WorldWideScience

Sample records for high-speed repetitive pellet

  1. High-speed hydrogen pellet acceleration using an electromagnetic railgun system

    Energy Technology Data Exchange (ETDEWEB)

    Onozuka, M.; Oda, Y. [Mitsubishi Heavy Ind., Ltd., Yokohama (Japan). Nucl. Fuel Cycle Eng. Dept.; Azuma, K.; Kasai, S.; Hasegawa, K. [Japan Atomic Energy Res. Inst., Tokai (Japan)

    1997-07-01

    Using a low electric energy railgun system, solid hydrogen pellet acceleration test have been conducted to investigate the application of the electromagnetic railgun system for high-speed pellet injection into fusion plasmas. Pneumatically pre-accelerated hydrogen pellets measuring 3 mm in diameter and 4-9 mm in length were successfully accelerated by a railgun system that uses a laser-induced plasma armature formation. A 2 m long single railgun with ceramic insulators accelerated th hydrogen pellet to 2.6 kms{sup -1} with a supplied energy of 1.7 kJ. The average acceleration rate and the energy conversion coefficient were improved to about 1.6 x 10{sup 6} ms{sup -2} and 0.37%, which is 1.6 times and three times as large as that using a railgun with plastic insulators, respectively. Furthermore, using the 1 m long augment railgun with ceramic insulators, the energy conversion coefficient was improved to about 0.55% while the acceleration rate was increased to 2.4 x 10{sup 6} ms{sup -2}. The highest hydrogen pellet velocity attained was about 2.3 kms{sup -1} for the augment railgun under an energy supply of 1.1 kJ. Based on the findings, it is expected that the acceleration efficiency and the pellet velocity can be further improved by using a longer augment railgun with ceramic insulators and by applying an optimal power supply. (orig.)

  2. Developments of repetitive pneumatic pipe-gun pellet injector

    Energy Technology Data Exchange (ETDEWEB)

    Sudo, Shigeru [National Inst. for Fusion Science, Nagoya (Japan); Viniar, I.

    1997-05-01

    A pellet injector of repetitive pneumatic pipe-gun type has been designed for advanced plasma fueling applications. This new concept is estimated to be able to reduce the time for pellet formation by an in situ technique from 3 - 5 minutes to 2 - 10 seconds. The basic idea of the new approach to pellet formation is to supply a hydrogen isotope pellet through a copper porous unit into a pipe-gun-type barrel. Two modes are possible: (1) to push liquid hydrogen isotope through a porous unit and re-freezing inside of the barrel, (2) to push solid hydrogen isotope through a porous unit to the inside of the barrel. This principle provides a continuous injection of an unlimited amount of pellets. For demonstration of the proof-of-principle, several experiments have been carried out. Hydrogen pellets of 3 mm in diameter and 3 to 10 mm in length were accelerated to 1.2 km/s at a rate of 1 pellet per 10 - 34 s with a manually controlled injector operation. (author)

  3. Repetition-rate-selectable high-speed optical gating in a VO{sub 2} thin film based on gain modulation of optical amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yong Wook; Kim, Bong Jun; Choi, Sung Youl; Chae, Byung Gyu; Kim, Hyun Tak [Electronics and Telecommunications Research Institute, Daejeon (Korea, Republic of); Lee, Yong Wook [Pukyong National University, Busan (Korea, Republic of); Seo, Gi Wan [University of Science and Technology, Daejeon (Korea, Republic of); Lee, Yong Wan [University of Minnesota, Minneapolis, MN (United States)

    2010-12-15

    In this research, we investigated the dependence of the saturation-induced gain modulation (SIGM) on the modulation frequency of the input signal in an erbium-doped fiber amplifier (EDFA). By finding and incorporating the modulation frequency invariance of the SIGM realizable within some frequency range, we demonstrated a repetition-rate-selectable high-speed optical gating in two-terminal electrical devices based on vanadium-dioxide thin films. In the implemented optical gating system, the repetition rate could be freely chosen as an arbitrary frequency between 0.27 and 10 kHz without any degradation of the gating speed and the signal-to-noise ratio.

  4. A MODIFIED UNEQUAL POWER ALLOCATION (UPA SCHEME FOR PERFORMANCE ENHANCEMENT IN BIT REPETITION TURBO CODES IN HIGH SPEED DOWNLINK PACKET ACCESS (HSDPA SYSTEM

    Directory of Open Access Journals (Sweden)

    B. BALAMURALITHARA

    2015-06-01

    Full Text Available In this paper, a modified optimal power allocation scheme for different bits in turbo encoder has been proposed to improve the performance of Turbo Codes system in High Speed Downlink Packet Access (HSDPA service. In a typical turbo code in HSDPA system, an encoder with code rate of 1/3 was used with bit repetition scheme or puncturing system to achieve code rate of 1/4. In this study, the author has proposed a modified unequal power allocation (UPA scheme to improve the performance of Turbo Codes in HSDPA system. The simulation and performance bound results for the proposed UPA scheme for the frame length of N = 400, code rate = 1/4 with Log-MAP decoder over Additive White Gaussian Noise (AWGN channel were obtained and compared with the typical Turbo Codes systems, which used bit repetition scheme and puncturing method without UPA. From the results, the proposed bit repetition turbo codes system with modified UPA scheme showed better performance than the typical turbo codes system without UPA using bit repetition and puncturing approaches with coding gain of 0.35 dB to 0.56 dB.

  5. High speed laser drilling of metals using a high repetition rate, high average power ultrafast fiber CPA system.

    Science.gov (United States)

    Ancona, A; Röser, F; Rademaker, K; Limpert, J; Nolte, S; Tünnermann, A

    2008-06-09

    We present an experimental study on the drilling of metal targets with ultrashort laser pulses at high repetition rates (from 50 kHz up to 975 kHz) and high average powers (up to 68 Watts), using an ytterbium-doped fiber CPA system. The number of pulses to drill through steel and copper sheets with thicknesses up to 1 mm have been measured as a function of the repetition rate and the pulse energy. Two distinctive effects, influencing the drilling efficiency at high repetition rates, have been experimentally found and studied: particle shielding and heat accumulation. While the shielding of subsequent pulses due to the ejected particles leads to a reduced ablation efficiency, this effect is counteracted by heat accumulation. The experimental data are in good qualitative agreement with simulations of the heat accumulation effect and previous studies on the particle emission. However, for materials with a high thermal conductivity as copper, both effects are negligible for the investigated processing parameters. Therefore, the full power of the fiber CPA system can be exploited, which allows to trepan high-quality holes in 0.5mm-thick copper samples with breakthrough times as low as 75 ms.

  6. High speed data converters

    CERN Document Server

    Ali, Ahmed MA

    2016-01-01

    This book covers high speed data converters from the perspective of a leading high speed ADC designer and architect, with a strong emphasis on high speed Nyquist A/D converters. For our purposes, the term 'high speed' is defined as sampling rates that are greater than 10 MS/s.

  7. High speed inscription of uniform, large-area laser-induced periodic surface structures in Cr films using a high repetition rate fs laser.

    Science.gov (United States)

    Ruiz de la Cruz, A; Lahoz, R; Siegel, J; de la Fuente, G F; Solis, J

    2014-04-15

    We report on the fabrication of laser-induced periodic surface structures in Cr films upon high repetition rate fs laser irradiation (up to 1 MHz, 500 fs, 1030 nm), employing beam scanning. Highly regular large-area (9  cm2) gratings with a relative diffraction efficiency of 42% can be produced within less than 6 min. The ripple period at moderate and high fluences is 0.9 μm, with a small period of 0.5 μm appearing at lower energies. The role of the irradiation parameters on the characteristics of the laser-induced periodic surface structures (LIPSS) is studied and discussed in the frame of the models presently used. We have identified the polarization vector orientation with respect to the scan direction as a key parameter for the fabrication of high-quality, large-area LIPSS, which, for perpendicular orientation, allows the coherent extension of the sub-wavelength structure over macroscopic distances. The processing strategy is robust in terms of broad parameter windows and applicable to other materials featuring LIPSS.

  8. High speed heterostructure devices

    CERN Document Server

    Beer, Albert C; Willardson, R K; Kiehl, Richard A; Sollner, T C L Gerhard

    1994-01-01

    Volume 41 includes an in-depth review of the most important, high-speed switches made with heterojunction technology. This volume is aimed at the graduate student or working researcher who needs a broad overview andan introduction to current literature. Key Features * The first complete review of InP-based HFETs and complementary HFETs, which promise very low power and high speed * Offers a complete, three-chapter review of resonant tunneling * Provides an emphasis on circuits as well as devices.

  9. Multiple single-point imaging (mSPI) as a tool for capturing and characterizing MR signals and repetitive signal disturbances with high temporal resolution: the MRI scanner as a high-speed camera.

    Science.gov (United States)

    Bakker, Chris J G; van Gorp, Jetse S; Verwoerd, Jan L; Westra, Albert H; Bouwman, Job G; Zijlstra, Frank; Seevinck, Peter R

    2013-09-01

    In this paper we aim to lay down and demonstrate the use of multiple single-point imaging (mSPI) as a tool for capturing and characterizing steady-state MR signals and repetitive disturbances thereof with high temporal resolution. To achieve this goal, various 2D mSPI sequences were derived from the nearest standard 3D imaging sequences by (i) replacing the excitation of a 3D slab by the excitation of a 2D slice orthogonal to the read axis, (ii) setting the readout gradient to zero, and (iii) leaving out the inverse Fourier transform in the read direction. The thus created mSPI sequences, albeit slow with regard to the spatial encoding part, were shown to result into a series of densely spaced 2D single-point images in the time domain enabling monitoring of the evolution of the magnetization with a high temporal resolution and without interference from any encoding gradients. The high-speed capabilities of mSPI were demonstrated by capturing and characterizing the free induction decays and spin echoes of substances with long T2s (>30 ms) and long and short T2*s (4 - >30 ms) and by monitoring the perturbation of the transverse magnetization by, respectively, a titanium cylinder, representing a static disturbance; a pulsed magnetic field gradient, representing a stimulus inherent to a conventional MRI experiment; and a pulsed electric current, representing an external stimulus. The results of the study indicate the potential of mSPI for assessing the evolution of the magnetization and, when properly synchronized with the acquisition, repeatable disturbances thereof with a temporal resolution that is ultimately limited by the bandwidth of the receiver, but in practice governed by the SNR of the experiment and the magnitude of the disturbance. Potential applications of mSPI can be envisaged in research areas that are concerned with MR signal behavior, MR system performance and MR evaluation of magnetically evoked responses.

  10. High Speed Video Insertion

    Science.gov (United States)

    Janess, Don C.

    1984-11-01

    This paper describes a means of inserting alphanumeric characters and graphics into a high speed video signal and locking that signal to an IRIG B time code. A model V-91 IRIG processor, developed by Instrumentation Technology Systems under contract to Instrumentation Marketing Corporation has been designed to operate in conjunction with the NAC model FHS-200 High Speed Video Camera which operates at 200 fields per second. The system provides for synchronizing the vertical and horizontal drive signals such that the vertical sync precisely coincides with five millisecond transitions in the IRIG time code. Additionally, the unit allows for the insertion of an IRIG time message as well as other data and symbols.

  11. High speed flywheel

    Science.gov (United States)

    McGrath, Stephen V.

    1991-01-01

    A flywheel for operation at high speeds utilizes two or more ringlike coments arranged in a spaced concentric relationship for rotation about an axis and an expansion device interposed between the components for accommodating radial growth of the components resulting from flywheel operation. The expansion device engages both of the ringlike components, and the structure of the expansion device ensures that it maintains its engagement with the components. In addition to its expansion-accommodating capacity, the expansion device also maintains flywheel stiffness during flywheel operation.

  12. High speed multiphoton imaging

    Science.gov (United States)

    Li, Yongxiao; Brustle, Anne; Gautam, Vini; Cockburn, Ian; Gillespie, Cathy; Gaus, Katharina; Lee, Woei Ming

    2016-12-01

    Intravital multiphoton microscopy has emerged as a powerful technique to visualize cellular processes in-vivo. Real time processes revealed through live imaging provided many opportunities to capture cellular activities in living animals. The typical parameters that determine the performance of multiphoton microscopy are speed, field of view, 3D imaging and imaging depth; many of these are important to achieving data from in-vivo. Here, we provide a full exposition of the flexible polygon mirror based high speed laser scanning multiphoton imaging system, PCI-6110 card (National Instruments) and high speed analog frame grabber card (Matrox Solios eA/XA), which allows for rapid adjustments between frame rates i.e. 5 Hz to 50 Hz with 512 × 512 pixels. Furthermore, a motion correction algorithm is also used to mitigate motion artifacts. A customized control software called Pscan 1.0 is developed for the system. This is then followed by calibration of the imaging performance of the system and a series of quantitative in-vitro and in-vivo imaging in neuronal tissues and mice.

  13. HIGH SPEED CAMERA

    Science.gov (United States)

    Rogers, B.T. Jr.; Davis, W.C.

    1957-12-17

    This patent relates to high speed cameras having resolution times of less than one-tenth microseconds suitable for filming distinct sequences of a very fast event such as an explosion. This camera consists of a rotating mirror with reflecting surfaces on both sides, a narrow mirror acting as a slit in a focal plane shutter, various other mirror and lens systems as well as an innage recording surface. The combination of the rotating mirrors and the slit mirror causes discrete, narrow, separate pictures to fall upon the film plane, thereby forming a moving image increment of the photographed event. Placing a reflecting surface on each side of the rotating mirror cancels the image velocity that one side of the rotating mirror would impart, so as a camera having this short a resolution time is thereby possible.

  14. Development and validation of a railgun hydrogen pellet injector model

    Energy Technology Data Exchange (ETDEWEB)

    King, T.L. [Univ. of Houston, TX (United States). Dept. of Electrical and Computer Engineering; Zhang, J.; Kim, K. [Univ. of Illinois, Urbana, IL (United States). Dept. of Electrical and Computer Engineering

    1995-12-31

    A railgun hydrogen pellet injector model is presented and its predictions are compared with the experimental data. High-speed hydrogenic ice injection is the dominant refueling method for magnetically confined plasmas used in controlled thermonuclear fusion research. As experimental devices approach the scale of power-producing fusion reactors, the fueling requirements become increasingly more difficult to meet since, due to the large size and the high electron densities and temperatures of the plasma, hypervelocity pellets of a substantial size will need to be injected into the plasma continuously and at high repetition rates. Advanced technologies, such as the railgun pellet injector, are being developed to address this demand. Despite the apparent potential of electromagnetic launchers to produce hypervelocity projectiles, physical effects that were neither anticipated nor well understood have made it difficult to realize this potential. Therefore, it is essential to understand not only the theory behind railgun operation, but the primary loss mechanisms, as well. Analytic tools have been used by many researchers to design and optimize railguns and analyze their performance. This has led to a greater understanding of railgun behavior and opened the door for further improvement. A railgun hydrogen pellet injector model has been developed. The model is based upon a pellet equation of motion that accounts for the dominant loss mechanisms, inertial and viscous drag. The model has been validated using railgun pellet injectors developed by the Fusion Technology Research Laboratory at the University of Illinois at Urbana-Champaign.

  15. High speed functional magnetic resonance imaging

    CERN Document Server

    Gibson, A M

    2002-01-01

    The work in this thesis has been undertaken by the except where indicated by reference, within the Magnetic Resonance Centre at the University of Nottingham during the period from October 1998 to October 2001. This thesis documents the implementation and application of a novel high-speed imaging technique, the multi-slice, echo shifted, echo planar imaging technique. This was implemented on the Nottingham 3 T imaging system, for functional magnetic resonance imaging. The technique uses echo shifting over the slices in a multi-slice echo planar imaging acquisition scheme, making the echo time longer than the repetition time per slice. This allows for rapid volumar sampling of the blood oxygen level dependent effect in the human brain. The new high-speed technique was used to investigate the variability of measuring the timing differences between haemodynamic responses, at the same cortical location, to simple cued motor tasks. The technique was also used in an investigation into motor cortex functional connect...

  16. High speed printing with polygon scan heads

    Science.gov (United States)

    Stutz, Glenn

    2016-03-01

    To reduce and in many cases eliminate the costs associated with high volume printing of consumer and industrial products, this paper investigates and validates the use of the new generation of high speed pulse on demand (POD) lasers in concert with high speed (HS) polygon scan heads (PSH). Associated costs include consumables such as printing ink and nozzles, provisioning labor, maintenance and repair expense as well as reduction of printing lines due to high through put. Targets that are applicable and investigated include direct printing on plastics, printing on paper/cardboard as well as printing on labels. Market segments would include consumer products (CPG), medical and pharmaceutical products, universal ID (UID), and industrial products. In regards to the POD lasers employed, the wavelengths include UV(355nm), Green (532nm) and IR (1064nm) operating within the repetition range of 180 to 250 KHz.

  17. Performance evaluation of high speed compressors for high speed multipliers

    Directory of Open Access Journals (Sweden)

    Nirlakalla Ravi

    2011-01-01

    Full Text Available This paper describes high speed compressors for high speed parallel multipliers like Booth Multiplier, Wallace Tree Multiplier in Digital Signal Processing (DSP. This paper presents 4-3, 5-3, 6-3 and 7-3 compressors for high speed multiplication. These compressors reduce vertical critical path more rapidly than conventional compressors. A 5-3 conventional compressor can take four steps to reduce bits from 5 to 3, but the proposed 5-3 takes only 2 steps. These compressors are simulated with H-Spice at a temperature of 25°C at a supply voltage 2.0V using 90nm MOSIS technology. The Power, Delay, Power Delay Product (PDP and Energy Delay Product (EDP of the compressors are calculated to analyze the total propagation delay and energy consumption. All the compressors are designed with half adder and full Adders only.

  18. High-speed photonics interconnects

    CERN Document Server

    Chrostowski, Lukas

    2013-01-01

    Dramatic increases in processing power have rapidly scaled on-chip aggregate bandwidths into the Tb/s range. This necessitates a corresponding increase in the amount of data communicated between chips, so as not to limit overall system performance. To meet the increasing demand for interchip communication bandwidth, researchers are investigating the use of high-speed optical interconnect architectures. Unlike their electrical counterparts, optical interconnects offer high bandwidth and negligible frequency-dependent loss, making possible per-channel data rates of more than 10 Gb/s. High-Speed

  19. High-speed pulse techniques

    CERN Document Server

    Coekin, J A

    1975-01-01

    High-Speed Pulse Techniques covers the many aspects of technique in digital electronics and encompass some of the more fundamental factors that apply to all digital systems. The book describes the nature of pulse signals and their deliberate or inadvertent processing in networks, transmission lines and transformers, and then examines the characteristics and transient performance of semiconductor devices and integrated circuits. Some of the problems associated with the assembly of these into viable systems operating at ultra high speed are also looked at. The book examines the transients and w

  20. High-speed OTDM switching

    DEFF Research Database (Denmark)

    Jepsen, Kim Stokholm; Mikkelsen, Benny; Clausen, Anders

    1998-01-01

    Optical TDM (OTDM) continues to be of interest both for point-point transmission and as a networking technology for both LANs and long-distance fibre transmission. Recent research has demonstrated enabling techniques for OTDM networks at high speeds. In conclusion, OTDM is emerging as an attracti...

  1. High-speed AC motors

    Energy Technology Data Exchange (ETDEWEB)

    Jokinen, T.; Arkkio, A. [Helsinki University of Technology Laboratory of Electromechanics, Otaniemi (Finland)

    1997-12-31

    The paper deals with various types of highspeed electric motors, and their limiting powers. Standard machines with laminated rotors can be utilised if the speed is moderate. The solid rotor construction makes it possible to reach higher power and speed levels than those of laminated rotors. The development work on high-speed motors done at Helsinki University of Technology is presented, too. (orig.) 12 refs.

  2. High-Speed TCP Testing

    Science.gov (United States)

    Brooks, David E.; Gassman, Holly; Beering, Dave R.; Welch, Arun; Hoder, Douglas J.; Ivancic, William D.

    1999-01-01

    Transmission Control Protocol (TCP) is the underlying protocol used within the Internet for reliable information transfer. As such, there is great interest to have all implementations of TCP efficiently interoperate. This is particularly important for links exhibiting long bandwidth-delay products. The tools exist to perform TCP analysis at low rates and low delays. However, for extremely high-rate and lone-delay links such as 622 Mbps over geosynchronous satellites, new tools and testing techniques are required. This paper describes the tools and techniques used to analyze and debug various TCP implementations over high-speed, long-delay links.

  3. Flexible high-speed CODEC

    Science.gov (United States)

    Segallis, Greg P.; Wernlund, Jim V.; Corry, Glen

    1993-08-01

    This report is prepared by Harris Government Communication Systems Division for NASA Lewis Research Center under contract NAS3-25087. It is written in accordance with SOW section 4.0 (d) as detailed in section 2.6. The purpose of this document is to provide a summary of the program, performance results and analysis, and a technical assessment. The purpose of this program was to develop a flexible, high-speed CODEC that provides substantial coding gain while maintaining bandwidth efficiency for use in both continuous and bursted data environments for a variety of applications.

  4. Small Scale High Speed Turbomachinery

    Science.gov (United States)

    London, Adam P. (Inventor); Droppers, Lloyd J. (Inventor); Lehman, Matthew K. (Inventor); Mehra, Amitav (Inventor)

    2015-01-01

    A small scale, high speed turbomachine is described, as well as a process for manufacturing the turbomachine. The turbomachine is manufactured by diffusion bonding stacked sheets of metal foil, each of which has been pre-formed to correspond to a cross section of the turbomachine structure. The turbomachines include rotating elements as well as static structures. Using this process, turbomachines may be manufactured with rotating elements that have outer diameters of less than four inches in size, and/or blading heights of less than 0.1 inches. The rotating elements of the turbomachines are capable of rotating at speeds in excess of 150 feet per second. In addition, cooling features may be added internally to blading to facilitate cooling in high temperature operations.

  5. Exploring of Chinese High-speed Railways

    Institute of Scientific and Technical Information of China (English)

    liuYoumei

    2004-01-01

    Based ion experiences of high-speed railways in foreign countries,the speed-raise situation of the Chinese railways,the research & development and test of high-speed transportation carries,as well as the prospective of high-speed railway in China are introduced.

  6. Towards high-speed scanning tunneling microscopy

    NARCIS (Netherlands)

    Tabak, Femke Chantal

    2013-01-01

    In this thesis, two routes towards high-speed scanning tunneling microscopy (STM) are described. The first possibility for high-speed scanning that is discussed is the use of MEMS (Micro-Electro Mechanical Systems) devices as high-speed add-ons in STM microscopes. The functionality of these devices

  7. Owl Pellets.

    Science.gov (United States)

    Thompson, Craig D.

    1987-01-01

    Provides complete Project WILD lesson plans for 20-45-minute experiential science learning activity for grades 3-7 students. Describes how students construct a simple food chain through examination of owl pellets. Includes lesson objective, method, background information, materials, procedure, evaluation, and sources of owl pellets and posters.…

  8. Cutting tool materials for high speed machining

    Institute of Scientific and Technical Information of China (English)

    LIU Zhanqiang; AI Xing

    2005-01-01

    High speed machining (HSM) is one of the emerging cutting processes, which is machining at a speed significantlyhigher than the speed commonly in use on the shop floor. In the last twenty years, high speed machining has received great attentions as a technological solution for high productivity in manufacturing. This article reviews the developments of tool materials in high speed machining operations, and the properties, applications and prospective developments of tool materials in HSM are also presented.

  9. High speed imaging - An important industrial tool

    Science.gov (United States)

    Moore, Alton; Pinelli, Thomas E.

    1986-01-01

    High-speed photography, which is a rapid sequence of photographs that allow an event to be analyzed through the stoppage of motion or the production of slow-motion effects, is examined. In high-speed photography 16, 35, and 70 mm film and framing rates between 64-12,000 frames per second are utilized to measure such factors as angles, velocities, failure points, and deflections. The use of dual timing lamps in high-speed photography and the difficulties encountered with exposure and programming the camera and event are discussed. The application of video cameras to the recording of high-speed events is described.

  10. Comparison of High Speed Congestion Control Protocols

    Directory of Open Access Journals (Sweden)

    Jawhar Ben Abed

    2012-10-01

    Full Text Available Congestion control limits the quantity of information input at a rate less important than that of thetransmission one to ensure good performance as well as protect against overload and blocking of thenetwork. Researchers have done a great deal of work on improving congestion control protocols,especially on high speed networks.In this paper, we will be studying the congestion control alongside low and high speed congestion controlprotocols. We will be also simulating, evaluating, and comparing eight of high speed congestion controlprotocols : Bic TCP, Cubic TCP, Hamilton TCP, HighSpeed TCP, Illinois TCP, Scalable TCP,Compound TCP and YeAH TCP, with multiple flows.

  11. High Speed On-Wafer Characterization Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — At the High Speed On-Wafer Characterization Laboratory, researchers characterize and model devices operating at terahertz (THz) and millimeter-wave frequencies. The...

  12. High Speed On-Wafer Characterization Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — At the High Speed On-Wafer Characterization Laboratory, researchers characterize and model devices operating at terahertz (THz) and millimeter-wave frequencies. The...

  13. High-Speed Ring Bus

    Science.gov (United States)

    Wysocky, Terry; Kopf, Edward, Jr.; Katanyoutananti, Sunant; Steiner, Carl; Balian, Harry

    2010-01-01

    The high-speed ring bus at the Jet Propulsion Laboratory (JPL) allows for future growth trends in spacecraft seen with future scientific missions. This innovation constitutes an enhancement of the 1393 bus as documented in the Institute of Electrical and Electronics Engineers (IEEE) 1393-1999 standard for a spaceborne fiber-optic data bus. It allows for high-bandwidth and time synchronization of all nodes on the ring. The JPL ring bus allows for interconnection of active units with autonomous operation and increased fault handling at high bandwidths. It minimizes the flight software interface with an intelligent physical layer design that has few states to manage as well as simplified testability. The design will soon be documented in the AS-1393 standard (Serial Hi-Rel Ring Network for Aerospace Applications). The framework is designed for "Class A" spacecraft operation and provides redundant data paths. It is based on "fault containment regions" and "redundant functional regions (RFR)" and has a method for allocating cables that completely supports the redundancy in spacecraft design, allowing for a complete RFR to fail. This design reduces the mass of the bus by incorporating both the Control Unit and the Data Unit in the same hardware. The standard uses ATM (asynchronous transfer mode) packets, standardized by ITU-T, ANSI, ETSI, and the ATM Forum. The IEEE-1393 standard uses the UNI form of the packet and provides no protection for the data portion of the cell. The JPL design adds optional formatting to this data portion. This design extends fault protection beyond that of the interconnect. This includes adding protection to the data portion that is contained within the Bus Interface Units (BIUs) and by adding to the signal interface between the Data Host and the JPL 1393 Ring Bus. Data transfer on the ring bus does not involve a master or initiator. Following bus protocol, any BIU may transmit data on the ring whenever it has data received from its host. There

  14. Reducing Heating In High-Speed Cinematography

    Science.gov (United States)

    Slater, Howard A.

    1989-01-01

    Infrared-absorbing and infrared-reflecting glass filters simple and effective means for reducing rise in temperature during high-speed motion-picture photography. "Hot-mirror" and "cold-mirror" configurations, employed in projection of images, helps prevent excessive heating of scenes by powerful lamps used in high-speed photography.

  15. Damping Bearings In High-Speed Turbomachines

    Science.gov (United States)

    Von Pragenau, George L.

    1994-01-01

    Paper presents comparison of damping bearings with traditional ball, roller, and hydrostatic bearings in high-speed cryogenic turbopumps. Concept of damping bearings described in "Damping Seals and Bearings for a Turbomachine" (MFS-28345).

  16. On China's High-Speed Railway Technology

    Institute of Scientific and Technical Information of China (English)

    You-tong FANG

    2011-01-01

    Energy and environmental issues have become increasingly prominent in matters of transportation.Compared with road,air,and sea transportation,railway transportation has the advantages of a large transmission capacity,with rapid,safe,and on-time travel,requiring less land resources,with lower energy consumption,less environmental pollution,and the capacity to operate under most weather conditions.In particular,high-speed railway technology has been growing rapidly.Since the world's first high-speed railway was built in Japan in 1964,more than ten countries and regions have developed high-speed railways,operating over a total of more than 10000 km.High-speed railways not only provide the public with a new type of rapid,convenient,safe,and comfortable travel,but also greatly boost the socio-economic development of the country.

  17. ERROR CORRECTION IN HIGH SPEED ARITHMETIC,

    Science.gov (United States)

    The errors due to a faulty high speed multiplier are shown to be iterative in nature. These errors are analyzed in various aspects. The arithmetic coding technique is suggested for the improvement of high speed multiplier reliability. Through a number theoretic investigation, a large class of arithmetic codes for single iterative error correction are developed. The codes are shown to have near-optimal rates and to render a simple decoding method. The implementation of these codes seems highly practical. (Author)

  18. VLSI Circuits for High Speed Data Conversion

    Science.gov (United States)

    1994-05-16

    Meeting, pp. 289-292, Sept. 199 1. [4] Behzad Razavi , "High-Speed, Nigh-Resolution Analog-to-Digital Conversion in VLSI Technologies, Ph.D. Thesis... Behzad Razavi and Bruce A. Wooley, "Design Techniques for High-Speed, High- Resolution Comparators," IEEE J. Solid-State Circuits, vol. 27, pp. 1916-192...Dec. 1992. [8] Behzad Razavi and Bruce A. Wooley, "A 12-Bkt 5-MSamplesoc Two-Step CMOS A/D Converter," IEEE J. Solid-State Circuits, vol. 27, pp

  19. Aerodynamics of High-Speed Trains

    Science.gov (United States)

    Schetz, Joseph A.

    This review highlights the differences between the aerodynamics of high-speed trains and other types of transportation vehicles. The emphasis is on modern, high-speed trains, including magnetic levitation (Maglev) trains. Some of the key differences are derived from the fact that trains operate near the ground or a track, have much greater length-to-diameter ratios than other vehicles, pass close to each other and to trackside structures, are more subject to crosswinds, and operate in tunnels with entry and exit events. The coverage includes experimental techniques and results and analytical and numerical methods, concentrating on the most recent information available.

  20. High speed inspection of ceramic fuels

    Energy Technology Data Exchange (ETDEWEB)

    McLemore, D. R.

    1979-03-01

    A fuel pellet inspection system is under development and evaluation for use in the High Performance Fuel Laboratory (HPFL) at Richland, Washington. A major operation in this process is the gaging of fuel pellets for dimensions (length and diameter), surface flaws and weight. The system is modularly designed to simplify maintenance operations thereby reducing personnel exposure. The inspection system is divided into two parts: mechanical and electronic. The mechanical portion consists of a pellet handling system; inspection stations for measuring length, diameter, weight and surface flaws; and a glovebox-like containment which isolates Special Nuclear Material (SNM) from the surrounding environment. The electronic portion is a dedicated minicomputer for process control and a supervisory computer system which will be located in a centralized control center and be shared with other development activities in the HPFL.

  1. High Speed and Slow Motion: The Technology of Modern High Speed Cameras

    Science.gov (United States)

    Vollmer, Michael; Mollmann, Klaus-Peter

    2011-01-01

    The enormous progress in the fields of microsystem technology, microelectronics and computer science has led to the development of powerful high speed cameras. Recently a number of such cameras became available as low cost consumer products which can also be used for the teaching of physics. The technology of high speed cameras is discussed,…

  2. High Speed Wireless Signal Generation and Demodulation

    DEFF Research Database (Denmark)

    Caballero Jambrina, Antonio; Sambaraju, Rakesh; Zibar, Darko;

    We present the experimental demonstration of high speed wireless generation, up to 40 Gb/s, in the 75-110 GHz wireless band. All-optical OFDM and photonic up-conversion are used for generation and single side-band modulation with digital coherent detection for demodulation....

  3. High-speed Power Line Communications

    Directory of Open Access Journals (Sweden)

    Matthew N. O. Sadiku,

    2015-11-01

    Full Text Available This is the idea of using existing power lines for communication purposes. Power line communications (PLC enables network communication of voice, data, and video over direct power lines. High-speed PLC involves data rates in excess of 10 Mbps. PLC has attracted a lot of attention and has become an interesting subject of research lately.

  4. High-Speed Rail & Air Transport Competition

    NARCIS (Netherlands)

    Adler, Nicole; Nash, Chris; Pels, Eric

    2008-01-01

    This paper develops a methodology to assess transport infrastructure investments and their effects on a Nash equilibria taking into account competition between multiple privatized transport operator types. The operators, including high-speed rail, hub and spoke legacy airlines and low cost carriers,

  5. High speed adaptive liquid microlens array

    NARCIS (Netherlands)

    Murade, C.U.; van den Ende, Henricus T.M.; Mugele, Friedrich Gunther

    2012-01-01

    Liquid microlenses are attractive for adaptive optics because they offer the potential for both high speed actuation and parallelization into large arrays. Yet, in conventional designs, resonances of the liquid and the complexity of driving mechanisms and/or the device architecture have hampered a

  6. High speed intravascular photoacoustic imaging of atherosclerotic arteries (Conference Presentation)

    Science.gov (United States)

    Piao, Zhonglie; Ma, Teng; Qu, Yueqiao; Li, Jiawen; Yu, Mingyue; He, Youmin; Shung, K. Kirk; Zhou, Qifa; Kim, Chang-Seok; Chen, Zhongping

    2016-02-01

    Cardiovascular disease is the leading cause of death in the industrialized nations. Accurate quantification of both the morphology and composition of lipid-rich vulnerable atherosclerotic plaque are essential for early detection and optimal treatment in clinics. In previous works, intravascular photoacoustic (IVPA) imaging for detection of lipid-rich plaque within coronary artery walls has been demonstrated in ex vivo, but the imaging speed is still limited. In order to increase the imaging speed, a high repetition rate laser is needed. In this work, we present a high speed integrated IVPA/US imaging system with a 500 Hz optical parametric oscillator laser at 1725 nm. A miniature catheter with 1.0 mm outer diameter was designed with a 200 μm multimode fiber and an ultrasound transducer with 45 MHz center frequency. The fiber was polished at 38 degree and enclosed in a glass capillary for total internal reflection. An optical/electrical rotary junction and pull-back mechanism was applied for rotating and linearly scanning the catheter to obtain three-dimensional imaging. Atherosclerotic rabbit abdominal aorta was imaged as two frame/second at 1725 nm. Furthermore, by wide tuning range of the laser wavelength from 1680 nm to 1770 nm, spectroscopic photoacoustic analysis of lipid-mimicking phantom and an human atherosclerotic artery was performed ex vivo. The results demonstrated that the developed IVPA/US imaging system is capable for high speed intravascular imaging for plaque detection.

  7. A centrifuge CO2 pellet cleaning system

    Science.gov (United States)

    Foster, C. A.; Fisher, P. W.; Nelson, W. D.; Schechter, D. E.

    1995-03-01

    An advanced turbine/CO2 pellet accelerator is being evaluated as a depaint technology at Oak Ridge National Laboratory (ORNL). The program, sponsored by Warner Robins Air Logistics Center (ALC), Robins Air Force Base, Georgia, has developed a robot-compatible apparatus that efficiently accelerates pellets of dry ice with a high-speed rotating wheel. In comparison to the more conventional compressed air 'sandblast' pellet accelerators, the turbine system can achieve higher pellet speeds, has precise speed control, and is more than ten times as efficient. A preliminary study of the apparatus as a depaint technology has been undertaken. Depaint rates of military epoxy/urethane paint systems on 2024 and 7075 aluminum panels as a function of pellet speed and throughput have been measured. In addition, methods of enhancing the strip rate by combining infra-red heat lamps with pellet blasting and by combining the use of environmentally benign solvents with the pellet blasting have also been studied. The design and operation of the apparatus will be discussed along with data obtained from the depaint studies.

  8. High-speed tensile test instrument.

    Science.gov (United States)

    Mott, P H; Twigg, J N; Roland, D F; Schrader, H S; Pathak, J A; Roland, C M

    2007-04-01

    A novel high-speed tensile test instrument is described, capable of measuring the mechanical response of elastomers at strain rates ranging from 10 to 1600 s(-1) for strains through failure. The device employs a drop weight that engages levers to stretch a sample on a horizontal track. To improve dynamic equilibrium, a common problem in high speed testing, equal and opposite loading was applied to each end of the sample. Demonstrative results are reported for two elastomers at strain rates to 588 s(-1) with maximum strains of 4.3. At the higher strain rates, there is a substantial inertial contribution to the measured force, an effect unaccounted for in prior works using the drop weight technique. The strain rates were essentially constant over most of the strain range and fill a three-decade gap in the data from existing methods.

  9. High-speed massively parallel scanning

    Science.gov (United States)

    Decker, Derek E.

    2010-07-06

    A new technique for recording a series of images of a high-speed event (such as, but not limited to: ballistics, explosives, laser induced changes in materials, etc.) is presented. Such technique(s) makes use of a lenslet array to take image picture elements (pixels) and concentrate light from each pixel into a spot that is much smaller than the pixel. This array of spots illuminates a detector region (e.g., film, as one embodiment) which is scanned transverse to the light, creating tracks of exposed regions. Each track is a time history of the light intensity for a single pixel. By appropriately configuring the array of concentrated spots with respect to the scanning direction of the detection material, different tracks fit between pixels and sufficient lengths are possible which can be of interest in several high-speed imaging applications.

  10. High speed technology development and evaluation

    Science.gov (United States)

    Parker, D. R.; Brown, E. R.; Dickson, J. F.

    1986-10-01

    Semiconductor technology suited to high on-board data handling rates was investigated. Very high speed discrete logic and high speed gate arrays; single chip digital signal processors and single chip floating point processing peripherals; and analog CCD technologies and custom designed CCD chips for synthetic aperture radar applications were assessed. The 2 micron CMOS technology is highly reliable, supporting semicustom design techniques. Process JGC, the CCD technology, is highly reliable except for tolerance to ionizing radiation. Reliability of the ECL 16-bit serial-parallel parallel-serial converter junction isolated bipolar process, process WZA, is compromised by a design error and oxide contamination contributing to high leakage levels. The bipolar circuit is tolerant to an ionizing radiation of 20kRad. Step stress environmental testing to 200 C produces no failures in CMOS and CCD technologies, but accelerates the degradation of the oxide contaminated bipolar process. All technologies are susceptible to single event upsets.

  11. Nanometer lapping technology at high speed

    Institute of Scientific and Technical Information of China (English)

    YANG JianDong; TIAN ChunLin; WANG ChangXing

    2007-01-01

    In floating lapping with solid abrasives, the workpiece is taken as an isolated body. The forces that act on it are analyzed. A differential equation about the forces that act on it is set up, so the forces that act on it and its motion rule are received. Combining it with known lapping tool motion, the relative motion rule between the lapping tool and workpiece is determined too. According to the relative motion, the distribution of abrasives density is designed reasonably, which makes the lapping tool wear uniformly, which, in turn, avoids redressing the lapping tool, saves abrasives, and increases machining accuracy. Combining it with advantages in high speed lapping with solid abrasives, the low cost, high efficiency nanometer lapping at high speed is realized.

  12. Nanometer lapping technology at high speed

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In floating lapping with solid abrasives, the workpiece is taken as an isolated body. The forces that act on it are analyzed. A differential equation about the forces that act on it is set up, so the forces that act on it and its motion rule are received. Combining it with known lapping tool motion, the relative motion rule between the lapping tool and workpiece is determined too. According to the relative motion, the distribution of abrasives density is designed reasonably, which makes the lapping tool wear uniformly, which, in turn, avoids redressing the lapping tool, saves abra-sives, and increases machining accuracy. Combining it with advantages in high speed lapping with solid abrasives, the low cost, high efficiency nanometer lapping at high speed is realized.

  13. DAC 22 High Speed Civil Transport Model

    Science.gov (United States)

    1992-01-01

    Between tests, NASA research engineer Dave Hahne inspects a tenth-scale model of a supersonic transport model in the 30- by 60-Foot Tunnel at NASA Langley Research Center, Hampton, Virginia. The model is being used in support of NASA's High-Speed Research (HSR) program. Langley researchers are applying advance aerodynamic design methods to develop a wing leading-edge flap system which significantly improves low-speed fuel efficiency and reduces noise generated during takeoff operation. Langley is NASA's lead center for the agency's HSR program, aimed at developing technology to help U.S. industry compete in the rapidly expanding trans-oceanic transport market. A U.S. high-speed civil transport is expected to fly in about the year 2010. As envisioned, it would fly 300 passengers across the Pacific in about four hours at Mach 2.4 (approximately 1,600 mph/1950 kph) for a modest increase over business class fares.

  14. Safety issues in high speed machining

    Science.gov (United States)

    1994-05-01

    There are several risks related to High-Speed Milling, but they have not been systematically determined or studied so far. Increased loads by high centrifugal forces may result in dramatic hazards. Flying tools or fragments from a tool with high kinetic energy may damage surrounding people, machines and devices. In the project, mechanical risks were evaluated, theoretic values for kinetic energies of rotating tools were calculated, possible damages of the flying objects were determined and terms to eliminate the risks were considered. The noise levels of the High-Speed Machining center owned by the Helsinki University of Technology (HUT) and the Technical Research Center of Finland (VTT) in practical machining situation were measured and the results were compared to those after basic preventive measures were taken.

  15. A high speed digital noise generator

    Science.gov (United States)

    Obrien, J.; Gaffney, B.; Liu, B.

    In testing of digital signal processing hardware, a high speed pseudo-random noise generator is often required to simulate an input noise source to the hardware. This allows the hardware to be exercised in a manner analogous to actual operating conditions. In certain radar and communication environments, a noise generator operating at speeds in excess of 60 MHz may be required. In this paper, a method of generating high speed pseudo-random numbers from an arbitrarily specified distribution (Gaussian, Log-Normal, etc.) using a transformation from a uniform noise source is described. A noise generator operating at 80 MHz has been constructed. Different distributions can be readily obtained by simply changing the ROM set. The hardware and test results will be described. Using this approach, the generation of pseudo-random sequences with arbitrary distributions at word rates in excess of 200 MHz can be readily achieved.

  16. The Aerodynamics of High Speed Aerial Weapons

    OpenAIRE

    Prince, Simon A.

    1999-01-01

    The focus of this work is the investigation of the complex compressible flow phenomena associated with high speed aerial weapons. A three dimen- sional multiblock finite volume flow solver was developed with the aim of studying the aerodynamics of missile configurations and their component structures. The first component of the study involved the aerodynamic investigation of the isolated components used in the design of conventional missile config- urations. The computati...

  17. A High-Speed Information Retrieval System

    Institute of Scientific and Technical Information of China (English)

    SHI Shu-dong; LI Zhi-tang

    2004-01-01

    We cleveloped a high-speed information retrieval system. The system hased on the IXP 2800 is one of the dedicute device. The velocily of the information retrieval is 6.8 Gb/s. The protocol support Telnet, FTP, SMTP, POP3 etc. various networks protocols. The information retrieval supports the key word and the natural language process. This paper explains the hardware system, software system and the index of the performance.

  18. Design of a High Speed Adder

    OpenAIRE

    Aritra Mitra; Amit Bakshi; Bhavesh Sharma; Nilesh Didwania

    2015-01-01

    In this paper we have compared different addition algorithms such as Ripple Carry Adder, Carry Save Adder, Carry Select Adder, Carry Look Ahead Adder & Kogge Stone Adder for different performance parameters i.e. Area Utilization, Speed of operation and Power Consumption. A high speed Adder is then designed by merging Kogge Stone & Carry Select Algorithms. The circuits have been designed using Verilog HDL & Synthesize using TSMC 180 nm standard cell. The performance parameters are ...

  19. Compressibility, turbulence and high speed flow

    CERN Document Server

    Gatski, Thomas B

    2013-01-01

    Compressibility, Turbulence and High Speed Flow introduces the reader to the field of compressible turbulence and compressible turbulent flows across a broad speed range, through a unique complimentary treatment of both the theoretical foundations and the measurement and analysis tools currently used. The book provides the reader with the necessary background and current trends in the theoretical and experimental aspects of compressible turbulent flows and compressible turbulence. Detailed derivations of the pertinent equations describing the motion of such turbulent flows is provided and

  20. Flat belt continuously variable high speed drive

    Energy Technology Data Exchange (ETDEWEB)

    Kumm, E.L.

    1992-02-01

    A study was undertaken at Kumm Industries funded by DOE in the NBS/DOE Energy-Related Inventions Program starting in August 1990 to design, construct and test a novel very high speed flat belt drive. The test arrangement as shown in Figure 1 consists of a multiple belt-pulley configuration that transmits power from a low speed (2000--4000 RPM) input to a small pulley turbine'' (27,000 to 55,000 RPM) and then to the low speed output variable radius pulley (2000--5000 RPM) via a special self-active tensioner. Transmitting 25 HP to and from the turbine'' corresponds to obtaining 50 HP in one direction only in a possible turbo compounded engine application. The high speed of the turbine'' belts, i.e. 100 meters/sec. at 55,000 RPM, while transferring substantial power is a new much higher operating regime for belts. The study showed that the available belts gave overall test rig efficiencies somewhat above 80% for the higher speeds (50,000 RPM) and higher powers (corresponding to above 90% in the turbocompound application) and a significantly better efficiencies at slightly lower speeds. The tests revealed a number of improved approaches in the design of such high speed drives. It appears that there is considerable possibility for further improvement and application of such equipment.

  1. Development of the centrifugal pellet injector for JT-60U

    Energy Technology Data Exchange (ETDEWEB)

    Kizu, Kaname; Hiratsuka, Hajime; Ichige, Hisashi [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment] [and others

    2001-03-01

    For core fueling of JT-60U plasmas, a repetitive pellet injector which centrifugally accelerates D{sub 2} cubic pellets using a straight rod has been developed. This centrifugal pellet injector can eject trains of up to 40 cubic pellets at frequencies of 1-10 Hz and velocities of 0.3-1.0 km/s. The average pellet mass is 3.6x10{sup 20} atoms/pellet below 0.7 m/s. Key techniques for the development were a mesh structured acceleration component for removing gas sublimated from the pellet and a funnel with an appropriate angle connected just behind the acceleration chamber for introducing the pellet to plasma without destruction. Using the mesh structured components, the horizontal angular distribution of pellets ejected became narrow, because irregular pellet motion caused by sublimated gas was reduced. To investigate the performance of the injector, pellet injection experiments from the low magnetic field side (LFS) were conducted using ohmic heating plasmas. Central fueling and enhanced fueling rate have been observed. D{alpha} intensity around the divertor region was reduced in a pellet injection plasma compared to gas puffing, indicating low recycling rate was maintained with the pellet injection. (author)

  2. Initial performance of the High Speed Photometer

    Science.gov (United States)

    Richards, Evan; Percival, Jeff; Nelson, Matt; Hatter, ED; Fitch, John; White, Rick

    1991-01-01

    The Hubble Space Telescope High Speed Photometer has four image dissector tubes, two with UV sensitive photocathodes, two sensitive to the near UV and to visual light, and a single red sensitive photomultiplier tube. The HSP is capable of photometric measurements from 1200 to 7500 A with time resolution of 11 microseconds and has no moving parts. An initial analysis of the on-orbit engineering performance of the HSP is presented with changes in operating procedures resulting from the primary mirror spherical aberration and experience gained during the verification period.

  3. High Speed Solid State Circuit Breaker

    Science.gov (United States)

    Podlesak, Thomas F.

    1993-01-01

    The U.S. Army Research Laboratory, Fort Monmouth, NJ, has developed and is installing two 3.3 MW high speed solid state circuit breakers at the Army's Pulse Power Center. These circuit breakers will interrupt 4160V three phase power mains in no more than 300 microseconds, two orders of magnitude faster than conventional mechanical contact type circuit breakers. These circuit breakers utilize Gate Turnoff Thyristors (GTO's) and are currently utility type devices using air cooling in an air conditioned enclosure. Future refinements include liquid cooling, either water or two phase organic coolant, and more advanced semiconductors. Each of these refinements promises a more compact, more reliable unit.

  4. Accident Safety Design for High Speed Elevator

    Directory of Open Access Journals (Sweden)

    Tawiwat Veeraklaew

    2012-12-01

    Full Text Available There have been many elevators exist in buildings for such a long time; however, an accident might happen as a free fall due to lacks of maintenance or some other accident such as firing. Although this situation is rarely occurred, many people are still concerned about it. The question here is how to make passengers to feel safe and confident when they are using an elevator, especially, high speed elevator. This problem is studied here in this paper as a free fall spring-mass-damper system with the stiffness and damping coefficient can be computed as minimum jerk of the system with given constraints on trajectories.

  5. High Speed SPM of Functional Materials

    Energy Technology Data Exchange (ETDEWEB)

    Huey, Bryan D. [Univ. of Connecticut, Storrs, CT (United States)

    2015-08-14

    The development and optimization of applications comprising functional materials necessitates a thorough understanding of their static and dynamic properties and performance at the nanoscale. Leveraging High Speed SPM and concepts enabled by it, efficient measurements and maps with nanoscale and nanosecond temporal resolution are uniquely feasible. This includes recent enhancements for topographic, conductivity, ferroelectric, and piezoelectric properties as originally proposed, as well as newly developed methods or improvements to AFM-based mechanical, friction, thermal, and photoconductivity measurements. The results of this work reveal fundamental mechanisms of operation, and suggest new approaches for improving the ultimate speed and/or efficiency, of data storage systems, magnetic-electric sensors, and solar cells.

  6. High-Speed Propeller for Aircraft

    Science.gov (United States)

    Sagerser, D. A.; Gatzen, B. S.

    1986-01-01

    Engine efficiency increased. Propeller blades required to be quite thin and highly swept to minimize compressibility losses and propeller noise during high-speed cruise. Use of 8 or 10 blades with highpropeller-power loading allows overall propeller diameter to be kept relatively small. Area-ruled spinner and integrated nacelle shape reduce compressibility losses in propeller hub region. Finally, large modern turboshaft engine and gearbox provide power to advanced propeller. Fuel savings of 30 to 50 percent over present systems anticipated. Propfan system adaptable to number of applications, such as highspeed (subsonic) business and general-aviation aircraft, and military aircraft including V/STOL.

  7. High Speed Telescopic Imaging of Sprites

    Science.gov (United States)

    McHarg, M. G.; Stenbaek-Nielsen, H. C.; Kanmae, T.; Haaland, R. K.

    2010-12-01

    A total of 21 sprite events were recorded at Langmuir Laboratory, New Mexico, during the nights of 14 and 15 July 2010 with a 500 mm focal length Takahashi Sky 90 telescope. The camera used was a Phantom 7.3 with a VideoScope image intensifier. The images were 512x256 pixels for a field of view of 1.3x0.6 degrees. The data were recorded at 16,000 frames per second (62 μs between images) and an integration time of 20 μs per image. Co-aligned with the telescope was a second similar high-speed camera, but with an 85 mm Nikon lens; this camera recorded at 10,000 frames per second with 100 μs exposure. The image format was also 512x256 pixels for a field of view of 7.3x3.7 degrees. The 21 events recorded include all basic sprite elements: Elve, sprite halos, C-sprites, carrot sprites, and large jellyfish sprites. We compare and contrast the spatial details seen in the different types of sprites, including streamer head size and the number of streamers subsequent to streamer head splitting. Telescopic high speed image of streamer tip splitting in sprites recorded at 07:06:09 UT on 15 July 2010.

  8. CIGS thin-film solar module processing: case of high-speed laser scribing

    Science.gov (United States)

    Gečys, Paulius; Markauskas, Edgaras; Nishiwaki, Shiro; Buecheler, Stephan; de Loor, Ronny; Burn, Andreas; Romano, Valerio; Račiukaitis, Gediminas

    2017-01-01

    In this paper, we investigate the laser processing of the CIGS thin-film solar cells in the case of the high-speed regime. The modern ultra-short pulsed laser was used exhibiting the pulse repetition rate of 1 MHz. Two main P3 scribing approaches were investigated - ablation of the full layer stack to expose the molybdenum back-contact, and removal of the front-contact only. The scribe quality was evaluated by SEM together with EDS spectrometer followed by electrical measurements. We also modelled the electrical behavior of a device at the mini-module scale taking into account the laser-induced damage. We demonstrated, that high-speed process at high laser pulse repetition rate induced thermal damage to the cell. However, the top-contact layer lift-off processing enabled us to reach 1.7 m/s scribing speed with a minimal device degradation. Also, we demonstrated the P3 processing in the ultra-high speed regime, where the scribing speed of 50 m/s was obtained. Finally, selected laser processes were tested in the case of mini-module scribing. Overall, we conclude, that the top-contact layer lift-off processing is the only reliable solution for high-speed P3 laser scribing, which can be implemented in the future terawatt-scale photovoltaic production facilities.

  9. CIGS thin-film solar module processing: case of high-speed laser scribing

    Science.gov (United States)

    Gečys, Paulius; Markauskas, Edgaras; Nishiwaki, Shiro; Buecheler, Stephan; De Loor, Ronny; Burn, Andreas; Romano, Valerio; Račiukaitis, Gediminas

    2017-01-01

    In this paper, we investigate the laser processing of the CIGS thin-film solar cells in the case of the high-speed regime. The modern ultra-short pulsed laser was used exhibiting the pulse repetition rate of 1 MHz. Two main P3 scribing approaches were investigated – ablation of the full layer stack to expose the molybdenum back-contact, and removal of the front-contact only. The scribe quality was evaluated by SEM together with EDS spectrometer followed by electrical measurements. We also modelled the electrical behavior of a device at the mini-module scale taking into account the laser-induced damage. We demonstrated, that high-speed process at high laser pulse repetition rate induced thermal damage to the cell. However, the top-contact layer lift-off processing enabled us to reach 1.7 m/s scribing speed with a minimal device degradation. Also, we demonstrated the P3 processing in the ultra-high speed regime, where the scribing speed of 50 m/s was obtained. Finally, selected laser processes were tested in the case of mini-module scribing. Overall, we conclude, that the top-contact layer lift-off processing is the only reliable solution for high-speed P3 laser scribing, which can be implemented in the future terawatt-scale photovoltaic production facilities. PMID:28084403

  10. Active control system for high speed windmills

    Science.gov (United States)

    Avery, D.E.

    1988-01-12

    A pump stroke is matched to the operating speed of a high speed windmill. The windmill drives a hydraulic pump for a control. Changes in speed of a wind driven shaft open supply and exhaust valves to opposite ends of a hydraulic actuator to lengthen and shorten an oscillating arm thereby lengthening and shortening the stroke of an output pump. Diminishing wind to a stall speed causes the valves to operate the hydraulic cylinder to shorten the oscillating arm to zero. A pressure accumulator in the hydraulic system provides the force necessary to supply the hydraulic fluid under pressure to drive the actuator into and out of the zero position in response to the windmill shaft speed approaching and exceeding windmill stall speed. 4 figs.

  11. Development of a Revolutionary High Speed Spindle

    Science.gov (United States)

    Agba, Emmanuel I.

    1999-01-01

    This report presents the development of a hydraulic motor driven spindle system to be employed for high speed machining of composite materials and metals. The spindle system is conceived to be easily retrofitted into conventional milling machines. The need for the hydraulic spindle arises because of the limitations placed on conventional electric motor driven spindles by the low cutting power and the presence of vibrational phenomena associated with voltage frequency at high rotational speeds. Also, the electric motors are usually large and expensive when power requirements are moderately high. In contrast, hydraulic motor driven spindles promise a distinct increase in spindle life over the conventional electric motor driven spindles. In this report, existing technologies applicable to spindle holder for severe operating conditions were reviewed, conceptual designs of spindle holder system were developed and evaluated, and a detailed design of an acceptable concept was conducted. Finally, a rapid prototype of the design was produced for design evaluation.

  12. Network Based High Speed Product Innovation

    DEFF Research Database (Denmark)

    Lindgren, Peter

    In the first decade of the 21st century, New Product Development has undergone major changes in the way NPD is managed and organised. This is due to changes in technology, market demands, and in the competencies of companies. As a result NPD organised in different forms of networks is predicted...... to be of ever-increasing importance to many different kinds of companies. This happens at the same times as the share of new products of total turnover and earnings is increasing at unprecedented speed in many firms and industries. The latter results in the need for very fast innovation and product development...... - a need that can almost only be resolved by organising NPD in some form of network configuration. The work of Peter Lindgren is on several aspects of network based high speed product innovation and contributes to a descriptive understanding of this phenomenon as well as with normative theory on how NPD...

