and behavior with increasing angular momentum. It involves the complex interplay between collective and single-particle motion, between shape and deformation changes, particle alignments, and changes in the pairing correlations. A review of progress in theory, experimentation, and instrumentation in this field is given

  13. Innovative spin precessor for intermediate energy protons

    International Nuclear Information System (INIS)

    Hoffman, E.W.

    1979-01-01

    A spin precessor has been designed to provide arbitrary orientation of the polarization in the external proton beam at LAMPF. The device utilizes two superconducting solenoids, three conventional dipoles, and conversion of polarized H - to H + to provide an achromatic, undeflected beam with tunable spin orientation over a range of energies from 400 MeV to 800 MeV. A portion of this device is being installed to provide compatibility between two facilities which simultaneously use two branches of the external proton beam at LAMPF

  14. Experimental and computational thermochemistry of the dihydroxypyridine isomers

    International Nuclear Information System (INIS)

    Morais, Victor M.F.; Miranda, Margarida S.; Matos, M. Agostinha R.

    2006-01-01

    The standard (p 0 = 0.1 MPa) molar enthalpy of formation for crystalline 2,3-dihydroxypyridine was measured, at T = 298.15 K, by static bomb calorimetry and the standard molar enthalpy of sublimation, at T 298.15 K, was obtained using Calvet microcalorimetry. These values were used to derive the standard molar enthalpy of formation of 2,3-dihydroxypyridine in gaseous phase, at T = 298.15 K, -(263.9 ± 4.6) kJ . mol -1 . Additionally, high-level density functional theory calculations using the B3LYP hybrid exchange-correlation energy functional with extended basis sets have been performed for all dihydroxypyridine isomers to determine the thermochemical order of stability of these systems. The agreement between experiment and theory for the 2,3-dihydroxypyridine isomer gives confidence to the estimates of the enthalpies of formation concerning the other five isomers. It is found that the enthalpic increment for the dihydroxy substitution of pyridine is equal to the sum of the respective enthalpic increment of the monosubstituted pyridines

  15. High energy beam cooling

    International Nuclear Information System (INIS)

    Berger, H.; Herr, H.; Linnecar, T.; Millich, A.; Milss, F.; Rubbia, C.; Taylor, C.S.; Meer, S. van der; Zotter, B.

    1980-01-01

    The group concerned itself with the analysis of cooling systems whose purpose is to maintain the quality of the high energy beams in the SPS in spite of gas scattering, RF noise, magnet ripple and beam-beam interactions. Three types of systems were discussed. The status of these activities is discussed below. (orig.)

  16. Kiloamp high-brightness beams

    International Nuclear Information System (INIS)

    Caporaso, G.J.

    1987-01-01

    Brightness preservation of high-current relativistic electron beams under two different types of transport is discussed. Recent progress in improving the brightness of laser-guided beams in the Advanced Test Accelerator is reviewed. A strategy for the preservation of the brightness of space-charge-dominated beams in a solenoidal transport system is presented

  17. Summary of the 9th international symposium on high energy spin-physics

    International Nuclear Information System (INIS)

    Prescott, C.Y.

    1990-11-01

    Summarizing an international conference in high energy spin physics is never an easy task, because of the wide-ranging subjects in physics and technology that are involved. I have chosen to organize the topics of this conference into three broad categories relating to spin; intrinsic spin; composite spin; and spin, the experimental tool. In the first category, I will briefly revisit some historical and recent developments to set a background. In the second category, composite spin, I will discuss the status and developments in several areas, including magnetic moments of baryons, hyperon polarization in high energy high p perpendicular production, transverse polarization and asymmetries from transversely polarized targets in high p perpendicular scattering, spin structure of the proton, and the Bjorken sum rule. In the third category, I will discuss the steady, and at times rapid, progress in spin technology. In this part I include recent progress in high energy facilities, and comment on the highlights of the Workshops

  18. High current beam transport with multiple beam arrays

    International Nuclear Information System (INIS)

    Kim, C.H.

    1985-05-01

    Highlights of recent experimental and theoretical research progress on the high current beam transport of single and multiple beams by the Heavy Ion Fusion Accelerator Research (HIFAR) group at the Lawrence Berkeley Laboratory (LBL) are presented. In the single beam transport experiment (SBTE), stability boundaries and the emittance growth of a space charge dominated beam in a long quadrupole transport channel were measured and compared with theory and computer simulations. Also, a multiple beam ion induction linac (MBE-4) is being constructed at LBL which will permit study of multiple beam transport arrays, and acceleration and bunch length compression of individually focused beamlets. Various design considerations of MBE-4 regarding scaling laws, nonlinear effects, misalignments, and transverse and longitudinal space charge effects are summarized. Some aspects of longitudinal beam dynamics including schemes to generate the accelerating voltage waveforms and to amplify beam current are also discussed

  19. Spin light of neutrino in matter and electromagnetic fields

    International Nuclear Information System (INIS)

    Lobanov, A.; Studenikin, A.

    2003-01-01

    A new type of electromagnetic radiation by a neutrino with non-zero magnetic (and/or electric) moment moving in background matter and electromagnetic field is considered. This radiation originates from the quantum spin flip transitions and we have named it as 'spin light of neutrino' (SLν). The neutrino initially unpolarized beam (equal mixture of ν L and ν R ) can be converted to the totally polarized beam composed of only ν R by the neutrino spin light in matter and electromagnetic fields. The quasi-classical theory of this radiation is developed on the basis of the generalized Bargmann-Michel-Telegdi equation. The considered radiation is important for environments with high effective densities, n, because the total radiation power is proportional to n 4 . The spin light of neutrino, in contrast to the Cherenkov or transition radiation of neutrino in matter, does not vanish in the case of the refractive index of matter is equal to unit. The specific features of this new radiation are: (i) the total power of the radiation is proportional to γ 4 , and (ii) the radiation is beamed within a small angle δθ∼γ -1 , where γ is the neutrino Lorentz factor. Applications of this new type of neutrino radiation to astrophysics, in particular to gamma-ray bursts, and the early universe should be important

  20. Spin-polaron theory of high-Tc superconductivity: I, spin polarons and high-Tc pairing

    International Nuclear Information System (INIS)

    Wood, R.F.

    1993-06-01

    The concept of a spin polaron is introduced and contrasted with the more familiar ionic polaron picture. A brief review of aspects of ionic bipolaronic superconductivity is given with particular emphasis on the real-space pairing and true Bose condensation characteristics. The formation energy of spin polarons is then calculated in analogy with ionic polarons. The spin-flip energy of a Cu spin in an antiferromagnetically aligned CuO 2 plane is discussed. It is shown that the introduction of holes into the CuO 2 planes will always lead to the destruction of long-range AF ordering due to the formation of spin polarons. The pairing of two spin polarons can be expected because of the reestablishment of local (short-range) AF ordering; the magnitude of the pairing energy is estimated using a simplified model. The paper closes with a brief discussion of the formal theory of spin polarons

  1. A switchable spin-wave signal splitter for magnonic networks

    Science.gov (United States)

    Heussner, F.; Serga, A. A.; Brächer, T.; Hillebrands, B.; Pirro, P.

    2017-09-01

    The influence of an inhomogeneous magnetization distribution on the propagation of caustic-like spin-wave beams in unpatterned magnetic films has been investigated by utilizing micromagnetic simulations. Our study reveals a locally controllable and reconfigurable tractability of the beam directions. This feature is used to design a device combining split and switch functionalities for spin-wave signals on the micrometer scale. A coherent transmission of spin-wave signals through the device is verified. This attests the applicability in magnonic networks where the information is encoded in the phase of the spin waves.

  2. A spin-optoelectronic detector for the simultaneous measurement of the degree of circular polarization and intensity of a laser beam

    International Nuclear Information System (INIS)

    Khamari, Shailesh K.; Porwal, S.; Oak, S. M.; Sharma, T. K.

    2015-01-01

    Simultaneous measurement of the degree of circular polarization and intensity of a laser beam is essential in advanced photonic applications. However, it is not feasible with conventional helicity dependent detectors where an additional detector is needed to measure the intensity. Here, we report the development of a spin-optoelectronic detector that can measure the degree of circular polarization and the intensity of a laser beam simultaneously. The principle of operation of device is based on the two independent fundamental phenomena occurring in Au/InP hybrid structures, namely, Inverse Spin Hall Effect (ISHE) and the Photo-Voltaic (PV) Effect. The magnitude of ISHE and PV signals is simultaneously measured across the two pairs of contacts that are made on the top of device. No cross talk is observed between the two detectors made on the same chip. The all-electronic compact device is fast, operates at room temperature, and opens up the possibility of many applications in an integrated optoelectronic platform

  3. High-dose dosimetry using electron spin resonance (ESR) spectroscopy

    International Nuclear Information System (INIS)

    Kojima, Takuji; Tanaka, Ryuichi

    1992-01-01

    An electron spin resonance (ESR) dosimeter capable of measuring large doses of radiation in radiotherapy and radiation processing is outlined. In particular, an alanine/ESR dosimeter is discussed, focusing on the development of elements, the development of the ESR dosimetric system, the application of alanine/ESR dosimeter, and basic researches. Rod elements for gamma radiation and x radiation and film elements for electron beams are described in detail. The following recent applications of the alanine/ESR dosimeter are introduced: using as a transfer dosimeter, applying to various types of radiation, diagnosing the deterioration of radiological materials and equipments, and applying to ESR imaging. The future subjects to be solved in the alanine/ESR dosimetric system are referred to as follows: (1) improvement of highly accurate elements suitable for the measurement of various types of radiation, (2) establishment of sensitive calibration method of the ESR equipment itself, and (3) calibration and standardization of radiation doses. (K.N.) 65 refs

  4. Spin-isospin excitations studied by polarized beams

    International Nuclear Information System (INIS)

    Sakai, H.; Greenfield, M.B.; Hatanaka, K.

    1996-01-01

    The spin-parity J π of the spin dipole resonances (SDR) in 12 N and 12 B are investigated via the measurements of polarization observables, the transverse polarization transfer coefficient D NN for the (vector p, vector n) reaction at 197 and 295 MeV and the tensor analyzing power A xx for the (vector d, 2 He) reaction at 270 MeV. The polarization observables, D NN and A xx for the peak at 4.5 MeV are consistent with the DWIA prediction with 2 - but those for the peak at 7.5 MeV contradict the predictions with an expected J π =1 - . Neither polarization observables could detect any concentration of 0 - strength. The usefulness of these spin observables in identifying J π is shown. (orig.)

  5. Beam Techniques - Beam Control and Manipulation

    International Nuclear Information System (INIS)

    Minty, Michiko G

    2003-01-01

    We describe commonly used strategies for the control of charged particle beams and the manipulation of their properties. Emphasis is placed on relativistic beams in linear accelerators and storage rings. After a brief review of linear optics, we discuss basic and advanced beam control techniques, such as transverse and longitudinal lattice diagnostics, matching, orbit correction and steering, beam-based alignment, and linac emittance preservation. A variety of methods for the manipulation of particle beam properties are also presented, for instance, bunch length and energy compression, bunch rotation, changes to the damping partition number, and beam collimation. The different procedures are illustrated by examples from various accelerators. Special topics include injection and extraction methods, beam cooling, spin transport and polarization

  6. Beam Techniques - Beam Control and Manipulation

    Energy Technology Data Exchange (ETDEWEB)

    Minty, Michiko G

    2003-04-24

    We describe commonly used strategies for the control of charged particle beams and the manipulation of their properties. Emphasis is placed on relativistic beams in linear accelerators and storage rings. After a brief review of linear optics, we discuss basic and advanced beam control techniques, such as transverse and longitudinal lattice diagnostics, matching, orbit correction and steering, beam-based alignment, and linac emittance preservation. A variety of methods for the manipulation of particle beam properties are also presented, for instance, bunch length and energy compression, bunch rotation, changes to the damping partition number, and beam collimation. The different procedures are illustrated by examples from various accelerators. Special topics include injection and extraction methods, beam cooling, spin transport and polarization.

  7. SPIN PHYSICS: Lasers at work

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Lasers are now an everyday tool in particle physics, particularly for the spin polarization of beams, targets, and even short-lived particles. Development has been boosted in recent years by the availability of reliable multiwatt tunable lasers to select spin in an experimentally useful sample

  8. Study of depolarization of deuteron and proton beams in the Nuclotron ring

    CERN Document Server

    Golubeva, N Y; Kondratenko, A M; Kondratenko, A M; Mikhajlov, V A; Strokovsky, E A

    2002-01-01

    The scheme for acceleration of polarized deuterons at the Nuclotron accelerator facility includes a cryogenic polarized deuteron source 'Polaris', a 5 MeV/nucl. linac, a superconducting heavy ion synchrotron of a 6 GeV/nucl. energy with 10 s spill slow extraction, thin internal targets and wide net of external beam lines. This scheme also allows one to generate high energy polarized proton and neutron beams with well determined characteristics. There are two principal problems of polarized particle acceleration: to keep spin orientation during beam acceleration and to produce the high ion intensity sufficient for data taking in physics experiments. The first problem is discussed in this paper. The reasons of depolarization effects in the mentioned parts of the Nuclotron have been analysed and four methods of the polarization conserving have been suggested. They are the spin resonance strength compensation increasing of the resonance strength, the betatron tune jump and the spin tune jump. Among their number, ...

  9. Beam dynamics of mixed high intensity highly charged ion Beams in the Q/A selector

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X.H., E-mail: zhangxiaohu@impcas.ac.cn [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Yuan, Y.J.; Yin, X.J.; Qian, C.; Sun, L.T. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Du, H.; Li, Z.S.; Qiao, J.; Wang, K.D. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zhao, H.W.; Xia, J.W. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2017-06-11

    Electron cyclotron resonance (ECR) ion sources are widely used in heavy ion accelerators for their advantages in producing high quality intense beams of highly charged ions. However, it exists challenges in the design of the Q/A selection systems for mixed high intensity ion beams to reach sufficient Q/A resolution while controlling the beam emittance growth. Moreover, as the emittance of beam from ECR ion sources is coupled, the matching of phase space to post accelerator, for a wide range of ion beam species with different intensities, should be carefully studied. In this paper, the simulation and experimental results of the Q/A selection system at the LECR4 platform are shown. The formation of hollow cross section heavy ion beam at the end of the Q/A selector is revealed. A reasonable interpretation has been proposed, a modified design of the Q/A selection system has been committed for HIRFL-SSC linac injector. The features of the new design including beam simulations and experiment results are also presented.

