WorldWideScience

Sample records for high-speed civil transports

  1. Study of high-speed civil transports

    Science.gov (United States)

    1989-01-01

    A systems study to identify the economic potential for a high-speed commercial transport (HSCT) has considered technology, market characteristics, airport infrastructure, and environmental issues. Market forecasts indicate a need for HSCT service in the 2000/2010 time frame conditioned on economic viability and environmental acceptability. Design requirements focused on a 300 passenger, 3 class service, and 6500 nautical mile range based on the accelerated growth of the Pacific region. Compatibility with existing airports was an assumed requirement. Mach numbers between 2 and 25 were examined in conjunction with the appropriate propulsion systems, fuels, structural materials, and thermal management systems. Aircraft productivity was a key parameter with aircraft worth, in comparison to aircraft price, being the airline-oriented figure of merit. Aircraft screening led to determination that Mach 3.2 (TSJF) would have superior characteristics to Mach 5.0 (LNG) and the recommendation that the next generation high-speed commercial transport aircraft use a kerosene fuel. The sensitivity of aircraft performance and economics to environmental constraints (e.g., sonic boom, engine emissions, and airport/community noise) was identified together with key technologies. In all, current technology is not adequate to produce viable HSCTs for the world marketplace. Technology advancements must be accomplished to meet environmental requirements (these requirements are as yet undetermined for sonic boom and engine emissions). High priority is assigned to aircraft gross weight reduction which benefits both economics and environmental aspects. Specific technology requirements are identified and national economic benefits are projected.

  2. Preliminary design of nine high speed civil transports

    Science.gov (United States)

    Sandlin, Doral; Vantriet, Robert; Soban, Dani; Hoang, TY

    1992-01-01

    Sixty senior design students at Cal Poly, SLO have completed a year-long project to design the next generation of High Speed Civil Transports (HSCT). The design process was divided up into three distinct phases. The first third of the project was devoted entirely to research into the special problems associated with an HSCT. These included economic viability, airport compatibility, high speed aerodynamics, sonic boom minimization, environmental impact, and structures and materials. The result of this research was the development of nine separate Requests for Proposal (RFP) that outlined reasonable yet challenging design criteria for the aircraft. All were designed to be technically feasible in the year 2015. The next phase of the project divided the sixty students into nine design groups. Each group, with its own RFP, completed a Class 1 preliminary design of an HSCT. The nine configurations varied from conventional double deltas to variable geometry wings to a pivoting oblique wing design. The final phase of the project included a more detailed Class 2 sizing as well as performance and stability and control analysis. Cal Poly, San Luis Obispo presents nine unique solutions to the same problem: that of designing an economically viable, environmentally acceptable, safe and comfortable supersonic transport.

  3. Phoenix: Preliminary design of a high speed civil transport

    Science.gov (United States)

    Aguilar, Joseph; Davis, Steven; Jett, Brian; Ringo, Leslie; Stob, John; Wood, Bill

    1992-01-01

    The goal of the Phoenix Design Project was to develop a second generation high speed civil transport (HSCT) that will meet the needs of the traveler and airline industry beginning in the 21st century. The primary emphasis of the HSCT is to take advantage of the growing needs of the Pacific Basin and the passengers who are involved in that growth. A passenger load of 150 persons, a mission range of 5150 nautical miles, and a cruise speed of Mach 2.5 constitutes the primary design points of this HSCT. The design concept is made possible with the use of a well designed double delta wing and four mixed flow engines. Passenger comfort, compatibility with existing airport infrastructure, and cost competitive with current subsonic aircraft make the Phoenix a viable aircraft for the future.

  4. Integrated design and manufacturing for the high speed civil transport

    Science.gov (United States)

    Lee, Jae Moon; Gupta, Anurag; Mueller, Craig; Morrisette, Monica; Dec, John; Brewer, Jason; Donofrio, Kevin; Sturisky, Hilton; Smick, Doug; An, Meng Lin

    1994-01-01

    In June 1992, the School of Aerospace Engineering at Georgia Tech was awarded a three year NASA University Space Research Association (USRA) Advanced Design Program (ADP) grant to address issues associated with the Integrated Design and Manufacturing of High Speed Civil Transport (HSCT) configurations in its graduate Aerospace Systems Design courses. This report provides an overview of the on-going Georgia Tech initiative to address these design/manufacturing issues during the preliminary design phases of an HSCT concept. The new design methodology presented here has been incorporated in the graduate aerospace design curriculum and is based on the concept of Integrated Product and Process Development (IPPD). The selection of the HSCT as a pilot project was motivated by its potential global transportation payoffs; its technological, environmental, and economic challenges; and its impact on U.S. global competitiveness. This pilot project was the focus of each of the five design courses that form the graduate level aerospace systems design curriculum. This year's main objective was the development of a systematic approach to preliminary design and optimization and its implementation to an HSCT wing/propulsion configuration. The new methodology, based on the Taguchi Parameter Design Optimization Method (PDOM), was established and was used to carry out a parametric study where various feasible alternative configurations were evaluated. The comparison criterion selected for this evaluation was the economic impact of this aircraft, measured in terms of average yield per revenue passenger mile ($/RPM).

  5. Impact of high speed civil transports on stratospheric ozone. A 2-D model investigation

    Energy Technology Data Exchange (ETDEWEB)

    Kinnison, D.E.; Connell, P.S. [Lawrence Livermore National Lab., CA (United States)

    1997-12-31

    This study investigates the effect on stratospheric ozone from a fleet of proposed High Speed Civil Transports (HSCTs). The new LLNL 2-D operator-split chemical-radiative-transport model of the troposphere and stratosphere is used for this HSCT investigation. This model is integrated in a diurnal manner, using an implicit numerical solver. Therefore, rate coefficients are not modified by any sort of diurnal average factor. This model also does not make any assumptions on lumping of chemical species into families. Comparisons to previous model-derived HSCT assessment of ozone change are made, both to the previous LLNL 2-D model and to other models from the international assessment modeling community. The sensitivity to the NO{sub x} emission index and sulfate surface area density is also explored. (author) 7 refs.

  6. Human engineering analysis for the high speed civil transport flight deck

    Science.gov (United States)

    Regal, David M.; Alter, Keith W.

    1993-01-01

    The Boeing Company is investigating the feasibility of building a second generation supersonic transport. If current studies support its viability, this airplane, known as the High Speed Civil Transport (HSCT), could be launched early in the next century. The HSCT will cruise at Mach 2.4, be over 300 feet long, have an initial range of between 5000 and 6000 NM, and carry approximately 300 passengers. We are presently involved in developing an advanced flight deck for the HSCT. As part of this effort we are undertaking a human engineering analysis that involves a top-down, mission driven approach that will allow a systematic determination of flight deck functional and information requirements. The present paper describes this work.

  7. Impact of Environmental Issues on the High-Speed Civil Transport

    Science.gov (United States)

    Whitehead, Allen H., Jr.

    1998-01-01

    This paper provides an overview of the impact of environmental issues on the design and operation of the proposed High-Speed Civil Transport (HSCT). This proposal for a new generation commercial supersonic transport is being pursued by NASA and its US industry partners in the NASA High-Speed Research (HSR) Program. A second related paper describes the overall HSR Program, including a history of supersonic transport development that led to the present program, and a brief outline of the structure of the two-phase program and its management structure. The specific objectives are to address the four major barrier environmental issues and show their impact on the design of the airplane and potentially, its mode of operation. A brief historical perspective shows how HSR Phase I addressed these environmental topics and, with the successful completion of that program, led to the successful advocacy for the Phase II effort that followed. The Phase II program elements were discussed in the earlier paper and addressed technology programs to enhance the economic viability of the HSCT. Since many of the regulations that may effect the certification and operation of the HSCT are either not in place or well documented, a brief treatise is provided to address the status of the rules and the potential impact on the viability of the HSCT.

  8. Proposal and preliminary design for a high speed civil transport aircraft. Swift: A high speed civil transport for the year 2000

    Science.gov (United States)

    Banuelos, Aerobel; Caballero, Maria L.; Fields, Richard S., Jr.; Ledesma, Martha E.; Murakami, Lynne A.; Reyes, Joe T.; Westra, Bryan W.

    1992-01-01

    To meet the needs of the growing passenger traffic market in light of an aging subsonic fleet, a new breed of aircraft must be developed. The Swift is an aircraft that will economically meet these needs by the year 2000. Swift is a 246 passenger, Mach 2.5, luxury airliner. It has been designed to provide the benefit of comfortable, high speed transportation in a safe manner with minimal environmental impact. This report will discuss the features of the Swift aircraft and establish a solid, foundation for this supersonic transport of tomorrow.

  9. Inlet Unstart Propulsion Integration Wind Tunnel Test Program Completed for High-Speed Civil Transport

    Science.gov (United States)

    Porro, A. Robert

    2000-01-01

    One of the propulsion system concepts to be considered for the High-Speed Civil Transport (HSCT) is an underwing, dual-propulsion, pod-per-wing installation. Adverse transient phenomena such as engine compressor stall and inlet unstart could severely degrade the performance of one of these propulsion pods. The subsequent loss of thrust and increased drag could cause aircraft stability and control problems that could lead to a catastrophic accident if countermeasures are not in place to anticipate and control these detrimental transient events. Aircraft system engineers must understand what happens during an engine compressor stall and inlet unstart so that they can design effective control systems to avoid and/or alleviate the effects of a propulsion pod engine compressor stall and inlet unstart. The objective of the Inlet Unstart Propulsion Airframe Integration test program was to assess the underwing flow field of a High-Speed Civil Transport propulsion system during an engine compressor stall and subsequent inlet unstart. Experimental research testing was conducted in the 10- by 10-Foot Supersonic Wind Tunnel at the NASA Glenn Research Center at Lewis Field. The representative propulsion pod consisted of a two-dimensional, bifurcated inlet mated to a live turbojet engine. The propulsion pod was mounted below a large flat plate that acted as a wing simulator. Because of the plate s long length (nominally 10-ft wide by 18-ft long), realistic boundary layers could form at the inlet cowl plane. Transient instrumentation was used to document the aerodynamic flow-field conditions during an unstart sequence. Acquiring these data was a significant technical challenge because a typical unstart sequence disrupts the local flow field for about only 50 msec. Flow surface information was acquired via static pressure taps installed in the wing simulator, and intrusive pressure probes were used to acquire flow-field information. These data were extensively analyzed to

  10. Design Process for High Speed Civil Transport Aircraft Improved by Neural Network and Regression Methods

    Science.gov (United States)

    Hopkins, Dale A.

    1998-01-01

    A key challenge in designing the new High Speed Civil Transport (HSCT) aircraft is determining a good match between the airframe and engine. Multidisciplinary design optimization can be used to solve the problem by adjusting parameters of both the engine and the airframe. Earlier, an example problem was presented of an HSCT aircraft with four mixed-flow turbofan engines and a baseline mission to carry 305 passengers 5000 nautical miles at a cruise speed of Mach 2.4. The problem was solved by coupling NASA Lewis Research Center's design optimization testbed (COMETBOARDS) with NASA Langley Research Center's Flight Optimization System (FLOPS). The computing time expended in solving the problem was substantial, and the instability of the FLOPS analyzer at certain design points caused difficulties. In an attempt to alleviate both of these limitations, we explored the use of two approximation concepts in the design optimization process. The two concepts, which are based on neural network and linear regression approximation, provide the reanalysis capability and design sensitivity analysis information required for the optimization process. The HSCT aircraft optimization problem was solved by using three alternate approaches; that is, the original FLOPS analyzer and two approximate (derived) analyzers. The approximate analyzers were calibrated and used in three different ranges of the design variables; narrow (interpolated), standard, and wide (extrapolated).

  11. Optimum Climb to Cruise Noise Trajectories for the High Speed Civil Transport

    Science.gov (United States)

    Berton, Jeffrey J.

    2003-01-01

    By entraining large quantities of ambient air into advanced ejector nozzles, the jet noise of the proposed High Speed Civil Transport (HSCT) is expected to be reduced to levels acceptable for airport-vicinity noise certification. Away from the airport, however, this entrained air is shut off and the engines are powered up from their cutback levels to provide better thrust for the climb to cruise altitude. Unsuppressed jet noise levels propagating to the ground far from the airport are expected to be high. Complicating this problem is the HSCT's relative noise level with respect to the subsonic commercial fleet of 2010, which is expected to be much quieter than it is today after the retirement of older, louder, domestic stage II aircraft by the year 2000. In this study, the classic energy state approximation theory is extended to calculate trajectories that minimize the climb to cruise noise of the HSCT. The optimizer dynamically chooses the optimal altitude velocity trajectory, the engine power setting, and whether the ejector should be stowed or deployed with respect to practical aircraft climb constraints and noise limits.

  12. Minimum Climb to Cruise Noise Trajectories Modeled for the High Speed Civil Transport

    Science.gov (United States)

    Berton, Jeffrey J.

    1998-01-01

    The proposed U.S. High Speed Civil Transport (HSCT) will revolutionize commercial air travel by providing economical supersonic passenger service to destinations worldwide. Unlike the high-bypass turbofan engines that propel today's subsonic airliners, HSCT engines will have much higher jet exhaust speeds. Jet noise, caused by the turbulent mixing of high-speed exhaust with the surrounding air, poses a significant challenge for HSCT engine designers. To resolve this challenge, engineers have designed advanced mixer rejector nozzles that reduce HSCT jet noise to airport noise certification levels by entraining and mixing large quantities of ambient air with the engines' jet streams. Although this works well during the first several minutes of flight, far away from the airport, as the HSCT gains speed and climbs, poor ejector inlet recovery and ejector ram drag contribute to poor thrust, making it advantageous to turn off the ejector. Doing so prematurely, however, can cause unacceptable noise levels to propagate to the ground, even when the aircraft is many miles from the airport. This situation lends itself ideally to optimization, where the aircraft trajectory, throttle setting, and ejector setting can be varied (subject to practical aircraft constraints) to minimize the noise propagated to the ground. A method was developed at the NASA Lewis Research Center that employs a variation of the classic energy state approximation: a trajectory analysis technique historically used to minimize climb time or fuel burned in many aircraft problems. To minimize the noise on the ground at any given throttle setting, high aircraft altitudes are desirable; but the HSCT may either climb quickly to high altitudes using a high, noisy throttle setting or climb more slowly at a lower, quieter throttle setting. An optimizer has been programmed into NASA's existing aircraft and noise analysis codes to balance these options by dynamically choosing the best altitude-velocity path and

  13. Session on High Speed Civil Transport Design Capability Using MDO and High Performance Computing

    Science.gov (United States)

    Rehder, Joe

    2000-01-01

    Since the inception of CAS in 1992, NASA Langley has been conducting research into applying multidisciplinary optimization (MDO) and high performance computing toward reducing aircraft design cycle time. The focus of this research has been the development of a series of computational frameworks and associated applications that increased in capability, complexity, and performance over time. The culmination of this effort is an automated high-fidelity analysis capability for a high speed civil transport (HSCT) vehicle installed on a network of heterogeneous computers with a computational framework built using Common Object Request Broker Architecture (CORBA) and Java. The main focus of the research in the early years was the development of the Framework for Interdisciplinary Design Optimization (FIDO) and associated HSCT applications. While the FIDO effort was eventually halted, work continued on HSCT applications of ever increasing complexity. The current application, HSCT4.0, employs high fidelity CFD and FEM analysis codes. For each analysis cycle, the vehicle geometry and computational grids are updated using new values for design variables. Processes for aeroelastic trim, loads convergence, displacement transfer, stress and buckling, and performance have been developed. In all, a total of 70 processes are integrated in the analysis framework. Many of the key processes include automatic differentiation capabilities to provide sensitivity information that can be used in optimization. A software engineering process was developed to manage this large project. Defining the interactions among 70 processes turned out to be an enormous, but essential, task. A formal requirements document was prepared that defined data flow among processes and subprocesses. A design document was then developed that translated the requirements into actual software design. A validation program was defined and implemented to ensure that codes integrated into the framework produced the same

  14. Aircraft Emission Scenarios Projected in Year 2015 for the NASA Technology Concept Aircraft (TCA) High Speed Civil Transport

    Science.gov (United States)

    Baughcum, Steven L.; Henderson, Stephen C.

    1998-01-01

    This report describes the development of a three-dimensional database of aircraft fuel burn and emissions (fuel burned, NOx, CO, and hydrocarbons) from projected fleets of high speed civil transports (HSCTs) on a universal airline network. Inventories for 500 and 1000 HSCT fleets, as well as the concurrent subsonic fleets, were calculated. The HSCT scenarios are calculated using the NASA technology concept airplane (TCA) and update an earlier report. These emissions inventories are available for use by atmospheric scientists conducting the Atmospheric Effects of Stratospheric Aircraft (AESA) modeling studies. Fuel burned and emissions of nitrogen oxides (NOx as NO2), carbon monoxide, and hydrocarbons have been calculated on a 1 degree latitude x 1 degree longitude x 1 kilometer pressure altitude grid and delivered to NASA as electronic files.

  15. A Rapid Empirical Method for Estimating the Gross Takeoff Weight of a High Speed Civil Transport

    Science.gov (United States)

    Mack, Robert J.

    1999-01-01

    During the cruise segment of the flight mission, aircraft flying at supersonic speeds generate sonic booms that are usually maximum at the beginning of cruise. The pressure signature with the shocks causing these perceived booms can be predicted if the aircraft's geometry, Mach number, altitude, angle of attack, and cruise weight are known. Most methods for estimating aircraft weight, especially beginning-cruise weight, are empirical and based on least- square-fit equations that best represent a body of component weight data. The empirical method discussed in this report used simplified weight equations based on a study of performance and weight data from conceptual and real transport aircraft. Like other weight-estimation methods, weights were determined at several points in the mission. While these additional weights were found to be useful, it is the determination of beginning-cruise weight that is most important for the prediction of the aircraft's sonic-boom characteristics.

  16. High Speed Civil Transport Design Using Collaborative Optimization and Approximate Models

    Science.gov (United States)

    Manning, Valerie Michelle

    1999-01-01

    The design of supersonic aircraft requires complex analysis in multiple disciplines, posing, a challenge for optimization methods. In this thesis, collaborative optimization, a design architecture developed to solve large-scale multidisciplinary design problems, is applied to the design of supersonic transport concepts. Collaborative optimization takes advantage of natural disciplinary segmentation to facilitate parallel execution of design tasks. Discipline-specific design optimization proceeds while a coordinating mechanism ensures progress toward an optimum and compatibility between disciplinary designs. Two concepts for supersonic aircraft are investigated: a conventional delta-wing design and a natural laminar flow concept that achieves improved performance by exploiting properties of supersonic flow to delay boundary layer transition. The work involves the development of aerodynamics and structural analyses, and integration within a collaborative optimization framework. It represents the most extensive application of the method to date.

  17. High Speed Civil Transport (HSCT) Isolated Nacelle Transonic Boattail Drag Study and Results Using Computational Fluid Dynamics (CFD)

    Science.gov (United States)

    Midea, Anthony C.; Austin, Thomas; Pao, S. Paul; DeBonis, James R.; Mani, Mori

    2005-01-01

    Nozzle boattail drag is significant for the High Speed Civil Transport (HSCT) and can be as high as 25 percent of the overall propulsion system thrust at transonic conditions. Thus, nozzle boattail drag has the potential to create a thrust drag pinch and can reduce HSCT aircraft aerodynamic efficiencies at transonic operating conditions. In order to accurately predict HSCT performance, it is imperative that nozzle boattail drag be accurately predicted. Previous methods to predict HSCT nozzle boattail drag were suspect in the transonic regime. In addition, previous prediction methods were unable to account for complex nozzle geometry and were not flexible enough for engine cycle trade studies. A computational fluid dynamics (CFD) effort was conducted by NASA and McDonnell Douglas to evaluate the magnitude and characteristics of HSCT nozzle boattail drag at transonic conditions. A team of engineers used various CFD codes and provided consistent, accurate boattail drag coefficient predictions for a family of HSCT nozzle configurations. The CFD results were incorporated into a nozzle drag database that encompassed the entire HSCT flight regime and provided the basis for an accurate and flexible prediction methodology.

  18. Integrated design and manufacturing for the high speed civil transport (a combined aerodynamics/propulsion optimization study)

    Science.gov (United States)

    Baecher, Juergen; Bandte, Oliver; DeLaurentis, Dan; Lewis, Kemper; Sicilia, Jose; Soboleski, Craig

    1995-01-01

    This report documents the efforts of a Georgia Tech High Speed Civil Transport (HSCT) aerospace student design team in completing a design methodology demonstration under NASA's Advanced Design Program (ADP). Aerodynamic and propulsion analyses are integrated into the synthesis code FLOPS in order to improve its prediction accuracy. Executing the integrated product and process development (IPPD) methodology proposed at the Aerospace Systems Design Laboratory (ASDL), an improved sizing process is described followed by a combined aero-propulsion optimization, where the objective function, average yield per revenue passenger mile ($/RPM), is constrained by flight stability, noise, approach speed, and field length restrictions. Primary goals include successful demonstration of the application of the response surface methodolgy (RSM) to parameter design, introduction to higher fidelity disciplinary analysis than normally feasible at the conceptual and early preliminary level, and investigations of relationships between aerodynamic and propulsion design parameters and their effect on the objective function, $/RPM. A unique approach to aircraft synthesis is developed in which statistical methods, specifically design of experiments and the RSM, are used to more efficiently search the design space for optimum configurations. In particular, two uses of these techniques are demonstrated. First, response model equations are formed which represent complex analysis in the form of a regression polynomial. Next, a second regression equation is constructed, not for modeling purposes, but instead for the purpose of optimization at the system level. Such an optimization problem with the given tools normally would be difficult due to the need for hard connections between the various complex codes involved. The statistical methodology presents an alternative and is demonstrated via an example of aerodynamic modeling and planform optimization for a HSCT.

  19. Aerosol particle evolution in an aircraft wake: Implications for the high-speed civil transport fleet impact on ozone

    Science.gov (United States)

    Danilin, M. Y.; Rodriguez, J. M.; Ko, M. K. W.; Weisenstein, D. K.; Brown, R. C.; Miake-Lye, R. C.; Anderson, M. R.

    1997-09-01

    Previous calculations of the ozone impact from a fleet of high-speed civil transports (HSCTs) have been carried out by global two-dimensional (2-D) models [Bekki and PyIe, 1993; Pitari et al., 1993] which have not included explicit wake processing of sulfur species. This processing could be important for the global sulfate aerosol and ozone perturbations [Weisenstein et al., 1996]. For an HSCT scenario with emission indices of NOx and sulfur equal to 5 and 0.4, respectively, and a cruise speed of Mach 2.4 [Stolarski and Wesoky, 1993b], the Atmospheric and Environmental Research (AER) 2-D model gives 0.50-1.1% as the range of the annually averaged O3 column depletion at 40°-50°N. This range is determined by the extreme assumption that emitted SO2 is diluted into the global model grid box either as gas or as 10 nm sulfate particles. A hierarchy of models is used here to investigate the impact of processes in the wake on the calculated global ozone response to sulfur emissions by a proposed HSCT fleet. We follow the evolution of aircraft emissions from the nozzle plane using three numerical models: the Standard Plume Flowfield-II/Plume Nucleation and Condensation model (SPF-II/PNC), an AER far wake model incorporating microphysics of aerosol particles, and the AER global 2-D chemistry-transport model. Particle measurements in the wake of the Concorde [Fahey et al., 1995a] are used to place constraints on sulfur oxidation processes in the engine and the near field. To explain the Concorde measurements, we consider cases with different fractions of SO3 (2%, 20%, and 40%) in the sulfur emissions at the nozzle plane and also the possibility of other unknown heterogeneous or homogeneous oxidation processes for SO2 in the wake. Assuming similar characteristics for the proposed HSCT fleet, the global ozone response is then calculated by the 2-D model. Using the model-calculated wake processing of sulfur emissions under the above assumptions and constrained by the Concorde

  20. Jane's high-speed marine transportation

    National Research Council Canada - National Science Library

    Phillips, S.J

    1998-01-01

    The purpose of this book is to provide a comprehensive reference yearbook covering the design, build and operation of high-speed marine transportation, worldwide, an annually updated reference book...

  1. High-Speed Rail & Air Transport Competition

    NARCIS (Netherlands)

    Adler, Nicole; Nash, Chris; Pels, Eric

    2008-01-01

    This paper develops a methodology to assess transport infrastructure investments and their effects on a Nash equilibria taking into account competition between multiple privatized transport operator types. The operators, including high-speed rail, hub and spoke legacy airlines and low cost carriers,

  2. High-speed Rail & air transport competition

    NARCIS (Netherlands)

    Adler, N; Nash, C.; Pels, E.

    2010-01-01

    This research develops a methodology to assess infrastructure investments and their effects on transport equilibria taking into account competition between multiple privatized transport operator types. The operators, including high-speed rail, hub-and-spoke legacy airlines and regional low-cost

  3. High-Speed Rail & Air Transport Competition

    OpenAIRE

    Nicole Adler; Chris Nash; Eric Pels

    2008-01-01

    This paper develops a methodology to assess transport infrastructure investments and their effects on a Nash equilibria taking into account competition between multiple privatized transport operator types. The operators, including high-speed rail, hub and spoke legacy airlines and low cost carriers, maximize profit functions via prices, frequency and train/plane sizes, given infrastructure provision and costs and environmental charges. The methodology is subsequently applied to all 27 Europea...

  4. High-speed ground transportation noise and vibration impact assessment.

    Science.gov (United States)

    2012-09-01

    This report is the second edition of a guidance manual originally issued in 2005, which presents procedures for predicting and assessing noise and vibration impacts of high-speed ground transportation projects. Projects involving high-speed trains us...

  5. Controlling high speed automated transport network operations

    NARCIS (Netherlands)

    de Feijter, R.

    2006-01-01

    This thesis presents a framework for the control of automated guided vehicles (AGVs). The framework implements the transport system as a community of cooperating agents. Besides the architecture and elements of the framework a wide range of infrastructure scene templates is described. These scene

  6. Design and specification of a high speed transport protocol

    OpenAIRE

    McArthur, Robert C.

    1992-01-01

    Approved for public release; distribution is unlimited Due to the increase in data throughput potential provided by high speed (fiber optic) networks, existing transport protocols are becoming increasingly incapable of providing reli­able and timely transfer of data. Whereas in networks of the past it was the transmission medium that caused the greatest communications delay, it is the case today that the transport protocols themselves have become the bottleneck. This thesis provides de...

  7. Propulsion challenges and opportunities for high-speed transport aircraft

    Science.gov (United States)

    Strack, William C.

    1987-01-01

    For several years there was a growing interest in the subject of efficient sustained supersonic cruise technology applied to a high-speed transport aircraft. The major challenges confronting the propulsion community for supersonic transport (SST) applications are identified. Both past progress and future opportunities are discussed in relation to perceived technology shortfalls for an economically successful SST that satisfies environmental constraints. A very large improvement in propulsion system efficiency is needed both at supersonic and subsonic cruise conditions. Toward that end, several advanced engine concepts are being considered that, together with advanced discipline and component technologies, promise at least 40 percent better efficiency that the Concorde engine. The quest for higher productivity through higher speed is also thwarted by the lack of a conventional, low-priced fuel that is thermally stable at the higher temperatures associated with faster flight. Airport noise remains a tough challenge because previously researched concepts fall short of achieving FAR 36 Stage 3 noise levels. Innovative solutions may be necessary to reach acceptably low noise. While the technical challenges are indeed formidable, it is reasonable to assume that the current shortfalls in fuel economy and noise can be overcome through an aggressive propulsion research program.

  8. Lagrangian transported MDF methods for compressible high speed flows

    Science.gov (United States)

    Gerlinger, Peter

    2017-06-01

    This paper deals with the application of thermochemical Lagrangian MDF (mass density function) methods for compressible sub- and supersonic RANS (Reynolds Averaged Navier-Stokes) simulations. A new approach to treat molecular transport is presented. This technique on the one hand ensures numerical stability of the particle solver in laminar regions of the flow field (e.g. in the viscous sublayer) and on the other hand takes differential diffusion into account. It is shown in a detailed analysis, that the new method correctly predicts first and second-order moments on the basis of conventional modeling approaches. Moreover, a number of challenges for MDF particle methods in high speed flows is discussed, e.g. high cell aspect ratio grids close to solid walls, wall heat transfer, shock resolution, and problems from statistical noise which may cause artificial shock systems in supersonic flows. A Mach 2 supersonic mixing channel with multiple shock reflection and a model rocket combustor simulation demonstrate the eligibility of this technique to practical applications. Both test cases are simulated successfully for the first time with a hybrid finite-volume (FV)/Lagrangian particle solver (PS).

  9. High-speed surface transportation corridor : a conceptual framework, final report.

    Science.gov (United States)

    2009-10-08

    Efficient transportation is indispensable for economic growth and prosperity. In this study we propose the development of a high-speed surface corridor and compatible vehicles. We present a conceptual framework for this corridor and vehicle. This pro...

  10. Turbulent Scalar Transport Model Validation for High Speed Propulsive Flows Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This effort entails the validation of a RANS turbulent scalar transport model (SFM) for high speed propulsive flows, using new experimental data sets and...

  11. Analysis of coupling between high-speed railway and common speed railway system in transportation corridor

    Science.gov (United States)

    Zhou, Hongchang; Li, Haijun; Chen, Xiaohong; Zhu, Changfeng

    2017-04-01

    The high-speed railway and common speed railway subsystems as important components of the railway transportation system, can make railway traffic organization more orderly, when there are a rational division and balance development between them. In order to quantitatively evaluate the coordinate relations between high-speed railway subsystem and common speed railway subsystem, this paper takes the railway transportation corridor from Baoji to Lanzhou as an example. Firstly, using Logit model and grey forecasting model predict the passenger volume, passenger turnover and time value of high-speed railway and common speed railway in the Baoji-Lanzhou corridor. And then, the coupling forecast model of these two subsystems is established. Lastly, the coupling and coupling coordination of these two subsystems using are predicted and analyzed at theatrically level.

  12. Inventory-transportation integrated optimization for maintenance spare parts of high-speed trains.

    Directory of Open Access Journals (Sweden)

    Boliang Lin

    Full Text Available This paper presents a 0-1 programming model aimed at obtaining the optimal inventory policy and transportation mode for maintenance spare parts of high-speed trains. To obtain the model parameters for occasionally-replaced spare parts, a demand estimation method based on the maintenance strategies of China's high-speed railway system is proposed. In addition, we analyse the shortage time using PERT, and then calculate the unit time shortage cost from the viewpoint of train operation revenue. Finally, a real-world case study from Shanghai Depot is conducted to demonstrate our method. Computational results offer an effective and efficient decision support for inventory managers.

  13. Inventory-transportation integrated optimization for maintenance spare parts of high-speed trains

    Science.gov (United States)

    Wang, Jiaxi; Wang, Huasheng; Wang, Zhongkai; Li, Jian; Lin, Ruixi; Xiao, Jie; Wu, Jianping

    2017-01-01

    This paper presents a 0–1 programming model aimed at obtaining the optimal inventory policy and transportation mode for maintenance spare parts of high-speed trains. To obtain the model parameters for occasionally-replaced spare parts, a demand estimation method based on the maintenance strategies of China’s high-speed railway system is proposed. In addition, we analyse the shortage time using PERT, and then calculate the unit time shortage cost from the viewpoint of train operation revenue. Finally, a real-world case study from Shanghai Depot is conducted to demonstrate our method. Computational results offer an effective and efficient decision support for inventory managers. PMID:28472097

  14. Inventory-transportation integrated optimization for maintenance spare parts of high-speed trains.

    Science.gov (United States)

    Lin, Boliang; Wang, Jiaxi; Wang, Huasheng; Wang, Zhongkai; Li, Jian; Lin, Ruixi; Xiao, Jie; Wu, Jianping

    2017-01-01

    This paper presents a 0-1 programming model aimed at obtaining the optimal inventory policy and transportation mode for maintenance spare parts of high-speed trains. To obtain the model parameters for occasionally-replaced spare parts, a demand estimation method based on the maintenance strategies of China's high-speed railway system is proposed. In addition, we analyse the shortage time using PERT, and then calculate the unit time shortage cost from the viewpoint of train operation revenue. Finally, a real-world case study from Shanghai Depot is conducted to demonstrate our method. Computational results offer an effective and efficient decision support for inventory managers.

  15. A REVIEW OF HIGH-SPEED RAIL PLAN IN JAVA ISLAND: A COMPARISON WITH EXISTING MODES OF TRANSPORT

    Directory of Open Access Journals (Sweden)

    Eko Hartono

    2013-05-01

    It can be concluded that journey time and fare of the high-speed rail is very competitive to the air transport in Jakarta-Surabaya corridor. The journey time to travel from Jakarta to Surabaya is 4 hours and 19 minutes by high-speed train and 4 hours and 40 minutes by air. Based on the benchmarking analysis, the suitable fare for the high-speed rail should be 70% of the air transport. This study predicted that 61% of air passenger, 18% of conventional rail passenger and 12% of bus passenger will switch to the high-speed rail service in 2020. In total, the high-speed rail will have 24% of market share for the passenger transport and becomes the second largest market share after road transport (52%. The conventional rail and air transport have 14% and 9% of total market share to travel from Jakarta to Surabaya and vice versa. The high-speed rail development reduces carbon emissions caused by transportation systems in Java Island. It has been calculated that there are 2.542 million tonnages of CO2 per annum without introducing high-speed rail, however, the CO2 emissions decrease to 1.694 million tonnages per annum if the high-speed rail is developed in Java Island. Generalized cost of the high-speed rail is higher than road and conventional rail. However, it is lower than air transport. Keywords: Java high-speed rail, HSR Comparison, modal share, journey time

  16. A Passenger Flow Risk Forecasting Algorithm for High-Speed Railway Transport Hub Based on Surveillance Sensor Networks

    Directory of Open Access Journals (Sweden)

    Zhengyu Xie

    2016-01-01

    Full Text Available Passenger flow risk forecasting is a vital task for safety management in high-speed railway transport hub. In this paper, we considered the passenger flow risk forecasting problem in high-speed railway transport hub. Based on the surveillance sensor networks, a passenger flow risk forecasting algorithm was developed based on spatial correlation. Computational results showed that the proposed forecasting approach was effective and significant for the high-speed railway transport hub.

  17. High-speed noncontact acoustic inspection method for civil engineering structure using multitone burst wave

    Science.gov (United States)

    Sugimoto, Tsuneyoshi; Sugimoto, Kazuko; Kosuge, Nobuaki; Utagawa, Noriyuki; Katakura, Kageyoshi

    2017-07-01

    The noncontact acoustic inspection method focuses on the resonance phenomenon, and the target surface is measured by being vibrated with an airborne sound. It is possible to detect internal defects near the surface layer of a concrete structure from a long distance. However, it requires a fairly long measurement time to achieve the signal-to-noise (S/N) ratio just to find some resonance frequencies. In our method using the conventional waveform “single-tone burst wave”, only one frequency was used for one-sound-wave emission to achieve a high S/N ratio using a laser Doppler vibrometer (LDV) at a safe low power (e.g., He-Ne 1 mW). On the other hand, in terms of the difference in propagation velocity between laser light and sound waves, the waveform that can be used for high-speed measurement was devised using plural frequencies for one-sound-wave emission (“multitone burst wave”). The measurement time at 35 measurement points has been dramatically decreased from 210 to 28 s when using this waveform. Accordingly, 7.5-fold high-speed measurement became possible. By some demonstration experiments, we confirmed the effectiveness of our measurement technique.

  18. New York state high-speed surface transportation study: Final report

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-01

    In 1990, New York State Governor Mario M. Cuomo created an interagency task force under the leadership of Lt. Governor Stan Lundine to investigate the potential of high speed ground transportation (HSGT) systems. Building on information from previous agency activities, including consultant efforts contracted by the New York State Energy Research and Development Authority (NYSERDA), the New York State Thruway Authority (NYSTA), and in-house analyses performed by New York State Department of Transportation (NYSDOT), the task force focused on the corridor between New York City and the Niagara Frontier. In December 1991, NYSERDA issued a contract for a study of high speed ground transportation options for New York State. The study`s objective was to assess potential rights-of-way, ridership, energy and environmental impacts, economic benefits, capital, operating, and maintenance costs, and financial viability of HSGT systems. This study builds upon and supplements previous and on-going HSGT activities conducted by the members of the interagency task force. These activities include: Maglev Technical and Economic Feasibility Study (NYSERDA); Maglev Demonstration Site Investigation (NYSTA); and New York/Massachusetts High Speed Ground Transportation Study (NYSDOT). This study is intended to verify and refine previous information and analyses and provide supplemental information and insights to be used in determining if additional investigation and activities involving HSGT are desirable for New York State. This study evaluates HSGT technologies capable of speeds significantly higher than those achieved with the present rail system. Three HSGT categories are used in this study: incremental rail improvement, very high-speed rail, and Maglev.

  19. Sensor Networks Hierarchical Optimization Model for Security Monitoring in High-Speed Railway Transport Hub

    Directory of Open Access Journals (Sweden)

    Zhengyu Xie

    2015-01-01

    Full Text Available We consider the sensor networks hierarchical optimization problem in high-speed railway transport hub (HRTH. The sensor networks are optimized from three hierarchies which are key area sensors optimization, passenger line sensors optimization, and whole area sensors optimization. Case study on a specific HRTH in China showed that the hierarchical optimization method is effective to optimize the sensor networks for security monitoring in HRTH.

  20. Managing Projects with Strong Technological Rupture - Case of High-Speed Ground Transportation

    OpenAIRE

    de Tilière, Guillaume

    2002-01-01

    Managing the launch of new technological trajectories is a complex task, especially in the case of High-Speed Ground Transportation (HSGT) Systems. For instance, Maglev systems are now developed since 40 years, and none of these technologies has been implemented until the first Transrapid contract for Shanghai (which could lead to a 1250 km track between Beijing and Shanghai). What are the future challenges for cutting-edge technologies such as a Swissmetro or the Japanese MLX-01? Be...

  1. Direct visualization of glutamate transporter elevator mechanism by high-speed AFM.

    Science.gov (United States)

    Ruan, Yi; Miyagi, Atsushi; Wang, Xiaoyu; Chami, Mohamed; Boudker, Olga; Scheuring, Simon

    2017-02-14

    Glutamate transporters are essential for recovery of the neurotransmitter glutamate from the synaptic cleft. Crystal structures in the outward- and inward-facing conformations of a glutamate transporter homolog from archaebacterium Pyrococcus horikoshii, sodium/aspartate symporter GltPh, suggested the molecular basis of the transporter cycle. However, dynamic studies of the transport mechanism have been sparse and indirect. Here we present high-speed atomic force microscopy (HS-AFM) observations of membrane-reconstituted GltPh at work. HS-AFM movies provide unprecedented real-space and real-time visualization of the transport dynamics. Our results show transport mediated by large amplitude 1.85-nm "elevator" movements of the transport domains consistent with previous crystallographic and spectroscopic studies. Elevator dynamics occur in the absence and presence of sodium ions and aspartate, but stall in sodium alone, providing a direct visualization of the ion and substrate symport mechanism. We show unambiguously that individual protomers within the trimeric transporter function fully independently.

  2. Air Transport versus High-Speed Rail: An Overview and Research Agenda

    Directory of Open Access Journals (Sweden)

    Xiaoqian Sun

    2017-01-01

    Full Text Available The development of high-speed rail (HSR services throughout the last decades has gradually blurred the concept of competition and cooperation with air transportation. There is a wide range of studies on this subject, with a particular focus on single lines or smaller regions. This article synthesizes and discusses recently published studies in this area, while aiming to identify commonalities and deviations among different regions throughout the world, covering services from Europe, Asia, and North America. Our meta-analysis reveals that the literature is highly controversial and the results vary substantially from one region to another, and a generalization is difficult, given route-specific characteristics, such as demand distribution, network structure, and evolution of transportation modes. As a major contribution, we propose a list of five challenges as a future research agenda on HSR/air transport competition and cooperation. Among others, we see a need for the construction of an open-source dataset for large-scale multimodal transport systems, the comprehensive assessment of new emerging transport modes, and also taking into account the resilience of multimodal transport systems under disruption.

  3. Multiple component codes based generalized LDPC codes for high-speed optical transport.

    Science.gov (United States)

    Djordjevic, Ivan B; Wang, Ting

    2014-07-14

    A class of generalized low-density parity-check (GLDPC) codes suitable for optical communications is proposed, which consists of multiple local codes. It is shown that Hamming, BCH, and Reed-Muller codes can be used as local codes, and that the maximum a posteriori probability (MAP) decoding of these local codes by Ashikhmin-Lytsin algorithm is feasible in terms of complexity and performance. We demonstrate that record coding gains can be obtained from properly designed GLDPC codes, derived from multiple component codes. We then show that several recently proposed classes of LDPC codes such as convolutional and spatially-coupled codes can be described using the concept of GLDPC coding, which indicates that the GLDPC coding can be used as a unified platform for advanced FEC enabling ultra-high speed optical transport. The proposed class of GLDPC codes is also suitable for code-rate adaption, to adjust the error correction strength depending on the optical channel conditions.

  4. Cg/Stability Map for the Reference H Cycle 3 Supersonic Transport Concept Along the High Speed Research Baseline Mission Profile

    Science.gov (United States)

    Giesy, Daniel P.; Christhilf, David M.

    1999-01-01

    A comparison is made between the results of trimming a High Speed Civil Transport (HSCT) concept along a reference mission profile using two trim modes. One mode uses the stabilator. The other mode uses fore and aft placement of the center of gravity. A comparison is make of the throttle settings (cruise segments) or the total acceleration (ascent and descent segments) and of the drag coefficient. The comparative stability of trimming using the two modes is also assessed by comparing the stability margins and the placement of the lateral and longitudinal eigenvalues.

  5. Highlights in the development of the high-speed diesel engine for rail transport. Pt. 1

    Energy Technology Data Exchange (ETDEWEB)

    Zima, S.

    1988-04-01

    Today's high-speed, high-performance diesel engines can be traced back to engines developed in the early 1920s as drive units for railcars. The design and technical details of the earlier high-performance engines at Maybach Motorenbau GmbH (MM), Friedrichshafen, can be explained by the difficulties of achieving the necessary output given the state of the art at that time, and of ensuring the function of individual assemblies in rail transport. The interaction between the engine, auxiliaries and vehicle had various repercussions on the engine, and a lot of effort was required to recognize and eliminate the causes of these. The demand for higher performance was met by providing greater cubic capacity, primarily by using more cylinders. Starting in the mid-thirties, attempts were made to increase output via the effective-work/displacement ratio by means of exhaust gas turbocharging. In the early 1950s new, more powerful engines were developed, which in their design concept differed substantially from other comparable engines.

  6. Hierarchically porous carbon with high-speed ion transport channels for high performance supercapacitors

    Science.gov (United States)

    Lu, Haoyuan; Li, Qingwei; Guo, Jianhui; Song, Aixin; Gong, Chunhong; Zhang, Jiwei; Zhang, Jingwei

    2018-01-01

    Hierarchically porous carbons (HPC) are considered as promising electrode materials for supercapacitors, due to their outstanding charge/discharge cycling stabilities and high power densities. However, HPC possess a relatively low ion diffusion rate inside the materials, which challenges their application for high performance supercapacitor. Thus tunnel-shaped carbon pores with a size of tens of nanometers were constructed by inducing the self-assembly of lithocholic acid with ammonium chloride, thereby providing high-speed channels for internal ion diffusion. The as-formed one-dimensional pores are beneficial to the activation process by KOH, providing a large specific surface area, and then facilitate rapid transport of electrolyte ions from macropores to the microporous surfaces. Therefore, the HPC achieve an outstanding gravimetric capacitance of 284 F g-1 at a current density of 0.1 A g-1 and a remarkable capacity retention of 64.8% when the current density increases by 1000 times to 100 A g-1.

  7. Intermodal competition in the London-Paris passenger market: High-speed rail and air transport

    NARCIS (Netherlands)

    Behrens, C.L.; Pels, E.

    2012-01-01

    This paper studies inter- and intramodal competition in the London-Paris passenger market during the period 2003-2009. We identify the degree to and conditions under which High-Speed Rail is a viable substitute for airline travel. Using pooled cross-sectional data we estimate multinomial and mixed

  8. Assessment of potential aerodynamic effects on personnel and equipment in proximity to high-speed train operations : safety of high-speed ground transportation systems

    Science.gov (United States)

    1999-12-01

    Amtrak is planning to provide high-speed passenger train service at speeds significantly higher than their current top speed of 125 mph, and with these higher speeds, there are concerns with safety from the aerodynamic effects created by a passing tr...