  13. Neutron and high speed photogrammetric arcjet diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, P.A.E.; Rogers, J.D.; Fowler, P.H.; Deininger, W.D.; Taylor, A.D.

    1989-01-01

    Two methods for real time internal diagnostics of arcjet engines are described. One method uses cold, thermal, or epithermal neutrons. Cold neutrons are used to detect the presence and location of hydrogenous propellants. Thermal neutrons are used to delineate the edge contours of anode and cathode surfaces and to measure stress/strain. Epithermal neutrons are used to measure temperatures on arcjet surfaces, bulk material temperatures, and point temperatures in bulk materials. It is found that this method, with an exposure time of 10 min, produces at temperature accuracy for W or Re of + or - 2.5 C. The other method uses visible-light high-speed photogrammetry to obtain images of the transient behavior of the arc during start-up and to relate this behavior to electrial supply characteristics such as voltage, current, and ripple.

  14. Merging of high speed argon plasma jets

    Energy Technology Data Exchange (ETDEWEB)

    Case, A.; Messer, S.; Brockington, S.; Wu, L.; Witherspoon, F. D. [HyperV Technologies Corp., Chantilly, Virginia 22180 (United States); Elton, R. [University of Maryland, College Park, Maryland 20742 (United States)

    2013-01-15

    Formation of an imploding plasma liner for the plasma liner experiment (PLX) requires individual plasma jets to merge into a quasi-spherical shell of plasma converging on the origin. Understanding dynamics of the merging process requires knowledge of the plasma phenomena involved. We present results from the study of the merging of three plasma jets in three dimensional geometry. The experiments were performed using HyperV Technologies Corp. 1 cm Minirailguns with a preionized argon plasma armature. The vacuum chamber partially reproduces the port geometry of the PLX chamber. Diagnostics include fast imaging, spectroscopy, interferometry, fast pressure probes, B-dot probes, and high speed spatially resolved photodiodes, permitting measurements of plasma density, temperature, velocity, stagnation pressure, magnetic field, and density gradients. These experimental results are compared with simulation results from the LSP 3D hybrid PIC code.

  15. HIGH SPEED KERR CELL FRAMING CAMERA

    Science.gov (United States)

    Goss, W.C.; Gilley, L.F.

    1964-01-01

    The present invention relates to a high speed camera utilizing a Kerr cell shutter and a novel optical delay system having no moving parts. The camera can selectively photograph at least 6 frames within 9 x 10/sup -8/ seconds during any such time interval of an occurring event. The invention utilizes particularly an optical system which views and transmits 6 images of an event to a multi-channeled optical delay relay system. The delay relay system has optical paths of successively increased length in whole multiples of the first channel optical path length, into which optical paths the 6 images are transmitted. The successively delayed images are accepted from the exit of the delay relay system by an optical image focusing means, which in turn directs the images into a Kerr cell shutter disposed to intercept the image paths. A camera is disposed to simultaneously view and record the 6 images during a single exposure of the Kerr cell shutter. (AEC)

  16. Application of railgun principle to high-velocity hydrogen pellet injection for magnetic fusion reactor fueling

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K.; Zhang, J.

    1992-01-01

    Three separate papers are included which report research progress during this period: (1) A new railgun configuration with perforated sidewalls, (2) development of a fuseless small-bore railgun for injection of high-speed hydrogen pellets into magnetically confined plasmas, and (3) controls and diagnostics on a fuseless railgun for solid hydrogen pellet injection.

  17. Ablation of a Deuterium Pellet in a Fusion Plasma Viewed as a Stopping Power Problem

    DEFF Research Database (Denmark)

    Chang, C. T.

    1983-01-01

    At present, the most exploited technology to refuel a future fusion reactor is the high speed injection of macroscopic size pellet of solid hydrogen isotopes. The basic idea is that the ablation of a pellet in a fusion reactor is mainly caused by thermal electrons (~ 10 keV) /1/. Due to the low s...

  18. High Speed Magnetostrictive MEMS Actuated Mirror Deflectors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The main goal of this proposal is to develop high speed magnetostrictive and MEMS actuators for rapidly deflecting or deforming mirrors. High speed, light-weight,...

  19. High Speed Magnetostrictive MEMS Actuated Mirror Deflectors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop high speed magnetostrictive and MEMS actuators for rapidly deflecting or deforming mirrors. High speed, light-weight, low voltage beam...

  20. High-Speed Low-Jitter Frequency Multiplication in CMOS

    NARCIS (Netherlands)

    van de Beek, R.C.H.

    2004-01-01

    This thesis deals with high-speed Clock and Frequency Multiplication. The term `high-speedù applies to both the output and the reference frequency of the multiplier. Much emphasis is placed on analysis and optimization of the total timing inaccuracies, and on implementing a high-speed feedback

  1. Thermal Conductance Engineering for High-Speed TES Microcalorimeters

    Science.gov (United States)

    Hays-Wehle, J. P.; Schmidt, D. R.; Ullom, J. N.; Swetz, D. S.

    2016-07-01

    Many current and future applications for superconducting transition-edge sensor (TES) microcalorimeters require significantly faster pulse response than is currently available. X-ray spectroscopy experiments at next-generation synchrotron light sources need to successfully capture very large fluxes of photons, while detectors at free-electron laser facilities need pulse response fast enough to match repetition rates of the source. Additionally, neutrino endpoint experiments such as HOLMES need enormous statistics, yet are extremely sensitive to pile-up effects that can distort spectra. These issues can be mitigated only by fast rising and falling edges. To address these needs, we have designed high-speed TES detectors with novel geometric enhancements to increase the thermal conductance of pixels suspended on silicon nitride membranes. This paper shows that the thermal conductivity can be precisely engineered to values spanning over an order of magnitude to achieve fast thermal relaxation times tailored to the relevant applications. Using these pixel prototypes, we demonstrate decay time constants faster than 100 μ s, while still maintaining spectral resolution of 3 eV FWHM at 1.5 keV. This paper also discusses the trade-offs inherent in reducing the pixel time constant, such as increased bias current leading to degradation in energy resolution, and potential modifications to improve performance.

  2. Sensor study for high speed autonomous operations

    Science.gov (United States)

    Schneider, Anne; La Celle, Zachary; Lacaze, Alberto; Murphy, Karl; Del Giorno, Mark; Close, Ryan

    2015-06-01

    As robotic ground systems advance in capabilities and begin to fulfill new roles in both civilian and military life, the limitation of slow operational speed has become a hindrance to the wide-spread adoption of these systems. For example, military convoys are reluctant to employ autonomous vehicles when these systems slow their movement from 60 miles per hour down to 40. However, these autonomous systems must operate at these lower speeds due to the limitations of the sensors they employ. Robotic Research, with its extensive experience in ground autonomy and associated problems therein, in conjunction with CERDEC/Night Vision and Electronic Sensors Directorate (NVESD), has performed a study to specify system and detection requirements; determined how current autonomy sensors perform in various scenarios; and analyzed how sensors should be employed to increase operational speeds of ground vehicles. The sensors evaluated in this study include the state of the art in LADAR/LIDAR, Radar, Electro-Optical, and Infrared sensors, and have been analyzed at high speeds to study their effectiveness in detecting and accounting for obstacles and other perception challenges. By creating a common set of testing benchmarks, and by testing in a wide range of real-world conditions, Robotic Research has evaluated where sensors can be successfully employed today; where sensors fall short; and which technologies should be examined and developed further. This study is the first step to achieve the overarching goal of doubling ground vehicle speeds on any given terrain.

  3. Material constraints on high-speed design

    Science.gov (United States)

    Bucur, Diana; Militaru, Nicolae

    2015-02-01

    Current high-speed circuit designs with signal rates up to 100Gbps and above are implying constraints for dielectric and conductive materials and their dependence of frequency, for component elements and for production processes. The purpose of this paper is to highlight through various simulation results the frequency dependence of specific parameters like insertion and return loss, eye diagrams, group delay that are part of signal integrity analyses type. In low-power environment designs become more complex as the operation frequency increases. The need for new materials with spatial uniformity for dielectric constant is a need for higher data rates circuits. The fiber weave effect (FWE) will be analyzed through the eye diagram results for various dielectric materials in a differential signaling scheme given the fact that the FWE is a phenomenon that affects randomly the performance of the circuit on balanced/differential transmission lines which are typically characterized through the above mentioned approaches. Crosstalk between traces is also of concern due to propagated signals that have tight rise and fall times or due to high density of the boards. Criteria should be considered to achieve maximum performance of the designed system requiring critical electronic properties.

  4. CMOS Image Sensors for High Speed Applications

    Directory of Open Access Journals (Sweden)

    M. Jamal Deen

    2009-01-01

    Full Text Available Recent advances in deep submicron CMOS technologies and improved pixel designs have enabled CMOS-based imagers to surpass charge-coupled devices (CCD imaging technology for mainstream applications. The parallel outputs that CMOS imagers can offer, in addition to complete camera-on-a-chip solutions due to being fabricated in standard CMOS technologies, result in compelling advantages in speed and system throughput. Since there is a practical limit on the minimum pixel size (4~5 μm due to limitations in the optics, CMOS technology scaling can allow for an increased number of transistors to be integrated into the pixel to improve both detection and signal processing. Such smart pixels truly show the potential of CMOS technology for imaging applications allowing CMOS imagers to achieve the image quality and global shuttering performance necessary to meet the demands of ultrahigh-speed applications. In this paper, a review of CMOS-based high-speed imager design is presented and the various implementations that target ultrahigh-speed imaging are described. This work also discusses the design, layout and simulation results of an ultrahigh acquisition rate CMOS active-pixel sensor imager that can take 8 frames at a rate of more than a billion frames per second (fps.

  5. CMOS Image Sensors for High Speed Applications.

    Science.gov (United States)

    El-Desouki, Munir; Deen, M Jamal; Fang, Qiyin; Liu, Louis; Tse, Frances; Armstrong, David

    2009-01-01

    Recent advances in deep submicron CMOS technologies and improved pixel designs have enabled CMOS-based imagers to surpass charge-coupled devices (CCD) imaging technology for mainstream applications. The parallel outputs that CMOS imagers can offer, in addition to complete camera-on-a-chip solutions due to being fabricated in standard CMOS technologies, result in compelling advantages in speed and system throughput. Since there is a practical limit on the minimum pixel size (4∼5 μm) due to limitations in the optics, CMOS technology scaling can allow for an increased number of transistors to be integrated into the pixel to improve both detection and signal processing. Such smart pixels truly show the potential of CMOS technology for imaging applications allowing CMOS imagers to achieve the image quality and global shuttering performance necessary to meet the demands of ultrahigh-speed applications. In this paper, a review of CMOS-based high-speed imager design is presented and the various implementations that target ultrahigh-speed imaging are described. This work also discusses the design, layout and simulation results of an ultrahigh acquisition rate CMOS active-pixel sensor imager that can take 8 frames at a rate of more than a billion frames per second (fps).

  6. Modeling of high-speed electronic devices

    Directory of Open Access Journals (Sweden)

    V. G. Kudrya

    2013-09-01

    Full Text Available Introduction. The theme of this publication is the modeling of electronic tools that operate in the frequency range from zero to terahertz and higher. Application of new concepts and technologies, including biotechnology and nanotechnology in the development of monolithic integrated circuits led to a backlog of technologies of projecting from technologies and experimental research and manufacturing. The aim of this work is to develop algorithms for analysis, reflecting not only topological as well as morphological properties of the object, that is designing within the framework of accounting EMI communicational  transmission of energy and information in the volume of the monolithic integrated circuit. Basic steps for constructing the algorithm. The object of design is presented in the form of basic elements, which can be combined with a communication structure. The object of design is presented in the form of basic elements, which can be combined with a communication structure. There are three types of matrix equations: component; component - communication structure; communication structure. Systems of equations are reduced to standardized descriptors of mathematical model by which to understand current of poles and voltage arcs whole set of basic elements. In this way obtained mathematical model that can be implemented in CAD nano and micro technology electronics. Conclusions. Mathematical models of analysis of high-speed digital and analog electronic means. The algorithm allows morphological optimization is to minimize the adverse effects outside the system of electromagnetic interaction between the components and communicator.

  7. High-Speed RaPToRS

    Science.gov (United States)

    Henchen, Robert; Esham, Benjamin; Becker, William; Pogozelski, Edward; Padalino, Stephen; Sangster, Thomas; Glebov, Vladimir

    2008-11-01

    The High-Speed Rapid Pneumatic Transport of Radioactive Samples (HS-RaPToRS) system, designed to quickly and safely move radioactive materials, was assembled and tested at the Mercury facility of the Naval Research Laboratory (NRL) in Washington D.C. A sample, which is placed inside a four-inch-diameter carrier, is activated before being transported through a PVC tube via airflow. The carrier travels from the reaction chamber to the end station where it pneumatically brakes prior to the gate. A magnetic latch releases the gate when the carrier arrives and comes to rest. The airflow, optical carrier-monitoring devices, and end gate are controlled manually or automatically with LabView software. The installation and testing of the RaPToRS system at NRL was successfully completed with transport times of less than 3 seconds. The speed of the carrier averaged 16 m/s. Prospective facilities for similar systems include the Laboratory for Laser Energetics and the National Ignition Facility.

  8. High-speed ACR/NEMA interface

    Science.gov (United States)

    Reijns, Gerard L.; Santilli, D.; Schellingerhout, G.; Jochem, A. J.; Ottes, Fenno P.; van Aken, I. W.

    1990-08-01

    The design and implementation of a standard high speed ACR-NEMA communications interface is described. The upper layers e.g. the Presentation layer, Session layer and part of the Transport/Network layer have been implemented in software. In order to reach the speed requirement of 8M byte/sec. the lower layers e.g. part of the Transport/Network layer and Data Link layer have been implemented in hardware. We have developed and built an interface for an IBM personal computer P5/2 model 50, working under the operating system OS/2. The PS/2, model 50 has been equipped with a fast micro-channel bus, which enables a large throughput. The operating systern OS/2 has a multitasking capability, which enables concurrent programming. In order to minimize the delays, we used this multitasking facility to create a number of parallel operating "threads". The Transport/Network layer functions have been implemented using a receive thread, two send threads and a device driver with three hardware registers. The time to transfer a packet by DMA, to initiate the DMA logic and to execute the required Kernal functions have each been measured and figures are shown. The Data Link layer provides for storage of two packets in two separate random access memories (RAM's). These two RAM's enable a pipelined operation, which minimizes the delay in the Data Link layer.

  9. High Speed Fibre Optic Backbone LAN

    Science.gov (United States)

    Tanimoto, Masaaki; Hara, Shingo; Kajita, Yuji; Kashu, Fumitoshi; Ikeuchi, Masaru; Hagihara, Satoshi; Tsuzuki, Shinji

    1987-09-01

    Our firm has developed the SUMINET-4100 series, a fibre optic local area network (LAN), to serve the communications system trunk line needs for facilities, such as steel refineries, automobile plants and university campuses, that require large transmission capacity, and for the backbone networks used in intelligent building systems. The SUMINET-4100 series is already in service in various fields of application. Of the networks available in this series, the SUMINET-4150 has a trunk line speed of 128 Mbps and the multiplexer used for time division multiplexing (TDM) was enabled by designing an ECL-TTL gate array (3000 gates) based custom LSI. The synchronous, full-duplex V.24 and V.3.5 interfaces (SUMINET-2100) are provided for use with general purpose lines. And the IBM token ring network, the SUMINET-3200, designed for heterogeneous PCs and the Ethernet can all be connected to sub loops. Further, the IBM 3270 TCA and 5080 CADAM can be connected in the local mode. Interfaces are also provided for the NTT high-speed digital service, the digital PBX systems, and the Video CODEC system. The built-in loop monitor (LM) and network supervisory processor (NSP) provide management of loop utilization and send loop status signals to the host CPU's network configuration and control facility (NCCF). These built-in functions allow both the computer system and LAN to be managed from a single source at the host. This paper outlines features of the SUMINET-4150 and provides an example of its installation.

  10. Injection of Deuterium Pellets

    DEFF Research Database (Denmark)

    Sørensen, H.; Andersen, P.; Andersen, S. A.

    1984-01-01

    A pellet injection system made for the TFR tokamak at Fontenay-aux-Roses, Paris is described. 0.12-mg pellets are injected with velocities of around 600-700 m/s through a 5-m long guide tube. Some details of a new light gas gun are given; with this gun, hydrogen pellets are accelerated...

  11. High-Speed Data Recorder for Space, Geodesy, and Other High-Speed Recording Applications

    Science.gov (United States)

    Taveniku, Mikael

    2013-01-01

    A high-speed data recorder and replay equipment has been developed for reliable high-data-rate recording to disk media. It solves problems with slow or faulty disks, multiple disk insertions, high-altitude operation, reliable performance using COTS hardware, and long-term maintenance and upgrade path challenges. The current generation data recor - ders used within the VLBI community are aging, special-purpose machines that are both slow (do not meet today's requirements) and are very expensive to maintain and operate. Furthermore, they are not easily upgraded to take advantage of commercial technology development, and are not scalable to multiple 10s of Gbit/s data rates required by new applications. The innovation provides a softwaredefined, high-speed data recorder that is scalable with technology advances in the commercial space. It maximally utilizes current technologies without being locked to a particular hardware platform. The innovation also provides a cost-effective way of streaming large amounts of data from sensors to disk, enabling many applications to store raw sensor data and perform post and signal processing offline. This recording system will be applicable to many applications needing realworld, high-speed data collection, including electronic warfare, softwaredefined radar, signal history storage of multispectral sensors, development of autonomous vehicles, and more.

  12. Manufacture of Regularly Shaped Sol-Gel Pellets

    Science.gov (United States)

    Leventis, Nicholas; Johnston, James C.; Kinder, James D.

    2006-01-01

    An extrusion batch process for manufacturing regularly shaped sol-gel pellets has been devised as an improved alternative to a spray process that yields irregularly shaped pellets. The aspect ratio of regularly shaped pellets can be controlled more easily, while regularly shaped pellets pack more efficiently. In the extrusion process, a wet gel is pushed out of a mold and chopped repetitively into short, cylindrical pieces as it emerges from the mold. The pieces are collected and can be either (1) dried at ambient pressure to xerogel, (2) solvent exchanged and dried under ambient pressure to ambigels, or (3) supercritically dried to aerogel. Advantageously, the extruded pellets can be dropped directly in a cross-linking bath, where they develop a conformal polymer coating around the skeletal framework of the wet gel via reaction with the cross linker. These pellets can be dried to mechanically robust X-Aerogel.

  13. High Speed Dynamics in Brittle Materials

    Science.gov (United States)

    Hiermaier, Stefan

    2015-06-01

    Brittle Materials under High Speed and Shock loading provide a continuous challenge in experimental physics, analysis and numerical modelling, and consequently for engineering design. The dependence of damage and fracture processes on material-inherent length and time scales, the influence of defects, rate-dependent material properties and inertia effects on different scales make their understanding a true multi-scale problem. In addition, it is not uncommon that materials show a transition from ductile to brittle behavior when the loading rate is increased. A particular case is spallation, a brittle tensile failure induced by the interaction of stress waves leading to a sudden change from compressive to tensile loading states that can be invoked in various materials. This contribution highlights typical phenomena occurring when brittle materials are exposed to high loading rates in applications such as blast and impact on protective structures, or meteorite impact on geological materials. A short review on experimental methods that are used for dynamic characterization of brittle materials will be given. A close interaction of experimental analysis and numerical simulation has turned out to be very helpful in analyzing experimental results. For this purpose, adequate numerical methods are required. Cohesive zone models are one possible method for the analysis of brittle failure as long as some degree of tension is present. Their recent successful application for meso-mechanical simulations of concrete in Hopkinson-type spallation tests provides new insight into the dynamic failure process. Failure under compressive loading is a particular challenge for numerical simulations as it involves crushing of material which in turn influences stress states in other parts of a structure. On a continuum scale, it can be modeled using more or less complex plasticity models combined with failure surfaces, as will be demonstrated for ceramics. Models which take microstructural

  14. Photodetector having high speed and sensitivity

    Science.gov (United States)

    Morse, Jeffrey D.; Mariella, Jr., Raymond P.

    1991-01-01

    The present invention provides a photodetector having an advantageous combination of sensitivity and speed; it has a high sensitivity while retaining high speed. In a preferred embodiment, visible light is detected, but in some embodiments, x-rays can be detected, and in other embodiments infrared can be detected. The present invention comprises a photodetector having an active layer, and a recombination layer. The active layer has a surface exposed to light to be detected, and comprises a semiconductor, having a bandgap graded so that carriers formed due to interaction of the active layer with the incident radiation tend to be swept away from the exposed surface. The graded semiconductor material in the active layer preferably comprises Al.sub.1-x Ga.sub.x As. An additional sub-layer of graded In.sub.1-y Ga.sub.y As may be included between the Al.sub.1-x Ga.sub.x As layer and the recombination layer. The recombination layer comprises a semiconductor material having a short recombination time such as a defective GaAs layer grown in a low temperature process. The recombination layer is positioned adjacent to the active layer so that carriers from the active layer tend to be swept into the recombination layer. In an embodiment, the photodetector may comprise one or more additional layers stacked below the active and recombination layers. These additional layers may include another active layer and another recombination layer to absorb radiation not absorbed while passing through the first layers. A photodetector having a stacked configuration may have enhanced sensitivity and responsiveness at selected wavelengths such as infrared.

  15. High Speed/ Low Effluent Process for Ethanol

    Energy Technology Data Exchange (ETDEWEB)

    M. Clark Dale

    2006-10-30

    n this project, BPI demonstrated a new ethanol fermentation technology, termed the High Speed/ Low Effluent (HS/LE) process on both lab and large pilot scale as it would apply to wet mill and/or dry mill corn ethanol production. The HS/LE process allows very rapid fermentations, with 18 to 22% sugar syrups converted to 9 to 11% ethanol ‘beers’ in 6 to 12 hours using either a ‘consecutive batch’ or ‘continuous cascade’ implementation. This represents a 5 to 8X increase in fermentation speeds over conventional 72 hour batch fermentations which are the norm in the fuel ethanol industry today. The ‘consecutive batch’ technology was demonstrated on a large pilot scale (4,800 L) in a dry mill corn ethanol plant near Cedar Rapids, IA (Xethanol Biofuels). The pilot demonstrated that 12 hour fermentations can be accomplished on an industrial scale in a non-sterile industrial environment. Other objectives met in this project included development of a Low Energy (LE) Distillation process which reduces the energy requirements for distillation from about 14,000 BTU/gal steam ($0.126/gal with natural gas @ $9.00 MCF) to as low as 0.40 KW/gal electrical requirements ($0.022/gal with electricity @ $0.055/KWH). BPI also worked on the development of processes that would allow application of the HS/LE fermentation process to dry mill ethanol plants. A High-Value Corn ethanol plant concept was developed to produce 1) corn germ/oil, 2) corn bran, 3) ethanol, 4) zein protein, and 5) nutritional protein, giving multiple higher value products from the incoming corn stream.

  16. High Speed Link Radiated Emission Reduction

    Science.gov (United States)

    Bisognin, P.; Pelissou, P.; Cissou, R.; Giniaux, M.; Vargas, O.

    2016-05-01

    To control the radiated emission of high-speed link and associated unit, the current approach is to implement overall harness shielding on cables bundles. This method is very efficient in the HF/ VHF (high frequency/ very high frequency) and UHF (ultra-high frequency) ranges when the overall harness shielding is properly bonded on EMC back-shell. Unfortunately, with the increasing frequency, the associated half wavelength matches with the size of Sub-D connector that is the case for the L band. Therefore, the unit connectors become the main source of interference emission. For the L-band and S-band, the current technology of EMC back-shell leaves thin aperture matched with the L band half wavelength and therefore, the shielding effectiveness is drastically reduced. In addition, overall harness shielding means significant increases of the harness mass.Airbus D&S Toulouse and Elancourt investigated a new solution to avoid the need of overall harness shielding. The objective is to procure EM (Electro-Magnetic) clean unit connected to cables bundles free of any overall harness shielding. The proposed solution is to implement EMC common mode filtering on signal interfaces directly on unit PCB as close as possible the unit connector.Airbus D&S Elancourt designed and manufactured eight mock-ups of LVDS (Low Voltage Differential Signaling) interface PCBs' with different solutions of filtering. After verification of the signal integrity, three mock-ups were retained (RC filter and two common mode choke coil) in addition to the reference one (without EMC filter).Airbus D&S Toulouse manufactured associated LVDS cable bundles and integrated the RX (Receiver) and TX (Transmitter) LVDS boards in shielded boxes.Then Airbus D&S performed radiated emission measurement of the LVDS links subassemblies (e.g. RX and TX boxes linked by LVDS cables) according to the standard test method. This paper presents the different tested solutions and main conclusions on the feasibility of such

  17. 622 Mbps High-speed satellite communication system for WINDS

    Science.gov (United States)

    Ogawa, Yasuo; Hashimoto, Yukio; Yoshimura, Naoko; Suzuki, Ryutaro; Gedney, Richard T.; Dollard, Mike

    2006-07-01

    WINDS is the experimental communications satellite currently under joint development by Japanese Aerospace Exploration Agency (JAXA) and the National Institute of Information and Communications Technology (NICT). The high-speed satellite communication system is very effective for quick deployment of high-speed networks economically. The WINDS will realize ultra high-speed networking and demonstrate operability of satellite communication systems in high-speed internet. NICT is now developing high-speed satellite communication system for WINDS. High-speed TDMA burst modem with high performance TPC error correction is underdevelopment. Up to the DAC on the transmitter and from the ADC on the receiver, all modem functions are performed in the digital processing technology. Burst modem has been designed for a user data rate up to 1244 Mbps. NICT is developing the digital terminal as a user interface and a network controller for this earth station. High compatibility with the Internet will be provided.

  18. 33 CFR 84.24 - High-speed craft.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false High-speed craft. 84.24 Section... RULES ANNEX I: POSITIONING AND TECHNICAL DETAILS OF LIGHTS AND SHAPES § 84.24 High-speed craft. (a) The masthead light of high-speed craft with a length to breadth ratio of less than 3.0 may be placed at...

  19. Chicago-St. Louis high speed rail plan

    Energy Technology Data Exchange (ETDEWEB)

    Stead, M.E.

    1994-12-31

    The Illinois Department of Transportation (IDOT), in cooperation with Amtrak, undertook the Chicago-St. Louis High Speed Rail Financial and Implementation Plan study in order to develop a realistic and achievable blueprint for implementation of high speed rail in the Chicago-St. Louis corridor. This report presents a summary of the Price Waterhouse Project Team`s analysis and the Financial and Implementation Plan for implementing high speed rail service in the Chicago-St. Louis corridor.

  20. Design of A Novel High Speed Dynamic Comparator with Low Power Dissipation for High Speed ADCs

    Directory of Open Access Journals (Sweden)

    Sougata Ghosh

    2013-01-01

    Full Text Available A new CMOS dynamic comparator using dual input single output differential amplifier as latch stage suitable for high speed analog-to-digital converters with High Speed, low power dissipation and immune to noise than the previous reported work is proposed. Back to-back inverter in the latch stage is replaced with dual-input single output differential amplifier. This topology completely removes the noise that is present in the input. The structure shows lower power dissipation and higher speed than the conventional comparators. The circuit is simulated with 1V DC supply voltage and 250 MHz clock frequency. The proposed topology is based on two cross coupled differential pairs positive feedback and switchable current sources, has a lower power dissipation, higher speed, less area, and it is shown to be very robust against transistor mismatch, noise immunity. Previous reported comparators are designed and simulated their DC response and Transient response in Cadence®Virtuoso Analog Design Environment using GPDK 90nm technology. Layouts of the proposed comparator have been done in Cadence® Virtuoso Layout XL Design Environment. DRC and LVS has been checked and compared with the corresponding circuits and RC extracted diagram has been generated. After that post layout simulation with 1V supply voltage has been done and compared the speed, power dissipation, Area, delay with the results before layout and the superior features of the proposed comparator are established

  1. Considerations on the DEMO pellet fuelling system

    Energy Technology Data Exchange (ETDEWEB)

    Lang, P.T., E-mail: peter.lang@ipp.mpg.de [Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, 85748 Garching (Germany); Day, Ch. [Karlsruhe Institute of Technology, 76021 Karlsruhe (Germany); Fable, E. [Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, 85748 Garching (Germany); Igitkhanov, Y. [Karlsruhe Institute of Technology, 76021 Karlsruhe (Germany); Köchl, F. [Association EURATOM-Ö AW/ATI, Atominstitut, TU Wien, 1020 Vienna (Austria); Mooney, R. [Culham Centre for Fusion Energy, Culham Science Centre, Oxfordshire OX14 3DB (United Kingdom); Pegourie, B. [CEA, IRFM, 13108 Saint-Paul-lez-Durance (France); Ploeckl, B. [Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, 85748 Garching (Germany); Wenninger, R. [Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, 85748 Garching (Germany); EFDA, Garching (Germany); Zohm, H. [Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, 85748 Garching (Germany)

    2015-10-15

    Graphical abstract: - Highlights: • Considerations are made for a core particle fuelling system covering all DEMO requirements. • Particle deposition beyond the pedestal top is needed to achieve efficient fuelling. • Conventional pellet technology enabling launching from the torus inboard side can be used. • Efforts have been taken for integrating a suitable pellet guiding system into the EU DEMO model. • In addition, further techniques bearing potential for advanced fuelling performance are considered. - Abstract: The Demonstration Fusion Power Reactor DEMO is the step foreseen to bridge the gap between ITER and the first commercial fusion power plant. One key element in the European work plan for DEMO is the elaboration of a conceptual design for a suitable core particle fuelling system. First considerations for such a system are presented in this contribution. Following the well-considered ITER solution, most analysis performed in this study assumes conventional pellet technology will be used for the fuelling system. However, taking advantage of the less compressed time frame for the DEMO project, several other techniques thought to bear potential for advanced fuelling performance are considered as well. In a first, basic analysis all actuation parameters at hand and their implications on the fuelling performance were considered. Tentative transport modeling of a reference scenario strongly indicates only particles deposited inside the plasma pedestal allow for efficient fuelling. Shallow edge fuelling results in an unbearable burden on the fuel cycle. Sufficiently deep particle deposition seems technically achievable, provided pellets are launched from the torus inboard at sufficient speed. All components required for a DEMO pellet system capable for high speed inboard pellet launch are already available or can be developed in due time with reasonable efforts. Furthermore, steps to integrate this solution into the EU DEMO model are taken.

  2. High speed matrix processors using floating point representation

    Energy Technology Data Exchange (ETDEWEB)

    Birkner, D.A.

    1980-01-01

    The author describes the architecture of a high-speed matrix processor which uses a floating-point format for data representation. It is shown how multipliers and other LSI devices are used in the design to obtain the high speed of the processor.

  3. Structural vulnerability and intervention of high speed railway networks

    Science.gov (United States)

    Zhang, Jianhua; Hu, Funian; Wang, Shuliang; Dai, Yang; Wang, Yixing

    2016-11-01

    This paper employs complex network theory to assess the structural vulnerability of high speed railway networks subjected to two different malicious attacks. Chinese, US and Japanese high speed railway networks are used to discuss the vulnerable characteristics of systems. We find that high speed railway networks are very fragile when suffering serious disturbances and two attack rules can cause analogous damages to one high speed railway network, which illustrates that the station with large degree possesses high betweenness, vice versa. Meanwhile, we discover that Japanese high speed railway network has the best global connectivity, but Chinese high speed railway network has the best local connectivity and possesses the largest transport capacity. Moreover, we find that there exist several redundant paths in Chinese high speed railway network and discover the critical stations of three HSRNs. Furthermore, the nearest-link method is adopted to implement topological interventions and to improve the connectivity and reliability of high speed railway networks. In addition, the feasibility and effectiveness of topological interventions are shown by simulations.

  4. High-Speed Photo-Polarimetry of Magnetic Cataclysmic Variables

    Directory of Open Access Journals (Sweden)

    S. B. Potter

    2015-02-01

    Full Text Available I review recent highlights of the SAAO High-speed Photo-POlarimeter (HIPPO on the study of magnetic Cataclysmic Variables. Its high-speed capabilities are demonstrated with example observations made of the intermediate polar NY Lup and the polar IGRJ14536-5522.

  5. Intelligent high-speed cutting database system development

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In this paper,the components of a high-speed cutting system are analyzed firstly.The component variables of the high-speed cutting system are classified into four types:uncontrolled variables,process variables,control variables,and output variables.The relationships and interactions of these variables are discussed.Then,by analyzing and comparing intelligent reasoning methods frequently used,the hybrid reasoning is employed to build the high-speed cutting database system.Then,the data structures of high-speed cutting case base and databases are determined.Finally,the component parts and working process of the high-speed cutting database system on the basis of hybrid reasoning are presented.

  6. High speed sampling circuit design for pulse laser ranging

    Science.gov (United States)

    Qian, Rui-hai; Gao, Xuan-yi; Zhang, Yan-mei; Li, Huan; Guo, Hai-chao; Guo, Xiao-kang; He, Shi-jie

    2016-10-01

    In recent years, with the rapid development of digital chip, high speed sampling rate analog to digital conversion chip can be used to sample narrow laser pulse echo. Moreover, high speed processor is widely applied to achieve digital laser echo signal processing algorithm. The development of digital chip greatly improved the laser ranging detection accuracy. High speed sampling and processing circuit used in the laser ranging detection system has gradually been a research hotspot. In this paper, a pulse laser echo data logging and digital signal processing circuit system is studied based on the high speed sampling. This circuit consists of two parts: the pulse laser echo data processing circuit and the data transmission circuit. The pulse laser echo data processing circuit includes a laser diode, a laser detector and a high sample rate data logging circuit. The data transmission circuit receives the processed data from the pulse laser echo data processing circuit. The sample data is transmitted to the computer through USB2.0 interface. Finally, a PC interface is designed using C# language, in which the sampling laser pulse echo signal is demonstrated and the processed laser pulse is plotted. Finally, the laser ranging experiment is carried out to test the pulse laser echo data logging and digital signal processing circuit system. The experiment result demonstrates that the laser ranging hardware system achieved high speed data logging, high speed processing and high speed sampling data transmission.

  7. HULL GESTURE AND RESISTANCE PREDICTION OF HIGH-SPEED VESSELS*

    Institute of Scientific and Technical Information of China (English)

    NI Chong-ben; ZHU Ren-chuan; MIAO Guo-ping; FAN Ju

    2011-01-01

    Since trim and sinkage are significant while vessels are advancing forward with high speed, the predicted vessel resistance based on restrained model theory or experiment may not be real resistance of vessels during voyage. It is necessary to take the influence of hull gesture into account for oredicting the resistance of high-speed ship. In the present work the resistance problem of high speed ship is treated with the viscous flow theory, and the dynamic mesh technique is adopted to coincide with variation of hull gesture of high speed vessel on voyage. The simulation of the models of S60 ship and a trimaran moving in towing tank with high speed are conducted by using the above theory and technique. The corresponding numerical results are in good agreement with the experimental data. It indicates that the resistance prediction for high speed vessels should take hull gesture into consideration and the dynamic mesh method proposed here is effective in calculating the resistance of high speed vessels.

  8. High speed twin roll casting of 6016 strip

    OpenAIRE

    Haga, T.; Ikawa, M; H.Watari; S. Kumai

    2006-01-01

    Purpose: of this paper is to clear the possibility of high speed roll casting of thin aluminum alloy strip. 6016aluminum alloy is used for sheet metal of the automobile. Therefore, casting of 6016 was tried in this study.Castability and characteristics of roll cast 6016 strip were investigated.Design/methodology/approach: was a high speed twin roll caster. The high speed twin roll caster was designedto overcome the low castability of the twin roll caster.Findings: are as below. The 6016 could...

  9. High-speed AFM of human chromosomes in liquid

    Science.gov (United States)

    Picco, L. M.; Dunton, P. G.; Ulcinas, A.; Engledew, D. J.; Hoshi, O.; Ushiki, T.; Miles, M. J.

    2008-09-01

    Further developments of the previously reported high-speed contact-mode AFM are described. The technique is applied to the imaging of human chromosomes at video rate both in air and in water. These are the largest structures to have been imaged with high-speed AFM and the first imaging in liquid to be reported. A possible mechanism that allows such high-speed contact-mode imaging without significant damage to the sample is discussed in the context of the velocity dependence of the measured lateral force on the AFM tip.

  10. Research on Aerodynamic Noise Reduction for High-Speed Trains

    OpenAIRE

    Yadong Zhang; Jiye Zhang; Tian Li; Liang Zhang; Weihua Zhang

    2016-01-01

    A broadband noise source model based on Lighthill’s acoustic theory was used to perform numerical simulations of the aerodynamic noise sources for a high-speed train. The near-field unsteady flow around a high-speed train was analysed based on a delayed detached-eddy simulation (DDES) using the finite volume method with high-order difference schemes. The far-field aerodynamic noise from a high-speed train was predicted using a computational fluid dynamics (CFD)/Ffowcs Williams-Hawkings (FW-H)...

  11. Design and Analysis of a High Speed Carry Select Adder

    OpenAIRE

    Simarpreet Singh Chawla; Swapnil Aggarwal; Anshika; Nidhi Goel

    2015-01-01

    An optimal high-speed and low-power VLSI architecture requires an efficient arithmetic processing unit that is optimized for speed and power consumption. Adders are one of the widely used in digital integrated circuit and system design.High speed adder is the necessary component in a data path, e.g. Microprocessors and a Digital signal processor. The present paper proposes a novel high-speed adder by combining the advantages of Carry Look Ahead Adder (CLAA) and Carry Select Adder (CSA), devis...

  12. Design and Analysis of a High Speed Carry Select Adder

    OpenAIRE

    Simarpreet Singh Chawla; Swapnil Aggarwal; Anshika; Nidhi Goel

    2015-01-01

    An optimal high-speed and low-power VLSI architecture requires an efficient arithmetic processing unit that is optimized for speed and power consumption. Adders are one of the widely used in digital integrated circuit and system design. High speed adder is the necessary component in a data path, e.g. Microprocessors and a Digital signal processor. The present paper proposes a novel high-speed adder by combining the advantages of Carry Look Ahead Adder (CLAA) and Carry Select Adder (CSA), devi...

  13. Trend on High-speed Power Line Communication Technology

    Science.gov (United States)

    Ogawa, Osamu

    High-speed power line communication (PLC) is useful technology to easily build the communication networks, because construction of new infrastructure is not necessary. In Europe and America, PLC has been used for broadband networks since the beginning of 21th century. In Japan, high-speed PLC was deregulated only indoor usage in 2006. Afterward it has been widely used for home area network, LAN in hotels and school buildings and so on. And recently, PLC is greatly concerned as communication technology for smart grid network. In this paper, the author surveys the high-speed PLC technology and its current status.

  14. Research on Aerodynamic Noise Reduction for High-Speed Trains

    OpenAIRE

    Yadong Zhang; Jiye Zhang; Tian Li; Liang Zhang; Weihua Zhang

    2016-01-01

    A broadband noise source model based on Lighthill’s acoustic theory was used to perform numerical simulations of the aerodynamic noise sources for a high-speed train. The near-field unsteady flow around a high-speed train was analysed based on a delayed detached-eddy simulation (DDES) using the finite volume method with high-order difference schemes. The far-field aerodynamic noise from a high-speed train was predicted using a computational fluid dynamics (CFD)/Ffowcs Williams-Hawkings (FW-H)...

  15. AN ANALYSIS METHOD FOR HIGH-SPEED CIRCUIT SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A new method for analyzing high-speed circuit systems is presented. The method adds transmission line end currents to the circuit variables of the classical modified nodal approach. Then the matrix equation describing high-speed circuit system can be formulated directly and analyzed conveniently for its normative form. A time-domain analysis method for transmission lines is also introduced. The two methods are combined together to efficiently analyze high-speed circuit systems having general transmission lines. Numerical experiment is presented and the results are compared with that calculated by Hspice.

  16. High-speed pulse train amplification in semiconductor optical amplifiers with optimized bias current.

    Science.gov (United States)

    Xia, Mingjun; Ghafouri-Shiraz, H; Hou, Lianping; Kelly, Anthony E

    2017-02-01

    In this paper, we have experimentally investigated the optimized bias current of semiconductor optical amplifiers (SOAs) to achieve high-speed input pulse train amplification with high gain and low distortion. Variations of the amplified output pulse duration with the amplifier bias currents have been analyzed and, compared to the input pulse duration, the amplified output pulse duration is broadened. As the SOA bias current decreases from the high level (larger than the saturated bias current) to the low level, the broadened pulse duration of the amplified output pulse initially decreases slowly and then rapidly. Based on the analysis, an optimized bias current of SOA for high-speed pulse train amplification is introduced. The relation between the SOA optimized bias current and the parameters of the input pulse train (pulse duration, power, and repetition rate) are experimentally studied. It is found that the larger the input pulse duration, the lower the input pulse power or a higher repetition rate can lead to a larger SOA optimized bias current, which corresponds to a larger optimized SOA gain. The effects of assist light injection and different amplifier temperatures on the SOA optimized bias current are studied and it is found that assist light injection can effectively increase the SOA optimized bias current while SOA has a lower optimized bias current at the temperature 20°C than that at other temperatures.

  17. INTELLIGENT TOOL CONDITION MONITORING IN HIGH-SPEED ...

    African Journals Online (AJOL)

    MR PRINCE

    work model has been developed for on-line condition monitoring of tool wear in high-speed ... degraded behaviours in wire electrical dis- ... mathematical models such as regression (Lin et ... an 11 kW Computer Numerical Controlled.

  18. High-Speed Thermal Characterization of Cryogenic Flows Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Luna proposes to continue development on a high-speed fiber optic sensor and readout system for cryogenic temperature measurements in liquid oxygen (LOX) and liquid...

  19. High speed railway track dynamics models, algorithms and applications

    CERN Document Server

    Lei, Xiaoyan

    2017-01-01

    This book systematically summarizes the latest research findings on high-speed railway track dynamics, made by the author and his research team over the past decade. It explores cutting-edge issues concerning the basic theory of high-speed railways, covering the dynamic theories, models, algorithms and engineering applications of the high-speed train and track coupling system. Presenting original concepts, systematic theories and advanced algorithms, the book places great emphasis on the precision and completeness of its content. The chapters are interrelated yet largely self-contained, allowing readers to either read through the book as a whole or focus on specific topics. It also combines theories with practice to effectively introduce readers to the latest research findings and developments in high-speed railway track dynamics. It offers a valuable resource for researchers, postgraduates and engineers in the fields of civil engineering, transportation, highway & railway engineering.

  20. implementation and comparative study of a high speed multimode ...

    African Journals Online (AJOL)

    SUMAN HALDAR, SOUMITA HALDAR CHAKRABORTY, PRADIPTAMAITI, PRATIK KUMAR SINHA, PIJUSH BISWAS, Dr. AMITAVA SINHA

    2016-07-07

    Jul 7, 2016 ... The key feature of the work is reduced power and simple circuitry, without ... Keywords: Digital Communication, Multimode Modulator, High Speed ..... Implementation of Universal Modulator using Co-ordinate Rotation Digital ...

  1. Next Generation Modeling Technology for High Speed Rotorcraft Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Recent R&D associated with designing high speed rotorcraft has been greatly hampered by a lack of test data and confidence in predictions for rotors operating...

  2. Next Generation Modeling Technology for High Speed Rotorcraft Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Development of a new generation of high speed rotorcraft has been hampered by both an absence of strong predictive methods for rotors operating at very high advance...

  3. CSIR National Laser Centre develops a high speed OCT system

    CSIR Research Space (South Africa)

    Sharma, Ameeth

    2016-11-01

    Full Text Available impact areas and applications include polymer characterisation, surface and thin-film characterisation and biometrics. The National laser Centre has developed a high speed, large area optical coherence tomography (OCT) prototype for fingerprint scanning...

  4. Design of high speed camera based on CMOS technology

    Science.gov (United States)

    Park, Sei-Hun; An, Jun-Sick; Oh, Tae-Seok; Kim, Il-Hwan

    2007-12-01

    The capacity of a high speed camera in taking high speed images has been evaluated using CMOS image sensors. There are 2 types of image sensors, namely, CCD and CMOS sensors. CMOS sensor consumes less power than CCD sensor and can take images more rapidly. High speed camera with built-in CMOS sensor is widely used in vehicle crash tests and airbag controls, golf training aids, and in bullet direction measurement in the military. The High Speed Camera System made in this study has the following components: CMOS image sensor that can take about 500 frames per second at a resolution of 1280*1024; FPGA and DDR2 memory that control the image sensor and save images; Camera Link Module that transmits saved data to PC; and RS-422 communication function that enables control of the camera from a PC.

  5. Application of Beyond Bound Decoding for High Speed Optical Communications

    DEFF Research Database (Denmark)

    Li, Bomin; Larsen, Knud J.; Vegas Olmos, Juan José;

    2013-01-01

    This paper studies the application of beyond bound decoding method for high speed optical communications. This hard-decision decoding method outperforms traditional minimum distance decoding method, with a total net coding gain of 10.36 dB.......This paper studies the application of beyond bound decoding method for high speed optical communications. This hard-decision decoding method outperforms traditional minimum distance decoding method, with a total net coding gain of 10.36 dB....

  6. High speed twin roll casting of 6061 alloy strips

    OpenAIRE

    T. Haga; Sakaguchi, H.; H. Watari; S. Kumai

    2008-01-01

    Purpose: of this paper is to clear the possibility of high speed roll casting of thin strips of two aluminum alloys:6061 and recycled 6061. Mechanical properties of the roll cast 6061 and recycled 6061 strips were investigated inthe frame of this purpose.Design/methodology/approach: Methods used in the present study were high speed twin roll caster and lowtemperature casting. These methods were used to realize rapid solidification and increase the casting speed.Findings: are that 6061 and rec...

  7. High-speed optical signal processing using time lenses

    DEFF Research Database (Denmark)

    Galili, Michael; Hu, Hao; Guan, Pengyu;

    2015-01-01

    This paper will discuss time lenses and their broad range of applications. A number of recent demonstrations of complex high-speed optical signal processing using time lenses will be outlined with focus on the operating principle.......This paper will discuss time lenses and their broad range of applications. A number of recent demonstrations of complex high-speed optical signal processing using time lenses will be outlined with focus on the operating principle....

  8. Application Of High Speed Photography In Science And Technology

    Science.gov (United States)

    Wu Ji-Zong, Wu; Yu-Ju, Lin

    1983-03-01

    The service works in high-speed photography carried out by the Department of Precision Instruments, Tianjin University are described in this paper. A compensation type high-speed camera was used in these works. The photographic methods adopted and better results achieved in the studies of several technical fields, such as velocity field of flow of overflow surface of high dam, combustion process of internal combustion engine, metal cutting, electrical are welding, experiment of piling of steel tube piles for supporting the marine platforms and characteristics of motion of wrist watch escape mechanism and so on are illustrated in more detail. As the extension of human visual organs and for increasing the abi-lities of observing and studying the high-speed processes, high-speed photography plays a very important role. In order to promote the application and development on high-speed photography, we have carried out the consultative and service works inside and outside Tianjin Uni-versity. The Pentazet 35 compensation type high-speed camera, made in East Germany, was used to record the high-speed events in various kinds of technical investigations and necessary results have been ob-tained. 1. Measurement of flow velocity on the overflow surface of high dam. In the design of a key water control project with high head, it is extremely necessary to determinate various characteristics of flow velocity field on the overflow surface of high dam. Since the water flow on the surface of high overflow dam possesses the features of large flow velocity and shallow water depth, therefore it is difficult to use the conventional current meters such as pilot tube, miniature cur-rent meter or electrical measuring methods of non-electrical quantities for studying this problem. Adopting the high-speed photographic method to study analogously the characteristics of flow velocity field on the overflow surface of high dam is a kind of new measuring method. People

  9. Analysis of external noise spectrum of high-speed railway

    Institute of Scientific and Technical Information of China (English)

    邓永权; 肖新标; 何宾; 金学松

    2014-01-01

    A schematic to make the spectra of the exterior noise of high speed railway was put forward. The exterior noise spectrum was defined based on the characteristics of the high-speed train exterior noise. Its characteristics considered here include identifying the exterior main sources and their locations, their frequency components including the Doppler effect due to the noise sources moving at high speed, the sound field intensity around the train in high-speed operation, the sound radiation path out of the train, and the pressure level and frequency components of the noise at the measuring points specified by the International Organization for Standardization(ISO). The characteristics of the high-speed train exterior noise of the high speed railways in operation were introduced. The advanced measuring systems and their principles for clearly indentifying the exterior noise sources were discussed in detail. Based on the concerned noise results measured at sites, a prediction model was developed to calculate the sound level and the characteristics of the exterior noise at any point where it is difficult to measure and to help to make the exterior noise spectrums. This model was also verified with the test results. The verification shows that there is a good agreement between the theoretical and experimental results.

  10. Blower Gun pellet injection system for W7-X

    Energy Technology Data Exchange (ETDEWEB)

    Dibon, M., E-mail: mathias.dibon@ipp.mpg.de [Max-Planck-Institute for Plasma Physics, Boltzmannstr. 2, 85748 Garching (Germany); Baldzuhn, J.; Beck, M. [Max-Planck-Institute for Plasma Physics, Boltzmannstr. 2, 85748 Garching (Germany); Cardella, A. [Lehrstuhl für Nukleartechnik, TU Munich, Boltzmannstr. 15, 85748 Garching (Germany); Köchl, F. [Atominstitut, TU Wien, 1020 Vienna (Austria); Kocsis, G. [Wigner RCP, RMI, P.O. Box 49, H-1525 Budapest-114 (Hungary); Lang, P.T. [Max-Planck-Institute for Plasma Physics, Boltzmannstr. 2, 85748 Garching (Germany); Macian-Juan, R. [Lehrstuhl für Nukleartechnik, TU Munich, Boltzmannstr. 15, 85748 Garching (Germany); Ploeckl, B. [Max-Planck-Institute for Plasma Physics, Boltzmannstr. 2, 85748 Garching (Germany); Szepesi, T. [Wigner RCP, RMI, P.O. Box 49, H-1525 Budapest-114 (Hungary); Weisbart, W. [Max-Planck-Institute for Plasma Physics, Boltzmannstr. 2, 85748 Garching (Germany)

    2015-10-15

    Highlights: • Operational principle of the ASDEX Upgrade Blower Gun. • Guiding tube properties for pellet guiding according to the requirements of W7-X. • Diagnostics for the characterization of the injection system. • Experimental procedure to investigate the performance of the Blower Gun. • Results concerning pellet speeds, mass loss, delivery efficiency and exit angle. - Abstract: Foreseen to perform pellet investigations in the new stellarator W7-X, the former ASDEX Upgrade Blower Gun was revised and revitalized. The systems operational characteristics have been surveyed in a test bed. The gun is designed to launch cylindrical pellets with 2 mm diameter and 2 mm length, produced from frozen deuterium D{sub 2}, hydrogen H{sub 2} or a gas mixture consisting of 50% H{sub 2} and 50% D{sub 2}. Pellets are accelerated by a short pulse of pressurized helium propellant gas to velocities in the range of 100–250 m/s. Delivery reliabilities at the launcher exit reach almost unity. The initial pellet mass is reduced to about 50% during the acceleration process. Pellet transfer to the plasma vessel was investigated by a first mock up guiding tube version. Transfer through this S-shaped stainless steel guiding tube (inner diameter 8 mm; length 6 m) containing two 1 m curvature radii was investigated for all pellet types. Tests were performed applying repetition rates from 2 Hz to 50 Hz and propellant gas pressures ranging from 0.1 to 0.6 MPa. For both H{sub 2} and D{sub 2}, low overall delivery efficiencies were observed at slow repetition rates, but stable efficiencies of about 90% above 10 Hz. About 10% of the mass is eroded while flying through the guiding tube. Pellets exit the guiding tube with an angular spread of less than 14°.

  11. Mobile Biomass Pelletizing System

    Energy Technology Data Exchange (ETDEWEB)

    Thomas Mason

    2009-04-16

    This grant project examines multiple aspects of the pelletizing process to determine the feasibility of pelletizing biomass using a mobile form factor system. These aspects are: the automatic adjustment of the die height in a rotary-style pellet mill, the construction of the die head to allow the use of ceramic materials for extreme wear, integrating a heat exchanger network into the entire process from drying to cooling, the use of superheated steam for adjusting the moisture content to optimum, the economics of using diesel power to operate the system; a break-even analysis of estimated fixed operating costs vs. tons per hour capacity. Initial development work has created a viable mechanical model. The overall analysis of this model suggests that pelletizing can be economically done using a mobile platform.

  12. Fundamentals of Biomass pellet production

    DEFF Research Database (Denmark)

    Holm, Jens Kai; Henriksen, Ulrik Birk; Hustad, Johan Einar

    2005-01-01

    Pelletizing experiments along with modelling of the pelletizing process have been carried out with the aim of understanding the fundamental physico-chemical mechanisms that control the quality and durability of biomass pellets. A small-scale California pellet mill (25 kg/h) located with the Biomass...

  13. Quality of service on high-speed data networks

    Science.gov (United States)

    Barbero, Ezio; Antonelli, Ferruccio

    1995-02-01

    Since the beginning of this century the issue of `quality' has been gaining increasing importance in a number of fields of human activities. For telecommunication services, too, the quality perceived by customers has been taken into account early on as an issue of strategic importance. Whilst for telephony the Quality of Service (QoS) has been already investigated and identified in terms of parameters and related test methodology, the situation for high speed data services (i.e. CBDS/SMDS, Frame Relay, etc.), provided by means of high speed network based on Asynchronous Transfer Moe (ATM) or Metropolitan Area Network technologies, can still be considered `under study'. There is a death of experience not only in terms of measurement instruments and procedures, but also in terms of knowledge of the relationship between the QoS provided at a network level and the quality perceived by the user on his or her terminal. The complexity of the equipment involved in setting up an end-to-end solution based on high speed data communications makes the problems of knowledge and supply of quality very hard to solve. Starting from the experience gained in carrying out high- speed network field trials based on Metropolitan Area Networks and, more recently, on ATM technology, the paper mainly deals with the problem of defining, measuring and then offering a specific QoS. First, the issue of what the user expects from the `high-speed network' is addressed. This analysis is carried out trying to gather what is peculiar to high-speed data communications from the user standpoint. Next, the focus is on how to cope with the requirements due to users' expectations, while carefully considering the basic principles of quality. Finally, a solution is proposed, starting from the experience gained from high speed networks installed in Italy.

  14. Review of High-Speed Fiber Optic Grating Sensors Systems

    Energy Technology Data Exchange (ETDEWEB)

    Udd, E; Benterou, J; May, C; Mihailov, S J; Lu, P

    2010-03-24

    Fiber grating sensors can be used to support a wide variety of high speed measurement applications. This includes measurements of vibrations on bridges, traffic monitoring on freeways, ultrasonic detection to support non-destructive tests on metal plates and providing details of detonation events. This paper provides a brief overview of some of the techniques that have been used to support high speed measurements using fiber grating sensors over frequency ranges from 10s of kHz, to MHZ and finally toward frequencies approaching the GHz regime. Very early in the development of fiber grating sensor systems it was realized that a high speed fiber grating sensor system could be realized by placing an optical filter that might be a fiber grating in front of a detector so that spectral changes in the reflection from a fiber grating were amplitude modulated. In principal the only limitation on this type of system involved the speed of the output detector which with the development of high speed communication links moved from the regime of 10s of MHz toward 10s of GHz. The earliest deployed systems involved civil structures including measurements of the strain fields on composite utility poles and missile bodies during break tests, bridges and freeways. This was followed by a series of developments that included high speed fiber grating sensors to support nondestructive testing via ultrasonic wave detection, high speed machining and monitoring ship hulls. Each of these applications involved monitoring mechanical motion of structures and thus interest was in speeds up to a few 10s of MHz. Most recently there has been interest in using fiber grating to monitor the very high speed events such as detonations and this has led to utilization of fiber gratings that are consumed during an event that may require detection speeds of hundreds of MHz and in the future multiple GHz.

