WorldWideScience

Sample records for high-speed steel obtained

  1. Machining tools in AISI M2 high-speed steel obtained by spray forming process

    International Nuclear Information System (INIS)

    Jesus, Edilson Rosa Barbosa de.

    2004-01-01

    The aim of the present work was the obtention of AISI M2 high-speed steel by spray forming technique and the material evaluation when used as machining tool. The obtained material was hot rolled at 50% and 72% reduction ratios, and from which it was manufactured inserts for machining tests. The performance of inserts made of the spray formed material was compared to inserts obtained from conventional and powder metallurgy (MP) processed materials. The spray formed material was chemical, physical, mechanical and microstructural characterised. For further characterisation, the materials were submitted to machining tests for performance evaluation under real work condition. The results of material characterisation highlight the potential of the spray forming technique, in the obtention of materials with good characteristics and properties. Under the current processing, hot rolling and heat treatments condition, the analysis of the results of the machining tests revealed a very similar behaviour among the tested materials. Proceeding a criterious analysis of the machining results tests, it was verified that the performance presented by the powder metallurgy material (MP) was slight superior, followed by conventional obtained material (MConv), which presented a insignificant advantage over the spray formed and hot rolled (72% reduction ratio) material. The worst result was encountered for the spray forming and hot rolled (50% reduction ratio) material that presented the highest wear values. (author)

  2. Copper infiltrated high speed steels based composites

    International Nuclear Information System (INIS)

    Madej, M.; Lezanski, J.

    2003-01-01

    High hardness, mechanical strength, heat resistance and wear resistance of M3/2 high speed steel (HSS) make it an attractive material. Since technological and economical considerations are equally important, infiltration of high-speed steel skeleton with liquid cooper has proved to be a suitable technique whereby fully dense material is produced at low cost. Attempts have been made to describe the influence of the production process parameters and alloying additives, such as tungsten carbide on the microstructure and mechanical properties of copper infiltrated HSS based composites. The compositions of powder mixtures are 100% M3/2, M3/2+10% Wc, M3/2=30% WC. The powders were uniaxially cold compacted in a cylindrical die at 800 MPa. The green compacts were sintered in vacuum at 1150 o C for 60 minutes. Thereby obtained porous skeletons were subsequently infiltrated with cooper, by gravity method, in vacuum furnace at 1150 o C for 15 minutes. (author)

  3. High - speed steel for precise cased tools

    International Nuclear Information System (INIS)

    Karwiarz, J.; Mazur, A.

    2001-01-01

    The test results of high-vanadium high - speed steel (SWV9) for precise casted tools are presented. The face -milling cutters of NFCa80A type have been tested in industrial operating conditions. An average life - time of SWV9 steel tools was 3-10 times longer compare to the conventional high - speed milling cutters. Metallography of SWB9 precise casted steel revealed beneficial for tool properties distribution of primary vanadium carbides in the steel matrix. Presented results should be a good argument for wide application of high - vanadium high - speed steel for precise casted tools. (author)

  4. Comparative study of the interface composition of TiN and TiCN hard coatings on high speed steel substrates obtained by arc discharge

    Energy Technology Data Exchange (ETDEWEB)

    Roman, E. (Lab. de Fisica de Superficies, Inst. de Ciencia de Materiales, CSIC, Madrid (Spain)); Segovia, J.L. de (Lab. de Fisica de Superficies, Inst. de Ciencia de Materiales, CSIC, Madrid (Spain)); Alberdi, A. (TEKNIKER, Asociacion de Investigacion Tecnologica, Eibar (Spain)); Calvo, J. (TEKNIKER, Asociacion de Investigacion Tecnologica, Eibar (Spain)); Laucirica, J. (TEKNIKER, Asociacion de Investigacion Tecnologica, Eibar (Spain))

    1993-05-15

    In this paper the composition of the interface of TiN and TiCN hard coatings deposited onto high speed steel substrates obtained by the arc discharge technique is studied using Auger electron spectroscopy at two different substrate temperatures, 520 K and 720 K. The low temperature (520 K) TiN coating developed an oxygen phase at the interface, producing a weak adherence of 40 N, while the high temperature coatings (720 K) had a less intense oxygen phase, giving a greater adherence to the substrate of 60 N. TiCN coatings at 520 K are characterized by a low oxygen intensity at the interface. However, their adherence of 50 N is lower than the value of 60 N for the high temperature TiN coatings and is independent of the substrate temperature. (orig.)

  5. Progress in the development of niobium alloyed high speed steel

    International Nuclear Information System (INIS)

    Guimaraes, J.R.C.

    1987-01-01

    The development of economy-grades of niobium alloyed high speed steel is described. Both the metallurgical concepts behind the steel design and the results of performance tests are presented. (Author) [pt

  6. Composite layers in the high speed steels

    International Nuclear Information System (INIS)

    Koson, A.; Rutkowska, A.; Dabrowski, M.

    2002-01-01

    The production process and different properties of TiN, (TiA)(N and TiN + (TiAl)N coatings are described in this work. The coatings were obtained on fast-cutting steel 6-5-2(SW7M) after a typical heat treatment and gas nitriding. The following features were examined: thickness and hardness of produced layers as well as wearing quality (using T-0.5 tester). Composite layer of (TiAl)N has achieved the highest wearing quality in the range of wearing parameters applied. (author)

  7. APPLICATION OF POWDER HIGH-SPEED STEEL AS ANTIFRICTION MATERIAL

    Directory of Open Access Journals (Sweden)

    M. Beznak

    2011-01-01

    Full Text Available The influence of disulphide molybdenum additives on antifriction characteristics of powder high-speed steel produced by means of hot hydrostatic pressing is investigated. It is shown that disulphide molybdenum additives promote the decrease of coefficient of friction and temperature in hearth of friction as a result the increase of wear resistance of steel.

  8. Comprehensive surface treatment of high-speed steel tool

    Science.gov (United States)

    Fedorov, Sergey V.; Aleshin, Sergey V.; Swe, Min Htet; Abdirova, Raushan D.; Kapitanov, Alexey V.; Egorov, Sergey B.

    2018-03-01

    One of the promising directions of hardening of high-speed steel tool is the creation on their surface of the layered structures with the gradient of physic-chemical properties between the wear-resistant coatings to the base material. Among the methods of such surface modification, a special process takes place based on the use of pulsed high-intensity charged particle beams. The high speed of heating and cooling allows structural-phase transformations in the surface layer, which cannot be realized in a stationary mode. The treatment was conducted in a RITM-SP unit, which constitutes a combination of a source of low-energy high-current electron beams "RITM" and two magnetron spraying systems on a single vacuum chamber. The unit enables deposition of films on the surface of the desired product and subsequent liquid-phase mixing of materials of the film and the substrate by an intense pulse electron beam. The article discusses features of the structure of the subsurface layer of high-speed steel M2, modified by surface alloying of a low-energy high-current electron beam, and its effect on the wear resistance of the tool when dry cutting hard to machine Nickel alloy. A significant decrease of intensity of wear of high-speed steel with combined treatment happens due to the displacement of the zone of wear and decrease the radius of rounding of the cutting edge because of changes in conditions of interaction with the material being treated.

  9. Corrosion Inhibition of High Speed Steel by Biopolymer HPMC Derivatives

    Directory of Open Access Journals (Sweden)

    Shih-Chen Shi

    2016-07-01

    Full Text Available The corrosion inhibition characteristics of the derivatives of biopolymer hydroxypropyl methylcellulose (HPMC, hydroxypropyl methylcellulose phthalate (HPMCP, and hydroxypropyl methylcellulose acetate succinate (HPMCAS film are investigated. Based on electrochemical impedance spectroscopic measurements and potentiodynamic polarization, the corrosion inhibition performance of high speed steel coated with HPMC derivatives is evaluated. The Nyquist plot and Tafel polarization demonstrate promising anti-corrosion performance of HPMC and HPMCP. With increasing film thickness, both materials reveal improvement in corrosion inhibition. Moreover, because of a hydrophobic surface and lower moisture content, HPMCP shows better anti-corrosion performance than HPMCAS. The study is of certain importance for designing green corrosion inhibitors of high speed steel surfaces by the use of biopolymer derivatives.

  10. Machining tools in AISI M2 high-speed steel obtained by spray forming process; Ferramentas de usinagem em aco rapido AISI M2 obtido por conformacao por 'spray'

    Energy Technology Data Exchange (ETDEWEB)

    Jesus, Edilson Rosa Barbosa de. E-mail: erbjesus@usp.br

    2004-07-01

    The aim of the present work was the obtention of AISI M2 high-speed steel by spray forming technique and the material evaluation when used as machining tool. The obtained material was hot rolled at 50% and 72% reduction ratios, and from which it was manufactured inserts for machining tests. The performance of inserts made of the spray formed material was compared to inserts obtained from conventional and powder metallurgy (MP) processed materials. The spray formed material was chemical, physical, mechanical and microstructural characterised. For further characterisation, the materials were submitted to machining tests for performance evaluation under real work condition. The results of material characterisation highlight the potential of the spray forming technique, in the obtention of materials with good characteristics and properties. Under the current processing, hot rolling and heat treatments condition, the analysis of the results of the machining tests revealed a very similar behaviour among the tested materials. Proceeding a criterious analysis of the machining results tests, it was verified that the performance presented by the powder metallurgy material (MP) was slight superior, followed by conventional obtained material (MConv), which presented a insignificant advantage over the spray formed and hot rolled (72% reduction ratio) material. The worst result was encountered for the spray forming and hot rolled (50% reduction ratio) material that presented the highest wear values. (author)

  11. Spark Plasma Co-Sintering of Mechanically Milled Tool Steel and High Speed Steel Powders.

    Science.gov (United States)

    Pellizzari, Massimo; Fedrizzi, Anna; Zadra, Mario

    2016-06-16

    Hot work tool steel (AISI H13) and high speed steel (AISI M3:2) powders were successfully co-sintered to produce hybrid tool steels that have properties and microstructures that can be modulated for specific applications. To promote co-sintering, which is made difficult by the various densification kinetics of the two steels, the particle sizes and structures were refined by mechanical milling (MM). Near full density samples (>99.5%) showing very fine and homogeneous microstructure were obtained using spark plasma sintering (SPS). The density of the blends (20, 40, 60, 80 wt % H13) was in agreement with the linear rule of mixtures. Their hardness showed a positive deviation, which could be ascribed to the strengthening effect of the secondary particles altering the stress distribution during indentation. A toughening of the M3:2-rich blends could be explained in view of the crack deviation and crack arrest exerted by the H13 particles.

  12. Compactibility of atomized high-speed steel and steel 3 powders

    International Nuclear Information System (INIS)

    Kulak, L.D.; Gavrilenko, A.P.; Pikozh, A.P.; Kuz'menko, N.N.

    1985-01-01

    Spherical powders and powders of lammellar-scaly shape of high-speed R6M5K5 steel and steel 3 produced by the method of centrifugal atomization of a rotating billet under conditions of cold pressing in steel moulds are studied for thier compactability. Compacting pressure dependnences are establsihed for density of cold-pressed compacts of spherical and scaly powders. The powders of lammellar-scaly shape both of high-speed steel and steel 3 are found to possess better compactibility within a wide range of pressures as compared to powders of spherical shape. Compacts of the lammellar-scaly powders possess also higher mechanical strength

  13. Spark Plasma Co-Sintering of Mechanically Milled Tool Steel and High Speed Steel Powders

    Directory of Open Access Journals (Sweden)

    Massimo Pellizzari

    2016-06-01

    Full Text Available Hot work tool steel (AISI H13 and high speed steel (AISI M3:2 powders were successfully co-sintered to produce hybrid tool steels that have properties and microstructures that can be modulated for specific applications. To promote co-sintering, which is made difficult by the various densification kinetics of the two steels, the particle sizes and structures were refined by mechanical milling (MM. Near full density samples (>99.5% showing very fine and homogeneous microstructure were obtained using spark plasma sintering (SPS. The density of the blends (20, 40, 60, 80 wt % H13 was in agreement with the linear rule of mixtures. Their hardness showed a positive deviation, which could be ascribed to the strengthening effect of the secondary particles altering the stress distribution during indentation. A toughening of the M3:2-rich blends could be explained in view of the crack deviation and crack arrest exerted by the H13 particles.

  14. Wear evaluation of flank in burins of high speed steel modified with titanium ions

    Science.gov (United States)

    E Caballero, J.; V-Niño, E. D.

    2017-12-01

    This report shows the results obtained researching the flank wearing resistance performed by the high-speed steel (HSS) burins without any surface treatment (reference substrate) and others with surface treatment based on Titanium ions. The flank wearing was carried out by means of an industrial process by chip removal with repetitive tests of dry finished turning of AISI/SAE 1045 steel bars. The useful service life of the burins was evaluated according to ISO 3685:1993, and it was found that the burins treated with Titanium ions showed an increase in the flank wearing resistance with respect to the ones used as reference.

  15. Comparative study of AISI M3:2 high speed steel produced through different techniques of manufacturing

    International Nuclear Information System (INIS)

    Araujo Filho, Oscar Olimpio de

    2006-01-01

    In this work AISI M3:2 high speed steels obtained through different techniques of manufacturing, submitted to the same heat treatment procedure were evaluated by measuring their mechanical properties of transverse rupture strength and hardness. Sinter 23 obtained by hot isostatic pressing (HIP), VWM3C obtained by the conventional route and a M3:2 high speed steel obtained by cold compaction of water atomized powders and vacuum sintered with and without the addition of a small quantity of carbon were evaluated after the same heat treatment procedure. The vacuum sintered M3:2 high speed steel can be an alternative to the more expensive high speed steel produced by hot isostatic pressing and with similar properties presented by the conventional one. The characterization of the vacuum sintered M3:2 high speed steel was performed by measuring the densities of the green compacts and after the sintering cycle. The sintering produced an acceptable microstructure and densities near to the theoretical. The transverse rupture strength was evaluated by means of three point bending tests and the hardness by means of Rockwell C and Vickers tests. The technique of scanning electronic microscopy (SEM) was used to evaluate the microstructure and to establish a relation with the property of transverse rupture strength. The structure was determined by means of X-ray diffraction (XRD) patterns and the retained austenite was detected to all the conditions of heat treatment. The main contribution of this work is to establish a relation between the microstructure and the mechanical property of transverse rupture strength and to evaluate the AISI M3:2 vacuum sintered high speed steel as an alternative to the similar commercial high speed steels. (author)

  16. Improved the microstructures and properties of M3:2 high-speed steel by spray forming and niobium alloying

    Energy Technology Data Exchange (ETDEWEB)

    Lu, L. [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Xueyuan Road 30, Haidian District, Beijing 100083 (China); Hou, L.G., E-mail: lghou@skl.ustb.edu.cn [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Xueyuan Road 30, Haidian District, Beijing 100083 (China); Zhang, J.X.; Wang, H.B.; Cui, H.; Huang, J.F. [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Xueyuan Road 30, Haidian District, Beijing 100083 (China); Zhang, Y.A. [State Key Laboratory of Non-Ferrous Metals and Process, General Research Institute for Non-Ferrous Metals, Beijing 100088 (China); Zhang, J.S. [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Xueyuan Road 30, Haidian District, Beijing 100083 (China)

    2016-07-15

    The microstructures and properties of spray formed (SF) high-speed steels (HSSs) with or without niobium (Nb) addition were studied. Particular emphasis was placed on the effect of Nb on the solidification microstructures, decomposition of M{sub 2}C carbides, thermal stability and mechanical properties. The results show that spray forming can refine the cell size of eutectic carbides due to the rapid cooling effect during atomization. With Nb addition, further refinement of the eutectic carbides and primary austenite grains are obtained. Moreover, the Nb addition can accelerate the decomposition of M{sub 2}C carbides and increase the thermal stability of high-speed steel, and also can improve the hardness and bending strength with slightly decrease the impact toughness. The high-speed steel made by spray forming and Nb alloying can give a better tool performance compared with powder metallurgy M3:2 and commercial AISI M2 high-speed steels. - Highlights: • Spray forming can effectively refine the microstructure of M3:2 steel. • Niobium accelerates the decomposition of M{sub 2}C carbides. • Niobium increases the hardness and bending strength of spray formed M3:2 steel. • Spray-formed niobium-containing M3:2 steel has the best tool performance.

  17. Computer simulation of the influence of the alloying elements on secondary hardness of the high-speed steels

    International Nuclear Information System (INIS)

    Dobrzanski, L.A.; Sitek, W.; Zaclona, J.

    2004-01-01

    The paper presents the method of modelling of high-speed steels' (HSS) properties, being basing on chemical composition and heat treatment parameters, employing neural networks. An example of its application possibility the computer simulation was made of the influence of the particular alloying elements on hardness and obtained results are presented. (author)

  18. Characterization of rapidly solidified powder of high-speed steel

    Czech Academy of Sciences Publication Activity Database

    Miglierini, M.; Lančok, Adriana; Kusý, M.

    2009-01-01

    Roč. 190, 1-3 (2009), s. 51-57 ISSN 0304-3843 R&D Projects: GA ČR GP203/07/P011 Grant - others:GA(SK) VEGA1/3190/06 Institutional research plan: CEZ:AV0Z40320502 Keywords : Rapidly solidified powder * Tool steel * Mössbauer spectroscopy Subject RIV: CA - Inorganic Chemistry Impact factor: 0.209, year: 2007

  19. Microstructural characterisation of vacuum sintered T42 powder metallurgy high-speed steel after heat treatments

    International Nuclear Information System (INIS)

    Trabadelo, V.; Gimenez, S.; Iturriza, I.

    2009-01-01

    High-speed steel powders (T42 grade) have been uniaxially cold-pressed and vacuum sintered to full density. Subsequently, the material was heat treated following an austenitising + quenching + multitempering route or alternatively austenitising + isothermal annealing. The isothermal annealing route was designed in order to attain a hardness value of ∼50 Rockwell C (HRC) (adequate for structural applications) while the multitempering parameters were selected to obtain this value and also the maximum hardening of the material (∼66 HRC). Microstructural characterisation has been carried out by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The microstructure consists of a ferrous (martensitic or ferritic) matrix with a distribution of second phase particles corresponding to nanometric and submicrometric secondary carbides precipitated during heat treatment together with primary carbides. The identification of those secondary precipitates (mainly M 3 C, M 6 C and M 23 C 6 carbides) has allowed understanding the microstructural evolution of T42 high-speed steel under different processing conditions

  20. The electrogas and electroslag multipass high speed welding of nuclear pressure vessel steels

    International Nuclear Information System (INIS)

    Eichhorn, F.; Hirsch, P.; Langenbahn, H.W.; Wubbels, B.

    1978-01-01

    High-speed electroslag and electrogas welding of 15 Mn Ni63 steel plates to achieve high strength and toughness joints for reactor pressure vessels are described. Mechanical testing of overheating-resistant, brittle fracture resistant low alloy steels is discussed. (UK)

  1. Residual stress in a M3:2 PM high speed steel; effect of mechanical loading

    DEFF Research Database (Denmark)

    Højerslev, Christian; Odén, Magnus; Carstensen, Jesper V.

    2001-01-01

    X-ray lattice strains were investigated in an AISI M3:2 PM high-speed steel in the as heat treated condition and after exposure to alternating mechanical load. The volume changes during heat treatment were monitored with dilatometry. Hardened and tempered AISI M3:2 steel consists of tempered lath...

  2. High-speed fiber laser cutting of thick stainless steel for dismantling tasks

    Science.gov (United States)

    Shin, Jae Sung; Oh, Seong Yong; Park, Hyunmin; Chung, Chin-Man; Seon, Sangwoo; Kim, Taek-Soo; Lee, Lim; Choi, Byung-Seon; Moon, Jei-Kwon

    2017-09-01

    A high-speed fiber laser cutting technology of thick steels for dismantling tasks was achieved using a 6-kW fiber laser system. At first, a new cutting head for efficient cutting of thick steels was developed, which was composed by a collimator with a focal length of 160 mm and mirror-type focusing objects with a long focal length of 600 mm. The long focal length of the focusing object made it possible for the beam size to be small through the thick cutting material and the cutting efficiency was expected to increase compared with the short focal length. In addition, folding the beam facilitated the compact cutting head with a size of 160 mm (width) × 80 mm (height) × 640 mm (length) and a weight of 6.9 kg. In the cutting experiment, the laser beam was delivered to the cutting head by a 25-m long process fiber with a core diameter of 100 μm. The cutting performances were studied against the thicknesses of stainless steel plates. A maximum cutting speed of 72 mm/min was obtained for the 60-mm thick stainless steel plate cutting and the cut specimen showed an excellent kerf shape and a narrow kerf width. To the best of our knowledge, this cutting speed was higher than other previously reported results when cutting with a 6-kW laser power.

  3. Wear mechanisms in powder metallurgy high speed steels matrix composites

    International Nuclear Information System (INIS)

    Gordo, E.; Martinez, M. A.; Torralba, J. M.; Jimenez, J. A.

    2001-01-01

    The development of metal matrix composites has a major interest for automotive and cutting tools industries since they possess better mechanical properties and wear resistance than corresponding base materials. One of the manufacturing methods for these materials includes processing by powder metallurgy techniques. in this case, blending of both, base material and reinforcement powders constitute the most important process in order to achieve a homogeneous distribution of second phase particles. in the present work, composite materials of M3/2 tool steel reinforced with 2.5,5 and 8 vol% of niobium carbide have been prepared. In order to ensure a homogeneous mix, powders of both materials were mixed by dry high-energy mechanical milling at 200 r.p.m. for 40 h. After a recovering annealing, two routes for consolidate were followed die pressing and vacuum sintering, and hot isostatic pressing (HIP). Pin-on-disc tests were carried out to evaluate wear behaviour in all the materials. Results show that ceramic particles additions improve wear resistance of base material. (Author) 9 refs

  4. Alfinated coating structure on HS6-5-2 (SW7M high speed steel

    Directory of Open Access Journals (Sweden)

    T. Szymczak

    2010-10-01

    Full Text Available The paper presents the results of immersion alfinated coating structure in AlSi5 silumin on HS6-5-2 (SW7M high speed steel. Alfinating bath temperature was 750 ± 5 ° C, time of sample immersion was τ = 180s. Thickness of obtained coating under specified conditions was g = 150μm. Manufactured coating consists of three layers of different construction phase. The first layer from the substrate „g1`” constructed with a AlFe phase consist of alloy additives constituents of HS6-5-2 (SW7M steel: W, Mo, V, Cr and Si. On it crystallizes the second layer „g1``” of AlFeWMoCr intermetallic phases also containing Si and small amount of V. Last, the outer layer „g2” of the coating is composed with silumin including AlFeWMoCrVSi intermetallic phases. Within all layers of the coating occurs carbides. Penetration of carbides to individual coating layers is mainly due to steel surface partial melting and crystallizing layers „g1`” and „g1``” by alfinating liquid and shifting into her of carbides as well as partial carbides rejection by crystallization front of intermetallic phases occurs in coating.

  5. Control over Coating Structure during Electromagnetic Welding and Application of HighSpeed Steel Powder

    Directory of Open Access Journals (Sweden)

    L. M. Kozhuro

    2004-01-01

    Full Text Available The paper considers peculiar features concerning coating formation in the process of electromagnetic welding of high-speed steel powder. The paper reveals how to control coating structure that ensures the required operational properties of working surfaces of machine parts. 

  6. Characterization of Tool Wear in High-Speed Milling of Hardened Powder Metallurgical Steels

    Directory of Open Access Journals (Sweden)

    Fritz Klocke

    2011-01-01

    Full Text Available In this experimental study, the cutting performance of ball-end mills in high-speed dry-hard milling of powder metallurgical steels was investigated. The cutting performance of the milling tools was mainly evaluated in terms of cutting length, tool wear, and cutting forces. Two different types of hardened steels were machined, the cold working steel HS 4-2-4 PM (K490 Microclean/66 HRC and the high speed steel HS 6-5-3 PM (S790 Microclean/64 HRC. The milling tests were performed at effective cutting speeds of 225, 300, and 400 m/min with a four fluted solid carbide ball-end mill (0 = 6, TiAlN coating. It was observed that by means of analytically optimised chipping parameters and increased cutting speed, the tool life can be drastically enhanced. Further, in machining the harder material HS 4-2-4 PM, the tool life is up to three times in regard to the less harder material HS 6-5-3 PM. Thus, it can be assumed that not only the hardness of the material to be machined plays a vital role for the high-speed dry-hard cutting performance, but also the microstructure and thermal characteristics of the investigated powder metallurgical steels in their hardened state.

  7. Nitrogen concentration profiles in oxy-nitrited high-speed steel

    International Nuclear Information System (INIS)

    Barcz, A.; Turos, A.; Wielunski, L.

    1976-01-01

    Nuclear microanalysis has been applied for the determination of in-depth concentration profiles of nitrogen in oxy-nitrided high-speed steel. The concentration profiles were deduced from measurements of the nitrogen content, determined by means of the 14 N(d,α) 12 C reaction for the set of initially identical samples after the removal of surface layers of sequentially increasing thicknesses. The 1.2 MeV deuterons were obtained from the Institute of Nuclear Research Van de Graaf accelerator LECH. The α-particles produced in the 14 N(d,α) 12 C reaction were detected by means of silicon surface barrier detector mounted at 150 deg C. Strong blocking of the nitrogen diffusion due to the presence of oxygen has been observed. The accuracy of nitrogen detection is of the order of 5% for nitrogen-rich regions and 10% for the matrix. However, the local non-uniformity of the steel may cause a spread of about 20% of the measured values. (T.G.)

  8. GRINDABILITY OF SELECTED GRADES OF LOW-ALLOY HIGH-SPEED STEEL

    Directory of Open Access Journals (Sweden)

    Jan Jaworski

    2016-09-01

    Full Text Available In this paper, we presents the results of investigations studied the cutting ability and grindability of selected high-speed steels. We analysed the effect of the austenitization temperature on the grain size, the amount of retained austenite and percentage of retained austenite in HS3-1-1 steel. Furthermore, the investigations concerned on the efficiency of the keyway broaches during the whole period of operation were carried out. It was found that the value of average roughness parameter increases together with increases in the grinding depth. The investigations also show the influence of tempering conditions on the volume of carbide phases in HS3-1-1 steel.

  9. Investigation on the corrosion behavior of physical vapor deposition coated high speed steel

    Directory of Open Access Journals (Sweden)

    R Ravi Raja Malarvannan

    2015-08-01

    Full Text Available This work emphasizes on the influence of the TiN and AlCrN coatings fabricated on high speed steel form tool using physical vapor deposition technique. The surface microstructure of the coatings was studied using scanning electron microscope. Hardness and corrosion studies were also performed using Vickers hardness test and salt spray testing, respectively. The salt spray test results suggested that the bilayer coated (TiN- bottom layer and AlCrN- top layer substrate has undergone less amount of corrosion, and this is attributed to the dense microstructure. In addition to the above, the influence of the above coatings on the machining performance of the high speed steel was also evaluated and compared with that of the uncoated material and the results suggested that the bilayered coating has undergone very low weight loss when compared with that of the uncoated substrate depicting enhanced wear resistance.

  10. Impact test data obtained by analysis of high speed camera films

    International Nuclear Information System (INIS)

    Aquaro, D.; Forasassi, G.

    1990-01-01

    This paper deals with a high speed film elaboration procedure concerning 9m International Atomic Energy Agency free drop tests of a spent nuclear fuel cask. Drop tests of reduced-scale cask models, performed at the Dipartimento di Construzioni Meccaniche e Nucleari of Pisa, are described. The high speed films recorded during the impact test enabled the authors to obtain the motion law of the cask models. A numerical method implemented in order to perform the first and second differentiation of the displacement-time recorded data is shown. The experimental displacement-time discrete data are approximated with a Langrange interpolation polynomial, and the obtained curve is smoothed with a Butterworth digital low pass filter with M poles, in order to reduce the spurious oscillations caused by different kinds of errors which might be unacceptably amplified in the differentiation processes. Good agreement is obtained between the accelerations derived by the film data analysis and the experimentally-measured ones. The reported technique may be a valuable tool for the analysis of transient dynamic phenomena. (author)

  11. An Experiment Study on Surface Roughness in High Speed Milling NAK80 Die Steel

    Directory of Open Access Journals (Sweden)

    Su Fa

    2016-01-01

    Full Text Available The paper introduces that the high speed milling experiments on NAK80 die steel was carried out on the DMU 60 mono BLOCK five axis linkage high speed CNC machining center tool by the TiAlN coated tools, in order to research the effect of milling parameters on surface roughness Ra. The results showed that the Ra value increased with the decrease of milling speed vc, increased with the axial depth of milling ap, and feed per tooth fz and radial depth of milling ae. On the basis of the single factor experiment results, the mathematics model for between surface roughness and milling parameters were established by linear regression analysis.

  12. Development of Focused Ion Beam technique for high speed steel 3D-SEM artefact fabrication

    DEFF Research Database (Denmark)

    Carli, Lorenzo; MacDonald, A. Nicole; De Chiffre, Leonardo

    2009-01-01

    The work describes preliminary manufacture by grinding, followed by machining on a Focused Ion Beam (FIB), of a high speed steel step artefact for 3D-SEM calibration. The FIB is coupled with a SEM in the so called dual beam instrument. The milling capabilities of FIB were checked from a qualitative...... point of view, using the dual beam SEM imaging, and quantitatively using a reference stylus instrument, to establish traceability. A triangular section having a depth of about 10 μm was machined, where the 50 μm curvature radius due to grinding was reduced to about 2 μm by FIB milling...

  13. Influence of quenching parameters in the carbides presence in the AISI M2 high speed steel

    International Nuclear Information System (INIS)

    Magalhaes, A.S.; Maria, G.G.B; Martins, S.C.S.; Lopes, W.; Correa, E.C.S.; Bezerra, A.C.S.

    2014-01-01

    The main characteristic of high speed steels, besides maintaining high hardness at room temperature, is the ability of retain hardness when subjected to high temperatures and high cutting speeds. The high percentage of alloying elements in these steels allows the development of complex carbides, acquiring a high hardness by heat treatment. The aim of this study is to evaluate the effects of quenching parameters in the volumetric fraction of carbides by semi-quantitative metallography and of retained austenite by X-ray diffraction. It has been observed that, in general, the increase in the soaking time and in the austenitizing temperature resulted in the reduction of the amount of carbides and in an increase in the amount of retained austenite in the martensitic matrix. (author)

  14. Reduced activation ODS ferritic steel - recent development in high speed hot extrusion processing

    Energy Technology Data Exchange (ETDEWEB)

    Oksiuta, Zbigniew [Faculty of Mechanical Engineering, Bialystok Technical University (Poland); Lewandowska, Malgorzata; Kurzydlowski, Krzysztof [Faculty of Materials Science and Engineering, Warsaw University of Technology (Poland); Baluc, Nadine [Ecole Polytechnique Federale de Lausanne (EPFL), Centre de Recherches en Physique des Plasmas, Association Euratom-Confederation Suisse, Villigen PSI (Switzerland)

    2010-05-15

    The paper presents the microstructure and mechanical properties of an oxide dispersion strengthened (ODS), reduced activation, ferritic steel, namely the Fe-14Cr-2W-0.3Ti-0.3Y{sub 2}O{sub 3} alloy, which was fabricated by hot isostatic pressing followed by high speed hydrostatic extrusion (HSHE) and heat treatment HT at 1050 C. Transmission electron microscopy (TEM) observations revealed significant differences in the grain size and dislocation density between the as-HIPped and as-HSHE materials. It was also found that the microstructure of the steel is stable after HT. The HSHE process improves significantly the tensile and Charpy impact properties of the as-HIPped steel. The ultimate tensile strength at room temperature increases from 950 up to 1350 MPa, while the upper shelf energy increases from 3.0 up to 6.0 J. However, the ductile-to-brittle transition temperature (DBTT) remains relatively high (about 75 C).These results indicate that HSHE is a promising method for achieving grain refinement and thus improving the mechanical properties of ODS ferritic steels. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  15. A New Continuous Cooling Transformation Diagram for AISI M4 High-Speed Tool Steel

    Science.gov (United States)

    Briki, Jalel; Ben Slima, Souad

    2008-12-01

    The increasing evolution of dilatometric techniques now allows for the identification of structural transformations with very low signal. The use of dilatometric techniques coupled with more common techniques, such as metallographic, hardness testing, and x-ray diffraction allows to plot a new CCT diagram for AISI M4 high-speed tool steel. This diagram is useful for a better selection of alternate solutions, hardening, and tempering heat treatments. More accurate determination of the various fields of transformation of austenite during its cooling was made. The precipitation of carbides highlighted at high temperature is at the origin of the martrensitic transformation into two stages (splitting phenomena). For slow cooling rates, it was possible to highlight the ferritic, pearlitic, and bainitic transformation.

  16. Research of x-ray nondestructive detector for high-speed running conveyor belt with steel wire ropes

    Science.gov (United States)

    Wang, Junfeng; Miao, Changyun; Wang, Wei; Lu, Xiaocui

    2008-03-01

    An X-ray nondestructive detector for high-speed running conveyor belt with steel wire ropes is researched in the paper. The principle of X-ray nondestructive testing (NDT) is analyzed, the general scheme of the X-ray nondestructive testing system is proposed, and the nondestructive detector for high-speed running conveyor belt with steel wire ropes is developed. The hardware of system is designed with Xilinx's VIRTEX-4 FPGA that embeds PowerPC and MAC IP core, and its network communication software based on TCP/IP protocol is programmed by loading LwIP to PowerPC. The nondestructive testing of high-speed conveyor belt with steel wire ropes and network transfer function are implemented. It is a strong real-time system with rapid scanning speed, high reliability and remotely nondestructive testing function. The nondestructive detector can be applied to the detection of product line in industry.

  17. Tribological properties of high-speed steel treated by compression plasma flow

    International Nuclear Information System (INIS)

    Cherenda, K.K.; Uglov, V.V.; Anishchik, V.M.; Stalmashonak, A.K.; Astashinski, V.M.

    2004-01-01

    Full text: The investigation of tribological properties of two high-speed steels AISI M2 and AISI Tl treated by the nitrogen compression plasma flow was the main aim of this work. Two types of samples were investigated before and after quenching. The plasma flow was received in a magneto-plasma compressor. The impulse duration was ∼100 μs, the number of impulses varied in the range of 1-5, the nitrogen pressure in the chamber was 400-4000 Pa, the energy absorbed by the sample was 2-10 J/cm 2 per impulse. Tribological properties were examined by means of a tribometer TAYl under conditions of dry friction. The Vickers's microhardness was measured by a hard meter PMT3. X-ray diffraction analysis, Auger electron spectroscopy, scanning electron microscopy and energy dispersion microanalysis were used for samples characterization. The earlier conducted investigations showed that the compression plasma flow suited well for the improvement of tribological properties of iron and low-alloyed steels due to the formation of hardening nitrides in the near surface layer. It was found that in the case of high-speed steels only not quenched samples had increased hardness after treatment. The latter can be explained by the formation of hardening nitrides though the phase analysis did not clearly reveal their presence. The element composition confirmed the presence of nitrogen in the surface layer with the concentration up to 30 at. %. The treatment of quenched samples almost always resulted in the hardness decrease due to the dissolution or partial dissolution of alloying elements carbides: M 6 C, MC, M 23 C 6 . The rate of carbides dissolution increased with the growth of the energy absorbed by the sample. The treated samples showed a lower value of the friction coefficient than the untreated one. It could be explained by the formation of nitrogenous austenite which was found out by the phase analysis. At the same time the compression plasma flow strongly influenced surface

  18. Carbides crystalline structure of AISI M2 high-speed steel

    International Nuclear Information System (INIS)

    Serna, M.M.; Galego, E.; Rossi, J.L.

    2005-01-01

    The aim of this study was to identify the crystallographic structure of the extracted carbides of AISI M2 steel spray formed The structure determination of these carbides. The structure determination of these carbides is a very hard work. Since these structures were formed by atom migration it is not possible to reproduce them by a controlled process with a determined chemical composition. The solution of this problem is to obtain the carbide by chemical extraction from the steel. (Author)

  19. Study of the solidification of M2 high speed steel Laser Cladding coatings

    Directory of Open Access Journals (Sweden)

    Candel, J. J.

    2013-10-01

    Full Text Available High speed steel laser cladding coatings are complex because cracks appear and the hardness is lower than expected. In this paper AISI M2 tool steel coatings on medium carbon AISI 1045 steel substrate have been manufactured and after Laser Cladding (LC processing it has been applied a tempering heat treatment to reduce the amount of retained austenite and to precipitate secondary carbides. The study of metallurgical transformations by Scanning Electron Microscopy (SEM and Electron Back Scattered Diffraction (EBSD shows that the microstructure is extremely fine and complex, with eutectic transformations and MC, M2C and M6C precipitation. Therefore, after the laser coating is necessary to use post-weld heat treatments.Los recubrimientos de acero rápido por Laser Cladding (LC son complejos porque aparecen fisuras y la dureza es menor a la esperada. En este trabajo se han fabricado recubrimientos de acero AISI M2 sobre acero al carbono AISI 1045 y tras el procesado por láser, se han revenido para reducir la cantidad de austenita retenida y precipitar carburos secundarios. El estudio de las transformaciones metalúrgicas con Microscopía Electrónica de Barrido (MEB y Difracción de Electrones Retrodispersados (EBSD muestra que la microestructura es extremadamente fina y compleja, presenta transformaciones eutécticas y precipitación de carburos MC, M2C y M6C. Por tanto, tras el recubrimiento por láser es necesario recurrir a tratamientos térmicos post-soldeo.

  20. Spinodal decomposition in AISI 316L stainless steel via high-speed laser remelting

    Energy Technology Data Exchange (ETDEWEB)

    Chikarakara, Evans, E-mail: evans.chikarakara2@mail.dcu.ie [Advanced Processing Technology Research Centre, Dublin City University, Dublin (Ireland); Naher, Sumsun, E-mail: sumsun.naher@city.ac.uk [School of Engineering and Mathematical Sciences, City University London (United Kingdom); Brabazon, Dermot, E-mail: dermot.brabazon@dcu.ie [Advanced Processing Technology Research Centre, Dublin City University, Dublin (Ireland)

    2014-05-01

    A 1.5 kW CO{sub 2} pulsed laser was used to melt the surface of AISI 316L stainless steel with a view to enhancing the surface properties for engineering applications. A 90 μm laser beam spot size focused onto the surface was used to provide high irradiances (up to 23.56 MW/cm{sup 2}) with low residence times (as low as 50 μs) in order to induce rapid surface melting and solidification. Variations in microstructure at different points within the laser treated region were investigated. From this processing refined lamellar and nodular microstructures were produced. These sets of unique microstructures were produced within the remelted region when the highest energy densities were selected in conjunction with the lowest residence times. The transformation from the typical austenitic structure to much finer unique lamellar and nodular structures was attributed to the high thermal gradients achieved using these selected laser processing parameters. These structures resulted in unique characteristics including elimination of cracks and a reduction of inclusions within the treated region. Grain structure reorientation between the bulk alloy and laser-treated region occurred due to the induced thermal gradients. This present article reports on microstructure forms resulting from the high-speed laser surface remelting and corresponding underlying kinetics.

  1. Evaluation of Hole Quality in Hardened Steel with High-Speed Drilling Using Different Cooling Systems

    Directory of Open Access Journals (Sweden)

    Lincoln Cardoso Brandão

    2011-01-01

    Full Text Available This work evaluates the hole quality on AISI H13 hardened steel using high-speed drilling. Specimens were machined with new and worn out drills with 8.6 mm diameter and (TiAlN coating. Two levels of cutting speed and three levels of cooling/lubrication systems (flooded, minimum lubrication quantity, and dry were used. The hole quality is evaluated on surface roughness (Ra parameter, diameter error, circularity, and cylindricity error. A statistical analysis of the results shows that the cooling/lubrication system significantly affects the hole quality for all measured variables. This analysis indicates that dry machining produces the worst results. Higher cutting speeds not only prove beneficial to diameter error and circularity errors, but also show no significant difference on surface roughness and cylindricity errors. The effects of the interaction between the cooling/lubrication systems, tool wear, and cutting speed indicate that only cylindricity error is influenced. Thus, the conclusion is that the best hole quality is produced with a higher cutting speed using flooded or minimum lubrication quantity independent of drill wear.

  2. RESEARCH OF INFLUENCE OF THE HIGH-SPEED THERMAL PROCESSING REGIMES ON STRUCTURE AND MECHANICAL PROPERTIES OF PIPE STEEL 32G2

    Directory of Open Access Journals (Sweden)

    A. I. Gordienko

    2012-01-01

    Full Text Available Researches on influence of high-speed heating temperature, regimes of cooling and temperature of abatement on structure and mechanical properties of pipe steel 32G2 are carried out. Recommendations on the regimes of high-speed thermal processing of steel 32G2 which can be used at manufacturing of seamless pipes are given.

  3. Comparative study of AISI M3:2 high speed steel produced through different techniques of manufacturing; Estudo comparativo de acos rapidos AISI M3:2 produzidos por diferentes processos de fabricacao

    Energy Technology Data Exchange (ETDEWEB)

    Araujo Filho, Oscar Olimpio de

    2006-07-01

    In this work AISI M3:2 high speed steels obtained through different techniques of manufacturing, submitted to the same heat treatment procedure were evaluated by measuring their mechanical properties of transverse rupture strength and hardness. Sinter 23 obtained by hot isostatic pressing (HIP), VWM3C obtained by the conventional route and a M3:2 high speed steel obtained by cold compaction of water atomized powders and vacuum sintered with and without the addition of a small quantity of carbon were evaluated after the same heat treatment procedure. The vacuum sintered M3:2 high speed steel can be an alternative to the more expensive high speed steel produced by hot isostatic pressing and with similar properties presented by the conventional one. The characterization of the vacuum sintered M3:2 high speed steel was performed by measuring the densities of the green compacts and after the sintering cycle. The sintering produced an acceptable microstructure and densities near to the theoretical. The transverse rupture strength was evaluated by means of three point bending tests and the hardness by means of Rockwell C and Vickers tests. The technique of scanning electronic microscopy (SEM) was used to evaluate the microstructure and to establish a relation with the property of transverse rupture strength. The structure was determined by means of X-ray diffraction (XRD) patterns and the retained austenite was detected to all the conditions of heat treatment. The main contribution of this work is to establish a relation between the microstructure and the mechanical property of transverse rupture strength and to evaluate the AISI M3:2 vacuum sintered high speed steel as an alternative to the similar commercial high speed steels. (author)

  4. New Observations on High-Speed Machining of Hardened AISI 4340 Steel Using Alumina-Based Ceramic Tools

    Directory of Open Access Journals (Sweden)

    Mohamed Shalaby

    2018-05-01

    Full Text Available High-speed machining (HSM is used in industry to improve the productivity and quality of the cutting operations. In this investigation, pure alumina ceramics with the addition of ZrO2, and mixed alumina (Al2O3 + TiC tools were used in the dry hard turning of AISI 4340 (52 HRC at different high cutting speeds of 150, 250, 700 and 1000 m/min. It was observed that at cutting speeds of 150 and 250 m/min, pure alumina ceramic tools had better wear resistance than mixed alumina ones. However, upon increasing the cutting speed from 700 to 1000 m/min, mixed alumina ceramic tools outperformed pure ceramic ones. Scanning electron microscopy (SEM and X-ray photoelectron spectroscopy (XPS were used to investigate the worn cutting edges and analyze the obtained results. It was found that the tribo-films formed at the cutting zone during machining affected the wear resistances of the tools and influenced the coefficient of friction at the tool-chip interface. These observations were confirmed by the chip compression ratio results at different cutting conditions. Raising cutting speed to 1000 m/min corresponded to a remarkable decrease in cutting force components in the dry hard turning of AISI 4340 steel.

  5. Magnetic characterization of the stator core of a high-speed motor made of an ultrathin electrical steel sheet using the magnetic property evaluation system

    Directory of Open Access Journals (Sweden)

    Mohachiro Oka

    2018-04-01

    Full Text Available Recently, the application areas for electric motors have been expanding. For instance, electric motors are used in new technologies such as rovers, drones, cars, and robots. The motor used in such machinery should be small, high-powered, highly-efficient, and high-speed. In such motors, loss at high-speed rotation must be especially minimal. Eddy-current loss in the stator core is known to increase greatly during loss at high-speed rotation of the motor. To produce an efficient high-speed motor, we are developing a stator core for a motor using an ultrathin electrical steel sheet with only a small amount of eddy-current loss. Furthermore, the magnetic property evaluation for efficient, high-speed motor stator cores that use conventional commercial frequency is insufficient. Thus, we made a new high-speed magnetic property evaluation system to evaluate the magnetic properties of the efficient high-speed motor stator core. This system was composed of high-speed A/D converters, D/A converters, and a high-speed power amplifier. In experiments, the ultrathin electrical steel sheet dramatically suppressed iron loss and, in particular, eddy-current loss. In addition, a new high-speed magnetic property evaluation system accurately evaluated the magnetic properties of the efficient high-speed motor stator core.

  6. Magnetic characterization of the stator core of a high-speed motor made of an ultrathin electrical steel sheet using the magnetic property evaluation system

    Science.gov (United States)

    Oka, Mohachiro; Enokizono, Masato; Mori, Yuji; Yamazaki, Kazumasa

    2018-04-01

    Recently, the application areas for electric motors have been expanding. For instance, electric motors are used in new technologies such as rovers, drones, cars, and robots. The motor used in such machinery should be small, high-powered, highly-efficient, and high-speed. In such motors, loss at high-speed rotation must be especially minimal. Eddy-current loss in the stator core is known to increase greatly during loss at high-speed rotation of the motor. To produce an efficient high-speed motor, we are developing a stator core for a motor using an ultrathin electrical steel sheet with only a small amount of eddy-current loss. Furthermore, the magnetic property evaluation for efficient, high-speed motor stator cores that use conventional commercial frequency is insufficient. Thus, we made a new high-speed magnetic property evaluation system to evaluate the magnetic properties of the efficient high-speed motor stator core. This system was composed of high-speed A/D converters, D/A converters, and a high-speed power amplifier. In experiments, the ultrathin electrical steel sheet dramatically suppressed iron loss and, in particular, eddy-current loss. In addition, a new high-speed magnetic property evaluation system accurately evaluated the magnetic properties of the efficient high-speed motor stator core.

  7. Flank wear analysing of high speed end milling for hardened steel D2 using Taguchi Method

    Science.gov (United States)

    Hazza Faizi Al-Hazza, Muataz; Ibrahim, Nur Asmawiyah bt; Adesta, Erry T. Y.; Khan, Ahsan Ali; Abdullah Sidek, Atiah Bt.

    2017-03-01

    One of the main challenges for any manufacturer is how to decrease the machining cost without affecting the final quality of the product. One of the new advanced machining processes in industry is the high speed hard end milling process that merges three advanced machining processes: high speed milling, hard milling and dry milling. However, one of the most important challenges in this process is to control the flank wear rate. Therefore a analyzing the flank wear rate during machining should be investigated in order to determine the best cutting levels that will not affect the final quality of the product. In this research Taguchi method has been used to investigate the effect of cutting speed, feed rate and depth of cut and determine the best level s to minimize the flank wear rate up to total length of 0.3mm based on the ISO standard to maintain the finishing requirements.

  8. MATHEMATICAL FORMULATION OF PLASTIC CHARACTERISTICS OF WIRE OF STEEL 70 AT HIGH-SPEED WIRE DRAWING

    Directory of Open Access Journals (Sweden)

    Yu. L. Bobarikin

    2011-01-01

    Full Text Available The carried out numerical experiments subject to initial and boundary conditions indicate that mathematical model of elastic-plastic characteristics of steel 90 can be used for numerical calculations of wire drawing routes for this grade of steel.

  9. Simulated HAZ continuous cooling transformation diagram of a bogie steel of high-speed railway

    Science.gov (United States)

    Liu, Yue; Chen, Hui; Liu, Yan; Hang, Zongqiu

    2017-07-01

    Simulated HAZ continuous cooling transformation (SH-CCT) diagram presents the start and end points of phase transformation and the relationships of the microstructures of HAZ, temperature and cooling rates. It is often used to assess the weldability of materials. In this paper, a weathering steel Q345C which is widely used in the bogies manufacturing was studied. The cooling times from 800∘C to 500∘C (t8/5) were from 3 s to 6000 s, aiming to study the microstructures under different cooling rates. Different methods such as color metallography were used to obtain the metallography images. The results show that ferrite nucleates preferentially at the prior austenite grain boundaries and grows along the grain boundaries with a lath-like distribution when t8/5 is 300 s. Austenite transforms into ferrite, pearlite and bainite with decreasing t8/5. Pearlite disappears completely when t8/5 = 150 s. Martensite gradually appears when t8/5 decreases to 30 s. The hardness increases with decreasing t8/5. The SH-CCT diagram indicates that the welding input and t8/5 should be taken into consideration when welding. This work provides the relationships of welding parameters and microstructures.

  10. Chip formation and surface integrity in high-speed machining of hardened steel

    Science.gov (United States)

    Kishawy, Hossam Eldeen A.

    Increasing demands for high production rates as well as cost reduction have emphasized the potential for the industrial application of hard turning technology during the past few years. Machining instead of grinding hardened steel components reduces the machining sequence, the machining time, and the specific cutting energy. Hard turning Is characterized by the generation of high temperatures, the formation of saw toothed chips, and the high ratio of thrust to tangential cutting force components. Although a large volume of literature exists on hard turning, the change in machined surface physical properties represents a major challenge. Thus, a better understanding of the cutting mechanism in hard turning is still required. In particular, the chip formation process and the surface integrity of the machined surface are important issues which require further research. In this thesis, a mechanistic model for saw toothed chip formation is presented. This model is based on the concept of crack initiation on the free surface of the workpiece. The model presented explains the mechanism of chip formation. In addition, experimental investigation is conducted in order to study the chip morphology. The effect of process parameters, including edge preparation and tool wear on the chip morphology, is studied using Scanning Electron Microscopy (SEM). The dynamics of chip formation are also investigated. The surface integrity of the machined parts is also investigated. This investigation focusses on residual stresses as well as surface and sub-surface deformation. A three dimensional thermo-elasto-plastic finite element model is developed to predict the machining residual stresses. The effect of flank wear is introduced during the analysis. Although residual stresses have complicated origins and are introduced by many factors, in this model only the thermal and mechanical factors are considered. The finite element analysis demonstrates the significant effect of the heat generated

  11. Effect of vanadium carbide on dry sliding wear behavior of powder metallurgy AISI M2 high speed steel processed by concentrated solar energy

    Energy Technology Data Exchange (ETDEWEB)

    García, C. [Materials Engineering. E.I.I., Universidad de Valladolid. C/Paseo del cauce 59, 47011 Valladolid (Spain); Romero, A. [E.T.S. Ingenieros Industriales. Instituto de Investigaciones Energéticas y Aplicaciones Industriales (INEI). Universidad de Castilla-La Mancha, Edificio Politécnico, Avda. Camilo José Cela s/n, 13071 Ciudad Real (Spain); Herranz, G., E-mail: gemma.herranz@uclm.es [E.T.S. Ingenieros Industriales. Instituto de Investigaciones Energéticas y Aplicaciones Industriales (INEI). Universidad de Castilla-La Mancha, Edificio Politécnico, Avda. Camilo José Cela s/n, 13071 Ciudad Real (Spain); Blanco, Y.; Martin, F. [Materials Engineering. E.I.I., Universidad de Valladolid. C/Paseo del cauce 59, 47011 Valladolid (Spain)

    2016-11-15

    Mixtures of AISI M2 high speed steel and vanadium carbide (3, 6 or 10 wt.%) were prepared by powder metallurgy and sintered by concentrated solar energy (CSE). Two different powerful solar furnaces were employed to sinter the parts and the results were compared with those obtained by conventional powder metallurgy using a tubular electric furnace. CSE allowed significant reduction of processing times and high heating rates. The wear resistance of compacts was studied by using rotating pin-on-disk and linearly reciprocating ball-on-flat methods. Wear mechanisms were investigated by means of scanning electron microscopy (SEM) observations and chemical inspections of the microstructures of the samples. Better wear properties than those obtained by conventional powder metallurgy were achieved. The refinement of the microstructure and the formation of carbonitrides were the reasons for this. - Highlights: •Powder metallurgy of mixtures of M2 high speed steel and VC are studied. •Some sintering is done by concentrated solar energy. •Rotating pin-on-disk and linearly reciprocating ball-on-flat methods are used. •The tribological properties and wear mechanisms, under dry sliding, are studied.

  12. Influence of Heat Treatment on Content of the Carbide Phases in the Microstructure of High-Speed Steel

    Directory of Open Access Journals (Sweden)

    Jaworski J.

    2017-09-01

    Full Text Available This article presents the results of investigations of the effect of heat treatment temperature on the content of the carbide phase of HS3-1-2 and HS6-5-2 low-alloy high-speed steel. Analysis of the phase composition of carbides is carried out using the diffraction method. It is determined that with increasing austenitising temperature, the intensification of dissolution of M6C carbide increases. As a result, an increase in the grain size of the austenite and the amount of retained austenite causes a significant reduction in the hardness of hardened steel HS3-1-2 to be observed. The results of diffraction investigations showed that M7C3 carbides containing mainly Cr and Fe carbides and M6C carbides containing mainly Mo and W carbides are dissolved during austenitisation. During austenitisation of HS3-1-2 steel, the silicon is transferred from the matrix to carbides, thus replacing carbide-forming elements. An increase in a degree of tempering leads to intensification of carbide separation and this process reduce the grindability of tested steels.

  13. Structural changes of carbides in a high-speed steel - M2 - after hardness and drawing back

    International Nuclear Information System (INIS)

    Santos, D.B.; Luz Ferreira, O. da; Ribeiro, O.L.R.

    1984-01-01

    The microstructure of a high-speed steel was studied through the scanning electron microscope. The carbide chemical composition was determined by the X-ray energy spectroscopy. The analyses were done in situ and in precipitate extracted from carbon replica. The phases were shown through the X-ray diffraction in the wastes from electrolytic use. In the annealed structure, some carbides as M 6 C, MC and M 23 C 6 and in the annealed and drawing back structure, carbide as M 6 C and MC were seen. The volumetric fraction of each type was calculated by quantitative metalography. The utilization of the replica technique allows the analysis of carbides smaller than 1 μm without the matrix interference. (E.G.) [pt

  14. Influence of hot rolling and high speed hydrostatic extrusion on the microstructure and mechanical properties of RAF ODS steel

    International Nuclear Information System (INIS)

    Oksiuta, Z.; Kurzydlowski, K.J.; Baluc, N.

    2009-01-01

    Argon gas atomized, pre-alloyed Fe-14Cr-2W-0.3Ti oxide dispersion strengthened (ODS) ferritic steel powder was mechanically alloyed with 0.3Y2O3 (wt.%) nano-particles in attritor ball mill and consolidated by hot isostatic pressing (HIP) at 1150 deg. C under pressure of 200 MPa for 3 hrs. To improve mechanical properties of as HIPped ODS ingots the material was undergone further thermo-mechanical treatment (TMT), namely: hot rolling (HR) at 850 deg. C or high speed hot extrusion (HSHE) at 850 deg. C. After TMT both materials were annealed at 1050 deg. C for 1 h in vacuum. Transmission electron microscopy (TEM) observations of the ODS alloys after TMT and heat treatment exhibited elongated in a longitudinal direction grains with an average size of 75 μm. However, an equiaxed, smaller than 500 nm grains were also found in the microstructure of both materials. Different size and morphology of oxides particles were also observed. Bigger, about 150 nm Ti-Al-O particles were usually located at grain boundaries whereas Y-Ti-O nanoclusters of about 5 nm were uniformly distributed in ODS steel matrix. The Charpy impact tests revealed significantly better about 90% (5.8 J) upper shelf energy (USE) of material after HSHE but ductile to brittle transition temperature (DBTT) of both alloys was unsatisfactory. As-HR ODS steel has shown DBTT of about 55 deg. C whereas HSHE ODS steel has about 75 deg. C. This relatively high values of transition temperature were probably caused by oxides particles present at grain boundaries of the ODS alloys which decreased fracture properties of the ODS steels. High temperature tensile properties of both ODS alloys are found to be satisfactory in full range of the testing temperature from 23 up to 750 deg. C. However, about 15% better UTS and YS0.2 (1350 MPa and 1285 MPa, respectively) as well as ductility were measured in the case of the as-HSHE ODS steel. These results indicates that HSHE process of the ODS steel can be considered as more

  15. Wear mechanism of CBN cutting tool during high-speed machining of mold steel

    International Nuclear Information System (INIS)

    Farhat, Z.N.

    2003-01-01

    Wear behavior of cubic boron nitride (CBN) cutting tool when cutting P20 tool steel was investigated. Oblique cutting tests were performed on a CNC lathe using five speeds, namely, 240, 600 and 1000 m min -1 . The CBN cutting tools were found to be superior to tungsten carbide (WC) tools. Fourfold increase in productivity and significant reduction in chipping and cratering was achieved for CBN as compared to WC. Wear, as the width of the wear land (VB), was monitored at selected time intervals; furthermore, topography of worn surfaces was performed, using a profilometer. Wear characterization of the rake and the flank surfaces as well as of the collected chips was conducted using a scanning electron microscopy (SEM), backscattered electron imaging and energy depressive X-ray (EDX). It was found that deformation in the chips occurs by localized shear deformation and the dominant wear mechanism at all speeds used was identified to be diffusive wear. At a 1000 m min -1 cutting speed, a secondary wear mechanism was identified, which is melt wear, i.e., formation of low melting point Cr and Mn compounds with the tool material and the subsequent ejection from the cutting zone

  16. Influence of hot rolling and high speed hydrostatic extrusion on the microstructure and mechanical properties of an ODS RAF steel

    Energy Technology Data Exchange (ETDEWEB)

    Oksiuta, Z., E-mail: oksiuta@pb.edu.pl [Bialystok Technical University, Faculty of Mechanical Engineering, Wiejska 45c, 15-352 Bialystok (Poland); Lewandowska, M.; Kurzydlowski, K.J. [Warsaw University of Technology, Faculty of Materials Science and Engineering, Woloska 141, 02-504 Warsaw (Poland); Baluc, N. [Ecole Polytechnique Federale de Lausanne (EPFL), Centre de Recherches en Physique des Plasmas, Association Euratom-Confederation Suisse, 5232 Villigen PSI (Switzerland)

    2011-02-15

    An argon gas atomized, pre-alloyed Fe-14Cr-2W-0.3Ti (wt.%) reduced activation ferritic (RAF) steel powder was mechanically alloyed with 0.3wt.% Y{sub 2}O{sub 3} nano-particles in an attritor ball mill and consolidated by hot isostatic pressing at 1150 {sup o}C under a pressure of 200 MPa for 3 h. In the aim to improve its mechanical properties the ODS steel was then submitted to a thermo-mechanical treatment (TMT): hot rolling (HR) at 850 deg. C or high speed hydrostatic extrusion (HSHE) at 900 deg. C, followed by heat treatment (HT). Transmission electron microscopy (TEM) observations of the ODS alloys after TMT and heat treatment revealed the presence of elongated grains in the longitudinal direction, with an average width of 8 {mu}m and an average length of 75 {mu}m, and equiaxed grains, a few microns in diameter, in the transverse direction. Two populations of oxide particles were observed by TEM: large Ti-Al-O particles, up to 250 nm in diameter, usually located at the grain boundaries and small Y-Ti-O nanoclusters, about 2.5 nm in diameter, uniformly distributed in the matrix. Charpy impact tests revealed that the HSHE material exhibits a larger upper shelf energy (5.8 J) than the HR material (2.9 J). The ductile-to-brittle transition temperature of both alloys is relatively high, in the range of 55-72 deg. C. Tensile mechanical properties of both ODS alloys were found satisfactory over the full range of investigated temperatures (23-750 deg. C). The HSHE material exhibits better tensile strength and ductility than the HR material. These results indicate that HSHE can be considered as a promising TMT method for improving the mechanical properties of ODS RAF steels.