  9. Aerodynamic Effects of High-Speed Trains on People and Property at Stations in the Northeast Corridor. Safety of High-Speed Ground Transportation Systems.

    Science.gov (United States)

    1999-11-01

    This report presents the results of a study to evaluate the aerodynamic (air velocity and pressure) effects of the new high-speed trains on the safety and comfort of people, and the impacts on physical facilities, in and around Northeast Corridor sta...

  10. Highlights in the development of the high-speed diesel engine for rail transport. Pt. 2

    Energy Technology Data Exchange (ETDEWEB)

    Zima, S.

    In the 1920s, Maybach Motorenbau GmbH (MM) developed a lightweight high-speed diesel engine which helped make diesel power for railcars popular - not only in Germany. In the early Thirties, a 12-cylinder engine in V-configuration was derived from the lightweight 6-cylinder in-line engine; later the 12-cylinder became the first high-speed diesel engine to be uprated by exhaust-gas turbocharging. MM began developing its own engine accessories as well as engines since badly designed accessories had been causing engine damage in these early days of rail traction. Towards the end of the Forties, a new series of engines with higher cubic capacity was developed for repowering locomotives with diesel engines. Their unconventional design features gave these engines an extraordinary development potential. At the same time, the prewar railcar engines were refined and adapted to the hard conditions of shunting locomotives in particular. (orig./BWI).

  11. Comparative Study on Options for High-Speed Intercontinental Passenger Transports: Air-Breathing- vs. Rocket-Propelled

    OpenAIRE

    Sippel, Martin; Klevanski, Josef; Steelant, Johan

    2005-01-01

    This paper investigates the technical options for high-speed intercontinental passenger transports on a preliminary basis. Horizontal take-off hypersonic air-breathing airliners are assessed as well as vertical take-off, rocket powered stages, capable of a safe atmospheric reentry. The study includes a preliminary sizing and performance assessment of all investigated vehicles and compares characteristic technical and passenger environment data. The aerodynamic shape of the air-bre...

  12. Advanced cockpit technology for future civil transport aircraft

    Science.gov (United States)

    Hatfield, Jack J.; Parrish, Russell V.

    1990-01-01

    A review is presented of advanced cockpit technology for future civil transport aircraft, covering the present state-of-the-art and major technologies, including flat-panel displays, graphics and pictorial displays. Pilot aiding/automation/human-centered design and imaging sensor/flight systems technology (for low-visibility operations) are also presented. NASA Langley Research Center's recent results in pictorial displays and on future developments in large-screen display technologies are discussed. Major characteristics foreseen for the future high-speed civil transport include fault-tolerant digital avionics and controls/displays with extensive human-centered automation, and unusually clean, uncluttered interface with natural crew interaction via touch, voice/tactile means.

  13. Maglev vehicles and superconductor technology: Integration of high-speed ground transportation into the air travel system

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, L.R.; Rote, D.M.; Hull, J.R.; Coffey, H.T.; Daley, J.G.; Giese, R.F.

    1989-04-01

    This study was undertaken to (1) evaluate the potential contribution of high-temperature superconductors (HTSCs) to the technical and economic feasibility of magnetically levitated (maglev) vehicles, (2) determine the status of maglev transportation research in the United States and abroad, (3) identify the likelihood of a significant transportation market for high-speed maglev vehicles, and (4) provide a preliminary assessment of the potential energy and economic benefits of maglev systems. HTSCs should be considered as an enhancing, rather than an enabling, development for maglev transportation because they should improve reliability and reduce energy and maintenance costs. Superconducting maglev transportation technologies were developed in the United States in the late 1960s and early 1970s. Federal support was withdrawn in 1975, but major maglev transportation programs were continued in Japan and West Germany, where full-scale prototypes now carry passengers at speeds of 250 mi/h in demonstration runs. Maglev systems are generally viewed as very-high-speed train systems, but this study shows that the potential market for maglev technology as a train system, e.g., from one downtown to another, is limited. Rather, aircraft and maglev vehicles should be seen as complementing rather than competing transportation systems. If maglev systems were integrated into major hub airport operations, they could become economical in many relatively high-density US corridors. Air traffic congestion and associated noise and pollutant emissions around airports would also be reduced. 68 refs., 26 figs., 16 tabs.

  14. Preliminary Design Study of Main Rocket Engine for SpaceLiner High-Speed Passenger Transportation Concept

    OpenAIRE

    Sippel, Martin; Yamashiro, Ryoma

    2013-01-01

    The revolutionary ultrafast passenger transportation system SpaceLiner is under investigation at DLR in the EU-funded study Future high-Altitude high-Speed Transport 20XX. SpaceLiner’s configuration is being amended continuously, and SpaceLiner7 is the brand new version at the point of April in 2013. SpaceLiner7 is two staged reusable launch vehicle with liquid rocket engines. SpaceLiner Main Engine (SLME) is required to have high performance for the total system to be feasible, a...

  15. PRELIMINARY DESIGN STUDY OF STAGED COMBUSTION CYCLE ROCKET ENGINE FOR SPACELINER HIGH-SPEED PASSENGER TRANSPORTATION CONCEPT

    OpenAIRE

    Yamashiro, Ryoma; Sippel, Martin

    2012-01-01

    The revolutionary ultrafast passenger transportation system SpaceLiner is under investigation at DLR in the EU-funded study Future high-Altitude high-Speed Transport 20XX. SpaceLiner’s configuration is being amended continuously, and SpaceLiner7 is the brand new version at the point of August in 2012. SpaceLiner7 is two staged reusable launch vehicle with liquid rocket engines. SpaceLiner Main Engine (SLME) is required to have high performance for the total system to be feasible, and also to ...

  16. Enhancing the connectivity of high speed rail in the Orlando-Tampa corridor with local public transportation systems : issues and opportunities.

    Science.gov (United States)

    2011-01-01

    High Speed Rail (HSR) will only be truly transformational if it has effective connections with as many other modes of transportation as possible. This project looks at local public transportation systems that have opportunities to connect to HSR stat...

  17. Design and Analysis of Transport Protocols for Reliable High-Speed Communications

    NARCIS (Netherlands)

    Oláh, A.

    1997-01-01

    The design and analysis of transport protocols for reliable communications constitutes the topic of this dissertation. These transport protocols guarantee the sequenced and complete delivery of user data over networks which may lose, duplicate and reorder packets. Reliable transport services are

  18. Performance of pile foundation for the civil infrastructure of high speed rail in severe ground subsidence area

    Directory of Open Access Journals (Sweden)

    H. W. Yang

    2015-11-01

    Full Text Available In this study, the performance of pile foundation is assessed for the 30 km long viaduct bridge structure seating in the ground subsidence area in the central part of Taiwan. The focus of this paper is placed on the settlement behaviour of a continuous 3-span R. C. viaduct bridge supported on piles adjacent to highway embankment. Monitoring data accumulated over the last 12 years indicate that the observed pace of the settlement of the viaduct structure in other sections matches that of the ground. However, the bridge piers adjacent to the embankment have been suffering an additional approximately 1 cm settlement every year since the completion of the embankment construction. It was believed that the piers may suffer from enormous negative skin friction owing to the surcharge from the embankment and groundwater depression. This paper first summarizes the settlement analysis results to quantify the settlement of pile due to regional ground subsidence and the combined effects from ground water fluctuation and embankment surcharge loading. Accordingly, a loading path on P'-q stress space is formulated to illustrate the loading variation subject to the combined loading effects that can explain why the combined effect becoming significant on settlement control for civil infrastructure in ground subsidence area.

  19. Performance of pile foundation for the civil infrastructure of high speed rail in severe ground subsidence area

    Science.gov (United States)

    Yang, H. W.

    2015-11-01

    In this study, the performance of pile foundation is assessed for the 30 km long viaduct bridge structure seating in the ground subsidence area in the central part of Taiwan. The focus of this paper is placed on the settlement behaviour of a continuous 3-span R. C. viaduct bridge supported on piles adjacent to highway embankment. Monitoring data accumulated over the last 12 years indicate that the observed pace of the settlement of the viaduct structure in other sections matches that of the ground. However, the bridge piers adjacent to the embankment have been suffering an additional approximately 1 cm settlement every year since the completion of the embankment construction. It was believed that the piers may suffer from enormous negative skin friction owing to the surcharge from the embankment and groundwater depression. This paper first summarizes the settlement analysis results to quantify the settlement of pile due to regional ground subsidence and the combined effects from ground water fluctuation and embankment surcharge loading. Accordingly, a loading path on P'-q stress space is formulated to illustrate the loading variation subject to the combined loading effects that can explain why the combined effect becoming significant on settlement control for civil infrastructure in ground subsidence area.

  20. Safety of High Speed Ground Transportation Systems - Human Factors Phase II: Design and Evaluation of Decision Aids for Control of High-Speed Trains: Experiments and Model

    Science.gov (United States)

    1996-12-01

    Although the speed of some guided ground transportation systems continues to : increase, the reaction time and the sensory and information processing : capacities of railroad personnel remain constant. This second report in a : series examining criti...

  1. High-speed evaluation of track-structure Monte Carlo electron transport simulations

    Science.gov (United States)

    Pasciak, A. S.; Ford, J. R.

    2008-10-01

    There are many instances where Monte Carlo simulation using the track-structure method for electron transport is necessary for the accurate analytical computation and estimation of dose and other tally data. Because of the large electron interaction cross-sections and highly anisotropic scattering behavior, the track-structure method requires an enormous amount of computation time. For microdosimetry, radiation biology and other applications involving small site and tally sizes, low electron energies or high-Z/low-Z material interfaces where the track-structure method is preferred, a computational device called a field-programmable gate array (FPGA) is capable of executing track-structure Monte Carlo electron-transport simulations as fast as or faster than a standard computer can complete an identical simulation using the condensed history (CH) technique. In this paper, data from FPGA-based track-structure electron-transport computations are presented for five test cases, from simple slab-style geometries to radiation biology applications involving electrons incident on endosteal bone surface cells. For the most complex test case presented, an FPGA is capable of evaluating track-structure electron-transport problems more than 500 times faster than a standard computer can perform the same track-structure simulation and with comparable accuracy.

  2. High-speed evaluation of track-structure Monte Carlo electron transport simulations.

    Science.gov (United States)

    Pasciak, A S; Ford, J R

    2008-10-07

    There are many instances where Monte Carlo simulation using the track-structure method for electron transport is necessary for the accurate analytical computation and estimation of dose and other tally data. Because of the large electron interaction cross-sections and highly anisotropic scattering behavior, the track-structure method requires an enormous amount of computation time. For microdosimetry, radiation biology and other applications involving small site and tally sizes, low electron energies or high-Z/low-Z material interfaces where the track-structure method is preferred, a computational device called a field-programmable gate array (FPGA) is capable of executing track-structure Monte Carlo electron-transport simulations as fast as or faster than a standard computer can complete an identical simulation using the condensed history (CH) technique. In this paper, data from FPGA-based track-structure electron-transport computations are presented for five test cases, from simple slab-style geometries to radiation biology applications involving electrons incident on endosteal bone surface cells. For the most complex test case presented, an FPGA is capable of evaluating track-structure electron-transport problems more than 500 times faster than a standard computer can perform the same track-structure simulation and with comparable accuracy.

  3. On the optimum signal constellation design for high-speed optical transport networks.

    Science.gov (United States)

    Liu, Tao; Djordjevic, Ivan B

    2012-08-27

    In this paper, we first describe an optimum signal constellation design algorithm, which is optimum in MMSE-sense, called MMSE-OSCD, for channel capacity achieving source distribution. Secondly, we introduce a feedback channel capacity inspired optimum signal constellation design (FCC-OSCD) to further improve the performance of MMSE-OSCD, inspired by the fact that feedback channel capacity is higher than that of systems without feedback. The constellations obtained by FCC-OSCD are, however, OSNR dependent. The optimization is jointly performed together with regular quasi-cyclic low-density parity-check (LDPC) code design. Such obtained coded-modulation scheme, in combination with polarization-multiplexing, is suitable as both 400 Gb/s and multi-Tb/s optical transport enabling technology. Using large girth LDPC code, we demonstrate by Monte Carlo simulations that a 32-ary signal constellation, obtained by FCC-OSCD, outperforms previously proposed optimized 32-ary CIPQ signal constellation by 0.8 dB at BER of 10(-7). On the other hand, the LDPC-coded 16-ary FCC-OSCD outperforms 16-QAM by 1.15 dB at the same BER.

  4. Design, Construction and Testing of Annular Diffusers for High Speed Civil Transportation Combustor Applications

    Science.gov (United States)

    Okhio, Cyril B.

    1996-01-01

    A theoretical and an experimental design study of subsonic flow through curved-wall annular diffusers has been initiated under this award in order to establish the most pertinent design parameters and hence performance characteristics for such devices, an the implications of their application in the design of engine components in the aerospace industries. The diffusers under this study are expected to contain appreciable regions of stall and the effects of swirl on their performance are being studied. The experimental work involves the application of Computer Aided Design software tool to the development of a suitable annular diffuse geometry and the subsequent downloading of such data to a CNC machine at Central State University (CSU). Two experimental run segments have been completed so far during FY-95 involving flow visualization and diffuser performance evaluation based on Kinetic Energy Dissipation. The method of calculation of the performance of diffusers based on pressure recovery coefficient has been shown to have some shortcomings and so the kinetic energy dissipation approach has been introduced in the run segment two with some success. The application of the discretized, full Navier Stokes and Continuity equations to the numerical study of the problem described above for the time-mean flow is expected to follow. Various models of turbulence are being evaluated for adoption throughout the study and comparisons would be made with experimental data where they exist. Assessment of diffuser performance based on the dissipated mechanical energy would also be made. The result of the investigations are expected to indicate that more cost effective component design of such devices as diffusers which normally contain complex flows can still be achieved.

  5. High Altitude Radiations Relevant to the High Speed Civil Transport (HSCT)

    Science.gov (United States)

    Wilson, J. W.; Goldhagan, P.; Maiden, D. L.; Tai, H.

    2004-01-01

    The Langley Research Center (LaRC) performed atmospheric radiation studies under the SST development program in which important ionizing radiation components were measured and extended by calculations to develop the existing atmospheric ionizing radiation (AIR) model. In that program the measured neutron spectrum was limited to less than 10 MeV by the available 1960-1970 instrumentation. Extension of the neutron spectrum to high energies was made using the LaRC PROPER-3C monte carlo code. It was found that the atmospheric neutrons contributed about half of the dose equivalent and approximately half of the neutron contribution was from high energy neutrons above 10 MeV. Furthermore, monte carlo calculations of solar particle events showed that potential exposures as large as 10-100 mSv/hr may occur on important high latitude routes but acceptable levels of exposure could be obtained if timely descent to subsonic altitudes could be made. The principal concern was for pregnant occupants onboard the aircraft. As a result of these studies the FAA Advisory Committee on the Radiobiological Aspects of the SST recommended: 1. Crew members will have to be informed of their exposure levels 2. Maximum exposures on any flight to be limited to 5 mSv 3. Airborne radiation detection devices for total exposure and exposure rates 4. Satellite monitoring system to provide SST aircraft real-time information on atmospheric radiation levels for exposure mitigation 5. A solar forecasting system to warn flight operations of an impending solar event for flight scheduling and alert status. These recommendations are a reasonable starting point to requirements for the HSCT with some modification reflecting new standards of protection as a result of changing risk coefficients.

  6. Boom Softening and Nacelle Integration on an Arrow-Wing High-Speed Civil Transport Concept

    Science.gov (United States)

    Mack, Robert J.

    1999-01-01

    During the last cycle of concept design and wind-tunnel testing, the goal of the low-boom- shaped HSCT concepts (the B-935, the LB-16, and the LB- 1 8) was to meet mission requirements and generate shaped, ground-level pressure signatures with nose shock strengths of 1.0 psf or less. The wind-tunnel tests of these concepts produced results that were partially successful and encouraging although not fully up to expectations. In spite of this, however, these conceptual designs were overly optimistic and not acceptable because: the wing planforms had excessive area; the wing structural aspect ratio was too high; one concept had aft-fuselage rather than under-the-wing engines; and the gross takeoff weights were unrealistically low because of engines that were early, high-tech versions of later, revised, more-realistic engines. The need for reducing the ground-level overpressure shock strengths still existed; a need to be met within more restrictive guidelines of mission performance and gross takeoff weight limitations. Therefore, it was decided that the next conceptual design cycle would focus on decreased nose shock strengths, "boom softening," in the signatures of the Boeing and the McDonnell Douglas baseline concepts rather than low-boom concepts with shaped-signature designs. Overly-optimistic results were not the only problem with these low-sonic-boom concepts. Papers given at the 1994 Sonic-Boom Workshop had demonstrated that the problem of successful nacelle integration on HSCT concepts had only been partially solved. Wind-tunnel pressure signature data, from the HSCT-11B (a.k.a. the LB-18) wind-tunnel model, showed that the Langley HSCT design and analysis method had been successful in reducing the nacelle-volume disturbances in the flow field. This was due.to the engine nacelles mounted behind the wing trailing-edge on the aft fuselage so that no nacelle-wing interference-lift flow-field disturbances were generated. While acceptable from a sonic-boom research point of view, this concept was unacceptable from several practical and structural considerations. Preliminary wind-tunnel pressure signature data from the LB-16 wind-tunnel model, which had the engine nacelles mounted under the wings (the usual location), indicated that the application of the Langley nacelle-integration method had been only partially successful in the reduction of the nacelle-volume with nacelle-wing interference-lift pressure disturbances. So, "boom softening" had to also address the task of successful integration of the engine nacelles, with the engines in the required under-the-wing location. Unless this problem was solved, low-sonic-boom and low-drag modifications to the wing planform, the airfoil shape, and the fuselage longitudinal area distribution could be nullified if the nacelle disturbances added increments to the nose-shock strengths that were removed through component tailoring. In this paper, an arrow-wing boom-softened HSC7 concept which incorporated modifications to a baseline McDonnell Douglas concept is discussed. The analysis of the concept's characteristics will include estimates of weight, center of gravity, takeoff field length, mission range, and predictions of its ground-level sonic-boom pressure signature. Additional modifications which enhanced the softened-boom performance of this concept are also described as well as estimates of the performance penalties induced by these modifications.

  7. High speed railway track dynamics models, algorithms and applications

    CERN Document Server

    Lei, Xiaoyan

    2017-01-01

    This book systematically summarizes the latest research findings on high-speed railway track dynamics, made by the author and his research team over the past decade. It explores cutting-edge issues concerning the basic theory of high-speed railways, covering the dynamic theories, models, algorithms and engineering applications of the high-speed train and track coupling system. Presenting original concepts, systematic theories and advanced algorithms, the book places great emphasis on the precision and completeness of its content. The chapters are interrelated yet largely self-contained, allowing readers to either read through the book as a whole or focus on specific topics. It also combines theories with practice to effectively introduce readers to the latest research findings and developments in high-speed railway track dynamics. It offers a valuable resource for researchers, postgraduates and engineers in the fields of civil engineering, transportation, highway & railway engineering.

  8. High speed data converters

    CERN Document Server

    Ali, Ahmed MA

    2016-01-01

    This book covers high speed data converters from the perspective of a leading high speed ADC designer and architect, with a strong emphasis on high speed Nyquist A/D converters. For our purposes, the term 'high speed' is defined as sampling rates that are greater than 10 MS/s.

  9. Cost Analysis for Large Civil Transport Rotorcraft

    Science.gov (United States)

    Coy, John J.

    2006-01-01

    This paper presents cost analysis of purchase price and DOC+I (direct operating cost plus interest) that supports NASA s study of three advanced rotorcraft concepts that could enter commercial transport service within 10 to 15 years. The components of DOC+I are maintenance, flight crew, fuel, depreciation, insurance, and finance. The cost analysis aims at VTOL (vertical takeoff and landing) and CTOL (conventional takeoff and landing) aircraft suitable for regional transport service. The resulting spreadsheet-implemented cost models are semi-empirical and based on Department of Transportation and Army data from actual operations of such aircraft. This paper describes a rationale for selecting cost tech factors without which VTOL is more costly than CTOL by a factor of 10 for maintenance cost and a factor of two for purchase price. The three VTOL designs selected for cost comparisons meet the mission requirement to fly 1,200 nautical miles at 350 knots and 30,000 ft carrying 120 passengers. The lowest cost VTOL design is a large civil tilt rotor (LCTR) aircraft. With cost tech factors applied, the LCTR is reasonably competitive with the Boeing 737-700 when operated in economy regional service following the business model of the selected baseline operation, that of Southwest Airlines.

  10. Safety of High Speed Guided Ground Transportation Systems - Magnetic and Electric Field Testing of the Massachusetts Bay Transportation Authority (MBTA) Urban Transit System: Volume I - Analysis

    Science.gov (United States)

    1993-06-01

    The safety of magnetlcally levitated (maglev) and high speed rail (HSR) trains proposed for application in the : United States is the responsibility of the Federal Railroad Administratlon (FRA). Plans for near future US applications : include maglev ...

  11. A Mathematical Study of Accessibility and Cohesion Degree in a High-Speed Rail Station Connected to an Urban Bus Transport Network

    Science.gov (United States)

    Mota, Carmen; López, Miguel A.; Martínez-Rodrigo, Arturo

    2017-04-01

    In the last twenty years, the implementation of High-Speed Rail (HSR) has been one of the major strategies for territorial structuring used by various countries. This model has enhanced the development of countries such as France, Spain, Germany and Japan. At present, the United States and China are also starting to implement this model. Nevertheless, the lack of social and economic profitability of several networks is being increasingly analysed. Many networks located in particular regions serve populations that are not large enough to recover the initial investment. For this reason, it is necessary to evaluate the population served by this transport mode, beyond the number of users. In this sense, it is essential to identify the deficiencies and potentials of implementing a network linked to other secondary networks in a specific territory which can compensate for the so-called tunnel effect. This article proposes to apply a mathematical approach based on graph theory to measure the Degree Accessibility Node (DAN) in a constrained Geographic Information System (GIS) model. Hence, it would be possible to compare regions, especially medium-sized cities, where the implementation of HSR could represent a qualitative leap due to incorporation into large transport networks. The DAN function uses static and dynamic studies to evaluate the level of connection of stations to secondary transport networks—local public transport in this case. Thus, the impact of high-speed trains could be spread to greater territorial and population ranges. Four cases have been studied, two in Germany (one of them, Fulda, is analysed in depth throughout this article) and two in Spain. These two countries were selected since HSR was implemented in the same relative period of time, in comparison with other European countries. Results show relevant differences, suggesting a review of inappropriate policies of transport integration in a city that could weaken the expansion of the positive

  12. A Mathematical Study of Accessibility and Cohesion Degree in a High-Speed Rail Station Connected to an Urban Bus Transport Network

    Directory of Open Access Journals (Sweden)

    Mota Carmen

    2017-04-01

    Full Text Available In the last twenty years, the implementation of High-Speed Rail (HSR has been one of the major strategies for territorial structuring used by various countries. This model has enhanced the development of countries such as France, Spain, Germany and Japan. At present, the United States and China are also starting to implement this model. Nevertheless, the lack of social and economic profitability of several networks is being increasingly analysed. Many networks located in particular regions serve populations that are not large enough to recover the initial investment. For this reason, it is necessary to evaluate the population served by this transport mode, beyond the number of users. In this sense, it is essential to identify the deficiencies and potentials of implementing a network linked to other secondary networks in a specific territory which can compensate for the so-called tunnel effect. This article proposes to apply a mathematical approach based on graph theory to measure the Degree Accessibility Node (DAN in a constrained Geographic Information System (GIS model. Hence, it would be possible to compare regions, especially medium-sized cities, where the implementation of HSR could represent a qualitative leap due to incorporation into large transport networks. The DAN function uses static and dynamic studies to evaluate the level of connection of stations to secondary transport networks—local public transport in this case. Thus, the impact of high-speed trains could be spread to greater territorial and population ranges. Four cases have been studied, two in Germany (one of them, Fulda, is analysed in depth throughout this article and two in Spain. These two countries were selected since HSR was implemented in the same relative period of time, in comparison with other European countries. Results show relevant differences, suggesting a review of inappropriate policies of transport integration in a city that could weaken the expansion of

  13. High speed heterostructure devices

    CERN Document Server

    Beer, Albert C; Willardson, R K; Kiehl, Richard A; Sollner, T C L Gerhard

    1994-01-01

    Volume 41 includes an in-depth review of the most important, high-speed switches made with heterojunction technology. This volume is aimed at the graduate student or working researcher who needs a broad overview andan introduction to current literature. Key Features * The first complete review of InP-based HFETs and complementary HFETs, which promise very low power and high speed * Offers a complete, three-chapter review of resonant tunneling * Provides an emphasis on circuits as well as devices.

  14. High-speed transport and magneto-mechanical resonant sensing of superparamagnetic microbeads using magnetic domain walls

    Science.gov (United States)

    Rapoport, Elizabeth

    2013-03-01

    Surface-functionalized superparamagnetic (SPM) microbeads are of great interest in biomedical research and diagnostic device engineering for tagging, manipulating, and detecting chemical and biological species in a fluid environment. Recent work has shown that magnetic domain walls (DWs) can be used to shuttle individual SPM microbeads and magnetically tagged entities across the surface of a chip. This talk will describe the dynamics of SPM microbead transport by nanotrack-guided DWs, and show how these coupled dynamics can be exploited for on-chip digital biosensing applications. Using curvilinear magnetic nanotracks, we demonstrate rapid transport of SPM microbeads at speeds approaching 1000 μm/s, and present a mechanism for selective transport at a junction that allows for the design of complex bead routing networks. We further demonstrate that a SPM bead trapped by a DW exhibits a distinct magneto-mechanical resonance that depends on its hydrodynamic characteristics in the host fluid, and that this resonance can be used for robust size-based discrimination of commercial microbead populations. By embedding a spin-valve sensor within a DW transport conduit, we show that the resonance can be detected electrically and on-the-fly. Thus, we demonstrate a complete set of essential bead handling functions, including capture, transport, identification, and release, required for an integrated lab-on-a-chip platform. In collaboration with Daniel Montana, David Bono, and Geoffrey S.D. Beach, Massachusetts Institute of Technology. This work is supported by the MIT CMSE under NSF-DMR-0819762 and by the MIT Deshpande Center.

  15. Fully automated, high speed, tomographic phase object reconstruction using the transport of intensity equation in transmission and reflection configurations.

    Science.gov (United States)

    Nguyen, Thanh; Nehmetallah, George; Tran, Dat; Darudi, Ahmad; Soltani, Peyman

    2015-12-10

    While traditional transport of intensity equation (TIE) based phase retrieval of a phase object is performed through axial translation of the CCD, in this work a tunable lens TIE is employed in both transmission and reflection configurations. These configurations are extended to a 360° tomographic 3D reconstruction through multiple illuminations from different angles by a custom fabricated rotating assembly of the phase object. Synchronization circuitry is developed to control the CCD camera and the Arduino board, which in its turn controls the tunable lens and the stepper motor to automate the tomographic reconstruction process. Finally, a MATLAB based user friendly graphical user interface is developed to control the whole system and perform tomographic reconstruction using both multiplicative and inverse radon based techniques.

  16. High speed rail : challenges for the high speed rail project in Norway

    OpenAIRE

    Ringstad, Vidar

    2012-01-01

    This Master Thesis has focus on parts of the public transport system in Norway. The main topic in this thesis is: What variables must be calculated for the decision concerning the construction and implementation of the Norwegian High Speed Rail project, and how are the variables calculated? High Speed Rail does not have a single standard definition. High Speed Rail definition, given in the European Union definition, Directive 96/48 is suitable for many different systems of rolling stock...

  17. South Carolina southeast high speed rail corridor improvement study

    Science.gov (United States)

    2001-02-01

    The Southeast Rail Corridor was originally designated as a high-speed corridor in Section 1010 of the Intermodal Surface Transportation Efficiency Act (ISTEA) of 1991. More specifically, it involved the high-speed grade-crossing improvement program o...

  18. Safety of High Speed Guided Ground Transportation Systems : Magnetic and Electric Field Testing of the Washington Metropolitan Area Transit Authority Metrorail System. v. 1. Analysis.

    Science.gov (United States)

    1993-06-01

    The safety of magnetically levitated (maglev) and high speed rail (HSR) trains proposed for application in the United States is the responsibility of the Federal Railroad Administration (FRA). Plans for near future US applications include maglev tech...

  19. HIGH SPEED CAMERA

    Science.gov (United States)

    Rogers, B.T. Jr.; Davis, W.C.

    1957-12-17

    This patent relates to high speed cameras having resolution times of less than one-tenth microseconds suitable for filming distinct sequences of a very fast event such as an explosion. This camera consists of a rotating mirror with reflecting surfaces on both sides, a narrow mirror acting as a slit in a focal plane shutter, various other mirror and lens systems as well as an innage recording surface. The combination of the rotating mirrors and the slit mirror causes discrete, narrow, separate pictures to fall upon the film plane, thereby forming a moving image increment of the photographed event. Placing a reflecting surface on each side of the rotating mirror cancels the image velocity that one side of the rotating mirror would impart, so as a camera having this short a resolution time is thereby possible.

  20. High Speed Ice Friction

    Science.gov (United States)

    Seymour-Pierce, Alexandra; Sammonds, Peter; Lishman, Ben

    2014-05-01

    Many different tribological experiments have been run to determine the frictional behaviour of ice at high speeds, ostensibly with the intention of applying results to everyday fields such as winter tyres and sports. However, experiments have only been conducted up to linear speeds of several metres a second, with few additional subject specific studies reaching speeds comparable to these applications. Experiments were conducted in the cold rooms of the Rock and Ice Physics Laboratory, UCL, on a custom built rotational tribometer based on previous literature designs. Preliminary results from experiments run at 2m/s for ice temperatures of 271 and 263K indicate that colder ice has a higher coefficient of friction, in accordance with the literature. These results will be presented, along with data from further experiments conducted at temperatures between 259-273K (in order to cover a wide range of the temperature dependent behaviour of ice) and speeds of 2-15m/s to produce a temperature-velocity-friction map for ice. The effect of temperature, speed and slider geometry on the deformation of ice will also be investigated. These speeds are approaching those exhibited by sports such as the luge (where athletes slide downhill on an icy track), placing the tribological work in context.

  1. Safety of High Speed Guided Ground Transportation Systems - An Overview of Biological Effects and Mechanisms Relevant to EMF Exposures from Mass Transit and Electric Rail Systems

    Science.gov (United States)

    1993-08-01

    The U.S. has implemented a national initiative to develop maglev (magnetic levitation) and other high-speed rail (HSR) : systems. There are concerns for potential adverse health effects of the Extremely Lou Frequency (3-3,000 Hz) electric : and magne...

  2. Limits of civil and environmental responsibility in transport through pipelines; Limites da responsabilidade civil e ambiental no transporte por dutos

    Energy Technology Data Exchange (ETDEWEB)

    Leao, Andreia Carneiro [EnviroCompliance Assessoria Ambiental (Brazil); Natalizim Luiz Guilherme Samico [Webler e Advogados Associados, Macae, RJ (Brazil)

    2003-07-01

    Throughout the historic evolution of the Brazilian legislation, including a brief analysis of the prevailing laws regarding the subject, this paper provides an ample vision of the civil and environmental liability in transport contracts, and, especially, in the transport of oil and gas through pipelines, discussing the present influence of environmental norms and the New Brazilian Civil Code. And what was brought to a conclusion is, if on one hand were kept the liability of the Sender (user company of the transportation service contracted with the Carrier) and Carrier (personal entity operator of the pipeline system), who respond jointly and regardless of fault for damages to third parties and the environment (extendible also to the owner of the product and to financial institutions that participate in some form in the contract), on the other hand the New Civil Code authorizes the National Petroleum Agency - ANP to rule the liabilities between the parties to the transport contract, providing greater safety to the system operators. (author)

  3. Smart Materials Technology for High Speed Adaptive Inlet/Nozzle Design Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Enabling a new generation of high speed civil aircraft will require breakthrough developments in propulsion design, including novel techniques to optimize inlet...

  4. The high-speed train and its spatial effects

    OpenAIRE

    Javier Gutiérrez Puebla

    2004-01-01

    This paper analyses the high-speed train from a spatial point of view. The basic characteristics of this transportation mode,the evolution of high-speed networks in several countries and the building of a trans-European high-speed railway network are studied.The paper analyses also the process of space-time convergence and its consequences on competitivity and cohesion;the tunel effect;the impact of the high speed-train on transportation demand;and the impacts on the city.

  5. Modern trends in designing high-speed trains

    National Research Council Canada - National Science Library

    Golubović, Snežana D; Rašuo, Boško P; Lučanin, Vojkan J

    2015-01-01

    Increased advantages of railway transportation systems over other types of transportation systems in the past sixty years have been a result of an intensive development of the new generations of high-speed trains...

  6. High speed rail distribution study.

    Science.gov (United States)

    2016-08-01

    The Texas Central Partners are in the process of developing a high speed rail line connecting : Houston and Dallas, Texas. Ultimately, plans are for 8 car trains that accommodate 200 people per : vehicle scheduled every 30 minutes. In addition, Texas...

  7. Chicago-St. Louis high speed rail plan

    Energy Technology Data Exchange (ETDEWEB)

    Stead, M.E.

    1994-12-31

    The Illinois Department of Transportation (IDOT), in cooperation with Amtrak, undertook the Chicago-St. Louis High Speed Rail Financial and Implementation Plan study in order to develop a realistic and achievable blueprint for implementation of high speed rail in the Chicago-St. Louis corridor. This report presents a summary of the Price Waterhouse Project Team`s analysis and the Financial and Implementation Plan for implementing high speed rail service in the Chicago-St. Louis corridor.

  8. High-speed rail-coming to America?

    Science.gov (United States)

    Cameron, David Ossian

    2009-01-01

    The United States lags many parts of the world when it comes to high-speed rail. But investing in high-speed rail could help us through current problems. Funds- $8 billion-in the economic stimulus package passed by Congress are designated for high-speed rail. Other funds in the pipeline total approximately $15.5 billion. High-speed rail can relieve congestion, free up national airspace, provide reliable transportation and positive economic development, create jobs, and is more energy efficient than other modes of travel.

  9. 36 CFR 1192.175 - High-speed rail cars, monorails and systems.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false High-speed rail cars... TRANSPORTATION VEHICLES Other Vehicles and Systems § 1192.175 High-speed rail cars, monorails and systems. (a) All cars for high-speed rail systems, including but not limited to those using “maglev” or high speed...

  10. High-Speed Electrochemical Imaging.

    Science.gov (United States)

    Momotenko, Dmitry; Byers, Joshua C; McKelvey, Kim; Kang, Minkyung; Unwin, Patrick R

    2015-09-22

    The design, development, and application of high-speed scanning electrochemical probe microscopy is reported. The approach allows the acquisition of a series of high-resolution images (typically 1000 pixels μm(-2)) at rates approaching 4 seconds per frame, while collecting up to 8000 image pixels per second, about 1000 times faster than typical imaging speeds used up to now. The focus is on scanning electrochemical cell microscopy (SECCM), but the principles and practicalities are applicable to many electrochemical imaging methods. The versatility of the high-speed scan concept is demonstrated at a variety of substrates, including imaging the electroactivity of a patterned self-assembled monolayer on gold, visualization of chemical reactions occurring at single wall carbon nanotubes, and probing nanoscale electrocatalysts for water splitting. These studies provide movies of spatial variations of electrochemical fluxes as a function of potential and a platform for the further development of high speed scanning with other electrochemical imaging techniques.

  11. High-speed photonics interconnects

    CERN Document Server

    Chrostowski, Lukas

    2013-01-01

    Dramatic increases in processing power have rapidly scaled on-chip aggregate bandwidths into the Tb/s range. This necessitates a corresponding increase in the amount of data communicated between chips, so as not to limit overall system performance. To meet the increasing demand for interchip communication bandwidth, researchers are investigating the use of high-speed optical interconnect architectures. Unlike their electrical counterparts, optical interconnects offer high bandwidth and negligible frequency-dependent loss, making possible per-channel data rates of more than 10 Gb/s. High-Speed

  12. High-speed pulse techniques

    CERN Document Server

    Coekin, J A

    1975-01-01

    High-Speed Pulse Techniques covers the many aspects of technique in digital electronics and encompass some of the more fundamental factors that apply to all digital systems. The book describes the nature of pulse signals and their deliberate or inadvertent processing in networks, transmission lines and transformers, and then examines the characteristics and transient performance of semiconductor devices and integrated circuits. Some of the problems associated with the assembly of these into viable systems operating at ultra high speed are also looked at. The book examines the transients and w

  13. High-speed OTDM switching

    DEFF Research Database (Denmark)

    Jepsen, Kim Stokholm; Mikkelsen, Benny; Clausen, Anders

    1998-01-01

    Optical TDM (OTDM) continues to be of interest both for point-point transmission and as a networking technology for both LANs and long-distance fibre transmission. Recent research has demonstrated enabling techniques for OTDM networks at high speeds. In conclusion, OTDM is emerging as an attracti...

  14. 14 CFR 91.605 - Transport category civil airplane weight limitations.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Transport category civil airplane weight... civil airplane weight limitations. (a) No person may take off any transport category airplane (other than a turbine-engine-powered airplane certificated after September 30, 1958) unless— (1) The takeoff...

  15. Promoting intermodal connectivity at California's high-speed rail stations.

    Science.gov (United States)

    2015-07-01

    High-speed rail (HSR) has emerged as one of the most revolutionary and transformative transportation technologies, having a : profound impact on urban-regional accessibility and inter-city travel across Europe, Japan, and more recently China and othe...

  16. Florida High Speed Rail Authority - 2002 report to the legislature

    Science.gov (United States)

    2002-01-01

    This report addresses a legislative requirement that the Authority issue a report of its actions, findings and recommendations. Previous high speed ground transportation studies were reviewed as part of the preparation of this report. Independent ana...

  17. Analyzing the Potential for High-speed Rail as Part of the Multimodal Transportation System in the United States' Midwest Corridor

    Directory of Open Access Journals (Sweden)

    Jeffrey C. Peters

    2014-06-01

    Full Text Available With increasing demand and rising fuel costs, both travel time and cost of current intercity passenger transportation modes are becoming increasingly relevant. Around the world, highspeed rail (HSR is seen as a way to alleviate demand on highways and at airports. Ridership is the critical element in determining the viability of a large capital, long-term transportation investment. This paper provides a systematic, consistent methodology for analyzing systemwide modal ridership with and without a proposed HSR network and analyzes the potential for highspeed rail as part of the existing multimodal transportation system in a region in terms of ridership. Considerations of capital investment (e.g., network design and HSR speed, along with exogenous demographic, technological, economic, and policy trends in the long-term, are used to project ridership over time. This study represents an important step toward a consistent, comprehensive economic analysis of HSR in the United States.

  18. The development of a high speed solution for the evaluation of track structure Monte Carlo electron transport problems using field programmable gate arrays

    Science.gov (United States)

    Pasciak, Alexander Samuel

    There are two principal techniques for performing Monte Carlo electron transport computations. The first, and least common, is the full track-structure method. This method individually models all physical electron interactions including elastic scatter, electron impact ionization, radiative losses and excitations. However, because of the near infinite size of electron interaction cross-sections and highly anisotropic scattering behavior, this method requires an enormous amount of computation time. Alternatively, the Condensed History (CH) method for electron transport lumps the average effects of multiple energy loss and scattering events into one single pseudo-event, or step. Because of this approximation, the CH method can be orders of magnitude faster than the trackstructure method. While the CH method is reasonably accurate in many situations, it can be inaccurate for simulations involving microscopic site sizes such as those often found in radiation biology. For radiation biology and other microdosimetry applications, a computational device called a Field Programmable Gate Array (FPGA) is capable of executing track-structure Monte Carlo electron transport simulations as fast as, or faster than a standard computer performing transport via the CH method---and, it does so with the additional accuracy and level of detail provided by the track-structure method. In this dissertation, data from FPGA based track-structure electron transport computations are presented for five test cases, ranging in complexity from simple slab-style geometries to radiation biology applications involving electrons incident on endosteal bone surface cells. Even for the most complex test case presented, an FPGA is capable of evaluating track-structure electron transport problems more than 500 times faster than a standard computer can perform the same track-structure simulation, and with comparable accuracy.

  19. High speed cryogenic monodisperse targets

    Science.gov (United States)

    Boukharov, A.; Vishnevkii, E.

    2017-11-01

    The basic possibility of creation of high speed cryogenic monodisperse targets is shown. According to calculations at input of thin liquid cryogenic jets with a velocity of bigger 100 m/s in vacuum the jets don’t manage to freeze at distance to 1 mm and can be broken into monodisperse drops. Drops due to evaporation are cooled and become granules. High speed cryogenic monodisperse targets have the following advantages: direct input in vacuum (there is no need for a chamber of a triple point chamber and sluices), it is possible to use the equipment of a cluster target, it is possible to receive targets with a diameter of D 100m/s), exact synchronization of the target hitting moment in a beam with the moment of sensors turning on.

  20. High-speed AC motors

    Energy Technology Data Exchange (ETDEWEB)

    Jokinen, T.; Arkkio, A. [Helsinki University of Technology Laboratory of Electromechanics, Otaniemi (Finland)

    1997-12-31

    The paper deals with various types of highspeed electric motors, and their limiting powers. Standard machines with laminated rotors can be utilised if the speed is moderate. The solid rotor construction makes it possible to reach higher power and speed levels than those of laminated rotors. The development work on high-speed motors done at Helsinki University of Technology is presented, too. (orig.) 12 refs.

  1. Ultra high-speed sorting.

    Science.gov (United States)

    Leary, James F

    2005-10-01

    Cell sorting has a history dating back approximately 40 years. The main limitation has been that, although flow cytometry is a science, cell sorting has been an art during most of this time. Recent advances in assisting technologies have helped to decrease the amount of expertise necessary to perform sorting. Droplet-based sorting is based on a controlled disturbance of a jet stream dependent on surface tension. Sorting yield and purity are highly dependent on stable jet break-off position. System pressures and orifice diameters dictate the number of droplets per second, which is the sort rate limiting step because modern electronics can more than handle the higher cell signal processing rates. Cell sorting still requires considerable expertise. Complex multicolor sorting also requires new and more sophisticated sort decisions, especially when cell subpopulations are rare and need to be extracted from background. High-speed sorting continues to pose major problems in terms of biosafety due to the aerosols generated. Cell sorting has become more stable and predictable and requires less expertise to operate. However, the problems of aerosol containment continue to make droplet-based cell sorting problematical. Fluid physics and cell viability restraints pose practical limits for high-speed sorting that have almost been reached. Over the next 5 years there may be advances in fluidic switching sorting in lab-on-a-chip microfluidic systems that could not only solve the aerosol and viability problems but also make ultra high-speed sorting possible and practical through massively parallel and exponential staging microfluidic architectures.

  2. A Case Study: Problem-Based Learning for Civil Engineering Students in Transportation Courses

    Science.gov (United States)

    Ahern, A. A.

    2010-01-01

    This paper describes two case studies where problem-based learning (PBL) has been introduced to undergraduate civil engineering students in University College Dublin. PBL has recently been put in place in the penultimate and final year transport engineering classes in the civil engineering degree in University College Dublin. In this case study,…

  3. Parametric Analyses of Potential Effects on Upper Tropospheric/Lower Stratospheric Ozone Chemistry by a Future Fleet of High Speed Civil Transport (HSCT) Type Aircraft

    Science.gov (United States)

    Dutta, Mayurakshi; Patten, Kenneth O.; Wuebbles,Donald J.

    2005-01-01

    This report analyzed the potential impact of projected fleets of HSCT aircraft (currently not under development) through a series of parametric analyses that examine the envelope of potential effects on ozone over a range of total fuel burns, emission indices of nitrogen oxides, and cruise altitudes.

  4. All aboard for high-speed rail

    Energy Technology Data Exchange (ETDEWEB)

    Herman, D.