  10. High-spin spectroscopy of {sup 168}Yb and the reduction of pairing correlations

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, J R.B. [Sao Paulo Univ., SP (Brazil); Stephens, F S; Deleplanque, M A; Diamond, R M [Lawrence Berkeley Lab., CA (United States); Draper, J E; Rubel, E; Duyar, C [California Univ., Davis, CA (United States); Beacker, J A; Henry, E A; Roy, N [Lawrence Livermore National Lab., CA (United States); Beausang, C W [Liverpool Univ. (United Kingdom); Frauendorf, S [Institut fur Kern und Hadronen Physik, F2-Rossendorf, Dresden (Germany)

    1992-08-01

    The high spin states of {sup 168}Yb were investigated by means of in-beam gamma spectroscopy with the High Energy Resolution Array at the 88 in. cyclotron of the Lawrence Berkeley Laboratory. The {sup 168}Yb nucleus was produced in the reaction {sup 48}Ca({sup 124}Sn,4n) at 210 MeV. Five bands previously reported were confirmed; additionally, four other bands, two extending to spins as high as 36 {Dirac_h} were observed. Cranked shell models suggest that one of the new bands can be interpreted as the continuation of the ground state band (above the AB crossing frequency) crossing into the four-quasiparticle band ABCD at about 0.38 MeV. Both relative alignment and Routhians are in good agreement with the experimental values. However, these calculations were done at constant pairing strength, which is not expected to be good at high rotational frequencies where one or more crossings have occurred in each band. Particle-hole calculations (with no pairing) were done for {sup 168}Yb as well as for other N {approx_equal} 98 nuclei for which good experimental data are available. In most cases, it is possible to associate a particle-hole configuration for each band observed at very high rotational frequencies, and the overall description is good. At frequencies below the first crossing, a full pairing calculation is necessary to describe the bands properly. At intermediate frequencies, the pairing strength is believed to be intermediate. 3 figs.

  11. Langmuir instability in partially spin polarized bounded degenerate plasma

    Science.gov (United States)

    Iqbal, Z.; Jamil, M.; Murtaza, G.

    2018-04-01

    Some new features of waves inside the cylindrical waveguide on employing the separated spin evolution quantum hydrodynamic model are evoked. Primarily, the instability of Langmuir wave due to the electron beam in a partially spin polarized degenerate plasma considering a nano-cylindrical geometry is discussed. Besides, the evolution of a new spin-dependent wave (spin electron acoustic wave) due to electron spin polarization effects in the real wave spectrum is elaborated. Analyzing the growth rate, it is found that in the absence of Bohm potential, the electron spin effects or exchange interaction reduce the growth rate as well as k-domain but the inclusion of Bohm potential increases both the growth rate and k-domain. Further, we investigate the geometry effects expressed by R and pon and find that they have opposite effects on the growth rate and k-domain of the instability. Additionally, how the other parameters like electron beam density or streaming speed of beam electrons influence the growth rate is also investigated. This study may find its applications for the signal analysis in solid state devices at nanoscales.

  12. Radiative corrections to the beam spin asymmetry in photon electroproduction e polarized p {yields} ep{gamma}

    Energy Technology Data Exchange (ETDEWEB)

    Fonvieille, H.; Bensafa, I. [LPC-Clermont-Fd, Universite Blaise Pascal, F-63170 Aubiere Cedex (France)

    2006-11-15

    We have measured at MAMI the beam single spin asymmetry (SSA) in exclusive photon electroproduction (e polarized p {yields} ep{gamma}) with a longitudinally polarized beam, in the region of the {delta}(1232) resonance. In this document the value of the radiative correction to this asymmetry is obtained for our kinematics. Although the correction is expected to be very small and negligible, its value is needed as a confirmation and for the purpose of systematic error estimate. The parameter of kinematics are given as follows: four-momentum transfer of the virtual photon, Q{sup 2} = 0.35 GeV{sup 2}; total energy in the ({gamma}p) center of mass, W=1.190 GeV; polarization of the virtual photon, {epsilon}=0.48; azimuthal angle (lepton-hadron planes), {phi} = 220 angle; polar angle of Compton scattering in center of mass, {theta}{sub {gamma}}{sub {gamma}} in [0 angle, 40 angle]; incoming electron beam energy, E{sub e} = 0.88 GeV; scattered electron energy, E{sub 0}' = 0.40 GeV; polar angle of scattered electron {theta}{sub e} = 59.9 angle. The radiative correction is calculated by the radcorr code written by M. Vanderhaeghen, in a version adapted to beam spin asymmetries.In practice, the conclusions are twofold: - the asymmetry that was measured in the VCS channel does not need to be corrected for radiative effects, given the large statistical error bar attached to the experimental values (an asymmetry of 1-10 % with a statistical error bar of 3-4 %); - a systematic error {delta}SSA{sub syst} on the asymmetry will be considered, related to uncertainties in the calculation of the radiative correction (at least two of them have been mentioned here: the cross section model and the soft photon limit). To estimate this error a 100 % variation of the radiative correction was assumed. For the radiative correction itself the maximal value found was taken. Therefore one can take: {delta}SSA{sub syst} = {+-}2.7 x 10{sup -3}.

  13. Radiative corrections to the beam spin asymmetry in photon electroproduction e polarized p → epγ

    International Nuclear Information System (INIS)

    Fonvieille, H.; Bensafa, I.

    2006-11-01

    We have measured at MAMI the beam single spin asymmetry (SSA) in exclusive photon electroproduction (e polarized p → epγ) with a longitudinally polarized beam, in the region of the Δ(1232) resonance. In this document the value of the radiative correction to this asymmetry is obtained for our kinematics. Although the correction is expected to be very small and negligible, its value is needed as a confirmation and for the purpose of systematic error estimate. The parameter of kinematics are given as follows: four-momentum transfer of the virtual photon, Q 2 = 0.35 GeV 2 ; total energy in the (γp) center of mass, W=1.190 GeV; polarization of the virtual photon, ε=0.48; azimuthal angle (lepton-hadron planes), φ = 220 angle; polar angle of Compton scattering in center of mass, θ γγ in [0 angle, 40 angle]; incoming electron beam energy, E e = 0.88 GeV; scattered electron energy, E 0 ' = 0.40 GeV; polar angle of scattered electron θ e = 59.9 angle. The radiative correction is calculated by the radcorr code written by M. Vanderhaeghen, in a version adapted to beam spin asymmetries.In practice, the conclusions are twofold: - the asymmetry that was measured in the VCS channel does not need to be corrected for radiative effects, given the large statistical error bar attached to the experimental values (an asymmetry of 1-10 % with a statistical error bar of 3-4 %); - a systematic error ΔSSA syst on the asymmetry will be considered, related to uncertainties in the calculation of the radiative correction (at least two of them have been mentioned here: the cross section model and the soft photon limit). To estimate this error a 100 % variation of the radiative correction was assumed. For the radiative correction itself the maximal value found was taken. Therefore one can take: ΔSSA syst = ±2.7 x 10 -3

  14. ICAN: High power neutral beam generation

    International Nuclear Information System (INIS)

    Moustaizis, S.D.; Lalousis, P.; Perrakis, K.; Auvray, P.; Larour, J.; Ducret, J.E.; Balcou, P.

    2015-01-01

    During the last few years there is an increasing interest on the development of alternative high power new negative ion source for Tokamak applications. The proposed new neutral beam device presents a number of advantages with respect to: the density current, the acceleration voltage, the relative compact dimension of the negative ion source, and the coupling of a high power laser beam for photo-neutralization of the negative ion beam. Here we numerically investigate, using a multi- fluid 1-D code, the acceleration and the extraction of high power ion beam from a Magnetically Insulated Diode (MID). The diode configuration will be coupled to a high power device capable of extracting a current up to a few kA with an accelerating voltage up to MeV. An efficiency of up to 92% of the coupling of the laser beam, is required in order to obtain a high power, up to GW, neutral beam. The new high energy, high average power, high efficiency (up to 30%) ICAN fiber laser is proposed for both the plasma generation and the photo-neutralizer configuration. (authors)

  15. Unexpected enhancements and reductions of rf spin resonance strengths

    Directory of Open Access Journals (Sweden)

    M. A. Leonova

    2006-05-01

    Full Text Available We recently analyzed all available data on spin-flipping stored beams of polarized protons, electrons, and deuterons. Fitting the modified Froissart-Stora equation to the measured polarization data after crossing an rf-induced spin resonance, we found 10–20-fold deviations from the depolarizing resonance strength equations used for many years. The polarization was typically manipulated by linearly sweeping the frequency of an rf dipole or rf solenoid through an rf-induced spin resonance; spin-flip efficiencies of up to 99.9% were obtained. The Lorentz invariance of an rf dipole’s transverse ∫Bdl and the weak energy dependence of its spin resonance strength E together imply that even a small rf dipole should allow efficient spin flipping in 100 GeV or even TeV storage rings; thus, it is important to understand these large deviations. Therefore, we recently studied the resonance strength deviations experimentally by varying the size and vertical betatron tune of a 2.1  GeV/c polarized proton beam stored in COSY. We found no dependence of E on beam size, but we did find almost 100-fold enhancements when the rf spin resonance was near an intrinsic spin resonance.

  16. Electrical spin injection into high mobility 2D systems.

    Science.gov (United States)

    Oltscher, M; Ciorga, M; Utz, M; Schuh, D; Bougeard, D; Weiss, D

    2014-12-05

    We report on spin injection into a high mobility 2D electron system confined at an (Al,Ga)As/GaAs interface, using (Ga,Mn)As Esaki diode contacts as spin aligners. We measured a clear nonlocal spin valve signal, which varies nonmonotonically with the applied bias voltage. The magnitude of the signal cannot be described by the standard spin drift-diffusion model, because at maximum this would require the spin polarization of the injected current to be much larger than 100%, which is unphysical. A strong correlation of the spin signal with contact width and electron mean free path suggests that ballistic transport in the 2D region below ferromagnetic contacts should be taken into account to fully describe the results.

  17. Target and beam-target spin asymmetries in exclusive pion electroproduction for Q2>1 GeV2 . I. e p →e π+n

    Science.gov (United States)

    Bosted, P. E.; Amaryan, M. J.; Anefalos Pereira, S.; Avakian, H.; Badui, R. A.; Ball, J.; Baltzell, N. A.; Battaglieri, M.; Batourine, V.; Bedlinskiy, I.; Biselli, A. S.; Briscoe, W. J.; Bültmann, S.; Burkert, V. D.; Carman, D. S.; Celentano, A.; Chandavar, S.; Charles, G.; Ciullo, G.; Clark, L.; Colaneri, L.; Cole, P. L.; Contalbrigo, M.; Crede, V.; D'Angelo, A.; De Vita, R.; Deur, A.; De Sanctis, E.; Djalali, C.; Dupre, R.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Elouadrhiri, L.; Eugenio, P.; Fanchini, E.; Fedotov, G.; Filippi, A.; Fleming, J. A.; Forest, T.; Fradi, A.; Gevorgyan, N.; Ghandilyan, Y.; Gilfoyle, G. P.; Girod, F. X.; Gleason, C.; Gohn, W.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Hakobyan, H.; Hattawy, M.; Hicks, K.; Holtrop, M.; Hughes, S. M.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jiang, H.; Jo, H. S.; Joo, K.; Joosten, S.; Khachatryan, G.; Khandaker, M.; Kim, A.; Kim, W.; Klein, F. J.; Koirala, S.; Kubarovsky, V.; Kuhn, S. E.; Lanza, L.; Net, L. A.; Lenisa, P.; Livingston, K.; MacGregor, I. J. D.; McCracken, M. E.; McKinnon, B.; Meyer, C. A.; Mirazita, M.; Mokeev, V. I.; Montgomery, R. A.; Munevar, E.; Munoz Camacho, C.; Murdoch, G.; Nadel-Turonski, P.; Niccolai, S.; Osipenko, M.; Ostrovidov, A. I.; Park, K.; Pasyuk, E.; Peng, P.; Phelps, W.; Pisano, S.; Pogorelko, O.; Price, J. W.; Prok, Y.; Protopopescu, D.; Puckett, A. J. R.; Raue, B. A.; Ripani, M.; Rosner, G.; Rossi, P.; Schumacher, R. A.; Seder, E.; Skorodumina, Iu.; Smith, G. D.; Sokhan, D.; Sparveris, N.; Stankovic, I.; Stepanyan, S.; Strakovsky, I. I.; Strauch, S.; Taiuti, M.; Tian, Ye; Torayev, B.; Ungaro, M.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Wei, X.; Weinstein, L. B.; Zachariou, N.; Zhang, J.; Zhao, Z. W.; Zonta, I.; CLAS Collaboration

    2017-03-01

    Beam-target double-spin asymmetries and target single-spin asymmetries were measured for the exclusive π+ electroproduction reaction γ*p →n π+ . The results were obtained from scattering of 6-GeV longitudinally polarized electrons off longitudinally polarized protons using the CEBAF Large Acceptance Spectrometer at Jefferson Laboratory. The kinematic range covered is 1.1 spin asymmetries are observed over the entire W region. Reasonable agreement is found with phenomenological fits to previous data for W <1.6 GeV, but very large differences are seen at higher values of W . A generalized parton distributions (GPD)-based model is in poor agreement with the data. When combined with cross-sectional measurements, the present results provide powerful constraints on nucleon resonance amplitudes at moderate and large values of Q2, for resonances with masses as high as 2.4 GeV.

  18. High spin effects in superdense matter

    International Nuclear Information System (INIS)

    Bowers, R.L.; Gleeson, A.M.; Pedigo, R.D.

    1978-04-01

    A model of relativistic interacting superdense matter with vector, scalar and symmetric second rank tensor exchange is developed. The Green's functions of the model are solved in the self consistent Hartree approximation. The contributions of the symmetric second rank tensor are emphasized. It is found that these high spin contributions effect the superdense matter at densities just beyond those predicted to occur in neutron star matter or nuclear collisions. The spin-two effects do produce an unusual asymptotic dependence, p = - 1 / 3 epsilon. This effect is examined in a simple model of the early universe

  19. Elucidation of structural isomers from the homogeneous rhodium-catalyzed isomerization of vegetable oils.

    Science.gov (United States)

    Andjelkovic, Dejan D; Min, Byungrok; Ahn, Dong; Larock, Richard C

    2006-12-13

    The structural isomers formed by the homogeneous rhodium-catalyzed isomerization of several vegetable oils have been elucidated. A detailed study of the isomerization of the model compound methyl linoleate has been performed to correlate the distribution of conjugated isomers, the reaction kinetics, and the mechanism of the reaction. It has been shown that [RhCl(C8H8)2]2 is a highly efficient and selective isomerization catalyst for the production of highly conjugated vegetable oils with a high conjugated linoleic acid (CLA) content, which is highly desirable in the food industry. The combined fraction of the two major CLA isomers [(9Z,11E)-CLA and (10E,12Z)-CLA] in the overall CLA mixture is in the range from 76.2% to 93.4%. The high efficiency and selectivity of this isomerization method along with the straightforward purification process render this approach highly promising for the preparation of conjugated oils and CLA. Proposed improvements in catalyst recovery and reusability will only make this method more appealing to the food, paint, coating, and polymer industries in the future.

