WorldWideScience

Sample records for high-speed nuclear quality

  1. Modeling and numerical techniques for high-speed digital simulation of nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Wulff, W.; Cheng, H.S.; Mallen, A.N.

    1987-01-01

    Conventional computing methods are contrasted with newly developed high-speed and low-cost computing techniques for simulating normal and accidental transients in nuclear power plants. Six principles are formulated for cost-effective high-fidelity simulation with emphasis on modeling of transient two-phase flow coolant dynamics in nuclear reactors. Available computing architectures are characterized. It is shown that the combination of the newly developed modeling and computing principles with the use of existing special-purpose peripheral processors is capable of achieving low-cost and high-speed simulation with high-fidelity and outstanding user convenience, suitable for detailed reactor plant response analyses.

  2. On The Export Control Of High Speed Imaging For Nuclear Weapons Applications

    Energy Technology Data Exchange (ETDEWEB)

    Watson, Scott Avery [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Altherr, Michael Robert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-15

    Since the Manhattan Project, the use of high-speed photography, and its cousins flash radiography1 and schieleren photography have been a technological proliferation concern. Indeed, like the supercomputer, the development of high-speed photography as we now know it essentially grew out of the nuclear weapons program at Los Alamos2,3,4. Naturally, during the course of the last 75 years the technology associated with computers and cameras has been export controlled by the United States and others to prevent both proliferation among non-P5-nations and technological parity among potential adversaries among P5 nations. Here we revisit these issues as they relate to high-speed photographic technologies and make recommendations about how future restrictions, if any, should be guided.

  3. High quality yarns from high speed roller ginning of upland cotton

    Science.gov (United States)

    The highest quality yarns from upland cotton are typically produced by using combing in the textile mill. Combing is a resource-intensive process in which short fibers are removed from cotton before spinning. The improvement in fiber length and length uniformity of upland cotton when high speed ro...

  4. High-speed analysis of nuclear emulsion films with the use of dry objective lenses

    Energy Technology Data Exchange (ETDEWEB)

    Kreslo, I; Ereditato, A; Hess, M; Knuesel, J; Messina, M; Moser, U; Pistillo, C; Pretzl, K; Lavina, L Scotto; Schutz, H-U [Laboratory for High Energy Physics, University of Bern, Bern (Switzerland); Cozzi, M; Sirri, G [Dip. di Fisica dell' Universita di Bologna and INFN, Bologna (Italy); Laktineh, I [IPNL, IN2P3-CNRS and Universite C. Bernard Lyon I, Lyon, Villeurbanne - France (France); Tioukov, V [Dip. di Fisica dell' Universita di Napoli and INFN, Napoli (Italy)], E-mail: Igor.Kreslo@cern.ch

    2008-04-15

    The extensive use of nuclear emulsions as precise tracking detectors in experimental physics has been made possible due to recent advances in the production of novel emulsion films and to the development of automatic scanning devices. The scanning speed of such systems has exceeded the level of 20 cm{sup 2} of emulsion surface per hour. High-speed automatic scanning systems, such as those developed by the OPERA Collaboration, are able to reconstruct particle tracks in nuclear emulsions with excellent accuracy. However, the high-magnification oil immersion objectives used in these systems assume deposition and removal of oil onto and from the emulsion films. This is a major technological obstacle in the automatization of the emulsion feeding to the microscope, as required for large scale use as in the case of the OPERA neutrino oscillation experiment. In order to overcome this problem, an innovative technique of nuclear emulsion films scanning with the use of dry objective lenses has been developed and successfully applied to the experiment.

  5. Evaluation of Hole Quality in Hardened Steel with High-Speed Drilling Using Different Cooling Systems

    Directory of Open Access Journals (Sweden)

    Lincoln Cardoso Brandão

    2011-01-01

    Full Text Available This work evaluates the hole quality on AISI H13 hardened steel using high-speed drilling. Specimens were machined with new and worn out drills with 8.6 mm diameter and (TiAlN coating. Two levels of cutting speed and three levels of cooling/lubrication systems (flooded, minimum lubrication quantity, and dry were used. The hole quality is evaluated on surface roughness (Ra parameter, diameter error, circularity, and cylindricity error. A statistical analysis of the results shows that the cooling/lubrication system significantly affects the hole quality for all measured variables. This analysis indicates that dry machining produces the worst results. Higher cutting speeds not only prove beneficial to diameter error and circularity errors, but also show no significant difference on surface roughness and cylindricity errors. The effects of the interaction between the cooling/lubrication systems, tool wear, and cutting speed indicate that only cylindricity error is influenced. Thus, the conclusion is that the best hole quality is produced with a higher cutting speed using flooded or minimum lubrication quantity independent of drill wear.

  6. High-Speed Neutron and Gamma Flux Sensor for Monitoring Surface Nuclear Reactors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA needs compact nuclear reactors to power future bases on the moon and/or Mars. These reactors require robust automatic control systems using low mass, rapid...

  7. High-Speed Neutron and Gamma Flux Sensor for Monitoring Surface Nuclear Reactors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA needs compact nuclear reactors to power future bases on the moon and Mars. These reactors require robust automatic control systems using low mass, rapid...

  8. High-Speed Atomic Force Microscopy Reveals Loss of Nuclear Pore Resilience as a Dying Code in Colorectal Cancer Cells.

    Science.gov (United States)

    Mohamed, Mahmoud Shaaban; Kobayashi, Akiko; Taoka, Azuma; Watanabe-Nakayama, Takahiro; Kikuchi, Yosuke; Hazawa, Masaharu; Minamoto, Toshinari; Fukumori, Yoshihiro; Kodera, Noriyuki; Uchihashi, Takayuki; Ando, Toshio; Wong, Richard W

    2017-06-27

    Nuclear pore complexes (NPCs) are the sole turnstile implanted in the nuclear envelope (NE), acting as a central nanoregulator of transport between the cytosol and the nucleus. NPCs consist of ∼30 proteins, termed nucleoporins. About one-third of nucleoporins harbor natively unstructured, intrinsically disordered phenylalanine-glycine strings (FG-Nups), which engage in transport selectivity. Because the barriers insert deeply in the NPC, they are nearly inaccessible. Several in vitro barrier models have been proposed; however, the dynamic FG-Nups protein molecules themselves are imperceptible in vivo. We show here that high-speed atomic force microscopy (HS-AFM) can be used to directly visualize nanotopographical changes of the nuclear pore inner channel in colorectal cancer (CRC) cells. Furthermore, using MLN8237/alisertib, an apoptotic and autophagic inducer currently being tested in relapsed cancer clinical trials, we unveiled the functional loss of nucleoporins, particularly the deformation of the FG-Nups barrier, in dying cancer cells. We propose that the loss of this nanoscopic resilience is an irreversible dying code in cells. These findings not only illuminate the potential application of HS-AFM as an intracellular nanoendoscopy but also might aid in the design of future nuclear targeted nanodrug delivery tailored to the individual patient.

  9. Features of high-speed and strength qualities development in young biathlonists aged 14–15 in the preparatory period

    Directory of Open Access Journals (Sweden)

    Artem Burla

    2015-04-01

    Full Text Available Purpose: to substantiate a methodology of high-speed and strength qualities development of young biathlonists aged 14–15 during the preparatory period. Material and Methods: young biathlonists aged 14–15 from control and experimental groups took part in the research. There were 12 athletes in each group. Pedagogical methods and methods of mathematical statistics were used in the work. Pedagogical methods of researches were used for level definition of high-speed and strength qualities development of young biathlonists. Results: reliable increase of motive qualities and polydynamometry results testing of young biathlonists from the experimental group due to implementation of the experimental methodology in the preparatory period is established. Conclusions: application of the developed complexes in the preparatory period in the experimental group of young biathlonists aged 14–15 allows to raise indices of motive qualities and polydynamometry testing statistically significantly.

  10. A Study of Quality of Service Communication for High-Speed Packet-Switching Computer Sub-Networks

    Science.gov (United States)

    Cui, Zhenqian

    1999-01-01

    With the development of high-speed networking technology, computer networks, including local-area networks (LANs), wide-area networks (WANs) and the Internet, are extending their traditional roles of carrying computer data. They are being used for Internet telephony, multimedia applications such as conferencing and video on demand, distributed simulations, and other real-time applications. LANs are even used for distributed real-time process control and computing as a cost-effective approach. Differing from traditional data transfer, these new classes of high-speed network applications (video, audio, real-time process control, and others) are delay sensitive. The usefulness of data depends not only on the correctness of received data, but also the time that data are received. In other words, these new classes of applications require networks to provide guaranteed services or quality of service (QoS). Quality of service can be defined by a set of parameters and reflects a user's expectation about the underlying network's behavior. Traditionally, distinct services are provided by different kinds of networks. Voice services are provided by telephone networks, video services are provided by cable networks, and data transfer services are provided by computer networks. A single network providing different services is called an integrated-services network.

  11. Analisis Quality of Service (QoS Jaringan Telekomunikasi High-Speed Downlink Packet Access (HSDPA pada Teknologi 3.5G

    Directory of Open Access Journals (Sweden)

    Mey Fenny Wati Simanjuntak

    2016-01-01

    Full Text Available Sejak layanan teknologi 3G pertama kali diperkenalkan, permintaan akan layanan berbasis paket data dari tahun ke tahun mengalami peningkatan yang pesat. Menanggapi hal tersebut, para penyedian jaringan telekomunikasi terus berusaha untuk meningkatkan kemampuan jaringannya. Salah satu solusinya menerapkan teknologi High-Speed Downlink Packet Access yang direkomendasikan oleh 3GPP Release 5. Penelitian ini dikhususkan untuk menganalisis Quality of Service jaringan telekomunikasi High-Speed Downlink Packet Access di Kecamatan Tembalang Kota Semarang. Analisis Quality of Service jaringan telekomunikasi High-Speed Downlink Packet Access pada penelitian ini bertujuan untuk memberikan gambaran kualitas jaringan telekomunikasi High-Speed Downlink Packet Access dari sisi bandwidth, throughput, packet loss dan delay. Metode penelitian yang dibahas dalam penelitian ini yaitu penelitian kualitatif observatif, dimana akan dilakukan pengamatan tentang bagaimana QoS jaringan telekomunikasi High-Speed Downlink Packet Access pada teknologi 3.5G di Kecamatan Tembalang Kota Semarang. Proses pengamatan dalam menganalisis Quality of Service jaringan telekomunikasi High-Speed Downlink Packet Access di Kecamatan Tembalang Kota Semarang berdasarkan 4 parameter diantaranya bandwidth, throughput, packet loss dan delay. Aplikasi yang digunakan yaitu monitoring application Elnus Bandwidth Meter dan Axence NetTools Professional 4.0. Selain itu, Quality of Service jaringan telekomunikasi High- Speed Downlink Packet Access di Kecamatan Tembalang Kota Semarang diamati berdasarkan waktu yaitu harian, mingguan dan bulanan.

  12. Sub-micron resolution high-speed spectral domain optical coherence tomography in quality inspection for printed electronics

    Science.gov (United States)

    Czajkowski, J.; Lauri, J.; Sliz, R.; Fält, P.; Fabritius, T.; Myllylä, R.; Cense, B.

    2012-04-01

    We present the use of sub-micron resolution optical coherence tomography (OCT) in quality inspection for printed electronics. The device used in the study is based on a supercontinuum light source, Michelson interferometer and high-speed spectrometer. The spectrometer in the presented spectral-domain optical coherence tomography setup (SD-OCT) is centered at 600 nm and covers a 400 nm wide spectral region ranging from 400 nm to 800 nm. Spectra were acquired at a continuous rate of 140,000 per second. The full width at half maximum of the point spread function obtained from a Parylene C sample was 0:98 m. In addition to Parylene C layers, the applicability of sub-micron SD-OCT in printed electronics was studied using PET and epoxy covered solar cell, a printed RFID antenna and a screen-printed battery electrode. A commercial SD-OCT system was used for reference measurements.

  13. High speed data converters

    CERN Document Server

    Ali, Ahmed MA

    2016-01-01

    This book covers high speed data converters from the perspective of a leading high speed ADC designer and architect, with a strong emphasis on high speed Nyquist A/D converters. For our purposes, the term 'high speed' is defined as sampling rates that are greater than 10 MS/s.

  14. Laser beam welding quality monitoring system based in high-speed (10 kHz) uncooled MWIR imaging sensors

    Science.gov (United States)

    Linares, Rodrigo; Vergara, German; Gutiérrez, Raúl; Fernández, Carlos; Villamayor, Víctor; Gómez, Luis; González-Camino, Maria; Baldasano, Arturo; Castro, G.; Arias, R.; Lapido, Y.; Rodríguez, J.; Romero, Pablo

    2015-05-01

    The combination of flexibility, productivity, precision and zero-defect manufacturing in future laser-based equipment are a major challenge that faces this enabling technology. New sensors for online monitoring and real-time control of laserbased processes are necessary for improving products quality and increasing manufacture yields. New approaches to fully automate processes towards zero-defect manufacturing demand smarter heads where lasers, optics, actuators, sensors and electronics will be integrated in a unique compact and affordable device. Many defects arising in laser-based manufacturing processes come from instabilities in the dynamics of the laser process. Temperature and heat dynamics are key parameters to be monitored. Low cost infrared imagers with high-speed of response will constitute the next generation of sensors to be implemented in future monitoring and control systems for laser-based processes, capable to provide simultaneous information about heat dynamics and spatial distribution. This work describes the result of using an innovative low-cost high-speed infrared imager based on the first quantum infrared imager monolithically integrated with Si-CMOS ROIC of the market. The sensor is able to provide low resolution images at frame rates up to 10 KHz in uncooled operation at the same cost as traditional infrared spot detectors. In order to demonstrate the capabilities of the new sensor technology, a low-cost camera was assembled on a standard production laser welding head, allowing to register melting pool images at frame rates of 10 kHz. In addition, a specific software was developed for defect detection and classification. Multiple laser welding processes were recorded with the aim to study the performance of the system and its application to the real-time monitoring of laser welding processes. During the experiments, different types of defects were produced and monitored. The classifier was fed with the experimental images obtained. Self

  15. High speed heterostructure devices

    CERN Document Server

    Beer, Albert C; Willardson, R K; Kiehl, Richard A; Sollner, T C L Gerhard

    1994-01-01

    Volume 41 includes an in-depth review of the most important, high-speed switches made with heterojunction technology. This volume is aimed at the graduate student or working researcher who needs a broad overview andan introduction to current literature. Key Features * The first complete review of InP-based HFETs and complementary HFETs, which promise very low power and high speed * Offers a complete, three-chapter review of resonant tunneling * Provides an emphasis on circuits as well as devices.

  16. Safety and EEG data quality of concurrent high-density EEG and high-speed fMRI at 3 Tesla.

    Directory of Open Access Journals (Sweden)

    Mette Thrane Foged

    Full Text Available Concurrent EEG and fMRI is increasingly used to characterize the spatial-temporal dynamics of brain activity. However, most studies to date have been limited to conventional echo-planar imaging (EPI. There is considerable interest in integrating recently developed high-speed fMRI methods with high-density EEG to increase temporal resolution and sensitivity for task-based and resting state fMRI, and for detecting interictal spikes in epilepsy. In the present study using concurrent high-density EEG and recently developed high-speed fMRI methods, we investigate safety of radiofrequency (RF related heating, the effect of EEG on cortical signal-to-noise ratio (SNR in fMRI, and assess EEG data quality.The study compared EPI, multi-echo EPI, multi-band EPI and multi-slab echo-volumar imaging pulse sequences, using clinical 3 Tesla MR scanners from two different vendors that were equipped with 64- and 256-channel MR-compatible EEG systems, respectively, and receive only array head coils. Data were collected in 11 healthy controls (3 males, age range 18-70 years and 13 patients with epilepsy (8 males, age range 21-67 years. Three of the healthy controls were scanned with the 256-channel EEG system, the other subjects were scanned with the 64-channel EEG system. Scalp surface temperature, SNR in occipital cortex and head movement were measured with and without the EEG cap. The degree of artifacts and the ability to identify background activity was assessed by visual analysis by a trained expert in the 64 channel EEG data (7 healthy controls, 13 patients.RF induced heating at the surface of the EEG electrodes during a 30-minute scan period with stable temperature prior to scanning did not exceed 1.0° C with either EEG system and any of the pulse sequences used in this study. There was no significant decrease in cortical SNR due to the presence of the EEG cap (p > 0.05. No significant differences in the visually analyzed EEG data quality were found between

  17. Safety and EEG data quality of concurrent high-density EEG and high-speed fMRI at 3 Tesla.

    Science.gov (United States)

    Foged, Mette Thrane; Lindberg, Ulrich; Vakamudi, Kishore; Larsson, Henrik B W; Pinborg, Lars H; Kjær, Troels W; Fabricius, Martin; Svarer, Claus; Ozenne, Brice; Thomsen, Carsten; Beniczky, Sándor; Paulson, Olaf B; Posse, Stefan

    2017-01-01

    Concurrent EEG and fMRI is increasingly used to characterize the spatial-temporal dynamics of brain activity. However, most studies to date have been limited to conventional echo-planar imaging (EPI). There is considerable interest in integrating recently developed high-speed fMRI methods with high-density EEG to increase temporal resolution and sensitivity for task-based and resting state fMRI, and for detecting interictal spikes in epilepsy. In the present study using concurrent high-density EEG and recently developed high-speed fMRI methods, we investigate safety of radiofrequency (RF) related heating, the effect of EEG on cortical signal-to-noise ratio (SNR) in fMRI, and assess EEG data quality. The study compared EPI, multi-echo EPI, multi-band EPI and multi-slab echo-volumar imaging pulse sequences, using clinical 3 Tesla MR scanners from two different vendors that were equipped with 64- and 256-channel MR-compatible EEG systems, respectively, and receive only array head coils. Data were collected in 11 healthy controls (3 males, age range 18-70 years) and 13 patients with epilepsy (8 males, age range 21-67 years). Three of the healthy controls were scanned with the 256-channel EEG system, the other subjects were scanned with the 64-channel EEG system. Scalp surface temperature, SNR in occipital cortex and head movement were measured with and without the EEG cap. The degree of artifacts and the ability to identify background activity was assessed by visual analysis by a trained expert in the 64 channel EEG data (7 healthy controls, 13 patients). RF induced heating at the surface of the EEG electrodes during a 30-minute scan period with stable temperature prior to scanning did not exceed 1.0° C with either EEG system and any of the pulse sequences used in this study. There was no significant decrease in cortical SNR due to the presence of the EEG cap (p > 0.05). No significant differences in the visually analyzed EEG data quality were found between EEG

  18. Safety and EEG data quality of concurrent high-density EEG and high-speed fMRI at 3 Tesla

    DEFF Research Database (Denmark)

    Foged, Mette Thrane; Lindberg, Ulrich; Vakamudi, Kishore

    2017-01-01

    PURPOSE: Concurrent EEG and fMRI is increasingly used to characterize the spatial-temporal dynamics of brain activity. However, most studies to date have been limited to conventional echo-planar imaging (EPI). There is considerable interest in integrating recently developed high-speed fMRI methods...... with high-density EEG to increase temporal resolution and sensitivity for task-based and resting state fMRI, and for detecting interictal spikes in epilepsy. In the present study using concurrent high-density EEG and recently developed high-speed fMRI methods, we investigate safety of radiofrequency (RF......) related heating, the effect of EEG on cortical signal-to-noise ratio (SNR) in fMRI, and assess EEG data quality. MATERIALS AND METHODS: The study compared EPI, multi-echo EPI, multi-band EPI and multi-slab echo-volumar imaging pulse sequences, using clinical 3 Tesla MR scanners from two different vendors...

  19. What makes a city? Planning for "quality of place" : The case of high-speed train station area redevelopment

    NARCIS (Netherlands)

    Trip, J.J.

    2007-01-01

    Urban quality is generally considered increasingly important for urban competitiveness. Nevertheless, large urban redevelopment schemes often fail to provide sufficient quality from a user's perspective. This study therefore investigates the role of urban quality in large-scale urban redevelopment,

  20. Effects of different doses of high-speed resistance training on physical performance and quality of life in older women: a randomized controlled trial

    Science.gov (United States)

    Ramirez-Campillo, Rodrigo; Diaz, Daniela; Martinez-Salazar, Cristian; Valdés-Badilla, Pablo; Delgado-Floody, Pedro; Méndez-Rebolledo, Guillermo; Cañas-Jamet, Rodrigo; Cristi-Montero, Carlos; García-Hermoso, Antonio; Celis-Morales, Carlos; Moran, Jason; Buford, Thomas W; Rodriguez-Mañas, Leocadio; Alonso-Martinez, Alicia M; Izquierdo, Mikel

    2016-01-01

    Objective This study aimed to compare the effects of two frequencies of high-speed resistance training (HSRT) on physical performance and quality of life of older women. Methods A total of 24 older women participated in a 12-week HSRT program composed of either two or three sessions/week (equated for volume and intensity). Women were randomized into three arms: a control group (CG, n=8), a resistance training group performing two sessions/week (RT2, n=8), and a resistance training group performing three sessions/week (RT3, n=8). The training program for both experimental groups included exercises that required high-speed concentric muscle actions. Results No baseline differences were observed among groups. Compared with the CG, both training groups showed similar small to moderate improvements (P<0.05) in muscle strength, power, functional performance, balance, and quality of life. Conclusion These results suggest that equated for volume and intensity, two and three training sessions/week of HSRT are equally effective for improving physical performance and quality of life of older women. PMID:28008239

  1. HIGH SPEED CAMERA

    Science.gov (United States)

    Rogers, B.T. Jr.; Davis, W.C.

    1957-12-17

    This patent relates to high speed cameras having resolution times of less than one-tenth microseconds suitable for filming distinct sequences of a very fast event such as an explosion. This camera consists of a rotating mirror with reflecting surfaces on both sides, a narrow mirror acting as a slit in a focal plane shutter, various other mirror and lens systems as well as an innage recording surface. The combination of the rotating mirrors and the slit mirror causes discrete, narrow, separate pictures to fall upon the film plane, thereby forming a moving image increment of the photographed event. Placing a reflecting surface on each side of the rotating mirror cancels the image velocity that one side of the rotating mirror would impart, so as a camera having this short a resolution time is thereby possible.

  2. High Speed Ice Friction

    Science.gov (United States)

    Seymour-Pierce, Alexandra; Sammonds, Peter; Lishman, Ben

    2014-05-01

    Many different tribological experiments have been run to determine the frictional behaviour of ice at high speeds, ostensibly with the intention of applying results to everyday fields such as winter tyres and sports. However, experiments have only been conducted up to linear speeds of several metres a second, with few additional subject specific studies reaching speeds comparable to these applications. Experiments were conducted in the cold rooms of the Rock and Ice Physics Laboratory, UCL, on a custom built rotational tribometer based on previous literature designs. Preliminary results from experiments run at 2m/s for ice temperatures of 271 and 263K indicate that colder ice has a higher coefficient of friction, in accordance with the literature. These results will be presented, along with data from further experiments conducted at temperatures between 259-273K (in order to cover a wide range of the temperature dependent behaviour of ice) and speeds of 2-15m/s to produce a temperature-velocity-friction map for ice. The effect of temperature, speed and slider geometry on the deformation of ice will also be investigated. These speeds are approaching those exhibited by sports such as the luge (where athletes slide downhill on an icy track), placing the tribological work in context.

  3. Effects of different doses of high-speed resistance training on physical performance and quality of life in older women: a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Ramirez-Campillo R

    2016-12-01

    Objective: This study aimed to compare the effects of two frequencies of high-speed resistance training (HSRT on physical performance and quality of life of older women.Methods: A total of 24 older women participated in a 12-week HSRT program composed of either two or three sessions/week (equated for volume and intensity. Women were randomized into three arms: a control group (CG, n=8, a resistance training group performing two sessions/week (RT2, n=8, and a resistance training group performing three sessions/week (RT3, n=8. The training program for both experimental groups included exercises that required high-speed concentric muscle actions.Results: No baseline differences were observed among groups. Compared with the CG, both training groups showed similar small to moderate improvements (P<0.05 in muscle strength, power, functional performance, balance, and quality of life.Conclusion: These results suggest that equated for volume and intensity, two and three training sessions/week of HSRT are equally effective for improving physical performance and quality of life of older women. Keywords: aging, muscle strength, adaptation, frailty

  4. High speed rail distribution study.

    Science.gov (United States)

    2016-08-01

    The Texas Central Partners are in the process of developing a high speed rail line connecting : Houston and Dallas, Texas. Ultimately, plans are for 8 car trains that accommodate 200 people per : vehicle scheduled every 30 minutes. In addition, Texas...

  5. High-Speed Electrochemical Imaging.

    Science.gov (United States)

    Momotenko, Dmitry; Byers, Joshua C; McKelvey, Kim; Kang, Minkyung; Unwin, Patrick R

    2015-09-22

    The design, development, and application of high-speed scanning electrochemical probe microscopy is reported. The approach allows the acquisition of a series of high-resolution images (typically 1000 pixels μm(-2)) at rates approaching 4 seconds per frame, while collecting up to 8000 image pixels per second, about 1000 times faster than typical imaging speeds used up to now. The focus is on scanning electrochemical cell microscopy (SECCM), but the principles and practicalities are applicable to many electrochemical imaging methods. The versatility of the high-speed scan concept is demonstrated at a variety of substrates, including imaging the electroactivity of a patterned self-assembled monolayer on gold, visualization of chemical reactions occurring at single wall carbon nanotubes, and probing nanoscale electrocatalysts for water splitting. These studies provide movies of spatial variations of electrochemical fluxes as a function of potential and a platform for the further development of high speed scanning with other electrochemical imaging techniques.

  6. High-speed photonics interconnects

    CERN Document Server

    Chrostowski, Lukas

    2013-01-01

    Dramatic increases in processing power have rapidly scaled on-chip aggregate bandwidths into the Tb/s range. This necessitates a corresponding increase in the amount of data communicated between chips, so as not to limit overall system performance. To meet the increasing demand for interchip communication bandwidth, researchers are investigating the use of high-speed optical interconnect architectures. Unlike their electrical counterparts, optical interconnects offer high bandwidth and negligible frequency-dependent loss, making possible per-channel data rates of more than 10 Gb/s. High-Speed

  7. High-speed pulse techniques

    CERN Document Server

    Coekin, J A

    1975-01-01

    High-Speed Pulse Techniques covers the many aspects of technique in digital electronics and encompass some of the more fundamental factors that apply to all digital systems. The book describes the nature of pulse signals and their deliberate or inadvertent processing in networks, transmission lines and transformers, and then examines the characteristics and transient performance of semiconductor devices and integrated circuits. Some of the problems associated with the assembly of these into viable systems operating at ultra high speed are also looked at. The book examines the transients and w

  8. High-speed OTDM switching

    DEFF Research Database (Denmark)

    Jepsen, Kim Stokholm; Mikkelsen, Benny; Clausen, Anders

    1998-01-01

    Optical TDM (OTDM) continues to be of interest both for point-point transmission and as a networking technology for both LANs and long-distance fibre transmission. Recent research has demonstrated enabling techniques for OTDM networks at high speeds. In conclusion, OTDM is emerging as an attracti...

  9. High speed cryogenic monodisperse targets

    Science.gov (United States)

    Boukharov, A.; Vishnevkii, E.

    2017-11-01

    The basic possibility of creation of high speed cryogenic monodisperse targets is shown. According to calculations at input of thin liquid cryogenic jets with a velocity of bigger 100 m/s in vacuum the jets don’t manage to freeze at distance to 1 mm and can be broken into monodisperse drops. Drops due to evaporation are cooled and become granules. High speed cryogenic monodisperse targets have the following advantages: direct input in vacuum (there is no need for a chamber of a triple point chamber and sluices), it is possible to use the equipment of a cluster target, it is possible to receive targets with a diameter of D 100m/s), exact synchronization of the target hitting moment in a beam with the moment of sensors turning on.

  10. High-speed AC motors

    Energy Technology Data Exchange (ETDEWEB)

    Jokinen, T.; Arkkio, A. [Helsinki University of Technology Laboratory of Electromechanics, Otaniemi (Finland)

    1997-12-31

    The paper deals with various types of highspeed electric motors, and their limiting powers. Standard machines with laminated rotors can be utilised if the speed is moderate. The solid rotor construction makes it possible to reach higher power and speed levels than those of laminated rotors. The development work on high-speed motors done at Helsinki University of Technology is presented, too. (orig.) 12 refs.

  11. Ultra high-speed sorting.

    Science.gov (United States)

    Leary, James F

    2005-10-01

    Cell sorting has a history dating back approximately 40 years. The main limitation has been that, although flow cytometry is a science, cell sorting has been an art during most of this time. Recent advances in assisting technologies have helped to decrease the amount of expertise necessary to perform sorting. Droplet-based sorting is based on a controlled disturbance of a jet stream dependent on surface tension. Sorting yield and purity are highly dependent on stable jet break-off position. System pressures and orifice diameters dictate the number of droplets per second, which is the sort rate limiting step because modern electronics can more than handle the higher cell signal processing rates. Cell sorting still requires considerable expertise. Complex multicolor sorting also requires new and more sophisticated sort decisions, especially when cell subpopulations are rare and need to be extracted from background. High-speed sorting continues to pose major problems in terms of biosafety due to the aerosols generated. Cell sorting has become more stable and predictable and requires less expertise to operate. However, the problems of aerosol containment continue to make droplet-based cell sorting problematical. Fluid physics and cell viability restraints pose practical limits for high-speed sorting that have almost been reached. Over the next 5 years there may be advances in fluidic switching sorting in lab-on-a-chip microfluidic systems that could not only solve the aerosol and viability problems but also make ultra high-speed sorting possible and practical through massively parallel and exponential staging microfluidic architectures.

  12. Towards high-speed scanning tunneling microscopy

    NARCIS (Netherlands)

    Tabak, Femke Chantal

    2013-01-01

    In this thesis, two routes towards high-speed scanning tunneling microscopy (STM) are described. The first possibility for high-speed scanning that is discussed is the use of MEMS (Micro-Electro Mechanical Systems) devices as high-speed add-ons in STM microscopes. The functionality of these devices

  13. Safety and EEG data quality of concurrent high-density EEG and high-speed fMRI at 3 Tesla

    DEFF Research Database (Denmark)

    Foged, Mette Thrane; Lindberg, Ulrich; Vakamudi, Kishore

    2017-01-01

    ) related heating, the effect of EEG on cortical signal-to-noise ratio (SNR) in fMRI, and assess EEG data quality. MATERIALS AND METHODS: The study compared EPI, multi-echo EPI, multi-band EPI and multi-slab echo-volumar imaging pulse sequences, using clinical 3 Tesla MR scanners from two different vendors...

  14. High speed nanofluidic protein accumulator.

    Science.gov (United States)

    Wu, Dapeng; Steckl, Andrew J

    2009-07-07

    Highly efficient preconcentration is a crucial prerequisite to the identification of important protein biomarkers with extremely low abundance in target biofluids. In this work, poly(dimethylsiloxane) microchips integrated with 10 nm polycarbonate nanopore membranes were utilized as high-speed protein accumulators. Double-sided injection control of electrokinetic fluid flow in the sample channel resulted in highly localized protein accumulation at a very sharp point in the channel cross point. This greatly enhanced the ability to detect very low levels of initial protein concentration. Fluorescein labeled human serum albumin solutions of 30 and 300 pM accumulated to 3 and 30 microM in only 100 s. Initial solutions as low as 0.3 and 3 pM could be concentrated within 200 s to 0.3 and 3 microM, respectively. This demonstrates a approximately 10(5)-10(6) accumulation factor, and an accumulation rate as high as 5000/sec, yielding a >10x improvement over most results reported to date.

  15. High Speed On-Wafer Characterization Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — At the High Speed On-Wafer Characterization Laboratory, researchers characterize and model devices operating at terahertz (THz) and millimeter-wave frequencies. The...

  16. High speed imaging - An important industrial tool

    Science.gov (United States)

    Moore, Alton; Pinelli, Thomas E.

    1986-01-01

    High-speed photography, which is a rapid sequence of photographs that allow an event to be analyzed through the stoppage of motion or the production of slow-motion effects, is examined. In high-speed photography 16, 35, and 70 mm film and framing rates between 64-12,000 frames per second are utilized to measure such factors as angles, velocities, failure points, and deflections. The use of dual timing lamps in high-speed photography and the difficulties encountered with exposure and programming the camera and event are discussed. The application of video cameras to the recording of high-speed events is described.

  17. High-speed imaging in fluids

    NARCIS (Netherlands)

    Versluis, Michel

    2013-01-01

    High-speed imaging is in popular demand for a broad range of experiments in fluids. It allows for a detailed visualization of the event under study by acquiring a series of image frames captured at high temporal and spatial resolution. This review covers high-speed imaging basics, by defining

  18. High speed curving performance of rail vehicles

    Science.gov (United States)

    2015-03-23

    On March 13, 2013, the Federal Railroad Administration (FRA) published a final rule titled Vehicle/Track Interaction Safety Standards; High-Speed and High Cant Deficiency Operations which amended the Track Safety Standards (49 CFR Part213) and ...

  19. Jane's high-speed marine transportation

    National Research Council Canada - National Science Library

    Phillips, S.J

    1998-01-01

    The purpose of this book is to provide a comprehensive reference yearbook covering the design, build and operation of high-speed marine transportation, worldwide, an annually updated reference book...

  20. CMOS Image Sensors for High Speed Applications.

    Science.gov (United States)

    El-Desouki, Munir; Deen, M Jamal; Fang, Qiyin; Liu, Louis; Tse, Frances; Armstrong, David

    2009-01-01

    Recent advances in deep submicron CMOS technologies and improved pixel designs have enabled CMOS-based imagers to surpass charge-coupled devices (CCD) imaging technology for mainstream applications. The parallel outputs that CMOS imagers can offer, in addition to complete camera-on-a-chip solutions due to being fabricated in standard CMOS technologies, result in compelling advantages in speed and system throughput. Since there is a practical limit on the minimum pixel size (4∼5 μm) due to limitations in the optics, CMOS technology scaling can allow for an increased number of transistors to be integrated into the pixel to improve both detection and signal processing. Such smart pixels truly show the potential of CMOS technology for imaging applications allowing CMOS imagers to achieve the image quality and global shuttering performance necessary to meet the demands of ultrahigh-speed applications. In this paper, a review of CMOS-based high-speed imager design is presented and the various implementations that target ultrahigh-speed imaging are described. This work also discusses the design, layout and simulation results of an ultrahigh acquisition rate CMOS active-pixel sensor imager that can take 8 frames at a rate of more than a billion frames per second (fps).

  1. CMOS Image Sensors for High Speed Applications

    Directory of Open Access Journals (Sweden)

    M. Jamal Deen

    2009-01-01

    Full Text Available Recent advances in deep submicron CMOS technologies and improved pixel designs have enabled CMOS-based imagers to surpass charge-coupled devices (CCD imaging technology for mainstream applications. The parallel outputs that CMOS imagers can offer, in addition to complete camera-on-a-chip solutions due to being fabricated in standard CMOS technologies, result in compelling advantages in speed and system throughput. Since there is a practical limit on the minimum pixel size (4~5 μm due to limitations in the optics, CMOS technology scaling can allow for an increased number of transistors to be integrated into the pixel to improve both detection and signal processing. Such smart pixels truly show the potential of CMOS technology for imaging applications allowing CMOS imagers to achieve the image quality and global shuttering performance necessary to meet the demands of ultrahigh-speed applications. In this paper, a review of CMOS-based high-speed imager design is presented and the various implementations that target ultrahigh-speed imaging are described. This work also discusses the design, layout and simulation results of an ultrahigh acquisition rate CMOS active-pixel sensor imager that can take 8 frames at a rate of more than a billion frames per second (fps.

  2. High speed rail : challenges for the high speed rail project in Norway

    OpenAIRE

    Ringstad, Vidar

    2012-01-01

    This Master Thesis has focus on parts of the public transport system in Norway. The main topic in this thesis is: What variables must be calculated for the decision concerning the construction and implementation of the Norwegian High Speed Rail project, and how are the variables calculated? High Speed Rail does not have a single standard definition. High Speed Rail definition, given in the European Union definition, Directive 96/48 is suitable for many different systems of rolling stock...

  3. Scientific Visualization in High Speed Network Environments

    Science.gov (United States)

    Vaziri, Arsi; Kutler, Paul (Technical Monitor)

    1997-01-01

    In several cases, new visualization techniques have vastly increased the researcher's ability to analyze and comprehend data. Similarly, the role of networks in providing an efficient supercomputing environment have become more critical and continue to grow at a faster rate than the increase in the processing capabilities of supercomputers. A close relationship between scientific visualization and high-speed networks in providing an important link to support efficient supercomputing is identified. The two technologies are driven by the increasing complexities and volume of supercomputer data. The interaction of scientific visualization and high-speed networks in a Computational Fluid Dynamics simulation/visualization environment are given. Current capabilities supported by high speed networks, supercomputers, and high-performance graphics workstations at the Numerical Aerodynamic Simulation Facility (NAS) at NASA Ames Research Center are described. Applied research in providing a supercomputer visualization environment to support future computational requirements are summarized.

  4. High Speed Digital Camera Technology Review

    Science.gov (United States)

    Clements, Sandra D.

    2009-01-01

    A High Speed Digital Camera Technology Review (HSD Review) is being conducted to evaluate the state-of-the-shelf in this rapidly progressing industry. Five HSD cameras supplied by four camera manufacturers participated in a Field Test during the Space Shuttle Discovery STS-128 launch. Each camera was also subjected to Bench Tests in the ASRC Imaging Development Laboratory. Evaluation of the data from the Field and Bench Tests is underway. Representatives from the imaging communities at NASA / KSC and the Optical Systems Group are participating as reviewers. A High Speed Digital Video Camera Draft Specification was updated to address Shuttle engineering imagery requirements based on findings from this HSD Review. This draft specification will serve as the template for a High Speed Digital Video Camera Specification to be developed for the wider OSG imaging community under OSG Task OS-33.

  5. High Speed Wireless Signal Generation and Demodulation

    DEFF Research Database (Denmark)

    Caballero Jambrina, Antonio; Sambaraju, Rakesh; Zibar, Darko

    We present the experimental demonstration of high speed wireless generation, up to 40 Gb/s, in the 75-110 GHz wireless band. All-optical OFDM and photonic up-conversion are used for generation and single side-band modulation with digital coherent detection for demodulation.......We present the experimental demonstration of high speed wireless generation, up to 40 Gb/s, in the 75-110 GHz wireless band. All-optical OFDM and photonic up-conversion are used for generation and single side-band modulation with digital coherent detection for demodulation....

  6. Aerodynamic design on high-speed trains

    Science.gov (United States)

    Ding, San-San; Li, Qiang; Tian, Ai-Qin; Du, Jian; Liu, Jia-Li

    2016-04-01

    Compared with the traditional train, the operational speed of the high-speed train has largely improved, and the dynamic environment of the train has changed from one of mechanical domination to one of aerodynamic domination. The aerodynamic problem has become the key technological challenge of high-speed trains and significantly affects the economy, environment, safety, and comfort. In this paper, the relationships among the aerodynamic design principle, aerodynamic performance indexes, and design variables are first studied, and the research methods of train aerodynamics are proposed, including numerical simulation, a reduced-scale test, and a full-scale test. Technological schemes of train aerodynamics involve the optimization design of the streamlined head and the smooth design of the body surface. Optimization design of the streamlined head includes conception design, project design, numerical simulation, and a reduced-scale test. Smooth design of the body surface is mainly used for the key parts, such as electric-current collecting system, wheel truck compartment, and windshield. The aerodynamic design method established in this paper has been successfully applied to various high-speed trains (CRH380A, CRH380AM, CRH6, CRH2G, and the Standard electric multiple unit (EMU)) that have met expected design objectives. The research results can provide an effective guideline for the aerodynamic design of high-speed trains.

  7. High-Speed Rail & Air Transport Competition

    NARCIS (Netherlands)

    Adler, Nicole; Nash, Chris; Pels, Eric

    2008-01-01

    This paper develops a methodology to assess transport infrastructure investments and their effects on a Nash equilibria taking into account competition between multiple privatized transport operator types. The operators, including high-speed rail, hub and spoke legacy airlines and low cost carriers,

  8. High-speed Rail & air transport competition

    NARCIS (Netherlands)

    Adler, N; Nash, C.; Pels, E.

    2010-01-01

    This research develops a methodology to assess infrastructure investments and their effects on transport equilibria taking into account competition between multiple privatized transport operator types. The operators, including high-speed rail, hub-and-spoke legacy airlines and regional low-cost

  9. Brandaris ultra high-speed imaging facility

    NARCIS (Netherlands)

    Lajoinie, Guillaume; de Jong, Nico; Versluis, Michel; Tsuji, K.

    2017-01-01

    High-speed imaging is in popular demand for a broad range of scientific applications, including fluid physics, and bubble and droplet dynamics. It allows for a detailed visualization of the event under study by acquiring a series of images captured at high temporal and spatial resolution. The

  10. Crew Rostering for the High Speed Train

    NARCIS (Netherlands)

    R.M. Lentink (Ramon); M.A. Odijk; E. van Rijn

    2002-01-01

    textabstractAt the time of writing we entered the final stage of implementing the crew rostering system Harmony CDR to facilitate the planning of catering crews on board of the Thalys, the High Speed Train connecting Paris, Cologne, Brussels, Amsterdam, and Geneva. Harmony CDR optimally supports the

  11. Parallel scanning laser ophthalmoscope (PSLO) for high-speed retinal imaging

    NARCIS (Netherlands)

    Vienola, K.V.; Braaf, Boy; Damodaran, Mathi; Vermeer, Koenraad A.; de Boer, Johannes F.

    2014-01-01

    Purpose High-speed imaging of the retina is crucial for obtaining high quality images in the presence of eye motion. To improve the speed of traditional scanners, a high-speed ophthalmic device is presented using a digital micro-mirror device (DMD) for confocal imaging with multiple simultaneous

  12. Nuclear plant operation: achieving excellence through quality

    Energy Technology Data Exchange (ETDEWEB)

    Bergstrom, L. [Barseback Nuclear Power Plant (Sweden); Bergeron, J.P. [Electricite de France (EDF), 75 - Paris (France); Coakley, W. [and others

    1992-07-01

    Nuclear power operation is characterised by a very high level of safety and availability resulting in economically competitive electricity production. This achievement must not only be maintained but must be further developed if nuclear power is to regain momentum in the light of its widely recognized environmental advantages. Therefore this meeting bring together all those, managers and technical staff, responsible for the operation of the nuclear in order to allow them to exchange views, experience and knowledge on fundamental aspects such as: management philosophy, quality assurance, human resources and international co-operation; focusing on training (incident analysis and management), human factors and experience feedback; maintenance philosophy, life extension and upgrading, organisation and administration. (A.L.B.)

  13. Gas turbine for high speed trains

    Energy Technology Data Exchange (ETDEWEB)

    Chenard, J.-L. [Turbomeca (France)

    1994-12-31

    This presentation will show how the gas turbine engines can be the right compromise to face the challenges raised by the demand for high speed trains through out the world. From the steam locomotive still in use in China to the TGV or ICE in Europe and Shinkensen in Japan able to run at more than 300 kms/hour, the modes of traction for trains have been greatly improved during the last fifty years. Even more faster trains are under studies for the future with the magnetic levitation system. Three main propulsion system, diesel, electric and gas turbines are actually competing in the high speed train market. They will have to comply with the new environmental regulations, better efficiency and customers` requirements for the developed countries, and with the necessity to use the existing tracks for most of the applications

  14. High-Speed Rail & Air Transport Competition

    OpenAIRE

    Nicole Adler; Chris Nash; Eric Pels

    2008-01-01

    This paper develops a methodology to assess transport infrastructure investments and their effects on a Nash equilibria taking into account competition between multiple privatized transport operator types. The operators, including high-speed rail, hub and spoke legacy airlines and low cost carriers, maximize profit functions via prices, frequency and train/plane sizes, given infrastructure provision and costs and environmental charges. The methodology is subsequently applied to all 27 Europea...

  15. High-speed inline holographic Stokesmeter imaging.

    Science.gov (United States)

    Liu, Xue; Heifetz, Alexander; Tseng, Shih C; Shahriar, M S

    2009-07-01

    We demonstrate a high-speed inline holographic Stokesmeter that consists of two liquid crystal retarders and a spectrally selective holographic grating. Explicit choices of angles of orientation for the components in the inline architecture are identified to yield higher measurement accuracy than the classical architecture. We show polarimetric images of an artificial scene produced by such a Stokesmeter, demonstrating the ability to identify an object not recognized by intensity-only imaging systems.

  16. Radiation-Tolerant High-Speed Camera

    Science.gov (United States)

    2017-03-01

    Radiation -Tolerant High-Speed Camera Esko Mikkola, Andrew Levy, Matt Engelman Alphacore, Inc. Tempe, AZ 85281 Abstract: As part of an... radiation -hardened CMOS image sensor and camera system. Radiation -hardened cameras with frame rates as high as 10 kfps and resolution of 1Mpixel are not...camera solution that is under development with a similar architecture. It also includes a brief description of the radiation -hardened camera that

  17. Developing course lecture notes on high-speed rail.

    Science.gov (United States)

    2017-07-15

    1. Introduction a. World-wide Development of High-Speed Rail (Japan, Europe, China) b. High-speed Rail in the U.S. 2. High-Speed Rail Infrastructure a. Geometric Design of High Speed Rail i. Horizontal Curve ii. Vertical Curve iii. Grade and Turnout ...

  18. Double Helical Gear Performance Results in High Speed Gear Trains

    Science.gov (United States)

    Handschuh, Robert F.; Ehinger, Ryan; Sinusas, Eric; Kilmain, Charles

    2010-01-01

    The operation of high speed gearing systems in the transmissions of tiltrotor aircraft has an effect on overall propulsion system efficiency. Recent work has focused on many aspects of high-speed helical gear trains as would be used in tiltrotor aircraft such as operational characteristics, comparison of analytical predictions to experimental data and the affect of superfinishing on transmission performance. Baseline tests of an aerospace quality system have been conducted in the NASA Glenn High-Speed Helical Gear Train Test Facility and have been described in earlier studies. These earlier tests had utilized single helical gears. The results that will be described in this study are those attained using double helical gears. This type of gear mesh can be configured in this facility to either pump the air-oil environment from the center gap between the meshing gears to the outside of tooth ends or in the reverse direction. Tests were conducted with both inward and outward air-oil pumping directions. Results are compared to the earlier baseline results of single helical gears.

  19. Noise in the passenger cars of high-speed trains.

    Science.gov (United States)

    Hong, Joo Young; Cha, Yongwon; Jeon, Jin Yong

    2015-12-01

    The aim of this study is to investigate the effects of both room acoustic conditions and spectral characteristics of noises on acoustic discomfort in a high-speed train's passenger car. Measurement of interior noises in a high-speed train was performed when the train was operating at speeds of 100 km/h and 300 km/h. Acoustic discomfort caused by interior noises was evaluated by paired comparison methods based on the variation of reverberation time (RT) in a passenger car and the spectral differences in interior noises. The effect of RT on acoustic discomfort was not significant, whereas acoustic discomfort significantly varied depending on spectral differences in noise. Acoustic discomfort increased with increment of the sound pressure level (SPL) ratio at high frequencies, and variation in high-frequency noise components were described using sharpness. Just noticeable differences of SPL with low- and high-frequency components were determined to be 3.7 and 2.9 dB, respectively. This indicates that subjects were more sensitive to differences in SPLs at the high-frequency range than differences at the low-frequency range. These results support that, for interior noises, reduction in SPLs at high frequencies would significantly contribute to improved acoustic quality in passenger cars of high-speed trains.

  20. All aboard for high-speed rail

    Energy Technology Data Exchange (ETDEWEB)

    Herman, D.

    1996-09-01

    A sleek, bullet-nosed train whizzing across the countryside is a fairly common sight in many nations. Since the Train a Grande Vitesse (TGV)--the record-setting ``train with great speed``--was introduced in France in 1981, Germany, Japan, and other countries have joined the high-speed club. In addition, the Eurostar passenger train, which travels between Great Britain and France through the Channel Tunnel, can move at 186 miles per hour once it reaches French tracks. Despite the technology`s growth elsewhere, rapid rail travel has not been seen on US shores beyond a few test runs by various manufacturers. Before the end of the century, however, American train spotters will finally be able to see some very fast trains here too. In March, Washington, DC-based Amtrak announced the purchase of 18 American Flyer high-speed train sets for the Northeast Corridor, which stretches from Boston through new York to the nation`s capital. Furthermore, Florida will get its own system by 2004, and other states are now taking a look at the technology. The American Flyer--designed by Montreal-based Bombardier and TGV manufacturer GEC Alsthom Transport in Paris--should venture onto US rails by 1999. Traveling at up to 150 miles per hour, the American Flyer will cut the New York-Boston run from 4 1/2 hours to 3 hours and reduce New York-Washington trip time from 3 hours to less than 2 3/4. Amtrak hopes the new trains and better times will earn it a greater share of travelers from air shuttles and perhaps from Interstate 95. This article describes how technologies that tilt railcars and propel the world`s fastest trains will be merged into one train set for the American Flyer, Amtrak`s first trip along high-speed rails.

  1. Controllable High-Speed Rotation of Nanowires

    Science.gov (United States)

    Fan, D. L.; Zhu, F. Q.; Cammarata, R. C.; Chien, C. L.

    2005-06-01

    We report a versatile method for executing controllable high-speed rotation of nanowires by ac voltages applied to multiple electrodes. The rotation of the nanowires can be instantly switched on or off with precisely controlled rotation speed (to at least 1800 rpm), definite chirality, and total angle of rotation. We have determined the torque due to the fluidic drag force on nanowire of different lengths. We also demonstrate a micromotor using a rotating nanowire driving a dust particle into circular motion. This method has been used to rotate magnetic and nonmagnetic nanowires as well as carbon nanotubes.

  2. High-speed multispectral confocal biomedical imaging.

    Science.gov (United States)

    Carver, Gary E; Locknar, Sarah A; Morrison, William A; Ramanujan, V Krishnan; Farkas, Daniel L

    2014-03-01

    A new approach for generating high-speed multispectral confocal images has been developed. The central concept is that spectra can be acquired for each pixel in a confocal spatial scan by using a fast spectrometer based on optical fiber delay lines. This approach merges fast spectroscopy with standard spatial scanning to create datacubes in real time. The spectrometer is based on a serial array of reflecting spectral elements, delay lines between these elements, and a single element detector. The spatial, spectral, and temporal resolution of the instrument is described and illustrated by multispectral images of laser-induced autofluorescence in biological tissues.

  3. Theory Of High-Speed Stereophotogrammetry

    Science.gov (United States)

    Hongxun, Song; Junren, Chen

    1989-06-01

    The general equations of direct linear transformation (DLT) are derived according to the actual process of high-speed stereophotogrammetry. The equations are not only applicable to the ordinary photographic system, but also to the photographic system with reflectors or stereo-reflectors. The equations are also suitable to the enlarged, copied and projected measurements of photographic film. The linear and non-linear errors in photogrammetric process can be corrected. Finally, the equations of right angle intersection photogrammetry are given and the merits and demerits of this method are discussed.

  4. High Speed SPM of Functional Materials

    Energy Technology Data Exchange (ETDEWEB)

    Huey, Bryan D. [Univ. of Connecticut, Storrs, CT (United States)

    2015-08-14

    The development and optimization of applications comprising functional materials necessitates a thorough understanding of their static and dynamic properties and performance at the nanoscale. Leveraging High Speed SPM and concepts enabled by it, efficient measurements and maps with nanoscale and nanosecond temporal resolution are uniquely feasible. This includes recent enhancements for topographic, conductivity, ferroelectric, and piezoelectric properties as originally proposed, as well as newly developed methods or improvements to AFM-based mechanical, friction, thermal, and photoconductivity measurements. The results of this work reveal fundamental mechanisms of operation, and suggest new approaches for improving the ultimate speed and/or efficiency, of data storage systems, magnetic-electric sensors, and solar cells.

  5. ACTS High-Speed VSAT Demonstrated

    Science.gov (United States)

    Tran, Quang K.

    1999-01-01

    The Advanced Communication Technology Satellite (ACTS) developed by NASA has demonstrated the breakthrough technologies of Ka-band transmission, spot-beam antennas, and onboard processing. These technologies have enabled the development of very small and ultrasmall aperture terminals (VSAT s and USAT's), which have capabilities greater than have been possible with conventional satellite technologies. The ACTS High Speed VSAT (HS VSAT) is an effort at the NASA Glenn Research Center at Lewis Field to experimentally demonstrate the maximum user throughput data rate that can be achieved using the technologies developed and implemented on ACTS. This was done by operating the system uplinks as frequency division multiple access (FDMA), essentially assigning all available time division multiple access (TDMA) time slots to a single user on each of two uplink frequencies. Preliminary results show that, using a 1.2-m antenna in this mode, the High Speed VSAT can achieve between 22 and 24 Mbps of the 27.5 Mbps burst rate, for a throughput efficiency of 80 to 88 percent.