  17. Microstructural characterization of WC-TiC-Co cutting tools during high-speed machining of P20 mold steel

    International Nuclear Information System (INIS)

    Farhat, Z.N.

    2003-01-01

    The wear behavior of tungsten carbide (WC)-TiC-Co cutting tools during cutting P20 tool steel was investigated. Orthogonal cutting tests were performed on a CNC lathe using five speeds, namely, 60, 120, 240, 380 and 600 m/min. Wear, as the width of the wear land, was monitored at five time intervals. Wear characterization of the rake and the flank surfaces as well as the collected chips was performed using scanning electron microscopy (SEM), backscattered electron imaging and energy-dispersive X-ray analysis (EDX). Microhardness of collected chips was also performed to monitor strain hardening effects during cutting. Two dominant wear mechanisms were identified: at high speed (380-600 m/min), wear was found to occur by a melt wear mechanism; at low speed (60-120 m/min), adhesion (built-up edge) followed by delamination was found to be the cause of wear damage. It was also found that deformation in the chips occurred by localized shear deformation

  18. Joint punching and frequency effects on practical magnetic characteristics of electrical steels for high-speed machines

    Science.gov (United States)

    Kedous-Lebouc, A.; Messal, O.; Youmssi, A.

    2017-03-01

    Mechanical punching of electrical steels causes a degradation of their magnetic characteristics which can extend several millimeters from the cut edge. So, in the field of industrial applications, particularly that of small electrical machines, the stator core made of rigid and thin teeth would be subject to more losses. Thus, this topic of the effect of punching has to be submitted to further deep characterization and development in order to give some insight into the different mechanisms. In this framework, this paper evaluates the combined effect of punching and frequency on the magnetization curve and iron losses in thin SiFe and CoFe soft magnetic sheets. These alloys are typically suitable for the manufacture of high-speed electrical machines used in on board applications (aircraft power generators, automotive, etc). Two SiFe alloys and a CoFe alloy have been investigated. First, different rectangular samples of variable width (15, 10, 5, 3 mm) have been industrially punched. Then, a dedicated magnetic characterization has been made, using basically a mini-Epstein frame. Measurements have been performed from 50 Hz to 1 kHz and from 0.3 T to near saturation. Both rolling and transverse directions have been considered. Finally, a first attempt to predict the degradation due to the punching is presented. A useful description of the magnetic permeability as a function of B and f is given and the degradation parameters are estimated based on the knowledge of the reference permeability.

  19. Joint punching and frequency effects on practical magnetic characteristics of electrical steels for high-speed machines

    Energy Technology Data Exchange (ETDEWEB)

    Kedous-Lebouc, A. [Univ. Grenoble Alpes, G2Elab, F-38000 Grenoble, France — CNRS, G2Elab, F-38000 Grenoble (France); Messal, O., E-mail: oualid.messal@g2elab.grenoble-inp.fr [Univ. Grenoble Alpes, G2Elab, F-38000 Grenoble, France — CNRS, G2Elab, F-38000 Grenoble (France); Youmssi, A. [Université de N’gaoundéré, BP. 455 N’Gaoundéré (Cameroon)

    2017-03-15

    Mechanical punching of electrical steels causes a degradation of their magnetic characteristics which can extend several millimeters from the cut edge. So, in the field of industrial applications, particularly that of small electrical machines, the stator core made of rigid and thin teeth would be subject to more losses. Thus, this topic of the effect of punching has to be submitted to further deep characterization and development in order to give some insight into the different mechanisms. In this framework, this paper evaluates the combined effect of punching and frequency on the magnetization curve and iron losses in thin SiFe and CoFe soft magnetic sheets. These alloys are typically suitable for the manufacture of high-speed electrical machines used in on board applications (aircraft power generators, automotive, etc). Two SiFe alloys and a CoFe alloy have been investigated. First, different rectangular samples of variable width (15, 10, 5, 3 mm) have been industrially punched. Then, a dedicated magnetic characterization has been made, using basically a mini-Epstein frame. Measurements have been performed from 50 Hz to 1 kHz and from 0.3 T to near saturation. Both rolling and transverse directions have been considered. Finally, a first attempt to predict the degradation due to the punching is presented. A useful description of the magnetic permeability as a function of B and f is given and the degradation parameters are estimated based on the knowledge of the reference permeability.

  20. Determination of V, W and Mn in high-speed steel by neutron activation source of 241Am/Be

    International Nuclear Information System (INIS)

    Villar, H.P.; Galdino, S.M.L.; Godoy, M.O.; Dantas, C.C.

    1982-01-01

    Alloying elements are responsible for certain characteristics of the steels which enable their utilization for specific purposes. The concentrations of these elements must comply with strict standards, and the determination of these concentrations involve chemical analyses which are as a rule tedious and expensive. It is proposed here a fast and precise analytical process based on the neutron activation analysis. A significant correlation (r = 0.998) between manganese concentration and mean specific count rate of 56 Mn was obtained for activated tool steel samples. Later on, bases for tungsten vanadium determinations were set. (Author) [pt

  1. Analysis of Welding Zinc Coated Steel Sheets in Zero Gap Configuration by 3D Simulations and High Speed Imaging

    Science.gov (United States)

    Koch, Holger; Kägeler, Christian; Otto, Andreas; Schmidt, Michael

    Welding of zinc coated sheets in zero gap configuration is of eminent interest for the automotive industry. This Laser welding process would enable the automotive industry to build auto bodies with a high durability in a plain manufacturing process. Today good welding results can only be achieved by expensive constructive procedures such as clamping devices to ensure a defined gad. The welding in zero gap configuration is a big challenge because of the vaporised zinc expelled from the interface between the two sheets. To find appropriate welding parameters for influencing the keyhole and melt pool dynamics, a three dimensional simulation and a high speed imaging system for laser keyhole welding have been developed. The obtained results help to understand the process of the melt pool perturbation caused by vaporised zinc.

  2. Modification of AISI M2 high speed tool steels after laser surface melting under different operation conditions; Modificacion de los aceros rapidos de herramientas AISI M2 por fusion superficial con laser bajo diferentes condiciones de operacion

    Energy Technology Data Exchange (ETDEWEB)

    Arias, J.; Cabeza, M.; Castro, G.; Feijoo, I.; Merino, P.; Pena, G.

    2010-07-01

    We applied a laser surface melting treatment to AISIM2 high-speed steel hardened and tempered- and studied the resulting surface characteristics (microstructure) and mechanical behavior (hardness and wear performance). The steel was treated using a Nd:YAG continuous-wave laser with different operation conditions. The influence of the laser processing parameters on the single tracks and on melted surface layer obtained by multipass system with 50% overlap were studied. The microstructure for all conditions is formed by MC- and M{sub 2}C-type carbides, martensite and retained austenite; the quantities of this phase depends on the operations conditions. It has been determined that low levels of power density and high speed scanning of the beam leads to greater homogeneity in the microstructure with high hardness values and wear resistance. (Author) 26 refs.

  3. The influence of remelting parameters of the electric arc and conventional tempering on the tribological resistance of high speed steel HS 6-5-2

    Directory of Open Access Journals (Sweden)

    A. Dziedzic

    2011-07-01

    Full Text Available The present thesis depicts the results of the research of tribological high speed steel HS 6-5-2 remelted with the electric arc. Steel was remelted with different parameters. The amperage of electric arc was changed, the scanning speed was changed and the single, overlapping remeltings were used. There was also the influence of conventional tempering defined, which was conducted after remelting on the tribological resistance of hardened steel. For the previously mentioned processing variants, the intensity of tribological wear was defined and the linear wear were presented, and the friction coefficients. The type of tribological wear was also given, present during the friction, technically dry, of the hardened steel. The lower intensity of tribological wear was received for the single remelting by electric arc of 50 and 70A. Using the overlapping remeltings for the strengening of the surface layer of the high speed steel HS 6-5-2 causes the increase of the intensity of tribological wear in comparison to the steel with the single remelting. The conventional tempering leads to the decrease of the intensity of tribological wear.

  4. Prediction of microstructure and ductile damage of a high-speed railway axle steel during cross wedge rolling

    OpenAIRE

    Huo, Y; Lin, J; Bai, Q; Wang, B; Tang, X; Ji, H

    2016-01-01

    Microstructure and ductile damage have a significant influence on the deformation behavior of high-speed railway axles during hot cross wedge rolling (CWR) and its final performance. In this study, based on the continuum damage mechanics, a multiaxial constitutive model coupling microstructure and ductile damage was established to predict the evolution of microstructure and ductile damage of 25CrMo4 during hot CWR processes. Material constants within the multiaxial constitutive model were det...

  5. To Enhance the Fire Resistance Performance of High-Speed Steel Roller Door with Water Film System

    Directory of Open Access Journals (Sweden)

    De-Hua Chung

    2015-01-01

    Full Text Available The structure of high-speed roller door with water film has improved in this study. The flameproof water film system is equipped with a water circulating device to reduce the water consumption of water film system. The water film is generated at the roller box of the high-speed roller door in this study. The heating test is done with the full-scale heating furnace. Both cases of the water film on unexposed surface and water film on exposed surface passed the fire resistance test based on ISO 834, proving that the high-speed roller door with water film system has 120A fire resistance period. The main findings indicate that the water film on exposed surface shows that as the amount of water film evaporated by high temperature inside the furnace must be greater than the evaporation capacity of water film on unexposed surface, the required water supply is 660 L more than the water film on unexposed surface.

  6. High speed atom source

    International Nuclear Information System (INIS)

    Hoshino, Hitoshi.

    1990-01-01

    In a high speed atom source, since the speed is not identical between ions and electrons, no sufficient neutralizing effect for ionic rays due to the mixing of the ionic rays and the electron rays can be obtained failing to obtain high speed atomic rays at high density. In view of the above, a speed control means is disposed for equalizing the speed of ions forming ionic rays and the speed of electrons forming electron rays. Further, incident angle of the electron rays and/or ionic rays to a magnet or an electrode is made variable. As a result, the relative speed between the ions and the electrons to the processing direction is reduced to zero, in which the probability of association between the ions and the electrons due to the coulomb force is increased to improve the neutralizing efficiency to easily obtain fine and high density high speed electron rays. Further, by varying the incident angle, a track capable of obtaining an ideal mixing depending on the energy of the neutralized ionic rays is formed. Since the high speed electron rays has such high density, they can be irradiated easily to the minute region of the specimen. (N.H.)

  7. Effect of nitrogen on the stabilization of austenite in a tungsten-molybdenum high-speed steel

    International Nuclear Information System (INIS)

    Popandopulo, A.N.; Zhukova, L.T.

    1986-01-01

    A study was made of the tendency of steels R6M5 and R6Am5 to austenite stabilization after subzero treatment and high-temperature tempering in hot-rolled bars. Data indicate that in steel R6AM5 during quenching there is almost instantaneous austenite stabilization. The data was derived from a study of phase composition (exposure from a microsection in DRON-2.0 equipment in iron K /SUB alpha/ radiation), microstructure, and hardness. The authors conclude that in view of serious difficulties in metallurgical and tool production, steel R6AM5 should be supplied only at the request of the customer

  8. Finite Element Modelling of the effect of tool rake angle on tool temperature and cutting force during high speed machining of AISI 4340 steel

    International Nuclear Information System (INIS)

    Sulaiman, S; Roshan, A; Ariffin, M K A

    2013-01-01

    In this paper, a Finite Element Method (FEM) based on the ABAQUS explicit software which involves Johnson-Cook material model was used to simulate cutting force and tool temperature during high speed machining (HSM) of AISI 4340 steel. In this simulation work, a tool rake angle ranging from 0° to 20° and a range of cutting speeds between 300 to 550 m/min was investigated. The purpose of this simulation analysis was to find optimum tool rake angle where cutting force is smallest as well as tool temperature is lowest during high speed machining. It was found that cutting forces to have a decreasing trend as rake angle increased to positive direction. The optimum rake angle observed between 10° and 18° due to decrease of cutting force as 20% for all simulated cutting speeds. In addition, increasing cutting tool rake angle over its optimum value had negative influence on tool's performance and led to an increase in cutting temperature. The results give a better understanding and recognition of the cutting tool design for high speed machining processes

  9. Safety of High Speed Magnetic Levitation Transportation Systems : Thermal Effects and Related Safety Issues of Typical Maglev Steel Guideways

    Science.gov (United States)

    1994-09-01

    This report presents a theoretical analysis predicting the temperature distribution, thermal deflections, and thermal stresses that may occur in typical steel Maglev guideways under the proposed Orlando FL thermal environment. Transient, finite eleme...

  10. The effect of product quality on the integrity of advanced surface engineering treatments applied to high speed steel circular saw blades

    International Nuclear Information System (INIS)

    Bradbury, S.R.; Sarwar, M.

    1996-01-01

    Advanced surface engineering technologies have been successfully applied to high speed steel drills and carbide single-point cutting tools, but, as yet, limited benefits have been realized when applying the same technologies to multi-point cutting tools of commercial quality. This paper discusses the factors that have limited the benefits of advanced surface engineering treatments when applied to high speed steel circular saw blades. Common manufacturing defects have been identified on the teeth of the blades. Tests which evaluate the blade performance throughout its useful life and examination by scanning electron microscopy (SEM) have shown that these defects adversely affect the performance and wear resistance of surface engineered blades. Further investigations suggest that significant improvements in coating integrity can be achieved through the careful preparation of the substrate surface and refinement of the cutting edge geometry prior to treatment. For this application, the need for refinement and enhancement of current manufacturing practices is demonstrated if the full benefits of advanced surface engineering are to be realized. (orig.)

  11. Effects of surfactant addition and high-speed ball milling on magnetic powders based on Pr-Fe-B obtained by HDDR

    International Nuclear Information System (INIS)

    Santos, Patricia Brissi

    2011-01-01

    This work verified the effect caused by adding the surfactant in the high speed/energy milling in order to obtain Pr 12 Fe 65.9 Co 16 B 6 Nb 0.1 magnetic nano powders. The first part of this work involved the magnetic powder obtainment through the process of hydrogenation, disproportionation, desorption and recombination (HDDR). The pressure of H2 during the hydrogenation and disproportion steps was 930 mbar and the temperature of desorption and recombination was 840 deg C. Initially, the HDDR powders were subjected a high speed milling process at 900 rpm, with quantity variations of the milling medium (cyclohexane) and without the addition of oleic acid. Then, the HDDR powders were subjected to the milling process with the addition of oleic acid and with milling time variations. After the milling process, heat treatments of the powder were carried out at 700 deg C or 800 deg C for 30 minutes in order to obtain the crystallization of the powder. By performing the procedures, it was verified that the milling efficiency improved with the addition of 6.6 ml of cyclohexane as the milling medium and with the addition of oleic acid. It was determined that for the surfactant additions of 0.02 ml to 0.05 ml, with a milling time of up to 360 minutes, powder agglomeration does not occur in the milling pot and the milling efficiency is higher than 90%. The second stage of this work involved the magnetic powder's characterization obtained by using vibrating sample magnetometer, scanning electron microscopy, transmission electron microscopy and X-ray diffraction. Through the characterizations it was found that the powder's magnetic properties improved when the addition of oleic acid in a high-speed /energy milling occurred. It was also verified that the α-Fe phase, present in the powder, shows a crystallite size decrease (from 35 nm to ∼ 10 nm) when the time milling variation occurred; meanwhile, the crystallinity degree was lower in the Pr 2 Fe 14 B phase when the time

  12. Evolution mechanisms of MgO·Al2O3 inclusions by cerium in spring steel used in fasteners of high-speed railway

    International Nuclear Information System (INIS)

    Wang Lijun; Wang Qi; Chou Kuochih; Liu Yanqiang

    2015-01-01

    The effect of rare earth metal addition on the non-metallic inclusions in spring steel used in fastener of high speed railway was investigated by metallographic examination; SEM-EDS and component analysis, aiming at deform those harmful inclusions to improve service life of spring steel. MgO·Al 2 O 3 inclusions were found in present experimental steel, which is also confirmed by the stability diagram of MgO/MgO·Al 2 O 3 /Al 2 O 3 from thermodynamic consideration. After Ce addition, the evolution process of Al 2 O 3 ·MgO inclusions was determined through the surface and line scanning. The effects of time and Ce content on the evolution of Al 2 O 3 ·MgO inclusions were examined. It was indicated that Al 2 O 3 ·MgO inclusions were wrapped by rare earth inclusions to form a ring like shape Ce-riched band around the inclusion, which would be useful to improve fatigue and corrosion resistance of spring steel. It was found that diffusion of Ce 3+ , Al 3+ and Mg 2+ in inclusions core and intermediate layer would be the limited step during evolutions of inclusions. (author)

  13. Análisis experimental del torneado de alta velocidad del acero AISI 1045 // Experimental analysis of high speed turning of AISI 1045 steel gears

    Directory of Open Access Journals (Sweden)

    Luís Wilfredo Hernández‐González

    2012-01-01

    Full Text Available El objetivo de este trabajo es el estudio experimental de la evolución del desgaste del flanco de dosinsertos de carburo recubiertos y un cermet, durante el torneado en seco del acero AISI 1045 con 500 y600 m/min de velocidad de corte. Los resultados fueron comparados utilizando el análisis de varianza y deregresión. La investigación mostró un efecto significativo de la velocidad de corte y del tiempo demaquinado en el desgaste del flanco. El mejor desempeño fue para el carburo recubierto con tres capas,mientras que a elevada velocidad de corte el carburo con dos capas sufrió el mayor desgaste, lo cual sedebe a que cuando pierde sus recubrimientos el substrato del inserto queda desprotegido y el desgastecrece rápidamente por la extremas condiciones del mecanizado por alta velocidad. Además, se planteanrecomendaciones del tiempo de maquinado de los insertos dadas las condiciones de elaboración por altavelocidad.Palabras claves: torneado de alta velocidad, desgaste del flanco, acero AISI 1045, estudio experimental.__________________________________________________________________________AbstractThis work deals with the experimental study of the flank wear evolution of two coating carbide inserts and acermet insert during the dry turning of AISI 1045 steel with 500 and 600 m/min cutting speed. The resultswere compared using the variance and regression analysis. The investigation showed a significant effectof cutting speed and machining time on the flank wear in high speed machining. The three coating layersinsert showed the best performance while the two layers insert had the worst behaviour of the cutting toolwear at high cutting speed, this is because once the coating film is peeled off, the substrate of the insertbecomes uncovered and the wear grows rapidly due to the extreme machining conditions for high speed.Besides, the machining time recommendations of inserts for the cutting conditions at high speed areexposed.Key words: high

  14. Investigation of plume dynamics during picosecond laser ablation of H13 steel using high-speed digital holography

    Science.gov (United States)

    Pangovski, Krste; Otanocha, Omonigho B.; Zhong, Shan; Sparkes, Martin; Liu, Zhu; O'Neill, William; Li, Lin

    2017-02-01

    Ablation of H13 tool steel using pulse packets with repetition rates of 400 and 1000 kHz and pulse energies of 75 and 44 μ {J}, respectively, is investigated. A drop in ablation efficiency (defined here as the depth per pulse or μ {m}{/}μ {J}) is shown to occur when using pulse energies of E_{{pulse}} > 44 μ {J}, accompanied by a marked difference in crater morphology. A pulsed digital holographic system is applied to image the resulting plumes, showing a persistent plume in both cases. Holographic data are used to calculate the plume absorption and subsequently the fraction of pulse energy arriving at the surface after traversing the plume for different pulse arrival times. A significant proportion of the pulse energy is shown to be absorbed in the plume for E_{{pulse}} > 44 μ {J} for pulse arrival times corresponding to {>}1 MHz pulse repetition rate, shifting the interaction to a vapour-dominated ablation regime, an energetically costlier ablation mechanism.

  15. High speed rotary drum

    Energy Technology Data Exchange (ETDEWEB)

    Sagara, H

    1970-03-25

    A high speed rotary drum is disclosed in which the rotor vessel is a double-wall structure comprising an inner wave-shaped pipe inserted coaxially within an outer straight pipe, the object being to provide a strengthened composite light-weight structure. Since force induced axial deformation of the straight pipe and radial deformation of the corrugated pipe are small, the composite effectively resists external forces and, if the waves of the inner pipe are given a sufficient amplitude, the thickness of both pipes may be reduced to lower the overall weight. Thus high angular velocities can be obtained to separate U/sup 235/ from gaseous UF/sub 6/.

  16. Microstructure evolution and mechanical properties of T15 high speed steel prepared by twin-atomiser spray forming and thermo-mechanical processing

    International Nuclear Information System (INIS)

    Zhang, Guoqing; Yuan, Hua; Jiao, Dongling; Li, Zhou; Zhang, Yong; Liu, Zhongwu

    2012-01-01

    Spray formed T15 high speed steel (HSS) billets were deposited using a state-of-the-art twin-atomiser spray forming facility. The effects of post thermo-mechanical processing (hot isostatic pressing and hot forging) and heat treatment on the microstructure and mechanical properties were investigated. As-deposited billet has a density over 99.3% of the theoretical value and no measurable macro-segregation was observed. The microstructure consists of the equiaxed grains with mean size of ∼18 μm and MC- and M 6 C-type carbides non-uniformly distributed inside the grains and along the grain boundaries. After optimal thermo-mechanical processing and heat treatment, the microstructure was composed of equiaxed fine tempered martensites, and refined M 6 C and MC spherical carbides particles uniformly distributed along the grain boundaries and inside the grains. The hardness reached HRC68 after thermo-mechanical processing, and the corresponding impact toughness and bending strength reached 27 J/cm 2 and 4600 MPa respectively. Although HIP cannot increase the bending strength significantly, it can effectively improve the impact toughness through refining and globurizing carbides.

  17. Nitriding of high speed steel

    International Nuclear Information System (INIS)

    Doyle, E.D.; Pagon, A.M.; Hubbard, P.; Dowey, S.J.; Pilkington, A.; McCulloch, D.G.; Latham, K.; DuPlessis, J.

    2010-01-01

    Current practice when nitriding HSS cutting tools is to avoid embrittlement of the cutting edge by limiting the depth of the diffusion zone. This is accomplished by reducing the nitriding time and temperature and eliminating any compound layer formation. However, in many applications there is an argument for generating a compound layer with beneficial tribological properties. In this investigation results are presented of a metallographic, XRD and XPS analysis of nitrided surface layers generated using active screen plasma nitriding and reactive vapour deposition using cathodic arc. These results are discussed in the context of built up edge formation observed while machining inside a scanning electron microscope. (author)

  18. High-Speed Photography

    International Nuclear Information System (INIS)

    Paisley, D.L.; Schelev, M.Y.

    1998-01-01

    The applications of high-speed photography to a diverse set of subjects including inertial confinement fusion, laser surgical procedures, communications, automotive airbags, lightning etc. are briefly discussed. (AIP) copyright 1998 Society of Photo-Optical Instrumentation Engineers

  19. High speed data acquisition

    International Nuclear Information System (INIS)

    Cooper, P.S.

    1997-07-01

    A general introduction to high speed data acquisition system techniques in modern particle physics experiments is given. Examples are drawn from the SELEX(E78 1) high statistics charmed baryon production and decay experiment now taking data at Fermilab

  20. High speed heterostructure devices

    CERN Document Server

    Beer, Albert C; Willardson, R K; Kiehl, Richard A; Sollner, T C L Gerhard

    1994-01-01

    Volume 41 includes an in-depth review of the most important, high-speed switches made with heterojunction technology. This volume is aimed at the graduate student or working researcher who needs a broad overview andan introduction to current literature. Key Features * The first complete review of InP-based HFETs and complementary HFETs, which promise very low power and high speed * Offers a complete, three-chapter review of resonant tunneling * Provides an emphasis on circuits as well as devices.

  1. Service behaviour of high speed steel rolling rolls used in hot strip mills; Comportamiento en servicio de los aceros rapidos utilizados en la fabricacion de los cilindros de trabajo de los trenes de bandas en caliente

    Energy Technology Data Exchange (ETDEWEB)

    Ziadi, A.; Belzunce, F. J.; Rodriguez, C.; Fernandez, I.

    2005-07-01

    Work rolls used in hot strip mills may be able to carry out severe actions: very high thermal stresses and wear, along with mechanical stresses due to normal rolling loads, which develop in the presence of cracks, produced by the former actions. The microstructure and the mechanical behaviour (strength and toughness) of high speed steels, which recently have been introduced in this applications, were studied in this work in comparison with high chromium cast irons. (Author) 7 refs.

  2. High speed network sampling

    OpenAIRE

    Rindalsholt, Ole Arild

    2005-01-01

    Master i nettverks- og systemadministrasjon Classical Sampling methods play an important role in the current practice of Internet measurement. With today’s high speed networks, routers cannot manage to generate complete Netflow data for every packet. They have to perform restricted sampling. This thesis summarizes some of the most important sampling schemes and their applications before diving into an analysis on the effect of sampling Netflow records.

  3. High Speed Photomicrography

    Science.gov (United States)

    Hyzer, William G.

    1983-03-01

    One of the most challenging areas in applying high-speed photography and videography in the plant and laboratory is in the recording of rapid events at macro and microscopic scales. Depth of field, exposure efficiency, working distance, and required exposure time are all reduced as optical magnification is increased, which severely taxes the skill and ingenuity of workers interested in recording any fast moving phenomena through the microscope or with magnifying lenses. This paper defines the problems inherent in photographing within macro and microscopic ranges and offers a systematic approach to optimizing the selection of equipment and choice of applicable techniques.

  4. High speed metal removal

    Science.gov (United States)

    Pugh, R. F.; Pohl, R. F.

    1982-10-01

    Four types of steel (AISI 1340, 4140, 4340, and HF-1) which are commonly used in large caliber projectile manufacture were machined at different hardness ranges representing the as-forged and the heat treated condition with various ceramic tools using ceramic coated tungsten carbide as a reference. Results show that machining speeds can be increased significantly using present available tooling.

  5. Nanocrystalline Ni-Co Alloy Synthesis by High Speed Electrodeposition

    Directory of Open Access Journals (Sweden)

    Jamaliah Idris

    2013-01-01

    Full Text Available Electrodeposition of nanocrystals is economically and technologically viable production path for the synthesis of pure metals and alloys both in coatings and bulk form. The study presents nanocrystalline Ni-Co alloy synthesis by high speed electrodeposition. Nanocrystalline Ni-Co alloys coatings were prepared by direct current (DC and deposited directly on steel and aluminum substrates without any pretreatment, using high speed electrodeposition method. The influence of the electrolysis parameters, such as cathodic current density and temperature at constant pH, on electrodeposition and microstructure of Ni-Co alloys were examined. A homogeneous surface morphology was obtained at all current densities of the plated samples, and it was evident that the current density and temperature affect the coating thickness of Ni-Co alloy coatings.

  6. Investigation on grain refinement and precipitation strengthening applied in high speed wire rod containing vanadium

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Da-yong; Xiao, Fu-ren, E-mail: frxiao@ysu.edu.cn; Wang, Bin; Liu, Jia-ling; Liao, Bo, E-mail: cyddjyjs@263.net

    2014-01-13

    To obtain necessary information for the simulation of high speed wire production process, the effect of grain refinement and precipitation strengthening on two high speed wire rod steels with different vanadium and nitrogen contents was investigated by continuous cooling transformation (CCT) characteristics. CCT curves were constructed by the dilatometer test and microscopic observation. Results showed that the formation of intra-granular ferrite (IGF) could refine grain remarkably and accelerate the ferrite transformation. Schedules for high speed wire production process focused on the effect of cooling rate. Ferrite grain was refined by increasing cooling rate and the formation of IGF. The microhardness calculation revealed that the steels were strengthened mostly by a combined effect of grain refinement and precipitation hardening. Degenerated pearlite was observed at lower transformation temperature and the fracture morphology changed from cementite lamellar to nanoscale cementite particle with increasing cooling rate. Based on the analysis above, an optimal schedule was applied and the microstructure and microhardness were improved.

  7. Tribological Behavior of Multilayered WC-Ti1-xAlxN Coatings Deposited by Cathodic Arc Deposition Process on High Speed Steel

    International Nuclear Information System (INIS)

    Kim, Jung Gu; Hwang, Woon Suk

    2006-01-01

    Recently, much of the current development in surface modification engineering are focused on multilayered coatings. Multilayered coatings have the potential to improve the tribological properties. Four different multilayered coatings were deposited on AISI D2 steel. The prepared samples are designed as WC-Ti 0.6 Al 0.4 N, WC-Ti 0.53 Al 0.47 N, WC-Ti 0.5 Al 0.5 N and WC-Ti 0.43 Al 0.57 N. The multilayered coatings were investigated with respect to coating surface and cross-sectional morphology, roughness, adhesion, hardness, porosity and tribological behavior. Especially, wear tests of four multilayered coatings were preformed by using a ball-on-disc configuration with a linear sliding speed of 0.017 m/sec, 5.38 N load. The tests were carried out at room temperature in air by employing AISI 52100 steel ball (H R = 66) having a diameter of 10 mm. The surface morphology, and topography of the wear scars of samples and balls have been determined by using scanning electron spectroscopy (SEM). Results have showed an improved wear resistance of the WC-Ti 1-x 6Al x N coatings with increasing of Al concentration. WC-Ti 0.43 Al 0.57 N coating with the lower surface roughness and porosity with good adhesion enhanced wear resistance

  8. Laser surface texturing of cast iron steel: dramatic edge burr reduction and high speed process optimisation for industrial production using DPSS picosecond lasers

    Science.gov (United States)

    Bruneel, David; Kearsley, Andrew; Karnakis, Dimitris

    2015-07-01

    In this work we present picosecond DPSS laser surface texturing optimisation of automotive grade cast iron steel. This application attracts great interest, particularly in the automotive industry, to reduce friction between moving piston parts in car engines, in order to decrease fuel consumption. This is accomplished by partially covering with swallow microgrooves the inner surface of a piston liner and is currently a production process adopting much longer pulse (microsecond) DPSS lasers. Lubricated interface conditions of moving parts require from the laser process to produce a very strictly controlled surface topography around the laser formed grooves, whose edge burr height must be lower than 100 nm. To achieve such a strict tolerance, laser machining of cast iron steel was investigated using an infrared DPSS picosecond laser (10ps duration) with an output power of 16W and a repetition rate of 200 kHz. The ultrashort laser is believed to provide a much better thermal management of the etching process. All studies presented here were performed on flat samples in ambient air but the process is transferrable to cylindrical geometry engine liners. We will show that reducing significantly the edge burr below an acceptable limit for lubricated engine production is possible using such lasers and remarkably the process window lies at very high irradiated fluences much higher that the single pulse ablation threshold. This detailed experimental work highlights the close relationship between the optimised laser irradiation conditions as well as the process strategy with the final size of the undesirable edge burrs. The optimised process conditions are compatible with an industrial production process and show the potential for removing extra post)processing steps (honing, etc) of cylinder liners on the manufacturing line saving time and cost.

  9. High speed laser tomography system

    Science.gov (United States)

    Samsonov, D.; Elsaesser, A.; Edwards, A.; Thomas, H. M.; Morfill, G. E.

    2008-03-01

    A high speed laser tomography system was developed capable of acquiring three-dimensional (3D) images of optically thin clouds of moving micron-sized particles. It operates by parallel-shifting an illuminating laser sheet with a pair of galvanometer-driven mirrors and synchronously recording two-dimensional (2D) images of thin slices of the imaged volume. The maximum scanning speed achieved was 120000slices/s, sequences of 24 volume scans (up to 256 slices each) have been obtained. The 2D slices were stacked to form 3D images of the volume, then the positions of the particles were identified and followed in the consecutive scans. The system was used to image a complex plasma with particles moving at speeds up to cm/s.

  10. Flank wear study of coating carbides and cermet inserts during the dry high speed turning of AISI 1045 steel; Estudio del desgaste del flanco de carburos recubiertos y cermet durante el torneado de alta velocidad en seco del acero AISI 1045

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Gonzalez, L. W.; Perez-Rodriguez, R.; Zambrano-Robledo, P.; Guerrero-Mata, M.; Dumitrescu, L.

    2011-07-01

    This work deals with the experimental study of the flank wear evolution of two coating carbide inserts and a cermet insert during the dry finishing turning of AISI 1045 steel with 400, 500 and 600 m/min cutting speeds. The results were analyzed using the variance analysis and lineal regression analysis in order to describe the relationship between the flank wear and machining time, obtaining the adjusted model equation. The investigation demonstrated a significant effect of cutting speed and machining time on the flank wear at high speed machining. The three coating layers insert showed the best performance while the two layers insert had the worst behaviour of the cutting tool wear at high cutting speeds. (Author) 19 refs.

  11. Experimental and Mathematical Modeling for Prediction of Tool Wear on the Machining of Aluminium 6061 Alloy by High Speed Steel Tools

    Directory of Open Access Journals (Sweden)

    Okokpujie Imhade Princess

    2017-12-01

    Full Text Available In recent machining operation, tool life is one of the most demanding tasks in production process, especially in the automotive industry. The aim of this paper is to study tool wear on HSS in end milling of aluminium 6061 alloy. The experiments were carried out to investigate tool wear with the machined parameters and to developed mathematical model using response surface methodology. The various machining parameters selected for the experiment are spindle speed (N, feed rate (f, axial depth of cut (a and radial depth of cut (r. The experiment was designed using central composite design (CCD in which 31 samples were run on SIEG 3/10/0010 CNC end milling machine. After each experiment the cutting tool was measured using scanning electron microscope (SEM. The obtained optimum machining parameter combination are spindle speed of 2500 rpm, feed rate of 200 mm/min, axial depth of cut of 20 mm, and radial depth of cut 1.0mm was found out to achieved the minimum tool wear as 0.213 mm. The mathematical model developed predicted the tool wear with 99.7% which is within the acceptable accuracy range for tool wear prediction.

  12. Experimental and Mathematical Modeling for Prediction of Tool Wear on the Machining of Aluminium 6061 Alloy by High Speed Steel Tools

    Science.gov (United States)

    Okokpujie, Imhade Princess; Ikumapayi, Omolayo M.; Okonkwo, Ugochukwu C.; Salawu, Enesi Y.; Afolalu, Sunday A.; Dirisu, Joseph O.; Nwoke, Obinna N.; Ajayi, Oluseyi O.

    2017-12-01

    In recent machining operation, tool life is one of the most demanding tasks in production process, especially in the automotive industry. The aim of this paper is to study tool wear on HSS in end milling of aluminium 6061 alloy. The experiments were carried out to investigate tool wear with the machined parameters and to developed mathematical model using response surface methodology. The various machining parameters selected for the experiment are spindle speed (N), feed rate (f), axial depth of cut (a) and radial depth of cut (r). The experiment was designed using central composite design (CCD) in which 31 samples were run on SIEG 3/10/0010 CNC end milling machine. After each experiment the cutting tool was measured using scanning electron microscope (SEM). The obtained optimum machining parameter combination are spindle speed of 2500 rpm, feed rate of 200 mm/min, axial depth of cut of 20 mm, and radial depth of cut 1.0mm was found out to achieved the minimum tool wear as 0.213 mm. The mathematical model developed predicted the tool wear with 99.7% which is within the acceptable accuracy range for tool wear prediction.

  13. Nanocrystalline Ni-Co Alloy Synthesis by High Speed Electrodeposition

    OpenAIRE

    Idris, Jamaliah; Christian, Chukwuekezie; Gaius, Eyu

    2013-01-01

    Electrodeposition of nanocrystals is economically and technologically viable production path for the synthesis of pure metals and alloys both in coatings and bulk form. The study presents nanocrystalline Ni-Co alloy synthesis by high speed electrodeposition. Nanocrystalline Ni-Co alloys coatings were prepared by direct current (DC) and deposited directly on steel and aluminum substrates without any pretreatment, using high speed electrodeposition method. The influence of the electrolysis par...

  14. SEAL FOR HIGH SPEED CENTRIFUGE

    Science.gov (United States)

    Skarstrom, C.W.

    1957-12-17

    A seal is described for a high speed centrifuge wherein the centrifugal force of rotation acts on the gasket to form a tight seal. The cylindrical rotating bowl of the centrifuge contains a closure member resting on a shoulder in the bowl wall having a lower surface containing bands of gasket material, parallel and adjacent to the cylinder wall. As the centrifuge speed increases, centrifugal force acts on the bands of gasket material forcing them in to a sealing contact against the cylinder wall. This arrangememt forms a simple and effective seal for high speed centrifuges, replacing more costly methods such as welding a closure in place.

  15. High-speed holographic camera

    International Nuclear Information System (INIS)

    Novaro, Marc

    The high-speed holographic camera is a disgnostic instrument using holography as an information storing support. It allows us to take 10 holograms, of an object, with exposures times of 1,5ns, separated in time by 1 or 2ns. In order to get these results easily, no mobile part is used in the set-up [fr

  16. High-speed parallel counter

    International Nuclear Information System (INIS)

    Gus'kov, B.N.; Kalinnikov, V.A.; Krastev, V.R.; Maksimov, A.N.; Nikityuk, N.M.

    1985-01-01

    This paper describes a high-speed parallel counter that contains 31 inputs and 15 outputs and is implemented by integrated circuits of series 500. The counter is designed for fast sampling of events according to the number of particles that pass simultaneously through the hodoscopic plane of the detector. The minimum delay of the output signals relative to the input is 43 nsec. The duration of the output signals can be varied from 75 to 120 nsec

  17. High-speed AC motors

    Energy Technology Data Exchange (ETDEWEB)

    Jokinen, T.; Arkkio, A. [Helsinki University of Technology Laboratory of Electromechanics, Otaniemi (Finland)

    1997-12-31

    The paper deals with various types of highspeed electric motors, and their limiting powers. Standard machines with laminated rotors can be utilised if the speed is moderate. The solid rotor construction makes it possible to reach higher power and speed levels than those of laminated rotors. The development work on high-speed motors done at Helsinki University of Technology is presented, too. (orig.) 12 refs.

  18. A high speed digital noise generator

    Science.gov (United States)

    Obrien, J.; Gaffney, B.; Liu, B.

    In testing of digital signal processing hardware, a high speed pseudo-random noise generator is often required to simulate an input noise source to the hardware. This allows the hardware to be exercised in a manner analogous to actual operating conditions. In certain radar and communication environments, a noise generator operating at speeds in excess of 60 MHz may be required. In this paper, a method of generating high speed pseudo-random numbers from an arbitrarily specified distribution (Gaussian, Log-Normal, etc.) using a transformation from a uniform noise source is described. A noise generator operating at 80 MHz has been constructed. Different distributions can be readily obtained by simply changing the ROM set. The hardware and test results will be described. Using this approach, the generation of pseudo-random sequences with arbitrary distributions at word rates in excess of 200 MHz can be readily achieved.

  19. High-speed motion neutron radiography

    International Nuclear Information System (INIS)

    Bossi, R.H.; Barton, J.P.; Robinson, A.H.

    1982-01-01

    A system has been developed to perform neutron radiographic analysis of dynamic events having a duration of several milliseconds. The system has been operated in the range of 2000 to 10,000 frames. Synchronization has provided high-speed motion neutron radiographs for evaluation of the firing cycles of 7.62-mm munition rounds within a thick steel rifle barrel. The system has also been used to demonstrate its ability to produce neutron radiographic movies of two-phase flow. The equipment includes a TRIGA reactor capable of pulsing to a peak power of 3000 MW, a neutron beam collimator, a scintillator neutron conversion screen coupled to an image intensifier, and a 16-mm high-speed movie camera. The peak neutron flux incident at the object position is about 4 X 10 11 n/cm 2 X s with a pulse, full-width at half-maximum, of 9 ms. Modulation transfer function techniques have been used to assist optimization of the system performance. Special studies have been performed on the scintillator conversion screens and on the effects of statistical limitations on information availability

  20. High speed computer assisted tomography

    International Nuclear Information System (INIS)

    Maydan, D.; Shepp, L.A.

    1980-01-01

    X-ray generation and detection apparatus for use in a computer assisted tomography system which permits relatively high speed scanning. A large x-ray tube having a circular anode (3) surrounds the patient area. A movable electron gun (8) orbits adjacent to the anode. The anode directs into the patient area xrays which are delimited into a fan beam by a pair of collimating rings (21). After passing through the patient, x-rays are detected by an array (22) of movable detectors. Detector subarrays (23) are synchronously movable out of the x-ray plane to permit the passage of the fan beam

  1. High-speed data search

    Science.gov (United States)

    Driscoll, James N.

    1994-01-01

    The high-speed data search system developed for KSC incorporates existing and emerging information retrieval technology to help a user intelligently and rapidly locate information found in large textual databases. This technology includes: natural language input; statistical ranking of retrieved information; an artificial intelligence concept called semantics, where 'surface level' knowledge found in text is used to improve the ranking of retrieved information; and relevance feedback, where user judgements about viewed information are used to automatically modify the search for further information. Semantics and relevance feedback are features of the system which are not available commercially. The system further demonstrates focus on paragraphs of information to decide relevance; and it can be used (without modification) to intelligently search all kinds of document collections, such as collections of legal documents medical documents, news stories, patents, and so forth. The purpose of this paper is to demonstrate the usefulness of statistical ranking, our semantic improvement, and relevance feedback.

  2. Mechanical Properties of Steel P92 Welded Joints Obtained By TIG Technology

    Science.gov (United States)

    Mohyla, P.; Havelka, L.; Schmidová, E.; Vontorová, J.

    2017-11-01

    Mechanical properties of P92 steel welded joints obtained using the TIG (141) technology have been studied upon post-welding heat treatment (PWHT). The microhardness, tensile strength, and impact toughness of metal in the weld and heat-affected zone are determined. The PWHT is shown to be obligatory.

  3. High-speed Maglev studies in Canada

    International Nuclear Information System (INIS)

    Atherton, D.L.; Eastham, A.R.

    1974-01-01

    This paper reports on Canadian studies of superconducting magnetic levitation and variable-speed linear synchronous motor propulsion for high-speed inter-city guided ground transport. Levitation is obtained by the interaction of vehicle-mounted superconducting magnets and the eddy currents induced in aluminium strip conductors on the guideway. Non-contact propulsion by linear synchronous motor (LSM) is obtained by using vehicle-borne superconducting magnets and powered guideway coils. A suggested guidance scheme uses a flat guideway with 'null-flux' loops overlying the LSM windings. The propulsion magnets interact with the loops and the edges of the levitation strips to provide lateral stabilization. The test facility is a 7.6m wheel, rotating with a peripheral speed of 33m/s. (author)

  4. High Speed On-Wafer Characterization Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — At the High Speed On-Wafer Characterization Laboratory, researchers characterize and model devices operating at terahertz (THz) and millimeter-wave frequencies. The...

  5. Thermographic measurements of high-speed metal cutting

    Science.gov (United States)

    Mueller, Bernhard; Renz, Ulrich

    2002-03-01

    Thermographic measurements of a high-speed cutting process have been performed with an infrared camera. To realize images without motion blur the integration times were reduced to a few microseconds. Since the high tool wear influences the measured temperatures a set-up has been realized which enables small cutting lengths. Only single images have been recorded because the process is too fast to acquire a sequence of images even with the frame rate of the very fast infrared camera which has been used. To expose the camera when the rotating tool is in the middle of the camera image an experimental set-up with a light barrier and a digital delay generator with a time resolution of 1 ns has been realized. This enables a very exact triggering of the camera at the desired position of the tool in the image. Since the cutting depth is between 0.1 and 0.2 mm a high spatial resolution was also necessary which was obtained by a special close-up lens allowing a resolution of app. 45 microns. The experimental set-up will be described and infrared images and evaluated temperatures of a titanium alloy and a carbon steel will be presented for cutting speeds up to 42 m/s.

  6. Phase transformation system of austenitic stainless steels obtained by permanent compressive strain

    Energy Technology Data Exchange (ETDEWEB)

    Okayasu, Mitsuhiro, E-mail: mitsuhiro.okayasu@utoronto.ca; Tomida, Sai

    2017-01-27

    In order to understand more completely the formation of strain-induced martensite, phase structures were investigated both before and after plastic deformation, using austenitic stainless steels of various chemical compositions (carbon C=0.007–0.04 mass% and molybdenum Mo=0–2.10 mass%) and varying pre-strain levels (0–30%). Although the stainless steels consisted mainly of γ austenite, two martensite structures were generated following plastic deformation, comprising ε and α′ martensite. The martensitic structures were obtained in the twin deformation and slip bands. The severity of martensite formation (ε and α′) increased with increasing C content. It was found that α′ martensite was formed mainly in austenitic stainless steel lacking Mo, whereas a high Mo content led to a strong ε martensite structure, i.e. a weak α′ martensite. The formation of α′ martensite occurred from γ austenite via ε martensite, and was related to the slip deformation. Molybdenum in austenitic stainless steel had high slip resistance (or weak stress-induced martensite transformation), because of the stacking fault energy of the stainless steel affecting the austenite stability. This resulted in the creation of weak α′ martensite. Models of the martensitic transformations γ (fcc)→ε (hcp)→α′ (bcc) were proposed on both the microscopic and nanoscopic scales. The α′ martensite content of austenitic stainless steel led to high tensile strength; conversely, ε martensite had a weak effect on the mechanical strength. The influence of martensitic formation on the mechanical properties was evaluated quantitatively by statistical analysis.

  7. Reducing Heating In High-Speed Cinematography

    Science.gov (United States)

    Slater, Howard A.

    1989-01-01

    Infrared-absorbing and infrared-reflecting glass filters simple and effective means for reducing rise in temperature during high-speed motion-picture photography. "Hot-mirror" and "cold-mirror" configurations, employed in projection of images, helps prevent excessive heating of scenes by powerful lamps used in high-speed photography.

  8. Long-Term Structural Health Monitoring System for a High-Speed Railway Bridge Structure

    Science.gov (United States)

    Wu, Lai-Yi

    2015-01-01

    Nanjing Dashengguan Bridge, which serves as the shared corridor crossing Yangtze River for both Beijing-Shanghai high-speed railway and Shanghai-Wuhan-Chengdu railway, is the first 6-track high-speed railway bridge with the longest span throughout the world. In order to ensure safety and detect the performance deterioration during the long-time service of the bridge, a Structural Health Monitoring (SHM) system has been implemented on this bridge by the application of modern techniques in sensing, testing, computing, and network communication. The SHM system includes various sensors as well as corresponding data acquisition and transmission equipment for automatic data collection. Furthermore, an evaluation system of structural safety has been developed for the real-time condition assessment of this bridge. The mathematical correlation models describing the overall structural behavior of the bridge can be obtained with the support of the health monitoring system, which includes cross-correlation models for accelerations, correlation models between temperature and static strains of steel truss arch, and correlation models between temperature and longitudinal displacements of piers. Some evaluation results using the mean value control chart based on mathematical correlation models are presented in this paper to show the effectiveness of this SHM system in detecting the bridge's abnormal behaviors under the varying environmental conditions such as high-speed trains and environmental temperature. PMID:26451387

  9. Long-Term Structural Health Monitoring System for a High-Speed Railway Bridge Structure

    Directory of Open Access Journals (Sweden)

    You-Liang Ding

    2015-01-01

    Full Text Available Nanjing Dashengguan Bridge, which serves as the shared corridor crossing Yangtze River for both Beijing-Shanghai high-speed railway and Shanghai-Wuhan-Chengdu railway, is the first 6-track high-speed railway bridge with the longest span throughout the world. In order to ensure safety and detect the performance deterioration during the long-time service of the bridge, a Structural Health Monitoring (SHM system has been implemented on this bridge by the application of modern techniques in sensing, testing, computing, and network communication. The SHM system includes various sensors as well as corresponding data acquisition and transmission equipment for automatic data collection. Furthermore, an evaluation system of structural safety has been developed for the real-time condition assessment of this bridge. The mathematical correlation models describing the overall structural behavior of the bridge can be obtained with the support of the health monitoring system, which includes cross-correlation models for accelerations, correlation models between temperature and static strains of steel truss arch, and correlation models between temperature and longitudinal displacements of piers. Some evaluation results using the mean value control chart based on mathematical correlation models are presented in this paper to show the effectiveness of this SHM system in detecting the bridge’s abnormal behaviors under the varying environmental conditions such as high-speed trains and environmental temperature.

  10. Modelling Of Residual Stresses Induced By High Speed Milling Process

    International Nuclear Information System (INIS)

    Desmaison, Olivier; Mocellin, Katia; Jardin, Nicolas

    2011-01-01

    Maintenance processes used in heavy industries often include high speed milling operations. The reliability of the post-process material state has to be studied. Numerical simulation appears to be a very interesting way to supply an efficient residual stresses (RS) distribution prediction.Because the adiabatic shear band and the serrated chip shaping are features of the austenitic stainless steel high speed machining, a 2D high speed orthogonal cutting model is briefly presented. This finite element model, developed on Forge registered software, is based on data taken from Outeiro and al.'s paper [1]. A new behaviour law fully coupling Johnson-Cook's constitutive law and Latham and Cockcroft's damage model is detailed in this paper. It ensures results that fit those found in literature.Then, the numerical tools used on the 2D model are integrated to a 3D high speed milling model. Residual stresses distribution is analysed, on the surface and into the depth of the material. Various revolutions and passes of the two teeth hemispheric mill on the workpiece are simulated. Thus the sensitivity of the residual stresses generation to the cutting conditions can be discussed. In order to validate the 3D model, a comparison of the cutting forces measured by EDF R and D to those given by numerical simulations is achieved.

  11. Application of high-speed photography to hydrodynamic instability research

    International Nuclear Information System (INIS)

    Chang Lihua; Li Zuoyou; Xiao Zhengfei; Zou Liyong; Liu Jinhong; Xiong Xueshi

    2012-01-01

    High-speed photography is used to study the Rayleigh-Taylor instability of air-water interface driven by high- pressure exploding gas. Clear images illustrating the instability are obtained, along with the air bubble peak speed and turbulent mixing speed. The RM (Richtmyer-Meshkov) instability of air/SF 6 interface driven by shock wave is also researched by using high-speed Schlieren technique on the horizontal shock tube and primary experimental results are obtained, which show the change of the turbulent mixing region clearly. (authors)

  12. Utilization of aluminum to obtaining a duplex type stainless steel using high energy ball milling

    International Nuclear Information System (INIS)

    Pavlak, I.E.; Cintho, O.M.; Capocchi, J.D.T.

    2010-01-01

    The obtaining of stainless steel using aluminum in its composition - FeMnAl system, has been researches subject since the sixties, by good mechanical properties and resistance to oxidation presented, when compared with conventional FeNiCr stainless steel system. In another point, the aluminum and manganese are low cost then traditional elements. This work, metallic powders of iron, manganese and pure aluminum, were processed in a Spex type high-energy ball mill in nitrogen atmosphere. The milling products were compressed into pastille form and sintered under inert atmosphere. The final products were characterized by optical and electronic microscopy and microhardness test. The metallographic analysis shows a typical austenite and ferrite duplex type microstructure. The presence of these phases was confirmed according X ray diffraction analysis. (author)

  13. 36 CFR 1192.175 - High-speed rail cars, monorails and systems.

    Science.gov (United States)

    2010-07-01

    ..., monorails and systems. 1192.175 Section 1192.175 Parks, Forests, and Public Property ARCHITECTURAL AND... TRANSPORTATION VEHICLES Other Vehicles and Systems § 1192.175 High-speed rail cars, monorails and systems. (a... steel-wheel-on-steel-rail technology, and monorail systems operating primarily on dedicated rail (i.e...

  14. High speed rails. Fatigue behaviour

    International Nuclear Information System (INIS)

    Duart, J. M.; Pero-Sanz, J. A.; Verdeja, J. I.

    2005-01-01

    In recent years, passenger train speed and freight train load have increased to enhance efficiency of rail road transportation. These trends have increased the severity of rail service conditions, calling for rails with greater wear resistance, strength and fatigue behaviour. In the United Stated and Europe, track site weld rails are made entirely by aluminothermic process. This work describes the results of experimental study conducted on bending fatigue strength of plain rails and aluminothermic welded rails with preheating procedures (oxipropane and air-induced propane) approved by railways authorities. Compliance with the required fatigue strength shall be ascertained by 4 point pulsating bending test in accordance with European standards by aluminothermic welding in rails. The locati method, based in the empirical Miner's law about the cumulative damage on a fatigue tested material, allows, once known the Wohler curve of the welding process in use to settle the fatigue tensile limit at 50% with only one test. The values obtained at 2.10''6 cycles for plain rails (S f =353 MPa), oxipropane preheated aluminothermic weld rails (S f =225 MPa), and propane-air induced aluminothermic weld rails (S f =210 MPa) are very similar to those resulting from test method stated in the European Standard. From our point of view and due to its ease, speediness and savings, this is the most suitable test to check the quality and compare the aluminothermic processes in use. (Author) 15 refs

  15. Design of very high speed electric generators

    International Nuclear Information System (INIS)

    Labollita, Santiago

    2008-01-01

    This work approaches the design process of an electric generator suitable for running efficiently at high speed, driven by a turbo shaft.The axial flux concept was used.For the mechanical design of the prototype, cooling capacity and mounting method were considered, looking for simplicity of the parts evolved. Neodymium-iron-boron permanent magnets were used as magnetic source.For the electrical design, a calculation tool was developed in order to predict the prototype electrical parameters and optimize its geometry.The goal was to obtain 1 kW of electric power at a speed of 100,000 rpm.The efficiency and electrical behaviour of the prototype were characterized at speeds between 2,000 rpm and 30,000 rpm and then the behaviour at the design condition was predicted by obtaining an equivalent electric circuit.The estimated load voltage was 237 V as well as an electrical efficiency of 95%.Eddy current effects were not recognized. Increase of the internal resistance and decree of inductance were observed while raising the electric frequency.Finally, an electronic system was developed in order to use the prototype as a c.c. motor. Global performance was measured according to different supply characteristic. An optimum supply voltage was found.A maximum efficiency of 63% was reached. [es

  16. Energetic optimization of regenerative braking for high speed railway systems

    International Nuclear Information System (INIS)

    Frilli, Amedeo; Meli, Enrico; Nocciolini, Daniele; Pugi, Luca; Rindi, Andrea

    2016-01-01

    Highlights: • A model of longitudinal dynamics of the High-speed train ETR1000 is presented. • The model includes on board traction and braking subsystems. • Interactions between overhead line and power line are modelled. • The model is validated on real experimental data. • An energy storage strategy for a high-speed line is proposed. - Abstract: The current development trend in the railway field has led to an ever increasing interest for the energetic optimization of railway systems (especially considering the braking phases), with a strong attention to the mutual interactions between the loads represented by railway vehicles and the electrical infrastructure, including all the sub-systems related to distribution and smart energy management such as energy storage systems. In this research work, the authors developed an innovative coupled modelling approach suitable for the analysis of the energetic optimization of railway systems and based on the use of the new object oriented language Matlab-Simscape™, which presents several advantages with respect to conventional modelling tools. The proposed model has been validated considering an Italian Direct Current High-speed line and the High-speed train ETR 1000. Furthermore, the model has been used to perform an efficiency analysis, considering the use of energy storage devices. The results obtained with the developed model show that the use of energy recovery systems in high-speed railway can provide great opportunities of energy savings.

  17. High-Speed Sealift Technology Development Plan

    National Research Council Canada - National Science Library

    2002-01-01

    .... The purpose of the project was to define the technology investments required to enable development of the high-speed commercial and military ships needed to provide realistic future mission capabilities...

  18. Lubrication and cooling for high speed gears

    Science.gov (United States)

    Townsend, D. P.

    1985-01-01

    The problems and failures occurring with the operation of high speed gears are discussed. The gearing losses associated with high speed gearing such as tooth mesh friction, bearing friction, churning, and windage are discussed with various ways shown to help reduce these losses and thereby improve efficiency. Several different methods of oil jet lubrication for high speed gearing are given such as into mesh, out of mesh, and radial jet lubrication. The experiments and analytical results for the various methods of oil jet lubrication are shown with the strengths and weaknesses of each method discussed. The analytical and experimental results of gear lubrication and cooling at various test conditions are presented. These results show the very definite need of improved methods of gear cooling at high speed and high load conditions.

  19. A high current, high speed pulser using avalanche transistors

    International Nuclear Information System (INIS)

    Hosono, Yoneichi; Hasegawa, Ken-ichi

    1985-01-01

    A high current, high speed pulser for the beam pulsing of a linear accelerator is described. It uses seven avalanche transistors in cascade. Design of a trigger circuit to obtain fast rise time is discussed. The characteristics of the pulser are : (a) Rise time = 0.9 ns (FWHM) and (d) Life time asymptotically equals 2000 -- 3000 hr (at 50 Hz). (author)

  20. High-Speed Interferometry Under Impacting Drops

    KAUST Repository

    Langley, Kenneth R.; Li, Erqiang; Thoroddsen, Sigurdur T

    2017-01-01

    Over the last decade the rapid advances in high-speed video technology, have opened up to study many multi-phase fluid phenomena, which tend to occur most rapidly on the smallest length-scales. One of these is the entrapment of a small bubble under a drop impacting onto a solid surface. Here we have gone from simply observing the presence of the bubble to detailed imaging of the formation of a lubricating air-disc under the drop center and its subsequent contraction into the bubble. Imaging the full shape-evolution of the air-disc has required μm and sub-μs space and time resolutions. Time-resolved 200 ns interferometry with monochromatic light, has allowed us to follow individual fringes to obtain absolute air-layer thicknesses, based on the eventual contact with the solid. We can follow the evolution of the dimple shape as well as the compression of the gas. The improved imaging has also revealed new levels of detail, like the nature of the first contact which produces a ring of micro-bubbles, highlighting the influence of nanometric surface roughness. Finally, for impacts of ultra-viscous drops we see gliding on ~100 nm thick rarified gas layers, followed by extreme wetting at numerous random spots.

  1. High-Speed Interferometry Under Impacting Drops

    KAUST Repository

    Langley, Kenneth R.

    2017-08-31

    Over the last decade the rapid advances in high-speed video technology, have opened up to study many multi-phase fluid phenomena, which tend to occur most rapidly on the smallest length-scales. One of these is the entrapment of a small bubble under a drop impacting onto a solid surface. Here we have gone from simply observing the presence of the bubble to detailed imaging of the formation of a lubricating air-disc under the drop center and its subsequent contraction into the bubble. Imaging the full shape-evolution of the air-disc has required μm and sub-μs space and time resolutions. Time-resolved 200 ns interferometry with monochromatic light, has allowed us to follow individual fringes to obtain absolute air-layer thicknesses, based on the eventual contact with the solid. We can follow the evolution of the dimple shape as well as the compression of the gas. The improved imaging has also revealed new levels of detail, like the nature of the first contact which produces a ring of micro-bubbles, highlighting the influence of nanometric surface roughness. Finally, for impacts of ultra-viscous drops we see gliding on ~100 nm thick rarified gas layers, followed by extreme wetting at numerous random spots.