  20. Study on the high-spin states and signature inversion of odd-odd nucleus 170Ta

    International Nuclear Information System (INIS)

    Deng Fuguo; Zhou Hongyu; Sun Huibin; Lu Jingbin; Zhao Guangyi; Yin Lichang; Liu Yunzuo

    2002-01-01

    The high-spin states of odd-odd nucleus 170 Ta were populated via the 155 Gd( 19 F, 4n) 170 Ta reaction with beam energy of 97 MeV provided by the HI-13 tandem accelerator of China Institute of Atomic Energy. Three rotational bands have been pushed to higher spin states and the signature inversion point of the semidecoupled band based on the πh 9/2 1/2 - [541] direct x νi 13/2 configuration has been observed to be 19.5 ℎ. The systematic features of the signature inversion in semidecoupled bands in odd-odd rare earth nuclei were summarized. The systematic differences of signature inversion, especially the difference in the energy splitting between the yrast hands and the semidecoupled hands in odd-odd rare earth nuclei are pointed out and discussed for the first time. It seems that p-n interaction between the odd proton and odd neutron in the odd-odd nuclei plays an important role

  1. Structure of two-, four-, and six-quasiparticle isomers in 174Yb and K-forbidden decays

    Science.gov (United States)

    Dracoulis, G. D.; Lane, G. J.; Kondev, F. G.; Byrne, A. P.; Kibédi, T.; Watanabe, H.; Ahmad, I.; Carpenter, M. P.; Freeman, S. J.; Janssens, R. V.; Hammond, N. J.; Lauritsen, T.; Lister, C. J.; Mukherjee, G.; Seweryniak, D.; Chowdhury, P.; Tandel, S. K.

    2005-04-01

    The stable nucleus 174Yb has been studied using deep-inelastic reactions and time-correlated γ-ray spectroscopy. New intrinsic states assigned include a 370-ns isomer at 1765 keV, which we associate with a predicted Kπ=7- two-quasineutron configuration. Analysis of the alignment and in-band properties of its rotational band, identified using time-correlated coincidences, allows characterization of the configuration. The properties of a newly identified rotational band built on the known 830-μs isomer at 1518 keV support the 6+, 2-quasineutron configuration assignment proposed previously. The 6+ band is fed by a four-quasiparticle, Kπ=14+ isomer at 3699 keV and several higher multiquasiparticle states, including a six-quasiparticle isomer at 6147 keV with K=(22,23). The results are discussed in terms of the states predicted on the basis of multiquasiparticle calculations. The anomalously fast K-forbidden transition strengths from the 14+ isomer are attributed to either K mixing in the neutron configuration or to random mixing in the high-level-density region. The 7- isomer decays are not abnormal, whereas the very hindered E2 transition from the 6+ isomer to the ground-state band remains unexplained.

  2. High-frequency EPR on high-spin transition-metal sites

    NARCIS (Netherlands)

    Mathies, Guinevere

    2012-01-01

    The electronic structure of transition-metal sites can be probed by electron-paramagnetic-resonance (EPR) spectroscopy. The study of high-spin transition-metal sites benefits from EPR spectroscopy at frequencies higher than the standard 9.5 GHz. However, high-frequency EPR is a developing field. In

  3. Optimization of the recoil-shadow projection method for the investigation of short-lived fission isomers

    Energy Technology Data Exchange (ETDEWEB)

    Helmecke, M.; Thirolf, P.G.; Habs, D.; Gartzke, E.; Kolhinen, V.; Lang, C.; Szerypo, J.; Trepl, L. [Fakultaet f. Physik, LMU Muenchen (Germany); Maier-Leibnitz Laboratory, Garching (Germany)

    2009-07-01

    Spectroscopic studies of super- and hyperdeformed actinide nuclei offer the possibility to gain insight into the multiple-humped fission barrier landscape. With the identification of deep third minima in {sup 234}U and {sup 236}U the systematics of fission isomers in light actinides was revisited, especially searching for isomers in light uranium isotopes with half-lives in the pico-second range. Using the recoil-shadow projection method and solid state nuclear track detectors, an experimental search for their observation has been started. This well-established detection technique nowadays benefits from an efficient analysis technology based on a PC-controlled auto-focus microscope and a CCD camera together with pattern recognition software. The flatness and the definition of the shadow edge of the target is the critical point of this method: Due to the energy loss of the beam the target carrier foil (1{mu}m Ni) may develop thermal distortions in the {mu}m range, leading to misinterpretations of isomeric fission fragments. Therefore the flatness of the target foil is continuously monitored via a capacitance measurement. First results applying this method to the search of a fission isomer in {sup 234}U via the {sup 232}Th({alpha},2n) reaction are presented.

  4. Theory of high-resolution tunneling spin transport on a magnetic skyrmion

    OpenAIRE

    Palotás, Krisztián; Rózsa, Levente; Szunyogh, László

    2018-01-01

    Tunneling spin transport characteristics of a magnetic skyrmion are described theoretically in magnetic scanning tunneling microscopy (STM). The spin-polarized charge current in STM (SP-STM) and tunneling spin transport vector quantities, the longitudinal spin current and the spin transfer torque are calculated in high spatial resolution within the same theoretical framework. A connection between the conventional charge current SP-STM image contrasts and the magnitudes of the spin transport v...

  5. Isomers chart; Table des isomeres

    Energy Technology Data Exchange (ETDEWEB)

    Dupont-Gautier, P; Chantelot, S; Moisson, N [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1967-07-01

    The nuclear isomers are nuclides offering the same mass number and the same atomic number, but different energy levels. In the following chart the zero energy ground states are omitted and the metastable isomers, i.e. of non-zero energy, known and of measurable lifetime, are listed. The lower limit of this lifetime was set here to 0.1 x 10{sup -6} s. The various isomers were classified in increasing lifetimes. (authors) [French] Les isomeres nucleaires sont des nucleides presentant le meme nombre de masse et le meme numero atomique, mais des niveaux energetiques differents. Dans la table suivante, on a neglige les etats fondamentaux d'energie nulle et on a recense les isomeres metastables, c'est-a-dire d'energie non nulle, connus et de periode mesurable. La limite inferieure de cette periode a ete fixee ici a 0,1 x 10{sup -6} s. Les differents isomeres ont ete classes par periodes croissantes. (auteurs)

  6. Isomers chart; Table des isomeres

    Energy Technology Data Exchange (ETDEWEB)

    Dupont-Gautier, P.; Chantelot, S.; Moisson, N. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1967-07-01

    The nuclear isomers are nuclides offering the same mass number and the same atomic number, but different energy levels. In the following chart the zero energy ground states are omitted and the metastable isomers, i.e. of non-zero energy, known and of measurable lifetime, are listed. The lower limit of this lifetime was set here to 0.1 x 10{sup -6} s. The various isomers were classified in increasing lifetimes. (authors) [French] Les isomeres nucleaires sont des nucleides presentant le meme nombre de masse et le meme numero atomique, mais des niveaux energetiques differents. Dans la table suivante, on a neglige les etats fondamentaux d'energie nulle et on a recense les isomeres metastables, c'est-a-dire d'energie non nulle, connus et de periode mesurable. La limite inferieure de cette periode a ete fixee ici a 0,1 x 10{sup -6} s. Les differents isomeres ont ete classes par periodes croissantes. (auteurs)

  7. Hydrocarbons and fuels analyses with the supersonic gas chromatography mass spectrometry--the novel concept of isomer abundance analysis.

    Science.gov (United States)

    Fialkov, Alexander B; Gordin, Alexander; Amirav, Aviv

    2008-06-27

    Hydrocarbon analysis with standard GC-MS is confronted by the limited range of volatile compounds amenable for analysis and by the similarity of electron ionization mass spectra for many compounds which show weak or no molecular ions for heavy hydrocarbons. The use of GC-MS with supersonic molecular beams (Supersonic GC-MS) significantly extends the range of heavy hydrocarbons that can be analyzed, and provides trustworthy enhanced molecular ion to all hydrocarbons. In addition, unique isomer mass spectral features are obtained in the ionization of vibrationally cold hydrocarbons. The availability of molecular ions for all hydrocarbons results in the ability to obtain unique chromatographic isomer distribution patterns that can serve as a new method for fuel characterization and identification. Examples of the applicability and use of this novel isomer abundance analysis (IAA) method to diesel fuel, kerosene and oil analyses are shown. It is suggested that in similarity to the "three ions method" for identification purposes, three isomer abundance patterns can serve for fuel characterization. The applications of the Supersonic GC-MS for engine motor oil analysis and transformer oil analysis are also demonstrated and discussed, including the capability to achieve fast 1-2s sampling without separation for oil and fuel fingerprinting. The relatively fast analysis of biodiesel is described, demonstrating the provision of molecular ions to heavy triglycerides. Isomer abundance analysis with the Supersonic GC-MS could find broad range of applications including petrochemicals and fuel analysis, arson analysis, environmental oil/fuel spill analysis, fuel adulteration analysis and motor oil analysis.

  8. Spin-polarons and high-Tc superconductivity

    International Nuclear Information System (INIS)

    Wood, R.F.

    1994-03-01

    The spin-polaron concept is introduced in analogy to ionic and electronic polarons and the assumptions underlying the author's approach to spin-polaron mediated high-T c superconductivity are discussed. Elementary considerations about the spin-polaron formation energy are reviewed and the possible origin of the pairing mechanism illustrated schematically. The electronic structure of the CuO 2 planes is treated from the standpoint of antiferromagnetic band calculations that lead directly to the picture of holes predominantly on the oxygen sublattice in a Mott-Hubbard/charge transfer insulator. Assuming the holes to be described in a Bloch representation but with the effective mass renormalized by spin-polaron formation, equations for the superconducting gap, Δ, and transition temperature, T c , are developed and the symmetry of Δ discussed. After further simplifications, T c is calculated as a function of the carrier concentration, x. It is shown that the calculated behavior of T c (x) follows the experimental results closely and leads to a natural explanation of the effects of under- and over-doping. The paper concludes with a few remarks about the evidence for the carriers being fermions (polarons) or bosons (bipolarons)

  9. Thermochemical study of four isomers of dichloroanisole

    International Nuclear Information System (INIS)

    Ribeiro da Silva, Manuel A.V.; Lobo Ferreira, Ana I.M.C.

    2008-01-01

    The present work reports the values of the gaseous standard (p 0 = 0.1 MPa) molar enthalpies of formation of four isomers of dichloroanisole: 2,3-, 2,4-, 2,6-, and 3,5-dichloroanisole, at T = 298.15 K. For all compounds, those values were derived from measurements of the standard molar energies of combustion in the condensed phase, using a rotating bomb combustion calorimeter, together with measurements of the standard molar enthalpies of sublimation or vaporization, measured by high temperature Calvet microcalorimetry. Moreover, the enthalpies and the temperatures of fusion for the crystalline isomers of dichloroanisoles were measured by differential scanning calorimetry. The derived standard molar enthalpies of formation in the gaseous phase, at T = 298.15 K, for the title compounds were compared with the same parameters estimated by the Cox scheme and interpreted in terms of molecular structure

  10. Highlights from PHENIX transverse spin program at RHIC

    International Nuclear Information System (INIS)

    Liu, M.

    2013-01-01

    In recent years, there has been exciting development in both experimental and theoretical studies of transverse spin phenomena in high energy polarized p+p and polarized DIS collisions. In the p+p frontier, the polarized p+p collider at RHIC provides a unique opportunity to investigate the novel physics that causes the large spin effects seen in the transversely polarized p+p collisions over the past 30 years, particularly in the forward rapidity. Since the beginning, PHENIX has been conducting a very active transverse spin physics program to study Sivers, Collins and other novel spin effects at RHIC, including measurements of transverse single spin asymmetry (TSSA) in light and heavy quark productions, leading neutron TSSA in the very forward rapidity, and di-hadron (and 'jet') spin correlations in a wide kinematics range, just to name a few. In 2012, PHENIX collected transversely polarized 200 GeV p+p data with a record high luminosity of 9.24 pb −1 , with an average beam polarization of 58%. In this talk, I highlight the recent results from the PHENIX experiment, and also briefly discuss the near-term prospects of new transverse spin measurements only possible with the latest (forward) silicon vertex detectors, (F)VTX, and the upcoming forward MPC-EX upgrade detectors.

  11. SEPARATION OF ISOMERS OF NONYLPHENOL AND SELECT NONPHENYL POLYETHOXYLATES BY HIGH-PERFORMANCE LIQUID CHROMATOGRAPHY ON A GRAPHITIC CARBON COLUMN

    Science.gov (United States)

    p-Nonylphenol (NP) is ubiquitous degradation product of nonylphenol polyethoxylate (NPE) surfactants and has been reported to be an endocrine disrupter. It is composed of numerous structural isomers resulting from ;the various branching patterns of the C-9 group. Twenty-two isome...

  12. High-spin level scheme of odd-odd 142Pm

    International Nuclear Information System (INIS)

    Liu Minliang; Zhang Yuhu; Zhou Xiaohong; He Jianjun; Guo Yingxiang; Lei Xiangguo; Huang Wenxue; Liu Zhong; Luo Yixiao; Feng Xichen; Zhang Shuangquan; Xu Xiao; Zheng Yong; Luo Wanju

    2002-01-01

    The level structure of doubly odd nucleus 142 Pm has been studied via the 128 Te( 19 F, 5nγ) 142 Pm reaction in the energy region from 75 to 95 MeV. In-beam γ rays were measured including the excited function, γ-ray singles and γ-γ coincidences in experiment. The level scheme of 142 Pm has been extended up to excitation energy of 7030.0 keV including 25 new γ rays and 13 new levels. Based on the measured γ-ray anisotropies, the level spins in 142 Pm have been suggested

  13. RHIC spin physics

    International Nuclear Information System (INIS)

    Bunce, G.