  6. Study of high-speed civil transports

    Science.gov (United States)

    1989-01-01

    A systems study to identify the economic potential for a high-speed commercial transport (HSCT) has considered technology, market characteristics, airport infrastructure, and environmental issues. Market forecasts indicate a need for HSCT service in the 2000/2010 time frame conditioned on economic viability and environmental acceptability. Design requirements focused on a 300 passenger, 3 class service, and 6500 nautical mile range based on the accelerated growth of the Pacific region. Compatibility with existing airports was an assumed requirement. Mach numbers between 2 and 25 were examined in conjunction with the appropriate propulsion systems, fuels, structural materials, and thermal management systems. Aircraft productivity was a key parameter with aircraft worth, in comparison to aircraft price, being the airline-oriented figure of merit. Aircraft screening led to determination that Mach 3.2 (TSJF) would have superior characteristics to Mach 5.0 (LNG) and the recommendation that the next generation high-speed commercial transport aircraft use a kerosene fuel. The sensitivity of aircraft performance and economics to environmental constraints (e.g., sonic boom, engine emissions, and airport/community noise) was identified together with key technologies. In all, current technology is not adequate to produce viable HSCTs for the world marketplace. Technology advancements must be accomplished to meet environmental requirements (these requirements are as yet undetermined for sonic boom and engine emissions). High priority is assigned to aircraft gross weight reduction which benefits both economics and environmental aspects. Specific technology requirements are identified and national economic benefits are projected.

  7. Laser beam welding by high-speed beam deflection; Laserstrahlschweissen durch High-Speed-Strahlbewegung

    Energy Technology Data Exchange (ETDEWEB)

    Klotzbach, A.; Morgenthal, L.; Beyer, E. [Fraunhofer-Institut fuer Werkstoff- und Strahltechnik, Dresden (Germany)

    1999-04-01

    The beam deflection system developed at Fraunhofer IWS can be used for rapid moving of a high power laser beam over the workpiece surface. Therefore it is possible to scan even rather small paths with high speed. The system contents two galvanometer scanner with specially designed lightweight mirrors in combination with a beam focusing unit. (Fig. 1). The high-speed welding of contours with small diameter is favorably done with both focusing optics and workpiece fixed (Fig. 2,3). Thus all notorius problems of conventional handling systems, as limited velocity and accuracy resulting from the inertia of the moved focusing head or workpiece, vanish. (orig.)

  8. High-speed dynamic-clamp interface

    Science.gov (United States)

    Yang, Yang; Adowski, Timothy; Ramamurthy, Bina; Neef, Andreas

    2015-01-01

    The dynamic-clamp technique is highly useful for mimicking synaptic or voltage-gated conductances. However, its use remains rare in part because there are few systems, and they can be expensive and difficult for less-experienced programmers to implement. Furthermore, some conductances (such as sodium channels) can be quite rapid or may have complex voltage sensitivity, so high speeds are necessary. To address these issues, we have developed a new interface that uses a common personal computer platform with National Instruments data acquisition and WaveMetrics IGOR to provide a simple user interface. This dynamic clamp implements leak and linear synaptic conductances as well as a voltage-dependent synaptic conductance and kinetic channel conductances based on Hodgkin-Huxley or Markov models. The speed of the system can be assayed using a testing mode, and currently speeds of >100 kHz (10 μs per cycle) are achievable with short latency and little jitter. PMID:25632075

  9. High-speed analog CMOS pipeline system

    Science.gov (United States)

    Möschen, J.; Caldwell, A.; Hervas, L.; Hosticka, B.; Kötz, U.; Sippach, B.

    1990-03-01

    We present a switched-capacitor readout system for high speed analog signals. It consists of a 10 MHz four-channel delay-line chip with 58 samples per channel and a 12 channel buffer chip with a sampling rate of 1 MHz and a depth of nine samples. In addition the buffer chip includes an analog multiplexer with 25 inputs for the buffer channels and for 13 additional unbuffered signals. Both chips have been fabricated in CMOS-technology and will be used for the readout of the ZEUS high resolution calorimeter. The circuit and chip concept will be presented and some design optimizations will be discussed. Measurements from integrated prototypes will be given including some experimental data from irradiated chips.

  10. High-speed electrical motor evaluation

    Energy Technology Data Exchange (ETDEWEB)

    1989-02-03

    Under this task, MTI conducted a general review of state-of-the-art high-speed motors. The purpose of this review was to assess the operating parameters, limitations and performance of existing motor designs, and to establish commercial sources for a motor compatible with the requirements of the Brayton-cycle system. After the motor requirements were established, a list of motor types, manufacturers and designs capable of achieving the requisite performance was compiled. This list was based on an in-house evaluation of designs. Following the establishment of these options, a technical evaluation of the designs selected was conducted. In parallel with their evaluations, MTI focused on the establishment of commercial sources.

  11. HIGH SPEED KERR CELL FRAMING CAMERA

    Science.gov (United States)

    Goss, W.C.; Gilley, L.F.

    1964-01-01

    The present invention relates to a high speed camera utilizing a Kerr cell shutter and a novel optical delay system having no moving parts. The camera can selectively photograph at least 6 frames within 9 x 10/sup -8/ seconds during any such time interval of an occurring event. The invention utilizes particularly an optical system which views and transmits 6 images of an event to a multi-channeled optical delay relay system. The delay relay system has optical paths of successively increased length in whole multiples of the first channel optical path length, into which optical paths the 6 images are transmitted. The successively delayed images are accepted from the exit of the delay relay system by an optical image focusing means, which in turn directs the images into a Kerr cell shutter disposed to intercept the image paths. A camera is disposed to simultaneously view and record the 6 images during a single exposure of the Kerr cell shutter. (AEC)

  12. Network Based High Speed Product Innovation

    DEFF Research Database (Denmark)

    Lindgren, Peter

    In the first decade of the 21st century, New Product Development has undergone major changes in the way NPD is managed and organised. This is due to changes in technology, market demands, and in the competencies of companies. As a result NPD organised in different forms of networks is predicted...... to be of ever-increasing importance to many different kinds of companies. This happens at the same times as the share of new products of total turnover and earnings is increasing at unprecedented speed in many firms and industries. The latter results in the need for very fast innovation and product development...... - a need that can almost only be resolved by organising NPD in some form of network configuration. The work of Peter Lindgren is on several aspects of network based high speed product innovation and contributes to a descriptive understanding of this phenomenon as well as with normative theory on how NPD...

  13. High-speed ground transportation noise and vibration impact assessment.

    Science.gov (United States)

    2012-09-01

    This report is the second edition of a guidance manual originally issued in 2005, which presents procedures for predicting and assessing noise and vibration impacts of high-speed ground transportation projects. Projects involving high-speed trains us...

  14. High Speed Magnetostrictive MEMS Actuated Mirror Deflectors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The main goal of this proposal is to develop high speed magnetostrictive and MEMS actuators for rapidly deflecting or deforming mirrors. High speed, light-weight,...

  15. Potential scenarios of concern for high speed rail operations

    Science.gov (United States)

    2011-03-16

    Currently, multiple operating authorities are proposing the : introduction of high-speed rail service in the United States. : While high-speed rail service shares a number of basic : principles with conventional-speed rail service, the operational : ...

  16. South Carolina southeast high speed rail corridor improvement study

    Science.gov (United States)

    2001-02-01

    The Southeast Rail Corridor was originally designated as a high-speed corridor in Section 1010 of the Intermodal Surface Transportation Efficiency Act (ISTEA) of 1991. More specifically, it involved the high-speed grade-crossing improvement program o...

  17. High-speed and intercity passenger rail testing strategy.

    Science.gov (United States)

    2013-05-01

    This high-speed and intercity passenger rail (HSIPR) testing strategy addresses the requirements for testing of high-speed train sets and technology before introduction to the North American railroad system. The report documents the results of a surv...

  18. High Speed Magnetostrictive MEMS Actuated Mirror Deflectors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop high speed magnetostrictive and MEMS actuators for rapidly deflecting or deforming mirrors. High speed, light-weight, low voltage beam...

  19. Profile parameters of wheelset detection for high speed freight train

    Science.gov (United States)

    Yang, Kai; Ma, Li; Gao, Xiaorong; Wang, Li

    2012-04-01

    Because of freight train, in China, transports goods on railway freight line throughout the country, it does not depart from or return to engine shed during a long phase, thus we cannot monitor the quality of wheel set effectively. This paper provides a system which uses leaser and high speed camera, applies no-contact light section technology to get precise wheel set profile parameters. The paper employs clamping-track method to avoid complex railway ballast modification project. And detailed descript an improved image-tracking algorithm to extract central line from profile curve. For getting one pixel width and continuous line of the profile curve, uses local gray maximum points as direction control points to direct tracking direction. The results based on practical experiment show the system adapted to detection environment of high speed and high vibration, and it can effectively detect the wheelset geometric parameters with high accuracy. The system fills the gaps in wheel set detection for freight train in main line and has an enlightening function on monitoring the quality of wheel set.

  20. High-Speed Low-Jitter Frequency Multiplication in CMOS

    NARCIS (Netherlands)

    van de Beek, R.C.H.

    2004-01-01

    This thesis deals with high-speed Clock and Frequency Multiplication. The term `high-speedù applies to both the output and the reference frequency of the multiplier. Much emphasis is placed on analysis and optimization of the total timing inaccuracies, and on implementing a high-speed feedback

  1. Videokymography : High-speed line scanning of vocal fold vibration

    NARCIS (Netherlands)

    Svec, JG; Schutte, HK

    A digital technique for high-speed visualization of vibration, called videokymography, was developed and applied to the vocal folds. The system uses a modified video camera able to work in two modes: high-speed (nearly 8,000 images/s) and standard (50 images/s in CCIR norm). In the high-speed mode,

  2. High-Speed Interferometry Under Impacting Drops

    KAUST Repository

    Langley, Kenneth R.

    2017-08-31

    Over the last decade the rapid advances in high-speed video technology, have opened up to study many multi-phase fluid phenomena, which tend to occur most rapidly on the smallest length-scales. One of these is the entrapment of a small bubble under a drop impacting onto a solid surface. Here we have gone from simply observing the presence of the bubble to detailed imaging of the formation of a lubricating air-disc under the drop center and its subsequent contraction into the bubble. Imaging the full shape-evolution of the air-disc has required μm and sub-μs space and time resolutions. Time-resolved 200 ns interferometry with monochromatic light, has allowed us to follow individual fringes to obtain absolute air-layer thicknesses, based on the eventual contact with the solid. We can follow the evolution of the dimple shape as well as the compression of the gas. The improved imaging has also revealed new levels of detail, like the nature of the first contact which produces a ring of micro-bubbles, highlighting the influence of nanometric surface roughness. Finally, for impacts of ultra-viscous drops we see gliding on ~100 nm thick rarified gas layers, followed by extreme wetting at numerous random spots.

  3. High speed optical filtering using active resonant subwavelength gratings

    Science.gov (United States)

    Gin, A. V.; Kemme, S. A.; Boye, R. R.; Peters, D. W.; Ihlefeld, J. F.; Briggs, R. D.; Wendt, J. R.; Ellis, A. R.; Marshall, L. H.; Carter, T. R.; Hunker, J. D.; Samora, S.

    2010-02-01

    In this work, we describe the most recent progress towards the device modeling, fabrication, testing and system integration of active resonant subwavelength grating (RSG) devices. Passive RSG devices have been a subject of interest in subwavelength-structured surfaces (SWS) in recent years due to their narrow spectral response and high quality filtering performance. Modulating the bias voltage of interdigitated metal electrodes over an electrooptic thin film material enables the RSG components to act as actively tunable high-speed optical filters. The filter characteristics of the device can be engineered using the geometry of the device grating and underlying materials. Using electron beam lithography and specialized etch techniques, we have fabricated interdigitated metal electrodes on an insulating layer and BaTiO3 thin film on sapphire substrate. With bias voltages of up to 100V, spectral red shifts of several nanometers are measured, as well as significant changes in the reflected and transmitted signal intensities around the 1.55um wavelength. Due to their small size and lack of moving parts, these devices are attractive for high speed spectral sensing applications. We will discuss the most recent device testing results as well as comment on the system integration aspects of this project.

  4. High-Speed Data Recorder for Space, Geodesy, and Other High-Speed Recording Applications

    Science.gov (United States)

    Taveniku, Mikael

    2013-01-01

    A high-speed data recorder and replay equipment has been developed for reliable high-data-rate recording to disk media. It solves problems with slow or faulty disks, multiple disk insertions, high-altitude operation, reliable performance using COTS hardware, and long-term maintenance and upgrade path challenges. The current generation data recor - ders used within the VLBI community are aging, special-purpose machines that are both slow (do not meet today's requirements) and are very expensive to maintain and operate. Furthermore, they are not easily upgraded to take advantage of commercial technology development, and are not scalable to multiple 10s of Gbit/s data rates required by new applications. The innovation provides a softwaredefined, high-speed data recorder that is scalable with technology advances in the commercial space. It maximally utilizes current technologies without being locked to a particular hardware platform. The innovation also provides a cost-effective way of streaming large amounts of data from sensors to disk, enabling many applications to store raw sensor data and perform post and signal processing offline. This recording system will be applicable to many applications needing realworld, high-speed data collection, including electronic warfare, softwaredefined radar, signal history storage of multispectral sensors, development of autonomous vehicles, and more.

  5. High Speed/ Low Effluent Process for Ethanol

    Energy Technology Data Exchange (ETDEWEB)

    M. Clark Dale

    2006-10-30

    n this project, BPI demonstrated a new ethanol fermentation technology, termed the High Speed/ Low Effluent (HS/LE) process on both lab and large pilot scale as it would apply to wet mill and/or dry mill corn ethanol production. The HS/LE process allows very rapid fermentations, with 18 to 22% sugar syrups converted to 9 to 11% ethanol ‘beers’ in 6 to 12 hours using either a ‘consecutive batch’ or ‘continuous cascade’ implementation. This represents a 5 to 8X increase in fermentation speeds over conventional 72 hour batch fermentations which are the norm in the fuel ethanol industry today. The ‘consecutive batch’ technology was demonstrated on a large pilot scale (4,800 L) in a dry mill corn ethanol plant near Cedar Rapids, IA (Xethanol Biofuels). The pilot demonstrated that 12 hour fermentations can be accomplished on an industrial scale in a non-sterile industrial environment. Other objectives met in this project included development of a Low Energy (LE) Distillation process which reduces the energy requirements for distillation from about 14,000 BTU/gal steam ($0.126/gal with natural gas @ $9.00 MCF) to as low as 0.40 KW/gal electrical requirements ($0.022/gal with electricity @ $0.055/KWH). BPI also worked on the development of processes that would allow application of the HS/LE fermentation process to dry mill ethanol plants. A High-Value Corn ethanol plant concept was developed to produce 1) corn germ/oil, 2) corn bran, 3) ethanol, 4) zein protein, and 5) nutritional protein, giving multiple higher value products from the incoming corn stream.

  6. High speed coding for velocity by archerfish retinal ganglion cells

    Directory of Open Access Journals (Sweden)

    Kretschmer Viola

    2012-06-01

    Full Text Available Abstract Background Archerfish show very short behavioural latencies in response to falling prey. This raises the question, which response parameters of retinal ganglion cells to moving stimuli are best suited for fast coding of stimulus speed and direction. Results We compared stimulus reconstruction quality based on the ganglion cell response parameters latency, first interspike interval, and rate. For stimulus reconstruction of moving stimuli using latency was superior to using the other stimulus parameters. This was true for absolute latency, with respect to stimulus onset, as well as for relative latency, with respect to population response onset. Iteratively increasing the number of cells used for reconstruction decreased the calculated error close to zero. Conclusions Latency is the fastest response parameter available to the brain. Therefore, latency coding is best suited for high speed coding of moving objects. The quantitative data of this study are in good accordance with previously published behavioural response latencies.

  7. Dynamic Control of High-speed Train Following Operation

    Directory of Open Access Journals (Sweden)

    Deng Pan

    2014-08-01

    Full Text Available Both safety and efficiency should be considered in high-speed train following control. The real-time calculation of dynamic safety following distance is used by the following train to understand the quality of its own following behavior. A new velocity difference control law can help the following train to adjust its own behavior from a safe and efficient steady-following state to another one if the actual following distance is greater than the safe following distance. Meanwhile, the stopping control law would work for collision avoidance when the actual following distance is less than the safe following distance. The simulation shows that the dynamic control of actual inter-train distance can be well accomplished by the behavioral adjustment of the following train, and verifies the effectiveness and feasibility of our presented methods for train following control.

  8. High Speed Link Radiated Emission Reduction

    Science.gov (United States)

    Bisognin, P.; Pelissou, P.; Cissou, R.; Giniaux, M.; Vargas, O.

    2016-05-01

    To control the radiated emission of high-speed link and associated unit, the current approach is to implement overall harness shielding on cables bundles. This method is very efficient in the HF/ VHF (high frequency/ very high frequency) and UHF (ultra-high frequency) ranges when the overall harness shielding is properly bonded on EMC back-shell. Unfortunately, with the increasing frequency, the associated half wavelength matches with the size of Sub-D connector that is the case for the L band. Therefore, the unit connectors become the main source of interference emission. For the L-band and S-band, the current technology of EMC back-shell leaves thin aperture matched with the L band half wavelength and therefore, the shielding effectiveness is drastically reduced. In addition, overall harness shielding means significant increases of the harness mass.Airbus D&S Toulouse and Elancourt investigated a new solution to avoid the need of overall harness shielding. The objective is to procure EM (Electro-Magnetic) clean unit connected to cables bundles free of any overall harness shielding. The proposed solution is to implement EMC common mode filtering on signal interfaces directly on unit PCB as close as possible the unit connector.Airbus D&S Elancourt designed and manufactured eight mock-ups of LVDS (Low Voltage Differential Signaling) interface PCBs' with different solutions of filtering. After verification of the signal integrity, three mock-ups were retained (RC filter and two common mode choke coil) in addition to the reference one (without EMC filter).Airbus D&S Toulouse manufactured associated LVDS cable bundles and integrated the RX (Receiver) and TX (Transmitter) LVDS boards in shielded boxes.Then Airbus D&S performed radiated emission measurement of the LVDS links subassemblies (e.g. RX and TX boxes linked by LVDS cables) according to the standard test method. This paper presents the different tested solutions and main conclusions on the feasibility of such

  9. Water Containment Systems for Testing High-Speed Flywheels

    Science.gov (United States)

    Trase, Larry; Thompson, Dennis

    2006-01-01

    Water-filled containers are used as building blocks in a new generation of containment systems for testing high-speed flywheels. Such containment systems are needed to ensure safety by trapping high-speed debris in the event of centrifugal breakup or bearing failure. Traditional containment systems for testing flywheels consist mainly of thick steel rings. The effectiveness of this approach to shielding against high-speed debris was demonstrated in a series of tests.

  10. Chicago-St. Louis high speed rail plan

    Energy Technology Data Exchange (ETDEWEB)

    Stead, M.E.

    1994-12-31

    The Illinois Department of Transportation (IDOT), in cooperation with Amtrak, undertook the Chicago-St. Louis High Speed Rail Financial and Implementation Plan study in order to develop a realistic and achievable blueprint for implementation of high speed rail in the Chicago-St. Louis corridor. This report presents a summary of the Price Waterhouse Project Team`s analysis and the Financial and Implementation Plan for implementing high speed rail service in the Chicago-St. Louis corridor.

  11. High-speed rail-coming to America?

    Science.gov (United States)

    Cameron, David Ossian

    2009-01-01

    The United States lags many parts of the world when it comes to high-speed rail. But investing in high-speed rail could help us through current problems. Funds- $8 billion-in the economic stimulus package passed by Congress are designated for high-speed rail. Other funds in the pipeline total approximately $15.5 billion. High-speed rail can relieve congestion, free up national airspace, provide reliable transportation and positive economic development, create jobs, and is more energy efficient than other modes of travel.

  12. The high-speed train and its spatial effects

    OpenAIRE

    Javier Gutiérrez Puebla

    2004-01-01

    This paper analyses the high-speed train from a spatial point of view. The basic characteristics of this transportation mode,the evolution of high-speed networks in several countries and the building of a trans-European high-speed railway network are studied.The paper analyses also the process of space-time convergence and its consequences on competitivity and cohesion;the tunel effect;the impact of the high speed-train on transportation demand;and the impacts on the city.

  13. High Speed Running and Sprinting Profiles of Elite Soccer Players

    Directory of Open Access Journals (Sweden)

    Miñano-Espin Javier

    2017-08-01

    Full Text Available Real Madrid was named as the best club of the 20th century by the International Federation of Football History and Statistics. The aim of this study was to compare if players from Real Madrid covered shorter distances than players from the opposing team. One hundred and forty-nine matches including league, cup and UEFA Champions League matches played by the Real Madrid were monitored during the 2001-2002 to the 2006-2007 seasons. Data from both teams (Real Madrid and the opponent were recorded. Altogether, 2082 physical performance profiles were examined, 1052 from the Real Madrid and 1031 from the opposing team (Central Defenders (CD = 536, External Defenders (ED = 491, Central Midfielders (CM = 544, External Midfielders (EM = 233, and Forwards (F = 278. Match performance data were collected using a computerized multiple-camera tracking system (Amisco Pro®, Nice, France. A repeated measures analysis of variance (ANOVA was performed for distances covered at different intensities (sprinting (>24.0 km/h and high-speed running (21.1-24.0 km/h and the number of sprints (21.1-24.0 km/h and >24.0 km/h during games for each player sectioned under their positional roles. Players from Real Madrid covered shorter distances in high-speed running and sprint than players from the opposing team (p 0.01 from Real Madrid covered shorter distances in high-intensity running and sprint and performed less sprints than their counterparts. Finally, no differences were found in the high-intensity running and sprint distances performed by players from Real Madrid depending on the quality of the opposition.

  14. Total quality approach at ABB Atom Nuclear Fuel - winner of the Swedish quality award 1994

    Energy Technology Data Exchange (ETDEWEB)

    Moorlin, K.; Olsson, S. [ABB Atom AB, Vaesteraas (Sweden)

    1995-12-31

    ABB Atom Nuclear Fuel Division received the Swedish Quality Award 1994. The company has since many years a reputation for high product quality and a well implemented quality assurance system. Since some years a total quality approach is applied. For ABB Atom, total quality means continuous improvement of all business processes keeping the customer in focus. This paper elaborates on the improvement tools used at the ABB Atom Nuclear Fuel Division and gives some detailed information of the experience. (author) 6 figs.

  15. Cleveland-Columbus-Cincinnati high-speed rail study

    Science.gov (United States)

    2001-07-01

    In the past five years, the evaluation of different high-speed rail (HSR) studies in the Midwest has resulted in a realization that high speed rail, with speeds greater than 110 miles per hour, is too expensive in the short term to be implemented in ...

  16. Florida High Speed Rail Authority - 2003 report to the legislature

    Science.gov (United States)

    2003-01-01

    Since its last full report to the Legislature in January 2002, the Florida High Speed Rail Authority (FHSRA) has continued to fulfill the duties defined in the Florida High Speed Rail Authority Act, Section 341.8201 to 341.842, Florida Statutes. The ...

  17. Advancing high-speed rail policy in the United States.

    Science.gov (United States)

    2012-06-01

    This report builds on a review of international experience with high-speed rail projects to develop recommendations for a High-speed rail policy framework for the United States. The international review looked at the experience of Korea, Taiwan, Chin...

  18. Optical Systems for Ultra-High-Speed TDM Networking

    DEFF Research Database (Denmark)

    Galili, Michael; Hu, Hao; Mulvad, Hans Christian Hansen

    2014-01-01

    This paper discusses key results in the field of high speed optical networking with particular focus on packet-based systems. Schemes for optical packet labeling, packet switching and packet synchronization will be discussed, along with schemes for optical clock recovery, channel identification...... and detection of ultra-high-speed optical signals....

  19. Optical Systems for Ultra-High-Speed TDM Networking

    Directory of Open Access Journals (Sweden)

    Michael Galili

    2014-04-01

    Full Text Available This paper discusses key results in the field of high speed optical networking with particular focus on packet-based systems. Schemes for optical packet labeling, packet switching and packet synchronization will be discussed, along with schemes for optical clock recovery, channel identification and detection of ultra-high-speed optical signals.

  20. 14 CFR 23.253 - High speed characteristics.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false High speed characteristics. 23.253 Section... Requirements § 23.253 High speed characteristics. If a maximum operating speed VMO/MMO is established under § 23.1505(c), the following speed increase and recovery characteristics must be met: (a) Operating...

  1. Rounding Technique for High-Speed Digital Signal Processing

    Science.gov (United States)

    Wechsler, E. R.

    1983-01-01

    Arithmetic technique facilitates high-speed rounding of 2's complement binary data. Conventional rounding of 2's complement numbers presents problems in high-speed digital circuits. Proposed technique consists of truncating K + 1 bits then attaching bit in least significant position. Mean output error is zero, eliminating introducing voltage offset at input.

  2. Preparation of Sesquiterpenoids from Tussilago farfara L. by High-speed Counter-current Chromatography.

    Science.gov (United States)

    Cao, Kun; Xu, Yi; Zhao, Tian-Ming; Zhang, Qing

    2016-01-01

    Sesquiterpenoids, such as tussilagone, has effects of raising blood pressure, antiplatelet aggregation, and anti-inflammation activities, which is regarded as index compound for quality control of Tussilago farfara L. This study was aimed to obtain an effective method for fast isolation of sesquiterpenoids from T. farfara L. by high-speed counter-current chromatography (HSCCC). A solvent optimization method for HSCCC was presented, i.e., the separation factors of compounds after the K values of solvent system should be investigated. A ternary solvent system of n-hexane:methanol:water (5:8:2, v/v/v) was selected and applied for the HSCCC, and 56 mg of tussilagone (2) was isolated from T. farfara L., along with two other sesquiterpenoids 5.6 mg of 2,2-dimethyl-6-acetylchromanone (1) and 22 mg of 14-acetoxy-7 β-(3'-ethyl cis-crotonoyloxy)-lα-(2'-methylbutyryloxy)-notonipetranone (3) by HSCCC with high purities. Their chemical structures were elucidated by liquid chromatography-mass spectrometry and nuclear magnetic resonance experiments. These results offered an efficient strategy for preparation of potentially health-relevant phytochemicals from T. farfara L., which might be used for further chemical research and pharmacological studies by preparative HSCCC. The real separation efficiency has been verified by analytical HSCCC.A solvent optimization method for HSCCC was presented and applied to separate and prepare active compounds.A method for rapid and effective separation of target compound Tussilagone with high yield and purity from the flower buds of Tussilago farfara.Two other compounds 2,2-Dimethyl-6-acetylchromanone and 14-acetoxy-7β-(3'-ethyl cis-crotonoyloxy) -lα- (2'-methylbutyryloxy). notonipetranone hasbeen obtained with high purities from flower buds of Tussilago farfara. Abbreviations used: HSCCC: High-Speed Counter-Current Chromatography; LC-MS: Liquid Chromatograph-Mass Spectrometer; NMR: Nuclear Magnetic Resonance; TCM: Traditional Chinese

  3. High-speed scanning: an improved algorithm

    Science.gov (United States)

    Nachimuthu, A.; Hoang, Khoi

    1995-10-01

    In using machine vision for assessing an object's surface quality, many images are required to be processed in order to separate the good areas from the defective ones. Examples can be found in the leather hide grading process; in the inspection of garments/canvas on the production line; in the nesting of irregular shapes into a given surface... . The most common method of subtracting the total area from the sum of defective areas does not give an acceptable indication of how much of the `good' area can be used, particularly if the findings are to be used for the nesting of irregular shapes. This paper presents an image scanning technique which enables the estimation of useable areas within an inspected surface in terms of the user's definition, not the supplier's claims. That is, how much useable area the user can use, not the total good area as the supplier estimated. An important application of the developed technique is in the leather industry where the tanner (the supplier) and the footwear manufacturer (the user) are constantly locked in argument due to disputed quality standards of finished leather hide, which disrupts production schedules and wasted costs in re-grading, re- sorting... . The developed basic algorithm for area scanning of a digital image will be presented. The implementation of an improved scanning algorithm will be discussed in detail. The improved features include Boolean OR operations and many other innovative functions which aim at optimizing the scanning process in terms of computing time and the accurate estimation of useable areas.

  4. The use of high-speed imaging in education

    Science.gov (United States)

    Kleine, H.; McNamara, G.; Rayner, J.

    2017-02-01

    Recent improvements in camera technology and the associated improved access to high-speed camera equipment have made it possible to use high-speed imaging not only in a research environment but also specifically for educational purposes. This includes high-speed sequences that are created both with and for a target audience of students in high schools and universities. The primary goal is to engage students in scientific exploration by providing them with a tool that allows them to see and measure otherwise inaccessible phenomena. High-speed imaging has the potential to stimulate students' curiosity as the results are often surprising or may contradict initial assumptions. "Live" demonstrations in class or student- run experiments are highly suitable to have a profound influence on student learning. Another aspect is the production of high-speed images for demonstration purposes. While some of the approaches known from the application of high speed imaging in a research environment can simply be transferred, additional techniques must often be developed to make the results more easily accessible for the targeted audience. This paper describes a range of student-centered activities that can be undertaken which demonstrate how student engagement and learning can be enhanced through the use of high speed imaging using readily available technologies.

  5. Assessment of aggregate sources in Michigan for high speed railroad ballast.

    Science.gov (United States)

    2014-01-01

    MDOT purchased 135 miles of the Norfolk-Southern railroad in 2012 to upgrade for high speed rail travel : between Chicago and the Detroit area. An important part of the upgrade is to assess the current quality of : the ballast material and to determi...

  6. Place-making around high-speed railway stations in China

    NARCIS (Netherlands)

    Dai, G.

    2015-01-01

    The rapid expansion of the High-Speed Railway (HSR) network in China generates leapfrog urbanization on the urban periphery in the forms of ambitious blueprint plan around the mega hubs. Nevertheless, most of the station areas and spatial extension lack "place quality". The place-making process of

  7. High-speed optical measurement for the drumhead vibration

    Science.gov (United States)

    Zhang, Qican; Su, Xianyu

    2005-04-01

    In this paper, a high-speed optical measurement for the vibrating drumhead is presented and verified by experiment. A projected sinusoidal fringe pattern on the measured drumhead is dynamically deformed with the vibration of the membrane and grabbed by a high-speed camera. The shape deformation of the drumhead at each sampling instant can be recovered from this sequence of obtained fringe patterns. The vibration of the membrane of a Chinese drum has been measured with a high speed sampling rate (1,000 fps) and a standard deviation (0.075 mm). The restored vibration of the drumhead is also presented in an animation.

  8. Design and Analysis of a High Speed Carry Select Adder

    OpenAIRE

    Simarpreet Singh Chawla; Swapnil Aggarwal; Anshika; Nidhi Goel

    2015-01-01

    An optimal high-speed and low-power VLSI architecture requires an efficient arithmetic processing unit that is optimized for speed and power consumption. Adders are one of the widely used in digital integrated circuit and system design. High speed adder is the necessary component in a data path, e.g. Microprocessors and a Digital signal processor. The present paper proposes a novel high-speed adder by combining the advantages of Carry Look Ahead Adder (CLAA) and Carry Select Adder (CSA), devi...

  9. Design and Analysis of a High Speed Carry Select Adder

    OpenAIRE

    Simarpreet Singh Chawla; Swapnil Aggarwal; Anshika; Nidhi Goel

    2015-01-01

    An optimal high-speed and low-power VLSI architecture requires an efficient arithmetic processing unit that is optimized for speed and power consumption. Adders are one of the widely used in digital integrated circuit and system design.High speed adder is the necessary component in a data path, e.g. Microprocessors and a Digital signal processor. The present paper proposes a novel high-speed adder by combining the advantages of Carry Look Ahead Adder (CLAA) and Carry Select Adder (CSA), devis...

  10. The Paris - Strasbourg high-speed line; Hochgeschwindigkeitsstrecke Paris - Strassburg

    Energy Technology Data Exchange (ETDEWEB)

    Brux, G.

    2007-07-01

    On 10th June 2007, TGV high-speed trains operated by French state railways SNCF, and ICE high-speed trains of Deutsche Bahn, will commence operations of France's eastern highspeed line Paris - Strasbourg, running services from Paris to Luxembourg, Frankfurt am Main and Stuttgart, and also to Basel and Zurich. As from the start of the new timetable on 9th December 2007, the service will also extend to Munich. The new high-speed line will shorten rail travels on these connections by several hours. (orig.)

  11. Railroad Embankment Stabilization Demonstration for High-Speed Rail Corridors

    Science.gov (United States)

    2003-02-09

    The development of high-speed railroad corridors in the United States is being considered by Congress as a fuel efficient and economical alternative to air or highway passenger travel. The exisiting infrastructure is, in many ways, suitable for freig...

  12. Promoting intermodal connectivity at California's high-speed rail stations.

    Science.gov (United States)

    2015-07-01

    High-speed rail (HSR) has emerged as one of the most revolutionary and transformative transportation technologies, having a : profound impact on urban-regional accessibility and inter-city travel across Europe, Japan, and more recently China and othe...

  13. Florida High Speed Rail Authority - 2002 report to the legislature

    Science.gov (United States)

    2002-01-01

    This report addresses a legislative requirement that the Authority issue a report of its actions, findings and recommendations. Previous high speed ground transportation studies were reviewed as part of the preparation of this report. Independent ana...

  14. High-speed rail turnout literature review : final report.

    Science.gov (United States)

    2016-08-01

    High-speed rail (HSR) turnout design criteria generally address unbalanced lateral acceleration or cant deficiency (CD), cant deficiency change rate (CDCR), and entry and exit jerk. Various countries have adopted different design values for their HSR...

  15. Safety evaluation of high-speed rail bogie concepts.

    Science.gov (United States)

    2013-10-01

    The study defines the basic design concepts required to provide a safe, reliable, high-speed bogie for the next generation PRIIA passenger locomotive. The requirements and conditions for the U.S. market create unique design challenges that currently ...

  16. High-Speed-/-Hypersonic-Weapon-Development-Tool Integration

    National Research Council Canada - National Science Library

    Duchow, Erin M; Munson, Michael J; Alonge, Jr, Frank A

    2006-01-01

    Multiple tools exist to aid in the design and evaluation of high-speed weapons. This paper documents efforts to integrate several existing tools, including the Integrated Hypersonic Aeromechanics Tool (IHAT)1-7...

  17. High speed railway track dynamics models, algorithms and applications

    CERN Document Server

    Lei, Xiaoyan

    2017-01-01

    This book systematically summarizes the latest research findings on high-speed railway track dynamics, made by the author and his research team over the past decade. It explores cutting-edge issues concerning the basic theory of high-speed railways, covering the dynamic theories, models, algorithms and engineering applications of the high-speed train and track coupling system. Presenting original concepts, systematic theories and advanced algorithms, the book places great emphasis on the precision and completeness of its content. The chapters are interrelated yet largely self-contained, allowing readers to either read through the book as a whole or focus on specific topics. It also combines theories with practice to effectively introduce readers to the latest research findings and developments in high-speed railway track dynamics. It offers a valuable resource for researchers, postgraduates and engineers in the fields of civil engineering, transportation, highway & railway engineering.

  18. High-Speed Thermal Characterization of Cryogenic Flows Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Luna proposes to continue development on a high-speed fiber optic sensor and readout system for cryogenic temperature measurements in liquid oxygen (LOX) and liquid...

  19. Modern trends in designing high-speed trains

    National Research Council Canada - National Science Library

    Golubović, Snežana D; Rašuo, Boško P; Lučanin, Vojkan J

    2015-01-01

    Increased advantages of railway transportation systems over other types of transportation systems in the past sixty years have been a result of an intensive development of the new generations of high-speed trains...

  20. Application of Beyond Bound Decoding for High Speed Optical Communications

    DEFF Research Database (Denmark)

    Li, Bomin; Larsen, Knud J.; Vegas Olmos, Juan José

    2013-01-01

    This paper studies the application of beyond bound decoding method for high speed optical communications. This hard-decision decoding method outperforms traditional minimum distance decoding method, with a total net coding gain of 10.36 dB....

  1. Characterising argon-bomb balloons for high-speed photography

    CSIR Research Space (South Africa)

    Olivier, M

    2013-08-01

    Full Text Available -1 SABO 2013 TME Workshop Alkantpan Characterising Argon-bomb balloons for High-speed Photography M Olivier and FJ Mostert Landward Sciences, Defence Peace Safety and Security, CSIR, Meiring Naude Road, Pretoria, RSA. Abstract A...

  2. Engineering Data on Selected High Speed Passenger Trucks

    Science.gov (United States)

    1978-07-01

    The purpose of this project is to compile a list of high speed truck engineering parameters for characterization in dynamic performance modeling activities. Data tabulations are supplied for trucks from France, Germany, Italy, England, Japan, U.S.S.R...

  3. Next Generation Modeling Technology for High Speed Rotorcraft Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Recent R&D associated with designing high speed rotorcraft has been greatly hampered by a lack of test data and confidence in predictions for rotors operating...

  4. Next Generation Modeling Technology for High Speed Rotorcraft Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Development of a new generation of high speed rotorcraft has been hampered by both an absence of strong predictive methods for rotors operating at very high advance...

  5. High-speed optical signal processing using time lenses

    DEFF Research Database (Denmark)

    Galili, Michael; Hu, Hao; Guan, Pengyu

    2015-01-01

    This paper will discuss time lenses and their broad range of applications. A number of recent demonstrations of complex high-speed optical signal processing using time lenses will be outlined with focus on the operating principle.......This paper will discuss time lenses and their broad range of applications. A number of recent demonstrations of complex high-speed optical signal processing using time lenses will be outlined with focus on the operating principle....

  6. Minimum Plate Thickness in High-Speed Craft

    DEFF Research Database (Denmark)

    Pedersen, Preben Terndrup; Zhang, Shengming

    1998-01-01

    The minimum plate thickness requirements specified by the classification societies for high-speed craft are supposed to ensure adequate resistance to impact loads such as collision with floating objects and objects falling on the deck. The paper presents analytical methods of describing such impact...... phenomena and proposes performance requirements instead of thickness requirements for hull panels in high-speed craft made of different building materials....

  7. From periphery to core: economic adjustments to high speed rail

    OpenAIRE

    Ahlfeldt, Gabriel M.; Feddersen, Arne

    2010-01-01

    This paper presents evidence that high speed rail systems, by bringing economic agents closer together, sustainably promote economic activity within regions that enjoy an increase in accessibility. Our results on the one hand confirm expectations that have led to huge public investments into high speed rail all over the world. On the other hand, they confirm theoretical predictions arising from a consolidate body of (New) Economic Geography literature taking a positive, man-made and reproduci...

  8. HIGH SPEED SHIP TOTAL RESISTANCE CALCULATION (AN EMPIRICAL STUDY

    Directory of Open Access Journals (Sweden)

    Dimas Endro W

    2014-02-01

    Full Text Available High speed design studies became very intense studies. One of the subject that can be explore is obtaining total resistace. A high speed ship has four stages of condition when she operates. Starting from low speed condition until developent of dinamics lift force. These four states that happened on high speed ship when she cuise on her operational speed, make a specific consideration on predicting her total resistance.  As high speed ship become more widely built and operate in Indonesia, the study of the state of art of high speed vessel  especially for obtaining total resistance has became more challenging In this paper is foccused on proposing an applicative methods for high speed resistance calculation based on savitsky method. Result which obtained form empirical study is compared to numerical software. Result of this study shows that there are no significant differences between empirical method and result form software application. Considering of sea margin would be effective to made the empirical method would be applicable. There is a 128,0812 KN of total resistance using empirical method, by considering sea margine factor, and a 128,512 KN of total resistance resulted form software calculation

  9. The influence of grinding parameters of the surface layer of low-alloyed high-speed steel

    Directory of Open Access Journals (Sweden)

    J. Jaworski

    2009-01-01

    Full Text Available The measurements of machining forces, temperature and quality parameters of surface layer and ratio of grinding property of selected grades of low-alloyed high speed steels were carried out. It was shown that improvement of grinding properties of low-alloyed high-speed steels is possible on the way of efficient selection of their chemical constitution, which is confirmed by results of researches of grinding properties of SW2M5 steel

  10. Generation of Transgenic Xenopus laevis: I. High-Speed Preparation of Egg Extracts.

    Science.gov (United States)

    Ishibashi, Shoko; Kroll, Kristin L; Amaya, Enrique

    2007-09-01

    INTRODUCTIONManipulating genes specifically during later stages of amphibian embryonic development requires fine control over the time and place of expression. These protocols describe an efficient nuclear-transplantation-based method of transgenesis developed for Xenopus laevis. The approach enables stable expression of cloned gene products in Xenopus embryos. Because the transgene integrates into the genome prior to fertilization, the resulting embryos are not chimeric, eliminating the need to breed to the next generation to obtain nonmosaic transgenic animals. The procedure is based on restriction-enzyme-mediated integration (REMI) and can be divided into three parts: (I) high-speed preparation of egg extracts, (II) sperm nuclei preparation, and (III) nuclear transplantation. This protocol describes the method for the high-speed preparation of egg extracts. Briefly, a crude, cytostatic factor (CSF)-arrested egg extract (i.e., cytoplasm arrested in meiotic metaphase) is prepared. These extracts are driven into the interphase stage of the cell cycle by addition of calcium, and high-speed centrifugation is performed to obtain a purer cytoplasmic fraction. This fraction promotes swelling of sperm nuclei, but does not promote DNA replication. By adding the egg extract to the reaction, the sperm chromatin partially decondenses, facilitating integration of plasmid DNA into the genome.

  11. Modern trends in designing high-speed trains

    Directory of Open Access Journals (Sweden)

    Golubović Snežana D.

    2015-01-01

    Full Text Available Increased advantages of railway transportation systems over other types of transportation systems in the past sixty years have been a result of an intensive development of the new generations of high-speed trains. Not only do these types of trains comply with the need for increased speed of transportation and make the duration of the journey shorter, but they also meet the demands for increased reliability, safety and direct application of energy efficiency to the transportation system itself. Along with increased train speed, the motion resistance is increased as well, whereby at speeds over 200 km/h the proportion of air resistance becomes the most dominant member. One of the most efficient measures for reducing air resistance, as well as other negative consequences of high-speed motion, is the development of the aerodynamic shape of the train. This paper presents some construction solutions that affect the aerodynamic properties of high-speed trains, first and foremost, the nose shape, as well as the similarities and differences of individual subsystems necessary for the functioning of modern high-speed rail systems. We analysed two approaches to solving the problem of the aerodynamic shape of the train and the appropriate infrastructure using the examples of Japan and France. Two models of high-speed trains, Shinkansen (Japan and TGV, i.e. AGV (France, have been discussed.

  12. Assessment of rural soundscapes with high-speed train noise.

    Science.gov (United States)

    Lee, Pyoung Jik; Hong, Joo Young; Jeon, Jin Yong

    2014-06-01

    In the present study, rural soundscapes with high-speed train noise were assessed through laboratory experiments. A total of ten sites with varying landscape metrics were chosen for audio-visual recording. The acoustical characteristics of the high-speed train noise were analyzed using various noise level indices. Landscape metrics such as the percentage of natural features (NF) and Shannon's diversity index (SHDI) were adopted to evaluate the landscape features of the ten sites. Laboratory experiments were then performed with 20 well-trained listeners to investigate the perception of high-speed train noise in rural areas. The experiments consisted of three parts: 1) visual-only condition, 2) audio-only condition, and 3) combined audio-visual condition. The results showed that subjects' preference for visual images was significantly related to NF, the number of land types, and the A-weighted equivalent sound pressure level (LAeq). In addition, the visual images significantly influenced the noise annoyance, and LAeq and NF were the dominant factors affecting the annoyance from high-speed train noise in the combined audio-visual condition. In addition, Zwicker's loudness (N) was highly correlated with the annoyance from high-speed train noise in both the audio-only and audio-visual conditions. © 2013.

  13. Parallelism and pipelining in high-speed digital simulators

    Science.gov (United States)

    Karplus, W. J.

    1983-01-01

    The attainment of high computing speed as measured by the computational throughput is seen as one of the most challenging requirements. It is noted that high speed is cardinal in several distinct classes of applications. These classes are then discussed; they comprise (1) the real-time simulation of dynamic systems , (2) distributed parameter systems, and (3) mixed lumped and distributed systems. From the 1950s on, the quest for high speed in digital simulators concentrated on overcoming the limitations imposed by the so-called von Neumann bottleneck. Two major architectural approaches have made ig possible to circumvent this bottleneck and attain high speeds. These are pipelining and parallelism. Supercomputers, peripheral array processors, and microcomputer networks are then discussed.

  14. Structural dynamics of single molecules studied with high-speed atomic force microscopy.

    Science.gov (United States)

    Henderson, Robert M

    2015-03-01

    Atomic force microscopy (AFM) is a scanning probe technique that has been in use in biology to generate sub-nanometre resolution images in near-physiological environments for over 20 years. Most AFM work uses instruments that take several minutes to generate each image but instruments that can produce real-time images have recently become available and there is now a reasonable body of work published on this technique. The importance of this high-speed AFM is that dynamic events of individual macromolecules can be studied. This review focuses on specific examples that demonstrate the potential of the technique. It covers four areas in which high-speed AFM has been used to elucidate mechanisms that are either unstudied or not clearly understood. These areas are: protein-protein interactions; DNA-protein interactions; quantification of biological processes; the use of DNA origami scaffolds as nanostructures to build and study dynamic molecular events. High-speed AFM shares advantages and disadvantages with conventional AFM, but it compares well in quality of data generated and in ease of use with other currently available techniques of high-resolution biological imaging. As the instruments become more widespread, the value of high-speed AFM and its potential to complement other techniques in molecular and cell biology should become more appreciated.

  15. High-speed imaging using 3CCD camera and multi-color LED flashes

    Science.gov (United States)

    Hijazi, Ala; Friedl, Alexander; Cierpka, Christian; Kähler, Christian; Madhavan, Vis

    2017-11-01

    This paper demonstrates the possibility of capturing full-resolution, high-speed image sequences using a regular 3CCD color camera in conjunction with high-power light emitting diodes of three different colors. This is achieved using a novel approach, referred to as spectral-shuttering, where a high-speed image sequence is captured using short duration light pulses of different colors that are sent consecutively in very close succession. The work presented in this paper demonstrates the feasibility of configuring a high-speed camera system using low cost and readily available off-the-shelf components. This camera can be used for recording six-frame sequences at frame rates up to 20 kHz or three-frame sequences at even higher frame rates. Both color crosstalk and spatial matching between the different channels of the camera are found to be within acceptable limits. A small amount of magnification difference between the different channels is found and a simple calibration procedure for correcting the images is introduced. The images captured using the approach described here are of good quality to be used for obtaining full-field quantitative information using techniques such as digital image correlation and particle image velocimetry. A sequence of six high-speed images of a bubble splash recorded at 400 Hz is presented as a demonstration.

  16. High-speed modulation of vertical cavity surface emitting lasers

    Energy Technology Data Exchange (ETDEWEB)

    Hietala, V.M.; Armendariz, M.G.; Choquette, K.D.; Lear, K.L.

    1998-03-01

    This report summarizes work on the development of high-speed vertical cavity surface emitting lasers (VCSELs) for multi-gigabit per second optical data communications applications (LDRD case number 3506.010). The program resulted in VCSELs that operate with an electrical bandwidth of 20 GHz along with a simultaneous conversion efficiency (DC to light) of about 20%. To achieve the large electrical bandwidth, conventional VCSELs were appropriately modified to reduce electrical parasitics and adapted for microwave probing for high-speed operation.

  17. Method for high-speed Manchester encoded optical signal generation

    DEFF Research Database (Denmark)

    Zhang, Jianfeng; Chi, Nan; Holm-Nielsen, Pablo Villanueva

    2004-01-01

    A method for high-speed Manchester encoded optical signal generation is proposed and demonstrated with a specially configured electro-optical modulator. A 10 Gb/s Manchester encoded optical signal was generated, and its bit-error-ratio (BER) performance was evaluated.......A method for high-speed Manchester encoded optical signal generation is proposed and demonstrated with a specially configured electro-optical modulator. A 10 Gb/s Manchester encoded optical signal was generated, and its bit-error-ratio (BER) performance was evaluated....

  18. Secondary Containment Design for a High Speed Centrifuge

    Energy Technology Data Exchange (ETDEWEB)

    Snyder, K.W.

    1999-03-01

    Secondary containment for high speed rotating machinery, such as a centrifuge, is extremely important for operating personnel safety. Containment techniques can be very costly, ungainly and time consuming to construct. A novel containment concept is introduced which is fabricated out of modular sections of polycarbonate glazed into a Unistrut metal frame. A containment study for a high speed centrifuge is performed which includes the development of parameters for secondary containment design. The Unistrut/polycarbonate shield framing concept is presented including design details and proof testing procedures. The economical fabrication and modularity of the design indicates a usefulness for this shielding system in a wide variety of containment scenarios.

  19. Quality management in BNCT at a nuclear research reactor.

    Science.gov (United States)

    Sauerwein, Wolfgang; Moss, Raymond; Stecher-Rasmussen, Finn; Rassow, Jürgen; Wittig, Andrea

    2011-12-01

    Each medical intervention must be performed respecting Health Protection directives, with special attention to Quality Assurance (QA) and Quality Control (QC). This is the basis of safe and reliable treatments. BNCT must apply QA programs as required for performance and safety in (conventional) radiotherapy facilities, including regular testing of performance characteristics (QC). Furthermore, the well-established Quality Management (QM) system of the nuclear reactor used has to be followed. Organization of these complex QM procedures is offered by the international standard ISO 9001:2008. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Lighting Systems For High Speed Photography Applying Special Metal Halide Discharge Lamps

    Science.gov (United States)

    Gillum, Keith M.; Steuernagel, K. H.

    1983-03-01

    High speed photography requires, in addition to a good color quality of the light source, a very high level of illumination. Conventional lighting systems utilizing incandescent lamps or other metal halide lamp types has inherent problems of inefficient light output or poor color quality. Heat generated by incandescent lamps and the power these sources require drive up operating and installation costs. A most economical and practical solution was devised by using the metal halide discharge lamp developed by OSRAM, GmbH of Munich, West Germany. This lamp trade marked the HMITM Metallogen was primarily developed for the needs of the television and motion picture film industry. Due to their high efficiency and other consistent operating qualities these lamps also fulfill the needs of high speed photography, e.g. in crash test facilities, when special engineering activities are carried out. The OSRAM HMITM lamp is an AC discharge metal halide lamp with rare earth additives to increase both the efficiency and light output qualities. Since the lamp is an AC source, a special method had to be developed to overcome the strobing effect, which is normal for AC lamps given their modulated light output, when used with high speed cameras, (e.g. with >1000 fps). This method is based on an increased frequency for the lamp supply voltage coupled with a mix of the light output achieved using a multiphase mains power supply. First developed in 1977, this system using the OSRAM HMITM lamps was installed in a crash test facility of a major automotive manufacturer in West Germany. The design resulted in the best lighting and performance ever experienced. Since that time several other motor companies have made use of this breakthrough. Industrial and scientific users are now considering additional applications use of this advanced high speed lighting system.

  1. Preparation of sesquiterpenoids from Tussilago farfara L. by high-speed counter-current chromatography

    OpenAIRE

    Kun Cao; Yi Xu; Tian-Ming Zhao; Qing Zhang

    2016-01-01

    Background: Sesquiterpenoids, such as tussilagone, has effects of raising blood pressure, antiplatelet aggregation, and anti-inflammation activities, which is regarded as index compound for quality control of Tussilago farfara L. Objective: This study was aimed to obtain an effective method for fast isolation of sesquiterpenoids from T. farfara L. by high-speed counter-current chromatography (HSCCC). Materials and Methods: A solvent optimization method for HSCCC was presented, i.e., the separ...

  2. Recent Advances in Ultra-High-Speed Optical Signal Processing

    DEFF Research Database (Denmark)

    Mulvad, Hans Christian Hansen; Palushani, Evarist; Hu, Hao

    2012-01-01

    We review recent advances in the optical signal processing of ultra-high-speed serial data signals up to 1.28 Tbit/s, with focus on applications of time-domain optical Fourier transformation. Experimental methods for the generation of symbol rates up to 1.28 Tbaud are also described....

  3. A high-speed interconnect network using ternary logic

    DEFF Research Database (Denmark)

    Madsen, Jens Kargaard; Long, S. I.

    1995-01-01

    This paper describes the design and implementation of a high-speed interconnect network (ICN) for a multiprocessor system using ternary logic. By using ternary logic and a fast point-to-point communication technique called STARI (Self-Timed At Receiver's Input), the communication between...

  4. High-tech maintenance for high-speed trains

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, Javier Rutz [Nertus Mantenimiento Ferroviario, S.A., Madrid (Spain); Hofmann, Manfred [Siemens AG, Erlangen (Germany). Mobility Div., Integrated Services

    2011-03-15

    Reliable, punctual trains cannot do without professional maintenance. Nertus S.A., a joint subsidiary of Siemens and Renfe, is responsible for providing precisely this for the Spanish high-speed train, Velaro E (AVE S103), which operates between Madrid and Barcelona. (orig.)