  2. High speed, High resolution terahertz spectrometers

    International Nuclear Information System (INIS)

    Kim, Youngchan; Yee, Dae Su; Yi, Miwoo; Ahn, Jaewook

    2008-01-01

    A variety of sources and methods have been developed for terahertz spectroscopy during almost two decades. Terahertz time domain spectroscopy (THz TDS)has attracted particular attention as a basic measurement method in the fields of THz science and technology. Recently, asynchronous optical sampling (AOS)THz TDS has been demonstrated, featuring rapid data acquisition and a high spectral resolution. Also, terahertz frequency comb spectroscopy (TFCS)possesses attractive features for high precision terahertz spectroscopy. In this presentation, we report on these two types of terahertz spectrometer. Our high speed, high resolution terahertz spectrometer is demonstrated using two mode locked femtosecond lasers with slightly different repetition frequencies without a mechanical delay stage. The repetition frequencies of the two femtosecond lasers are stabilized by use of two phase locked loops sharing the same reference oscillator. The time resolution of our terahertz spectrometer is measured using the cross correlation method to be 270 fs. AOS THz TDS is presented in Fig. 1, which shows a time domain waveform rapidly acquired on a 10ns time window. The inset shows a zoom into the signal with 100ps time window. The spectrum obtained by the fast Fourier Transformation (FFT)of the time domain waveform has a frequency resolution of 100MHz. The dependence of the signal to noise ratio (SNR)on the measurement time is also investigated

  3. High speed machining of aluminium gear box without temperature stabilization

    Directory of Open Access Journals (Sweden)

    Abilio P. SILVA

    2010-01-01

    Full Text Available At the present time both clutch and mechanism housings, which are the main components from automotive gear boxes, are made of special aluminium alloys. These alloys are extremely light when compared with steel, making them a perfect choice to mitigate the cars weight and machining costs. Nonetheless they possess a high thermal expansion coefficient, which can be considered a major disadvantage since it makes necessary to pay extraordinary attention to dimensional variations during the production cycle due to temperature deviations. High speed machining of precision components made of aluminium requests thus their temperature to become previously stable. This procedure is the only way to force dimensions to stay inside its tolerance intervals. The main purpose of the present work was to assess the possibility to avoid the use of special ovens to make the clutch housing temperature become stable prior to machining. The dimensional stabilization of 40 sample parts, pre-heated at three temperature levels, was accomplished through the use of this system. The achieved results were made possible by analysing the part’s temperature at the machine’s entrance, the machine’s interior temperature, 35 measured dimensions and their tolerance intervals as well as the average temperature deviations of each of the five considered batches. By analysing the obtained results in detail it was possible to determine which dimensions show high sensitiveness to temperature (high correlation between dimension’s variation and temperature. Among these dimensions we can point out the ones related with depth, since they display the highest deviations due to temperature. Being a work with practical application it was possible to confirm the benefit of using this methodology by achieving significant enhancements on production efficiency, energy savings and reduction on maintenance costs, through the application of small adjustments to the machining sequence and by

  4. Development of high-speed balancing technology

    Science.gov (United States)

    Demuth, R.; Zorzi, E.

    1981-01-01

    An investigation into laser material removal showed that laser burns act in a manner typical of mechanical stress raisers causing a reduction in fatigue strength; the fatigue strength is lowered relative to the smooth specimen fatigue strength. Laser-burn zones were studied for four materials: Alloy Steel 4340, Stainless Steel 17-4 PH, Inconel 718, and Aluminum Alloy 6061-T6. Calculations were made of stress concentration factors K, for laser-burn grooves of each material type. A comparison was then made to experimentally determine the fatigue strength reduction factor. These calculations and comparisons indicated that, except for the 17-4 PH material, good agreement (a ratio of close to 1.0) existed between Kt and Kf. The performance of the 17-4 PH material has been attributed to early crack initiation due to the lower fatigue resistance of the soft, unaged laser-affected zone. Also covered in this report is the development, implementation, and testing of an influence coefficient approach to balancing a long, slender shaft under applied-torque conditions. Excellent correlation existed between the analytically predicted results and those data obtained from testing.

  5. Visualization of Projectile Flying at High Speed in Dusty Atmosphere

    Science.gov (United States)

    Masaki, Chihiro; Watanabe, Yasumasa; Suzuki, Kojiro

    2017-10-01

    Considering a spacecraft that encounters particle-laden environment, such as dust particles flying up over the regolith by the jet of the landing thruster, high-speed flight of a projectile in such environment was experimentally simulated by using the ballistic range. At high-speed collision of particles on the projectile surface, they may be reflected with cracking into smaller pieces. On the other hand, the projectile surface will be damaged by the collision. To obtain the fundamental characteristics of such complicated phenomena, a projectile was launched at the velocity up to 400 m/s and the collective behaviour of particles around projectile was observed by the high-speed camera. To eliminate the effect of the gas-particle interaction and to focus on only the effect of the interaction between the particles and the projectile's surface, the test chamber pressure was evacuated down to 30 Pa. The particles about 400μm diameter were scattered and formed a sheet of particles in the test chamber by using two-dimensional funnel with a narrow slit. The projectile was launched into the particle sheet in the tangential direction, and the high-speed camera captured both projectile and particle motions. From the movie, the interaction between the projectile and particle sheet was clarified.

  6. Aerodynamic design on high-speed trains

    Science.gov (United States)

    Ding, San-San; Li, Qiang; Tian, Ai-Qin; Du, Jian; Liu, Jia-Li

    2016-04-01

    Compared with the traditional train, the operational speed of the high-speed train has largely improved, and the dynamic environment of the train has changed from one of mechanical domination to one of aerodynamic domination. The aerodynamic problem has become the key technological challenge of high-speed trains and significantly affects the economy, environment, safety, and comfort. In this paper, the relationships among the aerodynamic design principle, aerodynamic performance indexes, and design variables are first studied, and the research methods of train aerodynamics are proposed, including numerical simulation, a reduced-scale test, and a full-scale test. Technological schemes of train aerodynamics involve the optimization design of the streamlined head and the smooth design of the body surface. Optimization design of the streamlined head includes conception design, project design, numerical simulation, and a reduced-scale test. Smooth design of the body surface is mainly used for the key parts, such as electric-current collecting system, wheel truck compartment, and windshield. The aerodynamic design method established in this paper has been successfully applied to various high-speed trains (CRH380A, CRH380AM, CRH6, CRH2G, and the Standard electric multiple unit (EMU)) that have met expected design objectives. The research results can provide an effective guideline for the aerodynamic design of high-speed trains.

  7. High-Speed Videography Instrumentation And Procedures

    Science.gov (United States)

    Miller, C. E.

    1982-02-01

    High-speed videography has been an electronic analog of low-speed film cameras, but having the advantages of instant-replay and simplicity of operation. Recent advances have pushed frame-rates into the realm of the rotating prism camera. Some characteristics of videography systems are discussed in conjunction with applications in sports analysis, and with sports equipment testing.

  8. High Speed Wireless Signal Generation and Demodulation

    DEFF Research Database (Denmark)

    Caballero Jambrina, Antonio; Sambaraju, Rakesh; Zibar, Darko

    We present the experimental demonstration of high speed wireless generation, up to 40 Gb/s, in the 75-110 GHz wireless band. All-optical OFDM and photonic up-conversion are used for generation and single side-band modulation with digital coherent detection for demodulation....

  9. High speed CAMAC differential branch highway driver

    International Nuclear Information System (INIS)

    McMillan, D.E.; Nelson, R.O.; Poore, R.V.; Sunier, J.W.; Ross, J.J.

    1979-01-01

    A new CAMAC branch driver is described that incorporates several unusual features which combine to give reliable, high-speed performance. These include balanced line driver/receivers, stored CAMAC command lists, 8 DMA channels, pseudo LAMS, hardware priority encoding of LAMS, and hardware-implemented Q-controlled block transfers. 3 figures

  10. Noise factor of a high-speed cinematography system

    International Nuclear Information System (INIS)

    Secroun, A.

    2000-01-01

    Inertial confinement fusion simulates in a laboratory the thermodynamic state of the center of stars, thus leading to the determination of stellar parameters. In order to reach that aim, high-speed cinematography brings up instruments specifically adapted to picosecond measurement, for which it is necessary to know the final precision. A model of the noise factor of the instruments under study is introduced and confronted to the experimental results obtained. (authors)

  11. High speed imaging system for nuclear diagnostics

    International Nuclear Information System (INIS)

    Eyer, H.H.

    1976-01-01

    A high speed imaging system based on state-of-the-art photosensor arrays has been designed for use in nuclear diagnostics. The system is comprised of a front-end rapid-scan solid-state camera, a high speed digitizer, and a PCM line driver in a downhole package and a memory buffer system in a uphole trailer. The downhole camera takes a ''snapshot'' of a nuclear device created flux stream, digitizes the image and transmits it to the uphole memory system before being destroyed. The memory system performs two functions: it retains the data for local display and processing by a microprocessor, and it buffers the data for retransmission at slower rates to the LLL computational facility (NADS). The impetus for such a system as well as its operation are discussed. Also discussed are new systems under development which incorporate higher data rates and more resolution

  12. Compressibility, turbulence and high speed flow

    CERN Document Server

    Gatski, Thomas B

    2013-01-01

    Compressibility, Turbulence and High Speed Flow introduces the reader to the field of compressible turbulence and compressible turbulent flows across a broad speed range, through a unique complimentary treatment of both the theoretical foundations and the measurement and analysis tools currently used. The book provides the reader with the necessary background and current trends in the theoretical and experimental aspects of compressible turbulent flows and compressible turbulence. Detailed derivations of the pertinent equations describing the motion of such turbulent flows is provided and an extensive discussion of the various approaches used in predicting both free shear and wall bounded flows is presented. Experimental measurement techniques common to the compressible flow regime are introduced with particular emphasis on the unique challenges presented by high speed flows. Both experimental and numerical simulation work is supplied throughout to provide the reader with an overall perspective of current tre...

  13. High speed printing with polygon scan heads

    Science.gov (United States)

    Stutz, Glenn

    2016-03-01

    To reduce and in many cases eliminate the costs associated with high volume printing of consumer and industrial products, this paper investigates and validates the use of the new generation of high speed pulse on demand (POD) lasers in concert with high speed (HS) polygon scan heads (PSH). Associated costs include consumables such as printing ink and nozzles, provisioning labor, maintenance and repair expense as well as reduction of printing lines due to high through put. Targets that are applicable and investigated include direct printing on plastics, printing on paper/cardboard as well as printing on labels. Market segments would include consumer products (CPG), medical and pharmaceutical products, universal ID (UID), and industrial products. In regards to the POD lasers employed, the wavelengths include UV(355nm), Green (532nm) and IR (1064nm) operating within the repetition range of 180 to 250 KHz.

  14. High speed imaging system for nuclear diagnostics

    International Nuclear Information System (INIS)

    Eyer, H.H.

    1976-01-01

    A high speed imaging system based on state-of-the-art photosensor arrays has been designed for use in nuclear diagnostics. The system is comprised of a front-end rapid-scan solid-state camera, a high speed digitizer, and a PCM line driver in a downhole package and a memory buffer system in an uphole trailer. The downhole camera takes a ''snapshot'' of a nuclear device created flux stream, digitizes the image and transmits it to the uphole memory system before being destroyed. The memory system performs two functions: it retains the data for local display and processing by a microprocessor, and it buffers the data for retransmission at slower rates to the LLL computational facility (NADS). The impetus for such a system as well as its operation is discussed. Also discussed are new systems under development which incorporate higher data rates and more resolution

  15. Data Capture Technique for High Speed Signaling

    Science.gov (United States)

    Barrett, Wayne Melvin; Chen, Dong; Coteus, Paul William; Gara, Alan Gene; Jackson, Rory; Kopcsay, Gerard Vincent; Nathanson, Ben Jesse; Vranas, Paylos Michael; Takken, Todd E.

    2008-08-26

    A data capture technique for high speed signaling to allow for optimal sampling of an asynchronous data stream. This technique allows for extremely high data rates and does not require that a clock be sent with the data as is done in source synchronous systems. The present invention also provides a hardware mechanism for automatically adjusting transmission delays for optimal two-bit simultaneous bi-directional (SiBiDi) signaling.

  16. Development of high-speed video cameras

    Science.gov (United States)

    Etoh, Takeharu G.; Takehara, Kohsei; Okinaka, Tomoo; Takano, Yasuhide; Ruckelshausen, Arno; Poggemann, Dirk

    2001-04-01

    Presented in this paper is an outline of the R and D activities on high-speed video cameras, which have been done in Kinki University since more than ten years ago, and are currently proceeded as an international cooperative project with University of Applied Sciences Osnabruck and other organizations. Extensive marketing researches have been done, (1) on user's requirements on high-speed multi-framing and video cameras by questionnaires and hearings, and (2) on current availability of the cameras of this sort by search of journals and websites. Both of them support necessity of development of a high-speed video camera of more than 1 million fps. A video camera of 4,500 fps with parallel readout was developed in 1991. A video camera with triple sensors was developed in 1996. The sensor is the same one as developed for the previous camera. The frame rate is 50 million fps for triple-framing and 4,500 fps for triple-light-wave framing, including color image capturing. Idea on a video camera of 1 million fps with an ISIS, In-situ Storage Image Sensor, was proposed in 1993 at first, and has been continuously improved. A test sensor was developed in early 2000, and successfully captured images at 62,500 fps. Currently, design of a prototype ISIS is going on, and, hopefully, will be fabricated in near future. Epoch-making cameras in history of development of high-speed video cameras by other persons are also briefly reviewed.

  17. The possibilities for reuse of steel scrap in order to obtain blades for knives

    International Nuclear Information System (INIS)

    Štrbaca, N.; Markovića, I.; Mitovskia, A.; Balanovića, L.; Živkovića, D.; Grekulović, V.

    2017-01-01

    The purpose of this study is to determine fracture toughness of Resistance Spot Welded (RSW) Dual Phase (DP) steels. RSW of galvanized and ungalvanized DP 450 steel sheets was carried out on spot welding machine. Fracture toughness of RSW joints of galvanized and ungalvanized DP 450 steel sheets was calculated from tensile-shear tests. New empirical equations were developed using Least Squares Method (LSM) between energy release rate, fracture toughness and critical crack size depending on the relationship between hardness and fracture toughness values. Results indicated that fracture toughness of joints welded by using RSW increased exponentially while the hardness decreased. In addition, fracture toughness and energy release rate of RSW galvanized DP 450 steel sheets were lower compared to RSW ungalvanized DP 450 steel sheets which had approximately the same hardness. [es

  18. A study on high speed coupling design for wind turbine using a finite element analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyoung Woo; Kang, Jong Hun [Dept. of Mechatronics Engineering, Jungwon University, Geosan (Korea, Republic of); Han, Jeong Young [Pusan Educational Center for Computer Aided Machine Design, Pusan University, Busan (Korea, Republic of)

    2016-08-15

    The purpose of this study is to design a high speed coupling for 3 MW wind turbines and evaluate its structural stability. A basic analysis was performed to assess the structural stability of two materials, SPS6 steel plate and a composite material (Glass7628, Glass/Epoxy), in relation to misalignment in the axial and radial directions. The entire model was analyzed for a high speed coupling based on the SPS6 steel plate, which was found to have higher stability among the two materials, and safety factors were estimated for various levels of power delivery. To test the proposed high speed coupling design, a performance test was carried out to verify the stability of the final product.

  19. A study on high speed coupling design for wind turbine using a finite element analysis

    International Nuclear Information System (INIS)

    Lee, Hyoung Woo; Kang, Jong Hun; Han, Jeong Young

    2016-01-01

    The purpose of this study is to design a high speed coupling for 3 MW wind turbines and evaluate its structural stability. A basic analysis was performed to assess the structural stability of two materials, SPS6 steel plate and a composite material (Glass7628, Glass/Epoxy), in relation to misalignment in the axial and radial directions. The entire model was analyzed for a high speed coupling based on the SPS6 steel plate, which was found to have higher stability among the two materials, and safety factors were estimated for various levels of power delivery. To test the proposed high speed coupling design, a performance test was carried out to verify the stability of the final product

  20. High-speed imaging of explosive eruptions: applications and perspectives

    Science.gov (United States)

    Taddeucci, Jacopo; Scarlato, Piergiorgio; Gaudin, Damien; Capponi, Antonio; Alatorre-Ibarguengoitia, Miguel-Angel; Moroni, Monica

    2013-04-01

    Explosive eruptions, being by definition highly dynamic over short time scales, necessarily call for observational systems capable of relatively high sampling rates. "Traditional" tools, like as seismic and acoustic networks, have recently been joined by Doppler radar and electric sensors. Recent developments in high-speed camera systems now allow direct visual information of eruptions to be obtained with a spatial and temporal resolution suitable for the analysis of several key eruption processes. Here we summarize the methods employed to gather and process high-speed videos of explosive eruptions, and provide an overview of the several applications of these new type of data in understanding different aspects of explosive volcanism. Our most recent set up for high-speed imaging of explosive eruptions (FAMoUS - FAst, MUltiparametric Set-up,) includes: 1) a monochrome high speed camera, capable of 500 frames per second (fps) at high-definition (1280x1024 pixel) resolution and up to 200000 fps at reduced resolution; 2) a thermal camera capable of 50-200 fps at 480-120x640 pixel resolution; and 3) two acoustic to infrasonic sensors. All instruments are time-synchronized via a data logging system, a hand- or software-operated trigger, and via GPS, allowing signals from other instruments or networks to be directly recorded by the same logging unit or to be readily synchronized for comparison. FAMoUS weights less than 20 kg, easily fits into four, hand-luggage-sized backpacks, and can be deployed in less than 20' (and removed in less than 2', if needed). So far, explosive eruptions have been recorded in high-speed at several active volcanoes, including Fuego and Santiaguito (Guatemala), Stromboli (Italy), Yasur (Vanuatu), and Eyjafiallajokull (Iceland). Image processing and analysis from these eruptions helped illuminate several eruptive processes, including: 1) Pyroclasts ejection. High-speed videos reveal multiple, discrete ejection pulses within a single Strombolian

  1. Fatigue resistance of welded joints in aluminium high-speed craft : A total stress concept

    NARCIS (Netherlands)

    Den Besten, J.H.

    2015-01-01

    Crew transfers, surveillance duties and {security, rescue, interception} operations at sea typically require high-speed craft. Aluminium is quite often selected as hull structure material because of its weight save potential in comparison to steel. The fatigue strength, however, may become a point

  2. Analysis of carbides and inclusions in high speed tool steels

    DEFF Research Database (Denmark)

    Therkildsen, K.T.; Dahl, K.V.

    2002-01-01

    The fracture surfaces of fatigued specimens were investigated using scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDS). The aim was to quantify the distribution of cracked carbides and non-metallic inclusions on the fracturesurfaces as well as on polished cross...

  3. Improvement in steel quality obtained by continuous casting by means of electrophysical influences

    International Nuclear Information System (INIS)

    Shklyar, V.; Garcia, L.; Formoso, A.; Cores, A.

    1998-01-01

    Laboratory tests with thin smelted in a crucible and industrial tests with crude steel poured in moulds had been carried out. These metals were subjected to electrophysical influences. As a results of the applied electric field, it is observed in tin that during solidification, the crystallization temperature and the solidification time are changed Crystal growth in the electric field direction and an increase of the fracture limit in the steel ingot are observed. (Author) 9 refs

  4. High Speed SPM of Functional Materials

    Energy Technology Data Exchange (ETDEWEB)

    Huey, Bryan D. [Univ. of Connecticut, Storrs, CT (United States)

    2015-08-14

    The development and optimization of applications comprising functional materials necessitates a thorough understanding of their static and dynamic properties and performance at the nanoscale. Leveraging High Speed SPM and concepts enabled by it, efficient measurements and maps with nanoscale and nanosecond temporal resolution are uniquely feasible. This includes recent enhancements for topographic, conductivity, ferroelectric, and piezoelectric properties as originally proposed, as well as newly developed methods or improvements to AFM-based mechanical, friction, thermal, and photoconductivity measurements. The results of this work reveal fundamental mechanisms of operation, and suggest new approaches for improving the ultimate speed and/or efficiency, of data storage systems, magnetic-electric sensors, and solar cells.

  5. High-speed photography. Technique and evolution

    International Nuclear Information System (INIS)

    Sanchez-Tembleque, R.

    1981-01-01

    It is intended to present some general considerations about ''Higg-speed photography'' as a tool of work common in mos research laboratories in the world. ''High-speed photography'' relies on the principles of photography of actions, that change rapidly with the time. The evolution of this technique goes along with the discovering of new phenomena in wich higher speeds are involved. At present is normal to deal with changing rates involving picoseconds times (10 -12 s) and new developments on the field of femtosecond (10 -15 s) theoretically are contemplated. (author)

  6. Continuous QKD and high speed data encryption

    Science.gov (United States)

    Zbinden, Hugo; Walenta, Nino; Guinnard, Olivier; Houlmann, Raphael; Wen, Charles Lim Ci; Korzh, Boris; Lunghi, Tommaso; Gisin, Nicolas; Burg, Andreas; Constantin, Jeremy; Legré, Matthieu; Trinkler, Patrick; Caselunghe, Dario; Kulesza, Natalia; Trolliet, Gregory; Vannel, Fabien; Junod, Pascal; Auberson, Olivier; Graf, Yoan; Curchod, Gilles; Habegger, Gilles; Messerli, Etienne; Portmann, Christopher; Henzen, Luca; Keller, Christoph; Pendl, Christian; Mühlberghuber, Michael; Roth, Christoph; Felber, Norbert; Gürkaynak, Frank; Schöni, Daniel; Muheim, Beat

    2013-10-01

    We present the results of a Swiss project dedicated to the development of high speed quantum key distribution and data encryption. The QKD engine features fully automated key exchange, hardware key distillation based on finite key security analysis, efficient authentication and wavelength division multiplexing of the quantum and the classical channel and one-time pas encryption. The encryption device allows authenticated symmetric key encryption (e.g AES) at rates of up to 100 Gb/s. A new quantum key can uploaded up to 1000 times second from the QKD engine.

  7. High speed PVD thermal barrier coatings

    Energy Technology Data Exchange (ETDEWEB)

    Beele, W. [Sulzer Metco Coatings BV (Netherlands); Eschendorff, G. [Sulzer Metco Coatings BV (Netherlands); Eldim BV (Netherlands)

    2006-07-15

    The high speed PVD process (HS-PVD) combines gas phase coating synthesis with high deposition rates. The process has been demonstrated for high purity YSZ deposited as a chemically bonded top thermal barrier with columnar structure of EB-PVD features. The process can manufacture EB-PVD like coatings that match in regards to their TGO-formation and columnar structure. Coatings with a columnar structure formed by individual columns of 1/4 of the diameter of a classical EB-PVD type TBC have been deposited. These coatings have the potential to prove a significant reduction in thermal conductivity and in erosion performance. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  8. Pulsed laser triggered high speed microfluidic switch

    Science.gov (United States)

    Wu, Ting-Hsiang; Gao, Lanyu; Chen, Yue; Wei, Kenneth; Chiou, Pei-Yu

    2008-10-01

    We report a high-speed microfluidic switch capable of achieving a switching time of 10 μs. The switching mechanism is realized by exciting dynamic vapor bubbles with focused laser pulses in a microfluidic polydimethylsiloxane (PDMS) channel. The bubble expansion deforms the elastic PDMS channel wall and squeezes the adjacent sample channel to control its fluid and particle flows as captured by the time-resolved imaging system. A switching of polystyrene microspheres in a Y-shaped channel has also been demonstrated. This ultrafast laser triggered switching mechanism has the potential to advance the sorting speed of state-of-the-art microscale fluorescence activated cell sorting devices.

  9. Architecture Of High Speed Image Processing System

    Science.gov (United States)

    Konishi, Toshio; Hayashi, Hiroshi; Ohki, Tohru

    1988-01-01

    One of architectures for a high speed image processing system which corresponds to a new algorithm for a shape understanding is proposed. And the hardware system which is based on the archtecture was developed. Consideration points of the architecture are mainly that using processors should match with the processing sequence of the target image and that the developed system should be used practically in an industry. As the result, it was possible to perform each processing at a speed of 80 nano-seconds a pixel.

  10. High speed UNIBUS-VME interface

    International Nuclear Information System (INIS)

    Olmos, P.

    1987-01-01

    An interface between VME an the UNIBUS of PDP or VAX computer is presented. The system supports high speed parallel communication (up to 1MB/S) and is composed of two modules. One of these is a commercial DR11M board which performs DMA transfers between UNIBUS and the external word. The other is a VME module specifically developed for this application. The interface has been tested under VMS operating system in VAX and VALET-PLUS system for the VME Bus. We describe in detail the VME module and its connection with the DR11M. Software, both in WMS and VALET, is also described. (Author) 7 refs

  11. High-speed reconstruction of compressed images

    Science.gov (United States)

    Cox, Jerome R., Jr.; Moore, Stephen M.

    1990-07-01

    A compression scheme is described that allows high-definition radiological images with greater than 8-bit intensity resolution to be represented by 8-bit pixels. Reconstruction of the images with their original intensity resolution can be carried out by means of a pipeline architecture suitable for compact, high-speed implementation. A reconstruction system is described that can be fabricated according to this approach and placed between an 8-bit display buffer and the display's video system thereby allowing contrast control of images at video rates. Results for 50 CR chest images are described showing that error-free reconstruction of the original 10-bit CR images can be achieved.

  12. High speed drying of saturated steam

    International Nuclear Information System (INIS)

    Marty, C.; Peyrelongue, J.P.

    1993-01-01

    This paper describes the development of the drying process for the saturated steam used in the PWR nuclear plant turbines in order to prevent negative effects of water on turbine efficiency, maintenance costs and equipment lifetime. The high speed drying concept is based on rotating the incoming saturated steam in order to separate water which is more denser than the steam; the water film is then extracted through an annular slot. A multicellular modular equipment has been tested. Applications on high and low pressure extraction of various PWR plants are described (Bugey, Loviisa)

  13. High speed PVD thermal barrier coatings

    International Nuclear Information System (INIS)

    Beele, W.; Eschendorff, G.

    2006-01-01

    The high speed PVD process (HS-PVD) combines gas phase coating synthesis with high deposition rates. The process has been demonstrated for high purity YSZ deposited as a chemically bonded top thermal barrier with columnar structure of EB-PVD features. The process can manufacture EB-PVD like coatings that match in regards to their TGO-formation and columnar structure. Coatings with a columnar structure formed by individual columns of 1/4 of the diameter of a classical EB-PVD type TBC have been deposited. These coatings have the potential to prove a significant reduction in thermal conductivity and in erosion performance. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  14. Error mapping of high-speed AFM systems

    Science.gov (United States)

    Klapetek, Petr; Picco, Loren; Payton, Oliver; Yacoot, Andrew; Miles, Mervyn

    2013-02-01

    In recent years, there have been several advances in the development of high-speed atomic force microscopes (HSAFMs) to obtain images with nanometre vertical and lateral resolution at frame rates in excess of 1 fps. To date, these instruments are lacking in metrology for their lateral scan axes; however, by imaging a series of two-dimensional lateral calibration standards, it has been possible to obtain information about the errors associated with these HSAFM scan axes. Results from initial measurements are presented in this paper and show that the scan speed needs to be taken into account when performing a calibration as it can lead to positioning errors of up to 3%.

  15. High-speed elevators controlled by inverters

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Yoshio; Takahashi, Hideaki; Nakamura, Kiyoshi; Kinoshita, Hiroshi

    1988-10-25

    The super-high-speed elevator with superiority to 300m/min of speed, requires both the large capacity power and wide range speed controls. Therefore, in order to materialize the smooth and quiet operation characteristics, by applying the inverter control, the low torque ripple control in the low frequency range and high frequency large capacity inverting for lowering the motor in noise are necessary with their being assured of reliability. To satisfy the above necessary items, together with the development of a sine wave pulse width and frequency modulation (PWM/PFM) control system, to more precisely enable the sine wave electric current control, and 3kHz switching power converter, using a 800A power transistor module, a supervoltage control circuit under the extraordinary condition was designed. As a result of commercializing a 360m/min super-high speed inverter elevator, the power source unit, due to the effect of high power factor, could be reduced by 30% in capacity and also the higher harmonic wave including ratio could be considerably lowered to the inferiority to 5%. 2 references, 7 figures, 1 table.

  16. Investigations on high speed MHD liquid flow

    International Nuclear Information System (INIS)

    Yamasaki, Takasuke; Kamiyama, Shin-ichi.

    1982-01-01

    Lately, the pressure drop problem of MHD two-phase flow in a duct has been investigated theoretically and experimentally in conjunction with the problems of liquid metal MHD two-phase flow power-generating cycle or of liquid metal boiling two-phase flow in the blanket of a nuclear fusion reactor. Though many research results have been reported so far for MHD single-phase flow, the hydrodynamic studies on high speed two-phase flow are reported only rarely, specifically the study dealing with the generation of cavitation is not found. In the present investigation, the basic equation was derived, analyzing the high speed MHD liquid flow in a diverging duct as the one-dimensional flow of homogeneous two-phase fluid of small void ratio. Furthermore, the theoretical solution for the effect of magnetic field on cavitation-generating conditions was tried. The pressure distribution in MHD flow in a duct largely varies with load factor, and even if the void ratio is small, the pressure distribution in two-phase flow is considerably different from that in single-phase flow. Even if the MHD two-phase flow in a duct is subsonic flow at the throat, the critical conditions may be achieved sometimes in a diverging duct. It was shown that cavitation is more likely to occur as magnetic field becomes more intense if it is generated downstream of the throat. This explains the experimental results qualitatively. (Wakatsuki, Y.)

  17. High speed motion neutron radiography of two-phase flow

    International Nuclear Information System (INIS)

    Robinson, A.H.; Wang, S.L.

    1983-01-01

    Current research in the area of two-phase flow utilizes a wide variety of sensing devices, but some limitations exist on the information which can be obtained. Neutron radiography is a feasible alternative to ''see'' the two-phase flow. A system to perform neutron radiographic analysis of dynamic events which occur on the order of several milliseconds has been developed at Oregon State University. Two different methods have been used to radiograph the simulated two-phase flow. These are pulsed, or ''flash'' radiography, and high speed movie neutron radiography. The pulsed method serves as a ''snap-shot'' with an exposure time ranging from 10 to 20 milliseconds. In high speed movie radiography, a scintillator is used to convert neutrons into light which is enhanced by an optical intensifier and then photographed by a high speed camera. Both types of radiography utilize the pulsing capability of the OSU TRIGA reactor. The principle difficulty with this type of neutron radiography is the fogging of the image due to the large amount of scattering in the water. This difficulty can be overcome by using thin regions for the two-phase flow or using heavy water instead of light water. The results obtained in this paper demonstrate the feasibility of using neutron radiography to obtain data in two-phase flow situations. Both movies and flash radiographs have been obtained of air bubbles in water and boiling from a heater element. The neutron radiographs of the boiling element show both nucleate boiling and film boiling. (Auth.)

  18. Surface grinding characteristics of ferrous metals under high-speed and speed-stroke grinding conditions

    International Nuclear Information System (INIS)

    Ghani, A.K.; Choudhury, I.A.; Ahim, M.B.

    1999-01-01

    Some ferrous metals have been ground under different conditions with high-speed and speed-stroke in surface grinding operation. The paper describes experimental investigation of grinding forces in grinding some ferrous metals with the application of cutting fluids. Grinding tests have been carried out on mild steel, assab steel and stainless steel with different combinations of down feed and cross feed. The wheel speed was 27 m/sec while the table speed was maintained at the maximum possible 25 m/min. The grindability has been evaluated by measuring the grinding forces, grinding ratio, and surface finish. Grinding forces have been plotted against down feed of the grinding wheel and cross feed of the table. It has been observed that the radial and tangential grinding forces in stainless steel were higher than those in assab steel and mild steel

  19. Design and applications of a pneumatic accelerator for high speed punching

    International Nuclear Information System (INIS)

    Yaldiz, Sueleyman; Saglam, Haci; Unsacar, Faruk; Isik, Hakan

    2007-01-01

    High speed forming is an important production method that requires specially designed HERF (high energy rate forming) machines. Most of the HERF machines are devices that consist of a system in which energy is stored and a differential piston mechanism is used to release the energy at high rate. In order to eliminate the usage of specially designed HERF machines and to obtain the high speed forming benefits, the accelerator which can be adapted easily onto conventional presses has been designed and manufactured in this study. The designed energy accelerator can be incorporated into mechanical press to convert the low speed operation into high-speed operation of a hammer. Expectations from this work are reduced distortion rates, increased surface quality and precise dimensions in metal forming operations. From the performance test, the accelerator is able to achieve high speed and energy which require for high speed blanking of thick sheet metals

  20. Computer modeling design of a frame pier for a high-speed railway project

    Science.gov (United States)

    Shi, Jing-xian; Fan, Jiang

    2018-03-01

    In this paper, a double line pier on a high-speed railway in China is taken as an example. the size of each location is drawn up firstly. The design of pre-stressed steel beam for its crossbeam is carried out, and the configuration of ordinary reinforcement is carried out for concrete piers. Combined with bridge structure analysis software Midas Civil and BSAS, the frame pier is modeled and calculated. The results show that the beam and pier column section size reasonable design of pre-stressed steel beam with 17-7V5 high strength low relaxation steel strand, can meet the requirements of high speed railway carrying capacity; the main reinforcement of pier shaft with HRB400 diameter is 28mm, ring arranged around the pier, can satisfy the eccentric compression strength, stiffness and stability requirements, also meet the requirements of seismic design.

  1. High speed laser cutting machine. Kosoku reza kakoki

    Energy Technology Data Exchange (ETDEWEB)

    Shinno, N. (Matsushita Electric Industrial Co. Ltd., Kadoma, Osaka (Japan))

    1993-11-01

    The carbon dioxide gas laser cutting machine is being used widely for from cutting soft steel and stainless steel, etc. to intermetallic welding and in the field of cutting in particular, concerning sheet cutting, it has been changing the existing monopoly of the turret punch press, and as for medium and thick plate cutting, that of the gas plasma fusing device. This article is the general description of high speed laser cutting machine. Concerning the laser cutting (sheet cutting in particular), as the essential items for securing severe cutting accuracy and, at the same time, improving the cutting speed, the following matters are picked up for respective explanation; improvement of stationary machine accuracy, improvement of dynamic machine accuracy, improvement of quality of laser beam as well as optimization of cutting conditions, and shortening of piercing time. Also explanation is given to the respective items, namely speeding-up of medium and thick plate cutting, and reduction of load onto the operator by improved operation. Finally, feeding and removing of a sheet only, and feeding and removing with a pallet are mentioned as the efforts for automation and energy saving. 3 figs., 1 tab.

  2. Network Based High Speed Product Innovation

    DEFF Research Database (Denmark)

    Lindgren, Peter

    In the first decade of the 21st century, New Product Development has undergone major changes in the way NPD is managed and organised. This is due to changes in technology, market demands, and in the competencies of companies. As a result NPD organised in different forms of networks is predicted...... to be of ever-increasing importance to many different kinds of companies. This happens at the same times as the share of new products of total turnover and earnings is increasing at unprecedented speed in many firms and industries. The latter results in the need for very fast innovation and product development...... - a need that can almost only be resolved by organising NPD in some form of network configuration. The work of Peter Lindgren is on several aspects of network based high speed product innovation and contributes to a descriptive understanding of this phenomenon as well as with normative theory on how NPD...

  3. BLOSTREAM: A HIGH SPEED STREAM CIPHER

    Directory of Open Access Journals (Sweden)

    ALI H. KASHMAR

    2017-04-01

    Full Text Available Although stream ciphers are widely utilized to encrypt sensitive data at fast speeds, security concerns have led to a shift from stream to block ciphers, judging that the current technology in stream cipher is inferior to the technology of block ciphers. This paper presents the design of an improved efficient and secure stream cipher called Blostream, which is more secure than conventional stream ciphers that use XOR for mixing. The proposed cipher comprises two major components: the Pseudo Random Number Generator (PRNG using the Rabbit algorithm and a nonlinear invertible round function (combiner for encryption and decryption. We evaluate its performance in terms of implementation and security, presenting advantages and disadvantages, comparison of the proposed cipher with similar systems and a statistical test for randomness. The analysis shows that the proposed cipher is more efficient, high speed, and secure than current conventional stream ciphers.

  4. High-speed cineradiographies acquisition and processing

    International Nuclear Information System (INIS)

    Kahn, E.; Nourrissat, Yves; Viguier, Philippe

    A high-speed cineradiography installation provides dimensional informations recorded either on a film, or on a magnetic tape. In the event of the film, the imperfection of our visual sense leads us to look for a method of measurement which allows us to extract the information from a noisy image; the association of an optical flying spot scanner with a computer is adapted to this use and allows us, for instance, to determine the inside and outside diameters of a sphere during its implosion. On the other hand, the radiographic recording on magnetic tape is processed, after numerisation by the computer, in the same way as the numeric tape generated after the optical scanner. We compare the results achieved by the two recording methods [fr

  5. Inlet design for high-speed propfans

    Science.gov (United States)

    Little, B. H., Jr.; Hinson, B. L.

    1982-01-01

    A two-part study was performed to design inlets for high-speed propfan installation. The first part was a parametric study to select promising inlet concepts. A wide range of inlet geometries was examined and evaluated - primarily on the basis of cruise thrust and fuel burn performance. Two inlet concepts were than chosen for more detailed design studies - one apropriate to offset engine/gearbox arrangements and the other to in-line arrangements. In the second part of this study, inlet design points were chosen to optimize the net installed thrust, and detailed design of the two inlet configurations was performed. An analytical methodology was developed to account for propfan slipstream effects, transonic flow efects, and three-dimensional geometry effects. Using this methodology, low drag cowls were designed for the two inlets.

  6. High speed digital TDC for D0 vertex reconstruction

    International Nuclear Information System (INIS)

    Gao Guosheng; Partridge, R.

    1992-01-01

    A high speed digital TDC has been built as part of the Level 0 trigger for the D0 experiment at Fermilab. The digital TDC is used to make a fast determination of the primary vertex position by timing the arrival time of beam jets detected in the Level 0 counters. The vertex position is then used by the Level 1 trigger to determine the proper sinθ weighting factors for calculation transverse energies. Commercial GaAs integrated circuits are used in the digital TDC to obtain a time resolution of σ t == 226 ps

  7. Time resolution performance studies of contemporary high speed photomultipliers

    International Nuclear Information System (INIS)

    Leskovar, B.; Lo, C.C.

    1978-01-01

    The time resolution capabilities of prototype microchannel plate and static crossed-field photomultipliers have been investigated. Measurements were made of electron transit time, rise time, time response, single phtoelectron time spread and multiphotoelectron time spread for LEP HR350 proximity focused high gain curved microchannel plate and VPM-154A/1.6L static crossed-field photomultipliers. The experimental data have been compared with results obtained with conventionally designed high speed photomultipliers. Descriptions are given of both the measuring techniques and the measuring systems. 16 refs

  8. Time resolution performance studies of contemporary high speed photomultipliers

    International Nuclear Information System (INIS)

    Leskovar, B.; Lo, C.C.

    1977-01-01

    The time resolution capabilities of prototype microchannel plate and static crossed-field photomultipliers have been investigated. Measurements were made of electron transit time, rise time, time response, single photoelectron time spread and multiphotoelectron time spread for LEP HR350 proximity focused high gain curved microchannel plate and VPM-154A/1.6L static crossed-field photomultipliers. The experimental data have been compared with results obtained with conventionally designed RCS 8850 and C31024 high speed photomultipliers. Descriptions are given of both the measuring techniques and the measuring systems

  9. High Speed Magnetostrictive MEMS Actuated Mirror Deflectors, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The main goal of this proposal is to develop high speed magnetostrictive and MEMS actuators for rapidly deflecting or deforming mirrors. High speed, light-weight,...

  10. Potential scenarios of concern for high speed rail operations

    Science.gov (United States)

    2011-03-16

    Currently, multiple operating authorities are proposing the : introduction of high-speed rail service in the United States. : While high-speed rail service shares a number of basic : principles with conventional-speed rail service, the operational : ...

  11. High-speed and intercity passenger rail testing strategy.

    Science.gov (United States)

    2013-05-01

    This high-speed and intercity passenger rail (HSIPR) testing strategy addresses the requirements for testing of high-speed train sets and technology before introduction to the North American railroad system. The report documents the results of a surv...

  12. Characterization of duplex stainless steel weld metals obtained by hybrid plasma-gas metal arc welding

    OpenAIRE

    Yurtisik,Koray; Tirkes,Suha; Dykhno,Igor; Gur,C. Hakan; Gurbuz,Riza

    2013-01-01

    Despite its high efficiency, autogenous keyhole welding is not well-accepted for duplex stainless steels because it causes excessive ferrite in as-welded duplex microstructure, which leads to a degradation in toughness and corrosion properties of the material. Combining the deep penetration characteristics of plasma arc welding in keyhole mode and metal deposition capability of gas metal arc welding, hybrid plasma - gas metal arc welding process has considered for providing a proper duplex mi...

  13. Characterization of duplex stainless steel weld metals obtained by hybrid plasma-gas metal arc welding

    Directory of Open Access Journals (Sweden)

    Koray Yurtisik

    2013-09-01

    Full Text Available Despite its high efficiency, autogenous keyhole welding is not well-accepted for duplex stainless steels because it causes excessive ferrite in as-welded duplex microstructure, which leads to a degradation in toughness and corrosion properties of the material. Combining the deep penetration characteristics of plasma arc welding in keyhole mode and metal deposition capability of gas metal arc welding, hybrid plasma - gas metal arc welding process has considered for providing a proper duplex microstructure without compromising the welding efficiency. 11.1 mm-thick standard duplex stainless steel plates were joined in a single-pass using this novel technique. Same plates were also subjected to conventional gas metal arc and plasma arc welding processes, providing benchmarks for the investigation of the weldability of the material. In the first place, the hybrid welding process enabled us to achieve less heat input compared to gas metal arc welding. Consequently, the precipitation of secondary phases, which are known to be detrimental to the toughness and corrosion resistance of duplex stainless steels, was significantly suppressed in both fusion and heat affected zones. Secondly, contrary to other keyhole techniques, proper cooling time and weld metal chemistry were achieved during the process, facilitating sufficient reconstructive transformation of austenite in the ferrite phase.

  14. Experimental High Speed Milling of the Selected Thin-Walled Component

    Directory of Open Access Journals (Sweden)

    Jozef Zajac

    2017-11-01

    Full Text Available In a technical practice, it is possible to meet thin-walled parts more and more often. These parts are most commonly used in the automotive industry or aircraft industry to reduce the weight of different design part of cars or aircraft. Presented article is focused on experimental high speed milling of selected thin-walled component. The introduction of this article presents description of high speed machining and specification of thin – walled parts. The experiments were carried out using a CNC machine Pinnacle VMC 650S and C45 material - plain carbon steel for automotive components and mechanical engineering. In the last part of the article, described are the arrangements to reduction of deformation of thin-walled component during the experimental high speed milling.

  15. Florida intercity high speed rail passenger service

    Energy Technology Data Exchange (ETDEWEB)

    Najafi, F.T.; Watford, S.; Moore, G.; Des, A. [Florida Univ., Gainesville, FL (United States). Dept. of Civil Engineering

    1997-10-01

    Plans for a new high-speed rail (HSR) transportation system in Florida were reviewed. HSR is believed to be the least expensive, most energy-efficient and least environmentally harmful alternative to air and highway travel. The system in Florida will be used as a case study to determine its overall impact on the environment, people and economy. The 300-plus mile system will move travelers at speeds of over 200 mph between Miami, Orlando, and Tampa. The study will identify the impacts of a HSR system on existing transportation networks, environment, energy, growth and growth distribution, safety, economy, travel time, and tourism. Transportation problems and the innovative mechanisms needed to realize the joint public and private venture approach to planning, locating, permitting, managing, financing, constructing and maintaining an inter-regional HSR line for the state were studied. The all-electric train would greatly help the environment in two ways: (1) zero emissions from the train itself, and (2) the reduction of trips by automobile and aircraft would reduce the amount of fuel and energy being used. 4 refs., 1 fig.

  16. Canadian high speed magnetically levitated vehicle system

    Energy Technology Data Exchange (ETDEWEB)

    Atherton, D L [Queen' s Univ., Kingston, Ont.; Belanger, P R; Burke, P E; Dawson, G E; Eastham, A R; Hayes, W F; Ooi, B T; Silvester, P; Slemon, G R

    1978-04-01

    A technically feasible high speed (400 to 480 km/h) guided ground transportation system, based on the use of the vehicle-borne superconducting magnets for electrodynamic suspension and guidance and for linear synchronous motor propulsion was defined as a future modal option for Canadian application. Analysis and design proposals were validated by large-scale tests on a rotating wheel facility and by modelling system components and their interactions. Thirty ton vehicles carrying 100 passengers operate over a flat-topped elevated guideway, which minimizes system down-time due to ice and snow accumulation and facilitates the design of turn-outs. A clearance of up to 15 cm is produced by the electrodynamic interaction between the vehicle-borne superconducting magnets and aluminum guideway strips. Propulsion and automatic system control is provided by the superconducting linear synchronous motor which operates at good efficiency (0.74) and high power factor (0.95). The vehicle is guided primarily by the interaction between the LSM field magnet array and flat null-flux loops overlying the stator windings in the guideway. The linear synchronous motor, electrodynamic suspension as well as levitation strip joints, parasitic LSM winding losses and limitations to the use of ferromagnetic guideway reinforcement were investigated experimentally on the test wheel facility. The use of a secondary suspension assures adequate dynamic stability, and good ride quality is achieved by optimized passive components with respect to lateral modes and by an actively controlled secondary suspension with respect to vertical motion.

  17. Material constraints on high-speed design

    Science.gov (United States)

    Bucur, Diana; Militaru, Nicolae

    2015-02-01

    Current high-speed circuit designs with signal rates up to 100Gbps and above are implying constraints for dielectric and conductive materials and their dependence of frequency, for component elements and for production processes. The purpose of this paper is to highlight through various simulation results the frequency dependence of specific parameters like insertion and return loss, eye diagrams, group delay that are part of signal integrity analyses type. In low-power environment designs become more complex as the operation frequency increases. The need for new materials with spatial uniformity for dielectric constant is a need for higher data rates circuits. The fiber weave effect (FWE) will be analyzed through the eye diagram results for various dielectric materials in a differential signaling scheme given the fact that the FWE is a phenomenon that affects randomly the performance of the circuit on balanced/differential transmission lines which are typically characterized through the above mentioned approaches. Crosstalk between traces is also of concern due to propagated signals that have tight rise and fall times or due to high density of the boards. Criteria should be considered to achieve maximum performance of the designed system requiring critical electronic properties.

  18. High-Speed RaPToRS

    Science.gov (United States)

    Henchen, Robert; Esham, Benjamin; Becker, William; Pogozelski, Edward; Padalino, Stephen; Sangster, Thomas; Glebov, Vladimir

    2008-11-01

    The High-Speed Rapid Pneumatic Transport of Radioactive Samples (HS-RaPToRS) system, designed to quickly and safely move radioactive materials, was assembled and tested at the Mercury facility of the Naval Research Laboratory (NRL) in Washington D.C. A sample, which is placed inside a four-inch-diameter carrier, is activated before being transported through a PVC tube via airflow. The carrier travels from the reaction chamber to the end station where it pneumatically brakes prior to the gate. A magnetic latch releases the gate when the carrier arrives and comes to rest. The airflow, optical carrier-monitoring devices, and end gate are controlled manually or automatically with LabView software. The installation and testing of the RaPToRS system at NRL was successfully completed with transport times of less than 3 seconds. The speed of the carrier averaged 16 m/s. Prospective facilities for similar systems include the Laboratory for Laser Energetics and the National Ignition Facility.

  19. High speed all-silicon optical modulator

    International Nuclear Information System (INIS)

    Marris-Morini, Delphine; Le Roux, Xavier; Pascal, Daniel; Vivien, Laurent; Cassan, Eric; Fedeli, Jean Marc; Damlencourt, Jean Francois; Bouville, David; Palomo, Jose; Laval, Suzanne

    2006-01-01

    Electrorefractive effect is experimentally demonstrated in an all-silicon optical structure. A highly doped Si P + layer is embedded in the intrinsic region of a PIN diode integrated in a SOI waveguide. Holes are confined at equilibrium around the P + layer. By applying a reverse bias to the diode, electrical field sweeps the carriers out of the active region. Free carrier concentration variations are responsible for local refractive index variations leading to an effective index variation of the waveguide optical mode and to an optical absorption variation. As a figure of merit, the product V π L π , determined from the measured effective index variation, is equal to 3.1 V cm. Furthermore, the device performances have theoretically been investigated. Estimations show that V π L π as small as 1 V cm are feasible using optimized structures. Response times lower than 2 ps are predicted, which gives the possibility to achieve very high-speed modulation. Furthermore, a temperature increases from 300 to 400 K does not change the index variation amplitude, and despite the carrier mobility reduction, response times are still lower than 2 ps

  20. The high speed civil transport and NASA's High Speed Research (HSR) program

    Science.gov (United States)

    Shaw, Robert J.

    1994-01-01

    Ongoing studies being conducted not only in this country but in Europe and Asia suggest that a second generation supersonic transport, or High-Speed Civil Transport (HSCT), could become an important part of the 21st century international air transportation system. However, major environmental compatibility and economic viability issues must be resolved if the HSCT is to become a reality. This talk will overview the NASA High-Speed Research (HSR) program which is aimed at providing the U.S. industry with a technology base to allow them to consider launching an HSCT program early in the next century. The talk will also discuss some of the comparable activities going on within Europe and Japan.

  1. High-Speed Data Recorder for Space, Geodesy, and Other High-Speed Recording Applications

    Science.gov (United States)

    Taveniku, Mikael

    2013-01-01

    A high-speed data recorder and replay equipment has been developed for reliable high-data-rate recording to disk media. It solves problems with slow or faulty disks, multiple disk insertions, high-altitude operation, reliable performance using COTS hardware, and long-term maintenance and upgrade path challenges. The current generation data recor - ders used within the VLBI community are aging, special-purpose machines that are both slow (do not meet today's requirements) and are very expensive to maintain and operate. Furthermore, they are not easily upgraded to take advantage of commercial technology development, and are not scalable to multiple 10s of Gbit/s data rates required by new applications. The innovation provides a softwaredefined, high-speed data recorder that is scalable with technology advances in the commercial space. It maximally utilizes current technologies without being locked to a particular hardware platform. The innovation also provides a cost-effective way of streaming large amounts of data from sensors to disk, enabling many applications to store raw sensor data and perform post and signal processing offline. This recording system will be applicable to many applications needing realworld, high-speed data collection, including electronic warfare, softwaredefined radar, signal history storage of multispectral sensors, development of autonomous vehicles, and more.

  2. High Speed Dynamics in Brittle Materials

    Science.gov (United States)

    Hiermaier, Stefan

    2015-06-01

    Brittle Materials under High Speed and Shock loading provide a continuous challenge in experimental physics, analysis and numerical modelling, and consequently for engineering design. The dependence of damage and fracture processes on material-inherent length and time scales, the influence of defects, rate-dependent material properties and inertia effects on different scales make their understanding a true multi-scale problem. In addition, it is not uncommon that materials show a transition from ductile to brittle behavior when the loading rate is increased. A particular case is spallation, a brittle tensile failure induced by the interaction of stress waves leading to a sudden change from compressive to tensile loading states that can be invoked in various materials. This contribution highlights typical phenomena occurring when brittle materials are exposed to high loading rates in applications such as blast and impact on protective structures, or meteorite impact on geological materials. A short review on experimental methods that are used for dynamic characterization of brittle materials will be given. A close interaction of experimental analysis and numerical simulation has turned out to be very helpful in analyzing experimental results. For this purpose, adequate numerical methods are required. Cohesive zone models are one possible method for the analysis of brittle failure as long as some degree of tension is present. Their recent successful application for meso-mechanical simulations of concrete in Hopkinson-type spallation tests provides new insight into the dynamic failure process. Failure under compressive loading is a particular challenge for numerical simulations as it involves crushing of material which in turn influences stress states in other parts of a structure. On a continuum scale, it can be modeled using more or less complex plasticity models combined with failure surfaces, as will be demonstrated for ceramics. Models which take microstructural

  3. High Speed/ Low Effluent Process for Ethanol

    Energy Technology Data Exchange (ETDEWEB)

    M. Clark Dale

    2006-10-30

    n this project, BPI demonstrated a new ethanol fermentation technology, termed the High Speed/ Low Effluent (HS/LE) process on both lab and large pilot scale as it would apply to wet mill and/or dry mill corn ethanol production. The HS/LE process allows very rapid fermentations, with 18 to 22% sugar syrups converted to 9 to 11% ethanol ‘beers’ in 6 to 12 hours using either a ‘consecutive batch’ or ‘continuous cascade’ implementation. This represents a 5 to 8X increase in fermentation speeds over conventional 72 hour batch fermentations which are the norm in the fuel ethanol industry today. The ‘consecutive batch’ technology was demonstrated on a large pilot scale (4,800 L) in a dry mill corn ethanol plant near Cedar Rapids, IA (Xethanol Biofuels). The pilot demonstrated that 12 hour fermentations can be accomplished on an industrial scale in a non-sterile industrial environment. Other objectives met in this project included development of a Low Energy (LE) Distillation process which reduces the energy requirements for distillation from about 14,000 BTU/gal steam ($0.126/gal with natural gas @ $9.00 MCF) to as low as 0.40 KW/gal electrical requirements ($0.022/gal with electricity @ $0.055/KWH). BPI also worked on the development of processes that would allow application of the HS/LE fermentation process to dry mill ethanol plants. A High-Value Corn ethanol plant concept was developed to produce 1) corn germ/oil, 2) corn bran, 3) ethanol, 4) zein protein, and 5) nutritional protein, giving multiple higher value products from the incoming corn stream.

  4. Influence of severe plastic deformation obtained by warm rolling on microstructure and mechanical properties of the ferritic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, Luana Alves; Campos, Wagner Reis Costa; Vilela, Jefferson José, E-mail: luana_alves_barbosa@hotmail.com, E-mail: wrrc@cdtn.br, E-mail: jjv@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Miqueletti, Estevesson Ferreira; Mazzer, Eric Marchezini; Santos, Dagoberto B., E-mail: estevess@demet.ufmg.br, E-mail: marchezini@demet.ufmg.br, E-mail: dsantos@demet.ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil)

    2017-07-01

    Generation IV reactors require research on new materials. For example, materials that will be used in the reactor vessel must be resistant to creep and have high toughness. Grain refining is a technique used to improve toughness. This grain refinement can be achieved by severe plastic deformation. In this work, the stainless steel 409 was used to simulate the EUROFER one type of ODS steel. The rolling process was applied to make the severe plastic deformation. The rolling was performed at 600°C which corresponds to the warm working condition in the absence of dynamic recrystallization. The rolling schedule studied allowed a logarithmic strain accumulation of 3.16. The rolled sheet had a yield stress of 822 MPa and a hardness of 302 HV. The grains became quite elongated characteristic of a severe plastic deformation. The recrystallization temperature of the rolled sheet was approximately 500°C. It was obtained by heat treatment and hardness measurement. (author)

  5. Influence of severe plastic deformation obtained by warm rolling on microstructure and mechanical properties of the ferritic stainless steel

    International Nuclear Information System (INIS)

    Barbosa, Luana Alves; Campos, Wagner Reis Costa; Vilela, Jefferson José; Miqueletti, Estevesson Ferreira; Mazzer, Eric Marchezini; Santos, Dagoberto B.

    2017-01-01

    Generation IV reactors require research on new materials. For example, materials that will be used in the reactor vessel must be resistant to creep and have high toughness. Grain refining is a technique used to improve toughness. This grain refinement can be achieved by severe plastic deformation. In this work, the stainless steel 409 was used to simulate the EUROFER one type of ODS steel. The rolling process was applied to make the severe plastic deformation. The rolling was performed at 600°C which corresponds to the warm working condition in the absence of dynamic recrystallization. The rolling schedule studied allowed a logarithmic strain accumulation of 3.16. The rolled sheet had a yield stress of 822 MPa and a hardness of 302 HV. The grains became quite elongated characteristic of a severe plastic deformation. The recrystallization temperature of the rolled sheet was approximately 500°C. It was obtained by heat treatment and hardness measurement. (author)

  6. High speed intravascular photoacoustic imaging of atherosclerotic arteries (Conference Presentation)

    Science.gov (United States)

    Piao, Zhonglie; Ma, Teng; Qu, Yueqiao; Li, Jiawen; Yu, Mingyue; He, Youmin; Shung, K. Kirk; Zhou, Qifa; Kim, Chang-Seok; Chen, Zhongping

    2016-02-01

    Cardiovascular disease is the leading cause of death in the industrialized nations. Accurate quantification of both the morphology and composition of lipid-rich vulnerable atherosclerotic plaque are essential for early detection and optimal treatment in clinics. In previous works, intravascular photoacoustic (IVPA) imaging for detection of lipid-rich plaque within coronary artery walls has been demonstrated in ex vivo, but the imaging speed is still limited. In order to increase the imaging speed, a high repetition rate laser is needed. In this work, we present a high speed integrated IVPA/US imaging system with a 500 Hz optical parametric oscillator laser at 1725 nm. A miniature catheter with 1.0 mm outer diameter was designed with a 200 μm multimode fiber and an ultrasound transducer with 45 MHz center frequency. The fiber was polished at 38 degree and enclosed in a glass capillary for total internal reflection. An optical/electrical rotary junction and pull-back mechanism was applied for rotating and linearly scanning the catheter to obtain three-dimensional imaging. Atherosclerotic rabbit abdominal aorta was imaged as two frame/second at 1725 nm. Furthermore, by wide tuning range of the laser wavelength from 1680 nm to 1770 nm, spectroscopic photoacoustic analysis of lipid-mimicking phantom and an human atherosclerotic artery was performed ex vivo. The results demonstrated that the developed IVPA/US imaging system is capable for high speed intravascular imaging for plaque detection.

  7. Technology of high-speed combined machining with brush electrode

    Science.gov (United States)

    Kirillov, O. N.; Smolentsev, V. P.; Yukhnevich, S. S.

    2018-03-01

    The new method was proposed for high-precision dimensional machining with a brush electrode when the true position of bundles of metal wire is adjusted by means of creating controlled centrifugal forces appeared due to the increased frequency of rotation of a tool. There are the ultimate values of circumferential velocity at which the bundles are pressed against a machined area of a workpiece in a stable manner despite the profile of the machined surface and variable stock of the workpiece. The special aspects of design of processing procedures for finishing standard parts, including components of products with low rigidity, are disclosed. The methodology of calculation and selection of processing modes which allow one to produce high-precision details and to provide corresponding surface roughness required to perform finishing operations (including the preparation of a surface for metal deposition) is presented. The production experience concerned with the use of high-speed combined machining with an unshaped tool electrode in knowledge-intensive branches of the machine-building industry for different types of production is analyzed. It is shown that the implementation of high-speed dimensional machining with an unshaped brush electrode allows one to expand the field of use of the considered process due to the application of a multipurpose tool in the form of a metal brush, as well as to obtain stable results of finishing and to provide the opportunities for long-term operation of the equipment without its changeover and readjustment.

  8. High-speed instrumentation complex for car crash testing

    Science.gov (United States)

    Baranov, S. V.; Gorin, I. M.; Drozhbin, Yu. A.; Kuznetsov, A. A.; Ponomaryov, A. M.; Semyonov, V. B.; Udalov, V. V.