    1994-01-01

    The physics potential of colliding beams of protons, polarized either longitudinally or transversely, at RHIC is remarkable. A luminosity of L = 2 x 10 32 cm -2 with 70% polarized beams will be available with up to 250 GeV energy in each beam. The proposal to collide polarized protons in RHIC was submitted in August 1992 and approved in October 1993. We have funding for R ampersand D on Siberian Snakes, so that RHIC will be able to accelerate polarized protons early in its program. The expected date of the first heavy ion collisions is 1999. The spin physics program includes measurement of gluon and sea quark polarization in the longitudinally polarized proton, measurement and then application of parity violation in W and Z production, measurement of hard scattering parton-parton asymmetries, and quark polarization or transversity in transversely polarized protons. Single spin asymmetries allow sensitive searches for parity violation (longitudinal polarization), and correlations between quark spin and gluons (transverse). Probes include direct photons (to P T = 20 GeV/c), jets (to P T > 50 GeV/c), Drell-Yan pairs to M ell ell = 9 GeV, W ± , Z. This program is described in our Particle World paper. Here we will emphasize the new information included in our Update, given to the Brookhaven PAC this September

  14. RHIC spin physics

    International Nuclear Information System (INIS)

    Bunce, G.

    1993-01-01

    The physics potential of colliding beams of protons, polarized either longitudinally or transversely, at RHIC is remarkable. A luminosity of L = 2 x 10 32 cm -2 sec -1 with 70% polarized beams will be available with up to 250 GeV energy in each beam. The proposal to collide polarized protons in RHIC was submitted in August 1992 and approved in October 1993, just after this workshop. The collaboration has been encouraged to complete R ampersand D on Siberian Snakes, so that RHIC will be able to accelerate polarized protons early in its program. The expected date of the first heavy ion collisions is 1999. The spin physics program includes measurement of gluon and sea quark polarization in the longitudinally polarized proton, measurement and then application of parity violation in W and Z production, measurement of hard scattering parton-parton asymmetries, and quark polarization or transversity in transversely polarized protons. Single spin asymmetries allow sensitive searches for parity violation (longitudinal polarization), and correlations between quark spin and gluons (transverse). Probes include direct photons (to p T = 20 GeV/c), jets (to p T > 50 GeV/c), Drell-Yan pairs (to m ll = 9 GeV), W +/- , Z. Here, the collaboration emphasizes the new information included in the Update, given to the Brookhaven PAC this September

  15. Structural-based differences in ecotoxicity of benzoquinoline isomers to the zebra mussel (Dreissena polymorpha)

    Energy Technology Data Exchange (ETDEWEB)

    Kraak, M.H.S.; Wijnands, P.; Govers, H.A.J.; Admiraal, W.; Voogt, P. de [Univ. of Amsterdam (Netherlands)

    1997-10-01

    Effects of four benzoquinoline isomers on the filtration rate of the zebra mussel (Dreissena polymorpha) were analyzed, to study the effect of minor differences in chemical structure on adverse biological effects. Filtration rates were measured after 48 h of exposure to different concentrations of acridine, phenanthridine, benzo[f]quinoline, and benzo[h]quinoline in the water. The 50% effective concentration (EC50) values for filtration rate of the four isomers differed significantly. Effects increased in the order benzo[f], -[h], -[b], and -[c]quinoline, and the difference between the most toxic isomer and the least toxic isomer amounted to a factor of 30. Attempts were made to relate these differences in toxicity to the structure of the isomers. Size- or topology-related molecular descriptors provided insufficient resolution to distinguish between the benzoquinoline isomers, and none of the electronic descriptors separately provided a significant correlation with the observed effects. In an alternative approach, molecular shape, accessibility, and minimum agent-macromolecule distance were used to represent repulsive and attractive forces between the benzoquinoline isomers and biological membranes. This approach could tentatively explain the observed effects and is supported by a high correlation between the EC50 data and the reversed-phase C18-HPLC behavior of the benzoquinolines (k{sub 0}), which is likely to be governed by similar processes.

  16. Alpha and gamma spectroscopy of fission isomers

    International Nuclear Information System (INIS)

    Makarenko, V.E.

    1988-01-01

    The attempts to discover in the experiment decay of fission isomers of heavy nuclei in the U-Am range by emitting α particles or γ quanta are considered. Some facilities for searching αdecay of spontaneously fissile isomers are given in brief. The first experimental results are discussed

  17. Evidence for an isomer in 76Ni

    International Nuclear Information System (INIS)

    Sawicka, M.; Pfuetzner, M.; Grzywacz, R.; Daugas, J.M.; Belier, G.; Sauvestre, J.E.; Matea, I.; Lewitowicz, M.; Georgiev, G.; Grawe, H.; Mayet, P.; Becker, F.; Bingham, C.; Borcea, R.; Hammache, F.; Ibrahim, F.; Bouchez, E.; Buta, A.; Dragulescu, E.; Giovinazzo, J.; Meot, V.; Negoita, F.; De Oliveira Santos, F.; Perru, O.; Roig, O.; Rykaczewski, K.P.; Saint-Laurent, M.G.; Sorlin, O.; Stanoiu, M.; Stefan, I.; Stodel, C.; Theisen, C.; Verney, D.

    2004-01-01

    In the experiment performed at the LISE2000 spectrometer at GANIL neutron-rich nickel isotopes were studied by microsecond isomer spectroscopy. Evidence for an isomer in 76 Ni is found, consistently with the shell model prediction of an 8 + state of ν(g 9/2 ) 2 structure. (orig.)

  18. Unique electron polarimeter analyzing power comparison and precision spin-based energy measurement

    International Nuclear Information System (INIS)

    Joseph Grames; Charles Sinclair; Joseph Mitchell; Eugene Chudakov; Howard Fenker; Arne Freyberger; Douglas Higinbotham; Poelker, B.; Michael Steigerwald; Michael Tiefenback; Christian Cavata; Stephanie Escoffier; Frederic Marie; Thierry Pussieux; Pascal Vernin; Samuel Danagoulian; Kahanawita Dharmawardane; Renee Fatemi; Kyungseon Joo; Markus Zeier; Viktor Gorbenko; Rakhsha Nasseripour; Brian Raue; Riad Suleiman; Benedikt Zihlmann

    2004-01-01

    Precision measurements of the relative analyzing powers of five electron beam polarimeters, based on Compton, Moller, and Mott scattering, have been performed using the CEBAF accelerator at the Thomas Jefferson National Accelerator Facility (Jefferson Laboratory). A Wien filter in the 100 keV beamline of the injector was used to vary the electron spin orientation exiting the injector. High statistical precision measurements of the scattering asymmetry as a function of the spin orientation were made with each polarimeter. Since each polarimeter receives beam with the same magnitude of polarization, these asymmetry measurements permit a high statistical precision comparison of the relative analyzing powers of the five polarimeters. This is the first time a precise comparison of the analyzing powers of Compton, Moller, and Mott scattering polarimeters has been made. Statistically significant disagreements among the values of the beam polarization calculated from the asymmetry measurements made with each polarimeter reveal either errors in the values of the analyzing power, or failure to correctly include all systematic effects. The measurements reported here represent a first step toward understanding the systematic effects of these electron polarimeters. Such studies are necessary to realize high absolute accuracy (ca. 1%) electron polarization measurements, as required for some parity violation measurements planned at Jefferson Laboratory. Finally, a comparison of the value of the spin orientation exiting the injector that provides maximum longitudinal polarization in each experimental hall leads to an independent and very precise (better than 10-4) absolute measurement of the final electron beam energy

  19. Process for separating the ortho- and para- isomers of hydroxymandelic acid or a salt thereof, the isomers thus obtained, the use of the ortho-isomer for the preparation of eddha

    NARCIS (Netherlands)

    Hoefnagel, A.J.; Van Bekkum, H.

    1994-01-01

    Abstract of WO 9414746 (A1) The invention relates to a method for separating the ortho- and para-isomers of hydroxymandelic acid or a salt thereof. For that purpose the starting material is a solid mixture of these ortho- and para-isomers in the alkali metal salt form. This mixture is extracted with

  20. Statistical methods of spin assignment in compound nuclear reactions

    International Nuclear Information System (INIS)

    Mach, H.; Johns, M.W.

    1984-01-01

    Spin assignment to nuclear levels can be obtained from standard in-beam gamma-ray spectroscopy techniques and in the case of compound nuclear reactions can be complemented by statistical methods. These are based on a correlation pattern between level spin and gamma-ray intensities feeding low-lying levels. Three types of intensity and level spin correlations are found suitable for spin assignment: shapes of the excitation functions, ratio of intensity at two beam energies or populated in two different reactions, and feeding distributions. Various empirical attempts are examined and the range of applicability of these methods as well as the limitations associated with them are given. 12 references

  1. Statistical methods of spin assignment in compound nuclear reactions

    International Nuclear Information System (INIS)

    Mach, H.; Johns, M.W.

    1985-01-01

    Spin assignment to nuclear levels can be obtained from standard in-beam gamma-ray spectroscopy techniques and in the case of compound nuclear reactions can be complemented by statistical methods. These are based on a correlation pattern between level spin and gamma-ray intensities feeding low-lying levels. Three types of intensity and level spin correlations are found suitable for spin assignment: shapes of the excitation functions, ratio of intensity at two beam energies or populated in two different reactions, and feeding distributions. Various empirical attempts are examined and the range of applicability of these methods as well as the limitations associated with them are given

  2. Spin Tracking of Polarized Protons in the Main Injector at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, M. [Fermilab; Lorenzon, W. [Michigan U.; Aldred, C. [Michigan U.

    2016-07-01

    The Main Injector (MI) at Fermilab currently produces high-intensity beams of protons at energies of 120 GeV for a variety of physics experiments. Acceleration of polarized protons in the MI would provide opportunities for a rich spin physics program at Fermilab. To achieve polarized proton beams in the Fermilab accelerator complex, shown in Fig.1.1, detailed spin tracking simulations with realistic parameters based on the existing facility are required. This report presents studies at the MI using a single 4-twist Si-berian snake to determine the depolarizing spin resonances for the relevant synchrotrons. Results will be presented first for a perfect MI lattice, followed by a lattice that includes the real MI imperfections, such as the measured magnet field errors and quadrupole misalignments. The tolerances of each of these factors in maintaining polariza-tion in the Main Injector will be discussed.

  3. Fixed-bed adsorption separation of xylene isomers over sio2/silicallite-1 core-shell adsorbents

    KAUST Repository

    Khan, Easir A.

    2013-12-29

    SiO2/Silicalite-1 core-shell material has been demonstrated as potential shape selective adsorbent in gas phase separation of p-xylene from a mixture of p/o-xylene isomers. The core-shell composite comprised of large silica core and thin polycrystalline silicalite-1 shell which was synthesized via a self-assembly of silicalite-1 nanocrystals on core silica surface followed by a secondary seeded growth method. The core materials, SiO2 used in this study has mesoporosity with an average pore diameter of 60Å and hence offers no shape selectivity for xylene isomers. However, the shell, silicalite-1 contains rigid pore structures and preferentially adsorbs p-xylene from their isomers mixtures. A series of adsorption fixed bed breakthrough adsorption/desorption experiment was performed to obtain the equilibrium isotherms and adsorption isotherm parameters of xylene isomers. The equilibrium isotherms of xylene isomers follow the Langmuir\\'s model. A chromatographic adsorption model has been used to describe the fixed-bed breakthrough profiles of xylene isomers. The model has successfully predicted the responses of the binary mixtures of p/o-xylene isomers. The SiO2/silicalite-1 core-shell adsorbents have shown para-selectivity as high as 15. © Bangladesh Uni. of Engg. & Tech.

  4. How to polarise all neutrons in one beam: a high performance polariser and neutron transport system

    Science.gov (United States)

    Rodriguez, D. Martin; Bentley, P. M.; Pappas, C.

    2016-09-01

    Polarised neutron beams are used in disciplines as diverse as magnetism,soft matter or biology. However, most of these applications often suffer from low flux also because the existing neutron polarising methods imply the filtering of one of the spin states, with a transmission of 50% at maximum. With the purpose of using all neutrons that are usually discarded, we propose a system that splits them according to their polarisation, flips them to match the spin direction, and then focuses them at the sample. Monte Carlo (MC) simulations show that this is achievable over a wide wavelength range and with an outstanding performance at the price of a more divergent neutron beam at the sample position.

  5. Physics with polarized electron beams

    International Nuclear Information System (INIS)

    Swartz, M.L.

    1988-01-01

    As a distinct field, elementary particle physics is now approximately forty years old. In all that time, only a few of the thousands of experiments that have been performed have made use of spin polarized particle beams (with apologies to those who have studied neutrino interactions, polarized beam are defined to refer to the case in which the experimenter has control over the polarization direction). If the discussion is restricted to spin polarized electron beams, the number of experiments becomes countable with the fingers of one hand (with several to spare). There are two reasons for this lack of interest. The first is that spin polarized beams are difficult to produce, accelerate, and transport. The second reason is that any physical process that can occur during the collision of a polarized particle with another (polarized or not) can also occur during the collision of unpolarized particles. One might ask then, why has any effort been expended on the subject. The answer, at least in the case of polarized electron beams, is that electron accelerators and storage rings have in recent years achieved sufficient energy to begin to probe the weak interaction directly. The weak interaction distinguishes between left- and right-handed fermionic currents. Left-handed particles interact in a fundamentally different way than their right-handed counterparts. If the experimenter wishes to explore or exploit this difference, he (or she) must either prepare the spin state of the incident particles or analyze the spin state of outgoing particles. For reasons of genearlity and improved statistical precision, the former is usually preferable to the latter. The first of these lectures will review some of the techniques necessary for the production, transport, and monitoring of polarized electron (or positron) beams. The second lecture will survey some of the physics possibilities of polarized electron-positron collisions

  6. Lifetimes of high-spin states in {sup 162}Yb

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, M.P.; Janssens, R.V.F.; Henry, R.G. [and others

    1995-08-01

    A measurement on lifetimes of high-spin states in the yrast and near-yrast rotational bands in {sup 162}Yb was carried out at ATLAS in order to determine the evolution of collectivity as a function of angular momentum using the {sup 126}Te({sup 40}Ar,4n){sup 162}Yb reaction at 170 MeV. Previous lifetime measurements in the {sup 164,166,168}Yb isotopes showed a dramatic decrease in the transition quadrupole moment Q{sub t} with increasing spin. It was suggested that this decrease in Q{sub t} is brought about by the rotationally-induced deoccupation of high-j configurations, mainly i{sub 13/2} neutrons. If this interpretation is correct, the heavier isotopes should have a larger decrease in Q{sub t} than the lighter mass nuclides due to the position of the Fermi surface in the i{sub 13/2} subshell. Indeed, {sup 160}Yb does not show a clear decrease in Q{sub t} at high spin. No high spin lifetime information exists for {sup 162}Yb, thus this experiment fills the gap of measured Q{sub t}`s in the light Yb series. The data is currently being analyzed.