  15. Advanced turbine/CO{sub 2} pellet accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Foster, C.A.; Fisher, P.W.

    1994-09-01

    An advanced turbine/CO{sub 2} pellet accelerator is being evaluated as a depaint technology at Oak Ridge National Laboratory. The program, sponsored by Warner Robins Air Logistics Center, Robins Air Force Base, Georgia, has developed a robot-compatible apparatus that efficiently accelerates pellets of dry ice with a high-speed rotating wheel. In comparison to the more conventional compressed air sandblast pellet accelerators, the turbine system can achieve higher pellet speeds, has precise speed control, and is more than ten times as efficient. A preliminary study of the apparatus as a depaint technology has been undertaken. Depaint rates of military epoxy/urethane paint systems on 2024 and 7075 aluminum panels as a function of pellet speed and throughput have been measured. In addition, methods of enhancing the strip rate by combining infra-red heat lamps with pellet blasting have also been studied. The design and operation of the apparatus will be discussed along with data obtained from the depaint studies. Applications include removal of epoxy-based points from aircraft and the cleaning of surfaces contaminated with toxic, hazardous, or radioactive substances. The lack of a secondary contaminated waste stream is of great benefit.

  16. Modeling pellet impact drilling process

    OpenAIRE

    Kovalev, Artem Vladimirovich; Ryabchikov, Sergey Yakovlevich; Isaev, Evgeniy Dmitrievich; Ulyanova, Oksana Sergeevna

    2016-01-01

    The paper describes pellet impact drilling which could be used to increase the drilling speed and the rate of penetration when drilling hard rocks. Pellet impact drilling implies rock destruction by metal pellets with high kinetic energy in the immediate vicinity of the earth formation encountered. The pellets are circulated in the bottom hole by a high velocity fluid jet, which is the principle component of the ejector pellet impact drill bit. The experiments conducted has allowed modeling t...

  17. Review of actuators for high speed active flow control

    Institute of Scientific and Technical Information of China (English)

    WANG Lin; LUO ZhenBing; XIA ZhiXun; LIU Bing; DENG Xiong

    2012-01-01

    Actuators are one of the key points for the development of active flow control technology.Efficient methods of high speed flow control can provide enhanced propulsive efficiency and at the same time enable safe and maneuverable high speed flight.The development of high speed flight technology promotes the emergence of novel and robust actuators.This review introduces the state of the art in the development of actuators that can be used in high speed active flow control.The classification and different operation criteria of the actuators are discussed.The specifications,mechanisms and applications of various popular actuator types including fluidic,mechanical,and plasma actuators are described.Based on the realistic need of high speed flow control and the existing results of actuators,a new actuator design method is proposed.At last,the merits and drawbacks of the actuators are summarized and some suggestions on the development of active flow control technology are put forward.

  18. Ultra-high-speed spectropolarimeter based on photoelastic modulator.

    Science.gov (United States)

    Zhang, Rui; Li, Kewu; Chen, Yuanyuan; Wen, Tingdun; Zhang, Minjuan; Wang, Yaoli; Xue, Peng; Wang, Zhibin

    2016-10-20

    Combined with the advantages of photoelastic modulator (PEM) ultra-high-speed modulation, this paper presents a method of ultra-high-speed spectropolarimeter based on PEM. The method provides the necessary measuring instruments for ultra-high-speed polarization spectroscopy. The main idea of this method is that an intensity modulator consisting of two retarders is placed before the PEM. The incident light under test goes through two retarders to the PEM. The interference signals are obtained by the PEM modulation. The different Stokes element interference signals are modulated by the PEM at different positions of the optical path difference. This method realizes the separation of Stokes element interference signals. The interference signals corresponding to each element are extracted, and the incident light Stokes element spectra can be obtained from the Fourier transforms of the interference signals. The modulation frequency of the PEM is high (tens to hundreds of kilohertz), so this method can realize ultra-high-speed full polarization spectroscopy. A prototype ultra-high-speed spectropolarimeter based on PEM was designed and tested. If the single-sided Fourier transformation is used, the single-sided interferogram scanning time is approximately 5 μs (i.e., the prototype is capable of scanning 20,000 interferograms per second). Polychromatic light polarization spectroscopy is measured by the prototype. The experimental results show that the average error of the prototype is less than 0.03.

  19. Assessment of rural soundscapes with high-speed train noise.

    Science.gov (United States)

    Lee, Pyoung Jik; Hong, Joo Young; Jeon, Jin Yong

    2014-06-01

    In the present study, rural soundscapes with high-speed train noise were assessed through laboratory experiments. A total of ten sites with varying landscape metrics were chosen for audio-visual recording. The acoustical characteristics of the high-speed train noise were analyzed using various noise level indices. Landscape metrics such as the percentage of natural features (NF) and Shannon's diversity index (SHDI) were adopted to evaluate the landscape features of the ten sites. Laboratory experiments were then performed with 20 well-trained listeners to investigate the perception of high-speed train noise in rural areas. The experiments consisted of three parts: 1) visual-only condition, 2) audio-only condition, and 3) combined audio-visual condition. The results showed that subjects' preference for visual images was significantly related to NF, the number of land types, and the A-weighted equivalent sound pressure level (LAeq). In addition, the visual images significantly influenced the noise annoyance, and LAeq and NF were the dominant factors affecting the annoyance from high-speed train noise in the combined audio-visual condition. In addition, Zwicker's loudness (N) was highly correlated with the annoyance from high-speed train noise in both the audio-only and audio-visual conditions. © 2013.

  20. Parallelism and pipelining in high-speed digital simulators

    Science.gov (United States)

    Karplus, W. J.

    1983-01-01

    The attainment of high computing speed as measured by the computational throughput is seen as one of the most challenging requirements. It is noted that high speed is cardinal in several distinct classes of applications. These classes are then discussed; they comprise (1) the real-time simulation of dynamic systems , (2) distributed parameter systems, and (3) mixed lumped and distributed systems. From the 1950s on, the quest for high speed in digital simulators concentrated on overcoming the limitations imposed by the so-called von Neumann bottleneck. Two major architectural approaches have made ig possible to circumvent this bottleneck and attain high speeds. These are pipelining and parallelism. Supercomputers, peripheral array processors, and microcomputer networks are then discussed.

  1. Research on Aerodynamic Noise Reduction for High-Speed Trains

    Directory of Open Access Journals (Sweden)

    Yadong Zhang

    2016-01-01

    Full Text Available A broadband noise source model based on Lighthill’s acoustic theory was used to perform numerical simulations of the aerodynamic noise sources for a high-speed train. The near-field unsteady flow around a high-speed train was analysed based on a delayed detached-eddy simulation (DDES using the finite volume method with high-order difference schemes. The far-field aerodynamic noise from a high-speed train was predicted using a computational fluid dynamics (CFD/Ffowcs Williams-Hawkings (FW-H acoustic analogy. An analysis of noise reduction methods based on the main noise sources was performed. An aerodynamic noise model for a full-scale high-speed train, including three coaches with six bogies, two inter-coach spacings, two windscreen wipers, and two pantographs, was established. Several low-noise design improvements for the high-speed train were identified, based primarily on the main noise sources; these improvements included the choice of the knuckle-downstream or knuckle-upstream pantograph orientation as well as different pantograph fairing structures, pantograph fairing installation positions, pantograph lifting configurations, inter-coach spacings, and bogie skirt boards. Based on the analysis, we designed a low-noise structure for a full-scale high-speed train with an average sound pressure level (SPL 3.2 dB(A lower than that of the original train. Thus, the noise reduction design goal was achieved. In addition, the accuracy of the aerodynamic noise calculation method was demonstrated via experimental wind tunnel tests.

  2. Effects of High-Speed Power Training on Muscle Performance and Braking Speed in Older Adults

    Directory of Open Access Journals (Sweden)

    Stephen P. Sayers

    2012-01-01

    Full Text Available We examined whether high-speed power training (HSPT improved muscle performance and braking speed using a driving simulator. 72 older adults (22 m, 50 f; age = 70.6 ± 7.3 yrs were randomized to HSPT at 40% one-repetition maximum (1RM (HSPT: n=25; 3 sets of 12–14 repetitions, slow-speed strength training at 80%1RM (SSST: n=25; 3 sets of 8–10 repetitions, or control (CON: n=22; stretching 3 times/week for 12 weeks. Leg press and knee extension peak power, peak power velocity, peak power force/torque, and braking speed were obtained at baseline and 12 weeks. HSPT increased peak power and peak power velocity across a range of external resistances (40–90% 1RM; P<0.05 and improved braking speed (P<0.05. Work was similar between groups, but perceived exertion was lower in HSPT (P<0.05. Thus, the less strenuous HSPT exerted a broader training effect and improved braking speed compared to SSST.

  3. Secondary Containment Design for a High Speed Centrifuge

    Energy Technology Data Exchange (ETDEWEB)

    Snyder, K.W.

    1999-03-01

    Secondary containment for high speed rotating machinery, such as a centrifuge, is extremely important for operating personnel safety. Containment techniques can be very costly, ungainly and time consuming to construct. A novel containment concept is introduced which is fabricated out of modular sections of polycarbonate glazed into a Unistrut metal frame. A containment study for a high speed centrifuge is performed which includes the development of parameters for secondary containment design. The Unistrut/polycarbonate shield framing concept is presented including design details and proof testing procedures. The economical fabrication and modularity of the design indicates a usefulness for this shielding system in a wide variety of containment scenarios.

  4. Method for high-speed Manchester encoded optical signal generation

    DEFF Research Database (Denmark)

    Zhang, Jianfeng; Chi, Nan; Holm-Nielsen, Pablo Villanueva

    2004-01-01

    A method for high-speed Manchester encoded optical signal generation is proposed and demonstrated with a specially configured electro-optical modulator. A 10 Gb/s Manchester encoded optical signal was generated, and its bit-error-ratio (BER) performance was evaluated.......A method for high-speed Manchester encoded optical signal generation is proposed and demonstrated with a specially configured electro-optical modulator. A 10 Gb/s Manchester encoded optical signal was generated, and its bit-error-ratio (BER) performance was evaluated....

  5. Ping-Pong Robotics with High-Speed Vision System

    DEFF Research Database (Denmark)

    Li, Hailing; Wu, Haiyan; Lou, Lei

    2012-01-01

    , a multithreshold legmentation algorithm is applied in a stereo-vision running at 150Hz. Based on the estimated 3D ball positions, a novel two-phase trajectory prediction is exploited to determine the hitting position. Benefiting from the high-speed visual feedback, the hitting position and thus the motion planning......The performance of vision-based control is usually limited by the low sampling rate of the visual feedback. We address Ping-Pong robotics as a widely studied example which requires high-speed vision for highly dynamic motion control. In order to detect a flying ball accurately and robustly...

  6. Recent progress on high-speed optical transmission

    Directory of Open Access Journals (Sweden)

    Jianjun Yu

    2016-05-01

    Full Text Available The recently reported high spectral efficiency (SE and high-baud-rate signal transmission are all based on digital coherent optical communications and digital signal processing (DSP. DSP simplifies the reception of advanced modulation formats and also enables the major electrical and optical impairments to be processed and compensated in the digital domain, at the transmitter or receiver side. In this paper, we summarize the research progress on high-speed signal generation and detection and also show the progress on DSP for high-speed signal detection. We also report the latest progress on multi-core and multi-mode multiplexing.

  7. Supersonic stall flutter of high-speed fans

    Science.gov (United States)

    Adamczyk, J. J.; Stevans, W.; Jutras, R.

    1981-01-01

    An analytical model is proposed for predicting the onset of supersonic stall bending flutter in high-speed rotors. The analysis is based on a modified two-dimensional, compressible, unsteady actuator disk theory. The stability boundary predicted by the analysis is shown to be in good agreement with the measured boundary of a high speed fan. The prediction that the flutter mode would be a forward traveling wave sensitive to wheel speed and aerodynamic loading is confirmed by experimental measurements. In addition, the analysis shows that reduced frequency and dynamic head also play a significant role in establishing the supersonic stall bending flutter boundary of an unshrouded fan.

  8. Improvement of die life in high speed injection die casting

    Institute of Scientific and Technical Information of China (English)

    Yasuhiro Arisuda; Akihito Hasuno; Junji Yoshida; Kazunari Tanii

    2008-01-01

    High-speed injection die casting is an efficient manufacturing technology for upgrading aluminum die-cast products. However, deficiencies (such as die damage in eady period) due to larger load on the molding die compared with conventional technology have brought new challenges. In this study, the cause of damage generated in super high-speed injection was investigated by the combination of experimental observation of the dies and CAE simulation (e.g. die temperature analysis, flow analysis and thermal stress analysis). The potential countermeasures to solve the above problems were also proposed.

  9. Improvement of die life in high speed injection die casting

    Directory of Open Access Journals (Sweden)

    Akihito Hasuno

    2008-11-01

    Full Text Available High-speed injection die casting is an effi cient manufacturing technology for upgrading aluminum die-cast products. However, defi ciencies (such as die damage in early period due to larger load on the molding die compared with conventional technology have brought new challenges. In this study, the cause of damage generated in super high-speed injection was investigated by the combination of experimental observation of the dies and CAE simulation (e.g. die emperature analysis, fl ow analysis and thermal stress analysis. The potential countermeasures to solve the above problems were also proposed.

  10. Compact Models and Measurement Techniques for High-Speed Interconnects

    CERN Document Server

    Sharma, Rohit

    2012-01-01

    Compact Models and Measurement Techniques for High-Speed Interconnects provides detailed analysis of issues related to high-speed interconnects from the perspective of modeling approaches and measurement techniques. Particular focus is laid on the unified approach (variational method combined with the transverse transmission line technique) to develop efficient compact models for planar interconnects. This book will give a qualitative summary of the various reported modeling techniques and approaches and will help researchers and graduate students with deeper insights into interconnect models in particular and interconnect in general. Time domain and frequency domain measurement techniques and simulation methodology are also explained in this book.

  11. Magneto-optical system for high speed real time imaging

    Science.gov (United States)

    Baziljevich, M.; Barness, D.; Sinvani, M.; Perel, E.; Shaulov, A.; Yeshurun, Y.

    2012-08-01

    A new magneto-optical system has been developed to expand the range of high speed real time magneto-optical imaging. A special source for the external magnetic field has also been designed, using a pump solenoid to rapidly excite the field coil. Together with careful modifications of the cryostat, to reduce eddy currents, ramping rates reaching 3000 T/s have been achieved. Using a powerful laser as the light source, a custom designed optical assembly, and a high speed digital camera, real time imaging rates up to 30 000 frames per seconds have been demonstrated.

  12. Microstructural development and mechanical properties of high speed steels

    Energy Technology Data Exchange (ETDEWEB)

    Rubio, A.; Gordo, E.; Velasco, F.; Candela, N.; Torralba, J.M. [Dept. de Ciencia de Materiales e Ing. Metalurgica, Univ. Carlos III de Madrid (Spain)

    2001-07-01

    A study was made of the sintering of high speed steel (HSS), M3/2, with different percentage additions - (0%, 2.5%, 5% and 8% by vol.) - of niobium carbide. The mixture was ground in a high speed ball mill to ensure smooth distribution and a material free from agglomerates. All the mixtures were sintered at temperatures above that of solidus, higher temperatures being required as the proportion of the niobium carbide was increased. The variation of the density and hardness were measured, as well as the evolution of the microstructure and the composition of the carbides with the sintering temperature. (orig.)

  13. Plasma-Assisted Chemistry in High-Speed Flow

    Institute of Scientific and Technical Information of China (English)

    Sergey B.LEONOV; Dmitry A.YARANTSEV; Anatoly P.NAPARTOVICH; Igor V.KOCHETOV

    2007-01-01

    Fundamental problems related to the high-speed combustion are analyzed. The result of plasma-chemical modeling is presented as a motivation of experimental activity.Numerical simulations of the effect of uniform non-equilibrium discharge on the premixed hydrogen and ethylene-air mixture in supersonic flow demonstrate an advantage of such a technique over a heating.Experimental results on multi-electrode non-uniform discharge maintenance behind wallstep and in cavity of supersonic flow are presented.The model test on hydrogen and ethylene ignition is demonstrated at direct fuel injection to low-temperature high-speed airflow.

  14. Application of railgun principle to high-velocity hydrogen pellet injection for magnetic fusion reactor fueling. Progress report, August 16, 1991--September 30, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K.; Zhang, J.

    1992-12-01

    Three separate papers are included which report research progress during this period: (1) A new railgun configuration with perforated sidewalls, (2) development of a fuseless small-bore railgun for injection of high-speed hydrogen pellets into magnetically confined plasmas, and (3) controls and diagnostics on a fuseless railgun for solid hydrogen pellet injection.

  15. Dispersive and nonlinear effects in high-speed reconfigurable WDM optical fiber communication systems

    Science.gov (United States)

    Yu, Changyuan

    Chromatic dispersion, polarization mode dispersion (PMD) and nonlinear effects are important issues on the physical layer of high-speed reconfigurable WDM optical fiber communication systems. For beyond 10 Gbit/s optical fiber transmission system, it is essential that chromatic dispersion and PMD be well managed by dispersion monitoring and compensation. One the other hand, dispersive and nonlinear effects in optical fiber systems can also be beneficial and has applications on pulse management, all-optical signal processing and network function, which will be essential for high bite-rate optical networks and replacing the expensive optical-electrical-optical (O/E/O) conversion. In this Ph.D. dissertation, we present a detailed research on dispersive and nonlinear effects in high-speed optical communication systems. We have demonstrated: (i) A novel technique for optically compensating the PMD-induced RF power fading that occurs in single-sideband (SSB) subcarrier-multiplexed systems. By aligning the polarization states of the optical carrier and the SSB, RF power fading due to all orders of PMD can be completely compensated. (ii) Chromatic-dispersion-insensitive PMD monitoring by using a narrowband FBG notch filter to recover the RF clock power for 10Gb/s NRZ data, and apply it as a control signal for PMD compensation. (iii) Chirp-free high-speed optical pulse generation with a repetition rate of 160 GHz (which is four times of the frequency of the electrical clock) using a phase modulator and polarization maintaining (PM) fiber. (iv) Polarization-insensitive all-optical wavelength conversion based on four-wave mixing in dispersion-shifted fiber (DSF) with a fiber Bragg grating and a Faraday rotator mirror. (v) Width-tunable optical RZ pulse train generation based on four-wave mixing in highly-nonlinear fiber. By electrically tuning the delay between two pump pulse trains, the pulse-width of a generated pulse train is continuously tuned. (vi) A high-speed all

  16. Pelletizing properties of torrefied spruce

    DEFF Research Database (Denmark)

    Stelte, Wolfgang; Clemons, Craig; Holm, Jens K.

    2011-01-01

    to moisture uptake, microbiological decay and easy to comminute into small particles. The present study focused on the pelletizing properties of spruce torrefied at 250, 275 and 300 °C. The changes in composition were characterized by infrared spectroscopy and chemical analysis. The pelletizing properties......, with hemicelluloses being most sensitive to thermal degradation. The chemical changes had a negative impact, both on the pelletizing process and the pellet properties. Torrefaction resulted in higher friction in the press channel of the pellet press and low compression strength of the pellets. Fracture surface...

  17. High-speed pulse-shape generator, pulse multiplexer

    Science.gov (United States)

    Burkhart, Scott C.

    2002-01-01

    The invention combines arbitrary amplitude high-speed pulses for precision pulse shaping for the National Ignition Facility (NIF). The circuitry combines arbitrary height pulses which are generated by replicating scaled versions of a trigger pulse and summing them delayed in time on a pulse line. The combined electrical pulses are connected to an electro-optic modulator which modulates a laser beam. The circuit can also be adapted to combine multiple channels of high speed data into a single train of electrical pulses which generates the optical pulses for very high speed optical communication. The invention has application in laser pulse shaping for inertial confinement fusion, in optical data links for computers, telecommunications, and in laser pulse shaping for atomic excitation studies. The invention can be used to effect at least a 10.times. increase in all fiber communication lines. It allows a greatly increased data transfer rate between high-performance computers. The invention is inexpensive enough to bring high-speed video and data services to homes through a super modem.

  18. Toward high-speed access technologies: results from MUSE

    Science.gov (United States)

    Wellen, Jeroen; Smets, Rob; Hellenthal, Wim; Lepley, Jason; Tsalamanis, Ioannis; Walker, Stuart; Ng'oma, Anthony; Rijckenberg, Gert-Jan; Koonen, Ton; Habel, Kai; Langer, Klaus-Dieter

    2006-10-01

    The European MUSE project, which aims to enable "MUlti Service and access Everywhere", studies architectures, technologies and business scenarios facilitating the deployment of new Broadband Access Networks and Services. This paper gives an overview and particularly discusses results of some of the high-speed access technologies that are developed.

  19. Size Reduction of Tunable Micromachined Filters for High Speed Operations

    Institute of Scientific and Technical Information of China (English)

    Tomoyuki; Hino; Takeru; Amano; Wiganes; Janto; Fumio; Koyama

    2003-01-01

    The size reduction of tunable micromachined filters is carried out for high-speed wavelength tuning. We fabricated micromachined filters having a miniature structure with an air gap of 300 run and a short cantilever of 45 urn, exhibiting fast response of below 3 us.

  20. Size Reduction of Tunable Micromachined Filters for High Speed Operations

    Institute of Scientific and Technical Information of China (English)

    Tomoyuki Hino; Takeru Amano; Wiganes Janto; Fumio Koyama

    2003-01-01

    The size reduction of tunable micromachined filters is carried out for high-speed wavelength tuning. We fabricated micromachined filters having a miniature structure with an air gap of 300 nm and a short cantilever of 45 μm, exhibiting fast response of below 3 μs.

  1. High Speed and Wide Bandwidth Delta-Sigma ADCs

    NARCIS (Netherlands)

    Bolatkale, M.

    2013-01-01

    This thesis describes the theory, design and implementation of a high-speed, high-performance continuous-time delta-sigma (CTΔΣ) ADC for applications such as medical imaging, high-definition video processing, and wireline and wireless communications. In order to achieve a GHz clocking speed, this

  2. APPLICATION OF POWDER HIGH-SPEED STEEL AS ANTIFRICTION MATERIAL

    Directory of Open Access Journals (Sweden)

    M. Beznak

    2011-01-01

    Full Text Available The influence of disulphide molybdenum additives on antifriction characteristics of powder high-speed steel produced by means of hot hydrostatic pressing is investigated. It is shown that disulphide molybdenum additives promote the decrease of coefficient of friction and temperature in hearth of friction as a result the increase of wear resistance of steel.

  3. High-speed camera characterization of voluntary eye blinking kinematics.

    Science.gov (United States)

    Kwon, Kyung-Ah; Shipley, Rebecca J; Edirisinghe, Mohan; Ezra, Daniel G; Rose, Geoff; Best, Serena M; Cameron, Ruth E

    2013-08-01

    Blinking is vital to maintain the integrity of the ocular surface and its characteristics such as blink duration and speed can vary significantly, depending on the health of the eyes. The blink is so rapid that special techniques are required to characterize it. In this study, a high-speed camera was used to record and characterize voluntary blinking. The blinking motion of 25 healthy volunteers was recorded at 600 frames per second. Master curves for the palpebral aperture and blinking speed were constructed using palpebral aperture versus time data taken from the high-speed camera recordings, which show that one blink can be divided into four phases; closing, closed, early opening and late opening. Analysis of data from the high-speed camera images was used to calculate the palpebral aperture, peak blinking speed, average blinking speed and duration of voluntary blinking and compare it with data generated by other methods previously used to evaluate voluntary blinking. The advantages of the high-speed camera method over the others are discussed, thereby supporting the high potential usefulness of the method in clinical research.

  4. Modelling Of Residual Stresses Induced By High Speed Milling Process

    Science.gov (United States)

    Desmaison, Olivier; Mocellin, Katia; Jardin, Nicolas

    2011-05-01

    Maintenance processes used in heavy industries often include high speed milling operations. The reliability of the post-process material state has to be studied. Numerical simulation appears to be a very interesting way to supply an efficient residual stresses (RS) distribution prediction. Because the adiabatic shear band and the serrated chip shaping are features of the austenitic stainless steel high speed machining, a 2D high speed orthogonal cutting model is briefly presented. This finite element model, developed on Forge® software, is based on data taken from Outeiro & al.'s paper [1]. A new behaviour law fully coupling Johnson-Cook's constitutive law and Latham and Cockcroft's damage model is detailed in this paper. It ensures results that fit those found in literature. Then, the numerical tools used on the 2D model are integrated to a 3D high speed milling model. Residual stresses distribution is analysed, on the surface and into the depth of the material. Various revolutions and passes of the two teeth hemispheric mill on the workpiece are simulated. Thus the sensitivity of the residual stresses generation to the cutting conditions can be discussed. In order to validate the 3D model, a comparison of the cutting forces measured by EDF R&D to those given by numerical simulations is achieved.

  5. Minimum Plate Thickness in High-Speed Craft

    DEFF Research Database (Denmark)

    Pedersen, Preben Terndrup; Zhang, Shengming

    1998-01-01

    The minimum plate thickness requirements specified by the classification societies for high-speed craft are supposed to ensure adequate resistance to impact loads such as collision with floating objects and objects falling on the deck. The paper presents analytical methods of describing such impact...

  6. High-tech maintenance for high-speed trains

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, Javier Rutz [Nertus Mantenimiento Ferroviario, S.A., Madrid (Spain); Hofmann, Manfred [Siemens AG, Erlangen (Germany). Mobility Div., Integrated Services

    2011-03-15

    Reliable, punctual trains cannot do without professional maintenance. Nertus S.A., a joint subsidiary of Siemens and Renfe, is responsible for providing precisely this for the Spanish high-speed train, Velaro E (AVE S103), which operates between Madrid and Barcelona. (orig.)

  7. Incorporating YBCO Coated Conductors in High-speed Superconducting Generators

    Science.gov (United States)

    2008-07-01

    4.0 kW/lb (8.82 kW/kg). The machine configuration chosen by GE for design was a homopolar inductor alternator (HIA) which locates the...extremely severe ac loss environment. Even if this is ultimately impossible for high speed generators, it may not preclude lower speed motors and

  8. High-Speed Smart Camera with High Resolution

    Directory of Open Access Journals (Sweden)

    J. Dubois

    2007-02-01

    Full Text Available High-speed video cameras are powerful tools for investigating for instance the biomechanics analysis or the movements of mechanical parts in manufacturing processes. In the past years, the use of CMOS sensors instead of CCDs has enabled the development of high-speed video cameras offering digital outputs, readout flexibility, and lower manufacturing costs. In this paper, we propose a high-speed smart camera based on a CMOS sensor with embedded processing. Two types of algorithms have been implemented. A compression algorithm, specific to high-speed imaging constraints, has been implemented. This implementation allows to reduce the large data flow (6.55 Gbps and to propose a transfer on a serial output link (USB 2.0. The second type of algorithm is dedicated to feature extraction such as edge detection, markers extraction, or image analysis, wavelet analysis, and object tracking. These image processing algorithms have been implemented into an FPGA embedded inside the camera. These implementations are low-cost in terms of hardware resources. This FPGA technology allows us to process in real time 500 images per second with a 1280×1024 resolution. This camera system is a reconfigurable platform, other image processing algorithms can be implemented.

  9. High-Speed Smart Camera with High Resolution

    Directory of Open Access Journals (Sweden)

    Mosqueron R

    2007-01-01

    Full Text Available High-speed video cameras are powerful tools for investigating for instance the biomechanics analysis or the movements of mechanical parts in manufacturing processes. In the past years, the use of CMOS sensors instead of CCDs has enabled the development of high-speed video cameras offering digital outputs, readout flexibility, and lower manufacturing costs. In this paper, we propose a high-speed smart camera based on a CMOS sensor with embedded processing. Two types of algorithms have been implemented. A compression algorithm, specific to high-speed imaging constraints, has been implemented. This implementation allows to reduce the large data flow (6.55 Gbps and to propose a transfer on a serial output link (USB 2.0. The second type of algorithm is dedicated to feature extraction such as edge detection, markers extraction, or image analysis, wavelet analysis, and object tracking. These image processing algorithms have been implemented into an FPGA embedded inside the camera. These implementations are low-cost in terms of hardware resources. This FPGA technology allows us to process in real time 500 images per second with a 1280×1024 resolution. This camera system is a reconfigurable platform, other image processing algorithms can be implemented.

  10. Exploring THz band for high speed wireless communications

    DEFF Research Database (Denmark)

    Yu, Xianbin; Zhang, Hangkai; Jia, Shi;

    2016-01-01

    We overview recent trend in developing high speed wireless communication systems by exploring large bandwidth available in the THz band, and we also present our recent experimental achievements on 400 GHz wireless transmission with a data rate of up to 60 Gbit/s by using a uni-travelling carrier...

  11. MARVIN : high speed 3D imaging for seedling classification

    NARCIS (Netherlands)

    Koenderink, N.J.J.P.; Wigham, M.L.I.; Golbach, F.B.T.F.; Otten, G.W.; Gerlich, R.J.H.; Zedde, van de H.J.

    2009-01-01

    The next generation of automated sorting machines for seedlings demands 3D models of the plants to be made at high speed and with high accuracy. In our system the 3D plant model is created based on the information of 24 RGB cameras. Our contribution is an image acquisition technique based on

  12. High-Speed Computer-Controlled Switch-Matrix System

    Science.gov (United States)

    Spisz, E.; Cory, B.; Ho, P.; Hoffman, M.

    1985-01-01

    High-speed computer-controlled switch-matrix system developed for communication satellites. Satellite system controlled by onboard computer and all message-routing functions between uplink and downlink beams handled by newly developed switch-matrix system. Message requires only 2-microsecond interconnect period, repeated every millisecond.

  13. High-speed display system for animation using multimicrocomputer

    Energy Technology Data Exchange (ETDEWEB)

    Onda, K.; Oako, Y.

    1983-01-01

    A high-speed display system architecture for computer animation is proposed. Many picture memories, each of which is connected to a microcomputer, and display controller are used for producing and displaying pictures in parallel. This system can be realized with low-speed processors without specific hardwares to display natural movement. 1 ref.

  14. Intel Legend and CERN would build up high speed Internet

    CERN Multimedia

    2002-01-01

    Intel, Legend and China Education and Research Network jointly announced on the 25th of April that they will be cooperating with each other to build up the new generation high speed internet, over the next three years (1/2 page).

  15. High Speed Rail (HSR) in the United States

    Science.gov (United States)

    2009-12-08

    passenger rail service, while trying to help rail 25 Available at http://www.fomento.es/MFOMWeb/ paginas ...Offers Guideposts for U.S.,” The New York Times On the Web , May 30, 2009. High Speed Rail (HSR) in the United States Congressional Research

  16. Recent Advances in Ultra-High-Speed Optical Signal Processing

    DEFF Research Database (Denmark)

    Mulvad, Hans Christian Hansen; Palushani, Evarist; Hu, Hao;

    2012-01-01

    We review recent advances in the optical signal processing of ultra-high-speed serial data signals up to 1.28 Tbit/s, with focus on applications of time-domain optical Fourier transformation. Experimental methods for the generation of symbol rates up to 1.28 Tbaud are also described....

  17. Corrosion Inhibition of High Speed Steel by Biopolymer HPMC Derivatives

    OpenAIRE

    Shih-Chen Shi; Chieh-Chang Su

    2016-01-01

    The corrosion inhibition characteristics of the derivatives of biopolymer hydroxypropyl methylcellulose (HPMC), hydroxypropyl methylcellulose phthalate (HPMCP), and hydroxypropyl methylcellulose acetate succinate (HPMCAS) film are investigated. Based on electrochemical impedance spectroscopic measurements and potentiodynamic polarization, the corrosion inhibition performance of high speed steel coated with HPMC derivatives is evaluated. The Nyquist plot and Tafel polarization demonstrate prom...

  18. Characterising argon-bomb balloons for high-speed photography

    CSIR Research Space (South Africa)

    Olivier, M

    2013-08-01

    Full Text Available A method to optimise the geometry, explosive charge mass and volume of an argon bomb for specific lighting requirements has been proposed. The method is specifically aimed at applications that require photographic diagnostics with ultra-high speed...

  19. TCP-Adaptive in High Speed Long Distance Networks

    Directory of Open Access Journals (Sweden)

    Quan Liu

    2014-02-01

    Full Text Available With the development of high performance computing and increasing of network bandwidth, more and more applications require fast data transfer over high-speed long-distance networks. Research shows that the standard TCP Reno cannot fulfill the requirement of fast transfer of massive data due to its conservative congestion control mechanism. Some works have been proposed to improve the TCP throughput performance using more aggressive window increasing tactics and obtain substantial achievements. However, they cannot be strictly proved to be comprehensively suitable for high-speed complex network environments. In this paper, we propose TCP-Adaptive, an adaptive congestion control algorithm adjusting the increasing congestion window dynamically. The algorithm improves logarithmic detection procedure for available bandwidth in the flow path by distinguishing the first detection in congestion avoidance and retransmission timeout. On the other hand, an adaptive control algorithm is proposed to achieve better performance in high-speed long-distance networks. The algorithm uses round trip time (RTT variations to predict the congestion trends to update the increments of congestion window. Simulations verify the property of TCP-Adaptive and show satisfying performance in throughput, RTT fairness aspects over high-speed long-distance networks. Especially in sporadic loss environment, TCP-Adaptive shows a significant adaptability with the variations of link quality

  20. High Speed and Wide Bandwidth Delta-Sigma ADCs

    NARCIS (Netherlands)

    Bolatkale, M.

    2013-01-01

    This thesis describes the theory, design and implementation of a high-speed, high-performance continuous-time delta-sigma (CTΔΣ) ADC for applications such as medical imaging, high-definition video processing, and wireline and wireless communications. In order to achieve a GHz clocking speed, this th

  1. Faster than "g", Revisited with High-Speed Imaging

    Science.gov (United States)

    Vollmer, Michael; Mollmann, Klaus-Peter

    2012-01-01

    The introduction of modern high-speed cameras in physics teaching provides a tool not only for easy visualization, but also for quantitative analysis of many simple though fast occurring phenomena. As an example, we present a very well-known demonstration experiment--sometimes also discussed in the context of falling chimneys--which is commonly…

  2. Research and practice: The European High Speed Station

    NARCIS (Netherlands)

    Triggianese, M.

    2014-01-01

    The practices of planning and architecture are undergoing considerable transformation especially for urban developments asso-ciated to infrastructural changes. This paper considers the proliferation of high-speed railways in Europe as a research opportunity to better understand the practice of compl

  3. Towards a high-speed quantum random number generator

    Science.gov (United States)

    Stucki, Damien; Burri, Samuel; Charbon, Edoardo; Chunnilall, Christopher; Meneghetti, Alessio; Regazzoni, Francesco

    2013-10-01

    Randomness is of fundamental importance in various fields, such as cryptography, numerical simulations, or the gaming industry. Quantum physics, which is fundamentally probabilistic, is the best option for a physical random number generator. In this article, we will present the work carried out in various projects in the context of the development of a commercial and certified high speed random number generator.

  4. Modeling of high speed micro rotors in moderate flow confinement

    NARCIS (Netherlands)

    Dikmen, E.; Hoogt, van der P.J.M.; Aarts, R.G.K.M.

    2008-01-01

    The recent developments in high speed micro rotating machinery lead to the need for multiphysical modeling of the rotor and the surrounding medium. In this study, thermal and flow induced effects on rotor dynamics of geometries with moderate flow confinement are studied. The structure is modeled via

  5. High speed twin roll caste for aluminum alloy thin strip

    Directory of Open Access Journals (Sweden)

    T. Haga

    2007-09-01

    Full Text Available Purpose: In the present study, effectiveness of a high-speed twin roll caster for recycling aluminum alloy was investigated.Design/methodology/approach: The effects of the high-speed twin roll caster on alleviating the deterioration of mechanical properties by impurities were investigated. Properties of the cast strip were investigated by metalography, a tension test, and a bending test.Findings: A vertical type twin roll caster for strip casting of aluminum alloys was devised. The strip, which was thinner than 3 mm, could be cast at speeds higher than 60 m/min. Features of the twin roll casters are as below. Copper rolls were used and lubricant was not used in order to increase the casting speed. A casting nozzle was used to set the solidification length precisely. Heat transfer between melt and the roll was improved by hydrostatic pressure of the melt. Separating force was very small in order to prevent sticking of the strip to the roll. Low superheat casting was carried out in order to improve microstructure of the strip. In the present study, effectiveness of a high-speed and high-cooling rate twin roll caster of the present study for recycling aluminum alloy was investigated. Fe was added as impurity to 6063 and A356. The roll caster of the present study was useful to decrease the influence of impurity of Fe.Research limitations/implications: A high-speed twin roll caster of vertical type was designed and assembled to cast aluminum alloy thin strip.Originality/value: The results demonstrate that the high-speed twin roll caster can improve the deterioration by impurities.

  6. Temporal and spatial multiplexed infrared single-photon counter based on high-speed avalanche photodiode

    Science.gov (United States)

    Chen, Xiuliang; Ding, Chengjie; Pan, Haifeng; Huang, Kun; Laurat, Julien; Wu, Guang; Wu, E.

    2017-03-01

    We report on a high-speed temporal and spatial multiplexed single-photon counter with photon-number-resolving capability up to four photons. The infrared detector combines a fiber loop to split, delay and recombine optical pulses and a 200 MHz dual-channel single-photon detector based on InGaAs/InP avalanche photodiode. To fully characterize the photon-number-resolving capability, we perform quantum detector tomography and then reconstruct its positive-operator-valued measure and the associated Wigner functions. The result shows that, despite of the afterpulsing noise and limited system detection efficiency, this temporal and spatial multiplexed single-photon counter can already find applications for large repetition rate quantum information schemes.

  7. Temporal and spatial multiplexed infrared single-photon counter based on high-speed avalanche photodiode

    Science.gov (United States)

    Chen, Xiuliang; Ding, Chengjie; Pan, Haifeng; Huang, Kun; Laurat, Julien; Wu, Guang; Wu, E

    2017-01-01

    We report on a high-speed temporal and spatial multiplexed single-photon counter with photon-number-resolving capability up to four photons. The infrared detector combines a fiber loop to split, delay and recombine optical pulses and a 200 MHz dual-channel single-photon detector based on InGaAs/InP avalanche photodiode. To fully characterize the photon-number-resolving capability, we perform quantum detector tomography and then reconstruct its positive-operator-valued measure and the associated Wigner functions. The result shows that, despite of the afterpulsing noise and limited system detection efficiency, this temporal and spatial multiplexed single-photon counter can already find applications for large repetition rate quantum information schemes. PMID:28294155

  8. Chromatically encoded high-speed photography of cavitation bubble dynamics inside inhomogeneous ophthalmic tissue

    Science.gov (United States)

    Tinne, N.; Matthias, B.; Kranert, F.; Wetzel, C.; Krüger, A.; Ripken, T.

    2016-03-01

    The interaction effect of photodisruption, which is used for dissection of biological tissue with fs-laser pulses, has been intensively studied inside water as prevalent sample medium. In this case, the single effect is highly reproducible and, hence, the method of time-resolved photography is sufficiently applicable. In contrast, the reproducibility significantly decreases analyzing more solid and anisotropic media like biological tissue. Therefore, a high-speed photographic approach is necessary in this case. The presented study introduces a novel technique for high-speed photography based on the principle of chromatic encoding. For illumination of the region of interest within the sample medium, the light paths of up to 12 LEDs with various emission wavelengths are overlaid via optical filters. Here, MOSFET-electronics provide a LED flash with a duration fundamental evaluation of the laser-tissue interaction inside anisotropic biological tissue and for the optimization of the surgical process with high-repetition rate fs-lasers. Additionally, this application is also suitable for the investigation of other microscopic, ultra-fast events in transparent inhomogeneous materials.

  9. SPINS-IND: Pellet injector for fuelling of magnetically confined fusion systems

    Science.gov (United States)

    Gangradey, R.; Mishra, J.; Mukherjee, S.; Panchal, P.; Nayak, P.; Agarwal, J.; Saxena, Y. C.

    2017-06-01

    Using a Gifford-McMahon cycle cryocooler based refrigeration system, a single barrel hydrogen pellet injection (SPINS-IND) system is indigenously developed at Institute for Plasma Research, India. The injector is based on a pipe gun concept, where a pellet formed in situ in the gun barrel is accelerated to high speed using high pressure light propellant gas. The pellet size is decided by considering the Greenwald density limit and its speed is decided by considering a neutral gas shielding model based scaling law. The pellet shape is cylindrical of dimension (1.6 mm ℓ × 1.8 mm φ). For pellet ejection and acceleration, a fast opening valve of short opening duration is installed at the breech of the barrel. A three-stage differential pumping system is used to restrict the flow of the propellant gas into the plasma vacuum vessel. Diagnostic systems such as light gate and fast imaging camera (240 000 frames/s) are employed to measure the pellet speed and size, respectively. A trigger circuit and a programmable logic controller based integrated control system developed on LabVIEW enables to control the pellet injector remotely. Using helium as a propellant gas, the pellet speed is varied in the range 650 m/s-800 m/s. The reliability of pellet formation and ejection is found to be more than 95%. This paper describes the details of SPINS-IND and its test results.

  10. Blower Gun pellet injection system for W7-X

    Energy Technology Data Exchange (ETDEWEB)

    Dibon, Mathias; Baldzuhn, Juergen; Beck, Michael; Lang, Peter; Ploeckl, Bernhard; Weisbart, Wolfgang [MPI fuer Plasmaphysik, EURATOM Association, Boltzmannstr. 2, 85748 Garching (Germany); Cardella, Antonio; Macian-Juan, Rafael [Lehrstuhl fuer Nukleartechnik, TU Munich, Boltzmannstr. 15, 85748 Garching (Germany); Koechl, Florian [Association EURATOM-OeAW/ATI, Atominstitut, TU Wien, 1020 Vienna (Austria); Kocsis, Gabor; Szepesi, Tamas [Wigner RCP, RMI, EURATOM Association, P.O.Box 49, H-1525 Budapest-114 (Hungary)

    2014-07-01

    Foreseen to serve for the new stellarator W7-X for pellet investigations, the former ASDEX Upgrade Blower Gun was revised and revitalized in a test bed. The gun is able now to launch cylindrical pellets of 2 mm diameter and 2 mm length, produced from frozen Deuterium (D{sub 2}) or Hydrogen (H{sub 2}). Pellets are accelerated by a short pulse of pressurized helium propellant gas to velocities in the range of 100-250 m/s. Delivery reliabilities at the launcher exit close to unity are achieved. For pellet transfer to the plasma vessel a first mock up guiding tube version was investigated. Transfer through this S-shaped (inner diameter 8 mm; length 6 m) stainless steel guiding tube containing two 1 m curvature radii was investigated for both H{sub 2} and D{sub 2} pellets. Tests were performed applying repetition rates from 2 Hz to 50 Hz and propellant gas pressures ranging from 1 bar to 6 bar. For both H{sub 2} and D{sub 2}, low overall delivery efficiencies were observed at slow repetition rates, but stable efficiencies of about 90% above 10 Hz.

  11. Convective high-speed flow and field-aligned high-speed flows explored by TC-1

    Institute of Scientific and Technical Information of China (English)

    ZHANG LingQian; LIU ZhenXing; MA ZhiWei; W.BAUMJOHANN; M.W.DUNLOP4; WANG GuangJun; WANG Xiao; H.REME; C.CARR

    2008-01-01

    From June 1, 2004 to October 31, 2006, a total 465 high-speed flow events are observed by the TC-1 satellite in the near-Earth region (-13 RE < X < -9 RE, |Y|<10 RE, |2|<5 RE). Based on the angle between the flow and the magnetic field, the high-speed flow events are further divided into two types, that is,field-aligned high-speed flow (FAHF) in the plasma sheet boundary and convective bursty bulk flow (BBF) in the center plasma sheet. Among the total 465 high-speed flow events, there are 371 FAHFs,and 94 BBFs. The CHF are mainly concentrated in the plasma sheet, the intersection angle between the flow and the magnetic field is larger, the magnetic field intensity is relatively weak. The FHF are mainly distributed near the boundary layer of the plasma sheet, the intersection angle between the flow and magnetic field is smaller, and the magnetic field intensity is relatively strong. The convective BBFs have an important effect on the substorm.

  12. Owl Pellet Paleontology

    Science.gov (United States)

    McAlpine, Lisa K.

    2013-01-01

    In this activity for the beginning of a high school Biology 1 evolution unit, students are challenged to reconstruct organisms found in an owl pellet as a model for fossil reconstruction. They work in groups to develop hypotheses about what animal they have found, what environment it inhabited, and what niche it filled. At the end of the activity,…

  13. Development of a high speed crowbar for LANSCE

    Energy Technology Data Exchange (ETDEWEB)

    Friedrichs, C. Jr.; Lyles, J.T.M.; Doub, J.M.

    1997-08-01

    Each of the four 200 MHz Final Power Amplifiers (FPAs) in the LANSCE proton linac has its own capacitor bank and crowbar. The dissipation in the 10{Omega} crowbar limiting resistor is as high as 67 kW, and oil cooling is used. The authors stated upgrade goal was to substantially reduce the limiting resistor dissipation and eliminate the oil cooling. Early tests showed that the fault energy quickly rose to unacceptable levels as the current limiting resistance was reduced. FPA arcs are normally quenched by interrupting the FPA modulator current, and the crowbar waits 10 {mu}s for this to occur. The successful upgrade strategy was to replace the 10{Omega} resistor with a 3{Omega} air cooled resistor and to add a high speed crowbar circuit which operates only if there are simultaneous arcs in the FPA and its modulator. This paper describes the high speed circuit and its interface with the existing crowbar. Test results are also given.

  14. High-speed wavefront modulation in complex media (Conference Presentation)

    Science.gov (United States)

    Turtaev, Sergey; Leite, Ivo T.; Cizmár, TomáÅ.¡

    2017-02-01

    Using spatial light modulators(SLM) to control light propagation through scattering media is a critical topic for various applications in biomedical imaging, optical micromanipulation, and fibre endoscopy. Having limited switching rate, typically 10-100Hz, current liquid-crystal SLM can no longer meet the growing demands of high-speed imaging. A new way based on binary-amplitude holography implemented on digital micromirror devices(DMD) has been introduced recently, allowing to reach refreshing rates of 30kHz. Here, we summarise the advantages and limitations in speed, efficiency, scattering noise, and pixel cross-talk for each device in ballistic and diffusive regimes, paving the way for high-speed imaging through multimode fibres.

  15. Characterizing pyrotechnic igniter output with high-speed schlieren imaging

    Science.gov (United States)

    Skaggs, M. N.; Hargather, M. J.; Cooper, M. A.

    2017-01-01

    Small-scale pyrotechnic igniter output has been characterized using a high-speed schlieren imaging system for observing critical features of the post-combustion flow. The diagnostic, with laser illumination, was successfully applied towards the quantitative characterization of the output from Ti/KClO_4 and TiH_{1.65}/KClO_4 pyrotechnic igniters. The high-speed image sequences showed shock motion, burned gas expansion, and particle motion. A statistical-based analysis methodology for tracking the full-field shock motion enabled straightforward comparisons across the experimental parameters of pyrotechnic material and initial density. This characterization of the mechanical energy of the shock front within the post-combustion environment is a necessary addition to the large body of literature focused on pyrotechnic combustion behavior within the powder bed. Ultimately, understanding the role that the combustion behavior has on the resulting multiphase environment is required for tailored igniter development and comparative performance assessments.

  16. High Speed Photography What Role Does It Play In Mining?

    Science.gov (United States)

    Crosby, William A.

    1987-09-01

    High speed photography is being employed to help improve the efficiency of a number of different mining activities. Its principal use, however, is as an aid in the optimization of blasting operations. Blasts are commonly of very short duration and great benefit can thus be gained by being able to observe the events at a suitably selected slow motion over an extended period of time. This paper presents an overview of some of the high speed photographic applications in both surface and underground operations using qualitative and quantitative techniques. The primary use is the direct photography of the blast, the analysis of the resulting films representing the bulk of the optimization work. Other applications are designed to check out individual blast components, particularly evaluating blast tamping, and actual delay element times for such accessories as detonating relays, down-the-hole delays and other delaying and initiating systems.

  17. Photonic Technologies for Ultra-High-Speed Information Highways

    DEFF Research Database (Denmark)

    Bouchoule, S; Lèfevre, R.; Legros, E.;

    1999-01-01

    The ACTS project HIGHWAY (AC067) addresses promising ultra-high speed optoelectronic components and system technologies for 40 Gbit/s time-division-multiplexed (TDM) transport systems. Advanced 40 Gbit/s TDM system lab demonstrators are to be realized and tested over installed field fiber testbed....... This paper reviews the current status of 40 Gbit/s TDM components and subsystem technologies achieved in HIGHWAY. The results of HIGHWAY 40 Gbit/s TDM systems and field tests will be reported in a subsequent paper. (C) 1999 Academic Press.......The ACTS project HIGHWAY (AC067) addresses promising ultra-high speed optoelectronic components and system technologies for 40 Gbit/s time-division-multiplexed (TDM) transport systems. Advanced 40 Gbit/s TDM system lab demonstrators are to be realized and tested over installed field fiber testbeds...

  18. Soliton-based ultra-high speed optical communications

    Indian Academy of Sciences (India)

    Akira Hasegawa

    2001-11-01

    Multi-terabit/s, ultra-high speed optical transmissions over several thousands kilometers on fibers are becoming a reality. Most use RZ (Return to Zero) format in dispersion-managed fibers. This format is the only stable waveform in the presence of fiber Kerr nonlinearity and dispersion in all optical transmission lines with loss compensated by periodic amplifications. The nonlinear Schrödinger equation assisted by the split step numerical solutions is commonly used as the master equation to describe the information transfer in optical fibers. All these facts are the outcome of research on optical solitons in fibers in spite of the fact that the commonly used RZ format is not always called a soliton format. The overview presented here attempts to incorporate the role of soliton-based communications research in present day ultra-high speed communications.

  19. Ultra-high-speed optical and electronic distributed devices

    Energy Technology Data Exchange (ETDEWEB)

    Hietala, V.M.; Plut, T.A.; Kravitz, S.H.; Vawter, G.A.; Wendt, J.R.; Armendariz, M.G.

    1995-08-01

    This report summarizes work on the development of ultra-high-speed semiconductor optical and electronic devices. High-speed operation is achieved by velocity matching the input stimulus to the output signal along the device`s length. Electronic devices such as field-effect transistors (FET`s), should experience significant speed increases by velocity matching the electrical input and output signals along the device. Likewise, optical devices, which are typically large, can obtain significant bandwidths by velocity matching the light being generated, detected or modulated with the electrical signal on the device`s electrodes. The devices discussed in this report utilize truly distributed electrical design based on slow-wave propagation to achieve velocity matching.

  20. Corrosion Inhibition of High Speed Steel by Biopolymer HPMC Derivatives

    Directory of Open Access Journals (Sweden)

    Shih-Chen Shi

    2016-07-01

    Full Text Available The corrosion inhibition characteristics of the derivatives of biopolymer hydroxypropyl methylcellulose (HPMC, hydroxypropyl methylcellulose phthalate (HPMCP, and hydroxypropyl methylcellulose acetate succinate (HPMCAS film are investigated. Based on electrochemical impedance spectroscopic measurements and potentiodynamic polarization, the corrosion inhibition performance of high speed steel coated with HPMC derivatives is evaluated. The Nyquist plot and Tafel polarization demonstrate promising anti-corrosion performance of HPMC and HPMCP. With increasing film thickness, both materials reveal improvement in corrosion inhibition. Moreover, because of a hydrophobic surface and lower moisture content, HPMCP shows better anti-corrosion performance than HPMCAS. The study is of certain importance for designing green corrosion inhibitors of high speed steel surfaces by the use of biopolymer derivatives.

  1. High Speed Reconfigurable FFT Design by Vedic Mathematics

    CERN Document Server

    Raman, Ashish; Sarin, R K

    2010-01-01

    The Fast Fourier Transform (FFT) is a computationally intensive digital signal processing (DSP) function widely used in applications such as imaging, software-defined radio, wireless communication, instrumentation. In this paper, a reconfigurable FFT design using Vedic multiplier with high speed and small area is presented. Urdhava Triyakbhyam algorithm of ancient Indian Vedic Mathematics is utilized to improve its efficiency. In the proposed architecture, the 4x4 bit multiplication operation is fragmented reconfigurable FFT modules. The 4x4 multiplication modules are implemented using small 2x2bit multipliers. Reconfigurability at run time is provided for attaining power saving. The reconfigurable FFT has been designed, optimized and implemented on an FPGA based system. This reconfigurable FFT is having the high speed and small area as compared to the conventional FFT.

  2. High-speed Integrated Circuits for electrical/Optical Interfaces

    DEFF Research Database (Denmark)

    Jespersen, Christoffer Felix

    2008-01-01

    This thesis is a continuation of the effort to increase the bandwidth of communicationnetworks. The thesis presents the results of the design of several high-speed electrical ircuits for an electrical/optical interface. These circuits have been a contribution to the ESTA project in collaboration ...... as examples. Finally, it is concluded that the VIP-2 process is suitable technology for creating circuits for 100 Gb/s communication networks. Keywords: Indium Phosphide (InP), DHBT, VCO, Colpitt, Static Divider, CDR, PLL, Transceiver...... represents the avant-garde of InP technology, with ft and fmax well above 300 GHz. Principles of high speed design are presented and described as a useful background before proceeding to circuits. A static divider is used as an example to illustrate many of the design principles. Theory and fundamentals...

  3. High-speed measurement of firearm primer blast waves

    CERN Document Server

    Courtney, Michael; Eng, Jonathan; Courtney, Amy

    2012-01-01

    This article describes a method and results for direct high-speed measurements of firearm primer blast waves employing a high-speed pressure transducer located at the muzzle to record the blast pressure wave produced by primer ignition. Key findings are: 1) Most of the lead styphnate based primer models tested show 5.2-11.3% standard deviation in the magnitudes of their peak pressure. 2) In contrast, lead-free diazodinitrophenol (DDNP) based primers had standard deviations of the peak blast pressure of 8.2-25.0%. 3) Combined with smaller blast waves, these large variations in peak blast pressure of DDNP-based primers led to delayed ignition and failure to fire in brief field tests.

  4. High-speed measurement of rifle primer blast waves

    CERN Document Server

    Courtney, Michael

    2011-01-01

    This article describes a method and results for direct high-speed measurements of rifle primer blast waves employing a high-speed pressure transducer located at the muzzle to record the blast pressure wave produced by primer ignition. Our key findings are: 1) Most of the primer models tested show 5-12% standard deviation in the magnitudes of their peak pressure. 2) For most primer types tested, peak pressure magnitudes are well correlated with measured primer masses so that significant reductions in standard deviation are expected to result from sorting primers by mass. 3) A range of peak pressures from below 200 psi to above 500 psi is available in different primer types.

  5. Nanocrystalline Ni-Co Alloy Synthesis by High Speed Electrodeposition

    Directory of Open Access Journals (Sweden)

    Jamaliah Idris

    2013-01-01

    Full Text Available Electrodeposition of nanocrystals is economically and technologically viable production path for the synthesis of pure metals and alloys both in coatings and bulk form. The study presents nanocrystalline Ni-Co alloy synthesis by high speed electrodeposition. Nanocrystalline Ni-Co alloys coatings were prepared by direct current (DC and deposited directly on steel and aluminum substrates without any pretreatment, using high speed electrodeposition method. The influence of the electrolysis parameters, such as cathodic current density and temperature at constant pH, on electrodeposition and microstructure of Ni-Co alloys were examined. A homogeneous surface morphology was obtained at all current densities of the plated samples, and it was evident that the current density and temperature affect the coating thickness of Ni-Co alloy coatings.

  6. High-speed imaging polarimetry using liquid crystal modulators

    Directory of Open Access Journals (Sweden)

    Ambs P.

    2010-06-01

    Full Text Available This paper deals with dynamic polarimetric imaging techniques. The basics of modern polarimetry have been known for one and a half century, but no practical high-speed implementation providing the full polarization information is currently available. Various methods are reviewed which prove to be a trade-off between the complexity of the optical set-up and the amount of polarimetric information they provide (ie the number of components of the Stokes vector. Techniques using liquid crystal devices, incepted in the late 1990's, are emphasized. Optical set-ups we implemented are presented. We particularly focus on high-speed techniques (i.e. faster than 200 Hz using ferroelectric liquid crystal devices.