    1993-01-01

    One of the most important car checking problems consists in safety testing which includes trials for different types of collision, e.g., frontal and lateral. This allows us to study deformations of the automobile and its parts during the impact. To obtain reliable data on overloading, acceleration, deformation, force load on the car's body as well as on the anthropomorphic dummies inside it, use is made of rather a great number of different techniques. Highly informative among them is high-speed cine recording which allows us to register variations that occur during a fraction of a second, and then to reproduce with variable rate the frame images obtained. This makes it possible to study the impact parameters variations much more accurately.

  9. High-speed cinematography of gas-metal atomization

    Energy Technology Data Exchange (ETDEWEB)

    Ting, Jason [ALCOA Specialty Metals Division, 100 Technical Drive, Alcoa Center, PA 15069 (United States)]. E-mail: jason.ting@alcoa.com; Connor, Jeffery [Material Science Engineering Department, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Ridder, Stephen [Metallurgical Processing Group, NIST, 100 Bureau Dr. Stop 8556, Gaithersburg, MD 20899 (United States)

    2005-01-15

    A high-speed cinematographic footage of a 304L stainless steel gas atomization, recorded at the National Institute of Standard and Technology (NIST), was analyzed using a discrete Fourier transform (DFT) algorithm. The analysis showed the gas atomization process possesses two prominent frequency ranges of melt oscillation (pulsation). A low-frequency oscillation in the melt flow occurring between 5.41 and 123 Hz, with a dominant frequency at 9.93 Hz, was seen in the recirculation zone adjacent to the melt orifice. A high-frequency melt oscillation range was observed above 123 Hz, and was more prominent one melt-tip-diameter downstream in the melt atomization image than upstream near the melt tip. This high-frequency range may reflect the melt atomization frequency used to produce finely atomized powder. This range also included a prominent high frequency at 1273 Hz, which dominated in the image further away downstream from the melt tip. This discrete high-frequency oscillation is most probably caused by the aeroacoustic ''screech'' phenomenon, intrasound (<20 kHz), a result of the atomizing gas jets undergoing flow resonance. It is hypothesized that this discrete intrinsic aeroacoustic tone may enhance melt breakup in the atomization process with evidence of this fact in the melt images.

  10. High-speed cinematography of gas-metal atomization

    International Nuclear Information System (INIS)

    Ting, Jason; Connor, Jeffery; Ridder, Stephen

    2005-01-01

    A high-speed cinematographic footage of a 304L stainless steel gas atomization, recorded at the National Institute of Standard and Technology (NIST), was analyzed using a discrete Fourier transform (DFT) algorithm. The analysis showed the gas atomization process possesses two prominent frequency ranges of melt oscillation (pulsation). A low-frequency oscillation in the melt flow occurring between 5.41 and 123 Hz, with a dominant frequency at 9.93 Hz, was seen in the recirculation zone adjacent to the melt orifice. A high-frequency melt oscillation range was observed above 123 Hz, and was more prominent one melt-tip-diameter downstream in the melt atomization image than upstream near the melt tip. This high-frequency range may reflect the melt atomization frequency used to produce finely atomized powder. This range also included a prominent high frequency at 1273 Hz, which dominated in the image further away downstream from the melt tip. This discrete high-frequency oscillation is most probably caused by the aeroacoustic ''screech'' phenomenon, intrasound (<20 kHz), a result of the atomizing gas jets undergoing flow resonance. It is hypothesized that this discrete intrinsic aeroacoustic tone may enhance melt breakup in the atomization process with evidence of this fact in the melt images

  11. Optimal design of high-speed loading spindle based on ABAQUS

    Science.gov (United States)

    Yang, Xudong; Dong, Yu; Ge, Qingkuan; Yang, Hai

    2017-12-01

    The three-dimensional model of high-speed loading spindle is established by using ABAQUS’s modeling module. A finite element analysis model of high-speed loading spindle was established by using spring element to simulate bearing boundary condition. The static and dynamic performance of the spindle structure with different specifications of the rectangular spline and the different diameter neck of axle are studied in depth, and the influence of different spindle span on the static and dynamic performance of the high-speed loading spindle is studied. Finally, the optimal structure of the high-speed loading spindle is obtained. The results provide a theoretical basis for improving the overall performance of the test-bed

  12. Subsidence Evaluation of High-Speed Railway in Shenyang Based on Time-Series Insar

    Science.gov (United States)

    Zhang, Yun; Wei, Lianhuan; Li, Jiayu; Liu, Shanjun; Mao, Yachun; Wu, Lixin

    2018-04-01

    More and more high-speed railway are under construction in China. The slow settlement along high-speed railway tracks and newly-built stations would lead to inhomogeneous deformation of local area, and the accumulation may be a threat to the safe operation of high-speed rail system. In this paper, surface deformation of the newly-built high-speed railway station as well as the railway lines in Shenyang region will be retrieved by time series InSAR analysis using multi-orbit COSMO-SkyMed images. This paper focuses on the non-uniform subsidence caused by the changing of local environment along the railway. The accuracy of the settlement results can be verified by cross validation of the results obtained from two different orbits during the same period.

  13. High resolution, high speed ultrahigh vacuum microscopy

    International Nuclear Information System (INIS)

    Poppa, Helmut

    2004-01-01

    The history and future of transmission electron microscopy (TEM) is discussed as it refers to the eventual development of instruments and techniques applicable to the real time in situ investigation of surface processes with high resolution. To reach this objective, it was necessary to transform conventional high resolution instruments so that an ultrahigh vacuum (UHV) environment at the sample site was created, that access to the sample by various in situ sample modification procedures was provided, and that in situ sample exchanges with other integrated surface analytical systems became possible. Furthermore, high resolution image acquisition systems had to be developed to take advantage of the high speed imaging capabilities of projection imaging microscopes. These changes to conventional electron microscopy and its uses were slowly realized in a few international laboratories over a period of almost 40 years by a relatively small number of researchers crucially interested in advancing the state of the art of electron microscopy and its applications to diverse areas of interest; often concentrating on the nucleation, growth, and properties of thin films on well defined material surfaces. A part of this review is dedicated to the recognition of the major contributions to surface and thin film science by these pioneers. Finally, some of the important current developments in aberration corrected electron optics and eventual adaptations to in situ UHV microscopy are discussed. As a result of all the path breaking developments that have led to today's highly sophisticated UHV-TEM systems, integrated fundamental studies are now possible that combine many traditional surface science approaches. Combined investigations to date have involved in situ and ex situ surface microscopies such as scanning tunneling microscopy/atomic force microscopy, scanning Auger microscopy, and photoemission electron microscopy, and area-integrating techniques such as x-ray photoelectron

  14. High speed operation of permanent magnet machines

    Science.gov (United States)

    El-Refaie, Ayman M.

    This work proposes methods to extend the high-speed operating capabilities of both the interior PM (IPM) and surface PM (SPM) machines. For interior PM machines, this research has developed and presented the first thorough analysis of how a new bi-state magnetic material can be usefully applied to the design of IPM machines. Key elements of this contribution include identifying how the unique properties of the bi-state magnetic material can be applied most effectively in the rotor design of an IPM machine by "unmagnetizing" the magnet cavity center posts rather than the outer bridges. The importance of elevated rotor speed in making the best use of the bi-state magnetic material while recognizing its limitations has been identified. For surface PM machines, this research has provided, for the first time, a clear explanation of how fractional-slot concentrated windings can be applied to SPM machines in order to achieve the necessary conditions for optimal flux weakening. A closed-form analytical procedure for analyzing SPM machines designed with concentrated windings has been developed. Guidelines for designing SPM machines using concentrated windings in order to achieve optimum flux weakening are provided. Analytical and numerical finite element analysis (FEA) results have provided promising evidence of the scalability of the concentrated winding technique with respect to the number of poles, machine aspect ratio, and output power rating. Useful comparisons between the predicted performance characteristics of SPM machines equipped with concentrated windings and both SPM and IPM machines designed with distributed windings are included. Analytical techniques have been used to evaluate the impact of the high pole number on various converter performance metrics. Both analytical techniques and FEA have been used for evaluating the eddy-current losses in the surface magnets due to the stator winding subharmonics. Techniques for reducing these losses have been

  15. Observation of the dynamic movement of fragmentations by high-speed camera and high-speed video

    Science.gov (United States)

    Suk, Chul-Gi; Ogata, Yuji; Wada, Yuji; Katsuyama, Kunihisa

    1995-05-01

    The experiments of blastings using mortal concrete blocks and model concrete columns were carried out in order to obtain technical information on fragmentation caused by the blasting demolition. The dimensions of mortal concrete blocks were 1,000 X 1,000 X 1,000 mm. Six kinds of experimental blastings were carried out using mortal concrete blocks. In these experiments precision detonators and No. 6 electric detonators with 10 cm detonating fuse were used and discussed the control of fragmentation. As the results of experiment it was clear that the flying distance of fragmentation can be controlled using a precise blasting system. The reinforced concrete model columns for typical apartment houses in Japan were applied to the experiments. The dimension of concrete test column was 800 X 800 X 2400 mm and buried 400 mm in the ground. The specified design strength of the concrete was 210 kgf/cm2. These columns were exploded by the blasting with internal loading of dynamite. The fragmentation were observed by two kinds of high speed camera with 500 and 2000 FPS and a high speed video with 400 FPS. As one of the results in the experiments, the velocity of fragmentation, blasted 330 g of explosive with the minimum resisting length of 0.32 m, was measured as much as about 40 m/s.

  16. High-throughput machining using a high-average power ultrashort pulse laser and high-speed polygon scanner

    Science.gov (United States)

    Schille, Joerg; Schneider, Lutz; Streek, André; Kloetzer, Sascha; Loeschner, Udo

    2016-09-01

    High-throughput ultrashort pulse laser machining is investigated on various industrial grade metals (aluminum, copper, and stainless steel) and Al2O3 ceramic at unprecedented processing speeds. This is achieved by using a high-average power picosecond laser in conjunction with a unique, in-house developed polygon mirror-based biaxial scanning system. Therefore, different concepts of polygon scanners are engineered and tested to find the best architecture for high-speed and precision laser beam scanning. In order to identify the optimum conditions for efficient processing when using high-average laser powers, the depths of cavities made in the samples by varying the processing parameter settings are analyzed and, from the results obtained, the characteristic removal values are specified. For overlapping pulses of optimum fluence, the removal rate is as high as 27.8 mm3/min for aluminum, 21.4 mm3/min for copper, 15.3 mm3/min for stainless steel, and 129.1 mm3/min for Al2O3, when a laser beam of 187 W average laser powers irradiates. On stainless steel, it is demonstrated that the removal rate increases to 23.3 mm3/min when the laser beam is very fast moving. This is thanks to the low pulse overlap as achieved with 800 m/s beam deflection speed; thus, laser beam shielding can be avoided even when irradiating high-repetitive 20-MHz pulses.

  17. Structural and technological formation of surface nanostructured Ti-Ni-Mo layers by high-speed gas-flame spraying

    Directory of Open Access Journals (Sweden)

    Blednova Zhesfina

    2015-01-01

    Full Text Available The article covers a complex method of forming surface-modified layers using materials with shape memory effect (SME based on TiNiMo including pre-grinding and mechanical activation of the coating material, high-speed gas-flame spraying of Ni adhesive layer and subsequent TiNiMo spraying with molybdenum content up to 2%, thermal and thermomechanical processing in a single technological cycle. This allowed forming nanostructured surface layers with a high level of functional mechanical and performance properties. We defined control parameters of surface steel modification using material with shape memory effect based on TiNiMo, which monitor the structural material state, both at the stage of spraying, and during subsequent combined treatment, which allows affecting purposefully on the functional properties of the SME surface layer. Test results of samples before coating and after surface modification with TiNiMo in the seawater indicate that surface modification brings to a slower damage accumulation and to increase of steel J91171 endurance limit in seawater by 45%. Based on complex metallophysical research of surface layers we obtained new data about nano-sized composition “steel - Ni - TiNiMo”.

  18. Influence of the Lubricant Type on the Surface Quality of Steel Parts Obtained by Ironing

    Directory of Open Access Journals (Sweden)

    D. Adamović

    2015-06-01

    Full Text Available If it is needed to achieve a higher strain rate during the ironing process, which is possible without inter-stage annealing, the ironing is performed in succession through multiple dies. During that process, changes of friction conditions occur due to the change of contact conditions (dislodging of lubricants, changes of surface roughness, formation of friction junctions, etc.. In the multistage ironing, after each stage, the completely new conditions on the contact surfaces occur, which will significantly affect the quality of the workpiece surface. Lubricant has a very important role during the steel sheet metal ironing process; to separate the sheet metal surface from the tool and to reduce the friction between the contact surfaces. The influence of tribological conditions in ironing process is extremely important and it was a subject of study among researches in recent years, both in the real processes and on the tribo-models. Investigation of tribological conditions in the real processes is much longer and more expensive, so testing on the tribo-models is more frequent. Experimental research on the original tribo-model presented in this paper was aimed to indicate the changes that occur during multistage ironing, as well as to consider the impact of some factors (tool material, lubricant on die and punch on increase or decrease of the sheet metal surface roughness in ironing stages.

  19. Chicago-St. Louis high speed rail plan

    International Nuclear Information System (INIS)

    Stead, M.E.

    1994-01-01

    The Illinois Department of Transportation (IDOT), in cooperation with Amtrak, undertook the Chicago-St. Louis High Speed Rail Financial and Implementation Plan study in order to develop a realistic and achievable blueprint for implementation of high speed rail in the Chicago-St. Louis corridor. This report presents a summary of the Price Waterhouse Project Team's analysis and the Financial and Implementation Plan for implementing high speed rail service in the Chicago-St. Louis corridor

  20. 33 CFR 84.24 - High-speed craft.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false High-speed craft. 84.24 Section... RULES ANNEX I: POSITIONING AND TECHNICAL DETAILS OF LIGHTS AND SHAPES § 84.24 High-speed craft. (a) The masthead light of high-speed craft with a length to breadth ratio of less than 3.0 may be placed at a...

  1. A Historical Review of High Speed Metal Forming

    OpenAIRE

    Zittel, G.

    2010-01-01

    This paper will present a Historical Review of High Speed Metal Forming beginning with the first thought of forming metal by using an electromagnetic impulse to today, whereby High Speed Metal Forming is an accepted production process. Although this paper will briefly cover the basic physics of the process, it will not dwell on it. It will rather show how the industrial acceptance of High Speed Metal Forming is tightly connected to the knowledge acquired from many applications studies. These ...

  2. Chicago-St. Louis high speed rail plan

    Energy Technology Data Exchange (ETDEWEB)

    Stead, M.E.

    1994-12-31

    The Illinois Department of Transportation (IDOT), in cooperation with Amtrak, undertook the Chicago-St. Louis High Speed Rail Financial and Implementation Plan study in order to develop a realistic and achievable blueprint for implementation of high speed rail in the Chicago-St. Louis corridor. This report presents a summary of the Price Waterhouse Project Team`s analysis and the Financial and Implementation Plan for implementing high speed rail service in the Chicago-St. Louis corridor.

  3. Compact system for high-speed velocimetry using heterodyne techniques

    International Nuclear Information System (INIS)

    Strand, O. T.; Goosman, D. R.; Martinez, C.; Whitworth, T. L.; Kuhlow, W. W.

    2006-01-01

    We have built a high-speed velocimeter that has proven to be compact, simple to operate, and fairly inexpensive. This diagnostic is assembled using off-the-shelf components developed for the telecommunications industry. The main components are fiber lasers, high-bandwidth high-sample-rate digitizers, and fiber optic circulators. The laser is a 2 W cw fiber laser operating at 1550 nm. The digitizers have 8 GHz bandwidth and can digitize four channels simultaneously at 20 GS/s. The maximum velocity of this system is ∼5000 m/s and is limited by the bandwidth of the electrical components. For most applications, the recorded beat frequency is analyzed using Fourier transform methods, which determine the time response of the final velocity time history. Using the Fourier transform method of analysis allows multiple velocities to be observed simultaneously. We have obtained high-quality data on many experiments such as explosively driven surfaces and gas gun assemblies

  4. High-speed digital holographic interferometry for vibration measurement

    International Nuclear Information System (INIS)

    Pedrini, Giancarlo; Osten, Wolfgang; Gusev, Mikhail E.

    2006-01-01

    A system based on digital holographic interferometry for the measurement of vibrations is presented. A high-power continuous laser(10 W) and a high-speed CCD camera are used. Hundreds of holograms of an object that has been subjected to dynamic deformation are recorded. The acquisition speed and the time of exposure of the detector are determined by the vibration frequency. Two methods are presented for triggering the camera in order to acquire at a given phase of the vibration. The phase of the wavefront is calculated from the recorded holograms by use of a two-dimensional digital Fourier-transform method. The deformation of the object is obtained from the phase. By combination of the deformations recorded at different times it is possible to reconstruct the vibration of the object

  5. A hierarchy for modeling high speed propulsion systems

    Science.gov (United States)

    Hartley, Tom T.; Deabreu, Alex

    1991-01-01

    General research efforts on reduced order propulsion models for control systems design are overviewed. Methods for modeling high speed propulsion systems are discussed including internal flow propulsion systems that do not contain rotating machinery such as inlets, ramjets, and scramjets. The discussion is separated into four sections: (1) computational fluid dynamics model for the entire nonlinear system or high order nonlinear models; (2) high order linearized model derived from fundamental physics; (3) low order linear models obtained from other high order models; and (4) low order nonlinear models. Included are special considerations on any relevant control system designs. The methods discussed are for the quasi-one dimensional Euler equations of gasdynamic flow. The essential nonlinear features represented are large amplitude nonlinear waves, moving normal shocks, hammershocks, subsonic combustion via heat addition, temperature dependent gases, detonation, and thermal choking.

  6. A wide range and high speed automatic gain control

    International Nuclear Information System (INIS)

    Tacconi, E.; Christiansen, C.

    1993-05-01

    Automatic gain control (AGC) techniques have been largely used since the beginning of electronics, but in most of the applications the dynamic response is slow compared with the carrier frequency. The problem of developing an automatic gain control with high dynamic response and wide control range simultaneously is analyzed in this work. An ideal gain control law, with the property that the total loop gain remains constant independent of the carrier amplitude, is obtained. The resulting AGC behavior is compared by computer simulations with a linear multiplier AGC. The ideal gain control law can be approximated using a transconductance amplifier. A practical circuit that has been used at CERN in the radio frequency loops of the Booster Synchrotron is presented. The circuit has high speed and 80-dB gain control range

  7. High speed manyframe optical methods for plasma diagnostics

    International Nuclear Information System (INIS)

    Erokhin, A.A.; Shikanov, A.S.; Sklizkov, G.V.; Zakharenkov, Yu.A.; Zorev, N.N.

    1979-01-01

    A complex of active optical plasma and strong ionized shock wave diagnostics is described. The complex consisted of a specially developed high speed manyframe systems of shadow, schlieren and interferometric photography. The comparison of results obtained by a simultaneous registration of investigated object by means of different optical methods allowed us to determine optimal employment range for the methods. The sensitivity, temporal and space resolution of each optical method under conditions of high probe radiation refraction are discussed. The application boundaries of these methods for ionized shock wave investigation were found to depend on the shock wave front width. The methods described were used for the study of laser-produced plasma phenomena, occuring in the experiments on powerful nine-channel laser installation ''Kalmar''. (author)

  8. High speed infrared radiation thermometer, system, and method

    Science.gov (United States)

    Markham, James R.

    2002-01-01

    The high-speed radiation thermometer has an infrared measurement wavelength band that is matched to the infrared wavelength band of near-blackbody emittance of ceramic components and ceramic thermal barrier coatings used in turbine engines. It is comprised of a long wavelength infrared detector, a signal amplifier, an analog-to-digital converter, an optical system to collect radiation from the target, an optical filter, and an integral reference signal to maintain a calibrated response. A megahertz range electronic data acquisition system is connected to the radiation detector to operate on raw data obtained. Because the thermometer operates optimally at 8 to 12 .mu.m, where emittance is near-blackbody for ceramics, interferences to measurements performed in turbine engines are minimized. The method and apparatus are optimized to enable mapping of surface temperatures on fast moving ceramic elements, and the thermometer can provide microsecond response, with inherent self-diagnostic and calibration-correction features.

  9. Microstructure Investigation of 13Cr-2Mo ODS Steel Components Obtained by High Voltage Electric Discharge Compaction Technique

    Directory of Open Access Journals (Sweden)

    Igor Bogachev

    2015-11-01

    Full Text Available Refractory oxide dispersion strengthened 13Cr-2Mo steel powder was successfully consolidated to near theoretical density using high voltage electric discharge compaction. Cylindrical samples with relative density from 90% to 97% and dimensions of 10 mm in diameter and 10–15 mm in height were obtained. Consolidation conditions such as pressure and voltage were varied in some ranges to determine the optimal compaction regime. Three different concentrations of yttria were used to identify its effect on the properties of the samples. It is shown that the utilized ultra-rapid consolidation process in combination with high transmitted energy allows obtaining high density compacts, retaining the initial structure with minimal grain growth. The experimental results indicate some heterogeneity of the structure which may occur in the external layers of the tested samples due to various thermal and electromagnetic in-processing effects. The choice of the optimal parameters of the consolidation enables obtaining samples of acceptable quality.

  10. Microstructure Investigation of 13Cr-2Mo ODS Steel Components Obtained by High Voltage Electric Discharge Compaction Technique.

    Science.gov (United States)

    Bogachev, Igor; Yudin, Artem; Grigoryev, Evgeniy; Chernov, Ivan; Staltsov, Maxim; Khasanov, Oleg; Olevsky, Eugene

    2015-11-02

    Refractory oxide dispersion strengthened 13Cr-2Mo steel powder was successfully consolidated to near theoretical density using high voltage electric discharge compaction. Cylindrical samples with relative density from 90% to 97% and dimensions of 10 mm in diameter and 10-15 mm in height were obtained. Consolidation conditions such as pressure and voltage were varied in some ranges to determine the optimal compaction regime. Three different concentrations of yttria were used to identify its effect on the properties of the samples. It is shown that the utilized ultra-rapid consolidation process in combination with high transmitted energy allows obtaining high density compacts, retaining the initial structure with minimal grain growth. The experimental results indicate some heterogeneity of the structure which may occur in the external layers of the tested samples due to various thermal and electromagnetic in-processing effects. The choice of the optimal parameters of the consolidation enables obtaining samples of acceptable quality.

  11. Evaluation of the Possibility of Obtaining Tube-to-Tube Sheet Welded Joints of 15Cr5Mo Steel by Alternative Technological Process

    Science.gov (United States)

    Rizvanov, R. G.; Mulikov, D. Sh.; Karetnikov, D. V.; Fairushin, A. M.; Tokarev, A. S.

    2018-03-01

    This paper presents the results of the tests of joints of chrome-molybdenum steel, obtained by rotary friction welding. On their basis, conclusions were drawn about the weldability of this type of steel by friction welding, and also the applicability of this welding technology in the manufacture of heat exchange equipment.

  12. TECHNICAL APPROACH TO THE EFFICIENCY DETERMINATION OF HIGH-SPEED TRAINS

    Directory of Open Access Journals (Sweden)

    A. V. Momot

    2013-11-01

    Full Text Available Purpose. The aim of this article is to develop an approach and formulate arrangements concerning the definition of the economic appropriateness of high-speed movement implementation in Ukraine. Methodology. The economic feasibility for appropriateness of high-speed movement organization in Ukraine is an investment project, which involves step-by-step money investment into the construction. It will let get an annual profits from the passenger carriage. To solve such problems we use net present value, which UZ or newly created companies can get during the project realization and after its completion. Findings. Obtained studies can state the fact that the technical approach for full effectiveness definition of a construction and high-speed passenger trains service taking into account the cost of infrastructure, rolling stock, the impact of environmental factors, etc. was determined. Originality. We propose a scientific approach to determine the economic effectiveness of the construction and high-speed main lines service. It includes improved principles of defining the passenger traffic, the cost of high-speed rails construction, the number of rolling stock; optimizes income and expenditure calculations in the context of competitive advantages and the external factors impact on the company. A technical approach for the calculation of future traffic volumes along the high-speed line was improved. It differs essentially from the European one proposed by the French firm «SYSTRA», as it allows taking into account additional transit traffic through Ukraine. It helps to distribute the passengers on separate sections proportionally to the number of cities population, which are combined by high-speed main line, subject to the average population mobility, travel time and the coefficient that takes into account the frequency of additional passenger trips on a given section, depending on the purpose (business trip, transfer to a plane, recreation, etc

  13. Application research of ferrous matrix composites in roller ring used in high-speed wire/bar rolling mill

    International Nuclear Information System (INIS)

    Song Yanpei; Li Xiuqing; Bi Shuangxu

    2010-01-01

    Research highlights: → A composite structure roller rings was fabricated by centrifugal casting. → The roller rings consisted of outer WCP/Fe-C composites layer and inner Fe-C alloy matrix. → Hardness attained to HRA80-85 in the composites layer, and HRA73-76 in inner Fe-C alloy matrix where the toughness was over 8 J/cm 2 . → The wear resistance of the roller rings excelled that of high-speed steel, and approached to that of the WC hard alloy roll. → The production cost of the WCP/Fe-C composites roller ring decreased by 50%. - Abstract: Tungsten carbide particle (WC P ) reinforced ferrous matrix composites roller rings were fabricated by centrifugal casting. The microstructures, properties and application effect of the composites roller rings were investigated by SEM, TEM and various property testers. The experimental results show that the WC P were uniformly distributed in outer reinforced-layer (working-layer) of 20-50 mm in thickness and their volume fraction reached 60-80 vol.%; there was a good interface bonding between WC P and Fe-C alloy without any reaction products; hardness attained to HRA80-85 in working-layer, and HRA73-76 in inner ferrous matrix where the toughness was over 8 J/cm 2 ; the wear resistance of the composites roller rings excels that of high-speed steel; service life of the composites parts approached to that of the WC hard alloy roll when the same WC P -volume-fraction in working-layer were obtained for both of them, but the production cost of the WC P /Fe-C composites roller ring decreased by 50%.

  14. A high-speed interface for multi-channel analyzer

    International Nuclear Information System (INIS)

    Shen Ji; Zheng Zhong; Qiao Chong; Chen Ziyu; Ye Yunxiu; Ye Zhenyu

    2003-01-01

    This paper presents a high-speed computer interface for multi-channel analyzer based on DMA technique. Its essential principle and operating procedure are introduced. By the detecting of γ spectrum of 137 Cs with the interface, it's proved that the interface can meet the requirements of high-speed data acquisition

  15. Advancing high-speed rail policy in the United States.

    Science.gov (United States)

    2012-06-01

    This report builds on a review of international experience with high-speed rail projects to develop recommendations for a High-speed rail policy framework for the United States. The international review looked at the experience of Korea, Taiwan, Chin...

  16. High-Speed Photo-Polarimetry of Magnetic Cataclysmic Variables

    Directory of Open Access Journals (Sweden)

    S. B. Potter

    2015-02-01

    Full Text Available I review recent highlights of the SAAO High-speed Photo-POlarimeter (HIPPO on the study of magnetic Cataclysmic Variables. Its high-speed capabilities are demonstrated with example observations made of the intermediate polar NY Lup and the polar IGRJ14536-5522.

  17. 14 CFR 23.253 - High speed characteristics.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false High speed characteristics. 23.253 Section... Requirements § 23.253 High speed characteristics. If a maximum operating speed VMO/MMO is established under § 23.1505(c), the following speed increase and recovery characteristics must be met: (a) Operating...

  18. Evaluation of Dynamic Load Factors for a High-Speed Railway Truss Arch Bridge

    Directory of Open Access Journals (Sweden)

    Ding Youliang

    2016-01-01

    Full Text Available Studies on dynamic impact of high-speed trains on long-span bridges are important for the design and evaluation of high-speed railway bridges. The use of the dynamic load factor (DLF to account for the impact effect has been widely accepted in bridge engineering. Although the field monitoring studies are the most dependable way to study the actual DLF of the bridge, according to previous studies there are few field monitoring data on high-speed railway truss arch bridges. This paper presents an evaluation of DLF based on field monitoring and finite element simulation of Nanjing DaShengGuan Bridge, which is a high-speed railway truss arch bridge with the longest span throughout the world. The DLFs in different members of steel truss arch are measured using monitoring data and simulated using finite element model, respectively. The effects of lane position, number of train carriages, and speed of trains on DLF are further investigated. By using the accumulative probability function of the Generalized Extreme Value Distribution, the probability distribution model of DLF is proposed, based on which the standard value of DLF within 50-year return period is evaluated and compared with different bridge design codes.

  19. Computational Model for Impact-Resisting Critical Thickness of High-Speed Machine Outer Protective Plate

    Science.gov (United States)

    Wu, Huaying; Wang, Li Zhong; Wang, Yantao; Yuan, Xiaolei

    2018-05-01

    The blade or surface grinding blade of the hypervelocity grinding wheel may be damaged due to too high rotation rate of the spindle of the machine and then fly out. Its speed as a projectile may severely endanger the field persons. Critical thickness model of the protective plate of the high-speed machine is studied in this paper. For easy analysis, the shapes of the possible impact objects flying from the high-speed machine are simplified as sharp-nose model, ball-nose model and flat-nose model. Whose front ending shape to represent point, line and surface contacting. Impact analysis based on J-C model is performed for the low-carbon steel plate with different thicknesses in this paper. One critical thickness computational model for the protective plate of high-speed machine is established according to the damage characteristics of the thin plate to get relation among plate thickness and mass, shape and size and impact speed of impact object. The air cannon is used for impact test. The model accuracy is validated. This model can guide identification of the thickness of single-layer outer protective plate of a high-speed machine.

  20. Investigation of wear and tool life of coated carbide and cubic boron nitride cutting tools in high speed milling

    Czech Academy of Sciences Publication Activity Database

    Twardowski, P.; Legutko, S.; Krolczyk, G.; Hloch, Sergej

    2015-01-01

    Roč. 7, č. 6 (2015), s. 1-9 ISSN 1687-8132 Institutional support: RVO:68145535 Keywords : hardened steels * milling tools * high speed machining * tool life * wear Subject RIV: JQ - Machines ; Tools Impact factor: 0.640, year: 2015 http://ade.sagepub.com/content/7/6/1687814015590216.full.pdf+html

  1. The possibilities of atmospheric plasma-spraying application to obtain hydroxyapatite coatings on the stainless steel samples

    Directory of Open Access Journals (Sweden)

    Mihailović Marija D.

    2013-01-01

    Full Text Available For decades, the standard metallic materials for hip implants, besides the 316LVM stainless steel, were titanium- and cobalt/chromium-based alloys. Although bioinert, due to their corrosion resistance, they are not biocompatible. Contemporary surgical implants are not made just of bioinert metal anymore, but with deposited bioactive hydroxyapatite (HAp coating. Hydroxyapatite is chemically identical with the mineral constituent of bones and teeth, what besides its biocompatibility provides bioactivity as well. The HAp limitations are, however, weak tensile strength and low fatigue resistance for long term loadings, if used alone. This is the reason for HAp to be deposited onto the surgical implant, and to enable its bioactivity, what means intergrowth with bones, and therefore the long-lasting and mechanical stable non-cemented prosthesis. This is important predominantly because the need for such prostheses for younger population, and a better life quality. There are several contemporary techniques that have been used for deposition of these coatings onto the metal implant. The possibilities of atmospheric plasma-spraying for obtaining the stable HAp coatings on the 316LVM stainless steel, ordinary used as a standard material for hip implants production are presented in this paper. The coatings of a commercially available hydroxyapatite powder were plasma-sprayed onto the specimens of medical grade 316LVM stainless steel under various operating conditions. The optical microscopy was used for microstructure and porosity characterization, while coating morphology and Ca/P ratio were analyzed using SEM equipped with EDX. Coating microstructure varied from a porous to a glassy structure, depending on operating conditions applied and coating thickness. Coating porosity was determined to be at the lower required limit requested for the bone-coating intergrowth possibility, but nevertheless adhesion measurements showed good results. The Ca/P ratio was

  2. Synthesis and characterization of hematite pigment obtained from a steel waste industry

    Energy Technology Data Exchange (ETDEWEB)

    Prim, S.R. [Department of Mechanical Engineering, University of the State of Santa Catarina, Santa Catarina (Brazil); Folgueras, M.V., E-mail: dem2mvf@joinville.udesc.br [Department of Mechanical Engineering, University of the State of Santa Catarina, Santa Catarina (Brazil); Lima, M.A. de [Department of Mechanical Engineering, University of the State of Santa Catarina, Santa Catarina (Brazil); Hotza, D. [Departamento de Engenharia Quimica, Federal University of Santa Catarina, Santa Catarina (Brazil)

    2011-09-15

    Highlights: {yields} The study of using of a industrial waste for the synthesis of hematite pigments. {yields} The nanometer dimension this waste and your behavior as chromophore. {yields} The effect of process variables on the mechanisms of encapsulation sintered pigments. - Abstract: Pigments that meet environmental and technology requirements are the focus of the research in the ceramic sector. This study focuses on the synthesis of ceramic pigment by encapsulation of hematite in crystalline and amorphous silica matrix. Iron oxide from a metal sheet rolling process was used as chromophore. A different content of hematite and silica was homogenized by conventional and high energy milling. The powders obtained after calcinations between 1050 and 1200 {sup o}C for 2 h were characterized by X-ray diffraction and SEM analysis. The pigments were applied to ceramic enamel and porcelain body. The effect of pigment was measured by comparing L*a*b* values of the heated samples. Results showed that the color developed is influenced by variables such as oxide content employed, conditions of milling and processing temperature. The results showed that the use of pigment developed does not interfere in microstructural characteristics of pigmented material. The best hue was obtained from samples with 15 wt% of chromophore, heated at 1200 {sup o}C in amorphous silica matrix.

  3. Synthesis and characterization of hematite pigment obtained from a steel waste industry.

    Science.gov (United States)

    Prim, S R; Folgueras, M V; de Lima, M A; Hotza, D

    2011-09-15

    Pigments that meet environmental and technology requirements are the focus of the research in the ceramic sector. This study focuses on the synthesis of ceramic pigment by encapsulation of hematite in crystalline and amorphous silica matrix. Iron oxide from a metal sheet rolling process was used as chromophore. A different content of hematite and silica was homogenized by conventional and high energy milling. The powders obtained after calcinations between 1050 and 1200 °C for 2h were characterized by X-ray diffraction and SEM analysis. The pigments were applied to ceramic enamel and porcelain body. The effect of pigment was measured by comparing L*a*b* values of the heated samples. Results showed that the color developed is influenced by variables such as oxide content employed, conditions of milling and processing temperature. The results showed that the use of pigment developed does not interfere in microstructural characteristics of pigmented material. The best hue was obtained from samples with 15 wt% of chromophore, heated at 1200 °C in amorphous silica matrix. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Inventory-transportation integrated optimization for maintenance spare parts of high-speed trains

    Science.gov (United States)

    Wang, Jiaxi; Wang, Huasheng; Wang, Zhongkai; Li, Jian; Lin, Ruixi; Xiao, Jie; Wu, Jianping

    2017-01-01

    This paper presents a 0–1 programming model aimed at obtaining the optimal inventory policy and transportation mode for maintenance spare parts of high-speed trains. To obtain the model parameters for occasionally-replaced spare parts, a demand estimation method based on the maintenance strategies of China’s high-speed railway system is proposed. In addition, we analyse the shortage time using PERT, and then calculate the unit time shortage cost from the viewpoint of train operation revenue. Finally, a real-world case study from Shanghai Depot is conducted to demonstrate our method. Computational results offer an effective and efficient decision support for inventory managers. PMID:28472097

  5. Three-dimensional Finite Element Modelling of Composite Slabs for High Speed Rails

    Science.gov (United States)

    Mlilo, Nhlanganiso; Kaewunruen, Sakdirat

    2017-12-01

    Currently precast steel-concrete composite slabs are being considered on railway bridges as a viable alternative replacement for timber sleepers. However, due to their nature and the loading conditions, their behaviour is often complex. Present knowledge of the behaviour of precast steel-concrete composite slabs subjected to rail loading is limited. FEA is an important tool used to simulate real life behaviour and is widely accepted in many disciples of engineering as an alternative to experimental test methods, which are often costly and time consuming. This paper seeks to detail FEM of precast steel-concrete slabs subjected to standard in-service loading in high-speed rail with focus on the importance of accurately defining material properties, element type, mesh size, contacts, interactions and boundary conditions that will give results representative of real life behaviour. Initial finite element model show very good results, confirming the accuracy of the modelling procedure

  6. High-speed rangefinder for industrial application

    Science.gov (United States)

    Cavedo, Federico; Pesatori, Alessandro; Norgia, Michele

    2016-06-01

    The proposed work aims to improve one of the most used telemetry techniques to make absolute measurements of distance: the time of flight telemetry. The main limitation of the low-cost implementation of this technique is the low accuracy (some mm) and measurement rate (few measurements per second). In order to overcome these limits we modified the typical setup of this rangefinder exploiting low-cost telecommunication transceivers and radiofrequency synthesizers. The obtained performances are very encouraging, reaching a standard deviation of a few micrometers over the range of some meters.

  7. The use of high-speed imaging in education

    Science.gov (United States)

    Kleine, H.; McNamara, G.; Rayner, J.

    2017-02-01

    Recent improvements in camera technology and the associated improved access to high-speed camera equipment have made it possible to use high-speed imaging not only in a research environment but also specifically for educational purposes. This includes high-speed sequences that are created both with and for a target audience of students in high schools and universities. The primary goal is to engage students in scientific exploration by providing them with a tool that allows them to see and measure otherwise inaccessible phenomena. High-speed imaging has the potential to stimulate students' curiosity as the results are often surprising or may contradict initial assumptions. "Live" demonstrations in class or student- run experiments are highly suitable to have a profound influence on student learning. Another aspect is the production of high-speed images for demonstration purposes. While some of the approaches known from the application of high speed imaging in a research environment can simply be transferred, additional techniques must often be developed to make the results more easily accessible for the targeted audience. This paper describes a range of student-centered activities that can be undertaken which demonstrate how student engagement and learning can be enhanced through the use of high speed imaging using readily available technologies.

  8. High-speed infrared imaging for material characterization in experimental mechanics experiments

    Science.gov (United States)

    Gagnon, Marc-André; Marcotte, Frédérick; Lagueux, Philippe; Farley, Vincent; Guyot, Éric; Morton, Vince

    2017-10-01

    Heat transfers are involved in many phenomena such as friction, tensile stress, shear stress and material rupture. Among the challenges encountered during the characterization of such thermal patterns is the need for both high spatial and temporal resolution. Infrared imaging provides information about surface temperature that can be attributed to the stress response of the material and breaking of chemical bounds. In order to illustrate this concept, tensile and shear tests were carried out on steel, aluminum and carbon fiber composite materials and monitored using high-speed (Telops FASTM2K) and high-definition (Telops HD-IR) infrared imaging. Results from split-Hopkinson experiments carried out on a polymer material at high strain-rate are also presented. The results illustrate how high-speed and high-definition infrared imaging in the midwave infrared (MWIR, 3 - 5 μm) spectral range can provide detailed information about the thermal properties of materials undergoing mechanical testing.

  9. Compressibility, turbulence and high speed flow

    CERN Document Server

    Gatski, Thomas B

    2009-01-01

    This book introduces the reader to the field of compressible turbulence and compressible turbulent flows across a broad speed range through a unique complimentary treatment of both the theoretical foundations and the measurement and analysis tools currently used. For the computation of turbulent compressible flows, current methods of averaging and filtering are presented so that the reader is exposed to a consistent development of applicable equation sets for both the mean or resolved fields as well as the transport equations for the turbulent stress field. For the measurement of turbulent compressible flows, current techniques ranging from hot-wire anemometry to PIV are evaluated and limitations assessed. Characterizing dynamic features of free shear flows, including jets, mixing layers and wakes, and wall-bounded flows, including shock-turbulence and shock boundary-layer interactions, obtained from computations, experiments and simulations are discussed. Key features: * Describes prediction methodologies in...

  10. Biocompatibility behavior of β–tricalcium phosphate-chitosan coatings obtained on 316L stainless steel

    International Nuclear Information System (INIS)

    Mina, A.; Caicedo, H.H.; Uquillas, J.A.; Aperador, W.; Gutiérrez, O.; Caicedo, J.C.

    2016-01-01

    Biological interfaces involve the interaction of complex macromolecular systems and other biomolecules or biomaterials. Researchers have used a combination of cell, material sciences and engineering approaches to create functional biointerfaces to help improve biological functions. Materials such as hydroxyapatite (HA), β-tricalcium phosphate (β-TCP) and chitosan are important biomaterials to be used in biomedical applications such as bone-prosthesis interfaces. In this work, it was evaluated the effect of different concentrations of chitosan on the structural, electrochemical and biocompatible properties of β-tricalcium phosphate-chitosan ((β-Ca 3 (PO 4 ) 2 )-(C 6 H 11 NO 4 )n) hybrid coatings. β–tricalcium phosphate-chitosan coatings were deposited on 316L stainless steel substrates applying 260 mA AC, an agitation velocity of 250 rpm, and temperature deposition of 60 °C. It was possible to obtain coatings of 600 μm of thickness. Structure and surface properties were analyzed by X-ray diffraction (XRD) and dispersive X-ray analysis (EDX). It was found that the arrangement of the β-TCP crystal lattice changed with increasing chitosan weight concentration, showing that the orthorhombic structure of β-TCP is under tensile stress. The electrochemical properties of β–tricalcium phosphate/chitosan (β-TCP–Ch) coatings were analyzed by electrochemical impedance spectroscopy (EIS). Cellular biocompatibility was determined by lactate dehydrogenase (LDH) cytotoxicity assay using primary chinese hamster ovary (CHO) cells. β-TCP–Ch coatings with chitosan concentrations up to 25% caused cytotoxic effects to only 5–10% of CHO cells. Obtained results showed the influence of chitosan in the structural, electrochemical, and biocompatible properties of AISI 316L Stainless Steel. Consequently, the electrochemical and cytotoxic behavior of β-TCP–Ch on 316L Stainless Steel indicated that the coatings might be a promising material in biomedical applications

  11. Biocompatibility behavior of β–tricalcium phosphate-chitosan coatings obtained on 316L stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Mina, A. [Tribology, Powder Metallurgy and Processing of Solid Recycled Research Group, Universidad del Valle, Cali (Colombia); Caicedo, H.H. [Department of Anatomy and Cell Biology, University of Illinois at Chicago, IL, 60612 (United States); National Biotechnology & Pharmaceutical Association, Chicago, IL, 60606 (United States); Uquillas, J.A. [Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud COCSA, Escuela de Medicina, Hospital de los Valles, Edificio de Especialidades Médicas, Av. Interoceánica km 12 1/2 Cumbayá, Quito (Ecuador); Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women' s Hospital, Harvard Medical School, Boston, MA, 02139 (United States); Aperador, W. [Departament of Engineering, Universidad Militar Nueva Granada, Bogotá (Colombia); Gutiérrez, O. [Departament of Pharmacology Universidad del Valle, Cali (Colombia); Caicedo, J.C., E-mail: julio.cesar.caicedo@correounivalle.edu.co [Tribology, Powder Metallurgy and Processing of Solid Recycled Research Group, Universidad del Valle, Cali (Colombia)

    2016-06-01

    Biological interfaces involve the interaction of complex macromolecular systems and other biomolecules or biomaterials. Researchers have used a combination of cell, material sciences and engineering approaches to create functional biointerfaces to help improve biological functions. Materials such as hydroxyapatite (HA), β-tricalcium phosphate (β-TCP) and chitosan are important biomaterials to be used in biomedical applications such as bone-prosthesis interfaces. In this work, it was evaluated the effect of different concentrations of chitosan on the structural, electrochemical and biocompatible properties of β-tricalcium phosphate-chitosan ((β-Ca{sub 3}(PO{sub 4}){sub 2})-(C{sub 6}H{sub 11}NO{sub 4})n) hybrid coatings. β–tricalcium phosphate-chitosan coatings were deposited on 316L stainless steel substrates applying 260 mA AC, an agitation velocity of 250 rpm, and temperature deposition of 60 °C. It was possible to obtain coatings of 600 μm of thickness. Structure and surface properties were analyzed by X-ray diffraction (XRD) and dispersive X-ray analysis (EDX). It was found that the arrangement of the β-TCP crystal lattice changed with increasing chitosan weight concentration, showing that the orthorhombic structure of β-TCP is under tensile stress. The electrochemical properties of β–tricalcium phosphate/chitosan (β-TCP–Ch) coatings were analyzed by electrochemical impedance spectroscopy (EIS). Cellular biocompatibility was determined by lactate dehydrogenase (LDH) cytotoxicity assay using primary chinese hamster ovary (CHO) cells. β-TCP–Ch coatings with chitosan concentrations up to 25% caused cytotoxic effects to only 5–10% of CHO cells. Obtained results showed the influence of chitosan in the structural, electrochemical, and biocompatible properties of AISI 316L Stainless Steel. Consequently, the electrochemical and cytotoxic behavior of β-TCP–Ch on 316L Stainless Steel indicated that the coatings might be a promising material in

  12. Research on Aerodynamic Noise Reduction for High-Speed Trains

    OpenAIRE

    Zhang, Yadong; Zhang, Jiye; Li, Tian; Zhang, Liang; Zhang, Weihua

    2016-01-01

    A broadband noise source model based on Lighthill’s acoustic theory was used to perform numerical simulations of the aerodynamic noise sources for a high-speed train. The near-field unsteady flow around a high-speed train was analysed based on a delayed detached-eddy simulation (DDES) using the finite volume method with high-order difference schemes. The far-field aerodynamic noise from a high-speed train was predicted using a computational fluid dynamics (CFD)/Ffowcs Williams-Hawkings (FW-H)...

  13. High-speed ground transportation development outside United States

    Energy Technology Data Exchange (ETDEWEB)

    Eastham, T.R. [Queen`s Univ., Kingston, Ontario (United Kingdom)

    1995-09-01

    This paper surveys the state of high-speed (in excess of 200 km/h) ground-transportation developments outside the United States. Both high-speed rail and Maglev systems are covered. Many vehicle systems capable of providing intercity service in the speed range 200--500 km/h are or will soon be available. The current state of various technologies, their implementation, and the near-term plans of countries that are most active in high-speed ground transportation development are reported.

  14. Trend on High-speed Power Line Communication Technology

    Science.gov (United States)

    Ogawa, Osamu

    High-speed power line communication (PLC) is useful technology to easily build the communication networks, because construction of new infrastructure is not necessary. In Europe and America, PLC has been used for broadband networks since the beginning of 21th century. In Japan, high-speed PLC was deregulated only indoor usage in 2006. Afterward it has been widely used for home area network, LAN in hotels and school buildings and so on. And recently, PLC is greatly concerned as communication technology for smart grid network. In this paper, the author surveys the high-speed PLC technology and its current status.

  15. High-speed AFM of human chromosomes in liquid

    Energy Technology Data Exchange (ETDEWEB)

    Picco, L M; Dunton, P G; Ulcinas, A; Engledew, D J; Miles, M J [H H Wills Physics Laboratory and IRC in Nanotechnology, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Hoshi, O; Ushiki, T [Division of Microscopic Anatomy and Bio-Imaging, Department of Cellular Function, Niigata University Graduate School of Medical and Dental Sciences, Asahimachi-Dori 1, Niigata, 951-8150 (Japan)], E-mail: m.j.miles@bristol.ac.uk

    2008-09-24

    Further developments of the previously reported high-speed contact-mode AFM are described. The technique is applied to the imaging of human chromosomes at video rate both in air and in water. These are the largest structures to have been imaged with high-speed AFM and the first imaging in liquid to be reported. A possible mechanism that allows such high-speed contact-mode imaging without significant damage to the sample is discussed in the context of the velocity dependence of the measured lateral force on the AFM tip.

  16. Steel

    International Nuclear Information System (INIS)

    Zorev, N.N.; Astafiev, A.A.; Loboda, A.S.; Savukov, V.P.; Runov, A.E.; Belov, V.A.; Sobolev, J.V.; Sobolev, V.V.; Pavlov, N.M.; Paton, B.E.

    1977-01-01

    Steels also containing Al, N and arsenic, are suitable for the construction of large components for high-power nuclear reactors due to their good mechanical properties such as good through-hardening, sufficiently low brittleness conversion temperature and slight displacement of the latter with neutron irradiation. Defined steels and their properties are described. (IHOE) [de

  17. High-speed rail turnout literature review : final report.

    Science.gov (United States)

    2016-08-01

    High-speed rail (HSR) turnout design criteria generally address unbalanced lateral acceleration or cant deficiency (CD), cant deficiency change rate (CDCR), and entry and exit jerk. Various countries have adopted different design values for their HSR...

  18. Multicast Performance Analysis for High-Speed Torus Networks

    National Research Council Canada - National Science Library

    Oral, S; George, A

    2002-01-01

    ... for unicast-based and path-based multicast communication on high-speed torus networks. Software-based multicast performance results of selected algorithms on a 16-node Scalable Coherent Interface (SCI) torus are given...

  19. Novel high speed fiber-optic pressure sensor systems.

    Science.gov (United States)

    2014-03-01

    The goal of this project is to develop a complete test of this technology for high-speed, high-accuracy applications, specifically cost-effective data acquisition techniques and practical mounting methods tailored for the subject environment. The sec...

  20. Thermomechanical simulations and experimental validation for high speed incremental forming

    Science.gov (United States)

    Ambrogio, Giuseppina; Gagliardi, Francesco; Filice, Luigino; Romero, Natalia

    2016-10-01

    Incremental sheet forming (ISF) consists in deforming only a small region of the workspace through a punch driven by a NC machine. The drawback of this process is its slowness. In this study, a high speed variant has been investigated from both numerical and experimental points of view. The aim has been the design of a FEM model able to perform the material behavior during the high speed process by defining a thermomechanical model. An experimental campaign has been performed by a CNC lathe with high speed to test process feasibility. The first results have shown how the material presents the same performance than in conventional speed ISF and, in some cases, better material behavior due to the temperature increment. An accurate numerical simulation has been performed to investigate the material behavior during the high speed process confirming substantially experimental evidence.

  1. High speed railway track dynamics models, algorithms and applications

    CERN Document Server

    Lei, Xiaoyan

    2017-01-01

    This book systematically summarizes the latest research findings on high-speed railway track dynamics, made by the author and his research team over the past decade. It explores cutting-edge issues concerning the basic theory of high-speed railways, covering the dynamic theories, models, algorithms and engineering applications of the high-speed train and track coupling system. Presenting original concepts, systematic theories and advanced algorithms, the book places great emphasis on the precision and completeness of its content. The chapters are interrelated yet largely self-contained, allowing readers to either read through the book as a whole or focus on specific topics. It also combines theories with practice to effectively introduce readers to the latest research findings and developments in high-speed railway track dynamics. It offers a valuable resource for researchers, postgraduates and engineers in the fields of civil engineering, transportation, highway & railway engineering.

  2. High-Speed Thermal Characterization of Cryogenic Flows, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Luna proposes to continue development on a high-speed fiber optic sensor and readout system for cryogenic temperature measurements in liquid oxygen (LOX) and liquid...

  3. High Speed Rail (HSR) in the United States

    Science.gov (United States)

    2009-12-08

    announced that it will expand the capacity on its aging high speed line between Tokyo and Osaka, the most heavily traveled intercity rail segment in the...United States, in most of these countries intercity rail travel (including both conventional and high speed rail) represents less than 10% of all...that is sometimes mentioned by its advocates. Intercity passenger rail transport is relatively safe, at least compared with highway travel . And HSR in

  4. Application of Beyond Bound Decoding for High Speed Optical Communications

    DEFF Research Database (Denmark)

    Li, Bomin; Larsen, Knud J.; Vegas Olmos, Juan José

    2013-01-01

    This paper studies the application of beyond bound decoding method for high speed optical communications. This hard-decision decoding method outperforms traditional minimum distance decoding method, with a total net coding gain of 10.36 dB.......This paper studies the application of beyond bound decoding method for high speed optical communications. This hard-decision decoding method outperforms traditional minimum distance decoding method, with a total net coding gain of 10.36 dB....

  5. Development of a super high speed railway and ML 100

    Energy Technology Data Exchange (ETDEWEB)

    Usami, Y

    1973-07-01

    A history of the development progress is given, followed by a discussion of the propulsion system for a super high speed railway-structure. Induction linear motors and synchronous linear motors are discussed in some detail. The maintenance system is then described (basic test apparatus-rotary type superconductive magnetic force maintenance system, etc.). Experiments using a linear running superconductive magnetic test car are discussed. Developments of super high speed railways in America, France, England, West Germany, etc. are described.

  6. Double Tunneling Injection Quantum Dot Lasers for High Speed Operation

    Science.gov (United States)

    2017-10-23

    Double Tunneling-Injection Quantum Dot Lasers for High -Speed Operation The views, opinions and/or findings contained in this report are those of...SECURITY CLASSIFICATION OF: 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 13. SUPPLEMENTARY NOTES 12. DISTRIBUTION AVAILIBILITY STATEMENT 6...State University Title: Double Tunneling-Injection Quantum Dot Lasers for High -Speed Operation Report Term: 0-Other Email: asryan@vt.edu Distribution

  7. High-speed optical signal processing using time lenses

    DEFF Research Database (Denmark)

    Galili, Michael; Hu, Hao; Guan, Pengyu

    2015-01-01

    This paper will discuss time lenses and their broad range of applications. A number of recent demonstrations of complex high-speed optical signal processing using time lenses will be outlined with focus on the operating principle.......This paper will discuss time lenses and their broad range of applications. A number of recent demonstrations of complex high-speed optical signal processing using time lenses will be outlined with focus on the operating principle....

  8. Integrated computer network high-speed parallel interface

    International Nuclear Information System (INIS)

    Frank, R.B.

    1979-03-01

    As the number and variety of computers within Los Alamos Scientific Laboratory's Central Computer Facility grows, the need for a standard, high-speed intercomputer interface has become more apparent. This report details the development of a High-Speed Parallel Interface from conceptual through implementation stages to meet current and future needs for large-scle network computing within the Integrated Computer Network. 4 figures

  9. High speed data transmission at the Superconducting Super Collider

    International Nuclear Information System (INIS)

    Leskovar, B.

    1990-04-01

    High speed data transmission using fiber optics in the data acquisition system of the Superconducting Super Collider has been investigated. Emphasis is placed on the high speed data transmission system overview, the local data network and on subassemblies, such as optical transmitters and receivers. Also, the performance of candidate subassemblies having a low power dissipation for the data acquisition system is discussed. 14 refs., 5 figs

  10. California statewide model for high-speed rail

    OpenAIRE

    Outwater, Maren; Tierney, Kevin; Bradley, Mark; Sall, Elizabeth; Kuppam, Arun; Modugala, Vamsee

    2010-01-01

    The California High Speed Rail Authority (CHSRA) and the Metropolitan Transportation Commission (MTC) have developed a new statewide model to support evaluation of high-speed rail alternatives in the State of California. This statewide model will also support future planning activities of the California Department of Transportation (Caltrans). The approach to this statewide model explicitly recognizes the unique characteristics of intraregional travel demand and interregional travel demand. A...

  11. Minimum Plate Thickness in High-Speed Craft

    DEFF Research Database (Denmark)

    Pedersen, Preben Terndrup; Zhang, Shengming

    1998-01-01

    The minimum plate thickness requirements specified by the classification societies for high-speed craft are supposed to ensure adequate resistance to impact loads such as collision with floating objects and objects falling on the deck. The paper presents analytical methods of describing such impact...... phenomena and proposes performance requirements instead of thickness requirements for hull panels in high-speed craft made of different building materials....

  12. Evaluation of a new device for sterilizing dental high-speed handpieces

    DEFF Research Database (Denmark)

    Larsen, T; Andersen, H K; Fiehn, N E

    1997-01-01

    Dental high-speed turbines and handpieces can take up and expel microorganisms during operation and thus need regular sterilization. This study established a method for validating devices used to sterilize high-speed turbines and handpieces. The air and water channels and turbine chambers were...... contaminated with suspensions of Streptococcus salivarius or endospores of Bacillus stearothermophilus. The effect of flushing and/or autoclaving performed by a new device combining both procedures was evaluated by counting the number of viable bacteria recovered from these devices. Further, the effect...... on clinically used handpieces was evaluated. In an initial experiment, the device partially reduced S. salivarius, and the endospores survived. In a second experiment, a 5 to 6 log reduction of S. salivarius in air and water channels was obtained. No growth was observed in clinically used high-speed handpieces...

  13. High-speed X-ray phase tomography with Talbot interferometer and fringe scanning method

    International Nuclear Information System (INIS)

    Kibayashi, Shunsuke; Harasse, Sébastien; Yashiro, Wataru; Momose, Atsushi

    2012-01-01

    High-speed X-ray phase tomography based on the Fourier-transform method has been demonstrated with an X-ray Talbot interferometer using white synchrotron radiation. We report the experimental results of high-speed X-ray phase tomography with fringe-scanning method instead of Fourier-transform method to improve spatial resolution without a considerable increase of scan time. To apply fringe-scanning method to high speed tomography, we tested a scan that is a synchronous combination of one-way continuous movements of the sample rotation and the grating displacement. When this scanning method was combined with X-ray phase tomography, we were able to obtain a scan time of 5 s. A comparison of the image quality derived with the conventional approach and with the proposed approach using the fringe-scanning method showed that the latter had better spatial resolution.

  14. Direct measurements of air layer profiles under impacting droplets using high-speed color interferometry

    NARCIS (Netherlands)

    van der Veen, Roeland; Tran, Tuan; Lohse, Detlef; Sun, Chao

    2012-01-01

    A drop impacting on a solid surface deforms before the liquid makes contact with the surface. We directly measure the time evolution of the air layer profile under the droplet using high-speed color interferometry, obtaining the air layer thickness before and during the wetting process. Based on the

  15. The role of high speed photography in plasma instability research on the AEC tokamak

    International Nuclear Information System (INIS)

    Fletcher, J.D.; Coster, D.P.; De Villiers, J.A.M.; Kotze, P.B.; Nothnagel, G.; O'Mahony, J.R.; Roberts, D.E.; Sherwell, D.

    1986-01-01

    High speed cine photography is a useful diagnostic aid for studying plasma behaviour and plasma surface interactions in fusion research devices like tokamaks. Such a system has been installed on the AEC tokamak. This paper reports some preliminary results obtained during typical plasma discharges

  16. Robust state estimation for double pantographs with random missing measurements in high-speed railway

    DEFF Research Database (Denmark)

    Lu, Xiaobing; Liu, Zhigang; Wang, Yanbo

    2016-01-01

    Active control of pantograph could be performed to decrease the fluctuation in pantograph-catenary contact force (PCCF) in high-speed railway. However, it is difficult to obtain the states of the pantograph when state feedback control is implemented. And the measurements may randomly miss due...

  17. Acoustic and Emission Characteristics of Small, High-Speed Internal Combustion Engines

    Science.gov (United States)

    1981-07-01

    The intent of this study is to obtain information on small high-speed engines so that their effect on the urban environment may be assessed, and if necessary, programs devised to reduce the noise and other emissions from vehicles using these highly d...