  7. The OSIRIS diffractometer and polarisation analysis spectrometer at ISIS. New developments and 3He spin-filter polarisation analysis

    International Nuclear Information System (INIS)

    Andersen, Ken H.; Marero, David Martin y; Barlow, Michael J.

    2001-01-01

    OSIRIS combines a long-wavelength powder diffractometer with a polarisation analysis backscattering spectrometer. The diffractometer can access wavelengths up to 70 A with a resolution of better than 1% Δd/d. The very high counting-rate at shorter wavelengths is ideal for in-situ, real-time and parametric experiments. The spectroscopy section incorporates an array of graphite crystals arranged in near-backscattering to give a high counting rate with 25 μeV energy resolution. The incident beam is polarised using a supermirror bender and the scattered beam is polarisation-analysed by a 3 He spin-filter in the process of being constructed. The spin-filter system consists of a fibre laser, a peristaltic pump and a wide-angle banana-shaped quartz cell in a continuous-flow setup. The scattered beam passes twice through the spin-filter cell, thus doubling the optical path length in the cell. The aim is to achieve 70% nuclear polarisation with no variation in time. (author)

  8. Spin tracking for a deuteron EDM storage ring

    Science.gov (United States)

    Skawran, A.; Lehrach, A.

    2017-07-01

    The aim of the Jülich Electric Dipole moment Investigations (JEDI) collaboration is the measurement of the Electric Dipole Moment (EDM) of charged particles like protons or deuterons. There are two possible concepts under consideration for the realization of EDM measurement with deuterons; the Frozen Spin (FS) and Quasi-Frozen Spin (QFS) method. Both approaches are discussed and compared in this paper. Detailed spin- and beam dynamics simulations are performed to investigate the effect of various misalignments of ring elements and systematic effects. Furthermore, the utilization of counter rotating beams is studied and checked for its validity.

  9. Spin tracking for a deuteron EDM storage ring

    International Nuclear Information System (INIS)

    Skawran, A; Lehrach, A

    2017-01-01

    The aim of the Jülich Electric Dipole moment Investigations (JEDI) collaboration is the measurement of the Electric Dipole Moment (EDM) of charged particles like protons or deuterons. There are two possible concepts under consideration for the realization of EDM measurement with deuterons; the Frozen Spin (FS) and Quasi-Frozen Spin (QFS) method. Both approaches are discussed and compared in this paper. Detailed spin- and beam dynamics simulations are performed to investigate the effect of various misalignments of ring elements and systematic effects. Furthermore, the utilization of counter rotating beams is studied and checked for its validity. (paper)

  10. High-spin states and coexisting states in the Pt-Au transition region

    International Nuclear Information System (INIS)

    Riedinger, L.L.; Carpenter, M.P.; Courtney, L.H.; Janzen, V.P.; Schmitz, W.

    1986-01-01

    High-spin states in the N = 104 to 108 region have been studied by in-beam spectroscopy techniques in a number of Ir, Pt, and Au nuclei. These measurements have been performed at tandem Van de Graaff facilities at the Oak Ridge National Laboratory and at McMaster University. Through comparison of band crossings in a variety of odd-A and even-A nuclei, we are able to assign the first neutron and first proton alignment processes, which are nearly degenerate for 184 Pt. These measurements yield the trend of these crossing frequencies with N and Z in this region. Knowledge of this trend is important, since these crossing frequencies can give an estimate of how the shape parameters vary across this transitional region. 22 refs., 7 figs., 1 tab

  11. Evolution of nuclear structure in neutron-rich odd-Zn isotopes and isomers

    Directory of Open Access Journals (Sweden)

    C. Wraith

    2017-08-01

    Full Text Available Collinear laser spectroscopy was performed on Zn (Z=30 isotopes at ISOLDE, CERN. The study of hyperfine spectra of nuclei across the Zn isotopic chain, N=33–49, allowed the measurement of nuclear spins for the ground and isomeric states in odd-A neutron-rich nuclei up to N=50. Exactly one long-lived (>10 ms isomeric state has been established in each 69–79Zn isotope. The nuclear magnetic dipole moments and spectroscopic quadrupole moments are well reproduced by large-scale shell–model calculations in the f5pg9 and fpg9d5 model spaces, thus establishing the dominant term in their wave function. The magnetic moment of the intruder Iπ=1/2+ isomer in 79Zn is reproduced only if the νs1/2 orbital is added to the valence space, as realized in the recently developed PFSDG-U interaction. The spin and moments of the low-lying isomeric state in 73Zn suggest a strong onset of deformation at N=43, while the progression towards 79Zn points to the stability of the Z=28 and N=50 shell gaps, supporting the magicity of 78Ni.

  12. Spin modes

    International Nuclear Information System (INIS)

    Gaarde, C.

    1985-01-01

    An analysis of spectra of (p,n) reactions showed that they were very selective in exciting spin modes. Charge exchange reactions at intermediate energies give important new understanding of the M1-type of excitations and of the spin structure of continuum p spectra in general. In this paper, the author discusses three charge exchange reactions: (p,n); ( 3 H,t); and (d,2p) at several targets. Low-lying states and the Δ region are discussed separately. Finally, the charge exchange reaction with heavy ion beams is briefly discussed. (G.J.P./Auth.)

  13. High purity radioactive beams at the bevalac

    International Nuclear Information System (INIS)

    Alonso, J.R.; Chatterjee, A.; Tobias, C.A.

    1979-03-01

    Peripheral nuclear fragmentation reactions of primary Bevalac heavy ion beams are used to produce secondary beams of radioactive nuclei. The large cross section and small deflection of the projectile fragments lead to high production and delivery efficiency for these beams. Dispersive beam transport allows good separation and purification of the desired secondary beams. 11 C and 19 Ne beams of high purity and good intensity (almost 0.2% of the primary beam current) are presently being used for biomedical experiments

  14. Single Top Quark Production at the LHC Understanding Spin

    CERN Document Server

    Mahlon, G; Mahlon, Gregory; Parke, Stephen

    2000-01-01

    We show that the single top quarks produced in the Wg-fusion channel at a proton-proton collider at a center-of-mass energy sqrt{s}=14 TeV posses a high degree of polarization in terms of a spin basis which decomposes the top quark spin in its rest frame along the direction of the spectator jet. A second useful spin basis is the eta-beamline basis, which decomposes the top quark spin along one of the two beam directions, depending on which hemisphere contains the spectator jet. We elucidate the interplay between the two- and three-body final states contributing to this production cross section in the context of determining the spin decomposition of the top quarks, and argue that the zero momentum frame helicity is undefined. We show that the usefulness of the spectator and eta-beamline spin bases is not adversely affected by the cuts required to separate the Wg-fusion signal from the background.

  15. Quadrupole moment of the 7/21- isomer state in 43S. Shell model study of sulfur isotopes around N=28

    International Nuclear Information System (INIS)

    Chevrier, Raphael

    2013-01-01

    The goal of this work consists in providing new insights in the shape coexistence expected in neutron-rich nuclei around the N=28 shell closure. In 43 S, recent experimental data as well as their interpretation in the shell model framework were used to predict the coexistence between a J π =3/2 1 - prolate deformed ground state and a 7/2 1 - rather spherical isomer state. We report on the quadrupole moment measurement Q s of the 7/2 1 - isomer state [E*=320.5(5) keV, T 1/2 =415(3) ns] in 43 S. The TDPAD method was applied on 43 S nuclei produced by the fragmentation of a 48 Ca primary beam at 345 A.MeV, and selected in-flight through the BigRIPS spectrometer at RIKEN (Japan). The measured value, |Q s |=23(3) efm 2 , is in remarkable agreement with that calculated in the shell model framework, although it is significantly larger than that expected for a single-particle state. In order to understand the nature of the correlations responsible for the departure of the isomer state from a pure spherical shape, we report on the results of a shell model study using the modern SDPF-U interaction of the neighbors sulfur isotopes 42,44,46 S. Those calculations allowed to identify a slight triaxial degree of freedom in the structure of these nuclei, although the latter happens to be highly hindered at N=28 in 44 S. Spectroscopic factor calculations show that this slight triaxial degree of freedom also impacts the low-lying structure in 43 S. It allows to better understand the deviation of the spectroscopic quadrupole moment value of the isomer state from the limit case of a pure spherical state. (author) [fr

  16. Kinetics of photoirradiation-induced synthesis of soy oil-conjugated linoleic acid isomers.

    Science.gov (United States)

    Jain, Vishal P; Proctor, Andrew

    2007-02-07

    Photoirradiation of soy oil with UV/visible light has been shown to produce significant amounts of trans,trans conjugated linoleic acid (CLA) isomers through conversion of various synthesized intermediate cis,trans isomers. The objective of this study was to determine the kinetics of CLA isomers synthesis to better understand the production of various isomers. Soy oil was irradiated with UV/visible light for 144 h in the presence of an iodine catalyst and CLA isomers analyzed by gas chromatography (GC). Arrhenius plots were developed for the conversion of soy oil linoleic acid (A) to form cis-, trans/trans-, cis-CLA (B), conversion of cis-, trans/trans-, cis-CLA to form trans,trans-CLA (C) with respect to B, and formation of trans,trans-CLA isomers with respect to C. The kinetics of consumption of linoleic acid (LA) to form cis-, trans/trans-, cis-CLA was found to be of second-order with a rate constant of 9.01 x 10-7 L/mol s. The rate of formation of cis-, trans/trans-, cis-CLA isomers depends on the rate of formation from LA and its rate of consumption to form trans,trans-CLA isomers. The conversion of cis-, trans/trans-, cis-CLA isomers to trans,trans-CLA isomers was found to be of first-order with a rate constant of 2.75 x 10-6 s-1. However, the formation of thermodynamically stable trans,trans-CLA isomers (C) with respect to C was found to be a zero-order reaction with a rate constant of 10.66 x 10-7 mol/L s. The consumption of LA was found to be the rate-determining step in the CLA isomers formation reaction mechanism. The findings provide a better understanding of the mechanism of CLA isomers synthesis by photoirradiation and the factors controlling the ratio of various isomers.

  17. Table of superdeformed nuclear bands and fission isomers

    International Nuclear Information System (INIS)

    Firestone, R.B.; Singh, B.

    1994-06-01

    A minimum in the second potential well of deformed nuclei was predicted and the associated shell gaps are illustrated in the harmonic oscillator potential shell energy surface calculations shown in this report. A strong superdeformed minimum in 152 Dy was predicted for β 2 -0.65. Subsequently, a discrete set of γ-ray transitions in 152 DY was observed and, assigned to the predicted superdeformed band. Extensive research at several laboratories has since focused on searching for other mass regions of large deformation. A new generation of γ-ray detector arrays is already producing a wealth of information about the mechanisms for feeding and deexciting superdeformed bands. These bands have been found in three distinct regions near A=l30, 150, and 190. This research extends upon previous work in the actinide region near A=240 where fission isomers were identified and also associated with the second potential well. Quadrupole moment measurements for selected cases in each mass region are consistent with assigning the bands to excitations in the second local minimum. As part of our committment to maintain nuclear structure data as current as possible in the Evaluated Nuclear Structure Reference File (ENSDF) and the Table of Isotopes, we have updated the information on superdeformed nuclear bands. As of April 1994, we have complied data from 86 superdeformed bands and 46 fission isomers identified in 73 nuclides for this report. For each nuclide there is a complete level table listing both normal and superdeformed band assignments; level energy, spin, parity, half-life, magneto moments, decay branchings; and the energies, final levels, relative intensities, multipolarities, and mixing ratios for transitions deexciting each level. Mass excess, decay energies, and proton and neutron separation energies are also provided from the evaluation of Audi and Wapstra

  18. Table of superdeformed nuclear bands and fission isomers

    Energy Technology Data Exchange (ETDEWEB)

    Firestone, R.B. [Lawrence Berkeley Lab., CA (United States); Singh, B. [McMaster Univ., Hamilton, ON (Canada)

    1994-06-01

    A minimum in the second potential well of deformed nuclei was predicted and the associated shell gaps are illustrated in the harmonic oscillator potential shell energy surface calculations shown in this report. A strong superdeformed minimum in {sup 152}Dy was predicted for {beta}{sub 2}-0.65. Subsequently, a discrete set of {gamma}-ray transitions in {sup 152}DY was observed and, assigned to the predicted superdeformed band. Extensive research at several laboratories has since focused on searching for other mass regions of large deformation. A new generation of {gamma}-ray detector arrays is already producing a wealth of information about the mechanisms for feeding and deexciting superdeformed bands. These bands have been found in three distinct regions near A=l30, 150, and 190. This research extends upon previous work in the actinide region near A=240 where fission isomers were identified and also associated with the second potential well. Quadrupole moment measurements for selected cases in each mass region are consistent with assigning the bands to excitations in the second local minimum. As part of our committment to maintain nuclear structure data as current as possible in the Evaluated Nuclear Structure Reference File (ENSDF) and the Table of Isotopes, we have updated the information on superdeformed nuclear bands. As of April 1994, we have complied data from 86 superdeformed bands and 46 fission isomers identified in 73 nuclides for this report. For each nuclide there is a complete level table listing both normal and superdeformed band assignments; level energy, spin, parity, half-life, magneto moments, decay branchings; and the energies, final levels, relative intensities, multipolarities, and mixing ratios for transitions deexciting each level. Mass excess, decay energies, and proton and neutron separation energies are also provided from the evaluation of Audi and Wapstra.

  19. First example of a high-level correlated calculation of the indirect spin-spin coupling constants involving tellurium

    DEFF Research Database (Denmark)

    Rusakov, Yury Yu; Krivdin, Leonid B.; Østerstrøm, Freja From

    2013-01-01

    This paper documents a very first example of a high-level correlated calculation of spin-spin coupling constants involving tellurium taking into account relativistic effects, vibrational corrections and solvent effects for the medium sized organotellurium molecules. The 125Te-1H spin-spin coupling...... constants of tellurophene and divinyl telluride were calculated at the SOPPA and DFT levels in a good agreement with experiment. A new full-electron basis set av3z-J for tellurium derived from the "relativistic" Dyall's basis set, dyall.av3z, and specifically optimized for the correlated calculations...... of spin-spin coupling constants involving tellurium, was developed. The SOPPA methods show much better performance as compared to 15 those of DFT, if relativistic effects calculated within the ZORA scheme are taken into account. Vibrational and solvent corrections are next to negligible, while...