  7. High Speed Oblivious Random Access Memory (HS-ORAM)

    Science.gov (United States)

    2015-09-01

    and Automated Teller Machines ( ATM ) security while generally impractical due to performance limitations and high acquisition costs. This idea has...HIGH SPEED OBLIVIOUS RANDOM ACCESS MEMORY (HS-ORAM) PRIVATE MACHINES , INC. SEPTEMBER 2015 FINAL TECHNICAL REPORT...UNIT NUMBER I1 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Private Machines Inc. 164 20th Street #3D Brooklyn, NY 11232 8. PERFORMING

  8. Overall optimization of high-speed semiconductor laser modules

    Institute of Scientific and Technical Information of China (English)

    LIU Yu; CHEN ShuoFu; WANG Xin; YUAN HaiQing; XIE Liang; ZHU NingHua

    2009-01-01

    Based on the high frequency techniques such as frequency response measurement, equivalent circuit modeling and packaging parasitics compensation, a comprehensive optimization method for packag-ing high-speed semiconductor laser module is presented in this paper. The experiments show that the small-signal magnitude frequency response of the TO packaged laser module is superior to that of laser diode in frequencies, and the in-band flatness and the phase-frequency linearity are also im-proved significantly.

  9. High speed preprocessing in real time telemetry systems

    Science.gov (United States)

    Strock, O. J.; O'Brien, Michael

    A versatile high-speed preprocessor, the EMR 8715, is described which is used as a closed-coupled input device for the host computer in a telemetry system. Much of the data and time merging, number conversion, floating-point processing, and data distribution are performed by the system, reducing the host load. The EMR 8715 allows a choice of serial processing, parallel processing, or a combination of the two, on a measurement-by-measurement basis.

  10. Ultra-high-speed serial optical communications: Enabling technologies

    DEFF Research Database (Denmark)

    Oxenløwe, Leif Katsuo; Galili, Michael; Mulvad, Hans Christian Hansen

    2008-01-01

    This paper will present recently identified and demonstrated key technologies for ultra-high-speed serial communications. Certain key components such as stabilised highly non-linear fibre switches, periodically poled Lithium Niobate devices and semiconductor optical amplifiers will be described...... with demonstrations of 640 Gb/s transmission, clock recovery, demultiplexing, add/drop, wavelength conversion and channel identification. Timing jitter tolerance is addressed through techniques to create flat-top pulses....

  11. High Speed Friction Microscopy and Nanoscale Friction Coefficient Mapping

    OpenAIRE

    Bosse, James L.; Lee, Sungjun; Huey, Bryan D; Andersen, Andreas Sø; Sutherland, Duncan S

    2014-01-01

    As mechanical devices in the nano/micro length scale are increasingly employed, it is crucial to understand nanoscale friction and wear especially at technically relevant sliding velocities. Accordingly, a novel technique has been developed for Friction Coefficient Mapping (FCM), leveraging recent advances in high speed AFM. The technique efficiently acquires friction versus force curves based on a sequence of images at a single location, each with incrementally lower loads. As a result, true...

  12. A new approach of high speed cutting modelling: SPH method

    OpenAIRE

    LIMIDO, Jérôme; Espinosa, Christine; Salaün, Michel; Lacome, Jean-Luc

    2006-01-01

    The purpose of this study is to introduce a new approach of high speed cutting numerical modelling. A lagrangian Smoothed Particle Hydrodynamics (SPH) based model is carried out using the Ls-Dyna software. SPH is a meshless method, thus large material distortions that occur in the cutting problem are easily managed and SPH contact control permits a “natural” workpiece/chip separation. Estimated chip morphology and cutting forces are compared to machining dedicated code results and experimenta...

  13. SPH method applied to high speed cutting modelling

    OpenAIRE

    LIMIDO, Jérôme; Espinosa, Christine; Salaün, Michel; Lacome, Jean-Luc

    2007-01-01

    The purpose of this study is to introduce a new approach of high speed cutting numerical modelling. A Lagrangian smoothed particle hydrodynamics (SPH)- based model is arried out using the Ls-Dyna software. SPH is a meshless method, thus large material distortions that occur in the cutting problem are easily managed and SPH contact control permits a "natural" workpiece/chip separation. The developed approach is compared to machining dedicated code results and experimental data. The SPH cutting...

  14. NASA/GE Collaboration on Open Rotors - High Speed Testing

    Science.gov (United States)

    VanZante, Dale E.

    2011-01-01

    A low-noise open rotor system is being tested in collaboration with General Electric and CFM International, a 50/50 joint company between Snecmaand GE. Candidate technologies for lower noise will be investigated as well as installation effects such as pylon integration. Current test status for the 8x6 SWT high speed testing is presented as well as future scheduled testing which includes the FAA/CLEEN test entry. The tunnel blockage and propeller thrust calibration configurations are shown.

  15. Instrumentation for propulsion systems development. [high speed fans and turbines

    Science.gov (United States)

    Warshawsky, I.

    1978-01-01

    Apparatus and techniques developed or used by NASA-Lewis to make steady state or dynamic measurements of gas temperature, pressure, and velocity and of the temperature, tip clearance, and vibration of the blades of high-speed fans or turbines are described. The advantages and limitations of each instrument and technique are discussed and the possibility of modifying them for use in developing various propulsion systems is suggested.

  16. Beijing-Tianjin Intercity High-speed Line

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    @@ Ever since 2003, under the guidance of the scientific development concept and in line with the decisions and deployments made by the Party Central Committee and the State Council, China Railways has eagerly taken the golden opportunity for development, to facilitate the implementation of the Mid-term and Long-term Railway Network Development Program, and so it has achieved bumper significant accomplishments in the modernization progress, with Beijing-Tianjin Intercity High-speed Line as one of the exemplary representatives.

  17. High Speed, Low Weight Momentum/Reaction Wheels

    OpenAIRE

    1999-01-01

    Advancements in several critical areas have made possible lightweight, strong and highly reliable momentum / reaction wheels. The development of reliable bearings with design features that allow high speed operation for space flight applications has significantly altered the weight / speed / wheel design considerations. Current designs typically operate at speeds at or below 6,000 RPM The new retainerless can achieve speeds 10 times that and meet or improve all other significant bearing opera...

  18. High Speed Video Applications In The Pharmaceutical Industry

    Science.gov (United States)

    Stapley, David

    1985-02-01

    The pursuit of quality is essential in the development and production of drugs. The pursuit of excellence is relentless, a never ending search. In the pharmaceutical industry, we all know and apply wide-ranging techniques to assure quality production. We all know that in reality none of these techniques are perfect for all situations. We have all experienced, the damaged foil, blister or tube, the missing leaflet, the 'hard to read' batch code. We are all aware of the need to supplement the traditional techniques of fault finding. This paper shows how high speed video systems can be applied to fully automated filling and packaging operations as a tool to aid the company's drive for high quality and productivity. The range of products involved totals some 350 in approximately 3,000 pack variants, encompassing creams, ointments, lotions, capsules, tablets, parenteral and sterile antibiotics. Pharmaceutical production demands diligence at all stages, with optimum use of the techniques offered by the latest technology. Figure 1 shows typical stages of pharmaceutical production in which quality must be assured, and highlights those stages where the use of high speed video systems have proved of value to date. The use of high speed video systems begins with the very first use of machine and materials: commissioning and validation, (the term used for determining that a process is capable of consistently producing the requisite quality) and continues to support inprocess monitoring, throughout the life of the plant. The activity of validation in the packaging environment is particularly in need of a tool to see the nature of high speed faults, no matter how infrequently they occur, so that informed changes can be made precisely and rapidly. The prime use of this tool is to ensure that machines are less sensitive to minor variations in component characteristics.

  19. A Multiprocessor Communication Architecture For High Speed Networks

    CERN Document Server

    S, Iyengar; Roy, A A; Sanyal, S; Singhi, N M; Feng, Wu Geng

    2010-01-01

    Over the years, communication speed of networks has increased from a few Kbps to several Mbps, as also the bandwidth demand, Communication Protocols, however have not improved to that extent. With the advent of Wavelength Division Multiplexing (WDM), it is now possible to "tune" protocols to current and future demands. The purpose of this paper is to evolve a High Speed Network architecture, which will cater to the needs of bandwidth-consuming applications, such as voice, video and high definition image transmission.

  20. Study on Electromagnetic Interference of high-speed railway EMU

    OpenAIRE

    Cheng, Qiang; Liu, Jin-Jiang; Cheng, Ning

    2013-01-01

    Electromagnetic radiation generated by pantograph-catenaries detachment is one of the inevitable problems with the development of high-speed railway this paper is focusing on the generating mechanism and characteristics of electromagnetic noise caused by pantograph-catenaries system. Based on previous research, we build an integrated model of catenaries and locomotive system, and study the electromagnetic disturbance characteristics using software FEKO. The simulation experiment results in th...

  1. Gearbox Reliability Collaborative High-Speed Shaft Calibration

    Energy Technology Data Exchange (ETDEWEB)

    Keller, J.; McNiff, B.

    2014-09-01

    Instrumentation has been added to the high-speed shaft, pinion, and tapered roller bearing pair of the Gearbox Reliability Collaborative gearbox to measure loads and temperatures. The new shaft bending moment and torque instrumentation was calibrated and the purpose of this document is to describe this calibration process and results, such that the raw shaft bending and torque signals can be converted to the proper engineering units and coordinate system reference for comparison to design loads and simulation model predictions.

  2. High Speed Area Efficient 8-point FFT using Vedic Multiplier

    Directory of Open Access Journals (Sweden)

    Avneesh Kumar Mishra

    2014-12-01

    Full Text Available A high speed fast fourier transform (FFT design by using three algorithm is presented in this paper. In algorithm 3, 4-bit Vedic multiplier based technique are used in FFT. In this technique used in three 4-bit ripple carry adder and four 2*2 Vedic multiplier. The main parameter of this paper is number of slice, 4-input LUTS and maximum combinational path delay were calculate.

  3. Strain rate effect in high-speed wire drawing process

    Science.gov (United States)

    He, S.; Van Houtte, P.; Van Bael, A.; Mei, F.; Sarban, A.; Boesman, P.; Galvez, F.; Atienza, J. M.

    2002-05-01

    This paper presents a study on the strain rate effect during high-speed wire drawing process by means of finite element simulation. Based on the quasistatic stresses obtained by normal tensile tests and dynamic stresses at high strain rates by split Hopkinson pressure bar tests, the wire drawing process was simulated for low carbon steel and high carbon steel. The results show that both the deformation process and the final properties of drawn wires are influenced by the strain rate.

  4. Determination of aminocresol isomers by high-speed liquid chromatography.

    Science.gov (United States)

    Sakurai, H; Kito, M

    Aminocresol isomers (4-hydroxy-m-toluidine [II], 3-hydroxy-p-toluidine [II], 2-hydroxy-p-toluidine [III]) and p-aminophenol have been separated and determined by a high-speed liquid Chromatographie method. Since this method is applicable in aqueous media, it was used to investigate the suitability of a haemin-cysteine system as a model for the cytochrome P-450 mono-oxygenase system, by determination of the [I], [II], [III] and p-aminophenol formed.

  5. Giga bit per second Differential Scheme for High Speed Interconnect

    Directory of Open Access Journals (Sweden)

    Mandeep Singh Narula

    2012-02-01

    Full Text Available The performance of many digital systems today is limited by the interconnection bandwidth between chips. Although the processing performance of a single chip has increased dramatically since the inception of the integrated circuit technology, the communication bandwidth between chips has not enjoyed as much benefit. Most CMOS chips, when communicating off-chip, drive un terminated lines with full-swing CMOS drivers. Such full-swing CMOS interconnect ring-up the line, and hence has a bandwidth that is limited by the length of the line rather than the performance of the semiconductor technology. Thus, as VLSI technology scales, the pin bandwidth does not improve with the technology, but rather remains limited by board and cable geometry, making off-chip bandwidth an even more critical bottleneck. In order to increase the I/O Bandwidth, some efficient high speed signaling standard must be used which considers the line termination, signal integrity, power dissipation, noise immunity etc In this work, a transmitter has been developed for high speed off chip communication. It consists of low speed input buffer, serializer which converts parallel input data into serial data and a current mode driver which converts the voltage mode input signals into current over the transmission line. Output of 32 low speed input buffers is fed to two serializer, each serializer converting 16 bit parallel data into serial data stream. Output of two serializers is fed to LVDS current mode driver. The serial link technique used in this work is the time division multiplex (TDM and point-to-point technique. It means that the low-speed parallel signals are transferred to the high-speed serial signal at the transmitter end and the high-speed serial signal is transferred to the low-speed parallel signals at the receiver end. Serial link is the design of choice in any application where the cost of the communication channel is high and duplicating the links in large numbers is

  6. Giga bit per second Differential Scheme for High Speed Interconnect

    Directory of Open Access Journals (Sweden)

    Mandeep Singh Narula

    2012-03-01

    Full Text Available The performance of many digital systems today is limited by the interconnection bandwidth between chips. Although the processing performance of a single chip has increased dramatically since the inception of the integrated circuit technology, the communication bandwidth between chips has not enjoyed as much benefit. Most CMOS chips, when communicating off-chip, drive unterminated lines with full-swing CMOS drivers. Such full-swing CMOS interconnect ring-up the line, and hence has a bandwidth that is limited by the length of the line rather than the performance of the semiconductor technology. Thus, as VLSI technology scales, the pin bandwidth does not improve with the technology, but rather remains limited by board and cable geometry, making off-chip bandwidth an even more critical bottleneck. In order to increase the I/O Bandwidth, some efficient high speed signaling standard must be used which considers the line termination, signal integrity, power dissipation, noise immunity etc In this work, a transmitter has been developed for high speed offchip communication. It consists of low speed input buffer, serializer which converts parallel input data into serial data and a current mode driver which converts the voltage mode input signals into current over the transmission line. Output of 32 low speed input buffers is fed to two serializer, each serializer converting 16 bit parallel data into serial data stream. Output of two serializers is fed to LVDS current mode driver. The serial link technique used in this work is the time division multiplex (TDM and point-to-point technique. It means that the low-speed parallel signals are transferred to the high-speed serial signal at the transmitter end and the high-speed serial signal is transferred to the low-speed parallel signals at the receiver end. Serial link is the design of choice in any application where the cost of the communication channel is high and duplicating the links in large numbers is

  7. High Speed White Dwarf Asteroseismology with the Herty Hall Cluster

    Science.gov (United States)

    Gray, Aaron; Kim, A.

    2012-01-01

    Asteroseismology is the process of using observed oscillations of stars to infer their interior structure. In high speed asteroseismology, we complete that by quickly computing hundreds of thousands of models to match the observed period spectra. Each model on a single processor takes five to ten seconds to run. Therefore, we use a cluster of sixteen Dell Workstations with dual-core processors. The computers use the Ubuntu operating system and Apache Hadoop software to manage workloads.

  8. Florida Turbine Technology (FTT). High Speed Machining of IN100

    Science.gov (United States)

    2006-06-01

    which burnish the surface and develop the fine finish for which deep hole gun drilling is known. Gun drilling was developed for use in drilling of...current process in place to manufacture the rotor shaft. The NCDMM will evaluate methods of manufacturing a .250” diameter hole , 4.0 inches deep in the...forged IN100 material. The hole will need to maintain a geometric tolerance of .002” true position. The NCDMM will also evaluate methods for High Speed

  9. Engineering models of high speed penetration into geological shields

    Science.gov (United States)

    Ben-Dor, Gabi; Dubinsky, Anatoly; Elperin, Tov

    2014-03-01

    The survey is dedicated to approximate empirical and analytical models which were suggested for describing high-speed penetration into geological shields. This review differs from the previously published reviews on this topic in the following respects: (i) includes a large number of models; (ii) describes models suggested during recent years; (iii) much attention is given to models which have been originally published in Russian and are not well known in the West. References list includes 81 items.

  10. Analysis of OFDM Applied to Powerline High Speed Digital Communication

    Institute of Scientific and Technical Information of China (English)

    ZHUANG Jian; YANG Gong-xu

    2003-01-01

    The low voltage powerline is becoming a powerful solution to home network, building automation, and internet access as a result of its wide distribution, easy access and little maintenance. The character of powerline channel is very complicated because it is an open net. This article analysed the character of the powerline channel,introduced the basics of OFDM(Orthogonal Frequency Division Multiplexing), and studied the OFDM applied into powerline high speed digital communication.

  11. Picosecond Semiconductor Lasers For Characterizing High-Speed Image Shutters

    Science.gov (United States)

    Pagano, T. S.; Janson, F. J.; Yates, G. J.; Jaramillo, S. A.

    1986-01-01

    A portable system that utilizes solid state electronic timing circuits and a pulsed semiconductor laser for characterizing the optical gate sequence of high-speed image shutters, including microchannel-plate intensifier tubes (MCPTs), and silicon-intensified target vidicons (SITVs), is described and compared to earlier methods of characterization. Gate sequences obtained using the system and streak camera data of the semiconductor laser pulse are presented, with a brief discussion of the electronic delay timing and avalanche circuits used in the system.

  12. Table-top pellet injector (TATOP) for impurity pellet injection

    Energy Technology Data Exchange (ETDEWEB)

    Szepesi, Tamás, E-mail: szepesi.tamas@wigner.mta.hu [Wigner RCP, RMI, Konkoly Thege 29-33, H-1121 Budapest (Hungary); Herrmann, Albrecht [Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, 85748 Garching (Germany); Kocsis, Gábor; Kovács, Ádám; Németh, József [Wigner RCP, RMI, Konkoly Thege 29-33, H-1121 Budapest (Hungary); Ploeckl, Bernhard [Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, 85748 Garching (Germany)

    2015-10-15

    Highlights: • A portable pellet injector for solid state pellets was designed. • Aims to study ELM triggering potential of impurity pellets. • Aims for multi-machine comparison of pellet–plasma interaction. • Max. pellet speed: 450 m/s, max. rate: 25 Hz. • Pellet size: 0.5–1.5 mm (diameter). - Abstract: A table-top pellet injector (TATOP) has been designed to fulfill the following scientific aims: to study the ELM triggering potential of impurity pellets, and to make pellet injection experiments comparable over several fusion machines. The TATOP is based on a centrifugal accelerator therefore the complete system is run in vacuum, ensuring the compatibility with fusion devices. The injector is able to launch any solid material (stable at room temperature) in form of balls with a diameter in the 0.5–1.5 mm range. The device hosts three individual pellet tanks that can contain e.g. pellets of different materials, and the user can select from those without opening the vacuum chamber. A key element of the accelerator is a two-stage stop cylinder that reduces the spatial scatter of pellets exiting the acceleration arm below 6°, enabling the efficient collection of all fired pellets. The injector has a maximum launch speed of 450 m/s. The launching of pellets can be done individually by providing TTL triggers for the injector, giving a high level of freedom for the experimenter when designing pellet trains. However, the (temporary) firing rate cannot be larger than 25 Hz. TATOP characterization was done in a test bed; however, the project is still in progress and before application at a fusion oriented experiment.

  13. Numerical simulation of high speed incremental forming of aluminum alloy

    Science.gov (United States)

    Giuseppina, Ambrogio; Teresa, Citrea; Luigino, Filice; Francesco, Gagliardi

    2013-12-01

    In this study, an innovative process is analyzed with the aim to satisfy the industrial requirements, such as process flexibility, differentiation and customizing of products, cost reduction, minimization of execution time, sustainable production, etc. The attention is focused on incremental forming process, nowadays used in different fields such as: rapid prototyping, medical sector, architectural industry, aerospace and marine, in the production of molds and dies. Incremental forming consists in deforming only a small region of the workspace through a punch driven by a NC machine. SPIF is the considered variant of the process, in which the punch gives local deformation without dies and molds; consequently, the final product geometry can be changed by the control of an actuator without requiring a set of different tools. The drawback of this process is its slowness. The aim of this study is to assess the IF feasibility at high speeds. An experimental campaign will be performed by a CNC lathe with high speed to test process feasibility and the influence on materials formability mainly on aluminum alloys. The first results show how the material presents the same performance than in conventional speed IF and, in some cases, better material behavior due to the temperature field. An accurate numerical simulation has been performed to investigate the material behavior during the high speed process substantially confirming experimental evidence.

  14. Shape optimization of high-speed penetrators: a review

    Science.gov (United States)

    Ben-Dor, Gabi; Dubinsky, Anatoly; Elperin, Tov

    2012-12-01

    In spite of a large number of publications on shape optimization of penetrating projectiles there are no dedicated surveys of these studies. The goal of the present review is to close this gap. The review includes more than 50 studies published since 1980 and devoted to solving particular problems of shape optimization of high-speed penetrators. We analyze publications which employed analytical and numerical method for shape optimization of high-speed penetrators against concrete, metal, fiber-reinforced plastic laminate and soil shields. We present classification of the mathematical models used for describing interaction between a penetrator and a shield. The reviewed studies are summarized in the table where we display the following information: the model; indicate whether the model accounts for or neglects friction at the surface of penetrator; criterion for optimization (depth of penetration into a semi-infinite shield, ballistic limit velocity for a shield having a finite thickness, several criteria); class of considered shapes of penetrators (bodies of revolution, different classes of 3-D bodies, etc.); method of solution (analytical or numerical); in comments we present additional information on formulation of the optimization problem. The survey also includes discussion on certain methodological facets in formulating shape optimization problems for high-speed penetrators.

  15. Numerical Simulation of a Planing Vessel at High Speed

    Institute of Scientific and Technical Information of China (English)

    Yumin Su; Qingtong Chen; Hailong Shen; Wei Lu

    2012-01-01

    Planing vessels are applied widely in civil and military situations.Due to their high speed,the motion of planning vessels is complex.In order to predict the motion of planning vessels,it is important to analyze the hydrodynamic performance of planning vessels at high speeds.The computational fluid dynamic method (CFD) has been proposed to calculate hydrodynamic performance of planning vessels.However,in most traditional CFD approaches,model tests or empirical formulas are needed to obtain the running attitude of the planing vessels before calculation.This paper presents a new CFD method to calculate hydrodynamic forces of planing vessels.The numerical method was based on Reynolds-Averaged Navier-Stokes (RANS)equations.The volume of fluid (VOF) method and the six-degrees-of-freedom equation were applied.An effective process was introduced to solve the numerical divergence problem in numerical simulation.Compared with experimental results,numerical simulation results indicate that both the running attitude and hydrodynamic performance can be predicted well at high speeds.

  16. Improved pulse laser ranging algorithm based on high speed sampling

    Science.gov (United States)

    Gao, Xuan-yi; Qian, Rui-hai; Zhang, Yan-mei; Li, Huan; Guo, Hai-chao; He, Shi-jie; Guo, Xiao-kang

    2016-10-01

    Narrow pulse laser ranging achieves long-range target detection using laser pulse with low divergent beams. Pulse laser ranging is widely used in military, industrial, civil, engineering and transportation field. In this paper, an improved narrow pulse laser ranging algorithm is studied based on the high speed sampling. Firstly, theoretical simulation models have been built and analyzed including the laser emission and pulse laser ranging algorithm. An improved pulse ranging algorithm is developed. This new algorithm combines the matched filter algorithm and the constant fraction discrimination (CFD) algorithm. After the algorithm simulation, a laser ranging hardware system is set up to implement the improved algorithm. The laser ranging hardware system includes a laser diode, a laser detector and a high sample rate data logging circuit. Subsequently, using Verilog HDL language, the improved algorithm is implemented in the FPGA chip based on fusion of the matched filter algorithm and the CFD algorithm. Finally, the laser ranging experiment is carried out to test the improved algorithm ranging performance comparing to the matched filter algorithm and the CFD algorithm using the laser ranging hardware system. The test analysis result demonstrates that the laser ranging hardware system realized the high speed processing and high speed sampling data transmission. The algorithm analysis result presents that the improved algorithm achieves 0.3m distance ranging precision. The improved algorithm analysis result meets the expected effect, which is consistent with the theoretical simulation.

  17. Double Helical Gear Performance Results in High Speed Gear Trains

    Science.gov (United States)

    Handschuh, Robert F.; Ehinger, Ryan; Sinusas, Eric; Kilmain, Charles

    2010-01-01

    The operation of high speed gearing systems in the transmissions of tiltrotor aircraft has an effect on overall propulsion system efficiency. Recent work has focused on many aspects of high-speed helical gear trains as would be used in tiltrotor aircraft such as operational characteristics, comparison of analytical predictions to experimental data and the affect of superfinishing on transmission performance. Baseline tests of an aerospace quality system have been conducted in the NASA Glenn High-Speed Helical Gear Train Test Facility and have been described in earlier studies. These earlier tests had utilized single helical gears. The results that will be described in this study are those attained using double helical gears. This type of gear mesh can be configured in this facility to either pump the air-oil environment from the center gap between the meshing gears to the outside of tooth ends or in the reverse direction. Tests were conducted with both inward and outward air-oil pumping directions. Results are compared to the earlier baseline results of single helical gears.

  18. VCA Direct-Drive High Speed and Precision XY Table

    Institute of Scientific and Technical Information of China (English)

    ZHAO Xingyu; FENG Xiaomei; ZHANG Dawei

    2007-01-01

    In order to compensate for the limitation of conventional XY table used in semiconductor integrated circuits(IC) packaging and improve its speed and accuracy, a voice coil actuator (VCA)direct-drive high-speed and precision positioning XY table used in wire bonder was proposed. Also, a novel flexible decoupling mechanism was used in the positioning table, and the small moving mass enabled the positioning table to move at high speed and precision. XY table deformation interference caused by assembly error and instant interference generated by dynamic load moving with high speed and acceleration can be eliminated through the flexible decoupling mechanism. Considering the positioning table as lumped mass spring system, the dynamic equations of the mechanical sys-tem and the VCA were built according to the Newton mechanics principle and electromagnetic theory. Then the electromechanical coupling control model of the system was created through Laplace transform. Based on displacement PID controller, the Icop-locked controlling algorithm of the positioning system was investigated. The dynamic control algorithm effectively improved the system dynamic performance. The precision test of the prototype machine was carried out, and the results val-idated the correctness of the model and the theory. Compared with traditional XY table, the tablehas higher speed, acceleration and positioning accuracy.

  19. High speed turboprop aeroacoustic study (counterrotation). Volume 1: Model development

    Science.gov (United States)

    Whitfield, C. E.; Mani, R.; Gliebe, P. R.

    1990-01-01

    The isolated counterrotating high speed turboprop noise prediction program was compared with model data taken in the GE Aircraft Engines Cell 41 anechoic facility, the Boeing Transonic Wind Tunnel, and in NASA-Lewis' 8x6 and 9x15 wind tunnels. The predictions show good agreement with measured data under both low and high speed simulated flight conditions. The installation effect model developed for single rotation, high speed turboprops was extended to include counterotation. The additional effect of mounting a pylon upstream of the forward rotor was included in the flow field modeling. A nontraditional mechanism concerning the acoustic radiation from a propeller at angle of attach was investigated. Predictions made using this approach show results that are in much closer agreement with measurement over a range of operating conditions than those obtained via traditional fluctuating force methods. The isolated rotors and installation effects models were combines into a single prediction program, results of which were compared with data taken during the flight test of the B727/UDF engine demonstrator aircraft. Satisfactory comparisons between prediction and measured data for the demonstrator airplane, together with the identification of a nontraditional radiation mechanism for propellers at angle of attack are achieved.

  20. On the reversed Brayton cycle with high speed machinery

    Energy Technology Data Exchange (ETDEWEB)

    Backman, J.

    1996-12-31

    This work was carried out in the laboratory of Fluid Dynamics, at Lappeenranta University of Technology during the years 1991-1996. The research was a part of larger high speed technology development research. First, there was the idea of making high speed machinery applications with the Brayton cycle. There was a clear need to deepen the knowledge of the cycle itself and to make a new approach in the field of the research. Also, the removal of water from the humid air seemed very interesting. The goal of this work was to study methods of designing high speed machinery for the reversed Brayton cycle, from theoretical principles to practical applications. The reversed Brayton cycle can be employed as an air dryer, a heat pump or a refrigerating machine. In this research the use of humid air as a working fluid has an environmental advantage, as well. A new calculation method for the Brayton cycle is developed. In this method especially the expansion process in the turbine is important because of the condensation of the water vapour in the humid air. This physical phenomena can have significant effects on the level of performance of the application. Also, the influence of calculating the process with actual, achievable process equipment efficiencies is essential for the development of future machinery. The above theoretical calculations are confirmed with two different laboratory prototypes. (53 refs.)

  1. A high-speed interconnect network using ternary logic

    DEFF Research Database (Denmark)

    Madsen, Jens Kargaard; Long, S. I.

    1995-01-01

    This paper describes the design and implementation of a high-speed interconnect network (ICN) for a multiprocessor system using ternary logic. By using ternary logic and a fast point-to-point communication technique called STARI (Self-Timed At Receiver's Input), the communication between the proc......This paper describes the design and implementation of a high-speed interconnect network (ICN) for a multiprocessor system using ternary logic. By using ternary logic and a fast point-to-point communication technique called STARI (Self-Timed At Receiver's Input), the communication between...... the processors is free of clock skew and insensitive to any delay differences in buffers and wires. In addition, the number of signal wires and pins are reduced by 50 percent in comparison with a similar binary implementation. The ICN architecture is based on a crossbar topology and the high-speed part consists...... of two LSI GaAs chips, Interface and Crossbar, which were implemented in a 0.8 μm MESFET process. In a 4×4 ICN, communication at 300 Mbit/s per wire was demonstrated, which is twice as fast as pure synchronous and four times faster than pure asynchronous communication in the specific test set-up...

  2. High-speed imaging of blood splatter patterns

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, T.E.; Albright, K.A.; King, N.S.P.; Yates, G.J. (Los Alamos National Lab., NM (United States)); Levine, G.F. (California Dept. of Justice, Sacramento, CA (United States). Bureau of Forensic Services)

    1993-01-01

    The interpretation of blood splatter patterns is an important element in reconstructing the events and circumstances of an accident or crime scene. Unfortunately, the interpretation of patterns and stains formed by blood droplets is not necessarily intuitive and study and analysis are required to arrive at a correct conclusion. A very useful tool in the study of blood splatter patterns is high-speed photography. Scientists at the Los Alamos National Laboratory, Department of Energy (DOE), and Bureau of Forensic Services, State of California, have assembled a high-speed imaging system designed to image blood splatter patterns. The camera employs technology developed by Los Alamos for the underground nuclear testing program and has also been used in a military mine detection program. The camera uses a solid-state CCD sensor operating at approximately 650 frames per second (75 MPixels per second) with a microchannel plate image intensifier that can provide shuttering as short as 5 ns. The images are captured with a laboratory high-speed digitizer and transferred to an IBM compatible PC for display and hard copy output for analysis. The imaging system is described in this paper.

  3. High-speed imaging of blood splatter patterns

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, T.E.; Albright, K.A.; King, N.S.P.; Yates, G.J. [Los Alamos National Lab., NM (United States); Levine, G.F. [California Dept. of Justice, Sacramento, CA (United States). Bureau of Forensic Services

    1993-05-01

    The interpretation of blood splatter patterns is an important element in reconstructing the events and circumstances of an accident or crime scene. Unfortunately, the interpretation of patterns and stains formed by blood droplets is not necessarily intuitive and study and analysis are required to arrive at a correct conclusion. A very useful tool in the study of blood splatter patterns is high-speed photography. Scientists at the Los Alamos National Laboratory, Department of Energy (DOE), and Bureau of Forensic Services, State of California, have assembled a high-speed imaging system designed to image blood splatter patterns. The camera employs technology developed by Los Alamos for the underground nuclear testing program and has also been used in a military mine detection program. The camera uses a solid-state CCD sensor operating at approximately 650 frames per second (75 MPixels per second) with a microchannel plate image intensifier that can provide shuttering as short as 5 ns. The images are captured with a laboratory high-speed digitizer and transferred to an IBM compatible PC for display and hard copy output for analysis. The imaging system is described in this paper.

  4. Sound transmission loss of windows on high speed trains

    Science.gov (United States)

    Zhang, Yumei; Xiao, Xinbiao; Thompson, David; Squicciarini, Giacomo; Wen, Zefeng; Li, Zhihui; Wu, Yue

    2016-09-01

    The window is one of the main components of the high speed train car body structure through which noise can be transmitted. To study the windows’ acoustic properties, the vibration of one window of a high speed train has been measured for a running speed of 250 km/h. The corresponding interior noise and the noise in the wheel-rail area have been measured simultaneously. The experimental results show that the window vibration velocity has a similar spectral shape to the interior noise. Interior noise source identification further indicates that the window makes a contribution to the interior noise. Improvement of the window's Sound Transmission Loss (STL) can reduce the interior noise from this transmission path. An STL model of the window is built based on wave propagation and modal superposition methods. From the theoretical results, the window's STL property is studied and several factors affecting it are investigated, which provide indications for future low noise design of high speed train windows.

  5. Research of inverse mathematical model to high-speed trains

    Institute of Scientific and Technical Information of China (English)

    朱涛; 肖守讷; 马卫华; 阳光武

    2014-01-01

    Operation safety and stability of the train mainly depend on the interaction between the wheel and rail. Knowledge of wheel/rail contact force is important for vehicle control systems that aim to enhance vehicle stability and passenger safety. Since wheel/rail contact forces of high-speed train are very difficult to measure directly, a new estimation process for wheel/rail contact forces was introduced in this work. Based on the state space equation, dynamic programming methods and the Bellman principle of optimality, the main theoretical derivation of the inversion mathematical model was given. The new method overcomes the weakness of large fluctuations which exist in current inverse techniques. High-speed vehicle was chosen as the research object, accelerations of axle box as input conditions, 10 degrees of freedom vertical vibration model and 17 degrees of freedom lateral vibration model were established, respectively. Under 250 km/h, the vertical and lateral wheel/rail forces were identified. From the time domain and frequency domain, the comparison of the results between inverse and SIMPACK models were given. The results show that the inverse mathematical model has high precision for inversing the wheel/rail contact forces of an operation high-speed vehicle.

  6. High-speed traveling-wave electro-absorption modulators

    Science.gov (United States)

    Westergren, Urban; Yu, Yichuan; Thylén, Lars

    2006-07-01

    Electroabsorption modulators (EAM) based on quantum-confined Stark effect (QCSE) in multiplequantum wells (MQW) have been demonstrated to provide high-speed, low drive voltage, and high extinction ratio. They are compact in size and can be monolithically integrated with continuous-wave (CW) lasers. In order to achieve both high speed and low drive-voltage operation, travelling-wave (TW) electrode structures can be used for EAMs. The inherently low impedance of high-speed EAMs may be transformed to values close to the standard 50Ohm impedance using periodic microwave structures with a combination of passive transmission lines with high characteristic impedance and active modulator sections with low impedance. Modulation bandwidths of 100GHz (-3dBe) have been accomplished with electrical reflections lower than -10dB in a 50Ohm system. Transmission at 80Gbit/s with non-return-to-zero (NRZ) code has been demonstrated for InP-based TWEAMs using electronic time-domain multiplexing (ETDM), indicating the possibility of reaching speeds of 100Gbit/s and beyond.

  7. High-speed imaging of blood splatter patterns

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, T.E.; Albright, K.A.; King, N.S.P.; Yates, G.J. [Los Alamos National Lab., NM (United States); Levine, G.F. [California Dept. of Justice, Sacramento, CA (United States). Bureau of Forensic Services

    1993-05-01

    The interpretation of blood splatter patterns is an important element in reconstructing the events and circumstances of an accident or crime scene. Unfortunately, the interpretation of patterns and stains formed by blood droplets is not necessarily intuitive and study and analysis are required to arrive at a correct conclusion. A very useful tool in the study of blood splatter patterns is high-speed photography. Scientists at the Los Alamos National Laboratory, Department of Energy (DOE), and Bureau of Forensic Services, State of California, have assembled a high-speed imaging system designed to image blood splatter patterns. The camera employs technology developed by Los Alamos for the underground nuclear testing program and has also been used in a military mine detection program. The camera uses a solid-state CCD sensor operating at approximately 650 frames per second (75 MPixels per second) with a microchannel plate image intensifier that can provide shuttering as short as 5 ns. The images are captured with a laboratory high-speed digitizer and transferred to an IBM compatible PC for display and hard copy output for analysis. The imaging system is described in this paper.

  8. Flat belt continuously variable high speed drive. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kumm, E.L.

    1992-02-01

    A study was undertaken at Kumm Industries funded by DOE in the NBS/DOE Energy-Related Inventions Program starting in August 1990 to design, construct and test a novel very high speed flat belt drive. The test arrangement as shown in Figure 1 consists of a multiple belt-pulley configuration that transmits power from a low speed (2000--4000 RPM) input to a small pulley ``turbine`` (27,000 to 55,000 RPM) and then to the low speed output variable radius pulley (2000--5000 RPM) via a special self-active tensioner. Transmitting 25 HP to and from the ``turbine`` corresponds to obtaining 50 HP in one direction only in a possible turbo compounded engine application. The high speed of the ``turbine`` belts, i.e. 100 meters/sec. at 55,000 RPM, while transferring substantial power is a new much higher operating regime for belts. The study showed that the available belts gave overall test rig efficiencies somewhat above 80% for the higher speeds (50,000 RPM) and higher powers (corresponding to above 90% in the turbocompound application) and a significantly better efficiencies at slightly lower speeds. The tests revealed a number of improved approaches in the design of such high speed drives. It appears that there is considerable possibility for further improvement and application of such equipment.

  9. Numerical Simulation of Flow Instabilities in High Speed Multistage Compressors

    Institute of Scientific and Technical Information of China (English)

    JunHu; ThomasPeters; 等

    1999-01-01

    In the present paper,a nonlinear multi“actuator disk” model is proposed to analyze the dynamic behavior of flow instabilities,including rotating stall and surge,in high speed multistage axial compressors.The model describes the duct flow fields using two dimensional,compressible and unsteady Euler equations,and accounts for the influences of downstream plenum and throttle in the system as well.It replaces each blade row of multistage compressore with a disk.For numerical calculations,the time marching procedure,using MacCormack two steps scheme,is used.The main pupose of this paper is to predict the mechanism of two dimensional short wavelength rotating stall inception and the interation between blade rows in high speed multistage compressors.It has been demonstrated that the model has the ability to predict those phenomena,and the results show that some system parameters have a strong effect on the stall features as well.Results for a five stage high speed compressor are analyzed in detail,and comparison with the experimental data demonstrates that the model and calculating results are reliable.

  10. High speed turbulent reacting flows: DNS and LES

    Science.gov (United States)

    Givi, Peyman

    1990-01-01

    Work on understanding the mechanisms of mixing and reaction in high speed turbulent reacting flows was continued. Efforts, in particular, were concentrated on taking advantage of modern computational methods to simulate high speed turbulent flows. In doing so, two methodologies were used: large eddy simulations (LES) and direct numerical simulations (DNS). In the work related with LES the objective is to study the behavior of the probability density functions (pdfs) of scalar properties within the subgrid in reacting turbulent flows. The data base obtained by DNS for a detailed study of the pdf characteristics within the subgrid was used. Simulations are performed for flows under various initializations to include the effects of compressibility on mixing and chemical reactions. In the work related with DNS, a two-dimensional temporally developing high speed mixing layer under the influence of a second-order non-equilibrium chemical reaction of the type A + B yields products + heat was considered. Simulations were performed with different magnitudes of the convective Mach numbers and with different chemical kinetic parameters for the purpose of examining the isolated effects of the compressibility and the heat released by the chemical reactions on the structure of the layer. A full compressible code was developed and utilized, so that the coupling between mixing and chemical reactions is captured in a realistic manner.

  11. From a single pellet press to a bench scale pellet mill - Pelletizing six different biomass feedstocks

    DEFF Research Database (Denmark)

    Puig Arnavat, Maria; Shang, Lei; Sárossy, Zsuzsa

    2016-01-01

    The increasing demand for biomass pellets requires the investigation of alternative raw materials for pelletizetion. In the present paper, the pelletization process of fescue, alfalfa, sorghum, triticale, miscanthus and willow is studied to determine if results obtained in a single pellet press...

  12. Development of High-speed Machining Database with Case-based Reasoning

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Applying high-speed machining technology in shop floor has many benefits, such as manufacturing more accurate parts with better surface finishes. The selection of the appropriate machining parameters plays a very important role in the implementation of high-speed machining technology. The case-based reasoning is used in the developing of high-speed machining database to overcome the shortage of available high-speed cutting parameters in machining data handbooks and shop floors. The high-speed machining data...

  13. Fusion: ultra-high-speed and IR image sensors

    Science.gov (United States)

    Etoh, T. Goji; Dao, V. T. S.; Nguyen, Quang A.; Kimata, M.

    2015-08-01

    Most targets of ultra-high-speed video cameras operating at more than 1 Mfps, such as combustion, crack propagation, collision, plasma, spark discharge, an air bag at a car accident and a tire under a sudden brake, generate sudden heat. Researchers in these fields require tools to measure the high-speed motion and heat simultaneously. Ultra-high frame rate imaging is achieved by an in-situ storage image sensor. Each pixel of the sensor is equipped with multiple memory elements to record a series of image signals simultaneously at all pixels. Image signals stored in each pixel are read out after an image capturing operation. In 2002, we developed an in-situ storage image sensor operating at 1 Mfps 1). However, the fill factor of the sensor was only 15% due to a light shield covering the wide in-situ storage area. Therefore, in 2011, we developed a backside illuminated (BSI) in-situ storage image sensor to increase the sensitivity with 100% fill factor and a very high quantum efficiency 2). The sensor also achieved a much higher frame rate,16.7 Mfps, thanks to the wiring on the front side with more freedom 3). The BSI structure has another advantage that it has less difficulties in attaching an additional layer on the backside, such as scintillators. This paper proposes development of an ultra-high-speed IR image sensor in combination of advanced nano-technologies for IR imaging and the in-situ storage technology for ultra-highspeed imaging with discussion on issues in the integration.

  14. Development of centrifugal casting high speed steel rolls

    Institute of Scientific and Technical Information of China (English)

    Hanguang Fu; Aimin Zhao; Jiandong Xing

    2003-01-01

    The present study aims at developing the high speed steel (HSS) as roll materials to replace the traditional roll materials such as the alloy cast iron and powder metallurgical (PM) hard alloy. The HSS roll billet was formed by centrifugal casting, and the billet was rough machined after soften annealing heat treatment, then it was quenched and tempered to get suitable hardness and toughness. After that the HSS roll was finish machined to the final dimension of φ285 mm in the outer diameter, φ160 mm in the inner diameter and 120 mm in width and its surface hardness was tested. Finally the HSS roll was used in high speed wire rod mill. The test results show that a high and homogeneous hardness can obtain on the work surface of HSS rolls, the surface hardness is 63-65HRC and its variation is smaller than 2HRC. The impact toughness of this kind of HSS is about 16 J/cra2. The results of on-line service investigation in high speed wire rod mill indicate that the HSS rolls have excellent wear resistance, the steel rolling quantity per mm of HSS rolls is 3120 t, the service life-span of HSS rolls is 4 times longer than that of high chromium cast iron rolls and it is close to that of the PM hard alloy rolls. The manufacturing burden of HSS rolls is obviously lower than that of the PM hard alloy rolls, it is only 25% of that of the PM hard alloy rolls.

  15. Implementation of High Speed Distributed Data Acquisition System

    Science.gov (United States)

    Raju, Anju P.; Sekhar, Ambika

    2012-09-01

    This paper introduces a high speed distributed data acquisition system based on a field programmable gate array (FPGA). The aim is to develop a "distributed" data acquisition interface. The development of instruments such as personal computers and engineering workstations based on "standard" platforms is the motivation behind this effort. Using standard platforms as the controlling unit allows independence in hardware from a particular vendor and hardware platform. The distributed approach also has advantages from a functional point of view: acquisition resources become available to multiple instruments; the acquisition front-end can be physically remote from the rest of the instrument. High speed data acquisition system transmits data faster to a remote computer system through Ethernet interface. The data is acquired through 16 analog input channels. The input data commands are multiplexed and digitized and then the data is stored in 1K buffer for each input channel. The main control unit in this design is the 16 bit processor implemented in the FPGA. This 16 bit processor is used to set up and initialize the data source and the Ethernet controller, as well as control the flow of data from the memory element to the NIC. Using this processor we can initialize and control the different configuration registers in the Ethernet controller in a easy manner. Then these data packets are sending to the remote PC through the Ethernet interface. The main advantages of the using FPGA as standard platform are its flexibility, low power consumption, short design duration, fast time to market, programmability and high density. The main advantages of using Ethernet controller AX88796 over others are its non PCI interface, the presence of embedded SRAM where transmit and reception buffers are located and high-performance SRAM-like interface. The paper introduces the implementation of the distributed data acquisition using FPGA by VHDL. The main advantages of this system are high

  16. Magnetic Bearing Controller Improvements for High Speed Flywheel System

    Science.gov (United States)

    Dever, Timothy P.; Brown, Gerald V.; Jansen, Ralph H.; Kascak, Peter E.; Provenza, Andrew J.

    2003-01-01

    A magnetic bearing control system for a high-speed flywheel system is described. The flywheel utilizes a five axis active magnetic bearing system, using eddy current sensors for position feedback to the bearing controller. Magnetic bearing controller features designed to improve flywheel operation and testing are described. Operational improvements include feed forward control to compensate for rotor imbalance, moving notch filtering to compensate for synchronous and harmonic rotational noise, and fixed notching to prevent rotor bending mode excitation. Testing improvements include adding safe gain, bearing current hold, bearing current zero, and excitation input features. Performance and testing improvements provided by these features are measured and discussed.

  17. Design criteria for light high speed desert air cushion vehicles

    Science.gov (United States)

    Abulnaga, B. E.

    An evaluation is made of the applicability and prospective performance of ACVs in trans-Saharan cargo transport, in view of the unique characteristics of the dry sand environment. The lightweight/high-speed ACV concept envisioned is essentially ground effect aircraftlike, with conventional wheels as a low-speed backup suspension system. A propeller is used in ground effect cruise. Attention is given to the effects on vehicle stability and performance of sandy surface irregularities of the desert topography and of cross-winds from various directions relative to vehicle movement.

  18. Stereoscopic high-speed imaging using additive colors

    Science.gov (United States)

    Sankin, Georgy N.; Piech, David; Zhong, Pei

    2012-04-01

    An experimental system for digital stereoscopic imaging produced by using a high-speed color camera is described. Two bright-field image projections of a three-dimensional object are captured utilizing additive-color backlighting (blue and red). The two images are simultaneously combined on a two-dimensional image sensor using a set of dichromatic mirrors, and stored for off-line separation of each projection. This method has been demonstrated in analyzing cavitation bubble dynamics near boundaries. This technique may be useful for flow visualization and in machine vision applications.

  19. High-speed analog-to-digital conversion

    CERN Document Server

    Demler, Michael J

    1991-01-01

    This book covers the theory and applications of high-speed analog-to-digital conversion. An analog-to-digital converter takes real-world inputs (such as visual images, temperature readings, and rates of speed) and transforms them into digital form for processing by computer. This book discusses the design and uses of such circuits, with particular emphasis on improving the speed of the conversion process and the accuracy of its output--how well the output is a corresponding digital representation of the output*b1input signal. As computers become increasingly interfaced to the outside world, ""

  20. Study on High-Speed Magnitude Approximation for Complex Vectors

    Institute of Scientific and Technical Information of China (English)

    陈建春; 杨万海; 许少英

    2003-01-01

    High-speed magnitude approximation algorithms for complex vectors are discussed intensively. The performance and the convergence speed of these approximation algorithms are analyzed. For the polygon fitting algorithms, the approximation formula under the least mean square error criterion is derived. For the iterative algorithms, a modified CORDIC (coordinate rotation digital computer) algorithm is developed. This modified CORDIC algorithm is proved to be with a maximum relative error about one half that of the original CORDIC algorithm. Finally, the effects of the finite register length on these algorithms are also concerned, which shows that 9 to 12-bit coefficients are sufficient for practical applications.

  1. High Speed, Low Power Current Comparators with Hysteresis

    Directory of Open Access Journals (Sweden)

    Neeraj K. Chasta

    2012-02-01

    Full Text Available This paper, presents a novel idea for analog current comparison which compares input signal current and reference currents with high speed, low power and well controlled hysteresis. Proposed circuit is based on current mirror and voltage latching techniques which produces rail to rail output voltage as a result of current comparison. The same design can be extended to a simple current comparator without hysteresis (or very less hysteresis, where comparator gives high accuracy (less than 50nA and speed at the cost of moderate power consumption. The comparators are designed optimally and studied at 180 nm CMOS process technology for a supply voltage of 3V.

  2. High Speed, Low Power Current Comparators with Hysteresis

    Directory of Open Access Journals (Sweden)

    Neeraj K. Chasta

    2012-03-01

    Full Text Available This paper, presents a novel idea for analog current comparison which compares input signal current and reference currents with high speed, low power and well controlled hysteresis. Proposed circuit is based on current mirror and voltage latching techniques which produces rail to rail output voltage as a result of current comparison. The same design can be extended to a simple current comparator without hysteresis (or very less hysteresis, where comparator gives high accuracy (less than 50nA and speed at the cost of moderate power consumption. The comparators are designed optimally and studied at 180nm CMOS process technology for a supply voltage of 3V.

  3. II-IV-V2 Chalcopyrites for High Speed Devices.

    Science.gov (United States)

    1982-07-31

    fabrication to of suitable device structures; and (5) investigate novel high-speed device concepts which could utilize the unique properties of these chalco ...semi- conductor material. CdSnP2 and ZnSnP2 are crystals which grow with the chalco - pyrite lattice structure shown in Figure 1. This structure re...parameters, chalco - pyrites differing from CdSnP2 in only one constituent were reviewed for the alloy system. ZnSnP2, CdSiP2 , and CdGeP2 are all

  4. Grooved roll for a high speed twin roll caster

    OpenAIRE

    T. Haga; HIROOKA, K.; H. Watari; S. Kumai

    2008-01-01

    Purpose: Purpose of this paper is investigation of the effect of roll-surface on the strip-surface. Improvement ofsmall cracks on the strip-surface was tried and effect of groove at the roll surface on the strip surface was shown.Design/methodology/approach: Method used in the present study was high speed twin roll caster withgrooved roll. Two kinds of grooves were used: one was parallel groove and the other was cross groove machinedby knurling and bite attached to a lathe.Findings: Findings ...

  5. Necking Point in PET High-speed Fiber Spinning

    Institute of Scientific and Technical Information of China (English)

    王夏琴; 唐志廉

    2001-01-01

    Cross-over method is established to predict necking point for PET high- speed fiber spinning. Even slowly crystallizing polymers such as PET can crystallize on the spinline at sufficiently high spinning speed. The development of rtmning velocity, temperature, crystallinity and theological force is investigated for the take-up velocity over a range of 6 000 - 10 000 m/min. The position of necking point, temperature rise and abrupt increase of crystallinity move closer to the spinneret with the increase of take-up velocity,

  6. Tactile shoe inlays for high speed pressure monitoring

    DEFF Research Database (Denmark)

    Drimus, Alin; Mátéfi-Tempfli, Stefan

    2015-01-01

    pressure sensitive cells and the use of high speed electronics and multiplexing algorithms provides frame rates of 100 Hz. The sensors tolerate overloads while showing a consistent output. The developed prototypes show a high potential not only for robotics, but also for use in sensorised human prosthetics.......This work describes the development of flexible tactile sensor shoe inlays for humanoid robots. Their design is based on a sandwich structure of flexible layers with a thin sheet of piezoresistive rubber as main transducer element. The layout and patterning of top and bottom electrodes give 1024...

  7. Development of small bore, high speed tapered roller bearing

    Science.gov (United States)

    Morrison, F. R.; Gassel, S. S.; Bovenkerk, R. L.

    1981-01-01

    The performance of four rolling bearing configurations for use on the input pinion shaft of a proposed commercial helicopter transmission was evaluated. The performance characteristics of a high speed tapered roller bearing operating under conditions comparable to those existing at this input pinion shaft were defined. The tapered roller bearing shaft support configuration was developed for the gearbox using commercially available bearing designings. The configuration was optimized and interactive thermomechanically system analyzed. Automotive pinion quality tapered roller bearings were found to be reliable under load and speed conditions in excess of those anticipated in the helicopter transmission. However, it is indicated that the elastohydrodynamic lubricant films are inadequate.

  8. High Speed, Low Power Current Comparators with Hysteresis

    CERN Document Server

    Chasta, Neeraj K

    2012-01-01

    This paper, presents a novel idea for analog current comparison which compares input signal current and reference currents with high speed, low power and well controlled hysteresis. Proposed circuit is based on current mirror and voltage latching techniques which produces rail to rail output voltage as a result of current comparison. The same design can be extended to a simple current comparator without hysteresis (or very less hysteresis), where comparator gives high accuracy (less than 50nA) and speed at the cost of moderate power consumption. The comparators are designed optimally and studied at 180nm CMOS process technology for a supply voltage of 3V.

  9. "EFFECTS OF HIGH-SPEED DRILL NOISE ON DENTISTS’ HEARING "

    Directory of Open Access Journals (Sweden)

    F.Akbakhanzadeh

    1978-11-01

    Full Text Available The study deals with noise problems associated with the use of air-turbine drills in dental practice. Noise level measurements were made on various types of dental handpieces, when operated free running and when used to cut tooth tissue. Hearing acuity tests were also undertaken in 12 randomly selected dental surgeons who have been using these drills for a number of years. The results indicate that although the danger to hearing from high speed drills is small, the possibility of hazardous effects-at least, for susceptible ears- is not excluded.

  10. The Impact of High Speed Machining on Computing and Automation

    Institute of Scientific and Technical Information of China (English)

    KKB Hon; BT Hang Tuah Baharudin

    2006-01-01

    Machine tool technologies, especially Computer Numerical Control (CNC) High Speed Machining (HSM) have emerged as effective mechanisms for Rapid Tooling and Manufacturing applications. These new technologies are attractive for competitive manufacturing because of their technical advantages, i.e. a significant reduction in lead-time, high product accuracy, and good surface finish. However, HSM not only stimulates advancements in cutting tools and materials, it also demands increasingly sophisticated CAD/CAM software, and powerful CNC controllers that require more support technologies. This paper explores the computational requirement and impact of HSM on CNC controller, wear detection,look ahead programming, simulation, and tool management.

  11. High-Speed Low Power Design in CMOS

    DEFF Research Database (Denmark)

    Ghani, Arfan; Usmani, S. H.; Stassen, Flemming

    2004-01-01

    Static CMOS design displays benefits such as low power consumption, dominated by dynamic power consumption. In contrast, MOS Current Mode Logic (MCML) displays static rather than dynamic power consumption. High-speed low-power design is one of the many application areas in VLSI that require...... the theorethical description of MOS Current Mode Logic, and it is found that it is more difficult to model and simulate the circuit with compare to standard CMOS because of the differential inputs and low voltage swing....

  12. MOTION VELOCITY SMOOTH LINK IN HIGH SPEED MACHINING

    Institute of Scientific and Technical Information of China (English)

    REN Kun; FU Jianzhong; CHEN Zichen

    2007-01-01

    To deal with over-shooting and gouging in high speed machining, a novel approach for velocity smooth link is proposed. Considering discrete tool path, cubic spline curve fitting is used to find dangerous points, and according to spatial geometric properties of tool path and the kinematics theory, maximum optimal velocities at dangerous points are obtained. Based on method of velocity control characteristics stored in control system, a fast algorithm for velocity smooth link is analyzed and formulated. On-line implementation results show that the proposed approach makes velocity changing more smoothly compared with traditional velocity control methods and improves productivity greatly.

  13. Miniature high speed compressor having embedded permanent magnet motor

    Science.gov (United States)

    Zhou, Lei (Inventor); Zheng, Liping (Inventor); Chow, Louis (Inventor); Kapat, Jayanta S. (Inventor); Wu, Thomas X. (Inventor); Kota, Krishna M. (Inventor); Li, Xiaoyi (Inventor); Acharya, Dipjyoti (Inventor)

    2011-01-01

    A high speed centrifugal compressor for compressing fluids includes a permanent magnet synchronous motor (PMSM) having a hollow shaft, the being supported on its ends by ball bearing supports. A permanent magnet core is embedded inside the shaft. A stator with a winding is located radially outward of the shaft. The PMSM includes a rotor including at least one impeller secured to the shaft or integrated with the shaft as a single piece. The rotor is a high rigidity rotor providing a bending mode speed of at least 100,000 RPM which advantageously permits implementation of relatively low-cost ball bearing supports.

  14. High-speed optical frequency-domain imaging

    OpenAIRE

    Yun, S. H.; Tearney, G. J.; Boer; Iftimia, N. V.; Bouma, B. E.