  5. High Speed Rail (HSR) in the United States

    Science.gov (United States)

    2009-12-08

    Magnetic Levitation (Maglev) ...............................................................................................5 High Speed Rail In...conventional steel wheel on steel rail technology, or magnetic levitation (in which superconducting magnets levitate a train above a guide rail...transported.14 Magnetic Levitation (Maglev) Maglev train technology was developed in the United States in the 1960s. It uses electromagnets to suspend

  6. Visualization of Projectile Flying at High Speed in Dusty Atmosphere

    Science.gov (United States)

    Masaki, Chihiro; Watanabe, Yasumasa; Suzuki, Kojiro

    2017-10-01

    Considering a spacecraft that encounters particle-laden environment, such as dust particles flying up over the regolith by the jet of the landing thruster, high-speed flight of a projectile in such environment was experimentally simulated by using the ballistic range. At high-speed collision of particles on the projectile surface, they may be reflected with cracking into smaller pieces. On the other hand, the projectile surface will be damaged by the collision. To obtain the fundamental characteristics of such complicated phenomena, a projectile was launched at the velocity up to 400 m/s and the collective behaviour of particles around projectile was observed by the high-speed camera. To eliminate the effect of the gas-particle interaction and to focus on only the effect of the interaction between the particles and the projectile's surface, the test chamber pressure was evacuated down to 30 Pa. The particles about 400μm diameter were scattered and formed a sheet of particles in the test chamber by using two-dimensional funnel with a narrow slit. The projectile was launched into the particle sheet in the tangential direction, and the high-speed camera captured both projectile and particle motions. From the movie, the interaction between the projectile and particle sheet was clarified.

  7. Extremely high-speed imaging based on tubeless technology

    Science.gov (United States)

    Li, Jingzhen

    2008-11-01

    This contribution focuses on the tubeless imaging, the extreme-high speed imaging. A detail discussion is presented on how and why to make them, which would be the most important in the high speed imaging field in the future. Tubeless extreme-high speed imaging can not only be used to observe the transient processes like collision, detonating, and high voltage discharge, but also to research the processes like disintegration and transfer of phonon and exacton in solid, photosynthesis primitive reaction, and electron dynamics inside atom shell. Its imaging frequency is about 107~1015fps. For this kind of imaging, the mechanism of how forming both high speed and framing would better make fine use of the light speed, the light parallelism, the parameters of light wave such as its amplitude, phase, polarization and wave length, and even quantum characteristics of photons. In the cascade connection system of electromagnetic wave and particle wave, it is able to simultaneously realize high level both the temporal resolution and the spatial resolution, and it would be possible to break through the limit of the Heisenberg uncertainty correlation of the optical frequency band.

  8. Time-interleaved high-speed D/A converters

    NARCIS (Netherlands)

    Olieman, E.

    2016-01-01

    This thesis is on power efficient very high-speed digital-to-analog converters (DACs) in CMOS technology, intended to generate signals from DC to RF. Components in RF signal chains are nowadays often moved from the analog domain to the digital domain. This allows for more flexibility and better

  9. Bottom Raking Damage to High-Speed Craft

    DEFF Research Database (Denmark)

    Simonsen, Bo Cerup

    1998-01-01

    This paper presents a comparative study of the raking damage to high speed craft (HSC) and conventional ships. The analysis is based on a detailed theoretical model for the raking resistance of an assembled ship bottom structure and on the idea that the impact conditions for various ship types have...

  10. Research notes : high-speed rail survey results.

    Science.gov (United States)

    2010-08-01

    The survey was conducted from April 2010 to June 2010 using both a print and a web version with identical questions. The print version of the survey was distributed at open house meetings on high-speed rail held in Eugene, Junction City, Albany, Sale...

  11. The impact of high speed rail on airport competition

    NARCIS (Netherlands)

    Terpstra, I.; Lijesen, M.G.

    2015-01-01

    We study the effects of introducing a high speed train connection on competition between airports, focusing on the new HST-link between Amsterdam and Brussels. We conduct a detailed analysis regarding the airport choice of passengers living in the Netherlands, Belgium, Luxembourg, Northern France

  12. On-line high-speed rail defect detection.

    Science.gov (United States)

    2004-10-01

    This report presents the results of phase 2 of the project On-line high-speed rail defect detection aimed at improving the reliability and the speed of current defect detection in rails. Ultrasonic guided waves, traveling in the rail running di...

  13. High Speed and Wide Bandwidth Delta-Sigma ADCs

    NARCIS (Netherlands)

    Bolatkale, M.

    2013-01-01

    This thesis describes the theory, design and implementation of a high-speed, high-performance continuous-time delta-sigma (CT??) ADC for applications such as medical imaging, high-definition video processing, and wireline and wireless communications. In order to achieve a GHz clocking speed, this

  14. High-Speed Low Power Design in CMOS

    DEFF Research Database (Denmark)

    Ghani, Arfan; Usmani, S. H.; Stassen, Flemming

    2004-01-01

    Static CMOS design displays benefits such as low power consumption, dominated by dynamic power consumption. In contrast, MOS Current Mode Logic (MCML) displays static rather than dynamic power consumption. High-speed low-power design is one of the many application areas in VLSI that require...

  15. Tactile shoe inlays for high speed pressure monitoring

    DEFF Research Database (Denmark)

    Drimus, Alin; Mátéfi-Tempfli, Stefan

    2015-01-01

    pressure sensitive cells and the use of high speed electronics and multiplexing algorithms provides frame rates of 100 Hz. The sensors tolerate overloads while showing a consistent output. The developed prototypes show a high potential not only for robotics, but also for use in sensorised human prosthetics....

  16. High-speed photodiodes in standard CMOS technology

    NARCIS (Netherlands)

    Radovanovic, S.

    2004-01-01

    This thesis describes high-speed photodiodes in standard CMOS technology which allow monolithic integration of optical receivers for short-haul communication. The electronics for (multiple users) long-haul communication is very expensive (InP, GaAs), but the usage is justified by the large number of

  17. Optimization and performance of a high-speed plasma position ...

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 62; Issue 1. Optimization and performance of a high-speed plasma position digital control system. M Emami A R Babazadeh H Rasouli. Research Articles Volume 62 Issue 1 January 2004 pp 53-60 ...

  18. Faster than "g", Revisited with High-Speed Imaging

    Science.gov (United States)

    Vollmer, Michael; Mollmann, Klaus-Peter

    2012-01-01

    The introduction of modern high-speed cameras in physics teaching provides a tool not only for easy visualization, but also for quantitative analysis of many simple though fast occurring phenomena. As an example, we present a very well-known demonstration experiment--sometimes also discussed in the context of falling chimneys--which is commonly…

  19. 14 CFR 25.253 - High-speed characteristics.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false High-speed characteristics. 25.253 Section...-speed characteristics. (a) Speed increase and recovery characteristics. The following speed increase and recovery characteristics must be met: (1) Operating conditions and characteristics likely to cause...

  20. High speed flow cytometric separation of viable cells

    Science.gov (United States)

    Sasaki, Dennis T.; Van den Engh, Gerrit J.; Buckie, Anne-Marie

    1995-01-01

    Hematopoietic cell populations are separated to provide cell sets and subsets as viable cells with high purity and high yields, based on the number of original cells present in the mixture. High-speed flow cytometry is employed using light characteristics of the cells to separate the cells, where high flow speeds are used to reduce the sorting time.

  1. Optimization and performance of a high-speed plasma position ...

    Indian Academy of Sciences (India)

    a time domain of the order of few milliseconds. In order to achieve maximum performance it is essential to optimize the control system. In this paper plasma position measurement and the details of implementing high-speed PID controllers based on a TMS320c25 digital signal processor along with the system optimization ...

  2. High-speed T-38A landing gear extension loads

    Science.gov (United States)

    Schmitt, A. L.

    1980-01-01

    Testing of T-38A landing gear extension at high speed and high altitude is described. The mechanisms are shown together with peak hydraulic pressure data during landing gear deployment with active and inactive strut door flaps. Results of strain gage measurements of stress on various structural members are included.

  3. Parallel and distributed processing in high speed traffic monitoring

    NARCIS (Netherlands)

    Cristea, Mihai Lucian

    2008-01-01

    This thesis presents a parallel and distributed approach for the purpose of processing network traffic at high speeds. The proposed architecture provides the processing power required to run one or more traffic processing applications at line rates by means of processing full packets at

  4. Soliton-based ultra-high speed optical communications

    Indian Academy of Sciences (India)

    All these facts are the outcome of research on optical solitons in fibers in spite of the fact that the commonly used RZ format is not always called a soliton format. The overview presented here attempts to incorporate the role of soliton-based communications research in present day ultra-high speed communications.

  5. A High-Speed Train Operation Plan Inspection Simulation Model

    Directory of Open Access Journals (Sweden)

    Yang Rui

    2018-01-01

    Full Text Available We developed a train operation simulation tool to inspect a train operation plan. In applying an improved Petri Net, the train was regarded as a token, and the line and station were regarded as places, respectively, in accordance with the high-speed train operation characteristics and network function. Location change and running information transfer of the high-speed train were realized by customizing a variety of transitions. The model was built based on the concept of component combination, considering the random disturbance in the process of train running. The simulation framework can be generated quickly and the system operation can be completed according to the different test requirements and the required network data. We tested the simulation tool when used for the real-world Wuhan to Guangzhou high-speed line. The results showed that the proposed model can be developed, the simulation results basically coincide with the objective reality, and it can not only test the feasibility of the high-speed train operation plan, but also be used as a support model to develop the simulation platform with more capabilities.

  6. A current review of high speed railways experiences in Asia and Europe

    Science.gov (United States)

    Purba, Aleksander; Nakamura, Fumihiko; Dwsbu, Chatarina Niken; Jafri, Muhammad; Pratomo, Priyo

    2017-11-01

    High-Speed Railways (HSR) is currently regarded as one of the most significant technological breakthroughs in passenger transportation developed in the second half of the 20th century. At the beginning of 2008, there were about 10,000 kilometers of new high-speed lines in operation in Asia and Europe regions to provide high-speed services to passengers willing to pay for lower travel time and quality improvement in rail transport. And since 2010, HSR itself has received a great deal of attention in Indonesia. Some transportation analysts contend that Indonesia, particularly Java and Sumatera islands need a high-speed rail network to be economically competitive with countries in Asia and Europe. On April 2016, Indonesia-China consortium Kereta Cepat Indonesia China (KCIC) signed an engineering, procurement, and construction contract to build the HSR with a consortium of seven companies called the High-Speed Railway Contractor Consortium. The HSR is expected to debut by May 2019, offering a 45-minute trip covering a roughly 150 km route. However, building, maintaining and operating HSR line is expensive; it involves a significant amount of sunk costs and may substantially compromise both the transport policy of a country and the development of its transport sector for decades. The main objective of this paper is to discuss some characteristics of the HSR services from an economic viewpoint, while simultaneously developing an empirical framework that should help us to understand, in more detail, the factors determining the success of the HSR as transport alternative based on current experiences of selected Asian and European countries.

  7. Liver phantom for quality control and training in nuclear medicine

    Science.gov (United States)

    Lima Ferreira, Fernanda Carla; Souza, Divanizia do Nascimento

    2011-10-01

    In nuclear medicine, liver scintigraphy aims to verify organ function based on the radionuclide concentration in the liver and bile flow and is also used to detect tumors. Therefore it is necessary to perform quality control tests in the gamma camera before running the exam to prevent false results. Quality control tests of the gamma camera should thus be performed before running the exam to prevent false results. Such tests generally use radioactive material inside phantoms for evaluation of gamma camera parameters in quality control procedures. Phantoms can also be useful for training doctors and technicians in nuclear medicine procedures. The phantom proposed here has artifacts that simulate nodules; it may take on different quantities, locations and sizes and it may also be mounted without the introduction of nodules. Thus, its images may show hot or cold nodules or no nodules. The phantom consists of acrylic plates hollowed out in the centre, with the geometry of an adult liver. Images for analyses of simulated liver scintigraphy were obtained with the detector device at 5 cm from the anterior surface of the phantom. These simulations showed that this object is suitable for quality control in nuclear medicine because it was possible to visualize artifacts larger than 7.9 mm using a 256×256 matrix and 1000 kcpm. The phantom constructed in this work will also be useful for training practitioners and technicians in order to prevent patients from repeat testing caused by error during examinations.

  8. Impact of Nuclear Laboratory Personnel Credentials & Continuing Education on Nuclear Cardiology Laboratory Quality Operations.

    Science.gov (United States)

    Malhotra, Saurabh; Sobieraj, Diana M; Mann, April; Parker, Matthew W

    2017-12-22

    Background/Objectives: The specific credentials and continuing education (CME/CE) of nuclear cardiology laboratory medical and technical staff are important factors in the delivery of quality imaging services that have not been systematically evaluated. Methods: Nuclear cardiology accreditation application data from the Intersocietal Accreditation Commission (IAC) was used to characterize facilities performing myocardial perfusion imaging by setting, size, previous accreditation and credentials of the medical and technical staff. Credentials and CME/CE were compared against initial accreditation decisions (grant or delay) using multivariable logistic regression. Results: Complete data were available for 1913 nuclear cardiology laboratories from 2011-2014. Laboratories with initial positive accreditation decisions had a greater prevalence of Certification Board in Nuclear Cardiology (CBNC) certified medical directors and specialty credentialed technical directors. Certification and credentials of the medical and technical directors, respectively, staff CME/CE compliance, and assistance of a consultant with the application were positively associated with accreditation decisions. Conclusion: Nuclear cardiology laboratories directed by CBNC-certified physicians and NCT- or PET-credentialed technologists were less likely to receive delay decisions for MPI. CME/CE compliance of both the medical and technical directors was associated with accreditation decision. Medical and technical directors' years of experience were not associated with accreditation decision. Copyright © 2017 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  9. Holistic design in high-speed optical interconnects

    Science.gov (United States)

    Saeedi, Saman

    receiver sensitivity is measured to be -8.8dBm at 32Gb/s. Next, on the optical transmitter side, three new techniques will be presented. First one is a differential ring modulator that breaks the optical bandwidth/quality factor trade-off known to limit the speed of high-Q ring modulators. This structure maintains a constant energy in the ring to avoid pattern-dependent power droop. As a first proof of concept, a prototype has been fabricated and measured up to 10Gb/s. The second technique is thermal stabilization of micro-ring resonator modulators through direct measurement of temperature using a monolithic PTAT temperature sensor. The measured temperature is used in a feedback loop to adjust the thermal tuner of the ring. A prototype is fabricated and a closed-loop feedback system is demonstrated to operate at 20Gb/s in the presence of temperature fluctuations. The third technique is a switched-capacitor based pre-emphasis technique designed to extend the inherently low bandwidth of carrier injection micro-ring modulators. A measured prototype of the optical transmitter achieves energy efficiency of 342fJ/bit at 10Gb/s and the wavelength stabilization circuit based on the monolithic PTAT sensor consumes 0.29mW. Lastly, a first-order frequency synthesizer that is suitable for high-speed on-chip clock generation will be discussed. The proposed design features an architecture combining an LC quadrature VCO, two sample-and-holds, a PI, digital coarse-tuning, and rotational frequency detection for fine-tuning. In addition to an electrical reference clock, as an extra feature, the prototype chip is capable of receiving a low jitter optical reference clock generated by a high-repetition-rate mode-locked laser. The output clock at 8GHz has an integrated RMS jitter of 490fs, peak-to-peak periodic jitter of 2.06ps, and total RMS jitter of 680fs. The reference spurs are measured to be 64.3dB below the carrier frequency. At 8GHz the system consumes 2.49mW from a 1V supply.

  10. Quality Assurance in Nuclear Power Plants; La garantia de calidad en la Centrales Nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Zamarron Casinello, J. M. (CC.AA. Almaraz-Trillo); Gasca Pinilla, R. (Asociacion Nuclear Asco-Vandellos II); Sala Candela, A. (IBERDROLA); Valle Pena (NUCLENOR); Ruiz Rodriguez, C. (UNION FENOSA)

    2000-07-01

    In 1970, 10CFR50 Appendix B. Quality Assurance Criteria for Nuclear Power Plants & Fuel Reprocessing Plants, was approved in USA. This is based on 18 criteria and requires American nuclear power plants to establish as quickly as possible a Quality Assurance Program (QAP) specifying how to comply with the criteria contained in this Appendix. The Ministry of Industry required that this standard be observed in Spanish plants. In The first-generation plants (Jose Cabrera, Santa Maria de Garona and Vandellos 1), which were built before this new standard was developed, the concept of Quality Assurance has only been applied to the operating phase, whereas in second-generation plants (Almaraz, Asco3 and Cofrentes) and third-generation plants (Vandellos 2 and Trillo), the concept was applied from the very beginning of the project: design phases, construction and finally plant operation. In 1979, the IAEA publihed practical code 50-C-QA as an international reference document. It contains 13 criteria that coincide with and complement those established in Appendex B of 10CFR50. As a result, the nuclear power plants in all neighboring countries will be enforcing similar Quality Assurance criteria. (Author)

  11. Method for upgrading the performance at track transitions for high-speed service : next generation high-speed rail program

    Science.gov (United States)

    2001-09-01

    High-speed trains in the speed range of 100 to 160 mph require tracks of nearly perfect geometry and mechanical uniformity, when subjected to moving wheel loads. Therefore, this report briefly describes the remedies being used by various railroads to...

  12. High speed tracking control of ball screw drives

    Science.gov (United States)

    Liu, Chao-Yi; Huang, Ruei-Yu; Lee, An-Chen

    2017-10-01

    This paper presents a new method to achieve the requirement of high speed and high precision for ball screw drive. First, a PI controller is adopted to increase the equivalent structural damping in the velocity loop. Next, the design of the position controller is implemented by a two-stage method. The Doubly Coprime Factorization Disturbance Observer (DCFDOB) is developed to suppress disturbance and resist modelling error in the inner loop, while the outer loop is then designed based on method to extend the system bandwidth over first resonant frequency so that high speed and high accuracy can be achieved. Finally, a feedforward controller is implemented to improve tracking performance. The experiment results showed that the proposed method has smaller tracking error and better performance for suppressing disturbance when compared to the conventional cascaded P-PI control.

  13. High-speed measurement of firearm primer blast waves

    CERN Document Server

    Courtney, Michael; Eng, Jonathan; Courtney, Amy

    2012-01-01

    This article describes a method and results for direct high-speed measurements of firearm primer blast waves employing a high-speed pressure transducer located at the muzzle to record the blast pressure wave produced by primer ignition. Key findings are: 1) Most of the lead styphnate based primer models tested show 5.2-11.3% standard deviation in the magnitudes of their peak pressure. 2) In contrast, lead-free diazodinitrophenol (DDNP) based primers had standard deviations of the peak blast pressure of 8.2-25.0%. 3) Combined with smaller blast waves, these large variations in peak blast pressure of DDNP-based primers led to delayed ignition and failure to fire in brief field tests.

  14. Characterizing pyrotechnic igniter output with high-speed schlieren imaging

    Science.gov (United States)

    Skaggs, M. N.; Hargather, M. J.; Cooper, M. A.

    2017-01-01

    Small-scale pyrotechnic igniter output has been characterized using a high-speed schlieren imaging system for observing critical features of the post-combustion flow. The diagnostic, with laser illumination, was successfully applied towards the quantitative characterization of the output from Ti/KClO_4 and TiH_{1.65}/KClO_4 pyrotechnic igniters. The high-speed image sequences showed shock motion, burned gas expansion, and particle motion. A statistical-based analysis methodology for tracking the full-field shock motion enabled straightforward comparisons across the experimental parameters of pyrotechnic material and initial density. This characterization of the mechanical energy of the shock front within the post-combustion environment is a necessary addition to the large body of literature focused on pyrotechnic combustion behavior within the powder bed. Ultimately, understanding the role that the combustion behavior has on the resulting multiphase environment is required for tailored igniter development and comparative performance assessments.

  15. Performance analysis of WAVE communication under high-speed driving

    Directory of Open Access Journals (Sweden)

    Bo-young Kang

    2017-12-01

    Full Text Available Although WAVE (Wireless Access in Vehicular Environments is a technology designed for the high-speed mobile environments, WAVE communication performance in a real road environment is highly dependent on the surrounding environments such as moving vehicles, road shape, and topography. In particular, when a vehicle moves at high speed, the location of the vehicle and its proximity to the road-side device are rapidly changed and thus affect communication performance. Accordingly, we build a performance evaluation system based on the WAVE-LTE network cooperative operation. We also analyzed the performance differences based on external environmental factors, such as information volume and velocity, from the data acquired through actual vehicle tests.

  16. High-speed imaging polarimetry using liquid crystal modulators

    Directory of Open Access Journals (Sweden)

    Ambs P.

    2010-06-01

    Full Text Available This paper deals with dynamic polarimetric imaging techniques. The basics of modern polarimetry have been known for one and a half century, but no practical high-speed implementation providing the full polarization information is currently available. Various methods are reviewed which prove to be a trade-off between the complexity of the optical set-up and the amount of polarimetric information they provide (ie the number of components of the Stokes vector. Techniques using liquid crystal devices, incepted in the late 1990's, are emphasized. Optical set-ups we implemented are presented. We particularly focus on high-speed techniques (i.e. faster than 200 Hz using ferroelectric liquid crystal devices.

  17. Clinical application of high speed B mode echocardiography.

    Science.gov (United States)

    Kambe, T; Nishimura, K; Hibi, N; Sakakibara, T; Kato, T

    1977-06-01

    This study discusses the clinical application of high speed B mode echocardiography to a wide variety of heart diseases. We used a rapid mechanical sector scan at 30 frames per second and 120 scanning lines per frame, resulting in real time observation of cardiac structures. The sector angle was relatively wide (maximum 90 degrees). The tomograms were synchronized with the electrocardiogram and recorded on ordinary 35 mm or Polaroid film in conjunction with 8 mm cinematography. Heart cross sections could be recorded even in the presence of arrhythmia. We used a flat or focused, 10 mm diameter transducer made of lead zirconate-titanate with a resonant frequency of 2 or 3 MHz at a repetition rate of 3.6 kHz. High speed B mode echocardiography is a means of observing cross sections of the heart that can contribute to the improvement of accuracy in cardiac diagnosis.

  18. HIPO: a high-speed imaging photometer for occultations

    Science.gov (United States)

    Dunham, Edward W.; Elliot, James L.; Bida, Thomas A.; Taylor, Brian W.

    2004-09-01

    HIPO is a special purpose instrument for SOFIA, the Stratospheric Observatory For Infrared Astronomy. It is a high-speed, imaging photometer that will be used for a variety of time-resolved precise photometry observations, including stellar occultations by solar system objects and transits by extrasolar planets. HIPO has two independent CCD detectors and can also co-mount with FLITECAM, an InSb imager and spectrometer, making simultaneous photometry at three wavelengths possible. HIPO's flexible design and high-speed imaging capability make it well suited to carry out initial test observations on the completed SOFIA system, and to this end a number of additional features have been incorporated. Earlier papers have discussed the design requirements and optical design of HIPO. This paper provides an overview of the instrument, describes the instrument's features, and reviews the actual performance, in most areas, of the completed instrument.

  19. Embedded function methods for compressible high speed turbulent flow

    Science.gov (United States)

    Walker, J. D. A.

    1994-09-01

    This is the final report on the work performed on the grant 'Embedded Function Methods for Compressible High Speed Turbulent Flow' carried out at Lehigh University during the contract period from September, 1987, to October of 1991. Work has continued at Lehigh on this project on an unfunded basis to the present. The original proposed work had two separate thrusts which were associated with developing embedded function methods in order to obviate the need to expend computational resources on turbulent wall layers in Navier Stokes and boundary-layer calculations. Previous work on the incompressible problem had indicated that this could be done successfully for two-dimensional and three-dimensional incompressible flows. The central objective here was to extend the basic approach to the high speed compressible problem.

  20. Comparison of high-speed rail and maglev systems

    Energy Technology Data Exchange (ETDEWEB)

    Najafi, F.T. [Univ. of Florida, Gainesville, FL (United States). Dept. of Civil Engineering; Nassar, F.E. [Keith and Schnars, Fort Lauderdale, FL (United States)

    1996-07-01

    European and Japanese high-speed rail (HSR) and magnetically levitated (maglev) systems were each developed to respond to specific transportation needs within local economic, social, and political constraints. Not only is maglev technology substantially different from that of HSR, but also HSR and maglev systems differ in trainset design, track characteristics, cost structure, and cost sensitivity to design changes. This paper attempts to go beyond the traditional technology comparison table and focuses on the characteristics and conditions for which existing European and Japanese systems were developed. The technologies considered are the French train a grand vitesse (TGV), the Swedish X2000, the German Intercity Express (ICE) and Transrapid, and the Japanese Shinkansen, MLU, and high-speed surface train (HSST).

  1. Corrosion Inhibition of High Speed Steel by Biopolymer HPMC Derivatives

    Directory of Open Access Journals (Sweden)

    Shih-Chen Shi

    2016-07-01

    Full Text Available The corrosion inhibition characteristics of the derivatives of biopolymer hydroxypropyl methylcellulose (HPMC, hydroxypropyl methylcellulose phthalate (HPMCP, and hydroxypropyl methylcellulose acetate succinate (HPMCAS film are investigated. Based on electrochemical impedance spectroscopic measurements and potentiodynamic polarization, the corrosion inhibition performance of high speed steel coated with HPMC derivatives is evaluated. The Nyquist plot and Tafel polarization demonstrate promising anti-corrosion performance of HPMC and HPMCP. With increasing film thickness, both materials reveal improvement in corrosion inhibition. Moreover, because of a hydrophobic surface and lower moisture content, HPMCP shows better anti-corrosion performance than HPMCAS. The study is of certain importance for designing green corrosion inhibitors of high speed steel surfaces by the use of biopolymer derivatives.

  2. High-speed FPGA-based phase measuring profilometry architecture.

    Science.gov (United States)

    Zhan, Guomin; Tang, Hongwei; Zhong, Kai; Li, Zhongwei; Shi, Yusheng; Wang, Congjun

    2017-05-01

    This paper proposes a high-speed FPGA architecture for the phase measuring profilometry (PMP) algorithm. The whole PMP algorithm is designed and implemented based on the principle of full-pipeline and parallelism. The results show that the accuracy of the FPGA system is comparable with those of current top-performing software implementations. The FPGA system achieves 3D sharp reconstruction using 12 phase-shifting images and completes in 21 ms with 1024 × 768 pixel resolution. To the best of our knowledge, this is the first fully pipelined architecture for PMP systems, and this makes the PMP system very suitable for high-speed embedded 3D shape measurement applications.

  3. Ping-Pong Robotics with High-Speed Vision System

    DEFF Research Database (Denmark)

    Li, Hailing; Wu, Haiyan; Lou, Lei

    2012-01-01

    The performance of vision-based control is usually limited by the low sampling rate of the visual feedback. We address Ping-Pong robotics as a widely studied example which requires high-speed vision for highly dynamic motion control. In order to detect a flying ball accurately and robustly......, a multithreshold legmentation algorithm is applied in a stereo-vision running at 150Hz. Based on the estimated 3D ball positions, a novel two-phase trajectory prediction is exploited to determine the hitting position. Benefiting from the high-speed visual feedback, the hitting position and thus the motion planning...... of the manipulator are updated iteratively with decreasing error. Experiments are conducted on a 7 degrees of freedom humanoid robot arm. A successful Ping-Pong playing between the robot arm and human is achieved with a high successful rate of 88%....

  4. High-speed cell sorting: fundamentals and recent advances.

    Science.gov (United States)

    Ibrahim, Sherrif F; van den Engh, Ger

    2003-02-01

    Cell sorters have undergone dramatic technological improvements in recent years. Driven by the increased ability to differentiate between cell types, modern advances have yielded a new generation of cytometers, known as high-speed cell sorters. These instruments are capable of higher throughput than traditional sorters and can distinguish subtler differences between particles by measuring and processing more optical parameters in parallel. These advances have expanded their use to facilitate genomic and proteomic discovery, and as vehicles for many emerging cell-based therapies. High-speed cell sorting is becoming established as an essential research tool across a broad range of scientific fields and is poised to play a pivotal role in the latest therapeutic modalities.

  5. Ultra-high-speed optical and electronic distributed devices

    Energy Technology Data Exchange (ETDEWEB)

    Hietala, V.M.; Plut, T.A.; Kravitz, S.H.; Vawter, G.A.; Wendt, J.R.; Armendariz, M.G.

    1995-08-01

    This report summarizes work on the development of ultra-high-speed semiconductor optical and electronic devices. High-speed operation is achieved by velocity matching the input stimulus to the output signal along the device`s length. Electronic devices such as field-effect transistors (FET`s), should experience significant speed increases by velocity matching the electrical input and output signals along the device. Likewise, optical devices, which are typically large, can obtain significant bandwidths by velocity matching the light being generated, detected or modulated with the electrical signal on the device`s electrodes. The devices discussed in this report utilize truly distributed electrical design based on slow-wave propagation to achieve velocity matching.

  6. Development of Industrial High-Speed Transfer Parallel Robot

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Byung In; Kyung, Jin Ho; Do, Hyun Min; Jo, Sang Hyun [Korea Institute of Machinery and Materials, Daejeon (Korea, Republic of)

    2013-08-15

    Parallel robots used in industry require high stiffness or high speed because of their structural characteristics. Nowadays, the importance of rapid transportation has increased in the distribution industry. In this light, an industrial parallel robot has been developed for high-speed transfer. The developed parallel robot can handle a maximum payload of 3 kg. For a payload of 0.1 kg, the trajectory cycle time is 0.3 s (come and go), and the maximum velocity is 4.5 m/s (pick amp, place work, adept cycle). In this motion, its maximum acceleration is very high and reaches approximately 13g. In this paper, the design, analysis, and performance test results of the developed parallel robot system are introduced.

  7. Numerical Investigation of Aerodynamic Characteristics of High Speed Train

    Science.gov (United States)

    Ali, J. S. Mohamed; Omar, Ashraf Ali; Ali, Muhammad ‘Atif B.; Baseair, Abdul Rahman Bin Mohd

    2017-03-01

    In this work, initially the effect of nose shape on the drag characteristics of a high speed train is studied. Then the influence of cross winds on the aerodynamics and hence the stability of such modern high speed trains is analyzed. CFD analysis was conducted using STAR-CCM+ on trains with different features and important aerodynamic coefficients such as the drag, side force and rolling moment coefficients have been calculated for yaw angles of crosswinds ranging from 0° to 90°. The results show that the modification on train nose shape can reduce the drag up to more than 50%. It was also found that, bogie faring only reduces small percentage of drag but significantly contributed to higher rolling moment and side force coefficient hence induced train instability.

  8. Robust adaptive cruise control of high speed trains.

    Science.gov (United States)

    Faieghi, Mohammadreza; Jalali, Aliakbar; Mashhadi, Seyed Kamal-e-ddin Mousavi

    2014-03-01

    The cruise control problem of high speed trains in the presence of unknown parameters and external disturbances is considered. In particular a Lyapunov-based robust adaptive controller is presented to achieve asymptotic tracking and disturbance rejection. The system under consideration is nonlinear, MIMO and non-minimum phase. To deal with the limitations arising from the unstable zero-dynamics we do an output redefinition such that the zero-dynamics with respect to new outputs becomes stable. Rigorous stability analyses are presented which establish the boundedness of all the internal states and simultaneously asymptotic stability of the tracking error dynamics. The results are presented for two common configurations of high speed trains, i.e. the DD and PPD designs, based on the multi-body model and are verified by several numerical simulations. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  9. Simultaneous fluoroscopic and nuclear imaging: impact of collimator choice on nuclear image quality.

    Science.gov (United States)

    van der Velden, Sandra; Beijst, Casper; Viergever, Max A; de Jong, Hugo W A M

    2017-01-01

    X-ray-guided oncological interventions could benefit from the availability of simultaneously acquired nuclear images during the procedure. To this end, a real-time, hybrid fluoroscopic and nuclear imaging device, consisting of an X-ray c-arm combined with gamma imaging capability, is currently being developed (Beijst C, Elschot M, Viergever MA, de Jong HW. Radiol. 2015;278:232-238). The setup comprises four gamma cameras placed adjacent to the X-ray tube. The four camera views are used to reconstruct an intermediate three-dimensional image, which is subsequently converted to a virtual nuclear projection image that overlaps with the X-ray image. The purpose of the present simulation study is to evaluate the impact of gamma camera collimator choice (parallel hole versus pinhole) on the quality of the virtual nuclear image. Simulation studies were performed with a digital image quality phantom including realistic noise and resolution effects, with a dynamic frame acquisition time of 1 s and a total activity of 150 MBq. Projections were simulated for 3, 5, and 7 mm pinholes and for three parallel hole collimators (low-energy all-purpose (LEAP), low-energy high-resolution (LEHR) and low-energy ultra-high-resolution (LEUHR)). Intermediate reconstruction was performed with maximum likelihood expectation-maximization (MLEM) with point spread function (PSF) modeling. In the virtual projection derived therefrom, contrast, noise level, and detectability were determined and compared with the ideal projection, that is, as if a gamma camera were located at the position of the X-ray detector. Furthermore, image deformations and spatial resolution were quantified. Additionally, simultaneous fluoroscopic and nuclear images of a sphere phantom were acquired with a physical prototype system and compared with the simulations. For small hot spots, contrast is comparable for all simulated collimators. Noise levels are, however, 3 to 8 times higher in pinhole geometries than in parallel

  10. Analysis and design technology for high-speed aircraft structures

    Science.gov (United States)

    Starnes, James H., Jr.; Camarda, Charles J.

    1992-01-01

    Recent high-speed aircraft structures research activities at NASA Langley Research Center are described. The following topics are covered: the development of analytical and numerical solutions to global and local thermal and structural problems, experimental verification of analysis methods, identification of failure mechanisms, and the incorporation of analysis methods into design and optimization strategies. The paper describes recent NASA Langley advances in analysis and design methods, structural and thermal concepts, and test methods.

  11. High-speed OCT light sources and systems [Invited

    OpenAIRE

    Klein, Thomas; Huber, Robert

    2017-01-01

    Imaging speed is one of the most important parameters that define the performance of optical coherence tomography (OCT) systems. During the last two decades, OCT speed has increased by over three orders of magnitude. New developments in wavelength-swept lasers have repeatedly been crucial for this development. In this review, we discuss the historical evolution and current state of the art of high-speed OCT systems, with focus on wavelength swept light sources and swept source OCT systems.

  12. High-speed OCT light sources and systems [Invited].

    Science.gov (United States)

    Klein, Thomas; Huber, Robert

    2017-02-01

    Imaging speed is one of the most important parameters that define the performance of optical coherence tomography (OCT) systems. During the last two decades, OCT speed has increased by over three orders of magnitude. New developments in wavelength-swept lasers have repeatedly been crucial for this development. In this review, we discuss the historical evolution and current state of the art of high-speed OCT systems, with focus on wavelength swept light sources and swept source OCT systems.

  13. High-speed OCT light sources and systems [Invited

    Science.gov (United States)

    Klein, Thomas; Huber, Robert

    2017-01-01

    Imaging speed is one of the most important parameters that define the performance of optical coherence tomography (OCT) systems. During the last two decades, OCT speed has increased by over three orders of magnitude. New developments in wavelength-swept lasers have repeatedly been crucial for this development. In this review, we discuss the historical evolution and current state of the art of high-speed OCT systems, with focus on wavelength swept light sources and swept source OCT systems. PMID:28270988

  14. High-speed deformation processing of a titanium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Tamirisakandala, S.; Medeiros, S.C.; Malas, J.C. [Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, OH 45433 (United States); Yellapregada, P.V.R.K. [Department of Metallurgy, Indian Institute of Science Bangalore, Karnataka 560 012 (India); Frazier, W.G. [NCPA Coliseum Drive, University, MS 38677 (United States); Dutta, B. [Department of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt (Germany)

    2003-09-01

    The deformation rate is the critical parameter for the phase transforming mechanism and subsequently the morphology of Ti-Al-V alloys, which in turn determines the feasibility of high-speed deformation. The evolution of defect-free equiaxed microstructures is due to dislocation-induced heterogeneous nucleation and growth. The Figure shows a microstructure of a Ti-6Al-4V specimen deformed at 1000 C in a backscattered SEM image. (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  15. Modern trends in designing high-speed trains

    OpenAIRE

    Golubović Snežana D.; Rašuo Boško P.; Lučanin Vojkan J.

    2015-01-01

    Increased advantages of railway transportation systems over other types of transportation systems in the past sixty years have been a result of an intensive development of the new generations of high-speed trains. Not only do these types of trains comply with the need for increased speed of transportation and make the duration of the journey shorter, but they also meet the demands for increased reliability, safety and direct application of energy efficiency to the transportation system itself...

  16. Design and specification of a high speed transport protocol

    OpenAIRE

    McArthur, Robert C.

    1992-01-01

    Approved for public release; distribution is unlimited Due to the increase in data throughput potential provided by high speed (fiber optic) networks, existing transport protocols are becoming increasingly incapable of providing reli­able and timely transfer of data. Whereas in networks of the past it was the transmission medium that caused the greatest communications delay, it is the case today that the transport protocols themselves have become the bottleneck. This thesis provides de...

  17. High Speed White Dwarf Asteroseismology with the Herty Hall Cluster

    Science.gov (United States)

    Gray, Aaron; Kim, A.

    2012-01-01

    Asteroseismology is the process of using observed oscillations of stars to infer their interior structure. In high speed asteroseismology, we complete that by quickly computing hundreds of thousands of models to match the observed period spectra. Each model on a single processor takes five to ten seconds to run. Therefore, we use a cluster of sixteen Dell Workstations with dual-core processors. The computers use the Ubuntu operating system and Apache Hadoop software to manage workloads.

  18. Study and improvement of a high speed hydraulic jack

    Science.gov (United States)

    Garcia, M. S.; Nouillant, M.; Viot, P.

    2006-08-01

    This paper describes the control problem of a high speed hydraulic jack. We shall estimate the performances of a servo-control with a classic controlled correction of type PD (Proportional Derivate). The study will be performed from a model (servo valve + jack + load), whose simulation will be performed in the Matlab-SimulinK environment. The aim of this article is to characterize, by simulating, the interdependence between the experimental apparatus and the tested object.

  19. Gearbox Reliability Collaborative High-Speed Shaft Calibration

    Energy Technology Data Exchange (ETDEWEB)

    Keller, J.; McNiff, B.

    2014-09-01

    Instrumentation has been added to the high-speed shaft, pinion, and tapered roller bearing pair of the Gearbox Reliability Collaborative gearbox to measure loads and temperatures. The new shaft bending moment and torque instrumentation was calibrated and the purpose of this document is to describe this calibration process and results, such that the raw shaft bending and torque signals can be converted to the proper engineering units and coordinate system reference for comparison to design loads and simulation model predictions.

  20. On the reversed Brayton cycle with high speed machinery

    Energy Technology Data Exchange (ETDEWEB)

    Backman, J.

    1996-12-31

    This work was carried out in the laboratory of Fluid Dynamics, at Lappeenranta University of Technology during the years 1991-1996. The research was a part of larger high speed technology development research. First, there was the idea of making high speed machinery applications with the Brayton cycle. There was a clear need to deepen the knowledge of the cycle itself and to make a new approach in the field of the research. Also, the removal of water from the humid air seemed very interesting. The goal of this work was to study methods of designing high speed machinery for the reversed Brayton cycle, from theoretical principles to practical applications. The reversed Brayton cycle can be employed as an air dryer, a heat pump or a refrigerating machine. In this research the use of humid air as a working fluid has an environmental advantage, as well. A new calculation method for the Brayton cycle is developed. In this method especially the expansion process in the turbine is important because of the condensation of the water vapour in the humid air. This physical phenomena can have significant effects on the level of performance of the application. Also, the influence of calculating the process with actual, achievable process equipment efficiencies is essential for the development of future machinery. The above theoretical calculations are confirmed with two different laboratory prototypes. (53 refs.)

  1. High Speed Imaging of Cavitation around Dental Ultrasonic Scaler Tips.

    Science.gov (United States)

    Vyas, Nina; Pecheva, Emilia; Dehghani, Hamid; Sammons, Rachel L; Wang, Qianxi X; Leppinen, David M; Walmsley, A Damien

    2016-01-01

    Cavitation occurs around dental ultrasonic scalers, which are used clinically for removing dental biofilm and calculus. However it is not known if this contributes to the cleaning process. Characterisation of the cavitation around ultrasonic scalers will assist in assessing its contribution and in developing new clinical devices for removing biofilm with cavitation. The aim is to use high speed camera imaging to quantify cavitation patterns around an ultrasonic scaler. A Satelec ultrasonic scaler operating at 29 kHz with three different shaped tips has been studied at medium and high operating power using high speed imaging at 15,000, 90,000 and 250,000 frames per second. The tip displacement has been recorded using scanning laser vibrometry. Cavitation occurs at the free end of the tip and increases with power while the area and width of the cavitation cloud varies for different shaped tips. The cavitation starts at the antinodes, with little or no cavitation at the node. High speed image sequences combined with scanning laser vibrometry show individual microbubbles imploding and bubble clouds lifting and moving away from the ultrasonic scaler tip, with larger tip displacement causing more cavitation.

  2. Quantification of the uncertainties of high-speed camera measurements

    Directory of Open Access Journals (Sweden)

    Robbe C.

    2014-01-01

    Full Text Available This article proposes a combined theoretical and experimental approach to assess and quantify the global uncertainty of a high-speed camera velocity measurement. The study is divided in five sections: firstly, different sources of measurement uncertainties performed by a high-speed camera are identified and quantified. They consist of geometrical uncertainties, pixel discretisation uncertainties or optical uncertainties. Secondly, a global uncertainty factor, taking into account the previously identified sources of uncertainties, is computed. Thirdly, a sensibility study of the camera set-up parameters is performed, allowing the experimenter to optimize these parameters in order to minimize the final uncertainties. Fourthly, the theoretical computed uncertainty is compared with experimental measurements. Good concordance has been found. Finally, the velocity measurement uncertainty study is extended to continuous displacement measurements as a function of time. The purpose of this article is to propose all the mathematical tools necessary to quantify the individual and global uncertainties, to highlight the important aspects of the experimental set-up, and to give recommendations on how to improve a specific set-up in order to minimize the global uncertainty. Taking all these into account, it has been shown that highly dynamic phenomena such as a ballistic phenomenon can be measured using a high-speed camera with a global uncertainty of less than 2%.

  3. Sound transmission loss of windows on high speed trains

    Science.gov (United States)

    Zhang, Yumei; Xiao, Xinbiao; Thompson, David; Squicciarini, Giacomo; Wen, Zefeng; Li, Zhihui; Wu, Yue

    2016-09-01

    The window is one of the main components of the high speed train car body structure through which noise can be transmitted. To study the windows’ acoustic properties, the vibration of one window of a high speed train has been measured for a running speed of 250 km/h. The corresponding interior noise and the noise in the wheel-rail area have been measured simultaneously. The experimental results show that the window vibration velocity has a similar spectral shape to the interior noise. Interior noise source identification further indicates that the window makes a contribution to the interior noise. Improvement of the window's Sound Transmission Loss (STL) can reduce the interior noise from this transmission path. An STL model of the window is built based on wave propagation and modal superposition methods. From the theoretical results, the window's STL property is studied and several factors affecting it are investigated, which provide indications for future low noise design of high speed train windows.

  4. Direct Numerical Simulation of Disperse Multiphase High-Speed Flows

    Energy Technology Data Exchange (ETDEWEB)

    Nourgaliev, R R; Dinh, T N; Theofanous, T G; Koning, J M; Greenman, R M; Nakafuji, G T

    2004-02-17

    A recently introduced Level-Set-based Cartesian Grid (LSCG) Characteristics-Based Matching (CBM) method is applied for direct numerical simulation of shock-induced dispersal of solid material. The method incorporates the latest advancements in the level set technology and characteristics-based numerical methods for solution of hyperbolic conservation laws and boundary treatment. The LSCG/CBM provides unique capabilities to simulate complex fluid-solid (particulate) multiphase flows under high-speed flow conditions and taking into account particle-particle elastic and viscoelastic collisions. The particular emphasis of the present study is placed on importance of appropriate modeling of particle-particle collisions, which are demonstrated to crucially influence the global behavior of high-speed multiphase particulate flows. The results of computations reveal the richness and complexity of flow structures in compressible disperse systems, due to dynamic formation of shocks and contact discontinuities, which provide an additional long-range interaction mechanism in dispersed high-speed multiphase flows.

  5. Unsteady Flow Simulation of High-speed Turbopumps

    Science.gov (United States)

    Kiris, Cetin C.; Kwak, dochan; Chan, William; Housman, Jeffrey A.

    2006-01-01

    Computation of high-speed hydrodynamics requires high-fidelity simulation to resolve flow features involving transient flow, cavitation, tip vortex and multiple scales of unsteady fluctuations. One example of this type in aerospace is related to liquid-fueled rocket turbopump. Rocket turbopumps operate under severe conditions at very high rotational speeds typically at thousands of rpm. For example, the Shuttle orbiter low-pressure-fuel-turbopump creates transient flow features associated with reverse flows, tip clearance effects, secondary flows, vortex shedding, junction flows, and cavitation effects. Flow unsteadiness originating from the orbiter Low-Pressure-Fuel-Turbopump (LPFTP) inducer is one of the major contributors to the high frequency cyclic loading that results in high cycle fatigue damage to the flow liners just upstream of the LPFTP. The reverse flow generated at the tip of the inducer blades travels upstream and interacts with the bellows cavity. Simulation procedure for this type high-speed hydrodynamic problems requires a method for quantifying multi-scale and multi-phase flow as well as an efficient high-end computing strategy. The current paper presents a high-fidelity computational procedure for unsteady hydrodynamic problems using a high-speed liquid-fueled rocket turbopump.

  6. Software Developed for Analyzing High- Speed Rolling-Element Bearings

    Science.gov (United States)

    Fleming, David P.

    2005-01-01

    COBRA-AHS (Computer Optimized Ball & Roller Bearing Analysis--Advanced High Speed, J.V. Poplawski & Associates, Bethlehem, PA) is used for the design and analysis of rolling element bearings operating at high speeds under complex mechanical and thermal loading. The code estimates bearing fatigue life by calculating three-dimensional subsurface stress fields developed within the bearing raceways. It provides a state-of-the-art interactive design environment for bearing engineers within a single easy-to-use design-analysis package. The code analyzes flexible or rigid shaft systems containing up to five bearings acted upon by radial, thrust, and moment loads in 5 degrees of freedom. Bearing types include high-speed ball, cylindrical roller, and tapered roller bearings. COBRA-AHS is the first major upgrade in 30 years of such commercially available bearing software. The upgrade was developed under a Small Business Innovation Research contract from the NASA Glenn Research Center, and incorporates the results of 30 years of NASA and industry bearing research and technology.

  7. 36 CFR 1192.175 - High-speed rail cars, monorails and systems.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false High-speed rail cars... TRANSPORTATION VEHICLES Other Vehicles and Systems § 1192.175 High-speed rail cars, monorails and systems. (a) All cars for high-speed rail systems, including but not limited to those using “maglev” or high speed...

  8. Quality management in the nuclear industry: the human factor

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    In the nuclear industry it is vital to understand the 'human factor' with regard to plant performance and plant safety. A proper management system ensures that personnel perform their duties correctly. 'Quality Management in the Nuclear Industry: the Human Factor', was a conference organized by the Institution of Mechanical Engineers in October 1990. The conference covered a wide range of topics on an international level including: standards, licensing and regulatory procedures; selection assessment and training of personnel; feedback from experience of good practice and of deviations; management and support of personnel performance; modelling and evaluation of human factors. The papers presented at the conference are contained in this volume. All twenty papers are indexed separately. (author).

  9. HIGH-SPEED HOT EXTRUSION IN HIGH TEMPERATURE MECHANICAL TREATMENT MODE OF BIMETALLIC ROD PARTS OF THE STAMPS

    Directory of Open Access Journals (Sweden)

    I. V. Kachanov

    2016-01-01

    Full Text Available Processes of high-speed shaping change and especially high-speed hot extrusion create efficient conditions for treatment of low plastic and difficult-to-form materials which are widely used in tool making production. Due to the fact that high-speed stamping provides accurate billets with increased mechanical properties, it can be used as a technological process for manufacturing rod parts of die tooling operating under the increased loads and high wear. The purpose of the paper is to carry out experimental investigation of the possibility to obtain bimetallic rod stamping tooling by high-speed hot extrusion in high-temperature mode treatment in order to save die steels and improve the quality of the products obtained. Microstructures of the bimetallic compounds obtained with the help of high-speed hot extrusion method for compositions of structural and high-alloy steels have been investigated and their high quality has been proved during the investigations. Dependences of micro-hardness distribution have been established outbound two steel contact plane in the zone of connection that are characterized by a minimum micro-hardness value in the connection joint. Availability of more plastic zone in the contact plane contributes to reduction of residual stresses due to their relaxation in this zone and higher joint strength. 

  10. Surface Layer Properties of Low-Alloy High-Speed Steel after Grinding

    Directory of Open Access Journals (Sweden)

    Jaworski Jan

    2016-12-01

    Full Text Available Investigations of the surface layer characteristics of selected kinds of low-alloy high-speed steel after grinding were carried out. They were carried out on the flat-surface grinder with a 95A24K grinding wheel without cooling. The influence of grinding parameters was defined especially for: the quantity of secondary austenite, surface roughness, microhardness and grinding efficiency with a large range of grinding parameters: grinding depth 0.005–0.035 mm, lengthwise feed 2–6 m/min, without a cross-feed on the whole width of the sample. It was found that improvement of grinding properties of low-alloy high-speed steels is possible by efficient selection of their chemical composition. The value of the grinding efficiency is conditioned by grinding forces, whose value has an impact on the grinding temperature. To ensure high quality of the tool surface layer (i.e. a smaller amount of secondary austenite, lack of wheel burn and micro-cracks in the case of sharpening of tools made of low-alloy high-speed steel, the grinding temperature should be as low as possible.

  11. RESOURCE-SAVING TECHNOLOGY FOR HIGH-SPEED HOT EXTRUSION OF BIMETALLIC ROD PARTS

    Directory of Open Access Journals (Sweden)

    I. V. Kachanov

    2016-01-01

    Full Text Available Processes of high-speed shaping changes and especially high-speed hot extrusion create efficient conditions for treatment of weakly plastic and poorly deformable materials which are widely used in tool making facilities. Due to the fact that high-speed stamping provides accurate billets with increased mechanical properties, it can be used as a technological process for manufacturing rod parts of die tooling operating under conditions of increased loads and wear. The purpose of the given paper is to carry out experimental investigations on the possibility to obtain a bimetallic rod tool where structural steel is considered as a basis of the tool and a working cavity is made of high-alloyed tool steel with its saving up to 90 %. A scheme of loading and geometry of conjugated surfaces of the composite billet have been developed in the paper. Technology for obtaining bimetallic rod parts of die tooling with deformation at speed of vд = 70–80 m/s and composite billet temperature of Т = (1150±20 ºС has been experimentally tested with formation of a compound due to plastic flow of two billet parts on contact surface with removal of surface oxide films. Microstructures of the bimetallic compounds obtained with the help of high-speed hot extrusion method for compositions of structural and high-alloy steels have been investigated and their high quality has been proved during the investigations. Dependences of micro-hardness distribution have been established outbound two steel contact plane in the zone of connection that are characterized by a minimum micro-hardness value in the connection joint. Availability of more plastic zone in the contact plane contributes to reduction of residual stresses due to their relaxation in this zone and higher joint strength.

  12. Development of High-speed Machining Database with Case-based Reasoning

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Applying high-speed machining technology in shop floor has many benefits, such as manufacturing more accurate parts with better surface finishes. The selection of the appropriate machining parameters plays a very important role in the implementation of high-speed machining technology. The case-based reasoning is used in the developing of high-speed machining database to overcome the shortage of available high-speed cutting parameters in machining data handbooks and shop floors. The high-speed machining data...

  13. Auditing nuclear weapons quality programs at Los Alamos

    Energy Technology Data Exchange (ETDEWEB)

    Davis, A.H.

    1988-01-01

    Some of the problems involved in introducing quality assurance on a broad scale in a national laboratory are discussed. A philosophy of how QA can be utilized beneficially in research and development activities is described briefly, and our experiences at Los Alamos in applying QA to nuclear weapons activities are outlines. The important role of audits is emphasized; audits are used not merely to determine the effectiveness of QA programs but also to explain and demonstrate the usefulness of QA to a generally sceptical body of engineers and scientists. Finally, some ways of easing the application of QA in the future are proposed. 1 ref.

  14. Quality indexes for selecting control materials of the nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Val, J.M.; Pena, J.; Esteban Naudin, A.

    1981-01-01

    Quality indexes are established and valued for selecting control materials, The requirements for accomplishing such purposes are explained with detailed analysis: absortion cross section must be as high as possible, adequate reactivity evolution versus depletion, good resistance to radiation, appropiate thermal stability, mechanical resistance and ductility, chemical compatibility with the environment, good heat transfer properties, abundant in the nature and low costs. At present Westinghouse desire to commercialize hafnium as control material shows the exciting task of looking for new materials controlling nuclear reactors.