  20. Spin Transparency Mode in the NICA Collider with Solenoid Siberian Snakes for Proton and Deuteron Beam

    Science.gov (United States)

    Kovalenko, A. D.; Butenko, A. V.; Mikhaylov, V. A.; Kondratenko, M. A.; Kondratenko, A. M.; Filatov, Yu N.

    2017-12-01

    Two solenoid Siberian Snakes are required to obtain ion polarization in spin transparency mode of the NICA collider. The snake solenoids with a total field integral of 2×50 T·m are placed into the straight sections of the NICA collider. It allows one to control polarization of protons and deuterons up to 13.5 GeV/c and 4 GeV/c respectively. The snakes introduce a strong betatron oscillation coupling. The calculations of orbital parameters of proton and deuteron beams in the NICA collider with solenoid Snakes are presented.

  1. Yrast spectroscopy in {sup 49-51}Ti via fusion-evaporation reaction induced by a radioactive beam

    Energy Technology Data Exchange (ETDEWEB)

    Niikura, M.; Ideguchi, E.; Michimasa, S.; Ota, S.; Shimoura, S.; Wakabayashi, Y. [University of Tokyo, Center for Nuclear Study, Wako, Saitama (Japan); Aoi, N.; Baba, H.; Fukuchi, T.; Ichikawa, Y.; Kubo, T.; Kurokawa, M.; Ohnishi, T.; Suzuki, H.; Yoshida, K. [RIKEN Nishina Center, Wako, Saitama (Japan); Iwasaki, H.; Onishi, T.K.; Suzuki, D. [University of Tokyo, Department of Physics, Tokyo (Japan); Liu, M.; Zheng, Y. [Chinese Academy of Sciences, Institute of Modern Physics, Lanzhou (China)

    2009-12-15

    In-beam {gamma} -ray spectroscopy of high-spin states in {sup 49-51}Ti was performed via the fusion-evaporation reaction using a radioactive beam. By excitation function and {gamma} - {gamma} coincidence analysis, yrast high-spin levels up to I=(21/2{sup -}),(11{sup +}),(17/2{sup -}) in {sup 49-51}Ti were determined. The levels were compared with full-pf -shell model calculation. The level structure indicates the persistency of the N=28 shell gap at yrast states in {sup 49-51}Ti. (orig.)

  2. Spin noise measurement with diamagnetic atoms

    International Nuclear Information System (INIS)

    Takeuchi, M.; Ichihara, S.; Takano, T.; Kumakura, M.; Takahashi, Y.

    2007-01-01

    We report the measurement of the atomic spin noise of the diamagnetic atom ytterbium (Yb). Yb has various merits for utilizing the quantum nature of the atomic spin ensemble compared with the paramagnetic atoms used in all previous experiments. From the magnitude of the noise level and dependence on the detuning, we concluded that we succeeded in the measurement of 171 Yb atomic spin noise in an atomic beam

  3. Fabrication of high-transmission microporous membranes by proton beam writing-based molding technique

    Science.gov (United States)

    Wang, Liping; Meyer, Clemens; Guibert, Edouard; Homsy, Alexandra; Whitlow, Harry J.

    2017-08-01

    Porous membranes are widely used as filters in a broad range of micro and nanofluidic applications, e.g. organelle sorters, permeable cell growth substrates, and plasma filtration. Conventional silicon fabrication approaches are not suitable for microporous membranes due to the low mechanical stability of thin film substrates. Other techniques like ion track etching are limited to the production of randomly distributed and randomly orientated pores with non-uniform pore sizes. In this project, we developed a procedure for fabricating high-transmission microporous membranes by proton beam writing (PBW) with a combination of spin-casting and soft lithography. In this approach, focused 2 MeV protons were used to lithographically write patterns consisting of hexagonal arrays of high-density pillars of few μm size in a SU-8 layer coated on a silicon wafer. After development, the pillars were conformably coated with a thin film of poly-para-xylylene (Parylene)-C release agent and spin-coated with polydimethylsiloxane (PDMS). To facilitate demolding, a special technique based on the use of a laser-cut sealing tape ring was developed. This method facilitated the successful delamination of 20-μm thick PDMS membrane with high-density micropores from the mold without rupture or damage.

  4. Theory of high-resolution tunneling spin transport on a magnetic skyrmion

    Science.gov (United States)

    Palotás, Krisztián; Rózsa, Levente; Szunyogh, László

    2018-05-01

    Tunneling spin transport characteristics of a magnetic skyrmion are described theoretically in magnetic scanning tunneling microscopy (STM). The spin-polarized charge current in STM (SP-STM) and tunneling spin transport vector quantities, the longitudinal spin current and the spin transfer torque, are calculated in high spatial resolution within the same theoretical framework. A connection between the conventional charge current SP-STM image contrasts and the magnitudes of the spin transport vectors is demonstrated that enables the estimation of tunneling spin transport properties based on experimentally measured SP-STM images. A considerable tunability of the spin transport vectors by the involved spin polarizations is also highlighted. These possibilities and the combined theory of tunneling charge and vector spin transport pave the way for gaining deep insight into electric-current-induced tunneling spin transport properties in SP-STM and to the related dynamics of complex magnetic textures at surfaces.

  5. Spin physics at BNL

    International Nuclear Information System (INIS)

    Lowenstein, D.I.

    1985-01-01

    Spin Physics at the Alternating Gradient Synchrotron (AGS) of Brookhaven National Laboratory is the most recent of new capabilities being explored at this facility. During the summer of 1984 the AGS accelerated beams of polarized protons to 16.5 GeV/c at 40% polarization to two experiments (E782, E785). These experiments; single spin asymmetry in inclusive polarized pp interactions; and spin-spin effects in polarized pp elastic scattering, operated at the highest polarized proton energy ever achieved by any accelerator in the world. These experiments are reviewed after the complementary spin physics program with unpolarized protons, and the future possibilities with a booster injector for the AGS and the secondary benefits of a Relativisitic Heavy Ion Collider (RHIC), are placed within the context of the present physics program

  6. COMMISSIONING SPIN ROTATORS IN RHIC

    International Nuclear Information System (INIS)

    MACKAY, W.W.; AHRENS, L.; BAI, M.; COURANT, E.D.; FISCHER, W.; HUANG, H.; LUCCIO, A.; MONTAG, C.; PILAT, F.; PTITSYN, V.; ROSER, T.; SATOGATA, T.; TRBOJEVIC, D.; VANZIEJTS, J.

    2003-01-01

    During the summer of 2002, eight superconducting helical spin rotators were installed into RHIC in order to control the polarization directions independently at the STAR and PHENIX experiments. Without the rotators, the orientation of polarization at the interaction points would only be vertical. With four rotators around each of the two experiments, we can rotate either or both beams from vertical into the horizontal plane through the interaction region and then back to vertical on the other side. This allows independent control for each beam with vertical, longitudinal, or radial polarization at the experiment. In this paper, we present results from the first run using the new spin rotators at PHENIX

  7. High frequency spin torque oscillators with composite free layer spin valve

    International Nuclear Information System (INIS)

    Natarajan, Kanimozhi; Arumugam, Brinda; Rajamani, Amuda

    2016-01-01

    We report the oscillations of magnetic spin components in a composite free layer spin valve. The associated Landau–Lifshitz–Gilbert–Slonczewski (LLGS) equation is studied by stereographically projecting the spin on to a complex plane and the spin components were found. A fourth order Runge–Kutta numerical integration on LLGS equation also confirms the similar trajectories of the spin components. This study establishes the possibility of a Spin Torque Oscillator in a composite free layer spin valve, where the exchange coupling is ferromagnetic in nature. In-plane and out-of-plane precessional modes of magnetization oscillations were found in zero applied magnetic field and the frequencies of the oscillations were calculated from Fast Fourier Transform of the components of magnetization. Behavior of Power Spectral Density for a range of current density is studied. Finally our analysis shows the occurrence of highest frequency 150 GHz, which is in the second harmonics for the specific choice of system parameters.

  8. High frequency spin torque oscillators with composite free layer spin valve

    Energy Technology Data Exchange (ETDEWEB)

    Natarajan, Kanimozhi; Arumugam, Brinda; Rajamani, Amuda

    2016-07-15

    We report the oscillations of magnetic spin components in a composite free layer spin valve. The associated Landau–Lifshitz–Gilbert–Slonczewski (LLGS) equation is studied by stereographically projecting the spin on to a complex plane and the spin components were found. A fourth order Runge–Kutta numerical integration on LLGS equation also confirms the similar trajectories of the spin components. This study establishes the possibility of a Spin Torque Oscillator in a composite free layer spin valve, where the exchange coupling is ferromagnetic in nature. In-plane and out-of-plane precessional modes of magnetization oscillations were found in zero applied magnetic field and the frequencies of the oscillations were calculated from Fast Fourier Transform of the components of magnetization. Behavior of Power Spectral Density for a range of current density is studied. Finally our analysis shows the occurrence of highest frequency 150 GHz, which is in the second harmonics for the specific choice of system parameters.

  9. Direct transitions from high-K isomers to low-K bands -- {gamma} softness or coriolis coupling

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Yoshifumi R.; Narimatsu, Kanako; Ohtsubo, Shin-Ichi [Kyushu Univ., Fukuoka (Japan)] [and others

    1996-12-31

    Recent measurements of direct transitions from high-K isomers to low-K bands reveal severe break-down of the K-selection rule and pose the problem of how to understand the mechanism of such K-violation. The authors recent systematic calculations by using a simple {gamma}-tunneling model reproduced many of the observed hindrances, indicating the importance of the {gamma} softness. However, there are some data which cannot be explained in terms of the {gamma}-degree of freedom. In this talk, the authors also discuss the results of conventional Coriolis coupling calculations, which is considered to be another important mechanism.

  10. Electron spin control and spin-libration coupling of a levitated nanodiamond

    Science.gov (United States)

    Hoang, Thai; Ma, Yue; Ahn, Jonghoon; Bang, Jaehoon; Robicheaux, Francis; Gong, Ming; Yin, Zhang-Qi; Li, Tongcang

    2017-04-01

    Hybrid spin-mechanical systems have great potentials in sensing, macroscopic quantum mechanics, and quantum information science. Recently, we optically levitated a nanodiamond and demonstrated electron spin control of its built-in nitrogen-vacancy (NV) centers in vacuum. We also observed the libration (torsional vibration) of a nanodiamond trapped by a linearly polarized laser beam in vacuum. We propose to achieve strong coupling between the electron spin of a NV center and the libration of a levitated nanodiamond with a uniform magnetic field. With a uniform magnetic field, multiple spins can couple to the torsional vibration at the same time. We propose to use this strong coupling to realize the Lipkin-Meshkov-Glick (LMG) model and generate rotational superposition states. This work is supported by the National Science Foundation under Grant No. 1555035-PHY.

  11. Characteristics of Butanol Isomers Oxidation in a Micro Flow Reactor

    KAUST Repository

    Bin Hamzah, Muhamad Firdaus

    2017-05-01

    Ignition and combustion characteristics of n-butanol/air, 2-butanol.air and isobutanol/air mixtures at stoichiometric (ϕ = 1) and lean (ϕ = 0.5) conditions were investigated in a micro flow reactor with a controlled temperature profile from 323 K to 1313 K, under atmospheric pressure. Sole distinctive weak flame was observed for each mixture, with inlet fuel/air mixture velocity set low at 2 cm/s. One-dimensional computation with comprehensive chemistry and transport was conducted. At low mixture velocities, one-stage oxidation was confirmed from heat release rate profiles, which was broadly in agreement with the experimental results. The weak flame positions were congruent with literature describing reactivity of the butanol isomers. These weak flame responses were also found to mirror the trend in Anti-Knock Indexes of the butanol isomers. Flux and sensitivity analyses were performed to investigate the fuel oxidation pathways at low and high temperatures. Further computational investigations on oxidation of butanol isomers at higher pressure of 5 atm indicated two-stage oxidation through the heat release rate profiles. Low temperature chemistry is accentuated in the region near the first weak cool flame for oxidation under higher pressure, and its impact on key species – such as hydroxyl radical, hydrogen peroxide and carbon monoxide – were considered. Both experimental and computational findings demonstrate the advantage of employing the micro flow reactor in investigating oxidation processes in the temperature region of interest along the reactor channel. By varying physical conditions such as pressure, the micro flow reactor system is proven to be highly beneficial in elucidating oxidation behavior of butanol isomers in conditions in engines such as those that mirror HCCI operations.

  12. Application of Zeeman spatial beam-splitting in polarized neutron reflectometry

    OpenAIRE

    Kozhevnikov, S. V.; Ignatovich, V. K.; Radu, F.

    2017-01-01

    Neutron Zeeman spatial beam-splitting is considered at reflection from magnetically noncollinear films. Two applications of Zeeman beam-splitting phenomenon in polarized neutron reflectometry are discussed. One is the construction of polarizing devices with high polarizing efficiency. Another one is the investigations of magnetically noncollinear films with low spin-flip probability. Experimental results are presented for illustration.

  13. A numerical study of spin-dependent organization of alkali-metal atomic clusters using density-functional method

    International Nuclear Information System (INIS)

    Liu Xuan; Ito, Haruhiko; Torikai, Eiko

    2012-01-01

    We calculate the different geometric isomers of spin clusters composed of a small number of alkali-metal atoms using the UB3LYP density-functional method. The electron density distribution of clusters changes according to the value of total spin. Steric structures as well as planar structures arise when the number of atoms increases. The lowest spin state is the most stable and Li n , Na n , K n , Rb n , and Cs n with n = 2–8 can be formed in higher spin states. In the highest spin state, the preparation of clusters depends on the kind and the number of constituent atoms. The interaction energy between alkali-metal atoms and rare-gas atoms is smaller than the binding energy of spin clusters. Consequently, it is possible to self-organize the alkali-metal-atom clusters on a non-wetting substrate coated with rare-gas atoms.