  18. Radio Wave Propagation Scene Partitioning for High-Speed Rails

    Directory of Open Access Journals (Sweden)

    Bo Ai

    2012-01-01

    Full Text Available Radio wave propagation scene partitioning is necessary for wireless channel modeling. As far as we know, there are no standards of scene partitioning for high-speed rail (HSR scenarios, and therefore we propose the radio wave propagation scene partitioning scheme for HSR scenarios in this paper. Based on our measurements along the Wuhan-Guangzhou HSR, Zhengzhou-Xian passenger-dedicated line, Shijiazhuang-Taiyuan passenger-dedicated line, and Beijing-Tianjin intercity line in China, whose operation speeds are above 300 km/h, and based on the investigations on Beijing South Railway Station, Zhengzhou Railway Station, Wuhan Railway Station, Changsha Railway Station, Xian North Railway Station, Shijiazhuang North Railway Station, Taiyuan Railway Station, and Tianjin Railway Station, we obtain an overview of HSR propagation channels and record many valuable measurement data for HSR scenarios. On the basis of these measurements and investigations, we partitioned the HSR scene into twelve scenarios. Further work on theoretical analysis based on radio wave propagation mechanisms, such as reflection and diffraction, may lead us to develop the standard of radio wave propagation scene partitioning for HSR. Our work can also be used as a basis for the wireless channel modeling and the selection of some key techniques for HSR systems.

  19. Prototype of a high speed pellet launcher for JET

    International Nuclear Information System (INIS)

    Sonnenberg, K.; Kupschus, P.; Helm, J.; Flory, D.; Zacchia, F.

    1989-01-01

    JET is planning to build a high speed prototype pellet injector cap0able of delivering single D 2 -ice pellets, one per plasma pulse, with a velocity of up to 5 kms -1 . The prototype will be based on a 2-stage gun system which is presently being developed at JET using a test stand. One gun of the teststand will be transformed into the prototype used at the torus. Earlier tests have shown that D 2 -ice pellets can only sustain peak accelerations of 5x10 6 ms -2 without breaking and that they suffer from an erosion effect in the barrel limiting the pellet velocity to about 2.7 kms -1 . Results are presented proving that these problems can be overcome by accelerating the ice in a protective sabot (cartridge). With this method velocities of up to 3.8 kms -1 have been obtained. The sabot technique, however, requires a separation of the sabot from the pellet before this is injected into the plasma. Three possible separation methods are described and experimental results of one of them are presented. Also improvements of the gun are discussed which allow to operate the gun by remote control. (author). 5 refs.; 5 figs

  20. Characterization of Gas Metal Arc Welding welds obtained with new high Cr–Mo ferritic stainless steel filler wires

    International Nuclear Information System (INIS)

    Villaret, V.; Deschaux-Beaume, F.; Bordreuil, C.; Fras, G.; Chovet, C.; Petit, B.; Faivre, L.

    2013-01-01

    Highlights: • New metal cored filler wires for welding 444 grade stainless steel are manufactured. • The effect of Nb and Ti minor elements on the fusion zone properties is investigated. • The relation between composition of fusion zone and grain structure is investigated. • Oxidation rates of fusion zones and base metal are compared. • High temperature behavior of the welded samples are studied. - Abstract: Several compositions of metal cored filler wire were manufactured to define the best welding conditions for homogeneous welding, by Gas Metal Arc Welding (GMAW) process, of a modified AISI 444 ferritic stainless steel dedicated to automotive exhaust manifold applications. The patented grade is know under APERAM trade name K44X and has been developed to present improved high temperature fatigue properties. All filler wires investigated contained 19% Cr and 1.8% Mo, equivalent to the base metal K44X chemistry, but various titanium and niobium contents. Chemical analyses and microstructural observations of fusion zones revealed the need of a minimum Ti content of 0.15% to obtain a completely equiaxed grain structure. This structure conferred on the fusion zone a good ductility even in the as-welded state at room temperature. Unfortunately, titanium additions decreased the oxidation resistance at 950 °C if no significant Nb complementary alloying was made. The combined high Ti and Nb additions made it possible to obtain for the welded structure, after optimized heat treatment, high temperature tensile strengths and ductility for the fusion zones and assemblies, rather close to those of the base metal. 950 °C aging heat treatment was necessary to restore significantly the ductility of the as welded structure. Both fusion zone and base metal presented rather homogenized properties. Finally, with the optimized composition of the cored filler wire – 0.3 Ti minimum (i.e. 0.15% in the fusion zone) and high Nb complementary additions, the properties

  1. Review of High-Speed Fiber Optic Grating Sensors Systems

    Energy Technology Data Exchange (ETDEWEB)

    Udd, E; Benterou, J; May, C; Mihailov, S J; Lu, P

    2010-03-24

    Fiber grating sensors can be used to support a wide variety of high speed measurement applications. This includes measurements of vibrations on bridges, traffic monitoring on freeways, ultrasonic detection to support non-destructive tests on metal plates and providing details of detonation events. This paper provides a brief overview of some of the techniques that have been used to support high speed measurements using fiber grating sensors over frequency ranges from 10s of kHz, to MHZ and finally toward frequencies approaching the GHz regime. Very early in the development of fiber grating sensor systems it was realized that a high speed fiber grating sensor system could be realized by placing an optical filter that might be a fiber grating in front of a detector so that spectral changes in the reflection from a fiber grating were amplitude modulated. In principal the only limitation on this type of system involved the speed of the output detector which with the development of high speed communication links moved from the regime of 10s of MHz toward 10s of GHz. The earliest deployed systems involved civil structures including measurements of the strain fields on composite utility poles and missile bodies during break tests, bridges and freeways. This was followed by a series of developments that included high speed fiber grating sensors to support nondestructive testing via ultrasonic wave detection, high speed machining and monitoring ship hulls. Each of these applications involved monitoring mechanical motion of structures and thus interest was in speeds up to a few 10s of MHz. Most recently there has been interest in using fiber grating to monitor the very high speed events such as detonations and this has led to utilization of fiber gratings that are consumed during an event that may require detection speeds of hundreds of MHz and in the future multiple GHz.

  2. High speed ultrasonic system to measure bubbles velocities in a horizontal two-phase flow

    International Nuclear Information System (INIS)

    Cunha Filho, Jurandyr S.; Jian Su; Farias, Marcos S.; Faccini, Jose L.H.; Lamy, Carlos A.

    2009-01-01

    In this work, a non invasive technique consisting of a high speed ultrasonic multitransducer pulse-echo system was developed to characterize gas-liquid two-phase flow parameters that are important in the study of the primary refrigeration circuit of nuclear reactors. The high speed ultrasonic system consists of two transducers (10 MHz/φ 6.35 mm), a generator/multiplexer board, and software that selects and has a data acquisition system of the ultrasonic signals. The resolutions of the system and the pulse time generated from each transducer are, respectively, 10 ns and 1.06 ms. The system initially was used in the local instantaneous measurement of gas-liquid interface in a circular horizontal pipe test section made of a 5 m long stainless steel pipe of 51.2 mm inner diameter, where the elongated bubbles velocity was measured (Taylor bubbles). The results show that the high speed ultrasonic pulse-echo system provides good results for the determination of elongated bubbles velocities. (author)

  3. Automatic X-ray television rig for high-speed radiography of polycrystals

    International Nuclear Information System (INIS)

    Bezbakh, V.D.; Garasim, Yu.A.; Oshkaderov, S.P.; Pet'kov, V.V.

    1993-01-01

    The high-speed radiography method is used for studying the phase and structural transformation in metals and alloys during rapid changes in temperature. In order to improve the effectiveness of this method the Institute of Metal Physics, Ukrainian Academy of Sciences, has developed an automatic rig for high-speed radiography of polycrystalline materials using a television method for recording the x-ray diffraction patterns. The rig, described here, consists of an x-ray block, a vacuum chamber, a device for programmed electro-contact heating of specimens, a system for imaging and scanning x-ray diffraction patterns, and a system for collecting and analyzing the data. Focusing is carried out by the Zeeman-Bolin method. The new rig helps to significantly reduce the recording time and ensures adequate quality and reliability of the recorded diffraction image over a wide range of temperatures. Data using the rig is presented for high-speed radiography for cooling a specimen of G20 steel. 4 refs., 4 figs

  4. IMITATION MODEL OF A HIGH-SPEED INDUCTION MOTOR WITH FREQUENCY CONTROL

    Directory of Open Access Journals (Sweden)

    V. E. Pliugin

    2017-12-01

    Full Text Available Purpose. To develop the imitation model of the frequency converter controlled high-speed induction motor with a squirrel-cage rotor in order to determine reasons causes electric motor vibrations and noises in starting modes. Methodology. We have applied the mathematical simulation of electromagnetic field in transient mode and imported obtained field model as an independent object in frequency converter circuit. We have correlated the simulated result with the experimental data obtained by means of the PID regulator factors. Results. We have made the simulation model of the high-speed induction motor with a squirrel-cage rotor speed control in AnsysRMxprt, Ansys Maxwell and Ansys Simplorer, approximated to their physical prototype. We have made models modifications allows to provide high-performance computing (HPC in dedicated server and computer cluster to reduce the simulation time. We have obtained motor characteristics in starting and rated modes. This allows to make recommendations on determination of high-speed electric motor optimal deign, having minimum indexes of vibrations and noises. Originality. For the first time, we have carried out the integrated research of induction motor using simultaneously simulation models both in Ansys Maxwell (2D field model and in Ansys Simplorer (transient circuit model with the control low realization for the motor soft start. For the first time the correlation between stator and rotor slots, allows to obtain minimal vibrations and noises, was defined. Practical value. We have tested manufactured high-speed motor based on the performed calculation. The experimental studies have confirmed the adequacy of the model, which allows designing such motors for new high-speed construction, and upgrade the existing ones.

  5. Proposal of a high rigidity and high speed rotating mechanism using a new concept hydrodynamic bearing in X-ray tube for high speed computed tomography

    International Nuclear Information System (INIS)

    Hattori, Hitoshi; Fukushima, Harunobu; Yoshii, Yasuo; Nakamuta, Hironori; Iwase, Mitsuo; Kitade, Koichi

    2009-01-01

    In this paper, a high rigidity and high speed rotating mechanism using a new concept hydrodynamic bearing in X-ray tube for high speed computed tomography is proposed. In order to obtain both the stability and the high load carrying capacity, the hydrodynamic bearing lubricated by liquid metal (Gallium alloy), named as the hybrid hydrodynamic bearing generates the lubricating film by wedge effect on the plane region between the spiral grooves under high loading condition. The parallelism between the bearing and the rotating body can be secured by optimizing the rigidity distribution of stationary shaft in the proposed rotating mechanism. By carrying out the fundamental design by numerical analyses, it has been made clear that the hybrid hydrodynamic bearing and the rotating mechanism are suitable for the X-ray tube used in the CT with ever-increasingly scanning speed. (author)

  6. Research on the tool holder mode in high speed machining

    Science.gov (United States)

    Zhenyu, Zhao; Yongquan, Zhou; Houming, Zhou; Xiaomei, Xu; Haibin, Xiao

    2018-03-01

    High speed machining technology can improve the processing efficiency and precision, but also reduce the processing cost. Therefore, the technology is widely regarded in the industry. With the extensive application of high-speed machining technology, high-speed tool system has higher and higher requirements on the tool chuck. At present, in high speed precision machining, several new kinds of clip heads are as long as there are heat shrinkage tool-holder, high-precision spring chuck, hydraulic tool-holder, and the three-rib deformation chuck. Among them, the heat shrinkage tool-holder has the advantages of high precision, high clamping force, high bending rigidity and dynamic balance, etc., which are widely used. Therefore, it is of great significance to research the new requirements of the machining tool system. In order to adapt to the requirement of high speed machining precision machining technology, this paper expounds the common tool holder technology of high precision machining, and proposes how to select correctly tool clamping system in practice. The characteristics and existing problems are analyzed in the tool clamping system.

  7. Assessment of rural soundscapes with high-speed train noise.

    Science.gov (United States)

    Lee, Pyoung Jik; Hong, Joo Young; Jeon, Jin Yong

    2014-06-01

    In the present study, rural soundscapes with high-speed train noise were assessed through laboratory experiments. A total of ten sites with varying landscape metrics were chosen for audio-visual recording. The acoustical characteristics of the high-speed train noise were analyzed using various noise level indices. Landscape metrics such as the percentage of natural features (NF) and Shannon's diversity index (SHDI) were adopted to evaluate the landscape features of the ten sites. Laboratory experiments were then performed with 20 well-trained listeners to investigate the perception of high-speed train noise in rural areas. The experiments consisted of three parts: 1) visual-only condition, 2) audio-only condition, and 3) combined audio-visual condition. The results showed that subjects' preference for visual images was significantly related to NF, the number of land types, and the A-weighted equivalent sound pressure level (LAeq). In addition, the visual images significantly influenced the noise annoyance, and LAeq and NF were the dominant factors affecting the annoyance from high-speed train noise in the combined audio-visual condition. In addition, Zwicker's loudness (N) was highly correlated with the annoyance from high-speed train noise in both the audio-only and audio-visual conditions. © 2013.

  8. Modern trends in designing high-speed trains

    Directory of Open Access Journals (Sweden)

    Golubović Snežana D.

    2015-01-01

    Full Text Available Increased advantages of railway transportation systems over other types of transportation systems in the past sixty years have been a result of an intensive development of the new generations of high-speed trains. Not only do these types of trains comply with the need for increased speed of transportation and make the duration of the journey shorter, but they also meet the demands for increased reliability, safety and direct application of energy efficiency to the transportation system itself. Along with increased train speed, the motion resistance is increased as well, whereby at speeds over 200 km/h the proportion of air resistance becomes the most dominant member. One of the most efficient measures for reducing air resistance, as well as other negative consequences of high-speed motion, is the development of the aerodynamic shape of the train. This paper presents some construction solutions that affect the aerodynamic properties of high-speed trains, first and foremost, the nose shape, as well as the similarities and differences of individual subsystems necessary for the functioning of modern high-speed rail systems. We analysed two approaches to solving the problem of the aerodynamic shape of the train and the appropriate infrastructure using the examples of Japan and France. Two models of high-speed trains, Shinkansen (Japan and TGV, i.e. AGV (France, have been discussed.

  9. High-speed solar wind flow parameters at 1 AU

    International Nuclear Information System (INIS)

    Feldman, W.C.; Asbridge, J.R.; Bame, S.J.; Gosling, J.T.

    1976-01-01

    To develop a set of constraints for theories of solar wind high-speed streams, a detailed study was made of the fastest streams observed at 1 AU during the time period spanning March 1971 through July 1974. Streams were accepted for study only if (1) the maximum speed exceeded 650 km s -1 ; (2) effects of stream-stream dynamical interaction on the flow parameters could be safely separated from the intrinsic characteristics of the high-speed regions; (3) the full width at half maximum (FWHM) of the stream when mapped back to 20 solar radii by using a constant speed approximation was greater than 45degree in Carrington longitude; and (4) there were no obvious solar-activity-induced contaminating effects. Nineteen streams during this time interval satisfied these criteria. Average parameters at 1 AU for those portions of these streams above V=650 km s -1 are given.Not only is it not presently known why electrons are significantly cooler than the protons within high-speed regions, but also observed particle fluxes and convected energy fluxes for speed greater than 650 km s -1 are substantially larger than those values predicted by any of the existing theories of solar wind high-speed streams. More work is therefore needed in refining present solar wind models to see whether suitable modifications and/or combinations of existing theories based on reasonable coronal conditions can accommodate the above high-speed flow parameters

  10. High-speed kymography identifies the immediate effects of voiced vibration in healthy vocal folds

    Directory of Open Access Journals (Sweden)

    Pimenta, Regina Aparecida

    2013-01-01

    Full Text Available Introduction: The effects of voiced vibration technique can be assessed by laryngeal imaging. Kymographic images derived from high-speed videoendoscopy allow actual visualization of vocal folds vibration. Purpose: The aim of this study is to identify the immediate effects of the voiced vibration technique in healthy vocal folds using high-speed digital laryngeal imaging. Methods: Samples were obtained from 15 healthy subjects with no history of voice disorders (6 men and 9 women aged 21 to 43 years. High-speed videoendoscopy recordings were performed before and after the voiced vibration technique. Kymographic images were obtained using high-speed videoendoscopy. The vocal folds were examined in their open and closed positions and the characteristics of the opening and closing phases were determined. A customize computational routine was used quantify these parameters. The closing, opening, and speed quotients were also calculated. Results: In this study, women displayed statistically significant differences in opened phase (P= 0.05*, closed phase (P= 0.046*, and closing phase (P= 0.026* phase characteristics. Men displayed the highest difference rate in opening time characteristics (P= 0.06. The closing and opening quotients for the female group showed significant differences (P= 0.029* and P= 0.049*, respectively. The speed quotient exhibited statistically significant differences in the male group (P= 0.048*. Conclusion: The kymographic images indicated that the immediate effect of the voiced vibration technique was smooth contact in healthy vocal fold vibration.

  11. Monitoring and data acquisition of the high speed hydrogen pellet in SPINS

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, Samiran Shanti, E-mail: samiran@ipr.res.in; Mishra, Jyotishankar; Gangradey, Ranjana; Dutta, Pramit; Rastogi, Naveen; Panchal, Paresh; Nayak, Pratik; Agarwal, Jyoti; Bairagi, Pawan; Patel, Haresh; Sharma, Hardik

    2016-11-15

    Highlights: • Pellet INjector System with monitoring and data acquisition is described. • A high speed camera was used to view pellet size, and its flight trajectory. • PXI based high speed control system is used data acquisition. • Pellets of length 2–4.8 mm and speed 250–750 m/s were obtained. - Abstract: Injection of solid hydrogen pellets is an efficient way of replenishing the spent fuel in high temperature plasmas. Aiming that, a Single Pellet INjector System (SPINS) is developed at Institute for Plasma Research (IPR), India, to initiate pellet injection related research in SST-1. The pellet injector is controlled by a PXI system based data acquisition and control (DAC) system for pellet formation, precise firing control, data collection and diagnostics. The velocity of high speed moving pellets is estimated by using two sets of light gate diagnostic. Apart from light gate, a fast framing camera is used to measure the pellet size and its speed. The pellet images are captured at a frame rate of ∼200,000 frames per second at (128 × 64) pixel resolution with an exposure time of 1 μs. Using these diagnostic, various cylindrical pellets of length ranging from 2 to 4.8 mm and speed 250–750 m/s were successfully obtained. This paper describes the control and data acquisition system of SPINS, the techniques for measurement of pellet velocity and capturing images of high speed moving pellet.

  12. High-speed railway signal trackside equipment patrol inspection system

    Science.gov (United States)

    Wu, Nan

    2018-03-01

    High-speed railway signal trackside equipment patrol inspection system comprehensively applies TDI (time delay integration), high-speed and highly responsive CMOS architecture, low illumination photosensitive technique, image data compression technique, machine vision technique and so on, installed on high-speed railway inspection train, and achieves the collection, management and analysis of the images of signal trackside equipment appearance while the train is running. The system will automatically filter out the signal trackside equipment images from a large number of the background image, and identify of the equipment changes by comparing the original image data. Combining with ledger data and train location information, the system accurately locate the trackside equipment, conscientiously guiding maintenance.

  13. Nickel/Diamond Composite Coating Prepared by High Speed Electrodeposition

    Directory of Open Access Journals (Sweden)

    ZHANG Yan

    2016-10-01

    Full Text Available Nickel/diamond composite coatings were prepared on the basis of a new high speed electroplating bath. The influence of additives, plating parameters and diamond concentration on internal stress was investigated in order to find the solution to decrease the stress introduced by high current density; the micro morphology of the coatings were observed by SEM. The bath and depositing parameters were optimized that thick nickel/diamond composite coatings with low internal stress can be high speed electroplated with a high cathode current density of 30A/dm2. The results show that when plated with bath composition and parameters as follows: sodium dodecyl sulfate 0.5g/L, ammonium acetate 3g/L, sodium citrate 1.5g/L, diamond particles 30g/L; pH value 3-4, temperature 50℃, the composite coatings prepared in high speed have the lowest internal stress.

  14. Material requirements for the High Speed Civil Transport

    Science.gov (United States)

    Stephens, Joseph R.; Hecht, Ralph J.; Johnson, Andrew M.

    1993-01-01

    Under NASA-sponsored High Speed Research (HSR) programs, the materials and processing requirements have been identified for overcoming the environmental and economic barriers of the next generation High Speed Civil Transport (HSCT) propulsion system. The long (2 to 5 hours) supersonic cruise portion of the HSCT cycle will place additional durability requirements on all hot section engine components. Low emissions combustor designs will require high temperature ceramic matrix composite liners to meet an emission goal of less than 5g NO(x) per Kg fuel burned. Large axisymmetric and two-dimensional exhaust nozzle designs are now under development to meet or exceed FAR 36 Stage III noise requirements, and will require lightweight, high temperature metallic, intermetallic, and ceramic matrix composites to reduce nozzle weight and meet structural and acoustic component performance goals. This paper describes and discusses the turbomachinery, combustor, and exhaust nozzle requirements of the High Speed Civil Transport propulsion system.

  15. High-speed LWR transients simulation for optimizing emergency response

    International Nuclear Information System (INIS)

    Wulff, W.; Cheng, H.S.; Lekach, S.V.; Mallen, A.N.; Stritar, A.

    1984-01-01

    The purpose of computer-assisted emergency response in nuclear power plants, and the requirements for achieving such a response, are presented. An important requirement is the attainment of realistic high-speed plant simulations at the reactor site. Currently pursued development programs for plant simulations are reviewed. Five modeling principles are established and a criterion is presented for selecting numerical procedures and efficient computer hardware to achieve high-speed simulations. A newly developed technology for high-speed power plant simulation is described and results are presented. It is shown that simulation speeds ten times greater than real-time process-speeds are possible, and that plant instrumentation can be made part of the computational loop in a small, on-site minicomputer. Additional technical issues are presented which must still be resolved before the newly developed technology can be implemented in a nuclear power plant

  16. Visualization of high speed liquid jet impaction on a moving surface.

    Science.gov (United States)

    Guo, Yuchen; Green, Sheldon

    2015-04-17

    Two apparatuses for examining liquid jet impingement on a high-speed moving surface are described: an air cannon device (for examining surface speeds between 0 and 25 m/sec) and a spinning disk device (for examining surface speeds between 15 and 100 m/sec). The air cannon linear traverse is a pneumatic energy-powered system that is designed to accelerate a metal rail surface mounted on top of a wooden projectile. A pressurized cylinder fitted with a solenoid valve rapidly releases pressurized air into the barrel, forcing the projectile down the cannon barrel. The projectile travels beneath a spray nozzle, which impinges a liquid jet onto its metal upper surface, and the projectile then hits a stopping mechanism. A camera records the jet impingement, and a pressure transducer records the spray nozzle backpressure. The spinning disk set-up consists of a steel disk that reaches speeds of 500 to 3,000 rpm via a variable frequency drive (VFD) motor. A spray system similar to that of the air cannon generates a liquid jet that impinges onto the spinning disc, and cameras placed at several optical access points record the jet impingement. Video recordings of jet impingement processes are recorded and examined to determine whether the outcome of impingement is splash, splatter, or deposition. The apparatuses are the first that involve the high speed impingement of low-Reynolds-number liquid jets on high speed moving surfaces. In addition to its rail industry applications, the described technique may be used for technical and industrial purposes such as steelmaking and may be relevant to high-speed 3D printing.

  17. Instrumented impact testing as a way to obtain further information on the behaviour of steel in welded constructions

    International Nuclear Information System (INIS)

    Nielsen, A.

    1976-05-01

    Based on experience gained from instrumented impact testing of ten different mild steels using test pieces of different geometrical shape (Charpy V-notch, Charpy knife-notch, DVM, Schnadt K 0 , Ksub(0.5), K 1 and K 2 ), some general features of the fracture process during impact testing are discussed. Steels can be divided into two main groups that are significantly different with respect to the behaviour during Charpy V-notch testing. The difference vanishes when a crack-like notch is used, and other properties of steel are revealed. It is evident that, even when modified impact testing bears little resemblance to what is happening in an actual steel construction. For the purpose of investigating the fracture conditions in welds, it seems more significant to relate the dynamic aspects to the speed of propagation of the crack when it starts to penetrate the volume considered at a certain stress level. (author)

  18. High-speed measurement of firearm primer blast waves

    OpenAIRE

    Courtney, Michael; Daviscourt, Joshua; Eng, Jonathan; Courtney, Amy

    2012-01-01

    This article describes a method and results for direct high-speed measurements of firearm primer blast waves employing a high-speed pressure transducer located at the muzzle to record the blast pressure wave produced by primer ignition. Key findings are: 1) Most of the lead styphnate based primer models tested show 5.2-11.3% standard deviation in the magnitudes of their peak pressure. 2) In contrast, lead-free diazodinitrophenol (DDNP) based primers had standard deviations of the peak blast p...

  19. High-speed centrifugation induces aggregation of extracellular vesicles.

    Science.gov (United States)

    Linares, Romain; Tan, Sisareuth; Gounou, Céline; Arraud, Nicolas; Brisson, Alain R

    2015-01-01

    Plasma and other body fluids contain cell-derived extracellular vesicles (EVs), which participate in physiopathological processes and have potential biomedical applications. In order to isolate, concentrate and purify EVs, high-speed centrifugation is often used. We show here, using electron microscopy, receptor-specific gold labelling and flow cytometry, that high-speed centrifugation induces the formation of EV aggregates composed of a mixture of EVs of various phenotypes and morphologies. The presence of aggregates made of EVs of different phenotypes may lead to erroneous interpretation concerning the existence of EVs harbouring surface antigens from different cell origins.

  20. High-speed photodetectors in optical communication system

    Science.gov (United States)

    Zhao, Zeping; Liu, Jianguo; Liu, Yu; Zhu, Ninghua

    2017-12-01

    This paper presents a review and discussion for high-speed photodetectors and their applications on optical communications and microwave photonics. A detailed and comprehensive demonstration of high-speed photodetectors from development history, research hotspots to packaging technologies is provided to the best of our knowledge. A few typical applications based on photodetectors are also illustrated, such as free-space optical communications, radio over fiber and millimeter terahertz signal generation systems. Project supported by the Preeminence Youth Fund of China (No. 61625504).

  1. Single-Photon Tracking for High-Speed Vision

    Directory of Open Access Journals (Sweden)

    Istvan Gyongy

    2018-01-01

    Full Text Available Quanta Imager Sensors provide photon detections at high frame rates, with negligible read-out noise, making them ideal for high-speed optical tracking. At the basic level of bit-planes or binary maps of photon detections, objects may present limited detail. However, through motion estimation and spatial reassignment of photon detections, the objects can be reconstructed with minimal motion artefacts. We here present the first demonstration of high-speed two-dimensional (2D tracking and reconstruction of rigid, planar objects with a Quanta Image Sensor, including a demonstration of depth-resolved tracking.

  2. High-speed centrifugation induces aggregation of extracellular vesicles

    Directory of Open Access Journals (Sweden)

    Romain Linares

    2015-12-01

    Full Text Available Plasma and other body fluids contain cell-derived extracellular vesicles (EVs, which participate in physiopathological processes and have potential biomedical applications. In order to isolate, concentrate and purify EVs, high-speed centrifugation is often used. We show here, using electron microscopy, receptor-specific gold labelling and flow cytometry, that high-speed centrifugation induces the formation of EV aggregates composed of a mixture of EVs of various phenotypes and morphologies. The presence of aggregates made of EVs of different phenotypes may lead to erroneous interpretation concerning the existence of EVs harbouring surface antigens from different cell origins.

  3. Recent progress on high-speed optical transmission

    Directory of Open Access Journals (Sweden)

    Jianjun Yu

    2016-05-01

    Full Text Available The recently reported high spectral efficiency (SE and high-baud-rate signal transmission are all based on digital coherent optical communications and digital signal processing (DSP. DSP simplifies the reception of advanced modulation formats and also enables the major electrical and optical impairments to be processed and compensated in the digital domain, at the transmitter or receiver side. In this paper, we summarize the research progress on high-speed signal generation and detection and also show the progress on DSP for high-speed signal detection. We also report the latest progress on multi-core and multi-mode multiplexing.

  4. Plasma-Assisted Chemistry in High-Speed Flow

    International Nuclear Information System (INIS)

    Leonov, Sergey B.; Yarantsev, Dmitry A.; Napartovich, Anatoly P.; Kochetov, Igor V.

    2007-01-01

    Fundamental problems related to the high-speed combustion are analyzed. The result of plasma-chemical modeling is presented as a motivation of experimental activity. Numerical simulations of the effect of uniform non-equilibrium discharge on the premixed hydrogen and ethylene-air mixture in supersonic flow demonstrate an advantage of such a technique over a heating. Experimental results on multi-electrode non-uniform discharge maintenance behind wallstep and in cavity of supersonic flow are presented. The model test on hydrogen and ethylene ignition is demonstrated at direct fuel injection to low-temperature high-speed airflow

  5. Magneto-optical system for high speed real time imaging

    Science.gov (United States)

    Baziljevich, M.; Barness, D.; Sinvani, M.; Perel, E.; Shaulov, A.; Yeshurun, Y.

    2012-08-01

    A new magneto-optical system has been developed to expand the range of high speed real time magneto-optical imaging. A special source for the external magnetic field has also been designed, using a pump solenoid to rapidly excite the field coil. Together with careful modifications of the cryostat, to reduce eddy currents, ramping rates reaching 3000 T/s have been achieved. Using a powerful laser as the light source, a custom designed optical assembly, and a high speed digital camera, real time imaging rates up to 30 000 frames per seconds have been demonstrated.

  6. High speed motion neutron radiography of dynamic events

    International Nuclear Information System (INIS)

    Robinson, A.H.; Barton, J.P.

    1983-01-01

    The development of a technique that permits neutron radiographic analysis of dynamic processes over a period lasting from one to ten milliseconds is described. The key to the technique is the use of a neutron pulse broad enough to span the duration of a brief event and intense enough to allow recording of the results on a high-speed movie film at frame rates of 10,000 frames/sec. Some typical application results in ballistic studies and two-phase flow are shown and discussed. The use of scintillator screens in the high-speed motion neutron radiography system is summarized and the statistical limitations of the technique are discussed

  7. Pose Measurement Method and Experiments for High-Speed Rolling Targets in a Wind Tunnel

    Directory of Open Access Journals (Sweden)

    Zhenyuan Jia

    2014-12-01

    Full Text Available High-precision wind tunnel simulation tests play an important role in aircraft design and manufacture. In this study, a high-speed pose vision measurement method is proposed for high-speed and rolling targets in a supersonic wind tunnel. To obtain images with high signal-to-noise ratio and avoid impacts on the aerodynamic shape of the rolling targets, a high-speed image acquisition method based on ultrathin retro-reflection markers is presented. Since markers are small-sized and some of them may be lost when the target is rolling, a novel markers layout with which markers are distributed evenly on the surface is proposed based on a spatial coding method to achieve highly accurate pose information. Additionally, a pose acquisition is carried out according to the mentioned markers layout after removing mismatching points by Case Deletion Diagnostics. Finally, experiments on measuring the pose parameters of high-speed targets in the laboratory and in a supersonic wind tunnel are conducted to verify the feasibility and effectiveness of the proposed method. Experimental results indicate that the position measurement precision is less than 0.16 mm, the pitching and yaw angle precision less than 0.132° and the roll angle precision 0.712°.

  8. Pose measurement method and experiments for high-speed rolling targets in a wind tunnel.

    Science.gov (United States)

    Jia, Zhenyuan; Ma, Xin; Liu, Wei; Lu, Wenbo; Li, Xiao; Chen, Ling; Wang, Zhengqu; Cui, Xiaochun

    2014-12-12

    High-precision wind tunnel simulation tests play an important role in aircraft design and manufacture. In this study, a high-speed pose vision measurement method is proposed for high-speed and rolling targets in a supersonic wind tunnel. To obtain images with high signal-to-noise ratio and avoid impacts on the aerodynamic shape of the rolling targets, a high-speed image acquisition method based on ultrathin retro-reflection markers is presented. Since markers are small-sized and some of them may be lost when the target is rolling, a novel markers layout with which markers are distributed evenly on the surface is proposed based on a spatial coding method to achieve highly accurate pose information. Additionally, a pose acquisition is carried out according to the mentioned markers layout after removing mismatching points by Case Deletion Diagnostics. Finally, experiments on measuring the pose parameters of high-speed targets in the laboratory and in a supersonic wind tunnel are conducted to verify the feasibility and effectiveness of the proposed method. Experimental results indicate that the position measurement precision is less than 0.16 mm, the pitching and yaw angle precision less than 0.132° and the roll angle precision 0.712°.

  9. Application of high speed photography for high current vacuum arcs

    NARCIS (Netherlands)

    Damstra, G.C.; Merck, W.F.H.; Vossen, J.W.G.L.; Janssen, M.F.P.; Bouwmeester, C.E.

    1998-01-01

    A high speed image detection system for 106 frames per second or 107 streaks per second has been developed for the testing of vacuum circuit breakers, using 10×16 optical fibres for light transfer to 160 fast photo diodes. The output of these diodes is multiplexed, AD converted in a 4 bit

  10. High-speed photography application to pulsed hot plasma investigation

    International Nuclear Information System (INIS)

    Borov'etskij, M.; Koz'yarkevich, V.; Skrzhechanovskij, V.; Socha, R.

    1986-01-01

    Plasma focus is investigated using an electron-optical chamber for high-speed photography (KSK-1). Experimental devices for studying dynamics and structure of a plasma layer in the chosen interval, recording plasma spectra with time resolution as well as for studying the dynamics and structure of a plasma layer by Schlieren- and shadow methods are briefly described. Experimental results are presented

  11. Intel Legend and CERN would build up high speed Internet

    CERN Multimedia

    2002-01-01

    Intel, Legend and China Education and Research Network jointly announced on the 25th of April that they will be cooperating with each other to build up the new generation high speed internet, over the next three years (1/2 page).

  12. Soliton-based ultra-high speed optical communications

    Indian Academy of Sciences (India)

    All these facts are the outcome of research on optical solitons in fibers in spite of the fact that the commonly used RZ format is not always called a soliton format. The overview presented here attempts to incorporate the role of soliton-based communications research in present day ultra-high speed communications.

  13. The impact of high speed rail on airport competition

    NARCIS (Netherlands)

    Terpstra, I.; Lijesen, M.G.

    2015-01-01

    We study the effects of introducing a high speed train connection on competition between airports, focusing on the new HST-link between Amsterdam and Brussels. We conduct a detailed analysis regarding the airport choice of passengers living in the Netherlands, Belgium, Luxembourg, Northern France

  14. A High-Speed Train Operation Plan Inspection Simulation Model

    Directory of Open Access Journals (Sweden)

    Yang Rui

    2018-01-01

    Full Text Available We developed a train operation simulation tool to inspect a train operation plan. In applying an improved Petri Net, the train was regarded as a token, and the line and station were regarded as places, respectively, in accordance with the high-speed train operation characteristics and network function. Location change and running information transfer of the high-speed train were realized by customizing a variety of transitions. The model was built based on the concept of component combination, considering the random disturbance in the process of train running. The simulation framework can be generated quickly and the system operation can be completed according to the different test requirements and the required network data. We tested the simulation tool when used for the real-world Wuhan to Guangzhou high-speed line. The results showed that the proposed model can be developed, the simulation results basically coincide with the objective reality, and it can not only test the feasibility of the high-speed train operation plan, but also be used as a support model to develop the simulation platform with more capabilities.

  15. Research in high speed fiber optics local area networks

    Science.gov (United States)

    Tobagi, F. A.

    1986-01-01

    The design of high speed local area networks (HSLAN) for communication among distributed devices requires solving problems in three areas: the network medium and its topology, the medium access control, and the network interface. Considerable progress was already made in the first two areas. Accomplishments are divided into two groups according to their theoretical or experimental nature. A brief summary is given.

  16. Towards a high-speed quantum random number generator

    Science.gov (United States)

    Stucki, Damien; Burri, Samuel; Charbon, Edoardo; Chunnilall, Christopher; Meneghetti, Alessio; Regazzoni, Francesco

    2013-10-01

    Randomness is of fundamental importance in various fields, such as cryptography, numerical simulations, or the gaming industry. Quantum physics, which is fundamentally probabilistic, is the best option for a physical random number generator. In this article, we will present the work carried out in various projects in the context of the development of a commercial and certified high speed random number generator.

  17. Modeling of high speed micro rotors in moderate flow confinement

    NARCIS (Netherlands)

    Dikmen, E.; van der Hoogt, Peter; Aarts, Ronald G.K.M.; Sas, P.; Bergen, B.

    2008-01-01

    The recent developments in high speed micro rotating machinery lead to the need for multiphysical modeling of the rotor and the surrounding medium. In this study, thermal and flow induced effects on rotor dynamics of geometries with moderate flow confinement are studied. The structure is modeled via

  18. High speed VLSI neural network for high energy physics

    NARCIS (Netherlands)

    Masa, P.; Masa, P.; Hoen, K.; Hoen, Klaas; Wallinga, Hans

    1994-01-01

    A CMOS neural network IC is discussed which was designed for very high speed applications. The parallel architecture, analog computing and digital weight storage provides unprecedented computing speed combined with ease of use. The circuit classifies up to 70 dimensional vectors within 20

  19. Incorporating YBCO Coated Conductors in High-speed Superconducting Generators

    Science.gov (United States)

    2008-07-01

    4.0 kW/lb (8.82 kW/kg). The machine configuration chosen by GE for design was a homopolar inductor alternator (HIA) which locates the...extremely severe ac loss environment. Even if this is ultimately impossible for high speed generators, it may not preclude lower speed motors and

  20. Bottom Raking Damage to High-Speed Craft

    DEFF Research Database (Denmark)

    Simonsen, Bo Cerup

    1998-01-01

    This paper presents a comparative study of the raking damage to high speed craft (HSC) and conventional ships. The analysis is based on a detailed theoretical model for the raking resistance of an assembled ship bottom structure and on the idea that the impact conditions for various ship types have...

  1. Radiation response of high speed CMOS integrated circuits

    International Nuclear Information System (INIS)

    Yue, H.; Davison, D.; Jennings, R.F.; Lothongkam, P.; Rinerson, D.; Wyland, D.

    1987-01-01

    This paper studies the total dose and dose rate radiation response of the FCT family of high speed CMOS integrated circuits. Data taken on the devices is used to establish the dominant failure modes, and this data is further analyzed using one-sided tolerance factors for normal distribution statistical analysis

  2. Characterising argon-bomb balloons for high-speed photography

    CSIR Research Space (South Africa)

    Olivier, M

    2013-08-01

    Full Text Available A method to optimise the geometry, explosive charge mass and volume of an argon bomb for specific lighting requirements has been proposed. The method is specifically aimed at applications that require photographic diagnostics with ultra-high speed...

  3. High-Speed Railways and Urban Networks in China

    NARCIS (Netherlands)

    Yang, Haoran

    2018-01-01

    Worldwide, High-Speed Railway (HSR) networks have been developed intensely over the last few decades, such as Tokyo-Osaka, the first HSR corridor in Japan, the TGV in France and the ICE in Germany. HSR has also experienced exponential growth in China so that currently China’s HSR networks are the

  4. A data-acquisition system for high speed linear CCD

    International Nuclear Information System (INIS)

    Liu Zhiyan; Chen Xiangcai; Jiang Xiaoshan; Zhang Hongyu; Liang Zhongwang; Xiang Haisheng; Hu Jun

    2010-01-01

    A data-acquisition system for high speed linear CCD (Charge Coupled device) is mainly introduced. The optical fiber transmission technology is used. The data is sent to PC through USB or PCI interface. The construction of the system, the design of the PCI interface hardware, software design and the design of the control program running on host computer are also introduced. (authors)

  5. Time-interleaved high-speed D/A converters

    NARCIS (Netherlands)

    Olieman, E.

    2016-01-01

    This thesis is on power efficient very high-speed digital-to-analog converters (DACs) in CMOS technology, intended to generate signals from DC to RF. Components in RF signal chains are nowadays often moved from the analog domain to the digital domain. This allows for more flexibility and better

  6. High speed electro optic polymer micro-ringresonator

    NARCIS (Netherlands)

    Leinse, Arne; Diemeer, Mart; Driessen, A.

    2004-01-01

    An electro-optic polymer micro-ring resonator for high speed modulation was designed, realized and characterized. The design of layer-stack and electrodes was done such that modulation frequencies up till 1 GHz should be possible. The device consists of a ridge waveguide, defined in a negative

  7. 14 CFR 25.253 - High-speed characteristics.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false High-speed characteristics. 25.253 Section...-speed characteristics. (a) Speed increase and recovery characteristics. The following speed increase and recovery characteristics must be met: (1) Operating conditions and characteristics likely to cause...

  8. A high-speed interconnect network using ternary logic

    DEFF Research Database (Denmark)

    Madsen, Jens Kargaard; Long, S. I.

    1995-01-01

    This paper describes the design and implementation of a high-speed interconnect network (ICN) for a multiprocessor system using ternary logic. By using ternary logic and a fast point-to-point communication technique called STARI (Self-Timed At Receiver's Input), the communication between...

  9. Cutting force model for high speed machining process

    International Nuclear Information System (INIS)

    Haber, R. E.; Jimenez, J. E.; Jimenez, A.; Lopez-Coronado, J.

    2004-01-01

    This paper presents cutting force-based models able to describe a high speed machining process. The model considers the cutting force as output variable, essential for the physical processes that are taking place in high speed machining. Moreover, this paper shows the mathematical development to derive the integral-differential equations, and the algorithms implemented in MATLAB to predict the cutting force in real time MATLAB is a software tool for doing numerical computations with matrices and vectors. It can also display information graphically and includes many toolboxes for several research and applications areas. Two end mill shapes are considered (i. e. cylindrical and ball end mill) for real-time implementation of the developed algorithms. the developed models are validated in slot milling operations. The results corroborate the importance of the cutting force variable for predicting tool wear in high speed machining operations. The developed models are the starting point for future work related with vibration analysis, process stability and dimensional surface finish in high speed machining processes. (Author) 19 refs

  10. Optimum Design of High Speed Prop-Rotors

    Science.gov (United States)

    Chattopadhyay, Aditi

    1992-01-01

    The objective of this research is to develop optimization procedures to provide design trends in high speed prop-rotors. The necessary disciplinary couplings are all considered within a closed loop optimization process. The procedures involve the consideration of blade aeroelastic, aerodynamic performance, structural and dynamic design requirements. Further, since the design involves consideration of several different objectives, multiobjective function formulation techniques are developed.

  11. Effect of Stand-Off Distance on Impact Pressure of High Speed Water Jets

    Science.gov (United States)

    Sittiwong, Wuttichai; Seehanam, Wirapan; Pianthong, Kulachate; Matthujak, Anirut

    2010-06-01

    High speed liquid jets may be applied to jet cutting, drilling and cleaning. Recently, in the automotive industries, the spray injection pressure becomes higher and higher to enhance the fuel mixing for the improved combustion efficiency. However, the ultra high injection pressure may cause the damage to the nozzle and also the combustion chamber. In the medical application, the high speed liquid injection might be applied for the drug delivery through the skin where the needle is not required anymore. From the above mentioned application, the investigation on the impact pressure of the high speed liquid jet relative to the stand-off distant is significant. The high speed liquid jets are generated by the projectile impact driven method. The high speed projectile is launched by the horizontal single stage powder gun. The experimental study focuses on the stand-off between 1.5 cm to 6.0 cm, while the nozzle contains approximately 1.5cm3 of water in its cavity. The nozzle conical angles are 30° and 60° with the orifice diameter of 0.7 mm. The jet velocities are measured by laser beam interruptions method. The target material is the Polymethyl Methacrylate (PMMA) which the impact pressure is measured by using a piezoelectric Polyvinylidene Fluoride (PVDF) film. From the experiments, the maximum water jet velocity of 2290 m/s can be obtained from the 30° conical angle nozzle. The maximum impact pressures of nozzle conical angle of 30° and 60° are 3.4 GPa and 2.6 GPa respectively, at stand-off distance 3 cm. However, at the stand-off distance more than 3 cm, the impact pressure significantly decreases, because of aerodynamic drag, jets core break-up, and atomization of the water.

  12. Variación de la rugosidad y de la dureza en el maquinado de formas complejas en aceros endurecidos utilizando altas velocidades de corte. // Variation of roughness and of the hardness in machining of complex forms in hardness steel using high speed cuttin

    Directory of Open Access Journals (Sweden)

    L. Cardoso Brandão

    2008-05-01

    Full Text Available Este trabajo evalúa la influencia de la variación de la velocidad de corte en el corte con altas velocidades en superficies conformas complejas. Fueron maquinados cuerpos de prueba con 1/4 de circunferencia en acero AISI D2 y H13 con dureza de53 y 50 HRC, respectivamente. Los experimentos fueron realizados utilizando la estrategia “raster” con herramientasesféricas (Ball Nose en un centro de maquinado de tres ejes. Los valores de rugosidad y dureza HRC fueron medidosperpendiculares a la dirección de corte en cuatro regiones diferentes. Los resultados demuestran que las regiones dediámetro mínimo, próximas a la línea central de la herramienta y en el punto de contacto del diámetro máximo, presentanlos menores valores de rugosidad. No ocurren modificaciones significativas en los valores de HRC y no hubo formación decapa blanca en ninguno de los dos materiales. Considerándose los valores de microdureza medidas radialmente en loscuerpos de prueba no se observa ninguna variación de la microdureza.Palabras claves: Rugosidad Ra; altas velocidades de corte; moldes y matrices; dureza HRC._____________________________________________________________________________Abstract.This work evaluated the influences of cutting speed variation in machining with High Speed Cutting on complex surface forms.Work pieces of AISI D 2 e AISI H13 with hardness of 53 and 50 HRC, respectively with a quarter of circumference was milled.Tests were carried out in a vertical machining centre using the raster strategy and Ball-Nose tool. The roughness values andhardness HRC were measured perpendicular the cutting direction in six different regions. The results show that the regions whereoccur the contact of minimum tool diameter, nearest to tool centre line and the maximum diameter contact point show the lowervalues of roughness. During the tests, it did not occur significantly modifications in the values of HRC hardness and the whitelayer not was formed

  13. The application of high-speed photography and spectrography for investigations of erosive pulsed plasma streams

    International Nuclear Information System (INIS)

    Kiselevskiy, L.I.; Minko, L.Ja.

    The extensive information of pulsed plasma dynamic processes related to formation and interaction of plasma streams with a surrounding medium and obstacles is obtained with the help of high-speed photo and spectrography. The wave structure of pulsed supersonic under-expanded erosive plasma jets is studied. Some physical processes which are due to interactions of laser radiation with the laser-produced erosive plasma and of this plasma with a surrounding medium are investigated. The wide possibilities of frame photography of spectra quantitative spectroscopic investigations of fast-proceeding plasma processes are shown on the basis of joint use of high-speed photographic apparatus (type SFR) and standard spectrographs. The radial distribution of charged-particle concentrations at separate moments of time is obtained from the broadening of spectral lines at the brightness of the continuous spectrum of an erosive plasma jet from a pulsed accelerator

  14. Integrated Seismic Survey for Detecting Landslide Effects on High Speed Rail Line at Istanbul–Turkey

    Directory of Open Access Journals (Sweden)

    Grit Mert

    2016-02-01

    Full Text Available In this study, Multichannel Analysis of Surface Waves Method (MASW, seismic refraction tomography and seismic reflection methods are used together at Silivri district in Istanbul – a district with a landslide problem because of the high speed rail line project crossing through the area. The landslide structure, border and depth of the slip plane are investigated and correlated within the local geology. According to the obtained 2D seismic sections, the landslide occurs through the East-West direction in the study area and the landslide slip plane with its border are clearly obtained under the subsurface. The results prove that the study area is suitable enough for the landslide development and this evolution also affects the high speed rail line project.

  15. Improvement of the surface finish obtained by laser ablation with a Nd: YAG laser on pre-ablated tool steel

    CSIR Research Space (South Africa)

    Steyn, J

    2007-01-01

    Full Text Available . In recent years, these lasers have been used in other fields, such as laser ablation of small tools for plastics injection moulding. Laser ablation is a technology that is investigated as a method to improve the surface finish in tool steel. Different...

  16. The structural and dynamic characteristics of a water-polimer high-speed jet

    Directory of Open Access Journals (Sweden)

    Андрій Володимирович Погребняк

    2017-07-01

    Full Text Available The aim is to study the structural and dynamic characteristics of the water-polymer jet, what is of decisive importance for understanding the nature of the abnormally high cutting ability. A complex study of the structure and dynamics of a water-polymer high-speed jet has been carried out. Analysis of the photographs of jets of aqueous PEO solution indicates that adding polyethylene oxide (PEO into water results in a significant increase in the initial sections of the water-polymer jet, which characterizes the quality of its formation, and leads to compactness due to a reduction of its diameter. The obtained experimental data made it possible to propose a relationship for determining the dimensionless value of the initial sections of jets of aqueous PEO solutions of different concentration and molecular mass of PEO, taking into account the real parameters of the jet forming head. Investigation of changes in the energy capabilities of water-polymer jets, which were estimated by the force of the jet impact on the steel obstacle, made it possible to establish the features of their dynamics. The obtained experimental data explain the nature of the change in the cutting properties of the water-polymer jet as a function of the distance between the surface of the material that is being cut and the cut of the nozzle. If the distance from the nozzle to the surface of the material is less than the size of the initial sections of the water-polymer jet, an increase in the diameter of the nozzle outlet hole will lead to a reduction in the depth of the cut. If, however, the distance from the nozzle to the surface of the material approaches or exceeds the size of the main part of the water-polymer jet, then the depth of the cut will increase with increasing diameter of the nozzle at a constant pressure. The use of structural and dynamic characteristics of water-polymer jets is substantiated when establishing rational parameters of equipment for water

  17. High-Speed Measurements on a Swept-Back Wing (Sweepback Angle phi = 35 Deg)

    Science.gov (United States)

    Goethert, B.

    1947-01-01

    In the following, high-speed measurements on a swept-back wing are reported. The curves of lift, moment, and drag have been determined up to Mach numbers of M = 0.87, and they are compared to a rectangular wing. Through measurements of the total-head loss behind the wing and through schlieren pictures, an insight into the formation of the compression shock at high Mach numbers has been obtained.

  18. PERFORMANCE OF DIFFERENT CMOS LOGIC STYLES FOR LOW POWER AND HIGH SPEED

    OpenAIRE

    Sreenivasa Rao.Ijjada; Ayyanna.G; G.Sekhar Reddy; Dr.V.Malleswara Rao

    2011-01-01

    Designing high-speed low-power circuits with CMOS technology has been a major research problem for many years. Several logic families have been proposed and used to improve circuit performance beyond that of conventional static CMOS family. Fast circuit families are becoming attractive in deep sub micron technologies since the performance benefits obtained from process scaling are decreasing as feature size decreases. This paper presents CMOS differential circuit families such as Dual rail do...

  19. High speed photography for investigating kiloampere discharges in supersonic air flows

    International Nuclear Information System (INIS)

    Jones, G.R.; Strachan, D.

    1975-01-01

    Examples of the use of conventional high speed photographic techniques are given for obtaining information about the behaviour of high current arc discharges in different gas flow fields. The photographic records yield information about the extent of both the luminous arc core and the surrounding heated volume of gas. A knowledge of these parameters leads to a better understanding of arc discharges which occur in gas blast circuit breakers. (author)

  20. High-speed imaging polarimetry using liquid crystal modulators

    Directory of Open Access Journals (Sweden)

    Ambs P.

    2010-06-01

    Full Text Available This paper deals with dynamic polarimetric imaging techniques. The basics of modern polarimetry have been known for one and a half century, but no practical high-speed implementation providing the full polarization information is currently available. Various methods are reviewed which prove to be a trade-off between the complexity of the optical set-up and the amount of polarimetric information they provide (ie the number of components of the Stokes vector. Techniques using liquid crystal devices, incepted in the late 1990's, are emphasized. Optical set-ups we implemented are presented. We particularly focus on high-speed techniques (i.e. faster than 200 Hz using ferroelectric liquid crystal devices.

  1. The high speed interconnect system architecture and operation

    Science.gov (United States)

    Anderson, Steven C.

    The design and operation of a fiber-optic high-speed interconnect system (HSIS) being developed to meet the requirements of future avionics and flight-control hardware with distributed-system architectures are discussed. The HSIS is intended for 100-Mb/s operation of a local-area network with up to 256 stations. It comprises a bus transmission system (passive star couplers and linear media linked by active elements) and network interface units (NIUs). Each NIU is designed to perform the physical, data link, network, and transport functions defined by the ISO OSI Basic Reference Model (1982 and 1983) and incorporates a fiber-optic transceiver, a high-speed protocol based on the SAE AE-9B linear token-passing data bus (1986), and a specialized application interface unit. The operating modes and capabilities of HSIS are described in detail and illustrated with diagrams.

  2. Multimode polymer waveguides for high-speed optical interconnects

    Science.gov (United States)

    Bamiedakis, N.; Ingham, J. D.; Penty, R. V.; White, I. H.; DeGroot, J. V.; Clapp, T. V.

    2017-11-01

    Polymeric multimode waveguides are of particular interest for optical interconnections in short-reach data links. In some applications, for example in space-borne systems, the use of advanced materials with outstanding performance in extreme environments is required (temperature and radiation). In this paper therefore, we present novel siloxane polymers suitable for these applications. The materials are used to form straight, 90° bent and spiral polymer waveguides by low-cost conventional photolithographic techniques on FR4 substrates. The samples have been tested to investigate their propagation characteristics and demonstrate their potential for high-speed data links. Overall, there is strong evidence that these multimode waveguides can be successfully employed as high-speed short-reach data links. Their excellent thermal properties, their low cost and the simple fabrication process indicate their suitability for a wide range of space applications.

  3. Feature Tracking for High Speed AFM Imaging of Biopolymers.

    Science.gov (United States)

    Hartman, Brett; Andersson, Sean B

    2018-03-31

    The scanning speed of atomic force microscopes continues to advance with some current commercial microscopes achieving on the order of one frame per second and at least one reaching 10 frames per second. Despite the success of these instruments, even higher frame rates are needed with scan ranges larger than are currently achievable. Moreover, there is a significant installed base of slower instruments that would benefit from algorithmic approaches to increasing their frame rate without requiring significant hardware modifications. In this paper, we present an experimental demonstration of high speed scanning on an existing, non-high speed instrument, through the use of a feedback-based, feature-tracking algorithm that reduces imaging time by focusing on features of interest to reduce the total imaging area. Experiments on both circular and square gratings, as well as silicon steps and DNA strands show a reduction in imaging time by a factor of 3-12 over raster scanning, depending on the parameters chosen.

  4. High-speed Integrated Circuits for electrical/Optical Interfaces

    DEFF Research Database (Denmark)

    Jespersen, Christoffer Felix

    2008-01-01

    This thesis is a continuation of the effort to increase the bandwidth of communicationnetworks. The thesis presents the results of the design of several high-speed electrical ircuits for an electrical/optical interface. These circuits have been a contribution to the ESTA project in collaboration...... circuits at the receiver interface, though VCOs are also found in the transmitter where a multitude of independent sources have to be mutually synchronized before multiplexing. The circuits are based on an InP DHBT process (VIP-2) supplied by Vitesse and made publicly available as MPW. The VIP-2 process...... represents the avant-garde of InP technology, with ft and fmax well above 300 GHz. Principles of high speed design are presented and described as a useful background before proceeding to circuits. A static divider is used as an example to illustrate many of the design principles. Theory and fundamentals...

  5. High-speed packet filtering utilizing stream processors

    Science.gov (United States)

    Hummel, Richard J.; Fulp, Errin W.

    2009-04-01

    Parallel firewalls offer a scalable architecture for the next generation of high-speed networks. While these parallel systems can be implemented using multiple firewalls, the latest generation of stream processors can provide similar benefits with a significantly reduced latency due to locality. This paper describes how the Cell Broadband Engine (CBE), a popular stream processor, can be used as a high-speed packet filter. Results show the CBE can potentially process packets arriving at a rate of 1 Gbps with a latency less than 82 μ-seconds. Performance depends on how well the packet filtering process is translated to the unique stream processor architecture. For example the method used for transmitting data and control messages among the pseudo-independent processor cores has a significant impact on performance. Experimental results will also show the current limitations of a CBE operating system when used to process packets. Possible solutions to these issues will be discussed.

  6. High speed movies of turbulence in Alcator C-Mod

    International Nuclear Information System (INIS)

    Terry, J.L.; Zweben, S.J.; Bose, B.; Grulke, O.; Marmar, E.S.; Lowrance, J.; Mastrocola, V.; Renda, G.

    2004-01-01

    A high speed (250 kHz), 300 frame charge coupled device camera has been used to image turbulence in the Alcator C-Mod Tokamak. The camera system is described and some of its important characteristics are measured, including time response and uniformity over the field-of-view. The diagnostic has been used in two applications. One uses gas-puff imaging to illuminate the turbulence in the edge/scrape-off-layer region, where D 2 gas puffs localize the emission in a plane perpendicular to the magnetic field when viewed by the camera system. The dynamics of the underlying turbulence around and outside the separatrix are detected in this manner. In a second diagnostic application, the light from an injected, ablating, high speed Li pellet is observed radially from the outer midplane, and fast poloidal motion of toroidal striations are seen in the Li + light well inside the separatrix

  7. Development of Industrial High-Speed Transfer Parallel Robot

    International Nuclear Information System (INIS)

    Kim, Byung In; Kyung, Jin Ho; Do, Hyun Min; Jo, Sang Hyun

    2013-01-01

    Parallel robots used in industry require high stiffness or high speed because of their structural characteristics. Nowadays, the importance of rapid transportation has increased in the distribution industry. In this light, an industrial parallel robot has been developed for high-speed transfer. The developed parallel robot can handle a maximum payload of 3 kg. For a payload of 0.1 kg, the trajectory cycle time is 0.3 s (come and go), and the maximum velocity is 4.5 m/s (pick amp, place work, adept cycle). In this motion, its maximum acceleration is very high and reaches approximately 13g. In this paper, the design, analysis, and performance test results of the developed parallel robot system are introduced

  8. IMPROVED METHOD OF DETERMINATION OF ECONOMIC EFFICIENCY OF CONSTRUCTION AND OPERATION OF HIGH SPEED MAINLINE IN UKRAINE

    Directory of Open Access Journals (Sweden)

    YU. S. Barash

    2014-01-01

    Full Text Available Purpose. To develop an advanced methodology and formulate the measures concerning the definition of economic efficiency of high-speed movement organization taking into account the operating experience of rapid transportations in Ukraine, travel time, number of stops on the route, schedule and the demand for these transportations. Methodology. The economic feasibility for appropriateness of high-speed movement organization in Ukraine is an investment project, which involves step-by-step money investment to the construction. To solve such problems one uses net present value, which UZ or newly created companies can get during the project realization and after its completion. Findings. On the basis of obtained studies one can state that the methodology of complex determination of construction efficiency and high-speed passenger trains operation taking into account the cost of infrastructure, rolling stock, impact of environmental factors, etc. was developed in the article. Originality. We propose a scientific approach to determine the economic efficiency of the construction and high-speed main lines operation. This approach, unlike the existing one, includes the improved principles of determining the passenger traffic, the cost of high-speed mainline construction, the number of rolling stock; optimizes income and expenditure calculations in the context of competitive advantages and impact of the external factors on the company. For the first time it was taken into account the transit flow of passengers departing from CIS countries to the vacation in the Crimea, the Carpathians, Odessa and Lviv regions. The account of these factors increases the feasibility of administrative decisions concerning ensuring the efficiency of high-speed traffic functioning. Practical value. The proposed methodology and the research results allowed determining the construction reasonability of high-speed mainline for the passenger trains with a speed at least250 km/h in

  9. Multi-actuation and PI control: A simple recipe for high-speed and large-range atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Soltani Bozchalooi, I., E-mail: isoltani@mit.edu; Youcef-Toumi, K.