  15. Implementation of High Speed Distributed Data Acquisition System

    Science.gov (United States)

    Raju, Anju P.; Sekhar, Ambika

    2012-09-01

    This paper introduces a high speed distributed data acquisition system based on a field programmable gate array (FPGA). The aim is to develop a "distributed" data acquisition interface. The development of instruments such as personal computers and engineering workstations based on "standard" platforms is the motivation behind this effort. Using standard platforms as the controlling unit allows independence in hardware from a particular vendor and hardware platform. The distributed approach also has advantages from a functional point of view: acquisition resources become available to multiple instruments; the acquisition front-end can be physically remote from the rest of the instrument. High speed data acquisition system transmits data faster to a remote computer system through Ethernet interface. The data is acquired through 16 analog input channels. The input data commands are multiplexed and digitized and then the data is stored in 1K buffer for each input channel. The main control unit in this design is the 16 bit processor implemented in the FPGA. This 16 bit processor is used to set up and initialize the data source and the Ethernet controller, as well as control the flow of data from the memory element to the NIC. Using this processor we can initialize and control the different configuration registers in the Ethernet controller in a easy manner. Then these data packets are sending to the remote PC through the Ethernet interface. The main advantages of the using FPGA as standard platform are its flexibility, low power consumption, short design duration, fast time to market, programmability and high density. The main advantages of using Ethernet controller AX88796 over others are its non PCI interface, the presence of embedded SRAM where transmit and reception buffers are located and high-performance SRAM-like interface. The paper introduces the implementation of the distributed data acquisition using FPGA by VHDL. The main advantages of this system are high

  16. Fusion: ultra-high-speed and IR image sensors

    Science.gov (United States)

    Etoh, T. Goji; Dao, V. T. S.; Nguyen, Quang A.; Kimata, M.

    2015-08-01

    Most targets of ultra-high-speed video cameras operating at more than 1 Mfps, such as combustion, crack propagation, collision, plasma, spark discharge, an air bag at a car accident and a tire under a sudden brake, generate sudden heat. Researchers in these fields require tools to measure the high-speed motion and heat simultaneously. Ultra-high frame rate imaging is achieved by an in-situ storage image sensor. Each pixel of the sensor is equipped with multiple memory elements to record a series of image signals simultaneously at all pixels. Image signals stored in each pixel are read out after an image capturing operation. In 2002, we developed an in-situ storage image sensor operating at 1 Mfps 1). However, the fill factor of the sensor was only 15% due to a light shield covering the wide in-situ storage area. Therefore, in 2011, we developed a backside illuminated (BSI) in-situ storage image sensor to increase the sensitivity with 100% fill factor and a very high quantum efficiency 2). The sensor also achieved a much higher frame rate,16.7 Mfps, thanks to the wiring on the front side with more freedom 3). The BSI structure has another advantage that it has less difficulties in attaching an additional layer on the backside, such as scintillators. This paper proposes development of an ultra-high-speed IR image sensor in combination of advanced nano-technologies for IR imaging and the in-situ storage technology for ultra-highspeed imaging with discussion on issues in the integration.

  17. Exploring THz band for high speed wireless communications

    DEFF Research Database (Denmark)

    Yu, Xianbin; Zhang, Hangkai; Jia, Shi

    2016-01-01

    We overview recent trend in developing high speed wireless communication systems by exploring large bandwidth available in the THz band, and we also present our recent experimental achievements on 400 GHz wireless transmission with a data rate of up to 60 Gbit/s by using a uni-travelling carrier...... photodiode (UTC-PD) as emitter and a Schottky diode as receiver. This system is foreseen to be capable of accommodating faster data rates beyond 100 Gbit/s, and would find application in bandwidth hungry scenarios....

  18. HORNET: High-speed Onion Routing at the Network Layer

    OpenAIRE

    Chen, Chen; Asoni, Daniele Enrico; Barrera, David; Danezis, George; Perrig, Adrian

    2015-01-01

    We present HORNET, a system that enables high-speed end-to-end anonymous channels by leveraging next generation network architectures. HORNET is designed as a low-latency onion routing system that operates at the network layer thus enabling a wide range of applications. Our system uses only symmetric cryptography for data forwarding yet requires no per-flow state on intermediate nodes. This design enables HORNET nodes to process anonymous traffic at over 93 Gb/s. HORNET can also scale as requ...

  19. Signal Conditioning in Process of High Speed Imaging

    Directory of Open Access Journals (Sweden)

    Libor Hargas

    2015-01-01

    Full Text Available The accuracy of cinematic analysis with camera system depends on frame rate of used camera. Specific case of cinematic analysis is in medical research focusing on microscopic objects moving with high frequencies (cilia of respiratory epithelium. The signal acquired by high speed video acquisition system has very amount of data. This paper describes hardware parts, signal condition and software, which is used for image acquiring thru digital camera, intelligent illumination dimming hardware control and ROI statistic creation. All software parts are realized as virtual instruments.

  20. An adaptive finite element method for high speed flows

    Science.gov (United States)

    Peraire, J.; Morgan, K.; Peiro, J.; Zienkiewicz, O. C.

    1987-01-01

    The solution of the equations of compressible high speed flow, on unstructured triangular grids in 2D and tetrahedral grids in 3D, is considered. Solution methods based upon both Taylor-Galerkin and Runge-Kutta time-stepping techniques are presented and the incorporation of the ideas of flux corrected transport (FCT) is discussed. These methods are combined with an adaptive mesh regeneration procedure and are employed in the solution of several examples, consisting of Euler flows in both 2D and 3D and Navier-Stokes flows in 2D.

  1. Flexible, High-Speed CdSe Nanocrystal Integrated Circuits.

    Science.gov (United States)

    Stinner, F Scott; Lai, Yuming; Straus, Daniel B; Diroll, Benjamin T; Kim, David K; Murray, Christopher B; Kagan, Cherie R

    2015-10-14

    We report large-area, flexible, high-speed analog and digital colloidal CdSe nanocrystal integrated circuits operating at low voltages. Using photolithography and a newly developed process to fabricate vertical interconnect access holes, we scale down device dimensions, reducing parasitic capacitances and increasing the frequency of circuit operation, and scale up device fabrication over 4 in. flexible substrates. We demonstrate amplifiers with ∼7 kHz bandwidth, ring oscillators with <10 μs stage delays, and NAND and NOR logic gates.

  2. 3D high-speed cinematography and its problems

    Science.gov (United States)

    Eisfeld, Fritz

    1999-06-01

    Many fast events are three dimensional but the normal high- speed cameras are only suitable for 2-D images. Therefore it was investigated which stereoscopic methods could be used to study three dimensional processes. The choice of the optimal method is dependent on the investigated event. To record the 3-D spreading of an injection jet in a laboratory has to use other methods as to record an explosion from a smoke bomb in open air. Three methods are described and critically compared. Furthermore it is shown how from films with double pictures a cinematographic film can be made.

  3. High-speed cinematography of compressible mixing layers

    Science.gov (United States)

    Mahadevan, R.; Loth, Eric

    1994-07-01

    Experiments are performed using high-speed film cinematography to temporally resolve compressible planar mixing layer structures using shadowgraphs and planar light sheet visualization. The technique is relatively inexpensive and allows multiple images. The time-dependent shadowgraph and Mie scattering images are documented with a rotating mirror camera operating at approximately 350 kHz. The results show the presence of large scale structures in the mixing layer which flatten as they convect downstream. Both spatial and temporal covariances have been obtained through digital image processing which yield, on average, elliptical structures with convective speeds above the isentropic prediction, and non-isotropic streamwise and transverse scalar transport fluctuations.

  4. Design and Analysis of High Speed Capacitive Pipeline DACs

    OpenAIRE

    Duong, Quoc-Tai; Dabrowski, Jerzy; Alvandpour, Atila

    2014-01-01

    Design of a high speed capacitive digital-to-analog converter (SC DAC) is presented for 65 nm CMOS technology. SC pipeline architecture is used followed by an output driver. For GHz frequency operation with output voltage swing suitable for wireless applications (300 mVpp) the DAC performance is shown to be limited by the capacitor array imperfections. While it is possible to design a highly linear output driver with HD3 < -70 dB and HD2 < -90 dB over 0.55 GHz band as we show, the maxi...

  5. High-speed analog-to-digital conversion

    CERN Document Server

    Demler, Michael J

    1991-01-01

    This book covers the theory and applications of high-speed analog-to-digital conversion. An analog-to-digital converter takes real-world inputs (such as visual images, temperature readings, and rates of speed) and transforms them into digital form for processing by computer. This book discusses the design and uses of such circuits, with particular emphasis on improving the speed of the conversion process and the accuracy of its output--how well the output is a corresponding digital representation of the output*b1input signal. As computers become increasingly interfaced to the outside world, ""

  6. High-Speed EMU TCMS Design and LCC Technology Research

    Directory of Open Access Journals (Sweden)

    Hongwei Zhao

    2017-02-01

    Full Text Available This paper introduces the high-speed electrical multiple unit (EMU life cycle, including the design, manufacturing, testing, and maintenance stages. It also presents the train control and monitoring system (TCMS software development platform, the TCMS testing and verification bench, the EMU driving simulation platform, and the EMU remote data transmittal and maintenance platform. All these platforms and benches combined together make up the EMU life cycle cost (LCC system. Each platform facilitates EMU LCC management and is an important part of the system.

  7. Pushbroom Stereo for High-Speed Navigation in Cluttered Environments

    OpenAIRE

    Barry, Andrew J.; Tedrake, Russ

    2014-01-01

    We present a novel stereo vision algorithm that is capable of obstacle detection on a mobile ARM processor at 120 frames per second. Our system performs a subset of standard block-matching stereo processing, searching only for obstacles at a single depth. By using an onboard IMU and state-estimator, we can recover the position of obstacles at all other depths, building and updating a local depth-map at framerate. Here, we describe both the algorithm and our implementation on a high-speed, sma...

  8. Investigations in high speed blanking: cutting forces and microscopic observations

    Directory of Open Access Journals (Sweden)

    Larue A.

    2010-06-01

    Full Text Available A new hopefull technique, called high speed blanking, has been investigated since few years. To understand the cutting process and how the tools have to be designed, this study is interrested in the cutting force measurement. A new cutting force measurement device has to be designed consider the industrial interest of such a study. The designed test bench induces a calibration process in order to stucy the cutting forces evolution. The paper is discussing the result that the peack load seems to decrease when the punch speed increases. Finally microscopic observations are made in order to find Adiabatic Shear Bands.

  9. Photonic Technologies for Ultra-High-Speed Information Highways

    DEFF Research Database (Denmark)

    Bouchoule, S; Lèfevre, R.; Legros, E.

    1999-01-01

    The ACTS project HIGHWAY (AC067) addresses promising ultra-high speed optoelectronic components and system technologies for 40 Gbit/s time-division-multiplexed (TDM) transport systems. Advanced 40 Gbit/s TDM system lab demonstrators are to be realized and tested over installed field fiber testbeds....... This paper reviews the current status of 40 Gbit/s TDM components and subsystem technologies achieved in HIGHWAY. The results of HIGHWAY 40 Gbit/s TDM systems and field tests will be reported in a subsequent paper. (C) 1999 Academic Press....

  10. Preliminary results from the High Speed Airframe Integration Research project

    Science.gov (United States)

    Coen, Peter G.; Sobieszczanski-Sobieski, Jaroslaw; Dollyhigh, Samuel M.

    1992-01-01

    A review is presented of the accomplishment of the near term objectives of developing an analysis system and optimization methods during the first year of the NASA Langley High Speed Airframe Integration Research (HiSAIR) project. The characteristics of a Mach 3 HSCT transport have been analyzed utilizing the newly developed process. In addition to showing more detailed information about the aerodynamic and structural coupling for this type of vehicle, this exercise aided in further refining the data requirements for the analysis process.

  11. A quick-retrieval high-speed digital framing camera

    OpenAIRE

    Sato, A.H.; Yee, J; Bellan, P. M.

    1993-01-01

    A new high-speed digital framing camera is described. The design is built around a rotating polygon mirror that provides a framing rate of 24 000 frames/s. The camera electronics digitizes an image into a 32×104 grid of pixels, where the second dimension of the grid can be varied and is determined by the 8 bit computer-aided measurement and control digitizer sampling rate. Available digitizer memory provides for 314 frames at this horizontal resolution. The advantages over other available hig...

  12. High-speed digital-to-analog converter concepts

    Science.gov (United States)

    Schmidt, Christian; Kottke, Christoph; Jungnickel, Volker; Freund, Ronald

    2017-01-01

    In today's fiber-optic communication systems, the bandwidth of the photonic components, i.e. modulators and photo diodes, is way greater than that of their electrical counterparts, i.e. digital-to-analog converters (DACs) and analog-to-digital converters (ADCs). In order to increase the transmission capacity, the bandwidth limitations need to be overcome. We review the progress and the recent results in the field of high-speed DACs, which are desirable for software-defined transmitters. Furthermore, we evaluate interleaving concepts regarding their ability to overcome the above mentioned limitations and demonstrate recent experimental results for a bandwidth interleaved DAC with 40 GHz analog electrical bandwidth.

  13. Miniature high speed compressor having embedded permanent magnet motor

    Science.gov (United States)

    Zhou, Lei (Inventor); Zheng, Liping (Inventor); Chow, Louis (Inventor); Kapat, Jayanta S. (Inventor); Wu, Thomas X. (Inventor); Kota, Krishna M. (Inventor); Li, Xiaoyi (Inventor); Acharya, Dipjyoti (Inventor)

    2011-01-01

    A high speed centrifugal compressor for compressing fluids includes a permanent magnet synchronous motor (PMSM) having a hollow shaft, the being supported on its ends by ball bearing supports. A permanent magnet core is embedded inside the shaft. A stator with a winding is located radially outward of the shaft. The PMSM includes a rotor including at least one impeller secured to the shaft or integrated with the shaft as a single piece. The rotor is a high rigidity rotor providing a bending mode speed of at least 100,000 RPM which advantageously permits implementation of relatively low-cost ball bearing supports.

  14. High-speed optical links for UAV applications

    Science.gov (United States)

    Chen, C.; Grier, A.; Malfa, M.; Booen, E.; Harding, H.; Xia, C.; Hunwardsen, M.; Demers, J.; Kudinov, K.; Mak, G.; Smith, B.; Sahasrabudhe, A.; Patawaran, F.; Wang, T.; Wang, A.; Zhao, C.; Leang, D.; Gin, J.; Lewis, M.; Nguyen, D.; Quirk, K.

    2017-02-01

    High speed optical backbone links between a fleet of UAVs is an integral part of the Facebook connectivity architecture. To support the architecture, the optical terminals need to provide high throughput rates (in excess of tens of Gbps) while achieving low weight and power consumption. The initial effort is to develop and demonstrate an optical terminal capable of meeting the data rate requirements and demonstrate its functions for both air-air and air-ground engagements. This paper is a summary of the effort to date.

  15. High Speed Capacitor-Inverter Based Carbon Nanotube Full Adder

    Directory of Open Access Journals (Sweden)

    Rashtian M

    2010-01-01

    Full Text Available Abstract Carbon Nanotube filed-effect transistor (CNFET is one of the promising alternatives to the MOS transistors. The geometry-dependent threshold voltage is one of the CNFET characteristics, which is used in the proposed Full Adder cell. In this paper, we present a high speed Full Adder cell using CNFETs based on majority-not (Minority function. Presented design uses eight transistors and eight capacitors. Simulation results show significant improvement in terms of delay and power-delay product in comparison to contemporary CNFET Adder Cells. Simulations were carried out using HSPICE based on CNFET model with 0.6 V VDD.

  16. Low-latency video transmission over high-speed WPANs based on low-power video compression

    DEFF Research Database (Denmark)

    Belyaev, Evgeny; Turlikov, Andrey; Ukhanova, Ann

    2010-01-01

    This paper presents latency-constrained video transmission over high-speed wireless personal area networks (WPANs). Low-power video compression is proposed as an alternative to uncompressed video transmission. A video source rate control based on MINMAX quality criteria is introduced. Practical...... results for video encoder based on H.264/AVC standard are also given....

  17. Low-latency video transmission over high-speed WPANs based on low-power video compression

    OpenAIRE

    Belyaev, Evgeny; Turlikov, Andrey; Ukhanova, Ann

    2010-01-01

    This paper presents latency-constrained video transmission over high-speed wireless personal area networks (WPANs). Low-power video compression is proposed as an alternative to uncompressed video transmission. A video source rate control based on MINMAX quality criteria is introduced. Practical results for video encoder based on H.264/AVC standard are also given.

  18. Combining High-Speed Cameras and Stop-Motion Animation Software to Support Students' Modeling of Human Body Movement

    Science.gov (United States)

    Lee, Victor R.

    2015-01-01

    Biomechanics, and specifically the biomechanics associated with human movement, is a potentially rich backdrop against which educators can design innovative science teaching and learning activities. Moreover, the use of technologies associated with biomechanics research, such as high-speed cameras that can produce high-quality slow-motion video,…

  19. Nuclear Medicine Technologists' Perception and Current Assessment of Quality: A Society of Nuclear Medicine and Molecular Imaging Technologist Section Survey.

    Science.gov (United States)

    Mann, April; Farrell, Mary Beth; Williams, Jessica; Basso, Danny

    2017-06-01

    In 2015, the Society of Nuclear Medicine and Molecular Imaging Technologist Section (SNMMI-TS) launched a multiyear quality initiative to help prepare the technologist workforce for an evidence-based health-care delivery system that focuses on quality. To best implement the quality strategy, the SNMMI-TS first surveyed technologists to ascertain their perception of quality and current measurement of quality indicators. Methods: An internet survey was sent to 27,989 e-mail contacts. Questions related to demographic data, perceptions of quality, quality measurement, and opinions on the minimum level of education are discussed in this article. Results: A total of 4,007 (14.3%) responses were received. When asked to list 3 words or phrases that represent quality, there were a plethora of different responses. The top 3 responses were image quality, quality control, and technologist education or competency. Surveying patient satisfaction was the most common quality measure (80.9%), followed by evaluation of image quality (78.2%). Evaluation of image quality (90.3%) and equipment functionality (89.4%) were considered the most effective measures. Technologists' differentiation between quality, quality improvement, quality control, quality assurance, and quality assessment seemed ambiguous. Respondents were confident in their ability to assess and improve quality at their workplace (91.9%) and agreed their colleagues were committed to delivering quality work. Of note, 70.7% of respondents believed that quality is directly related to the technologist's level of education. Correspondingly, respondents felt there should be a minimum level of education (99.5%) and that certification or registry should be required (74.4%). Most respondents (59.6%) felt that a Bachelor's degree should be the minimum level of education, followed by an Associate's degree (40.4%). Conclusion: To best help nuclear medicine technologists provide quality care, the SNMMI-TS queried technologists to

  20. Non-invasive pre-lens tear film assessment with high-speed videokeratoscopy.

    Science.gov (United States)

    Llorens-Quintana, Clara; Mousavi, Maryam; Szczesna-Iskander, Dorota; Iskander, D Robert

    2018-02-01

    To evaluate the effect of two types of daily contact lenses (delefilcon A and omafilcon A) on the tear film and establish whether it is dependent on pre-corneal tear film characteristics using a new method to analyse high-speed videokeratoscopy recordings, as well as to determine the sensitivity of the method in differentiating between contact lens materials on eye. High-speed videokeratoscopy recordings were analysed using a custom made automated algorithm based on a fractal dimension approach that provides a set of parameters directly related to tear film stability. Fifty-four subjects participated in the study. Baseline measurements, in suppressed and natural blinking conditions, were taken before subjects were fitted with two different daily contact lenses and after four hours of contact lens wear. The method for analysing the stability of the tear film provides alternative parameters to the non-invasive break up time to assess the quality of the pre-corneal and pre-lens tear film. Both contact lenses significantly decreased the quality of the tear film in suppressed and natural blinking conditions (pfilm characteristics were not correlated with the decrease in pre-lens tear film quality. High-speed videokeratoscopy equipped with an automated method to analyse the dynamics of the tear film is able to distinguish between contact lens materials in vivo. Incorporating the assessment of pre-lens tear film to the clinical practice could aid improving contact lens fitting and understand contact lens comfort. Copyright © 2017 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.

  1. Dark matter phenomenology of high-speed galaxy cluster collisions

    Energy Technology Data Exchange (ETDEWEB)

    Mishchenko, Yuriy [Izmir University of Economics, Faculty of Engineering, Izmir (Turkey); Ji, Chueng-Ryong [North Carolina State University, Department of Physics, Raleigh, NC (United States)

    2017-08-15

    We perform a general computational analysis of possible post-collision mass distributions in high-speed galaxy cluster collisions in the presence of self-interacting dark matter. Using this analysis, we show that astrophysically weakly self-interacting dark matter can impart subtle yet measurable features in the mass distributions of colliding galaxy clusters even without significant disruptions to the dark matter halos of the colliding galaxy clusters themselves. Most profound such evidence is found to reside in the tails of dark matter halos' distributions, in the space between the colliding galaxy clusters. Such features appear in our simulations as shells of scattered dark matter expanding in alignment with the outgoing original galaxy clusters, contributing significant densities to projected mass distributions at large distances from collision centers and large scattering angles of up to 90 {sup circle}. Our simulations indicate that as much as 20% of the total collision's mass may be deposited into such structures without noticeable disruptions to the main galaxy clusters. Such structures at large scattering angles are forbidden in purely gravitational high-speed galaxy cluster collisions. Convincing identification of such structures in real colliding galaxy clusters would be a clear indication of the self-interacting nature of dark matter. Our findings may offer an explanation for the ring-like dark matter feature recently identified in the long-range reconstructions of the mass distribution of the colliding galaxy cluster CL0024+017. (orig.)

  2. High-speed gears for gas turbine drive

    Energy Technology Data Exchange (ETDEWEB)

    Kane, J.

    1995-06-01

    Recently, Lufkin Industries, Power Transmission Div., full-load tested a high-speed gear designed to couple a 50 Hz electric power generator to a GE LM6000 gas turbine for a power generation project in Australia. The gear is rated 52.2 MW to match the output of the LM6000 gas turbine believed to be one of the largest gear testing operations for this type and size of gear. Each gear drive manufactured by Lufkin is full-speed tested to verify its performance. Tests performed on high-speed units duplicate field conditions, as closely as possible, in order to verify critical speed analysis results and new bearing designs, if used. Lufkin also tests design techniques used in the development of new products. The finite element analysis performed to predict housing deflection in the thrust bearing area of a new extruder driveline was verified by testing of a prototype unit housing. Recently, housing structure stiffness and natural frequencies were predicted and verified on the test stand for some 50 MW vertically offset gear units. A complete data acquisition system is used to gather data from bearing, inlet and drain temperature monitoring points. The temperature monitoring system will accommodate type T,K,J, and E thermocouples and platinum and nickel RTDs.

  3. Preliminary design of nine high speed civil transports

    Science.gov (United States)

    Sandlin, Doral; Vantriet, Robert; Soban, Dani; Hoang, TY

    1992-01-01

    Sixty senior design students at Cal Poly, SLO have completed a year-long project to design the next generation of High Speed Civil Transports (HSCT). The design process was divided up into three distinct phases. The first third of the project was devoted entirely to research into the special problems associated with an HSCT. These included economic viability, airport compatibility, high speed aerodynamics, sonic boom minimization, environmental impact, and structures and materials. The result of this research was the development of nine separate Requests for Proposal (RFP) that outlined reasonable yet challenging design criteria for the aircraft. All were designed to be technically feasible in the year 2015. The next phase of the project divided the sixty students into nine design groups. Each group, with its own RFP, completed a Class 1 preliminary design of an HSCT. The nine configurations varied from conventional double deltas to variable geometry wings to a pivoting oblique wing design. The final phase of the project included a more detailed Class 2 sizing as well as performance and stability and control analysis. Cal Poly, San Luis Obispo presents nine unique solutions to the same problem: that of designing an economically viable, environmentally acceptable, safe and comfortable supersonic transport.

  4. Ultra-High-Speed Image Signal Accumulation Sensor

    Directory of Open Access Journals (Sweden)

    Takeharu Goji Etoh

    2010-04-01

    Full Text Available Averaging of accumulated data is a standard technique applied to processing data with low signal-to-noise ratios (SNR, such as image signals captured in ultra-high-speed imaging. The authors propose an architecture layout of an ultra-high-speed image sensor capable of on-chip signal accumulation. The very high frame rate is enabled by employing an image sensor structure with a multi-folded CCD in each pixel, which serves as an in situ image signal storage. The signal accumulation function is achieved by direct connection of the first and the last storage elements of the in situ storage CCD. It has been thought that the multi-folding is achievable only by driving electrodes with complicated and impractical layouts. Simple configurations of the driving electrodes to overcome the difficulty are presented for two-phase and four-phase transfer CCD systems. The in situ storage image sensor with the signal accumulation function is named Image Signal Accumulation Sensor (ISAS.

  5. Active resonant subwavelength grating devices for high speed spectroscopic sensing

    Science.gov (United States)

    Gin, A. V.; Kemme, S. A.; Boye, R. R.; Peters, D. W.; Ihlefeld, J. F.; Briggs, R. D.; Wendt, J. R.; Marshall, L. H.; Carter, T. R.; Samora, S.

    2009-02-01

    In this paper, we describe progress towards a multi-color spectrometer and radiometer based upon an active resonant subwavelength grating (RSG). This active RSG component acts as a tunable high-speed optical filter that allows device miniaturization and ruggedization not realizable using current sensors with conventional bulk optics. Furthermore, the geometrical characteristics of the device allow for inherently high speed operation. Because of the small critical dimensions of the RSG devices, the fabrication of these sensors can prove challenging. However, we utilize the state-of-the-art capabilities at Sandia National Laboratories to realize these subwavelength grating devices. This work also leverages previous work on passive RSG devices with greater than 98% efficiency and ~1nm FWHM. Rigorous coupled wave analysis has been utilized to design RSG devices with PLZT, PMN-PT and BaTiO3 electrooptic thin films on sapphire substrates. The simulated interdigitated electrode configuration achieves field strengths around 3×107 V/m. This translates to an increase in the refractive index of 0.05 with a 40V bias potential resulting in a 90% contrast of the modulated optical signal. We have fabricated several active RSG devices on selected electro-optic materials and we discuss the latest experimental results on these devices with variable electrostatic bias and a tunable wavelength source around 1.5μm. Finally, we present the proposed data acquisition hardware and system integration plans.

  6. High-speed stimulated Brillouin scattering spectroscopy at 780 nm

    Directory of Open Access Journals (Sweden)

    Itay Remer

    2016-09-01

    Full Text Available We demonstrate a high-speed stimulated Brillouin scattering (SBS spectroscopy system that is able to acquire stimulated Brillouin gain point-spectra in water samples and Intralipid tissue phantoms over 2 GHz within 10 ms and 100 ms, respectively, showing a 10-100 fold increase in acquisition rates over current frequency-domain SBS spectrometers. This improvement was accomplished by integrating an ultra-narrowband hot rubidium-85 vapor notch filter in a simplified frequency-domain SBS spectrometer comprising nearly counter-propagating continuous-wave pump-probe light at 780 nm and conventional single-modulation lock-in detection. The optical notch filter significantly suppressed stray pump light, enabling detection of stimulated Brillouin gain spectra with substantially improved acquisition times at adequate signal-to-noise ratios (∼25 dB in water samples and ∼15 dB in tissue phantoms. These results represent an important step towards the use of SBS spectroscopy for high-speed measurements of Brillouin gain resonances in scattering and non-scattering samples.

  7. High speed and wide bandwidth delta-sigma ADCs

    CERN Document Server

    Bolatkale, Muhammed; Makinwa, Kofi A A

    2014-01-01

    This book describes techniques for realizing wide bandwidth (125MHz) over-sampled analog-to-digital converters (ADCs) in nanometer-CMOS processes.  The authors offer a clear and complete picture of system level challenges and practical design solutions in high-speed Delta-Sigma modulators.  Readers will be enabled to implement ADCs as continuous-time delta-sigma (CT∆Σ) modulators, offering simple resistive inputs, which do not require the use of power-hungry input buffers, as well as offering inherent anti-aliasing, which simplifies system integration. The authors focus on the design of high speed and wide-bandwidth ΔΣMs that make a step in bandwidth range which was previously only possible with Nyquist converters. More specifically, this book describes the stability, power efficiency, and linearity limits of ΔΣMs, aiming at a GHz sampling frequency.   • Provides overview of trends in Wide Bandwidth and High Dynamic Range analog-to-digital converters (ADCs); • Enables the design of a wide band...

  8. Large area high-speed metrology SPM system

    Science.gov (United States)

    Klapetek, P.; Valtr, M.; Picco, L.; Payton, O. D.; Martinek, J.; Yacoot, A.; Miles, M.

    2015-02-01

    We present a large area high-speed measuring system capable of rapidly generating nanometre resolution scanning probe microscopy data over mm2 regions. The system combines a slow moving but accurate large area XYZ scanner with a very fast but less accurate small area XY scanner. This arrangement enables very large areas to be scanned by stitching together the small, rapidly acquired, images from the fast XY scanner while simultaneously moving the slow XYZ scanner across the region of interest. In order to successfully merge the image sequences together two software approaches for calibrating the data from the fast scanner are described. The first utilizes the low uncertainty interferometric sensors of the XYZ scanner while the second implements a genetic algorithm with multiple parameter fitting during the data merging step of the image stitching process. The basic uncertainty components related to these high-speed measurements are also discussed. Both techniques are shown to successfully enable high-resolution, large area images to be generated at least an order of magnitude faster than with a conventional atomic force microscope.

  9. High-speed digital fiber optic links for satellite traffic

    Science.gov (United States)

    Daryoush, A. S.; Ackerman, E.; Saedi, R.; Kunath, R. R.; Shalkhauser, K.

    1989-01-01

    Large aperture phased array antennas operating at millimeter wave frequencies are designed for space-based communications and imaging platforms. Array elements are comprised of active T/R modules which are linked to the central processing unit through high-speed fiber-optic networks. The system architecture satisfying system requirements at millimeter wave frequency is T/R level data mixing where data and frequency reference signals are distributed independently before mixing at the T/R modules. This paper demonstrates design procedures of a low loss high-speed fiber-optic link used for transmission of data signals over 600-900 MHz bandwidth inside satellite. The fiber-optic link is characterized for transmission of analog and digital data. A dynamic range of 79 dB/MHz was measured for analog data over the bandwidth. On the other hand, for bursted SMSK satellite traffic at 220 Mbps rates, BER of 2 x 10 to the -7th was measured for E(b)/N(o) of 14.3 dB.

  10. High-speed atomic force microscopy: imaging and force spectroscopy.

    Science.gov (United States)

    Eghiaian, Frédéric; Rico, Felix; Colom, Adai; Casuso, Ignacio; Scheuring, Simon

    2014-10-01

    Atomic force microscopy (AFM) is the type of scanning probe microscopy that is probably best adapted for imaging biological samples in physiological conditions with submolecular lateral and vertical resolution. In addition, AFM is a method of choice to study the mechanical unfolding of proteins or for cellular force spectroscopy. In spite of 28 years of successful use in biological sciences, AFM is far from enjoying the same popularity as electron and fluorescence microscopy. The advent of high-speed atomic force microscopy (HS-AFM), about 10 years ago, has provided unprecedented insights into the dynamics of membrane proteins and molecular machines from the single-molecule to the cellular level. HS-AFM imaging at nanometer-resolution and sub-second frame rate may open novel research fields depicting dynamic events at the single bio-molecule level. As such, HS-AFM is complementary to other structural and cellular biology techniques, and hopefully will gain acceptance from researchers from various fields. In this review we describe some of the most recent reports of dynamic bio-molecular imaging by HS-AFM, as well as the advent of high-speed force spectroscopy (HS-FS) for single protein unfolding. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  11. Numerical analysis of dipole sound source around high speed trains.

    Science.gov (United States)

    Takaishi, Takehisa; Sagawa, Akio; Nagakura, Kiyoshi; Maeda, Tatsuo

    2002-06-01

    As the maximum speed of high speed trains increases, the effect of aeroacoustic noise on the sound level on the ground becomes increasingly important. In this paper, the distribution of dipole sound sources at the bogie section of high speed trains is predicted numerically. The three-dimensional unsteady flow around a train is solved by the large eddy simulation technique. The time history of vortices shows that unstable shear layer separation at the leading edge of the bogie section sheds vortices periodically. These vortices travel downstream while growing to finally impinge upon the trailing edge of the section. The wavelength of sound produced by these vortices is large compared to the representative length of the bogie section, so that the source region can be regarded as acoustically compact. Thus a compact Green's function adapted to the shape can be used to determine the sound. By coupling the instantaneous flow properties with the compact Green's function, the distribution of dipole sources is obtained. The results reveal a strong dipole source at the trailing edge of the bogie section where the shape changes greatly and the variation of flow with time is also great. On the other hand, the bottom of the bogie section where the shape does not change, or the leading edge and boundary layer where the variation of flow with time is small, cannot generate a strong dipole source.

  12. Role of the eye in high-speed motion analysis

    Science.gov (United States)

    Hyzer, William G.

    1997-05-01

    Prior to the investigation of the photographic process over 150 years ago, the analyses of rapid motions were limited by the dynamic efficacies of the human eye, which has a temporal resolution of approximately 1/10 sec and a maximum information acquisition rate estimated at 103 to 104 bits/sec. At high rates of object motion, only the simplest actions can be resolved, comprehended and retained in human memory. Advances in the field of high-speed photography drastically changed all this by providing us with the ability today to capture permanent images of transient events at acquisition rates in excess of 1012 bits/sec. As remarkable as these improvements in temporal resolution and image retention may be, the final step in correctly interpreting any image still rests largely upon the analyst's ability to process visual data. Those who enter the field of image analysis soon learn how capricious the eye can be in this task. It is incumbent upon anyone performing important image analyses to have at least a basic understanding of the eye's performance characteristics, especially its limitations and capricious anomalies. Exemplary data presented in this paper are drawn from the scientific literature and the author's forty years of experience as a researcher, author and educator in the field of high-speed imaging.

  13. High-speed digital video tracking system for generic applications

    Science.gov (United States)

    Walton, James S.; Hallamasek, Karen G.

    2001-04-01

    The value of high-speed imaging for making subjective assessments is widely recognized, but the inability to acquire useful data from image sequences in a timely fashion has severely limited the use of the technology. 4DVideo has created a foundation for a generic instrument that can capture kinematic data from high-speed images. The new system has been designed to acquire (1) two-dimensional trajectories of points; (2) three-dimensional kinematics of structures or linked rigid-bodies; and (3) morphological reconstructions of boundaries. The system has been designed to work with an unlimited number of cameras configured as nodes in a network, with each camera able to acquire images at 1000 frames per second (fps) or better, with a spatial resolution of 512 X 512 or better, and an 8-bit gray scale. However, less demanding configurations are anticipated. The critical technology is contained in the custom hardware that services the cameras. This hardware optimizes the amount of information stored, and maximizes the available bandwidth. The system identifies targets using an algorithm implemented in hardware. When complete, the system software will provide all of the functionality required to capture and process video data from multiple perspectives. Thereafter it will extract, edit and analyze the motions of finite targets and boundaries.

  14. Quantitative Image Analysis Techniques with High-Speed Schlieren Photography

    Science.gov (United States)

    Pollard, Victoria J.; Herron, Andrew J.

    2017-01-01

    Optical flow visualization techniques such as schlieren and shadowgraph photography are essential to understanding fluid flow when interpreting acquired wind tunnel test data. Output of the standard implementations of these visualization techniques in test facilities are often limited only to qualitative interpretation of the resulting images. Although various quantitative optical techniques have been developed, these techniques often require special equipment or are focused on obtaining very precise and accurate data about the visualized flow. These systems are not practical in small, production wind tunnel test facilities. However, high-speed photography capability has become a common upgrade to many test facilities in order to better capture images of unsteady flow phenomena such as oscillating shocks and flow separation. This paper describes novel techniques utilized by the authors to analyze captured high-speed schlieren and shadowgraph imagery from wind tunnel testing for quantification of observed unsteady flow frequency content. Such techniques have applications in parametric geometry studies and in small facilities where more specialized equipment may not be available.

  15. Reflectively coupled waveguide photodetector for high speed optical interconnection.

    Science.gov (United States)

    Hsu, Shih-Hsiang

    2010-01-01

    To fully utilize GaAs high drift mobility, techniques to monolithically integrate In0.53Ga0.47As p-i-n photodetectors with GaAs based optical waveguides using total internal reflection coupling are reviewed. Metal coplanar waveguides, deposited on top of the polyimide layer for the photodetector's planarization and passivation, were then uniquely connected as a bridge between the photonics and electronics to illustrate the high-speed monitoring function. The photodetectors were efficiently implemented and imposed on the echelle grating circle for wavelength division multiplexing monitoring. In optical filtering performance, the monolithically integrated photodetector channel spacing was 2 nm over the 1,520-1,550 nm wavelength range and the pass band was 1 nm at the -1 dB level. For high-speed applications the full-width half-maximum of the temporal response and 3-dB bandwidth for the reflectively coupled waveguide photodetectors were demonstrated to be 30 ps and 11 GHz, respectively. The bit error rate performance of this integrated photodetector at 10 Gbit/s with 2(7)-1 long pseudo-random bit sequence non-return to zero input data also showed error-free operation.

  16. High-Speed Solar Wind and Geomagnetic Activity

    Science.gov (United States)

    Olyak, M. R.

    2015-03-01

    The impact of high-speed solar wind disturbances on the occurrence of geomagnetic storms is analyzed. The solar wind velocity values, determined from scintillation observations at the UTR-2 and URAN-2 Ukrainian decameter radio telescopes are analyzed together with the solar wind parameters at the Earth’s orbit and geomagnetic indices Ap. The solar wind velocity increase during observations was chiefly caused by the high-speed streams from coronal holes. At the time of February 2011, the X-class solar flare, accompanied by coronal mass ejections, was also observed. It was found that the geomagnetic disturbances of that period occurred at negative daily values of the interplanetary magnetic field component being perpendicular to the ecliptic plane. It was shown that the increasing solar wind velocity observed with the UTR-2 and URAN-2 within a wide range of helio- latitudes leads to increase in geomagnetic index Ap and to geomagnetic disturbance. Whereas the increase of solar wind velocity in a narrow range of helio-latitudes near to the ecliptic plane was never accompanied by geomagnetic perturbations.

  17. Preliminary Investigation of the Thermal Behavior of High-Speed Helical Gear Trains

    Science.gov (United States)

    Handschuh, Robert F.; Kilmain, Charles J.

    2002-01-01

    A preliminary experimental investigation of the thermal behavior of high-speed helical gears will be presented. A full-scale torque regenerative test stand has been built to test a representative helical gear train as that used in tiltrotor aircraft. Power loss and temperature data from a wide range of operating conditions were measured. Loop power ranged up to 3730 kW (5000 hp). Drive system components representative of flight quality hardware were used in the test program. The results attained in this initial study indicated that windage losses due to the high rotational speeds that were tested were far more important than the losses due to the gear meshing losses.

  18. Operational Influence on Thermal Behavior of High-Speed Helical Gear Trains

    Science.gov (United States)

    Handschuh, Robert F.; Kilmain, Charles J.

    2006-01-01

    An experimental effort has been conducted on an aerospace-quality helical gear train to investigate the thermal behavior of the gear system as many important operational conditions were varied. Drive system performance measurements were made at varying speeds and loads (to 5,000 hp and 15,000 rpm). Also, an analytical effort was undertaken for comparison to the measured results. The influence of the various loss mechanisms from the analysis for this high speed helical gear train gearbox will be presented and compared to the experimental results.

  19. FORECASTING OF PASSENGER TRAFFIC UPON IMPLEMENTATION OF HIGH-SPEED RUNNING

    Directory of Open Access Journals (Sweden)

    M. B. Kurhan

    2017-02-01

    in the efficiency of design decisions, as well as will determine the quality of the project in whole and the feasibility of its implementation in particular. Originality. The scientific approaches to forecasting the passenger traffic volume in HSN agglomeration area were further developed. The HSN feasibility study criteria system was updated; this system takes into account passenger transit flows through Ukraine, the population of the cities covered by the high-speed network, mobility of population and other factors. Practical value. The data obtained by authors can be used to justify the concept of high-speed rail transport development in Ukraine, to create a high-speed network and to phase HSN construction.

  20. World′s first telepathology experiments employing WINDS ultra-high-speed internet satellite, nicknamed "KIZUNA"

    Directory of Open Access Journals (Sweden)

    Takashi Sawai

    2013-01-01

    for teleconferencing using virtual slide systems with voice functionality. Conclusions: Our results demonstrate the feasibility of ultra-high-speed internet satellite networks for use in telepathology. Because communications satellites have less geographical and infrastructural requirements than landlines, ultra-high-speed internet satellite telepathology represents a major step toward alleviating regional disparity in the quality of medical care.

  1. World's first telepathology experiments employing WINDS ultra-high-speed internet satellite, nicknamed "KIZUNA".

    Science.gov (United States)

    Sawai, Takashi; Uzuki, Miwa; Miura, Yasuhiro; Kamataki, Akihisa; Matsumura, Tsubasa; Saito, Kenji; Kurose, Akira; Osamura, Yoshiyuki R; Yoshimi, Naoki; Kanno, Hiroyuki; Moriya, Takuya; Ishida, Yoji; Satoh, Yohichi; Nakao, Masahiro; Ogawa, Emiko; Matsuo, Satoshi; Kasai, Hiroyuki; Kumagai, Kazuhiro; Motoda, Toshihiro; Hopson, Nathan

    2013-01-01

    functionality. Our results demonstrate the feasibility of ultra-high-speed internet satellite networks for use in telepathology. Because communications satellites have less geographical and infrastructural requirements than landlines, ultra-high-speed internet satellite telepathology represents a major step toward alleviating regional disparity in the quality of medical care.

  2. High speed turning of compacted graphite iron using controlled modulation

    Science.gov (United States)

    Stalbaum, Tyler Paul

    Compacted graphite iron (CGI) is a material which emerged as a candidate material to replace cast iron (CI) in the automotive industry for engine block castings. Its thermal and mechanical properties allow the CGI-based engines to operate at higher cylinder pressures and temperatures than CI-based engines, allowing for lower fuel emissions and increased fuel economy. However, these same properties together with the thermomechanical wear mode in the CGI-CBN system result in poor machinability and inhibit CGI from seeing wide spread use in the automotive industry. In industry, machining of CGI is done only at low speeds, less than V = 200 m/min, to avoid encountering rapid wear of the cutting tools during cutting. Studies have suggested intermittent cutting operations such as milling suffer less severe tool wear than continuous cutting. Furthermore, evidence that a hard sulfide layer which forms over the cutting edge in machining CI at high speeds is absent during machining CGI is a major factor in the difference in machinability of these material systems. The present study addresses both of these issues by modification to the conventional machining process to allow intermittent continuous cutting. The application of controlled modulation superimposed onto the cutting process -- modulation-assisted machining (MAM) -- is shown to be quite effective in reducing the wear of cubic boron nitride (CBN) tools when machining CGI at high machining speeds (> 500 m/min). The tool life is at least 20 times greater than found in conventional machining of CGI. This significant reduction in wear is a consequence of reduction in the severity of the tool-work contact conditions with MAM. The propensity for thermochemical wear of CBN is thus reduced. It is found that higher cutting speed (> 700 m/min) leads to lower tool wear with MAM. The MAM configuration employing feed-direction modulation appears feasible for implementation at high speeds and offers a solution to this challenging

  3. Establishment of a national program for quality control of nuclear medicine instrumentation.

    Science.gov (United States)

    Coca Perez, Marco A; Torres Aroche, Leonel A; Bejerano, Gladys López; Mayor, Roberto Fraxedas; Corona, Consuelo Varela; López, Adlin

    2008-12-01

    Monitoring the quality of instrumentation used in nuclear medicine is mandatory to guarantee the clinical efficacy of medical practice. A national program for the quality control of nuclear medicine instruments was established in Cuba and was certified and approved by the regulatory authorities. The program, which establishes official regulations and audit services, sets up educational activities, distributes technical documentation, and maintains a national phantom bank, constitutes a valuable and useful tool to guarantee the quality of nuclear medicine instrumentation.

  4. Ultra-high-speed Optical Signal Processing using Silicon Photonics

    DEFF Research Database (Denmark)

    Oxenløwe, Leif Katsuo; Ji, Hua; Jensen, Asger Sellerup

    on silicon photonics. In particular we use nano-engineered silicon waveguides (nanowires) [1] enabling efficient phasematched four-wave mixing (FWM), cross-phase modulation (XPM) or self-phase modulation (SPM) for ultra-high-speed optical signal processing of ultra-high bit rate serial data signals. We show......— In supercomputers, the optical inter-connects are getting closer and closer to the processing cores. Today, a single supercomputer system has as many optical links as the whole worldwide web together, and it is envisaged that future computing chips will contain multiple electronic processor cores...... that silicon can indeed be used to control Tbit/s serial data signals [2], perform 640 Gbit/s wavelength conversion [3] 640 Gbit/s serial-to-parallel conversion [4], 160 Gbit/s packet switching as well as all-optical regeneration [5]. We will also discuss the performance limitations of crystalline silicon...

  5. Thermal Behavior of High-Speed Helical Gear Trains Investigated

    Science.gov (United States)

    Handschuh, Robert F.

    2003-01-01

    High-speed and heavily loaded gearing are commonplace in the rotorcraft systems employed in helicopter and tiltrotor transmissions. The components are expected to deliver high power from the gas turbine engines to the high-torque, low-speed rotor, reducing the shaft rotational speed in the range of 25:1 to 100:1. These components are designed for high power-to-weight ratios, thus the components are fabricated as light as possible with the best materials and processing to transmit the required torque and carry the resultant loads without compromising the reliability of the drive system. This is a difficult task that is meticulously analyzed and thoroughly tested experimentally prior to being applied on a new or redesigned aircraft.

  6. Quiet High Speed Fan II (QHSF II): Final Report

    Science.gov (United States)

    Kontos, Karen; Weir, Don; Ross, Dave

    2012-01-01

    This report details the aerodynamic, mechanical, structural design and fabrication of a Honey Engines Quiet High Speed Fan II (lower hub/tip ratio and higher specific flow than the Baseline I fan). This fan/nacelle system incorporates features such as advanced forward sweep and an advanced integrated fan/fan exit guide vane design that provides for the following characteristics: (1) Reduced noise at supersonic tip speeds, in comparison to current state-of-the-art fan technology; (2) Improved aeroelastic stability within the anticipated operating envelope; and (3) Aerodynamic performance consistent with current state-of-the-art fan technology. This fan was fabricated by Honeywell and tested in the NASA Glenn 9- by 15-Ft Low Speed Wind Tunnel for aerodynamic, aeromechanical, and acoustic performance.

  7. High speed MSM photodetector based on Ge nanowires network

    Science.gov (United States)

    Dhyani, Veerendra; Das, Samaresh

    2017-05-01

    This paper presents the photoresponse characteristics of a high speed Ge nanowires (NWs) network metal-semiconductor-metal photodetector. Ge NWs with different diameters (30 nm-100 nm) were grown by a vapour-liquid-solid method on SiO2/Si (100) wafers. Responsivity up to 1.75 A W-1 has been observed for a 30 nm NWs device compared to 0.5 A W-1 for a 100 nm NWs detector. A large population of surface states results in higher responsivity in a smaller diameter NWs device. The high gain in photocurrent has been explained using back-to-back Schottky junctions in a NWs network. The 30 nm NWs detector shows a fast photoresponse with a rise time of 95 μs and a fall time of 100 μs. The observed diameter-dependent time response in network NWs devices has been explained using barrier-dominant photo-conductance.

  8. Material Properties of High-Speed Steel Rolls

    Directory of Open Access Journals (Sweden)

    Shaohua Wu

    2017-03-01

    Full Text Available Recently, it has been required to improve the material properties of high-speed steel (HSS rolls, because of the low wear resistance and low mechanical properties. To improve them, several new steels have been proposed, which have high wear resistance as well as excellent mechanical properties, e.g., hardness and tensile properties, where additional elements (V, Cr and W were employed. However, their steels may have still technical issues, as the roll surfaces become roughened during the production process. The reason for this problem is found to be affected by the oxidation of the HSS surface. In this work, we have provided the suggestions to make high wear resistance of the HSS rolls

  9. Phoenix: Preliminary design of a high speed civil transport

    Science.gov (United States)

    Aguilar, Joseph; Davis, Steven; Jett, Brian; Ringo, Leslie; Stob, John; Wood, Bill

    1992-01-01

    The goal of the Phoenix Design Project was to develop a second generation high speed civil transport (HSCT) that will meet the needs of the traveler and airline industry beginning in the 21st century. The primary emphasis of the HSCT is to take advantage of the growing needs of the Pacific Basin and the passengers who are involved in that growth. A passenger load of 150 persons, a mission range of 5150 nautical miles, and a cruise speed of Mach 2.5 constitutes the primary design points of this HSCT. The design concept is made possible with the use of a well designed double delta wing and four mixed flow engines. Passenger comfort, compatibility with existing airport infrastructure, and cost competitive with current subsonic aircraft make the Phoenix a viable aircraft for the future.

  10. High-speed Integrated Circuits for electrical/Optical Interfaces

    DEFF Research Database (Denmark)

    Jespersen, Christoffer Felix

    2008-01-01

    of LC-oscillators with oscillator criteria, phase noise and different topologies are given as background. The theory of PLL circuits is also presented. Guidelines and suggestions for static divider, VCO, LA and CDR design are presented using static divider, 50-100 GHz VCO and 100Gb/s LA+CDR circuits......This thesis is a continuation of the effort to increase the bandwidth of communicationnetworks. The thesis presents the results of the design of several high-speed electrical ircuits for an electrical/optical interface. These circuits have been a contribution to the ESTA project in collaboration...... circuits at the receiver interface, though VCOs are also found in the transmitter where a multitude of independent sources have to be mutually synchronized before multiplexing. The circuits are based on an InP DHBT process (VIP-2) supplied by Vitesse and made publicly available as MPW. The VIP-2 process...

  11. Physiological consequences of military high-speed boat transits.

    Science.gov (United States)

    Myers, Stephen D; Dobbins, Trevor D; King, Stuart; Hall, Benjamin; Ayling, Ruth M; Holmes, Sharon R; Gunston, Tom; Dyson, Rosemary

    2011-09-01

    The purpose of this study was to investigate the consequences of a high-speed boat transit on physical performance. Twenty-four Royal Marines were randomly assigned to a control (CON) or transit (TRAN) group. The CON group sat onshore for 3 h whilst the TRAN group completed a 3-h transit in open-boats running side-by-side, at 40 knots in moderate-to-rough seas, with boat deck and seat-pan acceleration recorded. Performance tests (exhaustive shuttle-run, handgrip, vertical-jump, push-up) were completed pre- and immediately post-transit/sit, with peak heart rate (HRpeak) and rating of perceived exertion (RPE) recorded. Serial blood samples (pre, 24, 36, 48, 72 h) were analyzed for creatine kinase (CK) activity. The transit was typified by frequent high shock impacts, but moderate mean heart rates (boat transits.

  12. Simplified Dynamic Model for High-Speed Checkweigher

    Science.gov (United States)

    Yamakawa, Yuji; Yamazaki, Takanori

    In this paper, we concern with the dynamic behaviors of a high speed mass measurement system with conveyor belt (a checkweigher). The goal of this paper is to construct a simple model of the measurement system so as to duplicate a response of the system. The checkweigher with electromagnetic force compensation can be approximated by the combined spring-mass-damper systems as the physical model, and the equation of motion is derived. The model parameters (a damping coefficient and a spring constant) can be obtained from the experimental data for open-loop system. Finally, the validity of the proposed model can be confirmed by comparison of the simulation results with the realistic responses. The simple dynamic model obtained offers practical and useful information to examine control scheme.

  13. Analog parallel processor hardware for high speed pattern recognition

    Science.gov (United States)

    Daud, T.; Tawel, R.; Langenbacher, H.; Eberhardt, S. P.; Thakoor, A. P.

    1990-01-01

    A VLSI-based analog processor for fully parallel, associative, high-speed pattern matching is reported. The processor consists of two main components: an analog memory matrix for storage of a library of patterns, and a winner-take-all (WTA) circuit for selection of the stored pattern that best matches an input pattern. An inner product is generated between the input vector and each of the stored memories. The resulting values are applied to a WTA network for determination of the closest match. Patterns with up to 22 percent overlap are successfully classified with a WTA settling time of less than 10 microsec. Applications such as star pattern recognition and mineral classification with bounded overlap patterns have been successfully demonstrated. This architecture has a potential for an overall pattern matching speed in excess of 10 exp 9 bits per second for a large memory.

  14. AGAINTS AND FOR THE HIGH SPEED TRAINS’ MULTIMPLICATION

    Directory of Open Access Journals (Sweden)

    Benea Ciprian

    2008-05-01

    Full Text Available In this exposure we intend to make visible the situation in which global warming is given by road and air transport, how could be revitalized railways, and how high speed trains could become a preferred mode of transport. But there is manifesting an opposition to railway development, nurtured by different interests, ranking from governments themselves, to oil importing countries, oil exporting countries, oil companies with their colligate partners situated along the oil distribution chain. But, there could be identified some voices which could create themselves the possibility to speak lauder in order to promote railway transportation. The greens, NGOs, the epistemic communities, for example, could unite their force to make something in order to provide the framework for rail transportation’s development, and for road and air transport reduction, for the benefit of while humankind.

  15. Design implications of high-speed digital PPM

    Science.gov (United States)

    Sibley, Martin J. N.