  14. A numerical study of spin-dependent organization of alkali-metal atomic clusters using density-functional method

    Energy Technology Data Exchange (ETDEWEB)

    Liu Xuan, E-mail: liu.x.ad@m.titech.ac.jp; Ito, Haruhiko [Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology (Japan); Torikai, Eiko [Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi (Japan)

    2012-08-15

    We calculate the different geometric isomers of spin clusters composed of a small number of alkali-metal atoms using the UB3LYP density-functional method. The electron density distribution of clusters changes according to the value of total spin. Steric structures as well as planar structures arise when the number of atoms increases. The lowest spin state is the most stable and Li{sub n}, Na{sub n}, K{sub n}, Rb{sub n}, and Cs{sub n} with n = 2-8 can be formed in higher spin states. In the highest spin state, the preparation of clusters depends on the kind and the number of constituent atoms. The interaction energy between alkali-metal atoms and rare-gas atoms is smaller than the binding energy of spin clusters. Consequently, it is possible to self-organize the alkali-metal-atom clusters on a non-wetting substrate coated with rare-gas atoms.

  15. Comparative evaluation of capillary electrophoresis and high-performance liquid chromatography for the separation of cis-cis, cis-trans, and trans-trans isomers of atracurium besylate.

    Science.gov (United States)

    de Moraes, M de L; Polakiewicz, B; Mattua, M F; Tavares, M F

    1998-01-01

    Atracurium besylate is a highly selective nondepolarizing neuromuscular blocking agent routinely used during anesthetic procedures. The commercial presentation of this drug is a mixture of positional isomers, cis-cis, cis-trans, and trans-trans. Reversed-phase high-performance liquid chromatography has been the technique of choice for the analysis of atracurium besylate formulations at the quality control laboratory of Núcleo de Desenvolvimento Cristália (São Paulo, Brazil), a local pharmaceutical company. HPLC analysis is usually conducted under gradient elution using acetonitrile/0.1 M phosphate buffer eluent mixture as mobile phase and an octadecyl silica (ODS)-packed column. The complete elution of the three isomers takes about 1 hr. In this work, an alternative capillary electrophoresis methodology was developed. The complete resolution of all three isomers was accomplished in about 13 min (+20 kV/72 cm, 211 nm direct detection) using a 60-mM phosphate buffer solution (pH 4) containing 20 mM beta-cyclodextrin and 4 M urea. The isomer ratio was found to be 59.1% cis-cis, 35.9% cis-trans, and 5.02% trans-trans (expected ratio: 59:35:6). Laudanosine, a major metabolite of atracurium besylate, was identified in two commercially available formulations, Tracur (Núcleo de Desenvolvimento Cristália) and Tracrium (Glaxo Wellcome, S.A., Rio de Janeiro, Brazil). Its concentration increases considerably during storage of the product, even if the product is stored at low temperatures.

  16. Energetics of 2- and 3-coumaranone isomers: A combined calorimetric and computational study

    International Nuclear Information System (INIS)

    Sousa, Clara C.S.; Matos, M. Agostinha R.; Santos, Luís M.N.B.F.; Morais, Victor M.F.

    2013-01-01

    Highlights: • Experimental standard molar enthalpies of formation, sublimation of 2- and 3-coumaranone. • Mini-bomb combustion calorimetry, sublimation Calvet microcalorimetry. • DFT methods and high level composite ab initio calculations. • Theoretical estimate of the enthalpy of formation of isobenzofuranone. • Chemical shift (NICS) and the relative stability of the isomers. -- Abstract: Condensed phase standard (p° = 0.1 MPa) molar enthalpies of formation for 2-coumaranone and 3-coumaranone were derived from the standard molar enthalpies of combustion, in oxygen, at T = 298.15 K, measured by mini-bomb combustion calorimetry. Standard molar enthalpies of sublimation of both isomers were determined by Calvet microcalorimetry. These results were combined to derive the standard molar enthalpies of formation of the compounds, in gas phase, at T = 298.15 K. Additionally, accurate quantum chemical calculations have been performed using DFT methods and high level composite ab initio calculations. Theoretical estimates of the enthalpies of formation of the compounds are in good agreement with the experimental values thus supporting the predictions of the same parameters for isobenzofuranone, an isomer which has not been experimentally studied. The relative stability of these isomers has been evaluated by experimental and computational results. The importance of some stabilizing electronic intramolecular interactions has been studied and quantitatively evaluated through Natural Bonding Orbital (NBO) analysis of the wave functions and the nucleus independent chemical shift (NICS) of the studied systems have been calculated in order to study and establish the effect of electronic delocalization upon the relative stability of the isomers

  17. Orientation estimation algorithm applied to high-spin projectiles

    International Nuclear Information System (INIS)

    Long, D F; Lin, J; Zhang, X M; Li, J

    2014-01-01

    High-spin projectiles are low cost military weapons. Accurate orientation information is critical to the performance of the high-spin projectiles control system. However, orientation estimators have not been well translated from flight vehicles since they are too expensive, lack launch robustness, do not fit within the allotted space, or are too application specific. This paper presents an orientation estimation algorithm specific for these projectiles. The orientation estimator uses an integrated filter to combine feedback from a three-axis magnetometer, two single-axis gyros and a GPS receiver. As a new feature of this algorithm, the magnetometer feedback estimates roll angular rate of projectile. The algorithm also incorporates online sensor error parameter estimation performed simultaneously with the projectile attitude estimation. The second part of the paper deals with the verification of the proposed orientation algorithm through numerical simulation and experimental tests. Simulations and experiments demonstrate that the orientation estimator can effectively estimate the attitude of high-spin projectiles. Moreover, online sensor calibration significantly enhances the estimation performance of the algorithm. (paper)

  18. Orientation estimation algorithm applied to high-spin projectiles

    Science.gov (United States)

    Long, D. F.; Lin, J.; Zhang, X. M.; Li, J.

    2014-06-01

    High-spin projectiles are low cost military weapons. Accurate orientation information is critical to the performance of the high-spin projectiles control system. However, orientation estimators have not been well translated from flight vehicles since they are too expensive, lack launch robustness, do not fit within the allotted space, or are too application specific. This paper presents an orientation estimation algorithm specific for these projectiles. The orientation estimator uses an integrated filter to combine feedback from a three-axis magnetometer, two single-axis gyros and a GPS receiver. As a new feature of this algorithm, the magnetometer feedback estimates roll angular rate of projectile. The algorithm also incorporates online sensor error parameter estimation performed simultaneously with the projectile attitude estimation. The second part of the paper deals with the verification of the proposed orientation algorithm through numerical simulation and experimental tests. Simulations and experiments demonstrate that the orientation estimator can effectively estimate the attitude of high-spin projectiles. Moreover, online sensor calibration significantly enhances the estimation performance of the algorithm.

  19. A conception of a new neutron spin echo reflectometer

    International Nuclear Information System (INIS)

    Kali, Gy.

    1999-01-01

    Complete text of publication follows. The tilted field technique in the neutron spin echo (NSE) spectroscopy came into the centre of attention in the recent few years. The method was first proposed by F. Mezei and R. Pynn in 1980. A real measurement for high resolution small angle scattering (SANS) on their resonance spin-echo spectrometer was published by Keller et al. [1]. A conception of a new instrument was proposed by M.T. Rekveldt [2] for SANS and reflectometry, using dc field perpendicular to the neutron beam. By further developing these ideas, the setup of a multitask instrument using the traditional way (dc field parallel to the beam) is discussed. This spectrometer may be best applicable in liquid surface reflectometry combining NSE by separating specular and nonspecular reflection. This instrument setup uses wide wavelength band and/or non-collimated neutron beam. (author) [1] T. Keller et al, Neutron News 6, no 3 (1995) 16.; [2] M.T. Rekveldt, Nuc. Inst. and Meth. in Physics Res. B 114 (1996) 366

  20. An Isomer-Specific Approach to Endocrine-Disrupting Nonylphenol in Infant Food.

    Science.gov (United States)

    Günther, Klaus; Räcker, Torsten; Böhme, Roswitha

    2017-02-15

    Nonylphenols (NPs) are persistent endocrine disruptors that are priority hazardous substances of the European Union Water Framework Directive. Their presence in the environment has caused growing concern regarding their impact on human health. Recent studies have shown that nonylphenol is ubiquitous in commercially available foodstuffs and is also present in human blood. The isomer distribution of 4-nonylphenol was analyzed by gas chromatography - mass spectrometry in 44 samples of infant food. Our study shows that the distribution of nonylphenol isomers is dependent on the foodstuff analyzed. Although some isomer groups prevail, different distributions are frequent. Variations are even found in the same food group. Nonylphenol is a complex mixture of isomers, and the estrogenic potentials of each of these isomers are very different. Consequently, to determine the potential toxicological impact of NP in food, an isomer-specific approach is necessary.

  1. Indiana: Siberian Snake saves spin

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1990-01-15

    A team working at the Indiana University Cooler Ring has used a 'Siberian Snake' system to accelerate a spin-polarized proton beam through two depolarizing resonances with no loss of spin. The Michigan/lndiana/Brookhaven team under Alan Krisch overcame their first imperfection resonance hurdle at 108 MeV, and in a subsequent run vanquished a further resonance at 177 MeV.

  2. Direct nuclear magnetic resonance identification and quantification of geometric isomers of conjugated linoleic acid in milk lipid fraction without derivatization steps: Overcoming sensitivity and resolution barriers

    International Nuclear Information System (INIS)

    Tsiafoulis, Constantinos G.; Skarlas, Theodore; Tzamaloukas, Ouranios; Miltiadou, Despoina; Gerothanassis, Ioannis P.

    2014-01-01

    Highlights: • The first NMR quantification of four geometric 18:2 CLA isomers has been achieved. • Sensitivity and resolution NMR barriers have been overcome. • Selective suppression and reduced 13 C spectral width have been utilized. • The method is applied in the milk lipid fraction without derivatization steps. • The method is selective, sensitive with very good analytical characteristics. - Abstract: We report the first successful direct and unequivocal identification and quantification of four minor geometric (9-cis, 11-trans) 18:2, (9-trans, 11-cis) 18:2, (9-cis, 11-cis) 18:2 and (9-trans, 11-trans) 18:2 conjugated linoleic acid (CLA) isomers in lipid fractions of lyophilized milk samples with the combined use of 1D 1 H-NMR, 2D 1 H- 1 H TOCSY and 2D 1 H- 13 C HSQC NMR. The significant sensitivity barrier has been successfully overcome under selective suppression of the major resonances, with over 10 4 greater equilibrium magnetization of the -(CH 2 ) n - 1 H spins compared to that of the 1 H spins of the conjugated bonds of the CLA isomers. The resolution barrier has been significantly increased using reduced 13 C spectral width in the 2D 1 H- 13 C HSQC experiment. The assignment was confirmed with spiking experiments with CLA standard compounds and the method does not require any derivatization steps for the lipid fraction. The proposed method is selective, sensitive and compares favorably with the GS-MS method of analysis

  3. Fusion with highly spin polarized HD and D2

    International Nuclear Information System (INIS)

    Honig, A.; Letzring, S.; Skupsky, S.

    1993-01-01

    Our experimental efforts over the past 5 years have been aimed at cazrying out ICF shots with spin-polarized 0 fuel. We successfully prepared polarized 0 in HD, and solved the problems of loading target shells with our carefully prepared isotopic -rnixt.l.l?-es, polarizing them so that the 0 polarization remains metastably frozen-in for about half a day, and carrying out the various cold transfer requirements at Syracuse, where the target is prepared, and at Rochester, where the cold target is inserted fusion chamber. Upon shooting the accurately positioned unpolarized high density cold target, no neutron yield was observed. Inspection inside the OMEGA tank after the shot indicated the absence of neutron yield was dus to mal-timing or insufficient retraction rate of OMEGA'S fast shroud mechanism, resulting in interception of at least 20 of the 24 laser beams by the faulty shroud. In spits of this, all alements of the complex experiment we originally undertook have been successfully demonstrated, and the cold retrieval concepts and methods we developed are being utilized on the ICF upgrades at Rochester and at Livermore. In addition to the solution of the interface problems, we obtained novel results on polymer shell characteristics at low temperatures, and continuation of these experiments is c = ently supported by KLUP. Extensive additional mappings were ca=ied out of nuclear spin relaxation rates of H and D in solid HD in the temperature-magnetic field rangs of 0.01 to 4.2K and 0 - 13 Tesla. New phenomena were discovered, such as association of impurity clustering with very low temperature motion, and inequality of the growth-rate and decay-rate of the magnetization

  4. Backbending in high spin states of 80Kr

    International Nuclear Information System (INIS)

    Kaushik, M.; Saxena, G.

    2014-01-01

    The study of high-spin states in Kr isotopes near A = 80 region has attracted a considerable interest in recent years. A variety of shapes, shape coexistence as well as backbending phenomenon have been studied in the many of Kr isotopes. In the case of 80 Kr, the high spin structure has been studied by Doring et al. rather extensively and has provided considerable insight into the structure of f-p-g shell nuclei and the competition between single-particle and collective degrees of freedom. Backbending phenomenon is reported in 80 Kr at ω = 0.5 MeV

  5. Spin with two snakes and overlapping resonances

    International Nuclear Information System (INIS)

    Lee, S.Y.; Zhao, X.F.

    1987-01-01

    We study the effect of multiple spin depolarization resonances on the spin of the particles with two snakes. When two resonances are well separated, the polarization can be restored in passing through these resonances provided that the snake resonances are avoided. When two resonances are overlapping, the beam particles may be depolarized depending on the spacing between these two resonances. If the spacing between these two resonances is an odd number for two snakes, the beam particles may be depolarized depending on the strength of the resonance. When the spacing becomes an even number, the spin can tolerate a much larger resonance strength without depolarization. Numerical simulations can be shown to agree well with the analytic formula. However, the spin is susceptible to the combination of an intrinsic and an imperfection resonances even in the presence of the snakes. Numerical simulation indicates that the spin can be restored after the resonances provided that imperfection strength is less than 0.1 if intrinsic strength is fixed at 0.745

  6. Transverse spin physics

    CERN Document Server

    Barone, Vicenzo

    2001-01-01

    This book is devoted to the theory and phenomenology of transverse-spin effects in high-energy hadronic physics. Contrary to common past belief, it is now rather clear that such effects are far from irrelevant. A decade or so of intense theoretical work has shed much light on the subject and brought to surface an entire class of new phenomena, which now await thorough experimental investigation. Over the next few years a number of experiments world-wide (at BNL, CERN, DESY and JLAB) will run with transversely polarised beams and targets, providing data that will enrich our knowledge of the tra

  7. Polarized (3) He Spin Filters for Slow Neutron Physics.

    Science.gov (United States)

    Gentile, T R; Chen, W C; Jones, G L; Babcock, E; Walker, T G

    2005-01-01

    Polarized (3)He spin filters are needed for a variety of experiments with slow neutrons. Their demonstrated utility for highly accurate determination of neutron polarization are critical to the next generation of betadecay correlation coefficient measurements. In addition, they are broadband devices that can polarize large area and high divergence neutron beams with little gamma-ray background, and allow for an additional spin-flip for systematic tests. These attributes are relevant to all neutron sources, but are particularly well-matched to time of flight analysis at spallation sources. There are several issues in the practical use of (3)He spin filters for slow neutron physics. Besides the essential goal of maximizing the (3)He polarization, we also seek to decrease the constraints on cell lifetimes and magnetic field homogeneity. In addition, cells with highly uniform gas thickness are required to produce the spatially uniform neutron polarization needed for beta-decay correlation coefficient experiments. We are currently employing spin-exchange (SE) and metastability-exchange (ME) optical pumping to polarize (3)He, but will focus on SE. We will discuss the recent demonstration of 75 % (3)He polarization, temperature-dependent relaxation mechanism of unknown origin, cell development, spectrally narrowed lasers, and hybrid spin-exchange optical pumping.