    1996-09-01

    A sleek, bullet-nosed train whizzing across the countryside is a fairly common sight in many nations. Since the Train a Grande Vitesse (TGV)--the record-setting ``train with great speed``--was introduced in France in 1981, Germany, Japan, and other countries have joined the high-speed club. In addition, the Eurostar passenger train, which travels between Great Britain and France through the Channel Tunnel, can move at 186 miles per hour once it reaches French tracks. Despite the technology`s growth elsewhere, rapid rail travel has not been seen on US shores beyond a few test runs by various manufacturers. Before the end of the century, however, American train spotters will finally be able to see some very fast trains here too. In March, Washington, DC-based Amtrak announced the purchase of 18 American Flyer high-speed train sets for the Northeast Corridor, which stretches from Boston through new York to the nation`s capital. Furthermore, Florida will get its own system by 2004, and other states are now taking a look at the technology. The American Flyer--designed by Montreal-based Bombardier and TGV manufacturer GEC Alsthom Transport in Paris--should venture onto US rails by 1999. Traveling at up to 150 miles per hour, the American Flyer will cut the New York-Boston run from 4 1/2 hours to 3 hours and reduce New York-Washington trip time from 3 hours to less than 2 3/4. Amtrak hopes the new trains and better times will earn it a greater share of travelers from air shuttles and perhaps from Interstate 95. This article describes how technologies that tilt railcars and propel the world`s fastest trains will be merged into one train set for the American Flyer, Amtrak`s first trip along high-speed rails.

  5. Smart Materials Technology for High Speed Adaptive Inlet/Nozzle Design Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Enabling a new generation of high-speed civil aircraft will require breakthrough developments in propulsion systems, including novel techniques to optimize inlet...

  6. 49 CFR 236.1007 - Additional requirements for high-speed service.

    Science.gov (United States)

    2010-10-01

    ... by this subpart, and which have been utilized on high-speed rail systems with similar technical and... 49 Transportation 4 2010-10-01 2010-10-01 false Additional requirements for high-speed service..., AND APPLIANCES Positive Train Control Systems § 236.1007 Additional requirements for high-speed...

  7. Towards high-speed scanning tunneling microscopy

    NARCIS (Netherlands)

    Tabak, Femke Chantal

    2013-01-01

    In this thesis, two routes towards high-speed scanning tunneling microscopy (STM) are described. The first possibility for high-speed scanning that is discussed is the use of MEMS (Micro-Electro Mechanical Systems) devices as high-speed add-ons in STM microscopes. The functionality of these devices

  8. Modern trends in designing high-speed trains

    Directory of Open Access Journals (Sweden)

    Golubović Snežana D.

    2015-01-01

    Full Text Available Increased advantages of railway transportation systems over other types of transportation systems in the past sixty years have been a result of an intensive development of the new generations of high-speed trains. Not only do these types of trains comply with the need for increased speed of transportation and make the duration of the journey shorter, but they also meet the demands for increased reliability, safety and direct application of energy efficiency to the transportation system itself. Along with increased train speed, the motion resistance is increased as well, whereby at speeds over 200 km/h the proportion of air resistance becomes the most dominant member. One of the most efficient measures for reducing air resistance, as well as other negative consequences of high-speed motion, is the development of the aerodynamic shape of the train. This paper presents some construction solutions that affect the aerodynamic properties of high-speed trains, first and foremost, the nose shape, as well as the similarities and differences of individual subsystems necessary for the functioning of modern high-speed rail systems. We analysed two approaches to solving the problem of the aerodynamic shape of the train and the appropriate infrastructure using the examples of Japan and France. Two models of high-speed trains, Shinkansen (Japan and TGV, i.e. AGV (France, have been discussed.

  9. Modern trends in designing high-speed trains

    OpenAIRE

    Golubović Snežana D.; Rašuo Boško P.; Lučanin Vojkan J.

    2015-01-01

    Increased advantages of railway transportation systems over other types of transportation systems in the past sixty years have been a result of an intensive development of the new generations of high-speed trains. Not only do these types of trains comply with the need for increased speed of transportation and make the duration of the journey shorter, but they also meet the demands for increased reliability, safety and direct application of energy efficiency to the transportation system itself...

  10. High speed nanofluidic protein accumulator.

    Science.gov (United States)

    Wu, Dapeng; Steckl, Andrew J

    2009-07-07

    Highly efficient preconcentration is a crucial prerequisite to the identification of important protein biomarkers with extremely low abundance in target biofluids. In this work, poly(dimethylsiloxane) microchips integrated with 10 nm polycarbonate nanopore membranes were utilized as high-speed protein accumulators. Double-sided injection control of electrokinetic fluid flow in the sample channel resulted in highly localized protein accumulation at a very sharp point in the channel cross point. This greatly enhanced the ability to detect very low levels of initial protein concentration. Fluorescein labeled human serum albumin solutions of 30 and 300 pM accumulated to 3 and 30 microM in only 100 s. Initial solutions as low as 0.3 and 3 pM could be concentrated within 200 s to 0.3 and 3 microM, respectively. This demonstrates a approximately 10(5)-10(6) accumulation factor, and an accumulation rate as high as 5000/sec, yielding a >10x improvement over most results reported to date.

  11. High Speed On-Wafer Characterization Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — At the High Speed On-Wafer Characterization Laboratory, researchers characterize and model devices operating at terahertz (THz) and millimeter-wave frequencies. The...

  12. High speed imaging - An important industrial tool

    Science.gov (United States)

    Moore, Alton; Pinelli, Thomas E.

    1986-01-01

    High-speed photography, which is a rapid sequence of photographs that allow an event to be analyzed through the stoppage of motion or the production of slow-motion effects, is examined. In high-speed photography 16, 35, and 70 mm film and framing rates between 64-12,000 frames per second are utilized to measure such factors as angles, velocities, failure points, and deflections. The use of dual timing lamps in high-speed photography and the difficulties encountered with exposure and programming the camera and event are discussed. The application of video cameras to the recording of high-speed events is described.

  13. High Speed Rail (HSR) in the United States

    Science.gov (United States)

    2009-12-08

    Magnetic Levitation (Maglev) ...............................................................................................5 High Speed Rail In...conventional steel wheel on steel rail technology, or magnetic levitation (in which superconducting magnets levitate a train above a guide rail...transported.14 Magnetic Levitation (Maglev) Maglev train technology was developed in the United States in the 1960s. It uses electromagnets to suspend

  14. 78 FR 36823 - California High-Speed Rail Authority-Construction Exemption-in Merced, Madera and Fresno Counties...

    Science.gov (United States)

    2013-06-19

    ... TRANSPORTATION Surface Transportation Board California High-Speed Rail Authority--Construction Exemption--in... approval requirements of 49 U.S.C. 10901 for the California High-Speed Rail Authority (Authority) to construct an approximately 65- mile high-speed passenger rail line between Merced and Fresno, California...

  15. High-speed imaging in fluids

    NARCIS (Netherlands)

    Versluis, Michel

    2013-01-01

    High-speed imaging is in popular demand for a broad range of experiments in fluids. It allows for a detailed visualization of the event under study by acquiring a series of image frames captured at high temporal and spatial resolution. This review covers high-speed imaging basics, by defining

  16. Wing design for a civil tiltrotor transport aircraft

    Science.gov (United States)

    Rais-Rohani, Masoud

    1994-01-01

    The goal of this research is the proper tailoring of the civil tiltrotor's composite wing-box structure leading to a minimum-weight wing design. With focus on the structural design, the wing's aerodynamic shape and the rotor-pylon system are held fixed. The initial design requirement on drag reduction set the airfoil maximum thickness-to-chord ratio to 18 percent. The airfoil section is the scaled down version of the 23 percent-thick airfoil used in V-22's wing. With the project goal in mind, the research activities began with an investigation of the structural dynamic and aeroelastic characteristics of the tiltrotor configuration, and the identification of proper procedures to analyze and account for these characteristics in the wing design. This investigation led to a collection of more than thirty technical papers on the subject, some of which have been referenced here. The review of literature on the tiltrotor revealed the complexity of the system in terms of wing-rotor-pylon interactions. The aeroelastic instability or whirl flutter stemming from wing-rotor-pylon interactions is found to be the most critical mode of instability demanding careful consideration in the preliminary wing design. The placement of wing fundamental natural frequencies in bending and torsion relative to each other and relative to the rotor 1/rev frequencies is found to have a strong influence on the whirl flutter. The frequency placement guide based on a Bell Helicopter Textron study is used in the formulation of frequency constraints. The analysis and design studies are based on two different finite-element computer codes: (1) MSC/NASATRAN and (2) WIDOWAC. These programs are used in parallel with the motivation to eventually, upon necessary modifications and validation, use the simpler WIDOWAC code in the structural tailoring of the tiltrotor wing. Several test cases were studied for the preliminary comparison of the two codes. The results obtained so far indicate a good overall

  17. High speed curving performance of rail vehicles

    Science.gov (United States)

    2015-03-23

    On March 13, 2013, the Federal Railroad Administration (FRA) published a final rule titled Vehicle/Track Interaction Safety Standards; High-Speed and High Cant Deficiency Operations which amended the Track Safety Standards (49 CFR Part213) and ...

  18. 76 FR 18298 - Notice of Availability of a Final Environmental Impact Statement for the DesertXpress High-Speed...

    Science.gov (United States)

    2011-04-01

    ... passenger rail transportation between southern California and Las Vegas using proven high-speed rail... DesertXpress High-Speed Passenger Train Project AGENCY: Federal Railroad Administration (FRA), United... High-Speed Passenger Train Project (DesertXpress project). FRA is the Lead Agency for the environmental...

  19. 78 FR 24309 - California High-Speed Rail Authority-Construction Exemption-in Merced, Madera and Fresno Counties...

    Science.gov (United States)

    2013-04-24

    ... Surface Transportation Board California High-Speed Rail Authority--Construction Exemption--in Merced, Madera and Fresno Counties, Cal On March 27, 2013, California High-Speed Rail Authority (Authority), a... California High- Speed Rail Authority to know the reasons we reached this finding, but also to inform other...

  20. 78 FR 78507 - California High-Speed Rail Authority-Construction Exemption-In Fresno, Kings, Tulare, and Kern...

    Science.gov (United States)

    2013-12-26

    ... Surface Transportation Board California High-Speed Rail Authority--Construction Exemption--In Fresno, Kings, Tulare, and Kern Counties, CA By petition filed on September 26, 2013, California High-Speed Rail... June 13, 2013, in California High-Speed Rail Authority--Construction Exemption--in Merced, Madera...

  1. 78 FR 22031 - California High-Speed Rail Authority-Construction Exemption-In Merced, Madera and Fresno Counties...

    Science.gov (United States)

    2013-04-12

    ... Surface Transportation Board California High-Speed Rail Authority--Construction Exemption--In Merced... Administration (FRA) and California High-Speed Rail Authority (Authority). This Final EIS is titled ``California... of the planned California HST system, which would provide intercity, high-speed passenger rail...

  2. Environmental risks of high-speed railway in China: Public participation, perception and trust

    NARCIS (Netherlands)

    He, G.; Mol, A.P.J.; Zhang, L.; Lu, Y.

    2015-01-01

    Two decades ago China entered an era with rapid expansion of transport infrastructure. In an ambitious plan on high-speed railway development, China plans to have the longest high-speed railway network by 2020. Social concerns and anxiety with the adverse environmental and social risks and impacts

  3. Scientific Visualization in High Speed Network Environments

    Science.gov (United States)

    Vaziri, Arsi; Kutler, Paul (Technical Monitor)

    1997-01-01

    In several cases, new visualization techniques have vastly increased the researcher's ability to analyze and comprehend data. Similarly, the role of networks in providing an efficient supercomputing environment have become more critical and continue to grow at a faster rate than the increase in the processing capabilities of supercomputers. A close relationship between scientific visualization and high-speed networks in providing an important link to support efficient supercomputing is identified. The two technologies are driven by the increasing complexities and volume of supercomputer data. The interaction of scientific visualization and high-speed networks in a Computational Fluid Dynamics simulation/visualization environment are given. Current capabilities supported by high speed networks, supercomputers, and high-performance graphics workstations at the Numerical Aerodynamic Simulation Facility (NAS) at NASA Ames Research Center are described. Applied research in providing a supercomputer visualization environment to support future computational requirements are summarized.

  4. High Speed Digital Camera Technology Review

    Science.gov (United States)

    Clements, Sandra D.

    2009-01-01

    A High Speed Digital Camera Technology Review (HSD Review) is being conducted to evaluate the state-of-the-shelf in this rapidly progressing industry. Five HSD cameras supplied by four camera manufacturers participated in a Field Test during the Space Shuttle Discovery STS-128 launch. Each camera was also subjected to Bench Tests in the ASRC Imaging Development Laboratory. Evaluation of the data from the Field and Bench Tests is underway. Representatives from the imaging communities at NASA / KSC and the Optical Systems Group are participating as reviewers. A High Speed Digital Video Camera Draft Specification was updated to address Shuttle engineering imagery requirements based on findings from this HSD Review. This draft specification will serve as the template for a High Speed Digital Video Camera Specification to be developed for the wider OSG imaging community under OSG Task OS-33.

  5. High Speed Wireless Signal Generation and Demodulation

    DEFF Research Database (Denmark)

    Caballero Jambrina, Antonio; Sambaraju, Rakesh; Zibar, Darko

    We present the experimental demonstration of high speed wireless generation, up to 40 Gb/s, in the 75-110 GHz wireless band. All-optical OFDM and photonic up-conversion are used for generation and single side-band modulation with digital coherent detection for demodulation.......We present the experimental demonstration of high speed wireless generation, up to 40 Gb/s, in the 75-110 GHz wireless band. All-optical OFDM and photonic up-conversion are used for generation and single side-band modulation with digital coherent detection for demodulation....

  6. Aerodynamic design on high-speed trains

    Science.gov (United States)

    Ding, San-San; Li, Qiang; Tian, Ai-Qin; Du, Jian; Liu, Jia-Li

    2016-04-01

    Compared with the traditional train, the operational speed of the high-speed train has largely improved, and the dynamic environment of the train has changed from one of mechanical domination to one of aerodynamic domination. The aerodynamic problem has become the key technological challenge of high-speed trains and significantly affects the economy, environment, safety, and comfort. In this paper, the relationships among the aerodynamic design principle, aerodynamic performance indexes, and design variables are first studied, and the research methods of train aerodynamics are proposed, including numerical simulation, a reduced-scale test, and a full-scale test. Technological schemes of train aerodynamics involve the optimization design of the streamlined head and the smooth design of the body surface. Optimization design of the streamlined head includes conception design, project design, numerical simulation, and a reduced-scale test. Smooth design of the body surface is mainly used for the key parts, such as electric-current collecting system, wheel truck compartment, and windshield. The aerodynamic design method established in this paper has been successfully applied to various high-speed trains (CRH380A, CRH380AM, CRH6, CRH2G, and the Standard electric multiple unit (EMU)) that have met expected design objectives. The research results can provide an effective guideline for the aerodynamic design of high-speed trains.

  7. Brandaris ultra high-speed imaging facility

    NARCIS (Netherlands)

    Lajoinie, Guillaume; de Jong, Nico; Versluis, Michel; Tsuji, K.

    2017-01-01

    High-speed imaging is in popular demand for a broad range of scientific applications, including fluid physics, and bubble and droplet dynamics. It allows for a detailed visualization of the event under study by acquiring a series of images captured at high temporal and spatial resolution. The

  8. Crew Rostering for the High Speed Train

    NARCIS (Netherlands)

    R.M. Lentink (Ramon); M.A. Odijk; E. van Rijn

    2002-01-01

    textabstractAt the time of writing we entered the final stage of implementing the crew rostering system Harmony CDR to facilitate the planning of catering crews on board of the Thalys, the High Speed Train connecting Paris, Cologne, Brussels, Amsterdam, and Geneva. Harmony CDR optimally supports the

  9. Comparison of high-speed rail and maglev systems

    Energy Technology Data Exchange (ETDEWEB)

    Najafi, F.T. [Univ. of Florida, Gainesville, FL (United States). Dept. of Civil Engineering; Nassar, F.E. [Keith and Schnars, Fort Lauderdale, FL (United States)

    1996-07-01

    European and Japanese high-speed rail (HSR) and magnetically levitated (maglev) systems were each developed to respond to specific transportation needs within local economic, social, and political constraints. Not only is maglev technology substantially different from that of HSR, but also HSR and maglev systems differ in trainset design, track characteristics, cost structure, and cost sensitivity to design changes. This paper attempts to go beyond the traditional technology comparison table and focuses on the characteristics and conditions for which existing European and Japanese systems were developed. The technologies considered are the French train a grand vitesse (TGV), the Swedish X2000, the German Intercity Express (ICE) and Transrapid, and the Japanese Shinkansen, MLU, and high-speed surface train (HSST).

  10. Development of Industrial High-Speed Transfer Parallel Robot

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Byung In; Kyung, Jin Ho; Do, Hyun Min; Jo, Sang Hyun [Korea Institute of Machinery and Materials, Daejeon (Korea, Republic of)

    2013-08-15

    Parallel robots used in industry require high stiffness or high speed because of their structural characteristics. Nowadays, the importance of rapid transportation has increased in the distribution industry. In this light, an industrial parallel robot has been developed for high-speed transfer. The developed parallel robot can handle a maximum payload of 3 kg. For a payload of 0.1 kg, the trajectory cycle time is 0.3 s (come and go), and the maximum velocity is 4.5 m/s (pick amp, place work, adept cycle). In this motion, its maximum acceleration is very high and reaches approximately 13g. In this paper, the design, analysis, and performance test results of the developed parallel robot system are introduced.

  11. U.S. Supersonic Commercial Aircraft: Assessing NASA's High Speed Research Program

    Science.gov (United States)

    1997-01-01

    The legislatively mandated objectives of the National Aeronautics and Space Administration (NASA) include "the improvement of the usefulness, performance, speed, safety, and efficiency of aeronautical and space vehicles" and "preservation of the United States' preeminent position in aeronautics and space through research and technology development related to associated manufacturing processes." Most of NASA's activities are focused on the space-related aspects of these objectives. However, NASA also conducts important work related to aeronautics. NASA's High Speed Research (HSR) Program is a focused technology development program intended to enable the commercial development of a high speed (i.e., supersonic) civil transport (HSCT). However, the HSR Program will not design or test a commercial airplane (i.e., an HSCT); it is industry's responsibility to use the results of the HSR Program to develop an HSCT. An HSCT would be a second generation aircraft with much better performance than first generation supersonic transports (i.e., the Concorde and the Soviet Tu-144). The HSR Program is a high risk effort: success requires overcoming many challenging technical problems involving the airframe, propulsion system, and integrated aircraft. The ability to overcome all of these problems to produce an affordable HSCT is far from certain. Phase I of the HSR Program was completed in fiscal year 1995; it produced critical information about the ability of an HSCT to satisfy environmental concerns (i-e., noise and engine emissions). Phase II (the final phase according to current plans) is scheduled for completion in 2002. Areas of primary emphasis are propulsion, airframe materials and structures, flight deck systems, aerodynamic performance, and systems integration.

  12. Illinois high-speed rail four-quadrant gate reliability assessment

    Science.gov (United States)

    2009-10-01

    The Federal Railroad Administration (FRA) tasked the John A. Volpe National Transportation Systems Center (Volpe Center) to conduct a reliability analysis of the four-quadrant gate/vehicle detection equipment installed on the future high-speed rail (...

  13. 49 CFR 38.175 - High-speed rail cars, monorails and systems.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false High-speed rail cars, monorails and systems. 38.175 Section 38.175 Transportation Office of the Secretary of Transportation AMERICANS WITH DISABILITIES ACT (ADA) ACCESSIBILITY SPECIFICATIONS FOR TRANSPORTATION VEHICLES Other Vehicles and Systems § 38...

  14. Gas turbine for high speed trains

    Energy Technology Data Exchange (ETDEWEB)

    Chenard, J.-L. [Turbomeca (France)

    1994-12-31

    This presentation will show how the gas turbine engines can be the right compromise to face the challenges raised by the demand for high speed trains through out the world. From the steam locomotive still in use in China to the TGV or ICE in Europe and Shinkensen in Japan able to run at more than 300 kms/hour, the modes of traction for trains have been greatly improved during the last fifty years. Even more faster trains are under studies for the future with the magnetic levitation system. Three main propulsion system, diesel, electric and gas turbines are actually competing in the high speed train market. They will have to comply with the new environmental regulations, better efficiency and customers` requirements for the developed countries, and with the necessity to use the existing tracks for most of the applications

  15. High-speed inline holographic Stokesmeter imaging.

    Science.gov (United States)

    Liu, Xue; Heifetz, Alexander; Tseng, Shih C; Shahriar, M S

    2009-07-01

    We demonstrate a high-speed inline holographic Stokesmeter that consists of two liquid crystal retarders and a spectrally selective holographic grating. Explicit choices of angles of orientation for the components in the inline architecture are identified to yield higher measurement accuracy than the classical architecture. We show polarimetric images of an artificial scene produced by such a Stokesmeter, demonstrating the ability to identify an object not recognized by intensity-only imaging systems.

  16. Radiation-Tolerant High-Speed Camera

    Science.gov (United States)

    2017-03-01

    Radiation -Tolerant High-Speed Camera Esko Mikkola, Andrew Levy, Matt Engelman Alphacore, Inc. Tempe, AZ 85281 Abstract: As part of an... radiation -hardened CMOS image sensor and camera system. Radiation -hardened cameras with frame rates as high as 10 kfps and resolution of 1Mpixel are not...camera solution that is under development with a similar architecture. It also includes a brief description of the radiation -hardened camera that

  17. AGAINTS AND FOR THE HIGH SPEED TRAINS’ MULTIMPLICATION

    Directory of Open Access Journals (Sweden)

    Benea Ciprian

    2008-05-01

    Full Text Available In this exposure we intend to make visible the situation in which global warming is given by road and air transport, how could be revitalized railways, and how high speed trains could become a preferred mode of transport. But there is manifesting an opposition to railway development, nurtured by different interests, ranking from governments themselves, to oil importing countries, oil exporting countries, oil companies with their colligate partners situated along the oil distribution chain. But, there could be identified some voices which could create themselves the possibility to speak lauder in order to promote railway transportation. The greens, NGOs, the epistemic communities, for example, could unite their force to make something in order to provide the framework for rail transportation’s development, and for road and air transport reduction, for the benefit of while humankind.

  18. Design of noise barrier inspection system for high-speed railway

    Science.gov (United States)

    Liu, Bingqian; Shao, Shuangyun; Feng, Qibo; Ma, Le; Cholryong, Kim

    2016-10-01

    The damage of noise barriers will highly reduce the transportation safety of the high-speed railway. In this paper, an online inspection system of noise barrier based on laser vision for the safety of high-speed railway is proposed. The inspection system, mainly consisted of a fast camera and a line laser, installed in the first carriage of the high-speed CIT(Composited Inspection Train).A Laser line was projected on the surface of the noise barriers and the images of the light line were received by the camera while the train is running at high speed. The distance between the inspection system and the noise barrier can be obtained based on laser triangulation principle. The results of field tests show that the proposed system can meet the need of high speed and high accuracy to get the contour distortion of the noise barriers.

  19. Developing course lecture notes on high-speed rail.

    Science.gov (United States)

    2017-07-15

    1. Introduction a. World-wide Development of High-Speed Rail (Japan, Europe, China) b. High-speed Rail in the U.S. 2. High-Speed Rail Infrastructure a. Geometric Design of High Speed Rail i. Horizontal Curve ii. Vertical Curve iii. Grade and Turnout ...

  20. An adaptive finite element method for high speed flows

    Science.gov (United States)

    Peraire, J.; Morgan, K.; Peiro, J.; Zienkiewicz, O. C.

    1987-01-01

    The solution of the equations of compressible high speed flow, on unstructured triangular grids in 2D and tetrahedral grids in 3D, is considered. Solution methods based upon both Taylor-Galerkin and Runge-Kutta time-stepping techniques are presented and the incorporation of the ideas of flux corrected transport (FCT) is discussed. These methods are combined with an adaptive mesh regeneration procedure and are employed in the solution of several examples, consisting of Euler flows in both 2D and 3D and Navier-Stokes flows in 2D.

  1. High-speed cinematography of compressible mixing layers

    Science.gov (United States)

    Mahadevan, R.; Loth, Eric

    1994-07-01

    Experiments are performed using high-speed film cinematography to temporally resolve compressible planar mixing layer structures using shadowgraphs and planar light sheet visualization. The technique is relatively inexpensive and allows multiple images. The time-dependent shadowgraph and Mie scattering images are documented with a rotating mirror camera operating at approximately 350 kHz. The results show the presence of large scale structures in the mixing layer which flatten as they convect downstream. Both spatial and temporal covariances have been obtained through digital image processing which yield, on average, elliptical structures with convective speeds above the isentropic prediction, and non-isotropic streamwise and transverse scalar transport fluctuations.

  2. Photonic Technologies for Ultra-High-Speed Information Highways

    DEFF Research Database (Denmark)

    Bouchoule, S; Lèfevre, R.; Legros, E.

    1999-01-01

    The ACTS project HIGHWAY (AC067) addresses promising ultra-high speed optoelectronic components and system technologies for 40 Gbit/s time-division-multiplexed (TDM) transport systems. Advanced 40 Gbit/s TDM system lab demonstrators are to be realized and tested over installed field fiber testbeds....... This paper reviews the current status of 40 Gbit/s TDM components and subsystem technologies achieved in HIGHWAY. The results of HIGHWAY 40 Gbit/s TDM systems and field tests will be reported in a subsequent paper. (C) 1999 Academic Press....

  3. Preliminary results from the High Speed Airframe Integration Research project

    Science.gov (United States)

    Coen, Peter G.; Sobieszczanski-Sobieski, Jaroslaw; Dollyhigh, Samuel M.

    1992-01-01

    A review is presented of the accomplishment of the near term objectives of developing an analysis system and optimization methods during the first year of the NASA Langley High Speed Airframe Integration Research (HiSAIR) project. The characteristics of a Mach 3 HSCT transport have been analyzed utilizing the newly developed process. In addition to showing more detailed information about the aerodynamic and structural coupling for this type of vehicle, this exercise aided in further refining the data requirements for the analysis process.

  4. High Speed Mobility Through On-Demand Aviation

    Science.gov (United States)

    Moore, Mark D.; Goodrich, Ken; Viken, Jeff; Smith, Jeremy; Fredericks, Bill; Trani, Toni; Barraclough, Jonathan; German, Brian; Patterson, Michael

    2013-01-01

    automobiles. ?? Community Noise: Hub and smaller GA airports are facing increasing noise restrictions, and while commercial airliners have dramatically decreased their community noise footprint over the past 30 years, GA aircraft noise has essentially remained same, and moreover, is located in closer proximity to neighborhoods and businesses. ?? Operating Costs: GA operating costs have risen dramatically due to average fuel costs of over $6 per gallon, which has constrained the market over the past decade and resulted in more than 50% lower sales and 35% less yearly operations. Infusion of autonomy and electric propulsion technologies can accomplish not only a transformation of the GA market, but also provide a technology enablement bridge for both larger aircraft and the emerging civil Unmanned Aerial Systems (UAS) markets. The NASA Advanced General Aviation Transport Experiments (AGATE) project successfully used a similar approach to enable the introduction of primary composite structures and flat panel displays in the 1990s, establishing both the technology and certification standardization to permit quick adoption through partnerships with industry, academia, and the Federal Aviation Administration (FAA). Regional and airliner markets are experiencing constant pressure to achieve decreasing levels of community emissions and noise, while lowering operating costs and improving safety. But to what degree can these new technology frontiers impact aircraft safety, the environment, operations, cost, and performance? Are the benefits transformational enough to fundamentally alter aircraft competiveness and productivity to permit much greater aviation use for high speed and On-Demand Mobility (ODM)? These questions were asked in a Zip aviation system study named after the Zip Car, an emerging car-sharing business model. Zip Aviation investigates the potential to enable new emergent markets for aviation that offer "more flexibility than the existing transportation solutions

  5. Controllable High-Speed Rotation of Nanowires

    Science.gov (United States)

    Fan, D. L.; Zhu, F. Q.; Cammarata, R. C.; Chien, C. L.

    2005-06-01

    We report a versatile method for executing controllable high-speed rotation of nanowires by ac voltages applied to multiple electrodes. The rotation of the nanowires can be instantly switched on or off with precisely controlled rotation speed (to at least 1800 rpm), definite chirality, and total angle of rotation. We have determined the torque due to the fluidic drag force on nanowire of different lengths. We also demonstrate a micromotor using a rotating nanowire driving a dust particle into circular motion. This method has been used to rotate magnetic and nonmagnetic nanowires as well as carbon nanotubes.

  6. High-speed multispectral confocal biomedical imaging.

    Science.gov (United States)

    Carver, Gary E; Locknar, Sarah A; Morrison, William A; Ramanujan, V Krishnan; Farkas, Daniel L

    2014-03-01

    A new approach for generating high-speed multispectral confocal images has been developed. The central concept is that spectra can be acquired for each pixel in a confocal spatial scan by using a fast spectrometer based on optical fiber delay lines. This approach merges fast spectroscopy with standard spatial scanning to create datacubes in real time. The spectrometer is based on a serial array of reflecting spectral elements, delay lines between these elements, and a single element detector. The spatial, spectral, and temporal resolution of the instrument is described and illustrated by multispectral images of laser-induced autofluorescence in biological tissues.

  7. Theory Of High-Speed Stereophotogrammetry

    Science.gov (United States)

    Hongxun, Song; Junren, Chen

    1989-06-01

    The general equations of direct linear transformation (DLT) are derived according to the actual process of high-speed stereophotogrammetry. The equations are not only applicable to the ordinary photographic system, but also to the photographic system with reflectors or stereo-reflectors. The equations are also suitable to the enlarged, copied and projected measurements of photographic film. The linear and non-linear errors in photogrammetric process can be corrected. Finally, the equations of right angle intersection photogrammetry are given and the merits and demerits of this method are discussed.

  8. High Speed SPM of Functional Materials

    Energy Technology Data Exchange (ETDEWEB)

    Huey, Bryan D. [Univ. of Connecticut, Storrs, CT (United States)

    2015-08-14

    The development and optimization of applications comprising functional materials necessitates a thorough understanding of their static and dynamic properties and performance at the nanoscale. Leveraging High Speed SPM and concepts enabled by it, efficient measurements and maps with nanoscale and nanosecond temporal resolution are uniquely feasible. This includes recent enhancements for topographic, conductivity, ferroelectric, and piezoelectric properties as originally proposed, as well as newly developed methods or improvements to AFM-based mechanical, friction, thermal, and photoconductivity measurements. The results of this work reveal fundamental mechanisms of operation, and suggest new approaches for improving the ultimate speed and/or efficiency, of data storage systems, magnetic-electric sensors, and solar cells.

  9. ACTS High-Speed VSAT Demonstrated

    Science.gov (United States)

    Tran, Quang K.

    1999-01-01

    The Advanced Communication Technology Satellite (ACTS) developed by NASA has demonstrated the breakthrough technologies of Ka-band transmission, spot-beam antennas, and onboard processing. These technologies have enabled the development of very small and ultrasmall aperture terminals (VSAT s and USAT's), which have capabilities greater than have been possible with conventional satellite technologies. The ACTS High Speed VSAT (HS VSAT) is an effort at the NASA Glenn Research Center at Lewis Field to experimentally demonstrate the maximum user throughput data rate that can be achieved using the technologies developed and implemented on ACTS. This was done by operating the system uplinks as frequency division multiple access (FDMA), essentially assigning all available time division multiple access (TDMA) time slots to a single user on each of two uplink frequencies. Preliminary results show that, using a 1.2-m antenna in this mode, the High Speed VSAT can achieve between 22 and 24 Mbps of the 27.5 Mbps burst rate, for a throughput efficiency of 80 to 88 percent.

  10. Analysis of technological and competitive trends of weight reduction in high speed rolling stock industry

    OpenAIRE

    Prieto Moneo, Álvaro

    2016-01-01

    The incorporation to the transport of passengers sector of the high speed industry is preceded by a global society, which requires the possibility to travel quickly, comfortably and efficiently, imposing the current attitude of the concern with the environment. The development of the rail sector over recent decades, and especially in recent years, along with the technological development has allowed the formation of a network of high speed lines around the greatest part of the planet. Due...

  11. Laser beam welding by high-speed beam deflection; Laserstrahlschweissen durch High-Speed-Strahlbewegung

    Energy Technology Data Exchange (ETDEWEB)

    Klotzbach, A.; Morgenthal, L.; Beyer, E. [Fraunhofer-Institut fuer Werkstoff- und Strahltechnik, Dresden (Germany)

    1999-04-01

    The beam deflection system developed at Fraunhofer IWS can be used for rapid moving of a high power laser beam over the workpiece surface. Therefore it is possible to scan even rather small paths with high speed. The system contents two galvanometer scanner with specially designed lightweight mirrors in combination with a beam focusing unit. (Fig. 1). The high-speed welding of contours with small diameter is favorably done with both focusing optics and workpiece fixed (Fig. 2,3). Thus all notorius problems of conventional handling systems, as limited velocity and accuracy resulting from the inertia of the moved focusing head or workpiece, vanish. (orig.)

  12. Unstructured Grid Viscous Flow Simulation Over High-Speed Research Technology Concept Airplane at High-Lift Conditions

    Science.gov (United States)

    Ghaffari, Farhad

    1999-01-01

    Numerical viscous solutions based on an unstructured grid methodology are presented for a candidate high-speed civil transport configuration, designated as the Technology Concept Airplane (TCA), within the High-Speed Research (HSR) program. The numerical results are obtained on a representative TCA high-lift configuration that consisted of the fuselage and the wing, with deflected full-span leading-edge and trailing-edge flaps. Typical on-and off-surface flow structures, computed at high-lift conditions appropriate for the takeoff and landing, indicated features that are generally plausible. Reasonable surface pressure correlations between the numerical results and the experimental data are obtained at free-stream Mach number M(sub infinity) = 0.25 and Reynolds number based on bar-c R(sub c) = 8 x 10(exp 6) for moderate angles of attack of 9.7 deg. and 13.5 deg. However, above and below this angle-of-attack range, the correlation between computed and measured pressure distributions starts to deteriorate over the examined angle-of-attack range. The predicted longitudinal aerodynamic characteristics are shown to correlate very well with existing experimental data across the examined angle-of-attack range. An excellent agreement is also obtained between the predicted lift-to-drag ratio and the experimental data over the examined range of flow conditions.

  13. ECONOMIC APPROACHES TO IMPROVE THE COMPETITIVENESS OF UKRAINIAN TRANSPORT ENTERPRISES ( THE EXAMPLE OF CIVIL AVIATION

    Directory of Open Access Journals (Sweden)

    R. T. Baran

    2010-02-01

    Full Text Available The purpose of reforming the air transport in Ukraine is the implementation of market economic transformations in economic and financial methods of the management of civil aviation operational firms, which were still formed on the basis of Soviet plan-army management principles. The author suggests the mechanism of formation of financial supply paradigm for reformed air transport firm because these reformations are to be carried out when the elaborated optimal economic-legal, investment-innovation, and (what is the most important organizational-financial complex unified methodical principles of the interaction of air transport (АТ subjects are absent (which becomes clear in the course of re-structuring them. Vital problems of formation of investment-innovation re-structuring mechanism for functioning the air transport firms are described in this article. New results of subsequent scientific research concerning financial scheme development of enterprising and commercial activities of airlines in today’s economic stabilization and growth, formation of new paradigm of economic theory and reformation of managing practice are suggested to the participants of the Conference in the course of prolonging the author’s discussion; a possible approach to the solution of financing problems for their re-structuring by means of creating new aviationtransport consortia is also suggested. The aim of creating a new consortium is to improve the economic efficiency of activity of airlines, their competitiveness in internal markets of transport services as well as to reform the system of air transport subjects in Ukraine. This is one of the complex trends for solving the problems of creating national air carrier, the organization of optimal forms and methods of financial schemes formation for measures aimed at improving the competitiveness.

  14. High-speed dynamic-clamp interface

    Science.gov (United States)

    Yang, Yang; Adowski, Timothy; Ramamurthy, Bina; Neef, Andreas

    2015-01-01

    The dynamic-clamp technique is highly useful for mimicking synaptic or voltage-gated conductances. However, its use remains rare in part because there are few systems, and they can be expensive and difficult for less-experienced programmers to implement. Furthermore, some conductances (such as sodium channels) can be quite rapid or may have complex voltage sensitivity, so high speeds are necessary. To address these issues, we have developed a new interface that uses a common personal computer platform with National Instruments data acquisition and WaveMetrics IGOR to provide a simple user interface. This dynamic clamp implements leak and linear synaptic conductances as well as a voltage-dependent synaptic conductance and kinetic channel conductances based on Hodgkin-Huxley or Markov models. The speed of the system can be assayed using a testing mode, and currently speeds of >100 kHz (10 μs per cycle) are achievable with short latency and little jitter. PMID:25632075

  15. High-speed analog CMOS pipeline system

    Science.gov (United States)

    Möschen, J.; Caldwell, A.; Hervas, L.; Hosticka, B.; Kötz, U.; Sippach, B.

    1990-03-01

    We present a switched-capacitor readout system for high speed analog signals. It consists of a 10 MHz four-channel delay-line chip with 58 samples per channel and a 12 channel buffer chip with a sampling rate of 1 MHz and a depth of nine samples. In addition the buffer chip includes an analog multiplexer with 25 inputs for the buffer channels and for 13 additional unbuffered signals. Both chips have been fabricated in CMOS-technology and will be used for the readout of the ZEUS high resolution calorimeter. The circuit and chip concept will be presented and some design optimizations will be discussed. Measurements from integrated prototypes will be given including some experimental data from irradiated chips.

  16. High-speed electrical motor evaluation

    Energy Technology Data Exchange (ETDEWEB)

    1989-02-03

    Under this task, MTI conducted a general review of state-of-the-art high-speed motors. The purpose of this review was to assess the operating parameters, limitations and performance of existing motor designs, and to establish commercial sources for a motor compatible with the requirements of the Brayton-cycle system. After the motor requirements were established, a list of motor types, manufacturers and designs capable of achieving the requisite performance was compiled. This list was based on an in-house evaluation of designs. Following the establishment of these options, a technical evaluation of the designs selected was conducted. In parallel with their evaluations, MTI focused on the establishment of commercial sources.

  17. HIGH SPEED KERR CELL FRAMING CAMERA

    Science.gov (United States)

    Goss, W.C.; Gilley, L.F.

    1964-01-01

    The present invention relates to a high speed camera utilizing a Kerr cell shutter and a novel optical delay system having no moving parts. The camera can selectively photograph at least 6 frames within 9 x 10/sup -8/ seconds during any such time interval of an occurring event. The invention utilizes particularly an optical system which views and transmits 6 images of an event to a multi-channeled optical delay relay system. The delay relay system has optical paths of successively increased length in whole multiples of the first channel optical path length, into which optical paths the 6 images are transmitted. The successively delayed images are accepted from the exit of the delay relay system by an optical image focusing means, which in turn directs the images into a Kerr cell shutter disposed to intercept the image paths. A camera is disposed to simultaneously view and record the 6 images during a single exposure of the Kerr cell shutter. (AEC)

  18. Network Based High Speed Product Innovation

    DEFF Research Database (Denmark)

    Lindgren, Peter

    In the first decade of the 21st century, New Product Development has undergone major changes in the way NPD is managed and organised. This is due to changes in technology, market demands, and in the competencies of companies. As a result NPD organised in different forms of networks is predicted...... to be of ever-increasing importance to many different kinds of companies. This happens at the same times as the share of new products of total turnover and earnings is increasing at unprecedented speed in many firms and industries. The latter results in the need for very fast innovation and product development...... - a need that can almost only be resolved by organising NPD in some form of network configuration. The work of Peter Lindgren is on several aspects of network based high speed product innovation and contributes to a descriptive understanding of this phenomenon as well as with normative theory on how NPD...

  19. Distributed Parallel Processing and Dynamic Load Balancing Techniques for Multidisciplinary High Speed Aircraft Design

    Science.gov (United States)

    Krasteva, Denitza T.

    1998-01-01

    Multidisciplinary design optimization (MDO) for large-scale engineering problems poses many challenges (e.g., the design of an efficient concurrent paradigm for global optimization based on disciplinary analyses, expensive computations over vast data sets, etc.) This work focuses on the application of distributed schemes for massively parallel architectures to MDO problems, as a tool for reducing computation time and solving larger problems. The specific problem considered here is configuration optimization of a high speed civil transport (HSCT), and the efficient parallelization of the embedded paradigm for reasonable design space identification. Two distributed dynamic load balancing techniques (random polling and global round robin with message combining) and two necessary termination detection schemes (global task count and token passing) were implemented and evaluated in terms of effectiveness and scalability to large problem sizes and a thousand processors. The effect of certain parameters on execution time was also inspected. Empirical results demonstrated stable performance and effectiveness for all schemes, and the parametric study showed that the selected algorithmic parameters have a negligible effect on performance.

  20. Wing design for a civil tiltrotor transport aircraft: A preliminary study

    Science.gov (United States)

    Rais-Rohani, Masoud

    1993-01-01

    A preliminary study was conducted on the design of the wing-box structure for a civil tiltrotor transport aircraft. The wing structural weight is to be minimized subject to structural and aeroelastic constraints. The composite wing-box structure is composed of skin, stringers, ribs, and spars. The design variables include skin ply thicknesses and orientations and spar cap and stringer cross-sectional areas. With the total task defined, an initial study was conducted to learn more about the intricate dynamic and aeroelastic characteristics of the tiltrotor aircraft and their roles in the wing design. Also, some work was done on the wing finite-element modeling (via PATRAN) which would be used in structural analysis and optimization. Initial studies indicate that in order to limit the wing/rotor aeroelastic and dynamic interactions in the preliminary design, the cruise speed, rotor system, and wing geometric attributes must all be held fixed.

  1. Engine Installation Effects of Four Civil Transport Airplanes: Wallops Flight Facility Study

    Science.gov (United States)

    Fleming, Gregg G.; Senzig, David A.; McCurdy, David A.; Roof, Christopher J.; Rapoza, Amanda S.

    2003-01-01

    The National Aeronautics and Space Administration (NASA), Langley Research Center (LaRC), the Environmental Measurement and Modeling Division of the United States Department of Transportation s John A. Volpe National Transportation Systems Center (Volpe), and several other organizations (see Appendix A for a complete list of participating organizations and individuals) conducted a noise measurement study at NASA s Wallops Flight Facility (Wallops) near Chincoteague, Virginia during September 2000. This test was intended to determine engine installation effects on four civil transport airplanes: a Boeing 767-400, a McDonnell-Douglas DC9, a Dassault Falcon 2000, and a Beechcraft King Air. Wallops was chosen for this study because of the relatively low ambient noise of the site and the degree of control over airplane operating procedures enabled by operating over a runway closed to other uses during the test period. Measurements were conducted using a twenty microphone U-shaped array oriented perpendicular to the flight path; microphones were mounted such that ground effects were minimized and low elevation angles were observed.

  2. High Speed Magnetostrictive MEMS Actuated Mirror Deflectors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The main goal of this proposal is to develop high speed magnetostrictive and MEMS actuators for rapidly deflecting or deforming mirrors. High speed, light-weight,...

  3. Potential scenarios of concern for high speed rail operations

    Science.gov (United States)

    2011-03-16

    Currently, multiple operating authorities are proposing the : introduction of high-speed rail service in the United States. : While high-speed rail service shares a number of basic : principles with conventional-speed rail service, the operational : ...

  4. High-speed and intercity passenger rail testing strategy.

    Science.gov (United States)

    2013-05-01

    This high-speed and intercity passenger rail (HSIPR) testing strategy addresses the requirements for testing of high-speed train sets and technology before introduction to the North American railroad system. The report documents the results of a surv...

  5. High Speed Magnetostrictive MEMS Actuated Mirror Deflectors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop high speed magnetostrictive and MEMS actuators for rapidly deflecting or deforming mirrors. High speed, light-weight, low voltage beam...