    1993-11-01

    Work in the area of digital pulse position modulation (digital PPM) has shown that this type of modulation can yield sensitivities that are typically 4 - 5 dB better than an equivalent PCM system. Recent experimental work has shown that the receiver in a digital PPM system does not need to have a wide bandwidth. Instead, the bandwidth can be very low so that the receiver is effectively impulsed by the digital PPM signal. The advent of very high speed Si digital ICs, and fast lasers, means that digital PPM can now be used to code gigabit PCM signals. This paper presents original theoretical results for a digital PPM system coding 1 Gbit/s PCM signals into 8 Gbit/s digital PPM signals. The paper also addresses the difficulties that the system designer is likely to encounter, and discusses some possible solutions.

  16. Machining Chatter Analysis for High Speed Milling Operations

    Science.gov (United States)

    Sekar, M.; Kantharaj, I.; Amit Siddhappa, Savale

    2017-10-01

    Chatter in high speed milling is characterized by time delay differential equations (DDE). Since closed form solution exists only for simple cases, the governing non-linear DDEs of chatter problems are solved by various numerical methods. Custom codes to solve DDEs are tedious to build, implement and not error free and robust. On the other hand, software packages provide solution to DDEs, however they are not straight forward to implement. In this paper an easy way to solve DDE of chatter in milling is proposed and implemented with MATLAB. Time domain solution permits the study and model of non-linear effects of chatter vibration with ease. Time domain results are presented for various stable and unstable conditions of cut and compared with stability lobe diagrams.

  17. High-Speed Coherent Raman Fingerprint Imaging of Biological Tissues

    CERN Document Server

    Camp, Charles H; Heddleston, John M; Hartshorn, Christopher M; Walker, Angela R Hight; Rich, Jeremy N; Lathia, Justin D; Cicerone, Marcus T

    2014-01-01

    We have developed a coherent Raman imaging platform using broadband coherent anti-Stokes Raman scattering (BCARS) that provides an unprecedented combination of speed, sensitivity, and spectral breadth. The system utilizes a unique configuration of laser sources that probes the Raman spectrum over 3,000 cm$^{-1}$ and generates an especially strong response in the typically weak Raman "fingerprint" region through heterodyne amplification of the anti-Stokes photons with a large nonresonant background (NRB) while maintaining high spectral resolution of $<$ 13 cm$^{-1}$. For histology and pathology, this system shows promise in highlighting major tissue components in a non-destructive, label-free manner. We demonstrate high-speed chemical imaging in two- and three-dimensional views of healthy murine liver and pancreas tissues and interfaces between xenograft brain tumors and the surrounding healthy brain matter.

  18. Premiere in high speed materials inter-operability

    Energy Technology Data Exchange (ETDEWEB)

    Brun, D.

    1995-07-01

    The Eurostar trains have been designed to meet the safety requirements of the Channel Tunnel. In particular, ti must be possible to remove the train from the tunnel in most fault scenarios. The train design is based upon an optimal capacity/price ratio. As far as the installation of electrical equipment is concerned (power supply, power conversion, motor units), the variety of track configurations is another consideration in addition to the questions of safety. The original solutions adopted give traction and braking performance that are satisfactory by comparison with the high-speed trains (TGV) in service on appropriate track, and the best possible for the British track. The trains are heavier and less powerful, but they are capable of getting out of the tunnel with only one motor out of three in service. (author). 6 figs.

  19. Optical communication equalized technique suitable for high-speed transmission

    Science.gov (United States)

    Zhu, Yaolin; Guan, Hao

    2017-07-01

    To solve the phase distortion and high error rate in optical signal transmission, an equalized technique is proposed, which aims to improve the constant modulus algorithm (CMA). In order to correct phase rotating and reduce the error rate with 64 quadrature amplitude modulation (QAM), the method takes the mean square error as the judgment and utilizes the time-varying step size. Simulation results demonstrate that the proposed algorithm can improve the convergence speed of constellation points, make the eye opening larger, and the signal noise ratio (SNR) can be increased by 4 dB under the same bit error rate (BER), which is efficient for the recovery of information in high-speed transmission.

  20. High speed cutting of AZ31 magnesium alloy

    Directory of Open Access Journals (Sweden)

    Liwei Lu

    2016-06-01

    Full Text Available Using LBR-370 numerical control lathe, high speed cutting was applied to AZ31 magnesium alloy. The influence of cutting parameters on microstructure, surface roughness and machining hardening were investigated by using the methods of single factor and orthogonal experiment. The results show that the cutting parameters have an important effect on microstructure, surface roughness and machine hardening. The depth of stress layer, roughness and hardening present a declining tendency with the increase of the cutting speed and also increase with the augment of the cutting depth and feed rate. Moreover, we established a prediction model of the roughness, which has an important guidance on actual machining process of magnesium alloy.

  1. Towards high-speed autonomous navigation of unknown environments

    Science.gov (United States)

    Richter, Charles; Roy, Nicholas

    2015-05-01

    In this paper, we summarize recent research enabling high-speed navigation in unknown environments for dynamic robots that perceive the world through onboard sensors. Many existing solutions to this problem guarantee safety by making the conservative assumption that any unknown portion of the map may contain an obstacle, and therefore constrain planned motions to lie entirely within known free space. In this work, we observe that safety constraints may significantly limit performance and that faster navigation is possible if the planner reasons about collision with unobserved obstacles probabilistically. Our overall approach is to use machine learning to approximate the expected costs of collision using the current state of the map and the planned trajectory. Our contribution is to demonstrate fast but safe planning using a learned function to predict future collision probabilities.

  2. Dynamics of High-Speed Rotors Supported in Sliding Bearings

    Science.gov (United States)

    Šimek, J.; Svoboda, R.

    The higher the operating speed, the more serious are problems with rotor stability. Three basic groups of rotors are analyzed and some methods of suppressing instability are shown. In the first group are classical elastic rotors supported in hydrodynamic bearings. Practically all high-speed rotors now run in tilting pad bearings, which are inherently stable, but in specific conditions even tiling pad bearings may not ensure rotor stability. The second group is composed of combustion engines turbocharger rotors, which are characteristic by heavy impellers at both overhung ends of elastic shaft. These rotors are in most cases supported in floating ring bearings, which bring special features to rotor behaviour. The third group of rotors with gas bearings exhibits special features.

  3. High-Speed, Three Dimensional Object Composition Mapping Technology

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, M Y

    2001-02-14

    This document overviews an entirely new approach to determining the composition--the chemical-elemental, isotopic and molecular make-up--of complex, highly structured objects, moreover with microscopic spatial resolution in all 3 dimensions. The front cover depicts the new type of pulsed laser system at the heart of this novel technology under adjustment by Alexis Wynne, and schematically indicates two of its early uses: swiftly analyzing the 3-D composition governed structure of a transistor circuit with both optical and mass-spectrometric detectors, and of fossilized dinosaur and turtle bones high-speed probed by optical detection means. Studying the composition-cued 3-D micro-structures of advanced composite materials and the microscopic scale composition-texture of biological tissues are two near-term examples of the rich spectrum of novel applications enabled by this field-opening analytic tool-set.

  4. High Speed Water Sterilization Using One-Dimensional Nanostructures

    KAUST Repository

    Schoen, David T.

    2010-09-08

    The removal of bacteria and other organisms from water is an extremely important process, not only for drinking and sanitation but also industrially as biofouling is a commonplace and serious problem. We here present a textile based multiscale device for the high speed electrical sterilization of water using silver nanowires, carbon nanotubes, and cotton. This approach, which combines several materials spanning three very different length scales with simple dying based fabrication, makes a gravity fed device operating at 100000 L/(h m2) which can inactivate >98% of bacteria with only several seconds of total incubation time. This excellent performance is enabled by the use of an electrical mechanism rather than size exclusion, while the very high surface area of the device coupled with large electric field concentrations near the silver nanowire tips allows for effective bacterial inactivation. © 2010 American Chemical Society.

  5. High-speed counters in Fibonacci numerical system

    Science.gov (United States)

    Azarov, Olexiy; Chernyak, Olexandr; Komada, Paweł; Kozhambardiyeva, Miergul; Kalizhanova, Aliya

    2017-08-01

    Possibility of executing the carriers and borrowings by means of elementary additive transformations in the process of calculation in Fibonacci numerical system is substantiated. Methods of counting in the given numerical system, based on the usage of information redundancy are suggested. The methods consist in the fact that at every step executed all possible elementary addition transformations of code in the counter simultaneously with adding one. The suggested methods enable to construct up-, down- and up/down counters with high speed, independent on the data capacity and small hardware cost that linearly grow with the increase of the capacity. Schemes of structural organization of one digit for each of the suggested methods are given.

  6. Imaging acoustic sources moving at high-speed

    Science.gov (United States)

    Bodony, Daniel; Papanicolaou, George

    2006-11-01

    In the quantification of the noise radiated by a turbulent flow the source motion is important. It is well known that moving acoustic sources radiate sound preferrentially in the direction of motion in a phenomenon termed `convective amplification.' Modern acoustic theories have utilized this behavior in their predictions. In the inverse problem the imaging of noise sources, by techniques such as beam forming, the source motion is not explicitly taken into account. In this talk we consider the imaging of acoustic sources moving at speeds on the order of the the ambient speed of sound, as typical of high-speed jets, for which the D"oppler shift approximation is not appropriate. An analysis will be presented that can be used to estimate the source motion based on the radiated acoustic field.

  7. High-speed single-pixel digital holography

    Science.gov (United States)

    González, Humberto; Martínez-León, Lluís.; Soldevila, Fernando; Araiza-Esquivel, Ma.; Tajahuerce, Enrique; Lancis, Jesús

    2017-06-01

    The complete phase and amplitude information of biological specimens can be easily determined by phase-shifting digital holography. Spatial light modulators (SLMs) based on liquid crystal technology, with a frame-rate around 60 Hz, have been employed in digital holography. In contrast, digital micro-mirror devices (DMDs) can reach frame rates up to 22 kHz. A method proposed by Lee to design computer generated holograms (CGHs) permits the use of such binary amplitude modulators as phase-modulation devices. Single-pixel imaging techniques record images by sampling the object with a sequence of micro-structured light patterns and using a simple photodetector. Our group has reported some approaches combining single-pixel imaging and phase-shifting digital holography. In this communication, we review these techniques and present the possibility of a high-speed single-pixel phase-shifting digital holography system with phase-encoded illumination. This system is based on a Mach-Zehnder interferometer, with a DMD acting as the modulator for projecting the sampling patterns on the object and also being used for phase-shifting. The proposed sampling functions are phaseencoded Hadamard patterns generated through a Lee hologram approach. The method allows the recording of the complex amplitude distribution of an object at high speed on account of the high frame rates of the DMD. Reconstruction may take just a few seconds. Besides, the optical setup is envisaged as a true adaptive system, which is able to measure the aberration induced by the optical system in the absence of a sample object, and then to compensate the wavefront in the phasemodulation stage.

  8. Modeling Compressibility Effects in High-Speed Turbulent Flows

    Science.gov (United States)

    Sarkar, S.

    2004-01-01

    Man has strived to make objects fly faster, first from subsonic to supersonic and then to hypersonic speeds. Spacecraft and high-speed missiles routinely fly at hypersonic Mach numbers, M greater than 5. In defense applications, aircraft reach hypersonic speeds at high altitude and so may civilian aircraft in the future. Hypersonic flight, while presenting opportunities, has formidable challenges that have spurred vigorous research and development, mainly by NASA and the Air Force in the USA. Although NASP, the premier hypersonic concept of the eighties and early nineties, did not lead to flight demonstration, much basic research and technology development was possible. There is renewed interest in supersonic and hypersonic flight with the HyTech program of the Air Force and the Hyper-X program at NASA being examples of current thrusts in the field. At high-subsonic to supersonic speeds, fluid compressibility becomes increasingly important in the turbulent boundary layers and shear layers associated with the flow around aerospace vehicles. Changes in thermodynamic variables: density, temperature and pressure, interact strongly with the underlying vortical, turbulent flow. The ensuing changes to the flow may be qualitative such as shocks which have no incompressible counterpart, or quantitative such as the reduction of skin friction with Mach number, large heat transfer rates due to viscous heating, and the dramatic reduction of fuel/oxidant mixing at high convective Mach number. The peculiarities of compressible turbulence, so-called compressibility effects, have been reviewed by Fernholz and Finley. Predictions of aerodynamic performance in high-speed applications require accurate computational modeling of these "compressibility effects" on turbulence. During the course of the project we have made fundamental advances in modeling the pressure-strain correlation and developed a code to evaluate alternate turbulence models in the compressible shear layer.

  9. High-Speed Edge-Detecting Line Scan Smart Camera

    Science.gov (United States)

    Prokop, Norman F.

    2012-01-01

    A high-speed edge-detecting line scan smart camera was developed. The camera is designed to operate as a component in a NASA Glenn Research Center developed inlet shock detection system. The inlet shock is detected by projecting a laser sheet through the airflow. The shock within the airflow is the densest part and refracts the laser sheet the most in its vicinity, leaving a dark spot or shadowgraph. These spots show up as a dip or negative peak within the pixel intensity profile of an image of the projected laser sheet. The smart camera acquires and processes in real-time the linear image containing the shock shadowgraph and outputting the shock location. Previously a high-speed camera and personal computer would perform the image capture and processing to determine the shock location. This innovation consists of a linear image sensor, analog signal processing circuit, and a digital circuit that provides a numerical digital output of the shock or negative edge location. The smart camera is capable of capturing and processing linear images at over 1,000 frames per second. The edges are identified as numeric pixel values within the linear array of pixels, and the edge location information can be sent out from the circuit in a variety of ways, such as by using a microcontroller and onboard or external digital interface to include serial data such as RS-232/485, USB, Ethernet, or CAN BUS; parallel digital data; or an analog signal. The smart camera system can be integrated into a small package with a relatively small number of parts, reducing size and increasing reliability over the previous imaging system..

  10. Changes of indicators of high-speed and high-speed and power preparedness at volleyball players of 12–13 years old

    OpenAIRE

    Oleg Shevchenko

    2016-01-01

    Purpose: to define changes of indicators of high-speed and high-speed and power preparedness of volleyball players of 12–13 years old. Material & Methods: the test exercises, which are recommended by the training program of CYSS on volleyball, were used for the definition of the level of development of high-speed and high-speed and power abilities of volleyball players. 25 young volleyball players from the group of the previous basic preparation took part in the experiment. Sports experie...

  11. Stingray: high-speed control of small UGVs in urban terrain

    Science.gov (United States)

    Yamauchi, Brian; Massey, Kent

    2009-05-01

    For the TARDEC-funded Stingray Project, iRobot Corporation and Chatten Associates are developing technologies that will allow small UGVs to operate at tactically useful speeds. In previous work, we integrated a Chatten Head-Aimed Remote Viewer (HARV) with an iRobot Warrior UGV, and used the HARV to drive the Warrior, as well as a small, high-speed, gas-powered UGV surrogate. In this paper, we describe our continuing work implementing semiautonomous driver-assist behaviors to help an operator control a small UGV at high speeds. We have implemented an IMU-based heading control behavior that enables tracked vehicles to maintain accurate heading control even over rough terrain. We are also developing a low-latency, low-bandwidth, high-quality digital video protocol to support immersive visual telepresence. Our experiments show that a video compression codec using the H.264 algorithm can produce several times better resolution than a Motion JPEG video stream, while utilizing the same limited bandwidth, and the same low latency. With further enhancements, our H.264 codec will provide an order of magnitude greater quality, while retaining a low latency comparable to Motion JPEG, and operating within the same bandwidth.

  12. 49 CFR 236.1007 - Additional requirements for high-speed service.

    Science.gov (United States)

    2010-10-01

    ... by this subpart, and which have been utilized on high-speed rail systems with similar technical and... 49 Transportation 4 2010-10-01 2010-10-01 false Additional requirements for high-speed service..., AND APPLIANCES Positive Train Control Systems § 236.1007 Additional requirements for high-speed...

  13. Dual-camera system for high-speed imaging in particle image velocimetry

    CERN Document Server

    Hashimoto, K; Hara, T; Onogi, S; Mouri, H

    2012-01-01

    Particle image velocimetry is an important technique in experimental fluid mechanics, for which it has been essential to use a specialized high-speed camera. However, the high speed is at the expense of other performances of the camera, i.e., sensitivity and image resolution. Here, we demonstrate that the high-speed imaging is also possible with a pair of still cameras.

  14. SR high-speed K-edge subtraction angiography in the small animal (abstract)

    Science.gov (United States)

    Takeda, T.; Akisada, M.; Nakajima, T.; Anno, I.; Ueda, K.; Umetani, K.; Yamaguchi, C.

    1989-07-01

    To assess the ability of the high-speed K-edge energy subtraction system which was made at beamline 8C of Photon Factory, Tsukuba, we performed an animal experiment. Rabbits were used for the intravenous K-edge subtraction angiography. In this paper, the actual images of the artery obtained by this system, are demonstrated. The high-speed K-edge subtraction system consisted of movable silicon (111) monocrystals, II-ITV, and digital memory system. Image processing was performed by 68000-IP computer. The monochromatic x-ray beam size was 50×60 mm. Photon energy above and below iodine K edge was changed within 16 ms and 32 frames of images were obtained sequentially. The rabbits were anaesthetized by phenobarbital and a 5F catheter was inserted into inferior vena cava via the femoral vein. 1.5 ml/kg of contrast material (Conlaxin H) was injected at the rate of 0.5 ml/kg/s. TV images were obtained 3 s after the starting point of injection. By using this system, the clear K-edge subtracted images were obtained sequentially as a conventional DSA system. The quality of the images were better than that obtained by DSA. The dynamical blood flow was analyzed, and the best arterial image could be selected from the sequential images. The structures of aortic arch, common carotid arteries, right subclavian artery, and internal thoracic artery were obtained at the chest. Both common carotid arteries and vertebral arteries were recorded at the neck. The diameter of about 0.3-0.4 mm artery could be clearly revealed. The high-speed K-edge subtraction system demonstrates the very sharp arterial images clearly and dynamically.

  15. Cyclostationarity approach for monitoring chatter and tool wear in high speed milling

    Science.gov (United States)

    Lamraoui, M.; Thomas, M.; El Badaoui, M.

    2014-02-01

    Detection of chatter and tool wear is crucial in the machining process and their monitoring is a key issue, for: (1) insuring better surface quality, (2) increasing productivity and (3) protecting both machines and safe workpiece. This paper presents an investigation of chatter and tool wear using the cyclostationary method to process the vibrations signals acquired from high speed milling. Experimental cutting tests were achieved on slot milling operation of aluminum alloy. The experimental set-up is designed for acquisition of accelerometer signals and encoding information picked up from an encoder. The encoder signal is used for re-sampling accelerometers signals in angular domain using a specific algorithm that was developed in LASPI laboratory. The use of cyclostationary on accelerometer signals has been applied for monitoring chatter and tool wear in high speed milling. The cyclostationarity appears on average properties (first order) of signals, on the energetic properties (second order) and it generates spectral lines at cyclic frequencies in spectral correlation. Angular power and kurtosis are used to analyze chatter phenomena. The formation of chatter is characterized by unstable, chaotic motion of the tool and strong anomalous fluctuations of cutting forces. Results show that stable machining generates only very few cyclostationary components of second order while chatter is strongly correlated to cyclostationary components of second order. By machining in the unstable region, chatter results in flat angular kurtosis and flat angular power, such as a pseudo (white) random signal with flat spectrum. Results reveal that spectral correlation and Wigner Ville spectrum or integrated Wigner Ville issued from second-order cyclostationary are an efficient parameter for the early diagnosis of faults in high speed machining, such as chatter, tool wear and bearings, compared to traditional stationary methods. Wigner Ville representation of the residual signal shows

  16. Development and Performance of the ACTS High Speed VSAT

    Science.gov (United States)

    Quintana, J.; Tran, Q.; Dendy, R.

    1999-01-01

    The Advanced Communication Technology Satellite (ACTS), developed by the U.S. National Aeronautics and Space Administration (NASA) has demonstrated the breakthrough technologies of Ka-band, spot beam antennas, and on-board processing. These technologies have enabled the development of very small aperture terminals (VSAT) and ultra-small aperture terminals (USAT) which have capabilities greater than were previously possible with conventional satellite technologies. However, the ACTS baseband processor (BBP) is designed using a time division multiple access (TDMA) scheme, which requires each earth station using the BBP to transmit data at a burst rate which is much higher than the user throughput data rate. This tends to mitigate the advantage of the new technologies by requiring a larger earth station antenna and/or a higher-powered uplink amplifier than would be necessary for a continuous transmission at the user data rate. Conversely, the user data rate is much less than the rate that can be supported by the antenna size and amplifier. For example, the ACTS TI VSAT operates at a burst rate of 27.5 Mbps, but the maximum user data rate is 1.792 Mbps. The throughput efficiency is slightly more than 6.5%. For an operational network, this level of overhead will greatly increase the cost of the user earth stations, and that increased cost must be repeated thousands of times, which may ultimately reduce the market for such a system. The ACTS High Speed VSAT (HS VSAT) is an effort to experimentally demonstrate the maximum user throughput data rate which can be achieved using the technologies developed and implemented on ACTS. Specifically, this was done by operating the system uplinks as frequency division multiple access (FDMA), essentially assigning all available TDMA time slots to a single user on each of two uplink frequencies. Preliminary results show that using a 1.2-m antenna in this mode, the HS VSAT can achieve between 22 and 24 Mbps out of the 27.5 Mbps burst

  17. Changes of indicators of high-speed and high-speed and power preparedness at volleyball players of 12–13 years old

    Directory of Open Access Journals (Sweden)

    Oleg Shevchenko

    2016-04-01

    Full Text Available Purpose: to define changes of indicators of high-speed and high-speed and power preparedness of volleyball players of 12–13 years old. Material & Methods: the test exercises, which are recommended by the training program of CYSS on volleyball, were used for the definition of the level of development of high-speed and high-speed and power abilities of volleyball players. 25 young volleyball players from the group of the previous basic preparation took part in the experiment. Sports experience of sportsmen is 3–4 years. The analysis of scientifically-methodical literature, pedagogical testing, pedagogical experiment, methods of mathematical statistics were carried out. Results: the analyzed level of high-speed and high-speed and power abilities of volleyball players. Conclusions: the results had reliable changes (t=2,2–2,4 at р<0,05 of the level of high-speed and high-speed and power abilities of volleyball players of 12–13years old in the experimental group at the end of the experiment, except run on 30 m that demonstrates a positive influence of application of special exercises in the educational-training process.

  18. High-speed cinematography of gas-metal atomization

    Energy Technology Data Exchange (ETDEWEB)

    Ting, Jason [ALCOA Specialty Metals Division, 100 Technical Drive, Alcoa Center, PA 15069 (United States)]. E-mail: jason.ting@alcoa.com; Connor, Jeffery [Material Science Engineering Department, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Ridder, Stephen [Metallurgical Processing Group, NIST, 100 Bureau Dr. Stop 8556, Gaithersburg, MD 20899 (United States)

    2005-01-15

    A high-speed cinematographic footage of a 304L stainless steel gas atomization, recorded at the National Institute of Standard and Technology (NIST), was analyzed using a discrete Fourier transform (DFT) algorithm. The analysis showed the gas atomization process possesses two prominent frequency ranges of melt oscillation (pulsation). A low-frequency oscillation in the melt flow occurring between 5.41 and 123 Hz, with a dominant frequency at 9.93 Hz, was seen in the recirculation zone adjacent to the melt orifice. A high-frequency melt oscillation range was observed above 123 Hz, and was more prominent one melt-tip-diameter downstream in the melt atomization image than upstream near the melt tip. This high-frequency range may reflect the melt atomization frequency used to produce finely atomized powder. This range also included a prominent high frequency at 1273 Hz, which dominated in the image further away downstream from the melt tip. This discrete high-frequency oscillation is most probably caused by the aeroacoustic ''screech'' phenomenon, intrasound (<20 kHz), a result of the atomizing gas jets undergoing flow resonance. It is hypothesized that this discrete intrinsic aeroacoustic tone may enhance melt breakup in the atomization process with evidence of this fact in the melt images.

  19. In defence of high-speed memory scanning.

    Science.gov (United States)

    Sternberg, Saul

    2016-10-01

    This paper reviews some of the evidence that bears on the existence of a mental high-speed serial exhaustive scanning process (SES) used by humans to interrogate the active memory of a set of items to determine whether it contains a test item. First proposed in the 1960s, based on patterns of reaction times (RTs), numerous later studies supported, elaborated, extended, and limited the generality of SES, while critics claimed that SES never occurred, that predictions from SES were violated, and that other mechanisms produced the RT patterns that led to the idea. I show that some of these claims result from ignoring variations in experimental procedure that produce superficially similar but quantitatively different RT patterns and that, for the original procedures, the most frequently repeated claims that predictions are violated are false. I also discuss evidence against the generality of competing theories of active-memory interrogation, especially those that depend on discrimination of directly accessible "memory-strength". Some of this evidence has been available since the 1960s but has been ignored by some proponents of alternative theories. Other evidence presented herein is derived from results of one relevant experiment described for the first time, results of another described in more detail than heretofore, and new analyses of old data. Knowledge of brain function acquired during the past half century has increased the plausibility of SES. SES is alive and well, but many associated puzzles merit further investigation, suggestions for which are offered.

  20. Improvement of vocal pathologies diagnosis using high-speed videolaryngoscopy.

    Science.gov (United States)

    Tsuji, Domingos Hiroshi; Hachiya, Adriana; Dajer, Maria Eugenia; Ishikawa, Camila Cristina; Takahashi, Marystella Tomoe; Montagnoli, Arlindo Neto

    2014-07-01

    Introduction The study of the dynamic properties of vocal fold vibration is important for understanding the vocal production mechanism and the impact of organic and functional changes. The advent of high-speed videolaryngoscopy (HSV) has provided the possibility of seeing the real cycle of vocal fold vibration in detail through high sampling rate of successive frames and adequate spatial resolution. Objective To describe the technique, advantages, and limitations of using HSV and digital videokymography in the diagnosis of vocal pathologies. Methods We used HSV and digital videokymography to evaluate one normophonic individual and four patients with vocal fold pathologies (nodules, unilateral paralysis of the left vocal fold, intracordal cyst, and adductor spasmodic dysphonia). The vocal fold vibration parameters (glottic closure, vibrational symmetry, periodicity, mucosal wave, amplitude, and glottal cycle phases) were assessed. Results Differences in the vocal vibration parameters were observed and correlated with the pathophysiology. Conclusion HSV is the latest diagnostic tool in visual examination of vocal behavior and has considerable potential to refine our knowledge regarding the vocal fold vibration and voice production, as well as regarding the impact of pathologic conditions have on the mechanism of phonation.

  1. Improvement of Vocal Pathologies Diagnosis Using High-Speed Videolaryngoscopy

    Directory of Open Access Journals (Sweden)

    Tsuji, Domingos Hiroshi

    2014-04-01

    Full Text Available Introduction The study of the dynamic properties of vocal fold vibration is important for understanding the vocal production mechanism and the impact of organic and functional changes. The advent of high-speed videolaryngoscopy (HSV has provided the possibility of seeing the real cycle of vocal fold vibration in detail through high sampling rate of successive frames and adequate spatial resolution. Objective To describe the technique, advantages, and limitations of using HSV and digital videokymography in the diagnosis of vocal pathologies. Methods We used HSV and digital videokymography to evaluate one normophonic individual and four patients with vocal fold pathologies (nodules, unilateral paralysis of the left vocal fold, intracordal cyst, and adductor spasmodic dysphonia. The vocal fold vibration parameters (glottic closure, vibrational symmetry, periodicity, mucosal wave, amplitude, and glottal cycle phases were assessed. Results Differences in the vocal vibration parameters were observed and correlated with the pathophysiology. Conclusion HSV is the latest diagnostic tool in visual examination of vocal behavior and has considerable potential to refine our knowledge regarding the vocal fold vibration and voice production, as well as regarding the impact of pathologic conditions have on the mechanism of phonation.

  2. Lagrangian transported MDF methods for compressible high speed flows

    Science.gov (United States)

    Gerlinger, Peter

    2017-06-01

    This paper deals with the application of thermochemical Lagrangian MDF (mass density function) methods for compressible sub- and supersonic RANS (Reynolds Averaged Navier-Stokes) simulations. A new approach to treat molecular transport is presented. This technique on the one hand ensures numerical stability of the particle solver in laminar regions of the flow field (e.g. in the viscous sublayer) and on the other hand takes differential diffusion into account. It is shown in a detailed analysis, that the new method correctly predicts first and second-order moments on the basis of conventional modeling approaches. Moreover, a number of challenges for MDF particle methods in high speed flows is discussed, e.g. high cell aspect ratio grids close to solid walls, wall heat transfer, shock resolution, and problems from statistical noise which may cause artificial shock systems in supersonic flows. A Mach 2 supersonic mixing channel with multiple shock reflection and a model rocket combustor simulation demonstrate the eligibility of this technique to practical applications. Both test cases are simulated successfully for the first time with a hybrid finite-volume (FV)/Lagrangian particle solver (PS).

  3. Propulsion challenges and opportunities for high-speed transport aircraft

    Science.gov (United States)

    Strack, William C.

    1987-01-01

    For several years there was a growing interest in the subject of efficient sustained supersonic cruise technology applied to a high-speed transport aircraft. The major challenges confronting the propulsion community for supersonic transport (SST) applications are identified. Both past progress and future opportunities are discussed in relation to perceived technology shortfalls for an economically successful SST that satisfies environmental constraints. A very large improvement in propulsion system efficiency is needed both at supersonic and subsonic cruise conditions. Toward that end, several advanced engine concepts are being considered that, together with advanced discipline and component technologies, promise at least 40 percent better efficiency that the Concorde engine. The quest for higher productivity through higher speed is also thwarted by the lack of a conventional, low-priced fuel that is thermally stable at the higher temperatures associated with faster flight. Airport noise remains a tough challenge because previously researched concepts fall short of achieving FAR 36 Stage 3 noise levels. Innovative solutions may be necessary to reach acceptably low noise. While the technical challenges are indeed formidable, it is reasonable to assume that the current shortfalls in fuel economy and noise can be overcome through an aggressive propulsion research program.

  4. Measurements of granular flow dynamics with high speed digital images

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jingeol [Univ. of Florida, Gainesville, FL (United States)

    1994-01-01

    The flow of granular materials is common to many industrial processes. This dissertation suggests and validates image processing algorithms applied to high speed digital images to measure the dynamics (velocity, temperature and volume fraction) of dry granular solids flowing down an inclined chute under the action of gravity. Glass and acrylic particles have been used as granular solids in the experiment. One technique utilizes block matching for spatially averaged velocity measurements of the glass particles. This technique is compared with the velocity measurement using an optic probe which is a conventional granular flow velocity measurement device. The other technique for measuring the velocities of individual acrylic particles is developed with correspondence using a Hopfield network. This technique first locates the positions of particles with pattern recognition techniques, followed by a clustering technique, which produces point patterns. Also, several techniques are compared for particle recognition: synthetic discriminant function (SDF), minimum average correlation energy (MACE) filter, modified minimum average correlation energy (MMACE) filter and variance normalized correlation. The author proposes an MMACE filter which improves generalization of the MACE filter by adjusting the amount of averaged spectrum of training images in the spectrum whitening stages of the MACE filter. Variance normalized correlation is applied to measure the velocity and temperature of flowing glass particles down the inclined chute. The measurements are taken for the steady and wavy flow and qualitatively compared with a theoretical model of granular flow.

  5. Integrated design and manufacturing for the high speed civil transport

    Science.gov (United States)

    Lee, Jae Moon; Gupta, Anurag; Mueller, Craig; Morrisette, Monica; Dec, John; Brewer, Jason; Donofrio, Kevin; Sturisky, Hilton; Smick, Doug; An, Meng Lin

    1994-01-01

    In June 1992, the School of Aerospace Engineering at Georgia Tech was awarded a three year NASA University Space Research Association (USRA) Advanced Design Program (ADP) grant to address issues associated with the Integrated Design and Manufacturing of High Speed Civil Transport (HSCT) configurations in its graduate Aerospace Systems Design courses. This report provides an overview of the on-going Georgia Tech initiative to address these design/manufacturing issues during the preliminary design phases of an HSCT concept. The new design methodology presented here has been incorporated in the graduate aerospace design curriculum and is based on the concept of Integrated Product and Process Development (IPPD). The selection of the HSCT as a pilot project was motivated by its potential global transportation payoffs; its technological, environmental, and economic challenges; and its impact on U.S. global competitiveness. This pilot project was the focus of each of the five design courses that form the graduate level aerospace systems design curriculum. This year's main objective was the development of a systematic approach to preliminary design and optimization and its implementation to an HSCT wing/propulsion configuration. The new methodology, based on the Taguchi Parameter Design Optimization Method (PDOM), was established and was used to carry out a parametric study where various feasible alternative configurations were evaluated. The comparison criterion selected for this evaluation was the economic impact of this aircraft, measured in terms of average yield per revenue passenger mile ($/RPM).

  6. Submonolayer Quantum Dots for High Speed Surface Emitting Lasers

    Directory of Open Access Journals (Sweden)

    Zakharov ND

    2007-01-01

    Full Text Available AbstractWe report on progress in growth and applications of submonolayer (SML quantum dots (QDs in high-speed vertical-cavity surface-emitting lasers (VCSELs. SML deposition enables controlled formation of high density QD arrays with good size and shape uniformity. Further increase in excitonic absorption and gain is possible with vertical stacking of SML QDs using ultrathin spacer layers. Vertically correlated, tilted or anticorrelated arrangements of the SML islands are realized and allow QD strain and wavefunction engineering. Respectively, both TE and TM polarizations of the luminescence can be achieved in the edge-emission using the same constituting materials. SML QDs provide ultrahigh modal gain, reduced temperature depletion and gain saturation effects when used in active media in laser diodes. Temperature robustness up to 100 °C for 0.98 μm range vertical-cavity surface-emitting lasers (VCSELs is realized in the continuous wave regime. An open eye 20 Gb/s operation with bit error rates better than 10−12has been achieved in a temperature range 25–85 °Cwithout current adjustment. Relaxation oscillations up to ∼30 GHz have been realized indicating feasibility of 40 Gb/s signal transmission.

  7. A DSP Based POD Implementation for High Speed Multimedia Communications

    Directory of Open Access Journals (Sweden)

    Chang Nian Zhang

    2002-09-01

    Full Text Available In the cable network services, the audio/video entertainment contents should be protected from unauthorized copying, intercepting, and tampering. Point-of-deployment (POD security module, proposed by OpenCableTM, allows viewers to receive secure cable services such as premium subscription channels, impulse pay-per-view, video-on-demand as well as other interactive services. In this paper, we present a digital signal processor (DSP (TMS320C6211 based POD implementation for the real-time applications which include elliptic curve digital signature algorithm (ECDSA, elliptic curve Diffie Hellman (ECDH key exchange, elliptic curve key derivation function (ECKDF, cellular automata (CA cryptography, communication processes between POD and Host, and Host authentication. In order to get different security levels and different rates of encryption/decryption, a CA based symmetric key cryptography algorithm is used whose encryption/decryption rate can be up to 75 Mbps. The experiment results indicate that the DSP based POD implementation provides high speed and flexibility, and satisfies the requirements of real-time video data transmission.

  8. Plastic straw: future of high-speed signaling

    Science.gov (United States)

    Song, Ha Il; Jin, Huxian; Bae, Hyeon-Min

    2015-11-01

    The ever-increasing demand for bandwidth triggered by mobile and video Internet traffic requires advanced interconnect solutions satisfying functional and economic constraints. A new interconnect called E-TUBE is proposed as a cost-and-power-effective all-electrical-domain wideband waveguide solution for high-speed high-volume short-reach communication links. The E-TUBE achieves an unprecedented level of performance in terms of bandwidth-per-carrier frequency, power, and density without requiring a precision manufacturing process unlike conventional optical/waveguide solutions. The E-TUBE exhibits a frequency-independent loss-profile of 4 dB/m and has nearly 20-GHz bandwidth over the V band. A single-sideband signal transmission enabled by the inherent frequency response of the E-TUBE renders two-times data throughput without any physical overhead compared to conventional radio frequency communication technologies. This new interconnect scheme would be attractive to parties interested in high throughput links, including but not limited to, 100/400 Gbps chip-to-chip communications.

  9. Control-Surface Instability on High-Speed Airplanes

    Science.gov (United States)

    Phillips, William H.

    1942-01-01

    Tests of several modern airplanes indicate that control surfaces with a high degree of aerodynamic balance are likely to possess characteristics which make them unsatisfactory or dangerous in high-speed flight. Dive tests made in the spring of 1940 at the NACA on a naval fighter-type airplane illustrate one form of instability that may be encountered. During a dive at an indicated airspeed of 365 miles per hour, the ailerons suddenly overbalanced. The efforts of the pilot to bring the ailerons back to neutral resulted in a violent oscillation of the control stick from side to side. Fortunately, the force required to return the ailerons to neutral was within the pilot's capabilities. A time history of the maneuver is given in figure1 and typical frames from motion pictures of the cockpit and of the wing, taken during the maneuver, are given in figure 2. In the illustrated case, the occurrence of aerodynamic overbalance was attributed to a slight bulge, approximately 1/16 inch thick, on the lower surface of the leading edges of the ailerons, caused by the installation of additional mass balance ahead of the hinge line. A drawing showing the shape of the bulge is given in figure 3. After this slight protuberance had been eliminated, dives were successfully made at higher speeds.

  10. Entrainment characteristics of fine particles under high speed airflow

    Directory of Open Access Journals (Sweden)

    Yin Shaowu

    2017-01-01

    Full Text Available Fine silicon particles (mean size of 2.7 μm are used as entrained materials, and the entrainment characteristics of fine particles are investigated in a cylindrical fluidized-bed (inner diameter of 28 mm and height of 1000 mm under high speed airflow. The effects of the volume flow of gas (Q, 1 m3/h to 2.5 m3/h, the number of holes (N, 1 to 4, the size of holes (D, 1 mm to 3 mm, and the distance between holes and the upper surface of the material layer (H, -100 mm to 200 mm on the entrainment characteristics (entrainment rate W and entrained powder-gas ratio R are experimentally studied through orthogonal experiment. The experimental results show that an increase in Q and H constantly improves the entrainment characteristics; a decrease in D enhances such characteristics, whereas the number of holes N has no significant effect on the entrainment characteristics. An optimal operating condition can result in optimal entrainment characteristics (W, 3.1 g/min and R, 0.058 g/g, which can be achieved with a Q of 2.5 m3/h, N of 1, D of 2 mm and H of 200 mm.

  11. Hardware demonstration of high-speed networks for satellite applications.

    Energy Technology Data Exchange (ETDEWEB)

    Donaldson, Jonathon W.; Lee, David S.

    2008-09-01

    This report documents the implementation results of a hardware demonstration utilizing the Serial RapidIO{trademark} and SpaceWire protocols that was funded by Sandia National Laboratories (SNL's) Laboratory Directed Research and Development (LDRD) office. This demonstration was one of the activities in the Modeling and Design of High-Speed Networks for Satellite Applications LDRD. This effort has demonstrated the transport of application layer packets across both RapidIO and SpaceWire networks to a common downlink destination using small topologies comprised of commercial-off-the-shelf and custom devices. The RapidFET and NEX-SRIO debug and verification tools were instrumental in the successful implementation of the RapidIO hardware demonstration. The SpaceWire hardware demonstration successfully demonstrated the transfer and routing of application data packets between multiple nodes and also was able reprogram remote nodes using configuration bitfiles transmitted over the network, a key feature proposed in node-based architectures (NBAs). Although a much larger network (at least 18 to 27 nodes) would be required to fully verify the design for use in a real-world application, this demonstration has shown that both RapidIO and SpaceWire are capable of routing application packets across a network to a common downlink node, illustrating their potential use in real-world NBAs.

  12. Storage and compression design of high speed CCD

    Science.gov (United States)

    Cai, Xichang; Zhai, LinPei

    2009-05-01

    In current field of CCD measurement, large area and high resolution CCD is used to obtain big measurement image, so that, speed and capacity of CCD requires high performance of later storage and process system. The paper discusses how to use SCSI hard disk to construct storage system and use DSPs and FPGA to realize image compression. As for storage subsystem, Because CCD is divided into multiplex output, SCSI array is used in RAID0 way. The storage system is com posed of high speed buffer, DM A controller, control M CU, SCSI protocol controller and SCSI hard disk. As for compression subsystem, according to requirement of communication and monitor system, the output is fixed resolution image and analog PA L signal. The compression means is JPEG 2000 standard, in which, 9/7 wavelets in lifting format is used. 2 DSPs and FPGA are used to com pose parallel compression system. The system is com posed of FPGA pre-processing module, DSP compression module, video decoder module, data buffer module and communication module. Firstly, discrete wavelet transform and quantization is realized in FPGA. Secondly, entropy coding and stream adaption is realized in DSPs. Last, analog PA L signal is output by Video decoder. Data buffer is realized in synchronous dual-port RAM and state of subsystem is transfer to controller. Through subjective and objective evaluation, the storage and compression system satisfies the requirement of system.

  13. Numerical Simulation of Oil Jet Lubrication for High Speed Gears

    Directory of Open Access Journals (Sweden)

    Tommaso Fondelli

    2015-01-01

    Full Text Available The Geared Turbofan technology is one of the most promising engine configurations to significantly reduce the specific fuel consumption. In this architecture, a power epicyclical gearbox is interposed between the fan and the low pressure spool. Thanks to the gearbox, fan and low pressure spool can turn at different speed, leading to higher engine bypass ratio. Therefore the gearbox efficiency becomes a key parameter for such technology. Further improvement of efficiency can be achieved developing a physical understanding of fluid dynamic losses within the transmission system. These losses are mainly related to viscous effects and they are directly connected to the lubrication method. In this work, the oil injection losses have been studied by means of CFD simulations. A numerical study of a single oil jet impinging on a single high speed gear has been carried out using the VOF method. The aim of this analysis is to evaluate the resistant torque due to the oil jet lubrication, correlating the torque data with the oil-gear interaction phases. URANS calculations have been performed using an adaptive meshing approach, as a way of significantly reducing the simulation costs. A global sensitivity analysis of adopted models has been carried out and a numerical setup has been defined.

  14. High Speed Genetic Lips Detection by Dynamic Search Domain Control

    Science.gov (United States)

    Akashi, Takuya; Wakasa, Yuji; Tanaka, Kanya; Karungaru, Stephen; Fukumi, Minoru

    In this paper, high-speed size and orientation invariant lips detection of a talking person in an active scene using template matching and genetic algorithms is proposed. As part of the objectives, we also try to acquire numerical parameters to represent the lips. The information is very important for many applications, where high performance is required, such as audio-visual speech recognition, speaker identification systems, robot perception and personal mobile devices interfaces. The difficulty in lips detection is mainly due to deformations and geometric changes of the lips during speech and the active scene by free camera motion. In order to enhance the performance in speed and accuracy, initially, the performance is improved on a single still image, that is, the base of video processing. Our proposed system is based on template matching using genetic algorithms (GA). Only one template is prepared per experiment. The template is the closed mouth of a subject, because the application is for personal devices. In our previous study, the main problem was trade-off between search accuracy and search speed. To overcome this problem, we use two methods: scaling window and dynamic search domain control (SD-Control). We therefore focus on the population size of the GA, because it has a direct effect on search accuracy and speed. The effectiveness of the proposed system is demonstrated by performing computer simulations. We achieved a lips detection accuracy of 91.33% at an average processing time of 33.70 milliseconds per frame.

  15. Increasing the life of high-speed steel cutting tools

    Energy Technology Data Exchange (ETDEWEB)

    Plyusnin, Y.G.

    1984-05-01

    The paper describes work on determining the rational area of use, mastering of production operations, and introduction into the plants of the industry of various methods of increasing the life of high-speed tools. Among these methods are carbonitriding, treatment of the tool by shock cooling and by application of a magnetic field, and the application of wear resistant coatings by the method of cathodic-ionic bombardment. The article briefly characterizes each method. Experience in the introduction of the carbonitriding process has shown that the greatest increase in life is obtained for relatively large cutting tools such as hubs and large diameter drills. The effectiveness of shock cooling depends to a great degree upon the original structure of the tool material and upon the requirements imposed on it in service (for stability). Experience in the magnetic treatment of drills and end mills up to 30mm in diameter has shown that the life of a magnetically treated tool with subsequent demagnetization increases by 1.2-1.4 times and without demagnetization by 1.7-2 times. The effectiveness of magnetic hardening depends not only upon the correctly selected strength of the magnetic field and time of application, but also upon the time of postmagnetic aging. Wear resistant coatings applied by the cathodic-ionic bombardment method increases by 2-5 times the life of a cutting tool. However, careful preparation of the tool surface is required as well as careful control of the temperature and thickness of the coating.

  16. An Early Evaluation of Italian High Speed Rail Projects

    Directory of Open Access Journals (Sweden)

    Paolo Beria

    2011-10-01

    Full Text Available Italy has undergone, in the last 15 years, an exceptional public financial effort to build approximately 1,000 km of high speed rail lines. Further extensions are under construction or planned, especially in the most important international relations. This network is widely considered as fundamental to comply the European vision of a continental-wide transport system.The paper analyses the past and the future of such network, where possible from a quantitative point of view. The first part of the article reviews the history of the Alta Velocità scheme, particularly focusing on the issues related to the economic regulation of the investments and the financial troubles at first and then on the present issues related to the regulation of rail services.The analysis of the supply, the time gains, the demand and the costs allows to build a simple but independent evaluation of the past projects from an ex-post perspective, pointing out the successes, but also important critical issues.The second part of the paper analyses the future expansion plans looking at the costs, the existing and expected demand and derives some policy indications and cost reduction strategies capable both to control public expenditure in a period of crisis and not to abandon the idea of a modern and effective rail network.

  17. Radio Wave Propagation Scene Partitioning for High-Speed Rails

    Directory of Open Access Journals (Sweden)

    Bo Ai

    2012-01-01

    Full Text Available Radio wave propagation scene partitioning is necessary for wireless channel modeling. As far as we know, there are no standards of scene partitioning for high-speed rail (HSR scenarios, and therefore we propose the radio wave propagation scene partitioning scheme for HSR scenarios in this paper. Based on our measurements along the Wuhan-Guangzhou HSR, Zhengzhou-Xian passenger-dedicated line, Shijiazhuang-Taiyuan passenger-dedicated line, and Beijing-Tianjin intercity line in China, whose operation speeds are above 300 km/h, and based on the investigations on Beijing South Railway Station, Zhengzhou Railway Station, Wuhan Railway Station, Changsha Railway Station, Xian North Railway Station, Shijiazhuang North Railway Station, Taiyuan Railway Station, and Tianjin Railway Station, we obtain an overview of HSR propagation channels and record many valuable measurement data for HSR scenarios. On the basis of these measurements and investigations, we partitioned the HSR scene into twelve scenarios. Further work on theoretical analysis based on radio wave propagation mechanisms, such as reflection and diffraction, may lead us to develop the standard of radio wave propagation scene partitioning for HSR. Our work can also be used as a basis for the wireless channel modeling and the selection of some key techniques for HSR systems.

  18. Dynamics of High-Speed Precision Geared Rotor Systems

    Directory of Open Access Journals (Sweden)

    Lim Teik C.

    2014-07-01

    Full Text Available Gears are one of the most widely applied precision machine elements in power transmission systems employed in automotive, aerospace, marine, rail and industrial applications because of their reliability, precision, efficiency and versatility. Fundamentally, gears provide a very practical mechanism to transmit motion and mechanical power between two rotating shafts. However, their performance and accuracy are often hampered by tooth failure, vibrations and whine noise. This is most acute in high-speed, high power density geared rotor systems, which is the primary scope of this paper. The present study focuses on the development of a gear pair mathematical model for use to analyze the dynamics of power transmission systems. The theory includes the gear mesh representation derived from results of the quasi-static tooth contact analysis. This proposed gear mesh theory comprising of transmission error, mesh point, mesh stiffness and line-of-action nonlinear, time-varying parameters can be easily incorporated into a variety of transmission system models ranging from the lumped parameter type to detailed finite element representation. The gear dynamic analysis performed led to the discovery of the out-of-phase gear pair torsion modes that are responsible for much of the mechanical problems seen in gearing applications. The paper concludes with a discussion on effectual design approaches to minimize the influence of gear dynamics and to mitigate gear failure in practical power transmission systems.

  19. Prototype high speed optical delay line for stellar interferometry

    Science.gov (United States)

    Colavita, M. M.; Hines, B. E.; Shao, M.; Klose, G. J.; Gibson, B. V.

    1991-01-01

    The long baselines of the next-generation ground-based optical stellar interferometers require optical delay lines which can maintain nm-level path-length accuracy while moving at high speeds. NASA-JPL is currently designing delay lines to meet these requirements. The design is an enhanced version of the Mark III delay line, with the following key features: hardened, large diameter wheels, rather than recirculating ball bearings, to reduce mechanical noise; a friction-drive cart which bears the cable-dragging forces, and drives the optics cart through a force connection only; a balanced PZT assembly to enable high-bandwidth path-length control; and a precision aligned flexural suspension for the optics assembly to minimize bearing noise feedthrough. The delay line is fully programmable in position and velocity, and the system is controlled with four cascaded software feedback loops. Preliminary performance is a jitter in any 5 ms window of less than 10 nm rms for delay rates of up to 28 mm/s; total jitter is less than 10 nm rms for delay rates up to 20 mm/s.

  20. Recent high-speed rail vehicles; Kosoku tetsudo sharyo

    Energy Technology Data Exchange (ETDEWEB)

    Sone, S. [The University of Tokyo, Tokyo (Japan); Ishizu, K. [Central Japan Railway Company, Nagoya (Japan); Yoshie, N. [Nishi-Nippon Railroad Co. Ltd., Fukuoka (Japan); Hata, T. [East Japan Railway Co., Tokyo (Japan); Watanabe, T.; Hata, H. [Railway Technical Research Institute, Tokyo (Japan); Brun, D.

    1997-05-01

    This paper describes the latest progress in high speed rail vehicles. It was in 1981 when TGV has inaugurated commercial operation with a speed of 260 km/h. Japan is trying to recover from a setback by putting forward the 300-line vehicle of discrete motive force system, and the 500-line vehicle of complete discrete motive force system featured by reduced weight and a unique power collection system. Central Japan Railway is moving forward a 700-line train aimed at improving comfortability and reducing noise. The 500-line vehicle has vehicular features such as the sharpened head shape, weight reduction and adoption of vibration control, and also such features in electric circuits as centralized main circuit devices and improved monitoring devices. The vehicle`s running test verified stable run at 300 km/h. The Shinkansen vehicle designed by East Japan Railway adopted collective control on the main circuit system, and transferred to a system in which large capacity GTOs are used to drive three-phase induction motors. The Inter City Express has been put into practical use in Germany, with traction vehicles arranged on both ends of a train. Technological characteristics in TGV may be pointed out as avoidance of curves and high gradient. Exchange of electric train technologies is in progress between Japan and Europe. 19 refs., 27 figs., 6 tabs.

  1. AC_ICAP: A Flexible High Speed ICAP Controller

    Directory of Open Access Journals (Sweden)

    Luis Andres Cardona

    2015-01-01

    Full Text Available The Internal Configuration Access Port (ICAP is the core component of any dynamic partial reconfigurable system implemented in Xilinx SRAM-based Field Programmable Gate Arrays (FPGAs. We developed a new high speed ICAP controller, named AC_ICAP, completely implemented in hardware. In addition to similar solutions to accelerate the management of partial bitstreams and frames, AC_ICAP also supports run-time reconfiguration of LUTs without requiring precomputed partial bitstreams. This last characteristic was possible by performing reverse engineering on the bitstream. Besides, we adapted this hardware-based solution to provide IP cores accessible from the MicroBlaze processor. To this end, the controller was extended and three versions were implemented to evaluate its performance when connected to Peripheral Local Bus (PLB, Fast Simplex Link (FSL, and AXI interfaces of the processor. In consequence, the controller can exploit the flexibility that the processor offers but taking advantage of the hardware speed-up. It was implemented in both Virtex-5 and Kintex7 FPGAs. Results of reconfiguration time showed that run-time reconfiguration of single LUTs in Virtex-5 devices was performed in less than 5 μs which implies a speed-up of more than 380x compared to the Xilinx XPS_HWICAP controller.

  2. The Kaye effect revisited: High speed imaging of leaping shampoo

    Science.gov (United States)

    Versluis, Michel; Blom, Cock; van der Meer, Devaraj; van der Weele, Ko; Lohse, Detlef

    2003-11-01

    When a visco-elastic fluid such as shampoo or shower gel is poured onto a flat surface the fluid piles up forming a heap on which rather irregular combinations of fluid buckling, coiling and folding are observed. Under specific conditions a string of fluid leaps from the heap and forms a steady jet fed by the incoming stream. Momentum transfer of the incoming jet, combined with the shear-thinning properties of the fluid, lead to a spoon-like dimple in the highly viscous fluid pool in which the jet recoils. The jet can be stable for several seconds. This effect is known as the Kaye effect. In order to reveal its mechanism we analyzed leaping shampoo through high-speed imaging. We studied the jet formation, jet stability and jet disruption mechanisms. We measured the velocity of both the incoming and recoiled jet, which was found to be thicker and slower. By inclining the surface on which the fluid was poured we observed jets leaping at upto five times.