  8. Terwilliger and spin physics

    International Nuclear Information System (INIS)

    O'FAllon, J.R.

    1991-01-01

    The history of spin physics experiments is presented, with emphasis of Kent Terwilliger's involvement. Development of polarized beams and targets at the ZGS and AGS is recalled. P-P elastic scattering experiments are reviewed

  9. Spin tune dependence on closed orbit in RHIC

    International Nuclear Information System (INIS)

    Ptitsyn, V.; Bai, M.; Roser, T.

    2010-01-01

    Polarized proton beams are accelerated in RHIC to 250 GeV energy with the help of Siberian Snakes. The pair of Siberian Snakes in each RHIC ring holds the design spin tune at 1/2 to avoid polarization loss during acceleration. However, in the presence of closed orbit errors, the actual spin tune can be shifted away from the exact 1/2 value. It leads to a corresponding shift of locations of higher-order ('snake') resonances and limits the available betatron tune space. The largest closed orbit effect on the spin tune comes from the horizontal orbit angle between the two snakes. During RHIC Run in 2009 dedicated measurements with polarized proton beams were taken to verify the dependence of the spin tune on the local orbits at the Snakes. The experimental results are presented along with the comparison with analytical predictions.

  10. Analysis of possibilities for a spin flip in high energy electron ring HERA

    International Nuclear Information System (INIS)

    Stres, S.; Pestotnik, R.

    2007-01-01

    In a high energy electron ring the spins of electrons become spontaneously polarized via the emission of spin-flip synchrotron radiation. By employing a radio frequency (RF) radial dipole field kicker, particle spin directions can be rotated slowly over many turns. A model which couples three dimensional spin motion and longitudinal particle motion was constructed to describe non-equilibrium spin dynamics in high energy electron storage rings. The effects of a stochastic synchrotron radiation on the orbital motion in the accelerator synchrotron plane and its influence on the spin motion are studied. The main contributions to the spin motion, the synchrotron oscillations and the stochastic synchrotron radiation, have different influence on the spin polarization reversal in different regions of the parameter space. The results indicate that polarization reversal might be obtained in high energy electron storage rings with a significant noise even with relatively small strengths of a perturbing magnetic field. The only experimental datum avaliable agrees with the model prediction, however further experimental data would be necessary to validate the model

  11. High spin states in 162Lu

    International Nuclear Information System (INIS)

    Gupta, S.L.; Pancholi, S.C.; Juneja, P.; Mehta, D.; Kumar, A.; Bhowmik, R.K.; Muralithar, S.; Rodrigues, G.; Singh, R.P.

    1997-01-01

    An experimental investigation of the odd-odd 162 Lu nucleus, following the 148 Sm( 19 F,5n) reaction at beam energy E lab =112MeV, has been performed through in-beam gamma-ray spectroscopy. It revealed three signature-split bands. The yrast band based on πh 11/2 circle-times νi 13/2 configuration exhibits anomalous signature splitting (the unfavored signature Routhian lying lower than the favored one) whose magnitude Δe ' ∼25keV, is considerably reduced in contrast to sizable normal signature splitting Δe ' ∼125 and 60 keV observed in the yrast πh 11/2 bands of the neighboring odd-A 161,163 Lu nuclei, respectively. The signature inversion in this band occurs at spin ∼20ℎ (frequency=0.37MeV). The second signature-split band, observed above the band crossing associated with the alignment of a pair of i 13/2 quasineutrons, is a band based on the four-quasiparticle [πh 11/2 [523]7/2 - times νh 9/2 [521]3/2 - times(νi 13/2 ) 2 ], i.e., EABA p (B p ), configuration. The third signature-split band is also likely to be a four-quasiparticle band with configuration similar to the second band but involving F quasineutron, i.e., FABA p (B p ). The experimental results are discussed in comparison with the existing data in the neighboring nuclei and in the framework of the cranking shell model. copyright 1997 The American Physical Society

  12. Targets for high power neutral beams

    International Nuclear Information System (INIS)

    Kim, J.

    1980-01-01

    Stopping high-power, long-pulse beams is fast becoming an engineering challenge, particularly in neutral beam injectors for heating magnetically confined plasmas. A brief review of neutral beam target technology is presented along with heat transfer calculations for some selected target designs

  13. High-resolution gas-phase spectroscopy of a single-bond axle rotary motor

    NARCIS (Netherlands)

    Maltseva, Elena; Amirjalayer, Saeed; Cnossen, Arjen; Browne, Wesley R.; Feringa, Ben L.; Buma, Wybren Jan

    2017-01-01

    High-resolution laser spectroscopy in combination with molecular beams and mass-spectrometry has been applied to study samples of a prototypical rotary motor. Vibrationally well-resolved excitation spectra have been recorded that are assigned, however, to a structural isomer of the original rotary

  14. THE FUTURE OF SPIN PHYSICS AT BNL

    International Nuclear Information System (INIS)

    ARONSON, S.; DESHPANDE, A.

    2006-01-01

    The Relativistic Heavy Ion Collider (RHIC) at BNL is the world's only polarized proton-proton collider. Collisions at center-of-mass energies up to 500 GeV and beam polarizations approaching 70% (longitudinal or transverse) are provided to two experiments, STAR and PHENIX, at luminosities (ge) 10 32 /cm 2 /sec. Transverse polarized beam has also been provided to the BRAHMS experiment. Measurements that bear on the important question of the spin content of the nucleon are beginning to appear. Over the next 10 years, as the performance of polarized proton running at RHIC is further developed, the Spin Physics program at RHIC will provide definitive measurements of the contributions to the proton's spin of the gluon, the sea quarks and the orbital motion of the partons in the proton's wave function. We plan to extend the reach of our study of the role of spin in QCD with the development of ''eRHIC'', which will provide polarized e-p collisions to a new detector

  15. The Future Of Spin Physics At BNL

    International Nuclear Information System (INIS)

    Aronson, Samuel; Deshpande, Abhay

    2007-01-01

    The Relativistic Heavy Ion Collider (RHIC) at BNL is the world's only polarized proton-proton collider. Collisions at center-of-mass energies up to 500 GeV and beam polarizations approaching 70% (longitudinal or transverse) are provided to two experiments, STAR and PHENIX, at luminosities ≥ 1032/cm2/sec. Transverse polarized beam has also been provided to the BRAHMS experiment. Measurements that bear on the important question of the spin content of the nucleon are beginning to appear. Over the next 10 years, as the performance of polarized proton running at RHIC is farmer developed, the Spin Physics program at RHIC will provide definitive measurements of the contributions to the proton's spin of the gluon, the sea quarks and the orbital motion of the partons in the proton's wave function. We plan to extend the reach of our study of the role of spin in QCD with the development of 'eRHIC', which will provide polarized e-p collisions to a new detector

  16. Indiana: Siberian Snake saves spin

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    A team working at the Indiana University Cooler Ring has used a 'Siberian Snake' system to accelerate a spin-polarized proton beam through two depolarizing resonances with no loss of spin. The Michigan/lndiana/Brookhaven team under Alan Krisch overcame their first imperfection resonance hurdle at 108 MeV, and in a subsequent run vanquished a further resonance at 177 MeV

  17. Microsecond and nanosecond isomers populated in fission reactions

    International Nuclear Information System (INIS)

    Jones, G. A.; Walker, P. M.; Podolyak, Zs.; Regan, P. H.; Williams, S. J.; Cullen, I. J.; Garnsworthy, A. B.; Liu, Z.; Thompson, N. J.; Carpenter, M. P.; Janssens, R. V. F.; Khoo, T. L.; Seweryniak, D.; Zhu, S.; Carroll, J. J.; Chakrawarthy, R. S.; Chowdhury, P.; Dracoulis, G. D.; Lane, G. J.; Hackman, G.

    2006-01-01

    Fusion-fission reactions were induced by bombarding a thick 27Al target with 178Hf projectiles at a laboratory energy of 1150 MeV using the ATLAS accelerator at Argonne National Laboratory. The subsequent γ-ray decays were measured using the GAMMASPHERE germanium detector array. The beam was pulsed at two different ON/OFF cycles of 82.5/825 ns and 25/75 μs in order to observe the γ rays from the decay of isomeric states. In 121Sb 2721+Δ keV, Iπ=(25/2+) and 2434 keV, Iπ=19/2- states have measured half-lives of T1/2=200(30) μs and 8.2(2) ns respectively. The 2614+Δ keV, Iπ=(27/2+) and 2486 keV, Iπ=19/2+ states in 123Sb have measured half-lives of T1/2=52(3) μs and 7.9(4) ns respectively. The positive parity isomers in these nuclei correspond to a πd5/2 or πg7/2 configuration, in 121Sb and 123Sb respectively, coupled to aligned (h11/2)2 neutrons. The Iπ=19/2- isomeric state in 121Sb is proposed to have a νh11/2 x νd3/2 x πd5/2 configuration. A previously unobserved isomer has been identified in 99Mo at an energy of 3010 keV, decaying with T1/2=18(5) ns. This state is interpreted as an energetically favoured 3 quasi-particle alignment of ν ( d 5/2 g 7/2 ) x π(g 9/2 ) 2 configuration which is observed systematically in the even-Z N=57 isotones

  18. Evidence for an isomer in {sup 76}Ni

    Energy Technology Data Exchange (ETDEWEB)

    Sawicka, M.; Pfuetzner, M. [Institute of Experimental Physics, Warsaw University, PL-00-681, Warszawa (Poland); Grzywacz, R. [Institute of Experimental Physics, Warsaw University, PL-00-681, Warszawa (Poland); Physics Division, ORNL, TN 37831-6371, Oak Ridge (United States); Daugas, J.M.; Belier, G.; Sauvestre, J.E. [CEA Bruyeres-le-Chatel DIF/DPTA/SPN, BP 12, F-91680, Bruyeres-le-Chatel (France); Matea, I.; Lewitowicz, M.; Georgiev, G. [GANIL, BP 5027, F-14021, Caen Cedex (France); Grawe, H.; Mayet, P. [GSI, Planckstrasse 1, D-64291, Darmstadt (Germany); Becker, F. [GANIL, BP 5027, F-14021, Caen Cedex (France); GSI, Planckstrasse 1, D-64291, Darmstadt (Germany); Bingham, C. [Department of Physics and Astronomy, University of Tennessee, TN 37996, Knoxville (United States); Borcea, R.; Hammache, F.; Ibrahim, F. [IPN, 91406, Orsay Cedex (France); Bouchez, E. [CEA Saclay, DSM/DAPNIA/SPhN, F-91191, Gif-sur-Yvette Cedex (France); Buta, A.; Dragulescu, E. [IFIN-HH, P.O. Box MG6, 76900, Bucharest-Magurele (Romania); Giovinazzo, J. [CENBG, BP 120, F-33175, Gradignan Cedex (France); Meot, V.; Negoita, F.; De Oliveira Santos, F.; Perru, O.; Roig, O.; Rykaczewski, K.P.; Saint-Laurent, M.G.; Sorlin, O.; Stanoiu, M.; Stefan, I.; Stodel, C.; Theisen, C.; Verney, D.

    2004-04-01

    In the experiment performed at the LISE2000 spectrometer at GANIL neutron-rich nickel isotopes were studied by microsecond isomer spectroscopy. Evidence for an isomer in {sup 76}Ni is found, consistently with the shell model prediction of an 8{sup +} state of {nu}(g{sub 9/2}){sup 2} structure. (orig.)

  19. High efficiency beam splitting for H- accelerators

    International Nuclear Information System (INIS)

    Kramer, S.L.; Stipp, V.; Krieger, C.; Madsen, J.

    1985-01-01

    Beam splitting for high energy accelerators has typically involved a significant loss of beam and radiation. This paper reports on a new method of splitting beams for H - accelerators. This technique uses a high intensity flash of light to strip a fraction of the H - beam to H 0 which are then easily separated by a small bending magnet. A system using a 900-watt (average electrical power) flashlamp and a highly efficient collector will provide 10 -3 to 10 -2 splitting of a 50 MeV H - beam. Results on the operation and comparisons with stripping cross sections are presented. Also discussed is the possibility for developing this system to yield a higher stripping fraction

  20. High current beam transport experiments at GSI

    International Nuclear Information System (INIS)

    Klabunde, J.; Schonlein, A.; Spadtke, P.

    1985-01-01

    The status of the high current ion beam transport experiment is reported. 190 keV Ar 1+ ions were injected into six periods of a magnetic quadrupole channel. Since the pulse length is > 0.5 ms partial space charge neutralization occurs. In our experiments, the behavior of unneutralized and partially space charge compensated beams is compared. With an unneutralized beam, emittance growth has been measured for high intensities even in case of the zero-current phase advance sigma 0 0 . This initial emittance growth at high tune depression we attribute to the homogenization effect of the space charge density. An analytical formula based on this assumption describes the emittance growth very well. Furthermore the predicted envelope instabilities for sigma 0 > 90 0 were observed even after 6 periods. In agreement with the theory, unstable beam transport was also experimentally found if a beam with different emittances in the two transverse phase planes was injected into the transport channel. Although the space charge force is reduced for a partially neutralized beam a deterioration of the beam quality was measured in a certain range of beam parameters. Only in the range where an unneutralized beam shows the initial emittance growth, the partial neutralization reduces this effect, otherwise the partially neutralized beam is more unstable