  6. Profile parameters of wheelset detection for high speed freight train

    Science.gov (United States)

    Yang, Kai; Ma, Li; Gao, Xiaorong; Wang, Li

    2012-04-01

    Because of freight train, in China, transports goods on railway freight line throughout the country, it does not depart from or return to engine shed during a long phase, thus we cannot monitor the quality of wheel set effectively. This paper provides a system which uses leaser and high speed camera, applies no-contact light section technology to get precise wheel set profile parameters. The paper employs clamping-track method to avoid complex railway ballast modification project. And detailed descript an improved image-tracking algorithm to extract central line from profile curve. For getting one pixel width and continuous line of the profile curve, uses local gray maximum points as direction control points to direct tracking direction. The results based on practical experiment show the system adapted to detection environment of high speed and high vibration, and it can effectively detect the wheelset geometric parameters with high accuracy. The system fills the gaps in wheel set detection for freight train in main line and has an enlightening function on monitoring the quality of wheel set.

  7. High-Speed Low-Jitter Frequency Multiplication in CMOS

    NARCIS (Netherlands)

    van de Beek, R.C.H.

    2004-01-01

    This thesis deals with high-speed Clock and Frequency Multiplication. The term `high-speedù applies to both the output and the reference frequency of the multiplier. Much emphasis is placed on analysis and optimization of the total timing inaccuracies, and on implementing a high-speed feedback

  8. Videokymography : High-speed line scanning of vocal fold vibration

    NARCIS (Netherlands)

    Svec, JG; Schutte, HK

    A digital technique for high-speed visualization of vibration, called videokymography, was developed and applied to the vocal folds. The system uses a modified video camera able to work in two modes: high-speed (nearly 8,000 images/s) and standard (50 images/s in CCIR norm). In the high-speed mode,

  9. Social exclusion and high speed rail: The case study of Spain

    Energy Technology Data Exchange (ETDEWEB)

    Pagliara, F.; Menicocci, F.; Vassallo, J.M.; Gomez, J.

    2016-07-01

    Very few contributions in the literature have dealt with the issue of social exclusion related to High Speed Rail systems. The objective of this manuscript is to understand what are the factors excluding users from choosing High Speed Rail services considering as case study Spain. For this purpose, a Revealed Preference survey was employed in November and December 2015. A questionnaire was submitted to users of the Spanish transport systems travelling for long distance-journeys. The aim was that of investigating their perception of High Speed Rail system and the factors inhibiting passengers or excluding them from its use. Data about their socioeconomic characteristics were collected as well. The main result of the survey has been that a relationship between social exclusion and High Speed Rail in Spain is present, especially in terms of geographical exclusion. (Author)

  10. High-Speed Interferometry Under Impacting Drops

    KAUST Repository

    Langley, Kenneth R.

    2017-08-31

    Over the last decade the rapid advances in high-speed video technology, have opened up to study many multi-phase fluid phenomena, which tend to occur most rapidly on the smallest length-scales. One of these is the entrapment of a small bubble under a drop impacting onto a solid surface. Here we have gone from simply observing the presence of the bubble to detailed imaging of the formation of a lubricating air-disc under the drop center and its subsequent contraction into the bubble. Imaging the full shape-evolution of the air-disc has required μm and sub-μs space and time resolutions. Time-resolved 200 ns interferometry with monochromatic light, has allowed us to follow individual fringes to obtain absolute air-layer thicknesses, based on the eventual contact with the solid. We can follow the evolution of the dimple shape as well as the compression of the gas. The improved imaging has also revealed new levels of detail, like the nature of the first contact which produces a ring of micro-bubbles, highlighting the influence of nanometric surface roughness. Finally, for impacts of ultra-viscous drops we see gliding on ~100 nm thick rarified gas layers, followed by extreme wetting at numerous random spots.

  11. CMOS Image Sensors for High Speed Applications.

    Science.gov (United States)

    El-Desouki, Munir; Deen, M Jamal; Fang, Qiyin; Liu, Louis; Tse, Frances; Armstrong, David

    2009-01-01

    Recent advances in deep submicron CMOS technologies and improved pixel designs have enabled CMOS-based imagers to surpass charge-coupled devices (CCD) imaging technology for mainstream applications. The parallel outputs that CMOS imagers can offer, in addition to complete camera-on-a-chip solutions due to being fabricated in standard CMOS technologies, result in compelling advantages in speed and system throughput. Since there is a practical limit on the minimum pixel size (4∼5 μm) due to limitations in the optics, CMOS technology scaling can allow for an increased number of transistors to be integrated into the pixel to improve both detection and signal processing. Such smart pixels truly show the potential of CMOS technology for imaging applications allowing CMOS imagers to achieve the image quality and global shuttering performance necessary to meet the demands of ultrahigh-speed applications. In this paper, a review of CMOS-based high-speed imager design is presented and the various implementations that target ultrahigh-speed imaging are described. This work also discusses the design, layout and simulation results of an ultrahigh acquisition rate CMOS active-pixel sensor imager that can take 8 frames at a rate of more than a billion frames per second (fps).

  12. CMOS Image Sensors for High Speed Applications

    Directory of Open Access Journals (Sweden)

    M. Jamal Deen

    2009-01-01

    Full Text Available Recent advances in deep submicron CMOS technologies and improved pixel designs have enabled CMOS-based imagers to surpass charge-coupled devices (CCD imaging technology for mainstream applications. The parallel outputs that CMOS imagers can offer, in addition to complete camera-on-a-chip solutions due to being fabricated in standard CMOS technologies, result in compelling advantages in speed and system throughput. Since there is a practical limit on the minimum pixel size (4~5 μm due to limitations in the optics, CMOS technology scaling can allow for an increased number of transistors to be integrated into the pixel to improve both detection and signal processing. Such smart pixels truly show the potential of CMOS technology for imaging applications allowing CMOS imagers to achieve the image quality and global shuttering performance necessary to meet the demands of ultrahigh-speed applications. In this paper, a review of CMOS-based high-speed imager design is presented and the various implementations that target ultrahigh-speed imaging are described. This work also discusses the design, layout and simulation results of an ultrahigh acquisition rate CMOS active-pixel sensor imager that can take 8 frames at a rate of more than a billion frames per second (fps.

  13. Utilization of electromigration in civil and environmental engineering--processes, transport rates and matrix changes.

    Science.gov (United States)

    Ottosen, Lisbeth M; Christensen, Iben V; Rorig-Dalgård, Inge; Jensen, Pernille E; Hansen, Henrik K

    2008-07-01

    Electromigration (movement of ions in an applied electric field) is utilized for supply or extraction of ions from various porous materials within both civil and environmental engineering. In civil engineering, most research has been conducted on the removal of chlorides from concrete to hinder reinforcement corrosion while in environmental engineering remediation of heavy metal polluted soil is the issue most studied. Never the less, experiments have been conducted with utilization for several other materials and purposes within both engineering fields. Even though there are many topics of common interest in the use of electromigration for the two fields, there is no tradition for collaboration. The present paper is a review with the aim of pointing out areas of shared interest. Focus is laid on the purposes of the different processes, transport rates of various ions in different materials and on changes in the matrix itself. Desorption and dissolution of the target elements into ionic form is a key issue to most of the processes, and can be the limiting step. The removal rate is generally below 1 cm day(- 1), but it can be much less than 1 mm day(- 1) when desorption is slow and insufficient. Matrix changes occurs under the action of the applied electric field and it includes both physico-chemical and hydrological changes. Some of the solid phases is weathered and new can be formed. Increased fundamental understanding of the effects and side effects, when applying the electric field to a porous material, can lead to improvement of the known technologies and possibly to new applications.

  14. High-Speed Data Recorder for Space, Geodesy, and Other High-Speed Recording Applications

    Science.gov (United States)

    Taveniku, Mikael

    2013-01-01

    A high-speed data recorder and replay equipment has been developed for reliable high-data-rate recording to disk media. It solves problems with slow or faulty disks, multiple disk insertions, high-altitude operation, reliable performance using COTS hardware, and long-term maintenance and upgrade path challenges. The current generation data recor - ders used within the VLBI community are aging, special-purpose machines that are both slow (do not meet today's requirements) and are very expensive to maintain and operate. Furthermore, they are not easily upgraded to take advantage of commercial technology development, and are not scalable to multiple 10s of Gbit/s data rates required by new applications. The innovation provides a softwaredefined, high-speed data recorder that is scalable with technology advances in the commercial space. It maximally utilizes current technologies without being locked to a particular hardware platform. The innovation also provides a cost-effective way of streaming large amounts of data from sensors to disk, enabling many applications to store raw sensor data and perform post and signal processing offline. This recording system will be applicable to many applications needing realworld, high-speed data collection, including electronic warfare, softwaredefined radar, signal history storage of multispectral sensors, development of autonomous vehicles, and more.

  15. High Speed/ Low Effluent Process for Ethanol

    Energy Technology Data Exchange (ETDEWEB)

    M. Clark Dale

    2006-10-30

    n this project, BPI demonstrated a new ethanol fermentation technology, termed the High Speed/ Low Effluent (HS/LE) process on both lab and large pilot scale as it would apply to wet mill and/or dry mill corn ethanol production. The HS/LE process allows very rapid fermentations, with 18 to 22% sugar syrups converted to 9 to 11% ethanol ‘beers’ in 6 to 12 hours using either a ‘consecutive batch’ or ‘continuous cascade’ implementation. This represents a 5 to 8X increase in fermentation speeds over conventional 72 hour batch fermentations which are the norm in the fuel ethanol industry today. The ‘consecutive batch’ technology was demonstrated on a large pilot scale (4,800 L) in a dry mill corn ethanol plant near Cedar Rapids, IA (Xethanol Biofuels). The pilot demonstrated that 12 hour fermentations can be accomplished on an industrial scale in a non-sterile industrial environment. Other objectives met in this project included development of a Low Energy (LE) Distillation process which reduces the energy requirements for distillation from about 14,000 BTU/gal steam ($0.126/gal with natural gas @ $9.00 MCF) to as low as 0.40 KW/gal electrical requirements ($0.022/gal with electricity @ $0.055/KWH). BPI also worked on the development of processes that would allow application of the HS/LE fermentation process to dry mill ethanol plants. A High-Value Corn ethanol plant concept was developed to produce 1) corn germ/oil, 2) corn bran, 3) ethanol, 4) zein protein, and 5) nutritional protein, giving multiple higher value products from the incoming corn stream.

  16. High Speed Link Radiated Emission Reduction

    Science.gov (United States)

    Bisognin, P.; Pelissou, P.; Cissou, R.; Giniaux, M.; Vargas, O.

    2016-05-01

    To control the radiated emission of high-speed link and associated unit, the current approach is to implement overall harness shielding on cables bundles. This method is very efficient in the HF/ VHF (high frequency/ very high frequency) and UHF (ultra-high frequency) ranges when the overall harness shielding is properly bonded on EMC back-shell. Unfortunately, with the increasing frequency, the associated half wavelength matches with the size of Sub-D connector that is the case for the L band. Therefore, the unit connectors become the main source of interference emission. For the L-band and S-band, the current technology of EMC back-shell leaves thin aperture matched with the L band half wavelength and therefore, the shielding effectiveness is drastically reduced. In addition, overall harness shielding means significant increases of the harness mass.Airbus D&S Toulouse and Elancourt investigated a new solution to avoid the need of overall harness shielding. The objective is to procure EM (Electro-Magnetic) clean unit connected to cables bundles free of any overall harness shielding. The proposed solution is to implement EMC common mode filtering on signal interfaces directly on unit PCB as close as possible the unit connector.Airbus D&S Elancourt designed and manufactured eight mock-ups of LVDS (Low Voltage Differential Signaling) interface PCBs' with different solutions of filtering. After verification of the signal integrity, three mock-ups were retained (RC filter and two common mode choke coil) in addition to the reference one (without EMC filter).Airbus D&S Toulouse manufactured associated LVDS cable bundles and integrated the RX (Receiver) and TX (Transmitter) LVDS boards in shielded boxes.Then Airbus D&S performed radiated emission measurement of the LVDS links subassemblies (e.g. RX and TX boxes linked by LVDS cables) according to the standard test method. This paper presents the different tested solutions and main conclusions on the feasibility of such

  17. Design and specification of the Xpress transfer high-speed protocol

    OpenAIRE

    Sacha, David Joseph

    1993-01-01

    Approved for public release, distribution is unlimited The use of fiber optics in high-speed data networks has significantly increased throughput and reliability at the physical layer. Consequently, the transport layer has become a bottleneck to the data transfer potential of highspeed networks. This bottleneck has forced an investigation of transport protocols and standards to be used in future networks. The Xpress Transfer Protocol (XTP) is a transport layer protocol designed to perform ...

  18. Design Methodology for Multi-Element High-Lift Systems on Subsonic Civil Transport Aircraft

    Science.gov (United States)

    Pepper, R. S.; vanDam, C. P.

    1996-01-01

    The choice of a high-lift system is crucial in the preliminary design process of a subsonic civil transport aircraft. Its purpose is to increase the allowable aircraft weight or decrease the aircraft's wing area for a given takeoff and landing performance. However, the implementation of a high-lift system into a design must be done carefully, for it can improve the aerodynamic performance of an aircraft but may also drastically increase the aircraft empty weight. If designed properly, a high-lift system can improve the cost effectiveness of an aircraft by increasing the payload weight for a given takeoff and landing performance. This is why the design methodology for a high-lift system should incorporate aerodynamic performance, weight, and cost. The airframe industry has experienced rapid technological growth in recent years which has led to significant advances in high-lift systems. For this reason many existing design methodologies have become obsolete since they are based on outdated low Reynolds number wind-tunnel data and can no longer accurately predict the aerodynamic characteristics or weight of current multi-element wings. Therefore, a new design methodology has been created that reflects current aerodynamic, weight, and cost data and provides enough flexibility to allow incorporation of new data when it becomes available.

  19. CFD Sensitivity Analysis of a Modern Civil Transport Near Buffet-Onset Conditions

    Science.gov (United States)

    Rumsey, Christopher L.; Allison, Dennis O.; Biedron, Robert T.; Buning, Pieter G.; Gainer, Thomas G.; Morrison, Joseph H.; Rivers, S. Melissa; Mysko, Stephen J.; Witkowski, David P.

    2001-01-01

    A computational fluid dynamics (CFD) sensitivity analysis is conducted for a modern civil transport at several conditions ranging from mostly attached flow to flow with substantial separation. Two different Navier-Stokes computer codes and four different turbulence models are utilized, and results are compared both to wind tunnel data at flight Reynolds number and flight data. In-depth CFD sensitivities to grid, code, spatial differencing method, aeroelastic shape, and turbulence model are described for conditions near buffet onset (a condition at which significant separation exists). In summary, given a grid of sufficient density for a given aeroelastic wing shape, the combined approximate error band in CFD at conditions near buffet onset due to code, spatial differencing method, and turbulence model is: 6% in lift, 7% in drag, and 16% in moment. The biggest two contributers to this uncertainty are turbulence model and code. Computed results agree well with wind tunnel surface pressure measurements both for an overspeed 'cruise' case as well as a case with small trailing edge separation. At and beyond buffet onset, computed results agree well over the inner half of the wing, but shock location is predicted too far aft at some of the outboard stations. Lift, drag, and moment curves are predicted in good agreement with experimental results from the wind tunnel.

  20. Water Containment Systems for Testing High-Speed Flywheels

    Science.gov (United States)

    Trase, Larry; Thompson, Dennis

    2006-01-01

    Water-filled containers are used as building blocks in a new generation of containment systems for testing high-speed flywheels. Such containment systems are needed to ensure safety by trapping high-speed debris in the event of centrifugal breakup or bearing failure. Traditional containment systems for testing flywheels consist mainly of thick steel rings. The effectiveness of this approach to shielding against high-speed debris was demonstrated in a series of tests.

  1. A current review of high speed railways experiences in Asia and Europe

    Science.gov (United States)

    Purba, Aleksander; Nakamura, Fumihiko; Dwsbu, Chatarina Niken; Jafri, Muhammad; Pratomo, Priyo

    2017-11-01

    High-Speed Railways (HSR) is currently regarded as one of the most significant technological breakthroughs in passenger transportation developed in the second half of the 20th century. At the beginning of 2008, there were about 10,000 kilometers of new high-speed lines in operation in Asia and Europe regions to provide high-speed services to passengers willing to pay for lower travel time and quality improvement in rail transport. And since 2010, HSR itself has received a great deal of attention in Indonesia. Some transportation analysts contend that Indonesia, particularly Java and Sumatera islands need a high-speed rail network to be economically competitive with countries in Asia and Europe. On April 2016, Indonesia-China consortium Kereta Cepat Indonesia China (KCIC) signed an engineering, procurement, and construction contract to build the HSR with a consortium of seven companies called the High-Speed Railway Contractor Consortium. The HSR is expected to debut by May 2019, offering a 45-minute trip covering a roughly 150 km route. However, building, maintaining and operating HSR line is expensive; it involves a significant amount of sunk costs and may substantially compromise both the transport policy of a country and the development of its transport sector for decades. The main objective of this paper is to discuss some characteristics of the HSR services from an economic viewpoint, while simultaneously developing an empirical framework that should help us to understand, in more detail, the factors determining the success of the HSR as transport alternative based on current experiences of selected Asian and European countries.

  2. Optimized signal constellations for ultra-high-speed optical transport

    Science.gov (United States)

    Zhang, Shaoliang; Liu, Tao; Zhang, Yequn; Yaman, Fatih; Djordjevic, Ivan B.; Wang, Ting

    2015-01-01

    The joint optimization of coding and modulation formats would provide significant receiver sensitivity improvement due to the increased Hamming distance of codes. By applying Arimoto-Blahut algorithm to maximize mutual information, optimized coded-modulation has been found out together with optimized bit-mapping rule. Simulated channel capacity shows that optimized coded modulation could outperform its counterparts, such as regular qaudrature-amplitude modulation, by around 0.3dB up to about 0.9 coding rate. The improvement is found to be larger in higher modulation formats. Optimal coded-8QAM modulation has been further verified in experiment, where 40Tb/s over 6787km is demonstrated by transmitting 200G per wavelength thanks to the better receiver sensitivity of optimal coded modulation.

  3. Cleveland-Columbus-Cincinnati high-speed rail study

    Science.gov (United States)

    2001-07-01

    In the past five years, the evaluation of different high-speed rail (HSR) studies in the Midwest has resulted in a realization that high speed rail, with speeds greater than 110 miles per hour, is too expensive in the short term to be implemented in ...

  4. Florida High Speed Rail Authority - 2003 report to the legislature

    Science.gov (United States)

    2003-01-01

    Since its last full report to the Legislature in January 2002, the Florida High Speed Rail Authority (FHSRA) has continued to fulfill the duties defined in the Florida High Speed Rail Authority Act, Section 341.8201 to 341.842, Florida Statutes. The ...

  5. Advancing high-speed rail policy in the United States.

    Science.gov (United States)

    2012-06-01

    This report builds on a review of international experience with high-speed rail projects to develop recommendations for a High-speed rail policy framework for the United States. The international review looked at the experience of Korea, Taiwan, Chin...

  6. Optical Systems for Ultra-High-Speed TDM Networking

    DEFF Research Database (Denmark)

    Galili, Michael; Hu, Hao; Mulvad, Hans Christian Hansen

    2014-01-01

    This paper discusses key results in the field of high speed optical networking with particular focus on packet-based systems. Schemes for optical packet labeling, packet switching and packet synchronization will be discussed, along with schemes for optical clock recovery, channel identification...... and detection of ultra-high-speed optical signals....

  7. Optical Systems for Ultra-High-Speed TDM Networking

    Directory of Open Access Journals (Sweden)

    Michael Galili

    2014-04-01

    Full Text Available This paper discusses key results in the field of high speed optical networking with particular focus on packet-based systems. Schemes for optical packet labeling, packet switching and packet synchronization will be discussed, along with schemes for optical clock recovery, channel identification and detection of ultra-high-speed optical signals.

  8. 14 CFR 23.253 - High speed characteristics.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false High speed characteristics. 23.253 Section... Requirements § 23.253 High speed characteristics. If a maximum operating speed VMO/MMO is established under § 23.1505(c), the following speed increase and recovery characteristics must be met: (a) Operating...

  9. Rounding Technique for High-Speed Digital Signal Processing

    Science.gov (United States)

    Wechsler, E. R.

    1983-01-01

    Arithmetic technique facilitates high-speed rounding of 2's complement binary data. Conventional rounding of 2's complement numbers presents problems in high-speed digital circuits. Proposed technique consists of truncating K + 1 bits then attaching bit in least significant position. Mean output error is zero, eliminating introducing voltage offset at input.

  10. High-speed train Oslo-Berlin

    DEFF Research Database (Denmark)

    Jespersen, Per Homann

    Oslo - Göteborg". Sluttrapport. Jespersen, P. H., Jensen, A., Stroschein, C., & Lundgren, A. 2007, COINCO - Corridor of Innovation and Cooperation - Strategy 2025. Landex, A. 2006, Railway Capacity Oslo-Berlin, Center for Trafik og Transport, Danmarks Tekniske Universitet, Lyngby.  ...... andet INTERREG-projekt (Civitas AS, Norwegian Railconsult AS, & RTM-konsult AB 2006). Kapacitetsproblemer på strækningen Oslo-Berlin og i særdeleshed muligheden for at bruge banen til såvel højhastigheds-, regional, lokal- og godstog er blevet undersøgt (Landex 2006). I forhold til at udvikle en.......v., men meget sparsomt om økonomi, finansierings- og organisationsformer. Resultater Ud over at forslaget indgår i COINCO-strategien er paperet et oplæg til diskussion og videreudvikling af projekterne.   References   Civitas AS, Norwegian Railconsult AS, & RTM-konsult AB 2006, Interreg III A "Ny jernbane...

  11. Social impacts of high speed rail projects: addressing spatial equity effects.

    OpenAIRE

    Monzón de Cáceres, Andrés; Ortega Pérez, Emilio; López Suárez, Elena

    2010-01-01

    Equity issues are increasingly included among social impacts of transportation investments. Equity implications take into account the distribution of effects among different societal groups (social equity) or regions (spatial equity). The analysis of the spatial distribution of effects is crucial, as certain transportation investments may contribute to increase imbalances between regions, i.e. negative spatial equity impacts. The planning process of a new high speed rail (HSR) corridor ...

  12. The use of high-speed imaging in education

    Science.gov (United States)

    Kleine, H.; McNamara, G.; Rayner, J.

    2017-02-01

    Recent improvements in camera technology and the associated improved access to high-speed camera equipment have made it possible to use high-speed imaging not only in a research environment but also specifically for educational purposes. This includes high-speed sequences that are created both with and for a target audience of students in high schools and universities. The primary goal is to engage students in scientific exploration by providing them with a tool that allows them to see and measure otherwise inaccessible phenomena. High-speed imaging has the potential to stimulate students' curiosity as the results are often surprising or may contradict initial assumptions. "Live" demonstrations in class or student- run experiments are highly suitable to have a profound influence on student learning. Another aspect is the production of high-speed images for demonstration purposes. While some of the approaches known from the application of high speed imaging in a research environment can simply be transferred, additional techniques must often be developed to make the results more easily accessible for the targeted audience. This paper describes a range of student-centered activities that can be undertaken which demonstrate how student engagement and learning can be enhanced through the use of high speed imaging using readily available technologies.

  13. Hardware demonstration of high-speed networks for satellite applications.

    Energy Technology Data Exchange (ETDEWEB)

    Donaldson, Jonathon W.; Lee, David S.

    2008-09-01

    This report documents the implementation results of a hardware demonstration utilizing the Serial RapidIO{trademark} and SpaceWire protocols that was funded by Sandia National Laboratories (SNL's) Laboratory Directed Research and Development (LDRD) office. This demonstration was one of the activities in the Modeling and Design of High-Speed Networks for Satellite Applications LDRD. This effort has demonstrated the transport of application layer packets across both RapidIO and SpaceWire networks to a common downlink destination using small topologies comprised of commercial-off-the-shelf and custom devices. The RapidFET and NEX-SRIO debug and verification tools were instrumental in the successful implementation of the RapidIO hardware demonstration. The SpaceWire hardware demonstration successfully demonstrated the transfer and routing of application data packets between multiple nodes and also was able reprogram remote nodes using configuration bitfiles transmitted over the network, a key feature proposed in node-based architectures (NBAs). Although a much larger network (at least 18 to 27 nodes) would be required to fully verify the design for use in a real-world application, this demonstration has shown that both RapidIO and SpaceWire are capable of routing application packets across a network to a common downlink node, illustrating their potential use in real-world NBAs.

  14. An Early Evaluation of Italian High Speed Rail Projects

    Directory of Open Access Journals (Sweden)

    Paolo Beria

    2011-10-01

    Full Text Available Italy has undergone, in the last 15 years, an exceptional public financial effort to build approximately 1,000 km of high speed rail lines. Further extensions are under construction or planned, especially in the most important international relations. This network is widely considered as fundamental to comply the European vision of a continental-wide transport system.The paper analyses the past and the future of such network, where possible from a quantitative point of view. The first part of the article reviews the history of the Alta Velocità scheme, particularly focusing on the issues related to the economic regulation of the investments and the financial troubles at first and then on the present issues related to the regulation of rail services.The analysis of the supply, the time gains, the demand and the costs allows to build a simple but independent evaluation of the past projects from an ex-post perspective, pointing out the successes, but also important critical issues.The second part of the paper analyses the future expansion plans looking at the costs, the existing and expected demand and derives some policy indications and cost reduction strategies capable both to control public expenditure in a period of crisis and not to abandon the idea of a modern and effective rail network.

  15. Editorial: Thinking beyond the cost-benefit analysis: the wider impact of high-speed rail on local development

    OpenAIRE

    Delaplace, Marie; Dobruszkes, Frédéric

    2016-01-01

    This special issue is one of two published following the conference “High-speed rail and the city”, held at the Paris-Est University in January 2015. The other has been published in Open Transportation Journal, 2016, Volume 10. No fewer than 60 researchers from ten different countries discussed nearly 30 papers related to the two main themes, namely “High-speed rail and urban dynamics” and “High-speed rail and tourism”. This conference was the culmination of a European research process organi...

  16. High-speed optical measurement for the drumhead vibration

    Science.gov (United States)

    Zhang, Qican; Su, Xianyu

    2005-04-01

    In this paper, a high-speed optical measurement for the vibrating drumhead is presented and verified by experiment. A projected sinusoidal fringe pattern on the measured drumhead is dynamically deformed with the vibration of the membrane and grabbed by a high-speed camera. The shape deformation of the drumhead at each sampling instant can be recovered from this sequence of obtained fringe patterns. The vibration of the membrane of a Chinese drum has been measured with a high speed sampling rate (1,000 fps) and a standard deviation (0.075 mm). The restored vibration of the drumhead is also presented in an animation.

  17. Design and Analysis of a High Speed Carry Select Adder

    OpenAIRE

    Simarpreet Singh Chawla; Swapnil Aggarwal; Anshika; Nidhi Goel

    2015-01-01

    An optimal high-speed and low-power VLSI architecture requires an efficient arithmetic processing unit that is optimized for speed and power consumption. Adders are one of the widely used in digital integrated circuit and system design. High speed adder is the necessary component in a data path, e.g. Microprocessors and a Digital signal processor. The present paper proposes a novel high-speed adder by combining the advantages of Carry Look Ahead Adder (CLAA) and Carry Select Adder (CSA), devi...

  18. Design and Analysis of a High Speed Carry Select Adder

    OpenAIRE

    Simarpreet Singh Chawla; Swapnil Aggarwal; Anshika; Nidhi Goel

    2015-01-01

    An optimal high-speed and low-power VLSI architecture requires an efficient arithmetic processing unit that is optimized for speed and power consumption. Adders are one of the widely used in digital integrated circuit and system design.High speed adder is the necessary component in a data path, e.g. Microprocessors and a Digital signal processor. The present paper proposes a novel high-speed adder by combining the advantages of Carry Look Ahead Adder (CLAA) and Carry Select Adder (CSA), devis...

  19. The Paris - Strasbourg high-speed line; Hochgeschwindigkeitsstrecke Paris - Strassburg

    Energy Technology Data Exchange (ETDEWEB)

    Brux, G.

    2007-07-01

    On 10th June 2007, TGV high-speed trains operated by French state railways SNCF, and ICE high-speed trains of Deutsche Bahn, will commence operations of France's eastern highspeed line Paris - Strasbourg, running services from Paris to Luxembourg, Frankfurt am Main and Stuttgart, and also to Basel and Zurich. As from the start of the new timetable on 9th December 2007, the service will also extend to Munich. The new high-speed line will shorten rail travels on these connections by several hours. (orig.)

  20. Railroad Embankment Stabilization Demonstration for High-Speed Rail Corridors

    Science.gov (United States)

    2003-02-09

    The development of high-speed railroad corridors in the United States is being considered by Congress as a fuel efficient and economical alternative to air or highway passenger travel. The exisiting infrastructure is, in many ways, suitable for freig...

  1. High-speed rail turnout literature review : final report.

    Science.gov (United States)

    2016-08-01

    High-speed rail (HSR) turnout design criteria generally address unbalanced lateral acceleration or cant deficiency (CD), cant deficiency change rate (CDCR), and entry and exit jerk. Various countries have adopted different design values for their HSR...

  2. Safety evaluation of high-speed rail bogie concepts.

    Science.gov (United States)

    2013-10-01

    The study defines the basic design concepts required to provide a safe, reliable, high-speed bogie for the next generation PRIIA passenger locomotive. The requirements and conditions for the U.S. market create unique design challenges that currently ...

  3. High-Speed-/-Hypersonic-Weapon-Development-Tool Integration

    National Research Council Canada - National Science Library

    Duchow, Erin M; Munson, Michael J; Alonge, Jr, Frank A

    2006-01-01

    Multiple tools exist to aid in the design and evaluation of high-speed weapons. This paper documents efforts to integrate several existing tools, including the Integrated Hypersonic Aeromechanics Tool (IHAT)1-7...

  4. High-Speed Thermal Characterization of Cryogenic Flows Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Luna proposes to continue development on a high-speed fiber optic sensor and readout system for cryogenic temperature measurements in liquid oxygen (LOX) and liquid...

  5. Application of Beyond Bound Decoding for High Speed Optical Communications

    DEFF Research Database (Denmark)

    Li, Bomin; Larsen, Knud J.; Vegas Olmos, Juan José

    2013-01-01

    This paper studies the application of beyond bound decoding method for high speed optical communications. This hard-decision decoding method outperforms traditional minimum distance decoding method, with a total net coding gain of 10.36 dB....

  6. Characterising argon-bomb balloons for high-speed photography

    CSIR Research Space (South Africa)

    Olivier, M

    2013-08-01

    Full Text Available -1 SABO 2013 TME Workshop Alkantpan Characterising Argon-bomb balloons for High-speed Photography M Olivier and FJ Mostert Landward Sciences, Defence Peace Safety and Security, CSIR, Meiring Naude Road, Pretoria, RSA. Abstract A...

  7. Engineering Data on Selected High Speed Passenger Trucks

    Science.gov (United States)

    1978-07-01

    The purpose of this project is to compile a list of high speed truck engineering parameters for characterization in dynamic performance modeling activities. Data tabulations are supplied for trucks from France, Germany, Italy, England, Japan, U.S.S.R...

  8. Next Generation Modeling Technology for High Speed Rotorcraft Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Recent R&D associated with designing high speed rotorcraft has been greatly hampered by a lack of test data and confidence in predictions for rotors operating...

  9. Next Generation Modeling Technology for High Speed Rotorcraft Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Development of a new generation of high speed rotorcraft has been hampered by both an absence of strong predictive methods for rotors operating at very high advance...

  10. High-speed optical signal processing using time lenses

    DEFF Research Database (Denmark)

    Galili, Michael; Hu, Hao; Guan, Pengyu

    2015-01-01

    This paper will discuss time lenses and their broad range of applications. A number of recent demonstrations of complex high-speed optical signal processing using time lenses will be outlined with focus on the operating principle.......This paper will discuss time lenses and their broad range of applications. A number of recent demonstrations of complex high-speed optical signal processing using time lenses will be outlined with focus on the operating principle....

  11. Minimum Plate Thickness in High-Speed Craft

    DEFF Research Database (Denmark)

    Pedersen, Preben Terndrup; Zhang, Shengming

    1998-01-01

    The minimum plate thickness requirements specified by the classification societies for high-speed craft are supposed to ensure adequate resistance to impact loads such as collision with floating objects and objects falling on the deck. The paper presents analytical methods of describing such impact...... phenomena and proposes performance requirements instead of thickness requirements for hull panels in high-speed craft made of different building materials....

  12. From periphery to core: economic adjustments to high speed rail

    OpenAIRE

    Ahlfeldt, Gabriel M.; Feddersen, Arne

    2010-01-01

    This paper presents evidence that high speed rail systems, by bringing economic agents closer together, sustainably promote economic activity within regions that enjoy an increase in accessibility. Our results on the one hand confirm expectations that have led to huge public investments into high speed rail all over the world. On the other hand, they confirm theoretical predictions arising from a consolidate body of (New) Economic Geography literature taking a positive, man-made and reproduci...

  13. HIGH SPEED SHIP TOTAL RESISTANCE CALCULATION (AN EMPIRICAL STUDY

    Directory of Open Access Journals (Sweden)

    Dimas Endro W

    2014-02-01

    Full Text Available High speed design studies became very intense studies. One of the subject that can be explore is obtaining total resistace. A high speed ship has four stages of condition when she operates. Starting from low speed condition until developent of dinamics lift force. These four states that happened on high speed ship when she cuise on her operational speed, make a specific consideration on predicting her total resistance.  As high speed ship become more widely built and operate in Indonesia, the study of the state of art of high speed vessel  especially for obtaining total resistance has became more challenging In this paper is foccused on proposing an applicative methods for high speed resistance calculation based on savitsky method. Result which obtained form empirical study is compared to numerical software. Result of this study shows that there are no significant differences between empirical method and result form software application. Considering of sea margin would be effective to made the empirical method would be applicable. There is a 128,0812 KN of total resistance using empirical method, by considering sea margine factor, and a 128,512 KN of total resistance resulted form software calculation

  14. IMPROVED METHOD OF DETERMINATION OF ECONOMIC EFFICIENCY OF CONSTRUCTION AND OPERATION OF HIGH SPEED MAINLINE IN UKRAINE

    Directory of Open Access Journals (Sweden)

    YU. S. Barash

    2014-01-01

    Full Text Available Purpose. To develop an advanced methodology and formulate the measures concerning the definition of economic efficiency of high-speed movement organization taking into account the operating experience of rapid transportations in Ukraine, travel time, number of stops on the route, schedule and the demand for these transportations. Methodology. The economic feasibility for appropriateness of high-speed movement organization in Ukraine is an investment project, which involves step-by-step money investment to the construction. To solve such problems one uses net present value, which UZ or newly created companies can get during the project realization and after its completion. Findings. On the basis of obtained studies one can state that the methodology of complex determination of construction efficiency and high-speed passenger trains operation taking into account the cost of infrastructure, rolling stock, impact of environmental factors, etc. was developed in the article. Originality. We propose a scientific approach to determine the economic efficiency of the construction and high-speed main lines operation. This approach, unlike the existing one, includes the improved principles of determining the passenger traffic, the cost of high-speed mainline construction, the number of rolling stock; optimizes income and expenditure calculations in the context of competitive advantages and impact of the external factors on the company. For the first time it was taken into account the transit flow of passengers departing from CIS countries to the vacation in the Crimea, the Carpathians, Odessa and Lviv regions. The account of these factors increases the feasibility of administrative decisions concerning ensuring the efficiency of high-speed traffic functioning. Practical value. The proposed methodology and the research results allowed determining the construction reasonability of high-speed mainline for the passenger trains with a speed at least250 km/h in

  15. Assessment of rural soundscapes with high-speed train noise.

    Science.gov (United States)

    Lee, Pyoung Jik; Hong, Joo Young; Jeon, Jin Yong

    2014-06-01

    In the present study, rural soundscapes with high-speed train noise were assessed through laboratory experiments. A total of ten sites with varying landscape metrics were chosen for audio-visual recording. The acoustical characteristics of the high-speed train noise were analyzed using various noise level indices. Landscape metrics such as the percentage of natural features (NF) and Shannon's diversity index (SHDI) were adopted to evaluate the landscape features of the ten sites. Laboratory experiments were then performed with 20 well-trained listeners to investigate the perception of high-speed train noise in rural areas. The experiments consisted of three parts: 1) visual-only condition, 2) audio-only condition, and 3) combined audio-visual condition. The results showed that subjects' preference for visual images was significantly related to NF, the number of land types, and the A-weighted equivalent sound pressure level (LAeq). In addition, the visual images significantly influenced the noise annoyance, and LAeq and NF were the dominant factors affecting the annoyance from high-speed train noise in the combined audio-visual condition. In addition, Zwicker's loudness (N) was highly correlated with the annoyance from high-speed train noise in both the audio-only and audio-visual conditions. © 2013.

  16. Technical and economic comparison of high-speed-rail and maglev systems

    Energy Technology Data Exchange (ETDEWEB)

    Rogg, D.; Witt, M. [Dornier Consulting GmbH, Berlin (Germany); Jaensch, E. [DB Netz AG, Frankfurt a.M. (Germany)

    2006-03-15

    For around 150 years, high-speed guided transport was the sole preserve of the railway in its conventional ''wheel-on-rail'' sense, until magnetic levitation appeared on the marketplace as a novel means of achieving the same end and of doing so with improved performances. The apparent competition between the two high-speed technologies is frequently at the heart of lively debates amongst specialists. Unfortunately, it sometimes happens that technical and economic evaluations are made on the basis of obsolete data, or that arguments and computations are based on nothing better than estimates. To put an end to that situation, the German Federal Ministry of Transport, Building and Housing (''BMVBW'') commissioned an example-based comparative study of systems for long-distance transport back in 2003. The results of that study have taken the latest available data about both high-speed guided systems into consideration. Excerpts from it were presented at ''Maglev 2004'' in Shanghai. (orig.)

  17. Numerical study of a high-speed miniature centrifugal compressor

    Science.gov (United States)

    Li, Xiaoyi

    A miniature centrifugal compressor is a key component of reverse Brayton cycle cryogenic cooling system. The system is commonly used to generate a low cryogenic temperature environment for electronics to increase their efficiency, or generate, store and transport cryogenic liquids, such as liquid hydrogen and oxygen, where space limit is also an issue. Because of space limitation, the compressor is composed of a radial IGV, a radial impeller and an axial-direction diffuser (which reduces the radial size because of smaller diameter). As a result of reduction in size, rotating speed of the impeller is as high as 313,000 rpm, and Helium is used as the working fluid, in order to obtain the required static pressure ratio/rise. Two main characteristics of the compressor---miniature and high-speed, make it distinct from conventional compressors. Higher compressor efficiency is required to obtain a higher COP (coefficient of performance) system. Even though miniature centrifugal compressors start to draw researchers' attention in recent years, understanding of the performance and loss mechanism is still lacking. Since current experimental techniques are not advanced enough to capture details of flow at miniature scale, numerical methods dominate miniature turbomachinery study. This work numerically studied a high speed miniature centrifugal compressor with commercial CFD code. The overall performance of the compressor was predicted with consideration of interaction between blade rows by using sliding mesh model. The law of similarity of turbomachinery was validated for small scale machines. It was found that the specific ratio effect needs to be considered when similarity law is applied. But Reynolds number effect can be neglected. The loss mechanism of each component was analyzed. Loss due to turning bend was significant in each component. Tip leakage loss of small scale turbomachines has more impact on the impeller performance than that of large scale ones. Because the

  18. Parallelism and pipelining in high-speed digital simulators

    Science.gov (United States)

    Karplus, W. J.

    1983-01-01

    The attainment of high computing speed as measured by the computational throughput is seen as one of the most challenging requirements. It is noted that high speed is cardinal in several distinct classes of applications. These classes are then discussed; they comprise (1) the real-time simulation of dynamic systems , (2) distributed parameter systems, and (3) mixed lumped and distributed systems. From the 1950s on, the quest for high speed in digital simulators concentrated on overcoming the limitations imposed by the so-called von Neumann bottleneck. Two major architectural approaches have made ig possible to circumvent this bottleneck and attain high speeds. These are pipelining and parallelism. Supercomputers, peripheral array processors, and microcomputer networks are then discussed.

  19. Liability of land transportation of fuels from the perspective of Brazilian legal system; Responsabilidade civil dos transportadores terrestres de combustiveis a luz do ordenamento juridico brasileiro

    Energy Technology Data Exchange (ETDEWEB)

    Azevedo, Gabrielle Trindade Moreira de; Soares, Pedro Lucas de Moura [Agencia Nacional do Petroleo, Gas Natural e Biocombustiveis (ANP), Brasilia, DF (Brazil). Programa de Recursos Humanos em Direito do Petroleo, Gas Natural e Biocombustiveis

    2010-01-15

    The article explains about the assumptions of liability - injury, illicit act and the causation between them - and the strands that give ground, namely the subjective and objective liability. Finally, we examine the legal framework on land transportation of fuels, applying to it device relating to civil liability, determining the ways to responsibility the transportation company, in each of the modality of land transportation, which are the road, railway and by using pipes.

  20. High-speed modulation of vertical cavity surface emitting lasers

    Energy Technology Data Exchange (ETDEWEB)

    Hietala, V.M.; Armendariz, M.G.; Choquette, K.D.; Lear, K.L.

    1998-03-01

    This report summarizes work on the development of high-speed vertical cavity surface emitting lasers (VCSELs) for multi-gigabit per second optical data communications applications (LDRD case number 3506.010). The program resulted in VCSELs that operate with an electrical bandwidth of 20 GHz along with a simultaneous conversion efficiency (DC to light) of about 20%. To achieve the large electrical bandwidth, conventional VCSELs were appropriately modified to reduce electrical parasitics and adapted for microwave probing for high-speed operation.

  1. Method for high-speed Manchester encoded optical signal generation

    DEFF Research Database (Denmark)

    Zhang, Jianfeng; Chi, Nan; Holm-Nielsen, Pablo Villanueva

    2004-01-01

    A method for high-speed Manchester encoded optical signal generation is proposed and demonstrated with a specially configured electro-optical modulator. A 10 Gb/s Manchester encoded optical signal was generated, and its bit-error-ratio (BER) performance was evaluated.......A method for high-speed Manchester encoded optical signal generation is proposed and demonstrated with a specially configured electro-optical modulator. A 10 Gb/s Manchester encoded optical signal was generated, and its bit-error-ratio (BER) performance was evaluated....

  2. Secondary Containment Design for a High Speed Centrifuge

    Energy Technology Data Exchange (ETDEWEB)

    Snyder, K.W.

    1999-03-01

    Secondary containment for high speed rotating machinery, such as a centrifuge, is extremely important for operating personnel safety. Containment techniques can be very costly, ungainly and time consuming to construct. A novel containment concept is introduced which is fabricated out of modular sections of polycarbonate glazed into a Unistrut metal frame. A containment study for a high speed centrifuge is performed which includes the development of parameters for secondary containment design. The Unistrut/polycarbonate shield framing concept is presented including design details and proof testing procedures. The economical fabrication and modularity of the design indicates a usefulness for this shielding system in a wide variety of containment scenarios.

  3. ON EFFICIENT OPERATIONAL CONCEPT OF FUTURE HIGH-SPEED RAILWAY IN THE CZECH REPUBLIC

    Directory of Open Access Journals (Sweden)

    Michal Drábek

    2016-09-01

    Full Text Available The aim of this paper is to elaborate a layout of the first operational concept of Rapid Services with 1 hour system travel time between Praha and Brno. Two basic methods are used – Integrated Periodic Timetable (periodic rendezvous of all services in IPT-nodes and Operational Concept Economy Approach, as defined below by the author. In this paper, three recent high-speed railway concepts for the future so-called Rapid Services network of the Czech Republic are followed-up. The first one is an operational traffic planning study by Kalcík, Janoš et al. on behalf of Czech Ministry of Transport from 2010. The second one is the high-speed railway promoting book High Speed Rail Even in the Czech Republic by Šlegr et al. from 2012, with likely the most detailed concept of Rapid Services network. The third one is a paper on progress of the official spatial-technical studies for some future Czech high-speed lines by Šulc from 2014. The importance of achievement of 1 hour travel time between the largest agglomerations is briefly presented. The presented methodological approach, although soft and manager-oriented, comprises some firm principles: segmentation of high-speed train offer, so that more expensive rolling stock is not wasted by operation on long conventional line sections, consideration of system travel times for efficient rolling stock circuit, restriction of need for links from high-speed to conventional lines, and utilization of high-speed lines as a "rail highway". This approach is intended to be particularized iteratively, with every application. So, in this paper, first version of Operational Concept Economy Approach is introduced. The key idea is that passengers should be offered such travel times and service intervals (headways and such number of direct services, which are adequate to their potential demand, but as much synergistic effect as possible should be strived to be achieved for every proposed construction (new or

  4. High-Speed Rail for Central and Eastern European Countries: A Conference Report

    Directory of Open Access Journals (Sweden)

    Jandová Monika

    2016-09-01

    Full Text Available The European transport strategy promotes the role of railways and expects that the key role in passenger transport should be played by high-speed rail (HSR. Although the core network of high-speed lines has already been built and is operating in Western Europe, there has been little coverage so far in Central and Eastern Europe (CEE. The aim of the conference “High-Speed Rail for CEE Countries” that took place in Prague in June 2016 was to put together academics, policy-makers, and practitioners interested in HSR and to formulate recommendations for CEE countries based on West European countries’ experience. Based on the conference presentations and subsequent discussion, the following conclusions were formulated. Firstly, there are many crucial differences in national HSR build-up and operation, which means that former experience of Western Europe is not directly applicable to CEE countries. Secondly, in comparing presentations discussing experiences in France, Britain, Italy, and Germany, it was concluded that the German approach-upgrading existing lines where possible and only building new lines for bottleneck sections-was the most likely appropriate solution in CEE. Lastly, CEE has the additional problem of many border crossings, with a reduction of traffic in comparison with purely domestic routes, and this effect has to be taken into account.