  3. Composite flywheel material design for high-speed energy storage

    Directory of Open Access Journals (Sweden)

    Michael A. Conteh

    2016-06-01

    Full Text Available Lamina and laminate mechanical properties of materials suitable for flywheel high-speed energy storage were investigated. Low density, low modulus and high strength composite material properties were implemented for the constant stress portion of the flywheel while higher density, higher modulus and strength were implemented for the constant thickness portion of the flywheel. Design and stress analysis were used to determine the maximum energy densities and shape factors for the flywheel. Analytical studies along with the use of the CADEC-online software were used to evaluate the lamina and laminate properties. This study found that a hybrid composite of M46J/epoxy–T1000G/epoxy for the flywheel exhibits a higher energy density when compared to known existing flywheel hybrid composite materials such as boron/epoxy–graphite/epoxy. Results from this study will contribute to further development of the flywheel that has recently re-emerged as a promising application for energy storage due to significant improvements in composite materials and technology.

  4. High-Speed Visualisation of Combustion in Modern Gasoline Engines

    Science.gov (United States)

    Sauter, W.; Nauwerck, A.; Han, K.-M.; Pfeil, J.; Velji, A.; Spicher, U.

    2006-07-01

    Today research and development in the field of gasoline engines have to face a double challenge: on the one hand, fuel consumption has to be reduced, while on the other hand, ever more stringent emission standards have to be fulfilled. The development of engines with its complexity of in-cylinder processes requires modern development tools to exploit the full potential in order to reduce fuel consumption. Especially optical, non-intrusive measurement techniques will help to get a better understanding of the processes. With the presented high-speed visualisation system the electromagnetic radiation from combustion in the UV range is collected by an endoscope and transmitted to a visualisation system by 10, 000 optical fibres. The signal is projected to 1, 920 photomultipliers, which convert the optical into electric signals with a maximum temporal resolution of 200 kHz. This paper shows the systematic application of flame diagnostics in modern combustion systems. For this purpose, a single-cylinder SI engine has been modified for a spray guided combustion strategy as well as for HCCI. The characteristics of flame propagation in both combustion modes were recorded and correlated with thermodynamic analyses. In case of the spray guided GDI engine, high pressure fuel injection was applied and evaluated.

  5. Materials, structures, and devices for high-speed electronics

    Science.gov (United States)

    Woollam, John A.; Snyder, Paul G.

    1992-01-01

    Advances in materials, devices, and instrumentation made under this grant began with ex-situ null ellipsometric measurements of simple dielectric films on bulk substrates. Today highly automated and rapid spectroscopic ellipsometers are used for ex-situ characterization of very complex multilayer epitaxial structures. Even more impressive is the in-situ capability, not only for characterization but also for the actual control of the growth and etching of epitaxial layers. Spectroscopic ellipsometry has expanded from the research lab to become an integral part of the production of materials and structures for state of the art high speed devices. Along the way, it has contributed much to our understanding of the growth characteristics and material properties. The following areas of research are summarized: Si3N4 on GaAs, null ellipsometry; diamondlike carbon films; variable angle spectroscopic ellipsometry (VASE) development; GaAs-AlGaAs heterostructures; Ta-Cu diffusion barrier films on GaAs; GaAs-AlGaAs superlattices and multiple quantum wells; superconductivity; in situ elevated temperature measurements of III-V's; optical constants of thermodynamically stable InGaAs; doping dependence of optical constants of GaAs; in situ ellipsometric studies of III-V epitaxial growth; photothermal spectroscopy; microellipsometry; and Si passivation and Si/SiGe strained-layer superlattices.

  6. New Drive Train Concept with Multiple High Speed Generator

    Science.gov (United States)

    Barenhorst, F.; Serowy, S.; Andrei, C.; Schelenz, R.; Jacobs, G.; Hameyer, K.

    2016-09-01

    In the research project RapidWind (financed by the German Federal Ministry for Economic Affairs and Energy under Grant 0325642) an alternative 6 MW drive train configuration with six high-speed (n = 5000 rpm) permanent magnet synchronous generators for wind turbine generators (WTG) is designed. The gearbox for this drive train concept is assembled with a six fold power split spur gear stage in the first stage, followed by six individual 1 MW geared driven generators. Switchable couplings are developed to connect and disconnect individual geared generators depending on the input power. With this drive train configuration it is possible to improve the efficiency during partial load operation, increasing the energy yield about 1.15% for an exemplary low-wind site. The focus of this paper is the investigation of the dynamic behavior of this new WTG concept. Due to the high gear ratio the inertia relationship between rotor and generator differs from conventional WT concepts, possibly leading to intensified vibration behavior. Moreover there are switching procedures added, that might also lead to vibration issues.

  7. Spiral Tube Assembly for High-Speed Countercurrent Chromatography

    Science.gov (United States)

    Ito, Y.; Clary, R.; Powell, J.; Knight, M.; Finn, T. M.

    2009-01-01

    Optimal elution modes were determined for four typical two-phase solvent systems each with different physical parameters to achieve the best peak resolution and retention of the stationary phase by spiral tube high-speed countercurrent chromatography using a suitable set of test samples. Both retention of the stationary phase and partition efficiency are governed by an interplay between two forces, i.e., Archimedean Screw force and radial centrifugal force gradient of the spiral channel. In the polar solvent system represented by 1-butanol./acetic acid/water (4:1:5, v/v/v) with settling time of over 30 s, the effect by the radial centrifugal gradient force dominates giving the best separation of dipeptides either by pumping the lower phase from the inner terminal or the upper phase from the outer terminal of the spiral channel. In the moderately hydrophobic two-phase solvent system represented by hexane/ethyl acetate/methanol/0.1 M HCl (1:1:1:1) with settling time of 19 s, and two hydrophobic solvent systems of hexane/ethanol/water (5:4:1, v/v/v) and non-aqueous binary system of hexane/acetonitrile both having settling time of 9, the effect of the Archimedean screw force play a major role in hydrodynamic equilibrium, giving the best separations by pumping the lower phase from the head or the upper phase from the tail of the spiral channel. PMID:19343107

  8. Investigation on Effect of Material Hardness in High Speed CNC End Milling Process

    Directory of Open Access Journals (Sweden)

    N. V. Dhandapani

    2015-01-01

    Full Text Available This research paper analyzes the effects of material properties on surface roughness, material removal rate, and tool wear on high speed CNC end milling process with various ferrous and nonferrous materials. The challenge of material specific decision on the process parameters of spindle speed, feed rate, depth of cut, coolant flow rate, cutting tool material, and type of coating for the cutting tool for required quality and quantity of production is addressed. Generally, decision made by the operator on floor is based on suggested values of the tool manufacturer or by trial and error method. This paper describes effect of various parameters on the surface roughness characteristics of the precision machining part. The prediction method suggested is based on various experimental analysis of parameters in different compositions of input conditions which would benefit the industry on standardization of high speed CNC end milling processes. The results show a basis for selection of parameters to get better results of surface roughness values as predicted by the case study results.

  9. Reflection Reduction on DDR3 High-Speed Bus by Improved PSO

    Science.gov (United States)

    Li, Huiyong; Jiang, Hongxu; Li, Bo; Duan, Miyi

    2014-01-01

    The signal integrity of the circuit, as one of the important design issues in high-speed digital system, is usually seriously affected by the signal reflection due to impedance mismatch in the DDR3 bus. In this paper, a novel optimization method is proposed to optimize impedance mismatch and reduce the signal refection. Specifically, by applying the via parasitic, an equivalent model of DDR3 high-speed signal transmission, which bases on the match between the on-die-termination (ODT) value of DDR3 and the characteristic impedance of the transmission line, is established. Additionally, an improved particle swarm optimization algorithm with adaptive perturbation is presented to solve the impedance mismatch problem (IPSO-IMp) based on the above model. The algorithm dynamically judges particles' state and introduces perturbation strategy for local aggregation, from which the local optimum is avoided and the ability of optimization-searching is activated. IPSO-IMp achieves higher accuracy than the standard algorithm, and the speed increases nearly 33% as well. Finally, the simulation results verify that the solution obviously decreases the signal reflection, with the signal transmission quality increasing by 1.3 dB compared with the existing method. PMID:24778582

  10. Wavelength swept amplified spontaneous emission source for high speed retinal optical coherence tomography at 1060 nm.

    Science.gov (United States)

    Eigenwillig, Christoph M; Klein, Thomas; Wieser, Wolfgang; Biedermann, Benjamin R; Huber, Robert

    2011-08-01

    The wavelength swept amplified spontaneous emission (ASE) source presented in this paper is an alternative approach to realize a light source for high speed swept source optical coherence tomography (OCT). ASE alternately passes a cascade of different optical gain elements and tunable optical bandpass filters. In this work we show for the first time a wavelength swept ASE source in the 1060 nm wavelength range, enabling high speed retinal OCT imaging. We demonstrate ultra-rapid retinal OCT at a line rate of 170 kHz, a record sweep rate at 1060 nm of 340 kHz with 70 nm full sweep width, enabling an axial resolution of 11 μm. Two different implementations of the source are characterized and compared to each other. The last gain element is either a semiconductor optical amplifier or an Ytterbium-doped fibre amplifier enabling high average output power of >40 mW. Various biophotonic imaging examples provide a wide range of quality benchmarks achievable with such sources. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. A home-built digital optical MRI console using high-speed serial links.

    Science.gov (United States)

    Tang, Weinan; Wang, Weimin; Liu, Wentao; Ma, Yajun; Tang, Xin; Xiao, Liang; Gao, Jia-Hong

    2015-08-01

    To develop a high performance, cost-effective digital optical console for scalable multichannel MRI. The console system was implemented with flexibility and efficiency based on a modular architecture with distributed pulse sequencers. High-speed serial links were optimally utilized to interconnect the system, providing fast digital communication with a multi-gigabit data rate. The conventional analog radio frequency (RF) chain was replaced with a digital RF manipulation. The acquisition electronics were designed in close proximity to RF coils and preamplifiers, using a digital optical link to transmit the MR signal. A prototype of the console was constructed with a broad frequency range from direct current to 100 MHz. A temporal resolution of 1 μs was achieved for both the RF and gradient operations. The MR signal was digitized in the scanner room with an overall dynamic range between 16 and 24 bits and was transmitted to a master controller over a duplex optic fiber with a high data rate of 3.125 gigabits per second. High-quality phantom and human images were obtained using the prototype on both 0.36T and 1.5T clinical MRI scanners. A homemade digital optical MRI console with high-speed serial interconnection has been developed to better serve imaging research and clinical applications. © 2014 Wiley Periodicals, Inc.

  12. Evaluation of cutting force and surface roughness in high-speed milling of compacted graphite iron

    Directory of Open Access Journals (Sweden)

    Azlan Suhaimi Mohd

    2017-01-01

    Full Text Available Compacted Graphite Iron, (CGI is known to have outstanding mechanical strength and weight-to-strength ratio as compared to conventional grey cast iron, (CI. The outstanding characteristics of CGI is due to its graphite particle shape, which is presented as compacted vermicular particle. The graphite is interconnected with random orientation and round edges, which results in higher mechanical strength. Whereas, graphite in the CI consists of a smooth-surfaced flakes that easily propagates cracks which results in weaker and brittle properties as compared to CGI. Owing to its improved properties, CGI is considered as the best candidate material in substituting grey cast iron that has been used in engine block applications for years. However, the smooth implementation of replacing CI with CGI has been hindered due to the poor machinability of CGI especially at high cutting speed. The tool life is decreased by 20 times when comparing CGI with CI under the same cutting condition. This study investigates the effect of using cryogenic cooling and minimum quantity lubrication (MQL during high-speed milling of CGI (grade 450. Results showed that, the combination of internal cryogenic cooling and enhanced MQL improved the tool life, cutting force and surface quality as compared to the conventional flood coolant strategy during high-speed milling of CGI.

  13. High-speed imaging on static tensile test for unidirectional CFRP

    Science.gov (United States)

    Kusano, Hideaki; Aoki, Yuichiro; Hirano, Yoshiyasu; Kondo, Yasushi; Nagao, Yosuke

    2008-11-01

    The objective of this study is to clarify the fracture mechanism of unidirectional CFRP (Carbon Fiber Reinforced Plastics) under static tensile loading. The advantages of CFRP are higher specific stiffness and strength than the metal material. The use of CFRP is increasing in not only the aerospace and rapid transit railway industries but also the sports, leisure and automotive industries. The tensile fracture mechanism of unidirectional CFRP has not been experimentally made clear because the fracture speed of unidirectional CFRP is quite high. We selected the intermediate modulus and high strength unidirectional CFRP laminate which is a typical material used in the aerospace field. The fracture process under static tensile loading was captured by a conventional high-speed camera and a new type High-Speed Video Camera HPV-1. It was found that the duration of fracture is 200 microseconds or less, then images taken by a conventional camera doesn't have enough temporal-resolution. On the other hand, results obtained by HPV-1 have higher quality where the fracture process can be clearly observed.

  14. Investigation on Effect of Material Hardness in High Speed CNC End Milling Process.

    Science.gov (United States)

    Dhandapani, N V; Thangarasu, V S; Sureshkannan, G

    2015-01-01

    This research paper analyzes the effects of material properties on surface roughness, material removal rate, and tool wear on high speed CNC end milling process with various ferrous and nonferrous materials. The challenge of material specific decision on the process parameters of spindle speed, feed rate, depth of cut, coolant flow rate, cutting tool material, and type of coating for the cutting tool for required quality and quantity of production is addressed. Generally, decision made by the operator on floor is based on suggested values of the tool manufacturer or by trial and error method. This paper describes effect of various parameters on the surface roughness characteristics of the precision machining part. The prediction method suggested is based on various experimental analysis of parameters in different compositions of input conditions which would benefit the industry on standardization of high speed CNC end milling processes. The results show a basis for selection of parameters to get better results of surface roughness values as predicted by the case study results.

  15. Service Station Evaluation Problem in Catering Service of High-Speed Railway: A Fuzzy QFD Approach Based on Evidence Theory

    Directory of Open Access Journals (Sweden)

    Xin Wu

    2015-01-01

    Full Text Available Catering Service of High-Speed Railway (CSHR starts at suppliers, includes distribution centers and service stations in cities, and ends at cabinets in high-speed trains. In Distribution System Design (DSD Problem for CSHR, it is critical to evaluate the alternatives of service stations, which is termed as Service Station Evaluation Problem in Catering Service of High-speed Railway (SSEP-CSHR. As a preparation work for DSD, SSEP-CSHR needs to be solved without detailed information and being accompanied with uncertainty. Fuzzy Quality Function Deployment (F-QFD has been given in the literatures to deal with vagueness in Facility Location Evaluation (FLE. However, SSEP-CSHR that includes identifying and evaluating stations requires not only dealing with the vague nature of assessments but also confirming them. Based on evidence theory, this paper introduces the framework to give the truth of proposition “x is A.” Then it is incorporated into a two-phase F-QFD with an approximate reasoning to enable the truth of the decisions to be measured. A case study that refers to 85 alternative stations on Chinese high-speed railway will be carried out to verify the proposed method. Analysis shows that the proposed evaluation method enhances scientific credibility of FLE and allows decision makers to express how much is known.

  16. Numerical study of a high-speed miniature centrifugal compressor

    Science.gov (United States)

    Li, Xiaoyi

    A miniature centrifugal compressor is a key component of reverse Brayton cycle cryogenic cooling system. The system is commonly used to generate a low cryogenic temperature environment for electronics to increase their efficiency, or generate, store and transport cryogenic liquids, such as liquid hydrogen and oxygen, where space limit is also an issue. Because of space limitation, the compressor is composed of a radial IGV, a radial impeller and an axial-direction diffuser (which reduces the radial size because of smaller diameter). As a result of reduction in size, rotating speed of the impeller is as high as 313,000 rpm, and Helium is used as the working fluid, in order to obtain the required static pressure ratio/rise. Two main characteristics of the compressor---miniature and high-speed, make it distinct from conventional compressors. Higher compressor efficiency is required to obtain a higher COP (coefficient of performance) system. Even though miniature centrifugal compressors start to draw researchers' attention in recent years, understanding of the performance and loss mechanism is still lacking. Since current experimental techniques are not advanced enough to capture details of flow at miniature scale, numerical methods dominate miniature turbomachinery study. This work numerically studied a high speed miniature centrifugal compressor with commercial CFD code. The overall performance of the compressor was predicted with consideration of interaction between blade rows by using sliding mesh model. The law of similarity of turbomachinery was validated for small scale machines. It was found that the specific ratio effect needs to be considered when similarity law is applied. But Reynolds number effect can be neglected. The loss mechanism of each component was analyzed. Loss due to turning bend was significant in each component. Tip leakage loss of small scale turbomachines has more impact on the impeller performance than that of large scale ones. Because the

  17. Method and apparatus for high speed data acquisition and processing

    Science.gov (United States)

    Ferron, J.R.

    1997-02-11

    A method and apparatus are disclosed for high speed digital data acquisition. The apparatus includes one or more multiplexers for receiving multiple channels of digital data at a low data rate and asserting a multiplexed data stream at a high data rate, and one or more FIFO memories for receiving data from the multiplexers and asserting the data to a real time processor. Preferably, the invention includes two multiplexers, two FIFO memories, and a 64-bit bus connecting the FIFO memories with the processor. Each multiplexer receives four channels of 14-bit digital data at a rate of up to 5 MHz per channel, and outputs a data stream to one of the FIFO memories at a rate of 20 MHz. The FIFO memories assert output data in parallel to the 64-bit bus, thus transferring 14-bit data values to the processor at a combined rate of 40 MHz. The real time processor is preferably a floating-point processor which processes 32-bit floating-point words. A set of mask bits is prestored in each 32-bit storage location of the processor memory into which a 14-bit data value is to be written. After data transfer from the FIFO memories, mask bits are concatenated with each stored 14-bit data value to define a valid 32-bit floating-point word. Preferably, a user can select any of several modes for starting and stopping direct memory transfers of data from the FIFO memories to memory within the real time processor, by setting the content of a control and status register. 15 figs.

  18. Contact freezing observed with a high speed video camera

    Science.gov (United States)

    Hoffmann, Nadine; Koch, Michael; Kiselev, Alexei; Leisner, Thomas

    2017-04-01

    Freezing of supercooled cloud droplets on collision with ice nucleating particle (INP) has been considered as one of the most effective heterogeneous freezing mechanisms. Potentially, it could play an important role in rapid glaciation of a mixed phase cloud especially if coupled with ice multiplication mechanism active at moderate subzero temperatures. The necessary condition for such coupling would be, among others, the presence of very efficient INPs capable of inducing ice nucleation of the supercooled drizzle droplets in the temperature range of -5°C to -20°C. Some mineral dust particles (K-feldspar) and biogenic INPs (pseudomonas bacteria, birch pollen) have been recently identified as such very efficient INPs. However, if observed with a high speed video (HSV) camera, the contact nucleation induced by these two classes of INPs exhibits a very different behavior. Whereas bacterial INPs can induce freezing within a millisecond after initial contact with supercooled water, birch pollen need much more time to initiate freezing. The mineral dust particles seem to induce ice nucleation faster than birch pollen but slower than bacterial INPs. In this contribution we show the HSV records of individual supercooled droplets suspended in an electrodynamic balance and colliding with airborne INPs of various types. The HSV camera is coupled with a long-working-distance microscope, allowing us to observe the contact nucleation of ice at very high spatial and temporal resolution. The average time needed to initiate freezing has been measured depending on the INP species. This time do not necessarily correlate with the contact freezing efficiency of the ice nucleating particles. We discuss possible mechanisms explaining this behavior and potential implications for future ice nucleation research.

  19. How sand grains stop a high speed intruder

    Science.gov (United States)

    Behringer, Robert

    When a speeding intruder impacts on a granular material, it comes rapidly to rest after penetrating only a modest distance. Empirical dynamical models, dating to the 19th century (if not earlier), describe the drag on the intruder in terms of two types of depth-dependent forces: one a static force, which also includes gravity, and the other a collisional force proportional to the square of the instantaneous speed of the intruder. What processes occur in the material to so quickly decelerate the intruder? We address this question through experiments and simulations (work of Lou Kondic and collaborators). We first probe the granular response using quasi-two-dimensional granular materials consisting of photoelastic discs. When such a particle experiences a force, it appears bright under cross-polarized illumination. High speed video reveals dynamic force transmission into the material along force chains that form in response to the intruder motion. These chains are nearly normal to the intruder surface, implying that collisional rather than frictional forces dominate the momentum transfer from intruder to grains. These observations allow the formation of a collision-based model that correctly captures the collisional drag force for both 2D and 3D intruders of a variety of shapes. This talk will develop a collisional picture of impact, and also explore the change in the system response as the impact speed increases. Experimental collaborators include Abe Clark, Cacey Stevens Bester, and Alec Petersen. This work supported by DTRA, NSF Grant DMR1206351, NASA Grant NNX15AD38G, and the William M. Keck Foundation.

  20. Salivary hormonal values from high-speed resistive exercise workouts.

    Science.gov (United States)

    Caruso, John F; Lutz, Brant M; Davidson, Mark E; Wilson, Kyle; Crane, Chris S; Craig, Chrsity E; Nissen, Tim E; Mason, Melissa L; Coday, Michael A; Sheaff, Robert J; Potter, William T

    2012-03-01

    Our study purpose examined salivary hormonal responses to high-speed resistive exercise. Healthy subjects (n = 45) performed 2 elbow flexor workouts on a novel (inertial kinetic exercise; Oconomowoc, WI, USA) strength training device. Our methods included saliva sample collection at both preexercise and immediately postexercise; workouts entailed two 60-second sets separated by a 90-second rest period. The samples were analyzed in duplicate for their testosterone and cortisol concentrations ([T], [C]). Average and maximum elbow flexor torque were measured from each exercise bout; they were later analyzed with a 2(gender) × 2(workout) analysis of variance (ANOVA) with repeated measures for workout. The [T] and [C] each underwent a 2(gender) × 2(time) ANOVA with repeated measures for time. A within-subject design was used to limit error variance. Average and maximum torque each had gender (men > women; p time, but women's values were unchanged. Yet multivariate regression revealed that 3 predictor variables (body mass and average and maximum torques) did not account for a significant amount of variance associated with the rise in male [T]. Changes in [C] were not significant. In conclusion, changes in [T] concur with the results from other studies that showed significant elevations in male [T], despite the brevity of current workouts and the rather modest volume of muscle mass engaged. Practical applications imply that salivary assays may be a viable alternative to blood draws from athletes, yet coaches and others who may administer this treatment should know that our results may have produced greater pre-post hormonal changes if postexercise sample collection had occurred at a later time point.

  1. Very High Speed Discrete Time Optical Signal Generation and Filtering

    Science.gov (United States)

    Narayan, Vishwa

    Optical lattice filters constitute a class of devices that generate and operate upon high bandwidth optical signals. This dissertation describes the design, analysis, construction and testing of such devices. We derive elegant z-transform based filter transfer functions and develop a convenient state variable based scattering matrix filter description. A variety of filters are designed and analyzed. We also design locally optimal optical lattice filters with mirror imperfections such as losses and finite reflectivity round-off error. We conduct a quantitative sensitivity analysis of the degrading effects of these imperfections on system performance, and study the distorting effects of phase error on pulse train shape. Experimentally, we use mirror based optical lattice filters to generate 667 GHz repetition rate pulse bursts with step and ramp envelopes, and coded pulse bursts. We also demonstrate the quadrupling and octupling of the 76 MHz repetition rate of a mode-locked laser. We demonstrate the low pass filtering property of optical lattice filters by realizing a high speed discrete time optical integrator. Step functions are integrated to ramps, and ramps to quadratics, at 667 GHz. We also constructed a mechanical variable repetition rate filter with a tuning range of 2.14 to 100 GHz. We design and analyze a gain based mirror filter with active gain elements. Small signal linear constant gain tends to improve filter performance by increasing the output, and reducing fluctuations in the frequency response. We study the behavior of these filters at the stability limit, characterized by large fluctuations in the frequency response. Optical lattice filters may be used as wavelength multiplexers/demultiplexers in lightwave systems, as variable repetition rate pulse train generators for tunable repetition rate optical spectroscopy, as optical clock generators, and as discrete time/analog optical signal filters.

  2. Full-frame, high-speed 3D shape and deformation measurements using stereo-digital image correlation and a single color high-speed camera

    Science.gov (United States)

    Yu, Liping; Pan, Bing

    2017-08-01

    Full-frame, high-speed 3D shape and deformation measurement using stereo-digital image correlation (stereo-DIC) technique and a single high-speed color camera is proposed. With the aid of a skillfully designed pseudo stereo-imaging apparatus, color images of a test object surface, composed of blue and red channel images from two different optical paths, are recorded by a high-speed color CMOS camera. The recorded color images can be separated into red and blue channel sub-images using a simple but effective color crosstalk correction method. These separated blue and red channel sub-images are processed by regular stereo-DIC method to retrieve full-field 3D shape and deformation on the test object surface. Compared with existing two-camera high-speed stereo-DIC or four-mirror-adapter-assisted singe-camera high-speed stereo-DIC, the proposed single-camera high-speed stereo-DIC technique offers prominent advantages of full-frame measurements using a single high-speed camera but without sacrificing its spatial resolution. Two real experiments, including shape measurement of a curved surface and vibration measurement of a Chinese double-side drum, demonstrated the effectiveness and accuracy of the proposed technique.

  3. Development of precision casting in high speed steel; Seimitsu chuzo haisu no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Yagi, H.; Fujii, T. [Daido Steel Co. Ltd., Nagoya (Japan)

    1997-07-25

    As to the high speed steel manufactured by precision casting process, effect of decarbonization technology and low temperature casting, and difference between the characteristics of a steel and a high speed steel were examined. The high speed steel was cast by vacuum casing process using a mold manufactured by the lost wax process. Effect of superheating in casting on the product structure and the bending strength was examined. Decarbonization can be prevented by the vacuum casting process. By low temperature casting, the high speed steel structure becomes fine, and the bending strength or toughness is improved; 80% of the T-direction bending strength of the steel can be secured in the high speed steel. The high speed steel exceeds the steel by a little bit in abrasion resistance. When the high speed steel was applied to a spiral cutter, the high speed steel product exceeded 1.2 times the machined steel in the tool life. In the high speed steel, the cutting process is drastically reduced, and reduction of the material cost is also possible compared with the machined steel. The high speed steel is considered to show good results because of excellent abrasion resistance since the tool life depended more on abrasion than on toughness because of the machining conditions. 4 refs., 8 figs., 2 tabs.

  4. The dynamics of the high-speed abilities of young players 12, 13, 14 years old

    Directory of Open Access Journals (Sweden)

    Vladimir Perevoznyk

    2014-08-01

    Full Text Available Purpose: to determine the dynamics of the high-speed abilities of young players. Materials and Methods: the change in performance of speed players at women's 30 meters run, using both specific and non-specific methods. In the training process of players 12–14 years to use specific tools, as well as holding athletic activities for the development of speed. The literature analyzed for the development of young players quickness, educational testing, methods of mathematical statistics. Results: the dynamics of development of physical skill of speed for young players using specific and non-specific methods. Conclusions: the use of the training process in microcycle preparatory period of athletics orientation training gives a positive result in the development of the physical speed quality.

  5. Nonreproducible phenomena in thermal ink jets with real high-speed cine photomicrography

    Science.gov (United States)

    Rembe, Christian; aus der Wiesche, Stefan; Beuten, Michael; Hofer, Eberhard P.

    1998-09-01

    In the ink jet printer industry the stroboscopic visualization method is a standard tool for the characterization of printheads. However, this method fails for thermal ink jets in case of the existence of satellite droplets which are very critical considering print quality. This is also true for the bubble formation inside the ink chamber of the printhead. Detailed studies have shown that the phenomenon of satellite droplets is a nonreproducible dynamic process. Real high speed cine photomicrography forms the basis of a new test setup which allows the visualization of such highly dynamic nonreproducible phenomena. This new setup has been used to study the ejection, the free flight, and the impact of droplets of an ink jet on print media under real printing conditions.

  6. Energy-efficient two-hop LTE resource allocation in high speed trains with moving relays

    KAUST Repository

    Alsharoa, Ahmad M.

    2014-05-01

    High-speed railway system equipped with moving relay stations placed on the middle of the ceiling of each train wagon is investigated. The users inside the train are served in two hops via the 3GPP Long Term Evolution (LTE) technology. The objective of this work is to maximize the number of served users by respecting a specific quality-of-service constraint while minimizing the total power consumption of the eNodeB and the moving relays. We propose an efficient algorithm based on the Hungarian method to find the optimal resource allocation over the LTE resource blocks in order to serve the maximum number of users with the minimum power consumption. Moreover, we derive a closed-form expression for the power allocation problem. Our simulation results illustrate the performance of the proposed scheme and compare it with various previously developed algorithms as well as with the direct transmission scenario. © 2014 IFIP.

  7. Dynamic Response of Wheel-Rail Interaction at Rail Weld in High-Speed Railway

    Directory of Open Access Journals (Sweden)

    Boyang An

    2017-01-01

    Full Text Available As a main part of continuously welded rail track, rail weld widely exists in high-speed railway. However, short-wave irregularities can easily initiate and develop in rail weld due to the limitation of welding technology and thus rail weld has been a main high-frequency excitation and is responsible for deterioration of track components. This work reports a 3D finite element model of wheel-rail rolling contact which can simulate dynamic wheel-rail interaction at arbitrary contact geometry up to 400 km/h. This model is employed to investigate dynamic response of wheel-rail interaction at theoretical and measured rail weld, including wheel-rail force and axle-box acceleration. These simulation results, combined with Quality Index (QI method, are used to develop a quantitative expression, which can be easily applied for evaluating rail weld deterioration based on measured rail profiles and axle-box acceleration.

  8. High-speed velocity measurements on an EFI-system

    Science.gov (United States)

    Prinse, W. C.; van't Hof, P. G.; Cheng, L. K.; Scholtes, J. H. G.

    2007-01-01

    For the development of an Exploding Foil Initiator for Insensitive Munitions applications the following topics are of interest: the electrical circuit, the exploding foil, the velocity of the flyer, the driver explosive, the secondary flyer and the acceptor explosive. Several parameters of the EFI have influences on the velocity of the flyer. To investigate these parameters a Fabry-Perot Velocity Interferometer System (F-PVIS) has been used. The light to and from the flyer is transported by a multimode fibre terminated with a GRIN-lens. By this method the velocity of very tiny objects (0.1 mm), can be measured. The velocity of flyer can be recorded with nanosecond resolution, depending on the Fabry-Perot etalon and the streak camera. With this equipment the influence of the dimensions of the exploding foil and the flyer on the velocity and the acceleration of the flyer are investigated. Also the integrity of the flyer during flight can be analyzed. To characterize the explosive material, to be used as driver explosive in EFI's, the initiation behaviour of the explosive has been investigated by taking pictures of the explosion with a high speed framing and streak camera. From these pictures the initiation distance and the detonation behaviour of the explosive has been analyzed. Normally, the driver explosive initiates the acceptor explosive (booster) by direct contact. This booster explosive is embedded in the main charge of the munitions. The combination of initiator, booster explosive and main charge explosive is called the detonation train. In this research the possibility of initiation of the booster by an intermediate flyer is investigated. This secondary flyer can be made of different materials, like aluminium, steel and polyester with different sizes. With the aid of the F-PVIS the acceleration of the secondary flyer is investigated. This reveals the influence of the thickness and density of the flyer on the acceleration and final velocity. Under certain

  9. Verifying cell loss requirements in high-speed communication networks

    Directory of Open Access Journals (Sweden)

    Kerry W. Fendick

    1998-01-01

    Full Text Available In high-speed communication networks it is common to have requirements of very small cell loss probabilities due to buffer overflow. Losses are measured to verify that the cell loss requirements are being met, but it is not clear how to interpret such measurements. We propose methods for determining whether or not cell loss requirements are being met. A key idea is to look at the stream of losses as successive clusters of losses. Often clusters of losses, rather than individual losses, should be regarded as the important “loss events”. Thus we propose modeling the cell loss process by a batch Poisson stochastic process. Successive clusters of losses are assumed to arrive according to a Poisson process. Within each cluster, cell losses do not occur at a single time, but the distance between losses within a cluster should be negligible compared to the distance between clusters. Thus, for the purpose of estimating the cell loss probability, we ignore the spaces between successive cell losses in a cluster of losses. Asymptotic theory suggests that the counting process of losses initiating clusters often should be approximately a Poisson process even though the cell arrival process is not nearly Poisson. The batch Poisson model is relatively easy to test statistically and fit; e.g., the batch-size distribution and the batch arrival rate can readily be estimated from cell loss data. Since batch (cluster sizes may be highly variable, it may be useful to focus on the number of batches instead of the number of cells in a measurement interval. We also propose a method for approximately determining the parameters of a special batch Poisson cell loss with geometric batch-size distribution from a queueing model of the buffer content. For this step, we use a reflected Brownian motion (RBM approximation of a G/D/1/C queueing model. We also use the RBM model to estimate the input burstiness given the cell loss rate. In addition, we use the RBM model to

  10. High speed QWIP FPAs on InP substrates

    Science.gov (United States)

    Eker, S. U.; Arslan, Y.; Besikci, C.

    2011-05-01

    Quantum well infrared photodetector (QWIP) technology has allowed the realization of low cost staring focal plane arrays (FPAs). However, AlGaAs/(In)GaAs QWIP FPAs suffer from low quantum and conversion efficiencies under high frame rate and/or low background conditions. We extensively discuss the effect of sensor gain on the FPA performance under various operating conditions, and highlight the superiority of the InP/InGaAs material system with respect to AlGaAs/GaAs for high speed/low background thermal imaging applications. InP/InGaAs QWIPs, providing a bias adjustable gain in a wide range, offer the flexibility of adapting the FPA to strict operating conditions. We also present an experimental comparison of large format AlGaAs/GaAs and (strained) InP/InGaAs QWIP FPAs under different operating conditions. A 640 × 512 QWIP FPA constructed with the 40-well strained InP/In 0.48Ga 0.52As material system displays a cut-off wavelength of 9.7 μm ( λ p = 8.9 μm) with a BLIP temperature higher than 65 K ( f/2), and a peak quantum efficiency as high as 12% with a broad spectral response (Δ λ/ λ p = 17%). The conversion efficiency of the FPA pixels is as high as 20% under large bias (4 V) where the detectivity is reasonably high (˜3 × 10 10 cm Hz 1/2/W, f/2, 65 K). While providing a considerably higher quantum efficiency than the pixels of a similar AlGaAs/GaAs FPA, the InP/InGaAs QWIP provides similar NETD values with much shorter integration times and, being less sensitive to the read noise, successfully operates with sub-millisecond integration times. The results clearly demonstrate that InP based material systems display high potential for single- and dual-band QWIP FPAs by overcoming the limitations of the standard GaAs based QWIPs under high frame rate and/or low background conditions.

  11. An Alternative Approach for High Speed Railway Carrying Capacity Calculation Based on Multiagent Simulation

    Directory of Open Access Journals (Sweden)

    Mo Gao

    2016-01-01

    Full Text Available It is a multiobjective mixed integer programming problem that calculates the carrying capacity of high speed railway based on mathematical programming method. The model is complex and difficult to solve, and it is difficult to comprehensively consider the various influencing factors on the train operation. The multiagent theory is employed to calculate high speed railway carrying capacity. In accordance with real operations of high speed railway, a three-layer agent model is developed to simulate the operating process of high speed railway. In the proposed model, railway network agent, line agent, station agent, and train agent are designed, respectively. To validate the proposed model, a case study is performed for Beijing–Shanghai high speed railway by using NetLogo software. The results are consistent with the actual data, which implies that the proposed multiagent method is feasible to calculate the carrying capacity of high speed railway.

  12. High Speed Mobility Through On-Demand Aviation

    Science.gov (United States)

    Moore, Mark D.; Goodrich, Ken; Viken, Jeff; Smith, Jeremy; Fredericks, Bill; Trani, Toni; Barraclough, Jonathan; German, Brian; Patterson, Michael

    2013-01-01

    automobiles. ?? Community Noise: Hub and smaller GA airports are facing increasing noise restrictions, and while commercial airliners have dramatically decreased their community noise footprint over the past 30 years, GA aircraft noise has essentially remained same, and moreover, is located in closer proximity to neighborhoods and businesses. ?? Operating Costs: GA operating costs have risen dramatically due to average fuel costs of over $6 per gallon, which has constrained the market over the past decade and resulted in more than 50% lower sales and 35% less yearly operations. Infusion of autonomy and electric propulsion technologies can accomplish not only a transformation of the GA market, but also provide a technology enablement bridge for both larger aircraft and the emerging civil Unmanned Aerial Systems (UAS) markets. The NASA Advanced General Aviation Transport Experiments (AGATE) project successfully used a similar approach to enable the introduction of primary composite structures and flat panel displays in the 1990s, establishing both the technology and certification standardization to permit quick adoption through partnerships with industry, academia, and the Federal Aviation Administration (FAA). Regional and airliner markets are experiencing constant pressure to achieve decreasing levels of community emissions and noise, while lowering operating costs and improving safety. But to what degree can these new technology frontiers impact aircraft safety, the environment, operations, cost, and performance? Are the benefits transformational enough to fundamentally alter aircraft competiveness and productivity to permit much greater aviation use for high speed and On-Demand Mobility (ODM)? These questions were asked in a Zip aviation system study named after the Zip Car, an emerging car-sharing business model. Zip Aviation investigates the potential to enable new emergent markets for aviation that offer "more flexibility than the existing transportation solutions

  13. Prospects of high-speed traffic development on international routes to ukraine. an experience of other countries in establishing high-speed passenger traffic

    Directory of Open Access Journals (Sweden)

    Віта Валеріївна Якименко

    2015-10-01

    Full Text Available Prospects and directions of high-speed traffic development on international railway communication, possible ways of solving the mismatch problem of the railway track width are described and analyzed in the article. An experience of other countries in addressing the issue of international high-speed passenger traffic, ways to overcome negative influences on the number of passengers and direction of their solution is analyzed and reviewed

  14. Gearbox Reliability Collaborative Investigation of Gearbox Motion and High-Speed-Shaft Loads

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Jon [National Renewable Energy Lab. (NREL), Golden, CO (United States); Guo, Yi [National Renewable Energy Lab. (NREL), Golden, CO (United States); Sethuraman, Latha [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-03-18

    This paper extends a model-to-test validation effort to examine the effect of different constant rotor torque and moment conditions and intentional generator misalignment on the gearbox motion and high-speed-shaft loads. Fully validating gearbox motion and high-speed-shaft loads across a range of test conditions is a critical precursor to examining the bearing loads, as the gearbox motion and high-speed-shaft loads are the drivers of these bearing loads.

  15. Smart Materials Technology for High Speed Adaptive Inlet/Nozzle Design Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Enabling a new generation of high speed civil aircraft will require breakthrough developments in propulsion design, including novel techniques to optimize inlet...

  16. Routine quality control of clinical nuclear medicine instrumentation: a brief review.

    Science.gov (United States)

    Zanzonico, Pat

    2008-07-01

    This article reviews routine quality-control (QC) procedures for current nuclear medicine instrumentation, including the survey meter, dose calibrator, well counter, intraoperative probe, organ ("thyroid") uptake probe, gamma-camera, SPECT and SPECT/CT scanner, and PET and PET/CT scanner. It should be particularly useful for residents, fellows, and other trainees in nuclear medicine, nuclear cardiology, and radiology. The procedures described and their respective frequencies are presented only as general guidelines.

  17. Routine Quality Control of Clinical Nuclear Medicine Instrumentation: A Brief Review*

    OpenAIRE

    Zanzonico, Pat

    2008-01-01

    This article reviews routine quality-control (QC) procedures for current nuclear medicine instrumentation, including the survey meter, dose calibrator, well counter, intraoperative probe, organ (“thyroid”) uptake probe, γ-camera, SPECT and SPECT/CT scanner, and PET and PET/CT scanner. It should be particularly useful for residents, fellows, and other trainees in nuclear medicine, nuclear cardiology, and radiology. The procedures described and their respective frequencies are presented only as...

  18. An approach to measure the catenary geometry on high-speed railways based on infrared image processing

    Science.gov (United States)

    Wang, Yan-guo

    2017-07-01

    Catenary geometry measurement is one of the main inspection fields to evaluate the infrastructure quality and status of power supply system on high-speed railways. Existing measurement methods have disadvantages of complex system architecture, expensive device cost, or sensitive to environment changes. In this paper, a new measurement approach is proposed which is based on infrared image processing. The system architecture is compact in hardware, and environment changes have no effects on the measurement results. Moreover, the infrared images are shared by thermal cameras from other inspection systems, which means a low device cost of the system. The proposed method has been successfully used on the comprehensive inspection train, which shows the advantages in infrastructure inspection on high-speed railways.

  19. Multiple laser-based high-speed digital shadowgraphy system for small caliber projectile-target interaction studies

    Science.gov (United States)

    Kalonia, Ramesh C.; Chhachhia, Dharam P.; Bajpai, Phun Phun; Singh, Manjit; Biswas, Ipsita; Yadav, Mohinder S.

    2014-03-01

    High-speed optical shadowgraphy plays an important role in study of various phenomena including projectile-target interaction for small caliber projectile. Present work reports design, development, and implementation of a multiple laser-based high-speed digital shadowgraphy system to study the behavior of a small caliber projectile in flight as well as the projectile-target interaction. System is based on Cranz-Schardin technique. Low power digitally modulated laser diodes along with low-resolution CMOS cameras in global shuttering mode are used to record good quality digital shadowgraphs. The system can record 11 shadowgraphs at a maximum frame rate of 1 million/s and is able to capture even minute details of fragments in the form of shockwaves. Operation of the system, image recording and analysis are fully computer controlled. The design and system description inclusive ultra-short pulse generator and opto-electronic triggering unit are presented and experimental results are discussed.

  20. Optimized design on condensing tubes high-speed TIG welding technology magnetic control based on genetic algorithm

    Science.gov (United States)

    Lu, Lin; Chang, Yunlong; Li, Yingmin; Lu, Ming

    2013-05-01

    An orthogonal experiment was conducted by the means of multivariate nonlinear regression equation to adjust the influence of external transverse magnetic field and Ar flow rate on welding quality in the process of welding condenser pipe by high-speed argon tungsten-arc welding (TIG for short). The magnetic induction and flow rate of Ar gas were used as optimum variables, and tensile strength of weld was set to objective function on the base of genetic algorithm theory, and then an optimal design was conducted. According to the request of physical production, the optimum variables were restrained. The genetic algorithm in the MATLAB was used for computing. A comparison between optimum results and experiment parameters was made. The results showed that the optimum technologic parameters could be chosen by the means of genetic algorithm with the conditions of excessive optimum variables in the process of high-speed welding. And optimum technologic parameters of welding coincided with experiment results.

  1. Algorithms for High-Speed Noninvasive Eye-Tracking System

    Science.gov (United States)

    Talukder, Ashit; Morookian, John-Michael; Lambert, James

    2010-01-01

    Two image-data-processing algorithms are essential to the successful operation of a system of electronic hardware and software that noninvasively tracks the direction of a person s gaze in real time. The system was described in High-Speed Noninvasive Eye-Tracking System (NPO-30700) NASA Tech Briefs, Vol. 31, No. 8 (August 2007), page 51. To recapitulate from the cited article: Like prior commercial noninvasive eyetracking systems, this system is based on (1) illumination of an eye by a low-power infrared light-emitting diode (LED); (2) acquisition of video images of the pupil, iris, and cornea in the reflected infrared light; (3) digitization of the images; and (4) processing the digital image data to determine the direction of gaze from the centroids of the pupil and cornea in the images. Most of the prior commercial noninvasive eyetracking systems rely on standard video cameras, which operate at frame rates of about 30 Hz. Such systems are limited to slow, full-frame operation. The video camera in the present system includes a charge-coupled-device (CCD) image detector plus electronic circuitry capable of implementing an advanced control scheme that effects readout from a small region of interest (ROI), or subwindow, of the full image. Inasmuch as the image features of interest (the cornea and pupil) typically occupy a small part of the camera frame, this ROI capability can be exploited to determine the direction of gaze at a high frame rate by reading out from the ROI that contains the cornea and pupil (but not from the rest of the image) repeatedly. One of the present algorithms exploits the ROI capability. The algorithm takes horizontal row slices and takes advantage of the symmetry of the pupil and cornea circles and of the gray-scale contrasts of the pupil and cornea with respect to other parts of the eye. The algorithm determines which horizontal image slices contain the pupil and cornea, and, on each valid slice, the end coordinates of the pupil and cornea

  2. Advanced Ultra-High Speed Motor for Drilling

    Energy Technology Data Exchange (ETDEWEB)

    Impact Technologies LLC; University of Texas at Arlington

    2007-03-31

    Three (3) designs have been made for two sizes, 6.91 cm (2.72 inch) and 4.29 cm (1.69 inch) outer diameters, of a patented inverted configured Permanent Magnet Synchronous Machines (PMSM) electric motor specifically for drilling at ultra-high rotational speeds (10,000 rpm) and that can utilize advanced drilling methods. Benefits of these motors are stackable power sections, full control (speed and direction) of downhole motors, flow hydraulics independent of motor operation, application of advanced drilling methods (water jetting and abrasive slurry jetting), and the ability of signal/power electric wires through motor(s). Key features of the final designed motors are: fixed non-rotating shaft with stator coils attached; rotating housing with permanent magnet (PM) rotor attached; bit attached to rotating housing; internal channel(s) in a nonrotating shaft; electric components that are hydrostatically isolated from high internal pressure circulating fluids ('muds') by static metal to metal seals; liquid filled motor with smoothed features for minimized turbulence in the motor during operation; and new inverted coated metal-metal hydrodynamic bearings and seals. PMSM, Induction and Switched Reluctance Machines (SRM), all pulse modulated, were considered, but PMSM were determined to provide the highest power density for the shortest motors. Both radial and axial electric PMSM driven motors were designed with axial designs deemed more rugged for ultra-high speed, drilling applications. The 6.91 cm (2.72 inch) OD axial inverted motor can generate 4.18KW (5.61 Hp) power at 10,000 rpm with a 4 Nm (2.95 ft-lbs) of torque for every 30.48 cm (12 inches) of power section. The 6.91 cm (2.72 inch) OD radial inverted motor can generate 5.03 KW (6.74 Hp) with 4.8 Nm (3.54 ft-lb) torque at 10,000 rpm for every 30.48 cm (12 inches) of power section. The 4.29 cm (1.69 inch) OD radial inverted motor can generate 2.56 KW (3.43 Hp) power with 2.44 Nm (1.8 ft-lb) torque at

  3. Total Quality Management and nuclear weapons: A historian`s perspective

    Energy Technology Data Exchange (ETDEWEB)

    Meade, R.A.

    1993-11-01

    Total Quality Management (TQM) has become a significant management theme at Los Alamos National Laboratory. This paper discusses the historical roots of TQM at Los Alamos and how TQM has been used in the development of nuclear weapons.

  4. Electric power supply 3. Dynamics, control and stabililty, quality of supply, grid planning, operational planning and control, control and information technology, FACTS, high-speed transmission. 3. rev. ed.; Elektrische Energieversorgung 3. Dynamik, Regelung und Stabilitaet, Versorgungsqualitaet, Netzplanung, Betriebsplanung und -fuehrung, Leit- und Informationstechnik, FACTS, HGUe

    Energy Technology Data Exchange (ETDEWEB)

    Westermann, Dirk [Technische Univ. Ilmenau (Germany). Inst. fuer elektrische Energie- und Steuerungstechnik; Crastan, Valentin

    2012-07-01

    In view of the large quantity of information, Vol. 2 was divided up into two volumes in the third edition. All three volumes combine theory with practical applicability and present exercises, examples and simulations. The authors have long experience in electric power supply and also teaching experience as university professors. Volume 3, which is published for the first time in the third edition, discusses the following subjects: Control and stability of the power transmission grid, grid planning, operational planning and control, grid control technology, flexible AC transmission systems (FACTS), and high-speed DC transmission systems. [German] Der zweite Band dieses umfassenden Lehr- und Nachschlagewerkes fuer Studenten und Ingenieure in der elektrischen Energietechnik wurde wegen der vielen Erweiterungen in zwei Teile aufgespalten, die fortan als Band 2 und 3 erscheinen. Die drei Baende der ''elektrischen Energieversorgung'' zeichnen sich durch die Synthese von theoretischer Fundierung und unmittelbarem Praxisbezug aus und unterstuetzen das Verstaendnis und den Lernerfolg mit Uebungsaufgaben, Modellbeispielen und Simulationen. Die Autoren schoepfen inhaltlich aus ihrer langjaehrigen Erfahrung auf dem Gebiet der Energieversorgung sowie didaktisch aus ihrer Lehrtaetigkeit als Professoren. Der erstmalig vorliegende dritte Band behandelt die Themen Regelung und Stabilitaet des Energieversorgungnetzes, Netzplanung, Betriebsplanung und -fuehrung, Netzleittechnik sowie Leistungselektronische Netzsteuerung (FACTS) und Hochpannungsgleichstromuebertragung. (orig.)

  5. Field measurements and analyses of environmental vibrations induced by high-speed Maglev.

    Science.gov (United States)

    Li, Guo-Qiang; Wang, Zhi-Lu; Chen, Suwen; Xu, You-Lin

    2016-10-15

    Maglev, offers competitive journey-times compared to the railway and subway systems in markets for which distance between the stations is 100-1600km owing to its high acceleration and speed; however, such systems may have excessive vibration. Field measurements of Maglev train-induced vibrations were therefore performed on the world's first commercial Maglev line in Shanghai, China. Seven test sections along the line were selected according to the operating conditions, covering speeds from 150 to 430km/h. Acceleration responses of bridge pier and nearby ground were measured in three directions and analyzed in both the time and frequency domain. The effects of Maglev train speed on vibrations of the bridge pier and ground were studied in terms of their peak accelerations. Attenuation of ground vibration was investigated up to 30m from the track centerline. Effects of guideway configuration were also analyzed based on the measurements through two different test sections with same train speed of 300km/h. The results showed that peak accelerations exhibited a strong correlation with both train speed and distance off the track. Guideway configuration had a significant effect on transverse vibration, but a weak impact on vertical and longitudinal vibrations of both bridge pier and ground. Statistics indicated that, contrary to the commonly accepted theory and experience, vertical vibration is not always dominant: transverse and longitudinal vibrations should also be considered, particularly near turns in the track. Moreover, measurements of ground vibration induced by traditional high-speed railway train were carried out with the same testing devices in Bengbu in the Anhui Province. Results showed that the Maglev train generates significantly different vibration signatures as compared to the traditional high-speed train. The results obtained from this paper can provide good insights on the impact of Maglev system on the urban environment and the quality of human life

  6. Detecting and Blocking Network Attacks at Ultra High Speeds

    Energy Technology Data Exchange (ETDEWEB)

    Paxson, Vern

    2010-11-29

    Stateful, in-depth, in-line traffic analysis for intrusion detection and prevention has grown increasingly more difficult as the data rates of modern networks rise. One point in the design space for high-performance network analysis - pursued by a number of commercial products - is the use of sophisticated custom hardware. For very high-speed processing, such systems often cast the entire analysis process in ASICs. This project pursued a different architectural approach, which we term Shunting. Shunting marries a conceptually quite simple hardware device with an Intrusion Prevention System (IPS) running on commodity PC hardware. The overall design goal is was to keep the hardware both cheap and readily scalable to future higher speeds, yet also retain the unparalleled flexibility that running the main IPS analysis in a full general-computing environment provides. The Shunting architecture we developed uses a simple in-line hardware element that maintains several large state tables indexed by packet header fields, including IP/TCP flags, source and destination IP addresses, and connection tuples. The tables yield decision values the element makes on a packet-by-packet basis: forward the packet, drop it, or divert ('shunt') it through the IPS (the default). By manipulating table entries, the IPS can, on a fine-grained basis: (i) specify the traffic it wishes to examine, (ii) directly block malicious traffic, and (iii) 'cut through' traffic streams once it has had an opportunity to 'vet' them, or (iv) skip over large items within a stream before proceeding to further analyze it. For the Shunting architecture to yield benefits, it needs to operate in an environment for which the monitored network traffic has the property that - after proper vetting - much of it can be safely skipped. This property does not universally hold. For example, if a bank needs to examine all Web traffic involving its servers for regulatory compliance, then a

  7. Substructure method in high-speed monorail dynamic problems

    Science.gov (United States)

    Ivanchenko, I. I.