    2014-11-15

    High speed atomic force microscopy enables observation of dynamic nano-scale processes. However, maintaining a minimal interaction force between the sample and the probe is challenging at high speed specially when using conventional piezo-tubes. While rigid AFM scanners are operational at high speeds with the drawback of reduced tracking range, multi-actuation schemes have shown potential for high-speed and large-range imaging. Here we present a method to seamlessly incorporate additional actuators into conventional AFMs. The equivalent behavior of the resulting multi-actuated setup resembles that of a single high-speed and large-range actuator with maximally flat frequency response. To achieve this, the dynamics of the individual actuators and their couplings are treated through a simple control scheme. Upon the implementation of the proposed technique, commonly used PI controllers are able to meet the requirements of high-speed imaging. This forms an ideal platform for retroactive enhancement of existing AFMs with minimal cost and without compromise on the tracking range. A conventional AFM with tube scanner is retroactively enhanced through the proposed method and shows an order of magnitude improvement in closed loop bandwidth performance while maintaining large range. The effectiveness of the method is demonstrated on various types of samples imaged in contact and tapping modes, in air and in liquid. - Highlights: • We present a novel method to incorporate extra actuators into conventional AFMs. • A maximally flat frequency response is achieved for the out of plane piezo-motion. • Commonly used PI or PID control is enabled to handle high speed AFM imaging. • An order of magnitude improvement in closed loop bandwidth performance is obtained. • High speed imaging is achieved on a large range piezo-tube.

  10. Multi-actuation and PI control: A simple recipe for high-speed and large-range atomic force microscopy

    International Nuclear Information System (INIS)

    Soltani Bozchalooi, I.; Youcef-Toumi, K.

    2014-01-01

    High speed atomic force microscopy enables observation of dynamic nano-scale processes. However, maintaining a minimal interaction force between the sample and the probe is challenging at high speed specially when using conventional piezo-tubes. While rigid AFM scanners are operational at high speeds with the drawback of reduced tracking range, multi-actuation schemes have shown potential for high-speed and large-range imaging. Here we present a method to seamlessly incorporate additional actuators into conventional AFMs. The equivalent behavior of the resulting multi-actuated setup resembles that of a single high-speed and large-range actuator with maximally flat frequency response. To achieve this, the dynamics of the individual actuators and their couplings are treated through a simple control scheme. Upon the implementation of the proposed technique, commonly used PI controllers are able to meet the requirements of high-speed imaging. This forms an ideal platform for retroactive enhancement of existing AFMs with minimal cost and without compromise on the tracking range. A conventional AFM with tube scanner is retroactively enhanced through the proposed method and shows an order of magnitude improvement in closed loop bandwidth performance while maintaining large range. The effectiveness of the method is demonstrated on various types of samples imaged in contact and tapping modes, in air and in liquid. - Highlights: • We present a novel method to incorporate extra actuators into conventional AFMs. • A maximally flat frequency response is achieved for the out of plane piezo-motion. • Commonly used PI or PID control is enabled to handle high speed AFM imaging. • An order of magnitude improvement in closed loop bandwidth performance is obtained. • High speed imaging is achieved on a large range piezo-tube

  11. High Speed White Dwarf Asteroseismology with the Herty Hall Cluster

    Science.gov (United States)

    Gray, Aaron; Kim, A.

    2012-01-01

    Asteroseismology is the process of using observed oscillations of stars to infer their interior structure. In high speed asteroseismology, we complete that by quickly computing hundreds of thousands of models to match the observed period spectra. Each model on a single processor takes five to ten seconds to run. Therefore, we use a cluster of sixteen Dell Workstations with dual-core processors. The computers use the Ubuntu operating system and Apache Hadoop software to manage workloads.

  12. Aero-Mechanical Coupling in a High-Speed Compressor

    Science.gov (United States)

    2010-02-01

    freedom mass-spring- damper system as χ = ς 2 √ κµ . (51) ς represents the viscous damping, κ is the system stiffness and µ the system mass. χ expresses...between the fluid and structures which are common in modern, high-speed axial compressors. There were two major areas of focus. The first was the...development of measurement technique specifically for the study of these phenomena, termed Blade Image Velocimetry (BIV). The technique can measure fluid and

  13. Modeling and simulation of high-speed milling centers dynamics

    OpenAIRE

    Msaddek , El Bechir; Bouaziz , Zoubeir; Baili , Maher; Dessein , Gilles

    2011-01-01

    International audience; High-speed machining is a milling operation in industrial production of aeronautic parts, molds, and dies. The parts production is being reduced because of the slowing down of the machining resulting from the tool path discontinuity machining strategy. In this article, we propose a simulation tool of the machine dynamic behavior, in complex parts machining. For doing this, analytic models have been developed expressing the cutting tool feed rate. Afterwards, a simulati...

  14. High speed motion-picture photography. Instrumentation and application

    International Nuclear Information System (INIS)

    Bertin-Maghit, G.; Delli, C.; Falgayrettes, M.

    1981-01-01

    Filming technology at 5,000 frames/second is presented in this paper for the determination of the volume and the expension speed of a gas bubble in water. The high speed 16 mm movie camera, fitted with ultra-wide angle lenses, is placed in front of a side light facing the bubble. Ten 60 ms fast flashes, released in succession, illuminate the bubble [fr

  15. The economic effects of high speed rail investment

    OpenAIRE

    de Rus, Ginés

    2008-01-01

    The allocation of traffic between different transport modes follows transport user decisions which depend on the generalized cost of travel in the available alternatives. High Speed Rail (HSR) investment is a government decision with significant effects on the generalized cost of rail transport; and therefore on the modal split in corridors where private operators compete for traffic and charge prices close to total producer costs (infrastructure included). The rationale for HSR investment is...

  16. Kinematic and Kinetic Evaluation of High Speed Backward Running

    Science.gov (United States)

    1999-06-30

    Designed using Perform Pro , WHS/DIOR, Oct 94 KINEMATIC AND KINETIC EVALUATION OF HIGH SPEED BACKWARD RUNNING by ALAN WAYNE ARATA A DISSERTATION...Project Manager, Engineering Division, Kelly Air Force Base, Texas, 1983-86 AWARDS AND HONORS: All-American, 50yd Freestyle , 1979 Winner, Rocky...redirection #include <stdlib.h> // for exit #include <iomanip.h> // for set precision #include <string.h> // for string copy const int NUMPOINTS

  17. Study on Electromagnetic Interference of high-speed railway EMU

    OpenAIRE

    CHENG Qiang; LIU Jin-jiang; CHENG Ning

    2013-01-01

    Electromagnetic radiation generated by pantograph-catenaries detachment is one of the inevitable problems with the development of high-speed railway this paper is focusing on the generating mechanism and characteristics of electromagnetic noise caused by pantograph-catenaries system. Based on previous research, we build an integrated model of catenaries and locomotive system, and study the electromagnetic disturbance characteristics using software FEKO. The simulation experiment results in th...

  18. High speed trains Velaro for Russia; Hochgeschwindigkeitszuege Velaro fuer Russland

    Energy Technology Data Exchange (ETDEWEB)

    Lipp, Andreas; John, David [Siemens AG, I MO TR HI RUS, Erlangen (Germany); Mangler, Ruediger [Siemens AG, I MO TR DH, Krefeld (Germany); Nazarov, Aleksander S. [OAO RZD, Moscow (Russian Federation). Dept. of Technical Policy; Nazarov, Oleg N. [VNIIZhT Moscow (Russian Federation); Shilkin, Vitali P. [OAO RZD, Moscow (Russian Federation)

    2008-07-01

    From December 2008 on, eight ten-piece high-speed trains from the Velaro family from Siemens will be delivered to Russia. The two electrical multiple unit versions - single and double system trains equipped with distributed traction - will be put into service on the existing Moscow - St. Petersburg and Moscow - Nizhni Novgorod lines. The technical design and the special features for deployment in Russia are described. (orig.)

  19. High Speed Trimaran (HST) Seatrain Experiments, Model 5714

    Science.gov (United States)

    2013-12-01

    wave absorbing beach at the other. The carriage has electro-hydraulic drive and a regenerative braking system with a maximum carriage speed of 20...Carderock Division To: Commander, Naval Sea Systems Command (PMS3 85) Subj FORWARDING OF REPORT Encl: (1) NSWCCD-80-TR-2013/015, "High Speed Trimaran...and verify the system processes and capability. Your comments will be reviewed and are appreciated. JUDE F. BROWN By direction Copy to: NAVSEA

  20. Gearbox Reliability Collaborative High-Speed Shaft Calibration

    Energy Technology Data Exchange (ETDEWEB)

    Keller, J.; McNiff, B.

    2014-09-01

    Instrumentation has been added to the high-speed shaft, pinion, and tapered roller bearing pair of the Gearbox Reliability Collaborative gearbox to measure loads and temperatures. The new shaft bending moment and torque instrumentation was calibrated and the purpose of this document is to describe this calibration process and results, such that the raw shaft bending and torque signals can be converted to the proper engineering units and coordinate system reference for comparison to design loads and simulation model predictions.

  1. Open tube guideway for high speed air cushioned vehicles

    Science.gov (United States)

    Goering, R. S. (Inventor)

    1974-01-01

    This invention is a tubular shaped guideway for high-speed air-cushioned supported vehicles. The tubular guideway is split and separated such that the sides of the guideway are open. The upper portion of the tubular guideway is supported above the lower portion by truss-like structural members. The lower portion of the tubular guideway may be supported by the terrain over which the vehicle travels, on pedestals or some similar structure.

  2. On the reversed Brayton cycle with high speed machinery

    Energy Technology Data Exchange (ETDEWEB)

    Backman, J.

    1996-12-31

    This work was carried out in the laboratory of Fluid Dynamics, at Lappeenranta University of Technology during the years 1991-1996. The research was a part of larger high speed technology development research. First, there was the idea of making high speed machinery applications with the Brayton cycle. There was a clear need to deepen the knowledge of the cycle itself and to make a new approach in the field of the research. Also, the removal of water from the humid air seemed very interesting. The goal of this work was to study methods of designing high speed machinery for the reversed Brayton cycle, from theoretical principles to practical applications. The reversed Brayton cycle can be employed as an air dryer, a heat pump or a refrigerating machine. In this research the use of humid air as a working fluid has an environmental advantage, as well. A new calculation method for the Brayton cycle is developed. In this method especially the expansion process in the turbine is important because of the condensation of the water vapour in the humid air. This physical phenomena can have significant effects on the level of performance of the application. Also, the influence of calculating the process with actual, achievable process equipment efficiencies is essential for the development of future machinery. The above theoretical calculations are confirmed with two different laboratory prototypes. (53 refs.)

  3. Noise in the passenger cars of high-speed trains.

    Science.gov (United States)

    Hong, Joo Young; Cha, Yongwon; Jeon, Jin Yong

    2015-12-01

    The aim of this study is to investigate the effects of both room acoustic conditions and spectral characteristics of noises on acoustic discomfort in a high-speed train's passenger car. Measurement of interior noises in a high-speed train was performed when the train was operating at speeds of 100 km/h and 300 km/h. Acoustic discomfort caused by interior noises was evaluated by paired comparison methods based on the variation of reverberation time (RT) in a passenger car and the spectral differences in interior noises. The effect of RT on acoustic discomfort was not significant, whereas acoustic discomfort significantly varied depending on spectral differences in noise. Acoustic discomfort increased with increment of the sound pressure level (SPL) ratio at high frequencies, and variation in high-frequency noise components were described using sharpness. Just noticeable differences of SPL with low- and high-frequency components were determined to be 3.7 and 2.9 dB, respectively. This indicates that subjects were more sensitive to differences in SPLs at the high-frequency range than differences at the low-frequency range. These results support that, for interior noises, reduction in SPLs at high frequencies would significantly contribute to improved acoustic quality in passenger cars of high-speed trains.

  4. On the reversed Brayton cycle with high speed machinery

    Energy Technology Data Exchange (ETDEWEB)

    Backman, J

    1997-12-31

    This work was carried out in the laboratory of Fluid Dynamics, at Lappeenranta University of Technology during the years 1991-1996. The research was a part of larger high speed technology development research. First, there was the idea of making high speed machinery applications with the Brayton cycle. There was a clear need to deepen the knowledge of the cycle itself and to make a new approach in the field of the research. Also, the removal of water from the humid air seemed very interesting. The goal of this work was to study methods of designing high speed machinery for the reversed Brayton cycle, from theoretical principles to practical applications. The reversed Brayton cycle can be employed as an air dryer, a heat pump or a refrigerating machine. In this research the use of humid air as a working fluid has an environmental advantage, as well. A new calculation method for the Brayton cycle is developed. In this method especially the expansion process in the turbine is important because of the condensation of the water vapour in the humid air. This physical phenomena can have significant effects on the level of performance of the application. Also, the influence of calculating the process with actual, achievable process equipment efficiencies is essential for the development of future machinery. The above theoretical calculations are confirmed with two different laboratory prototypes. (53 refs.)

  5. Double Helical Gear Performance Results in High Speed Gear Trains

    Science.gov (United States)

    Handschuh, Robert F.; Ehinger, Ryan; Sinusas, Eric; Kilmain, Charles

    2010-01-01

    The operation of high speed gearing systems in the transmissions of tiltrotor aircraft has an effect on overall propulsion system efficiency. Recent work has focused on many aspects of high-speed helical gear trains as would be used in tiltrotor aircraft such as operational characteristics, comparison of analytical predictions to experimental data and the affect of superfinishing on transmission performance. Baseline tests of an aerospace quality system have been conducted in the NASA Glenn High-Speed Helical Gear Train Test Facility and have been described in earlier studies. These earlier tests had utilized single helical gears. The results that will be described in this study are those attained using double helical gears. This type of gear mesh can be configured in this facility to either pump the air-oil environment from the center gap between the meshing gears to the outside of tooth ends or in the reverse direction. Tests were conducted with both inward and outward air-oil pumping directions. Results are compared to the earlier baseline results of single helical gears.

  6. Multivariable Techniques for High-Speed Research Flight Control Systems

    Science.gov (United States)

    Newman, Brett A.

    1999-01-01

    This report describes the activities and findings conducted under contract with NASA Langley Research Center. Subject matter is the investigation of suitable multivariable flight control design methodologies and solutions for large, flexible high-speed vehicles. Specifically, methodologies are to address the inner control loops used for stabilization and augmentation of a highly coupled airframe system possibly involving rigid-body motion, structural vibrations, unsteady aerodynamics, and actuator dynamics. Design and analysis techniques considered in this body of work are both conventional-based and contemporary-based, and the vehicle of interest is the High-Speed Civil Transport (HSCT). Major findings include: (1) control architectures based on aft tail only are not well suited for highly flexible, high-speed vehicles, (2) theoretical underpinnings of the Wykes structural mode control logic is based on several assumptions concerning vehicle dynamic characteristics, and if not satisfied, the control logic can break down leading to mode destabilization, (3) two-loop control architectures that utilize small forward vanes with the aft tail provide highly attractive and feasible solutions to the longitudinal axis control challenges, and (4) closed-loop simulation sizing analyses indicate the baseline vane model utilized in this report is most likely oversized for normal loading conditions.

  7. High-speed imaging of blood splatter patterns

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, T.E.; Albright, K.A.; King, N.S.P.; Yates, G.J. (Los Alamos National Lab., NM (United States)); Levine, G.F. (California Dept. of Justice, Sacramento, CA (United States). Bureau of Forensic Services)

    1993-01-01

    The interpretation of blood splatter patterns is an important element in reconstructing the events and circumstances of an accident or crime scene. Unfortunately, the interpretation of patterns and stains formed by blood droplets is not necessarily intuitive and study and analysis are required to arrive at a correct conclusion. A very useful tool in the study of blood splatter patterns is high-speed photography. Scientists at the Los Alamos National Laboratory, Department of Energy (DOE), and Bureau of Forensic Services, State of California, have assembled a high-speed imaging system designed to image blood splatter patterns. The camera employs technology developed by Los Alamos for the underground nuclear testing program and has also been used in a military mine detection program. The camera uses a solid-state CCD sensor operating at approximately 650 frames per second (75 MPixels per second) with a microchannel plate image intensifier that can provide shuttering as short as 5 ns. The images are captured with a laboratory high-speed digitizer and transferred to an IBM compatible PC for display and hard copy output for analysis. The imaging system is described in this paper.

  8. High-speed imaging of blood splatter patterns

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, T.E.; Albright, K.A.; King, N.S.P.; Yates, G.J. [Los Alamos National Lab., NM (United States); Levine, G.F. [California Dept. of Justice, Sacramento, CA (United States). Bureau of Forensic Services

    1993-05-01

    The interpretation of blood splatter patterns is an important element in reconstructing the events and circumstances of an accident or crime scene. Unfortunately, the interpretation of patterns and stains formed by blood droplets is not necessarily intuitive and study and analysis are required to arrive at a correct conclusion. A very useful tool in the study of blood splatter patterns is high-speed photography. Scientists at the Los Alamos National Laboratory, Department of Energy (DOE), and Bureau of Forensic Services, State of California, have assembled a high-speed imaging system designed to image blood splatter patterns. The camera employs technology developed by Los Alamos for the underground nuclear testing program and has also been used in a military mine detection program. The camera uses a solid-state CCD sensor operating at approximately 650 frames per second (75 MPixels per second) with a microchannel plate image intensifier that can provide shuttering as short as 5 ns. The images are captured with a laboratory high-speed digitizer and transferred to an IBM compatible PC for display and hard copy output for analysis. The imaging system is described in this paper.

  9. Flow curves of Sn and Sn-3.5Ag obtained by rotational viscometry using a stainless steel cone

    International Nuclear Information System (INIS)

    Yamazaki, Takahisa; Oishi, Shinya; Gamou, Hirosato; Ikeshoji, Toshi-Taka; Suzumura, Akio

    2014-01-01

    Corrosion of stainless steel in a flow soldering bath by a lead-free solder was investigated using a cone-plate-type rotational viscometer. The rotational torque of the stainless-steel cone in contact with a molten solder was measured at various shear rates. The delicate measured torque was related to the change of the viscosity of the solder owing to dissolution of materials originating from the cone. The estimated viscosity coefficient was ten times greater than the values which have been reported. The result was attributed to the tin content of the solder combined with oxygen from the passive state oxide film on the cone surface. The increase of the viscosity of the silver-containing solder was much greater than in case of pure Sn

  10. Development Of A Dynamic Radiographic Capability Using High-Speed Video

    Science.gov (United States)

    Bryant, Lawrence E.

    1985-02-01

    High-speed video equipment can be used to optically image up to 2,000 full frames per second or 12,000 partial frames per second. X-ray image intensifiers have historically been used to image radiographic images at 30 frames per second. By combining these two types of equipment, it is possible to perform dynamic x-ray imaging of up to 2,000 full frames per second. The technique has been demonstrated using conventional, industrial x-ray sources such as 150 Kv and 300 Kv constant potential x-ray generators, 2.5 MeV Van de Graaffs, and linear accelerators. A crude form of this high-speed radiographic imaging has been shown to be possible with a cobalt 60 source. Use of a maximum aperture lens makes best use of the available light output from the image intensifier. The x-ray image intensifier input and output fluors decay rapidly enough to allow the high frame rate imaging. Data are presented on the maximum possible video frame rates versus x-ray penetration of various thicknesses of aluminum and steel. Photographs illustrate typical radiographic setups using the high speed imaging method. Video recordings show several demonstrations of this technique with the played-back x-ray images slowed down up to 100 times as compared to the actual event speed. Typical applications include boiling type action of liquids in metal containers, compressor operation with visualization of crankshaft, connecting rod and piston movement and thermal battery operation. An interesting aspect of this technique combines both the optical and x-ray capabilities to observe an object or event with both external and internal details with one camera in a visual mode and the other camera in an x-ray mode. This allows both kinds of video images to appear side by side in a synchronized presentation.

  11. Development of a dynamic radiographic capability using high-speed video

    International Nuclear Information System (INIS)

    Bryant, L.E. Jr.

    1984-01-01

    High-speed video equipment can be used to optically image up to 2000 full frames per second or 12,000 partial frames per second. X-ray image intensifiers have historically been used to image radiographic images at 30 frames per second. By combining these two types of equipment, it is possible to perform dynamic x-ray imaging of up to 2,000 full frames per second. The technique has been demonstrated using conventional, industrial x-ray sources such as 150 kV and 300 kV constant potential x-ray generators, 2.5 MeV Van de Graaffs, and linear accelerators. A crude form of this high-speed radiographic imaging has been shown to be possible with a cobalt 60 source. Use of a maximum aperture lens makes best use of the available light output from the image intensifier. The x-ray image intensifier input and output fluors decay rapidly enough to allow the high frame rate imaging. Data are presented on the maximum possible video frame rates versus x-ray penetration of various thicknesses of aluminum and steel. Photographs illustrate typical radiographic setups using the high speed imaging method. Video recordings show several demonstrations of this technique with the played-back x-ray images slowed down up to 100 times as compared to the actual event speed. Typical applications include boiling type action of liquids in metal containers, compressor operation with visualization of crankshaft, connecting rod and piston movement and thermal battery operation. An interesting aspect of this technique combines both the optical and x-ray capabilities to observe an object or event with both external and internal details with one camera in a visual mode and the other camera in an x-ray mode. This allows both kinds of video images to appear side by side in a synchronized presentation

  12. Proposed high speed pellet injection system 'HIPEL' for Large Helical Device

    International Nuclear Information System (INIS)

    Sudo, S.; Kanno, M.; Kaneko, H.; Saka, S.; Shirai, T.; Baba, T.

    1993-11-01

    From the results of the simulation study including pellet ablation and 1-D transport code, it is found that a high speed pellet injector with pellet velocity of more than 3 km/s is necessary for the penetration of the pellet with diameter of 3 mm into the core region under the expected plasma condition of Large Helical Device (LHD) of heliotron/stellarator type with superconducting coils at NIFS in Japan. Therefore, a two stage pellet injector was constructed and tested successfully in order to obtain the pellet velocity range of 3 km/s. Based upon the above results, a high speed flexible multiple-pellet injection system 'HIPEL' for LHD is proposed. HIPEL consists of independent (1) 10 two-stage gun barrels and (2) 10 single-stage gun barrels. It has multi purposes such as refueling and flexible density profile control, diagnostics and the other functions. (author)

  13. High-speed scattering of charged and uncharged particles in general relativity

    International Nuclear Information System (INIS)

    Westphal, K.

    1985-01-01

    After a brief consideration of the high-speed scattering of two point charges high-speed scattering is thoroughly discussed for a charged particle by a fixed mass and of two uncharged particles of comparable masses. Perturbation technique is used over Minkowski spacetime in the de Donder gauge and the field equations and the resulting equations of motion (which take the reaction of the particles' quasistatic self-field into account) are solved by iteration. The obtained energy-momentum conservation laws allow the computation of second-order corrections for the scattering angle and the cross section. The asymptotic structure of the far-field indicates synchrotron radiation (electromagnetic and gravitational, respectively) which causes an energy loss whose reaction on the motion is briefly considered in the low-velocity limit including bound motion. (For neutral particles this is a third-order effect.) (author)

  14. TECHNICAL NOTE: High-speed grinding using thin abrasive disks for microcomponents

    Science.gov (United States)

    Yeo, S. H.; Balon, S. A. P.

    2002-01-01

    This paper introduces the development of a high-speed grinding device for cylindrical grinding of microcomponents made of hard and brittle materials. The study made use of an ultraprecision diamond turning machine tool as a basic platform. The novelty of the device is based on the high-speed air bearing spindle with a thin grinding wheel, similar to the dicing technology for silicon wafer fabrication. The spindle attachment is inclined at an angle to the main spindle which holds the precision fixture mechanism via the vacuum chuck. Experiments have been conducted to verify the design and implementation of the grinding methodology. A feature size as small as 31 μm in diameter and average surface roughness of 98 nm were obtained in the experimental work. It is found that the work done is capable of manufacturing miniature components, such as microcylindrical stepped shafts.

  15. Experimental and numerical study of plastic shear instability under high-speed loading conditions

    International Nuclear Information System (INIS)

    Sokovikov, Mikhail; Chudinov, Vasiliy; Bilalov, Dmitry; Oborin, Vladimir; Uvarov, Sergey; Plekhov, Oleg; Terekhina, Alena; Naimark, Oleg

    2014-01-01

    The behavior of specimens dynamically loaded during the split Hopkinson (Kolsky) bar tests in a regime close to simple shear conditions was studied. The lateral surface of the specimens was investigated in a real-time mode with the aid of a high-speed infra-red camera CEDIP Silver 450M. The temperature field distribution obtained at different time made it possible to trace the evolution of plastic strain localization. The process of target perforation involving plug formation and ejection was examined using a high-speed infra-red camera and a VISAR velocity measurement system. The microstructure of tested specimens was analyzed using an optical interferometer-profilometer and a scanning electron microscope. The development of plastic shear instability regions has been simulated numerically

  16. Development of FOODSEYE, a high-speed screening system for radioactivity in foods

    International Nuclear Information System (INIS)

    Mizuta, Tetsuro; Tachibana, Kazushige; Kobayashi, Susumu

    2012-01-01

    We employed the radiation measurement technology utilized for positron emission tomography in nuclear medicine to develop FOODSEYE, a high-speed screening system for radioactivity in food. FOODSEYE enables high-speed screening designed to measure the concentration of radioactive cesium (Bq/kg) in food and determine with a certainty of at least 99% whether a given test article conforms to safety standards established by the Ministry of Health, Labour and Welfare of Japan. The system is comprised of BGO detectors that detect gamma rays with high sensitivity, a shielded construction to reduce noise components from outside sources of radiation (background radiation), a conveyor belt for efficient conveyance of test articles, and a touch screen panel for easy operation and display of results. This design allows the FOODSEYE system to measure trace amounts of radioactivity with high precision. The precision of the system was verified using 30-kg bags of rice tested in Nihonmatsu City in Fukushima Prefecture, Japan. The measurements results obtained with FOODSEYE correlated with, and were within the range of measurement error of, measurement results obtained using a germanium semiconductor detector. The system was also capable of screening one test article per 5 seconds at a standard value of 100 Bq/kg. This article details the system structure, performance and results of verification tests performed using the FOODSEYE high-speed screening system. (author)

  17. Analysis of base fuze functioning of HESH ammunitions through high-speed photographic technique

    Science.gov (United States)

    Biswal, T. K.

    2007-01-01

    High-speed photography plays a major role in a Test Range where the direct access is possible through imaging in order to understand a dynamic process thoroughly and both qualitative and quantitative data are obtained thereafter through image processing and analysis. In one of the trials it was difficult to understand the performance of HESH ammunitions on rolled homogeneous armour. There was no consistency in scab formation even though all other parameters like propellant charge mass, charge temperature, impact velocity etc are maintained constant. To understand the event thoroughly high-speed photography was deployed to have a frontal view of the total process. Clear information of shell impact, embedding of HE propellant on armour and base fuze initiation are obtained. In case of scab forming rounds these three processes are clearly observed in sequence. However in non-scab ones base fuze is initiated before the completion of the embedding process resulting non-availability of threshold thrust on to the armour to cause scab. This has been revealed in two rounds where there was a failure of scab formation. As a quantitative measure, fuze delay was calculated for each round and there after premature functioning of base fuze was ascertained in case of non-scab rounds. Such potency of high-speed photography has been depicted in details in this paper.

  18. Microstructure, composition and performance of PVD coatings designed for successful dry high speed milling

    International Nuclear Information System (INIS)

    Muenz, W.-D.; Lembke, M.I.; Lewis, D.B.; Smith, I.J.

    2001-01-01

    Dry high speed machining (HSM), particularly dry high speed milling, demands hard coatings, which exhibit high toughness, high oxidation resistance, a limited amount of residual stress and excellent adhesion to the cemented carbide (CC) substrate. These requirements are met by TiAICrYN coatings grown by the combined cathodic arc/unbalanced magnetron deposition method. Fully sufficient adhesion is achieved by ion implantation of Cr into the CC prior deposition. Residual stress is controlled by an Y - free base layer; high oxidation resistance is provided by an Y - containing 3 μm thick hard coating with 29 GPa hardness and a residual stress well below -7 GPa. Under the influence of temperatures above 800 o C, Y segregates along the columns of TiAIN and plugs the in/out diffusion of elements. A top layer of Y - containing oxynitride reduces the friction against the work piece material (0.9 to 0.65). Cutting tools coated as such may be used for dry milling up to 25 k rpm in steels HRC > 60. (author)

  19. DYNAMIC BEHAVIOR OF TWO-SPAN CONTINUOUS CONCRETE BRIDGES UNDER MOVING OF HIGH-SPEED TRAINS

    Directory of Open Access Journals (Sweden)

    O. H. Marinichenko

    2017-10-01

    Full Text Available Purpose. The scientific work provides a comparison of the results of the movement of a high-speed passenger train across the bridge, obtained as a result of finite element modeling in the SAP2000 software package, and real tests of a double-span concrete railway bridge. Analysis of the rigid characteristics of flying structures. Methodology.The numerical method presented in this study shows valid results concerning the dynamic analysis of the behavior of bridges in conditions of high-speed train traffic. The factors influencing the dynamic behavior of bridges under moving loads, the influence of design parameters and rolling stock, as well as the interaction of the train and spans are determined. The system was used in the form of moving concentrated forces simulating the axes of the train. Findings. Maximum movements and accelerations were obtained as a result of the dynamic calculation for different speeds of the train and compared with practical tests. The correctness of the model of a span structure with regard to continuous ferroconcrete spans was verified. Originality. Within the framework of the work, the latest test results were used, including those with speeds calculated on the prospect of rail passenger traffic. For these tests, a model of a span structure was developed. Practical value. The results of the research can be used to plan the introduction of high-speed train traffic on existing and planned flying structures of reinforced concrete bridges. An approach to the design of span structures that will be effective when passing high-speed passenger trains is implemented.

  20. A New High-Speed, High-Cycle, Gear-Tooth Bending Fatigue Test Capability

    Science.gov (United States)

    Stringer, David B.; Dykas, Brian D.; LaBerge, Kelsen E.; Zakrajsek, Andrew J.; Handschuh, Robert F.

    2011-01-01

    A new high-speed test capability for determining the high cycle bending-fatigue characteristics of gear teeth has been developed. Experiments were performed in the test facility using a standard spur gear test specimens designed for use in NASA Glenn s drive system test facilities. These tests varied in load condition and cycle-rate. The cycle-rate varied from 50 to 1000 Hz. The loads varied from high-stress, low-cycle loads to near infinite life conditions. Over 100 tests were conducted using AISI 9310 steel spur gear specimen. These results were then compared to previous data in the literature for correlation. Additionally, a cycle-rate sensitivity analysis was conducted by grouping the results according to cycle-rate and comparing the data sets. Methods used to study and verify load-path and facility dynamics are also discussed.

  1. Acoustic grating fringe projector for high-speed and high-precision three-dimensional shape measurements

    International Nuclear Information System (INIS)

    Yin Xuebing; Zhao Huijie; Zeng Junyu; Qu Yufu

    2007-01-01

    A new acoustic grating fringe projector (AGFP) was developed for high-speed and high-precision 3D measurement. A new acoustic grating fringe projection theory is also proposed to describe the optical system. The AGFP instrument can adjust the spatial phase and period of fringes with unprecedented speed and accuracy. Using rf power proportional-integral-derivative (PID) control and CCD synchronous control, we obtain fringes with fine sinusoidal characteristics and realize high-speed acquisition of image data. Using the device, we obtained a precise phase map for a 3D profile. In addition, the AGFP can work in running fringe mode, which could be applied in other measurement fields

  2. High-speed AFM for Studying Dynamic Biomolecular Processes

    Science.gov (United States)

    Ando, Toshio

    2008-03-01

    Biological molecules show their vital activities only in aqueous solutions. It had been one of dreams in biological sciences to directly observe biological macromolecules (protein, DNA) at work under a physiological condition because such observation is straightforward to understanding their dynamic behaviors and functional mechanisms. Optical microscopy has no sufficient spatial resolution and electron microscopy is not applicable to in-liquid samples. Atomic force microscopy (AFM) can visualize molecules in liquids at high resolution but its imaging rate was too low to capture dynamic biological processes. This slow imaging rate is because AFM employs mechanical probes (cantilevers) and mechanical scanners to detect the sample height at each pixel. It is quite difficult to quickly move a mechanical device of macroscopic size with sub-nanometer accuracy without producing unwanted vibrations. It is also difficult to maintain the delicate contact between a probe tip and fragile samples. Two key techniques are required to realize high-speed AFM for biological research; fast feedback control to maintain a weak tip-sample interaction force and a technique to suppress mechanical vibrations of the scanner. Various efforts have been carried out in the past decade to materialize high-speed AFM. The current high-speed AFM can capture images on video at 30-60 frames/s for a scan range of 250nm and 100 scan lines, without significantly disturbing week biomolecular interaction. Our recent studies demonstrated that this new microscope can reveal biomolecular processes such as myosin V walking along actin tracks and association/dissociation dynamics of chaperonin GroEL-GroES that occurs in a negatively cooperative manner. The capacity of nanometer-scale visualization of dynamic processes in liquids will innovate on biological research. In addition, it will open a new way to study dynamic chemical/physical processes of various phenomena that occur at the liquid-solid interfaces.

  3. Liquid metal current collectors for high-speed rotating machinery

    International Nuclear Information System (INIS)

    Carr, S.L.

    1976-01-01

    Recent interest in superconducting motors and generators has created a renewed interest in homopolar machinery. Homopolar machine designs have always been limited by the need for compact, high-current, low-voltage, sliding electrical curent collectors. Conventional graphite-based solid brushes are inadequate for use in homopolar machines. Liquid metals, under certain conditions of relative sliding velocities, electrical currents, and magnetic fields are known to be capable of performing well in homopolar machines. An effort to explore the capabilities and limits of a tongue-and-groove style current collector, utilizing sodium-potassium eutectic alloy (NaK) as the working fluid in high sliding speed operation is reported here. A double current collector generator model with a 14.5-cm maximum rotor diameter, 20,000 rpm rotational capability, and electrical current carrying ability was constructed and operated successfully at a peripheral velocity of 125 m/s. The limiting factor in these experiments was a high-speed fluid-flow instability resulting in the ejection of the working fluid from the operating portions of the collectors. The effects of collector size and geometry, working fluid (NaK or water), and cover gas pressure are reported. Hydrodynamic frictional torque-speed curves are given for the two fluids and for several geometries. Electrical resistances as a function of peripheral velocity at 60 amperes are reported, and the phenomenology of the high-speed fluid-flow instabilities is discussed. The possibility of long-term high-speed operation of current collectors of the tongue-and-groove type, along with experimental and theoretical hydrodynamic friction losses at high peripheral velocities, is considered

  4. Coronal holes and high-speed wind streams

    International Nuclear Information System (INIS)

    Zirker, J.B.

    1977-01-01

    Coronal holes low have been identified as Bartel's M regions, i.e., sources of high-speed wind streams that produce recurrent geomagnetic variations. Throughout the Skylab period the polar caps of the Sun were coronal holes, and at lower latitudes the most persistent and recurrent holes were equatorial extensions of the polar caps. The holes rotated 'rigidly' at the equatorial synodic rate. They formed in regions of unipolar photospheric magnetic field, and their internal magnetic fields diverged rapidly with increasing distance from the sun. The geometry of the magnetic field in the inner corona seems to control both the physical properties of the holes and the global distribution of high-speed wind streams in the heliosphere. The latitude variation of the divergence of the coronal magnetic field lines produces corresponding variations in wind speed.During the years of declining solar activity the global field of the corona approximates a perturbed dipole. The divergence of field lines in each hemisphere produces a high-speed wind near the poles and low-speed wind in a narrow belt that coincides with the magnetic neutral sheet. The analysis of electron density measurements within a polar hole indicates that solar wind is accelerated principally in the region between 2 and 5 R/sub s/ and that mechanical wave pressure (possibly Alfven wave) may be responsible for the accleration of the wind. Phenomenological models for the birth and decay of coronal holes have been proposed. Attempts to explain the birth and rigid rotation of holes through dynamo action have been only partially successful. The 11-year variation of cosmic ray intensities at the earth may result from cyclic variation of open field regions associated with coronal holes

  5. Implementation of High Speed Distributed Data Acquisition System

    Science.gov (United States)

    Raju, Anju P.; Sekhar, Ambika

    2012-09-01

    This paper introduces a high speed distributed data acquisition system based on a field programmable gate array (FPGA). The aim is to develop a "distributed" data acquisition interface. The development of instruments such as personal computers and engineering workstations based on "standard" platforms is the motivation behind this effort. Using standard platforms as the controlling unit allows independence in hardware from a particular vendor and hardware platform. The distributed approach also has advantages from a functional point of view: acquisition resources become available to multiple instruments; the acquisition front-end can be physically remote from the rest of the instrument. High speed data acquisition system transmits data faster to a remote computer system through Ethernet interface. The data is acquired through 16 analog input channels. The input data commands are multiplexed and digitized and then the data is stored in 1K buffer for each input channel. The main control unit in this design is the 16 bit processor implemented in the FPGA. This 16 bit processor is used to set up and initialize the data source and the Ethernet controller, as well as control the flow of data from the memory element to the NIC. Using this processor we can initialize and control the different configuration registers in the Ethernet controller in a easy manner. Then these data packets are sending to the remote PC through the Ethernet interface. The main advantages of the using FPGA as standard platform are its flexibility, low power consumption, short design duration, fast time to market, programmability and high density. The main advantages of using Ethernet controller AX88796 over others are its non PCI interface, the presence of embedded SRAM where transmit and reception buffers are located and high-performance SRAM-like interface. The paper introduces the implementation of the distributed data acquisition using FPGA by VHDL. The main advantages of this system are high

  6. The Effects of Gouge Accumulation on High Speed Rock Friction

    Science.gov (United States)

    Barbery, M. R.; Chester, F. M.; Chester, J. S.; Saber, O.

    2016-12-01

    Previous experiments demonstrate that a significant reduction in the coefficient of sliding friction typically occurs as sliding velocity approaches seismic slip rates and that weakening may reflect flash heating of surface contacts. Experiments also show differences in the weakening behavior of bare rock and gouge-lined surfaces across different rock types. We conducted high-speed velocity-step (VS) experiments on ground surfaces of granite (Westerly) and quartzite (Sioux) using a double-direct shear (DDS) configuration, with a sliding area of 75cm2, to investigate the effects of gouge generation and accumulation on frictional weakening behavior. Sliding surface temperatures were measured using a high-speed infrared camera. Experiments were conducted at 7-9 MPa normal stress and achieved VS from 1 mm/s up to 1 m/s at high acceleration (100g) over a small distance ( 2 mm), and with sustained high-speed sliding for 30 mm. Successive experiments were run without disassembling the blocks or disturbing the sliding surfaces to generate and accumulate gouge for cumulative displacements up to 0.5 m. Locally high temperatures were observed correlating to corrugated structures within the gouge. For VS tests on bare granite, we observed an abrupt decrease in the coefficient of friction from 0.7 at quasi-static slip rates to 0.5 at m/s slip rates, and a typical weakening distance, dc, of 3 mm. This observation is consistent with rotary shear experiments conducted at similar displacements, accelerations, and sliding velocities. With the accumulation of gouge along the sliding surface, dc progressively increases to 2 cm. In contrast, VS tests on bare quartzite produce an abrupt increase in friction, from 0.65 to 0.7 within 1 mm of slip, followed by gradual weakening for the duration of high-speed sliding. With the accumulation of quartz gouge, similar behavior is observed, but with a slightly greater magnitude of strengthening. The results for quartzite are unlike those

  7. Design of a high speed rotating mechanical shutter

    International Nuclear Information System (INIS)

    Stowers, I.F.; Merritt, B.T.; McFann, C.B.

    1979-01-01

    A high-speed rotating shutter was designed to operate in a 10 -6 Torr vacuum at the optical focus of a laser spatial filter. The shutter is basically a wheel, with a single 3 x 10-mm slot at the perimeter, which rotates with a peripheral speed of 1 km/s. The motor to drive the rotating wheel is magnetically suspended and synchronously wound. The wheel achieves a 4 μs opening time and a timing accuracy of better than 0.2 μs

  8. High speed fiber optics local area networks: Design and implementation

    Science.gov (United States)

    Tobagi, Fouad A.

    1988-01-01

    The design of high speed local area networks (HSLAN) for communication among distributed devices requires solving problems in three areas: (1) the network medium and its topology; (2) the medium access control; and (3) the network interface. Considerable progress has been made in all areas. Accomplishments are divided into two groups according to their theoretical or experimental nature. A brief summary is given in Section 2, including references to papers which appeared in the literature, as well as to Ph.D. dissertations and technical reports published at Stanford University.

  9. Magnetic suspension and guidance of high speed vehicles. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Alston, I A; Clark, J M; Hayden, J T

    1972-12-01

    Technical and economical assessments of magnetic suspensions for high speed vehicles and transport systems are reported. In these suspensions the suspending magnet takes the form of a powerful superconducting electromagnet that induces currents while it moves over conducting sheets or loops. A number of vehicle track designs are evaluated for operating cost effectiveness. It is shown that propulsion systems using power collected from the track are more expensive than those using power generated onboard the vehicle, and that the conducting sheet suspension is slightly more expensive than the null flux suspension.

  10. High speed electronic imaging application in aeroballistic research

    International Nuclear Information System (INIS)

    Brown, R.R.; Parker, J.R.

    1984-01-01

    Physical and temporal restrictions imposed by modern aeroballistics have pushed imaging technology to the point where special photoconductive surfaces and high-speed support electronics are dictated. Specifications for these devices can be formulated by a methodical analysis of critical parameters and how they interact. In terms of system theory, system transfer functions and state equations can be used in optimal coupling of devices to maximize system performance. Application of these methods to electronic imaging at the Eglin Aeroballistics Research Facility is described in this report. 7 references, 14 figures, 1 table

  11. Signal Conditioning in Process of High Speed Imaging

    Directory of Open Access Journals (Sweden)

    Libor Hargas

    2015-01-01

    Full Text Available The accuracy of cinematic analysis with camera system depends on frame rate of used camera. Specific case of cinematic analysis is in medical research focusing on microscopic objects moving with high frequencies (cilia of respiratory epithelium. The signal acquired by high speed video acquisition system has very amount of data. This paper describes hardware parts, signal condition and software, which is used for image acquiring thru digital camera, intelligent illumination dimming hardware control and ROI statistic creation. All software parts are realized as virtual instruments.

  12. CERNET - A high-speed packet-switching network

    International Nuclear Information System (INIS)

    Gerard, J.M.

    1981-01-01

    A general mesh-structured high-speed computer network has been designed and built. This network provides communication between any pair of connected user computers over distances of upto 6 km and at line speeds of 1 to 5 Mbit/second. The network is composed of a communication subnet providing a datagram service, complemented by tasks in the connected machines to implement an end-to-end logical link protocol. Details are given of the overall structure as well as the specific modules of which the system is composed. (orig.)

  13. Photonic Technologies for Ultra-High-Speed Information Highways

    DEFF Research Database (Denmark)

    Bouchoule, S; Lèfevre, R.; Legros, E.

    1999-01-01

    The ACTS project HIGHWAY (AC067) addresses promising ultra-high speed optoelectronic components and system technologies for 40 Gbit/s time-division-multiplexed (TDM) transport systems. Advanced 40 Gbit/s TDM system lab demonstrators are to be realized and tested over installed field fiber testbeds....... This paper reviews the current status of 40 Gbit/s TDM components and subsystem technologies achieved in HIGHWAY. The results of HIGHWAY 40 Gbit/s TDM systems and field tests will be reported in a subsequent paper. (C) 1999 Academic Press....

  14. Flexible, High-Speed CdSe Nanocrystal Integrated Circuits.

    Science.gov (United States)

    Stinner, F Scott; Lai, Yuming; Straus, Daniel B; Diroll, Benjamin T; Kim, David K; Murray, Christopher B; Kagan, Cherie R

    2015-10-14

    We report large-area, flexible, high-speed analog and digital colloidal CdSe nanocrystal integrated circuits operating at low voltages. Using photolithography and a newly developed process to fabricate vertical interconnect access holes, we scale down device dimensions, reducing parasitic capacitances and increasing the frequency of circuit operation, and scale up device fabrication over 4 in. flexible substrates. We demonstrate amplifiers with ∼7 kHz bandwidth, ring oscillators with <10 μs stage delays, and NAND and NOR logic gates.

  15. High-Speed Imaging of Dusty Plasma Instabilities

    International Nuclear Information System (INIS)

    Tawidian, H.; Mikikian, M.; Lecas, T.; Boufendi, L.; Coueedel, L.; Vallee, O.

    2011-01-01

    Dust particles in a plasma acquire negative charges by capturing electrons. If the dust particle density is high, a huge loss of free electrons can trigger unstable behaviors in the plasma. Several types of plasma behaviors are analyzed thanks to a high-speed camera like dust particle growth instabilities (DPGI) and a new phenomenon called plasma spheroids. These small plasma spheroids are about a few mm, have a slightly enhanced luminosity, and are observed in the vicinity of the electrodes. Different behaviors are identified for these spheroids like a rotational motion, or a chaotic regime (fast appearance and disappearance).

  16. High-Speed Imaging of Dusty Plasma Instabilities

    Science.gov (United States)

    Tawidian, H.; Couëdel, L.; Mikikian, M.; Lecas, T.; Boufendi, L.; Vallée, O.

    2011-11-01

    Dust particles in a plasma acquire negative charges by capturing electrons. If the dust particle density is high, a huge loss of free electrons can trigger unstable behaviors in the plasma. Several types of plasma behaviors are analyzed thanks to a high-speed camera like dust particle growth instabilities (DPGI) and a new phenomenon called plasma spheroids. These small plasma spheroids are about a few mm, have a slightly enhanced luminosity, and are observed in the vicinity of the electrodes. Different behaviors are identified for these spheroids like a rotational motion, or a chaotic regime (fast appearance and disappearance).

  17. High speed capacitor-inverter based carbon nanotube full adder.

    Science.gov (United States)

    Navi, K; Rashtian, M; Khatir, A; Keshavarzian, P; Hashemipour, O

    2010-03-18

    Carbon Nanotube filed-effect transistor (CNFET) is one of the promising alternatives to the MOS transistors. The geometry-dependent threshold voltage is one of the CNFET characteristics, which is used in the proposed Full Adder cell. In this paper, we present a high speed Full Adder cell using CNFETs based on majority-not (Minority) function. Presented design uses eight transistors and eight capacitors. Simulation results show significant improvement in terms of delay and power-delay product in comparison to contemporary CNFET Adder Cells. Simulations were carried out using HSPICE based on CNFET model with 0.6 V VDD.

  18. Ping-Pong Robotics with High-Speed Vision System

    DEFF Research Database (Denmark)

    Li, Hailing; Wu, Haiyan; Lou, Lei

    2012-01-01

    The performance of vision-based control is usually limited by the low sampling rate of the visual feedback. We address Ping-Pong robotics as a widely studied example which requires high-speed vision for highly dynamic motion control. In order to detect a flying ball accurately and robustly...... of the manipulator are updated iteratively with decreasing error. Experiments are conducted on a 7 degrees of freedom humanoid robot arm. A successful Ping-Pong playing between the robot arm and human is achieved with a high successful rate of 88%....

  19. Miniature high speed compressor having embedded permanent magnet motor

    Science.gov (United States)

    Zhou, Lei (Inventor); Zheng, Liping (Inventor); Chow, Louis (Inventor); Kapat, Jayanta S. (Inventor); Wu, Thomas X. (Inventor); Kota, Krishna M. (Inventor); Li, Xiaoyi (Inventor); Acharya, Dipjyoti (Inventor)

    2011-01-01

    A high speed centrifugal compressor for compressing fluids includes a permanent magnet synchronous motor (PMSM) having a hollow shaft, the being supported on its ends by ball bearing supports. A permanent magnet core is embedded inside the shaft. A stator with a winding is located radially outward of the shaft. The PMSM includes a rotor including at least one impeller secured to the shaft or integrated with the shaft as a single piece. The rotor is a high rigidity rotor providing a bending mode speed of at least 100,000 RPM which advantageously permits implementation of relatively low-cost ball bearing supports.

  20. High-speed atomic force microscopy coming of age

    International Nuclear Information System (INIS)

    Ando, Toshio

    2012-01-01

    High-speed atomic force microscopy (HS-AFM) is now materialized. It allows direct visualization of dynamic structural changes and dynamic processes of functioning biological molecules in physiological solutions, at high spatiotemporal resolution. Dynamic molecular events unselectively appear in detail in an AFM movie, facilitating our understanding of how biological molecules operate to function. This review describes a historical overview of technical development towards HS-AFM, summarizes elementary devices and techniques used in the current HS-AFM, and then highlights recent imaging studies. Finally, future challenges of HS-AFM studies are briefly discussed. (topical review)

  1. High-speed atomic force microscopy coming of age

    Science.gov (United States)

    Ando, Toshio

    2012-02-01

    High-speed atomic force microscopy (HS-AFM) is now materialized. It allows direct visualization of dynamic structural changes and dynamic processes of functioning biological molecules in physiological solutions, at high spatiotemporal resolution. Dynamic molecular events unselectively appear in detail in an AFM movie, facilitating our understanding of how biological molecules operate to function. This review describes a historical overview of technical development towards HS-AFM, summarizes elementary devices and techniques used in the current HS-AFM, and then highlights recent imaging studies. Finally, future challenges of HS-AFM studies are briefly discussed.

  2. High speed photography diagnostics in laser-plasma interaction experiments

    International Nuclear Information System (INIS)

    Andre, M.L.

    1988-01-01

    The authors report on their effort in the development of techniques involved in laser-plasma experiments. This includes not only laser technology but also diagnostics studies and targets design and fabrication. Among the different kind of diagnostics currently used are high speed streak cameras, fast oscilloscopes and detectors sensitive in the i.r., visible, the u.v. region and the x-rays. In this presentation the authors describe the three high power lasers which are still in operation (P 102, OctAL and PHEBUS) and the main diagnostics used to characterize the plasma

  3. High-speed schlieren imaging of rocket exhaust plumes

    Science.gov (United States)

    Coultas-McKenney, Caralyn; Winter, Kyle; Hargather, Michael

    2016-11-01

    Experiments are conducted to examine the exhaust of a variety of rocket engines. The rocket engines are mounted in a schlieren system to allow high-speed imaging of the engine exhaust during startup, steady state, and shutdown. A variety of rocket engines are explored including a research-scale liquid rocket engine, consumer/amateur solid rocket motors, and water bottle rockets. Comparisons of the exhaust characteristics, thrust and cost for this range of rockets is presented. The variety of nozzle designs, target functions, and propellant type provides unique variations in the schlieren imaging.

  4. High capacity, high speed histogramming data acquisition memory

    International Nuclear Information System (INIS)

    Epstein, A.; Boulin, C.

    1996-01-01

    A double width CAMAC DRAM store module was developed for use as a histogramming memory in fast time-resolved synchrotron radiation applications to molecular biology. High speed direct memory modify (3 MHz) is accomplished by using a discrete DRAM controller and fast page mode access. The module can be configured using standard SIMMs to sizes of up to 64M-words. The word width is 16 bit and the module can handle overflows by storing the overflow addresses in a dedicated FIFO. Simultaneous front panel DMM/DMI access and CAMAC readout of the overflow addresses is supported

  5. Tactile shoe inlays for high speed pressure monitoring

    DEFF Research Database (Denmark)

    Drimus, Alin; Mátéfi-Tempfli, Stefan

    2015-01-01

    This work describes the development of flexible tactile sensor shoe inlays for humanoid robots. Their design is based on a sandwich structure of flexible layers with a thin sheet of piezoresistive rubber as main transducer element. The layout and patterning of top and bottom electrodes give 1024...... pressure sensitive cells and the use of high speed electronics and multiplexing algorithms provides frame rates of 100 Hz. The sensors tolerate overloads while showing a consistent output. The developed prototypes show a high potential not only for robotics, but also for use in sensorised human prosthetics....

  6. OMNET - high speed data communications for PDP-11 computers

    International Nuclear Information System (INIS)

    Parkman, C.F.; Lee, J.G.

    1979-12-01

    Omnet is a high speed data communications network designed at CERN for PDP-11 computers. It has grown from a link multiplexor system built for a CII 10070 computer into a full multi-point network, to which some fifty computers are now connected. It provides communications facilities for several large experimental installations as well as many smaller systems and has connections to all parts of the CERN site. The transmission protocol is discussed and brief details are given of the hardware and software used in its implementation. Also described is the gateway interface to the CERN packet switching network, 'Cernet'. (orig.)

  7. Production of intermediate energy beams by high speed rotors

    International Nuclear Information System (INIS)

    Nutt, C.W.; Bale, T.J.; Cosgrove, P.; Kirby, M.J.

    1975-01-01

    A rotor apparatus intended for the study of gas/surface interaction processes is presently nearing completion. The carbon fiber rotors under consideration are constructed with shapes derived from long thin cylindrical rods oriented with the longest axis in a horizontal plane, and spun in a horizontal plane about an axis which is perpendicular to the long axis and passes through the mid-point of the cylinder. The beam formation processes are discussed and rotor diagrams presented. Performance of these types of high speed rotor show them to have a very important future as sources of intermediate energy molecular beams

  8. High Resolution, High-Speed Photography, an Increasingly Prominent Diagnostic in Ballistic Research Experiments

    International Nuclear Information System (INIS)

    Shaw, L.; Muelder, S.

    1999-01-01

    High resolution, high-speed photography is becoming a prominent diagnostic in ballistic experimentation. The development of high speed cameras utilizing electro-optics and the use of lasers for illumination now provide the capability to routinely obtain high quality photographic records of ballistic style experiments. The purpose of this presentation is to review in a visual manner the progress of this technology and how it has impacted ballistic experimentation. Within the framework of development at LLNL, we look at the recent history of large format high-speed photography, and present a number of photographic records that represent the state of the art at the time they were made. These records are primarily from experiments involving shaped charges. We also present some examples of current photographic technology, developed within the ballistic community, that has application to hydro diagnostic experimentation at large. This paper is designed primarily as an oral-visual presentation. This written portion is to provide general background, a few examples, and a bibliography

  9. Sleep apnea syndrome. Examination of pharyngeal obstruction with high-speed MR and polysomnography

    International Nuclear Information System (INIS)

    Suto, Y.; Inoue, Y.

    1995-01-01

    We attempted to determine the usefulness of high-speed MR imaging for evaluating the severity of sleep apnea syndrome (SAS) by comparing findings of pharyngeal obstruction obtained with high-speed MR with those of all-night polysomnography (PSG). A total of 33 patients with SAS underwent turbo-FLASH MR examination, while awake and after i.v. injection of hydroxyzine hydrochloride. Serial images were examined by cinemode. Pharyngeal findings on MR were divided into single-site obstruction (SO) at the velopharynx, multiple-site obstruction (MO), and no obstruction (NO). PSG findings were analyzed to determine the predominant type of apnea, severity as evaluated by an apnea index (AI), and the lowest SaO 2 value during sleep. Seventy-five percent of the central apnea group had SO, and 70% of the mixed apneas had MO, while only 15% of the obstructed apneas had MO. The percentage of patients with severe SAS (AI of 20% or higher) was 48% for the SO, and 70% for the MO. The lowest SaO 2 value tended to be low in the mixed apnea in the case of PSG, and tended to be low in the MO at MR examination. Analysis of pharyngeal dynamics using high-speed MR may provide some useful information for evaluating the severity of SAS. (orig.)

  10. Dynamics modeling and modal experimental study of high speed motorized spindle

    International Nuclear Information System (INIS)

    Li, Yunsong; Chen, Xiaoan; Zhang, Peng; Zhou, Jinming

    2017-01-01

    This paper presents a dynamical model of high speed motorized spindles in free state and work state. In the free state, the housing is modeled as a rotor with equivalent masses including bearing pedestals, motor stator and rear end cover. As a consequence, a double rotor dynamics can be modeled for high speed motorized spindles by a bearing element which connects the housing and bearing pedestals. In the work state, the housing is fixed and the system becomes a bearing-rotor dynamical model. An excitation-measurement test in the free state is designed to analyze the cross spectral density and auto spectral density of input and output signals. Then the frequency response function of system and coherence function of input and output signals which are used to analyze the inherent characteristics of the double- rotor model can be obtained. The other vibration test in the work state is designed to research the dynamical supporting characteristics of bearings and the effects from bearings on the inherent characteristics of the system. The good agreement between the experimental data and theoretical results indicates that the dynamical model in two states is capable of accurately predicting the dynamic behavior of high speed motorized spindles

  11. Pulse-burst PIV in a high-speed wind tunnel

    International Nuclear Information System (INIS)

    Beresh, Steven; Kearney, Sean; Wagner, Justin; Guildenbecher, Daniel; Henfling, John; Spillers, Russell; Pruett, Brian; Jiang, Naibo; Slipchenko, Mikhail; Mance, Jason; Roy, Sukesh

    2015-01-01

    Time-resolved particle image velocimetry (TR-PIV) has been achieved in a high-speed wind tunnel, providing velocity field movies of compressible turbulence events. The requirements of high-speed flows demand greater energy at faster pulse rates than possible with the TR-PIV systems developed for low-speed flows. This has been realized using a pulse-burst laser to obtain movies at up to 50 kHz, with higher speeds possible at the cost of spatial resolution. The constraints imposed by use of a pulse-burst laser are limited burst duration of 10.2 ms and a low duty cycle for data acquisition. Pulse-burst PIV has been demonstrated in a supersonic jet exhausting into a transonic crossflow and in transonic flow over a rectangular cavity. The velocity field sequences reveal the passage of turbulent structures and can be used to find velocity power spectra at every point in the field, providing spatial distributions of acoustic modes. The present work represents the first use of TR-PIV in a high-speed ground-test facility. (paper)

  12. High-speed fan-beam reconstruction using direct two-dimensional Fourier transform method

    International Nuclear Information System (INIS)

    Niki, Noboru; Mizutani, Toshio; Takahashi, Yoshizo; Inouye, Tamon.

    1984-01-01

    Since the first development of X-ray computer tomography (CT), various efforts have been made to obtain high quality of high-speed image. However, the development of high resolution CT and the ultra-high speed CT to be applied to hearts is still desired. The X-ray beam scanning method was already changed from the parallel beam system to the fan-beam system in order to greatly shorten the scanning time. Also, the filtered back projection (DFBP) method has been employed to directly processing fan-beam projection data as reconstruction method. Although the two-dimensional Fourier transform (TFT) method significantly faster than FBP method was proposed, it has not been sufficiently examined for fan-beam projection data. Thus, the ITFT method was investigated, which first executes rebinning algorithm to convert the fan-beam projection data to the parallel beam projection data, thereafter, uses two-dimensional Fourier transform. By this method, although high speed is expected, the reconstructed images might be degraded due to the adoption of rebinning algorithm. Therefore, the effect of the interpolation error of rebinning algorithm on the reconstructed images has been analyzed theoretically, and finally, the result of the employment of spline interpolation which allows the acquisition of high quality images with less errors has been shown by the numerical and visual evaluation based on simulation and actual data. Computation time was reduced to 1/15 for the image matrix of 512 and to 1/30 for doubled matrix. (Wakatsuki, Y.)