  5. Recent Advances in Ultra-High-Speed Optical Signal Processing

    DEFF Research Database (Denmark)

    Mulvad, Hans Christian Hansen; Palushani, Evarist; Hu, Hao

    2012-01-01

    We review recent advances in the optical signal processing of ultra-high-speed serial data signals up to 1.28 Tbit/s, with focus on applications of time-domain optical Fourier transformation. Experimental methods for the generation of symbol rates up to 1.28 Tbaud are also described....

  6. A high-speed interconnect network using ternary logic

    DEFF Research Database (Denmark)

    Madsen, Jens Kargaard; Long, S. I.

    1995-01-01

    This paper describes the design and implementation of a high-speed interconnect network (ICN) for a multiprocessor system using ternary logic. By using ternary logic and a fast point-to-point communication technique called STARI (Self-Timed At Receiver's Input), the communication between...

  7. High-tech maintenance for high-speed trains

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, Javier Rutz [Nertus Mantenimiento Ferroviario, S.A., Madrid (Spain); Hofmann, Manfred [Siemens AG, Erlangen (Germany). Mobility Div., Integrated Services

    2011-03-15

    Reliable, punctual trains cannot do without professional maintenance. Nertus S.A., a joint subsidiary of Siemens and Renfe, is responsible for providing precisely this for the Spanish high-speed train, Velaro E (AVE S103), which operates between Madrid and Barcelona. (orig.)

  8. Visualization of Projectile Flying at High Speed in Dusty Atmosphere

    Science.gov (United States)

    Masaki, Chihiro; Watanabe, Yasumasa; Suzuki, Kojiro

    2017-10-01

    Considering a spacecraft that encounters particle-laden environment, such as dust particles flying up over the regolith by the jet of the landing thruster, high-speed flight of a projectile in such environment was experimentally simulated by using the ballistic range. At high-speed collision of particles on the projectile surface, they may be reflected with cracking into smaller pieces. On the other hand, the projectile surface will be damaged by the collision. To obtain the fundamental characteristics of such complicated phenomena, a projectile was launched at the velocity up to 400 m/s and the collective behaviour of particles around projectile was observed by the high-speed camera. To eliminate the effect of the gas-particle interaction and to focus on only the effect of the interaction between the particles and the projectile's surface, the test chamber pressure was evacuated down to 30 Pa. The particles about 400μm diameter were scattered and formed a sheet of particles in the test chamber by using two-dimensional funnel with a narrow slit. The projectile was launched into the particle sheet in the tangential direction, and the high-speed camera captured both projectile and particle motions. From the movie, the interaction between the projectile and particle sheet was clarified.

  9. Extremely high-speed imaging based on tubeless technology

    Science.gov (United States)

    Li, Jingzhen

    2008-11-01

    This contribution focuses on the tubeless imaging, the extreme-high speed imaging. A detail discussion is presented on how and why to make them, which would be the most important in the high speed imaging field in the future. Tubeless extreme-high speed imaging can not only be used to observe the transient processes like collision, detonating, and high voltage discharge, but also to research the processes like disintegration and transfer of phonon and exacton in solid, photosynthesis primitive reaction, and electron dynamics inside atom shell. Its imaging frequency is about 107~1015fps. For this kind of imaging, the mechanism of how forming both high speed and framing would better make fine use of the light speed, the light parallelism, the parameters of light wave such as its amplitude, phase, polarization and wave length, and even quantum characteristics of photons. In the cascade connection system of electromagnetic wave and particle wave, it is able to simultaneously realize high level both the temporal resolution and the spatial resolution, and it would be possible to break through the limit of the Heisenberg uncertainty correlation of the optical frequency band.

  10. Time-interleaved high-speed D/A converters

    NARCIS (Netherlands)

    Olieman, E.

    2016-01-01

    This thesis is on power efficient very high-speed digital-to-analog converters (DACs) in CMOS technology, intended to generate signals from DC to RF. Components in RF signal chains are nowadays often moved from the analog domain to the digital domain. This allows for more flexibility and better

  11. Bottom Raking Damage to High-Speed Craft

    DEFF Research Database (Denmark)

    Simonsen, Bo Cerup

    1998-01-01

    This paper presents a comparative study of the raking damage to high speed craft (HSC) and conventional ships. The analysis is based on a detailed theoretical model for the raking resistance of an assembled ship bottom structure and on the idea that the impact conditions for various ship types have...

  12. Research notes : high-speed rail survey results.

    Science.gov (United States)

    2010-08-01

    The survey was conducted from April 2010 to June 2010 using both a print and a web version with identical questions. The print version of the survey was distributed at open house meetings on high-speed rail held in Eugene, Junction City, Albany, Sale...

  13. The impact of high speed rail on airport competition

    NARCIS (Netherlands)

    Terpstra, I.; Lijesen, M.G.

    2015-01-01

    We study the effects of introducing a high speed train connection on competition between airports, focusing on the new HST-link between Amsterdam and Brussels. We conduct a detailed analysis regarding the airport choice of passengers living in the Netherlands, Belgium, Luxembourg, Northern France

  14. On-line high-speed rail defect detection.

    Science.gov (United States)

    2004-10-01

    This report presents the results of phase 2 of the project On-line high-speed rail defect detection aimed at improving the reliability and the speed of current defect detection in rails. Ultrasonic guided waves, traveling in the rail running di...

  15. High Speed and Wide Bandwidth Delta-Sigma ADCs

    NARCIS (Netherlands)

    Bolatkale, M.

    2013-01-01

    This thesis describes the theory, design and implementation of a high-speed, high-performance continuous-time delta-sigma (CT??) ADC for applications such as medical imaging, high-definition video processing, and wireline and wireless communications. In order to achieve a GHz clocking speed, this

  16. High-Speed Low Power Design in CMOS

    DEFF Research Database (Denmark)

    Ghani, Arfan; Usmani, S. H.; Stassen, Flemming

    2004-01-01

    Static CMOS design displays benefits such as low power consumption, dominated by dynamic power consumption. In contrast, MOS Current Mode Logic (MCML) displays static rather than dynamic power consumption. High-speed low-power design is one of the many application areas in VLSI that require...

  17. Tactile shoe inlays for high speed pressure monitoring

    DEFF Research Database (Denmark)

    Drimus, Alin; Mátéfi-Tempfli, Stefan

    2015-01-01

    pressure sensitive cells and the use of high speed electronics and multiplexing algorithms provides frame rates of 100 Hz. The sensors tolerate overloads while showing a consistent output. The developed prototypes show a high potential not only for robotics, but also for use in sensorised human prosthetics....

  18. High-speed photodiodes in standard CMOS technology

    NARCIS (Netherlands)

    Radovanovic, S.

    2004-01-01

    This thesis describes high-speed photodiodes in standard CMOS technology which allow monolithic integration of optical receivers for short-haul communication. The electronics for (multiple users) long-haul communication is very expensive (InP, GaAs), but the usage is justified by the large number of

  19. Optimization and performance of a high-speed plasma position ...

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 62; Issue 1. Optimization and performance of a high-speed plasma position digital control system. M Emami A R Babazadeh H Rasouli. Research Articles Volume 62 Issue 1 January 2004 pp 53-60 ...

  20. Faster than "g", Revisited with High-Speed Imaging

    Science.gov (United States)

    Vollmer, Michael; Mollmann, Klaus-Peter

    2012-01-01

    The introduction of modern high-speed cameras in physics teaching provides a tool not only for easy visualization, but also for quantitative analysis of many simple though fast occurring phenomena. As an example, we present a very well-known demonstration experiment--sometimes also discussed in the context of falling chimneys--which is commonly…

  1. 14 CFR 25.253 - High-speed characteristics.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false High-speed characteristics. 25.253 Section...-speed characteristics. (a) Speed increase and recovery characteristics. The following speed increase and recovery characteristics must be met: (1) Operating conditions and characteristics likely to cause...

  2. High speed flow cytometric separation of viable cells

    Science.gov (United States)

    Sasaki, Dennis T.; Van den Engh, Gerrit J.; Buckie, Anne-Marie

    1995-01-01

    Hematopoietic cell populations are separated to provide cell sets and subsets as viable cells with high purity and high yields, based on the number of original cells present in the mixture. High-speed flow cytometry is employed using light characteristics of the cells to separate the cells, where high flow speeds are used to reduce the sorting time.

  3. Optimization and performance of a high-speed plasma position ...

    Indian Academy of Sciences (India)

    a time domain of the order of few milliseconds. In order to achieve maximum performance it is essential to optimize the control system. In this paper plasma position measurement and the details of implementing high-speed PID controllers based on a TMS320c25 digital signal processor along with the system optimization ...

  4. High-speed T-38A landing gear extension loads

    Science.gov (United States)

    Schmitt, A. L.

    1980-01-01

    Testing of T-38A landing gear extension at high speed and high altitude is described. The mechanisms are shown together with peak hydraulic pressure data during landing gear deployment with active and inactive strut door flaps. Results of strain gage measurements of stress on various structural members are included.

  5. Parallel and distributed processing in high speed traffic monitoring

    NARCIS (Netherlands)

    Cristea, Mihai Lucian

    2008-01-01

    This thesis presents a parallel and distributed approach for the purpose of processing network traffic at high speeds. The proposed architecture provides the processing power required to run one or more traffic processing applications at line rates by means of processing full packets at

  6. Soliton-based ultra-high speed optical communications

    Indian Academy of Sciences (India)

    All these facts are the outcome of research on optical solitons in fibers in spite of the fact that the commonly used RZ format is not always called a soliton format. The overview presented here attempts to incorporate the role of soliton-based communications research in present day ultra-high speed communications.

  7. A High-Speed Train Operation Plan Inspection Simulation Model

    Directory of Open Access Journals (Sweden)

    Yang Rui

    2018-01-01

    Full Text Available We developed a train operation simulation tool to inspect a train operation plan. In applying an improved Petri Net, the train was regarded as a token, and the line and station were regarded as places, respectively, in accordance with the high-speed train operation characteristics and network function. Location change and running information transfer of the high-speed train were realized by customizing a variety of transitions. The model was built based on the concept of component combination, considering the random disturbance in the process of train running. The simulation framework can be generated quickly and the system operation can be completed according to the different test requirements and the required network data. We tested the simulation tool when used for the real-world Wuhan to Guangzhou high-speed line. The results showed that the proposed model can be developed, the simulation results basically coincide with the objective reality, and it can not only test the feasibility of the high-speed train operation plan, but also be used as a support model to develop the simulation platform with more capabilities.

  8. High-speed velocity measurements on an EFI-system

    Science.gov (United States)

    Prinse, W. C.; van't Hof, P. G.; Cheng, L. K.; Scholtes, J. H. G.

    2007-01-01

    For the development of an Exploding Foil Initiator for Insensitive Munitions applications the following topics are of interest: the electrical circuit, the exploding foil, the velocity of the flyer, the driver explosive, the secondary flyer and the acceptor explosive. Several parameters of the EFI have influences on the velocity of the flyer. To investigate these parameters a Fabry-Perot Velocity Interferometer System (F-PVIS) has been used. The light to and from the flyer is transported by a multimode fibre terminated with a GRIN-lens. By this method the velocity of very tiny objects (0.1 mm), can be measured. The velocity of flyer can be recorded with nanosecond resolution, depending on the Fabry-Perot etalon and the streak camera. With this equipment the influence of the dimensions of the exploding foil and the flyer on the velocity and the acceleration of the flyer are investigated. Also the integrity of the flyer during flight can be analyzed. To characterize the explosive material, to be used as driver explosive in EFI's, the initiation behaviour of the explosive has been investigated by taking pictures of the explosion with a high speed framing and streak camera. From these pictures the initiation distance and the detonation behaviour of the explosive has been analyzed. Normally, the driver explosive initiates the acceptor explosive (booster) by direct contact. This booster explosive is embedded in the main charge of the munitions. The combination of initiator, booster explosive and main charge explosive is called the detonation train. In this research the possibility of initiation of the booster by an intermediate flyer is investigated. This secondary flyer can be made of different materials, like aluminium, steel and polyester with different sizes. With the aid of the F-PVIS the acceleration of the secondary flyer is investigated. This reveals the influence of the thickness and density of the flyer on the acceleration and final velocity. Under certain

  9. FORECASTING OF PASSENGER TRAFFIC UPON IMPLEMENTATION OF HIGH-SPEED RUNNING

    Directory of Open Access Journals (Sweden)

    M. B. Kurhan

    2017-02-01

    Full Text Available Purpose. Forecasting of passenger traffic flows in the future is an essential and integral part of the complex process of designing of high-speed network (HSN. HSN direction and its parameters are determined by the volume of passenger traffic, the estimated value of which depends on the economic performance of the country, as well as the material status of citizens living in HSN concentration area, transport mobility of population, development of competing modes of transport and so on. The purpose of this work is to analyse the existing methods of passenger traffic forecasting, to evaluate errors of the existing models concerning determination of traffic volumes and to specify the scientific approach to the development of high-speed rail transport in Ukraine. Methodology. The existing forecasting methods are reduced to the following ones: Delphi approach, extrapolation method, factor and correlation analysis, simulation method. The method described in this paper is based on scientific approaches such as analysis – a comprehensive and detailed study of various aspects of the known forecasting methods, comparing of existing methods for establishing differences and similarities, as well as deduction – use of general knowledge to get the new particular one. Thus, the unified indicators determined for the country as a whole, such as gross domestic product, national income, total population and others cannot be used to forecast the traffic flow on specific areas of HSN construction. Therefore, it is necessary to move from the overall forecast to traffic volume forecast on particular direction. Findings. The conclusions are derived from the analysis of different approaches and methods of passenger flow forecasting. It is proposed to create typical techniques of traffic flow forecasting using modern mathematical methods that would allow avoiding unreasonable decisions and shortening project development time. The resulting recommendations will help

  10. HIGH-SPEED RAILWAY AND TOURISM: IS THERE AN IMPACT ON INTERMEDIATE CITIES? EVIDENCE FROM TWO CASE STUDIES IN CASTILLA-LA MANCHA (SPAIN)

    National Research Council Canada - National Science Library

    Carmen Vázquez Varela; José M Martínez Navarro

    2016-01-01

      The expectations of cities served by High Speed Rail are numerous. Improvements in a destination's accessibility could lead to an increase in transport demand and the revitalization of urban and business tourism...

  11. Method for upgrading the performance at track transitions for high-speed service : next generation high-speed rail program

    Science.gov (United States)

    2001-09-01

    High-speed trains in the speed range of 100 to 160 mph require tracks of nearly perfect geometry and mechanical uniformity, when subjected to moving wheel loads. Therefore, this report briefly describes the remedies being used by various railroads to...

  12. Scalable maskless patterning of nanostructures using high-speed scanning probe arrays

    Science.gov (United States)

    Chen, Chen; Akella, Meghana; Du, Zhidong; Pan, Liang

    2017-08-01

    Nanoscale patterning is the key process to manufacture important products such as semiconductor microprocessors and data storage devices. Many studies have shown that it has the potential to revolutionize the functions of a broad range of products for a wide variety of applications in energy, healthcare, civil, defense and security. However, tools for mass production of these devices usually cost tens of million dollars each and are only affordable to the established semiconductor industry. A new method, nominally known as "pattern-on-the- y", that involves scanning an array of optical or electrical probes at high speed to form nanostructures and offers a new low-cost approach for nanoscale additive patterning. In this paper, we report some progress on using this method to pattern self-assembled monolayers (SAMs) on silicon substrate. We also functionalize the substrate with gold nanoparticle based on the SAM to show the feasibility of preparing amphiphilic and multi-functional surfaces.

  13. High speed tracking control of ball screw drives

    Science.gov (United States)

    Liu, Chao-Yi; Huang, Ruei-Yu; Lee, An-Chen

    2017-10-01

    This paper presents a new method to achieve the requirement of high speed and high precision for ball screw drive. First, a PI controller is adopted to increase the equivalent structural damping in the velocity loop. Next, the design of the position controller is implemented by a two-stage method. The Doubly Coprime Factorization Disturbance Observer (DCFDOB) is developed to suppress disturbance and resist modelling error in the inner loop, while the outer loop is then designed based on method to extend the system bandwidth over first resonant frequency so that high speed and high accuracy can be achieved. Finally, a feedforward controller is implemented to improve tracking performance. The experiment results showed that the proposed method has smaller tracking error and better performance for suppressing disturbance when compared to the conventional cascaded P-PI control.

  14. High-speed measurement of firearm primer blast waves

    CERN Document Server

    Courtney, Michael; Eng, Jonathan; Courtney, Amy

    2012-01-01

    This article describes a method and results for direct high-speed measurements of firearm primer blast waves employing a high-speed pressure transducer located at the muzzle to record the blast pressure wave produced by primer ignition. Key findings are: 1) Most of the lead styphnate based primer models tested show 5.2-11.3% standard deviation in the magnitudes of their peak pressure. 2) In contrast, lead-free diazodinitrophenol (DDNP) based primers had standard deviations of the peak blast pressure of 8.2-25.0%. 3) Combined with smaller blast waves, these large variations in peak blast pressure of DDNP-based primers led to delayed ignition and failure to fire in brief field tests.

  15. Characterizing pyrotechnic igniter output with high-speed schlieren imaging

    Science.gov (United States)

    Skaggs, M. N.; Hargather, M. J.; Cooper, M. A.

    2017-01-01

    Small-scale pyrotechnic igniter output has been characterized using a high-speed schlieren imaging system for observing critical features of the post-combustion flow. The diagnostic, with laser illumination, was successfully applied towards the quantitative characterization of the output from Ti/KClO_4 and TiH_{1.65}/KClO_4 pyrotechnic igniters. The high-speed image sequences showed shock motion, burned gas expansion, and particle motion. A statistical-based analysis methodology for tracking the full-field shock motion enabled straightforward comparisons across the experimental parameters of pyrotechnic material and initial density. This characterization of the mechanical energy of the shock front within the post-combustion environment is a necessary addition to the large body of literature focused on pyrotechnic combustion behavior within the powder bed. Ultimately, understanding the role that the combustion behavior has on the resulting multiphase environment is required for tailored igniter development and comparative performance assessments.

  16. Performance analysis of WAVE communication under high-speed driving

    Directory of Open Access Journals (Sweden)

    Bo-young Kang

    2017-12-01

    Full Text Available Although WAVE (Wireless Access in Vehicular Environments is a technology designed for the high-speed mobile environments, WAVE communication performance in a real road environment is highly dependent on the surrounding environments such as moving vehicles, road shape, and topography. In particular, when a vehicle moves at high speed, the location of the vehicle and its proximity to the road-side device are rapidly changed and thus affect communication performance. Accordingly, we build a performance evaluation system based on the WAVE-LTE network cooperative operation. We also analyzed the performance differences based on external environmental factors, such as information volume and velocity, from the data acquired through actual vehicle tests.

  17. High-speed imaging polarimetry using liquid crystal modulators

    Directory of Open Access Journals (Sweden)

    Ambs P.

    2010-06-01

    Full Text Available This paper deals with dynamic polarimetric imaging techniques. The basics of modern polarimetry have been known for one and a half century, but no practical high-speed implementation providing the full polarization information is currently available. Various methods are reviewed which prove to be a trade-off between the complexity of the optical set-up and the amount of polarimetric information they provide (ie the number of components of the Stokes vector. Techniques using liquid crystal devices, incepted in the late 1990's, are emphasized. Optical set-ups we implemented are presented. We particularly focus on high-speed techniques (i.e. faster than 200 Hz using ferroelectric liquid crystal devices.

  18. Clinical application of high speed B mode echocardiography.

    Science.gov (United States)

    Kambe, T; Nishimura, K; Hibi, N; Sakakibara, T; Kato, T

    1977-06-01

    This study discusses the clinical application of high speed B mode echocardiography to a wide variety of heart diseases. We used a rapid mechanical sector scan at 30 frames per second and 120 scanning lines per frame, resulting in real time observation of cardiac structures. The sector angle was relatively wide (maximum 90 degrees). The tomograms were synchronized with the electrocardiogram and recorded on ordinary 35 mm or Polaroid film in conjunction with 8 mm cinematography. Heart cross sections could be recorded even in the presence of arrhythmia. We used a flat or focused, 10 mm diameter transducer made of lead zirconate-titanate with a resonant frequency of 2 or 3 MHz at a repetition rate of 3.6 kHz. High speed B mode echocardiography is a means of observing cross sections of the heart that can contribute to the improvement of accuracy in cardiac diagnosis.

  19. HIPO: a high-speed imaging photometer for occultations

    Science.gov (United States)

    Dunham, Edward W.; Elliot, James L.; Bida, Thomas A.; Taylor, Brian W.

    2004-09-01

    HIPO is a special purpose instrument for SOFIA, the Stratospheric Observatory For Infrared Astronomy. It is a high-speed, imaging photometer that will be used for a variety of time-resolved precise photometry observations, including stellar occultations by solar system objects and transits by extrasolar planets. HIPO has two independent CCD detectors and can also co-mount with FLITECAM, an InSb imager and spectrometer, making simultaneous photometry at three wavelengths possible. HIPO's flexible design and high-speed imaging capability make it well suited to carry out initial test observations on the completed SOFIA system, and to this end a number of additional features have been incorporated. Earlier papers have discussed the design requirements and optical design of HIPO. This paper provides an overview of the instrument, describes the instrument's features, and reviews the actual performance, in most areas, of the completed instrument.

  20. Embedded function methods for compressible high speed turbulent flow

    Science.gov (United States)

    Walker, J. D. A.

    1994-09-01

    This is the final report on the work performed on the grant 'Embedded Function Methods for Compressible High Speed Turbulent Flow' carried out at Lehigh University during the contract period from September, 1987, to October of 1991. Work has continued at Lehigh on this project on an unfunded basis to the present. The original proposed work had two separate thrusts which were associated with developing embedded function methods in order to obviate the need to expend computational resources on turbulent wall layers in Navier Stokes and boundary-layer calculations. Previous work on the incompressible problem had indicated that this could be done successfully for two-dimensional and three-dimensional incompressible flows. The central objective here was to extend the basic approach to the high speed compressible problem.

  1. Corrosion Inhibition of High Speed Steel by Biopolymer HPMC Derivatives

    Directory of Open Access Journals (Sweden)

    Shih-Chen Shi

    2016-07-01

    Full Text Available The corrosion inhibition characteristics of the derivatives of biopolymer hydroxypropyl methylcellulose (HPMC, hydroxypropyl methylcellulose phthalate (HPMCP, and hydroxypropyl methylcellulose acetate succinate (HPMCAS film are investigated. Based on electrochemical impedance spectroscopic measurements and potentiodynamic polarization, the corrosion inhibition performance of high speed steel coated with HPMC derivatives is evaluated. The Nyquist plot and Tafel polarization demonstrate promising anti-corrosion performance of HPMC and HPMCP. With increasing film thickness, both materials reveal improvement in corrosion inhibition. Moreover, because of a hydrophobic surface and lower moisture content, HPMCP shows better anti-corrosion performance than HPMCAS. The study is of certain importance for designing green corrosion inhibitors of high speed steel surfaces by the use of biopolymer derivatives.

  2. High-speed FPGA-based phase measuring profilometry architecture.

    Science.gov (United States)

    Zhan, Guomin; Tang, Hongwei; Zhong, Kai; Li, Zhongwei; Shi, Yusheng; Wang, Congjun

    2017-05-01

    This paper proposes a high-speed FPGA architecture for the phase measuring profilometry (PMP) algorithm. The whole PMP algorithm is designed and implemented based on the principle of full-pipeline and parallelism. The results show that the accuracy of the FPGA system is comparable with those of current top-performing software implementations. The FPGA system achieves 3D sharp reconstruction using 12 phase-shifting images and completes in 21 ms with 1024 × 768 pixel resolution. To the best of our knowledge, this is the first fully pipelined architecture for PMP systems, and this makes the PMP system very suitable for high-speed embedded 3D shape measurement applications.

  3. Ping-Pong Robotics with High-Speed Vision System

    DEFF Research Database (Denmark)

    Li, Hailing; Wu, Haiyan; Lou, Lei

    2012-01-01

    The performance of vision-based control is usually limited by the low sampling rate of the visual feedback. We address Ping-Pong robotics as a widely studied example which requires high-speed vision for highly dynamic motion control. In order to detect a flying ball accurately and robustly......, a multithreshold legmentation algorithm is applied in a stereo-vision running at 150Hz. Based on the estimated 3D ball positions, a novel two-phase trajectory prediction is exploited to determine the hitting position. Benefiting from the high-speed visual feedback, the hitting position and thus the motion planning...... of the manipulator are updated iteratively with decreasing error. Experiments are conducted on a 7 degrees of freedom humanoid robot arm. A successful Ping-Pong playing between the robot arm and human is achieved with a high successful rate of 88%....

  4. High-speed cell sorting: fundamentals and recent advances.

    Science.gov (United States)

    Ibrahim, Sherrif F; van den Engh, Ger

    2003-02-01

    Cell sorters have undergone dramatic technological improvements in recent years. Driven by the increased ability to differentiate between cell types, modern advances have yielded a new generation of cytometers, known as high-speed cell sorters. These instruments are capable of higher throughput than traditional sorters and can distinguish subtler differences between particles by measuring and processing more optical parameters in parallel. These advances have expanded their use to facilitate genomic and proteomic discovery, and as vehicles for many emerging cell-based therapies. High-speed cell sorting is becoming established as an essential research tool across a broad range of scientific fields and is poised to play a pivotal role in the latest therapeutic modalities.

  5. Ultra-high-speed optical and electronic distributed devices

    Energy Technology Data Exchange (ETDEWEB)

    Hietala, V.M.; Plut, T.A.; Kravitz, S.H.; Vawter, G.A.; Wendt, J.R.; Armendariz, M.G.

    1995-08-01

    This report summarizes work on the development of ultra-high-speed semiconductor optical and electronic devices. High-speed operation is achieved by velocity matching the input stimulus to the output signal along the device`s length. Electronic devices such as field-effect transistors (FET`s), should experience significant speed increases by velocity matching the electrical input and output signals along the device. Likewise, optical devices, which are typically large, can obtain significant bandwidths by velocity matching the light being generated, detected or modulated with the electrical signal on the device`s electrodes. The devices discussed in this report utilize truly distributed electrical design based on slow-wave propagation to achieve velocity matching.

  6. Numerical Investigation of Aerodynamic Characteristics of High Speed Train

    Science.gov (United States)

    Ali, J. S. Mohamed; Omar, Ashraf Ali; Ali, Muhammad ‘Atif B.; Baseair, Abdul Rahman Bin Mohd

    2017-03-01

    In this work, initially the effect of nose shape on the drag characteristics of a high speed train is studied. Then the influence of cross winds on the aerodynamics and hence the stability of such modern high speed trains is analyzed. CFD analysis was conducted using STAR-CCM+ on trains with different features and important aerodynamic coefficients such as the drag, side force and rolling moment coefficients have been calculated for yaw angles of crosswinds ranging from 0° to 90°. The results show that the modification on train nose shape can reduce the drag up to more than 50%. It was also found that, bogie faring only reduces small percentage of drag but significantly contributed to higher rolling moment and side force coefficient hence induced train instability.

  7. Robust adaptive cruise control of high speed trains.

    Science.gov (United States)

    Faieghi, Mohammadreza; Jalali, Aliakbar; Mashhadi, Seyed Kamal-e-ddin Mousavi

    2014-03-01

    The cruise control problem of high speed trains in the presence of unknown parameters and external disturbances is considered. In particular a Lyapunov-based robust adaptive controller is presented to achieve asymptotic tracking and disturbance rejection. The system under consideration is nonlinear, MIMO and non-minimum phase. To deal with the limitations arising from the unstable zero-dynamics we do an output redefinition such that the zero-dynamics with respect to new outputs becomes stable. Rigorous stability analyses are presented which establish the boundedness of all the internal states and simultaneously asymptotic stability of the tracking error dynamics. The results are presented for two common configurations of high speed trains, i.e. the DD and PPD designs, based on the multi-body model and are verified by several numerical simulations. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  8. A methodology for assessing resilience of the HSR (high speed rail) network affected by disruptive event(s)

    NARCIS (Netherlands)

    Janic, M.

    2015-01-01

    This paper deals with modelling of resilience, i.e., vulnerability of the HSR (High Speed Rail) transport network affected by the system’s internal and external disruptive events both acting either individually or together/ The former events can generally be sudden unpredictable failures of the

  9. Strategy Planning of Technology Development for High Speed Railways : Electrical Parts

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Y. J.; Kim, K. H.; Rim, G. H.; Ha, H. D.; Park, K. Y.; Lee, J. D.; Kang, D. H. [Korea Electrotechnology Research Institute (Korea, Republic of)

    1996-11-01

    At the beginning of 1996, Government has set up the Technology Development Program for High Speed Railways as a national project. Accordingly, the detailed action planning has been established with the collaboration works between Ministry of Construction and Transport and Ministry of Commerce and Trade. On the other hand, the current technology status of domestic manufacturer and many related organizations in Korea only reveals the lack of capabilities in producing the high speed trains. Without the technology transfer programs from the advanced foreign manufacturer (GEC-Alsthom), the domestic manufacturers could not produce HSR. Korea Electrotechnology Research Institute has steered the study to integrate the domestic engineering and technology units specialized in the diversified areas by formulating the feasible collaboration structure between KERI and many organizations on the technology basis. The long term action planning both with the strategic guide and on the technology basis shall be the key function to upgrade the current technology status feasibly for development of the advanced high speed train of 350 km/h. (author). refs., figs., tabs.

  10. A Cloud-Computing-Based Data Placement Strategy in High-Speed Railway

    Directory of Open Access Journals (Sweden)

    Hanning Wang

    2012-01-01

    Full Text Available As an important component of China’s transportation data sharing system, high-speed railway data sharing is a typical application of data-intensive computing. Currently, most high-speed railway data is shared in cloud computing environment. Thus, there is an urgent need for an effective cloud-computing-based data placement strategy in high-speed railway. In this paper, a new data placement strategy named hierarchical structure data placement strategy is proposed. The proposed method combines the semidefinite programming algorithm with the dynamic interval mapping algorithm. The semi-definite programming algorithm is suitable for the placement of files with various replications, ensuring that different replications of a file are placed on different storage devices, while the dynamic interval mapping algorithm ensures better self-adaptability of the data storage system. A hierarchical data placement strategy is proposed for large-scale networks. In this paper, a new theoretical analysis is provided, which is put in comparison with several other previous data placement approaches, showing the efficacy of the new analysis in several experiments.

  11. Analysis and design technology for high-speed aircraft structures

    Science.gov (United States)

    Starnes, James H., Jr.; Camarda, Charles J.

    1992-01-01

    Recent high-speed aircraft structures research activities at NASA Langley Research Center are described. The following topics are covered: the development of analytical and numerical solutions to global and local thermal and structural problems, experimental verification of analysis methods, identification of failure mechanisms, and the incorporation of analysis methods into design and optimization strategies. The paper describes recent NASA Langley advances in analysis and design methods, structural and thermal concepts, and test methods.

  12. High-speed OCT light sources and systems [Invited

    OpenAIRE

    Klein, Thomas; Huber, Robert

    2017-01-01

    Imaging speed is one of the most important parameters that define the performance of optical coherence tomography (OCT) systems. During the last two decades, OCT speed has increased by over three orders of magnitude. New developments in wavelength-swept lasers have repeatedly been crucial for this development. In this review, we discuss the historical evolution and current state of the art of high-speed OCT systems, with focus on wavelength swept light sources and swept source OCT systems.

  13. High-speed OCT light sources and systems [Invited].

    Science.gov (United States)

    Klein, Thomas; Huber, Robert

    2017-02-01

    Imaging speed is one of the most important parameters that define the performance of optical coherence tomography (OCT) systems. During the last two decades, OCT speed has increased by over three orders of magnitude. New developments in wavelength-swept lasers have repeatedly been crucial for this development. In this review, we discuss the historical evolution and current state of the art of high-speed OCT systems, with focus on wavelength swept light sources and swept source OCT systems.

  14. High-speed OCT light sources and systems [Invited

    Science.gov (United States)

    Klein, Thomas; Huber, Robert

    2017-01-01

    Imaging speed is one of the most important parameters that define the performance of optical coherence tomography (OCT) systems. During the last two decades, OCT speed has increased by over three orders of magnitude. New developments in wavelength-swept lasers have repeatedly been crucial for this development. In this review, we discuss the historical evolution and current state of the art of high-speed OCT systems, with focus on wavelength swept light sources and swept source OCT systems. PMID:28270988

  15. High-speed deformation processing of a titanium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Tamirisakandala, S.; Medeiros, S.C.; Malas, J.C. [Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, OH 45433 (United States); Yellapregada, P.V.R.K. [Department of Metallurgy, Indian Institute of Science Bangalore, Karnataka 560 012 (India); Frazier, W.G. [NCPA Coliseum Drive, University, MS 38677 (United States); Dutta, B. [Department of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt (Germany)

    2003-09-01

    The deformation rate is the critical parameter for the phase transforming mechanism and subsequently the morphology of Ti-Al-V alloys, which in turn determines the feasibility of high-speed deformation. The evolution of defect-free equiaxed microstructures is due to dislocation-induced heterogeneous nucleation and growth. The Figure shows a microstructure of a Ti-6Al-4V specimen deformed at 1000 C in a backscattered SEM image. (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  16. High Speed White Dwarf Asteroseismology with the Herty Hall Cluster

    Science.gov (United States)

    Gray, Aaron; Kim, A.

    2012-01-01

    Asteroseismology is the process of using observed oscillations of stars to infer their interior structure. In high speed asteroseismology, we complete that by quickly computing hundreds of thousands of models to match the observed period spectra. Each model on a single processor takes five to ten seconds to run. Therefore, we use a cluster of sixteen Dell Workstations with dual-core processors. The computers use the Ubuntu operating system and Apache Hadoop software to manage workloads.

  17. Study and improvement of a high speed hydraulic jack

    Science.gov (United States)

    Garcia, M. S.; Nouillant, M.; Viot, P.

    2006-08-01

    This paper describes the control problem of a high speed hydraulic jack. We shall estimate the performances of a servo-control with a classic controlled correction of type PD (Proportional Derivate). The study will be performed from a model (servo valve + jack + load), whose simulation will be performed in the Matlab-SimulinK environment. The aim of this article is to characterize, by simulating, the interdependence between the experimental apparatus and the tested object.

  18. Gearbox Reliability Collaborative High-Speed Shaft Calibration

    Energy Technology Data Exchange (ETDEWEB)

    Keller, J.; McNiff, B.

    2014-09-01

    Instrumentation has been added to the high-speed shaft, pinion, and tapered roller bearing pair of the Gearbox Reliability Collaborative gearbox to measure loads and temperatures. The new shaft bending moment and torque instrumentation was calibrated and the purpose of this document is to describe this calibration process and results, such that the raw shaft bending and torque signals can be converted to the proper engineering units and coordinate system reference for comparison to design loads and simulation model predictions.

  19. On the reversed Brayton cycle with high speed machinery

    Energy Technology Data Exchange (ETDEWEB)

    Backman, J.

    1996-12-31

    This work was carried out in the laboratory of Fluid Dynamics, at Lappeenranta University of Technology during the years 1991-1996. The research was a part of larger high speed technology development research. First, there was the idea of making high speed machinery applications with the Brayton cycle. There was a clear need to deepen the knowledge of the cycle itself and to make a new approach in the field of the research. Also, the removal of water from the humid air seemed very interesting. The goal of this work was to study methods of designing high speed machinery for the reversed Brayton cycle, from theoretical principles to practical applications. The reversed Brayton cycle can be employed as an air dryer, a heat pump or a refrigerating machine. In this research the use of humid air as a working fluid has an environmental advantage, as well. A new calculation method for the Brayton cycle is developed. In this method especially the expansion process in the turbine is important because of the condensation of the water vapour in the humid air. This physical phenomena can have significant effects on the level of performance of the application. Also, the influence of calculating the process with actual, achievable process equipment efficiencies is essential for the development of future machinery. The above theoretical calculations are confirmed with two different laboratory prototypes. (53 refs.)

  20. High Speed Imaging of Cavitation around Dental Ultrasonic Scaler Tips.

    Science.gov (United States)

    Vyas, Nina; Pecheva, Emilia; Dehghani, Hamid; Sammons, Rachel L; Wang, Qianxi X; Leppinen, David M; Walmsley, A Damien

    2016-01-01

    Cavitation occurs around dental ultrasonic scalers, which are used clinically for removing dental biofilm and calculus. However it is not known if this contributes to the cleaning process. Characterisation of the cavitation around ultrasonic scalers will assist in assessing its contribution and in developing new clinical devices for removing biofilm with cavitation. The aim is to use high speed camera imaging to quantify cavitation patterns around an ultrasonic scaler. A Satelec ultrasonic scaler operating at 29 kHz with three different shaped tips has been studied at medium and high operating power using high speed imaging at 15,000, 90,000 and 250,000 frames per second. The tip displacement has been recorded using scanning laser vibrometry. Cavitation occurs at the free end of the tip and increases with power while the area and width of the cavitation cloud varies for different shaped tips. The cavitation starts at the antinodes, with little or no cavitation at the node. High speed image sequences combined with scanning laser vibrometry show individual microbubbles imploding and bubble clouds lifting and moving away from the ultrasonic scaler tip, with larger tip displacement causing more cavitation.

  1. Double Helical Gear Performance Results in High Speed Gear Trains

    Science.gov (United States)

    Handschuh, Robert F.; Ehinger, Ryan; Sinusas, Eric; Kilmain, Charles

    2010-01-01

    The operation of high speed gearing systems in the transmissions of tiltrotor aircraft has an effect on overall propulsion system efficiency. Recent work has focused on many aspects of high-speed helical gear trains as would be used in tiltrotor aircraft such as operational characteristics, comparison of analytical predictions to experimental data and the affect of superfinishing on transmission performance. Baseline tests of an aerospace quality system have been conducted in the NASA Glenn High-Speed Helical Gear Train Test Facility and have been described in earlier studies. These earlier tests had utilized single helical gears. The results that will be described in this study are those attained using double helical gears. This type of gear mesh can be configured in this facility to either pump the air-oil environment from the center gap between the meshing gears to the outside of tooth ends or in the reverse direction. Tests were conducted with both inward and outward air-oil pumping directions. Results are compared to the earlier baseline results of single helical gears.

  2. Quantification of the uncertainties of high-speed camera measurements

    Directory of Open Access Journals (Sweden)

    Robbe C.

    2014-01-01

    Full Text Available This article proposes a combined theoretical and experimental approach to assess and quantify the global uncertainty of a high-speed camera velocity measurement. The study is divided in five sections: firstly, different sources of measurement uncertainties performed by a high-speed camera are identified and quantified. They consist of geometrical uncertainties, pixel discretisation uncertainties or optical uncertainties. Secondly, a global uncertainty factor, taking into account the previously identified sources of uncertainties, is computed. Thirdly, a sensibility study of the camera set-up parameters is performed, allowing the experimenter to optimize these parameters in order to minimize the final uncertainties. Fourthly, the theoretical computed uncertainty is compared with experimental measurements. Good concordance has been found. Finally, the velocity measurement uncertainty study is extended to continuous displacement measurements as a function of time. The purpose of this article is to propose all the mathematical tools necessary to quantify the individual and global uncertainties, to highlight the important aspects of the experimental set-up, and to give recommendations on how to improve a specific set-up in order to minimize the global uncertainty. Taking all these into account, it has been shown that highly dynamic phenomena such as a ballistic phenomenon can be measured using a high-speed camera with a global uncertainty of less than 2%.

  3. Noise in the passenger cars of high-speed trains.

    Science.gov (United States)

    Hong, Joo Young; Cha, Yongwon; Jeon, Jin Yong

    2015-12-01

    The aim of this study is to investigate the effects of both room acoustic conditions and spectral characteristics of noises on acoustic discomfort in a high-speed train's passenger car. Measurement of interior noises in a high-speed train was performed when the train was operating at speeds of 100 km/h and 300 km/h. Acoustic discomfort caused by interior noises was evaluated by paired comparison methods based on the variation of reverberation time (RT) in a passenger car and the spectral differences in interior noises. The effect of RT on acoustic discomfort was not significant, whereas acoustic discomfort significantly varied depending on spectral differences in noise. Acoustic discomfort increased with increment of the sound pressure level (SPL) ratio at high frequencies, and variation in high-frequency noise components were described using sharpness. Just noticeable differences of SPL with low- and high-frequency components were determined to be 3.7 and 2.9 dB, respectively. This indicates that subjects were more sensitive to differences in SPLs at the high-frequency range than differences at the low-frequency range. These results support that, for interior noises, reduction in SPLs at high frequencies would significantly contribute to improved acoustic quality in passenger cars of high-speed trains.

  4. Sound transmission loss of windows on high speed trains

    Science.gov (United States)

    Zhang, Yumei; Xiao, Xinbiao; Thompson, David; Squicciarini, Giacomo; Wen, Zefeng; Li, Zhihui; Wu, Yue

    2016-09-01

    The window is one of the main components of the high speed train car body structure through which noise can be transmitted. To study the windows’ acoustic properties, the vibration of one window of a high speed train has been measured for a running speed of 250 km/h. The corresponding interior noise and the noise in the wheel-rail area have been measured simultaneously. The experimental results show that the window vibration velocity has a similar spectral shape to the interior noise. Interior noise source identification further indicates that the window makes a contribution to the interior noise. Improvement of the window's Sound Transmission Loss (STL) can reduce the interior noise from this transmission path. An STL model of the window is built based on wave propagation and modal superposition methods. From the theoretical results, the window's STL property is studied and several factors affecting it are investigated, which provide indications for future low noise design of high speed train windows.

  5. Direct Numerical Simulation of Disperse Multiphase High-Speed Flows

    Energy Technology Data Exchange (ETDEWEB)

    Nourgaliev, R R; Dinh, T N; Theofanous, T G; Koning, J M; Greenman, R M; Nakafuji, G T

    2004-02-17

    A recently introduced Level-Set-based Cartesian Grid (LSCG) Characteristics-Based Matching (CBM) method is applied for direct numerical simulation of shock-induced dispersal of solid material. The method incorporates the latest advancements in the level set technology and characteristics-based numerical methods for solution of hyperbolic conservation laws and boundary treatment. The LSCG/CBM provides unique capabilities to simulate complex fluid-solid (particulate) multiphase flows under high-speed flow conditions and taking into account particle-particle elastic and viscoelastic collisions. The particular emphasis of the present study is placed on importance of appropriate modeling of particle-particle collisions, which are demonstrated to crucially influence the global behavior of high-speed multiphase particulate flows. The results of computations reveal the richness and complexity of flow structures in compressible disperse systems, due to dynamic formation of shocks and contact discontinuities, which provide an additional long-range interaction mechanism in dispersed high-speed multiphase flows.

  6. Unsteady Flow Simulation of High-speed Turbopumps

    Science.gov (United States)

    Kiris, Cetin C.; Kwak, dochan; Chan, William; Housman, Jeffrey A.