    2008-12-01

    The study of actions of high-speed moving loads on bridges and elevated tracks remains a topical problem for transport. In the present study, we propose a new method for moving load analysis of elevated tracks (monorail structures or bridges), which permits studying the interaction between two strained objects consisting of rod systems and rigid bodies with viscoelastic links; one of these objects is the moving load (monorail rolling stock), and the other is the carrying structure (monorail elevated track or bridge). The methods for moving load analysis of structures were developed in numerous papers [1-15]. At the first stage, when solving the problem about a beam under the action of the simplest moving load such as a moving weight, two fundamental methods can be used; the same methods are realized for other structures and loads. The first method is based on the use of a generalized coordinate in the expansion of the deflection in the natural shapes of the beam, and the problem is reduced to solving a system of ordinary differential equations with variable coefficients [1-3]. In the second method, after the "beam-weight" system is decomposed, just as in the problem with the weight impact on the beam [4], solving the problem is reduced to solving an integral equation for the dynamic weight reaction [6, 7]. In [1-3], an increase in the number of retained forms leads to an increase in the order of the system of equations; in [6, 7], difficulties arise when solving the integral equations related to the conditional stability of the step procedures. The method proposed in [9, 14] for beams and rod systems combines the above approaches and eliminates their drawbacks, because it permits retaining any necessary number of shapes in the deflection expansion and has a resolving system of equations with an unconditionally stable integration scheme and with a minimum number of unknowns, just as in the method of integral equations [6, 7]. This method is further developed for

  8. Quantifying and optimizing single-molecule switching nanoscopy at high speeds.

    Directory of Open Access Journals (Sweden)

    Yu Lin

    Full Text Available Single-molecule switching nanoscopy overcomes the diffraction limit of light by stochastically switching single fluorescent molecules on and off, and then localizing their positions individually. Recent advances in this technique have greatly accelerated the data acquisition speed and improved the temporal resolution of super-resolution imaging. However, it has not been quantified whether this speed increase comes at the cost of compromised image quality. The spatial and temporal resolution depends on many factors, among which laser intensity and camera speed are the two most critical parameters. Here we quantitatively compare the image quality achieved when imaging Alexa Fluor 647-immunolabeled microtubules over an extended range of laser intensities and camera speeds using three criteria - localization precision, density of localized molecules, and resolution of reconstructed images based on Fourier Ring Correlation. We found that, with optimized parameters, single-molecule switching nanoscopy at high speeds can achieve the same image quality as imaging at conventional speeds in a 5-25 times shorter time period. Furthermore, we measured the photoswitching kinetics of Alexa Fluor 647 from single-molecule experiments, and, based on this kinetic data, we developed algorithms to simulate single-molecule switching nanoscopy images. We used this software tool to demonstrate how laser intensity and camera speed affect the density of active fluorophores and influence the achievable resolution. Our study provides guidelines for choosing appropriate laser intensities for imaging Alexa Fluor 647 at different speeds and a quantification protocol for future evaluations of other probes and imaging parameters.

  9. Fire protection for high speed line tunnels; Risk analysis and exceptional robotic application results

    NARCIS (Netherlands)

    Linde, F.W.J. van de; Gijsbers, F.B.J.; Klok, G.J.

    2006-01-01

    The Green Hart Tunnel in The Netherlands is a 7 km long high speed railway tunnel with an exterior diameter of 14.5 metres. A separation wall devides the tunnel into two single tubes. High speed trains will pass the tunnel at speeds of more than 300 kph. Inside the tunnel 200,000 m2 fire resistant

  10. Environmental risks of high-speed railway in China: Public participation, perception and trust

    NARCIS (Netherlands)

    He, G.; Mol, A.P.J.; Zhang, L.; Lu, Y.

    2015-01-01

    Two decades ago China entered an era with rapid expansion of transport infrastructure. In an ambitious plan on high-speed railway development, China plans to have the longest high-speed railway network by 2020. Social concerns and anxiety with the adverse environmental and social risks and impacts

  11. Fire ventilation for the high-speed line south train tunnels

    NARCIS (Netherlands)

    Leur, P.H.E. van de; Oerle, N.J. van; Lemaire, A.D.; Molag, M.

    1999-01-01

    In The Netherlands, the High-Speed Line South project currently under development as a part of the European railway network for high speed trains. In support of a Quantitative Risk Assessment, CFD calculations provide data on the consequences of fire scenarios for escaping passengers. The paper

  12. Calibration and test capabilities of the Langley 7- by 10- foot high speed tunnel

    Science.gov (United States)

    Fox, C. H., Jr.; Huffman, J. K.

    1977-01-01

    The results of a new subsonic calibration of the Langley 7 by 10 foot high speed tunnel with the test section in a solid wall configuration are presented. A description of the test capabilities of the 7 by 10 foot high speed tunnel is also given.

  13. L1 Adaptive Manoeuvring Control of Unmanned High-speed Water Craft

    DEFF Research Database (Denmark)

    Svendsen, Casper H.; Holck, Niels Ole; Galeazzi, Roberto

    2012-01-01

    This work addresses the issue of designing an adaptive robust control system to govern the steering of a high speed unmanned personal watercraft (PWC) maintaining equal performance across the craft’s envelope of operation. The maneuvering dynamics of a high speed PWC is presented and a strong...

  14. Tri-state high speed rail study : Chicago - Milwaukee - Twin Cities corridor

    Science.gov (United States)

    1991-05-01

    This report, the Final Report for the Tri-State Study of High Speed Rail Service, describes the work carried out by TMS/Benesch in analyzing the potential for high speed rail in the Tri-State Corridor. Specifically, the study provides a pre-feasibili...

  15. Impact of high-speed railway accessibility on the location choices of office establishments

    NARCIS (Netherlands)

    Willigers, J.

    2006-01-01

    High-speed railways are becoming increasingly common in Europe. In the Netherlands soon the HSL-South will be opened. This high-speed railway line connects the Randstad to Brussels and Paris. A prominent aim of this new railway is to improve international competitiveness of the Netherlands. As a

  16. Developing seamless connections in the urban transit network : a look toward high-speed rail interconnectivity.

    Science.gov (United States)

    2014-07-01

    In the past, U.S. studies on high-speed rail (HSR) have focused primarily on the economic implications of high-speed rail development. Recently, however, studies have begun evaluating multimodal connectivity of HSR stations. The ways in which differe...

  17. Automatic in-process chatter avoidance in the high-speed milling process

    NARCIS (Netherlands)

    Dijk, N.J.M. van; Doppenberg, E.J.J.; Faassen, R.P.H.; Wouw, N. van de; Oosterling, J.A.J.; Nijmeijer, H.

    2010-01-01

    High-speed milling is often used in industry to maximize productivity of the manufacturing of high-technology components, such as aeronautical components, mold, and dies. The occurrence of chatter highly limits the efficiency and accuracy of high-speed milling operations. In this paper, two control

  18. A New High-Speed Low Distortion Switched-Current Cell

    DEFF Research Database (Denmark)

    Shah, Peter Jivan; Toumazou, Christofer

    1996-01-01

    A new switched-current cell is presented which simultaneously offers high speed, low distortion, low gain error, and a virtual ground input. In a simulation example 0.01% distortion was achieved at 50MHz sampling rate which makes the cell very well suited for high accuracy high speed filtering...

  19. Evaluation of intrusion detection technologies for high speed rail grade crossings : final report.

    Science.gov (United States)

    2003-12-01

    The rail industry is in the process of developing a prototype system for high speed rail. One of the concerns when using high speed rail is the danger of obstructions on the track. This level of danger is much higher than with traditional railway veh...

  20. Evaluation of a new device for sterilizing dental high-speed handpieces

    DEFF Research Database (Denmark)

    Larsen, T; Andersen, H K; Fiehn, N E

    1997-01-01

    Dental high-speed turbines and handpieces can take up and expel microorganisms during operation and thus need regular sterilization. This study established a method for validating devices used to sterilize high-speed turbines and handpieces. The air and water channels and turbine chambers were...

  1. Flow-Visualization Techniques Used at High Speed by Configuration Aerodynamics Wind-Tunnel-Test Team

    Science.gov (United States)

    Lamar, John E. (Editor)

    2001-01-01

    This paper summarizes a variety of optically based flow-visualization techniques used for high-speed research by the Configuration Aerodynamics Wind-Tunnel Test Team of the High-Speed Research Program during its tenure. The work of other national experts is included for completeness. Details of each technique with applications and status in various national wind tunnels are given.

  2. Verification of high-speed solar wind stream forecasts using operational solar wind models

    DEFF Research Database (Denmark)

    Reiss, Martin A.; Temmer, Manuela; Veronig, Astrid M.

    2016-01-01

    High-speed solar wind streams emanating from coronal holes are frequently impinging on the Earth's magnetosphere causing recurrent, medium-level geomagnetic storm activity. Modeling high-speed solar wind streams is thus an essential element of successful space weather forecasting. Here we evaluate...

  3. Spectral domain optical coherence tomography - Ultra-high speed, ultra-high resolution ophthalmic imaging

    NARCIS (Netherlands)

    Chen, T.; Cense, B.; Pierce, M. C.; Nassif, N. A.; Park, B. H.; Yun, S. H.; White, B.; Bouma, B. E.; Tearney, G. J.; de Boer, J.F.

    2005-01-01

    Objective: To introduce a new ophthalmic optical coherence tomography technology that allows unprecedented simultaneous ultra-high speed and ultra-high resolution. Methods: Using a superluminescent diode source, a clinically viable ultra-high speed, ultra-high resolution spectral domain optical

  4. Ultra-high-speed optical signal processing of serial data signals

    DEFF Research Database (Denmark)

    Clausen, Anders; Mulvad, Hans Christian Hansen; Palushani, Evarist

    2012-01-01

    To ensure that ultra high-speed serial data signals can be utilised in future optical communication networks, it is indispensable to have all-optical signal processing elements at our disposal. In this paper, the most recent advances in our use of non-linear materials incorporated in different...... function blocks for high-speed signal processing are reviewed....

  5. Review of concepts and applications of image sampling on high-speed streak cameras

    Science.gov (United States)

    Shiraga, H.

    2017-02-01

    Image sampling is a simple, convenient and working scheme to obtain two-dimensional (2D) images on high-speed streak cameras which have only one-dimensional (1D) slit cathode as an imaging sensor on a streak tube. 1D sampling of a 2D image in one direction was realized as Multi-Imaging X-ray Streak camera (MIXS) with a similar configuration to TV raster scan. 2D sampling of a 2D image was realized as 2-D Sampling Image X-ray Streak camera (2D-SIXS) with a similar configuration to CCD pixels. For optical-UV streak cameras, 2D fiber plate coupled to the output of a streak camera was untied and fibers were rearranged to form a line on the cathode slit. In these schemes, clever arrangement of the sampling lines or points relative to the streaking direction were essential for avoiding overlap of the streaked signals with each other. These streak cameras with image sampling technique were successfully applied to laser plasma experiment, particularly for laser-driven nuclear fusion research with simultaneous temporal- and spatial resolutions of 10 ps and 15 μm, respectively. This paper reviews the concept, history, and such applications of the scheme.

  6. Design of noise barrier inspection system for high-speed railway

    Science.gov (United States)

    Liu, Bingqian; Shao, Shuangyun; Feng, Qibo; Ma, Le; Cholryong, Kim

    2016-10-01

    The damage of noise barriers will highly reduce the transportation safety of the high-speed railway. In this paper, an online inspection system of noise barrier based on laser vision for the safety of high-speed railway is proposed. The inspection system, mainly consisted of a fast camera and a line laser, installed in the first carriage of the high-speed CIT(Composited Inspection Train).A Laser line was projected on the surface of the noise barriers and the images of the light line were received by the camera while the train is running at high speed. The distance between the inspection system and the noise barrier can be obtained based on laser triangulation principle. The results of field tests show that the proposed system can meet the need of high speed and high accuracy to get the contour distortion of the noise barriers.

  7. A simulation-based study of HighSpeed TCP and its deployment

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Evandro de [Univ. of California, Berkeley, CA (United States)

    2003-05-01

    The current congestion control mechanism used in TCP has difficulty reaching full utilization on high speed links, particularly on wide-area connections. For example, the packet drop rate needed to fill a Gigabit pipe using the present TCP protocol is below the currently achievable fiber optic error rates. HighSpeed TCP was recently proposed as a modification of TCP's congestion control mechanism to allow it to achieve reasonable performance in high speed wide-area links. In this research, simulation results showing the performance of HighSpeed TCP and the impact of its use on the present implementation of TCP are presented. Network conditions including different degrees of congestion, different levels of loss rate, different degrees of bursty traffic and two distinct router queue management policies were simulated. The performance and fairness of HighSpeed TCP were compared to the existing TCP and solutions for bulk-data transfer using parallel streams.

  8. Investigating particle phase velocity in a 3D spouted bed by a novel fiber high speed photography method

    Science.gov (United States)

    Qian, Long; Lu, Yong; Zhong, Wenqi; Chen, Xi; Ren, Bing; Jin, Baosheng

    2013-07-01

    A novel fiber high speed photography method has been developed to measure particle phase velocity in a dense gas-solid flow. The measurement system mainly includes a fiber-optic endoscope, a high speed video camera, a metal halide light source and a powerful computer with large memory. The endoscope which could be inserted into the reactors is used to form motion images of particles within the measurement window illuminated by the metal halide lamp. These images are captured by the high speed video camera and processed through a series of digital image processing algorithms, such as calibration, denoising, enhancement and binarization in order to improve the image quality. Then particles' instantaneous velocity is figured out by tracking each particle in consecutive frames. Particle phase velocity is statistically calculated according to the probability of particle velocity in each frame within a time period. This system has been applied to the investigation of particles fluidization characteristics in a 3D spouted bed. The experimental results indicate that the particle fluidization feature in the region investigated could be roughly classified into three sections by particle phase vertical velocity and the boundary between the first section and the second is the surface where particle phase velocity tends to be 0, which is in good agreement with the results published in other literature.

  9. Design of a high-speed vertical transition in LTCC for interposers suitable for packaging photonic integrated circuits

    Science.gov (United States)

    Jezzini, M. A.; Marraccini, P. J.; Peters, F. H.

    2016-05-01

    The packaging of high speed Photonic Integrated Circuits (PICs) should maintain the electrical signal integrity. The standard packaging of high speed PICs relies on wire bonds. This is not desirable because wire bonds degrade the quality of the electrical signal. The research presented in this paper proposes to replace wire bonds with an interposer with multilevel transmission lines. By attaching the PIC by flip chip onto the interposer, the use of wire bonds is avoided. The main concern for designing an interposer with multilevel transmission lines is the vertical transition, which must be designed to avoid return and radiation losses. In this paper, a novel design of a high speed vertical transition for Low Temperature Co-fired Ceramic (LTCC) is presented. The proposed vertical transition is simpler than others recently published in the literature, due to eliminating the need for additional ceramic layers or air cavities. A LTCC board was fabricated with several variations of the presented transition to find the optimal dimensions of the structure. The structures were fabricated then characterized and have a 3 dB bandwidth of 37 GHz and an open eye diagram at 44 Gbps. A full wave electromagnetic simulation is described and compared with good agreement to the measurements. The results suggest that an LTCC board with this design can be used for 40 Gbps per channel applications. Keywords: Photonics packaging, Low Temperature Co-Fired Ceramics.

  10. Experimental Performance Evaluation of a High Speed Permanent Magnet Synchronous Motor and Drive for a Flywheel Application at Different Frequencies

    Science.gov (United States)

    Nagorny, Aleksandr S.; Jansen, Ralph H.; Kankam, M. David

    2007-01-01

    This paper presents the results of an experimental performance characterization study of a high speed, permanent magnet motor/generator (M/G) and drive applied to a flywheel module. Unlike the conventional electric machine the flywheel M/G is not a separated unit; its stator and rotor are integrated into a flywheel assembly. The M/G rotor is mounted on a flywheel rotor, which is magnetically levitated and sealed within a vacuum chamber during the operation. Thus, it is not possible to test the M/G using direct load measurements with a dynamometer and torque transducer. Accordingly, a new in-situ testing method had to be developed. The paper describes a new flywheel M/G and drive performance evaluation technique, which allows the estimation of the losses, efficiency and power quality of the flywheel high speed permanent magnet M/G, while working in vacuum, over wide frequency and torque ranges. This method does not require any hardware modification nor any special addition to the test rig. This new measurement technique is useful for high-speed applications, when applying an external load is technically difficult.

  11. CONSIDERATION OF AERODYNAMIC IMPACT IN SETTING THE MAXIMUM PERMISSIBLE SPEEDS OF HIGH-SPEED TRAIN

    Directory of Open Access Journals (Sweden)

    S. T. Djabbarov

    2017-10-01

    Full Text Available Purpose. Studies of the effect of aerodynamic pressure on the maximum permissible speeds of a high-speed train on the existing railway infrastructure. Methodology. The study of the magnitude and direction of the aerodynamic pressure, its effect on the maximum speeds of a high-speed train was carried out on a train model composed of axisymmetric bodies with conical forms of head and tail parts. Findings. Determined the values of the aerodynamic pressure at different distances from the train are, when the high-speed train moves at a speed of 200 km/h or more. The maximum speeds of a high-speed train are determined taking into account the state of the infrastructure of the existing railway, ensuring the safe operation of a high-speed railway. Originality. Theoretical studies of aerodynamic pressure from secondary air currents formed during the movement of high-speed trains are performed on a model of a train composed of identical axisymmetric bodies with conical forms of head and tail moving in a compressible medium. The results of the research allow the regularity of the change in aerodynamic pressure during the movement of a high-speed train. Practical value. The obtained results allow to establish: 1 the maximum permissible speeds of a high-speed train taking into account the technical condition of permanent devices and structures of the existing railway infrastructure; 2 technical parameters of individual objects and structural elements of the infrastructure of high-speed iron subjected to the effect of aerodynamic pressure for a given maximum speed of high-speed trains.

  12. TECHNOLOGY FOR OBTAINING BIMETALLIC SHAPING PARTS OF DIE TOOLING USING METHOD OF HIGH-SPEED HOT EXTRUSION

    Directory of Open Access Journals (Sweden)

    I. V. Kachanov

    2014-01-01

    Full Text Available Processes of high-speed shaping changes and especially high-speed hot extrusion create efficient conditions for treatment of weakly plastic and poorly deformable materials which are widely used in tool making facilities. Due to the fact that high-speed stamping provides accurate billets with increased mechanical properties, it can be used as a technological process for manufacturing shaping parts of die tooling parts operating which are subjected to increased loads and wear.The purpose of the paper is to carry out experimental investigations on the possibility to obtain a bimetallic tool where structural steel is considered as a basis of the tool and a working cavity is made of high-alloyed tool steel with its saving up to 90 %. A scheme of loading and geometry of conjugated surfaces of the composite billet have been developed in the paper. Technology for obtaining bimetallic shaping parts of die tooling with deformation at speed of vR = 40-50 m/s and composite billet temperature of T = 1150 °C has been experimentally tested with formation of a compound due to plastic flow of two billet parts on contact surface with removal of surface oxide films.Microstructures of the bimetallic compounds obtained with the help of high-speed hot extrusion method for compositions of structural and high-alloy steels have been investigated and their high quality has been proved during the investigations. Dependences of micro-hardness distribution have been established outbound two- steel contact plane in the zone of connection that are characterized by a minimum micro-hardness value in the connection joint. Availability of more plastic zone in the contact plane contributes to reduction of residual stresses due to their relaxation in this zone and higher joint strength.

  13. [Preparative separation of aloin diastereoisomers by high-speed countercurrent chromatography combined with silica gel column chromatography].

    Science.gov (United States)

    Huang, Danfeng; Cao, Xueli; Zhao, Hua; Dong, Yinmao

    2006-01-01

    Aloin, naturally a mixture of two diastereoisomers, aloin A and aloin B, is the major anthraquinone in aloe, and now served as one of the important control constituents in most of the commercial aloe products. High-speed countercurrent chromatography (HSCCC) combined with silica gel column chromatography was developed for the preparative separation of the two individual aloins. Aloin A (98%) and aloin B (96%) were obtained. Fast atom bombardment mass spectrometry (FAB-MS), 1H nuclear magnetic resonance (1H NMR) and GOESY (gradient-enhanced nuclear Overhauser effect spectroscopy) were employed for the elucidation of their structure conformation. The developed method is of high preparative capacity and high efficiency in resolution.

  14. Ride performance of a high speed rail vehicle using controlled semi active suspension system

    Science.gov (United States)

    Sharma, Sunil Kumar; Kumar, Anil

    2017-05-01

    The rail-wheel interaction in a rail vehicle running at high speed results in large amplitude vibration of carbody that deteriorates the ride comfort of travellers. The role of suspension system is crucial to provide an acceptable level of ride performance. In this context, an existing rail vehicle is modelled in vertical, pitch and roll motions of carbody and bogies. Additionally, nonlinear stiffness and damping parameters of passive suspension system are defined based on experimental data. In the secondary vertical suspension system, a magneto-rheological (MR) damper is included to improve the ride quality and comfort. The parameters of MR damper depend on the current, amplitude and frequency of excitations. At different running speeds, three semi-active suspension strategies with MR damper are analysed for periodic track irregularity and the resulting performance indices are juxtaposed with the nonlinear passive suspension system. The disturbance rejection and force tracking damper controller algorithms are applied to control the desired force of MR damper. This study reveals that the vertical vibrations of a vehicle can be reduced significantly by using the proposed semi-active suspension strategies. Moreover, it naturally results in improved ride quality and passenger’s comfort in comparison to the existing passive system.

  15. High speed intelligent classifier of tomatoes by colour, size and weight

    Energy Technology Data Exchange (ETDEWEB)

    Cement, J.; Novas, N.; Gazquez, J. A.; Manzano-Agugliaro, F.

    2012-11-01

    At present most horticultural products are classified and marketed according to quality standards, which provide a common language for growers, packers, buyers and consumers. The standardisation of both product and packaging enables greater speed and efficiency in management and marketing. Of all the vegetables grown in greenhouses, tomatoes are predominant in both surface area and tons produced. This paper will present the development and evaluation of a low investment classification system of tomatoes with these objectives: to put it at the service of producing farms and to classify for trading standards. An intelligent classifier of tomatoes has been developed by weight, diameter and colour. This system has optimised the necessary algorithms for data processing in the case of tomatoes, so that productivity is greatly increased, with the use of less expensive and lower performance electronics. The prototype is able to achieve very high speed classification, 12.5 ratings per second, using accessible and low cost commercial equipment for this. It decreases fourfold the manual sorting time and is not sensitive to the variety of tomato classified. This system facilitates the processes of standardisation and quality control, increases the competitiveness of tomato farms and impacts positively on profitability. The automatic classification system described in this work represents a contribution from the economic point of view, as it is profitable for a farm in the short term (less than six months), while the existing systems, can only be used in large trading centers. (Author) 36 refs.

  16. Impact of waiting on the perception of service quality in nuclear medicine

    NARCIS (Netherlands)

    De Man, S; Vlerick, P; Gemmel, P; De Bondt, P; Matthys, D; Dierckx, RA

    Background This is the first study examining the link between waiting and various dimensions of perceived service quality in nuclear medicine. Methods We tested the impact of selected waiting experience variables on the evaluation of service quality, measured using the Servqual tool, of 406 patients

  17. Three-dimensional reconstruction for high-speed volume measurement

    Science.gov (United States)

    Lee, Dah-Jye; Lane, Robert M.; Chang, Guang-Hwa

    2001-02-01

    Volume measurement is an important process for various industries such as food processing, fruit and vegetable grading, etc. Value or price is often determined by the size of product. In seafood industry, for example, oyster meat is separated into four grades before being packaged. Large size grade means higher selling price than small size. More consistent packaging size is also an indication of high quality. Product size can be measured optically with machine vision technology for on-line inspection and grading systems. Most optical grading techniques use a two-dimensional area projection or the weight of the product to estimate the actual product volume. These methods are subject to measurement inaccuracy because of the missing thickness information. An algorithm combines laser triangulation technique with two-dimensional measurement to reconstruct a three-dimensional surface for volume measurement is introduced in this paper. The result of this technique shows a significant accuracy improvement from the area-projection method

  18. HIGH SPEED RAILWAY LINES – FUTURE PART OF CZECH RAILWAY NETWORK?

    Directory of Open Access Journals (Sweden)

    Lukáš Týfa

    2017-08-01

    Full Text Available The paper first describes high speed rail generally and explains the relationship between high speed and conventional railway networks (according to the vehicle types in operation on the network. The core of the paper is comprised of the methodology for choosing the best route for a railway line and its application to the high speed railway connection Praha – Brno. The Algorithm used assumes the existence of more route proposals, which could be different in terms of the operational conception, line routing or types of vehicles used. The optimal variant is the one with the lowest daily cost, which includes infrastructure and vehicle costs; investment and operational costs. The results from applying this model confirmed the assumption, that a dedicated high speed railway line, only for high speed trains, has the same or lower investment costs than a line for both high speed and conventional trains. Furthermore, a dedicated high line also has a lower cost for infrastructure maintenance but a higher cost for buying high speed multiple units.

  19. High-speed collision of copper nanoparticle with aluminum surface: Molecular dynamics simulation

    Energy Technology Data Exchange (ETDEWEB)

    Pogorelko, Victor V., E-mail: vik_ko83@mail.ru [Chelyabinsk State University, Bratiev Kashirinykh 129, 454001 Chelyabinsk (Russian Federation); South Ural State University (National Research University), Lenin Prospect 76, 454080 Chelyabinsk (Russian Federation); Mayer, Alexander E., E-mail: mayer@csu.ru [Chelyabinsk State University, Bratiev Kashirinykh 129, 454001 Chelyabinsk (Russian Federation); South Ural State University (National Research University), Lenin Prospect 76, 454080 Chelyabinsk (Russian Federation); Krasnikov, Vasiliy S., E-mail: vas.krasnikov@gmail.com [Chelyabinsk State University, Bratiev Kashirinykh 129, 454001 Chelyabinsk (Russian Federation); South Ural State University (National Research University), Lenin Prospect 76, 454080 Chelyabinsk (Russian Federation)

    2016-12-30

    Highlights: • High-speed nanoparticle impact induces shock waves and intensive plastic deformation. • Lattice orientation strongly influences on the deformation degree. • Plastic deformation goes through nucleation, growth and separation of semi-loops. • Medium impact energy and elevated temperature are optimal for high-quality coating. • High impact velocity and room temperature lead to plastic deformation and coating. - Abstract: We investigate the effect of the high-speed collision of copper nanoparticles with aluminum surface by means of molecular dynamic simulations. Studied diameter of nanoparticles is varied within the range 7.2–22 nm and the velocity of impact is equal to 500 or 1000 m/s. Dislocation analysis shows that a large quantity of dislocations is formed within the impact area. Overall length of dislocations is determined, first of all, by the impact velocity and by the size of incident copper nanoparticle, in other words, by the kinetic energy of the nanoparticle. Dislocations occupy the total volume of the impacted aluminum single crystal layer (40.5 nm in thickness) in the form of intertwined structure in the case of large kinetic energy of the incident nanoparticle. Decrease in the initial kinetic energy or increase in the layer thickness lead to restriction of the penetration depth of the dislocation net; formation of separate dislocation loops is observed in this case. Increase in the initial system temperature slightly raises the dislocation density inside the bombarded layer and considerably decreases the dislocation density inside the nanoparticle. The temperature increase also leads to a deeper penetration of the copper atoms inside the aluminum. Additional molecular dynamic simulations show that the deposited particles demonstrate a very good adhesion even in the case of the considered relatively large nanoparticles. Medium energy of the nanoparticles corresponding to velocity of about 500 m/s and elevated temperature of the

  20. USING OF PRESSURE DIES AT RUP «BMZ» FOR HIGH-SPEED WIRE DRAWING IN THE REGIME OF HYDRODYNAMIC FRICTION

    Directory of Open Access Journals (Sweden)

    D. G. Sachava

    2008-01-01

    Full Text Available It is shown that using of forcing dies at RUP «BMZ» for high-speed wire drawing in regime of hydrodynamic friction improves the quality of lubrication, and correspondingly fastness of dies incl. finishing ones is increaswd.

  1. High Speed Rail System and the Tourism Market: Between Accessibility, Image and Coordination Tool

    OpenAIRE

    marie delaplace; sylvie bazin; francesca pagliara; Antonio Sposaro

    2014-01-01

    the aim of this P is to propose a state-of-the-art concerning the interaction between High-Speed Rail systems and the tourism market, in order to identify the possible best practices aiming to enhance the value of the tourist activities. This question arises because there are many projects of High-Speed Rail and others are ongoing, whose economic justification is based on the benefits deriving from them. In November 2013 there were 21.472 km of High Speed Railways (i.e., whose speed is greate...

  2. High speed ultrafast laser surface processing (Conference Presentation)

    Science.gov (United States)

    Mincuzzi, Girolamo; Kling, Rainer; Lopez, John; Hoenninger, Clemens; Audouard, Eric; Mottay, Eric P.

    2017-03-01

    Surface functionalization is a rapidly growing application for industrial ultrafast lasers. There is an increasing interest for high throughput surface processing, especially for texturing and engraving large manufacturing tools for different industrial fields such as injection molding, embossing and printing. Hydrophobic and hydrophilic surfaces, colored or deep black metal surfaces can now be industrially produced. The engraving speed is continuously improving following improvements in beam scanning technology and high average power industrial ultrafast lasers. Several tenths of MHz for the laser repetition rate and several hundreds of meter per second for the beam speed are available. More than 100 m/s scanning speed is then possible for laser surface structuring. But these surfaces are quite hard to produce since it is necessary to have a good compromise between high removal rate and high surface quality (low roughness, burr-free, narrow heat affected zone). In this work, we apply a simple engineering model based on the two temperature description of ultra-fast ablation to estimate key processing parameters. In particular, the pulse-to-pulse overlap which depends on the scanning velocity, the spot size, and the laser repetition rate all have to be adjusted to optimize the depth and roughness, otherwise heat accumulation and heat affected zone may appear. Optimal sequences of time and spatial superposition of pulses are determined and applied with a polygonal scanner. Ablation depth and processing speed obtained are compared with experimental results.

  3. Assessment of potential aerodynamic effects on personnel and equipment in proximity to high-speed train operations : safety of high-speed ground transportation systems

    Science.gov (United States)

    1999-12-01

    Amtrak is planning to provide high-speed passenger train service at speeds significantly higher than their current top speed of 125 mph, and with these higher speeds, there are concerns with safety from the aerodynamic effects created by a passing tr...

  4. Aerodynamic Effects of High-Speed Trains on People and Property at Stations in the Northeast Corridor. Safety of High-Speed Ground Transportation Systems.

    Science.gov (United States)

    1999-11-01

    This report presents the results of a study to evaluate the aerodynamic (air velocity and pressure) effects of the new high-speed trains on the safety and comfort of people, and the impacts on physical facilities, in and around Northeast Corridor sta...

  5. Transient flow characteristics of a high speed rotary valve

    Science.gov (United States)

    Browning, Patrick H.

    Pressing economic and environmental concerns related to the performance of fossil fuel burning internal combustion engines have revitalized research in more efficient, cleaner burning combustion methods such as homogeneous charge compression ignition (HCCI). Although many variations of such engines now exist, several limiting factors have restrained the full potential of HCCI. A new method patented by West Virginia University (WVU) called Compression Ignition by Air Injection (CIBAI) may help broaden the range of effective HCCI operation. The CIBAI process is ideally facilitated by operating two synchronized piston-cylinders mounted head-to-head with one of the cylinders filled with a homogeneous mixture of air and fuel and the other cylinder filled with air. A specialized valve called the cylinder connecting valve (CCV) separates the two cylinders, opens just before reaching top dead center (TDC), and allows the injection air into the charge to achieve autoignition. The CCV remains open during the entire power stroke such that upon ignition the rapid pressure rise in the charge cylinder forces mass flow back through the CCV into the air-only cylinder. The limited mass transfer between the cylinders through the CCV limits the theoretical auto ignition timing capabilities and thermal efficiency of the CIBAI cycle. Research has been performed to: (1) Experimentally measure the transient behavior of a potential CCV design during valve opening between two chambers maintained at constant pressure and again at constant volume; (2) Develop a modified theoretical CCV mass flow model based upon the measured cold flow valve performance that is capable of predicting the operating conditions required for successful mixture autoignition; (3) Make recommendations for future CCV designs to maximize CIBAI combustion range. Results indicate that the modified-ball CCV design offers suitable transient flow qualities required for application to the CIBAI concept. Mass injection events

  6. The Time Lens Concept Applied to Ultra-High-Speed OTDM Signal Processing

    DEFF Research Database (Denmark)

    Clausen, Anders; Palushani, Evarist; Mulvad, Hans Christian Hansen

    2013-01-01

    This survey paper presents some of the applications where the versatile time-lens concept successfully can be applied to ultra-high-speed serial systems by offering expected needed functionalities for future optical communication networks....

  7. High Speed Railway Environment Safety Evaluation Based on Measurement Attribute Recognition Model

    Directory of Open Access Journals (Sweden)

    Qizhou Hu

    2014-01-01

    Full Text Available In order to rationally evaluate the high speed railway operation safety level, the environmental safety evaluation index system of high speed railway should be well established by means of analyzing the impact mechanism of severe weather such as raining, thundering, lightning, earthquake, winding, and snowing. In addition to that, the attribute recognition will be identified to determine the similarity between samples and their corresponding attribute classes on the multidimensional space, which is on the basis of the Mahalanobis distance measurement function in terms of Mahalanobis distance with the characteristics of noncorrelation and nondimensionless influence. On top of the assumption, the high speed railway of China environment safety situation will be well elaborated by the suggested methods. The results from the detailed analysis show that the evaluation is basically matched up with the actual situation and could lay a scientific foundation for the high speed railway operation safety.

  8. OptoCeramic-Based High Speed Fiber Multiplexer for Multimode Fiber Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A fiber-based fixed-array laser transmitter can be combined with a fiber-arrayed detector to create the next-generation NASA array LIDAR systems. High speed optical...

  9. High speed television camera system processes photographic film data for digital computer analysis

    Science.gov (United States)

    Habbal, N. A.

    1970-01-01

    Data acquisition system translates and processes graphical information recorded on high speed photographic film. It automatically scans the film and stores the information with a minimal use of the computer memory.

  10. Analysis and improvement of calculation procedure of high-speed centrifugal pumps

    Science.gov (United States)

    Kraeva, E. M.; Masich, I. S.

    2017-10-01

    The model of flow around a flowing part of a high-speed centrifugal pump with a semi-open impeller is presented. The calculated ratios for design of lowflow pumps are obtained and confirmed experimentally.

  11. Integrated High-Speed Digital Optical True-Time-Delay Modules for Synthetic Aperture Radars Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Crystal Research, Inc. proposes an integrated high-speed digital optical true-time-delay module for advanced synthetic aperture radars. The unique feature of this...

  12. High-Speed, Low-Power ADC for Digital Beam Forming (DBF) Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In Phase 1, Ridgetop Group designed a high-speed, yet low-power silicon germanium (SiGe)-based, analog-to-digital converter (ADC) to be a key element for digital...

  13. Measurement and Analysis of High-speed Railway Subgrade Settlement in China: A Case Study

    National Research Council Canada - National Science Library

    Qulin Tan; Leijuan Li; Senlin Wang

    2014-01-01

    .... With the rapid development of China's high-speed railway, it puts a very high requirement for track smoothness, and thus the requirements of subgrade stability and deformation control become very stringent...

  14. Study on the subgrade deformation under high-speed train loading and water-soil interaction

    Science.gov (United States)

    Han, Jian; Zhao, Guo-Tang; Sheng, Xiao-Zhen; Jin, Xue-Song

    2016-04-01

    It is important to study the subgrade characteristics of high-speed railways in consideration of the water-soil coupling dynamic problem, especially when high-speed trains operate in rainy regions. This study develops a nonlinear water-soil interaction dynamic model of slab track coupling with subgrade under high-speed train loading based on vehicle-track coupling dynamics. By using this model, the basic dynamic characteristics, including water-soil interaction and without water induced by the high-speed train loading, are studied. The main factors-the permeability coefficient and the porosity-influencing the subgrade deformation are investigated. The developed model can characterize the soil dynamic behaviour more realistically, especially when considering the influence of water-rich soil.

  15. Advanced Modular, Multi-Channel, High Speed Fiber Optic Sensing System for Acoustic Emissions Monitoring Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Intelligent Fiber Optic Systems Corporation (IFOS) proposes to prove the feasibility of innovations based on ultra-light-weight, ultra-high-speed, multi-channel,...

  16. Formulating a strategy for securing high-speed rail in the United States.

    Science.gov (United States)

    2013-03-01

    This report presents an analysis of information relating to attacks, attempted attacks, and plots against high-speed rail (HSR) : systems. It draws upon empirical data from MTIs Database of Terrorist and Serious Criminal Attacks Against Public Sur...

  17. Estimating workforce development needs for high-speed rail in California : [research brief].

    Science.gov (United States)

    2012-03-01

    It is critical to understand the emergent workforce characteristics for the California High-Speed Rail (HSR) network. Knowledge about the size and characteristics of this workforce, including its training and education needs, is required to guide the...

  18. Illinois high-speed rail four-quadrant gate reliability assessment

    Science.gov (United States)

    2009-10-01

    The Federal Railroad Administration (FRA) tasked the John A. Volpe National Transportation Systems Center (Volpe Center) to conduct a reliability analysis of the four-quadrant gate/vehicle detection equipment installed on the future high-speed rail (...

  19. San Joaquin, California, High-Speed Rail Grade Crossing Data Acquisition Characteristics, Methodology, and Risk Assessment

    Science.gov (United States)

    2006-11-01

    This report discusses data acquisition and analysis for grade crossing risk analysis at the proposed San Joaquin High-Speed Rail Corridor in San Joaquin, California, and documents the data acquisition and analysis methodologies used to collect and an...

  20. Estimating workforce development needs for high-speed rail in California.

    Science.gov (United States)

    2012-03-01

    This study provides an assessment of the job creation and attendant education and training needs associated with the creation of the California High-Speed Rail (CHSR) network, scheduled to begin construction in September 2012. Given the high profile ...

  1. An assessment of high-speed rail safety issues and research needs

    Science.gov (United States)

    1990-12-01

    The objectives of the study were to provide the Federal Railroad Administration Office of Research and Development with the following information: A general description and operating characteristics of high-speed rail systems likely to be installed i...

  2. INFLUENCE OF HIGH SPEED OF CRYSTALLIZATION ON THE STRUCTURE OF ALUMINIUM ALLOYS

    Directory of Open Access Journals (Sweden)

    G. V. Dovnar

    2010-01-01

    Full Text Available The aim of the work is development of new compositions of aluminium alloys with refractory metals of transition group and cremnium due to range extension of alloying at usage of high speed of melts cooling.

  3. High-speed surface transportation corridor : a conceptual framework, final report.

    Science.gov (United States)

    2009-10-08

    Efficient transportation is indispensable for economic growth and prosperity. In this study we propose the development of a high-speed surface corridor and compatible vehicles. We present a conceptual framework for this corridor and vehicle. This pro...

  4. High-Speed, Low-Power ADC for Digital Beam Forming (DBF) Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Ridgetop Group will design a high-speed, low-power silicon germanium (SiGe)-based, analog-to-digital converter (ADC) to be a key element for digital beam forming...

  5. High-Speed Fiber Optic Micromultiplexer for Space and Airborne Lidar Project

    Data.gov (United States)

    National Aeronautics and Space Administration — To address the NASA Earth Science Division need for high-speed fiber optic multiplexers for next generation lidar systems, Luminit proposes to develop a new Fiber...

  6. Evaluation and Selection of Technology Concepts for a Hypersonic High Speed Standoff Missile

    National Research Council Canada - National Science Library

    Roth, Bryce

    1999-01-01

    This paper describes the application of a method for technology concept selection to the design of a hypersonic high-speed standoff missile capable of achieving pin-point strike of long-range targets...

  7. High-speed visual feedback for realizing high-performance robotic manipulation

    Science.gov (United States)

    Huang, S.; Bergström, N.; Yamakawa, Y.; Senoo, T.; Ishikawa, M.

    2017-02-01

    High-speed vision sensing becomes a driving factor in developing new methods for robotic manipulation. In this paper we present two such methods in order to realize high-performance manipulation. First, we present a dynamic compensation approach which aims to achieve simultaneously fast and accurate positioning under various (from system to external environment) uncertainties. Second, a high-speed motion strategy for manipulating flexible objects is introduced to address the issue of deformation uncertainties. Both methods rely on high-speed visual feedback and are model independent, which we believe is essential to ensure good flexibility in a wide range of applications. The high-speed visual feedback tracks the relative error between the working tool and the target in image coordinates, which implies that there is no need for accurate calibrations of the vision system. Tasks for validating these methods were implemented and experimental results were provided to illustrate the effectiveness of the proposed methods.

  8. Sequential multi-channel OCT in the retina using high-speed fiber optic switches

    Science.gov (United States)

    Wartak, Andreas; Augustin, Marco; Beer, Florian; Haindl, Richard; Baumann, Bernhard; Pircher, Michael; Hitzenberger, Christoph K.

    2017-07-01

    A sequential multi-channel OCT prototype featuring high-speed fiber optical switches to enable inter A-scan (A-scan rate: 100 kHz) sample arm switching was developed and human retinal image data is presented.

  9. Some design aspects of high-speed vertical-axis wind turbines

    National Research Council Canada - National Science Library

    Templin, R. J; South, P

    1977-01-01

    ... (rotor height to diameter ratio, solidity, number of blades, etc.) for high-speed vertical-axis wind turbines from kilowatt to megawatt sizes and shows that very large turbines are theoretically feasible...

  10. Social exclusion and high speed rail: The case study of Spain

    Energy Technology Data Exchange (ETDEWEB)

    Pagliara, F.; Menicocci, F.; Vassallo, J.M.; Gomez, J.

    2016-07-01

    Very few contributions in the literature have dealt with the issue of social exclusion related to High Speed Rail systems. The objective of this manuscript is to understand what are the factors excluding users from choosing High Speed Rail services considering as case study Spain. For this purpose, a Revealed Preference survey was employed in November and December 2015. A questionnaire was submitted to users of the Spanish transport systems travelling for long distance-journeys. The aim was that of investigating their perception of High Speed Rail system and the factors inhibiting passengers or excluding them from its use. Data about their socioeconomic characteristics were collected as well. The main result of the survey has been that a relationship between social exclusion and High Speed Rail in Spain is present, especially in terms of geographical exclusion. (Author)

  11. Turbulent Scalar Transport Model Validation for High Speed Propulsive Flows Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This effort entails the validation of a RANS turbulent scalar transport model (SFM) for high speed propulsive flows, using new experimental data sets and...

  12. Smart Materials Technology for High Speed Adaptive Inlet/Nozzle Design Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Enabling a new generation of high-speed civil aircraft will require breakthrough developments in propulsion systems, including novel techniques to optimize inlet...

  13. Mode Transition Variable Geometry for High Speed Inlets for Hypersonic Aircraft Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Hypersonic propulsion research has been a focus of the NASA aeronautics program for years. Previous high-speed cruise and space access programs have examined the...

  14. High-Speed Prediction for Real-Time Debris Risk Assessment Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Our innovation is a high-speed method for the prediction of aerodynamic debris fields that employs an extensive database of generalized empirical equations coupled...

  15. Microfluidics-based, time-resolved mechanical phenotyping of cells using high-speed imaging

    Science.gov (United States)

    Belotti, Yuri; Conneely, Michael; Huang, Tianjun; McKenna, Stephen; Nabi, Ghulam; McGloin, David

    2017-07-01

    We demonstrate a single channel hydrodynamic stretching microfluidic device that relies on high-speed imaging to allow repeated dynamic cell deformation measurements. Experiments on prostate cancer cells suggest richer data than current approaches.

  16. Advances on Propulsion Technology for High-Speed Aircraft. Volume 2

    National Research Council Canada - National Science Library

    2007-01-01

    .... The demand for supersonic vehicles is believed to boost in the incoming years. This VKI/RTO lecture series will review the current state of the art of high speed propulsion for both airplanes and space launchers...

  17. Advances on Propulsion Technology for High-Speed Aircraft. Volume 1

    National Research Council Canada - National Science Library

    2007-01-01

    .... The demand for supersonic vehicles is believed to boost in the incoming years. This VKI/RTO lecture series will review the current state of the art of high speed propulsion for both airplanes and space launchers...

  18. High speed low damage grinding of advanced ceramics - Phase II Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Kovach, J.A.; Malkin, S.

    2000-02-01

    In the manufacture of structural ceramic components, grinding costs can comprise up to 80% of the entire manufacturing cost. As a result, one of the most challenging tasks faced by manufacturing process engineers is the development of a ceramic finishing process to maximize part throughput while minimizing costs and associated scrap levels. The efforts summarized in this report represent the second phase of a program whose overall objective was to develop a single-step, roughing-finishing process suitable for producing high-quality silicon nitride parts at high material removal rates and at substantially lower cost than traditional, multi-stage grinding processes. More specifically, this report provides a technical overview of High-Speed, Low-Damage (HSLD) ceramic grinding which employs elevated wheel speeds to achieve the small grain depths of cut necessary for low-damage grinding while operating at relatively high material removal rates. The study employed the combined use of laboratory grinding tests, mathematical grinding models, and characterization of the resultant surface condition. A single-step, roughing-finishing process operating at high removal rates was developed and demonstrated.

  19. Joint Downlink Power Control and Multicode Receivers for Downlink Transmissions in High Speed UMTS

    Directory of Open Access Journals (Sweden)

    Sayadi Bessem

    2006-01-01

    Full Text Available We propose to combine the gains of a downlink power control and a joint multicode detection, for an HSDPA link. We propose an iterative algorithm that controls both the transmitted code powers and the joint multicode receiver filter coefficients for the high-speed multicode user. At each iteration, the receiver filter coefficients of the multicode user are first updated (in order to reduce the intercode interferences and then the transmitted code powers are updated, too. In this way, each spreading code of the multicode scheme creates the minimum possible interference to others while satisfying the quality of service requirement. The main goals of the proposed algorithm are on one hand to decrease intercode interference and on the other hand to increase the system capacity. Analysis for the rake receiver, joint multicode zero forcing (ZF receiver, and joint multicode MMSE receiver is presented. Simulation is used to show the convergence of the proposed algorithm to a fixed point power vector where the multicode user satisfies its signal-to-interference ratio (SIR target on each code. The results show the convergence behavior for the different receivers as the number of codes increases. A significant gain in transmitted base station power is obtained.

  20. High-Speed Scalable Silicon-MoS2 P-N Heterojunction Photodetectors

    Science.gov (United States)

    Dhyani, Veerendra; Das, Samaresh

    2017-01-01

    Two-dimensional molybdenum disulfide (MoS2) is a promising material for ultrasensitive photodetector owing to its favourable band gap and high absorption coefficient. However, their commercial applications are limited by the lack of high quality p-n junction and large wafer scale fabrication process. A high speed Si/MoS2 p-n heterojunction photodetector with simple and CMOS compatible approach has been reported here. The large area MoS2 thin film on silicon platform has been synthesized by sulfurization of RF-sputtered MoO3 films. The fabricated molecular layers of MoS2 on silicon offers high responsivity up to 8.75 A/W (at 580 nm and 3 V bias) with ultra-fast response of 10 μsec (rise time). Transient measurements of Si/MoS2 heterojunction under the modulated light reveal that the devices can function up to 50 kHz. The Si/MoS2 heterojunction is found to be sensitive to broadband wavelengths ranging from visible to near-infrared light with maximum detectivity up to ≈1.4 × 1012 Jones (2 V bias). Reproducible low dark current and high responsivity from over 20 devices in the same wafer has been measured. Additionally, the MoS2/Si photodetectors exhibit excellent stability in ambient atmosphere. PMID:28281652

  1. High-speed digital color fringe projection technique for three-dimensional facial measurements

    Science.gov (United States)

    Liu, Cheng-Yang; Chang, Li-Jen; Wang, Chung-Yi

    2016-04-01

    Digital fringe projection techniques have been widely studied in industrial applications because of the advantages of high accuracy, fast acquisition and non-contact operation. In this study, a single-shot high-speed digital color fringe projection technique is proposed to measure three-dimensional (3-D) facial features. The light source used in the measurement system is structured light with color fringe patterns. A projector with digital light processing is used as light source to project color structured light onto face. The distorted fringe pattern image is captured by the 3-CCD color camera and encoded into red, green and blue channels. The phase-shifting algorithm and quality guided path unwrapping algorithm are used to calculate absolute phase map. The detecting angle of the color camera is adjusted by using a motorized stage. Finally, a complete 3-D facial feature is obtained by our technique. We have successfully achieved simultaneous 3-D phase acquisition, reconstruction and exhibition at a speed of 0.5 s. The experimental results may provide a novel, high accuracy and real-time 3-D shape measurement for facial recognition system.

  2. High-speed imaging and evolution dynamics of laser induced deposition of conductive inks (Conference Presentation)

    Science.gov (United States)

    Makrygianni, Marina; Papazoglou, Symeon; Zacharatos, Filimonas; Chatzandroulis, Stavros; Zergioti, Ioanna

    2017-02-01

    During the last decade there is an ever-increasing interest for the study of laser processes dynamics and specifically of the Laser Induced Forward Transfer (LIFT) technique, since the evolution of the phenomena under investigation may provide real time metrology in terms of jet velocity, adjacent jet interaction and impact pressure. The study of such effects leads to a more thorough understanding of the deposition process, hence to an improved printing outcome and in these frames, this work presents a study on the dynamics of LIFT for conductive nanoparticles inks using high-speed imaging approaches. Moreover, in this study, we investigated the printing regimes and the printing quality during the transfer of copper (Cu) nanoink, which is a metallic nanoink usually employed in interconnect formation as well as the printing of silver nanowires, which provide transparency and may be used in applications where transparent electrodes are needed as in photovoltaics, batteries, etc. Furthermore, we demonstrate the fabrication of an all laser printed resistive chemical sensor device that combines Ag nanoparticles ink and graphene oxide, for the detection of humidity fabricated on a flexible polyimide substrate. The sensor device architecture was able to host multiple pairs of electrodes, where Ag nanoink or nanopaste were laser printed, to form the electrodes as well as the electrical interconnections between the operating device and the printed circuit board. Performance evaluation was conducted upon flow of different concentrations of humidity vapors to the sensor, and good response (500 ppm limit of detection) with reproducible operation was observed.

  3. A New High-Speed Foreign Fiber Detection System with Machine Vision

    Directory of Open Access Journals (Sweden)

    Zhiguo Chen

    2010-01-01

    Full Text Available A new high-speed foreign fiber detection system with machine vision is proposed for removing foreign fibers from raw cotton using optimal hardware components and appropriate algorithms designing. Starting from a specialized lens of 3-charged couple device (CCD camera, the system applied digital signal processor (DSP and field-programmable gate array (FPGA on image acquisition and processing illuminated by ultraviolet light, so as to identify transparent objects such as polyethylene and polypropylene fabric from cotton tuft flow by virtue of the fluorescent effect, until all foreign fibers that have been blown away safely by compressed air quality can be achieved. An image segmentation algorithm based on fast wavelet transform is proposed to identify block-like foreign fibers, and an improved canny detector is also developed to segment wire-like foreign fibers from raw cotton. The procedure naturally provides color image segmentation method with region growing algorithm for better adaptability. Experiments on a variety of images show that the proposed algorithms can effectively segment foreign fibers from test images under various circumstances.

  4. High-speed, low-damage grinding of advanced ceramics Phase 1. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kovach, J.A. [Eaton Corp., Willoughby Hills, OH (United States). Mfg. Technologies Center; Malkin, S. [Univ. of Massachusetts (United States)

    1995-03-01

    In manufacture of structural ceramic components, grinding costs can comprise up to 80% of the entire manufacturing cost. Most of these costs arise from the conventional multi-step grinding process with numerous grinding wheels and additional capital equipment, perishable dressing tools, and labor. In an attempt to reduce structural ceramic grinding costs, a feasibility investigation was undertaken to develop a single step, roughing-finishing process suitable for producing high-quality silicon nitride ceramic parts at high material removal rates at lower cost than traditional, multi-stage grinding. This feasibility study employed combined use of laboratory grinding tests, mathematical grinding models, and characterization of resultant material surface condition. More specifically, this Phase 1 final report provides a technical overview of High-Speed, Low-Damage (HSLD) ceramic grinding and the conditions necessary to achieve the small grain depths of cut necessary for low damage grinding while operating at relatively high material removal rates. Particular issues addressed include determining effects of wheel speed and material removal rate on resulting mode of material removal (ductile or brittle fracture), limiting grinding forces, calculation of approximate grinding zone temperatures developed during HSLD grinding, and developing the experimental systems necessary for determining HSLD grinding energy partition relationships. In addition, practical considerations for production utilization of the HSLD process are also discussed.

  5. New high-speed line Nuremberg - Ingolstadt - Electrical engineering equipment; Neubaustrecke (NBS) Nuernberg - Ingolstadt - Technische Ausruestung

    Energy Technology Data Exchange (ETDEWEB)

    Krems, S. [Balfour Beatty Rail GmbH, Berlin (Germany); Matthes, U. [DB Projektbau GmbH, Nuernberg (Germany)

    2007-07-01

    The Bavarian fast railway line Nuremberg - Ingolstadt is equipped with most recent railway infrastructure for a 300 km/h fast high-speed traffic. The electrical engineering installations were implemented within a seven years period. Since December 2006 the line has been integrated into scheduled services and operated with high-speed trains. So far, the installations complied fully with all the requirements. (orig.)

  6. High speed data transmission coaxial-cable in the space communication system

    Science.gov (United States)

    Su, Haohang; Huang, Jing

    2018-01-01

    An effective method is proved based on the scattering parameter of high speed 8-core coaxial-cable measured by vector network analyzer, and the semi-physical simulation is made to receive the eye diagram at different data transmission rate. The result can be apply to analysis decay and distortion of the signal through the coaxial-cable at high frequency, and can extensively design for electromagnetic compatibility of high-speed data transmission system.

  7. Analysis of Contact Stresses in High Speed Sheet Metal Forming Processes

    OpenAIRE

    Bonnen, J.; Gillard, A.; Golovashchenko, S.; Ibrahim, R.; Mamutov, A.; SMITH, L.