  13. Dynamics modeling and modal experimental study of high speed motorized spindle

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yunsong; Chen, Xiaoan; Zhang, Peng; Zhou, Jinming [Chongqing Univ., Chongqing (China)

    2017-03-15

    This paper presents a dynamical model of high speed motorized spindles in free state and work state. In the free state, the housing is modeled as a rotor with equivalent masses including bearing pedestals, motor stator and rear end cover. As a consequence, a double rotor dynamics can be modeled for high speed motorized spindles by a bearing element which connects the housing and bearing pedestals. In the work state, the housing is fixed and the system becomes a bearing-rotor dynamical model. An excitation-measurement test in the free state is designed to analyze the cross spectral density and auto spectral density of input and output signals. Then the frequency response function of system and coherence function of input and output signals which are used to analyze the inherent characteristics of the double- rotor model can be obtained. The other vibration test in the work state is designed to research the dynamical supporting characteristics of bearings and the effects from bearings on the inherent characteristics of the system. The good agreement between the experimental data and theoretical results indicates that the dynamical model in two states is capable of accurately predicting the dynamic behavior of high speed motorized spindles.

  14. Measurement Research of Motorized Spindle Dynamic Stiffness under High Speed Rotating

    Directory of Open Access Journals (Sweden)

    Xiaopeng Wang

    2015-01-01

    Full Text Available High speed motorized spindle has become a key functional unit of high speed machine tools and effectively promotes the development of machine tool technology. The development of higher speed and more power puts forward the stricter requirement for the performance of motorized spindle, especially the dynamic performance which affects the machining accuracy, reliability, and production efficiency. To overcome the problems of ineffective loading and dynamic performance measurement of motorized spindle, a noncontact electromagnetic loading device is developed. The cutting load can be simulated by using electromagnetic force. A new method of measuring force by force sensors is presented, and the steady and transient loading force could be measured exactly. After the high speed machine spindle is tested, the frequency response curves of the spindle relative to machine table are collected at 0~12000 rpm; then the relationships between stiffness and speeds as well as between damping ratio and speeds are obtained. The result shows that not only the static and dynamic stiffness but also the damping ratio declined with the increase of speed.

  15. Ultra high speed framing photographs of laser produced plasmas using a picosecond optical shutter

    International Nuclear Information System (INIS)

    Gillman, G.B.; Ramsden, S.A.

    1975-01-01

    A study has been carried out of the spatial transmission properties of the optical Kerr effect shutter and it has been used to take ultra high speed framing photographs of laser produced plasmas in air and from solid targets. With a 1cm long CS 2 cell of aperture 5cm 2 a transmission of approximately 5% and an on/off contrast ratio of 10 4 was obtained. An image intensifier was necessary to obtain adequately exposed photographs of the plasma and the overall spatial resolution of the system was approximately 2μ. (author)

  16. Determination of residual stresses in steel 20 comparison of the results obtained by the Barkhausen noise and X-ray diffraction

    International Nuclear Information System (INIS)

    Fernandez, L. M.; Herrera, V.; Suarez, J.C.; Merino, F.J.

    1997-01-01

    During a heat treatment (quenching, surface hardening, Thermochemical treatment) the metallic alloys undergo temperature variations and phase transformation. The resulting changes give rise to internal stresses in the piece. Phase transformation modifies the thermomechanical behavior of the material through the change of mechanical properties ( hardness, fatigue-behaviour, corrosion resistance, electric resistivity, etc.) The aim of this paper is residual stress measurements in specimens of steel-20 submitted to different heat treatment, by two non destructive methods: Barkhausen and X-ray diffraction. Brakhausen Effects utilizes the magnetic properties of ferromagnetic materials such as ferritic and perlitic steels and provides a practical tool for surface streets evaluation. X-ray streets analysis is based on the measurement of lattice strains in different directions of specimen The results obtained by two techniques are compared, avowing a good agreement

  17. A large capacity, high-speed multiparameter multichannel analysis system

    International Nuclear Information System (INIS)

    Hendricks, R.W.; Suehiro, S.; Seeger, P.A.; Scheer, J.W.

    1982-01-01

    A data acquisition system for recording multiparameter digital data into a large memory array at over 2.5 MHz is described. The system consists of a MOSTEK MK 8600 2048 K x 24-bit memory system, I/O ports to various external devices including the CAMAC dataway, a memory incrementer/adder and a daisy-chain of experiment-specific modules which calculate the memory address which is to be incremented. The design of the daisy-chain permits multiple modules and provides for easy modification as experimental needs change. The system has been designed for use in multiparameter, multichannel analysis of high-speed data gathered by position-sensitive detectors at conventional and synchrotron X-ray sources as well as for fixed energy and time-of-flight diffraction at continuous and pulsed neutron sources. Modules which have been developed to date include a buffer for two-dimensional position-sensitive detectors, a mapper for high-speed coordinate transformations, a buffered time-of-flight clock, a time-correlator for synchronized diffraction experiments, and a display unit for data bus diagnostics. (orig.)

  18. High-speed uncooled MWIR hostile fire indication sensor

    Science.gov (United States)

    Zhang, L.; Pantuso, F. P.; Jin, G.; Mazurenko, A.; Erdtmann, M.; Radhakrishnan, S.; Salerno, J.

    2011-06-01

    Hostile fire indication (HFI) systems require high-resolution sensor operation at extremely high speeds to capture hostile fire events, including rocket-propelled grenades, anti-aircraft artillery, heavy machine guns, anti-tank guided missiles and small arms. HFI must also be conducted in a waveband with large available signal and low background clutter, in particular the mid-wavelength infrared (MWIR). The shortcoming of current HFI sensors in the MWIR is the bandwidth of the sensor is not sufficient to achieve the required frame rate at the high sensor resolution. Furthermore, current HFI sensors require cryogenic cooling that contributes to size, weight, and power (SWAP) in aircraft-mounted applications where these factors are at a premium. Based on its uncooled photomechanical infrared imaging technology, Agiltron has developed a low-SWAP, high-speed MWIR HFI sensor that breaks the bandwidth bottleneck typical of current infrared sensors. This accomplishment is made possible by using a commercial-off-the-shelf, high-performance visible imager as the readout integrated circuit and physically separating this visible imager from the MWIR-optimized photomechanical sensor chip. With this approach, we have achieved high-resolution operation of our MWIR HFI sensor at 1000 fps, which is unprecedented for an uncooled infrared sensor. We have field tested our MWIR HFI sensor for detecting all hostile fire events mentioned above at several test ranges under a wide range of environmental conditions. The field testing results will be presented.

  19. Application Of CO2 Lasers To High Speed Blanking

    Science.gov (United States)

    Grenier, L. E.

    1986-11-01

    While laser cutting of sheetmetal has attained wide acceptance in the automotive industry for the purposes of prototyping and very limited preproduction work, the production rates possible with currently available systems have precluded the use of this technique in a production environment. The device design to be described embodies a high speed X-Y positioner carrying a cutting head with limited Z-axis capability. This approach confers two main benefits, first, production rate is limited only by laser power, since the positioner technology selected will permit movement at rates up to 1.5 m/s (60 in/s), second, the use of a high speed non-contact surface follower to control the Z-axis movement reduces the need to clamp the workpiece rigidly to a precision reference surface. The realized reduction of the clamping requirement permits some latitude in the feed methods that can be employed, allowing the use of coil or sheet feeding as appropriate. The author will provide estimated production rates for the proposed design and demonstrate that a suitable choice of laser source and material feed will permit the production of parts at a rate and cost comparable to conventional blanking with the advantage of much greater flexibility and reduced retooling time.

  20. ECONOMIC REASONING MAXIMUM SLOPE IN DESIGN HIGH-SPEED LINES

    Directory of Open Access Journals (Sweden)

    CHERNYSHOVA O. S.

    2016-04-01

    Full Text Available Raising of problem The worldwide design standards high-speed lines are somewhat different. This is due to several reasons: different levels of design speed, differences of characteristics of rolling stock and, in particular, the features of the design plan and longitudinal profile, that are associated primarily with the conditions of the relief. In the design of high-speed railways in Ukraine should take into account these features and determine what the maximum slope values can be used in difficult conditions, as well as how it will affect the operational and capital costs. Purpose. To determine the optimal design parameters of the longitudinal profile. Conclusion. The results are based not only on technical, but also economic indicators and allow the assessment of the necessary capital expenditures and expected cost of the railway in the future. Analytical dependences, to predict the expected operating costs of the railway, depending on the maximum slope, its length and the total length of the section.

  1. Recent Developments In High Speed Lens Design At The NPRL

    Science.gov (United States)

    Mcdowell, M. W.; Klee, H. W.

    1987-09-01

    Although the lens provides the link between the high speed camera and the outside world, there has over the years been little evidence of co-operation between the optical design and high speed photography communities. It is still only too common for a manufacturer to develop a camera of improved performance and resolution and then to combine this with a standard camera lens. These lenses were often designed for a completely different recording medium and, more often than not, their use results in avoidable degradation of the overall system performance. There is a tendency to assume that a specialized lens would be too expensive and that pushing the aperture automatically implies more complex optical systems. In the present paper some recent South African developments in the design of large aperture lenses are described. The application of a new design principle, based on the work earlier this century of Bernhard Schmidt, shows that ultra-fast lenses need not be overly complex and a basic four-element lens configuration can be adapted to a wide variety of applications.

  2. Dark matter phenomenology of high-speed galaxy cluster collisions

    Energy Technology Data Exchange (ETDEWEB)

    Mishchenko, Yuriy [Izmir University of Economics, Faculty of Engineering, Izmir (Turkey); Ji, Chueng-Ryong [North Carolina State University, Department of Physics, Raleigh, NC (United States)

    2017-08-15

    We perform a general computational analysis of possible post-collision mass distributions in high-speed galaxy cluster collisions in the presence of self-interacting dark matter. Using this analysis, we show that astrophysically weakly self-interacting dark matter can impart subtle yet measurable features in the mass distributions of colliding galaxy clusters even without significant disruptions to the dark matter halos of the colliding galaxy clusters themselves. Most profound such evidence is found to reside in the tails of dark matter halos' distributions, in the space between the colliding galaxy clusters. Such features appear in our simulations as shells of scattered dark matter expanding in alignment with the outgoing original galaxy clusters, contributing significant densities to projected mass distributions at large distances from collision centers and large scattering angles of up to 90 {sup circle}. Our simulations indicate that as much as 20% of the total collision's mass may be deposited into such structures without noticeable disruptions to the main galaxy clusters. Such structures at large scattering angles are forbidden in purely gravitational high-speed galaxy cluster collisions. Convincing identification of such structures in real colliding galaxy clusters would be a clear indication of the self-interacting nature of dark matter. Our findings may offer an explanation for the ring-like dark matter feature recently identified in the long-range reconstructions of the mass distribution of the colliding galaxy cluster CL0024+017. (orig.)

  3. Design of a high-speed electrochemical scanning tunneling microscope.

    Science.gov (United States)

    Yanson, Y I; Schenkel, F; Rost, M J

    2013-02-01

    In this paper, we present a bottom-up approach to designing and constructing a high-speed electrochemical scanning tunneling microscope (EC-STM). Using finite element analysis (FEA) calculations of the frequency response of the whole mechanical loop of the STM, we analyzed several geometries to find the most stable one that could facilitate fast scanning. To test the FEA results, we conducted measurements of the vibration amplitudes using a prototype STM setup. Based on the FEA analysis and the measurement results, we identified the potentially most disturbing vibration modes that could impair fast scanning. By modifying the design of some parts of the EC-STM, we reduced the amplitudes as well as increased the resonance frequencies of these modes. Additionally, we designed and constructed an electrochemical flow-cell that allows STM imaging in a flowing electrolyte, and built a bi-potentiostat to achieve electrochemical potential control during the measurements. Finally, we present STM images acquired during high-speed imaging in air as well as in an electrochemical environment using our newly-developed EC-STM.

  4. High-speed VCSEL-based optical interconnects

    Science.gov (United States)

    Ishak, Waguih S.

    2001-11-01

    Vertical Cavity Surface Emitting Lasers (VCSEL) have made significant inroads into commercial realization especially in the area of data communications. Single VCSEL devices are key components in Gb Ethernet Transceivers. A multi-element VCSEL array is the key enabling technology for high-speed multi Gb/s parallel optical interconnect modules. In 1996, several companies introduced a new generation of fiber optic products based VCSEL technology such as multimode fiber transceivers for the ANSI Fiber Channel and Gigabit Ethernet IEEE 802.3 standards. VCSELs offer unique advantages over its edge-emitting counterparts in several areas. These include low-cost (LED-like) manufacturability, low current operation and array integrability. As data rates continue to increase, VCSELs offer the advantage of being able to provide the highest modulation bandwidth per milliamp of modulation current. Currently, most of the VCSEL-based products use short (780 - 980 nm) wavelength lasers. However, significant research efforts are taking place at universities and industrial research labs around the world to develop reliable, manufacturable and high-power long (1300 - 1550 nm) wavelength VCSELs. These lasers will allow longer (several km) transmission distances and will help alleviate some of the eye-safety issues. Perhaps, the most important advantage of VCSELs is the ability to form two-dimensional arrays much easier than in the case of edge-emitting lasers. These arrays (single and two-dimensional) will allow a whole new family of applications, specifically in very high-speed computer and switch interconnects.

  5. A High-Speed Design of Montgomery Multiplier

    Science.gov (United States)

    Fan, Yibo; Ikenaga, Takeshi; Goto, Satoshi

    With the increase of key length used in public cryptographic algorithms such as RSA and ECC, the speed of Montgomery multiplication becomes a bottleneck. This paper proposes a high speed design of Montgomery multiplier. Firstly, a modified scalable high-radix Montgomery algorithm is proposed to reduce critical path. Secondly, a high-radix clock-saving dataflow is proposed to support high-radix operation and one clock cycle delay in dataflow. Finally, a hardware-reused architecture is proposed to reduce the hardware cost and a parallel radix-16 design of data path is proposed to accelerate the speed. By using HHNEC 0.25μm standard cell library, the implementation results show that the total cost of Montgomery multiplier is 130 KGates, the clock frequency is 180MHz and the throughput of 1024-bit RSA encryption is 352kbps. This design is suitable to be used in high speed RSA or ECC encryption/decryption. As a scalable design, it supports any key-length encryption/decryption up to the size of on-chip memory.

  6. Large area high-speed metrology SPM system

    International Nuclear Information System (INIS)

    Klapetek, P; Valtr, M; Martinek, J; Picco, L; Payton, O D; Miles, M; Yacoot, A

    2015-01-01

    We present a large area high-speed measuring system capable of rapidly generating nanometre resolution scanning probe microscopy data over mm 2 regions. The system combines a slow moving but accurate large area XYZ scanner with a very fast but less accurate small area XY scanner. This arrangement enables very large areas to be scanned by stitching together the small, rapidly acquired, images from the fast XY scanner while simultaneously moving the slow XYZ scanner across the region of interest. In order to successfully merge the image sequences together two software approaches for calibrating the data from the fast scanner are described. The first utilizes the low uncertainty interferometric sensors of the XYZ scanner while the second implements a genetic algorithm with multiple parameter fitting during the data merging step of the image stitching process. The basic uncertainty components related to these high-speed measurements are also discussed. Both techniques are shown to successfully enable high-resolution, large area images to be generated at least an order of magnitude faster than with a conventional atomic force microscope. (paper)

  7. Large area high-speed metrology SPM system

    Science.gov (United States)

    Klapetek, P.; Valtr, M.; Picco, L.; Payton, O. D.; Martinek, J.; Yacoot, A.; Miles, M.

    2015-02-01

    We present a large area high-speed measuring system capable of rapidly generating nanometre resolution scanning probe microscopy data over mm2 regions. The system combines a slow moving but accurate large area XYZ scanner with a very fast but less accurate small area XY scanner. This arrangement enables very large areas to be scanned by stitching together the small, rapidly acquired, images from the fast XY scanner while simultaneously moving the slow XYZ scanner across the region of interest. In order to successfully merge the image sequences together two software approaches for calibrating the data from the fast scanner are described. The first utilizes the low uncertainty interferometric sensors of the XYZ scanner while the second implements a genetic algorithm with multiple parameter fitting during the data merging step of the image stitching process. The basic uncertainty components related to these high-speed measurements are also discussed. Both techniques are shown to successfully enable high-resolution, large area images to be generated at least an order of magnitude faster than with a conventional atomic force microscope.

  8. High speed auto-charging system for condenser bank

    International Nuclear Information System (INIS)

    Mizuno, Yasunori; Bito, Fumio; Fujita, Kazuhiko; Sometani, Taro

    1987-01-01

    A current-control type high-speed charging system, which is intended for auto-charging of the condenser bank, is developed. Moreover, the system can also serve to compensate the current leakage from the condenser bank so that the charged voltage can be kept constant. The system consists of a sequence circuit, a charging current control circuit (or auto-charging circuit) and a charging circuit. The auto-charging circuit is characterized by the use of a triac to control the current. The current, controlled by the circuit, is supplied to the condenser bank through a step-up transformer and voltage doubler rectifier circuit. It is demonstrated that the use of the high-speed auto-charging circuit can largely decrease the required charging time, compared to constant voltage charging. In addition, the compensation function is shown to serve effectively for maintaining a constant voltage after the completion of charging. The required charging time is decreases as the charging current increases. The maximum charging current is decided by the rating of the traic and the current rating of the rectifier diode in the secondary circuit. Major components of these circuits have decreased impedances to minimize the effect of noise, so that the possibility of an accident can be eliminated. Other various improvements are made in the grounding circuit and the charging protection circuit in order to ensure safety. (Nogami, K.)

  9. High speed TV-towing system for exploration manganese nodules

    International Nuclear Information System (INIS)

    Hartmann, P.

    1977-12-01

    For the oceanographic, special for the manganese nodules exploration in the deep sea a high speed-TV-towing system is to design on base of existing TV-towing systems to get better efficiency during the exploration phase. It is planned to increase to towing speed at the time of 2 knots up to 6-8 knots. The essential points of developments in this direction are 1) to decrease the hydrodynamical drag of the long towing cable with fairings. 2) To seperate to towing system into two units the passiv controlled towing cable end point 'SEP' with negativ buoyancy (weight) and the activ controlled TV-fish. With this separation it is possible to tow the TV-fish within a defined accuracy parallel to the sea floor without an influence to the overall system. 3) To adapt the TV- and photo stobe light unit for these towing conditions (high speed). 4) To design the control concept, the operating equipment, the energy and data transmission system, the towed body concept, the hydrodynamical calculation of towing phase and the other towed components. The results of this study is the definition of a two body towing system which is able towed by a research vessel to make continously TV-observation of the sea floor in depth down to 6,000 meters. (orig.) [de

  10. Automated high speed volume computed tomography for inline quality control

    International Nuclear Information System (INIS)

    Hanke, R.; Kugel, A.; Troup, P.

    2004-01-01

    Increasing complexity of innovative products as well as growing requirements on quality and reliability call for more detailed knowledge about internal structures of manufactured components rather by 100 % inspection than just by sampling test. A first-step solution, like radioscopic inline inspection machines, equipped with automated data evaluation software, have become state of the art in the production floor during the last years. However, these machines provide just ordinary two-dimensional information and deliver no volume data e.g. to evaluate exact position or shape of detected defects. One way to solve this problem is the application of X-ray computed tomography (CT). Compared to the performance of the first generation medical scanners (scanning times of many hours), today, modern Volume CT machines for industrial applications need about 5 minutes for a full object scan depending on the object size. Of course, this is still too long to introduce this powerful method into the inline production quality control. In order to gain acceptance, the scanning time including subsequent data evaluation must be decreased significantly and adapted to the manufacturing cycle times. This presentation demonstrates the new technical set up, reconstruction results and the methods for high-speed volume data evaluation of a new fully automated high-speed CT scanner with cycle times below one minute for an object size of less than 15 cm. This will directly create new opportunities in design and construction of more complex objects. (author)

  11. High speed digital holographic interferometry for hypersonic flow visualization

    Science.gov (United States)

    Hegde, G. M.; Jagdeesh, G.; Reddy, K. P. J.

    2013-06-01

    Optical imaging techniques have played a major role in understanding the flow dynamics of varieties of fluid flows, particularly in the study of hypersonic flows. Schlieren and shadowgraph techniques have been the flow diagnostic tools for the investigation of compressible flows since more than a century. However these techniques provide only the qualitative information about the flow field. Other optical techniques such as holographic interferometry and laser induced fluorescence (LIF) have been used extensively for extracting quantitative information about the high speed flows. In this paper we present the application of digital holographic interferometry (DHI) technique integrated with short duration hypersonic shock tunnel facility having 1 ms test time, for quantitative flow visualization. Dynamics of the flow fields in hypersonic/supersonic speeds around different test models is visualized with DHI using a high-speed digital camera (0.2 million fps). These visualization results are compared with schlieren visualization and CFD simulation results. Fringe analysis is carried out to estimate the density of the flow field.

  12. High-speed stimulated Brillouin scattering spectroscopy at 780 nm

    Directory of Open Access Journals (Sweden)

    Itay Remer

    2016-09-01

    Full Text Available We demonstrate a high-speed stimulated Brillouin scattering (SBS spectroscopy system that is able to acquire stimulated Brillouin gain point-spectra in water samples and Intralipid tissue phantoms over 2 GHz within 10 ms and 100 ms, respectively, showing a 10-100 fold increase in acquisition rates over current frequency-domain SBS spectrometers. This improvement was accomplished by integrating an ultra-narrowband hot rubidium-85 vapor notch filter in a simplified frequency-domain SBS spectrometer comprising nearly counter-propagating continuous-wave pump-probe light at 780 nm and conventional single-modulation lock-in detection. The optical notch filter significantly suppressed stray pump light, enabling detection of stimulated Brillouin gain spectra with substantially improved acquisition times at adequate signal-to-noise ratios (∼25 dB in water samples and ∼15 dB in tissue phantoms. These results represent an important step towards the use of SBS spectroscopy for high-speed measurements of Brillouin gain resonances in scattering and non-scattering samples.

  13. Application of polarization in high speed, high contrast inspection

    Science.gov (United States)

    Novak, Matthew J.

    2017-08-01

    Industrial optical inspection often requires high speed and high throughput of materials. Engineers use a variety of techniques to handle these inspection needs. Some examples include line scan cameras, high speed multi-spectral and laser-based systems. High-volume manufacturing presents different challenges for inspection engineers. For example, manufacturers produce some components in quantities of millions per month, per week or even per day. Quality control of so many parts requires creativity to achieve the measurement needs. At times, traditional vision systems lack the contrast to provide the data required. In this paper, we show how dynamic polarization imaging captures high contrast images. These images are useful for engineers to perform inspection tasks in some cases where optical contrast is low. We will cover basic theory of polarization. We show how to exploit polarization as a contrast enhancement technique. We also show results of modeling for a polarization inspection application. Specifically, we explore polarization techniques for inspection of adhesives on glass.

  14. Dark matter phenomenology of high-speed galaxy cluster collisions

    International Nuclear Information System (INIS)

    Mishchenko, Yuriy; Ji, Chueng-Ryong

    2017-01-01

    We perform a general computational analysis of possible post-collision mass distributions in high-speed galaxy cluster collisions in the presence of self-interacting dark matter. Using this analysis, we show that astrophysically weakly self-interacting dark matter can impart subtle yet measurable features in the mass distributions of colliding galaxy clusters even without significant disruptions to the dark matter halos of the colliding galaxy clusters themselves. Most profound such evidence is found to reside in the tails of dark matter halos' distributions, in the space between the colliding galaxy clusters. Such features appear in our simulations as shells of scattered dark matter expanding in alignment with the outgoing original galaxy clusters, contributing significant densities to projected mass distributions at large distances from collision centers and large scattering angles of up to 90 "c"i"r"c"l"e. Our simulations indicate that as much as 20% of the total collision's mass may be deposited into such structures without noticeable disruptions to the main galaxy clusters. Such structures at large scattering angles are forbidden in purely gravitational high-speed galaxy cluster collisions. Convincing identification of such structures in real colliding galaxy clusters would be a clear indication of the self-interacting nature of dark matter. Our findings may offer an explanation for the ring-like dark matter feature recently identified in the long-range reconstructions of the mass distribution of the colliding galaxy cluster CL0024+017. (orig.)

  15. Profile parameters of wheelset detection for high speed freight train

    Science.gov (United States)

    Yang, Kai; Ma, Li; Gao, Xiaorong; Wang, Li

    2012-04-01

    Because of freight train, in China, transports goods on railway freight line throughout the country, it does not depart from or return to engine shed during a long phase, thus we cannot monitor the quality of wheel set effectively. This paper provides a system which uses leaser and high speed camera, applies no-contact light section technology to get precise wheel set profile parameters. The paper employs clamping-track method to avoid complex railway ballast modification project. And detailed descript an improved image-tracking algorithm to extract central line from profile curve. For getting one pixel width and continuous line of the profile curve, uses local gray maximum points as direction control points to direct tracking direction. The results based on practical experiment show the system adapted to detection environment of high speed and high vibration, and it can effectively detect the wheelset geometric parameters with high accuracy. The system fills the gaps in wheel set detection for freight train in main line and has an enlightening function on monitoring the quality of wheel set.

  16. Teaching high-speed photography and photo-instrumentation

    Science.gov (United States)

    Davidhazy, Andrew

    2005-03-01

    As the tools available to the high speed photographer have become more powerful the underlying technology has increased in complexity and often is beyond the reach of most practitioners in terms of in-the-field troubleshooting or adaptation and this specialization has also driven many systems beyond the reach of high school, community college and undergraduate, non-research funded, universities. In spite of this and with the belief that fundamental techniques, reasoning and approaches have not changed much over the years, several courses in photo-instrumentation at the Imaging and Photographic Technology program at the Rochester Institute of Technology present to a couple dozen undergraduate students a year the principles associated with a various imaging systems and techniques for visualization and data analysis of high speed or "invisible" phenomena. This paper reviews the objectives and philosophy of these courses in the context of a total imaging technology education. It describes and illustrates current topics included in the program. In brief, calibration and time measurement concepts, instantaneous and repetitive time sampling equipment, various visualization technologies, strip and streak cameras and applications using film and improvised digital recorders, basic velocimetry techniques including sensitometric velocimetry and synchro-ballistic photography plus other related techniques are introduced to undergraduate students.

  17. Innovative technology summary report: High-speed clamshell pipe cutter

    International Nuclear Information System (INIS)

    1998-09-01

    The Hanford Site C Reactor Technology Demonstration Group demonstrated the High-Speed Clamshell Pipe Cutter technology, developed and marketed by Tri Tool Inc. (Rancho Cordova, California). The models demonstrated are portable, split-frame pipe lathes that require minimal radial and axial clearances for severing and/or beveling in-line pipe with ranges of 25 cm to 41 cm and 46 cm to 61 cm nominal diameter. The radial clearance requirement from the walls, floors, or adjacent pipes is 18 cm. The lathes were supplied with carbide insert conversion kits for the cutting bits for the high-speed technique that was demonstrated. Given site-specific factors, this demonstration showed the cost of the improved technology to be approximately 30% higher than the traditional (baseline) technology (oxyacetylene torch) cost of $14,400 for 10 cuts of contaminated 41-cm and 61-cm-diameter pipe at C Reactor. Actual cutting times were faster than the baseline technology; however, moving/staging the equipment took longer. Unlike the baseline torch, clamshell lathes do not involve applied heat, flames, or smoke and can be operated remotely, thereby helping personal exposures to be as low as reasonably achievable. The baseline technology was demonstrated at the C Reactor north and south water pipe tunnels August 19--22, 1997. The improved technology was demonstrated in the gas pipe tunnel December 15--19

  18. Maxwell-Cattaneo Heat Convection and Thermal Stresses Responses of a Semi-Infinite Medium to High-Speed Laser Heating due to High Speed Laser Heating

    Directory of Open Access Journals (Sweden)

    Abdallah I. A.

    2009-07-01

    Full Text Available Based on Maxwell-Cattaneo convection equation, the thermoelasticity problem is in- vestigated in this paper. The analytic solution of a boundary value problem for a semi- infinite medium with traction free surface heated by a high-speed laser-pulses have Dirac temporal profile is solved. The temperature, the displacement and the stresses distributions are obtained analytically using the Laplace transformation, and discussed at small time duration of the laser pulses. A numerical study for Cu as a target is performed. The results are presented graphically. The obtained results indicate that the small time duration of the laser pulses has no e ect on the finite velocity of the heat con- ductivity, but the behavior of the stress and the displacement distribution are affected due to the pulsed heating process and due to the structure of the governing equations.

  19. Calculus migration characterization during Ho:YAG laser lithotripsy by high-speed camera using suspended pendulum method.

    Science.gov (United States)

    Zhang, Jian James; Rajabhandharaks, Danop; Xuan, Jason Rongwei; Chia, Ray W J; Hasenberg, Thomas

    2017-07-01

    Calculus migration is a common problem during ureteroscopic laser lithotripsy procedure to treat urolithiasis. A conventional experimental method to characterize calculus migration utilized a hosting container (e.g., a "V" grove or a test tube). These methods, however, demonstrated large variation and poor detectability, possibly attributed to the friction between the calculus and the container on which the calculus was situated. In this study, calculus migration was investigated using a pendulum model suspended underwater to eliminate the aforementioned friction. A high-speed camera was used to study the movement of the calculus which covered zero order (displacement), first order (speed), and second order (acceleration). A commercialized, pulsed Ho:YAG laser at 2.1 μm, a 365-μm core diameter fiber, and a calculus phantom (Plaster of Paris, 10 × 10 × 10 mm 3 ) was utilized to mimic laser lithotripsy procedure. The phantom was hung on a stainless steel bar and irradiated by the laser at 0.5, 1.0, and 1.5 J energy per pulse at 10 Hz for 1 s (i.e., 5, 10, and 15 W). Movement of the phantom was recorded by a high-speed camera with a frame rate of 10,000 FPS. The video data files are analyzed by MATLAB program by processing each image frame and obtaining position data of the calculus. With a sample size of 10, the maximum displacement was 1.25 ± 0.10, 3.01 ± 0.52, and 4.37 ± 0.58 mm for 0.5, 1, and 1.5 J energy per pulse, respectively. Using the same laser power, the conventional method showed <0.5 mm total displacement. When reducing the phantom size to 5 × 5 × 5 mm 3 (one eighth in volume), the displacement was very inconsistent. The results suggested that using the pendulum model to eliminate the friction improved sensitivity and repeatability of the experiment. A detailed investigation on calculus movement and other causes of experimental variation will be conducted as a future study.

  20. A comparative study of the microstructure and mechanical properties of HTLA steel welds obtained by the tungsten arc welding and resistance spot welding

    Energy Technology Data Exchange (ETDEWEB)

    Ghazanfari, H., E-mail: ghazanfari@aut.ac.ir [AmirKabir University of Technology, Department of Mining and Metallurgy, 424 Hafez Ave, Tehran (Iran, Islamic Republic of); Naderi, M., E-mail: mnaderi@aut.ac.ir [AmirKabir University of Technology, Department of Mining and Metallurgy, 424 Hafez Ave, Tehran (Iran, Islamic Republic of); Iranmanesh, M., E-mail: imehdi@aut.ac.ir [AmirKabir University of Technology, Department of Maritime Engineering, 424 Hafez Ave, Tehran (Iran, Islamic Republic of); Seydi, M., E-mail: afsan_sy@yahoo.com [Zarin Joosh Aria Co., Tehran (Iran, Islamic Republic of); Poshteban, A., E-mail: ali_poshtiban@yahoo.com [Hamyar Sanat Eghbal Co., Tehran (Iran, Islamic Republic of)

    2012-02-01

    Highlights: Black-Right-Pointing-Pointer Hardness mapping is a novel method to identify different phases. Black-Right-Pointing-Pointer Surface hardness mapping, tabulates the hardness of a large area of weld. Black-Right-Pointing-Pointer Hardness maps can be used to depict the strength map through the specimen. Black-Right-Pointing-Pointer Hardness mapping is an easy way to identify the phase fractions within the specimen. - Abstract: Hardness tests are routinely employed as simple and efficient methods to investigate the microstructure and mechanical properties of steels. Each microstructural phase in steel has its own hardness level. Therefore, using surface hardness mapping data over a large area of weld zone would be a reasonable method to identify the present phases in steel. The microstructure distribution and mechanical properties variation through welded structures is inhomogeneous and not suitable for certain applications. So, studying the microstructure of weld zone has a significant importance. 4130 steel is classified in HTLA steels and it is widely used in marine industry due to its superior hardenability, good corrosion resistance and high strength. Gas tungsten arc and resistance spot welding are the most usable processes in joining of 4130 sheets. In this work a series of welds have been fabricated in 4130 steel tube by gas tungsten arc and resistance spot welding. The tube was subjected to quench-tempered heat treatment. Slices from the welds before and after heat treatment were polished and etched and the macrostructure and microstructure were observed. Hardness maps were then determined over the large area of weld zone, including the heat affected zone and base plate. Results show good relations between the various microstructures, strength and hardness values. It is also proved that this method is precise and applicable to estimate phase fraction of each phase in various regions of weld. In the current study some equations were proposed to

  1. A comparative study of the microstructure and mechanical properties of HTLA steel welds obtained by the tungsten arc welding and resistance spot welding

    International Nuclear Information System (INIS)

    Ghazanfari, H.; Naderi, M.; Iranmanesh, M.; Seydi, M.; Poshteban, A.

    2012-01-01

    Highlights: ► Hardness mapping is a novel method to identify different phases. ► Surface hardness mapping, tabulates the hardness of a large area of weld. ► Hardness maps can be used to depict the strength map through the specimen. ► Hardness mapping is an easy way to identify the phase fractions within the specimen. - Abstract: Hardness tests are routinely employed as simple and efficient methods to investigate the microstructure and mechanical properties of steels. Each microstructural phase in steel has its own hardness level. Therefore, using surface hardness mapping data over a large area of weld zone would be a reasonable method to identify the present phases in steel. The microstructure distribution and mechanical properties variation through welded structures is inhomogeneous and not suitable for certain applications. So, studying the microstructure of weld zone has a significant importance. 4130 steel is classified in HTLA steels and it is widely used in marine industry due to its superior hardenability, good corrosion resistance and high strength. Gas tungsten arc and resistance spot welding are the most usable processes in joining of 4130 sheets. In this work a series of welds have been fabricated in 4130 steel tube by gas tungsten arc and resistance spot welding. The tube was subjected to quench-tempered heat treatment. Slices from the welds before and after heat treatment were polished and etched and the macrostructure and microstructure were observed. Hardness maps were then determined over the large area of weld zone, including the heat affected zone and base plate. Results show good relations between the various microstructures, strength and hardness values. It is also proved that this method is precise and applicable to estimate phase fraction of each phase in various regions of weld. In the current study some equations were proposed to calculate the ultimate tensile stress and yield stress from the weld. The calculated data were compared

  2. High-speed double-disc TMP [thermomechanical pulp] from northern and southern softwoods: One or two refining stages

    Energy Technology Data Exchange (ETDEWEB)

    Sabourin, M.J. (Andritz Sprout-Bauer, Inc., Springfield, OH (United States)); Cort, J.B.; Musselman, R.L. (Andritz Sprout-Bauer, Inc., Muncy, PA (United States))

    1994-01-01

    Pilot-plant studies were carried out to evaluate one- and two-stage high-speed refining processes for production of thermomechanical pulp (TMP) at minimal energy consumption. Both northern (black spruce/balsam fir) and southern (lobolly pine) wood species were tested. Preliminary results indicate both one- and two-stage high-speed refining are suitable for the production of TMP from spruce and fir. Single-stage, high-speed refining of spruce/fir resulted in over 25% energy savings compared to conventional TMP production. The resulting TMP had improved optical and shive content properties, with slightly reduced pulp strength and long fiber content. Two stages of refining were necessary to optimize pulp quality from the lobolly pine furnish. A 15% energy reduction was obtained when comparing high-speed and conventional TMP pulping of lobolly pine at similar operating conditions. The high-speed pine TMP had comparable bonding strength, shive content, and lower tear than conventional two-stage lobolly pine TMP. 14 refs., 11 figs., 6 tabs.

  3. Cosmic ray nucleonic intensity in low-amplitude days during the passage of high-speed solar wind streams

    International Nuclear Information System (INIS)

    Agarwal, R.; Mishra, R.K.; Tiwari, S.; or rm_jbp@yahoo.co.in

    2008-01-01

    One of the most striking features of solar wind is its organization into high- and low- speed streams. It is now well established that the passage over the Earth of high-speed solar wind streams leads to geomagnetic disturbances. The high-speed plasma streams are thus a key element in the complex chain of events that link geomagnetic activity to the solar activity and are therefore of great interest to the solar terrestrial physics. Two types of high-speed solar wind streams - coronal-hole-associated (or corotating) and flare-generated - were studied based on magnetic field and solar wind plasma parameters. In the work, the dependence was obtained for cosmic ray (CR) depressions due to high-speed solar wind streams during low-amplitude days. The CR nucleonic intensity data were subjected to the superposed epoch analysis with respect to the start time of high-speed solar wind streams. It was found that streams of both types produce significant deviations in the CR intensity during low-amplitude anisotropic wave train events. At the onset of such streams the CR intensity reaches its minimum during low-amplitude events and then increases statistically. (Authors)

  4. High speed turning of compacted graphite iron using controlled modulation

    Science.gov (United States)

    Stalbaum, Tyler Paul

    Compacted graphite iron (CGI) is a material which emerged as a candidate material to replace cast iron (CI) in the automotive industry for engine block castings. Its thermal and mechanical properties allow the CGI-based engines to operate at higher cylinder pressures and temperatures than CI-based engines, allowing for lower fuel emissions and increased fuel economy. However, these same properties together with the thermomechanical wear mode in the CGI-CBN system result in poor machinability and inhibit CGI from seeing wide spread use in the automotive industry. In industry, machining of CGI is done only at low speeds, less than V = 200 m/min, to avoid encountering rapid wear of the cutting tools during cutting. Studies have suggested intermittent cutting operations such as milling suffer less severe tool wear than continuous cutting. Furthermore, evidence that a hard sulfide layer which forms over the cutting edge in machining CI at high speeds is absent during machining CGI is a major factor in the difference in machinability of these material systems. The present study addresses both of these issues by modification to the conventional machining process to allow intermittent continuous cutting. The application of controlled modulation superimposed onto the cutting process -- modulation-assisted machining (MAM) -- is shown to be quite effective in reducing the wear of cubic boron nitride (CBN) tools when machining CGI at high machining speeds (> 500 m/min). The tool life is at least 20 times greater than found in conventional machining of CGI. This significant reduction in wear is a consequence of reduction in the severity of the tool-work contact conditions with MAM. The propensity for thermochemical wear of CBN is thus reduced. It is found that higher cutting speed (> 700 m/min) leads to lower tool wear with MAM. The MAM configuration employing feed-direction modulation appears feasible for implementation at high speeds and offers a solution to this challenging

  5. Experimental Evaluation of a High Speed Flywheel for an Energy Cache System

    Science.gov (United States)

    Haruna, J.; Murai, K.; Itoh, J.; Yamada, N.; Hirano, Y.; Fujimori, T.; Homma, T.

    2011-03-01

    A flywheel energy cache system (FECS) is a mechanical battery that can charge/discharge electricity by converting it into the kinetic energy of a rotating flywheel, and vice versa. Compared to a chemical battery, a FECS has great advantages in durability and lifetime, especially in hot or cold environments. Design simulations of the FECS were carried out to clarify the effects of the composition and dimensions of the flywheel rotor on the charge/discharge performance. The rotation speed of a flywheel is limited by the strength of the materials from which it is constructed. Three materials, carbon fiber-reinforced polymer (CFRP), Cr-Mo steel, and a Mg alloy were examined with respect to the required weight and rotation speed for a 3 MJ (0.8 kWh) charging/discharging energy, which is suitable for an FECS operating with a 3-5 kW photovoltaic device in an ordinary home connected to a smart grid. The results demonstrate that, for a stationary 3 MJ FECS, Cr-Mo steel was the most cost-effective, but also the heaviest, Mg-alloy had a good balance of rotation speed and weight, which should result in reduced mechanical loss and enhanced durability and lifetime of the system, and CFRP should be used for applications requiring compactness and a higher energy density. Finally, a high-speed prototype FW was analyzed to evaluate its fundamental characteristics both under acceleration and in the steady state.

  6. Experimental Evaluation of a High Speed Flywheel for an Energy Cache System

    International Nuclear Information System (INIS)

    Haruna, J; Itoh, J; Murai, K; Yamada, N; Hirano, Y; Homma, T; Fujimori, T

    2011-01-01

    A flywheel energy cache system (FECS) is a mechanical battery that can charge/discharge electricity by converting it into the kinetic energy of a rotating flywheel, and vice versa. Compared to a chemical battery, a FECS has great advantages in durability and lifetime, especially in hot or cold environments. Design simulations of the FECS were carried out to clarify the effects of the composition and dimensions of the flywheel rotor on the charge/discharge performance. The rotation speed of a flywheel is limited by the strength of the materials from which it is constructed. Three materials, carbon fiber-reinforced polymer (CFRP), Cr-Mo steel, and a Mg alloy were examined with respect to the required weight and rotation speed for a 3 MJ (0.8 kWh) charging/discharging energy, which is suitable for an FECS operating with a 3-5 kW photovoltaic device in an ordinary home connected to a smart grid. The results demonstrate that, for a stationary 3 MJ FECS, Cr-Mo steel was the most cost-effective, but also the heaviest, Mg-alloy had a good balance of rotation speed and weight, which should result in reduced mechanical loss and enhanced durability and lifetime of the system, and CFRP should be used for applications requiring compactness and a higher energy density. Finally, a high-speed prototype FW was analyzed to evaluate its fundamental characteristics both under acceleration and in the steady state.

  7. Low-Speed Stability-and-Control and Ground-Effects Measurements on the Industry Reference High Speed Civil Transport

    Science.gov (United States)

    Kemmerly, Guy T.; Campbell, Bryan A.; Banks, Daniel W.; Yaros, Steven F.

    1999-01-01

    As a part of a national effort to develop an economically feasible High Speed Civil Transport (HSCT), a single configuration has been accepted as the testing baseline by the organizations working in the High Speed Research (HSR) program. The configuration is based on a design developed by the Boeing Company and is referred to as the Reference H (Ref H). The data contained in this report are low-speed stability-and-control and ground-effect measurements obtained on a 0.06 scale model of the Ref H in a subsonic tunnel.

  8. FORECASTING OF PASSENGER TRAFFIC UPON IMPLEMENTATION OF HIGH-SPEED RUNNING

    Directory of Open Access Journals (Sweden)

    M. B. Kurhan

    2017-02-01

    in the efficiency of design decisions, as well as will determine the quality of the project in whole and the feasibility of its implementation in particular. Originality. The scientific approaches to forecasting the passenger traffic volume in HSN agglomeration area were further developed. The HSN feasibility study criteria system was updated; this system takes into account passenger transit flows through Ukraine, the population of the cities covered by the high-speed network, mobility of population and other factors. Practical value. The data obtained by authors can be used to justify the concept of high-speed rail transport development in Ukraine, to create a high-speed network and to phase HSN construction.

  9. A high-speed scintillation-based electronic portal imaging device to quantitatively characterize IMRT delivery.

    Science.gov (United States)

    Ranade, Manisha K; Lynch, Bart D; Li, Jonathan G; Dempsey, James F

    2006-01-01

    We have developed an electronic portal imaging device (EPID) employing a fast scintillator and a high-speed camera. The device is designed to accurately and independently characterize the fluence delivered by a linear accelerator during intensity modulated radiation therapy (IMRT) with either step-and-shoot or dynamic multileaf collimator (MLC) delivery. Our aim is to accurately obtain the beam shape and fluence of all segments delivered during IMRT, in order to study the nature of discrepancies between the plan and the delivered doses. A commercial high-speed camera was combined with a terbium-doped gadolinium-oxy-sulfide (Gd2O2S:Tb) scintillator to form an EPID for the unaliased capture of two-dimensional fluence distributions of each beam in an IMRT delivery. The high speed EPID was synchronized to the accelerator pulse-forming network and gated to capture every possible pulse emitted from the accelerator, with an approximate frame rate of 360 frames-per-second (fps). A 62-segment beam from a head-and-neck IMRT treatment plan requiring 68 s to deliver was recorded with our high speed EPID producing approximately 6 Gbytes of imaging data. The EPID data were compared with the MLC instruction files and the MLC controller log files. The frames were binned to provide a frame rate of 72 fps with a signal-to-noise ratio that was sufficient to resolve leaf positions and segment fluence. The fractional fluence from the log files and EPID data agreed well. An ambiguity in the motion of the MLC during beam on was resolved. The log files reported leaf motions at the end of 33 of the 42 segments, while the EPID observed leaf motions in only 7 of the 42 segments. The static IMRT segment shapes observed by the high speed EPID were in good agreement with the shapes reported in the log files. The leaf motions observed during beam-on for step-and-shoot delivery were not temporally resolved by the log files.

  10. A high-speed scintillation-based electronic portal imaging device to quantitatively characterize IMRT delivery

    International Nuclear Information System (INIS)

    Ranade, Manisha K.; Lynch, Bart D.; Li, Jonathan G.; Dempsey, James F.

    2006-01-01

    We have developed an electronic portal imaging device (EPID) employing a fast scintillator and a high-speed camera. The device is designed to accurately and independently characterize the fluence delivered by a linear accelerator during intensity modulated radiation therapy (IMRT) with either step-and-shoot or dynamic multileaf collimator (MLC) delivery. Our aim is to accurately obtain the beam shape and fluence of all segments delivered during IMRT, in order to study the nature of discrepancies between the plan and the delivered doses. A commercial high-speed camera was combined with a terbium-doped gadolinium-oxy-sulfide (Gd 2 O 2 S:Tb) scintillator to form an EPID for the unaliased capture of two-dimensional fluence distributions of each beam in an IMRT delivery. The high speed EPID was synchronized to the accelerator pulse-forming network and gated to capture every possible pulse emitted from the accelerator, with an approximate frame rate of 360 frames-per-second (fps). A 62-segment beam from a head-and-neck IMRT treatment plan requiring 68 s to deliver was recorded with our high speed EPID producing approximately 6 Gbytes of imaging data. The EPID data were compared with the MLC instruction files and the MLC controller log files. The frames were binned to provide a frame rate of 72 fps with a signal-to-noise ratio that was sufficient to resolve leaf positions and segment fluence. The fractional fluence from the log files and EPID data agreed well. An ambiguity in the motion of the MLC during beam on was resolved. The log files reported leaf motions at the end of 33 of the 42 segments, while the EPID observed leaf motions in only 7 of the 42 segments. The static IMRT segment shapes observed by the high speed EPID were in good agreement with the shapes reported in the log files. The leaf motions observed during beam-on for step-and-shoot delivery were not temporally resolved by the log files

  11. Substructure method in high-speed monorail dynamic problems

    Science.gov (United States)

    Ivanchenko, I. I.

    2008-12-01

    The study of actions of high-speed moving loads on bridges and elevated tracks remains a topical problem for transport. In the present study, we propose a new method for moving load analysis of elevated tracks (monorail structures or bridges), which permits studying the interaction between two strained objects consisting of rod systems and rigid bodies with viscoelastic links; one of these objects is the moving load (monorail rolling stock), and the other is the carrying structure (monorail elevated track or bridge). The methods for moving load analysis of structures were developed in numerous papers [1-15]. At the first stage, when solving the problem about a beam under the action of the simplest moving load such as a moving weight, two fundamental methods can be used; the same methods are realized for other structures and loads. The first method is based on the use of a generalized coordinate in the expansion of the deflection in the natural shapes of the beam, and the problem is reduced to solving a system of ordinary differential equations with variable coefficients [1-3]. In the second method, after the "beam-weight" system is decomposed, just as in the problem with the weight impact on the beam [4], solving the problem is reduced to solving an integral equation for the dynamic weight reaction [6, 7]. In [1-3], an increase in the number of retained forms leads to an increase in the order of the system of equations; in [6, 7], difficulties arise when solving the integral equations related to the conditional stability of the step procedures. The method proposed in [9, 14] for beams and rod systems combines the above approaches and eliminates their drawbacks, because it permits retaining any necessary number of shapes in the deflection expansion and has a resolving system of equations with an unconditionally stable integration scheme and with a minimum number of unknowns, just as in the method of integral equations [6, 7]. This method is further developed for

  12. Evaluation between residual stresses obtained by neutron diffraction and simulation for dual phase steel welded by laser process

    Science.gov (United States)

    Kouadri-Henni, Afia; Malard, Benoit

    2018-05-01

    This study aimed at characterizing the residual stresses (RS) distribution of a Dual Phase Steel (DP600) undergoing a Laser Beam Welding (LBW) with two different laser parameters. The RS in the ferritic phase have been experimentally determined by the use of the neutrons diffraction technique. The results confirmed a gradient of RS among different zones both on the top and below surfaces but also through the thickness of the fusion zone. Low compressive stresses were observed in the Base Metal (BM) close to the Heat Affected Zone (HAZ) whereas high tensile stresses were observed in the Fusion Zone (FZ). Numerical results showed a difference in the RS distribution depending on the model used. In the end, it appears that the high temperature gradient, specific to the laser beam, is the main factor governing the RS. Our results suggest as well that the approach regarding the RS should consider not only the temperature but also process parameters. When comparing simulation results with experimental data, the values converge well in some zones, in particular the FZ and the others less.

  13. Dynamic response of high speed centrifuge for reprocessing plant

    International Nuclear Information System (INIS)

    Rajput, Gaurav; Satish Kumar, V.; Selvaraj, T.; Ananda Rao, S.M.; Ravisankar, A.

    2012-01-01

    The standard for balancing the rotating bowl describes only the details about the selection of balance quality grade and the permissible residual unbalance for different operating speeds. This paper presents the effects of unbalance on the rotating bowl of high speed centrifuge used in reprocessing of spent nuclear fuel. In this study, the residual unbalance is evaluated for different recommended balancing grades in accordance with the ISO 1940. This unbalance mass generates dynamic force which acts on the rotor. The dynamic response of the rotor like displacements and stresses under this dynamic force are studied by numerical simulation. Finally, the effect of residual unbalance on the rotating bowl performance for different balancing grades is discussed. The experimental measurements are also carried out for the case of G 1.0 grade balanced rotating bowl to validate the resonance frequency as well as vibration amplitudes. (author)

  14. Towards high-speed autonomous navigation of unknown environments

    Science.gov (United States)

    Richter, Charles; Roy, Nicholas

    2015-05-01

    In this paper, we summarize recent research enabling high-speed navigation in unknown environments for dynamic robots that perceive the world through onboard sensors. Many existing solutions to this problem guarantee safety by making the conservative assumption that any unknown portion of the map may contain an obstacle, and therefore constrain planned motions to lie entirely within known free space. In this work, we observe that safety constraints may significantly limit performance and that faster navigation is possible if the planner reasons about collision with unobserved obstacles probabilistically. Our overall approach is to use machine learning to approximate the expected costs of collision using the current state of the map and the planned trajectory. Our contribution is to demonstrate fast but safe planning using a learned function to predict future collision probabilities.

  15. High speed radiometric measurements of IED detonation fireballs

    Science.gov (United States)

    Spidell, Matthew T.; Gordon, J. Motos; Pitz, Jeremey; Gross, Kevin C.; Perram, Glen P.

    2010-04-01

    Continuum emission is predominant in fireball spectral phenomena and in some demonstrated cases, fine detail in the temporal evolution of infrared spectral emissions can be used to estimate size and chemical composition of the device. Recent work indicates that a few narrow radiometric bands may reveal forensic information needed for the explosive discrimination and classification problem, representing an essential step in moving from "laboratory" measurements to a rugged, fieldable system. To explore phenomena not observable in previous experiments, a high speed (10μs resolution) radiometer with four channels spanning the infrared spectrum observed the detonation of nine home made explosive (HME) devices in the 0.98) using blast model functional forms, suggesting that energy release could be estimated from single-pixel radiometric detectors. Comparison of radiometer-derived fireball size with FLIR infrared imagery indicate the Planckian intensity size estimates are about a factor of two smaller than the physical extent of the fireball.

  16. Electron curing for high speed paper, film and foil converting

    International Nuclear Information System (INIS)

    Nablo, S.V.; Tripp, E.P.

    1979-01-01

    The status of self-shielded, compact electron processors for flexible web converting applications is reviewed. The uses of these units for a variety of laminating applications are described, with emphasis on the application techniques appropriate for low weight, (1 to 2 gm/m 2 ) 100% convertible adhesives. Performance data for electron cured adhesives with polyester/polyethylene systems is presented and compared with conventional urethane systems. The unique surface features of electron cured gravure coatings applied and cured at high speed are discussed, with reference to both paper and film substrates. An important advantage of electron curing of buried adhesive layers is the process quality control permitted by this 'all-electric' system. The performance characteristics of curing atmosphere control (inerting) for coatings are reviewed. Industrial experience with these processors has shown that effective inerting of coated flexible webs at speeds to 250 m/minute is both practical and economical. (author)

  17. Large capacity, high-speed multiparameter multichannel analysis system

    International Nuclear Information System (INIS)

    Hendricks, R.W.; Seeger, P.A.; Scheer, J.W.; Suehiro, S.

    1980-01-01

    A data acquisition system for recording multiparameter digital data into a large memory array at over 2.5 MHz is described. The system consists of a MOSTEK MK8600 2048K x 24-bit memory system, I/O ports to various external devices including the CAMAC dataway, a memory incrementer/adder and a daisy-chain of experiment-specific modules which calculate the memory address which is to be incremented. The design of the daisy-chain permits multiple modules and provides for easy modification as experimental needs change. The system has been designed for use in multiparameter, multichannel analysis of high-speed data gathered by position-sensitive detectors at conventional and synchrotron x-ray sources as well as for fixed energy and time-of-flight diffraction at continuous and pulsed neutron sources

  18. Development of Simulator for High-Speed Elevator System

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Hyung Min; Kim, Sung Jun; Sul, Seung Ki; Seok, Ki Riong [Seoul National University, Seoul(Korea); Kwon, Tae Seok [Hanyang University, Seoul(Korea); Kim, Ki Su [Konkuk University, Seoul(Korea); Shim, Young Seok [Inha University, incheon(Korea)

    2002-02-01

    This paper describes the dynamic load simulator for high-speed elevator system, which can emulate 3-mass system as well as equivalent 1-mass system 1-mass system. In order to implement the equivalent inertia of entire elevator system, the conventional simulators have generally utilized the mechanical inertia(flywheel) with large radius, which makes the entire system large and heavy. In addition, the mechanical inertia should be replaced each time in order to test another elevator system. In this paper, the dynamic load simulation methods using electrical inertia are presented so that the volume and weight of simulator system are greatly reduced and the adjustment of inertia value can be achieved easily by software. Experimental results show the feasibility of this simulator system. (author). 5 refs., 7 figs., 2 tabs.

  19. High-speed rotary atherectomy under fluoroscopic and angioscopic guidance

    International Nuclear Information System (INIS)

    Deutsch, L.S.; Ahn, S.S.; Yeatman, L.A.; Marcus, D.R.; Auth, D.P.; Moore, W.S.

    1988-01-01

    This paper describes thirteen stenotic arteries treated by high-speed rotary abrasive burr atherectomy performed in the operating room under fluoroscopic-angioscopic control by a multidisciplinary team consisting of a vascular surgeon, an interventional radiologist, and an interventional cardiologist. Incrementally sized atherectomy burrs were used in each patient (1.75-4.0 mm in diameter). Rotary artherectomy was successful in 11 of 13 arteries ranging from 1 to 40 cm (median, 5 cm) with stenoses ranging from 50% to 99% (median, 90%), which improved to less than 30% in all 11 successfully atherectomized segments. Two early posttreatment failures (intimal dissection, burr shaft disruption), two posttreatment thromboses (unrelated to atherectomy), and two late failures (restenosis) occurred

  20. Superconducting magnet suspensions in high speed ground transport

    Energy Technology Data Exchange (ETDEWEB)

    Alston, I A

    1973-08-01

    A technical and economic definition of high speed ground transport systems using magnetic suspensions is given. The full range of common superconducting suspensions and of propulsions are covered with designs produced for speeds ranging from 100 m/s (225 miles/hr) to 250 m/s (560 mile/hr). Technical descriptions of the vehicles, their suspensions, propulsions and tracks are given in some detail and operating costs are presented for all the systems together with details of the breakdown of costs and the capital costs involved. The design assumptions, the costing procedure and a cost sensitivity study are presented. It is concluded that the systems are technically feasible; that they are suited to existing duorail track for low speed running and that, in these circumstances, they would be economically viable over many routes.

  1. Design of high-speed ECT and ERT system

    International Nuclear Information System (INIS)

    Wang Baoliang; Huang Zhiyao; Li Haiqing

    2009-01-01

    Process tomography technique provides a novel method to investigate the multi-phase flow distribution inside pipe or vessel. Electrical resistance tomography (ERT) and electrical capacitance tomography (ECT) are extensively studied in recent years. As the capacitance to voltage and resistance to voltage converters run faster, the speeds of other circuits in the system, such as MCU, A/D, D/A etc, have become the bottlenecks of improving the speed. This paper describes a new dual-modal, ECT and ERT, data acquisition system. The system is controlled by a digital signal processor. Both the ERT and the ECT systems use one platform to simplify the system design and maintenance. The system can work at high speed which is only limited by the capacitance to voltage converter or resistance to voltage converter. Primary test results show the speed of the new system is 1400 frames/second for 16-electrode ERT and 2200 frames/second for 12-electrode ECT.

  2. High speed cutting of AZ31 magnesium alloy

    Directory of Open Access Journals (Sweden)

    Liwei Lu

    2016-06-01

    Full Text Available Using LBR-370 numerical control lathe, high speed cutting was applied to AZ31 magnesium alloy. The influence of cutting parameters on microstructure, surface roughness and machining hardening were investigated by using the methods of single factor and orthogonal experiment. The results show that the cutting parameters have an important effect on microstructure, surface roughness and machine hardening. The depth of stress layer, roughness and hardening present a declining tendency with the increase of the cutting speed and also increase with the augment of the cutting depth and feed rate. Moreover, we established a prediction model of the roughness, which has an important guidance on actual machining process of magnesium alloy.

  3. High-speed nonvolatile CMOS/MNOS RAM

    International Nuclear Information System (INIS)

    Derbenwick, G.F.; Dodson, W.D.; Sokel, R.J.