    2006-01-01

    Computation of high-speed hydrodynamics requires high-fidelity simulation to resolve flow features involving transient flow, cavitation, tip vortex and multiple scales of unsteady fluctuations. One example of this type in aerospace is related to liquid-fueled rocket turbopump. Rocket turbopumps operate under severe conditions at very high rotational speeds typically at thousands of rpm. For example, the Shuttle orbiter low-pressure-fuel-turbopump creates transient flow features associated with reverse flows, tip clearance effects, secondary flows, vortex shedding, junction flows, and cavitation effects. Flow unsteadiness originating from the orbiter Low-Pressure-Fuel-Turbopump (LPFTP) inducer is one of the major contributors to the high frequency cyclic loading that results in high cycle fatigue damage to the flow liners just upstream of the LPFTP. The reverse flow generated at the tip of the inducer blades travels upstream and interacts with the bellows cavity. Simulation procedure for this type high-speed hydrodynamic problems requires a method for quantifying multi-scale and multi-phase flow as well as an efficient high-end computing strategy. The current paper presents a high-fidelity computational procedure for unsteady hydrodynamic problems using a high-speed liquid-fueled rocket turbopump.

  7. Software Developed for Analyzing High- Speed Rolling-Element Bearings

    Science.gov (United States)

    Fleming, David P.

    2005-01-01

    COBRA-AHS (Computer Optimized Ball & Roller Bearing Analysis--Advanced High Speed, J.V. Poplawski & Associates, Bethlehem, PA) is used for the design and analysis of rolling element bearings operating at high speeds under complex mechanical and thermal loading. The code estimates bearing fatigue life by calculating three-dimensional subsurface stress fields developed within the bearing raceways. It provides a state-of-the-art interactive design environment for bearing engineers within a single easy-to-use design-analysis package. The code analyzes flexible or rigid shaft systems containing up to five bearings acted upon by radial, thrust, and moment loads in 5 degrees of freedom. Bearing types include high-speed ball, cylindrical roller, and tapered roller bearings. COBRA-AHS is the first major upgrade in 30 years of such commercially available bearing software. The upgrade was developed under a Small Business Innovation Research contract from the NASA Glenn Research Center, and incorporates the results of 30 years of NASA and industry bearing research and technology.

  8. 76 FR 71431 - Civil Penalty Calculation Methodology

    Science.gov (United States)

    2011-11-17

    ... TRANSPORTATION Federal Motor Carrier Safety Administration Civil Penalty Calculation Methodology AGENCY: Federal... its civil penalty methodology. Part of this evaluation includes a forthcoming explanation of the... methodology for calculation of certain civil penalties. To induce compliance with federal regulations, FMCSA...

  9. Field-tested technology for gas compression: using high-speed induction motors to replace conventional solutions

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Karina Velloso; Pradurat, Jean Francois [Institut National Polytechnique de Lorraine (INPL), Nancy (France). Converteam Rotating Machines Division

    2009-07-01

    Industry leaders are all concerned about rationalization of electric power use, increase of efficiency and flexibility, environmental impact, installations size and maintenance efforts diminution. The high-speed induction motors are a good solution when addressing these parameters. How this technology works and how using it can help pipelines operators meet growing operational and environmental challenges is the main subject of this paper, that also explain how it can be used to replace conventional solutions. As a conclusion the future opportunities of electric high-speed drive systems application in production, transport and storage for natural gas industry are going to be discussed. (author)

  10. The effects of the overline running model of the high-speed trains on the existing lines

    Science.gov (United States)

    Qian, Yong-Sheng; Zeng, Jun-Wei; Zhang, Xiao-Long; Wang, Jia-Yuan; Lv, Ting-Ting

    2016-09-01

    This paper studies the effect on the existing railway which is made by the train with 216 km/h high-speed when running across over the existing railway. The influence on the railway carrying capacity which is made by the transportation organization mode of the existing railway is analyzed under different parking modes of high-speed trains as well. In order to further study the departure intervals of the train, the average speed and the delay of the train, an automata model under these four-aspects is established. The results of the research in this paper could serve as the theoretical references to the newly built high-speed railways.

  11. Millimeter- and terahertz-wave over fiber technologies for high-speed communication and non-telecom applications

    Science.gov (United States)

    Kanno, Atsushi

    2017-01-01

    Millimeter-wave and terahertz-wave technologies are promising solutions for high-speed wireless communication as well as nondestructive imaging due to its high frequency (short wavelength) nature. In the study, we propose and demonstrate high-speed wireless communication in millimeter- and terahertz-wave bands adopted by advanced optical fiber communication technologies: combination of a radio over fiber (RoF) manner for generation of the signals and a high-speed digital signal processing implemented in a receiver. The RoF technique is also capable for a local-oscillator signal transport over the fiber to the remote sites. Fiber-remoted distributed radar system is also discussed in the paper.

  12. AN ANALYSIS OF SPATIAL EQUITY CONCERNING INVESTMENTS IN HIGH-SPEED RAIL SYSTEMS: THE CASE STUDY OF ITALY

    Directory of Open Access Journals (Sweden)

    Francesca PAGLIARA

    2016-09-01

    Full Text Available It is recognised in the literature that spatial accessibility is a measure of spatial equity and can be represented by the ease of travelling from an origin to a given destination via a given mode or set of transport modes. Although urban areas can benefit from improvements in accessibility when a new high-speed rail line is built, equity issues may arise. This manuscript describes a methodology for evaluating equity impacts due to an extension of the High Speed Rail network in Italy. A joint Revealed/Stated Preference survey has been carried out, collecting socioeconomic and travel data. Specifically, nine hypothetical scenarios have been submitted to Italian users aiming at understanding the motivations for not choosing the High Speed Rail as an alternative. The main outcome is that the access/egress travel costs connected with the High Speed Rail have a strong impact on spatial equity. The main policy implications of this study are that investors in high-speed rail should not only take into account the economic benefits brought by them, but also the spatial imbalance that these systems can bring.

  13. The Development of a Highly Reliable Power Management and Distribution System for Civil Transport Aircraft

    Science.gov (United States)

    Coleman, Anthony S.; Hansen, Irving G.

    1994-01-01

    NASA is pursuing a program in Advanced Subsonic Transport (AST) to develop the technology for a highly reliable Fly-By-Light/Power-By-WIre aircraft. One of the primary objectives of the program is to develop the technology base for confident application of integrated PBW components and systems to transport aircraft to improve operating reliability and efficiency. Technology will be developed so that the present hydraulic and pneumatic systems of the aircraft can be systematically eliminated and replaced by electrical systems. These motor driven actuators would move the aircraft wing surfaces as well as the rudder to provide steering controls for the pilot. Existing aircraft electrical systems are not flight critical and are prone to failure due to Electromagnetic Interference (EMI) (1), ground faults and component failures. In order to successfully implement electromechanical flight control actuation, a Power Management and Distribution (PMAD) System must be designed having a reliability of 1 failure in 10(exp +9) hours, EMI hardening and a fault tolerance architecture to ensure uninterrupted power to all aircraft flight critical systems. The focus of this paper is to analyze, define, and describe technically challenging areas associated with the development of a Power By Wire Aircraft and typical requirements to be established at the box level. The authors will attempt to propose areas of investigation, citing specific military standards and requirements that need to be revised to accommodate the 'More Electric Aircraft Systems'.

  14. Development of High-speed Machining Database with Case-based Reasoning

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Applying high-speed machining technology in shop floor has many benefits, such as manufacturing more accurate parts with better surface finishes. The selection of the appropriate machining parameters plays a very important role in the implementation of high-speed machining technology. The case-based reasoning is used in the developing of high-speed machining database to overcome the shortage of available high-speed cutting parameters in machining data handbooks and shop floors. The high-speed machining data...

  15. Implementation of High Speed Distributed Data Acquisition System

    Science.gov (United States)

    Raju, Anju P.; Sekhar, Ambika

    2012-09-01

    This paper introduces a high speed distributed data acquisition system based on a field programmable gate array (FPGA). The aim is to develop a "distributed" data acquisition interface. The development of instruments such as personal computers and engineering workstations based on "standard" platforms is the motivation behind this effort. Using standard platforms as the controlling unit allows independence in hardware from a particular vendor and hardware platform. The distributed approach also has advantages from a functional point of view: acquisition resources become available to multiple instruments; the acquisition front-end can be physically remote from the rest of the instrument. High speed data acquisition system transmits data faster to a remote computer system through Ethernet interface. The data is acquired through 16 analog input channels. The input data commands are multiplexed and digitized and then the data is stored in 1K buffer for each input channel. The main control unit in this design is the 16 bit processor implemented in the FPGA. This 16 bit processor is used to set up and initialize the data source and the Ethernet controller, as well as control the flow of data from the memory element to the NIC. Using this processor we can initialize and control the different configuration registers in the Ethernet controller in a easy manner. Then these data packets are sending to the remote PC through the Ethernet interface. The main advantages of the using FPGA as standard platform are its flexibility, low power consumption, short design duration, fast time to market, programmability and high density. The main advantages of using Ethernet controller AX88796 over others are its non PCI interface, the presence of embedded SRAM where transmit and reception buffers are located and high-performance SRAM-like interface. The paper introduces the implementation of the distributed data acquisition using FPGA by VHDL. The main advantages of this system are high

  16. Fusion: ultra-high-speed and IR image sensors

    Science.gov (United States)

    Etoh, T. Goji; Dao, V. T. S.; Nguyen, Quang A.; Kimata, M.

    2015-08-01

    Most targets of ultra-high-speed video cameras operating at more than 1 Mfps, such as combustion, crack propagation, collision, plasma, spark discharge, an air bag at a car accident and a tire under a sudden brake, generate sudden heat. Researchers in these fields require tools to measure the high-speed motion and heat simultaneously. Ultra-high frame rate imaging is achieved by an in-situ storage image sensor. Each pixel of the sensor is equipped with multiple memory elements to record a series of image signals simultaneously at all pixels. Image signals stored in each pixel are read out after an image capturing operation. In 2002, we developed an in-situ storage image sensor operating at 1 Mfps 1). However, the fill factor of the sensor was only 15% due to a light shield covering the wide in-situ storage area. Therefore, in 2011, we developed a backside illuminated (BSI) in-situ storage image sensor to increase the sensitivity with 100% fill factor and a very high quantum efficiency 2). The sensor also achieved a much higher frame rate,16.7 Mfps, thanks to the wiring on the front side with more freedom 3). The BSI structure has another advantage that it has less difficulties in attaching an additional layer on the backside, such as scintillators. This paper proposes development of an ultra-high-speed IR image sensor in combination of advanced nano-technologies for IR imaging and the in-situ storage technology for ultra-highspeed imaging with discussion on issues in the integration.

  17. Exploring THz band for high speed wireless communications

    DEFF Research Database (Denmark)

    Yu, Xianbin; Zhang, Hangkai; Jia, Shi

    2016-01-01

    We overview recent trend in developing high speed wireless communication systems by exploring large bandwidth available in the THz band, and we also present our recent experimental achievements on 400 GHz wireless transmission with a data rate of up to 60 Gbit/s by using a uni-travelling carrier...... photodiode (UTC-PD) as emitter and a Schottky diode as receiver. This system is foreseen to be capable of accommodating faster data rates beyond 100 Gbit/s, and would find application in bandwidth hungry scenarios....

  18. HORNET: High-speed Onion Routing at the Network Layer

    OpenAIRE

    Chen, Chen; Asoni, Daniele Enrico; Barrera, David; Danezis, George; Perrig, Adrian

    2015-01-01

    We present HORNET, a system that enables high-speed end-to-end anonymous channels by leveraging next generation network architectures. HORNET is designed as a low-latency onion routing system that operates at the network layer thus enabling a wide range of applications. Our system uses only symmetric cryptography for data forwarding yet requires no per-flow state on intermediate nodes. This design enables HORNET nodes to process anonymous traffic at over 93 Gb/s. HORNET can also scale as requ...

  19. Signal Conditioning in Process of High Speed Imaging

    Directory of Open Access Journals (Sweden)

    Libor Hargas

    2015-01-01

    Full Text Available The accuracy of cinematic analysis with camera system depends on frame rate of used camera. Specific case of cinematic analysis is in medical research focusing on microscopic objects moving with high frequencies (cilia of respiratory epithelium. The signal acquired by high speed video acquisition system has very amount of data. This paper describes hardware parts, signal condition and software, which is used for image acquiring thru digital camera, intelligent illumination dimming hardware control and ROI statistic creation. All software parts are realized as virtual instruments.

  20. Flexible, High-Speed CdSe Nanocrystal Integrated Circuits.

    Science.gov (United States)

    Stinner, F Scott; Lai, Yuming; Straus, Daniel B; Diroll, Benjamin T; Kim, David K; Murray, Christopher B; Kagan, Cherie R

    2015-10-14

    We report large-area, flexible, high-speed analog and digital colloidal CdSe nanocrystal integrated circuits operating at low voltages. Using photolithography and a newly developed process to fabricate vertical interconnect access holes, we scale down device dimensions, reducing parasitic capacitances and increasing the frequency of circuit operation, and scale up device fabrication over 4 in. flexible substrates. We demonstrate amplifiers with ∼7 kHz bandwidth, ring oscillators with <10 μs stage delays, and NAND and NOR logic gates.

  1. 3D high-speed cinematography and its problems

    Science.gov (United States)

    Eisfeld, Fritz

    1999-06-01

    Many fast events are three dimensional but the normal high- speed cameras are only suitable for 2-D images. Therefore it was investigated which stereoscopic methods could be used to study three dimensional processes. The choice of the optimal method is dependent on the investigated event. To record the 3-D spreading of an injection jet in a laboratory has to use other methods as to record an explosion from a smoke bomb in open air. Three methods are described and critically compared. Furthermore it is shown how from films with double pictures a cinematographic film can be made.

  2. Design and Analysis of High Speed Capacitive Pipeline DACs

    OpenAIRE

    Duong, Quoc-Tai; Dabrowski, Jerzy; Alvandpour, Atila

    2014-01-01

    Design of a high speed capacitive digital-to-analog converter (SC DAC) is presented for 65 nm CMOS technology. SC pipeline architecture is used followed by an output driver. For GHz frequency operation with output voltage swing suitable for wireless applications (300 mVpp) the DAC performance is shown to be limited by the capacitor array imperfections. While it is possible to design a highly linear output driver with HD3 < -70 dB and HD2 < -90 dB over 0.55 GHz band as we show, the maxi...

  3. High-speed analog-to-digital conversion

    CERN Document Server

    Demler, Michael J

    1991-01-01

    This book covers the theory and applications of high-speed analog-to-digital conversion. An analog-to-digital converter takes real-world inputs (such as visual images, temperature readings, and rates of speed) and transforms them into digital form for processing by computer. This book discusses the design and uses of such circuits, with particular emphasis on improving the speed of the conversion process and the accuracy of its output--how well the output is a corresponding digital representation of the output*b1input signal. As computers become increasingly interfaced to the outside world, ""

  4. High-Speed EMU TCMS Design and LCC Technology Research

    Directory of Open Access Journals (Sweden)

    Hongwei Zhao

    2017-02-01

    Full Text Available This paper introduces the high-speed electrical multiple unit (EMU life cycle, including the design, manufacturing, testing, and maintenance stages. It also presents the train control and monitoring system (TCMS software development platform, the TCMS testing and verification bench, the EMU driving simulation platform, and the EMU remote data transmittal and maintenance platform. All these platforms and benches combined together make up the EMU life cycle cost (LCC system. Each platform facilitates EMU LCC management and is an important part of the system.

  5. Pushbroom Stereo for High-Speed Navigation in Cluttered Environments

    OpenAIRE

    Barry, Andrew J.; Tedrake, Russ

    2014-01-01

    We present a novel stereo vision algorithm that is capable of obstacle detection on a mobile ARM processor at 120 frames per second. Our system performs a subset of standard block-matching stereo processing, searching only for obstacles at a single depth. By using an onboard IMU and state-estimator, we can recover the position of obstacles at all other depths, building and updating a local depth-map at framerate. Here, we describe both the algorithm and our implementation on a high-speed, sma...

  6. Investigations in high speed blanking: cutting forces and microscopic observations

    Directory of Open Access Journals (Sweden)

    Larue A.

    2010-06-01

    Full Text Available A new hopefull technique, called high speed blanking, has been investigated since few years. To understand the cutting process and how the tools have to be designed, this study is interrested in the cutting force measurement. A new cutting force measurement device has to be designed consider the industrial interest of such a study. The designed test bench induces a calibration process in order to stucy the cutting forces evolution. The paper is discussing the result that the peack load seems to decrease when the punch speed increases. Finally microscopic observations are made in order to find Adiabatic Shear Bands.

  7. A quick-retrieval high-speed digital framing camera

    OpenAIRE

    Sato, A.H.; Yee, J; Bellan, P. M.

    1993-01-01

    A new high-speed digital framing camera is described. The design is built around a rotating polygon mirror that provides a framing rate of 24 000 frames/s. The camera electronics digitizes an image into a 32×104 grid of pixels, where the second dimension of the grid can be varied and is determined by the 8 bit computer-aided measurement and control digitizer sampling rate. Available digitizer memory provides for 314 frames at this horizontal resolution. The advantages over other available hig...

  8. High-speed digital-to-analog converter concepts

    Science.gov (United States)

    Schmidt, Christian; Kottke, Christoph; Jungnickel, Volker; Freund, Ronald

    2017-01-01

    In today's fiber-optic communication systems, the bandwidth of the photonic components, i.e. modulators and photo diodes, is way greater than that of their electrical counterparts, i.e. digital-to-analog converters (DACs) and analog-to-digital converters (ADCs). In order to increase the transmission capacity, the bandwidth limitations need to be overcome. We review the progress and the recent results in the field of high-speed DACs, which are desirable for software-defined transmitters. Furthermore, we evaluate interleaving concepts regarding their ability to overcome the above mentioned limitations and demonstrate recent experimental results for a bandwidth interleaved DAC with 40 GHz analog electrical bandwidth.

  9. Miniature high speed compressor having embedded permanent magnet motor

    Science.gov (United States)

    Zhou, Lei (Inventor); Zheng, Liping (Inventor); Chow, Louis (Inventor); Kapat, Jayanta S. (Inventor); Wu, Thomas X. (Inventor); Kota, Krishna M. (Inventor); Li, Xiaoyi (Inventor); Acharya, Dipjyoti (Inventor)

    2011-01-01

    A high speed centrifugal compressor for compressing fluids includes a permanent magnet synchronous motor (PMSM) having a hollow shaft, the being supported on its ends by ball bearing supports. A permanent magnet core is embedded inside the shaft. A stator with a winding is located radially outward of the shaft. The PMSM includes a rotor including at least one impeller secured to the shaft or integrated with the shaft as a single piece. The rotor is a high rigidity rotor providing a bending mode speed of at least 100,000 RPM which advantageously permits implementation of relatively low-cost ball bearing supports.

  10. High-speed optical links for UAV applications

    Science.gov (United States)

    Chen, C.; Grier, A.; Malfa, M.; Booen, E.; Harding, H.; Xia, C.; Hunwardsen, M.; Demers, J.; Kudinov, K.; Mak, G.; Smith, B.; Sahasrabudhe, A.; Patawaran, F.; Wang, T.; Wang, A.; Zhao, C.; Leang, D.; Gin, J.; Lewis, M.; Nguyen, D.; Quirk, K.

    2017-02-01

    High speed optical backbone links between a fleet of UAVs is an integral part of the Facebook connectivity architecture. To support the architecture, the optical terminals need to provide high throughput rates (in excess of tens of Gbps) while achieving low weight and power consumption. The initial effort is to develop and demonstrate an optical terminal capable of meeting the data rate requirements and demonstrate its functions for both air-air and air-ground engagements. This paper is a summary of the effort to date.

  11. High Speed Capacitor-Inverter Based Carbon Nanotube Full Adder

    Directory of Open Access Journals (Sweden)

    Rashtian M

    2010-01-01

    Full Text Available Abstract Carbon Nanotube filed-effect transistor (CNFET is one of the promising alternatives to the MOS transistors. The geometry-dependent threshold voltage is one of the CNFET characteristics, which is used in the proposed Full Adder cell. In this paper, we present a high speed Full Adder cell using CNFETs based on majority-not (Minority function. Presented design uses eight transistors and eight capacitors. Simulation results show significant improvement in terms of delay and power-delay product in comparison to contemporary CNFET Adder Cells. Simulations were carried out using HSPICE based on CNFET model with 0.6 V VDD.

  12. Improving the Efficiency of a High Speed Catamaran Through the Replacement of the Propulsion System

    Directory of Open Access Journals (Sweden)

    German de Melo Rodriguez

    2015-12-01

    Full Text Available The high speed vessels are primarily designed for short distances services as public transport of passengers and vehicles. The range of high speed, according to the Code of high-speed vessels begins at 20 knots, which depends on the cruise speed you desire for your vessel; you will have to use the most appropriate type of propellant. In general, in the past 20 years, they have been building high-speed vessels with speeds above 33 knots, which meant installing water jet propellants coupled to powerful engines and therefore of high consumption of fuel, increasing operating costs and causing increased air pollution. Although the prices of fuel have been reduced to half, due to the sharp fall in oil prices, the consumption of fuel and the air pollution remains high at these speeds and powers used, in addition to that the reduction of the time spent on each trip is not excessive, mainly in short routes that are less than an hour . This article is about adapting a ship of high-speed service, with a maximum speed in tests of 34 knots and to reduce its operating costs (fuel, maintenance, etc. and make it economically viable; before the transformation, this vessel was operating with a service speed of 22 knots, and with a consumption per mile of 135 litters of MGO. The transformation process has consisted by: – Replacement of the two original water jet with four shaft lines with fix pitch propeller. – Replacement of the two original main engines (2 x 6500 kW = 13000 kW by four engines (4 x 1380kW = 5.520 kW. – Changing the underwater hull shape to fit the new propellers and maximize its efficiency. – Relocation of auxiliary engines, to achieve the most efficient trim. – Installation of two lateral propellers to improve maneuverability and shorten the total time of journey. After the reform and the return to service of the vessel with a service speed of over 22 knots, it has been verified that the consumption per mile is of 45 litters MGO

  13. Dark matter phenomenology of high-speed galaxy cluster collisions

    Energy Technology Data Exchange (ETDEWEB)

    Mishchenko, Yuriy [Izmir University of Economics, Faculty of Engineering, Izmir (Turkey); Ji, Chueng-Ryong [North Carolina State University, Department of Physics, Raleigh, NC (United States)

    2017-08-15

    We perform a general computational analysis of possible post-collision mass distributions in high-speed galaxy cluster collisions in the presence of self-interacting dark matter. Using this analysis, we show that astrophysically weakly self-interacting dark matter can impart subtle yet measurable features in the mass distributions of colliding galaxy clusters even without significant disruptions to the dark matter halos of the colliding galaxy clusters themselves. Most profound such evidence is found to reside in the tails of dark matter halos' distributions, in the space between the colliding galaxy clusters. Such features appear in our simulations as shells of scattered dark matter expanding in alignment with the outgoing original galaxy clusters, contributing significant densities to projected mass distributions at large distances from collision centers and large scattering angles of up to 90 {sup circle}. Our simulations indicate that as much as 20% of the total collision's mass may be deposited into such structures without noticeable disruptions to the main galaxy clusters. Such structures at large scattering angles are forbidden in purely gravitational high-speed galaxy cluster collisions. Convincing identification of such structures in real colliding galaxy clusters would be a clear indication of the self-interacting nature of dark matter. Our findings may offer an explanation for the ring-like dark matter feature recently identified in the long-range reconstructions of the mass distribution of the colliding galaxy cluster CL0024+017. (orig.)

  14. High-speed gears for gas turbine drive

    Energy Technology Data Exchange (ETDEWEB)

    Kane, J.

    1995-06-01

    Recently, Lufkin Industries, Power Transmission Div., full-load tested a high-speed gear designed to couple a 50 Hz electric power generator to a GE LM6000 gas turbine for a power generation project in Australia. The gear is rated 52.2 MW to match the output of the LM6000 gas turbine believed to be one of the largest gear testing operations for this type and size of gear. Each gear drive manufactured by Lufkin is full-speed tested to verify its performance. Tests performed on high-speed units duplicate field conditions, as closely as possible, in order to verify critical speed analysis results and new bearing designs, if used. Lufkin also tests design techniques used in the development of new products. The finite element analysis performed to predict housing deflection in the thrust bearing area of a new extruder driveline was verified by testing of a prototype unit housing. Recently, housing structure stiffness and natural frequencies were predicted and verified on the test stand for some 50 MW vertically offset gear units. A complete data acquisition system is used to gather data from bearing, inlet and drain temperature monitoring points. The temperature monitoring system will accommodate type T,K,J, and E thermocouples and platinum and nickel RTDs.

  15. Ultra-High-Speed Image Signal Accumulation Sensor

    Directory of Open Access Journals (Sweden)

    Takeharu Goji Etoh

    2010-04-01

    Full Text Available Averaging of accumulated data is a standard technique applied to processing data with low signal-to-noise ratios (SNR, such as image signals captured in ultra-high-speed imaging. The authors propose an architecture layout of an ultra-high-speed image sensor capable of on-chip signal accumulation. The very high frame rate is enabled by employing an image sensor structure with a multi-folded CCD in each pixel, which serves as an in situ image signal storage. The signal accumulation function is achieved by direct connection of the first and the last storage elements of the in situ storage CCD. It has been thought that the multi-folding is achievable only by driving electrodes with complicated and impractical layouts. Simple configurations of the driving electrodes to overcome the difficulty are presented for two-phase and four-phase transfer CCD systems. The in situ storage image sensor with the signal accumulation function is named Image Signal Accumulation Sensor (ISAS.

  16. Active resonant subwavelength grating devices for high speed spectroscopic sensing

    Science.gov (United States)

    Gin, A. V.; Kemme, S. A.; Boye, R. R.; Peters, D. W.; Ihlefeld, J. F.; Briggs, R. D.; Wendt, J. R.; Marshall, L. H.; Carter, T. R.; Samora, S.

    2009-02-01

    In this paper, we describe progress towards a multi-color spectrometer and radiometer based upon an active resonant subwavelength grating (RSG). This active RSG component acts as a tunable high-speed optical filter that allows device miniaturization and ruggedization not realizable using current sensors with conventional bulk optics. Furthermore, the geometrical characteristics of the device allow for inherently high speed operation. Because of the small critical dimensions of the RSG devices, the fabrication of these sensors can prove challenging. However, we utilize the state-of-the-art capabilities at Sandia National Laboratories to realize these subwavelength grating devices. This work also leverages previous work on passive RSG devices with greater than 98% efficiency and ~1nm FWHM. Rigorous coupled wave analysis has been utilized to design RSG devices with PLZT, PMN-PT and BaTiO3 electrooptic thin films on sapphire substrates. The simulated interdigitated electrode configuration achieves field strengths around 3×107 V/m. This translates to an increase in the refractive index of 0.05 with a 40V bias potential resulting in a 90% contrast of the modulated optical signal. We have fabricated several active RSG devices on selected electro-optic materials and we discuss the latest experimental results on these devices with variable electrostatic bias and a tunable wavelength source around 1.5μm. Finally, we present the proposed data acquisition hardware and system integration plans.

  17. High speed optical filtering using active resonant subwavelength gratings

    Science.gov (United States)

    Gin, A. V.; Kemme, S. A.; Boye, R. R.; Peters, D. W.; Ihlefeld, J. F.; Briggs, R. D.; Wendt, J. R.; Ellis, A. R.; Marshall, L. H.; Carter, T. R.; Hunker, J. D.; Samora, S.

    2010-02-01

    In this work, we describe the most recent progress towards the device modeling, fabrication, testing and system integration of active resonant subwavelength grating (RSG) devices. Passive RSG devices have been a subject of interest in subwavelength-structured surfaces (SWS) in recent years due to their narrow spectral response and high quality filtering performance. Modulating the bias voltage of interdigitated metal electrodes over an electrooptic thin film material enables the RSG components to act as actively tunable high-speed optical filters. The filter characteristics of the device can be engineered using the geometry of the device grating and underlying materials. Using electron beam lithography and specialized etch techniques, we have fabricated interdigitated metal electrodes on an insulating layer and BaTiO3 thin film on sapphire substrate. With bias voltages of up to 100V, spectral red shifts of several nanometers are measured, as well as significant changes in the reflected and transmitted signal intensities around the 1.55um wavelength. Due to their small size and lack of moving parts, these devices are attractive for high speed spectral sensing applications. We will discuss the most recent device testing results as well as comment on the system integration aspects of this project.

  18. High-speed stimulated Brillouin scattering spectroscopy at 780 nm

    Directory of Open Access Journals (Sweden)

    Itay Remer

    2016-09-01

    Full Text Available We demonstrate a high-speed stimulated Brillouin scattering (SBS spectroscopy system that is able to acquire stimulated Brillouin gain point-spectra in water samples and Intralipid tissue phantoms over 2 GHz within 10 ms and 100 ms, respectively, showing a 10-100 fold increase in acquisition rates over current frequency-domain SBS spectrometers. This improvement was accomplished by integrating an ultra-narrowband hot rubidium-85 vapor notch filter in a simplified frequency-domain SBS spectrometer comprising nearly counter-propagating continuous-wave pump-probe light at 780 nm and conventional single-modulation lock-in detection. The optical notch filter significantly suppressed stray pump light, enabling detection of stimulated Brillouin gain spectra with substantially improved acquisition times at adequate signal-to-noise ratios (∼25 dB in water samples and ∼15 dB in tissue phantoms. These results represent an important step towards the use of SBS spectroscopy for high-speed measurements of Brillouin gain resonances in scattering and non-scattering samples.

  19. High speed and wide bandwidth delta-sigma ADCs

    CERN Document Server

    Bolatkale, Muhammed; Makinwa, Kofi A A

    2014-01-01

    This book describes techniques for realizing wide bandwidth (125MHz) over-sampled analog-to-digital converters (ADCs) in nanometer-CMOS processes.  The authors offer a clear and complete picture of system level challenges and practical design solutions in high-speed Delta-Sigma modulators.  Readers will be enabled to implement ADCs as continuous-time delta-sigma (CT∆Σ) modulators, offering simple resistive inputs, which do not require the use of power-hungry input buffers, as well as offering inherent anti-aliasing, which simplifies system integration. The authors focus on the design of high speed and wide-bandwidth ΔΣMs that make a step in bandwidth range which was previously only possible with Nyquist converters. More specifically, this book describes the stability, power efficiency, and linearity limits of ΔΣMs, aiming at a GHz sampling frequency.   • Provides overview of trends in Wide Bandwidth and High Dynamic Range analog-to-digital converters (ADCs); • Enables the design of a wide band...

  20. Large area high-speed metrology SPM system

    Science.gov (United States)

    Klapetek, P.; Valtr, M.; Picco, L.; Payton, O. D.; Martinek, J.; Yacoot, A.; Miles, M.

    2015-02-01

    We present a large area high-speed measuring system capable of rapidly generating nanometre resolution scanning probe microscopy data over mm2 regions. The system combines a slow moving but accurate large area XYZ scanner with a very fast but less accurate small area XY scanner. This arrangement enables very large areas to be scanned by stitching together the small, rapidly acquired, images from the fast XY scanner while simultaneously moving the slow XYZ scanner across the region of interest. In order to successfully merge the image sequences together two software approaches for calibrating the data from the fast scanner are described. The first utilizes the low uncertainty interferometric sensors of the XYZ scanner while the second implements a genetic algorithm with multiple parameter fitting during the data merging step of the image stitching process. The basic uncertainty components related to these high-speed measurements are also discussed. Both techniques are shown to successfully enable high-resolution, large area images to be generated at least an order of magnitude faster than with a conventional atomic force microscope.

  1. High-speed digital fiber optic links for satellite traffic

    Science.gov (United States)

    Daryoush, A. S.; Ackerman, E.; Saedi, R.; Kunath, R. R.; Shalkhauser, K.

    1989-01-01

    Large aperture phased array antennas operating at millimeter wave frequencies are designed for space-based communications and imaging platforms. Array elements are comprised of active T/R modules which are linked to the central processing unit through high-speed fiber-optic networks. The system architecture satisfying system requirements at millimeter wave frequency is T/R level data mixing where data and frequency reference signals are distributed independently before mixing at the T/R modules. This paper demonstrates design procedures of a low loss high-speed fiber-optic link used for transmission of data signals over 600-900 MHz bandwidth inside satellite. The fiber-optic link is characterized for transmission of analog and digital data. A dynamic range of 79 dB/MHz was measured for analog data over the bandwidth. On the other hand, for bursted SMSK satellite traffic at 220 Mbps rates, BER of 2 x 10 to the -7th was measured for E(b)/N(o) of 14.3 dB.

  2. High-speed atomic force microscopy: imaging and force spectroscopy.

    Science.gov (United States)

    Eghiaian, Frédéric; Rico, Felix; Colom, Adai; Casuso, Ignacio; Scheuring, Simon

    2014-10-01

    Atomic force microscopy (AFM) is the type of scanning probe microscopy that is probably best adapted for imaging biological samples in physiological conditions with submolecular lateral and vertical resolution. In addition, AFM is a method of choice to study the mechanical unfolding of proteins or for cellular force spectroscopy. In spite of 28 years of successful use in biological sciences, AFM is far from enjoying the same popularity as electron and fluorescence microscopy. The advent of high-speed atomic force microscopy (HS-AFM), about 10 years ago, has provided unprecedented insights into the dynamics of membrane proteins and molecular machines from the single-molecule to the cellular level. HS-AFM imaging at nanometer-resolution and sub-second frame rate may open novel research fields depicting dynamic events at the single bio-molecule level. As such, HS-AFM is complementary to other structural and cellular biology techniques, and hopefully will gain acceptance from researchers from various fields. In this review we describe some of the most recent reports of dynamic bio-molecular imaging by HS-AFM, as well as the advent of high-speed force spectroscopy (HS-FS) for single protein unfolding. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  3. Numerical analysis of dipole sound source around high speed trains.

    Science.gov (United States)

    Takaishi, Takehisa; Sagawa, Akio; Nagakura, Kiyoshi; Maeda, Tatsuo

    2002-06-01

    As the maximum speed of high speed trains increases, the effect of aeroacoustic noise on the sound level on the ground becomes increasingly important. In this paper, the distribution of dipole sound sources at the bogie section of high speed trains is predicted numerically. The three-dimensional unsteady flow around a train is solved by the large eddy simulation technique. The time history of vortices shows that unstable shear layer separation at the leading edge of the bogie section sheds vortices periodically. These vortices travel downstream while growing to finally impinge upon the trailing edge of the section. The wavelength of sound produced by these vortices is large compared to the representative length of the bogie section, so that the source region can be regarded as acoustically compact. Thus a compact Green's function adapted to the shape can be used to determine the sound. By coupling the instantaneous flow properties with the compact Green's function, the distribution of dipole sources is obtained. The results reveal a strong dipole source at the trailing edge of the bogie section where the shape changes greatly and the variation of flow with time is also great. On the other hand, the bottom of the bogie section where the shape does not change, or the leading edge and boundary layer where the variation of flow with time is small, cannot generate a strong dipole source.

  4. Role of the eye in high-speed motion analysis

    Science.gov (United States)

    Hyzer, William G.

    1997-05-01

    Prior to the investigation of the photographic process over 150 years ago, the analyses of rapid motions were limited by the dynamic efficacies of the human eye, which has a temporal resolution of approximately 1/10 sec and a maximum information acquisition rate estimated at 103 to 104 bits/sec. At high rates of object motion, only the simplest actions can be resolved, comprehended and retained in human memory. Advances in the field of high-speed photography drastically changed all this by providing us with the ability today to capture permanent images of transient events at acquisition rates in excess of 1012 bits/sec. As remarkable as these improvements in temporal resolution and image retention may be, the final step in correctly interpreting any image still rests largely upon the analyst's ability to process visual data. Those who enter the field of image analysis soon learn how capricious the eye can be in this task. It is incumbent upon anyone performing important image analyses to have at least a basic understanding of the eye's performance characteristics, especially its limitations and capricious anomalies. Exemplary data presented in this paper are drawn from the scientific literature and the author's forty years of experience as a researcher, author and educator in the field of high-speed imaging.

  5. High-speed digital video tracking system for generic applications

    Science.gov (United States)

    Walton, James S.; Hallamasek, Karen G.

    2001-04-01

    The value of high-speed imaging for making subjective assessments is widely recognized, but the inability to acquire useful data from image sequences in a timely fashion has severely limited the use of the technology. 4DVideo has created a foundation for a generic instrument that can capture kinematic data from high-speed images. The new system has been designed to acquire (1) two-dimensional trajectories of points; (2) three-dimensional kinematics of structures or linked rigid-bodies; and (3) morphological reconstructions of boundaries. The system has been designed to work with an unlimited number of cameras configured as nodes in a network, with each camera able to acquire images at 1000 frames per second (fps) or better, with a spatial resolution of 512 X 512 or better, and an 8-bit gray scale. However, less demanding configurations are anticipated. The critical technology is contained in the custom hardware that services the cameras. This hardware optimizes the amount of information stored, and maximizes the available bandwidth. The system identifies targets using an algorithm implemented in hardware. When complete, the system software will provide all of the functionality required to capture and process video data from multiple perspectives. Thereafter it will extract, edit and analyze the motions of finite targets and boundaries.

  6. Quantitative Image Analysis Techniques with High-Speed Schlieren Photography

    Science.gov (United States)

    Pollard, Victoria J.; Herron, Andrew J.

    2017-01-01

    Optical flow visualization techniques such as schlieren and shadowgraph photography are essential to understanding fluid flow when interpreting acquired wind tunnel test data. Output of the standard implementations of these visualization techniques in test facilities are often limited only to qualitative interpretation of the resulting images. Although various quantitative optical techniques have been developed, these techniques often require special equipment or are focused on obtaining very precise and accurate data about the visualized flow. These systems are not practical in small, production wind tunnel test facilities. However, high-speed photography capability has become a common upgrade to many test facilities in order to better capture images of unsteady flow phenomena such as oscillating shocks and flow separation. This paper describes novel techniques utilized by the authors to analyze captured high-speed schlieren and shadowgraph imagery from wind tunnel testing for quantification of observed unsteady flow frequency content. Such techniques have applications in parametric geometry studies and in small facilities where more specialized equipment may not be available.

  7. Reflectively coupled waveguide photodetector for high speed optical interconnection.

    Science.gov (United States)

    Hsu, Shih-Hsiang

    2010-01-01

    To fully utilize GaAs high drift mobility, techniques to monolithically integrate In0.53Ga0.47As p-i-n photodetectors with GaAs based optical waveguides using total internal reflection coupling are reviewed. Metal coplanar waveguides, deposited on top of the polyimide layer for the photodetector's planarization and passivation, were then uniquely connected as a bridge between the photonics and electronics to illustrate the high-speed monitoring function. The photodetectors were efficiently implemented and imposed on the echelle grating circle for wavelength division multiplexing monitoring. In optical filtering performance, the monolithically integrated photodetector channel spacing was 2 nm over the 1,520-1,550 nm wavelength range and the pass band was 1 nm at the -1 dB level. For high-speed applications the full-width half-maximum of the temporal response and 3-dB bandwidth for the reflectively coupled waveguide photodetectors were demonstrated to be 30 ps and 11 GHz, respectively. The bit error rate performance of this integrated photodetector at 10 Gbit/s with 2(7)-1 long pseudo-random bit sequence non-return to zero input data also showed error-free operation.

  8. High-Speed Solar Wind and Geomagnetic Activity

    Science.gov (United States)

    Olyak, M. R.

    2015-03-01

    The impact of high-speed solar wind disturbances on the occurrence of geomagnetic storms is analyzed. The solar wind velocity values, determined from scintillation observations at the UTR-2 and URAN-2 Ukrainian decameter radio telescopes are analyzed together with the solar wind parameters at the Earth’s orbit and geomagnetic indices Ap. The solar wind velocity increase during observations was chiefly caused by the high-speed streams from coronal holes. At the time of February 2011, the X-class solar flare, accompanied by coronal mass ejections, was also observed. It was found that the geomagnetic disturbances of that period occurred at negative daily values of the interplanetary magnetic field component being perpendicular to the ecliptic plane. It was shown that the increasing solar wind velocity observed with the UTR-2 and URAN-2 within a wide range of helio- latitudes leads to increase in geomagnetic index Ap and to geomagnetic disturbance. Whereas the increase of solar wind velocity in a narrow range of helio-latitudes near to the ecliptic plane was never accompanied by geomagnetic perturbations.

  9. The Impact of High-Speed Rail on Residents’ Travel Behavior and Household Mobility: A Case Study of the Beijing-Shanghai Line, China

    Directory of Open Access Journals (Sweden)

    Hongsheng Chen

    2016-11-01

    Full Text Available With the improvement of China’s high-speed rail network, there have been many economic and social benefits for local residents. Based on a questionnaire conducted in stations on the Beijing-Shanghai line, and through an analysis of high-speed rail passenger travel behavior and family relocation, we explored the social effects of high-speed rail. The study found that high-speed rail passengers are mainly young, highly educated, and have a middle to high income. However, with the popularization of high-speed rail, such differences in the social stratum of high-speed rail passengers are expected to disappear. Through an analysis of passenger travel status, we found that the areas surrounding high-speed rail stations are very accessible to the main cities, and are well connected by other public transport. With the emergence of the “high mobility era” based on the high-speed rail network, the separation of workplace and residence and the number of “double city” households are increasing, primarily in the Beijing-Tianjin and Shanghai-Nanjing (especially in Suzhou-Kunshan-Shanghai regions. In addition, high-speed rail introduces the possibility of household mobility, with 22.7% of the respondents in this study having relocated since the Beijing-Shanghai line opened. Household mobility is apparent primarily among big cities, with movement toward nearby cities. We also found that occupation, income, residence time, and schooling of children have a significant impact on households. With the improvement of high-speed rail networks, household mobility will become a common phenomenon and research on domestic mobility will continue to increase.

  10. High-speed nanoscale characterization of dewetting via dynamic transmission electron microscopy

    Science.gov (United States)

    Hihath, Sahar; Santala, Melissa K.; Campbell, Geoffrey; van Benthem, Klaus

    2016-08-01

    The dewetting of thin films can occur in either the solid or the liquid state for which different mass transport mechanisms are expected to control morphological changes. Traditionally, dewetting dynamics have been examined on time scales between several seconds to hours, and length scales ranging between nanometers and millimeters. The determination of mass transport mechanisms on the nanoscale, however, requires nanoscale spatial resolution and much shorter time scales. This study reports the high-speed observation of dewetting phenomena for kinetically constrained Ni thin films on crystalline SrTiO3 substrates. Movie-mode Dynamic Transmission Electron Microscopy (DTEM) was used for high-speed image acquisition during thin film dewetting at different temperatures. DTEM imaging confirmed that the initial stages of film agglomeration include edge retraction, hole formation, and growth. Finite element modeling was used to simulate temperature distributions within the DTEM samples after laser irradiation with different energies. For pulsed laser irradiation at 18 μJ, experimentally observed hole growth suggests that Marangoni flow dominates hole formation in the liquid nickel film. After irradiation with 13.8 μJ, however, the observations suggest that dewetting was initiated by nucleation of voids followed by hole growth through solid-state surface diffusion.

  11. Forecasting the Short-Term Passenger Flow on High-Speed Railway with Neural Networks

    Directory of Open Access Journals (Sweden)

    Mei-Quan Xie

    2014-01-01

    Full Text Available Short-term passenger flow forecasting is an important component of transportation systems. The forecasting result can be applied to support transportation system operation and management such as operation planning and revenue management. In this paper, a divide-and-conquer method based on neural network and origin-destination (OD matrix estimation is developed to forecast the short-term passenger flow in high-speed railway system. There are three steps in the forecasting method. Firstly, the numbers of passengers who arrive at each station or depart from each station are obtained from historical passenger flow data, which are OD matrices in this paper. Secondly, short-term passenger flow forecasting of the numbers of passengers who arrive at each station or depart from each station based on neural network is realized. At last, the OD matrices in short-term time are obtained with an OD matrix estimation method. The experimental results indicate that the proposed divide-and-conquer method performs well in forecasting the short-term passenger flow on high-speed railway.

  12. Substructure method in high-speed monorail dynamic problems

    Science.gov (United States)

    Ivanchenko, I. I.