    2003-01-01

    We demonstrate high-speed, high-sensitivity, high-resolution optical imaging based on optical frequency-domain interferometry using a rapidly-tuned wavelength-swept laser. We derive and show experimentally that frequency-domain ranging provides a superior signal-to-noise ratio compared with conventional time-domain ranging as used in optical coherence tomography. A high sensitivity of −110 dB was obtained with a 6 mW source at an axial resolution of 13.5 µm and an A-line rate of 15.7 kHz, rep...

  15. High Speed Optical Tomography System for Imaging Dynamic Transparent Media

    Science.gov (United States)

    McMackin, Lenore; Hugo, Ronald J.; Pierson, R. E.; Truman, C. R.

    1997-11-01

    We describe the design and operation of a high speed optical tomography system for measuring two-dimensional images of a dynamic phase object at a rate of 5 kHz. Data from a set of eight Hartmann wavefront sensors is back-projected to produce phase images showing the details of the inner structure of a heated air flow. The tomographic reconstructions have a spatial resolution of approximately 2.0 mm and can measure temperature variations across the flow with an accuracy of about 0.7 C. Series of animated reconstructions at different downstream locations illustrate the development of flow structure and the effect of acoustic flow forcing.

  16. High-speed schlieren imaging of rocket exhaust plumes

    Science.gov (United States)

    Coultas-McKenney, Caralyn; Winter, Kyle; Hargather, Michael

    2016-11-01

    Experiments are conducted to examine the exhaust of a variety of rocket engines. The rocket engines are mounted in a schlieren system to allow high-speed imaging of the engine exhaust during startup, steady state, and shutdown. A variety of rocket engines are explored including a research-scale liquid rocket engine, consumer/amateur solid rocket motors, and water bottle rockets. Comparisons of the exhaust characteristics, thrust and cost for this range of rockets is presented. The variety of nozzle designs, target functions, and propellant type provides unique variations in the schlieren imaging.

  17. III-V alloy heterostructure high speed avalanche photodiodes

    Science.gov (United States)

    Law, H. D.; Nakano, K.; Tomasetta, L. R.

    1979-01-01

    Heterostructure avalanche photodiodes have been successfully fabricated in several III-V alloy systems: GaAlAs/GaAs, GaAlSb/GaAlSb, and InGaAsP/InP. These diodes cover optical wavelengths from 0.4 to 1.8 micron. Early stages of development show very encouraging results. High speed response of less than 35 ps and high quantum efficiency more than 95 percent have been obtained. The dark currents and the excess avalanche noise are also dicussed. A direct comparison of GaAlSb, GaAlAsSb, and In GaAsP avalanche photodiodes is given.

  18. Study on Electromagnetic Interference of high-speed railway EMU

    Directory of Open Access Journals (Sweden)

    CHENG Qiang

    2013-07-01

    Full Text Available Electromagnetic radiation generated by pantograph-catenaries detachment is one of the inevitable problems with the development of high-speed railway this paper is focusing on the generating mechanism and characteristics of electromagnetic noise caused by pantograph-catenaries system. Based on previous research, we build an integrated model of catenaries and locomotive system, and study the electromagnetic disturbance characteristics using software FEKO. The simulation experiment results in the end can not only provide accurate data, but also give a more intuitive understanding of electromagnetic field distribution and attenuation characteristics generated by pantograph detachment.    

  19. Bottom Raking Damage to High-Speed Craft

    DEFF Research Database (Denmark)

    Simonsen, Bo Cerup

    1998-01-01

    This paper presents a comparative study of the raking damage to high speed craft (HSC) and conventional ships. The analysis is based on a detailed theoretical model for the raking resistance of an assembled ship bottom structure and on the idea that the impact conditions for various ship types have...... certain similarities. Thus, damage statistics for one ship type can be scaled to another ship type.The result of a raking damage calculation is sensitive to various uncertain parameters, such as the impact velocity and the rock height and shape. Conveniently, the paper shows that the damage scaling factor...

  20. Signal Conditioning in Process of High Speed Imaging

    Directory of Open Access Journals (Sweden)

    Libor Hargas

    2015-01-01

    Full Text Available The accuracy of cinematic analysis with camera system depends on frame rate of used camera. Specific case of cinematic analysis is in medical research focusing on microscopic objects moving with high frequencies (cilia of respiratory epithelium. The signal acquired by high speed video acquisition system has very amount of data. This paper describes hardware parts, signal condition and software, which is used for image acquiring thru digital camera, intelligent illumination dimming hardware control and ROI statistic creation. All software parts are realized as virtual instruments.

  1. High-speed multicolor photometry with CMOS cameras

    CERN Document Server

    Pokhvala, S M; Reshetnyk, V M

    2012-01-01

    We present the results of testing the commercial digital camera Nikon D90 with a CMOS sensor for high-speed photometry with a small telescope Celestron 11" on Peak Terskol. CMOS sensor allows to perform photometry in 3 filters simultaneously that gives a great advantage compared with monochrome CCD detectors. The Bayer BGR color system of CMOS sensors is close to the Johnson BVR system. The results of testing show that we can measure the stars up to V $\\simeq$ 14 with the precision of 0.01 mag. Stars up to magnitude V $\\sim$ 10 can shoot at 24 frames per second in the video mode.

  2. VERY HIGH-SPEED DRILL STRING COMMUNICATIONS NETWORK

    Energy Technology Data Exchange (ETDEWEB)

    David S. Pixton

    2002-11-01

    Testing of a high-speed digital data transmission system for drill pipe is described. Passive transmission of digital data through 1000 ft of telemetry drill pipe has been successfully achieved. Data rates of up to 2 Mbit/sec have been tested through the 1000 ft system with very low occurrence of data errors: required error correction effort is very low or nonexistent. Further design modifications have been made to improve manufacturability and high pressure robustness of the transmission line components. Failure mechanisms of previous designs at high pressure and high temperature are described. Present design limitations include high temperature application.

  3. Research of high speed optical switch based on compound semiconductor

    Institute of Scientific and Technical Information of China (English)

    WANG MingHua; QI Wei; YU Hui; JIANG XiaoQing; YANG JianYi

    2009-01-01

    High-speed optical switch and its array are the crucial components of all-optical switching system. This paper presents the analytical model of a total-internal-reflection (TIR) optical switch. By employing the carrier injection effect in GaAs and the GaAs/AlGaAs double heterojunction structure, the X-junction TIR switch and the Mach-Zehnder interference (MZI) switch are demonstrated at 1.55 IJm. The measured results show that the extinction ratio of both switches exceeds 20 dB. The switching speed reaches the scale of 10 ns.

  4. The high-speed after pulse measurement system for PMT

    CERN Document Server

    Cheng, Yaping; Ning, Zhe; Xia, Jingkai; Wang, Wenwen; Wang, Yifang; Cao, Jun; Jiang, Xiaoshan; Wang, Zheng; Li, Xiaonan; Qi, Ming; Heng, Yuekun; Liu, Shulin; Lei, Xiangcui; Wu, Zhi

    2014-01-01

    A system employing a desktop FADC has been developed to investigate the features of 8 inches Hamamatsu PMT. The system stands out for its high-speed and informative results as a consequence of adopting fast waveform sampling technology. Recording full waveforms allows us to perform digital signal processing, pulse shape analysis, and precision timing extraction. High precision after pulse time and charge distribution characteristics are presented in this manuscript. Other photomultipliers characteristics, such as dark rate and transit time spread, can also be obtained by exploiting waveform analysis using this system.

  5. Design of a high speed rotating mechanical shutter

    Energy Technology Data Exchange (ETDEWEB)

    Stowers, I.F.; Merritt, B.T.; McFann, C.B.

    1979-11-06

    A high-speed rotating shutter was designed to operate in a 10/sup -6/ Torr vacuum at the optical focus of a laser spatial filter. The shutter is basically a wheel, with a single 3 x 10-mm slot at the perimeter, which rotates with a peripheral speed of 1 km/s. The motor to drive the rotating wheel is magnetically suspended and synchronously wound. The wheel achieves a 4 ..mu..s opening time and a timing accuracy of better than 0.2 ..mu..s. (MOW)

  6. High-Speed Low Power Design in CMOS

    DEFF Research Database (Denmark)

    Ghani, Arfan; Usmani, S. H.; Stassen, Flemming

    2004-01-01

    Static CMOS design displays benefits such as low power consumption, dominated by dynamic power consumption. In contrast, MOS Current Mode Logic (MCML) displays static rather than dynamic power consumption. High-speed low-power design is one of the many application areas in VLSI that require...... the appropriate domains of performance and power requirements in which MCML presents benefits over standard CMOS. An optimized cell library is designed and implemented in both CMOS and MCML in order to make a comparison with reference to speed and power. Much more time is spent in order to nderstand...

  7. New technique for high-speed microjet breakup analysis

    Energy Technology Data Exchange (ETDEWEB)

    Vago, N. [Department of Atomic Physics, Budapest University of Technology and Economics, Budafoki ut 8, 1111, Budapest (Hungary); Synova SA, Ch. Dent d' Oche, 1024 Ecublens (Switzerland); Spiegel, A. [Department of Atomic Physics, Budapest University of Technology and Economics, Budafoki ut 8, 1111, Budapest (Hungary); Couty, P. [Institute of Imaging and Applied Optics, Swiss Federal Institute of Technology, Lausanne, BM, 1015, Lausanne (Switzerland); Wagner, F.R.; Richerzhagen, B. [Synova SA, Ch. Dent d' Oche, 1024 Ecublens (Switzerland)

    2003-10-01

    In this paper we introduce a new technique for visualizing the breakup of thin high-speed liquid jets. Focused light of a He-Ne laser is coupled into a water jet, which behaves as a cylindrical waveguide until the point where the amplitude of surface waves is large enough to scatter out the light from the jet. Observing the jet from a direction perpendicular to its axis, the light that appears indicates the location of breakup. Real-time examination and also statistical analysis of the jet disruption is possible with this method. A ray tracing method was developed to demonstrate the light scattering process. (orig.)

  8. Hunting For Eclipses: High Speed Observations of Cataclysmic Variables

    CERN Document Server

    Hardy, Liam K; Dhillon, Vik S; Littlefair, Stuart P; Bours, Madelon C P; Breedt, Elme; Butterley, Tim; Chakpor, Anurak; Irawati, Puji; Kerry, Paul; Marsh, Tom R; Parsons, Steven G; Savoury, Chris D J; Wilson, Richard W; Woudt, Patrick A

    2016-01-01

    We present new time-resolved photometry of 74 cataclysmic variables (CVs), 47 of which are eclipsing. 13 of these eclipsing systems are newly discovered. For all 47 eclipsing systems we show high cadence (1-20 seconds) light curves obtained with the high-speed cameras ultracam and ultraspec. We provide new or refined ephemerides, and supply mid-eclipse times for all observed eclipses. We assess the potential for light curve modelling of all 47 eclipsing systems to determine their system parameters, finding 20 systems which appear to be suitable for future study.

  9. Ping-Pong Robotics with High-Speed Vision System

    OpenAIRE

    Li, Hailing; Wu, Haiyan; Lou, Lei; Kühnlenz, Kolja; Ravn, Ole

    2012-01-01

    The performance of vision-based control is usually limited by the low sampling rate of the visual feedback. We address Ping-Pong robotics as a widely studied example which requires high-speed vision for highly dynamic motion control. Inorder to detect a flying ball accurately and robustly, a multithreshold legmentation algorithm is applied in a stereo-vision running at 150Hz. Based on the estimated 3D ball positions, a novel two-phase trajectory prediction is exploited to determine the hittin...

  10. Degradation of copepod fecal pellets

    DEFF Research Database (Denmark)

    Poulsen, Louise K.; Iversen, Morten

    2008-01-01

    Copepod fecal pellets are often degraded at high rates within the upper part of the water column. However, the identity of the degraders and the processes governing the degradation remain unresolved. To identify the pellet degraders we collected water from Oresund (Denmark) approximately every...... second month from July 2004 to July 2005. These water samples were divided into 5 fractions (pellet degradation rate and species composition of the plankton from triplicate incubations of each fraction and a known, added...... amount of fecal pellets. The total degradation rate of pellets by the natural plankton community of Oresund followed the phytoplankton biomass, with maximum degradation rate during the spring bloom (2.5 +/- 0.49 d(-1)) and minimum (0.52 +/- 0.14 d(-1)) during late winter. Total pellet removal rate ranged...

  11. High-speed digital fiber optic links for satellite traffic

    Science.gov (United States)

    Daryoush, A. S.; Ackerman, E.; Saedi, R.; Kunath, R. R.; Shalkhauser, K.

    1989-09-01

    Large aperture phased array antennas operating at millimeter wave frequencies are designed for space-based communications and imaging platforms. Array elements are comprised of active T/R modules which are linked to the central processing unit through high-speed fiber-optic networks. The system architecture satisfying system requirements at millimeter wave frequency is T/R level data mixing where data and frequency reference signals are distributed independently before mixing at the T/R modules. This paper demonstrates design procedures of a low loss high-speed fiber-optic link used for transmission of data signals over 600-900 MHz bandwidth inside satellite. The fiber-optic link is characterized for transmission of analog and digital data. A dynamic range of 79 dB/MHz was measured for analog data over the bandwidth. On the other hand, for bursted SMSK satellite traffic at 220 Mbps rates, BER of 2 x 10 to the -7th was measured for E(b)/N(o) of 14.3 dB.

  12. COMPARATIVE STUDY OF NEXT GENERATION HIGH SPEED WIRELESS NETWORK

    Directory of Open Access Journals (Sweden)

    RAHUL MALHOTRA

    2011-06-01

    Full Text Available Advances in mobile communication theory have enabled the development of different wireless access technologies. Alongside the revolutionary progress in wireless access technologies, advances in wireless access devices such as laptops, palmtops, and cell phones and mobile middleware have paved the way for the deliveryof beyond-voice-type services while on the move. This sets the platform for high-speed mobile communications that provide high-speed data and both real and non-real time multimedia to mobile users. Today's wireless world uses several communication infrastructures such as Bluetooth for personal area, IEEE 802.11 for local area,Universal Mobile Telecommunication System (UMTS for wide area, and Satellite networks for global networking other hand, since these wireless networks are complementary to each other, their integration and coordinated operation can provide ubiquitous “always best connection" quality mobile communications to the users. This paper discusses the different architectures of wireless networks and the different factors to be considered while designing a hybrid wireless network. The different factors to be considered for design of ahybrid wireless network and the different networks have been explored in this paper.

  13. Reflectively Coupled Waveguide Photodetector for High Speed Optical Interconnection

    Directory of Open Access Journals (Sweden)

    Shih-Hsiang Hsu

    2010-12-01

    Full Text Available To fully utilize GaAs high drift mobility, techniques to monolithically integrate In0.53Ga0.47As p-i-n photodetectors with GaAs based optical waveguides using total internal reflection coupling are reviewed. Metal coplanar waveguides, deposited on top of the polyimide layer for the photodetector’s planarization and passivation, were then uniquely connected as a bridge between the photonics and electronics to illustrate the high-speed monitoring function. The photodetectors were efficiently implemented and imposed on the echelle grating circle for wavelength division multiplexing monitoring. In optical filtering performance, the monolithically integrated photodetector channel spacing was 2 nm over the 1,520–1,550 nm wavelength range and the pass band was 1 nm at the −1 dB level. For high-speed applications the full-width half-maximum of the temporal response and 3-dB bandwidth for the reflectively coupled waveguide photodetectors were demonstrated to be 30 ps and 11 GHz, respectively. The bit error rate performance of this integrated photodetector at 10 Gbit/s with 27-1 long pseudo-random bit sequence non-return to zero input data also showed error-free operation.

  14. High-speed digital video tracking system for generic applications

    Science.gov (United States)

    Walton, James S.; Hallamasek, Karen G.

    2001-04-01

    The value of high-speed imaging for making subjective assessments is widely recognized, but the inability to acquire useful data from image sequences in a timely fashion has severely limited the use of the technology. 4DVideo has created a foundation for a generic instrument that can capture kinematic data from high-speed images. The new system has been designed to acquire (1) two-dimensional trajectories of points; (2) three-dimensional kinematics of structures or linked rigid-bodies; and (3) morphological reconstructions of boundaries. The system has been designed to work with an unlimited number of cameras configured as nodes in a network, with each camera able to acquire images at 1000 frames per second (fps) or better, with a spatial resolution of 512 X 512 or better, and an 8-bit gray scale. However, less demanding configurations are anticipated. The critical technology is contained in the custom hardware that services the cameras. This hardware optimizes the amount of information stored, and maximizes the available bandwidth. The system identifies targets using an algorithm implemented in hardware. When complete, the system software will provide all of the functionality required to capture and process video data from multiple perspectives. Thereafter it will extract, edit and analyze the motions of finite targets and boundaries.

  15. High speed and wide bandwidth delta-sigma ADCs

    CERN Document Server

    Bolatkale, Muhammed; Makinwa, Kofi A A

    2014-01-01

    This book describes techniques for realizing wide bandwidth (125MHz) over-sampled analog-to-digital converters (ADCs) in nanometer-CMOS processes.  The authors offer a clear and complete picture of system level challenges and practical design solutions in high-speed Delta-Sigma modulators.  Readers will be enabled to implement ADCs as continuous-time delta-sigma (CT∆Σ) modulators, offering simple resistive inputs, which do not require the use of power-hungry input buffers, as well as offering inherent anti-aliasing, which simplifies system integration. The authors focus on the design of high speed and wide-bandwidth ΔΣMs that make a step in bandwidth range which was previously only possible with Nyquist converters. More specifically, this book describes the stability, power efficiency, and linearity limits of ΔΣMs, aiming at a GHz sampling frequency.   • Provides overview of trends in Wide Bandwidth and High Dynamic Range analog-to-digital converters (ADCs); • Enables the design of a wide band...

  16. High-speed seatbelt pretensioner loading of the abdomen.

    Science.gov (United States)

    Foster, Craig D; Hardy, Warren N; Yang, King H; King, Albert I; Hashimoto, Syuzo

    2006-11-01

    This study characterizes the response of the human cadaver abdomen to high-speed seatbelt loading using pyrotechnic pretensioners. A test apparatus was developed to deliver symmetric loading to the abdomen using a seatbelt equipped with two low-mass load cells. Eight subjects were tested under worst-case scenario, out-of-position (OOP) conditions. A seatbelt was placed at the level of mid-umbilicus and drawn back along the sides of the specimens, which were seated upright using a fixed-back configuration. Penetration was measured by a laser, which tracked the anterior aspect of the abdomen, and by high-speed video. Additionally, aortic pressure was monitored. Three different pretensioner designs were used, referred to as system A, system B and system C. The B and C systems employed single pretensioners. The A system consisted of two B system pretensioners. The vascular systems of the subjects were perfused. Peak anterior abdominal loads due to the seatbelt ranged from 2.8 kN to 10.1 kN. Peak abdominal penetration ranged from 49 mm to 138 mm. Peak penetration speed ranged from 4.0 m/s to 13.3 m/s. Three cadavers sustained liver injury: one AIS 2, and two AIS 3. Cadaver abdominal response corridors for the A and B system pretensioners are proposed. The results are compared to the data reported by Hardy et al. (2001) and Trosseille et al. (2002).

  17. Quantitative Image Analysis Techniques with High-Speed Schlieren Photography

    Science.gov (United States)

    Pollard, Victoria J.; Herron, Andrew J.

    2017-01-01

    Optical flow visualization techniques such as schlieren and shadowgraph photography are essential to understanding fluid flow when interpreting acquired wind tunnel test data. Output of the standard implementations of these visualization techniques in test facilities are often limited only to qualitative interpretation of the resulting images. Although various quantitative optical techniques have been developed, these techniques often require special equipment or are focused on obtaining very precise and accurate data about the visualized flow. These systems are not practical in small, production wind tunnel test facilities. However, high-speed photography capability has become a common upgrade to many test facilities in order to better capture images of unsteady flow phenomena such as oscillating shocks and flow separation. This paper describes novel techniques utilized by the authors to analyze captured high-speed schlieren and shadowgraph imagery from wind tunnel testing for quantification of observed unsteady flow frequency content. Such techniques have applications in parametric geometry studies and in small facilities where more specialized equipment may not be available.

  18. High-speed stimulated Brillouin scattering spectroscopy at 780 nm

    Directory of Open Access Journals (Sweden)

    Itay Remer

    2016-09-01

    Full Text Available We demonstrate a high-speed stimulated Brillouin scattering (SBS spectroscopy system that is able to acquire stimulated Brillouin gain point-spectra in water samples and Intralipid tissue phantoms over 2 GHz within 10 ms and 100 ms, respectively, showing a 10-100 fold increase in acquisition rates over current frequency-domain SBS spectrometers. This improvement was accomplished by integrating an ultra-narrowband hot rubidium-85 vapor notch filter in a simplified frequency-domain SBS spectrometer comprising nearly counter-propagating continuous-wave pump-probe light at 780 nm and conventional single-modulation lock-in detection. The optical notch filter significantly suppressed stray pump light, enabling detection of stimulated Brillouin gain spectra with substantially improved acquisition times at adequate signal-to-noise ratios (∼25 dB in water samples and ∼15 dB in tissue phantoms. These results represent an important step towards the use of SBS spectroscopy for high-speed measurements of Brillouin gain resonances in scattering and non-scattering samples.

  19. A study on centrifugal casting of high speed steel roll

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    High speed steel (HSS) rolls can replace traditional rolls such as alloyed cast iron rolls and powder metallurgical (PM) hard alloy rolls. The main reasons for the replacement are that the wear resistance of low-cost alloyed cast iron rolls is poor and the cost of high-quality PM hard alloy rolls is very high. By means of centrifugal casting, HSS rolls having excellent wear resistance have been manufactured. The hardness of the HSS roll is 65~ 67 HRC, the range of variation is smaller than 2 HRC and its impact toughness is 15 J/cm2. The wear rate of HSS rolls used in the pre-finishing stands of high-speed hot wire-rod rolling mill reaches 2.5 × 10-4 mm per ton steel. Furthermore, the manufacturing cost of HSS rolls is significantly lower than that of PM hard alloy rolls; it is only 30 percent of that of PM hard alloy rolls.

  20. A second-generation high speed civil transport: Stingray

    Science.gov (United States)

    Engdahl, Sean; Lopes, Kevin; Ngan, Angelen; Perrin, Joseph; Phipps, Marcus; Westman, Blake; Yeo, Urn

    1992-01-01

    The Stingray is the second-generation High Speed Civil Transport (HSCT) designed for the 21st Century. This aircraft is designed to be economically viable and environmentally sound transportation competitive in markets currently dominated by subsonic aircraft such as the Boeing 747 and upcoming McDonnell Douglas MD-12. With the Stringray coming into service in 2005, a ticket price of 21 percent over current subsonic airlines will cover operational costs with a 10 percent return on investment. The cost per aircraft will be $202 million with the Direct Operating Cost equal to $0.072 per mile per seat. This aircraft has been designed to be a realistic aircraft that can be built within the next ten to fifteen years. There was only one main technological improvement factor used in the design, that being for the engine specific fuel consumption. The Stingray, therefore, does not rely on technology that does not exist. The Stingray will be powered by four mixed flow turbofans that meet both nitrous oxide emissions and FAR 36 Stage 3 noise regulations. It will carry 250 passengers a distance of 5200 nautical miles at a speed of Mach 2.4. The shape of the Stingray, while optimized for supersonic flight, is compatible with all current airline facilities in airports around the world. As the demand for economical, high-speed flight increases, the Stingray will be ready and able to meet those demands.

  1. Ultra-High-Speed Image Signal Accumulation Sensor

    Directory of Open Access Journals (Sweden)

    Takeharu Goji Etoh

    2010-04-01

    Full Text Available Averaging of accumulated data is a standard technique applied to processing data with low signal-to-noise ratios (SNR, such as image signals captured in ultra-high-speed imaging. The authors propose an architecture layout of an ultra-high-speed image sensor capable of on-chip signal accumulation. The very high frame rate is enabled by employing an image sensor structure with a multi-folded CCD in each pixel, which serves as an in situ image signal storage. The signal accumulation function is achieved by direct connection of the first and the last storage elements of the in situ storage CCD. It has been thought that the multi-folding is achievable only by driving electrodes with complicated and impractical layouts. Simple configurations of the driving electrodes to overcome the difficulty are presented for two-phase and four-phase transfer CCD systems. The in situ storage image sensor with the signal accumulation function is named Image Signal Accumulation Sensor (ISAS.

  2. High-speed digital phonoscopy images analyzed by Nyquist plots

    Science.gov (United States)

    Yan, Yuling

    2012-02-01

    Vocal-fold vibration is a key dynamic event in voice production, and the vibratory characteristics of the vocal fold correlate closely with voice quality and health condition. Laryngeal imaging provides direct means to observe the vocal fold vibration; in the past, however, available modalities were either too slow or impractical to resolve the actual vocal fold vibrations. This limitation has now been overcome by high-speed digital imaging (HSDI) (or high-speed digital phonoscopy), which records images of the vibrating vocal folds at a rate of 2000 frames per second or higher- fast enough to resolve a specific, sustained phonatory vocal fold vibration. The subsequent image-based functional analysis of voice is essential to better understanding the mechanism underlying voice production, as well as assisting the clinical diagnosis of voice disorders. Our primary objective is to develop a comprehensive analytical platform for voice analysis using the HSDI recordings. So far, we have developed various analytical approaches for the HSDI-based voice analyses. These include Nyquist plots and associated analysese that are used along with FFT and Spectrogram in the analysis of the HSDI data representing normal voice and specific voice pathologies.

  3. Optimisation and simulation of high speed production system

    Directory of Open Access Journals (Sweden)

    J.P.T. Mo

    2008-12-01

    Full Text Available Purpose: This paper describes the project of developing the model of a high speed production system.Design/methodology/approach: High speed production systems involve significant investment and aresensitive to change. It is important to have a plan before changing the facility to minimize risks. To achieve thisgoal, it is necessary to develop a simulation model of the manufacturing process so that the system efficiencyunder different conditions can be evaluated.Findings: The investigation included evaluation of optimal system performance based on machine specificationsand values obtained over a period of observation.Practical implications: These values were used to generate a simulation model and tested under differentconditions. Four of the six recommendations were immediately accepted by the management while the tworemaining recommendations were further investigated to clarify anticipated benefits.Originality/value: This model is simulated in a discrete simulation environment and is based on values obtainedfrom the actual production process. The effect of changing the conditions and compatibility of the system toincreased work and reduced waste can be visualized.

  4. Passive control of rotorcraft high-speed impulsive noise

    Science.gov (United States)

    Szulc, O.; Doerffer, P.; Tejero, F.

    2016-10-01

    A strong, normal shock wave, terminating a local supersonic area located at the tip of a helicopter blade, not only limits the aerodynamic performance, but also constitutes an origin of the High-Speed Impulsive (HSI) noise. The application of a passive control device (a shallow cavity covered by a perforated plate) just beneath the interaction region weakens the compression level, thus reducing the main source of the HSI noise. The numerical investigation based on the URANS approach and Bohning/Doerffer (BD) transpiration law (SPARC code) confirms a large potential of the new method. Two exemplary implementations, adapted to model helicopter rotors tested at NASA Ames facility in transonic conditions: Caradonna-Tung (lifting, transonic hover) and Caradonna-Laub-Tung (non-lifting, high-speed forward flight), demonstrate the possible gains in terms of the reduction of acoustic pressure fluctuations in the near-field of the blade tip. The CFD results are validated against the experimental data obtained for the reference configurations (no control), while the analysis of the passive control arrangement is based on a purely numerical research. The normal shock wave is effectively eliminated by the wall ventilation exerting a positive impact on the generated level of the HSI noise.

  5. LES/FMDF of High Speed Spray Combustion

    Science.gov (United States)

    Irannejad, Abolfazl; Jaberi, Farhad

    2013-11-01

    High speed evaporating and combusting sprays are computed with the hybrid two-phase large eddy simulation (LES)/filtered mass density function (FMDF) methodology. In this methodology, the resolved fluid velocity is obtained by solving the filtered form of the compressible Navier-Stokes equations with high-order finite difference schemes. The scalar (temperature and species mass fractions) field is obtained by solving the FMDF transport equation with a Lagrangian stochastic method. The spray is simulated with the Lagrangian droplets together with stochastic breakup and finite rate heat and mass transfer models. The liquid volume fraction is included in the LES/FMDF for denser spray regions. Simulations of high speed evaporating sprays with and without combustion for a range of gas and spray conditions indicate that the two-phase LES/FMDF results are consistent and compare well with the experimental results for global spray variables such as the spray penetration and flame lift-off lengths. The gas velocity and turbulence generated by the spray are found to be very significant in all simulated cases. A broad spectrum of droplet sizes is also found to be generated by the complex and coupled effects of the gas flow turbulence, droplet breakup, evaporation and combustion.

  6. High speed digital holographic interferometry for hypersonic flow visualization

    Science.gov (United States)

    Hegde, G. M.; Jagdeesh, G.; Reddy, K. P. J.

    2013-06-01

    Optical imaging techniques have played a major role in understanding the flow dynamics of varieties of fluid flows, particularly in the study of hypersonic flows. Schlieren and shadowgraph techniques have been the flow diagnostic tools for the investigation of compressible flows since more than a century. However these techniques provide only the qualitative information about the flow field. Other optical techniques such as holographic interferometry and laser induced fluorescence (LIF) have been used extensively for extracting quantitative information about the high speed flows. In this paper we present the application of digital holographic interferometry (DHI) technique integrated with short duration hypersonic shock tunnel facility having 1 ms test time, for quantitative flow visualization. Dynamics of the flow fields in hypersonic/supersonic speeds around different test models is visualized with DHI using a high-speed digital camera (0.2 million fps). These visualization results are compared with schlieren visualization and CFD simulation results. Fringe analysis is carried out to estimate the density of the flow field.

  7. High-speed atomic force microscopy: imaging and force spectroscopy.

    Science.gov (United States)

    Eghiaian, Frédéric; Rico, Felix; Colom, Adai; Casuso, Ignacio; Scheuring, Simon

    2014-10-01

    Atomic force microscopy (AFM) is the type of scanning probe microscopy that is probably best adapted for imaging biological samples in physiological conditions with submolecular lateral and vertical resolution. In addition, AFM is a method of choice to study the mechanical unfolding of proteins or for cellular force spectroscopy. In spite of 28 years of successful use in biological sciences, AFM is far from enjoying the same popularity as electron and fluorescence microscopy. The advent of high-speed atomic force microscopy (HS-AFM), about 10 years ago, has provided unprecedented insights into the dynamics of membrane proteins and molecular machines from the single-molecule to the cellular level. HS-AFM imaging at nanometer-resolution and sub-second frame rate may open novel research fields depicting dynamic events at the single bio-molecule level. As such, HS-AFM is complementary to other structural and cellular biology techniques, and hopefully will gain acceptance from researchers from various fields. In this review we describe some of the most recent reports of dynamic bio-molecular imaging by HS-AFM, as well as the advent of high-speed force spectroscopy (HS-FS) for single protein unfolding.

  8. High Speed Switching Micoplasma in High Pressure Gases

    Science.gov (United States)

    Wakim, Dani; Staack, David

    2012-10-01

    Micro-plasma discharges with switching times approaching 1 ns are studied at pressures from 1 to 16 atm. Applications of these devices are robust high speed switching transistors able to withstand electric interference, high temperatures and harsh environments. Measured discharge conditions at 250 psia in Nitrogen are: gas temperature 2900 K, discharge diameter ˜7 μm and electron density ˜10^17 cm-3. High speed switching is achieved by taking advantage of rapid dynamics of instabilities at high pressure and high electron density. The capacitance and inductance of the circuit also significantly affect transients. Tradeoffs are observed in switching times. By reducing capacitances from 10 pF to ˜1pF attainment of steady state conditions can be reduced from 1 us to ˜ 20 ns. However current rise times increase from 1 ns at high capacitance to 20 ns at low capacitance. A decrease in switching time with increased pressure is also observed. Also investigated are configurations with a third electrode acting as a gate or trigger and various high temperature (>2000K) materials such as platinum rhodium alloys and ceria stabilized zirconia ceramics for device fabrication.

  9. Research on high-speed single photon detector

    Science.gov (United States)

    Wang, Chao; Yang, Hao; Wang, Di; Ma, Haiqiang; Luo, Kaihong; Sun, Zhibin; Zhai, Guangjie

    2010-10-01

    Single-photon detector based on an InGaAs avalanche photodiode is one of hot research on the quantum photon, and is one of the key technologies on quantum communication and quantum image. It is widely used in applications as high sensitive photon spectrum, high speed optic measurement and so on. A suitable delay and comparator with latch function circuit are used to prevent positive and negative transient pulses from influencing the detection of true photon induced avalanches. A dead time modulation feedback control circuit decreases the after-pulse. Especially, ECL difference circuit is the key of high speed single photon detector. In addition, the detector uses the hot tube fan-cooling method. From the performance test, the lowest temperature reaches -62°C, the minimum gate pulse width is 2ns (Full-Width-Half-Max, FWHM) and the dark counter rate is 2.5×10-6 ns-1 with a detection rate of 10MHz when the quantum efficiency is more than 10%.

  10. A High Speed Autofocusing System for Micro System Applications

    Institute of Scientific and Technical Information of China (English)

    Phuchong Sripolsaen; Pradit Mittrapiyanuruk; Pakorn Keawtrakulpong

    2016-01-01

    In this paper, we present a high speed autofocus system for micro system applications and design a look-up-table based autofocusing algorithm for applications when a target object is always visible, e.g., manufacturing parts with alignment fiducials. We perform an evaluation of 24 focus measures to verify that which focus measure is the best for the look-up-table based method. From the evaluation, we find that the Chebyshev moments-based focus measure (CHEB) is the most suitable. Furthermore, we also develop a look-up-table based autofocus system that uses CHEB as the focus measure. In training phase, we offline construct a table from training images of an object that are captured at several lens distances. Each entry of table consists of focus measure computed from image and lens distance. In working phase, given an input image, the algorithm first computes the focus measure and then finds the best match focus measure from the table and looks up the corresponding lens position for moving it into the in-focus position. Our algorithm can perform autofocusing within only 2 steps of lens moving. The experiment shows that the system can perform high speed autofocusing of micro objects.

  11. Analysis of high-speed digital phonoscopy pediatric images

    Science.gov (United States)

    Unnikrishnan, Harikrishnan; Donohue, Kevin D.; Patel, Rita R.

    2012-02-01

    The quantitative characterization of vocal fold (VF) motion can greatly enhance the diagnosis and treatment of speech pathologies. The recent availability of high-speed systems has created new opportunities to understand VF dynamics. This paper presents quantitative methods for analyzing VF dynamics with high-speed digital phonoscopy, with a focus on expected VF changes during childhood. A robust method for automatic VF edge tracking during phonation is introduced and evaluated against 4 expert human observers. Results from 100 test frames show a subpixel difference between the VF edges selected by algorithm and expert observers. Waveforms created from the VF edge displacement are used to created motion features with limited sensitivity to variations of camera resolution on the imaging plane. New features are introduced based on acceleration ratios of critical points over each phonation cycle, which have the potential for studying issues related to impact stress. A novel denoising and hybrid interpolation/extrapolation scheme is also introduced to reduce the impact of quantization errors and large sampling intervals relative to the phonation cycle. Features extracted from groups of 4 adults and 5 children show large differences for features related to asymmetry between the right and left fold and consistent differences for impact acceleration ratio.

  12. Pelleting of feed for broiler chickens: Factors affecting pellet quality

    Directory of Open Access Journals (Sweden)

    Daniel José Antoniol Miranda

    2011-01-01

    Full Text Available The efficiency of the pellet can be translated by the quality of the pellet which is defined as the proportion of intact pellets that come to feeders for chickens, i.e., its resistance to breakage between the feed mill and farms. The use of diets with a higher percentage of intact pellets results in better performance of birds when compared with the feed rations. The main factors that affect pellet quality are: characteristics of pelleting, the feed composition, particle size, pelleting temperature, moisture and steam injection. From a nutritional standpoint, one can consider that the smaller the particle size of food increased their contact with the digestive juices, which aids digestion and absorption of nutrients. However, finely ground lead to less stimulation and growth of intestinal ephitellium. But from the standpoint of production of feed, the larger the particle size of ingredients largest economy with energy and greater efficiency (tons / hour milling. Because of this, it is suggested that the particle sizes used vary between 500 and 700 ìm to not to cause loss of performance of the birds, nor the income from the factory. Increased energy, through the addition of oils and fats, have much influence on performance parameters of broilers and the quality of the pellet produced. The presence of oils and / or fat, depending on the amount, on its hydrophoby characteristic, causing damage to the particles aggregation acting as a lubricant between food particles and the matrix of pelleting, decreasing the pelleting pressure and its gelatinization, resulting into poor quality pellets.

  13. Design and investigation of high-speed, large-force and longlifetime electromagnetic actuators by finite element modelling

    Energy Technology Data Exchange (ETDEWEB)

    Khan, S H [Measurement and Instrumentation Centre, School of Engineering and Mathematical Sciences, City University, Northampton Square, London EC1V 0HB (United Kingdom); Cai, M [Measurement and Instrumentation Centre, School of Engineering and Mathematical Sciences, City University, Northampton Square, London EC1V 0HB (United Kingdom); Grattan, K T V [Measurement and Instrumentation Centre, School of Engineering and Mathematical Sciences, City University, Northampton Square, London EC1V 0HB (United Kingdom); Kajan, K [Measurement and Instrumentation Centre, School of Engineering and Mathematical Sciences, City University, Northampton Square, London EC1V 0HB (United Kingdom); Honeywood, M [Sortex Limited, Pudding Mill Lane, London E15 2PJ (United Kingdom); Mills, S [Sortex Limited, Pudding Mill Lane, London E15 2PJ (United Kingdom)

    2005-01-01

    Electromagnetic (EM) solenoid actuators are widely used in many applications such as the automobile, aerospace, printing and food industries where repetitive, often high-speed linear or rotating motions are required. In some of these applications they are used as highspeed 'switching' valves for switching pneumatic channels. This paper describes the finite element (FE) modelling and design of high-speed solenoid actuators. Operating at frequencies between 150-300 Hz, these actuators are unique in terms of the large force they produce (8-15 N) and the requirement for very long lifetime (2-5 billion cycles). The complex nature of electromagnetic, motional and thermal problems is discussed. The methodologies for FE modelling of such high-performance actuators are developed and discussed. These are used for modelling, design, performance evaluation and prediction of the above high-speed actuators. Modelling results showing some of the key design features of the actuators are presented in terms of force produced as a function of various design parameters.

  14. Fundamentals of Biomass pellet production

    DEFF Research Database (Denmark)

    Holm, Jens Kai; Henriksen, Ulrik Birk; Hustad, Johan Einar

    2005-01-01

    to pelletize a 60% (wt) pine + 40% (wt) beech mixture but not a 40% (wt) pine + 60% (wt) beech mixture. Addition of 3% (wt) rape oil or 3% (wt) Wafolin did not facilitate the pelletizing process of beech. However, it was found that the addition of polymer-rich compounds such as brewers spent grains...... tests are needed, it appears that the addition of small amounts of brewers spent grains increases the quality of the pellets. A model is presented which describes the pelletizing pressure variation along the press channels of the die. Equations based on differential control volumes are set up...

  15. REDUCTION OF EMISSIONS FROM A HIGH SPEED FERRY

    Energy Technology Data Exchange (ETDEWEB)

    Thompson,G.; Gautam, M; Clark, N; Lyons, D; Carder, D; Riddle, W; Barnett, R; Rapp, B; George, S

    2003-08-24

    Emissions from marine vessels are being scrutinized as a major contributor to the total particulate matter (TPM), oxides of sulfur (SOx) and oxides of nitrogen (NOx) environmental loading. Fuel sulfur control is the key to SOx reduction. Significant reductions in the emissions from on-road vehicles have been achieved in the last decade and the emissions from these vehicles will be reduced by another order of magnitude in the next five years: these improvements have served to emphasize the need to reduce emissions from other mobile sources, including off road equipment, locomotives, and marine vessels. Diesel-powered vessels of interest include ocean going vessels with low- and medium-speed engines, as well as ferries with high speed engines, as discussed below. A recent study examined the use of intake water injection (WIS) and ultra low sulfur diesel (ULSD) to reduce the emissions from a high-speed passenger ferry in southern California. One of the four Detroit Diesel 12V92 two-stroke high speed engines that power the Waverider (operated by SCX, inc.) was instrumented to collect intake airflow, fuel flow, shaft torque, and shaft speed. Engine speed and shaft torque were uniquely linked for given vessel draft and prevailing wind and sea conditions. A raw exhaust gas sampling system was utilized to measure the concentration of NOx, carbon dioxide (CO2), and oxygen (O2) and a mini dilution tunnel sampling a slipstream from the raw exhaust was used to collect TPM on 70 mm filters. The emissions data were processed to yield brake-specific mass results. The system that was employed allowed for redundant data to be collected for quality assurance and quality control. To acquire the data, the Waverider was operated at five different steady state speeds. Three modes were in the open sea off Oceanside, CA, and idle and harbor modes were also used. Data have showed that the use of ULSD along with water injection (WIS) could significantly reduce the emissions of NOx and PM

  16. Flow Analysis By High Speed Photography And Pictures

    Science.gov (United States)

    Werle, H.

    1985-02-01

    At the ONERA hydrodynamic visualization laboratory, high-speed photography and cinematography are used for analysing flow-phenomena around fixed or mobile models in the test section of three vertical water tunnels, operating by gravity draining. These studies in water are based on the hydraulic analogy of aerodynamic incompressible flows. Flow visualization is archieved by liquid tracers (dye emissions) or gaseous tracers (fine air bubbles in suspension in water). In many cases, the pictures at normal speed or long exposure time are insufficient, for they do not permit to distinguish all the details of the phenomena, due to an averaging or motion effect. Furthermore they must be completed with high speed pictures. This is illustrated by a few visua-lization examples recently obtained on following themes - two dimensional flow around a fixed cylinder, first at the start of the flow (symmetrical vortex), then in steady regime (periodic vortex street) ; - laminar-turbulent transition in a boundary layer along a cylindrical body at zero angle of attack ; - flow separation around a sphere and wake in steady regime at small and high Reynolds numbers; - flow separation around a profile, first with fixed incidence, then with harmonic oscillations in pitch ; - core structure of a longitudinal vortex issued from a wing first organized, then disintegrated under the effect of a lengthwise pressure gradient (vortex breakdown) ; - mixing zone around a turbulent axisymmetric jet, characterized by the formation of large vortex struc-tures ; - hovering tests of an helicopter rotor, first at the start of the rotation, then in established regime, finally in cruise flight ; - case of a complete helicopter model in cruise-flight, with air-intake simulation, gas exhaust and tail rotor ; - flow around a complete delta-wing aircraft model at mean or high angle of attack, first in steady regime, then with harmonic oscillations in yaw or pitch. These results illustrate the contribution of

  17. Pellet injector research at ORNL

    Energy Technology Data Exchange (ETDEWEB)

    Schuresko, D.D.; Milora, S.L.; Combs, S.K.; Foster, C.A.; Fisher, P.W.; Argo, B.E.; Barber, G.C.; Foust, C.R.; Gethers, F.E.; Gouge, M.J.

    1987-01-01

    Several advanced plasma fueling systems are under development at the Oak Ridge National Laboratory (ORNL) for present and future magnetic confinement devices. These include multishot and repeating pneumatic pellet injectors, centrifuge accelerators, electrothermal guns, a Tritium Proof-of-Principle experiment, and an ultrahigh velocity mass ablation driven accelerator. A new eight-shot pneumatic injector capable of delivering 3.0 mm, 3.5 mm, and 4.0 mm diameter pellets at speeds up to 1500 m/s into a single discharge has been commissioned recently on the Tokamak Fusion Test reactor. The so-called Deuterium Pellet Injector (DPI) is a prototype of a Tritium Pellet Injector (TPI) scheduled for use on TFTR in 1990. Construction of the TPI will be preceded by a test of tritium pellet fabrication and acceleration using a 4 mm bore ''pipe gun'' apparatus. A new repeating pneumatic pellet injector capable of 2.7 mm, 4 mm, and 6 mm operation is being installed on the Joint European Torus to be used in ORNL/JET collaborative pellet injection studies. A 1.5 m centrifuge injector is being developed for application on the Tore Supra experiment in 1988. The new device, which is a 50% upgrade of the prototype centrifuge used on D-III, features a pellet feed mechanism capable of producing variable-size pellets (1.5 to 3.0 mm diameter) optimally shaped to survive acceleration stresses. Accelerating pellets to velocities in excess of 2 km/s is being pursued through two new development undertakings. A hydrogen plasma electrothermal gun is operational at 2 km/s with 10 mg hydrogen pellets; this facility has recently been equipped with a pulsed power supply capable of delivering 1.7 kJ millisecond pulses to low impedence arc loads.

  18. Characterization of deflagrating munitions by rotating prism high speed photography

    Science.gov (United States)

    Kinsey, Trevor J.; Bussell, Tim J.; Chick, Michael C.

    1992-08-01

    We report on the use of a rotating prism high speed camera for determining the characteristics of a munition undergoing rapid deflagration in field experiments. The technique has been applied to study the controlled deflagration of Composition B filled 105 mm shell and 81 mm mortar bombs as representative thick and thin cased munitions respectively; however the report is mostly illustrated with results from the study on 105 mm shell. The deflagration event has been characterized in terms of case expansion rate, initial fragment velocity, time to case burst, time to reaction from the nose end and the deflagration rate of the filling. Products escaping from the fracturing case eventually obscured the image which limited the extent of the measurement.

  19. Decomposition of forging die for high speed machining

    CERN Document Server

    Tapie, Laurent

    2009-01-01

    Today's forging die manufacturing process must be adapted to several evolutions in machining process generation: CAD/CAM models, CAM software solutions and High Speed Machining (HSM). In this context, the adequacy between die shape and HSM process is in the core of machining preparation and process planning approaches. This paper deals with an original approach of machining preparation integrating this adequacy in the main tasks carried out. In this approach, the design of the machining process is based on two levels of decomposition of the geometrical model of a given die with respect to HSM cutting conditions (cutting speed and feed rate) and technological constrains (tool selection, features accessibility). This decomposition assists machining assistant to generate an HSM process. The result of this decomposition is the identification of machining features.

  20. Unwinding of a carbon nanoscroll due to high speed rotation

    Directory of Open Access Journals (Sweden)

    Hang Yin

    2015-10-01

    Full Text Available A carbon nanoscroll (CNS can be formed easily by rolling a graphene sheet around a carbon nanotube (CNT [Zhang and Li, 2010, APL, 97, 081909]. When the CNS is driven by the rotary CNT to rotate at a high speed, the attractive interaction within the CNS or between the CNS and CNT is crippled by the centrifugal force on the CNS. The unwinding of CNS is triggered when the kinetic energy increment approaches to the variation of interaction energy of the system during CNS formation. Numerical experiments also indicate that the unwinding of CNS happens earlier when the CNT has a higher rotational speed or the system is at a higher temperature.

  1. High-speed polysilicon CMOS photodetector for telecom and datacom

    Science.gov (United States)

    Atabaki, Amir H.; Meng, Huaiyu; Alloatti, Luca; Mehta, Karan K.; Ram, Rajeev J.

    2016-09-01

    Absorption by mid-bandgap states in polysilicon or heavily implanted silicon has been previously utilized to implement guided-wave infrared photodetectors in CMOS compatible photonic platforms. Here, we demonstrate a resonant guided-wave photodetector based on the polysilicon layer that is used for the transistor gate in a microelectronic SOI CMOS process without any change to the foundry process flow ("zero-change" CMOS). Through a combination of doping mask layers, a lateral pn junction diode in the polysilicon is demonstrated with a strong electric field to enable efficient photo-carrier extraction and high-speed operation. This photodetector has a responsivity of more than 0.14 A/W from 1300 to 1600 nm, a 10 GHz bandwidth, and 80 nA dark current at 15 V reverse bias.

  2. Marshall Space Flight Center High Speed Turbopump Bearing Test Rig

    Science.gov (United States)

    Gibson, Howard; Moore, Chip; Thom, Robert

    2000-01-01

    The Marshall Space Flight Center has a unique test rig that is used to test and develop rolling element bearings used in high-speed cryogenic turbopumps. The tester is unique in that it uses liquid hydrogen as the coolant for the bearings. This test rig can simulate speeds and loads experienced in the Space Shuttle Main Engine turbopumps. With internal modifications, the tester can be used for evaluating fluid film, hydrostatic, and foil bearing designs. At the present time, the test rig is configured to run two ball bearings or a ball and roller bearing, both with a hydrostatic bearing. The rig is being used to evaluate the lifetimes of hybrid bearings with silicon nitride rolling elements and steel races.

  3. High Speed Development and Synthesis of Novel Small Molecule Libraries

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@ Combinatorial chemistry has produced libraries of millions of compounds in the last decade. Screening of those compounds, unfortunately, has not yet yielded as many new drug candidates as initially expected. Among a number of possible reasons, one is that many libraries combinatorial chemistry produced in the early periods are of the nature of linear, flat, and flexible molecules such as peptides and oligonucleotides, which do not have the desired properties to selectively interact with their targets to yield high quality hits and leads. In order to increase the number of quality hits and leads, rigid, structural featurerich and drug-like compound libraries are highly desirable. Design and development of structural features-rich and natural product-like combinatorial libraries, as well as high speed library production using modern solution and solid phase synthesis techniques such as IRORI's Directed Sorting technology, will be discussed.

  4. Numerical Simulation for Ventilated Supercavitation High Speed Underwater Vehicle

    Institute of Scientific and Technical Information of China (English)

    YANG Wu-gang; YANG Zhen-cai; CHU Yan; DENG Qiu-xia; LI Ya-rong; ZHANG Yu-wen

    2009-01-01

    Supercavitation is a revolutionary technique to achieve high drag reduction for underwater vehicle. It can help us to break through the conventional speed barrier. This article presents a numerical algorithm for ventilated supercavitation flow field based on mixture multiphase flow model, briefs the calculation results and compares them with that tested in high-speed water tunnel and towing tank. The mathematical model, its numerical calculation method, computational region and boundary conditions are discussed in detail. Some pertinent nondimensional parameters about the ventilated supercavitation, such as geometrical configuration of supercavity, drag coefficient and ventilation rate are investigated. Reynolds number is selected to predict gas ventilation rate instead of Froude number. Finally, based on the test and simulation results, a semi-empirical formula of the ventilation rate estimation suitable for different conical angle caritators is proposed.

  5. High-speed spectral tuning CARS microscopy using AOTF laser

    Science.gov (United States)

    Hashimoto, Mamoru; Iwatsuka, Junichi; Niioka, Hirohiko; Araki, Tsutomu

    2012-03-01

    We have developed a high speed spectral tuning CARS microscopy system using a mode-locked Ti:Sapphire laser with an acousto-optic tunable filter (AOTF) in the cavity. Since the wavelength of the laser is tunable with the applied radio frequency to the AOTF, the wavelength is electrically tunable.The pulse duration of the laser is about 10 ps, tunable range is 800 nm to 930 nm, and the tuning speed is ms order. The laser is synchronized with another mode-locked Ti:Sapphire laser laser our own method using a balance cross-correlator and phase lock loop technique. The synchronized lasers are used for light source of multi-focus CARS microscopy system using a microlens array scanner, and the hyperspectral imaging of adipocyte cells is demonstrated.

  6. Ultra High-Speed CMOS Circuits Beyond 100 GHz

    CERN Document Server

    Gharavi, Sam

    2012-01-01

    The book covers the CMOS-based millimeter wave circuits and devices and presents methods and design techniques to use CMOS technology for circuits operating beyond 100 GHz.� Coverage includes a detailed description of both active and passive devices, including modeling techniques and performance optimization. Various mm-wave circuit blocks are discussed, emphasizing their design distinctions from low-frequency design methodologies. This book also covers a device-oriented circuit design technique that is essential for ultra high speed circuits and gives some examples of device/circuit co-design that can be used for mm-wave technology. Offers a detailed description of high frequency device modeling from a circuit designer perspective; Presents a set of techniques for optimizing the performance of CMOS for mm-wave technology, including noise and low noise design for mm-wave; Introduces circuit/device co-design techniques. �

  7. High-speed detection of DNA translocation in nanopipettes.

    Science.gov (United States)

    Fraccari, Raquel L; Ciccarella, Pietro; Bahrami, Azadeh; Carminati, Marco; Ferrari, Giorgio; Albrecht, Tim

    2016-04-14

    We present a high-speed electrical detection scheme based on a custom-designed CMOS amplifier which allows the analysis of DNA translocation in glass nanopipettes on a microsecond timescale. Translocation of different DNA lengths in KCl electrolyte provides a scaling factor of the DNA translocation time equal to p = 1.22, which is different from values observed previously with nanopipettes in LiCl electrolyte or with nanopores. Based on a theoretical model involving electrophoresis, hydrodynamics and surface friction, we show that the experimentally observed range of p-values may be the result of, or at least be affected by DNA adsorption and friction between the DNA and the substrate surface.

  8. High Speed Development and Synthesis of Novel Small Molecule Libraries

    Institute of Scientific and Technical Information of China (English)

    XIAO; Xiao-Yi

    2001-01-01

    Combinatorial chemistry has produced libraries of millions of compounds in the last decade. Screening of those compounds, unfortunately, has not yet yielded as many new drug candidates as initially expected. Among a number of possible reasons, one is that many libraries combinatorial chemistry produced in the early periods are of the nature of linear, flat, and flexible molecules such as peptides and oligonucleotides, which do not have the desired properties to selectively interact with their targets to yield high quality hits and leads. In order to increase the number of quality hits and leads, rigid, structural featurerich and drug-like compound libraries are highly desirable. Design and development of structural features-rich and natural product-like combinatorial libraries, as well as high speed library production using modern solution and solid phase synthesis techniques such as IRORI's Directed Sorting technology, will be discussed.  ……

  9. High-speed analog fiber optic links for satellite communication

    Science.gov (United States)

    Daryoush, A. S.; Herczfeld, P. R.; Kunath, R. R.

    1988-01-01

    Large-aperture phased array antennas operating at millimeter wave frequencies are designed for space-based communications and imaging. Array elements are comprised of active transmit/receive (T/R) modules which are linked to the central processing unit through a high-speed fiberoptic network. This paper demonstrates optical control of active modules for satellite communication at 24 GHz. An approach called T/R level data mixing, which utilizes fiberoptic transmission of a data signal to individual T/R modules to be upconverted by an optically synchronized local oscillator, is demonstrated at 24 GHz. A free-running HEMT oscillator, used as local oscillator at 24 GHz, is synchronized using indirect subharmonic optical injection locking over a locking range of 14 MHz. Results of data link performance over 500-1000 MHz is also reported in terms of gain-bandwidth, linearity and third-order intercept, sensitivity, and dynamic range.

  10. Scratch behavior of high speed steels for hot rolls

    Institute of Scientific and Technical Information of China (English)

    Li Zhou; Dale Sun; Changsheng Liu; Chunguang Li; Lisong Yao

    2008-01-01

    The scratch behaviors of two high speed steels (HSS) for hot rolls were studied by a Micro-combi Tester, and the emphasis was placed on researching the relations between the microstructure and the scratch resistance property of different HSS. The experimental results indicate that during the scratch process, the carbides are embedded into the matrix, the penetration depth of different HSS is closely related with the matrix hardness, i.e., the higher the matrix hardness, the better the scratch resistance property; and in the matrix, the fine, dispersive carbides are beneficial to form steady friction between the indenter and the scratched materials, but the coarser carbides are easier to fall into pieces.

  11. Design the High Speed Kogge-Stone Adder by Using

    Directory of Open Access Journals (Sweden)

    MUX

    2015-08-01

    Full Text Available In this Technical era the high speed and low area of VLSI chip are very- very essential factors. Day by day number of transistors and other active and passive elements are growing on VLSI chip. In Integral part of the processor adders play an important role. In this paper we are using proposed kogge-stone adders for binary addition to reduce the size and increase the efficiency or processors speed. Proposing kogge stone adder provides less components, less path delay and better speed compare to other existing kogge stone adder and other adders. Here we are comparing the kogge stone adders of different-different word size from other adders. The design and experiment can be done by the aid of Xilinx 14.1i Spartan 3 device family.