    1979-01-01

    A bulk silicon technology for a high-speed static CMOS/MNOS RAM has been developed. Radiation-hardened, high voltage CMOS circuits have been fabricated for the memory array driving circuits and the enhancement-mode p-channel MNOS memory transistors have been fabricated using a native tunneling oxide with a 45 nm CVD Si 3 N 4 insulator deposited at 750 0 C. Read cycle times less than 350 ns and write cycle times of 1 μs are projected for the final 1Kx1 design. The CMOS circuits provide adequate speed for the write and read cycles and minimize the standby power dissipation. Retention times well in excess of 30 min are projected

  4. Hydrodynamic characteristics of high speed settling clarifiers by radiotracer method

    International Nuclear Information System (INIS)

    Griffith Martinez, J.; Flores Juan, P.; Cuesta Borges, J.; Damera Martinez, A.; Ramos Espinosa, K. A

    2005-01-01

    Results achieved in the evaluation of two high-speed settling cane juice Clarifiers, one denominated ICINAZ The Express and the other one with Low Residence Time (BTR), both located at the sugar factory Orlando Gonzalez employing the well established radiotracer method (Tc-99m) are presented. Several trials performed at the two Clarifiers demonstrated that the one identified as BTR was capable to assimilate the whole flow capacity of the factory with adequate characteristic of the pattern flux and residence time in the environment of 1 hour. In the other side, ICINAZ The Express Clarifier could only work at relative low flow capacity of the factory with residence time closely to the two hours and achieving occasionally a pattern flux seriously affected by fluctuations in the milling process. The radiotracer method was able to detect certain differences between the two clear juice outlet of the BTR Clarifier, probably due some problems in the construction of this equipment

  5. Quiet High Speed Fan II (QHSF II): Final Report

    Science.gov (United States)

    Kontos, Karen; Weir, Don; Ross, Dave

    2012-01-01

    This report details the aerodynamic, mechanical, structural design and fabrication of a Honey Engines Quiet High Speed Fan II (lower hub/tip ratio and higher specific flow than the Baseline I fan). This fan/nacelle system incorporates features such as advanced forward sweep and an advanced integrated fan/fan exit guide vane design that provides for the following characteristics: (1) Reduced noise at supersonic tip speeds, in comparison to current state-of-the-art fan technology; (2) Improved aeroelastic stability within the anticipated operating envelope; and (3) Aerodynamic performance consistent with current state-of-the-art fan technology. This fan was fabricated by Honeywell and tested in the NASA Glenn 9- by 15-Ft Low Speed Wind Tunnel for aerodynamic, aeromechanical, and acoustic performance.

  6. Ultra-high-speed Optical Signal Processing using Silicon Photonics

    DEFF Research Database (Denmark)

    Oxenløwe, Leif Katsuo; Ji, Hua; Jensen, Asger Sellerup

    with a photonic layer on top to interconnect them. For such systems, silicon is an attractive candidate enabling both electronic and photonic control. For some network scenarios, it may be beneficial to use optical on-chip packet switching, and for high data-density environments one may take advantage...... of the ultra-fast nonlinear response of silicon photonic waveguides. These chips offer ultra-broadband wavelength operation, ultra-high timing resolution and ultra-fast response, and when used appropriately offer energy-efficient switching. In this presentation we review some all-optical functionalities based...... on silicon photonics. In particular we use nano-engineered silicon waveguides (nanowires) [1] enabling efficient phasematched four-wave mixing (FWM), cross-phase modulation (XPM) or self-phase modulation (SPM) for ultra-high-speed optical signal processing of ultra-high bit rate serial data signals. We show...

  7. Machining Chatter Analysis for High Speed Milling Operations

    Science.gov (United States)

    Sekar, M.; Kantharaj, I.; Amit Siddhappa, Savale

    2017-10-01

    Chatter in high speed milling is characterized by time delay differential equations (DDE). Since closed form solution exists only for simple cases, the governing non-linear DDEs of chatter problems are solved by various numerical methods. Custom codes to solve DDEs are tedious to build, implement and not error free and robust. On the other hand, software packages provide solution to DDEs, however they are not straight forward to implement. In this paper an easy way to solve DDE of chatter in milling is proposed and implemented with MATLAB. Time domain solution permits the study and model of non-linear effects of chatter vibration with ease. Time domain results are presented for various stable and unstable conditions of cut and compared with stability lobe diagrams.

  8. Towards realising high-speed large-bandwidth quantum memory

    Institute of Scientific and Technical Information of China (English)

    SHI BaoSen; DING DongSheng

    2016-01-01

    Indispensable for quantum communication and quantum computation,quantum memory executes on demand storage and retrieval of quantum states such as those of a single photon,an entangled pair or squeezed states.Among the various forms of quantum memory,Raman quantum memory has advantages forits broadband and high-speed characteristics,which results in a huge potential for applications in quantum networks and quantum computation.However,realising Raman quantum memory with true single photons and photonic entanglementis challenging.In this review,after briefly introducing the main benchmarks in the development of quantum memory and describing the state of the art,we focus on our recent experimental progress inquantum memorystorage of quantum states using the Raman scheme.

  9. High Speed Water Sterilization Using One-Dimensional Nanostructures

    KAUST Repository

    Schoen, David T.; Schoen, Alia P.; Hu, Liangbing; Kim, Han Sun; Heilshorn, Sarah C.; Cui, Yi

    2010-01-01

    The removal of bacteria and other organisms from water is an extremely important process, not only for drinking and sanitation but also industrially as biofouling is a commonplace and serious problem. We here present a textile based multiscale device for the high speed electrical sterilization of water using silver nanowires, carbon nanotubes, and cotton. This approach, which combines several materials spanning three very different length scales with simple dying based fabrication, makes a gravity fed device operating at 100000 L/(h m2) which can inactivate >98% of bacteria with only several seconds of total incubation time. This excellent performance is enabled by the use of an electrical mechanism rather than size exclusion, while the very high surface area of the device coupled with large electric field concentrations near the silver nanowire tips allows for effective bacterial inactivation. © 2010 American Chemical Society.

  10. High speed diesel consumption and economic growth in India

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Sajal [Management Development Institute (MDI), Gurgaon 122001 (India)

    2010-04-15

    This study probes the long-term equilibrium relationship among High Speed Diesel (HSD) consumption, real GDP and price of HSD in India using autoregressive distributed lag (ARDL) bounds testing approach of cointegration for the time span 1972-1973 to 2005-2006. Empirical results reveal that the series are cointegrated and long term income elasticity for HSD demand in India is 1.27 while that for short-run is 0.46. Both long-run and short-run price elasticities are found to be statistically insignificant. The study also establishes a short-run bi-directional causality between economic growth and HSD consumption and the existence of a long-run unidirectional causality running from economic growth to HSD consumption. Finally, a set of policy prescriptions have been suggested to reduce the consumption of HSD, which should have no adverse impact on economy in the long-run. (author)

  11. High-speed railway lines. Fatigue of contact wires

    Energy Technology Data Exchange (ETDEWEB)

    Avronsart, Stephane; Kalsbeek, Guido van [SNCF, La Plaine St. Denis (France); Mai, Si Hai; Massat, Jean Pierre; Nguyen-Tajan, Thi Mac-Lan [SNCF, Paris (France)

    2013-06-15

    With more than 30 years of operation of High-Speed Lines, SNCF has a large feedback on behaviour of components. Regarding the contact wire, the only operation of maintenance consists in measuring the thickness in order to estimate the remaining lifetime which in total is around 50 years. With such a long period of operation the question was raised on fatigue phenomena. The research project launched by SNCF on this topic in 2011 includes tests on copper material characteristics, modelling of the crack initiation and propagation and detection of cracks on the contact wire. The result of this research project could lead to request for changes in EN 50149 by introducing new material characteristic parameters for contact wire related to fatigue. (orig.)

  12. Miniaturized High-Speed Modulated X-Ray Source

    Science.gov (United States)

    Gendreau, Keith C. (Inventor); Arzoumanian, Zaven (Inventor); Kenyon, Steven J. (Inventor); Spartana, Nick Salvatore (Inventor)

    2015-01-01

    A miniaturized high-speed modulated X-ray source (MXS) device and a method for rapidly and arbitrarily varying with time the output X-ray photon intensities and energies. The MXS device includes an ultraviolet emitter that emits ultraviolet light, a photocathode operably coupled to the ultraviolet light-emitting diode that emits electrons, an electron multiplier operably coupled to the photocathode that multiplies incident electrons, and an anode operably coupled to the electron multiplier that is configured to produce X-rays. The method for modulating MXS includes modulating an intensity of an ultraviolet emitter to emit ultraviolet light, generating electrons in response to the ultraviolet light, multiplying the electrons to become more electrons, and producing X-rays by an anode that includes a target material configured to produce X-rays in response to impact of the more electrons.

  13. Role of cavitation in high-speed droplet impact problems

    Science.gov (United States)

    Kondo, Tomoki; Ando, Keita

    2014-11-01

    High-speed droplet impact is found in physical cleaning using liquid jets, but its mechanisms for particle removal from target surfaces are yet unclear. In this study, we explore the possibility of having cavitation inside the droplet. The pressure evolution within a droplet colliding with a flat surface of deformable materials is determined by multicomponent Euler equations. Dynamics of cavitation bubbles heterogeneously nucleated from preexisting nuclei are determined from Rayleigh-Plesset calculations according to the pressure evolution within the droplet in one-way-coupling manner. The simulation shows that cavitation indeed occurs due to tension that arises from the water hammer shock reflection at the droplet interface. The role of cavitation including pressure emission from its collapse is to be discussed based on the one-way-coupling computations.

  14. SPAD electronics for high-speed quantum communications

    Science.gov (United States)

    Bienfang, Joshua C.; Restelli, Alessandro; Migdall, Alan

    2011-01-01

    We discuss high-speed electronics that support the use of single-photon avalanche diodes (SPADs) in gigahertz singlephoton communications systems. For InGaAs/InP SPADs, recent work has demonstrated reduced afterpulsing and count rates approaching 500 MHz can be achieved with gigahertz periodic-gating techniques designed to minimize the total avalanche charge to less than 100 fC. We investigate afterpulsing in this regime and establish a connection to observations using more conventional techniques. For Si SPADs, we report the benefits of improved timing electronics that enhance the temporal resolution of Si SPADs used in a free-space quantum key distribution (QKD) system operating in the GHz regime. We establish that the effects of count-rate fluctuations induced by daytime turbulent scintillation are significantly reduced, benefitting the performance of the QKD system.

  15. High Speed Water Sterilization Using One-Dimensional Nanostructures

    KAUST Repository

    Schoen, David T.

    2010-09-08

    The removal of bacteria and other organisms from water is an extremely important process, not only for drinking and sanitation but also industrially as biofouling is a commonplace and serious problem. We here present a textile based multiscale device for the high speed electrical sterilization of water using silver nanowires, carbon nanotubes, and cotton. This approach, which combines several materials spanning three very different length scales with simple dying based fabrication, makes a gravity fed device operating at 100000 L/(h m2) which can inactivate >98% of bacteria with only several seconds of total incubation time. This excellent performance is enabled by the use of an electrical mechanism rather than size exclusion, while the very high surface area of the device coupled with large electric field concentrations near the silver nanowire tips allows for effective bacterial inactivation. © 2010 American Chemical Society.

  16. Biocavity laser for high-speed cell and tumour biology

    International Nuclear Information System (INIS)

    Gourley, P L

    2003-01-01

    Through recent interdisciplinary scientific research, modern medicine has significantly advanced the diagnosis and treatment of disease. However, little progress has been made in reducing the death rate due to cancer, which remains the leading cause of death in much of the world. Pathologists rely on microscopic examination of cell morphology using methods that originated over a hundred years ago. These staining methods are labour-intensive, time-consuming, and sometimes in error. New micro-analytical methods for high speed (real-time) automated screening of tissues and cells could advance pathology and minimize cancer deaths. By teaming experts in physical/chemical sciences and engineering with those in medicine, it may be possible to develop micro-analytical cell spectral/imaging techniques to rapidly distinguish normal and abnormal cells. In this paper, we review the physics and applications of the biocavity laser which may enable these advances in the near future. (topical review)

  17. Combustion in a High-Speed Compression-Ignition Engine

    Science.gov (United States)

    Rothrock, A M

    1933-01-01

    An investigation conducted to determine the factors which control the combustion in a high-speed compression-ignition engine is presented. Indicator cards were taken with the Farnboro indicator and analyzed according to the tangent method devised by Schweitzer. The analysis show that in a quiescent combustion chamber increasing the time lag of auto-ignition increases the maximum rate of combustion. Increasing the maximum rate of combustion increases the tendency for detonation to occur. The results show that by increasing the air temperature during injection the start of combustion can be forced to take place during injection and so prevent detonation from occurring. It is shown that the rate of fuel injection does not in itself control the rate of combustion.

  18. Ultra-high-speed inversion recovery echo planar MR imaging

    International Nuclear Information System (INIS)

    Stehling, M.K.; Ordidge, R.J.; Coxon, R.; Chapman, B.; Houseman, A.M.; Guifoyle, D.; Blamire, A.; Gibbs, P.; Mansfield, P.

    1988-01-01

    Fast two-dimensional FT MR imaging techniques such as fast low-angle shot do not allow inversion recovery (IR). Rapid repetition of low-angle pulses is incompatible with a 180 0 inversion pulse. Echo planar imaging (EPI) can be applied in conjunction with IR, because after preparation of the spin system, a complete image is acquired. Data acquisition in less than 100 msec and real-time display allows interactive optimization of inversion time (4.0-9,000 msec) with little time penalty. The authors have applied IR EPI to the study of the brain, liver, and kidneys in normal volunteers and patients. Technical details are presented, and the applications of this first ultra-high-speed IR technique will be shown

  19. High-Speed Ultracam Colorimetry of the Subdwarf B Star SDSS J171722.08+58055.8

    NARCIS (Netherlands)

    Aerts, C.C.; Jeffery, C.S.; Dhillon, V.S.; Marsh, T.R.; Groot, P.J.

    2006-01-01

    We present high-speed multicolour photometry of the faint sub-dwarf B star SDSS J171722.08+58055.8 (mB=16.7mag), which was recently discovered to be pulsating. The data were obtained during two consecutive nights in 2004 August using the three-channel photometer Ultracam attached to the

  20. Numerical study on wake characteristics of high-speed trains

    Science.gov (United States)

    Yao, Shuan-Bao; Sun, Zhen-Xu; Guo, Di-Long; Chen, Da-Wei; Yang, Guo-Wei

    2013-12-01

    Intensive turbulence exists in the wakes of high speed trains, and the aerodynamic performance of the trailing car could deteriorate rapidly due to complicated features of the vortices in the wake zone. As a result, the safety and amenity of high speed trains would face a great challenge. This paper considers mainly the mechanism of vortex formation and evolution in the train flow field. A real CRH2 model is studied, with a leading car, a middle car and a trailing car included. Different running speeds and cross wind conditions are considered, and the approaches of unsteady Reynold-averaged Navier-Stokes (URANS) and detached eddy simulation (DES) are utilized, respectively. Results reveal that DES has better capability of capturing small eddies compared to URANS. However, for large eddies, the effects of two approaches are almost the same. In conditions without cross winds, two large vortex streets stretch from the train nose and interact strongly with each other in the wake zone. With the reinforcement of the ground, a complicated wake vortex system generates and becomes strengthened as the running speed increases. However, the locations of flow separations on the train surface and the separation mechanism keep unchanged. In conditions with cross winds, three large vortices develop along the leeward side of the train, among which the weakest one has no obvious influence on the wake flow while the other two stretch to the tail of the train and combine with the helical vortices in the train wake. Thus, optimization of the aerodynamic performance of the trailing car should be aiming at reducing the intensity of the wake vortex system.

  1. High Speed Running and Sprinting Profiles of Elite Soccer Players

    Directory of Open Access Journals (Sweden)

    Miñano-Espin Javier

    2017-08-01

    Full Text Available Real Madrid was named as the best club of the 20th century by the International Federation of Football History and Statistics. The aim of this study was to compare if players from Real Madrid covered shorter distances than players from the opposing team. One hundred and forty-nine matches including league, cup and UEFA Champions League matches played by the Real Madrid were monitored during the 2001-2002 to the 2006-2007 seasons. Data from both teams (Real Madrid and the opponent were recorded. Altogether, 2082 physical performance profiles were examined, 1052 from the Real Madrid and 1031 from the opposing team (Central Defenders (CD = 536, External Defenders (ED = 491, Central Midfielders (CM = 544, External Midfielders (EM = 233, and Forwards (F = 278. Match performance data were collected using a computerized multiple-camera tracking system (Amisco Pro®, Nice, France. A repeated measures analysis of variance (ANOVA was performed for distances covered at different intensities (sprinting (>24.0 km/h and high-speed running (21.1-24.0 km/h and the number of sprints (21.1-24.0 km/h and >24.0 km/h during games for each player sectioned under their positional roles. Players from Real Madrid covered shorter distances in high-speed running and sprint than players from the opposing team (p 0.01 from Real Madrid covered shorter distances in high-intensity running and sprint and performed less sprints than their counterparts. Finally, no differences were found in the high-intensity running and sprint distances performed by players from Real Madrid depending on the quality of the opposition.

  2. High-speed detection of DNA translocation in nanopipettes

    Science.gov (United States)

    Fraccari, Raquel L.; Ciccarella, Pietro; Bahrami, Azadeh; Carminati, Marco; Ferrari, Giorgio; Albrecht, Tim

    2016-03-01

    We present a high-speed electrical detection scheme based on a custom-designed CMOS amplifier which allows the analysis of DNA translocation in glass nanopipettes on a microsecond timescale. Translocation of different DNA lengths in KCl electrolyte provides a scaling factor of the DNA translocation time equal to p = 1.22, which is different from values observed previously with nanopipettes in LiCl electrolyte or with nanopores. Based on a theoretical model involving electrophoresis, hydrodynamics and surface friction, we show that the experimentally observed range of p-values may be the result of, or at least be affected by DNA adsorption and friction between the DNA and the substrate surface.We present a high-speed electrical detection scheme based on a custom-designed CMOS amplifier which allows the analysis of DNA translocation in glass nanopipettes on a microsecond timescale. Translocation of different DNA lengths in KCl electrolyte provides a scaling factor of the DNA translocation time equal to p = 1.22, which is different from values observed previously with nanopipettes in LiCl electrolyte or with nanopores. Based on a theoretical model involving electrophoresis, hydrodynamics and surface friction, we show that the experimentally observed range of p-values may be the result of, or at least be affected by DNA adsorption and friction between the DNA and the substrate surface. Electronic supplementary information (ESI) available: Gel electrophoresis confirming lengths and purity of DNA samples, comparison between Axopatch 200B and custom-built setup, comprehensive low-noise amplifier characterization, representative I-V curves of nanopipettes used, typical scatter plots of τ vs. peak amplitude for the four LDNA's used, table of most probable τ values, a comparison between different fitting models for the DNA translocation time distribution, further details on the stochastic numerical simulation of the scaling statistics and the derivation of the extended

  3. The development of high-speed 100 fps CCD camera

    International Nuclear Information System (INIS)

    Hoffberg, M.; Laird, R.; Lenkzsus, F.; Liu, C.; Rodricks, B.

    1997-01-01

    This paper describes the development of a high-speed CCD digital camera system. The system has been designed to use CCDs from various manufacturers with minimal modifications. The first camera built on this design utilizes a Thomson 512 x 512 pixel CCD as its sensor, which is read out from two parallel outputs at a speed of 15 MHz/pixel/output. The data undergo correlated double sampling after which it is digitized into 12 bits. The throughput of the system translates into 60 MB/second, which is either stored directly in a PC or transferred to a custom-designed VXI module. The PC data acquisition version of the camera can collect sustained data in real time that is limited to the memory installed in the PC. The VXI version of the camera, also controlled by a PC, stores 512 MB of real-time data before it must be read out to the PC disk storage. The uncooled CCD can be used either with lenses for visible light imaging or with a phosphor screen for X-ray imaging. This camera has been tested with a phosphor screen coupled to a fiber-optic face plate for high-resolution, high-speed X-ray imaging. The camera is controlled through a custom event-driven user-friendly Windows package. The pixel clock speed can be changed from 1 to 15 MHz. The noise was measured to be 1.05 bits at a 13.3 MHz pixel clock. This paper will describe the electronics, software, and characterizations that have been performed using both visible and X-ray photons. (orig.)

  4. Development, study and use of GN type high-speed burners

    Energy Technology Data Exchange (ETDEWEB)

    Pilipenko, R A; Yerinov, A Y

    1981-01-01

    The design of a tunnel high speed gas burner for thermal, tunnel, and annealing furnaces is described. The use of GN type burners and heat treating processes and annealing of articles allows one to attain high uniformity of heating, to reduce fuel consumption, and to simplify the lining. A high degree of (+ or - f/sup 0/C) heating uniformity and significant (up to 30%) fuel saving was obtained in a heat treatment furnace with a roll-out hearth at the Uralkhimmash plant.

  5. Wideband Radar Echo Frequency-domain Simulation and Analysis for High Speed Moving Targets

    Directory of Open Access Journals (Sweden)

    Ning Chao

    2014-04-01

    Full Text Available A frequency-domain method is proposed for wideband radar echo simulation of high-speed moving targets. Based on the physical process of electromagnetic waves observing a moving target, a frequency-domain echo model of wideband radar is constructed, and the block diagram of the radar echo simulation in frequency-domain is presented. Then, the impacts of radial velocity and slant range on the matching filtering of LFM radar are analyzed, and some quantitative conclusions on the shift and expansion of the radar profiles are obtained. Simulation results illustrate the correctness and efficiency of the proposed method.

  6. High speed display algorithm for 3D medical images using Multi Layer Range Image

    International Nuclear Information System (INIS)

    Ban, Hideyuki; Suzuki, Ryuuichi

    1993-01-01

    We propose high speed algorithm that display 3D voxel images obtained from medical imaging systems such as MRI. This algorithm convert voxel image data to 6 Multi Layer Range Image (MLRI) data, which is an augmentation of the range image data. To avoid the calculation for invisible voxels, the algorithm selects at most 3 MLRI data from 6 in accordance with the view direction. The proposed algorithm displays 256 x 256 x 256 voxel data within 0.6 seconds using 22 MIPS Workstation without a special hardware such as Graphics Engine. Real-time display will be possible on 100 MIPS class Workstation by our algorithm. (author)

  7. Full-field parallel interferometry coherence probe microscope for high-speed optical metrology.

    Science.gov (United States)

    Safrani, A; Abdulhalim, I

    2015-06-01

    Parallel detection of several achromatic phase-shifted images is used to obtain a high-speed, high-resolution, full-field, optical coherence probe tomography system based on polarization interferometry. The high enface imaging speed, short coherence gate, and high lateral resolution provided by the system are exploited to determine microbump height uniformity in an integrated semiconductor chip at 50 frames per second. The technique is demonstrated using the Linnik microscope, although it can be implemented on any polarization-based interference microscopy system.

  8. High-speed interaction of natural and technogenic particles with the brittle and plastic elements of spacecrafts

    Science.gov (United States)

    Gerasimov, A. V.; Pashkov, S. V.; Khristenko, Yu. F.

    2017-10-01

    The paper represents the results of a study concerning the high-speed interaction of natural and technogenic particles with aluminum, glass and glass-reinforced laminate targets of finite thickness. These materials are widely used as the structural elements of spacecrafts such as spacecraft bodies, tanks, windows, glass in optical devices, heat shields, etc. This paper considers the impact, deformation and fracture of aluminum, glass and asbestos-reinforced laminate samples with aluminum and steel particles which represent space debris and with ice and granite particles which represent the natural particles of space bodies

  9. Turning of materials with high-speed abrasive waterjet

    Czech Academy of Sciences Publication Activity Database

    Sitek, Libor; Hlaváček, Petr

    -, October 2016 (2016), s. 1160-1165 ISSN 1805-0476 R&D Projects: GA MŠk ED2.1.00/03.0082; GA MŠk(CZ) LO1406 Institutional support: RVO:68145535 Keywords : abrasive water jet machining * turning * steel * rock * wood Subject RIV: JQ - Machines ; Tools http://www.mmscience.eu/content/file/archives/MM_Science_201692.pdf

  10. Droplet deposition measurement with high-speed camera and novel high-speed liquid film sensor with high spatial resolution

    International Nuclear Information System (INIS)

    Damsohn, M.; Prasser, H.-M.

    2011-01-01

    Highlights: → Development of a sensor for time- and space-resolved droplet deposition in annular flow. → Experimental measurement of droplet deposition in horizontal annular flow to compare readings of the sensor with images of a high-speed camera when droplets are depositing unto the liquid film. → Self-adaptive signal filter based on autoregression to separate droplet impacts in the sensor signal from waves of liquid films. - Abstract: A sensor based on the electrical conductance method is presented for the measurement of dynamic liquid films in two-phase flow. The so called liquid film sensor consists of a matrix with 64 x 16 measuring points, a spatial resolution of 3.12 mm and a time resolution of 10 kHz. Experiments in a horizontal co-current air-water film flow were conducted to test the capability of the sensor to detect droplet deposition from the gas core onto the liquid film. The experimental setup is equipped with the liquid film sensor and a high speed camera (HSC) recording the droplet deposition with a sampling rate of 10 kHz simultaneously. In some experiments the recognition of droplet deposition on the sensor is enhanced by marking the droplets with higher electrical conductivity. The comparison between the HSC and the sensor shows, that the sensor captures the droplet deposition above a certain droplet diameter. The impacts of droplet deposition can be filtered from the wavy structures respectively conductivity changes of the liquid film using a filter algorithm based on autoregression. The results will be used to locally measure droplet deposition e.g. in the proximity of spacers in a subchannel geometry.

  11. A methodology to obtain strain indicators under deep drawing multiaxial stresses. Application to DC-05 electro galvanized steel (UNE in ISO 10130)

    International Nuclear Information System (INIS)

    Miguel, V.; Catalayud, A.; Ferrer, C.

    2007-01-01

    In this work a methodology to investigate deep drawing quality steel sheets deformation tendency under multiaxial deep drawing stresses has been proposed. the method consists in assaying a sheet in a wedge die in order to order to introduce a pure shear estate in the material 0 degree centigree, 45 degree centigree and 90 degree centigree rolling directions are selected in the assays, and transversal strain is the variable considered in them. a strain coefficient 0/% has been defined in order to evaluate thickness variations in the test. almost no changes in thickness have been registered and this indicates that strain carried out in the test is similar to that taking place in deep drawing. The stress necessary for practice a certain plastic deformation is obtained too and a potential function between them is formulated. Indicators presented in this work are compared to anisotropy and strength coefficients obtained in normalized tensile tests. these results allow us to justify the steel behaviour in the cup deep drawing processes related to ear forming. (Author) 11 refs

  12. 49 CFR 38.175 - High-speed rail cars, monorails and systems.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false High-speed rail cars, monorails and systems. 38....175 High-speed rail cars, monorails and systems. (a) All cars for high-speed rail systems, including... monorail systems operating primarily on dedicated rail (i.e., not used by freight trains) or guideway, in...

  13. The Effect of the Wear of Rotor Pins on Grinding Efficiency in a High-speed Disintegrator

    Directory of Open Access Journals (Sweden)

    Karel DVOŘÁK

    2018-02-01

    Full Text Available One of the directions intensively investigated in the field of milling is high-energy milling (HEM. One type of HEM is high-speed grinding in high-speed disintegrators. This type of mill is particularly suitable for the grinding and activation of fine powder materials. It has several advantages, such as a very intensive and continual refining process. One disadvantage is that its grinding pins are prone to abrasion, which may result in a decrease of the efficiency of grinding. This effect was investigated in this paper. Laboratory high speed disintegrator DESI 11 with steel pins was used. Portland clinker was chosen for the experiment, because of its average hardness. After each kilogram of the milled material, a sample was taken and the weight loss of the rotors was measured. The wear of the rotors was also measured using the 3D optical scanner ATOS Triple Scan. Results show that wear of rotors has a significant impact on the grinding efficiency.DOI: http://dx.doi.org/10.5755/j01.ms.24.1.17737

  14. Integrated design and manufacturing for the high speed civil transport

    Science.gov (United States)

    1993-01-01

    In June 1992, Georgia Tech's School of Aerospace Engineering was awarded a NASA University Space Research Association (USRA) Advanced Design Program (ADP) to address 'Integrated Design and Manufacturing for the High Speed Civil Transport (HSCT)' in its graduate aerospace systems design courses. This report summarizes the results of the five courses incorporated into the Georgia Tech's USRA ADP program. It covers AE8113: Introduction to Concurrent Engineering, AE4360: Introduction to CAE/CAD, AE4353: Design for Life Cycle Cost, AE6351: Aerospace Systems Design One, and AE6352: Aerospace Systems Design Two. AE8113: Introduction to Concurrent Engineering was an introductory course addressing the basic principles of concurrent engineering (CE) or integrated product development (IPD). The design of a total system was not the objective of this course. The goal was to understand and define the 'up-front' customer requirements, their decomposition, and determine the value objectives for a complex product, such as the high speed civil transport (HSCT). A generic CE methodology developed at Georgia Tech was used for this purpose. AE4353: Design for Life Cycle Cost addressed the basic economic issues for an HSCT using a robust design technique, Taguchi's parameter design optimization method (PDOM). An HSCT economic sensitivity assessment was conducted using a Taguchi PDOM approach to address the robustness of the basic HSCT design. AE4360: Introduction to CAE/CAD permitted students to develop and utilize CAE/CAD/CAM knowledge and skills using CATIA and CADAM as the basic geometric tools. AE6351: Aerospace Systems Design One focused on the conceptual design refinement of a baseline HSCT configuration as defined by Boeing, Douglas, and NASA in their system studies. It required the use of NASA's synthesis codes FLOPS and ACSYNT. A criterion called the productivity index (P.I.) was used to evaluate disciplinary sensitivities and provide refinements of the baseline HSCT

  15. The effect of ground borne vibrations from high speed train on overhead line equipment (OHLE) structure considering soil-structure interaction.

    Science.gov (United States)

    Ngamkhanong, Chayut; Kaewunruen, Sakdirat

    2018-06-15

    At present, railway infrastructure experiences harsh environments and aggressive loading conditions from increased traffic and load demands. Ground borne vibration has become one of these environmental challenges. Overhead line equipment (OHLE) provides electric power to the train and is, for one or two tracks, normally supported by cantilever masts. A cantilever mast, which is made of H-section steel, is slender and has a poor dynamic behaviour by nature. It can be seen from the literature that ground borne vibrations cause annoyance to people in surrounding areas especially in buildings. Nonetheless, mast structures, which are located nearest and alongside the railway track, have not been fully studied in terms of their dynamic behaviour. This paper presents the effects of ground borne vibrations generated by high speed trains on cantilever masts and contact wire located alongside railway tracks. Ground borne vibration velocities at various train speeds, from 100 km/h to 300 km/h, are considered based on the consideration of semi-empirical models for predicting low frequency vibration on ground. A three-dimensional mast structure with varying soil stiffness is made using a finite element model. The displacement measured is located at the end of cantilever mast which is the position of contact wire. The construction tolerance of contact stagger is used as an allowable movement of contact wire in transverse direction. The results show that the effect of vibration velocity from train on the transverse direction of mast structure is greater than that on the longitudinal direction. Moreover, the results obtained indicate that the ground bourn vibrations caused by high speed train are not strong enough to cause damage to the contact wire. The outcome of this study will help engineers improve the design standard of cantilever mast considering the effect of ground borne vibration as preliminary parameter for construction tolerances. Copyright © 2018 Elsevier B

  16. Changes of indicators of high-speed and high-speed and power preparedness at volleyball players of 12–13 years old

    Directory of Open Access Journals (Sweden)

    Oleg Shevchenko

    2016-04-01

    Full Text Available Purpose: to define changes of indicators of high-speed and high-speed and power preparedness of volleyball players of 12–13 years old. Material & Methods: the test exercises, which are recommended by the training program of CYSS on volleyball, were used for the definition of the level of development of high-speed and high-speed and power abilities of volleyball players. 25 young volleyball players from the group of the previous basic preparation took part in the experiment. Sports experience of sportsmen is 3–4 years. The analysis of scientifically-methodical literature, pedagogical testing, pedagogical experiment, methods of mathematical statistics were carried out. Results: the analyzed level of high-speed and high-speed and power abilities of volleyball players. Conclusions: the results had reliable changes (t=2,2–2,4 at р<0,05 of the level of high-speed and high-speed and power abilities of volleyball players of 12–13years old in the experimental group at the end of the experiment, except run on 30 m that demonstrates a positive influence of application of special exercises in the educational-training process.

  17. A high-speed computerized tomography image reconstruction using direct two-dimensional Fourier transform method

    International Nuclear Information System (INIS)

    Niki, Noboru; Mizutani, Toshio; Takahashi, Yoshizo; Inouye, Tamon.

    1983-01-01

    The nescessity for developing real-time computerized tomography (CT) aiming at the dynamic observation of organs such as hearts has lately been advocated. It is necessary for its realization to reconstruct the images which are markedly faster than present CTs. Although various reconstructing methods have been proposed so far, the method practically employed at present is the filtered backprojection (FBP) method only, which can give high quality image reconstruction, but takes much computing time. In the past, the two-dimensional Fourier transform (TFT) method was regarded as unsuitable to practical use because the quality of images obtained was not good, in spite of the promising method for high speed reconstruction because of its less computing time. However, since it was revealed that the image quality by TFT method depended greatly on interpolation accuracy in two-dimensional Fourier space, the authors have developed a high-speed calculation algorithm that can obtain high quality images by pursuing the relationship between the image quality and the interpolation method. In this case, radial data sampling points in Fourier space are increased to β-th power of 2 times, and the linear or spline interpolation is used. Comparison of this method with the present FBP method resulted in the conclusion that the image quality is almost the same in practical image matrix, the computational time by TFT method becomes about 1/10 of FBP method, and the memory capacity also reduces by about 20 %. (Wakatsuki, Y.)

  18. Clinical diagnostic of pleural effusions using a high-speed viscosity measurement method

    Science.gov (United States)

    Hurth, Cedric; Klein, Katherine; van Nimwegen, Lena; Korn, Ronald; Vijayaraghavan, Krishnaswami; Zenhausern, Frederic

    2011-08-01

    We present a novel bio-analytical method to discriminate between transudative and exudative pleural effusions based on a high-speed video analysis of a solid glass sphere impacting a liquid. Since the result depends on the solution viscosity, it can ultimately replace the battery of biochemical assays currently used. We present results obtained on a series of 7 pleural effusions obtained from consenting patients by analyzing both the splash observed after the glass impactor hits the liquid surface, and in a configuration reminiscent of the drop ball viscometer with added sensitivity and throughput provided by the high-speed camera. The results demonstrate distinction between the pleural effusions and good correlation with the fluid chemistry analysis to accurately differentiate exudates and transudates for clinical purpose. The exudative effusions display a viscosity around 1.39 ± 0.08 cP whereas the transudative effusion was measured at 0.89 ± 0.09 cP, in good agreement with previous reports.

  19. Study of surface integrity AISI 4140 as result of hard, dry and high speed machining using CBN

    Science.gov (United States)

    Ginting, B.; Sembiring, R. W.; Manurung, N.

    2017-09-01

    The concept of hard, dry and high speed machining can be combined, to produce high productivity, with lower production costs in manufacturing industry. Hard lathe process can be a solution to reduce production time. In lathe hard alloy steels reported problems relating to the integrity of such surface roughness, residual stress, the white layer and the surface integrity. AISI 4140 material is used for high reliable hydraulic system components. This material includes in cold work tool steel. Consideration election is because this material is able to be hardened up to 55 HRC. In this research, the experimental design using CCD model fit with three factors, each factor is composed of two levels, and six central point, experiments were conducted with 1 replications. The experimental design research using CCD model fit.

  20. Microstructural and microanalysis investigations of bond titanium grade1/low alloy steel st52-3N obtained by explosive welding

    Energy Technology Data Exchange (ETDEWEB)

    Gloc, Michal, E-mail: michalgloc@wp.pl [Warsaw University of Technology, Faculty of Materials Science and Engineering (Poland); Wachowski, Marcin [Military University of Technology in Warsaw, Faculty of Mechanical Engineering (Poland); Plocinski, Tomasz; Kurzydlowski, Krzysztof Jan [Warsaw University of Technology, Faculty of Materials Science and Engineering (Poland)

    2016-06-25

    Explosive welding is a solid state welding process that is used for the metallurgical joining of two or more dissimilar metals. In this process, forces of controlled detonations are utilized to accelerate one metal plate into another. As a result, an atomic bond is created. It is considered as a cold-welding process since it allows metals to be joined without losing their pre-bonding properties. The metal plates are joined under the influence of very high pressure which causes local plastic deformation and grain refining at the bond interface. Moreover, between the parent and flyer plate some local melting zones are formed. The explosively cladded steel plates are used in the chemical, petrochemical and nuclear industry due to their good corrosion resistance and mechanical properties. In this work, microstructural and chemical analyses of clad plates obtained by the explosive method are presented. The clad plates studied were made of titanium grade 1 explosively bonded with a thin layer of st52-3N low alloy steel. The microstructure was evaluated using light (LM) and scanning electron microscopes (SEM), while chemical composition was assessed using energy dispersive spectroscopy (EDS). It was found that the bond area had different microstructure, chemical composition and microhardness than the bonded materials. In the junction between the base steel and the cladding, a strongly defected transient zone with altered chemical composition in comparison with the bonded metals was revealed. - Highlights: • Explosive welding as an effective method for joining similar or dissimilar metals. • Slip brands, elongated grains and twins correlated with high plastic deformations. • Investigations of the local melted zones, formed at the interface of the clads. • Mechanical properties connected with microstructural changes and deformation.

  1. Effect of substrate bias on structure and properties of the TiN coatings obtained in the PVD process

    International Nuclear Information System (INIS)

    Dobrzanski, L.A.; Kwasny, W.

    2003-01-01

    The paper presents investigation results of the field of deposition parameters on structure and mechanical properties of the TiN coatings obtained by magnetron sputtering in the vacuum furnace onto the ASP 30 sintered high speed steel. Effect of sputtering parameters on chemical and phase composition, thickness, microhardness and roughness parameter. The characteristic structure and surface topography of the analyzed coatings are presented. (author)

  2. High speed friction microscopy and nanoscale friction coefficient mapping

    International Nuclear Information System (INIS)

    Bosse, James L; Lee, Sungjun; Huey, Bryan D; Andersen, Andreas Sø; Sutherland, Duncan S

    2014-01-01

    As mechanical devices in the nano/micro length scale are increasingly employed, it is crucial to understand nanoscale friction and wear especially at technically relevant sliding velocities. Accordingly, a novel technique has been developed for friction coefficient mapping (FCM), leveraging recent advances in high speed AFM. The technique efficiently acquires friction versus force curves based on a sequence of images at a single location, each with incrementally lower loads. As a result, true maps of the coefficient of friction can be uniquely calculated for heterogeneous surfaces. These parameters are determined at a scan velocity as fast as 2 mm s −1 for microfabricated SiO 2 mesas and Au coated pits, yielding results that are identical to traditional speed measurements despite being ∼1000 times faster. To demonstrate the upper limit of sliding velocity for the custom setup, the friction properties of mica are reported from 200 µm s −1 up to 2 cm s −1 . While FCM is applicable to any AFM and scanning speed, quantitative nanotribology investigations of heterogeneous sliding or rolling components are therefore uniquely possible, even at realistic velocities for devices such as MEMS, biological implants, or data storage systems. (paper)

  3. An approach to high speed ship ride quality simulation

    Science.gov (United States)

    Malone, W. L.; Vickery, J. M.

    1975-01-01

    The high speeds attained by certain advanced surface ships result in a spectrum of motion which is higher in frequency than that of conventional ships. This fact along with the inclusion of advanced ride control features in the design of these ships resulted in an increased awareness of the need for ride criteria. Such criteria can be developed using data from actual ship operations in varied sea states or from clinical laboratory experiments. A third approach is to simulate ship conditions using measured or calculated ship motion data. Recent simulations have used data derived from a math model of Surface Effect Ship (SES) motion. The model in turn is based on equations of motion which have been refined with data from scale models and SES of up to 101 600-kg (100-ton) displacement. Employment of broad band motion emphasizes the use of the simulators as a design tool to evaluate a given ship configuration in several operational situations and also serves to provide data as to the overall effect of a given motion on crew performance and physiological status.

  4. High-speed noise-free optical quantum memory

    Science.gov (United States)

    Kaczmarek, K. T.; Ledingham, P. M.; Brecht, B.; Thomas, S. E.; Thekkadath, G. S.; Lazo-Arjona, O.; Munns, J. H. D.; Poem, E.; Feizpour, A.; Saunders, D. J.; Nunn, J.; Walmsley, I. A.

    2018-04-01

    Optical quantum memories are devices that store and recall quantum light and are vital to the realization of future photonic quantum networks. To date, much effort has been put into improving storage times and efficiencies of such devices to enable long-distance communications. However, less attention has been devoted to building quantum memories which add zero noise to the output. Even small additional noise can render the memory classical by destroying the fragile quantum signatures of the stored light. Therefore, noise performance is a critical parameter for all quantum memories. Here we introduce an intrinsically noise-free quantum memory protocol based on two-photon off-resonant cascaded absorption (ORCA). We demonstrate successful storage of GHz-bandwidth heralded single photons in a warm atomic vapor with no added noise, confirmed by the unaltered photon-number statistics upon recall. Our ORCA memory meets the stringent noise requirements for quantum memories while combining high-speed and room-temperature operation with technical simplicity, and therefore is immediately applicable to low-latency quantum networks.

  5. Highball: A high speed, reserved-access, wide area network

    Science.gov (United States)

    Mills, David L.; Boncelet, Charles G.; Elias, John G.; Schragger, Paul A.; Jackson, Alden W.

    1990-01-01

    A network architecture called Highball and a preliminary design for a prototype, wide-area data network designed to operate at speeds of 1 Gbps and beyond are described. It is intended for applications requiring high speed burst transmissions where some latency between requesting a transmission and granting the request can be anticipated and tolerated. Examples include real-time video and disk-disk transfers, national filestore access, remote sensing, and similar applications. The network nodes include an intelligent crossbar switch, but have no buffering capabilities; thus, data must be queued at the end nodes. There are no restrictions on the network topology, link speeds, or end-end protocols. The end system, nodes, and links can operate at any speed up to the limits imposed by the physical facilities. An overview of an initial design approach is presented and is intended as a benchmark upon which a detailed design can be developed. It describes the network architecture and proposed access protocols, as well as functional descriptions of the hardware and software components that could be used in a prototype implementation. It concludes with a discussion of additional issues to be resolved in continuing stages of this project.

  6. High speed non-latching squid binary ripple counter

    International Nuclear Information System (INIS)

    Silver, A.H.; Phillips, R.R.; Sandell, R.D.

    1985-01-01

    High speed, single flux quantum (SFQ) binary scalers are important components in superconducting analog-to-digital converters (ADC). This paper reviews the concept for a SQUID ADC and the design of an SFQ binary ripple counter, and reports the simulation of key components, and fabrication and performance of non-latching SQUID scalers and SFQ binary ripple counters. The SQUIDs were fabricated with Nb/Nb 2 O 5 /PbIn junctions and interconnected by monolithic superconducting transmission lines and isolation resistors. Each SQUID functioned as a bistable flip-flop with the input connected to the center of the device and the output across one junction. All junctions were critically damped to optimize the pulse response. Operation was verified by observing the dc I-V curves of successive SQUIDs driven by a cw pulse train generated on the same chip. Each SQUID exhibited constant-voltage current steps at 1/2 the voltage of the preceding device as expected from the Josephson voltage-to-frequency relation. Steps were observed only for the same voltage polarity of successive devices and for proper phase bias of the SQUID. Binary frequency division was recorded up to 40GHz for devices designed to operate to 28GHz

  7. Super high-speed magnetically levitated system approaches practical use

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, Shoji; Nakao, Hiroyuki; Takemasa, Hisashi

    1988-10-01

    The JR-MAGLEV, a super high-speed magnetically levitated system, has been under development since the inauguration with the manufacturing of a succession of trial vehicles. In 1987, the trial vehicle recorded a speed of 400 km/hr as a 2-car formation with passengers. As a participant in the Maglev project, Toshiba has been contributing to the development of superconducting magnets, the main element of the system, as well as auxiliary power sources and the cycloconverter to be used in the substations. A prototype vehicle for commercial service, MLU 002, was manufactured in March 1988 and is now under testing with the aim of achieving a target speed of 420km/hr. The main parameters of superconducting magnet are as follows; magnetomotive force of 700 kA and number of coils of 3 poles/2 trains/ 2 cars, and the magnets are light weight which is almost the limits with the weight ratio to rolling stock of 0.25. As measures to protect vaporization loss of helium for coil-cooling, a relicfaction process of the helium vapor by use of Claude cycle refrigerator was adopted. A circulating current cycloconverter with 16 MVA was developed for the travel motion. The cycloconverter enabled to receive power directly from an electric power company, the output current becomes complete sine wave, and the problems on traveling control were solved. 6 references, 8 figures, 3 tables.

  8. FASTBUS Readout Controller card for high speed data acquisition

    International Nuclear Information System (INIS)

    Zimmermann, S.

    1991-10-01

    This article describes a FASTBUS Readout Controller (FRC) for high speed data acquisition in FASTBUS based systems. The controller has two main interfaces: to FASTBUS and to a Readout Port. The FASTBUS interface performs FASTBUS master and slave operations at a maximum transfer rate exceeding 40 MBytes/s. The Readout Port can be adapted for a variety of protocols. Currently, it will be interfaced to a VME bus based processor with a VSB port. The on-board LR33000 embedded processor controls the readout, executing a list of operations download into its memory. It scans the FASTBUS modules and stores the data in a triple port DRAM (TPDRAM), through one of the Serial Access Memory (SAM) ports of the (TPDRAM). Later, it transfers this data to the readout port using the other SAM. The FRC also supports serial communication via RS232 and Ethernet interfaces. This device is intended for use in the data acquisition system at the Collider Detector at Fermilab. 5 refs., 3 figs

  9. High speed digital interfacing for a neural data acquisition system

    Directory of Open Access Journals (Sweden)

    Bahr Andreas

    2016-09-01

    Full Text Available Diseases like schizophrenia and genetic epilepsy are supposed to be caused by disorders in the early development of the brain. For the further investigation of these relationships a custom designed application specific integrated circuit (ASIC was developed that is optimized for the recording from neonatal mice [Bahr A, Abu-Saleh L, Schroeder D, Krautschneider W. 16 Channel Neural Recording Integrated Circuit with SPI Interface and Error Correction Coding. Proc. 9th BIOSTEC 2016. Biodevices: Rome, Italy, 2016; 1: 263; Bahr A, Abu-Saleh L, Schroeder D, Krautschneider W. Development of a neural recording mixed signal integrated circuit for biomedical signal acquisition. Biomed Eng Biomed Tech Abstracts 2015; 60(S1: 298–299; Bahr A, Abu-Saleh L, Schroeder D, Krautschneider WH. 16 Channel Neural Recording Mixed Signal ASIC. CDNLive EMEA 2015 Conference Proceedings, 2015.]. To enable the live display of the neural signals a multichannel neural data acquisition system with live display functionality is presented. It implements a high speed data transmission from the ASIC to a computer with a live display functionality. The system has been successfully implemented and was used in a neural recording of a head-fixed mouse.

  10. High speed micromachining with high power UV laser

    Science.gov (United States)

    Patel, Rajesh S.; Bovatsek, James M.

    2013-03-01

    Increasing demand for creating fine features with high accuracy in manufacturing of electronic mobile devices has fueled growth for lasers in manufacturing. High power, high repetition rate ultraviolet (UV) lasers provide an opportunity to implement a cost effective high quality, high throughput micromachining process in a 24/7 manufacturing environment. The energy available per pulse and the pulse repetition frequency (PRF) of diode pumped solid state (DPSS) nanosecond UV lasers have increased steadily over the years. Efficient use of the available energy from a laser is important to generate accurate fine features at a high speed with high quality. To achieve maximum material removal and minimal thermal damage for any laser micromachining application, use of the optimal process parameters including energy density or fluence (J/cm2), pulse width, and repetition rate is important. In this study we present a new high power, high PRF QuasarR 355-40 laser from Spectra-Physics with TimeShiftTM technology for unique software adjustable pulse width, pulse splitting, and pulse shaping capabilities. The benefits of these features for micromachining include improved throughput and quality. Specific example and results of silicon scribing are described to demonstrate the processing benefits of the Quasar's available power, PRF, and TimeShift technology.

  11. Stability control for high speed tracked unmanned vehicles

    Science.gov (United States)

    Pape, Olivier; Morillon, Joel G.; Houbloup, Philippe; Leveque, Stephane; Fialaire, Cecile; Gauthier, Thierry; Ropars, Patrice

    2005-05-01

    The French Military Robotic Study Program (introduced in Aerosense 2003), sponsored by the French Defense Procurement Agency and managed by Thales as the prime contractor, focuses on about 15 robotic themes which can provide an immediate "operational add-on value". The paper details the "automatic speed adjustment" behavior (named SYR4), developed by Giat Industries Company, which main goal is to secure the teleoperated mobility of high speed tracked vehicles on rough grounds; more precisely, the validated low level behavior continuously adjusts the vehicle speed taking into account the teleperator wish AND the maximum speed that the vehicle can manage safely according to the commanded radius of curvature. The algorithm is based on a realistic physical model of the ground-tracks relation, taking into account many vehicle and ground parameters (such as ground adherence and dynamic specificities of tracked vehicles). It also deals with the teleoperator-machine interface, providing a balanced strategy between both extreme behaviors: a) maximum speed reduction before initiating the commanded curve; b) executing the minimum possible radius without decreasing the commanded speed. The paper presents the results got from the military acceptance tests performed on tracked SYRANO vehicle (French Operational Demonstrator).

  12. Hardware demonstration of high-speed networks for satellite applications.

    Energy Technology Data Exchange (ETDEWEB)

    Donaldson, Jonathon W.; Lee, David S.

    2008-09-01

    This report documents the implementation results of a hardware demonstration utilizing the Serial RapidIO{trademark} and SpaceWire protocols that was funded by Sandia National Laboratories (SNL's) Laboratory Directed Research and Development (LDRD) office. This demonstration was one of the activities in the Modeling and Design of High-Speed Networks for Satellite Applications LDRD. This effort has demonstrated the transport of application layer packets across both RapidIO and SpaceWire networks to a common downlink destination using small topologies comprised of commercial-off-the-shelf and custom devices. The RapidFET and NEX-SRIO debug and verification tools were instrumental in the successful implementation of the RapidIO hardware demonstration. The SpaceWire hardware demonstration successfully demonstrated the transfer and routing of application data packets between multiple nodes and also was able reprogram remote nodes using configuration bitfiles transmitted over the network, a key feature proposed in node-based architectures (NBAs). Although a much larger network (at least 18 to 27 nodes) would be required to fully verify the design for use in a real-world application, this demonstration has shown that both RapidIO and SpaceWire are capable of routing application packets across a network to a common downlink node, illustrating their potential use in real-world NBAs.

  13. High-speed civil transport issues and technology program

    Science.gov (United States)

    Hewett, Marle D.

    1992-01-01

    A strawman program plan is presented, consisting of technology developments and demonstrations required to support the construction of a high-speed civil transport. The plan includes a compilation of technology issues related to the development of a transport. The issues represent technical areas in which research and development are required to allow airframe manufacturers to pursue an HSCT development. The vast majority of technical issues presented require flight demonstrated and validated solutions before a transport development will be undertaken by the industry. The author believes that NASA is the agency best suited to address flight demonstration issues in a concentrated effort. The new Integrated Test Facility at NASA Dryden Flight Research Facility is considered ideally suited to the task of supporting ground validations of proof-of-concept and prototype system demonstrations before night demonstrations. An elaborate ground hardware-in-the-loop (iron bird) simulation supported in this facility provides a viable alternative to developing an expensive fill-scale prototype transport technology demonstrator. Drygen's SR-71 assets, modified appropriately, are a suitable test-bed for supporting flight demonstrations and validations of certain transport technology solutions. A subscale, manned or unmanned flight demonstrator is suitable for flight validation of transport technology solutions, if appropriate structural similarity relationships can be established. The author contends that developing a full-scale prototype transport technology demonstrator is the best alternative to ensuring that a positive decision to develop a transport is reached by the United States aerospace industry.

  14. Dynamics of High-Speed Precision Geared Rotor Systems

    Directory of Open Access Journals (Sweden)

    Lim Teik C.

    2014-07-01

    Full Text Available Gears are one of the most widely applied precision machine elements in power transmission systems employed in automotive, aerospace, marine, rail and industrial applications because of their reliability, precision, efficiency and versatility. Fundamentally, gears provide a very practical mechanism to transmit motion and mechanical power between two rotating shafts. However, their performance and accuracy are often hampered by tooth failure, vibrations and whine noise. This is most acute in high-speed, high power density geared rotor systems, which is the primary scope of this paper. The present study focuses on the development of a gear pair mathematical model for use to analyze the dynamics of power transmission systems. The theory includes the gear mesh representation derived from results of the quasi-static tooth contact analysis. This proposed gear mesh theory comprising of transmission error, mesh point, mesh stiffness and line-of-action nonlinear, time-varying parameters can be easily incorporated into a variety of transmission system models ranging from the lumped parameter type to detailed finite element representation. The gear dynamic analysis performed led to the discovery of the out-of-phase gear pair torsion modes that are responsible for much of the mechanical problems seen in gearing applications. The paper concludes with a discussion on effectual design approaches to minimize the influence of gear dynamics and to mitigate gear failure in practical power transmission systems.

  15. Numerical Simulation of Oil Jet Lubrication for High Speed Gears

    Directory of Open Access Journals (Sweden)

    Tommaso Fondelli

    2015-01-01

    Full Text Available The Geared Turbofan technology is one of the most promising engine configurations to significantly reduce the specific fuel consumption. In this architecture, a power epicyclical gearbox is interposed between the fan and the low pressure spool. Thanks to the gearbox, fan and low pressure spool can turn at different speed, leading to higher engine bypass ratio. Therefore the gearbox efficiency becomes a key parameter for such technology. Further improvement of efficiency can be achieved developing a physical understanding of fluid dynamic losses within the transmission system. These losses are mainly related to viscous effects and they are directly connected to the lubrication method. In this work, the oil injection losses have been studied by means of CFD simulations. A numerical study of a single oil jet impinging on a single high speed gear has been carried out using the VOF method. The aim of this analysis is to evaluate the resistant torque due to the oil jet lubrication, correlating the torque data with the oil-gear interaction phases. URANS calculations have been performed using an adaptive meshing approach, as a way of significantly reducing the simulation costs. A global sensitivity analysis of adopted models has been carried out and a numerical setup has been defined.

  16. Dust mobilization by high-speed vapor flow under LOVA

    International Nuclear Information System (INIS)

    Matsuki, K.; Suzuki, S.; Ebara, S.; Yokomine, T.; Shimizu, A.

    2006-01-01

    In the safety analysis on the International Thermonuclear Experimental Reactor (ITER), the ingress of coolant (ICE) event and the loss of vacuum (LOVA) event are considered as one of the most serious accident. On the assumption of LOVA occurring after ICE, it is inferable that activated dusts are under the wet condition. Transport behavior of in-vessel activated dusts under the wet condition is not well understood in comparison with the dry case. In this study, we experimentally investigated the entrainment behavior of dust under LOVA after ICE. We measured dust entrainment by high-speed humid airflow with phase change. Graphite dusts and glass beads are used as substitutions for mobile inventory. The relations among the relative humidity, the entrainment of particles in the exhaust gas flow and the adhesion rate of dust particles on the pipe wall have been made clear, as has the distribution profile of dust deposition on the pipe wall. The entrainment ratio decreased as the relative humidity increased and increased as the initial pressure difference increased

  17. Plastic straw: future of high-speed signaling

    Science.gov (United States)

    Song, Ha Il; Jin, Huxian; Bae, Hyeon-Min

    2015-11-01

    The ever-increasing demand for bandwidth triggered by mobile and video Internet traffic requires advanced interconnect solutions satisfying functional and economic constraints. A new interconnect called E-TUBE is proposed as a cost-and-power-effective all-electrical-domain wideband waveguide solution for high-speed high-volume short-reach communication links. The E-TUBE achieves an unprecedented level of performance in terms of bandwidth-per-carrier frequency, power, and density without requiring a precision manufacturing process unlike conventional optical/waveguide solutions. The E-TUBE exhibits a frequency-independent loss-profile of 4 dB/m and has nearly 20-GHz bandwidth over the V band. A single-sideband signal transmission enabled by the inherent frequency response of the E-TUBE renders two-times data throughput without any physical overhead compared to conventional radio frequency communication technologies. This new interconnect scheme would be attractive to parties interested in high throughput links, including but not limited to, 100/400 Gbps chip-to-chip communications.

  18. Hydrodynamic characteristics of high speed settling clarifiers by radiotracer method

    International Nuclear Information System (INIS)

    Griffith Martinez, Jose; Damera Martinez, A.; Ramos Espinosa, K.

    2003-01-01

    Results achieved in the evaluation of two high-speed settling cane juice Clarifiers, one denominated ICINAZ The Express and the other one a modified SRI, both located at the sugar factory Orlando Gonzalez employing the well established radiotracer method (Tc-99m) are presented Several trials performed simultaneously at the two Clarifiers demonstrated that the modified SRI was capable to assimilate the whole flow capacity of the factory with adequate characteristic of the pattern flux and residence time in the environment of 1 hour. In the other side, ICINAZ The Express Clarifier could only work at relative low flow capacity of the factory with residence time closely to the two hours and achieving occasionally a pattern flux seriously affected by fluctuations in the milling process. The non-availability of a flow meter did not allow to extract more information related to some pattern flux anomalies, nevertheless, the radiotracer method was able to detect certain differences between the two clear juice outlet of the modified SRI Clarifier, probably due some problems in the construction of this equipment. This fact so as other goals achieved in this work, show once more the potentiality of the radiotracer method for this type of study related to the hydrodynamic characteristics of industrial facilities. (Author)

  19. Ultra High-Speed Radio Frequency Switch Based on Photonics.

    Science.gov (United States)

    Ge, Jia; Fok, Mable P

    2015-11-26

    Microwave switches, or Radio Frequency (RF) switches have been intensively used in microwave systems for signal routing. Compared with the fast development of microwave and wireless systems, RF switches have been underdeveloped particularly in terms of switching speed and operating bandwidth. In this paper, we propose a photonics based RF switch that is capable of switching at tens of picoseconds speed, which is hundreds of times faster than any existing RF switch technologies. The high-speed switching property is achieved with the use of a rapidly tunable microwave photonic filter with tens of gigahertz frequency tuning speed, where the tuning mechanism is based on the ultra-fast electro-optics Pockels effect. The RF switch has a wide operation bandwidth of 12 GHz and can go up to 40 GHz, depending on the bandwidth of the modulator used in the scheme. The proposed RF switch can either work as an ON/OFF switch or a two-channel switch, tens of picoseconds switching speed is experimentally observed for both type of switches.

  20. High-Speed Operation of Interband Cascade Lasers

    Science.gov (United States)

    Soibel, Alexander; Hill, Cory J.; Keo, Sam A.; Wright, Malcom W.; Farr, William H.; Yang, Rui Q.; Liu, H. C.

    2010-01-01

    Optical sources operating in the atmospheric window of 3-5 microns are of particular interest for the development of free-space optical communication link. It is more advantageous to operate the free-space optical communication link in 3-5-microns atmospheric transmission window than at the telecom wavelength of 1.5 m due to lower optical scattering, scintillation, and background radiation. However, the realization of optical communications at the longer wavelength has encountered significant difficulties due to lack of adequate optical sources and detectors operating in the desirable wavelength regions. Interband Cascade (IC) lasers are novel semiconductor lasers that have a great potential for the realization of high-power, room-temperature optical sources in the 3-5-microns wavelength region, yet no experimental work, until this one, was done on high-speed direct modulation of IC lasers. Here, highspeed interband cascade laser, operating at wavelength 3.0 m, has been developed and the first direct measurement of the laser modulation bandwidth has been performed using a unique, highspeed quantum well infrared photodetector (QWIP). The developed laser has modulation bandwidth exceeding 3 GHz. This constitutes a significant increase of the IC laser modulation bandwidth over currently existing devices. This result has demonstrated suitability of IC lasers as a mid-IR light source for multi-GHz free-space optical communications links