    2012-01-01

    In high speed metal forming, determination of contact stresses applied to forming dies is necessary in order to identify the requirements to the die material. Contact stresses greatly control the die design due to their effects on die durability. Very high contact stresses and fracture under impulsive loading have been reported in literature on contact type of high speed forming. In pulsed forming operations using electro-hydraulic forming (EHF), a work piece is often accelerat...

  8. TECHNICAL APPROACH TO THE EFFICIENCY DETERMINATION OF HIGH-SPEED TRAINS

    Directory of Open Access Journals (Sweden)

    A. V. Momot

    2013-11-01

    Full Text Available Purpose. The aim of this article is to develop an approach and formulate arrangements concerning the definition of the economic appropriateness of high-speed movement implementation in Ukraine. Methodology. The economic feasibility for appropriateness of high-speed movement organization in Ukraine is an investment project, which involves step-by-step money investment into the construction. It will let get an annual profits from the passenger carriage. To solve such problems we use net present value, which UZ or newly created companies can get during the project realization and after its completion. Findings. Obtained studies can state the fact that the technical approach for full effectiveness definition of a construction and high-speed passenger trains service taking into account the cost of infrastructure, rolling stock, the impact of environmental factors, etc. was determined. Originality. We propose a scientific approach to determine the economic effectiveness of the construction and high-speed main lines service. It includes improved principles of defining the passenger traffic, the cost of high-speed rails construction, the number of rolling stock; optimizes income and expenditure calculations in the context of competitive advantages and the external factors impact on the company. A technical approach for the calculation of future traffic volumes along the high-speed line was improved. It differs essentially from the European one proposed by the French firm «SYSTRA», as it allows taking into account additional transit traffic through Ukraine. It helps to distribute the passengers on separate sections proportionally to the number of cities population, which are combined by high-speed main line, subject to the average population mobility, travel time and the coefficient that takes into account the frequency of additional passenger trips on a given section, depending on the purpose (business trip, transfer to a plane, recreation, etc

  9. Development of FPGA-based High-Speed serial links for High Energy Physics Experiments

    OpenAIRE

    Perrella, Sabrina

    2016-01-01

    High Energy Physics (HEP) experiments generate high volumes of data which need to be transferred over long distance. Then, for data read out, reliable and high-speed links are necessary. Over the years, due to their extreme high bandwidth, serial links (especially optical) have been preferred over the parallel ones. So that, now, high-speed serial links are commonly used in Trigger and Data Acquisition (TDAQ) systems of HEP experiments, not only for data transfer, but also for the distributio...

  10. Dynamic crystal rotation resolved by high-speed synchrotron X-ray Laue diffraction

    OpenAIRE

    Huang, J.W.; E, J. C.; Huang, J. Y.; Sun, T.; Fezzaa, K.; Luo, S.N.

    2016-01-01

    Dynamic compression experiments are performed on single-crystal Si under split Hopkinson pressure bar loading, together with simultaneous high-speed (250?350?ns resolution) synchrotron X-ray Laue diffraction and phase-contrast imaging. A methodology is presented which determines crystal rotation parameters, i.e. instantaneous rotation axes and angles, from two unindexed Laue diffraction spots. Two-dimensional translation is obtained from dynamic imaging by a single camera. High-speed motion o...

  11. Analysis of technological and competitive trends of weight reduction in high speed rolling stock industry

    OpenAIRE

    Prieto Moneo, Álvaro

    2016-01-01

    The incorporation to the transport of passengers sector of the high speed industry is preceded by a global society, which requires the possibility to travel quickly, comfortably and efficiently, imposing the current attitude of the concern with the environment. The development of the rail sector over recent decades, and especially in recent years, along with the technological development has allowed the formation of a network of high speed lines around the greatest part of the planet. Due...

  12. High-speed atomic force microscopy combined with inverted optical microscopy for studying cellular events

    OpenAIRE

    Suzuki, Yuki; Sakai, Nobuaki; Yoshida, Aiko; Uekusa, Yoshitsugu; Yagi, Akira; Imaoka, Yuka; Ito, Shuichi; Karaki, Koichi; Takeyasu, Kunio

    2013-01-01

    A hybrid atomic force microscopy (AFM)-optical fluorescence microscopy is a powerful tool for investigating cellular morphologies and events. However, the slow data acquisition rates of the conventional AFM unit of the hybrid system limit the visualization of structural changes during cellular events. Therefore, high-speed AFM units equipped with an optical/fluorescence detection device have been a long-standing wish. Here we describe the implementation of high-speed AFM coupled with an optic...

  13. High Speed PAM -8 Optical Interconnects with Digital Equalization based on Neural Network

    DEFF Research Database (Denmark)

    Gaiarin, Simone; Pang, Xiaodan; Ozolins, Oskars

    2016-01-01

    We experimentally evaluate a high-speed optical interconnection link with neural network equalization. Enhanced equalization performances are shown comparing to standard linear FFE for an EML-based 32 GBd PAM-8 signal after 4-km SMF transmission.......We experimentally evaluate a high-speed optical interconnection link with neural network equalization. Enhanced equalization performances are shown comparing to standard linear FFE for an EML-based 32 GBd PAM-8 signal after 4-km SMF transmission....

  14. Dynamic Range Enhancement of High-Speed Electrical Signal Data via Non-Linear Compression

    Science.gov (United States)

    Laun, Matthew C. (Inventor)

    2016-01-01

    Systems and methods for high-speed compression of dynamic electrical signal waveforms to extend the measuring capabilities of conventional measuring devices such as oscilloscopes and high-speed data acquisition systems are discussed. Transfer function components and algorithmic transfer functions can be used to accurately measure signals that are within the frequency bandwidth but beyond the voltage range and voltage resolution capabilities of the measuring device.

  15. Stability Analysis of High-Speed Boundary-Layer Flow with Gas Injection

    Science.gov (United States)

    2014-06-01

    boundary-layer flow with gas injection 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Alexander V. Fedorov ...distribution unlimited Stability analysis of high-speed boundary-layer flow with gas injection Alexander V. Fedorov * and Vitaly G. Soudakov...Laminar Flow, AGARD Report Number 709, 1984. 2. Fedorov , A., “Transition and Stability of High-Speed Boundary Layers,” Annu. Rev. Fluid Mech., Vol

  16. Assessment of modern methods in numerical simulations of high speed flows

    Science.gov (United States)

    Pindera, M. Z.; Yang, H. Q.; Przekwas, A. J.; Tucker, K.

    1992-01-01

    Results of extensive studies on CFD algorithms for 2D inviscid flows in Cartesian and body fitted coordinates geometries are reviewed. These studies represent part of an ongoing investigation of combustion instabilities involving the interactions of high-speed nonlinear acoustic waves. Four numerical methods for the treatment of high speed flows are compared, namely, Roe-Sweby TVD, Yee symmetric TVD; Osher-Chakravarthy TVD; and the Colella's multi-dimensional Godunov method.

  17. Fundamental Structure of High-Speed Reacting Flows: Supersonic Combustion and Detonation

    Science.gov (United States)

    2016-04-30

    liquid rocket engines, studied the concept of rotating detonation rocket engine in both gaseous and two-phase propellants . Recently, there have been...AFRL-AFOSR-VA-TR-2016-0195 Fundamental Structure of High-Speed Reacting Flows: Supersonic Combustion and Detonation Kenneth Yu MARYLAND UNIV COLLEGE...MARCH 2016 4. TITLE AND SUBTITLE FUNDAMENTAL STRUCTURE OF HIGH-SPEED REACTING FLOWS: SUPERSONIC COMBUSTION AND DETONATION 5a. CONTRACT NUMBER

  18. Flow visualization of bubble behavior under two-phase natural circulation flow conditions using high speed digital camera

    Energy Technology Data Exchange (ETDEWEB)

    Lemos, Wanderley F.; Su, Jian, E-mail: wlemos@con.ufrj.br, E-mail: sujian@lasme.coppe.ufrj.br [Coordenacao dos Programas de Pos-Graduacao em Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Faccini, Jose L.H., E-mail: faccini@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Lab. de Termo-Hidraulica Experimental

    2013-07-01

    The The present work aims at identifying flow patterns and measuring interfacial parameters in two-phase natural circulation by using visualization technique with high-speed digital camera. The experiments were conducted in the Natural Circulation Circuit (CCN), installed at Nuclear Engineering Institute/CNEN. The thermo-hydraulic circuit comprises heater, heat exchanger, expansion tank, the pressure relief valve and pipes to interconnect the components. A glass tube is installed at the midpoint of the riser connected to the heater outlet. The natural circulation circuit is complemented by acquisition system of values of temperatures, flow and graphic interface. The instrumentation has thermocouples, volumetric flow meter, rotameter and high-speed digital camera. The experimental study is performed through analysis of information from measurements of temperatures at strategic points along the hydraulic circuit, besides natural circulation flow rates. The comparisons between analytical and experimental values are validated by viewing, recording and processing of the images for the flows patterns. Variables involved in the process of identification of flow regimes, dimensionless parameters, the phase velocity of the flow, initial boiling point, the phenomenon of 'flashing' pre-slug flow type were obtained experimentally. (author)

  19. Research on high-speed railway's vibration analysis checking based on intelligent mobile terminal

    Science.gov (United States)

    Li, Peigang; Xie, Shulin; Zhao, Xuefeng

    2017-04-01

    Recently, the development of high-speed railway meets the requirement of society booming and it has gradually become the first choice for long-length journey. Since ensuring the safety and stable operation are of great importance to high-speed trains owing to its unique features, vibration analysis checking is one of main means to be adopted. Due to the popularization of Smartphone, in this research, a novel public-participating method to achieve high-speed railway's vibration analysis checking based on smartphone and an inspection application of high-speed railway line built in the intelligent mobile terminal were proposed. Utilizing the accelerometer, gyroscope, GPS and other high-performance sensors which were integrated in smartphone, the application can obtain multiple parameters like acceleration, angle, etc and pinpoint the location. Therefore, through analyzing the acceleration data in time domain and frequency domain using fast Fourier transform, the research compared much of data from monitoring tests under different measure conditions and measuring points. Furthermore, an idea of establishing a system about analysis checking was outlined in paper. It has been validated that the smartphone-based high-speed railway line inspection system is reliable and feasible on the high-speed railway lines. And it has more advantages, such as convenience, low cost and being widely used. Obviously, the research has important practical significance and broad application prospects.

  20. Defect visualization in FRP-bonded concrete by using high speed camera and motion magnification technique

    Science.gov (United States)

    Qiu, Qiwen; Lau, Denvid

    2017-04-01

    High speed camera has the unique capacity of recording fast-moving objects. By using the video processing technique (e.g. motion magnification), the small motions recorded by the high speed camera can be visualized. Combined use of video camera and motion magnification technique is strongly encouraged to inspect the structures from a distant scene of interest, due to the commonplace availability, operational convenience, and cost-efficiency. This paper presents a non-contact method to evaluate the defect in FRP-bonded concrete structural element based on the surface motion analysis of high speed video. In this study, an instant air pressure is used to initiate the vibration of FRP-bonded concrete and cause the distinct vibration for the interfacial defects. The entire structural surface under the air pressure is recorded by a high-speed camera and the surface motion in video is amplified by motion magnification processing technique. The experimental results demonstrate that motion in the interfacial defect region can be visualized in the high-speed video with motion magnification. This validates the effectiveness of the new NDT method for defect detection in the whole composites structural member. The use of high-speed camera and motion magnification technique has the advantages of remote detection, efficient inspection, and sensitive measurement, which would be beneficial to structural health monitoring.

  1. Verification of high-speed solar wind stream forecasts using operational solar wind models

    DEFF Research Database (Denmark)

    Reiss, Martin A.; Temmer, Manuela; Veronig, Astrid M.

    2016-01-01

    High-speed solar wind streams emanating from coronal holes are frequently impinging on the Earth's magnetosphere causing recurrent, medium-level geomagnetic storm activity. Modeling high-speed solar wind streams is thus an essential element of successful space weather forecasting. Here we evaluat...... score, TS ≈ 0.37). The predicted high-speed streams show typical uncertainties in the arrival time of about 1 day and uncertainties in the speed of about 100 km/s. General advantages and disadvantages of the investigated solar wind models are diagnosed and outlined.......High-speed solar wind streams emanating from coronal holes are frequently impinging on the Earth's magnetosphere causing recurrent, medium-level geomagnetic storm activity. Modeling high-speed solar wind streams is thus an essential element of successful space weather forecasting. Here we evaluate...... high-speed stream forecasts made by the empirical solar wind forecast (ESWF) and the semiempirical Wang-Sheeley-Arge (WSA) model based on the in situ plasma measurements from the Advanced Composition Explorer (ACE) spacecraft for the years 2011 to 2014. While the ESWF makes use of an empirical relation...

  2. High-Speed Photography and Digital Optical Measurement Techniques for Geomaterials: Fundamentals and Applications

    Science.gov (United States)

    Xing, H. Z.; Zhang, Q. B.; Braithwaite, C. H.; Pan, B.; Zhao, J.

    2017-06-01

    Geomaterials (i.e. rock, sand, soil and concrete) are increasingly being encountered and used in extreme environments, in terms of the pressure magnitude and the loading rate. Advancing the understanding of the mechanical response of materials to impact loading relies heavily on having suitable high-speed diagnostics. One such diagnostic is high-speed photography, which combined with a variety of digital optical measurement techniques can provide detailed insights into phenomena including fracture, impact, fragmentation and penetration in geological materials. This review begins with a brief history of high-speed imaging. Section 2 discusses of the current state of the art of high-speed cameras, which includes a comparison between charge-coupled device and complementary metal-oxide semiconductor sensors. The application of high-speed photography to geomechanical experiments is summarized in Sect. 3. Section 4 is concerned with digital optical measurement techniques including photoelastic coating, Moiré, caustics, holographic interferometry, particle image velocimetry, digital image correlation and infrared thermography, in combination with high-speed photography to capture transient phenomena. The last section provides a brief summary and discussion of future directions in the field.

  3. Full-scale high-speed schlieren imaging of explosions and gunshots

    Science.gov (United States)

    Settles, Gary S.; Grumstrup, Torben P.; Dodson, Lori J.; Miller, J. D.; Gatto, Joseph A.

    2005-03-01

    High-speed imaging and cinematography are important in research on explosions, firearms, and homeland security. Much can be learned from imaging the motion of shock waves generated by such explosive events. However, the required optical equipment is generally not available for such research due to the small aperture and delicacy of the optics and the expense and expertise required to implement high-speed optical methods. For example, previous aircraft hardening experiments involving explosions aboard full-scale aircraft lacked optical shock imaging, even though such imaging is the principal tool of explosion and shock wave research. Here, experiments are reported using the Penn State Full-Scale Schlieren System, a lens-and-grid-type optical system with a very large field-of-view. High-speed images are captured by photography using an electronic flash and by a new high-speed digital video camera. These experiments cover a field-of-view of 2x3 m at frame rates up to 30 kHz. Our previous high-speed schlieren cinematography experiments on aircraft hardening used a traditional drum camera and photographic film. A stark contrast in utility is found between that technology and the all-digital high-speed videography featured in this paper.

  4. The Long-Term Settlement Deformation Automatic Monitoring System for the Chinese High-Speed Railway

    Directory of Open Access Journals (Sweden)

    Xu Wang

    2015-01-01

    Full Text Available The Beijing-Shanghai high-speed railway is one of the milestones of China’s high-speed railway development and its security plays a significant role in China’s economic and social development. However, the evaluation methods used for large-scale security operations and important infrastructure systems, such as the high-speed railways, are discrete and nonlinear; thus they cannot issue emergency warnings in a timely manner. The emergence of optical fiber sensing technology can solve this problem. This technology has progressed rapidly in its application to the monitoring of railway security and it has attracted much attention within the industry. This study considers the newly built passenger railway line between Shijiazhuang and Jinan as an example. The web-based, all-in-one fiber Bragg grating static level is described as well as a set of online monitoring systems, which is automated, real-time, remote, visual, and adaptable to the standards of the Beijing-Shanghai high-speed railway. According to our theoretical analysis, the planned automated monitoring of settlement deformation for the Beijing-Shanghai high-speed railway and the real-time analysis and calculation of monitoring data can ensure the operational security of this section of China’s high-speed railway system.

  5. Quality Assessment of Research Articles in Nuclear Medicine Using STARD and QUADAS-2 Tools.

    Science.gov (United States)

    Roysri, Krisana; Chotipanich, Chanisa; Laopaiboon, Vallop; Khiewyoo, Jiraporn

    2014-01-01

    Diagnostic nuclear medicine is being increasingly employed in clinical practice with the advent of new technologies and radiopharmaceuticals. The report of the prevalence of a certain disease is important for assessing the quality of that article. Therefore, this study was performed to evaluate the quality of published nuclear medicine articles and determine the frequency of reporting the prevalence of studied diseases. We used Standards for Reporting of Diagnostic Accuracy (STARD) and Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) checklists for evaluating the quality of articles published in five nuclear medicine journals with the highest impact factors in 2012. The articles were retrieved from Scopus database and were selected and assessed independently by two nuclear medicine physicians. Decision concerning equivocal data was made by consensus between the reviewers. The average STARD score was approximately 17 points, and the highest score was 17.19±2.38 obtained by the European Journal of Nuclear Medicine. QUADAS-2 tool showed that all journals had low bias regarding study population. The Journal of Nuclear Medicine had the highest score in terms of index test, reference standard, and time interval. Lack of clarity regarding the index test, reference standard, and time interval was frequently observed in all journals including Clinical Nuclear Medicine, in which 64% of the studies were unclear regarding the index test. Journal of Nuclear Cardiology had the highest number of articles with appropriate reference standard (83.3%), though it had the lowest frequency of reporting disease prevalence (zero reports). All five journals had the same STARD score, while index test, reference standard, and time interval were very unclear according to QUADAS-2 tool. Unfortunately, data were too limited to determine which journal had the lowest risk of bias. In fact, it is the author's responsibility to provide details of research methodology so that the reader

  6. The mechanical properties of high speed GTAW weld and factors of nonlinear multiple regression model under external transverse magnetic field

    Science.gov (United States)

    Lu, Lin; Chang, Yunlong; Li, Yingmin; He, Youyou

    2013-05-01

    A transverse magnetic field was introduced to the arc plasma in the process of welding stainless steel tubes by high-speed Tungsten Inert Gas Arc Welding (TIG for short) without filler wire. The influence of external magnetic field on welding quality was investigated. 9 sets of parameters were designed by the means of orthogonal experiment. The welding joint tensile strength and form factor of weld were regarded as the main standards of welding quality. A binary quadratic nonlinear regression equation was established with the conditions of magnetic induction and flow rate of Ar gas. The residual standard deviation was calculated to adjust the accuracy of regression model. The results showed that, the regression model was correct and effective in calculating the tensile strength and aspect ratio of weld. Two 3D regression models were designed respectively, and then the impact law of magnetic induction on welding quality was researched.

  7. Investigating technical challenges and research needs related to shared corridors for high speed passenger and railroad freight operations.

    Science.gov (United States)

    2013-05-01

    The development of both incremental and dedicated high-speed rail lines in the United States poses a number of questions. Despite nearly 50 years of international experience in planning, designing, building and operating high-speed passenger infrastr...

  8. Development of high sensitivity and high speed large size blank inspection system LBIS

    Science.gov (United States)

    Ohara, Shinobu; Yoshida, Akinori; Hirai, Mitsuo; Kato, Takenori; Moriizumi, Koichi; Kusunose, Haruhiko

    2017-07-01

    The production of high-resolution flat panel displays (FPDs) for mobile phones today requires the use of high-quality large-size photomasks (LSPMs). Organic light emitting diode (OLED) displays use several transistors on each pixel for precise current control and, as such, the mask patterns for OLED displays are denser and finer than the patterns for the previous generation displays throughout the entire mask surface. It is therefore strongly demanded that mask patterns be produced with high fidelity and free of defect. To enable the production of a high quality LSPM in a short lead time, the manufacturers need a high-sensitivity high-speed mask blank inspection system that meets the requirement of advanced LSPMs. Lasertec has developed a large-size blank inspection system called LBIS, which achieves high sensitivity based on a laser-scattering technique. LBIS employs a high power laser as its inspection light source. LBIS's delivery optics, including a scanner and F-Theta scan lens, focus the light from the source linearly on the surface of the blank. Its specially-designed optics collect the light scattered by particles and defects generated during the manufacturing process, such as scratches, on the surface and guide it to photo multiplier tubes (PMTs) with high efficiency. Multiple PMTs are used on LBIS for the stable detection of scattered light, which may be distributed at various angles due to irregular shapes of defects. LBIS captures 0.3mμ PSL at a detection rate of over 99.5% with uniform sensitivity. Its inspection time is 20 minutes for a G8 blank and 35 minutes for G10. The differential interference contrast (DIC) microscope on the inspection head of LBIS captures high-contrast review images after inspection. The images are classified automatically.

  9. NEAMS Nuclear Waste Management IPSC : evaluation and selection of tools for the quality environment.

    Energy Technology Data Exchange (ETDEWEB)

    Bouchard, Julie F.; Stubblefield, William Anthony; Vigil, Dena M.; Edwards, Harold Carter (Org. 1444 : Multiphysics Simulation Technology)

    2011-05-01

    The objective of the U.S. Department of Energy Office of Nuclear Energy Advanced Modeling and Simulation Nuclear Waste Management Integrated Performance and Safety Codes (NEAMS Nuclear Waste Management IPSC) is to provide an integrated suite of computational modeling and simulation (M&S) capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive-waste storage facility or disposal repository. These M&S capabilities are to be managed, verified, and validated within the NEAMS Nuclear Waste Management IPSC quality environment. M&S capabilities and the supporting analysis workflow and simulation data management tools will be distributed to end-users from this same quality environment. The same analysis workflow and simulation data management tools that are to be distributed to end-users will be used for verification and validation (V&V) activities within the quality environment. This strategic decision reduces the number of tools to be supported, and increases the quality of tools distributed to end users due to rigorous use by V&V activities. This report documents an evaluation of the needs, options, and tools selected for the NEAMS Nuclear Waste Management IPSC quality environment. The objective of the U.S. Department of Energy (DOE) Office of Nuclear Energy Advanced Modeling and Simulation Nuclear Waste Management Integrated Performance and Safety Codes (NEAMS Nuclear Waste Management IPSC) program element is to provide an integrated suite of computational modeling and simulation (M&S) capabilities to assess quantitatively the long-term performance of waste forms in the engineered and geologic environments of a radioactive-waste storage facility or disposal repository. This objective will be fulfilled by acquiring and developing M&S capabilities, and establishing a defensible level of confidence in these M&S capabilities. The foundation for assessing the level of confidence is based upon

  10. Physical aspects of quality assurance in nuclear medicine and radiotherapy, regulatory approach of the National Nuclear Safety Center; Aspectos fisicos de garantia de calidad en medicina nuclear y radioterapia. Enfoque regulatorio del centro Nacional de Seguridad Nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez C, D.; Fuente P, A. de la; Quevedo G, J.R.; Lopez F, Y. [CNSN, Calle 28 No. 504 e/5 y 7, Ave. Miramar, La Habana (Cuba); Varela C, C. [CCEEM, Calle 4 No. 455 e/19 y 21, Ave. Vedado, La Habana (Cuba)]. e-mail: cruz@orasen.co.cu

    2006-07-01

    The physical aspects of the quality guarantee in Nuclear Medicine and Radiotherapy its are of cardinal importance to guarantee the quality of the diagnoses and treatments that are carried out to the patients in this type of services. The OIEA, the OMS and other scientific and professional organizations have contributed significantly to the elaboration of recommendations, Protocols, etc. applicable in the quality control programs and safety of the Nuclear Medicine and Radiotherapy departments. In spite of the great effort developed in this sense the Installation of the programs of quality control and safety of the Nuclear Medicine and Radiotherapy departments can fail if the same ones are not based in three decisive elements that are: the existence of national regulations, the existence of the infrastructure required for it and the existence of enough qualified personnel to develop this programs. The present work shows the regulatory focus that on this topic, it has followed the National Center of Nuclear Safety of Cuba (CNSN). The same left of strengthen all the existent Synergies in the different organizations of the country and it went in two fundamental directions: installation of the regulatory requirements that govern this activity and the Authorization of a Cuban Entity, specialized in carrying out audits to the quality control and safety programs of the Nuclear Medicine and Radiotherapy departments. After 4 work years in this direction, the results confirm the validity of the experience developed by the CNSN, at the moment all the services of Nuclear Medicine and Radiotherapy of Cuba possess quality control and safety programs, these programs are annually Auditing by an Authorized entity by the CNSN and the Inspectors of the Regulatory Authority, control, during the inspections, the one execution of the established requirements in the national regulations. The work developed so far can serve, modestly, of reference to others countries of Latin America that

  11. INVESTIGATION OF AERODYNAMIC PRESSURE DURING THE HIGH-SPEED TRAIN PASSAGE

    Directory of Open Access Journals (Sweden)

    S. T. Djabbarov

    2016-10-01

    Full Text Available Purpose. The scientific paper highlights research of aerodynamic pressure and distribution of airflow velocity field along the moving high-speed train. Methodology. The study of velocity field distribution around the moving high-speed train is produced by simulating its movement as axially symmetric body with the ogive-shaped head and tail parts in compressible (acoustic environment. Findings. The values of the absolute velocity (theoretical of air flow generated by the body movement is determined (for the case when the body moves at a constant speed (200, 250, 350, 400 km / h at a certain height from the ground, for the points located at different distances from the axis of the moving body (high-speed train. The calculations results allowed building the graphs of the air flow velocity in the acoustic environment along the moving body at different distances from it. Using the Bernoulli law (pressure change dependences on the flow velocity, the values of the overpressure generated by the air stream from the moving body were determined. Originality. This is the first theoretical study of the aerodynamics of the high-speed train as axially symmetric body with the ogive-shaped head and tail parts in compressible (acoustic environment, moving with steady speed. The research results allow us to establish the distribution of the excess air flow pressure generated along the moving high-speed train. Practical value. The obtained results allows determining of the following parameters: 1 requirements for physical-mechanical and strength characteristics of the individual elements of the railway infrastructure in the areas of high-speed train movement, subject to aerodynamic pressure; 2 minimum distance from the track safe for people location during high-speed train passage.

  12. Impact of Increased Football Field Width on Player High-Speed Collision Rate.

    Science.gov (United States)

    Joseph, Jacob R; Khalsa, Siri S; Smith, Brandon W; Park, Paul

    2017-07-01

    High-acceleration head impact is a known risk for mild traumatic brain injury (mTBI) based on studies using helmet accelerometry. In football, offensive and defensive players are at higher risk of mTBI due to increased speed of play. Other collision sport studies suggest that increased playing surface size may contribute to reductions in high-speed collisions. We hypothesized that wider football fields lead to a decreased rate of high-speed collisions. Computer football game simulation was developed using MATLAB. Four wide receivers were matched against 7 defensive players. Each offensive player was randomized to one of 5 typical routes on each play. The ball was thrown 3 seconds into play; ball flight time was 2 seconds. Defensive players were delayed 0.5 second before reacting to ball release. A high-speed collision was defined as the receiver converging with a defensive player within 0.5 second of catching the ball. The simulation counted high-speed collisions for 1 team/season (65 plays/game for 16 games/season = 1040 plays/season) averaged during 10 seasons, and was validated against existing data using standard field width (53.3 yards). Field width was increased in 1-yard intervals up to 58.3 yards. Using standard field width, 188 ± 4 high-speed collisions were seen per team per season (18% of plays). When field width increased by 3 yards, high-speed collision rate decreased to 135 ± 3 per team per season (28% decrease; P football field width can lead to substantial decline in high-speed collisions, with potential for reducing instances of mTBI in football players. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. High-speed image analysis reveals chaotic vibratory behaviors of pathological vocal folds

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yu, E-mail: yuzhang@xmu.edu.c [Key Laboratory of Underwater Acoustic Communication and Marine Information Technology of the Ministry of Education, Xiamen University, Xiamen Fujian 361005 (China); Shao Jun [Shanghai EENT Hospital of Fudan University, Shanghai (China); Krausert, Christopher R. [Department of Surgery, Division of Otolaryngology - Head and Neck Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792-7375 (United States); Zhang Sai [Key Laboratory of Underwater Acoustic Communication and Marine Information Technology of the Ministry of Education, Xiamen University, Xiamen Fujian 361005 (China); Jiang, Jack J. [Shanghai EENT Hospital of Fudan University, Shanghai (China); Department of Surgery, Division of Otolaryngology - Head and Neck Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792-7375 (United States)

    2011-01-15

    Research highlights: Low-dimensional human glottal area data. Evidence of chaos in human laryngeal activity from high-speed digital imaging. Traditional perturbation analysis should be cautiously applied to aperiodic high speed image signals. Nonlinear dynamic analysis may be helpful for understanding disordered behaviors in pathological laryngeal systems. - Abstract: Laryngeal pathology is usually associated with irregular dynamics of laryngeal activity. High-speed imaging facilitates direct observation and measurement of vocal fold vibrations. However, chaotic dynamic characteristics of aperiodic high-speed image data have not yet been investigated in previous studies. In this paper, we will apply nonlinear dynamic analysis and traditional perturbation methods to quantify high-speed image data from normal subjects and patients with various laryngeal pathologies including vocal fold nodules, polyps, bleeding, and polypoid degeneration. The results reveal the low-dimensional dynamic characteristics of human glottal area data. In comparison to periodic glottal area series from a normal subject, aperiodic glottal area series from pathological subjects show complex reconstructed phase space, fractal dimension, and positive Lyapunov exponents. The estimated positive Lyapunov exponents provide the direct evidence of chaos in pathological human vocal folds from high-speed digital imaging. Furthermore, significant differences between the normal and pathological groups are investigated for nonlinear dynamic and perturbation analyses. Jitter in the pathological group is significantly higher than in the normal group, but shimmer does not show such a difference. This finding suggests that the traditional perturbation analysis should be cautiously applied to high speed image signals. However, the correlation dimension and the maximal Lyapunov exponent reveal a statistically significant difference between normal and pathological groups. Nonlinear dynamic analysis is capable of

  14. Handbook of software quality assurance techniques applicable to the nuclear industry

    Energy Technology Data Exchange (ETDEWEB)

    Bryant, J.L.; Wilburn, N.P.

    1987-08-01

    Pacific Northwest Laboratory is conducting a research project to recommend good engineering practices in the application of 10 CFR 50, Appendix B requirements to assure quality in the development and use of computer software for the design and operation of nuclear power plants for NRC and industry. This handbook defines the content of a software quality assurance program by enumerating the techniques applicable. Definitions, descriptions, and references where further information may be obtained are provided for each topic.

  15. 77 FR 64183 - Notice of Availability of a Final General Conformity Determination for the California High-Speed...

    Science.gov (United States)

    2012-10-18

    ... General Conformity requirements. The California High Speed Rail Authority (Authority), as the Project... California High-Speed Train System Merced to Fresno Section AGENCY: Federal Railroad Administration (FRA... Section of the California High-Speed Train (HST) System on September 18, 2012. FRA is the lead Federal...

  16. 75 FR 32240 - Draft Tier II Environmental Impact Statement: Southeast High Speed Rail Corridor-Richmond, VA...

    Science.gov (United States)

    2010-06-07

    ... Federal Railroad Administration Draft Tier II Environmental Impact Statement: Southeast High Speed Rail... Draft Environmental Impact Statement and public hearings for the Southeast High Speed Rail, Richmond, VA... availability of the Southeast High Speed Rail, Richmond, VA to Raleigh, NC Project Draft Tier II Environmental...

  17. 76 FR 18298 - Notice of Availability of a Final Environmental Impact Statement for the DesertXpress High-Speed...

    Science.gov (United States)

    2011-04-01

    ... passenger rail transportation between southern California and Las Vegas using proven high-speed rail... DesertXpress High-Speed Passenger Train Project AGENCY: Federal Railroad Administration (FRA), United... High-Speed Passenger Train Project (DesertXpress project). FRA is the Lead Agency for the environmental...

  18. 78 FR 24309 - California High-Speed Rail Authority-Construction Exemption-in Merced, Madera and Fresno Counties...

    Science.gov (United States)

    2013-04-24

    ... Surface Transportation Board California High-Speed Rail Authority--Construction Exemption--in Merced, Madera and Fresno Counties, Cal On March 27, 2013, California High-Speed Rail Authority (Authority), a... California High- Speed Rail Authority to know the reasons we reached this finding, but also to inform other...

  19. 78 FR 36823 - California High-Speed Rail Authority-Construction Exemption-in Merced, Madera and Fresno Counties...

    Science.gov (United States)

    2013-06-19

    ... TRANSPORTATION Surface Transportation Board California High-Speed Rail Authority--Construction Exemption--in... approval requirements of 49 U.S.C. 10901 for the California High-Speed Rail Authority (Authority) to construct an approximately 65- mile high-speed passenger rail line between Merced and Fresno, California...

  20. 78 FR 28940 - Environmental Impact Statement for the Atlanta to Charlotte Portion of the Southeast High Speed...

    Science.gov (United States)

    2013-05-16

    ... Southeast High Speed Rail Corridor AGENCY: Federal Rail Administration (FRA), DOT. ACTION: Notice of Intent... between Atlanta, GA and Charlotte, NC, along the Southeast High-Speed Rail Corridor (SEHSR) as designated... to implement high-speed rail. Build Alternatives will consist of an array of passenger rail...

  1. 78 FR 78507 - California High-Speed Rail Authority-Construction Exemption-In Fresno, Kings, Tulare, and Kern...

    Science.gov (United States)

    2013-12-26

    ... Surface Transportation Board California High-Speed Rail Authority--Construction Exemption--In Fresno, Kings, Tulare, and Kern Counties, CA By petition filed on September 26, 2013, California High-Speed Rail... June 13, 2013, in California High-Speed Rail Authority--Construction Exemption--in Merced, Madera...

  2. 78 FR 22031 - California High-Speed Rail Authority-Construction Exemption-In Merced, Madera and Fresno Counties...

    Science.gov (United States)

    2013-04-12

    ... Surface Transportation Board California High-Speed Rail Authority--Construction Exemption--In Merced... Administration (FRA) and California High-Speed Rail Authority (Authority). This Final EIS is titled ``California... of the planned California HST system, which would provide intercity, high-speed passenger rail...

  3. 75 FR 51331 - Draft Tier II Environmental Impact Statement: Southeast High Speed Rail Corridor-Richmond, VA...

    Science.gov (United States)

    2010-08-19

    ... Federal Railroad Administration Draft Tier II Environmental Impact Statement: Southeast High Speed Rail... the Tier II Draft Environmental Impact Statement for the Southeast High Speed Rail, Richmond, VA to... the Draft Tier II Environmental Impact Statement for the Southeast High Speed Rail, Richmond, VA to...

  4. 76 FR 8397 - Environmental Impact Statement for the Chicago, IL to St. Louis, MO High Speed Rail Program Corridor

    Science.gov (United States)

    2011-02-14

    ..., MO High Speed Rail Program Corridor AGENCY: Federal Railroad Administration (FRA), U.S. Department of... High Speed Rail Corridor Program in compliance with the National Environmental Policy Act of 1969 (NEPA... passenger trains. The EIS will consider increasing the number of frequencies of high-speed passenger rail...

  5. Investigations of some aspects of the spray process in a single wire arc plasma spray system using high speed camera.

    Science.gov (United States)

    Tiwari, N; Sahasrabudhe, S N; Tak, A K; Barve, D N; Das, A K

    2012-02-01

    A high speed camera has been used to record and analyze the evolution as well as particle behavior in a single wire arc plasma spray torch. Commercially available systems (spray watch, DPV 2000, etc.) focus onto a small area in the spray jet. They are not designed for tracking a single particle from the torch to the substrate. Using high speed camera, individual particles were tracked and their velocities were measured at various distances from the spray torch. Particle velocity information at different distances from the nozzle of the torch is very important to decide correct substrate position for the good quality of coating. The analysis of the images has revealed the details of the process of arc attachment to wire, melting of the wire, and detachment of the molten mass from the tip. Images of the wire and the arc have been recorded for different wire feed rates, gas flow rates, and torch powers, to determine compatible wire feed rates. High speed imaging of particle trajectories has been used for particle velocity determination using time of flight method. It was observed that the ripple in the power supply of the torch leads to large variation of instantaneous power fed to the torch. This affects the velocity of the spray particles generated at different times within one cycle of the ripple. It is shown that the velocity of a spray particle depends on the instantaneous torch power at the time of its generation. This correlation was established by experimental evidence in this paper. Once the particles leave the plasma jet, their forward speeds were found to be more or less invariant beyond 40 mm up to 500 mm from the nozzle exit.

  6. Anti-sunward high-speed jets in the subsolar magnetosheath

    Directory of Open Access Journals (Sweden)

    F. Plaschke

    2013-10-01

    Full Text Available Using 2008–2011 data from the five Time History of Events and Macroscale Interactions during Substorms (THEMIS spacecraft in Earth's subsolar magnetosheath, we study high-speed jets identified as intervals when the anti-sunward component of the dynamic pressure in the subsolar magnetosheath exceeds half of its upstream solar wind value. Based on our comprehensive data set of 2859 high-speed jets, we obtain the following statistical results on jet properties and favorable conditions: high-speed jets occur predominantly downstream of the quasi-parallel bow shock, i.e., when interplanetary magnetic field cone angles are low. Apart from that, jet occurrence is only very weakly dependent (if at all on other upstream conditions or solar wind variability. Typical durations and recurrence times of high-speed jets are on the order of tens of seconds and a few minutes, respectively. Relative to the ambient magnetosheath, high-speed jets exhibit higher speed, density and magnetic field intensity, but lower and more isotropic temperatures. They are almost always super-Alfvénic, often even super-magnetosonic, and typically feature 6.5 times as much dynamic pressure and twice as much total pressure in anti-sunward direction as the surrounding plasma does. Consequently, they are likely to have significant effects on the magnetosphere and ionosphere if they impinge on the magnetopause.

  7. Development of High Speed Inverter Rotary Compressor for the Air-conditioning System

    Science.gov (United States)

    Kang, Seoung-Min; Yang, Eun-soo; Shin, Jin-Ung; Park, Joon-Hong; Lee, Se-Dong; Ha, Jong-Hun; Son, Young-Boo; Lee, Byeong-Chul

    2015-08-01

    In order to meet the various operating loads of an air-conditioning system, an inverter compressor with a wide operational range is necessary. One of the ways to achieve a wide operation range is to drive a small capacity compressor at high speed. Moreover, it is possible to maximize the efficiency in part-load operation condition close to actual operating conditions and to reduce the cost by compact design of a small capacity compressor. In addition, the shortage of maximum capacity, due to the small rated capacity, is covered through high speed operation. However, in general, if the compressor operates at high speed, problems occurs such as reduced efficiency due to friction, increased noise, increased amount of oil discharge and decreased durability of the main components. In order to solve these problems the following have been investigated: optimized dimension parameters of the compression chamber, enhanced shaft design and the structure for the reduction of oil discharge and noise at high speed operation. Finally the high speed inverter rotary compressor with high efficiency and more compact size has been developed as compared with the conventional rotary compressor.

  8. Irregular GIS Curve Fitting based High Speed Railway Earthquake Influence Range Calculation Model

    Directory of Open Access Journals (Sweden)

    Hu Zhaobing

    2017-01-01

    Full Text Available In this paper, to guarantee that the train can take measures to reduce the damage caused by the earthquake, it propose an irregular GI S curve fitting based high-speed railway earthquake influence range calculation model. Firstly, this model eliminates the abnormal points, calculates feature points and finds demarcation points of the high- speed railway GI S curve to get the processed point collection in Mercator coordinate. Secondly, though usin g the processed point collection, this model applies least square polynomial segmentation fitting method to implement complex high-speed GI S curve fitting. Thirdly, calculate the earthquake influence rang on high-seed railway line, according to the scope of the earthquake equation and the high-speed railway GI S curve fitt ed equation. Finally, the paper selects the Beijing So uth to Dezhou East high-speed railway section which is part of Beijing-Shanghai line as a case study, which proves that the model can calculate the earthquake influence scope on the railway line offering decision support for train operation to ensure safety.

  9. Background Oriented Schlieren (BOS) measurement in supersonic flow with 4K high-speed camera

    Science.gov (United States)

    Ota, M.; Kurihara, K.; Arimoto, H.; Shida, K.; Inage, T.

    2017-02-01

    The Background Oriented Schlieren (BOS) technique is one of the novel measurement techniques and its application range is very wide. The principle of BOS is similar to that of the conventional schlieren technique, it exploits the bending of light ray caused by a refractive-index change corresponding to the density change in the medium. The BOS technique allows the quantitative measurement of density with very simple experimental setup and proper image analysis. Only a background and a digital camera are required for the experiment, so that even the real scale experiments can be realized. In recent years, the development of the high-speed camera is remarkable and so many high-speed phenomena can now be captured. To realize the precise measurement with BOS technique using high-speed camera, higher resolution (larger number of pixels) is desirable. In this paper, with a technical support from Nobby Tech Ltd., a 4K high-speed camera (4096 × 2160 pixels) is applied to the BOS measurement of the lateral jet/cross flow interaction filed in the supersonic wind tunnel test as a trial of the quantitative density measurement with higher resolution. The measurement system consists of a 4K high-speed camera and a pulsed laser for background illumination. A telecentric optical system is also employed to improve the spatial resolution of the measurement. The measurement results of BOS technique up to 1000 fps with higher resolution are discussed.

  10. Mobile Measurements of Methane Using High-Speed Open-Path Technology

    Science.gov (United States)

    Burba, G. G.; Anderson, T.; Ediger, K.; von Fischer, J.; Gioli, B.; Ham, J. M.; Hupp, J. R.; Kohnert, K.; Levy, P. E.; Polidori, A.; Pikelnaya, O.; Price, E.; Sachs, T.; Serafimovich, A.; Zondlo, M. A.; Zulueta, R. C.

    2016-12-01

    Methane plays a critical role in the radiation balance, chemistry of the atmosphere, and air quality. The major anthropogenic sources of CH4 include oil and gas development sites, natural gas distribution networks, landfill emissions, and agricultural production. The majority of oil and gas and urban CH4 emission occurs via variable-rate point sources or diffused spots in topographically challenging terrains (e.g., street tunnels, elevated locations at water treatment plants, vents, etc.). Locating and measuring such CH4 emissions is challenging when using traditional micrometeorological techniques, and requires development of novel approaches. Landfill CH4 emissions traditionally assessed at monthly or longer time intervals are subject to large uncertainties because of the snapshot nature of the measurements and the barometric pumping phenomenon. The majority of agricultural and natural CH4 production occurs in areas with little infrastructure or easily available grid power (e.g., rice fields, arctic and boreal wetlands, tropical mangroves, etc.). A lightweight, high-speed, high-resolution, open-path technology was recently developed for eddy covariance measurements of CH4 flux, with power consumption 30-150 times below other available technologies. It was designed to run on solar panels or a small generator and be placed in the middle of the methane-producing ecosystem without a need for grid power. Lately, this instrumentation has been utilized increasingly more frequently outside of the traditional use on stationary flux towers. These novel approaches include measurements from various moving platforms, such as cars, aircraft, and ships. Projects included mapping of concentrations and vertical profiles, leak detection and quantification, mobile emission detection from natural gas-powered cars, soil CH4 flux surveys, etc. This presentation will describe key projects utilizing the novel lightweight low-power high-resolution open-path technology, and will highlight

  11. Single step high-speed printing of continuous silver lines by laser-induced forward transfer

    Energy Technology Data Exchange (ETDEWEB)

    Puerto, D., E-mail: puerto@lp3.univ-mrs.fr [Aix-Marseille University, CNRS, LP3 laboratory Campus de Luminy, C.917, Marseille (France); Biver, E. [Aix-Marseille University, CNRS, LP3 laboratory Campus de Luminy, C.917, Marseille (France); Oxford Lasers Ltd., Unit 8, Moorbrook Park, Didcot, OX11 7HP (United Kingdom); Alloncle, A.-P.; Delaporte, Ph. [Aix-Marseille University, CNRS, LP3 laboratory Campus de Luminy, C.917, Marseille (France)

    2016-06-30

    Highlights: • We have performed an experimental study on laser micro-printing of silver nanoparticle inks. • We have achieved the printing of lines in a single pass at velocities of 17 m/s (1 MHz laser). • The ejection dynamics has been investigated by means of a time-resolved imaging technique. • The control of the donor film properties is of prime importance to print lines at high velocities. • Continuous conductive lines of silver inks are laser-printed on PET flexible substrates. - Abstract: The development of high-speed ink printing process by Laser-Induced Forward Transfer (LIFT) is of great interest for the printing community. To address the problems and the limitations of this process that have been previously identified, we have performed an experimental study on laser micro-printing of silver nanoparticle inks by LIFT and demonstrated for the first time the printing of continuous conductive lines in a single pass at velocities of 17 m/s using a 1 MHz repetition rate laser. We investigated the printing process by means of a time-resolved imaging technique to visualize the ejection dynamics of single and adjacent jets. The control of the donor film properties is of prime importance to achieve single step printing of continuous lines at high velocities. We use a 30 ps pulse duration laser with a wavelength of 343 nm and a repetition rate from 0.2 to 1 MHz. A galvanometric mirror head controls the distance between two consecutives jets by scanning the focused beam along an ink-coated donor substrate at different velocities. Droplets and lines of silver inks are laser-printed on glass and PET flexible substrates and we characterized their morphological quality by atomic force microscope (AFM) and optical microscope.

  12. Cadence® High-Speed PCB Layout Flow Workshop

    CERN Document Server

    2003-01-01

    Last release of Cadence High-Speed PCB Design methodology (PE142) based on Concept-HDL schematic editor, Constraint Manager, SPECCTRAQuest signal integrity analysis tool and ALLEGRO layout associated with SPECCTRA auto router tools, is now enough developed and stable to be taken into account for high-speed board designs at CERN. The implementation of this methodology, build around the new Constraint Manager program, is essential when you have to develop a board having a lot of high-speed design rules such as terminated lines, large bus structures, maximum length, timing, crosstalk etc.. that could not be under control by traditional method. On more conventional designs, formal aspect of the methodology could avoid misunderstanding between hardware and ALLEGRO layout designers, minimizing prototype iteration, development time and price. The capability to keep trace of the original digital designer intents in schematic or board layout, loading formal constraints in EDMS, could also be considered for LHC electro...

  13. Cadence® High High-Speed PCB Design Flow Workshop

    CERN Document Server

    2006-01-01

    Last release of Cadence High-Speed PCB Design methodology (PE142) based on Concept-HDL schematic editor, Constraint Manager, SPECCTRAQuest signal integrity analysis tool and ALLEGRO layout associated with SPECCTRA auto router tools, is now enough developed and stable to be taken into account for high-speed board designs at CERN. The implementation of this methodology, build around the new Constraint Manager program, is essential when you have to develop a board having a lot of high-speed design rules such as terminated lines, large bus structures, maximum length, timing, crosstalk etc.. that could not be under control by traditional method. On more conventional designs, formal aspect of the methodology could avoid misunderstanding between hardware and ALLEGRO layout designers, minimizing prototype iteration, development time and price. The capability to keep trace of the original digital designer intents in schematic or board layout, loading formal constraints in EDMS, could also be considered for LHC electro...

  14. Experimental High Speed Milling of the Selected Thin-Walled Component

    Directory of Open Access Journals (Sweden)

    Jozef Zajac

    2017-11-01

    Full Text Available In a technical practice, it is possible to meet thin-walled parts more and more often. These parts are most commonly used in the automotive industry or aircraft industry to reduce the weight of different design part of cars or aircraft. Presented article is focused on experimental high speed milling of selected thin-walled component. The introduction of this article presents description of high speed machining and specification of thin – walled parts. The experiments were carried out using a CNC machine Pinnacle VMC 650S and C45 material - plain carbon steel for automotive components and mechanical engineering. In the last part of the article, described are the arrangements to reduction of deformation of thin-walled component during the experimental high speed milling.

  15. Metallographic problems of the production of parts from continuously cast high-speed steels

    Science.gov (United States)

    Supov, A. V.; Aleksandrova, N. M.; Paren'kov, S. A.; Kakabadze, R. V.; Pavlov, V. P.

    1998-09-01

    It has been assumed until recently that high-speed steels cannot be produced by the method of continuous casting. Numerous attempts to use this highly efficient technology for manufacturing such steels have failed because of breakage of the cast preforms. A solution was sought in improving the design of the continuous-casting machines (CCM), increasing the level of their automation, and using rational compositions of slag-forming mixtures (SFM). The idea was that a high-speed steel can be cast only in vertical CCM. The present work concerns regimes of secondary cooling under which the structures formed in high-speed steels provide a ductility sufficient for bending the continuously cast preform without failure. Steel R6M5 cast continuously in such a machine can easily be machined into hot-rolled preforms for sheets, wire, silver-steel rods, and other final products without a forging stage.

  16. Energy Efficient Control of High Speed IPMSM Drives - A Generalized PSO Approach

    Directory of Open Access Journals (Sweden)

    GECIC, M.

    2016-02-01

    Full Text Available In this paper, a generalized particle swarm optimization (GPSO algorithm was applied to the problems of optimal control of high speed low cost interior permanent magnet motor (IPMSM drives. In order to minimize the total controllable electrical losses and to increase the efficiency, the optimum current vector references are calculated offline based on GPSO for the wide speed range and for different load conditions. The voltage and current limits of the drive system and the variation of stator inductances are all included in the optimization method. The stored optimal current vector references are used during the real time control and the proposed algorithm is compared with the conventional high speed control algorithm, which is mostly voltage limit based. The computer simulations and experimental results on 1 kW low cost high speed IPMSM drive are discussed in details.

  17. High-speed and high-fidelity system and method for collecting network traffic

    Science.gov (United States)

    Weigle, Eric H [Los Alamos, NM

    2010-08-24

    A system is provided for the high-speed and high-fidelity collection of network traffic. The system can collect traffic at gigabit-per-second (Gbps) speeds, scale to terabit-per-second (Tbps) speeds, and support additional functions such as real-time network intrusion detection. The present system uses a dedicated operating system for traffic collection to maximize efficiency, scalability, and performance. A scalable infrastructure and apparatus for the present system is provided by splitting the work performed on one host onto multiple hosts. The present system simultaneously addresses the issues of scalability, performance, cost, and adaptability with respect to network monitoring, collection, and other network tasks. In addition to high-speed and high-fidelity network collection, the present system provides a flexible infrastructure to perform virtually any function at high speeds such as real-time network intrusion detection and wide-area network emulation for research purposes.

  18. High-speed atomic force microscopy combined with inverted optical microscopy for studying cellular events.

    Science.gov (United States)

    Suzuki, Yuki; Sakai, Nobuaki; Yoshida, Aiko; Uekusa, Yoshitsugu; Yagi, Akira; Imaoka, Yuka; Ito, Shuichi; Karaki, Koichi; Takeyasu, Kunio

    2013-01-01

    A hybrid atomic force microscopy (AFM)-optical fluorescence microscopy is a powerful tool for investigating cellular morphologies and events. However, the slow data acquisition rates of the conventional AFM unit of the hybrid system limit the visualization of structural changes during cellular events. Therefore, high-speed AFM units equipped with an optical/fluorescence detection device have been a long-standing wish. Here we describe the implementation of high-speed AFM coupled with an optical fluorescence microscope. This was accomplished by developing a tip-scanning system, instead of a sample-scanning system, which operates on an inverted optical microscope. This novel device enabled the acquisition of high-speed AFM images of morphological changes in individual cells. Using this instrument, we conducted structural studies of living HeLa and 3T3 fibroblast cell surfaces. The improved time resolution allowed us to image dynamic cellular events.

  19. Impact of Loss Synchronization on Reliable High Speed Networks: A Model Based Simulation

    Directory of Open Access Journals (Sweden)

    Suman Kumar

    2014-01-01

    Full Text Available Contemporary nature of network evolution demands for simulation models which are flexible, scalable, and easily implementable. In this paper, we propose a fluid based model for performance analysis of reliable high speed networks. In particular, this paper aims to study the dynamic relationship between congestion control algorithms and queue management schemes, in order to develop a better understanding of the causal linkages between the two. We propose a loss synchronization module which is user configurable. We validate our model through simulations under controlled settings. Also, we present a performance analysis to provide insights into two important issues concerning 10 Gbps high speed networks: (i impact of bottleneck buffer size on the performance of 10 Gbps high speed network and (ii impact of level of loss synchronization on link utilization-fairness tradeoffs. The practical impact of the proposed work is to provide design guidelines along with a powerful simulation tool to protocol designers and network developers.

  20. Robust output feedback cruise control for high-speed train movement with uncertain parameters

    Science.gov (United States)

    Li, Shu-Kai; Yang, Li-Xing; Li, Ke-Ping

    2015-01-01

    In this paper, the robust output feedback cruise control for high-speed train movement with uncertain parameters is investigated. The dynamic of a high-speed train is modeled by a cascade of cars connected by flexible couplers, which is subject to rolling mechanical resistance, aerodynamic drag and wind gust. Based on Lyapunov’s stability theory, the sufficient condition for the existence of the robust output feedback cruise control law is given in terms of linear matrix inequalities (LMIs), under which the high-speed train tracks the desired speed, the relative spring displacement between the two neighboring cars is stable at the equilibrium state, and meanwhile a small prescribed H∞ disturbance attenuation level is guaranteed. One numerical example is given to illustrate the effectiveness of the proposed methods. Project supported by the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant No.2014JBM150).