  12. High Speed Boosted Cmos Differential Logic for Ripple Carry Adders

    Directory of Open Access Journals (Sweden)

    Meenu Roy,

    2014-01-01

    Full Text Available This paper describes a high speed boosted CMOS differential logic which is applicable in Ripple Carry Adders. The proposed logic operating with supply voltage approaching the MOS threshold voltage. The logic style improves switching speed by boosting the gate-source voltage of transistors along timing critical signal path. It allows a single boosting circuit to be shared by complementary outputs as a result the area overhead also minimizes. As compared to the conventional logic gates the EDP (energy delay product is improved. The test sets of logic gates and adders where designed in tsmc0.18μm of Mentor Graphics EDA tool. The experimental result for Ripple Carry Adders using the proposed logic style revealed that the addition time is reduced as compared with the conventional CMOS circuits.

  13. Classically entangled optical beams for high-speed kinematic sensing

    CERN Document Server

    Berg-Johansen, Stefan; Stiller, Birgit; Banzer, Peter; Ornigotti, Marco; Giacobino, Elisabeth; Leuchs, Gerd; Aiello, Andrea; Marquardt, Christoph

    2015-01-01

    Tracking the kinematics of fast-moving objects is an important diagnostic tool for science and engineering. Existing optical methods include high-speed CCD/CMOS imaging, streak cameras, lidar, serial time-encoded imaging and sequentially timed all-optical mapping. Here, we demonstrate an entirely new approach to positional and directional sensing based on the concept of classical entanglement in vector beams of light. The measurement principle relies on the intrinsic correlations existing in such beams between transverse spatial modes and polarization. The latter can be determined from intensity measurements with only a few fast photodiodes, greatly outperforming the bandwidth of current CCD/CMOS devices. In this way, our setup enables two-dimensional real-time sensing with temporal resolution in the GHz range. We expect the concept to open up new directions in photonics-based metrology and sensing.

  14. Fracture characteristics of bulk metallic glass under high speed impact

    Institute of Scientific and Technical Information of China (English)

    Sun Bao-Ru; Zhan Zai-Ji; Liang Bo; Zhang Rui-Jun; Wang Wen-Kui

    2012-01-01

    High speed impact experiments of rectangular plate-shaped Zr41Ti14Cu12.5Ni10Be22.5 bulk metallic glass(BMG)were performed using a two-stage light gas gun.Under spherical shock waves with impact velocities ranging from 0.503 km/s to 4.917 km/s,obvious traces of laminated spallation at the back(free)surface and melting(liquid droplets)at the impact point were observed.The angles about 0°,17°,36°,and 90° to the shocking direction were shown in the internal samples because of the interaction between the compressive shock waves and the rarefaction waves.The compressive normal stress was found to induce the consequent temperature rise in the core of the shear band.

  15. AGAINTS AND FOR THE HIGH SPEED TRAINS’ MULTIMPLICATION

    Directory of Open Access Journals (Sweden)

    Benea Ciprian

    2008-05-01

    Full Text Available In this exposure we intend to make visible the situation in which global warming is given by road and air transport, how could be revitalized railways, and how high speed trains could become a preferred mode of transport. But there is manifesting an opposition to railway development, nurtured by different interests, ranking from governments themselves, to oil importing countries, oil exporting countries, oil companies with their colligate partners situated along the oil distribution chain. But, there could be identified some voices which could create themselves the possibility to speak lauder in order to promote railway transportation. The greens, NGOs, the epistemic communities, for example, could unite their force to make something in order to provide the framework for rail transportation’s development, and for road and air transport reduction, for the benefit of while humankind.

  16. High speed coding for velocity by archerfish retinal ganglion cells

    Directory of Open Access Journals (Sweden)

    Kretschmer Viola

    2012-06-01

    Full Text Available Abstract Background Archerfish show very short behavioural latencies in response to falling prey. This raises the question, which response parameters of retinal ganglion cells to moving stimuli are best suited for fast coding of stimulus speed and direction. Results We compared stimulus reconstruction quality based on the ganglion cell response parameters latency, first interspike interval, and rate. For stimulus reconstruction of moving stimuli using latency was superior to using the other stimulus parameters. This was true for absolute latency, with respect to stimulus onset, as well as for relative latency, with respect to population response onset. Iteratively increasing the number of cells used for reconstruction decreased the calculated error close to zero. Conclusions Latency is the fastest response parameter available to the brain. Therefore, latency coding is best suited for high speed coding of moving objects. The quantitative data of this study are in good accordance with previously published behavioural response latencies.

  17. System and Method for High-Speed Data Recording

    Science.gov (United States)

    Taveniku, Mikael B. (Inventor)

    2017-01-01

    A system and method for high speed data recording includes a control computer and a disk pack unit. The disk pack is provided within a shell that provides handling and protection for the disk packs. The disk pack unit provides cooling of the disks and connection for power and disk signaling. A standard connection is provided between the control computer and the disk pack unit. The disk pack units are self sufficient and able to connect to any computer. Multiple disk packs are connected simultaneously to the system, so that one disk pack can be active while one or more disk packs are inactive. To control for power surges, the power to each disk pack is controlled programmatically for the group of disks in a disk pack.

  18. CW-HSTCP: Fair TCP in high-speed networks

    Institute of Scientific and Technical Information of China (English)

    PAN Xue-zeng; SU Fan-jun; L(U) Yong; PING Ling-di

    2006-01-01

    The congestion control mechanisms of the current standard TCP constrain the congestion windows that can be achieved by TCP in high-speed networks, which leads to low link utilization. HSTCP is one solution to solve this problem by modifying the congestion control mechanism to have the characteristics of TCP friendliness in high loss rate environment and high scalability in low loss rate environment. However, experiments revealed that HSTCP has severe RTT unfairness. After analyzing the RTT unfairness in HSTCP with a model, we proposed CW-HSTCP, which added a fair factor to decrease the difference of congestion window caused by different RTT. Fair factor of long RTT flows can cause a sharp window increment that is easy to cause a bursty traffic, so a method called block-pacing was adopted. Simulation results showed that our new proposal could alleviate the RTT unfairness while keeping advantages of HSTCP.

  19. High speed diesel consumption and economic growth in India

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Sajal [Management Development Institute (MDI), Gurgaon 122001 (India)

    2010-04-15

    This study probes the long-term equilibrium relationship among High Speed Diesel (HSD) consumption, real GDP and price of HSD in India using autoregressive distributed lag (ARDL) bounds testing approach of cointegration for the time span 1972-1973 to 2005-2006. Empirical results reveal that the series are cointegrated and long term income elasticity for HSD demand in India is 1.27 while that for short-run is 0.46. Both long-run and short-run price elasticities are found to be statistically insignificant. The study also establishes a short-run bi-directional causality between economic growth and HSD consumption and the existence of a long-run unidirectional causality running from economic growth to HSD consumption. Finally, a set of policy prescriptions have been suggested to reduce the consumption of HSD, which should have no adverse impact on economy in the long-run. (author)

  20. Flow Characterization of a Piezo-Electric High Speed Valve

    Directory of Open Access Journals (Sweden)

    T. Takiya

    2012-03-01

    Full Text Available Injecting a gas into fusion reactors or semiconductor manufacturing systems, one has to quickly control the flow rate by a piezoelectric valve. In order to construct a gas injection system with high speed valves in the future, performance tests have been conducted on a commercial piezoelectric valve. An orifice flowmeter for measuring time average flowrate and a hot wire anemometer for instantaneous flowrate were manufactured. The total flow coefficient of the orifice flowmeter was obtained experimentally under a low pressure of a 10-2 Pa and a low flowrate of a few mg/s, although they are smaller than the values specified by Japanese Industrial Standards. It is found that the hot wire anemometer installed downstream in the vicinity of the valve is suitable for detecting the change in flowrate with the response time of less than 1 ms.

  1. OPTIMA A Photon Counting High-Speed Photometer

    CERN Document Server

    Straubmeier, C; Schrey, F

    2001-01-01

    OPTIMA is a small, versatile high-speed photometer which is primarily intended for time resolved observations of young high energy pulsars at optical wavelengths. The detector system consists of eight fiber fed photon counters based on avalanche photodiodes, a GPS timing receiver, an integrating CCD camera to ensure the correct pointing of the telescope and a computerized control unit. Since January 1999 OPTIMA proves its scientific potential by measuring a very detailed lightcurve of the Crab Pulsar as well as by observing cataclysmic variable stars on very short timescales. In this article we describe the design of the detector system focussing on the photon counting units and the software control which correlates the detected photons with the GPS timing signal.

  2. Ultra-high-speed Optical Signal Processing using Silicon Photonics

    DEFF Research Database (Denmark)

    Oxenløwe, Leif Katsuo; Ji, Hua; Jensen, Asger Sellerup

    on silicon photonics. In particular we use nano-engineered silicon waveguides (nanowires) [1] enabling efficient phasematched four-wave mixing (FWM), cross-phase modulation (XPM) or self-phase modulation (SPM) for ultra-high-speed optical signal processing of ultra-high bit rate serial data signals. We show......— In supercomputers, the optical inter-connects are getting closer and closer to the processing cores. Today, a single supercomputer system has as many optical links as the whole worldwide web together, and it is envisaged that future computing chips will contain multiple electronic processor cores...... with a photonic layer on top to interconnect them. For such systems, silicon is an attractive candidate enabling both electronic and photonic control. For some network scenarios, it may be beneficial to use optical on-chip packet switching, and for high data-density environments one may take advantage...

  3. Aeroelastic Calculations of Quiet High- Speed Fan Performed

    Science.gov (United States)

    Bakhle, Milind A.; Srivastava, Rakesh; Mehmed, Oral; Min, James B.

    2002-01-01

    An advanced high-speed fan was recently designed under a cooperative effort between the NASA Glenn Research Center and Honeywell Engines & Systems. The principal design goals were to improve performance and to reduce fan noise at takeoff. Scale models of the Quiet High-Speed Fan were tested for operability, performance, and acoustics. During testing, the fan showed significantly improved noise characteristics, but a self-excited aeroelastic vibration known as flutter was encountered in the operating range. Flutter calculations were carried out for the Quiet High-Speed Fan using a three-dimensional, unsteady aerodynamic, Reynolds-averaged Navier-Stokes turbomachinery code named "TURBO." The TURBO code can accurately model the viscous flow effects that can play an important role in various aeroelastic problems such as flutter with flow separation, flutter at high loading conditions near the stall line (stall flutter), and flutter in the presence of shock and boundary-layer interaction. Initially, calculations were performed with no blade vibrations. These calculations were at a constant rotational speed and a varying mass flow rate. The mass flow rate was varied by changing the backpressure at the exit boundary of the computational domain. These initial steady calculations were followed by aeroelastic calculations in which the blades were prescribed to vibrate harmonically in a natural mode, at a natural frequency, and with a fixed interblade phase angle between adjacent blades. The AE-prep preprocessor was used to interpolate the in-vacuum mode shapes from the structural dynamics mesh onto the computational fluid dynamics mesh and to smoothly propagate the grid deformations from the blade surface to the interior points of the grid. The aeroelastic calculations provided the unsteady aerodynamic forces on the blade surface due to blade vibrations. These forces were vector multiplied with the structural dynamic mode shape to calculate the work done on the blade during

  4. Errors in particle tracking velocimetry with high-speed cameras

    CERN Document Server

    Feng, Yan; Liu, Bin

    2011-01-01

    Velocity errors in particle tracking velocimetry (PTV) are studied. When using high-speed video cameras, the velocity error may increase at a high camera frame rate. This increase in velocity error is due to particle-position uncertainty, which is one of two sources of velocity errors studied here. The other source of error is particle acceleration, which has the opposite trend of diminishing at higher frame rates. Both kinds of errors can propagate into quantities calculated from velocity, such as the kinetic temperature of particles or correlation functions. As demonstrated in a dusty plasma experiment, the kinetic temperature of particles has no unique value when measured using PTV, but depends on the sampling time interval or frame rate. It is also shown that an artifact appears in an autocorrelation function computed from particle positions and velocities, and it becomes more severe when a small sampling-time interval is used. Schemes to reduce these errors are demonstrated.

  5. DAC for High Speed and Low Power Applications Using Abacus

    Directory of Open Access Journals (Sweden)

    Shankarayya G. Kambalimath

    2014-02-01

    Full Text Available This paper proposes a Chinese Abacus Digital-to-Ana log Converter (DAC for high speed and low power applications like audio and video applica tions. This circuit of DAC uses resister strings to get a good analog output. The designed D AC uses the algorithm of abacus. Instead of using binary code, here we use abacus code to contr ol the switches. So the complexity and the area will be reduced automatically. The 8-bit D AC is comprised of 12 resistors and 24 NMOS switches. The 8-bit Abacus resistor DAC requires 12 resistors and 24 switches. The 8-bit resistor-string DAC requires 255 resistors and 256 switches. The most important advantages are that the numbers of both resistors and switches are all reduced effectively. The simulation environment uses 1 μ m process technology

  6. High Speed Water Sterilization Using One-Dimensional Nanostructures

    KAUST Repository

    Schoen, David T.

    2010-09-08

    The removal of bacteria and other organisms from water is an extremely important process, not only for drinking and sanitation but also industrially as biofouling is a commonplace and serious problem. We here present a textile based multiscale device for the high speed electrical sterilization of water using silver nanowires, carbon nanotubes, and cotton. This approach, which combines several materials spanning three very different length scales with simple dying based fabrication, makes a gravity fed device operating at 100000 L/(h m2) which can inactivate >98% of bacteria with only several seconds of total incubation time. This excellent performance is enabled by the use of an electrical mechanism rather than size exclusion, while the very high surface area of the device coupled with large electric field concentrations near the silver nanowire tips allows for effective bacterial inactivation. © 2010 American Chemical Society.

  7. Thermal Behavior of High-Speed Helical Gear Trains Investigated

    Science.gov (United States)

    Handschuh, Robert F.

    2003-01-01

    High-speed and heavily loaded gearing are commonplace in the rotorcraft systems employed in helicopter and tiltrotor transmissions. The components are expected to deliver high power from the gas turbine engines to the high-torque, low-speed rotor, reducing the shaft rotational speed in the range of 25:1 to 100:1. These components are designed for high power-to-weight ratios, thus the components are fabricated as light as possible with the best materials and processing to transmit the required torque and carry the resultant loads without compromising the reliability of the drive system. This is a difficult task that is meticulously analyzed and thoroughly tested experimentally prior to being applied on a new or redesigned aircraft.

  8. Simple high-speed confocal line-scanning microscope.

    Science.gov (United States)

    Im, Kang-Bin; Han, Sumin; Park, Hwajoon; Kim, Dongsun; Kim, Beop-Min

    2005-06-27

    Using a line scan camera and an acousto-optic deflector (AOD), we constructed a high-speed confocal laser line-scanning microscope that can generate confocal images (512 x 512 pixels) with up to 191 frames/s without any mechanically moving parts. The line scanner consists of an AOD and a cylindrical lens, which creates a line focus sweeping over the sample. The measured resolutions in z (depth), x (perpendicular to line focus), and y (direction of line focus) directions are 3.3 mum, 0.7 mum and 0.9 mum, respectively, with a 50x objective lens. This confocal microscope may be useful for analyzing fast phenomena during biological and chemical interactions and for fast 3D image reconstruction.

  9. Titanium Alloys and Processing for High Speed Aircraft

    Science.gov (United States)

    Brewer, William D.; Bird, R. Keith; Wallace, Terryl A.

    1996-01-01

    Commercially available titanium alloys as well as emerging titanium alloys with limited or no production experience are being considered for a variety of applications to high speed commercial aircraft structures. A number of government and industry programs are underway to improve the performance of promising alloys by chemistry and/or processing modifications and to identify appropriate alloys and processes for specific aircraft structural applications. This paper discusses some of the results on the effects of heat treatment, service temperatures from - 54 C to +177 C, and selected processing on the mechanical properties of several candidate beta and alpha-beta titanium alloys. Included are beta alloys Timetal 21S, LCB, Beta C, Beta CEZ, and Ti-10-2-3 and alpha-beta alloys Ti-62222, Ti-6242S, Timetal 550, Ti-62S, SP-700, and Corona-X. The emphasis is on properties of rolled sheet product form and on the superplastic properties and processing of the materials.

  10. Material Properties of High-Speed Steel Rolls

    Directory of Open Access Journals (Sweden)

    Shaohua Wu

    2017-03-01

    Full Text Available Recently, it has been required to improve the material properties of high-speed steel (HSS rolls, because of the low wear resistance and low mechanical properties. To improve them, several new steels have been proposed, which have high wear resistance as well as excellent mechanical properties, e.g., hardness and tensile properties, where additional elements (V, Cr and W were employed. However, their steels may have still technical issues, as the roll surfaces become roughened during the production process. The reason for this problem is found to be affected by the oxidation of the HSS surface. In this work, we have provided the suggestions to make high wear resistance of the HSS rolls

  11. High-Speed, Three Dimensional Object Composition Mapping Technology

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, M Y

    2001-02-14

    This document overviews an entirely new approach to determining the composition--the chemical-elemental, isotopic and molecular make-up--of complex, highly structured objects, moreover with microscopic spatial resolution in all 3 dimensions. The front cover depicts the new type of pulsed laser system at the heart of this novel technology under adjustment by Alexis Wynne, and schematically indicates two of its early uses: swiftly analyzing the 3-D composition governed structure of a transistor circuit with both optical and mass-spectrometric detectors, and of fossilized dinosaur and turtle bones high-speed probed by optical detection means. Studying the composition-cued 3-D micro-structures of advanced composite materials and the microscopic scale composition-texture of biological tissues are two near-term examples of the rich spectrum of novel applications enabled by this field-opening analytic tool-set.

  12. High-Speed Coherent Raman Fingerprint Imaging of Biological Tissues

    CERN Document Server

    Camp, Charles H; Heddleston, John M; Hartshorn, Christopher M; Walker, Angela R Hight; Rich, Jeremy N; Lathia, Justin D; Cicerone, Marcus T

    2014-01-01

    We have developed a coherent Raman imaging platform using broadband coherent anti-Stokes Raman scattering (BCARS) that provides an unprecedented combination of speed, sensitivity, and spectral breadth. The system utilizes a unique configuration of laser sources that probes the Raman spectrum over 3,000 cm$^{-1}$ and generates an especially strong response in the typically weak Raman "fingerprint" region through heterodyne amplification of the anti-Stokes photons with a large nonresonant background (NRB) while maintaining high spectral resolution of $<$ 13 cm$^{-1}$. For histology and pathology, this system shows promise in highlighting major tissue components in a non-destructive, label-free manner. We demonstrate high-speed chemical imaging in two- and three-dimensional views of healthy murine liver and pancreas tissues and interfaces between xenograft brain tumors and the surrounding healthy brain matter.

  13. High speed sub-micrometric microscopy using optical polymer microlens

    Institute of Scientific and Technical Information of China (English)

    X.H.Zeng; J.Plain; S.Jradi; P.Renaud Goud; R.Deturche; P.Royer; R.Bachelot

    2009-01-01

    We report the high speed scanning submicronic microscopy (SSM) using a low cost polymer microlens integrated at the extremity of an optical fiber.These microlenses are fabricated by a free-radical photopolymerization method.Using a polymer microlens with a radius of curvature of 250 nm,a sub-micrometric gold pattern is imaged experimentally by SSM.Different distances between the tip and the sample are used with a high scanning speed of 200 cm/s.In particular,metallic absorption contrasts are described with an optical spatial resolution of 250 nm at the wavelength of 532 nm.Moreover,finite-difference time-domain (FDTD) simulations concerning the focal lengths of microlenses with different geometries and heights support the experimental data.

  14. High Speed Crystal Growth by Q-switched Laser Melting

    Science.gov (United States)

    Cullis, A. G.

    1984-01-01

    The modification of the structural and electrical properties of semiconductors short radiation pulses obtained from Q-switched lasers is described. These modifications are accomplished by high heating and cooling rates. This processing revealed novel crystal growth and high speed resolidification phenomena. The behavior of semiconductor Si is analyzed. The annealing process typically employs short pulses of radiation in or near the visible region of the spectrum. The Q-switched ruby and Nd-YAG lasers are commonly used and these are sometimes mode locked to reduce the pulse length still further. Material to be annealed can be processed with a single large area radiation spot. Alternatively, a small radiation spot size can be used and a large sample area is covered by overlapping irradiated regions.

  15. A high-speed BCI based on code modulation VEP

    Science.gov (United States)

    Bin, Guangyu; Gao, Xiaorong; Wang, Yijun; Li, Yun; Hong, Bo; Gao, Shangkai

    2011-04-01

    Recently, electroencephalogram-based brain-computer interfaces (BCIs) have attracted much attention in the fields of neural engineering and rehabilitation due to their noninvasiveness. However, the low communication speed of current BCI systems greatly limits their practical application. In this paper, we present a high-speed BCI based on code modulation of visual evoked potentials (c-VEP). Thirty-two target stimuli were modulated by a time-shifted binary pseudorandom sequence. A multichannel identification method based on canonical correlation analysis (CCA) was used for target identification. The online system achieved an average information transfer rate (ITR) of 108 ± 12 bits min-1 on five subjects with a maximum ITR of 123 bits min-1 for a single subject.

  16. High speed automated microtomography of nuclear emulsions and recent application

    Energy Technology Data Exchange (ETDEWEB)

    Tioukov, V.; Aleksandrov, A.; Consiglio, L. [INFN Napoli (Italy); De Lellis, G. [Universita di Napoli (Italy); Vladymyrov, M. [LPI Moscow (Russian Federation)

    2015-12-31

    The development of high-speed automatic scanning systems was the key-factor for massive and successful emulsions application for big neutrino experiments like OPERA. The emulsion detector simplicity, the unprecedented sub-micron spatial resolution and the unique ability to provide intrinsically 3-dimensional spatial information make it a perfect device for short-living particles study, where the event topology should be precisely reconstructed in a 10-100 um scale vertex region. Recently the exceptional technological progress in image processing and automation together with intensive R&D done by Italian and Japanese microscopy groups permit to increase the scanning speed to unbelievable few years ago m{sup 2}/day scale and so greatly extend the range of the possible applications for emulsion-based detectors to other fields like: medical imaging, directional dark matter search, nuclear physics, geological and industrial applications.

  17. A novel optical burst switching architecture for high speed networks

    Institute of Scientific and Technical Information of China (English)

    Amit Kumar Garg; R. S. Kaler

    2008-01-01

    A novel optical burst switching (OBS) high speed network architecture has been proposed. To verify its feasibility and evaluate its performance, just-enough-time (JET) signaling has been considered as a high performance protocol. In the proposed architecture, to avoid burst losses, firstly, a short-priorconfirrnation-packet (SPCP) is sent over the control channel that simulates the events that the actual packet will experience. Once SPCP detects a drop at any of the intermediate nodes, the actual packet is not sent but the process repeats. In order to increase network utilization, cost effectiveness and to overcome some limitations of conventional OBS, inherent codes (e.g., orthogonal optical codes (OOC)),which are codified only in intensity, has been used. Through simulations, it shows that a decrease in burst loss probability, cost effectiveness and a gain in processing time are obtained when optical label processing is used as compared with electronic processing.

  18. Capacity of High-Speed Powerline Communication in Vehicles

    Directory of Open Access Journals (Sweden)

    Deny Hamdani

    2010-10-01

    Full Text Available Powerline Communication (PLC Systems intents to use the mains network in vehicles for high-speed data transmission. Carrier frequencies in the range of MHz are required to establish data rates of some megabits per second. In this paper, typical reference channels extracted from channel measurements are presented and computation results of their capacities according to Shannon's theorem are presented. Furthermore, the effect of limitations of frequency range and power spectral density of transmitted signal on achievable capacity is investigated. This paper outlines an assessment for theoretical channel capacity and achievable data rates of vehicular PLC transmission schemes. Finally, EMC (Electromagnetics Compatibility constraint according to CISPR 25 (Comite International Special des Perturbations Radioelectrique - The International Special Committee on Radio Interference is deeply considered.

  19. High-Speed Jet Formation after Solid Object Impact

    Science.gov (United States)

    Gekle, Stephan; Gordillo, José Manuel; van der Meer, Devaraj; Lohse, Detlef

    2009-01-01

    A circular disc hitting a water surface creates an impact crater which after collapse leads to a vigorous jet. Upon impact an axisymmetric air cavity forms and eventually pinches off in a single point halfway down the cavity. Two fast sharp-pointed jets are observed shooting up- and downwards from the closure location, which by then has turned into a stagnation point surrounded by a locally hyperbolic flow pattern. This flow, however, is not the mechanism feeding the jets. Using high-speed imaging and numerical simulations we show that jetting is fed by the local flow around the base of the jet, which is forced by the colliding cavity walls. We show how the well-known theory of a collapsing void (using a line of sinks on the symmetry axis) can be continued beyond pinch-off to obtain a new and quantitative model for jet formation which agrees well with numerical and experimental data.

  20. Tool Failure Analysis in High Speed Milling of Titanium Alloys

    Institute of Scientific and Technical Information of China (English)

    ZHAO Xiuxu; MEYER Kevin; HE Rui; YU Cindy; NI Jun

    2006-01-01

    In high speed milling of titanium alloys the high rate of tool failure is the main reason for its high manufacturing cost. In this study, fractured tools which were used in a titanium alloys 5-axis milling process have been observed both in the macro scale using a PG-1000 light microscope and in the micro scale using a Scanning Electron Microscope (SEM) respectively. These observations indicate that most of these tool fractures are the result of tool chipping. Further analysis of each chipping event has shown that beachmarks emanate from points on the cutting edge. This visual evidence indicates that the cutting edge is failing in fatigue due to cyclical mechanical and/or thermal stresses. Initial analyses explaining some of the outlying conditions for this phenomenon are discussed. Future analysis regarding determining the underlying causes of the fatigue phenomenon is then outlined.

  1. Containment of high-speed rotating disk fragments

    Institute of Scientific and Technical Information of China (English)

    Hai-jun XUAN; Lu-lu LIU; Yi-ming FENG; Qing HE; Juan-juan LI

    2012-01-01

    Disk burst accidents sometimes happen in aeroengines.To avoid tragic consequences,aeroengine casings must have sufficient containment capability.Experiments and simulations need to be conducted to study the impact,distortion,and perforation caused by disk burst and which may give important clues to potential failure mechanisms.This paper presents some containment tests of high-speed rotating disk fragments,in which the original disks were burst into three equal fragments within a predetermined rotating speed range.The failure modes of the containment casing varied significantly with the thickness of the containment casing.Shearing,tearing,tensile fracture,and large plastic stretching deformation occurred in a thin-walled containment casing,while a thick-walled casing could contain disk fragments and withstand large plastic deformation.Numerical simulations were carried out to study the impact process and failure modes further.Good agreement was found between the results of the simulations and the tests.

  2. Hunting for eclipses: high-speed observations of cataclysmic variables

    Science.gov (United States)

    Hardy, L. K.; McAllister, M. J.; Dhillon, V. S.; Littlefair, S. P.; Bours, M. C. P.; Breedt, E.; Butterley, T.; Chakpor, A.; Irawati, P.; Kerry, P.; Marsh, T. R.; Parsons, S. G.; Savoury, C. D. J.; Wilson, R. W.; Woudt, P. A.

    2017-03-01

    We present new time-resolved photometry of 74 cataclysmic variables (CVs), 47 of which are eclipsing. Thirteen of these eclipsing systems are newly discovered. For all 47 eclipsing systems, we show high cadence (1-20 s) light curves obtained with the high-speed cameras ULTRACAM and ULTRASPEC. We provide new or refined ephemerides, and supply mid-eclipse times for all observed eclipses. We assess the potential for light-curve modelling of all 47 eclipsing systems to determine their system parameters, finding 20 systems that appear to be suitable for future study. Systems of particular interest include V713 Cep, in which we observed a temporary switching-off of accretion; and ASASSN-14mv and CSS111019:233313-155744, which both have orbital periods well below the CV period minimum. The short orbital periods and light-curve shapes suggest that they may be double degenerate (AM CVn) systems or CVs with evolved donor stars.

  3. Optimization and Performance Analysis of High Speed Mobile Access Networks

    CERN Document Server

    Weerawardane, Thushara

    2012-01-01

    The design and development of cost-effective mobile broadband wireless access networks is a key challenge for many mobile network operators. The over-dimensioning or under-dimensioning of an access network results in both additional costs and customer dissatisfaction.   Thushara Weerawardane introduces new transport technologies and features for High Speed Packet Access (HSPA) and Long-Term Evolution (LTE) networks. Using advanced scientific methods, he proposes new adaptive flow control and enhanced congestion control algorithms, then defends them with highly-developed analytical models derived from Markov chains. For faster analysis, compared to long-lasting detailed simulations, these models provide optimum network performance and ensure reliable quality standards for end users during transport network congestion. Further, the author investigates and analyzes LTE transport network performance by introducing novel traffic differentiation models and buffer management techniques during intra-LTE handovers.

  4. High-Speed Edge-Detecting Line Scan Smart Camera

    Science.gov (United States)

    Prokop, Norman F.

    2012-01-01

    A high-speed edge-detecting line scan smart camera was developed. The camera is designed to operate as a component in a NASA Glenn Research Center developed inlet shock detection system. The inlet shock is detected by projecting a laser sheet through the airflow. The shock within the airflow is the densest part and refracts the laser sheet the most in its vicinity, leaving a dark spot or shadowgraph. These spots show up as a dip or negative peak within the pixel intensity profile of an image of the projected laser sheet. The smart camera acquires and processes in real-time the linear image containing the shock shadowgraph and outputting the shock location. Previously a high-speed camera and personal computer would perform the image capture and processing to determine the shock location. This innovation consists of a linear image sensor, analog signal processing circuit, and a digital circuit that provides a numerical digital output of the shock or negative edge location. The smart camera is capable of capturing and processing linear images at over 1,000 frames per second. The edges are identified as numeric pixel values within the linear array of pixels, and the edge location information can be sent out from the circuit in a variety of ways, such as by using a microcontroller and onboard or external digital interface to include serial data such as RS-232/485, USB, Ethernet, or CAN BUS; parallel digital data; or an analog signal. The smart camera system can be integrated into a small package with a relatively small number of parts, reducing size and increasing reliability over the previous imaging system..

  5. Owl Pellets and Crisis Management.

    Science.gov (United States)

    Anderson, Tom

    2002-01-01

    Describes a press conference that was used as a "teachable moment" when owl pellets being used for instructional purposes were found to be contaminated with Salmonella. The incident highlighted the need for safe handling of owl pellets, having a crisis management plan, and the importance of conveying accurate information to concerned parents.…

  6. 36 CFR 1192.175 - High-speed rail cars, monorails and systems.

    Science.gov (United States)

    2010-07-01

    ...) All cars for high-speed rail systems, including but not limited to those using “maglev” or high speed...., not used by freight trains) or guideway, in which stations are constructed in accordance with...

  7. Single step high-speed printing of continuous silver lines by laser-induced forward transfer

    Energy Technology Data Exchange (ETDEWEB)

    Puerto, D., E-mail: puerto@lp3.univ-mrs.fr [Aix-Marseille University, CNRS, LP3 laboratory Campus de Luminy, C.917, Marseille (France); Biver, E. [Aix-Marseille University, CNRS, LP3 laboratory Campus de Luminy, C.917, Marseille (France); Oxford Lasers Ltd., Unit 8, Moorbrook Park, Didcot, OX11 7HP (United Kingdom); Alloncle, A.-P.; Delaporte, Ph. [Aix-Marseille University, CNRS, LP3 laboratory Campus de Luminy, C.917, Marseille (France)

    2016-06-30

    Highlights: • We have performed an experimental study on laser micro-printing of silver nanoparticle inks. • We have achieved the printing of lines in a single pass at velocities of 17 m/s (1 MHz laser). • The ejection dynamics has been investigated by means of a time-resolved imaging technique. • The control of the donor film properties is of prime importance to print lines at high velocities. • Continuous conductive lines of silver inks are laser-printed on PET flexible substrates. - Abstract: The development of high-speed ink printing process by Laser-Induced Forward Transfer (LIFT) is of great interest for the printing community. To address the problems and the limitations of this process that have been previously identified, we have performed an experimental study on laser micro-printing of silver nanoparticle inks by LIFT and demonstrated for the first time the printing of continuous conductive lines in a single pass at velocities of 17 m/s using a 1 MHz repetition rate laser. We investigated the printing process by means of a time-resolved imaging technique to visualize the ejection dynamics of single and adjacent jets. The control of the donor film properties is of prime importance to achieve single step printing of continuous lines at high velocities. We use a 30 ps pulse duration laser with a wavelength of 343 nm and a repetition rate from 0.2 to 1 MHz. A galvanometric mirror head controls the distance between two consecutives jets by scanning the focused beam along an ink-coated donor substrate at different velocities. Droplets and lines of silver inks are laser-printed on glass and PET flexible substrates and we characterized their morphological quality by atomic force microscope (AFM) and optical microscope.

  8. Dual-camera system for high-speed imaging in particle image velocimetry

    CERN Document Server

    Hashimoto, K; Hara, T; Onogi, S; Mouri, H

    2012-01-01

    Particle image velocimetry is an important technique in experimental fluid mechanics, for which it has been essential to use a specialized high-speed camera. However, the high speed is at the expense of other performances of the camera, i.e., sensitivity and image resolution. Here, we demonstrate that the high-speed imaging is also possible with a pair of still cameras.

  9. Simultaneous High-Speed Recording of Sonoluminescence and Bubble Dynamics in Multibubble Fields

    Science.gov (United States)

    Cairós, Carlos; Mettin, Robert

    2017-02-01

    Multibubble sonoluminescence (MBSL) is the emission of light from imploding cavitation bubbles in dense ensembles or clouds. We demonstrate a technique of high-speed recording that allows imaging of bubble oscillations and motion together with emitted light flashes in a nonstationary multibubble environment. Hereby a definite experimental identification of light emitting individual bubbles, as well as details of their collapse dynamics can be obtained. For the extremely bright MBSL of acoustic cavitation in xenon saturated phosphoric acid, we are able to explore effects of bubble translation, deformation, and interaction on MBSL activity. The recordings with up to 0.5 million frames per second show that few and only the largest bubbles in the fields are flashing brightly, and that emission often occurs repetitively. Bubble collisions can lead to coalescence and the start or intensification of the emission, but also to its termination via instabilities and splitting. Bubbles that develop a liquid jet during collapse can flash intensely, but stronger jetting gradually reduces the emissions. Estimates of MBSL collapse temperature peaks are possible by numerical fits of transient bubble dynamics, in one case yielding 38 000 K.

  10. Simultaneous high-speed internal and external flow measurements for a high-pressure diesel nozzle

    CERN Document Server

    Purwar, Harsh; Méès, Loïc; Rozé, Claude; Blaisot, Jean-Bernard; Michard, Marc; Maligne, David

    2016-01-01

    We present an extensive experimental study focused on understanding the impact of cavitation in a high-pressure diesel nozzle on the macroscopic properties of fuel spray. Several high-speed videos of the liquid flow through a transparent, asymmetric cylindrical nozzle with a single orifice (phi = 0.35 mm) are recorded along with the videos of the resulting spray in the near-nozzle region, issued with an injection pressure of 300 bar at a frame-rate of 75 kHz. The high-repetition images of the internal flow are then used to estimate the onset of cavitation inside the transparent nozzle and the probability of development of cavitation in different regions of the nozzle with an average estimate of the amount of cavitation with time. On the other hand, recorded spray images are used to study spray penetration, cone-angles and velocity from the start of fuel injection. A novel approach is proposed for the measurement of perturbations that occur in form of big liquid structures along the spray boundary.

  11. Changes of indicators of high-speed and high-speed and power preparedness at volleyball players of 12–13 years old

    Directory of Open Access Journals (Sweden)

    Oleg Shevchenko

    2016-04-01

    Full Text Available Purpose: to define changes of indicators of high-speed and high-speed and power preparedness of volleyball players of 12–13 years old. Material & Methods: the test exercises, which are recommended by the training program of CYSS on volleyball, were used for the definition of the level of development of high-speed and high-speed and power abilities of volleyball players. 25 young volleyball players from the group of the previous basic preparation took part in the experiment. Sports experience of sportsmen is 3–4 years. The analysis of scientifically-methodical literature, pedagogical testing, pedagogical experiment, methods of mathematical statistics were carried out. Results: the analyzed level of high-speed and high-speed and power abilities of volleyball players. Conclusions: the results had reliable changes (t=2,2–2,4 at р<0,05 of the level of high-speed and high-speed and power abilities of volleyball players of 12–13years old in the experimental group at the end of the experiment, except run on 30 m that demonstrates a positive influence of application of special exercises in the educational-training process.

  12. FSK Modulation Scheme for High-Speed Optical Transmission

    Institute of Scientific and Technical Information of China (English)

    Nan Chi; Wuliang Fang; Yufeng Shao; Junwen Zhang; Li Tao

    2012-01-01

    In this paper, we describe the generation, detection, and performance of frequency-shift keying (FSK) for high-speed optical transmission and label switching. A non-return-to-zero (NRZ) FSK signal is generated by using two continuous-wave (CW) lasers, one Mach-Zehnder modulator (MZM), and one Mach-Zehnder delay interferometer (MZDI). An RZ-FSK signal is generated by cascading a dual-arm MZM, which is driven by a sinusoidal voltage at half the bit rate. Demodulation can be achieved on 1 bit rate through one MZDI or an array waveguide grating (AWG) demultiplexer with balanced detection. We perform numerical simulation on two types of frequency modulation schemes using MZM or PM, and we determine the effect of frequency tone spacing (FTS) on the generated FSK signal. In the proposed scheme, a novel frequency modulation format has transmission advantages compared with traditional modulation formats such as RZ and differential phase-shift keying (DPSK), under varying dispersion management. The performance of an RZ-FSK signal in a 4 x 40 Gb/s WDM transmission system is discussed. We experiment on transparent wavelength conversion based on four-wave mixing (FWM) in a semiconductor optical amplifier (SOA) and in a highly nonlinear dispersion shifted fiber (HNDSF) for a 40 Gb/s RZ-FSK signal. The feasibility of all-optical signal processing of a high-speed RZ-FSK signal is confirmed. We also determine the receiver power penalty for the RZ-FSK signal after a 100 km standard single-mode fiber (SMF) transmission link with matching dispersion compensating fiber (DCF), under the post-compensation management scheme. Because the frequency modulation format is orthogonal to intensity modulation and vector modulation (polarization shift keying), it can be used in the context of the combined modulation format to decrease the data rate or enhance the symbol rate. It can also be used in orthogonal label-switching as the modulation format for the payload or the label. As an example, we

  13. Integrated design and manufacturing for the high speed civil transport

    Science.gov (United States)

    1993-01-01

    In June 1992, Georgia Tech's School of Aerospace Engineering was awarded a NASA University Space Research Association (USRA) Advanced Design Program (ADP) to address 'Integrated Design and Manufacturing for the High Speed Civil Transport (HSCT)' in its graduate aerospace systems design courses. This report summarizes the results of the five courses incorporated into the Georgia Tech's USRA ADP program. It covers AE8113: Introduction to Concurrent Engineering, AE4360: Introduction to CAE/CAD, AE4353: Design for Life Cycle Cost, AE6351: Aerospace Systems Design One, and AE6352: Aerospace Systems Design Two. AE8113: Introduction to Concurrent Engineering was an introductory course addressing the basic principles of concurrent engineering (CE) or integrated product development (IPD). The design of a total system was not the objective of this course. The goal was to understand and define the 'up-front' customer requirements, their decomposition, and determine the value objectives for a complex product, such as the high speed civil transport (HSCT). A generic CE methodology developed at Georgia Tech was used for this purpose. AE4353: Design for Life Cycle Cost addressed the basic economic issues for an HSCT using a robust design technique, Taguchi's parameter design optimization method (PDOM). An HSCT economic sensitivity assessment was conducted using a Taguchi PDOM approach to address the robustness of the basic HSCT design. AE4360: Introduction to CAE/CAD permitted students to develop and utilize CAE/CAD/CAM knowledge and skills using CATIA and CADAM as the basic geometric tools. AE6351: Aerospace Systems Design One focused on the conceptual design refinement of a baseline HSCT configuration as defined by Boeing, Douglas, and NASA in their system studies. It required the use of NASA's synthesis codes FLOPS and ACSYNT. A criterion called the productivity index (P.I.) was used to evaluate disciplinary sensitivities and provide refinements of the baseline HSCT

  14. Development and Performance of the ACTS High Speed VSAT

    Science.gov (United States)

    Quintana, J.; Tran, Q.; Dendy, R.

    1999-01-01

    The Advanced Communication Technology Satellite (ACTS), developed by the U.S. National Aeronautics and Space Administration (NASA) has demonstrated the breakthrough technologies of Ka-band, spot beam antennas, and on-board processing. These technologies have enabled the development of very small aperture terminals (VSAT) and ultra-small aperture terminals (USAT) which have capabilities greater than were previously possible with conventional satellite technologies. However, the ACTS baseband processor (BBP) is designed using a time division multiple access (TDMA) scheme, which requires each earth station using the BBP to transmit data at a burst rate which is much higher than the user throughput data rate. This tends to mitigate the advantage of the new technologies by requiring a larger earth station antenna and/or a higher-powered uplink amplifier than would be necessary for a continuous transmission at the user data rate. Conversely, the user data rate is much less than the rate that can be supported by the antenna size and amplifier. For example, the ACTS TI VSAT operates at a burst rate of 27.5 Mbps, but the maximum user data rate is 1.792 Mbps. The throughput efficiency is slightly more than 6.5%. For an operational network, this level of overhead will greatly increase the cost of the user earth stations, and that increased cost must be repeated thousands of times, which may ultimately reduce the market for such a system. The ACTS High Speed VSAT (HS VSAT) is an effort to experimentally demonstrate the maximum user throughput data rate which can be achieved using the technologies developed and implemented on ACTS. Specifically, this was done by operating the system uplinks as frequency division multiple access (FDMA), essentially assigning all available TDMA time slots to a single user on each of two uplink frequencies. Preliminary results show that using a 1.2-m antenna in this mode, the HS VSAT can achieve between 22 and 24 Mbps out of the 27.5 Mbps burst

  15. Moving behavior of pellets in a pellet shaft furnace

    Institute of Scientific and Technical Information of China (English)

    梁儒全; 赫冀成

    2008-01-01

    The downward moving behavior of pellets in a 8 m2 pellet shaft furnace with an internal vertical air channel and a drying bed was studied by means of a visualized model(1-15) and a top model(1-1).The visualized model experiment shows that the downward movement of pellets can be regarded as plug flow approximately inside the furnace except for the lower region of cooling zone due to the influence of the drained hopper.The top model experiment reveals that the pellet sizes increase along the moving direction because of the percolation phenomenon,which results in a decrease of the resistance coefficient and an increase of the gas flow rate from the furnace wall toward the furnace center.

  16. The pellet handbook: the production and thermal utilisation of pellets

    National Research Council Canada - National Science Library

    Obernberger, Ingwald; Thek, Gerold

    2010-01-01

    "Biomass pellets are a suitable fuel type for a wide range of applications, from stoves and central heating systems up to large-scale plants, and with practically complete automation in all these capacities...

  17. Materials, structures, and devices for high-speed electronics

    Science.gov (United States)

    Woollam, John A.; Snyder, Paul G.

    1992-01-01

    Advances in materials, devices, and instrumentation made under this grant began with ex-situ null ellipsometric measurements of simple dielectric films on bulk substrates. Today highly automated and rapid spectroscopic ellipsometers are used for ex-situ characterization of very complex multilayer epitaxial structures. Even more impressive is the in-situ capability, not only for characterization but also for the actual control of the growth and etching of epitaxial layers. Spectroscopic ellipsometry has expanded from the research lab to become an integral part of the production of materials and structures for state of the art high speed devices. Along the way, it has contributed much to our understanding of the growth characteristics and material properties. The following areas of research are summarized: Si3N4 on GaAs, null ellipsometry; diamondlike carbon films; variable angle spectroscopic ellipsometry (VASE) development; GaAs-AlGaAs heterostructures; Ta-Cu diffusion barrier films on GaAs; GaAs-AlGaAs superlattices and multiple quantum wells; superconductivity; in situ elevated temperature measurements of III-V's; optical constants of thermodynamically stable InGaAs; doping dependence of optical constants of GaAs; in situ ellipsometric studies of III-V epitaxial growth; photothermal spectroscopy; microellipsometry; and Si passivation and Si/SiGe strained-layer superlattices.

  18. Detailed thermodynamic analyses of high-speed compressible turbulence

    Science.gov (United States)

    Towery, Colin; Darragh, Ryan; Poludnenko, Alexei; Hamlington, Peter

    2016-11-01

    Interactions between high-speed turbulence and flames (or chemical reactions) are important in the dynamics and description of many different combustion phenomena, including autoignition and deflagration-to-detonation transition. The probability of these phenomena to occur depends on the magnitude and spectral content of turbulence fluctuations, which can impact a wide range of science and engineering problems, from the hypersonic scramjet engine to the onset of Type Ia supernovae. In this talk, we present results from new direct numerical simulations (DNS) of homogeneous isotropic turbulence with turbulence Mach numbers ranging from 0 . 05 to 1 . 0 and Taylor-scale Reynolds numbers as high as 700. A set of detailed analyses are described in both Eulerian and Lagrangian reference frames in order to assess coherent (structural) and incoherent (stochastic) thermodynamic flow features. These analyses provide direct insights into the thermodynamics of strongly compressible turbulence. Furthermore, presented results provide a non-reacting baseline for future studies of turbulence-chemistry interactions in DNS with complex chemistry mechanisms. This work was supported by the Air Force Office of Scientific Research (AFOSR) under Award No. FA9550-14-1-0273, and the Department of Defense (DoD) High Performance Computing Modernization Program (HPCMP) under a Frontier project award.

  19. High-speed cinematography of gas-metal atomization

    Energy Technology Data Exchange (ETDEWEB)

    Ting, Jason [ALCOA Specialty Metals Division, 100 Technical Drive, Alcoa Center, PA 15069 (United States)]. E-mail: jason.ting@alcoa.com; Connor, Jeffery [Material Science Engineering Department, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Ridder, Stephen [Metallurgical Processing Group, NIST, 100 Bureau Dr. Stop 8556, Gaithersburg, MD 20899 (United States)

    2005-01-15

    A high-speed cinematographic footage of a 304L stainless steel gas atomization, recorded at the National Institute of Standard and Technology (NIST), was analyzed using a discrete Fourier transform (DFT) algorithm. The analysis showed the gas atomization process possesses two prominent frequency ranges of melt oscillation (pulsation). A low-frequency oscillation in the melt flow occurring between 5.41 and 123 Hz, with a dominant frequency at 9.93 Hz, was seen in the recirculation zone adjacent to the melt orifice. A high-frequency melt oscillation range was observed above 123 Hz, and was more prominent one melt-tip-diameter downstream in the melt atomization image than upstream near the melt tip. This high-frequency range may reflect the melt atomization frequency used to produce finely atomized powder. This range also included a prominent high frequency at 1273 Hz, which dominated in the image further away downstream from the melt tip. This discrete high-frequency oscillation is most probably caused by the aeroacoustic ''screech'' phenomenon, intrasound (<20 kHz), a result of the atomizing gas jets undergoing flow resonance. It is hypothesized that this discrete intrinsic aeroacoustic tone may enhance melt breakup in the atomization process with evidence of this fact in the melt images.

  20. An Early Evaluation of Italian High Speed Rail Projects

    Directory of Open Access Journals (Sweden)

    Paolo Beria

    2011-10-01

    Full Text Available Italy has undergone, in the last 15 years, an exceptional public financial effort to build approximately 1,000 km of high speed rail lines. Further extensions are under construction or planned, especially in the most important international relations. This network is widely considered as fundamental to comply the European vision of a continental-wide transport system.The paper analyses the past and the future of such network, where possible from a quantitative point of view. The first part of the article reviews the history of the Alta Velocità scheme, particularly focusing on the issues related to the economic regulation of the investments and the financial troubles at first and then on the present issues related to the regulation of rail services.The analysis of the supply, the time gains, the demand and the costs allows to build a simple but independent evaluation of the past projects from an ex-post perspective, pointing out the successes, but also important critical issues.The second part of the paper analyses the future expansion plans looking at the costs, the existing and expected demand and derives some policy indications and cost reduction strategies capable both to control public expenditure in a period of crisis and not to abandon the idea of a modern and effective rail network.

  1. High-speed steel rolls used for cold rolling

    Institute of Scientific and Technical Information of China (English)

    QU Haixia; WU Qiong; SUN Dale

    2015-01-01

    During cold rolled production of steel,each change of rolls causes a halt in production and affects the roll’s grinding maintenance and consumption.Consequently,rolls are very critical to the costs of steel production. Besides the rolling accidents,surface quality problems,including inhomogeneous wear and a decrease of the surface roughness of the rolls are other main reasons for outage and a change of the rolls.Therefore,safe rolls,with superior wear resistance and roughness retentivity will be a future trend in the cold rolling steel industry.In this study,the property characteristics and in-service performance of high-speed steel(HSS)cold rolling work rolls at Baosteel are discussed.The results of this study indicate that in-service performance of HSS cold work rolls has an improvement over conventional rolls.Implementation of HSS work rolls will prolong the rolling campaign and improve the rolling stability,thus,the cost of cold rolling production can be better controlled.

  2. High-speed photography of high-resolution moire patterns

    Science.gov (United States)

    Whitworth, Martin B.; Huntley, Jonathan M.; Field, John E.

    1991-04-01

    The techniques of high resolution moire photography and high speed photography have been combined to allow measurement of the in-plane components of a transient displacement field with microsecond time resolution. Specimen gratings are prepared as casts in a thin layer of epoxy resin on the surface of a specimen. These are illuminated with a flash tube and imaged onto a reference grating with a specially modified camera lens, which incorporates a slotted mask in the aperture plane. For specimen gratings of 75 lines mm1, this selects the +1 and -1 order diffracted beams, thus doubling the effective grating frequency to 150 lines mm1. The resulting real-time moire fringes are recorded with a Hadland 792 image converter camera (Imacon) at an inter-frame time of 2-5ts. The images are digitised and an automatic fringe analysis technique based on the 2-D Fourier transform method is used to extract the displacement information. The technique is illustrated by the results of an investigation into the transient deformation of composite disc specimens, impacted with rectangular metal sliders fired from a gas gun.

  3. High-speed Jet Formation after Solid Object Impact

    CERN Document Server

    Gekle, Stephan; van der Meer, Devaraj; Lohse, Detlef

    2008-01-01

    A circular disc impacting on a water surface creates a remarkably vigorous jet. Upon impact an axisymmetric air cavity forms and eventually pinches off in a single point halfway down the cavity. Immediately after closure two fast sharp-pointed jets are observed shooting up- and downwards from the closure location, which by then has turned into a stagnation point surrounded by a locally hyperbolic flow pattern. This flow, however, is {\\it not} the mechanism feeding the two jets. Using high-speed imaging and numerical simulations we show that jetting is fed by the local flow around the base of the jet, which is forced by the colliding cavity walls. Based on this insight, we then show how the analytical description of a collapsing void (using a line of sinks along the axis of symmetry) can be continued beyond the time of pinch-off to obtain a quantitative model for jet formation which is in good agreement with the numerical and experimental data.

  4. ULTRA HIGH SPEED FACTORIAL DESIGN IN SUB-NANOMETER TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    Arindam Banerjee

    2013-02-01

    Full Text Available This work proposes a high speed and low power factorial design in 22nm technology and also it counts the effect of sub nano-meter constraints on this circuit. A comparative study for this design has been done for 90nm, 45nm and 22nm technology. The rise in circuit complexity and speed is accompanied by the scaling of MOSFET’s. The transistor saturation current Idsat is an important parameter because the transistor current determines the time needed to charge and discharge the capacitive loads on chip, and thus impacts the product speed more than any other transistor parameter. The efficient implementation of a factorial number is carried out by using a decremented and multipliers which has been lucidly discussed in this paper. Normally in a factorial module a number is calculated as the iterative multiplication of the given number to the decremented value of the given number. A Parallel adder based decremented has been proposed for calculating the factorial of any number that also includes 0 and 1. The performances are calculated by using the existing 90-nm CMOS technology and scaling down the existing technology to 45-nm and 22-nm.

  5. Numerical Simulation of Oil Jet Lubrication for High Speed Gears

    Directory of Open Access Journals (Sweden)

    Tommaso Fondelli

    2015-01-01

    Full Text Available The Geared Turbofan technology is one of the most promising engine configurations to significantly reduce the specific fuel consumption. In this architecture, a power epicyclical gearbox is interposed between the fan and the low pressure spool. Thanks to the gearbox, fan and low pressure spool can turn at different speed, leading to higher engine bypass ratio. Therefore the gearbox efficiency becomes a key parameter for such technology. Further improvement of efficiency can be achieved developing a physical understanding of fluid dynamic losses within the transmission system. These losses are mainly related to viscous effects and they are directly connected to the lubrication method. In this work, the oil injection losses have been studied by means of CFD simulations. A numerical study of a single oil jet impinging on a single high speed gear has been carried out using the VOF method. The aim of this analysis is to evaluate the resistant torque due to the oil jet lubrication, correlating the torque data with the oil-gear interaction phases. URANS calculations have been performed using an adaptive meshing approach, as a way of significantly reducing the simulation costs. A global sensitivity analysis of adopted models has been carried out and a numerical setup has been defined.

  6. Application of DSP Blackfin in data acquisition of high speed

    Science.gov (United States)

    Tang, Chao

    2015-12-01

    In the traditional digital collection, the use of FIFO and MCU is usually used. Traditional data acquisition systems are expensive and slow, When the input is a fast changing signal, the output will have a large distortion, which makes the whole system performance degradation, and not suitable for large amounts of data. In this paper, a new method of high speed data acquisition based on Blackfin DSP is presented, The analog signal is processed by the signal processing circuit, so that the amplitude of the signal is limited to the input range of the A/D converter. The whole collection system is determined by the data acquisition and control circuit. In order to further improve the speed of data transmission, DSP Blackfin uses advanced DMA technology. In the algorithm, the system is mainly used in the same sampling points for the average value of the method. Experimental results show, Using the traditional system, it will lose a lot of details, the destruction of the integrity of the signal. Using this system can well reconstruct the analog signal input, Especially in the large amount of data, it shows the incomparable advantages.

  7. A DSP Based POD Implementation for High Speed Multimedia Communications

    Directory of Open Access Journals (Sweden)

    Chang Nian Zhang

    2002-09-01

    Full Text Available In the cable network services, the audio/video entertainment contents should be protected from unauthorized copying, intercepting, and tampering. Point-of-deployment (POD security module, proposed by OpenCableTM, allows viewers to receive secure cable services such as premium subscription channels, impulse pay-per-view, video-on-demand as well as other interactive services. In this paper, we present a digital signal processor (DSP (TMS320C6211 based POD implementation for the real-time applications which include elliptic curve digital signature algorithm (ECDSA, elliptic curve Diffie Hellman (ECDH key exchange, elliptic curve key derivation function (ECKDF, cellular automata (CA cryptography, communication processes between POD and Host, and Host authentication. In order to get different security levels and different rates of encryption/decryption, a CA based symmetric key cryptography algorithm is used whose encryption/decryption rate can be up to 75 Mbps. The experiment results indicate that the DSP based POD implementation provides high speed and flexibility, and satisfies the requirements of real-time video data transmission.

  8. Thermal analysis of high speed permanent magnetic generator

    Institute of Scientific and Technical Information of China (English)

    LI WeiLi; ZHANG XiaoChen; CHENG ShuKang; CAO JunCi; ZHANG YiHuang

    2012-01-01

    High-speed permanent magnetic generators (HSPMG) are common and important power generation equipments used in distributed generation systems.A 100 kW level HSPMG is investigated in this paper,and it is fluid-thermal coupling analyzed.The transient 2D electromagnetic field while machine is under rated operating is analyzed by using the time-stepping FEM,from which the electromagnetic performances and the loss distributions are obtained.Then,an analysis model for fluid-solid temperature field analysis is established.Taking losses as the distributed heat sources,the 3D thermal field is coupling calculated.The variations of heat transfer coefficient and temperature of fluid in stator grooves along the axial direction,as well as the whole region 3D temperature distribution in HSPMG are obtained.Then,considering the variations of heat sources distributions and heat transfer conditions,3D temperature fields of HSPMG operating under different speeds are calculated,and the influences of machine operating speed on the HSPMG thermal performance are studied,based on which,the functions of machine temperature with operating speed and stator windings resistance are proposed.The obtained conclusions may provide a useful reference for the design and research of HSPMG.