    2008-12-01

    The study of actions of high-speed moving loads on bridges and elevated tracks remains a topical problem for transport. In the present study, we propose a new method for moving load analysis of elevated tracks (monorail structures or bridges), which permits studying the interaction between two strained objects consisting of rod systems and rigid bodies with viscoelastic links; one of these objects is the moving load (monorail rolling stock), and the other is the carrying structure (monorail elevated track or bridge). The methods for moving load analysis of structures were developed in numerous papers [1-15]. At the first stage, when solving the problem about a beam under the action of the simplest moving load such as a moving weight, two fundamental methods can be used; the same methods are realized for other structures and loads. The first method is based on the use of a generalized coordinate in the expansion of the deflection in the natural shapes of the beam, and the problem is reduced to solving a system of ordinary differential equations with variable coefficients [1-3]. In the second method, after the "beam-weight" system is decomposed, just as in the problem with the weight impact on the beam [4], solving the problem is reduced to solving an integral equation for the dynamic weight reaction [6, 7]. In [1-3], an increase in the number of retained forms leads to an increase in the order of the system of equations; in [6, 7], difficulties arise when solving the integral equations related to the conditional stability of the step procedures. The method proposed in [9, 14] for beams and rod systems combines the above approaches and eliminates their drawbacks, because it permits retaining any necessary number of shapes in the deflection expansion and has a resolving system of equations with an unconditionally stable integration scheme and with a minimum number of unknowns, just as in the method of integral equations [6, 7]. This method is further developed for

  13. High speed turning of compacted graphite iron using controlled modulation

    Science.gov (United States)

    Stalbaum, Tyler Paul

    Compacted graphite iron (CGI) is a material which emerged as a candidate material to replace cast iron (CI) in the automotive industry for engine block castings. Its thermal and mechanical properties allow the CGI-based engines to operate at higher cylinder pressures and temperatures than CI-based engines, allowing for lower fuel emissions and increased fuel economy. However, these same properties together with the thermomechanical wear mode in the CGI-CBN system result in poor machinability and inhibit CGI from seeing wide spread use in the automotive industry. In industry, machining of CGI is done only at low speeds, less than V = 200 m/min, to avoid encountering rapid wear of the cutting tools during cutting. Studies have suggested intermittent cutting operations such as milling suffer less severe tool wear than continuous cutting. Furthermore, evidence that a hard sulfide layer which forms over the cutting edge in machining CI at high speeds is absent during machining CGI is a major factor in the difference in machinability of these material systems. The present study addresses both of these issues by modification to the conventional machining process to allow intermittent continuous cutting. The application of controlled modulation superimposed onto the cutting process -- modulation-assisted machining (MAM) -- is shown to be quite effective in reducing the wear of cubic boron nitride (CBN) tools when machining CGI at high machining speeds (> 500 m/min). The tool life is at least 20 times greater than found in conventional machining of CGI. This significant reduction in wear is a consequence of reduction in the severity of the tool-work contact conditions with MAM. The propensity for thermochemical wear of CBN is thus reduced. It is found that higher cutting speed (> 700 m/min) leads to lower tool wear with MAM. The MAM configuration employing feed-direction modulation appears feasible for implementation at high speeds and offers a solution to this challenging

  14. Ultra-high-speed Optical Signal Processing using Silicon Photonics

    DEFF Research Database (Denmark)

    Oxenløwe, Leif Katsuo; Ji, Hua; Jensen, Asger Sellerup

    on silicon photonics. In particular we use nano-engineered silicon waveguides (nanowires) [1] enabling efficient phasematched four-wave mixing (FWM), cross-phase modulation (XPM) or self-phase modulation (SPM) for ultra-high-speed optical signal processing of ultra-high bit rate serial data signals. We show......— In supercomputers, the optical inter-connects are getting closer and closer to the processing cores. Today, a single supercomputer system has as many optical links as the whole worldwide web together, and it is envisaged that future computing chips will contain multiple electronic processor cores...... that silicon can indeed be used to control Tbit/s serial data signals [2], perform 640 Gbit/s wavelength conversion [3] 640 Gbit/s serial-to-parallel conversion [4], 160 Gbit/s packet switching as well as all-optical regeneration [5]. We will also discuss the performance limitations of crystalline silicon...

  15. Thermal Behavior of High-Speed Helical Gear Trains Investigated

    Science.gov (United States)

    Handschuh, Robert F.

    2003-01-01

    High-speed and heavily loaded gearing are commonplace in the rotorcraft systems employed in helicopter and tiltrotor transmissions. The components are expected to deliver high power from the gas turbine engines to the high-torque, low-speed rotor, reducing the shaft rotational speed in the range of 25:1 to 100:1. These components are designed for high power-to-weight ratios, thus the components are fabricated as light as possible with the best materials and processing to transmit the required torque and carry the resultant loads without compromising the reliability of the drive system. This is a difficult task that is meticulously analyzed and thoroughly tested experimentally prior to being applied on a new or redesigned aircraft.

  16. Quiet High Speed Fan II (QHSF II): Final Report

    Science.gov (United States)

    Kontos, Karen; Weir, Don; Ross, Dave

    2012-01-01

    This report details the aerodynamic, mechanical, structural design and fabrication of a Honey Engines Quiet High Speed Fan II (lower hub/tip ratio and higher specific flow than the Baseline I fan). This fan/nacelle system incorporates features such as advanced forward sweep and an advanced integrated fan/fan exit guide vane design that provides for the following characteristics: (1) Reduced noise at supersonic tip speeds, in comparison to current state-of-the-art fan technology; (2) Improved aeroelastic stability within the anticipated operating envelope; and (3) Aerodynamic performance consistent with current state-of-the-art fan technology. This fan was fabricated by Honeywell and tested in the NASA Glenn 9- by 15-Ft Low Speed Wind Tunnel for aerodynamic, aeromechanical, and acoustic performance.

  17. High speed MSM photodetector based on Ge nanowires network

    Science.gov (United States)

    Dhyani, Veerendra; Das, Samaresh

    2017-05-01

    This paper presents the photoresponse characteristics of a high speed Ge nanowires (NWs) network metal-semiconductor-metal photodetector. Ge NWs with different diameters (30 nm-100 nm) were grown by a vapour-liquid-solid method on SiO2/Si (100) wafers. Responsivity up to 1.75 A W-1 has been observed for a 30 nm NWs device compared to 0.5 A W-1 for a 100 nm NWs detector. A large population of surface states results in higher responsivity in a smaller diameter NWs device. The high gain in photocurrent has been explained using back-to-back Schottky junctions in a NWs network. The 30 nm NWs detector shows a fast photoresponse with a rise time of 95 μs and a fall time of 100 μs. The observed diameter-dependent time response in network NWs devices has been explained using barrier-dominant photo-conductance.

  18. Material Properties of High-Speed Steel Rolls

    Directory of Open Access Journals (Sweden)

    Shaohua Wu

    2017-03-01

    Full Text Available Recently, it has been required to improve the material properties of high-speed steel (HSS rolls, because of the low wear resistance and low mechanical properties. To improve them, several new steels have been proposed, which have high wear resistance as well as excellent mechanical properties, e.g., hardness and tensile properties, where additional elements (V, Cr and W were employed. However, their steels may have still technical issues, as the roll surfaces become roughened during the production process. The reason for this problem is found to be affected by the oxidation of the HSS surface. In this work, we have provided the suggestions to make high wear resistance of the HSS rolls

  19. High-speed Integrated Circuits for electrical/Optical Interfaces

    DEFF Research Database (Denmark)

    Jespersen, Christoffer Felix

    2008-01-01

    of LC-oscillators with oscillator criteria, phase noise and different topologies are given as background. The theory of PLL circuits is also presented. Guidelines and suggestions for static divider, VCO, LA and CDR design are presented using static divider, 50-100 GHz VCO and 100Gb/s LA+CDR circuits......This thesis is a continuation of the effort to increase the bandwidth of communicationnetworks. The thesis presents the results of the design of several high-speed electrical ircuits for an electrical/optical interface. These circuits have been a contribution to the ESTA project in collaboration...... circuits at the receiver interface, though VCOs are also found in the transmitter where a multitude of independent sources have to be mutually synchronized before multiplexing. The circuits are based on an InP DHBT process (VIP-2) supplied by Vitesse and made publicly available as MPW. The VIP-2 process...

  20. High speed coding for velocity by archerfish retinal ganglion cells

    Directory of Open Access Journals (Sweden)

    Kretschmer Viola

    2012-06-01

    Full Text Available Abstract Background Archerfish show very short behavioural latencies in response to falling prey. This raises the question, which response parameters of retinal ganglion cells to moving stimuli are best suited for fast coding of stimulus speed and direction. Results We compared stimulus reconstruction quality based on the ganglion cell response parameters latency, first interspike interval, and rate. For stimulus reconstruction of moving stimuli using latency was superior to using the other stimulus parameters. This was true for absolute latency, with respect to stimulus onset, as well as for relative latency, with respect to population response onset. Iteratively increasing the number of cells used for reconstruction decreased the calculated error close to zero. Conclusions Latency is the fastest response parameter available to the brain. Therefore, latency coding is best suited for high speed coding of moving objects. The quantitative data of this study are in good accordance with previously published behavioural response latencies.

  1. Physiological consequences of military high-speed boat transits.

    Science.gov (United States)

    Myers, Stephen D; Dobbins, Trevor D; King, Stuart; Hall, Benjamin; Ayling, Ruth M; Holmes, Sharon R; Gunston, Tom; Dyson, Rosemary

    2011-09-01

    The purpose of this study was to investigate the consequences of a high-speed boat transit on physical performance. Twenty-four Royal Marines were randomly assigned to a control (CON) or transit (TRAN) group. The CON group sat onshore for 3 h whilst the TRAN group completed a 3-h transit in open-boats running side-by-side, at 40 knots in moderate-to-rough seas, with boat deck and seat-pan acceleration recorded. Performance tests (exhaustive shuttle-run, handgrip, vertical-jump, push-up) were completed pre- and immediately post-transit/sit, with peak heart rate (HRpeak) and rating of perceived exertion (RPE) recorded. Serial blood samples (pre, 24, 36, 48, 72 h) were analyzed for creatine kinase (CK) activity. The transit was typified by frequent high shock impacts, but moderate mean heart rates (boat transits.

  2. Simplified Dynamic Model for High-Speed Checkweigher

    Science.gov (United States)

    Yamakawa, Yuji; Yamazaki, Takanori

    In this paper, we concern with the dynamic behaviors of a high speed mass measurement system with conveyor belt (a checkweigher). The goal of this paper is to construct a simple model of the measurement system so as to duplicate a response of the system. The checkweigher with electromagnetic force compensation can be approximated by the combined spring-mass-damper systems as the physical model, and the equation of motion is derived. The model parameters (a damping coefficient and a spring constant) can be obtained from the experimental data for open-loop system. Finally, the validity of the proposed model can be confirmed by comparison of the simulation results with the realistic responses. The simple dynamic model obtained offers practical and useful information to examine control scheme.

  3. Analog parallel processor hardware for high speed pattern recognition

    Science.gov (United States)

    Daud, T.; Tawel, R.; Langenbacher, H.; Eberhardt, S. P.; Thakoor, A. P.

    1990-01-01

    A VLSI-based analog processor for fully parallel, associative, high-speed pattern matching is reported. The processor consists of two main components: an analog memory matrix for storage of a library of patterns, and a winner-take-all (WTA) circuit for selection of the stored pattern that best matches an input pattern. An inner product is generated between the input vector and each of the stored memories. The resulting values are applied to a WTA network for determination of the closest match. Patterns with up to 22 percent overlap are successfully classified with a WTA settling time of less than 10 microsec. Applications such as star pattern recognition and mineral classification with bounded overlap patterns have been successfully demonstrated. This architecture has a potential for an overall pattern matching speed in excess of 10 exp 9 bits per second for a large memory.

  4. Design implications of high-speed digital PPM

    Science.gov (United States)

    Sibley, Martin J. N.

    1993-11-01

    Work in the area of digital pulse position modulation (digital PPM) has shown that this type of modulation can yield sensitivities that are typically 4 - 5 dB better than an equivalent PCM system. Recent experimental work has shown that the receiver in a digital PPM system does not need to have a wide bandwidth. Instead, the bandwidth can be very low so that the receiver is effectively impulsed by the digital PPM signal. The advent of very high speed Si digital ICs, and fast lasers, means that digital PPM can now be used to code gigabit PCM signals. This paper presents original theoretical results for a digital PPM system coding 1 Gbit/s PCM signals into 8 Gbit/s digital PPM signals. The paper also addresses the difficulties that the system designer is likely to encounter, and discusses some possible solutions.

  5. Machining Chatter Analysis for High Speed Milling Operations

    Science.gov (United States)

    Sekar, M.; Kantharaj, I.; Amit Siddhappa, Savale

    2017-10-01

    Chatter in high speed milling is characterized by time delay differential equations (DDE). Since closed form solution exists only for simple cases, the governing non-linear DDEs of chatter problems are solved by various numerical methods. Custom codes to solve DDEs are tedious to build, implement and not error free and robust. On the other hand, software packages provide solution to DDEs, however they are not straight forward to implement. In this paper an easy way to solve DDE of chatter in milling is proposed and implemented with MATLAB. Time domain solution permits the study and model of non-linear effects of chatter vibration with ease. Time domain results are presented for various stable and unstable conditions of cut and compared with stability lobe diagrams.

  6. High-Speed Coherent Raman Fingerprint Imaging of Biological Tissues

    CERN Document Server

    Camp, Charles H; Heddleston, John M; Hartshorn, Christopher M; Walker, Angela R Hight; Rich, Jeremy N; Lathia, Justin D; Cicerone, Marcus T

    2014-01-01

    We have developed a coherent Raman imaging platform using broadband coherent anti-Stokes Raman scattering (BCARS) that provides an unprecedented combination of speed, sensitivity, and spectral breadth. The system utilizes a unique configuration of laser sources that probes the Raman spectrum over 3,000 cm$^{-1}$ and generates an especially strong response in the typically weak Raman "fingerprint" region through heterodyne amplification of the anti-Stokes photons with a large nonresonant background (NRB) while maintaining high spectral resolution of $<$ 13 cm$^{-1}$. For histology and pathology, this system shows promise in highlighting major tissue components in a non-destructive, label-free manner. We demonstrate high-speed chemical imaging in two- and three-dimensional views of healthy murine liver and pancreas tissues and interfaces between xenograft brain tumors and the surrounding healthy brain matter.

  7. Premiere in high speed materials inter-operability

    Energy Technology Data Exchange (ETDEWEB)

    Brun, D.

    1995-07-01

    The Eurostar trains have been designed to meet the safety requirements of the Channel Tunnel. In particular, ti must be possible to remove the train from the tunnel in most fault scenarios. The train design is based upon an optimal capacity/price ratio. As far as the installation of electrical equipment is concerned (power supply, power conversion, motor units), the variety of track configurations is another consideration in addition to the questions of safety. The original solutions adopted give traction and braking performance that are satisfactory by comparison with the high-speed trains (TGV) in service on appropriate track, and the best possible for the British track. The trains are heavier and less powerful, but they are capable of getting out of the tunnel with only one motor out of three in service. (author). 6 figs.

  8. Optical communication equalized technique suitable for high-speed transmission

    Science.gov (United States)

    Zhu, Yaolin; Guan, Hao

    2017-07-01

    To solve the phase distortion and high error rate in optical signal transmission, an equalized technique is proposed, which aims to improve the constant modulus algorithm (CMA). In order to correct phase rotating and reduce the error rate with 64 quadrature amplitude modulation (QAM), the method takes the mean square error as the judgment and utilizes the time-varying step size. Simulation results demonstrate that the proposed algorithm can improve the convergence speed of constellation points, make the eye opening larger, and the signal noise ratio (SNR) can be increased by 4 dB under the same bit error rate (BER), which is efficient for the recovery of information in high-speed transmission.

  9. High speed cutting of AZ31 magnesium alloy

    Directory of Open Access Journals (Sweden)

    Liwei Lu

    2016-06-01

    Full Text Available Using LBR-370 numerical control lathe, high speed cutting was applied to AZ31 magnesium alloy. The influence of cutting parameters on microstructure, surface roughness and machining hardening were investigated by using the methods of single factor and orthogonal experiment. The results show that the cutting parameters have an important effect on microstructure, surface roughness and machine hardening. The depth of stress layer, roughness and hardening present a declining tendency with the increase of the cutting speed and also increase with the augment of the cutting depth and feed rate. Moreover, we established a prediction model of the roughness, which has an important guidance on actual machining process of magnesium alloy.

  10. Towards high-speed autonomous navigation of unknown environments

    Science.gov (United States)

    Richter, Charles; Roy, Nicholas

    2015-05-01

    In this paper, we summarize recent research enabling high-speed navigation in unknown environments for dynamic robots that perceive the world through onboard sensors. Many existing solutions to this problem guarantee safety by making the conservative assumption that any unknown portion of the map may contain an obstacle, and therefore constrain planned motions to lie entirely within known free space. In this work, we observe that safety constraints may significantly limit performance and that faster navigation is possible if the planner reasons about collision with unobserved obstacles probabilistically. Our overall approach is to use machine learning to approximate the expected costs of collision using the current state of the map and the planned trajectory. Our contribution is to demonstrate fast but safe planning using a learned function to predict future collision probabilities.

  11. Dynamics of High-Speed Rotors Supported in Sliding Bearings

    Science.gov (United States)

    Šimek, J.; Svoboda, R.

    The higher the operating speed, the more serious are problems with rotor stability. Three basic groups of rotors are analyzed and some methods of suppressing instability are shown. In the first group are classical elastic rotors supported in hydrodynamic bearings. Practically all high-speed rotors now run in tilting pad bearings, which are inherently stable, but in specific conditions even tiling pad bearings may not ensure rotor stability. The second group is composed of combustion engines turbocharger rotors, which are characteristic by heavy impellers at both overhung ends of elastic shaft. These rotors are in most cases supported in floating ring bearings, which bring special features to rotor behaviour. The third group of rotors with gas bearings exhibits special features.

  12. High-Speed, Three Dimensional Object Composition Mapping Technology

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, M Y

    2001-02-14

    This document overviews an entirely new approach to determining the composition--the chemical-elemental, isotopic and molecular make-up--of complex, highly structured objects, moreover with microscopic spatial resolution in all 3 dimensions. The front cover depicts the new type of pulsed laser system at the heart of this novel technology under adjustment by Alexis Wynne, and schematically indicates two of its early uses: swiftly analyzing the 3-D composition governed structure of a transistor circuit with both optical and mass-spectrometric detectors, and of fossilized dinosaur and turtle bones high-speed probed by optical detection means. Studying the composition-cued 3-D micro-structures of advanced composite materials and the microscopic scale composition-texture of biological tissues are two near-term examples of the rich spectrum of novel applications enabled by this field-opening analytic tool-set.

  13. Dynamic Control of High-speed Train Following Operation

    Directory of Open Access Journals (Sweden)

    Deng Pan

    2014-08-01

    Full Text Available Both safety and efficiency should be considered in high-speed train following control. The real-time calculation of dynamic safety following distance is used by the following train to understand the quality of its own following behavior. A new velocity difference control law can help the following train to adjust its own behavior from a safe and efficient steady-following state to another one if the actual following distance is greater than the safe following distance. Meanwhile, the stopping control law would work for collision avoidance when the actual following distance is less than the safe following distance. The simulation shows that the dynamic control of actual inter-train distance can be well accomplished by the behavioral adjustment of the following train, and verifies the effectiveness and feasibility of our presented methods for train following control.

  14. High Speed Water Sterilization Using One-Dimensional Nanostructures

    KAUST Repository

    Schoen, David T.

    2010-09-08

    The removal of bacteria and other organisms from water is an extremely important process, not only for drinking and sanitation but also industrially as biofouling is a commonplace and serious problem. We here present a textile based multiscale device for the high speed electrical sterilization of water using silver nanowires, carbon nanotubes, and cotton. This approach, which combines several materials spanning three very different length scales with simple dying based fabrication, makes a gravity fed device operating at 100000 L/(h m2) which can inactivate >98% of bacteria with only several seconds of total incubation time. This excellent performance is enabled by the use of an electrical mechanism rather than size exclusion, while the very high surface area of the device coupled with large electric field concentrations near the silver nanowire tips allows for effective bacterial inactivation. © 2010 American Chemical Society.

  15. High-speed counters in Fibonacci numerical system

    Science.gov (United States)

    Azarov, Olexiy; Chernyak, Olexandr; Komada, Paweł; Kozhambardiyeva, Miergul; Kalizhanova, Aliya

    2017-08-01

    Possibility of executing the carriers and borrowings by means of elementary additive transformations in the process of calculation in Fibonacci numerical system is substantiated. Methods of counting in the given numerical system, based on the usage of information redundancy are suggested. The methods consist in the fact that at every step executed all possible elementary addition transformations of code in the counter simultaneously with adding one. The suggested methods enable to construct up-, down- and up/down counters with high speed, independent on the data capacity and small hardware cost that linearly grow with the increase of the capacity. Schemes of structural organization of one digit for each of the suggested methods are given.

  16. Imaging acoustic sources moving at high-speed

    Science.gov (United States)

    Bodony, Daniel; Papanicolaou, George

    2006-11-01

    In the quantification of the noise radiated by a turbulent flow the source motion is important. It is well known that moving acoustic sources radiate sound preferrentially in the direction of motion in a phenomenon termed `convective amplification.' Modern acoustic theories have utilized this behavior in their predictions. In the inverse problem the imaging of noise sources, by techniques such as beam forming, the source motion is not explicitly taken into account. In this talk we consider the imaging of acoustic sources moving at speeds on the order of the the ambient speed of sound, as typical of high-speed jets, for which the D"oppler shift approximation is not appropriate. An analysis will be presented that can be used to estimate the source motion based on the radiated acoustic field.

  17. High-speed single-pixel digital holography

    Science.gov (United States)

    González, Humberto; Martínez-León, Lluís.; Soldevila, Fernando; Araiza-Esquivel, Ma.; Tajahuerce, Enrique; Lancis, Jesús

    2017-06-01

    The complete phase and amplitude information of biological specimens can be easily determined by phase-shifting digital holography. Spatial light modulators (SLMs) based on liquid crystal technology, with a frame-rate around 60 Hz, have been employed in digital holography. In contrast, digital micro-mirror devices (DMDs) can reach frame rates up to 22 kHz. A method proposed by Lee to design computer generated holograms (CGHs) permits the use of such binary amplitude modulators as phase-modulation devices. Single-pixel imaging techniques record images by sampling the object with a sequence of micro-structured light patterns and using a simple photodetector. Our group has reported some approaches combining single-pixel imaging and phase-shifting digital holography. In this communication, we review these techniques and present the possibility of a high-speed single-pixel phase-shifting digital holography system with phase-encoded illumination. This system is based on a Mach-Zehnder interferometer, with a DMD acting as the modulator for projecting the sampling patterns on the object and also being used for phase-shifting. The proposed sampling functions are phaseencoded Hadamard patterns generated through a Lee hologram approach. The method allows the recording of the complex amplitude distribution of an object at high speed on account of the high frame rates of the DMD. Reconstruction may take just a few seconds. Besides, the optical setup is envisaged as a true adaptive system, which is able to measure the aberration induced by the optical system in the absence of a sample object, and then to compensate the wavefront in the phasemodulation stage.

  18. Modeling Compressibility Effects in High-Speed Turbulent Flows

    Science.gov (United States)

    Sarkar, S.

    2004-01-01

    Man has strived to make objects fly faster, first from subsonic to supersonic and then to hypersonic speeds. Spacecraft and high-speed missiles routinely fly at hypersonic Mach numbers, M greater than 5. In defense applications, aircraft reach hypersonic speeds at high altitude and so may civilian aircraft in the future. Hypersonic flight, while presenting opportunities, has formidable challenges that have spurred vigorous research and development, mainly by NASA and the Air Force in the USA. Although NASP, the premier hypersonic concept of the eighties and early nineties, did not lead to flight demonstration, much basic research and technology development was possible. There is renewed interest in supersonic and hypersonic flight with the HyTech program of the Air Force and the Hyper-X program at NASA being examples of current thrusts in the field. At high-subsonic to supersonic speeds, fluid compressibility becomes increasingly important in the turbulent boundary layers and shear layers associated with the flow around aerospace vehicles. Changes in thermodynamic variables: density, temperature and pressure, interact strongly with the underlying vortical, turbulent flow. The ensuing changes to the flow may be qualitative such as shocks which have no incompressible counterpart, or quantitative such as the reduction of skin friction with Mach number, large heat transfer rates due to viscous heating, and the dramatic reduction of fuel/oxidant mixing at high convective Mach number. The peculiarities of compressible turbulence, so-called compressibility effects, have been reviewed by Fernholz and Finley. Predictions of aerodynamic performance in high-speed applications require accurate computational modeling of these "compressibility effects" on turbulence. During the course of the project we have made fundamental advances in modeling the pressure-strain correlation and developed a code to evaluate alternate turbulence models in the compressible shear layer.

  19. High Speed Running and Sprinting Profiles of Elite Soccer Players

    Directory of Open Access Journals (Sweden)

    Miñano-Espin Javier

    2017-08-01

    Full Text Available Real Madrid was named as the best club of the 20th century by the International Federation of Football History and Statistics. The aim of this study was to compare if players from Real Madrid covered shorter distances than players from the opposing team. One hundred and forty-nine matches including league, cup and UEFA Champions League matches played by the Real Madrid were monitored during the 2001-2002 to the 2006-2007 seasons. Data from both teams (Real Madrid and the opponent were recorded. Altogether, 2082 physical performance profiles were examined, 1052 from the Real Madrid and 1031 from the opposing team (Central Defenders (CD = 536, External Defenders (ED = 491, Central Midfielders (CM = 544, External Midfielders (EM = 233, and Forwards (F = 278. Match performance data were collected using a computerized multiple-camera tracking system (Amisco Pro®, Nice, France. A repeated measures analysis of variance (ANOVA was performed for distances covered at different intensities (sprinting (>24.0 km/h and high-speed running (21.1-24.0 km/h and the number of sprints (21.1-24.0 km/h and >24.0 km/h during games for each player sectioned under their positional roles. Players from Real Madrid covered shorter distances in high-speed running and sprint than players from the opposing team (p 0.01 from Real Madrid covered shorter distances in high-intensity running and sprint and performed less sprints than their counterparts. Finally, no differences were found in the high-intensity running and sprint distances performed by players from Real Madrid depending on the quality of the opposition.

  20. High-Speed Edge-Detecting Line Scan Smart Camera

    Science.gov (United States)

    Prokop, Norman F.

    2012-01-01

    A high-speed edge-detecting line scan smart camera was developed. The camera is designed to operate as a component in a NASA Glenn Research Center developed inlet shock detection system. The inlet shock is detected by projecting a laser sheet through the airflow. The shock within the airflow is the densest part and refracts the laser sheet the most in its vicinity, leaving a dark spot or shadowgraph. These spots show up as a dip or negative peak within the pixel intensity profile of an image of the projected laser sheet. The smart camera acquires and processes in real-time the linear image containing the shock shadowgraph and outputting the shock location. Previously a high-speed camera and personal computer would perform the image capture and processing to determine the shock location. This innovation consists of a linear image sensor, analog signal processing circuit, and a digital circuit that provides a numerical digital output of the shock or negative edge location. The smart camera is capable of capturing and processing linear images at over 1,000 frames per second. The edges are identified as numeric pixel values within the linear array of pixels, and the edge location information can be sent out from the circuit in a variety of ways, such as by using a microcontroller and onboard or external digital interface to include serial data such as RS-232/485, USB, Ethernet, or CAN BUS; parallel digital data; or an analog signal. The smart camera system can be integrated into a small package with a relatively small number of parts, reducing size and increasing reliability over the previous imaging system..

  1. Changes of indicators of high-speed and high-speed and power preparedness at volleyball players of 12–13 years old

    OpenAIRE

    Oleg Shevchenko

    2016-01-01

    Purpose: to define changes of indicators of high-speed and high-speed and power preparedness of volleyball players of 12–13 years old. Material & Methods: the test exercises, which are recommended by the training program of CYSS on volleyball, were used for the definition of the level of development of high-speed and high-speed and power abilities of volleyball players. 25 young volleyball players from the group of the previous basic preparation took part in the experiment. Sports experie...

  2. Coach design for the Korean high-speed train: a systematic approach to passenger seat design and layout.

    Science.gov (United States)

    Jung, E S; Han, S H; Jung, M; Choe, J

    1998-12-01

    Proper ergonomic design of a passenger seat and coach layout for a high-speed train is an essential component that is directly related to passenger comfort. In this research, a systematic approach to the design of passenger seats was described and the coach layout which reflected the tradeoff between transportation capacity and passenger comfort was investigated for the Korean high-speed train. As a result, design recommendations and specifications of the passenger seat and its layout were suggested. The whole design process is composed of four stages. A survey and analysis of design requirement was first conducted, which formed the base for designing the first and second class passenger seats. Prototypes were made and evaluated iteratively, and seat arrangement and coach layout were finally obtained. The systematic approach and recommendations suggested in this study are expected to be applicable to the seat design for public transportations and to help modify and redesign existing vehicular seats.

  3. Hall thruster plume measurements from High-speed Dual Langmuir Probes with Ion Saturation Reference

    Science.gov (United States)

    Sekerak, M.; McDonald, M.; Hofer, R.; Gallimore, A.

    the first to positively correlate observed spokes with plasma plume oscillations that could provide the key to understanding HET operation. High-speed diagnostic techniques enable observation and characterization of the oscillatory nature of HETs which will give critical insight into important phenomena such as anomalous electron transport, thruster operational stability and plasma-spacecraft interactions for future HETs.

  4. Implementing high-speed rail in Wisconsin peer exchange.

    Science.gov (United States)

    2009-01-01

    The Wisconsin Department of Transportation Division of Transportation Investment Management hosted : a peer exchange on June 2 -4, 2009 in Milwaukee, Wisconsin. Representatives from four state DOTs and : two freight railroads joined representatives f...

  5. Experimental settlement and dynamic behavior of a portion of ballasted railway track under high speed trains

    Science.gov (United States)

    Al Shaer, A.; Duhamel, D.; Sab, K.; Foret, G.; Schmitt, L.

    2008-09-01

    The study of railway tracks under high speed trains is one of the most important researches in the domain of transport. A reduced scale experiment with three sleepers is presented to study the dynamic behavior and the settlement of ballasted tracks. A large number of trains passing at high speeds are simulated by signals, applied with the help of hydraulic jacks, having the shape of the letter M and representing the passages of bogies on sleepers. This experiment offers results such as displacements, accelerations, pressures and settlements that allow to better understand the dynamic behavior of a portion of a ballasted railway track at reduced scale and to estimate the settlement versus the number of load cycles. It was found that mechanical properties such as the global stiffness of the track can have important variations during the experiment. The settlement was also found to be a function of the acceleration of sleepers and above all it was observed, for accelerations above a critical value, that the increase of settlement per cycle was very high.

  6. Dual-camera system for high-speed imaging in particle image velocimetry

    CERN Document Server

    Hashimoto, K; Hara, T; Onogi, S; Mouri, H

    2012-01-01

    Particle image velocimetry is an important technique in experimental fluid mechanics, for which it has been essential to use a specialized high-speed camera. However, the high speed is at the expense of other performances of the camera, i.e., sensitivity and image resolution. Here, we demonstrate that the high-speed imaging is also possible with a pair of still cameras.

  7. Development and Performance of the ACTS High Speed VSAT

    Science.gov (United States)

    Quintana, J.; Tran, Q.; Dendy, R.

    1999-01-01

    The Advanced Communication Technology Satellite (ACTS), developed by the U.S. National Aeronautics and Space Administration (NASA) has demonstrated the breakthrough technologies of Ka-band, spot beam antennas, and on-board processing. These technologies have enabled the development of very small aperture terminals (VSAT) and ultra-small aperture terminals (USAT) which have capabilities greater than were previously possible with conventional satellite technologies. However, the ACTS baseband processor (BBP) is designed using a time division multiple access (TDMA) scheme, which requires each earth station using the BBP to transmit data at a burst rate which is much higher than the user throughput data rate. This tends to mitigate the advantage of the new technologies by requiring a larger earth station antenna and/or a higher-powered uplink amplifier than would be necessary for a continuous transmission at the user data rate. Conversely, the user data rate is much less than the rate that can be supported by the antenna size and amplifier. For example, the ACTS TI VSAT operates at a burst rate of 27.5 Mbps, but the maximum user data rate is 1.792 Mbps. The throughput efficiency is slightly more than 6.5%. For an operational network, this level of overhead will greatly increase the cost of the user earth stations, and that increased cost must be repeated thousands of times, which may ultimately reduce the market for such a system. The ACTS High Speed VSAT (HS VSAT) is an effort to experimentally demonstrate the maximum user throughput data rate which can be achieved using the technologies developed and implemented on ACTS. Specifically, this was done by operating the system uplinks as frequency division multiple access (FDMA), essentially assigning all available TDMA time slots to a single user on each of two uplink frequencies. Preliminary results show that using a 1.2-m antenna in this mode, the HS VSAT can achieve between 22 and 24 Mbps out of the 27.5 Mbps burst

  8. Changes of indicators of high-speed and high-speed and power preparedness at volleyball players of 12–13 years old

    Directory of Open Access Journals (Sweden)

    Oleg Shevchenko

    2016-04-01

    Full Text Available Purpose: to define changes of indicators of high-speed and high-speed and power preparedness of volleyball players of 12–13 years old. Material & Methods: the test exercises, which are recommended by the training program of CYSS on volleyball, were used for the definition of the level of development of high-speed and high-speed and power abilities of volleyball players. 25 young volleyball players from the group of the previous basic preparation took part in the experiment. Sports experience of sportsmen is 3–4 years. The analysis of scientifically-methodical literature, pedagogical testing, pedagogical experiment, methods of mathematical statistics were carried out. Results: the analyzed level of high-speed and high-speed and power abilities of volleyball players. Conclusions: the results had reliable changes (t=2,2–2,4 at р<0,05 of the level of high-speed and high-speed and power abilities of volleyball players of 12–13years old in the experimental group at the end of the experiment, except run on 30 m that demonstrates a positive influence of application of special exercises in the educational-training process.

  9. High-speed cinematography of gas-metal atomization

    Energy Technology Data Exchange (ETDEWEB)

    Ting, Jason [ALCOA Specialty Metals Division, 100 Technical Drive, Alcoa Center, PA 15069 (United States)]. E-mail: jason.ting@alcoa.com; Connor, Jeffery [Material Science Engineering Department, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Ridder, Stephen [Metallurgical Processing Group, NIST, 100 Bureau Dr. Stop 8556, Gaithersburg, MD 20899 (United States)

    2005-01-15

    A high-speed cinematographic footage of a 304L stainless steel gas atomization, recorded at the National Institute of Standard and Technology (NIST), was analyzed using a discrete Fourier transform (DFT) algorithm. The analysis showed the gas atomization process possesses two prominent frequency ranges of melt oscillation (pulsation). A low-frequency oscillation in the melt flow occurring between 5.41 and 123 Hz, with a dominant frequency at 9.93 Hz, was seen in the recirculation zone adjacent to the melt orifice. A high-frequency melt oscillation range was observed above 123 Hz, and was more prominent one melt-tip-diameter downstream in the melt atomization image than upstream near the melt tip. This high-frequency range may reflect the melt atomization frequency used to produce finely atomized powder. This range also included a prominent high frequency at 1273 Hz, which dominated in the image further away downstream from the melt tip. This discrete high-frequency oscillation is most probably caused by the aeroacoustic ''screech'' phenomenon, intrasound (<20 kHz), a result of the atomizing gas jets undergoing flow resonance. It is hypothesized that this discrete intrinsic aeroacoustic tone may enhance melt breakup in the atomization process with evidence of this fact in the melt images.

  10. In defence of high-speed memory scanning.

    Science.gov (United States)

    Sternberg, Saul

    2016-10-01

    This paper reviews some of the evidence that bears on the existence of a mental high-speed serial exhaustive scanning process (SES) used by humans to interrogate the active memory of a set of items to determine whether it contains a test item. First proposed in the 1960s, based on patterns of reaction times (RTs), numerous later studies supported, elaborated, extended, and limited the generality of SES, while critics claimed that SES never occurred, that predictions from SES were violated, and that other mechanisms produced the RT patterns that led to the idea. I show that some of these claims result from ignoring variations in experimental procedure that produce superficially similar but quantitatively different RT patterns and that, for the original procedures, the most frequently repeated claims that predictions are violated are false. I also discuss evidence against the generality of competing theories of active-memory interrogation, especially those that depend on discrimination of directly accessible "memory-strength". Some of this evidence has been available since the 1960s but has been ignored by some proponents of alternative theories. Other evidence presented herein is derived from results of one relevant experiment described for the first time, results of another described in more detail than heretofore, and new analyses of old data. Knowledge of brain function acquired during the past half century has increased the plausibility of SES. SES is alive and well, but many associated puzzles merit further investigation, suggestions for which are offered.

  11. Improvement of vocal pathologies diagnosis using high-speed videolaryngoscopy.

    Science.gov (United States)

    Tsuji, Domingos Hiroshi; Hachiya, Adriana; Dajer, Maria Eugenia; Ishikawa, Camila Cristina; Takahashi, Marystella Tomoe; Montagnoli, Arlindo Neto

    2014-07-01

    Introduction The study of the dynamic properties of vocal fold vibration is important for understanding the vocal production mechanism and the impact of organic and functional changes. The advent of high-speed videolaryngoscopy (HSV) has provided the possibility of seeing the real cycle of vocal fold vibration in detail through high sampling rate of successive frames and adequate spatial resolution. Objective To describe the technique, advantages, and limitations of using HSV and digital videokymography in the diagnosis of vocal pathologies. Methods We used HSV and digital videokymography to evaluate one normophonic individual and four patients with vocal fold pathologies (nodules, unilateral paralysis of the left vocal fold, intracordal cyst, and adductor spasmodic dysphonia). The vocal fold vibration parameters (glottic closure, vibrational symmetry, periodicity, mucosal wave, amplitude, and glottal cycle phases) were assessed. Results Differences in the vocal vibration parameters were observed and correlated with the pathophysiology. Conclusion HSV is the latest diagnostic tool in visual examination of vocal behavior and has considerable potential to refine our knowledge regarding the vocal fold vibration and voice production, as well as regarding the impact of pathologic conditions have on the mechanism of phonation.

  12. Improvement of Vocal Pathologies Diagnosis Using High-Speed Videolaryngoscopy

    Directory of Open Access Journals (Sweden)

    Tsuji, Domingos Hiroshi

    2014-04-01

    Full Text Available Introduction The study of the dynamic properties of vocal fold vibration is important for understanding the vocal production mechanism and the impact of organic and functional changes. The advent of high-speed videolaryngoscopy (HSV has provided the possibility of seeing the real cycle of vocal fold vibration in detail through high sampling rate of successive frames and adequate spatial resolution. Objective To describe the technique, advantages, and limitations of using HSV and digital videokymography in the diagnosis of vocal pathologies. Methods We used HSV and digital videokymography to evaluate one normophonic individual and four patients with vocal fold pathologies (nodules, unilateral paralysis of the left vocal fold, intracordal cyst, and adductor spasmodic dysphonia. The vocal fold vibration parameters (glottic closure, vibrational symmetry, periodicity, mucosal wave, amplitude, and glottal cycle phases were assessed. Results Differences in the vocal vibration parameters were observed and correlated with the pathophysiology. Conclusion HSV is the latest diagnostic tool in visual examination of vocal behavior and has considerable potential to refine our knowledge regarding the vocal fold vibration and voice production, as well as regarding the impact of pathologic conditions have on the mechanism of phonation.

  13. Measurements of granular flow dynamics with high speed digital images

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jingeol [Univ. of Florida, Gainesville, FL (United States)

    1994-01-01

    The flow of granular materials is common to many industrial processes. This dissertation suggests and validates image processing algorithms applied to high speed digital images to measure the dynamics (velocity, temperature and volume fraction) of dry granular solids flowing down an inclined chute under the action of gravity. Glass and acrylic particles have been used as granular solids in the experiment. One technique utilizes block matching for spatially averaged velocity measurements of the glass particles. This technique is compared with the velocity measurement using an optic probe which is a conventional granular flow velocity measurement device. The other technique for measuring the velocities of individual acrylic particles is developed with correspondence using a Hopfield network. This technique first locates the positions of particles with pattern recognition techniques, followed by a clustering technique, which produces point patterns. Also, several techniques are compared for particle recognition: synthetic discriminant function (SDF), minimum average correlation energy (MACE) filter, modified minimum average correlation energy (MMACE) filter and variance normalized correlation. The author proposes an MMACE filter which improves generalization of the MACE filter by adjusting the amount of averaged spectrum of training images in the spectrum whitening stages of the MACE filter. Variance normalized correlation is applied to measure the velocity and temperature of flowing glass particles down the inclined chute. The measurements are taken for the steady and wavy flow and qualitatively compared with a theoretical model of granular flow.

  14. Submonolayer Quantum Dots for High Speed Surface Emitting Lasers

    Directory of Open Access Journals (Sweden)

    Zakharov ND

    2007-01-01

    Full Text Available AbstractWe report on progress in growth and applications of submonolayer (SML quantum dots (QDs in high-speed vertical-cavity surface-emitting lasers (VCSELs. SML deposition enables controlled formation of high density QD arrays with good size and shape uniformity. Further increase in excitonic absorption and gain is possible with vertical stacking of SML QDs using ultrathin spacer layers. Vertically correlated, tilted or anticorrelated arrangements of the SML islands are realized and allow QD strain and wavefunction engineering. Respectively, both TE and TM polarizations of the luminescence can be achieved in the edge-emission using the same constituting materials. SML QDs provide ultrahigh modal gain, reduced temperature depletion and gain saturation effects when used in active media in laser diodes. Temperature robustness up to 100 °C for 0.98 μm range vertical-cavity surface-emitting lasers (VCSELs is realized in the continuous wave regime. An open eye 20 Gb/s operation with bit error rates better than 10−12has been achieved in a temperature range 25–85 °Cwithout current adjustment. Relaxation oscillations up to ∼30 GHz have been realized indicating feasibility of 40 Gb/s signal transmission.

  15. A DSP Based POD Implementation for High Speed Multimedia Communications

    Directory of Open Access Journals (Sweden)

    Chang Nian Zhang

    2002-09-01

    Full Text Available In the cable network services, the audio/video entertainment contents should be protected from unauthorized copying, intercepting, and tampering. Point-of-deployment (POD security module, proposed by OpenCableTM, allows viewers to receive secure cable services such as premium subscription channels, impulse pay-per-view, video-on-demand as well as other interactive services. In this paper, we present a digital signal processor (DSP (TMS320C6211 based POD implementation for the real-time applications which include elliptic curve digital signature algorithm (ECDSA, elliptic curve Diffie Hellman (ECDH key exchange, elliptic curve key derivation function (ECKDF, cellular automata (CA cryptography, communication processes between POD and Host, and Host authentication. In order to get different security levels and different rates of encryption/decryption, a CA based symmetric key cryptography algorithm is used whose encryption/decryption rate can be up to 75 Mbps. The experiment results indicate that the DSP based POD implementation provides high speed and flexibility, and satisfies the requirements of real-time video data transmission.

  16. Plastic straw: future of high-speed signaling

    Science.gov (United States)

    Song, Ha Il; Jin, Huxian; Bae, Hyeon-Min

    2015-11-01

    The ever-increasing demand for bandwidth triggered by mobile and video Internet traffic requires advanced interconnect solutions satisfying functional and economic constraints. A new interconnect called E-TUBE is proposed as a cost-and-power-effective all-electrical-domain wideband waveguide solution for high-speed high-volume short-reach communication links. The E-TUBE achieves an unprecedented level of performance in terms of bandwidth-per-carrier frequency, power, and density without requiring a precision manufacturing process unlike conventional optical/waveguide solutions. The E-TUBE exhibits a frequency-independent loss-profile of 4 dB/m and has nearly 20-GHz bandwidth over the V band. A single-sideband signal transmission enabled by the inherent frequency response of the E-TUBE renders two-times data throughput without any physical overhead compared to conventional radio frequency communication technologies. This new interconnect scheme would be attractive to parties interested in high throughput links, including but not limited to, 100/400 Gbps chip-to-chip communications.

  17. Control-Surface Instability on High-Speed Airplanes

    Science.gov (United States)

    Phillips, William H.