  9. Construction management through bot:Taiwan high speed rall case

    Institute of Scientific and Technical Information of China (English)

    CHANG Luh-maan; CHEN Po-han

    2004-01-01

    One of the key elements in real estate management is streamlining the construction process. Thus,the facilities can be built on a faster, cheaper, and higher quality base. Consequently, it will enhance the owner's competitiveness. Due to the high cost and lengthy duration of mega-construction projects in recent years,Build-Operate-Transfer (BOT) contracts are getting popular in delivering constructed projects in the public sector. With BOT, the public owners are able to focus on the effectiveness of fair resource allocation as well as bring the efficiency of private enterprise into governmental operations.This paper uses Taiwan High Speed Rail project to exemplify the BOT method in executing the constructed projects in the chain of real estate management processes. The paper explains the reasons for building HSR and adopting BOT approach.The detail of the HSR project and the feasibility analysis of the project will be presented in this paper. The feasibility analysis comprises the comparisons of different transportation means, the financial analysis, and other benefits from HSR. Finally, conclusions will be drawn.

  10. Exhaust Nozzle Materials Development for the High Speed Civil Transport

    Science.gov (United States)

    Grady, J. E.

    1999-01-01

    The United States has embarked on a national effort to develop the technology necessary to produce a Mach 2.4 High Speed Civil Transport (HSCT) for entry into service by the year 2005. The viability of this aircraft is contingent upon its meeting both economic and environmental requirements. Two engine components have been identified as critical to the environmental acceptability of the HSCT. These include a combustor with significantly lower emissions than are feasible with current technology, and a lightweight exhaust nozzle that meets community noise standards. The Enabling Propulsion Materials (EPM) program will develop the advanced structural materials, materials fabrication processes, structural analysis and life prediction tools for the HSCT combustor and low noise exhaust nozzle. This is being accomplished through the coordinated efforts of the NASA Lewis Research Center, General Electric Aircraft Engines and Pratt & Whitney. The mission of the EPM Exhaust Nozzle Team is to develop and demonstrate this technology by the year 1999 to enable its timely incorporation into HSCT propulsion systems.

  11. Development of a Large Scale, High Speed Wheel Test Facility

    Science.gov (United States)

    Kondoleon, Anthony; Seltzer, Donald; Thornton, Richard; Thompson, Marc

    1996-01-01

    Draper Laboratory, with its internal research and development budget, has for the past two years been funding a joint effort with the Massachusetts Institute of Technology (MIT) for the development of a large scale, high speed wheel test facility. This facility was developed to perform experiments and carry out evaluations on levitation and propulsion designs for MagLev systems currently under consideration. The facility was developed to rotate a large (2 meter) wheel which could operate with peripheral speeds of greater than 100 meters/second. The rim of the wheel was constructed of a non-magnetic, non-conductive composite material to avoid the generation of errors from spurious forces. A sensor package containing a multi-axis force and torque sensor mounted to the base of the station, provides a signal of the lift and drag forces on the package being tested. Position tables mounted on the station allow for the introduction of errors in real time. A computer controlled data acquisition system was developed around a Macintosh IIfx to record the test data and control the speed of the wheel. This paper describes the development of this test facility. A detailed description of the major components is presented. Recently completed tests carried out on a novel Electrodynamic (EDS) suspension system, developed by MIT as part of this joint effort are described and presented. Adaptation of this facility for linear motor and other propulsion and levitation testing is described.

  12. High-Speed Visualisation of Combustion in Modern Gasoline Engines

    Science.gov (United States)

    Sauter, W.; Nauwerck, A.; Han, K.-M.; Pfeil, J.; Velji, A.; Spicher, U.

    2006-07-01

    Today research and development in the field of gasoline engines have to face a double challenge: on the one hand, fuel consumption has to be reduced, while on the other hand, ever more stringent emission standards have to be fulfilled. The development of engines with its complexity of in-cylinder processes requires modern development tools to exploit the full potential in order to reduce fuel consumption. Especially optical, non-intrusive measurement techniques will help to get a better understanding of the processes. With the presented high-speed visualisation system the electromagnetic radiation from combustion in the UV range is collected by an endoscope and transmitted to a visualisation system by 10, 000 optical fibres. The signal is projected to 1, 920 photomultipliers, which convert the optical into electric signals with a maximum temporal resolution of 200 kHz. This paper shows the systematic application of flame diagnostics in modern combustion systems. For this purpose, a single-cylinder SI engine has been modified for a spray guided combustion strategy as well as for HCCI. The characteristics of flame propagation in both combustion modes were recorded and correlated with thermodynamic analyses. In case of the spray guided GDI engine, high pressure fuel injection was applied and evaluated.

  13. Plastic straw: future of high-speed signaling

    Science.gov (United States)

    Song, Ha Il; Jin, Huxian; Bae, Hyeon-Min

    2015-11-01

    The ever-increasing demand for bandwidth triggered by mobile and video Internet traffic requires advanced interconnect solutions satisfying functional and economic constraints. A new interconnect called E-TUBE is proposed as a cost-and-power-effective all-electrical-domain wideband waveguide solution for high-speed high-volume short-reach communication links. The E-TUBE achieves an unprecedented level of performance in terms of bandwidth-per-carrier frequency, power, and density without requiring a precision manufacturing process unlike conventional optical/waveguide solutions. The E-TUBE exhibits a frequency-independent loss-profile of 4 dB/m and has nearly 20-GHz bandwidth over the V band. A single-sideband signal transmission enabled by the inherent frequency response of the E-TUBE renders two-times data throughput without any physical overhead compared to conventional radio frequency communication technologies. This new interconnect scheme would be attractive to parties interested in high throughput links, including but not limited to, 100/400 Gbps chip-to-chip communications.

  14. New Drive Train Concept with Multiple High Speed Generator

    Science.gov (United States)

    Barenhorst, F.; Serowy, S.; Andrei, C.; Schelenz, R.; Jacobs, G.; Hameyer, K.

    2016-09-01

    In the research project RapidWind (financed by the German Federal Ministry for Economic Affairs and Energy under Grant 0325642) an alternative 6 MW drive train configuration with six high-speed (n = 5000 rpm) permanent magnet synchronous generators for wind turbine generators (WTG) is designed. The gearbox for this drive train concept is assembled with a six fold power split spur gear stage in the first stage, followed by six individual 1 MW geared driven generators. Switchable couplings are developed to connect and disconnect individual geared generators depending on the input power. With this drive train configuration it is possible to improve the efficiency during partial load operation, increasing the energy yield about 1.15% for an exemplary low-wind site. The focus of this paper is the investigation of the dynamic behavior of this new WTG concept. Due to the high gear ratio the inertia relationship between rotor and generator differs from conventional WT concepts, possibly leading to intensified vibration behavior. Moreover there are switching procedures added, that might also lead to vibration issues.

  15. A programmable vision chip with high speed image processing

    Science.gov (United States)

    Dubois, Jérôme; Paindavoine, Michel; Ginhac, Dominique

    2008-11-01

    A high speed Analog VLSI Image acquisition and pre-processing system is described in this paper. A 64×64 pixel retina is used to extract the magnitude and direction of spatial gradients from images. So, the sensor implements some lowlevel image processing in a massively parallel strategy in each pixel of the sensor. Spatial gradients, various convolutions as Sobel filter or Laplacian are described and implemented on the circuit. The retina implements in a massively parallel way, at pixel level, some various treatments based on a four-quadrants multipliers architecture. Each pixel includes a photodiode, an amplifier, two storage capacitors and an analog arithmetic unit. A maximal output frame rate of about 10 000 frames per second with only image acquisition and 2000 to 5000 frames per second with image processing is achieved in a 0.35 μm standard CMOS process. The retina provides address-event coded output on three asynchronous buses, one output is dedicated to the gradient and both other to the pixel values. A prototype based on this principle, has been designed. Simulation results from Mentor GraphicsTMsoftware and AustriaMicrosystem Design kit are presented.

  16. Improvement of Vocal Pathologies Diagnosis Using High-Speed Videolaryngoscopy

    Directory of Open Access Journals (Sweden)

    Tsuji, Domingos Hiroshi

    2014-04-01

    Full Text Available Introduction The study of the dynamic properties of vocal fold vibration is important for understanding the vocal production mechanism and the impact of organic and functional changes. The advent of high-speed videolaryngoscopy (HSV has provided the possibility of seeing the real cycle of vocal fold vibration in detail through high sampling rate of successive frames and adequate spatial resolution. Objective To describe the technique, advantages, and limitations of using HSV and digital videokymography in the diagnosis of vocal pathologies. Methods We used HSV and digital videokymography to evaluate one normophonic individual and four patients with vocal fold pathologies (nodules, unilateral paralysis of the left vocal fold, intracordal cyst, and adductor spasmodic dysphonia. The vocal fold vibration parameters (glottic closure, vibrational symmetry, periodicity, mucosal wave, amplitude, and glottal cycle phases were assessed. Results Differences in the vocal vibration parameters were observed and correlated with the pathophysiology. Conclusion HSV is the latest diagnostic tool in visual examination of vocal behavior and has considerable potential to refine our knowledge regarding the vocal fold vibration and voice production, as well as regarding the impact of pathologic conditions have on the mechanism of phonation.

  17. Flow structure around high-speed train in open air

    Institute of Scientific and Technical Information of China (English)

    田红旗; 黄莎; 杨明智

    2015-01-01

    According to the analysis of the turbulent intensity level around the high-speed train, the maximum turbulent intensity ranges from 0.2 to 0.5 which belongs to high turbulent flow. The flow field distribution law was studied and eight types of flow regions were proposed. They are high pressure with air stagnant region, pressure decreasing with air accelerating region, low pressure with high air flow velocity region I, turbulent region, steady flow region, low pressure with high air flow velocity region II, pressure increasing with air decelerating region and wake region. The analysis of the vortex structure around the train shows that the vortex is mainly induced by structures with complex mutation and large curvature change. The head and rear of train, the underbody structure, the carriage connection section and the wake region are the main vortex generating sources while the train body with even cross-section has rare vortexes. The wake structure development law studied lays foundation for the train drag reduction.

  18. Improvement of vocal pathologies diagnosis using high-speed videolaryngoscopy.

    Science.gov (United States)

    Tsuji, Domingos Hiroshi; Hachiya, Adriana; Dajer, Maria Eugenia; Ishikawa, Camila Cristina; Takahashi, Marystella Tomoe; Montagnoli, Arlindo Neto

    2014-07-01

    Introduction The study of the dynamic properties of vocal fold vibration is important for understanding the vocal production mechanism and the impact of organic and functional changes. The advent of high-speed videolaryngoscopy (HSV) has provided the possibility of seeing the real cycle of vocal fold vibration in detail through high sampling rate of successive frames and adequate spatial resolution. Objective To describe the technique, advantages, and limitations of using HSV and digital videokymography in the diagnosis of vocal pathologies. Methods We used HSV and digital videokymography to evaluate one normophonic individual and four patients with vocal fold pathologies (nodules, unilateral paralysis of the left vocal fold, intracordal cyst, and adductor spasmodic dysphonia). The vocal fold vibration parameters (glottic closure, vibrational symmetry, periodicity, mucosal wave, amplitude, and glottal cycle phases) were assessed. Results Differences in the vocal vibration parameters were observed and correlated with the pathophysiology. Conclusion HSV is the latest diagnostic tool in visual examination of vocal behavior and has considerable potential to refine our knowledge regarding the vocal fold vibration and voice production, as well as regarding the impact of pathologic conditions have on the mechanism of phonation.

  19. High speed multiplier using Nikhilam Sutra algorithm of Vedic mathematics

    Science.gov (United States)

    Pradhan, Manoranjan; Panda, Rutuparna

    2014-03-01

    This article presents the design of a new high-speed multiplier architecture using Nikhilam Sutra of Vedic mathematics. The proposed multiplier architecture finds out the compliment of the large operand from its nearest base to perform the multiplication. The multiplication of two large operands is reduced to the multiplication of their compliments and addition. It is more efficient when the magnitudes of both operands are more than half of their maximum values. The carry save adder in the multiplier architecture increases the speed of addition of partial products. The multiplier circuit is synthesised and simulated using Xilinx ISE 10.1 software and implemented on Spartan 2 FPGA device XC2S30-5pq208. The output parameters such as propagation delay and device utilisation are calculated from synthesis results. The performance evaluation results in terms of speed and device utilisation are compared with earlier multiplier architecture. The proposed design has speed improvements compared to multiplier architecture presented in the literature.

  20. High-Speed Acquisition of Free Vortex Formation

    CERN Document Server

    Falahatpisheh, Ahmad

    2012-01-01

    The formation of a free-vortex has been captured by using a high-speed camera (Y3, IDTVision, Inc.). The experiment is conducted using a rectangular tank, which is filled with tap water. The water free surface is open to atmospheric pressure and is at room temperature, 25\\textcelsius. Water occupies a volume of $25\\times 25\\times 10$cm$^3$. By using a stirring-spoon, the stagnant water is forced to rotate at a rate of $2\\pi$/sec. Once all the points in the water is rotating, it will be drained from a ball valve, with a diameter of 5mm, from the bottom of the tank and the acquisition starts. The formation of the vortex is captured with a resolution of $352\\times 824$ pixels at 200 frames per seconds (fps) and is exported at 5fps and with a resolution of $1280\\times 720$ in a "fluid dynamics video". The duration of the video in real time is 3.9 seconds. The slow motion video is 160 seconds. The height of the water remains almost unchanged while acquiring the images.

  1. A very high speed lossless compression/decompression chip set

    Science.gov (United States)

    Venbrux, Jack; Liu, Norley; Liu, Kathy; Vincent, Peter; Merrell, Randy

    1991-01-01

    A chip is described that will perform lossless compression and decompression using the Rice Algorithm. The chip set is designed to compress and decompress source data in real time for many applications. The encoder is designed to code at 20 M samples/second at MIL specifications. That corresponds to 280 Mbits/second at maximum quantization or approximately 500 Mbits/second under nominal conditions. The decoder is designed to decode at 10 M samples/second at industrial specifications. A wide range of quantization levels is allowed (4...14 bits) and both nearest neighbor prediction and external prediction are supported. When the pre and post processors are bypassed, the chip set performs high speed entropy coding and decoding. This frees the chip set from being tied to one modeling technique or specific application. Both the encoder and decoder are being fabricated in a 1.0 micron CMOS process that has been tested to survive 1 megarad of total radiation dosage. The CMOS chips are small, only 5 mm on a side, and both are estimated to consume less than 1/4 of a Watt of power while operating at maximum frequency.

  2. Lagrangian transported MDF methods for compressible high speed flows

    Science.gov (United States)

    Gerlinger, Peter

    2017-06-01

    This paper deals with the application of thermochemical Lagrangian MDF (mass density function) methods for compressible sub- and supersonic RANS (Reynolds Averaged Navier-Stokes) simulations. A new approach to treat molecular transport is presented. This technique on the one hand ensures numerical stability of the particle solver in laminar regions of the flow field (e.g. in the viscous sublayer) and on the other hand takes differential diffusion into account. It is shown in a detailed analysis, that the new method correctly predicts first and second-order moments on the basis of conventional modeling approaches. Moreover, a number of challenges for MDF particle methods in high speed flows is discussed, e.g. high cell aspect ratio grids close to solid walls, wall heat transfer, shock resolution, and problems from statistical noise which may cause artificial shock systems in supersonic flows. A Mach 2 supersonic mixing channel with multiple shock reflection and a model rocket combustor simulation demonstrate the eligibility of this technique to practical applications. Both test cases are simulated successfully for the first time with a hybrid finite-volume (FV)/Lagrangian particle solver (PS).

  3. Integrated design and manufacturing for the high speed civil transport

    Science.gov (United States)

    Lee, Jae Moon; Gupta, Anurag; Mueller, Craig; Morrisette, Monica; Dec, John; Brewer, Jason; Donofrio, Kevin; Sturisky, Hilton; Smick, Doug; An, Meng Lin

    1994-01-01

    In June 1992, the School of Aerospace Engineering at Georgia Tech was awarded a three year NASA University Space Research Association (USRA) Advanced Design Program (ADP) grant to address issues associated with the Integrated Design and Manufacturing of High Speed Civil Transport (HSCT) configurations in its graduate Aerospace Systems Design courses. This report provides an overview of the on-going Georgia Tech initiative to address these design/manufacturing issues during the preliminary design phases of an HSCT concept. The new design methodology presented here has been incorporated in the graduate aerospace design curriculum and is based on the concept of Integrated Product and Process Development (IPPD). The selection of the HSCT as a pilot project was motivated by its potential global transportation payoffs; its technological, environmental, and economic challenges; and its impact on U.S. global competitiveness. This pilot project was the focus of each of the five design courses that form the graduate level aerospace systems design curriculum. This year's main objective was the development of a systematic approach to preliminary design and optimization and its implementation to an HSCT wing/propulsion configuration. The new methodology, based on the Taguchi Parameter Design Optimization Method (PDOM), was established and was used to carry out a parametric study where various feasible alternative configurations were evaluated. The comparison criterion selected for this evaluation was the economic impact of this aircraft, measured in terms of average yield per revenue passenger mile ($/RPM).

  4. High-speed Flight in an Ergodic Forest

    CERN Document Server

    Karaman, Sertac

    2012-01-01

    Inspired by birds flying through cluttered environments such as dense forests, this paper studies the theoretical foundations of a novel motion planning problem: high-speed navigation through a randomly-generated obstacle field when only the statistics of the obstacle generating process are known a priori. Resembling a planar forest environment, the obstacle generating process is assumed to determine the locations and sizes of disk-shaped obstacles. When this process is ergodic, and under mild technical conditions on the dynamics of the bird, it is shown that the existence of an infinite collision-free trajectory through the forest exhibits a phase transition. On one hand, if the bird flies faster than a certain critical speed, then, with probability one, there is no infinite collision-free trajectory, i.e., the bird will eventually collide with some tree, almost surely, regardless of the planning algorithm governing the bird's motion. On the other hand, if the bird flies slower than this critical speed, then...

  5. Micro Mirrors for High-speed Laser Deflection and Patterning

    Science.gov (United States)

    Schenk, Harald; Grahmann, Jan; Sandner, Thilo; Wagner, Michael; Dauderstädt, Ulrike; Schmidt, Jan-Uwe

    This paper focuses on high-speed optical MEMS Scanners and Micro Mirror Arrays. Devices supporting spot/pixel rateshigher than 10 Mpixel/s are considered and discussed regarding limits and possibilities to further improve speed and optical properties. Several variants of both types, developed by our group, are presented. Scanning Micro Mirrors with frequencies up to 100 kHz enable spot rates of up to 130 Mpixels / s at 650 nm. Bragg-coatings enable high power applications up to 20 W (beam ø2 mm). Challenges like static and dynamic mirror planariy are discussed. A 29-kHz-scanner for laser projection serves as application example. Highly parallel operated Micro Mirror Arrays extend pattern speed to 10 Gpixel / s including analog grey scaling. Irradiation tests prove stable operation of the mirrors at DUV. Prospects regarding optical planarity and high reflective coatings are discussed. By means of two examples, laser patterning of semiconductor masks and laser patterning of Printed Circuit Boards, properties of the spatial light modulators are presented. The two device classes are compared regarding spot/pixel rate and frequency. The comparison includes representative MEMS device examples from literature.

  6. High-Speed Operation of Interband Cascade Lasers

    Science.gov (United States)

    Soibel, Alexander; Hill, Cory J.; Keo, Sam A.; Wright, Malcom W.; Farr, William H.; Yang, Rui Q.; Liu, H. C.

    2010-01-01

    Optical sources operating in the atmospheric window of 3-5 microns are of particular interest for the development of free-space optical communication link. It is more advantageous to operate the free-space optical communication link in 3-5-microns atmospheric transmission window than at the telecom wavelength of 1.5 m due to lower optical scattering, scintillation, and background radiation. However, the realization of optical communications at the longer wavelength has encountered significant difficulties due to lack of adequate optical sources and detectors operating in the desirable wavelength regions. Interband Cascade (IC) lasers are novel semiconductor lasers that have a great potential for the realization of high-power, room-temperature optical sources in the 3-5-microns wavelength region, yet no experimental work, until this one, was done on high-speed direct modulation of IC lasers. Here, highspeed interband cascade laser, operating at wavelength 3.0 m, has been developed and the first direct measurement of the laser modulation bandwidth has been performed using a unique, highspeed quantum well infrared photodetector (QWIP). The developed laser has modulation bandwidth exceeding 3 GHz. This constitutes a significant increase of the IC laser modulation bandwidth over currently existing devices. This result has demonstrated suitability of IC lasers as a mid-IR light source for multi-GHz free-space optical communications links

  7. High speed non-latching squid binary ripple counter

    Energy Technology Data Exchange (ETDEWEB)

    Silver, A.H.; Phillips, R.R.; Sandell, R.D.

    1985-03-01

    High speed, single flux quantum (SFQ) binary scalers are important components in superconducting analog-to-digital converters (ADC). This paper reviews the concept for a SQUID ADC and the design of an SFQ binary ripple counter, and reports the simulation of key components, and fabrication and performance of non-latching SQUID scalers and SFQ binary ripple counters. The SQUIDs were fabricated with Nb/Nb/sub 2/O/sub 5//PbIn junctions and interconnected by monolithic superconducting transmission lines and isolation resistors. Each SQUID functioned as a bistable flip-flop with the input connected to the center of the device and the output across one junction. All junctions were critically damped to optimize the pulse response. Operation was verified by observing the dc I-V curves of successive SQUIDs driven by a cw pulse train generated on the same chip. Each SQUID exhibited constant-voltage current steps at 1/2 the voltage of the preceding device as expected from the Josephson voltage-to-frequency relation. Steps were observed only for the same voltage polarity of successive devices and for proper phase bias of the SQUID. Binary frequency division was recorded up to 40GHz for devices designed to operate to 28GHz.

  8. The Kaye effect revisited: High speed imaging of leaping shampoo

    Science.gov (United States)

    Versluis, Michel; Blom, Cock; van der Meer, Devaraj; van der Weele, Ko; Lohse, Detlef

    2003-11-01

    When a visco-elastic fluid such as shampoo or shower gel is poured onto a flat surface the fluid piles up forming a heap on which rather irregular combinations of fluid buckling, coiling and folding are observed. Under specific conditions a string of fluid leaps from the heap and forms a steady jet fed by the incoming stream. Momentum transfer of the incoming jet, combined with the shear-thinning properties of the fluid, lead to a spoon-like dimple in the highly viscous fluid pool in which the jet recoils. The jet can be stable for several seconds. This effect is known as the Kaye effect. In order to reveal its mechanism we analyzed leaping shampoo through high-speed imaging. We studied the jet formation, jet stability and jet disruption mechanisms. We measured the velocity of both the incoming and recoiled jet, which was found to be thicker and slower. By inclining the surface on which the fluid was poured we observed jets leaping at upto five times.

  9. Fluid durability in a high speed electro-rheological clutch

    Science.gov (United States)

    Johnson, A. R.; Makin, J.; Bullough, W. A.; Firoozian, R.; Hosseini-Sianaki, A.

    1993-10-01

    The durability of an electro-rheological (ER) fluid was investigated by running a high speed ER clutch under different conditions and periods of operation. The tests involved running the clutch at 3000 rpm for a total period of twelve hours over a five day period. The tests subjected the fluid to a centripetal acceleration of 3000 m/sq s, and were conducted with and without an excitation field of 2 kV/mm, and with and without shearing the fluid at shear rates up to 9500/s. The condition of the fluid was assessed periodically by measuring the torque response of the clutch to a step application of voltage in respect of both magnitude and speed of response. Results at the two pole 50 Hz synchronous speed of 3000 rpm indicated that the particles in the fluid were centrifuged over the prolonged test periods. The application of a voltage across the fluid had a negligible effect on this particle migration. The effect of particle migration due to centrifugal and electro-static effects indicate future development requirements for these smart materials.

  10. Composite flywheel material design for high-speed energy storage

    Directory of Open Access Journals (Sweden)

    Michael A. Conteh

    2016-06-01

    Full Text Available Lamina and laminate mechanical properties of materials suitable for flywheel high-speed energy storage were investigated. Low density, low modulus and high strength composite material properties were implemented for the constant stress portion of the flywheel while higher density, higher modulus and strength were implemented for the constant thickness portion of the flywheel. Design and stress analysis were used to determine the maximum energy densities and shape factors for the flywheel. Analytical studies along with the use of the CADEC-online software were used to evaluate the lamina and laminate properties. This study found that a hybrid composite of M46J/epoxy–T1000G/epoxy for the flywheel exhibits a higher energy density when compared to known existing flywheel hybrid composite materials such as boron/epoxy–graphite/epoxy. Results from this study will contribute to further development of the flywheel that has recently re-emerged as a promising application for energy storage due to significant improvements in composite materials and technology.

  11. Dynamics of High-Speed Precision Geared Rotor Systems

    Directory of Open Access Journals (Sweden)

    Lim Teik C.

    2014-07-01

    Full Text Available Gears are one of the most widely applied precision machine elements in power transmission systems employed in automotive, aerospace, marine, rail and industrial applications because of their reliability, precision, efficiency and versatility. Fundamentally, gears provide a very practical mechanism to transmit motion and mechanical power between two rotating shafts. However, their performance and accuracy are often hampered by tooth failure, vibrations and whine noise. This is most acute in high-speed, high power density geared rotor systems, which is the primary scope of this paper. The present study focuses on the development of a gear pair mathematical model for use to analyze the dynamics of power transmission systems. The theory includes the gear mesh representation derived from results of the quasi-static tooth contact analysis. This proposed gear mesh theory comprising of transmission error, mesh point, mesh stiffness and line-of-action nonlinear, time-varying parameters can be easily incorporated into a variety of transmission system models ranging from the lumped parameter type to detailed finite element representation. The gear dynamic analysis performed led to the discovery of the out-of-phase gear pair torsion modes that are responsible for much of the mechanical problems seen in gearing applications. The paper concludes with a discussion on effectual design approaches to minimize the influence of gear dynamics and to mitigate gear failure in practical power transmission systems.

  12. High speed imaging with CW THz for security

    Science.gov (United States)

    Song, Qian; Redo-Sanchez, Albert; Zhao, Yuejin; Zhang, Cunlin

    2008-12-01

    Continuous THz wave (CW THz) has been widely used in imaging field. But for security screening such as inspection at the airport, the speed of the imaging calls for an improvement since the former CW image systems which scan point to point could not satisfy. To increase the image speed, we proposed a fast CW THz image system in which a galvanometer is introduced for the first time. The galvanometer makes the coming beam reflected in different angles by vibrating at a certain frequency which can significantly decrease the image acquisition time compare to point scan THz imaging. A big hyperbolic polyethylene lens is also used in the system to collect all the beams on to the target. A Gunn oscillator and a corresponding Schottky diode are the source and detector respectively. The image we get has ideal resolution. And after image processing, the images looked not only clear but also realistic. The system has more practicality because it is designed in reflection geometry instead of transmission geometry. Moreover, the source and detector in our system do not as ponderous as gas laser which has been used in many THz imaging system previously. Example of measurements of weapons concealed behind the cloth and box are presented and discussed. A compact high speed THz imaging system is expectable which will have a widely application in security field.

  13. Coherent DWDM technology for high speed optical communications

    Science.gov (United States)

    Saunders, Ross

    2011-10-01

    The introduction of coherent digital optical transmission enables a new generation of high speed optical data transport and fiber impairment mitigation. An initial implementation of 40 Gb/s coherent systems using Dual Polarization Quadrature Phase Shift Keying (DP-QPSK) is already being installed in carrier networks. New systems running at 100 Gb/s DP-QPSK data rate are in development and early technology lab and field trial phase. Significant investment in the 100 Gb/s ecosystem (optical components, ASICs, transponders and systems) bodes well for commercial application in 2012 and beyond. Following in the footsteps of other telecommunications fields such as wireless and DSL, we can expect coherent optical transmission to evolve from QPSK to higher order modulations schemes such as Mary PSK and/or QAM. This will be an interesting area of research in coming years and poses significant challenges in terms of electro-optic, DSP, ADC/DAC design and fiber nonlinearity mitigation to reach practical implementation ready for real network deployments.

  14. High-speed particle image velocimetry near surfaces.

    Science.gov (United States)

    Lu, Louise; Sick, Volker

    2013-06-24

    Multi-dimensional and transient flows play a key role in many areas of science, engineering, and health sciences but are often not well understood. The complex nature of these flows may be studied using particle image velocimetry (PIV), a laser-based imaging technique for optically accessible flows. Though many forms of PIV exist that extend the technique beyond the original planar two-component velocity measurement capabilities, the basic PIV system consists of a light source (laser), a camera, tracer particles, and analysis algorithms. The imaging and recording parameters, the light source, and the algorithms are adjusted to optimize the recording for the flow of interest and obtain valid velocity data. Common PIV investigations measure two-component velocities in a plane at a few frames per second. However, recent developments in instrumentation have facilitated high-frame rate (>1 kHz) measurements capable of resolving transient flows with high temporal resolution. Therefore, high-frame rate measurements have enabled investigations on the evolution of the structure and dynamics of highly transient flows. These investigations play a critical role in understanding the fundamental physics of complex flows. A detailed description for performing high-resolution, high-speed planar PIV to study a transient flow near the surface of a flat plate is presented here. Details for adjusting the parameter constraints such as image and recording properties, the laser sheet properties, and processing algorithms to adapt PIV for any flow of interest are included.

  15. Specification and analysis of a high speed transport protocol

    Science.gov (United States)

    Tipici, Huseyin A.

    1993-06-01

    While networks have been getting faster, perceived throughput at the application has not always increased accordingly and the bottleneck has moved to the communications processing part of the system. The issues that cause the performance bottlenecks in the current transport protocols are discussed in this thesis, and a further study on a high speed transport protocol which tries to overcome these difficulties with some unique features is presented. By using the Systems of Communicating Machines (SCM) model as a framework, a refined and improved version of the formal protocol specification is built over the previous work, and it is analyzed to verify that the protocol is free from logical errors such as deadlock, unspecified reception, unexecuted transitions and blocking loops. The analysis is conducted in two phases which consists of the application of the associated system state analysis and the simulation of the protocol using the programming language ADA. The thesis also presents the difficulties encountered during the course of the analysis, and suggests possible solutions to some of the problems.

  16. Submonolayer Quantum Dots for High Speed Surface Emitting Lasers

    Directory of Open Access Journals (Sweden)

    Zakharov ND

    2007-01-01

    Full Text Available AbstractWe report on progress in growth and applications of submonolayer (SML quantum dots (QDs in high-speed vertical-cavity surface-emitting lasers (VCSELs. SML deposition enables controlled formation of high density QD arrays with good size and shape uniformity. Further increase in excitonic absorption and gain is possible with vertical stacking of SML QDs using ultrathin spacer layers. Vertically correlated, tilted or anticorrelated arrangements of the SML islands are realized and allow QD strain and wavefunction engineering. Respectively, both TE and TM polarizations of the luminescence can be achieved in the edge-emission using the same constituting materials. SML QDs provide ultrahigh modal gain, reduced temperature depletion and gain saturation effects when used in active media in laser diodes. Temperature robustness up to 100 °C for 0.98 μm range vertical-cavity surface-emitting lasers (VCSELs is realized in the continuous wave regime. An open eye 20 Gb/s operation with bit error rates better than 10−12has been achieved in a temperature range 25–85 °Cwithout current adjustment. Relaxation oscillations up to ∼30 GHz have been realized indicating feasibility of 40 Gb/s signal transmission.

  17. Generalized OFDM (GOFDM) for ultra-high-speed optical transmission.

    Science.gov (United States)

    Djordjevic, Ivan; Arabaci, Murat; Xu, Lei; Wang, Ting

    2011-03-28

    We propose a coded N-dimensional modulation scheme suitable for ultra-high-speed serial optical transport. The proposed scheme can be considered as a generalization of OFDM, and hence, we call it as generalized OFDM (GOFDM). In this scheme, the orthogonal subcarriers are used as basis functions and the signal constellation points are defined over this N-dimensional linear space. To facilitate implementation, we propose using N-dimensional pulse-amplitude modulation (ND-PAM) as the signal constellation diagram, which is obtained as the N-ary Cartesian product of one-dimensional PAM. In conventional OFDM, QAM/PSK signal constellation points are transmitted over orthogonal subcarriers and then they are multiplexed together in an OFDM stream. Individual subcarriers, therefore, carry N parallel QAM/PSK streams. In the proposed GOFDM scheme instead, an N-dimensional signal constellation point is transmitted over all N subcarriers simultaneously. When some of the subcarriers are severely affected by channel impairments, the constellation points carried by those subcarriers may be lost in the conventional OFDM. In comparison, under such conditions, the overall signal constellation point will face only small distortion in GOFDM and it can be recovered successfully using the information on the other high fidelity subcarriers. Furthermore, because the channel capacity is a logarithmic function of signal-to-noise ratio but a linear function of the number of dimensions, the spectral efficiency of optical transmission systems can be improved with GOFDM.

  18. Ultra High-Speed Radio Frequency Switch Based on Photonics.

    Science.gov (United States)

    Ge, Jia; Fok, Mable P

    2015-11-26

    Microwave switches, or Radio Frequency (RF) switches have been intensively used in microwave systems for signal routing. Compared with the fast development of microwave and wireless systems, RF switches have been underdeveloped particularly in terms of switching speed and operating bandwidth. In this paper, we propose a photonics based RF switch that is capable of switching at tens of picoseconds speed, which is hundreds of times faster than any existing RF switch technologies. The high-speed switching property is achieved with the use of a rapidly tunable microwave photonic filter with tens of gigahertz frequency tuning speed, where the tuning mechanism is based on the ultra-fast electro-optics Pockels effect. The RF switch has a wide operation bandwidth of 12 GHz and can go up to 40 GHz, depending on the bandwidth of the modulator used in the scheme. The proposed RF switch can either work as an ON/OFF switch or a two-channel switch, tens of picoseconds switching speed is experimentally observed for both type of switches.

  19. Hardware demonstration of high-speed networks for satellite applications.

    Energy Technology Data Exchange (ETDEWEB)

    Donaldson, Jonathon W.; Lee, David S.

    2008-09-01

    This report documents the implementation results of a hardware demonstration utilizing the Serial RapidIO{trademark} and SpaceWire protocols that was funded by Sandia National Laboratories (SNL's) Laboratory Directed Research and Development (LDRD) office. This demonstration was one of the activities in the Modeling and Design of High-Speed Networks for Satellite Applications LDRD. This effort has demonstrated the transport of application layer packets across both RapidIO and SpaceWire networks to a common downlink destination using small topologies comprised of commercial-off-the-shelf and custom devices. The RapidFET and NEX-SRIO debug and verification tools were instrumental in the successful implementation of the RapidIO hardware demonstration. The SpaceWire hardware demonstration successfully demonstrated the transfer and routing of application data packets between multiple nodes and also was able reprogram remote nodes using configuration bitfiles transmitted over the network, a key feature proposed in node-based architectures (NBAs). Although a much larger network (at least 18 to 27 nodes) would be required to fully verify the design for use in a real-world application, this demonstration has shown that both RapidIO and SpaceWire are capable of routing application packets across a network to a common downlink node, illustrating their potential use in real-world NBAs.

  20. Dynamic High-speed Knotting of a Rope by a Manipulator

    Directory of Open Access Journals (Sweden)

    Yuji Yamakawa

    2013-10-01

    Full Text Available In this paper we suggest an entirely new strategy for the dexterous manipulation of a linear flexible object, such as rope or a cable, with a high-speed manipulator. We deal with a flexible rope as one example of the linear flexible object. The strategy involves manipulating the object at high-speed. By moving the robot at high-speed, we can assume that the dynamic behaviour of the flexible rope can be obtained by performing algebraic calculations of the high- speed robot motion. Based on this assumption, we derive a dynamic deformation model of the flexible rope and confirm the validity of the proposed model. Then we perform a simulation of dynamic, high-speed knotting based on the proposed model. We also discuss the possibility of forming the knot based on a simple analysis model. Finally, we show experimental results demonstrating dynamic, high-speed knotting with a high-speed manipulator.

  1. Simulation of Pellet Ablation

    Science.gov (United States)

    Parks, P. B.; Ishizaki, Ryuichi

    2000-10-01

    In order to clarify the structure of the ablation flow, 2D simulation is carried out with a fluid code solving temporal evolution of MHD equations. The code includes electrostatic sheath effect at the cloud interface.(P.B. Parks et al.), Plasma Phys. Contr. Fusion 38, 571 (1996). An Eulerian cylindrical coordinate system (r,z) is used with z in a spherical pellet. The code uses the Cubic-Interpolated Psudoparticle (CIP) method(H. Takewaki and T. Yabe, J. Comput. Phys. 70), 355 (1987). that divides the fluid equations into non-advection and advection phases. The most essential element of the CIP method is in calculation of the advection phase. In this phase, a cubic interpolated spatial profile is shifted in space according to the total derivative equations, similarly to a particle scheme. Since the profile is interpolated by using the value and the spatial derivative value at each grid point, there is no numerical oscillation in space, that often appears in conventional spline interpolation. A free boundary condition is used in the code. The possibility of a stationary shock will also be shown in the presentation because the supersonic ablation flow across the magnetic field is impeded.

  2. Effect of Sawdust Characteristics on Pelletizing Properties and Pellet Quality

    Energy Technology Data Exchange (ETDEWEB)

    Samuelsson, Robert; Thyrel, Mikael; Lestander, Torbjoern; Jonsson, Carina [Swedish Univ of Agricultural Science, Umeaa (Sweden). Unit of Biomass Technology and Chemistry; Sjoestroem, Michael [Univ. of Umeaa (Sweden). Dept. of Chemistry

    2006-07-15

    Sawdust of pine and spruce from sawmills is the most common raw material for pellet production in Sweden today. Experiences from pellet plants indicate that raw material properties like wood species, storage time (maturity), growing latitude and moisture content influence the pelletizing properties and the pellet quality. However, no systematic investigation where the above mentioned parameters were studied in combination with pelletizing parameters like die length and steam treatment has been reported so far. In this paper the pelletizing of sawdust using a reduced factorial design with six parameters is described. The independent parameters studied were wood species (pine, spruce), growing latitude (57, 64 deg N), storage time (fresh, 140 days), moisture content (9 %, 12 %), die length (55 mm, 65 mm) and steam treatment (2,0 kg/h, 6,0 kg/h). The pelletizing parameters measured during the experiments were i.e. die temperature, energy consumption, Pellets temperature, while the main pellet quality parameters were bulk density, durability, fines and moisture content. All results were evaluated by using multivariate data analysis. The results can be summarized as follows: Bulk density: The two-factor interaction between moisture content and steam treatment affected the bulk density most significantly. The best response was obtained at either high moisture content and low steam treatment or vice versa. In addition, the results showed that long storage time influenced the bulk density positively. durability: Storage time is the most significant factor for the durability; long storage results in higher durability. Even for the durability the two-factor interaction between moisture content and steam treatment is of great importance. fines: The amount of fines is to a large extent determined by the two-factor interaction between moisture content and steam treatment together with the storage time. The amount of fines is also affected by wood species and growing latitude

  3. Numerical study of a high-speed miniature centrifugal compressor

    Science.gov (United States)

    Li, Xiaoyi

    A miniature centrifugal compressor is a key component of reverse Brayton cycle cryogenic cooling system. The system is commonly used to generate a low cryogenic temperature environment for electronics to increase their efficiency, or generate, store and transport cryogenic liquids, such as liquid hydrogen and oxygen, where space limit is also an issue. Because of space limitation, the compressor is composed of a radial IGV, a radial impeller and an axial-direction diffuser (which reduces the radial size because of smaller diameter). As a result of reduction in size, rotating speed of the impeller is as high as 313,000 rpm, and Helium is used as the working fluid, in order to obtain the required static pressure ratio/rise. Two main characteristics of the compressor---miniature and high-speed, make it distinct from conventional compressors. Higher compressor efficiency is required to obtain a higher COP (coefficient of performance) system. Even though miniature centrifugal compressors start to draw researchers' attention in recent years, understanding of the performance and loss mechanism is still lacking. Since current experimental techniques are not advanced enough to capture details of flow at miniature scale, numerical methods dominate miniature turbomachinery study. This work numerically studied a high speed miniature centrifugal compressor with commercial CFD code. The overall performance of the compressor was predicted with consideration of interaction between blade rows by using sliding mesh model. The law of similarity of turbomachinery was validated for small scale machines. It was found that the specific ratio effect needs to be considered when similarity law is applied. But Reynolds number effect can be neglected. The loss mechanism of each component was analyzed. Loss due to turning bend was significant in each component. Tip leakage loss of small scale turbomachines has more impact on the impeller performance than that of large scale ones. Because the

  4. Full-frame, high-speed 3D shape and deformation measurements using stereo-digital image correlation and a single color high-speed camera

    Science.gov (United States)

    Yu, Liping; Pan, Bing

    2017-08-01

    Full-frame, high-speed 3D shape and deformation measurement using stereo-digital image correlation (stereo-DIC) technique and a single high-speed color camera is proposed. With the aid of a skillfully designed pseudo stereo-imaging apparatus, color images of a test object surface, composed of blue and red channel images from two different optical paths, are recorded by a high-speed color CMOS camera. The recorded color images can be separated into red and blue channel sub-images using a simple but effective color crosstalk correction method. These separated blue and red channel sub-images are processed by regular stereo-DIC method to retrieve full-field 3D shape and deformation on the test object surface. Compared with existing two-camera high-speed stereo-DIC or four-mirror-adapter-assisted singe-camera high-speed stereo-DIC, the proposed single-camera high-speed stereo-DIC technique offers prominent advantages of full-frame measurements using a single high-speed camera but without sacrificing its spatial resolution. Two real experiments, including shape measurement of a curved surface and vibration measurement of a Chinese double-side drum, demonstrated the effectiveness and accuracy of the proposed technique.

  5. Stall inception in a high-speed axial compressor

    Science.gov (United States)

    Cameron, Joshua David

    A research program designed to provide understanding of the fluid dynamic mechanisms that lead to rotating stall in the Notre Dame Stage 01 high-speed axial compressor is described. The stalling behavior of this compressor was studied with unsteady casing pressure measurements from a circumferentially spaced array of sensors. In addition, over rotor casing surface streak measurements were performed to investigate the time-averaged end-wall flow near the rotor at operating points near stall. Several investigative tools were applied to the analysis and interpretation of the unsteady casing pressure data. Traditional methods such as visual inspection, spatial Fourier decomposition, traveling wave energy and wavelet analysis were shown to be insufficient to characterize the pre-stall and stall inception behavior of the compressor. A new technique based on a windowed two-point correlation between adjacent sensors was developed and demonstrated to provide spatial and temporal resolution of both pre-stall and stall inception behavior. The spatial correlation technique was then applied to the analysis of stall inception data from experiments with asymmetric tip clearance. The non-uniform tip clearance was produced using the magnetic bearings which levitate the rotor shaft of the Notre Dame Transonic Axial Compressor facility. Both steady rotor centerline offset and rotor whirl were investigated. The results of these experiments, along with the surface streak measurements, provide evidence in support of recent computational observations (found in the literature) that predict that short length scale stall inception is related to specific features of the rotor tip clearance flow.

  6. Power Input of High-Speed Rotary Impellers

    Directory of Open Access Journals (Sweden)

    K. R. Beshay

    2001-01-01

    Full Text Available This paper presents the results of an experimental investigation of the power input of pitched blade impellers and standard Rushton turbine impellers in a cylindrical vessel provided with four radial baffles at its wall under a turbulent regime of flow of an agitated liquid. The influence of the geometry of the pitched blade impellers (pitch angle, number of blades and the off-bottom impeller clearance of both high-speed impellers tested on the impeller power input is determined in two sizes of the cylindrical vessel (0.3 m and 0.8 m diameter of vessel. A strain gauge torquemeter is used in the small vessel and a phase shift mechanical torquemeter is used in the large vessel. All results of the experiments correspond to the condition that the Reynolds number modified for the impeller exceeds ten thousand. The results of this study show that the significant influence of the separating disk thickness of the turbine impeller corresponds fairly well to the empirical equations presented in the literature. Both the influence of the number of impeller blades and the blade pitch angle of the pitched blade impeller were expressed quantitatively by means of the power dependence of the recently published correlations: the higher the pitch angle and the number of blades, the higher the values of the impeller power input. Finally, it follows from results of this study that the impeller off-bottom clearance has a weak influence on the power input of the Rushton turbine impeller, but with decreasing impeller off-bottom clearance the power input of the pitched blade impeller increases significantly.

  7. AV-95 Sun Devil: High-Speed Military Rotorcraft

    Science.gov (United States)

    1996-01-01

    The AV-95 Sun Devil must combine helicopter capabilities, such as vertical takeoff and landings (VTOL) and rotor-powered flight, along with long-duration cruise and high-speed dash capabilities unobtainable by conventional helicopters. To be able to perform both tasks, and perform them well, the AV-95 Sun Devil design incorporates several unconventional devices; the AV-95 uses two convertible turbofan engines, able to provide both shaft power for the main rotor and tall fan as well as jet thrust either separately or simultaneously. Other devices used for the AV-95 include a variable diameter main rotor and a blown flap. In helicopter mode, the AV-95 Sun Devil performs like a winged helicopter. The addition of wings to an attack helicopter results in two significant advantages. First, the addition of wings makes a helicopter more maneuverable than a wingless, but otherwise similar helicopter. Second, since the wings produce lift, rotor stall and compressibility effects can be significantly delayed at high tip velocities. In fixed-wing mode, the main rotor is completely off-loaded but slightly powered, and the rotor diameter has been minimized. The AV-95 Sun Devil has many advantages over other VTOL aircraft. The conversion process is simple and fast; conversion does not make the AV-95 vulnerable to enemy attack during conversion such as a tilt-wing or a tilt-rotor. Stop-rotor aircraft and a stowed rotor aircraft require heavy breaking of the rotor for conversion; this adds time for conversion and weight to the aircraft. Because the AV-95 never stops the rotor in flight, much weight is spared, and conversion is much simpler and faster.

  8. Preliminary identification of buffet problems in high speed civil transport

    Science.gov (United States)

    Ravindra, Krishnaswamy

    1994-01-01

    In the present study, some effort is made to identify whether empennage buffet is a relevant factor in the design and operation of the High Speed Civil Transport (HSCT). Based on some results of the only operational supersonic transport, Concorde and the innumerable studies that exist on the tail buffet of high performance airplanes, CFD analyses on the HSCT as well as low speed wind tunnel tests on models, it appears as though buffet will be a factor that needs attention in the proper design of empennage structure. Utilizing the existing empirical relation between the reduced frequency of the leading edge vortices and the geometric parameters, it is estimated that the characteristic frequencies of the vortices from the wing cranks are in the range of certain fundamental frequencies of the wing-fuselage-empennage structure. Buffet is believed to be critical during take-off, climb, descent and landing. Computational and experimental data available in open literature indicate coherent vortex flow structure in the empennage region at supersonic cruise speeds. This raises further concern on the fatigue life of the empennage structure. Three second generation supersonic transport designs taken from open literature are briefly compared with the 'empennage buffet' in mind. Future research efforts relating to buffet studies on the HSCT are summarized. A bibliography pertaining to the present research, including relevant studies on the first generation supersonic transport is presented. The effect of rounded wing leading edges on the present frequency estimates needs further study. The effect of engine exhaust on the flow field in the empennage region also needs further study.

  9. Supersonic Stall Flutter of High Speed Fans. [in turbofan engines

    Science.gov (United States)

    Adamczyk, J. J.; Stevens, W.; Jutras, R.

    1981-01-01

    An analytical model is developed for predicting the onset of supersonic stall bending flutter in axial flow compressors. The analysis is based on a modified two dimensional, compressible, unsteady actuator disk theory. It is applied to a rotor blade row by considering a cascade of airfoils whose geometry and dynamic response coincide with those of a rotor blade element at 85 percent of the span height (measured from the hub). The rotor blades are assumed to be unshrouded (i.e., free standing) and to vibrate in their first flexural mode. The effects of shock waves and flow separation are included in the model through quasi-steady, empirical, rotor total-pressure-loss and deviation-angle correlations. The actuator disk model predicts the unsteady aerodynamic force acting on the cascade blading as a function of the steady flow field entering the cascade and the geometry and dynamic response of the cascade. Calculations show that the present model predicts the existence of a bending flutter mode at supersonic inlet Mach numbers. This flutter mode is suppressed by increasing the reduced frequency of the system or by reducing the steady state aerodynamic loading on the cascade. The validity of the model for predicting flutter is demonstrated by correlating the measured flutter boundary of a high speed fan stage with its predicted boundary. This correlation uses a level of damping for the blade row (i.e., the log decrement of the rotor system) that is estimated from the experimental flutter data. The predicted flutter boundary is shown to be in good agreement with the measured boundary.

  10. Short pulse generation and high speed communication system

    Science.gov (United States)

    Fan, Honglei

    Ultrahigh-speed optical time-division-multiplexing (TDM) transmission technologies are essential to construct ultrahigh-speed all-optical networks needed in the multimedia era. In order to realize high-speed optical TDM systems, ultra-short pulses should be generated. In this dissertation, the gain switching and mode locking techniques have been analyzed and used to produce ultra- short pulses. Gain-switched pulses with a width of ~18ps have been obtained. The theoretical analysis on gain-switching phenomena has been carried out. A new approach for the simulation of the spectrum of a gain- switched laser has been developed. The principle of mode locking has been discussed. ~6.5ps, pulses have been obtained from a monolithic mode-locked distributed Bragg reflector (DBR) laser, which are the shortest pulses from the actively mode- locked DBR lasers as we know. ~1.1ps pulses have been achieved from a colliding-pulse mode-locked (CPM) laser. The operation principle of CPM lasers has been discussed. Pulse compression using dispersion-compensating fiber has been applied in order to get shorter pulses. The semiconductor optical amplifier (SOA) plays a very important role in TDM systems. The cross gain modulation (XGM) measurements on a 2-section SOA, using both cw and pulsed pump and probe beams, have been performed. A theoretical analysis has been carried out. Wavelength conversion and fiber transmission experiments have been achieved at different bit rates. The basic idea of TDM system has been discussed. Multiplexing has been achieved using fibers. Demulitplexing has been demonstrated using XGM in SOA, four-wave mixing (FWM) in SOA, and cascaded modulators. The operation principles have been discussed in detail. The FWM experiments between two optical pulses have been performed.

  11. Alert System for High Speed Vehicles to Avoid Wildlife Accidents

    Directory of Open Access Journals (Sweden)

    Rana Biswas

    2016-01-01

    Full Text Available “Alert System for High Speed Vehicles to Avoid Wildlife Accidents” is an alert system used to safeguard our wildlife. We often hear of various accidents of wild animals like elephant, nilgai etc., who are trying to cross the railway track. So, an intelligent electronics system is necessary which can be affixed to avoid the possibilities of accidents. Regarding this, in our project we are using a Passive Infrared Sensor (PIR sensor which is an electronic sensor that measures infrared (IR light radiating from objects in its field of view and switches ON any electrical/electronic device to which it is connected to. The key component of the sensor module is the pyroelectric element. All objects with a temperature above absolute zero emit heat energy in the form of radiation. Usually this radiation is invisible to the human eye because it is radiated at infrared wavelengths, but it is detected by this PIR sensor. This sensor does not radiate any energy for detection purposes and thus, it has no harmful effects on living beings. In our project the PIR sensor is used as a part of a burglar alarm and the electronic in the PIR typically control a small relay. This relay completes the circuit across a pair of electrical contacts connected to a detection input zone of the burglar alarm control panel. The system is usually designed such that if no living creature is being detected, the relay contact is closed- a „normally closed‟ (NC relay. If energy emitted from any nearby creature is detected, the relay opens, triggering the alarm, a signal will be directly sent to the driver‟s chamber and it will create a message in the LED screen of his chamber also an alarm will be heard which we have implemented using an ultrasonic sensor hc-sr04.

  12. Advanced waveform decomposition for high-speed videoendoscopy analysis.

    Science.gov (United States)

    Ikuma, Takeshi; Kunduk, Melda; McWhorter, Andrew J

    2013-05-01

    This article presents a novel approach to analyze nonperiodic vocal fold behavior of high-speed videoendoscopy (HSV) data. Although HSV can capture true vibrational motions of the vocal folds, its clinical advantage over the videostroboscopy has not widely been accepted. One of the key advantages of the HSV over the videostroboscopy is its ability to capture vocal folds' nonperiodic behavior, which is more prominent in pathological vocal folds. However, such nonperiodicity in the HSV data has not been fully explored quantitatively beyond simple perturbation analysis. This article presents an advanced waveform modeling and decomposition technique for HSV-based waveforms. Waveforms are modeled to have three components: harmonic signal, deterministic nonharmonic signal, and random nonharmonic signal. This decomposition is motivated by the fact that voice disorders introduce signal content that is nonharmonic but carries deterministic quality such as subharmonic or modulating content. The proposed model is aimed to isolate such disordered behaviors as deterministic nonharmonic signal and quantify them. In addition to the model, the article outlines model parameter estimation procedures and a family of harmonics-to-noise ratio (HNR) parameters. The proposed HNR parameters include harmonics-to-deterministic-noise ratio (HDNR) and harmonics-to-random-noise ratio. A preliminary study demonstrates the effectiveness of the extended model and its HNR parameters. Vocal folds with and without benign lesions (Nwith = 13; Nwithout = 20) were studied with HSV glottal area waveforms. All three HNR parameters significantly distinguished the disordered condition, and the HDNR reported the largest effect size (Cohen's d = 2.04).

  13. Handling of Deuterium Pellets for Plasma Refuelling

    DEFF Research Database (Denmark)

    Jensen, Peter Bjødstrup; Andersen, Verner

    1982-01-01

    The use of a guide tube technique to inject pellets in pellet-plasma experiments is described. The effect of the guide tube on the mass and speed of a slowly moving pellet ( nu approximately 150 m s-1) is negligible. To improve the divergence in trajectories of the pellets on leaving the guide tube...... a specially formed brass slide has been developed, which improves the aiming accuracy by a factor of 10. A simple method for determining the mass of larger pellets by means of a plate capacitor through which the pellets are shot is described. A method for small pellets as well has been investigated...

  14. 46 CFR 148.04-21 - Coconut meal pellets (also known as copra pellets).

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Coconut meal pellets (also known as copra pellets). 148.04-21 Section 148.04-21 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) DANGEROUS... § 148.04-21 Coconut meal pellets (also known as copra pellets). (a) Coconut meal pellets; (1)...

  15. A Technique for Producing Large Dual-Layer Pellets in Support of Disruption Mitigation Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Combs, Stephen Kirk [ORNL; Leachman, J. W. [Washington State University; Meitner, Steven J [ORNL; Baylor, Larry R [ORNL; Foust, Charles R [ORNL; Commaux, Nicolas JC [ORNL; Jernigan, Thomas C [ORNL

    2011-01-01

    A special single-shot pellet injection system that produces and accelerates large cryogenic pellets (~16 mm diameter and composed of D2 or Ne) to relatively high speeds (>300 and 600 m/s, respectively) was previously developed at the Oak Ridge National Laboratory. Subsequently, a similar system was installed on DIII-D and used successfully in disruption mitigation experiments. To circumvent some operational issues with injecting the large Ne pellets, a technique has been developed in which a relatively thin layer (0.1 to 1.0 mm) of D2 is frozen on the inner wall of the pipe-gun barrel, followed by filling the core with solid Ne. The technique and the initial laboratory tests are described, as well as the implementation and operational issues for fusion experiments.

  16. Comparative Effect of Power Training and High-Speed Yoga on Motor Function in Older Patients With Parkinson Disease.

    Science.gov (United States)

    Ni, Meng; Signorile, Joseph F; Mooney, Kiersten; Balachandran, Anoop; Potiaumpai, Melanie; Luca, Corneliu; Moore, James G; Kuenze, Christopher M; Eltoukhy, Moataz; Perry, Arlette C

    2016-03-01

    To compare the effects of power training (PWT) and a high-speed yoga program on physical performances in older patients with Parkinson disease (PD), and to test the hypothesis that both training interventions would attenuate PD symptoms and improve physical performance. Randomized controlled trial. A laboratory of neuromuscular research and active aging. Patients with PD (N=41; mean age ± SD, 72.2 ± 6.5y). Two high-speed exercise interventions (specifically designed yoga program and PWT) were given for 12 weeks (twice a week), and 1 nonexercise control group. Unified Parkinson Disease Rating Scale motor score (UPDRSMS), Berg Balance Scale (BBS), Mini-Balance Evaluation Systems Test (Mini-BESTest), Timed Up and Go, functional reach, single leg stance (SLS), postural sway test, 10-m usual and maximal walking speed tests, 1 repetition maximum (RM), and peak power (PPW) for leg press. For the posttests, both training groups showed significant improvements (Pyoga program and PWT. Both the specially designed yoga program and PWT programs can significantly improve physical performance in older persons with PD. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  17. Acoustics of dual-stream high-speed jets

    Science.gov (United States)

    Debiasi, Marco Tullio

    2000-10-01

    This work presents the results of noise measurements in high-speed, round jets whose Mach number and velocity simulate the conditions of jet engines at take-off. The Mach number of the jet potential core ranged from 1.27 to 1.77 and the velocity ranged from 550 m/s to 1010 m/s. Most of the jets were silenced with a coflow that prevented the formation of Mach waves, a dominant contribution to supersonic jet noise. This method, called Mach Wave Elimination, relies on the shielding effect of the coflow which makes the motion of the eddies subsonic with respect to the surrounding streams, thus impeding the creation of Mach waves. Schlieren photography and pitot probe surveys were used to detect the principal features and the growth rate of the jets. Microphone measurements were performed inside an anechoic chamber at many positions around the jet exit. The results were corrected for the microphone response and for the effect of human sensitivity to sound. Equal-thrust comparison of different experimental results shows that elimination of Mach waves is very effective in reducing noise in the direction of strongest emission. Except for localized shock-associated components, noise emission was found to be insensitive to nozzle exit pressure and to depend principally on the values of fully-expanded Mach number and velocity in the jet potential core. Jets with a shorter Mach wave emitting region exhibited better noise suppression. Best results were obtained with an eccentric coflow that allows the shear layer of the upper part of the jet to grow naturally while silencing the jet in the downward direction. Coflows are capable of reducing the near-field screech peaks by up to 10 dB in imperfectly-expanded jets. Scaling the experimental results to a fall-size engine shows that eccentric coflows reduce the noise perceived in the direction of peak emission by up to 11 dB. Preliminary analysis of the application of this silencing technique to engine design indicates that Mach

  18. Verifying cell loss requirements in high-speed communication networks

    Directory of Open Access Journals (Sweden)

    Kerry W. Fendick

    1998-01-01

    Full Text Available In high-speed communication networks it is common to have requirements of very small cell loss probabilities due to buffer overflow. Losses are measured to verify that the cell loss requirements are being met, but it is not clear how to interpret such measurements. We propose methods for determining whether or not cell loss requirements are being met. A key idea is to look at the stream of losses as successive clusters of losses. Often clusters of losses, rather than individual losses, should be regarded as the important “loss events”. Thus we propose modeling the cell loss process by a batch Poisson stochastic process. Successive clusters of losses are assumed to arrive according to a Poisson process. Within each cluster, cell losses do not occur at a single time, but the distance between losses within a cluster should be negligible compared to the distance between clusters. Thus, for the purpose of estimating the cell loss probability, we ignore the spaces between successive cell losses in a cluster of losses. Asymptotic theory suggests that the counting process of losses initiating clusters often should be approximately a Poisson process even though the cell arrival process is not nearly Poisson. The batch Poisson model is relatively easy to test statistically and fit; e.g., the batch-size distribution and the batch arrival rate can readily be estimated from cell loss data. Since batch (cluster sizes may be highly variable, it may be useful to focus on the number of batches instead of the number of cells in a measurement interval. We also propose a method for approximately determining the parameters of a special batch Poisson cell loss with geometric batch-size distribution from a queueing model of the buffer content. For this step, we use a reflected Brownian motion (RBM approximation of a G/D/1/C queueing model. We also use the RBM model to estimate the input burstiness given the cell loss rate. In addition, we use the RBM model to

  19. An Alternative Approach for High Speed Railway Carrying Capacity Calculation Based on Multiagent Simulation

    Directory of Open Access Journals (Sweden)

    Mo Gao

    2016-01-01

    Full Text Available It is a multiobjective mixed integer programming problem that calculates the carrying capacity of high speed railway based on mathematical programming method. The model is complex and difficult to solve, and it is difficult to comprehensively consider the various influencing factors on the train operation. The multiagent theory is employed to calculate high speed railway carrying capacity. In accordance with real operations of high speed railway, a three-layer agent model is developed to simulate the operating process of high speed railway. In the proposed model, railway network agent, line agent, station agent, and train agent are designed, respectively. To validate the proposed model, a case study is performed for Beijing–Shanghai high speed railway by using NetLogo software. The results are consistent with the actual data, which implies that the proposed multiagent method is feasible to calculate the carrying capacity of high speed railway.

  20. Complementary effects of torrefaction and co-pelletization: Energy consumption and characteristics of pellets.

    Science.gov (United States)

    Cao, Liang; Yuan, Xingzhong; Li, Hui; Li, Changzhu; Xiao, Zhihua; Jiang, Longbo; Huang, Binbin; Xiao, Zhihong; Chen, Xiaohong; Wang, Hou; Zeng, Guangming

    2015-06-01

    In this study, complementary of torrefaction and co-pelletization for biomass pellets production was investigated. Two kinds of biomass materials were torrefied and mixed with oil cake for co-pelletization. The energy consumption during pelletization and pellet characteristics including moisture absorption, pellet density, pellet strength and combustion characteristic, were evaluated. It was shown that torrefaction improved the characteristics of pellets with high heating values, low moisture absorption and well combustion characteristic. Furthermore, co-pelletization between torrefied biomass and cater bean cake can reduce several negative effects of torrefaction such as high energy consumption, low pellet density and strength. The optimal conditions for energy consumption and pellet strength were torrefied at 270°C and a blending with 15% castor bean cake for both biomass materials. The present study indicated that compelmentary performances of the torrefaction and co-pelletization with castor bean cake provide a promising alternative for fuel production from biomass and oil cake.

  1. High Speed Mobility Through On-Demand Aviation

    Science.gov (United States)

    Moore, Mark D.; Goodrich, Ken; Viken, Jeff; Smith, Jeremy; Fredericks, Bill; Trani, Toni; Barraclough, Jonathan; German, Brian; Patterson, Michael

    2013-01-01

    automobiles. ?? Community Noise: Hub and smaller GA airports are facing increasing noise restrictions, and while commercial airliners have dramatically decreased their community noise footprint over the past 30 years, GA aircraft noise has essentially remained same, and moreover, is located in closer proximity to neighborhoods and businesses. ?? Operating Costs: GA operating costs have risen dramatically due to average fuel costs of over $6 per gallon, which has constrained the market over the past decade and resulted in more than 50% lower sales and 35% less yearly operations. Infusion of autonomy and electric propulsion technologies can accomplish not only a transformation of the GA market, but also provide a technology enablement bridge for both larger aircraft and the emerging civil Unmanned Aerial Systems (UAS) markets. The NASA Advanced General Aviation Transport Experiments (AGATE) project successfully used a similar approach to enable the introduction of primary composite structures and flat panel displays in the 1990s, establishing both the technology and certification standardization to permit quick adoption through partnerships with industry, academia, and the Federal Aviation Administration (FAA). Regional and airliner markets are experiencing constant pressure to achieve decreasing levels of community emissions and noise, while lowering operating costs and improving safety. But to what degree can these new technology frontiers impact aircraft safety, the environment, operations, cost, and performance? Are the benefits transformational enough to fundamentally alter aircraft competiveness and productivity to permit much greater aviation use for high speed and On-Demand Mobility (ODM)? These questions were asked in a Zip aviation system study named after the Zip Car, an emerging car-sharing business model. Zip Aviation investigates the potential to enable new emergent markets for aviation that offer "more flexibility than the existing transportation solutions

  2. Gearbox Reliability Collaborative Investigation of Gearbox Motion and High-Speed-Shaft Loads

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Jon [National Renewable Energy Lab. (NREL), Golden, CO (United States); Guo, Yi [National Renewable Energy Lab. (NREL), Golden, CO (United States); Sethuraman, Latha [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-03-18

    This paper extends a model-to-test validation effort to examine the effect of different constant rotor torque and moment conditions and intentional generator misalignment on the gearbox motion and high-speed-shaft loads. Fully validating gearbox motion and high-speed-shaft loads across a range of test conditions is a critical precursor to examining the bearing loads, as the gearbox motion and high-speed-shaft loads are the drivers of these bearing loads.

  3. Hazard Avoidance for High-Speed Mobile Robots in Rough Terrain

    Science.gov (United States)

    2006-05-01

    Accepted to the Journal of Field Robotics 1 Hazard Avoidance for High-Speed Mobile Robots in Rough Terrain Matthew Spenko, Yoji Kuroda, Steven...COVERED 00-00-2006 to 00-00-2006 4. TITLE AND SUBTITLE Hazard Avoidance for High-Speed Mobile Robots in Rough Terrain 5a. CONTRACT NUMBER 5b...Fundamentals of vehicle dynamics. Warrendale, PA: Society of Automotive Engineers. Golda, D. (2003). Modeling and analysis of high-speed mobile robots operating

  4. Verification of high-speed solar wind stream forecasts using operational solar wind models

    OpenAIRE

    Reiss, Martin A.; Temmer, Manuela; Veronig, Astrid M.; Nikolic, Ljubomir; Vennerstrom, Susanne; Schoengassner, Florian; Hofmeister, Stefan J.

    2016-01-01

    High-speed solar wind streams emanating from coronal holes are frequently impinging on the Earth's magnetosphere causing recurrent, medium-level geomagnetic storm activity. Modeling high-speed solar wind streams is thus an essential element of successful space weather forecasting. Here we evaluate high-speed stream forecasts made by the empirical solar wind forecast (ESWF) and the semiempirical Wang-Sheeley-Arge (WSA) model based on the in situ plasma measurements from the ACE spacecraft for ...

  5. A Reliability Accelerated Test of High-speed Punch Based on Failure Analysis

    Directory of Open Access Journals (Sweden)

    Chen Lan

    2016-01-01

    Full Text Available By analyzing the maintainability data of a certain high-speed punch, its main fault modes, such as oil/gas parts damage, parts damage and leakages, were identified. According to the fault signal measurability and the accelerated failure mechanism, the content and scheme of a reliability accelerated test (RAT were planned specifically, which was partly verified by some tests on a high-speed punch. This paper provides a basis for the RAT of high-speed punch.

  6. Smart Materials Technology for High Speed Adaptive Inlet/Nozzle Design Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Enabling a new generation of high speed civil aircraft will require breakthrough developments in propulsion design, including novel techniques to optimize inlet...

  7. High Pressure Sensing and Dynamics Using High Speed Fiber Bragg Grating Interrogation Systems

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, G. [LANL; Sandberg, R. L. [LANL; Lalone, B. M. [NSTec; Marshall, B. R. [NSTec; Grover, M. [NSTec; Stevens, G. D. [NSTec; Udd, E. [Columbia Gorge Research

    2014-06-01

    Fiber Bragg gratings (FBGs) are developing into useful sensing tools for measuring high pressure dynamics in extreme environments under shock loading conditions. Approaches using traditional diode array coupled FBG interrogation systems are often limited to readout speeds in the sub-MHz range. For shock wave physics, required detection speeds approaching 100 MHz are desired. We explore the use of two types of FBG sensing systems that are aimed at applying this technology as embedded high pressure probes for transient shock events. Both approaches measure time resolved spectral shifts in the return light from short (few mm long) uniform FBGs at 1550 nm. In the first approach, we use a fiber coupled spectrometer to demultiplex spectral channels into an array (up to 12) of single element InGaAs photoreceivers. By monitoring the detectors during a shock impact event with high speed recording, we are able to track the pressure induced spectral shifting in FBG down to a time resolution of 20 ns. In the second approach, developed at the Special Technologies Lab, a coherent mode-locked fiber laser is used to illuminate the FBG sensor. After the sensor, wavelength-to-time mapping is accomplished with a chromatic dispersive element, and entire spectra are sampled using a single detector at the modelocked laser repetition rate of 50 MHz. By sampling with a 12 GHz InGaAs detector, direct wavelength mapping in time is recorded, and the pressure induced FBG spectral shift is sampled at 50 MHz. Here, the sensing systems are used to monitor the spectral shifts of FBGs that are immersed into liquid water and shock compressed using explosives. In this configuration, the gratings survive to pressures approaching 50 kbar. We describe both approaches and present the measured spectral shifts from the shock experiments.

  8. Signal processing for high speed underwater acoustic transmission of image

    Institute of Scientific and Technical Information of China (English)

    ZHU Weiqing; ZHU Min; WANG Junwei; HUANG Haiyun; YANG Bo; XU Lijun; ZHAO Liang

    2009-01-01

    A signal processing method for high-speed underwater acoustic transmission of image is presented. It has two parts. Part 1 introduces signal processing for underwater acoustic coherent communication. Part 1 includes 3 technical points. (1) Doppler shift compensation.Chirp signals are inserted between data packages. A correlation process between two copy correlation functions gives more accurate estimation of the mean Doppler shift. Then it could be compensated by resampling the data. In adaptive decision feedback equalizer (DFE) an adaptive phase compensator with fast self-optimized least mean square (FOLMS) adaptation algorithm is utilized resulting in better motion tolerance than compensators with 2nd order Phase-Lock Loop algorithm. The performance of the combination of mean Doppler shift compensation and adaptive phase compensator is quite good. (2) A diversity combiner (DC) used in advance of equalizer. Both combiner and adaptive DFE are based on FOLMS adaptation algorithm. This results in reduced computation complexity and better performance. (3) Cascaded equalizer and Turbo-Trellis Coded Modulation (TCM) decoder and the iteration algorithm. A new bitsymbol converter based on Soft Output Viterbi Algorithm (SOVA) is studied. Comparing with the traditional decision, coding and mapping algorithm, the new converter can reduce Bit Error Rate(BER) by nearly 2 orders. Part 2 is mainly around a robust image compression algorithm. Based on Discrete wavelet transform and fixed length coding, a robust compression algorithm for acoustic image is studied. The algorithm includes 4 technical points. (1) Utilizes CDF9/7 wavelet bases to transform the images. (2) Analyses the energy distribution of subband coefficients. Suitable transformation layer number is 3. (3) Applies different quantization steps to different subbands in accordance with their energy distribution. (4) Uses fixed length coding to prevent error propagation. The results show the algorithm achieves a balance

  9. Nanometric Gouge in High-Speed Shearing Experiments: Superplasticity?

    Science.gov (United States)

    Green, H. W.; Lockner, D. A.; Bozhilov, K. N.; Maddon, A.; Beeler, N. M.; Reches, Z.

    2010-12-01

    High-speed shearing experiments on solid rock samples typically generate a gouge with sub-micron grain size that appears to control the frictional resistance at velocities approaching 1 m/s (Reches & Lockner, Nature, in press). We conducted experiments on Kasota dolomite samples and observed profound weakening (friction drops from ~0.8 to ~ 0.2) under earthquake conditions (up to slip-velocity ~ 0.95 m/s and normal stress 28.4 MPa). During these runs the experimental fault had T ≥ 800°C and developed a shining, dark surface. We report here analysis of such a surface with scanning electron microscopy (SEM) and atomic force microscopy (AFM). SEM analysis shows a slickensided gouge made up of particles all ≤ 50nm with a large fraction ≤ 20nm. The spacing of the slickenside striations is less than 1 µm. Over large areas of the slickensided surface the nanometric gouge has been replaced by an undeformed, interlocking crystalline pavement of 100-300 nm grain size. Qualitative chemical analysis of this pavement surface by energy-dispersive X-ray spectroscopy reveals only a weak carbon peak, suggesting that the dolomite has been decarbonated. The development of a “pavement” of grain size ~200 nm in our experiments is remarkably similar to the observations of Han et al. (JGR, 2010, Fig. 14(d)). However, their experiments either did not develop such a nanometric gouge or it was completely replaced by the coarser pavement. These present observations of nanometric gouge that recrystallizes during the short time interval of elevated temperature following termination of deformation are reminiscent of the nanometric “gouge” produced in very high-pressure experiments (1-14 GPa) that have failed by transformation-induced faulting during the olivine-spinel transformation (Green and Burnley, Nature, 1989; Green et al., Nature, 1990). In the high-pressure experiments, the gouge consists of a nanocrystalline aggregate of the spinel phase that flowed at very high strain

  10. Algorithms for High-Speed Noninvasive Eye-Tracking System

    Science.gov (United States)

    Talukder, Ashit; Morookian, John-Michael; Lambert, James

    2010-01-01

    Two image-data-processing algorithms are essential to the successful operation of a system of electronic hardware and software that noninvasively tracks the direction of a person s gaze in real time. The system was described in High-Speed Noninvasive Eye-Tracking System (NPO-30700) NASA Tech Briefs, Vol. 31, No. 8 (August 2007), page 51. To recapitulate from the cited article: Like prior commercial noninvasive eyetracking systems, this system is based on (1) illumination of an eye by a low-power infrared light-emitting diode (LED); (2) acquisition of video images of the pupil, iris, and cornea in the reflected infrared light; (3) digitization of the images; and (4) processing the digital image data to determine the direction of gaze from the centroids of the pupil and cornea in the images. Most of the prior commercial noninvasive eyetracking systems rely on standard video cameras, which operate at frame rates of about 30 Hz. Such systems are limited to slow, full-frame operation. The video camera in the present system includes a charge-coupled-device (CCD) image detector plus electronic circuitry capable of implementing an advanced control scheme that effects readout from a small region of interest (ROI), or subwindow, of the full image. Inasmuch as the image features of interest (the cornea and pupil) typically occupy a small part of the camera frame, this ROI capability can be exploited to determine the direction of gaze at a high frame rate by reading out from the ROI that contains the cornea and pupil (but not from the rest of the image) repeatedly. One of the present algorithms exploits the ROI capability. The algorithm takes horizontal row slices and takes advantage of the symmetry of the pupil and cornea circles and of the gray-scale contrasts of the pupil and cornea with respect to other parts of the eye. The algorithm determines which horizontal image slices contain the pupil and cornea, and, on each valid slice, the end coordinates of the pupil and cornea

  11. Advanced Ultra-High Speed Motor for Drilling

    Energy Technology Data Exchange (ETDEWEB)

    Impact Technologies LLC; University of Texas at Arlington

    2007-03-31

    Three (3) designs have been made for two sizes, 6.91 cm (2.72 inch) and 4.29 cm (1.69 inch) outer diameters, of a patented inverted configured Permanent Magnet Synchronous Machines (PMSM) electric motor specifically for drilling at ultra-high rotational speeds (10,000 rpm) and that can utilize advanced drilling methods. Benefits of these motors are stackable power sections, full control (speed and direction) of downhole motors, flow hydraulics independent of motor operation, application of advanced drilling methods (water jetting and abrasive slurry jetting), and the ability of signal/power electric wires through motor(s). Key features of the final designed motors are: fixed non-rotating shaft with stator coils attached; rotating housing with permanent magnet (PM) rotor attached; bit attached to rotating housing; internal channel(s) in a nonrotating shaft; electric components that are hydrostatically isolated from high internal pressure circulating fluids ('muds') by static metal to metal seals; liquid filled motor with smoothed features for minimized turbulence in the motor during operation; and new inverted coated metal-metal hydrodynamic bearings and seals. PMSM, Induction and Switched Reluctance Machines (SRM), all pulse modulated, were considered, but PMSM were determined to provide the highest power density for the shortest motors. Both radial and axial electric PMSM driven motors were designed with axial designs deemed more rugged for ultra-high speed, drilling applications. The 6.91 cm (2.72 inch) OD axial inverted motor can generate 4.18KW (5.61 Hp) power at 10,000 rpm with a 4 Nm (2.95 ft-lbs) of torque for every 30.48 cm (12 inches) of power section. The 6.91 cm (2.72 inch) OD radial inverted motor can generate 5.03 KW (6.74 Hp) with 4.8 Nm (3.54 ft-lb) torque at 10,000 rpm for every 30.48 cm (12 inches) of power section. The 4.29 cm (1.69 inch) OD radial inverted motor can generate 2.56 KW (3.43 Hp) power with 2.44 Nm (1.8 ft-lb) torque at

  12. A mathematical model to predict the size of the pellets formed in freeze pelletization techniques: parameters affecting pellet size.

    Science.gov (United States)

    Cheboyina, Sreekhar; O'Haver, John; Wyandt, Christy M

    2006-01-01

    A mathematical model was developed based on the theory of drop formation to predict the size of the pellets formed in the freeze pelletization process. Further the model was validated by studying the effect of various parameters on the pellet size such as viscosity of the pellet forming and column liquids, surface/interfacial tension, density difference between pellet forming and column liquids; size, shape, and material of construction of the needle tips and temperatures maintained in the columns. In this study, pellets were prepared from different matrices including polyethylene glycols and waxes. The column liquids studied were silicone oils and aqueous glycerol solutions. The surface/interfacial tension, density difference between pellet forming and column liquids and needle tip size were found to be the most important factors affecting pellet size. The viscosity of the column liquid was not found to significantly affect the size of the pellets. The size of the pellets was also not affected by the pellet forming liquids of low viscosities. An increase in the initial column temperature slightly decreased the pellet size. The mathematical model developed was found to successfully predict the size of the pellets with an average error of 3.32% for different matrices that were studied.

  13. High speed, intermediate resolution, large area laser beam induced current imaging and laser scribing system for photovoltaic devices and modules.

    Science.gov (United States)

    Phillips, Adam B; Song, Zhaoning; DeWitt, Jonathan L; Stone, Jon M; Krantz, Patrick W; Royston, John M; Zeller, Ryan M; Mapes, Meghan R; Roland, Paul J; Dorogi, Mark D; Zafar, Syed; Faykosh, Gary T; Ellingson, Randy J; Heben, Michael J

    2016-09-01

    We have developed a laser beam induced current imaging tool for photovoltaic devices and modules that utilizes diode pumped Q-switched lasers. Power densities on the order of one sun (100 mW/cm(2)) can be produced in a ∼40 μm spot size by operating the lasers at low diode current and high repetition rate. Using galvanostatically controlled mirrors in an overhead configuration and high speed data acquisition, large areas can be scanned in short times. As the beam is rastered, focus is maintained on a flat plane with an electronically controlled lens that is positioned in a coordinated fashion with the movements of the mirrors. The system can also be used in a scribing mode by increasing the diode current and decreasing the repetition rate. In either mode, the instrument can accommodate samples ranging in size from laboratory scale (few cm(2)) to full modules (1 m(2)). Customized LabVIEW programs were developed to control the components and acquire, display, and manipulate the data in imaging mode.

  14. High speed, intermediate resolution, large area laser beam induced current imaging and laser scribing system for photovoltaic devices and modules

    Science.gov (United States)

    Phillips, Adam B.; Song, Zhaoning; DeWitt, Jonathan L.; Stone, Jon M.; Krantz, Patrick W.; Royston, John M.; Zeller, Ryan M.; Mapes, Meghan R.; Roland, Paul J.; Dorogi, Mark D.; Zafar, Syed; Faykosh, Gary T.; Ellingson, Randy J.; Heben, Michael J.

    2016-09-01

    We have developed a laser beam induced current imaging tool for photovoltaic devices and modules that utilizes diode pumped Q-switched lasers. Power densities on the order of one sun (100 mW/cm2) can be produced in a ˜40 μm spot size by operating the lasers at low diode current and high repetition rate. Using galvanostatically controlled mirrors in an overhead configuration and high speed data acquisition, large areas can be scanned in short times. As the beam is rastered, focus is maintained on a flat plane with an electronically controlled lens that is positioned in a coordinated fashion with the movements of the mirrors. The system can also be used in a scribing mode by increasing the diode current and decreasing the repetition rate. In either mode, the instrument can accommodate samples ranging in size from laboratory scale (few cm2) to full modules (1 m2). Customized LabVIEW programs were developed to control the components and acquire, display, and manipulate the data in imaging mode.

  15. Substructure method in high-speed monorail dynamic problems

    Science.gov (United States)

    Ivanchenko, I. I.

    2008-12-01

    The study of actions of high-speed moving loads on bridges and elevated tracks remains a topical problem for transport. In the present study, we propose a new method for moving load analysis of elevated tracks (monorail structures or bridges), which permits studying the interaction between two strained objects consisting of rod systems and rigid bodies with viscoelastic links; one of these objects is the moving load (monorail rolling stock), and the other is the carrying structure (monorail elevated track or bridge). The methods for moving load analysis of structures were developed in numerous papers [1-15]. At the first stage, when solving the problem about a beam under the action of the simplest moving load such as a moving weight, two fundamental methods can be used; the same methods are realized for other structures and loads. The first method is based on the use of a generalized coordinate in the expansion of the deflection in the natural shapes of the beam, and the problem is reduced to solving a system of ordinary differential equations with variable coefficients [1-3]. In the second method, after the "beam-weight" system is decomposed, just as in the problem with the weight impact on the beam [4], solving the problem is reduced to solving an integral equation for the dynamic weight reaction [6, 7]. In [1-3], an increase in the number of retained forms leads to an increase in the order of the system of equations; in [6, 7], difficulties arise when solving the integral equations related to the conditional stability of the step procedures. The method proposed in [9, 14] for beams and rod systems combines the above approaches and eliminates their drawbacks, because it permits retaining any necessary number of shapes in the deflection expansion and has a resolving system of equations with an unconditionally stable integration scheme and with a minimum number of unknowns, just as in the method of integral equations [6, 7]. This method is further developed for

  16. Detecting and Blocking Network Attacks at Ultra High Speeds

    Energy Technology Data Exchange (ETDEWEB)

    Paxson, Vern

    2010-11-29

    Stateful, in-depth, in-line traffic analysis for intrusion detection and prevention has grown increasingly more difficult as the data rates of modern networks rise. One point in the design space for high-performance network analysis - pursued by a number of commercial products - is the use of sophisticated custom hardware. For very high-speed processing, such systems often cast the entire analysis process in ASICs. This project pursued a different architectural approach, which we term Shunting. Shunting marries a conceptually quite simple hardware device with an Intrusion Prevention System (IPS) running on commodity PC hardware. The overall design goal is was to keep the hardware both cheap and readily scalable to future higher speeds, yet also retain the unparalleled flexibility that running the main IPS analysis in a full general-computing environment provides. The Shunting architecture we developed uses a simple in-line hardware element that maintains several large state tables indexed by packet header fields, including IP/TCP flags, source and destination IP addresses, and connection tuples. The tables yield decision values the element makes on a packet-by-packet basis: forward the packet, drop it, or divert ('shunt') it through the IPS (the default). By manipulating table entries, the IPS can, on a fine-grained basis: (i) specify the traffic it wishes to examine, (ii) directly block malicious traffic, and (iii) 'cut through' traffic streams once it has had an opportunity to 'vet' them, or (iv) skip over large items within a stream before proceeding to further analyze it. For the Shunting architecture to yield benefits, it needs to operate in an environment for which the monitored network traffic has the property that - after proper vetting - much of it can be safely skipped. This property does not universally hold. For example, if a bank needs to examine all Web traffic involving its servers for regulatory compliance, then a

  17. Design and application on experimental platform for high-speed bearing with grease lubrication

    Directory of Open Access Journals (Sweden)

    He Qiang

    2015-12-01

    Full Text Available The experimental platform for high-speed grease is an important tool for research and development of high-speed motorized spindle with grease lubrication. In this article, the experimental platform for high-speed grease is designed and manufactured which consists of the drive system, the test portion, the loading system, the lubrication system, the control system, and so on. In the meantime, the high-speed angular contact ceramic ball bearings B7005C/HQ1P4 as the research object are tested and contrasted in the grease lubrication and oil mist lubrication. The experimental platform performance is validated by contrast experiment, and the high-speed lubricated bearing performance is also studied especially in the relationship among the rotating speed,load and temperature rise. The results show that the experimental platform works steadily, accurate, and reliable in the experimental testing. And the grease lubrication ceramic ball bearings B7005C/HQ1P4 can be used in high-speed motorized spindle in the circular water cooling conditions when the rotating speed is lower than 40,000 r/min or the DN value (the value of the bearing diameter times the rotating speed is lower than the 1.44 × 106 mm r/min. Grease lubrication instead of oil mist lubrication under high-speed rotating will simplify the structure design of the high-speed motorized spindle and reduce the pollution to the environment.

  18. Impact of high-speed railway accessibility on the location choices of office establishments

    NARCIS (Netherlands)

    Willigers, J.

    2006-01-01

    High-speed railways are becoming increasingly common in Europe. In the Netherlands soon the HSL-South will be opened. This high-speed railway line connects the Randstad to Brussels and Paris. A prominent aim of this new railway is to improve international competitiveness of the Netherlands. As a sid

  19. CFD Analysis of a Penta-hulled, Air-Entrapment, High-Speed Planning Vessel

    Science.gov (United States)

    2008-03-01

    f. Hydrofoils ................................................................................10 4. Analytic Hierarchy Process...ruled out as a possibility. f. Hydrofoils The main advantage to a hydrofoil hull shape is the high speeds created during non displacement mode. The...internal arrangement space. However, the vulnerability of the foils during high speed caused us to rule out the hydrofoil during the initial study. 4

  20. Recent Progress in Silicon Electro-optic Modulators for High Speed Applications

    Institute of Scientific and Technical Information of China (English)

    XIAO Xi; YU Jin-zhong

    2008-01-01

    Silicon-based high-speed electro-optical modulator is the key component of silicon photonics for future communiction and interconnection systems. In this paper, introduced are the optical mudulation mechanisms in silicon, reviewed are some recent progresses in high-speed silicon modulators, and analyzed are advantages and shortages of the silicon modulators of different types.

  1. Fire ventilation for the high-speed line south train tunnels

    NARCIS (Netherlands)

    Leur, P.H.E. van de; Oerle, N.J. van; Lemaire, A.D.; Molag, M.

    1999-01-01

    In The Netherlands, the High-Speed Line South project currently under development as a part of the European railway network for high speed trains. In support of a Quantitative Risk Assessment, CFD calculations provide data on the consequences of fire scenarios for escaping passengers. The paper repo

  2. Impact of high-speed railway accessibility on the location choices of office establishments

    NARCIS (Netherlands)

    Willigers, J.

    2006-01-01

    High-speed railways are becoming increasingly common in Europe. In the Netherlands soon the HSL-South will be opened. This high-speed railway line connects the Randstad to Brussels and Paris. A prominent aim of this new railway is to improve international competitiveness of the Netherlands. As a sid

  3. Environmental risks of high-speed railway in China: Public participation, perception and trust

    NARCIS (Netherlands)

    He, G.; Mol, A.P.J.; Zhang, L.; Lu, Y.

    2015-01-01

    Two decades ago China entered an era with rapid expansion of transport infrastructure. In an ambitious plan on high-speed railway development, China plans to have the longest high-speed railway network by 2020. Social concerns and anxiety with the adverse environmental and social risks and impacts o

  4. Laryngeal High-Speed Videoendoscopy: Rationale and Recommendation for Accurate and Consistent Terminology

    Science.gov (United States)

    Deliyski, Dimitar D.; Hillman, Robert E.; Mehta, Daryush D.

    2015-01-01

    Purpose: The authors discuss the rationale behind the term "laryngeal high-speed videoendoscopy" to describe the application of high-speed endoscopic imaging techniques to the visualization of vocal fold vibration. Method: Commentary on the advantages of using accurate and consistent terminology in the field of voice research is…

  5. 75 FR 417 - Certificate of Alternative Compliance for the High Speed Ferry SUSITNA

    Science.gov (United States)

    2010-01-05

    ... of Alternative Compliance for the High Speed Ferry SUSITNA AGENCY: Coast Guard, DHS. ACTION: Notice... speed ferry SUSITNA as required by 33 U.S.C. 1605(c) and 33 CFR 81.18. DATES: The Certificate of... and 89, has been issued for the high speed ferry SUSITNA, O.N. 1189367. Full compliance with 72...

  6. Automatic in-process chatter avoidance in the high-speed milling process

    NARCIS (Netherlands)

    Dijk, N.J.M. van; Doppenberg, E.J.J.; Faassen, R.P.H.; Wouw, N. van de; Oosterling, J.A.J.; Nijmeijer, H.

    2010-01-01

    High-speed milling is often used in industry to maximize productivity of the manufacturing of high-technology components, such as aeronautical components, mold, and dies. The occurrence of chatter highly limits the efficiency and accuracy of high-speed milling operations. In this paper, two control

  7. Sensor network architecture for intelligent high-speed train on-board monitoring

    Institute of Scientific and Technical Information of China (English)

    Xiao-fan WU; Chun CHEN; Jia-jun BU; Gang CHEN

    2011-01-01

    The China's high-speed railway is experiencing a rapid growth.Its operating mileage and the number of operating trains will exceed 45000 km and 1500 trains by 2015,respectively.During the long range and constant high-speed operation,the high-speed trains have extremely complex and varied work conditions.Such a situation creates a huge demand for high-speed train on-board monitoring.In this paper,architecture for high-speed train on-board monitoring sensor network is proposed.This architecture is designed to achieve the goals of reliable sensing,scalable data transporting,and easy management.The three design goals are realized separately.The reliable sensing is achieved by deploying redundant sensor nodes in the same components.Then a hierarchal transporting scheme is involved to meet the second goal.Finally,an electronic-tag based addressing method is introduced to solve the management problem.

  8. Effect of bow spray strips and Ω-type freeboard on high-speed boats

    Directory of Open Access Journals (Sweden)

    WEI Chengzhu

    2017-01-01

    Full Text Available A high-speed boat may encounter severe wave-making at the bow and become wetter at high speed. Some measures can be taken to overcome these disadvantages. In order to compare the effect of bow spray strips and Ω-type freeboards on a high-speed boat, hull wetness, resistance, hull motion, stability and the restoring moment of the heel at high speed of models with these two kinds of auxiliaries were calculated and measured. CFD methods and model tests were adopted. Both of these two auxiliaries can reduce hull wetness, and the model with a Ω-type freeboard has a better initial stability and larger restoring moment of the heel at high speed. A free running model test also indicates that the Ω-type freeboard has a fine performance.

  9. Design of noise barrier inspection system for high-speed railway

    Science.gov (United States)

    Liu, Bingqian; Shao, Shuangyun; Feng, Qibo; Ma, Le; Cholryong, Kim

    2016-10-01

    The damage of noise barriers will highly reduce the transportation safety of the high-speed railway. In this paper, an online inspection system of noise barrier based on laser vision for the safety of high-speed railway is proposed. The inspection system, mainly consisted of a fast camera and a line laser, installed in the first carriage of the high-speed CIT(Composited Inspection Train).A Laser line was projected on the surface of the noise barriers and the images of the light line were received by the camera while the train is running at high speed. The distance between the inspection system and the noise barrier can be obtained based on laser triangulation principle. The results of field tests show that the proposed system can meet the need of high speed and high accuracy to get the contour distortion of the noise barriers.

  10. Use of nitrogen gas in high-speed milling of Ti-6Al-4V

    Institute of Scientific and Technical Information of China (English)

    KE Ying-lin; DONG Hui-yue; LIU Gang; ZHANG Ming

    2009-01-01

    To inhibit chips burning in the high-speed cutting of Ti-6Al-4V, nitrogen gas with 0.7 MPa pressure was ejected at the milling zone. The high speed flowing of nitrogen gas speeds up the chips leaving, and prevents the chips from burning at the same time. By this method the cutting force is reduced. Especially, the temperature increment of the finished surface is smaller than 5 ℃. This prevents the increase of hardness, improves the roughness of the finished surface, and reduces the tools wear. Comparing and analyzing the morphology and color of chips, which are obtained from the high-speed machining of Ti-6Al-4V with and without nitrogen gas ejection, show the action mechanism of nitrogen gas during the high-speed machining of titanium alloy, and it is concluded that nitrogen gas can be used to realize the proper high-speed milling of Ti-6Al-4V titanium alloy.

  11. RESEARCH ON ABRASION OF DEBRIS FLOW TO HIGH-SPEED DRAINAGE STRUCTURE

    Institute of Scientific and Technical Information of China (English)

    陈洪凯; 唐红梅; 吴四飞

    2004-01-01

    As one weak topic in research of debris flow, abrasion of debris flow shortens obviously application life of control structure composed of concrete. High-speed drainage structure, one of the most effective techniques to control giant debris flow disaster, has shortened one-third application life due to abrasion by debris flow. Based on velocity calculation method founded by two-phase theory, research of abrasion mechanism of debris flow to high-speed drainage structure was made. The mechanism includes both abrasion mechanism of homogeneous sizing and shearing mechanism of particle of debris flow to high-speed drainage trough structure. Further abrasion equations of both sizing and particle were established by Newton movement theory of debris flow. And abrasion amount formula of the high-speed drainage trough structure is set up by dimensional analysis. Amount to calculating in the formula is consistent with testing data in-situ, which is valuable in design of high-speed drainage structure.

  12. A simulation-based study of HighSpeed TCP and its deployment

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Evandro de

    2003-04-29

    The current congestion control mechanism used in TCP has difficulty reaching full utilization on high speed links, particularly on wide-area connections. For example, the packet drop rate needed to fill a Gigabit pipe using the present TCP protocol is below the currently achievable fiber optic error rates. HighSpeed TCP was recently proposed as a modification of TCP's congestion control mechanism to allow it to achieve reasonable performance in high speed wide-area links. In this research, simulation results showing the performance of HighSpeed TCP and the impact of its use on the present implementation of TCP are presented. Network conditions including different degrees of congestion, different levels of loss rate, different degrees of bursty traffic and two distinct router queue management policies were simulated. The performance and fairness of HighSpeed TCP were compared to the existing TCP and solutions for bulk-data transfer using parallel streams.

  13. A simulation-based study of HighSpeed TCP and its deployment

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Evandro de [Univ. of California, Berkeley, CA (United States)

    2003-05-01

    The current congestion control mechanism used in TCP has difficulty reaching full utilization on high speed links, particularly on wide-area connections. For example, the packet drop rate needed to fill a Gigabit pipe using the present TCP protocol is below the currently achievable fiber optic error rates. HighSpeed TCP was recently proposed as a modification of TCP's congestion control mechanism to allow it to achieve reasonable performance in high speed wide-area links. In this research, simulation results showing the performance of HighSpeed TCP and the impact of its use on the present implementation of TCP are presented. Network conditions including different degrees of congestion, different levels of loss rate, different degrees of bursty traffic and two distinct router queue management policies were simulated. The performance and fairness of HighSpeed TCP were compared to the existing TCP and solutions for bulk-data transfer using parallel streams.

  14. Interactions of Pellet with Reactor Relevant Plasma

    Institute of Scientific and Technical Information of China (English)

    PENGLilin; DENGBaiquan; YANJiancheng

    2003-01-01

    Extended algorithm has been developed for ablation rate calculations of Li, Be, B impurity pellets and five combinations of solid isotopic hydrogenic H2, HD, D2, DT, T2 pellets. Numerical calculations have been performed for reactor relevant plasma.

  15. DEVELOPMENT OF A CASSAVA PELLETING MACHINE

    African Journals Online (AJOL)

    2012-11-03

    Nov 3, 2012 ... Department of Mechanical Engineering, Michael Okapra University of Agriculture, Umudike, Abia State. ... ples of hand operations for pelleting food includes the rolling of modles .... the hopper, transmission and pelleting unit.

  16. Pellet fired appliances. Market survey. 7. rev. ed.; Pelletheizungen. Marktuebersicht

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-01-15

    The market survey under consideration reports on pellet central heating systems and pellet fired appliances. The main chapters of this market survey are concerned to: (1) Information on wood pellets and pellet fired appliances; (2) Information about the interpretation of the market survey; (3) Survey of all compared pellet fired appliances with respect to the nominal power; (4) Price lists of pellet fired appliances and pellet central heating systems; (5) Type sheets of the compared pellet fired appliances and pellet central heating systems. Finally, this brochure contains the addresses of the produces and distribution partners of pellet fired appliances and pellet central heating systems.

  17. Repetitive maladaptive behavior: beyond repetition compulsion.

    Science.gov (United States)

    Bowins, Brad

    2010-09-01

    Maladaptive behavior that repeats, typically known as repetition compulsion, is one of the primary reasons that people seek psychotherapy. However, even with psychotherapeutic advances it continues to be extremely difficult to treat. Despite wishes and efforts to the contrary repetition compulsion does not actually achieve mastery, as evidenced by the problem rarely resolving without therapeutic intervention, and the difficulty involved in producing treatment gains. A new framework is proposed, whereby such behavior is divided into behavior of non-traumatic origin and traumatic origin with some overlap occurring. Repetitive maladaptive behavior of non-traumatic origin arises from an evolutionary-based process whereby patterns of behavior frequently displayed by caregivers and compatible with a child's temperament are acquired and repeated. It has a familiarity and ego-syntonic aspect that strongly motivates the person to retain the behavior. Repetitive maladaptive behavior of traumatic origin is characterized by defensive dissociation of the cognitive and emotional components of trauma, making it very difficult for the person to integrate the experience. The strong resistance of repetitive maladaptive behavior to change is based on the influence of both types on personality, and also factors specific to each. Psychotherapy, although very challenging at the best of times, can achieve the mastery wished and strived for, with the aid of several suggestions provided.

  18. Lithium pellet injection experiments on the Alcator C-Mod tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Garnier, D.T.

    1996-06-01

    A pellet enhanced performance mode, showing significantly reduced core transport, is regularly obtained after the injection of deeply penetrating lithium pellets into Alcator C-Mod discharges. These transient modes, which typically persist about two energy confinement times, are characterized by a steep pressure gradient ({ell}{sub p} {le} a/5) in the inner third of the plasma, indicating the presence of an internal transport barrier. Inside this barrier, particle and energy diffusivities are greatly reduced, with ion thermal diffusivity dropping to near neoclassical values. Meanwhile, the global energy confinement time shows a 30% improvement over ITER89-P L-mode scaling. The addition of ICRF auxiliary heating shortly after the pellet injection leads to high fusion reactivity with neutron rates enhanced by an order of magnitude over L-mode discharges with similar input powers. A diagnostic system for measuring equilibrium current density profiles of tokamak plasmas, employing high speed lithium pellets, is also presented. Because ions are confined to move along field lines, imaging the Li{sup +} emission from the toroidally extended pellet ablation cloud gives the direction of the magnetic field. To convert from temporal to radial measurements, the 3-D trajectory of the pellet is determined using a stereoscopic tracking system. These measurements, along with external magnetic measurements, are used to solve the Grad-Shafranov equation for the magnetic equilibrium of the plasma. This diagnostic is used to determine the current density profile of PEP modes by injection of a second pellet during the period of good confinement. This measurement indicates that a region of reversed magnetic shear exists at the plasma core. This current density profile is consistent with TRANSP calculations for the bootstrap current created by the pressure gradient. MHD stability analysis indicates that these plasmas are near the n = {infinity} and the n = 1 marginal stability limits.

  19. High-speed image acquisition technology in quality detection of workpiece surface

    Science.gov (United States)

    Wu, Kaihua; Jin, Zexuan; Wang, Wenjie; Chen, Nian

    2016-11-01

    High-speed image acquisition technology has a great significance to improve the effciency of the workpiece surface quality detection, image quality directly affects the final test results. Aiming at the high-speed image acquisition of workpiece surface quality online detection, a workpiece image high-speed online acquisition method was produced. A high-speed online image acquisition sequence was designed. The quantitative relationship between the positioning accuracy in the high speed online image acquisition, motion blur, exposure time and the speed of workpiece was analyzed. The effect between the vibration between transfer mechanism and workpiece was analyzed. Fast trigger was implemented by photoelectric sensor. The accurate positioning was implemented by using the high accuracy time delay module. The motion blur was controlled by reducing the exposure time. A high-speed image acquisition system was designed based on the high-speed image acquisition method. The positioning accuracy was less than 0.1 mm, and the motion blur was less than one pixel.

  20. Power from Pellets Technology and Applications

    CERN Document Server

    Döring, Stefan

    2013-01-01

    This book provides a practical description of the technology of pellet production on the basis of renewable sources as well as the utilization of pellets. The author explains what kinds of biomass are usable in addition to wood, how to produce pellets and how to use pellets to produce energy. Starting with the basics of combustion, gasification and the pelletizing process, several different technologies are described. The design, planning, construction and economic efficiency are discussed as well. The appendix gives useful advice about plant concepts, calculations, addresses, conversion tables and formulas.

  1. High speed roll casting of Mg alloy strip by a vertical type twin roll caster

    OpenAIRE

    H.Watari; S. Kumai; Haga, T.

    2006-01-01

    Purpose: The possibility of high speed roll casting of AZ31, AM60 and AZ91 was investigated. Warm deep drawing of roll cast magnesium alloy was operated. and formability of roll cast magnesium strip was cleared.Design/methodology/approach: A vertical type high speed twin roll caster was used. The roll casting was operated in the air atmosphere. The casting speed was from 60 m/min up to 180 m/min. Low temperature casting was adopted to realize high speed casting.Findings: Strip thinner 3 mm wi...

  2. Pressure Distribution Characters of Flow Field around High-Speed Train

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Based on incompressible viscous fluid Navier-Stokes equation and k-ε 2-equationsturbulent model, an investigation on 3D turbulent flow field around four kinds of train models has been made by finite element method. From the calculation, the pressure distribution characters of flow field around high-speed trains have been obtained. It is significant for strength design of the high-speed train body, for resisting wind design of the facilities beside the high-speed railways and for determining the aerodynamic force of induced air to the human body near the railways.

  3. A direct digital frequency synthesizer with high-speed current-steering DAC

    Institute of Scientific and Technical Information of China (English)

    Yu Jinshan; Fu Dongbing; Li Ruzhang; Yao Yafeng; Yan Gang; Liu Jun; Zhang Ruitao; Yu Zhou; Li Tun

    2009-01-01

    A high-speed SiGe BiCMOS direct digital frequency synthesizer (DDS) is presented. The design in tegrates a high-speed digital DDS core, a high-speed differential current-steering mode 10-bit D/A converter, a serial/parallel interface, and clock control logic. The DDS design is processed in 0.35 μm SiGe BiCMOS standard process technology and worked at 1 GHz system frequency. The measured results show that the DDS is capable of generating a frequency-agile analog output sine wave up to 400+ MHz.

  4. Influence of the Magnetic High-speed Steel Cutting Tool on Cutting Capability

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The high-speed steel cutting tool has advantaged i n modern cutting tool for its preferable synthetical performance, especially, in a pplication of complicated cutting tools. Therefore, the study of the high-speed steel cutting tools that occupied half of cutting tools has become an importa nt way of studying on modern cutting technology. The cutting performance of hi gh speed-steel cutting tools will be improved by magnetization treating method. Microstructure of high-speed steel will be changed as a ...

  5. Research on Control System of Spindle Drive for High Speed Spinning Machine

    Institute of Scientific and Technical Information of China (English)

    魏建

    2001-01-01

    Through analyzing the principle of spindle drive of winding mechanism for high speed spinning machine,the article not only describes a kind of mode of spindle drive for take-up motion on the basis of control method of constant velocity winding, but also introduces the design technique of software and hardware for the control system of mechatronics of spindle drive mode for take- up motion on the basis of constant velocity winding for high speed spinning machine with single-chip microcomputer. The mathematical model to describe the spindle rotating speed is established. It is an important technology for high speed spinning machine and provides a feasible application way.

  6. Optical characterization of high speed microscanners based on static slit profiling method

    Science.gov (United States)

    Alaa Elhady, A.; Sabry, Yasser M.; Khalil, Diaa

    2017-01-01

    Optical characterization of high-speed microscanners is a challenging task that usually requires special high speed, extremely expensive camera systems. This paper presents a novel simple method to characterize the scanned beam spot profile and size in high-speed optical scanners under operation. It allows measuring the beam profile and the spot sizes at different scanning angles. The method is analyzed theoretically and applied experimentally on the characterization of a Micro Electro Mechanical MEMS scanner operating at 2.6 kHz. The variation of the spot size versus the scanning angle, up to ±15°, is extracted and the dynamic bending curvature effect of the micromirror is predicted.

  7. High-Speed Non-Volatile Optical Memory: Achievements and Challenges

    Directory of Open Access Journals (Sweden)

    Vadym Zayets

    2017-01-01

    Full Text Available We have proposed, fabricated, and studied a new design of a high-speed optical non-volatile memory. The recoding mechanism of the proposed memory utilizes a magnetization reversal of a nanomagnet by a spin-polarized photocurrent. It was shown experimentally that the operational speed of this memory may be extremely fast above 1 TBit/s. The challenges to realize both a high-speed recording and a high-speed reading are discussed. The memory is compact, integratable, and compatible with present semiconductor technology. If realized, it will advance data processing and computing technology towards a faster operation speed.

  8. ADAPTIVE FINITE ELEMENT METHOD FOR HIGH-SPEED FLOW-STRUCTURE INTERACTION

    Institute of Scientific and Technical Information of China (English)

    Wiroj LIMTRAKARN; Pramote DECHAUMPHAI

    2004-01-01

    An adaptive finite element method for high-speed flow-structure interaction is presented. The cell-centered finite element method is combined with an adaptive meshing technique to solve the Navier-Stokes equations for high-speed compressible flow behavior. The energy equation and the quasi-static structural equations for aerodynamically heated structures are solved by applying the Galerkin finite element method. The finite element formulation and computational procedure are described. Interactions between the high-speed flow, structural heat transfer, and deformation are studied by two applications of Mach 10 flow over an inclined plate, and Mach 4 flow in a channel.

  9. Study of Quintic Spline Interpolation and Generated Velocity Profile for High Speed Machining

    Institute of Scientific and Technical Information of China (English)

    ZHENG Jinxing; ZHANG Mingjun; MENG Qingxin

    2006-01-01

    Modern high speed machining (HSM) machine tools often operates at high speed and high feedrate with high accelerations, in order to deliver the rapid feed motion. This paper presents an interpolation algorithm to generate continuous quintic spline toolpaths, with a constant travel increment at each step, while the smoother accelerations and jerks of two-order curve are obtained. Then an approach for reducing the feedrate fluctuation in high speed spline interpolation is presented. The presented approach has been validated to quickly, reliably and effective with the simulation.

  10. Grammatical Change through Repetition.

    Science.gov (United States)

    Arevart, Supot

    1989-01-01

    The effect of repetition on grammatical change in an unrehearsed talk is examined based on a case study of a single learner. It was found that repetition allows for accuracy monitoring in that errors committed in repeated contexts undergo correction. Implications for teaching are discussed. (23 references) (LB)

  11. The Negative Repetition Effect

    Science.gov (United States)

    Mulligan, Neil W.; Peterson, Daniel J.

    2013-01-01

    A fundamental property of human memory is that repetition enhances memory. Peterson and Mulligan (2012) recently documented a surprising "negative repetition effect," in which participants who studied a list of cue-target pairs twice recalled fewer targets than a group who studied the pairs only once. Words within a pair rhymed, and…

  12. High speed railway promoting development of low-carbon economy in China%High speed railway promoting development of low-carbon economy in China

    Institute of Scientific and Technical Information of China (English)

    Zhou Xinjun

    2011-01-01

    Low-carbon Economy is a kind of economic developing mode which takes low energy consumption, low pollution and low discharge as its foundation. It is another important revolution of the human society after the agriculture civilization and industry civilization. It deals with various fields including low-carbon energy, low-carbon agriculture, lowcarbon industry, low-carbon transportation and low-carbon life, etc. Among those, low-carbon transportation is one of the important contents. Since high speed railway uses electricity as driving force, it runs without discharging waste gas, and it is a kind of clean and green transportation with little dust and smoke black. Therefore, the study of the relationship between the high speed railway and low-carbon economy is becoming one of the important frontier problems that confronting the theoretic circle. With demonstration analysis and comparative analysis, this paper discusses the comparative advantages of high speed railway in terms of energy saving and environment protection, treatment of sound pollution, land saving and reduction of external cost ( mainly pollution treatment cost), etc. compared with the other transportation modes and ordinary railway. Taking Beijing~Tianjin Intercity Railway as an example, the paper further demonstrates the distinctive advantages in respect of energy conservation and emission reduction. Besides, the paper also predicates the low-carbon effects after several high speed railways is put into operation in a few years. It is concluded that the development of high speed railways will meet the need of low-carbon economy and is significant for sustainable and steady development of economy and society.

  13. Numerical simulation of high-speed turbulent water jets in air

    CERN Document Server

    Guha, Anirban; Balachandar, Ram

    2010-01-01

    Numerical simulation of high-speed turbulent water jets in air and its validation with experimental data has not been reported in the literature. It is therefore aimed to simulate the physics of these high-speed water jets and compare the results with the existing experimental works. High-speed water jets diffuse in the surrounding atmosphere by the processes of mass and momentum transfer. Air is entrained into the jet stream and the entire process contributes to jet spreading and subsequent pressure decay. Hence the physical problem is in the category of multiphase flows, for which mass and momentum transfer is to be determined to simulate the problem. Using the Eulerian multiphase and the k-\\epsilon turbulence models, plus a novel numerical model for mass and momentum transfer, the simulation was achieved. The results reasonably predict the flow physics of high-speed water jets in air.

  14. High-Speed Fiber Optic Micromultiplexer for Space and Airborne Lidar Project

    Data.gov (United States)

    National Aeronautics and Space Administration — To address the NASA Earth Science Division need for high-speed fiber optic multiplexers for next generation lidar systems, Luminit proposes to develop a new Fiber...

  15. Pseudophakodonesis and corneal endothelial contact: direct observations by high-speed cinematography.

    Science.gov (United States)

    Jacobs, P M; Cheng, H; Price, N C

    1983-10-01

    High-speed cinematography was used to observe the movement of Federov type I lens implants within the anterior chamber. Our measurements suggest that in most patients contact between the lens implant and corneal endothelium does not occur.

  16. Smart Materials Technology for High Speed Adaptive Inlet/Nozzle Design Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Enabling a new generation of high-speed civil aircraft will require breakthrough developments in propulsion systems, including novel techniques to optimize inlet...

  17. High-Speed, Low-Power ADC for Digital Beam Forming (DBF) Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Ridgetop Group will design a high-speed, low-power silicon germanium (SiGe)-based, analog-to-digital converter (ADC) to be a key element for digital beam forming...

  18. High-Speed, Low-Power ADC for Digital Beam Forming (DBF) Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In Phase 1, Ridgetop Group designed a high-speed, yet low-power silicon germanium (SiGe)-based, analog-to-digital converter (ADC) to be a key element for digital...

  19. High Speed Railway Environment Safety Evaluation Based on Measurement Attribute Recognition Model

    Directory of Open Access Journals (Sweden)

    Qizhou Hu

    2014-01-01

    Full Text Available In order to rationally evaluate the high speed railway operation safety level, the environmental safety evaluation index system of high speed railway should be well established by means of analyzing the impact mechanism of severe weather such as raining, thundering, lightning, earthquake, winding, and snowing. In addition to that, the attribute recognition will be identified to determine the similarity between samples and their corresponding attribute classes on the multidimensional space, which is on the basis of the Mahalanobis distance measurement function in terms of Mahalanobis distance with the characteristics of noncorrelation and nondimensionless influence. On top of the assumption, the high speed railway of China environment safety situation will be well elaborated by the suggested methods. The results from the detailed analysis show that the evaluation is basically matched up with the actual situation and could lay a scientific foundation for the high speed railway operation safety.

  20. Simulation Analysis Module of High-speed Rail Bearings Based on Secondary Development in ADAMS

    Institute of Scientific and Technical Information of China (English)

    ZHANG Li; YE Jun; XU Juan; LUO Yi-chao

    2013-01-01

    This paper develops a strong secondary development based on ADAMS feature which creates high-speed rail bearings for simulation analysis module. This thesis is in the case of non-circular pattern instructions of how to achieve rapid roller modeling, with analysis of functions and parameters required for the design of the simulation module of the high-speed rail bearing , as well as the design of dialog boxes, the environment and file structure. The specific modules is based on the secondary development language provided by ADAMS/View. Through the menus, dialog boxes which input parameters, it can achieve high iron bearing automatic modeling, dynamic analysis and post-processing to simplify the analysis of high-speed rail bearing operations, as well as improving the high-speed rail bearing development efficiency.