    1942-01-01

    Tests of several modern airplanes indicate that control surfaces with a high degree of aerodynamic balance are likely to possess characteristics which make them unsatisfactory or dangerous in high-speed flight. Dive tests made in the spring of 1940 at the NACA on a naval fighter-type airplane illustrate one form of instability that may be encountered. During a dive at an indicated airspeed of 365 miles per hour, the ailerons suddenly overbalanced. The efforts of the pilot to bring the ailerons back to neutral resulted in a violent oscillation of the control stick from side to side. Fortunately, the force required to return the ailerons to neutral was within the pilot's capabilities. A time history of the maneuver is given in figure1 and typical frames from motion pictures of the cockpit and of the wing, taken during the maneuver, are given in figure 2. In the illustrated case, the occurrence of aerodynamic overbalance was attributed to a slight bulge, approximately 1/16 inch thick, on the lower surface of the leading edges of the ailerons, caused by the installation of additional mass balance ahead of the hinge line. A drawing showing the shape of the bulge is given in figure 3. After this slight protuberance had been eliminated, dives were successfully made at higher speeds.

  18. Entrainment characteristics of fine particles under high speed airflow

    Directory of Open Access Journals (Sweden)

    Yin Shaowu

    2017-01-01

    Full Text Available Fine silicon particles (mean size of 2.7 μm are used as entrained materials, and the entrainment characteristics of fine particles are investigated in a cylindrical fluidized-bed (inner diameter of 28 mm and height of 1000 mm under high speed airflow. The effects of the volume flow of gas (Q, 1 m3/h to 2.5 m3/h, the number of holes (N, 1 to 4, the size of holes (D, 1 mm to 3 mm, and the distance between holes and the upper surface of the material layer (H, -100 mm to 200 mm on the entrainment characteristics (entrainment rate W and entrained powder-gas ratio R are experimentally studied through orthogonal experiment. The experimental results show that an increase in Q and H constantly improves the entrainment characteristics; a decrease in D enhances such characteristics, whereas the number of holes N has no significant effect on the entrainment characteristics. An optimal operating condition can result in optimal entrainment characteristics (W, 3.1 g/min and R, 0.058 g/g, which can be achieved with a Q of 2.5 m3/h, N of 1, D of 2 mm and H of 200 mm.

  19. Storage and compression design of high speed CCD

    Science.gov (United States)

    Cai, Xichang; Zhai, LinPei

    2009-05-01

    In current field of CCD measurement, large area and high resolution CCD is used to obtain big measurement image, so that, speed and capacity of CCD requires high performance of later storage and process system. The paper discusses how to use SCSI hard disk to construct storage system and use DSPs and FPGA to realize image compression. As for storage subsystem, Because CCD is divided into multiplex output, SCSI array is used in RAID0 way. The storage system is com posed of high speed buffer, DM A controller, control M CU, SCSI protocol controller and SCSI hard disk. As for compression subsystem, according to requirement of communication and monitor system, the output is fixed resolution image and analog PA L signal. The compression means is JPEG 2000 standard, in which, 9/7 wavelets in lifting format is used. 2 DSPs and FPGA are used to com pose parallel compression system. The system is com posed of FPGA pre-processing module, DSP compression module, video decoder module, data buffer module and communication module. Firstly, discrete wavelet transform and quantization is realized in FPGA. Secondly, entropy coding and stream adaption is realized in DSPs. Last, analog PA L signal is output by Video decoder. Data buffer is realized in synchronous dual-port RAM and state of subsystem is transfer to controller. Through subjective and objective evaluation, the storage and compression system satisfies the requirement of system.

  20. Numerical Simulation of Oil Jet Lubrication for High Speed Gears

    Directory of Open Access Journals (Sweden)

    Tommaso Fondelli

    2015-01-01

    Full Text Available The Geared Turbofan technology is one of the most promising engine configurations to significantly reduce the specific fuel consumption. In this architecture, a power epicyclical gearbox is interposed between the fan and the low pressure spool. Thanks to the gearbox, fan and low pressure spool can turn at different speed, leading to higher engine bypass ratio. Therefore the gearbox efficiency becomes a key parameter for such technology. Further improvement of efficiency can be achieved developing a physical understanding of fluid dynamic losses within the transmission system. These losses are mainly related to viscous effects and they are directly connected to the lubrication method. In this work, the oil injection losses have been studied by means of CFD simulations. A numerical study of a single oil jet impinging on a single high speed gear has been carried out using the VOF method. The aim of this analysis is to evaluate the resistant torque due to the oil jet lubrication, correlating the torque data with the oil-gear interaction phases. URANS calculations have been performed using an adaptive meshing approach, as a way of significantly reducing the simulation costs. A global sensitivity analysis of adopted models has been carried out and a numerical setup has been defined.

  1. High Speed Genetic Lips Detection by Dynamic Search Domain Control

    Science.gov (United States)

    Akashi, Takuya; Wakasa, Yuji; Tanaka, Kanya; Karungaru, Stephen; Fukumi, Minoru

    In this paper, high-speed size and orientation invariant lips detection of a talking person in an active scene using template matching and genetic algorithms is proposed. As part of the objectives, we also try to acquire numerical parameters to represent the lips. The information is very important for many applications, where high performance is required, such as audio-visual speech recognition, speaker identification systems, robot perception and personal mobile devices interfaces. The difficulty in lips detection is mainly due to deformations and geometric changes of the lips during speech and the active scene by free camera motion. In order to enhance the performance in speed and accuracy, initially, the performance is improved on a single still image, that is, the base of video processing. Our proposed system is based on template matching using genetic algorithms (GA). Only one template is prepared per experiment. The template is the closed mouth of a subject, because the application is for personal devices. In our previous study, the main problem was trade-off between search accuracy and search speed. To overcome this problem, we use two methods: scaling window and dynamic search domain control (SD-Control). We therefore focus on the population size of the GA, because it has a direct effect on search accuracy and speed. The effectiveness of the proposed system is demonstrated by performing computer simulations. We achieved a lips detection accuracy of 91.33% at an average processing time of 33.70 milliseconds per frame.

  2. Increasing the life of high-speed steel cutting tools

    Energy Technology Data Exchange (ETDEWEB)

    Plyusnin, Y.G.

    1984-05-01

    The paper describes work on determining the rational area of use, mastering of production operations, and introduction into the plants of the industry of various methods of increasing the life of high-speed tools. Among these methods are carbonitriding, treatment of the tool by shock cooling and by application of a magnetic field, and the application of wear resistant coatings by the method of cathodic-ionic bombardment. The article briefly characterizes each method. Experience in the introduction of the carbonitriding process has shown that the greatest increase in life is obtained for relatively large cutting tools such as hubs and large diameter drills. The effectiveness of shock cooling depends to a great degree upon the original structure of the tool material and upon the requirements imposed on it in service (for stability). Experience in the magnetic treatment of drills and end mills up to 30mm in diameter has shown that the life of a magnetically treated tool with subsequent demagnetization increases by 1.2-1.4 times and without demagnetization by 1.7-2 times. The effectiveness of magnetic hardening depends not only upon the correctly selected strength of the magnetic field and time of application, but also upon the time of postmagnetic aging. Wear resistant coatings applied by the cathodic-ionic bombardment method increases by 2-5 times the life of a cutting tool. However, careful preparation of the tool surface is required as well as careful control of the temperature and thickness of the coating.

  3. Radio Wave Propagation Scene Partitioning for High-Speed Rails

    Directory of Open Access Journals (Sweden)

    Bo Ai

    2012-01-01

    Full Text Available Radio wave propagation scene partitioning is necessary for wireless channel modeling. As far as we know, there are no standards of scene partitioning for high-speed rail (HSR scenarios, and therefore we propose the radio wave propagation scene partitioning scheme for HSR scenarios in this paper. Based on our measurements along the Wuhan-Guangzhou HSR, Zhengzhou-Xian passenger-dedicated line, Shijiazhuang-Taiyuan passenger-dedicated line, and Beijing-Tianjin intercity line in China, whose operation speeds are above 300 km/h, and based on the investigations on Beijing South Railway Station, Zhengzhou Railway Station, Wuhan Railway Station, Changsha Railway Station, Xian North Railway Station, Shijiazhuang North Railway Station, Taiyuan Railway Station, and Tianjin Railway Station, we obtain an overview of HSR propagation channels and record many valuable measurement data for HSR scenarios. On the basis of these measurements and investigations, we partitioned the HSR scene into twelve scenarios. Further work on theoretical analysis based on radio wave propagation mechanisms, such as reflection and diffraction, may lead us to develop the standard of radio wave propagation scene partitioning for HSR. Our work can also be used as a basis for the wireless channel modeling and the selection of some key techniques for HSR systems.

  4. Dynamics of High-Speed Precision Geared Rotor Systems

    Directory of Open Access Journals (Sweden)

    Lim Teik C.

    2014-07-01

    Full Text Available Gears are one of the most widely applied precision machine elements in power transmission systems employed in automotive, aerospace, marine, rail and industrial applications because of their reliability, precision, efficiency and versatility. Fundamentally, gears provide a very practical mechanism to transmit motion and mechanical power between two rotating shafts. However, their performance and accuracy are often hampered by tooth failure, vibrations and whine noise. This is most acute in high-speed, high power density geared rotor systems, which is the primary scope of this paper. The present study focuses on the development of a gear pair mathematical model for use to analyze the dynamics of power transmission systems. The theory includes the gear mesh representation derived from results of the quasi-static tooth contact analysis. This proposed gear mesh theory comprising of transmission error, mesh point, mesh stiffness and line-of-action nonlinear, time-varying parameters can be easily incorporated into a variety of transmission system models ranging from the lumped parameter type to detailed finite element representation. The gear dynamic analysis performed led to the discovery of the out-of-phase gear pair torsion modes that are responsible for much of the mechanical problems seen in gearing applications. The paper concludes with a discussion on effectual design approaches to minimize the influence of gear dynamics and to mitigate gear failure in practical power transmission systems.

  5. Prototype high speed optical delay line for stellar interferometry

    Science.gov (United States)

    Colavita, M. M.; Hines, B. E.; Shao, M.; Klose, G. J.; Gibson, B. V.

    1991-01-01

    The long baselines of the next-generation ground-based optical stellar interferometers require optical delay lines which can maintain nm-level path-length accuracy while moving at high speeds. NASA-JPL is currently designing delay lines to meet these requirements. The design is an enhanced version of the Mark III delay line, with the following key features: hardened, large diameter wheels, rather than recirculating ball bearings, to reduce mechanical noise; a friction-drive cart which bears the cable-dragging forces, and drives the optics cart through a force connection only; a balanced PZT assembly to enable high-bandwidth path-length control; and a precision aligned flexural suspension for the optics assembly to minimize bearing noise feedthrough. The delay line is fully programmable in position and velocity, and the system is controlled with four cascaded software feedback loops. Preliminary performance is a jitter in any 5 ms window of less than 10 nm rms for delay rates of up to 28 mm/s; total jitter is less than 10 nm rms for delay rates up to 20 mm/s.

  6. Recent high-speed rail vehicles; Kosoku tetsudo sharyo

    Energy Technology Data Exchange (ETDEWEB)

    Sone, S. [The University of Tokyo, Tokyo (Japan); Ishizu, K. [Central Japan Railway Company, Nagoya (Japan); Yoshie, N. [Nishi-Nippon Railroad Co. Ltd., Fukuoka (Japan); Hata, T. [East Japan Railway Co., Tokyo (Japan); Watanabe, T.; Hata, H. [Railway Technical Research Institute, Tokyo (Japan); Brun, D.

    1997-05-01

    This paper describes the latest progress in high speed rail vehicles. It was in 1981 when TGV has inaugurated commercial operation with a speed of 260 km/h. Japan is trying to recover from a setback by putting forward the 300-line vehicle of discrete motive force system, and the 500-line vehicle of complete discrete motive force system featured by reduced weight and a unique power collection system. Central Japan Railway is moving forward a 700-line train aimed at improving comfortability and reducing noise. The 500-line vehicle has vehicular features such as the sharpened head shape, weight reduction and adoption of vibration control, and also such features in electric circuits as centralized main circuit devices and improved monitoring devices. The vehicle`s running test verified stable run at 300 km/h. The Shinkansen vehicle designed by East Japan Railway adopted collective control on the main circuit system, and transferred to a system in which large capacity GTOs are used to drive three-phase induction motors. The Inter City Express has been put into practical use in Germany, with traction vehicles arranged on both ends of a train. Technological characteristics in TGV may be pointed out as avoidance of curves and high gradient. Exchange of electric train technologies is in progress between Japan and Europe. 19 refs., 27 figs., 6 tabs.

  7. AC_ICAP: A Flexible High Speed ICAP Controller

    Directory of Open Access Journals (Sweden)

    Luis Andres Cardona

    2015-01-01

    Full Text Available The Internal Configuration Access Port (ICAP is the core component of any dynamic partial reconfigurable system implemented in Xilinx SRAM-based Field Programmable Gate Arrays (FPGAs. We developed a new high speed ICAP controller, named AC_ICAP, completely implemented in hardware. In addition to similar solutions to accelerate the management of partial bitstreams and frames, AC_ICAP also supports run-time reconfiguration of LUTs without requiring precomputed partial bitstreams. This last characteristic was possible by performing reverse engineering on the bitstream. Besides, we adapted this hardware-based solution to provide IP cores accessible from the MicroBlaze processor. To this end, the controller was extended and three versions were implemented to evaluate its performance when connected to Peripheral Local Bus (PLB, Fast Simplex Link (FSL, and AXI interfaces of the processor. In consequence, the controller can exploit the flexibility that the processor offers but taking advantage of the hardware speed-up. It was implemented in both Virtex-5 and Kintex7 FPGAs. Results of reconfiguration time showed that run-time reconfiguration of single LUTs in Virtex-5 devices was performed in less than 5 μs which implies a speed-up of more than 380x compared to the Xilinx XPS_HWICAP controller.

  8. The Kaye effect revisited: High speed imaging of leaping shampoo

    Science.gov (United States)

    Versluis, Michel; Blom, Cock; van der Meer, Devaraj; van der Weele, Ko; Lohse, Detlef

    2003-11-01

    When a visco-elastic fluid such as shampoo or shower gel is poured onto a flat surface the fluid piles up forming a heap on which rather irregular combinations of fluid buckling, coiling and folding are observed. Under specific conditions a string of fluid leaps from the heap and forms a steady jet fed by the incoming stream. Momentum transfer of the incoming jet, combined with the shear-thinning properties of the fluid, lead to a spoon-like dimple in the highly viscous fluid pool in which the jet recoils. The jet can be stable for several seconds. This effect is known as the Kaye effect. In order to reveal its mechanism we analyzed leaping shampoo through high-speed imaging. We studied the jet formation, jet stability and jet disruption mechanisms. We measured the velocity of both the incoming and recoiled jet, which was found to be thicker and slower. By inclining the surface on which the fluid was poured we observed jets leaping at upto five times.

  9. Composite flywheel material design for high-speed energy storage

    Directory of Open Access Journals (Sweden)

    Michael A. Conteh

    2016-06-01

    Full Text Available Lamina and laminate mechanical properties of materials suitable for flywheel high-speed energy storage were investigated. Low density, low modulus and high strength composite material properties were implemented for the constant stress portion of the flywheel while higher density, higher modulus and strength were implemented for the constant thickness portion of the flywheel. Design and stress analysis were used to determine the maximum energy densities and shape factors for the flywheel. Analytical studies along with the use of the CADEC-online software were used to evaluate the lamina and laminate properties. This study found that a hybrid composite of M46J/epoxy–T1000G/epoxy for the flywheel exhibits a higher energy density when compared to known existing flywheel hybrid composite materials such as boron/epoxy–graphite/epoxy. Results from this study will contribute to further development of the flywheel that has recently re-emerged as a promising application for energy storage due to significant improvements in composite materials and technology.

  10. High-Speed Visualisation of Combustion in Modern Gasoline Engines

    Science.gov (United States)

    Sauter, W.; Nauwerck, A.; Han, K.-M.; Pfeil, J.; Velji, A.; Spicher, U.

    2006-07-01

    Today research and development in the field of gasoline engines have to face a double challenge: on the one hand, fuel consumption has to be reduced, while on the other hand, ever more stringent emission standards have to be fulfilled. The development of engines with its complexity of in-cylinder processes requires modern development tools to exploit the full potential in order to reduce fuel consumption. Especially optical, non-intrusive measurement techniques will help to get a better understanding of the processes. With the presented high-speed visualisation system the electromagnetic radiation from combustion in the UV range is collected by an endoscope and transmitted to a visualisation system by 10, 000 optical fibres. The signal is projected to 1, 920 photomultipliers, which convert the optical into electric signals with a maximum temporal resolution of 200 kHz. This paper shows the systematic application of flame diagnostics in modern combustion systems. For this purpose, a single-cylinder SI engine has been modified for a spray guided combustion strategy as well as for HCCI. The characteristics of flame propagation in both combustion modes were recorded and correlated with thermodynamic analyses. In case of the spray guided GDI engine, high pressure fuel injection was applied and evaluated.

  11. Materials, structures, and devices for high-speed electronics

    Science.gov (United States)

    Woollam, John A.; Snyder, Paul G.

    1992-01-01

    Advances in materials, devices, and instrumentation made under this grant began with ex-situ null ellipsometric measurements of simple dielectric films on bulk substrates. Today highly automated and rapid spectroscopic ellipsometers are used for ex-situ characterization of very complex multilayer epitaxial structures. Even more impressive is the in-situ capability, not only for characterization but also for the actual control of the growth and etching of epitaxial layers. Spectroscopic ellipsometry has expanded from the research lab to become an integral part of the production of materials and structures for state of the art high speed devices. Along the way, it has contributed much to our understanding of the growth characteristics and material properties. The following areas of research are summarized: Si3N4 on GaAs, null ellipsometry; diamondlike carbon films; variable angle spectroscopic ellipsometry (VASE) development; GaAs-AlGaAs heterostructures; Ta-Cu diffusion barrier films on GaAs; GaAs-AlGaAs superlattices and multiple quantum wells; superconductivity; in situ elevated temperature measurements of III-V's; optical constants of thermodynamically stable InGaAs; doping dependence of optical constants of GaAs; in situ ellipsometric studies of III-V epitaxial growth; photothermal spectroscopy; microellipsometry; and Si passivation and Si/SiGe strained-layer superlattices.

  12. New Drive Train Concept with Multiple High Speed Generator

    Science.gov (United States)

    Barenhorst, F.; Serowy, S.; Andrei, C.; Schelenz, R.; Jacobs, G.; Hameyer, K.

    2016-09-01

    In the research project RapidWind (financed by the German Federal Ministry for Economic Affairs and Energy under Grant 0325642) an alternative 6 MW drive train configuration with six high-speed (n = 5000 rpm) permanent magnet synchronous generators for wind turbine generators (WTG) is designed. The gearbox for this drive train concept is assembled with a six fold power split spur gear stage in the first stage, followed by six individual 1 MW geared driven generators. Switchable couplings are developed to connect and disconnect individual geared generators depending on the input power. With this drive train configuration it is possible to improve the efficiency during partial load operation, increasing the energy yield about 1.15% for an exemplary low-wind site. The focus of this paper is the investigation of the dynamic behavior of this new WTG concept. Due to the high gear ratio the inertia relationship between rotor and generator differs from conventional WT concepts, possibly leading to intensified vibration behavior. Moreover there are switching procedures added, that might also lead to vibration issues.

  13. Spiral Tube Assembly for High-Speed Countercurrent Chromatography

    Science.gov (United States)

    Ito, Y.; Clary, R.; Powell, J.; Knight, M.; Finn, T. M.

    2009-01-01

    Optimal elution modes were determined for four typical two-phase solvent systems each with different physical parameters to achieve the best peak resolution and retention of the stationary phase by spiral tube high-speed countercurrent chromatography using a suitable set of test samples. Both retention of the stationary phase and partition efficiency are governed by an interplay between two forces, i.e., Archimedean Screw force and radial centrifugal force gradient of the spiral channel. In the polar solvent system represented by 1-butanol./acetic acid/water (4:1:5, v/v/v) with settling time of over 30 s, the effect by the radial centrifugal gradient force dominates giving the best separation of dipeptides either by pumping the lower phase from the inner terminal or the upper phase from the outer terminal of the spiral channel. In the moderately hydrophobic two-phase solvent system represented by hexane/ethyl acetate/methanol/0.1 M HCl (1:1:1:1) with settling time of 19 s, and two hydrophobic solvent systems of hexane/ethanol/water (5:4:1, v/v/v) and non-aqueous binary system of hexane/acetonitrile both having settling time of 9, the effect of the Archimedean screw force play a major role in hydrodynamic equilibrium, giving the best separations by pumping the lower phase from the head or the upper phase from the tail of the spiral channel. PMID:19343107

  14. Method and apparatus for high speed data acquisition and processing

    Science.gov (United States)

    Ferron, J.R.

    1997-02-11

    A method and apparatus are disclosed for high speed digital data acquisition. The apparatus includes one or more multiplexers for receiving multiple channels of digital data at a low data rate and asserting a multiplexed data stream at a high data rate, and one or more FIFO memories for receiving data from the multiplexers and asserting the data to a real time processor. Preferably, the invention includes two multiplexers, two FIFO memories, and a 64-bit bus connecting the FIFO memories with the processor. Each multiplexer receives four channels of 14-bit digital data at a rate of up to 5 MHz per channel, and outputs a data stream to one of the FIFO memories at a rate of 20 MHz. The FIFO memories assert output data in parallel to the 64-bit bus, thus transferring 14-bit data values to the processor at a combined rate of 40 MHz. The real time processor is preferably a floating-point processor which processes 32-bit floating-point words. A set of mask bits is prestored in each 32-bit storage location of the processor memory into which a 14-bit data value is to be written. After data transfer from the FIFO memories, mask bits are concatenated with each stored 14-bit data value to define a valid 32-bit floating-point word. Preferably, a user can select any of several modes for starting and stopping direct memory transfers of data from the FIFO memories to memory within the real time processor, by setting the content of a control and status register. 15 figs.

  15. Contact freezing observed with a high speed video camera

    Science.gov (United States)

    Hoffmann, Nadine; Koch, Michael; Kiselev, Alexei; Leisner, Thomas

    2017-04-01

    Freezing of supercooled cloud droplets on collision with ice nucleating particle (INP) has been considered as one of the most effective heterogeneous freezing mechanisms. Potentially, it could play an important role in rapid glaciation of a mixed phase cloud especially if coupled with ice multiplication mechanism active at moderate subzero temperatures. The necessary condition for such coupling would be, among others, the presence of very efficient INPs capable of inducing ice nucleation of the supercooled drizzle droplets in the temperature range of -5°C to -20°C. Some mineral dust particles (K-feldspar) and biogenic INPs (pseudomonas bacteria, birch pollen) have been recently identified as such very efficient INPs. However, if observed with a high speed video (HSV) camera, the contact nucleation induced by these two classes of INPs exhibits a very different behavior. Whereas bacterial INPs can induce freezing within a millisecond after initial contact with supercooled water, birch pollen need much more time to initiate freezing. The mineral dust particles seem to induce ice nucleation faster than birch pollen but slower than bacterial INPs. In this contribution we show the HSV records of individual supercooled droplets suspended in an electrodynamic balance and colliding with airborne INPs of various types. The HSV camera is coupled with a long-working-distance microscope, allowing us to observe the contact nucleation of ice at very high spatial and temporal resolution. The average time needed to initiate freezing has been measured depending on the INP species. This time do not necessarily correlate with the contact freezing efficiency of the ice nucleating particles. We discuss possible mechanisms explaining this behavior and potential implications for future ice nucleation research.

  16. How sand grains stop a high speed intruder

    Science.gov (United States)

    Behringer, Robert

    When a speeding intruder impacts on a granular material, it comes rapidly to rest after penetrating only a modest distance. Empirical dynamical models, dating to the 19th century (if not earlier), describe the drag on the intruder in terms of two types of depth-dependent forces: one a static force, which also includes gravity, and the other a collisional force proportional to the square of the instantaneous speed of the intruder. What processes occur in the material to so quickly decelerate the intruder? We address this question through experiments and simulations (work of Lou Kondic and collaborators). We first probe the granular response using quasi-two-dimensional granular materials consisting of photoelastic discs. When such a particle experiences a force, it appears bright under cross-polarized illumination. High speed video reveals dynamic force transmission into the material along force chains that form in response to the intruder motion. These chains are nearly normal to the intruder surface, implying that collisional rather than frictional forces dominate the momentum transfer from intruder to grains. These observations allow the formation of a collision-based model that correctly captures the collisional drag force for both 2D and 3D intruders of a variety of shapes. This talk will develop a collisional picture of impact, and also explore the change in the system response as the impact speed increases. Experimental collaborators include Abe Clark, Cacey Stevens Bester, and Alec Petersen. This work supported by DTRA, NSF Grant DMR1206351, NASA Grant NNX15AD38G, and the William M. Keck Foundation.

  17. Salivary hormonal values from high-speed resistive exercise workouts.

    Science.gov (United States)

    Caruso, John F; Lutz, Brant M; Davidson, Mark E; Wilson, Kyle; Crane, Chris S; Craig, Chrsity E; Nissen, Tim E; Mason, Melissa L; Coday, Michael A; Sheaff, Robert J; Potter, William T

    2012-03-01

    Our study purpose examined salivary hormonal responses to high-speed resistive exercise. Healthy subjects (n = 45) performed 2 elbow flexor workouts on a novel (inertial kinetic exercise; Oconomowoc, WI, USA) strength training device. Our methods included saliva sample collection at both preexercise and immediately postexercise; workouts entailed two 60-second sets separated by a 90-second rest period. The samples were analyzed in duplicate for their testosterone and cortisol concentrations ([T], [C]). Average and maximum elbow flexor torque were measured from each exercise bout; they were later analyzed with a 2(gender) × 2(workout) analysis of variance (ANOVA) with repeated measures for workout. The [T] and [C] each underwent a 2(gender) × 2(time) ANOVA with repeated measures for time. A within-subject design was used to limit error variance. Average and maximum torque each had gender (men > women; p time, but women's values were unchanged. Yet multivariate regression revealed that 3 predictor variables (body mass and average and maximum torques) did not account for a significant amount of variance associated with the rise in male [T]. Changes in [C] were not significant. In conclusion, changes in [T] concur with the results from other studies that showed significant elevations in male [T], despite the brevity of current workouts and the rather modest volume of muscle mass engaged. Practical applications imply that salivary assays may be a viable alternative to blood draws from athletes, yet coaches and others who may administer this treatment should know that our results may have produced greater pre-post hormonal changes if postexercise sample collection had occurred at a later time point.

  18. Very High Speed Discrete Time Optical Signal Generation and Filtering

    Science.gov (United States)

    Narayan, Vishwa

    Optical lattice filters constitute a class of devices that generate and operate upon high bandwidth optical signals. This dissertation describes the design, analysis, construction and testing of such devices. We derive elegant z-transform based filter transfer functions and develop a convenient state variable based scattering matrix filter description. A variety of filters are designed and analyzed. We also design locally optimal optical lattice filters with mirror imperfections such as losses and finite reflectivity round-off error. We conduct a quantitative sensitivity analysis of the degrading effects of these imperfections on system performance, and study the distorting effects of phase error on pulse train shape. Experimentally, we use mirror based optical lattice filters to generate 667 GHz repetition rate pulse bursts with step and ramp envelopes, and coded pulse bursts. We also demonstrate the quadrupling and octupling of the 76 MHz repetition rate of a mode-locked laser. We demonstrate the low pass filtering property of optical lattice filters by realizing a high speed discrete time optical integrator. Step functions are integrated to ramps, and ramps to quadratics, at 667 GHz. We also constructed a mechanical variable repetition rate filter with a tuning range of 2.14 to 100 GHz. We design and analyze a gain based mirror filter with active gain elements. Small signal linear constant gain tends to improve filter performance by increasing the output, and reducing fluctuations in the frequency response. We study the behavior of these filters at the stability limit, characterized by large fluctuations in the frequency response. Optical lattice filters may be used as wavelength multiplexers/demultiplexers in lightwave systems, as variable repetition rate pulse train generators for tunable repetition rate optical spectroscopy, as optical clock generators, and as discrete time/analog optical signal filters.

  19. Full-frame, high-speed 3D shape and deformation measurements using stereo-digital image correlation and a single color high-speed camera

    Science.gov (United States)

    Yu, Liping; Pan, Bing

    2017-08-01

    Full-frame, high-speed 3D shape and deformation measurement using stereo-digital image correlation (stereo-DIC) technique and a single high-speed color camera is proposed. With the aid of a skillfully designed pseudo stereo-imaging apparatus, color images of a test object surface, composed of blue and red channel images from two different optical paths, are recorded by a high-speed color CMOS camera. The recorded color images can be separated into red and blue channel sub-images using a simple but effective color crosstalk correction method. These separated blue and red channel sub-images are processed by regular stereo-DIC method to retrieve full-field 3D shape and deformation on the test object surface. Compared with existing two-camera high-speed stereo-DIC or four-mirror-adapter-assisted singe-camera high-speed stereo-DIC, the proposed single-camera high-speed stereo-DIC technique offers prominent advantages of full-frame measurements using a single high-speed camera but without sacrificing its spatial resolution. Two real experiments, including shape measurement of a curved surface and vibration measurement of a Chinese double-side drum, demonstrated the effectiveness and accuracy of the proposed technique.

  20. Holistic design in high-speed optical interconnects

    Science.gov (United States)

    Saeedi, Saman

    Integrated circuit scaling has enabled a huge growth in processing capability, which necessitates a corresponding increase in inter-chip communication bandwidth. As bandwidth requirements for chip-to-chip interconnection scale, deficiencies of electrical channels become more apparent. Optical links present a viable alternative due to their low frequency-dependent loss and higher bandwidth density in the form of wavelength division multiplexing. As integrated photonics and bonding technologies are maturing, commercialization of hybrid-integrated optical links are becoming a reality. Increasing silicon integration leads to better performance in optical links but necessitates a corresponding co-design strategy in both electronics and photonics. In this light, holistic design of high-speed optical links with an in-depth understanding of photonics and state-of-the-art electronics brings their performance to unprecedented levels. This thesis presents developments in high-speed optical links by co-designing and co-integrating the primary elements of an optical link: receiver, transmitter, and clocking. In the first part of this thesis a 3D-integrated CMOS/Silicon-photonic receiver will be presented. The electronic chip features a novel design that employs a low-bandwidth TIA front-end, double-sampling and equalization through dynamic offset modulation. Measured results show -14.9dBm of sensitivity and energy eciency of 170fJ/b at 25Gb/s. The same receiver front-end is also used to implement source-synchronous 4-channel WDM-based parallel optical receiver. Quadrature ILO-based clocking is employed for synchronization and a novel frequency-tracking method that exploits the dynamics of IL in a quadrature ring oscillator to increase the effective locking range. An adaptive body-biasing circuit is designed to maintain the per-bit-energy consumption constant across wide data-rates. The prototype measurements indicate a record-low power consumption of 153fJ/b at 32Gb/s. The

  1. Development of precision casting in high speed steel; Seimitsu chuzo haisu no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Yagi, H.; Fujii, T. [Daido Steel Co. Ltd., Nagoya (Japan)

    1997-07-25

    As to the high speed steel manufactured by precision casting process, effect of decarbonization technology and low temperature casting, and difference between the characteristics of a steel and a high speed steel were examined. The high speed steel was cast by vacuum casing process using a mold manufactured by the lost wax process. Effect of superheating in casting on the product structure and the bending strength was examined. Decarbonization can be prevented by the vacuum casting process. By low temperature casting, the high speed steel structure becomes fine, and the bending strength or toughness is improved; 80% of the T-direction bending strength of the steel can be secured in the high speed steel. The high speed steel exceeds the steel by a little bit in abrasion resistance. When the high speed steel was applied to a spiral cutter, the high speed steel product exceeded 1.2 times the machined steel in the tool life. In the high speed steel, the cutting process is drastically reduced, and reduction of the material cost is also possible compared with the machined steel. The high speed steel is considered to show good results because of excellent abrasion resistance since the tool life depended more on abrasion than on toughness because of the machining conditions. 4 refs., 8 figs., 2 tabs.

  2. Assess the feasibility of the high-speed railway construction in China by measuring the traffic demand elastic

    Science.gov (United States)

    Yu, Nan; Cao, Yu

    2017-05-01

    The traffic demand elastic is proposed as a new indicator in this study to measure the feasibility of the high-speed railway construction in a more intuitive way. The Matrix Completion (MC) and Semi-Supervised Support Vector Machine (S3VM) are used to realize the measurement and prediction of this index on the basis of the satisfaction investigation on the 326 inter-city railways in china. It is demonstrated that instead of calculating the economic benefits brought by the construction of high-speed railway, this indicator can find the most urgent railways to be improved by directly evaluate the existing railway facilities from the perspective of transportation service improvement requirements.

  3. High speed, real-time, camera bandwidth converter

    Science.gov (United States)

    Bower, Dan E; Bloom, David A; Curry, James R

    2014-10-21

    Image data from a CMOS sensor with 10 bit resolution is reformatted in real time to allow the data to stream through communications equipment that is designed to transport data with 8 bit resolution. The incoming image data has 10 bit resolution. The communication equipment can transport image data with 8 bit resolution. Image data with 10 bit resolution is transmitted in real-time, without a frame delay, through the communication equipment by reformatting the image data.

  4. Verifying cell loss requirements in high-speed communication networks

    Directory of Open Access Journals (Sweden)

    Kerry W. Fendick

    1998-01-01

    Full Text Available In high-speed communication networks it is common to have requirements of very small cell loss probabilities due to buffer overflow. Losses are measured to verify that the cell loss requirements are being met, but it is not clear how to interpret such measurements. We propose methods for determining whether or not cell loss requirements are being met. A key idea is to look at the stream of losses as successive clusters of losses. Often clusters of losses, rather than individual losses, should be regarded as the important “loss events”. Thus we propose modeling the cell loss process by a batch Poisson stochastic process. Successive clusters of losses are assumed to arrive according to a Poisson process. Within each cluster, cell losses do not occur at a single time, but the distance between losses within a cluster should be negligible compared to the distance between clusters. Thus, for the purpose of estimating the cell loss probability, we ignore the spaces between successive cell losses in a cluster of losses. Asymptotic theory suggests that the counting process of losses initiating clusters often should be approximately a Poisson process even though the cell arrival process is not nearly Poisson. The batch Poisson model is relatively easy to test statistically and fit; e.g., the batch-size distribution and the batch arrival rate can readily be estimated from cell loss data. Since batch (cluster sizes may be highly variable, it may be useful to focus on the number of batches instead of the number of cells in a measurement interval. We also propose a method for approximately determining the parameters of a special batch Poisson cell loss with geometric batch-size distribution from a queueing model of the buffer content. For this step, we use a reflected Brownian motion (RBM approximation of a G/D/1/C queueing model. We also use the RBM model to estimate the input burstiness given the cell loss rate. In addition, we use the RBM model to

  5. High speed QWIP FPAs on InP substrates

    Science.gov (United States)

    Eker, S. U.; Arslan, Y.; Besikci, C.

    2011-05-01

    Quantum well infrared photodetector (QWIP) technology has allowed the realization of low cost staring focal plane arrays (FPAs). However, AlGaAs/(In)GaAs QWIP FPAs suffer from low quantum and conversion efficiencies under high frame rate and/or low background conditions. We extensively discuss the effect of sensor gain on the FPA performance under various operating conditions, and highlight the superiority of the InP/InGaAs material system with respect to AlGaAs/GaAs for high speed/low background thermal imaging applications. InP/InGaAs QWIPs, providing a bias adjustable gain in a wide range, offer the flexibility of adapting the FPA to strict operating conditions. We also present an experimental comparison of large format AlGaAs/GaAs and (strained) InP/InGaAs QWIP FPAs under different operating conditions. A 640 × 512 QWIP FPA constructed with the 40-well strained InP/In 0.48Ga 0.52As material system displays a cut-off wavelength of 9.7 μm ( λ p = 8.9 μm) with a BLIP temperature higher than 65 K ( f/2), and a peak quantum efficiency as high as 12% with a broad spectral response (Δ λ/ λ p = 17%). The conversion efficiency of the FPA pixels is as high as 20% under large bias (4 V) where the detectivity is reasonably high (˜3 × 10 10 cm Hz 1/2/W, f/2, 65 K). While providing a considerably higher quantum efficiency than the pixels of a similar AlGaAs/GaAs FPA, the InP/InGaAs QWIP provides similar NETD values with much shorter integration times and, being less sensitive to the read noise, successfully operates with sub-millisecond integration times. The results clearly demonstrate that InP based material systems display high potential for single- and dual-band QWIP FPAs by overcoming the limitations of the standard GaAs based QWIPs under high frame rate and/or low background conditions.

  6. An Alternative Approach for High Speed Railway Carrying Capacity Calculation Based on Multiagent Simulation

    Directory of Open Access Journals (Sweden)

    Mo Gao

    2016-01-01

    Full Text Available It is a multiobjective mixed integer programming problem that calculates the carrying capacity of high speed railway based on mathematical programming method. The model is complex and difficult to solve, and it is difficult to comprehensively consider the various influencing factors on the train operation. The multiagent theory is employed to calculate high speed railway carrying capacity. In accordance with real operations of high speed railway, a three-layer agent model is developed to simulate the operating process of high speed railway. In the proposed model, railway network agent, line agent, station agent, and train agent are designed, respectively. To validate the proposed model, a case study is performed for Beijing–Shanghai high speed railway by using NetLogo software. The results are consistent with the actual data, which implies that the proposed multiagent method is feasible to calculate the carrying capacity of high speed railway.

  7. Prospects of high-speed traffic development on international routes to ukraine. an experience of other countries in establishing high-speed passenger traffic

    Directory of Open Access Journals (Sweden)

    Віта Валеріївна Якименко

    2015-10-01

    Full Text Available Prospects and directions of high-speed traffic development on international railway communication, possible ways of solving the mismatch problem of the railway track width are described and analyzed in the article. An experience of other countries in addressing the issue of international high-speed passenger traffic, ways to overcome negative influences on the number of passengers and direction of their solution is analyzed and reviewed

  8. Gearbox Reliability Collaborative Investigation of Gearbox Motion and High-Speed-Shaft Loads

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Jon [National Renewable Energy Lab. (NREL), Golden, CO (United States); Guo, Yi [National Renewable Energy Lab. (NREL), Golden, CO (United States); Sethuraman, Latha [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-03-18

    This paper extends a model-to-test validation effort to examine the effect of different constant rotor torque and moment conditions and intentional generator misalignment on the gearbox motion and high-speed-shaft loads. Fully validating gearbox motion and high-speed-shaft loads across a range of test conditions is a critical precursor to examining the bearing loads, as the gearbox motion and high-speed-shaft loads are the drivers of these bearing loads.

  9. High-speed rail markets, infrastructure investments and manufacturing capabilities.

    Science.gov (United States)

    2012-09-01

    Driven by increasing demand for passenger transportation and congestion in key corridors in the U.S., such as in California, the Northeast, Florida and parts of the Midwest, the U.S. has embarked on various initiatives to examine alternative solution...

  10. Algorithms for High-Speed Noninvasive Eye-Tracking System

    Science.gov (United States)

    Talukder, Ashit; Morookian, John-Michael; Lambert, James

    2010-01-01

    Two image-data-processing algorithms are essential to the successful operation of a system of electronic hardware and software that noninvasively tracks the direction of a person s gaze in real time. The system was described in High-Speed Noninvasive Eye-Tracking System (NPO-30700) NASA Tech Briefs, Vol. 31, No. 8 (August 2007), page 51. To recapitulate from the cited article: Like prior commercial noninvasive eyetracking systems, this system is based on (1) illumination of an eye by a low-power infrared light-emitting diode (LED); (2) acquisition of video images of the pupil, iris, and cornea in the reflected infrared light; (3) digitization of the images; and (4) processing the digital image data to determine the direction of gaze from the centroids of the pupil and cornea in the images. Most of the prior commercial noninvasive eyetracking systems rely on standard video cameras, which operate at frame rates of about 30 Hz. Such systems are limited to slow, full-frame operation. The video camera in the present system includes a charge-coupled-device (CCD) image detector plus electronic circuitry capable of implementing an advanced control scheme that effects readout from a small region of interest (ROI), or subwindow, of the full image. Inasmuch as the image features of interest (the cornea and pupil) typically occupy a small part of the camera frame, this ROI capability can be exploited to determine the direction of gaze at a high frame rate by reading out from the ROI that contains the cornea and pupil (but not from the rest of the image) repeatedly. One of the present algorithms exploits the ROI capability. The algorithm takes horizontal row slices and takes advantage of the symmetry of the pupil and cornea circles and of the gray-scale contrasts of the pupil and cornea with respect to other parts of the eye. The algorithm determines which horizontal image slices contain the pupil and cornea, and, on each valid slice, the end coordinates of the pupil and cornea

  11. Advanced Ultra-High Speed Motor for Drilling

    Energy Technology Data Exchange (ETDEWEB)

    Impact Technologies LLC; University of Texas at Arlington

    2007-03-31

    Three (3) designs have been made for two sizes, 6.91 cm (2.72 inch) and 4.29 cm (1.69 inch) outer diameters, of a patented inverted configured Permanent Magnet Synchronous Machines (PMSM) electric motor specifically for drilling at ultra-high rotational speeds (10,000 rpm) and that can utilize advanced drilling methods. Benefits of these motors are stackable power sections, full control (speed and direction) of downhole motors, flow hydraulics independent of motor operation, application of advanced drilling methods (water jetting and abrasive slurry jetting), and the ability of signal/power electric wires through motor(s). Key features of the final designed motors are: fixed non-rotating shaft with stator coils attached; rotating housing with permanent magnet (PM) rotor attached; bit attached to rotating housing; internal channel(s) in a nonrotating shaft; electric components that are hydrostatically isolated from high internal pressure circulating fluids ('muds') by static metal to metal seals; liquid filled motor with smoothed features for minimized turbulence in the motor during operation; and new inverted coated metal-metal hydrodynamic bearings and seals. PMSM, Induction and Switched Reluctance Machines (SRM), all pulse modulated, were considered, but PMSM were determined to provide the highest power density for the shortest motors. Both radial and axial electric PMSM driven motors were designed with axial designs deemed more rugged for ultra-high speed, drilling applications. The 6.91 cm (2.72 inch) OD axial inverted motor can generate 4.18KW (5.61 Hp) power at 10,000 rpm with a 4 Nm (2.95 ft-lbs) of torque for every 30.48 cm (12 inches) of power section. The 6.91 cm (2.72 inch) OD radial inverted motor can generate 5.03 KW (6.74 Hp) with 4.8 Nm (3.54 ft-lb) torque at 10,000 rpm for every 30.48 cm (12 inches) of power section. The 4.29 cm (1.69 inch) OD radial inverted motor can generate 2.56 KW (3.43 Hp) power with 2.44 Nm (1.8 ft-lb) torque at

  12. How fast is a fast train? comparing attitudes and preferences for improved passenger rail service among urban areas in the south central high-speed rail corridor.

    Science.gov (United States)

    2011-12-01

    "High-speed passenger rail is seen by many in the U.S. transportation policy and planning communities as : an ideal solution for fast, safe, and resource-efficient mobility in high-demand intercity corridors between : 100 and 500 miles in total endpo...

  13. The Effects of the Planned High-Speed Rail System on Travel Times and Spatial Development in the European Alps

    Directory of Open Access Journals (Sweden)

    Elisa Ravazzoli

    2017-02-01

    Full Text Available One of the direct effects of introducing high-speed railway lines is a significant reduction in travel times between major cities. This is particularly relevant in mountain areas. It not only makes cities more easily reachable with more sustainable transport systems but can also encourage different travel behavior and reduce environmental pressures on sensitive areas. A comprehensive analysis of the spatiotemporal effects of the introduction of high-speed railways in the Alpine arc has not yet been developed. To help fill this gap, this study uses multidimensional scaling and the geographical information system to illustrate the time–space compression. This term indicates the erosion of spatial and temporal distances in the areas of the Alps directly affected by the new railway lines. Six trans-Alpine high-speed railway lines are analyzed, comparing current and projected travel times by train. A time-based map is created to show the time–space compression in every transversal direction, particularly on the French and the Austrian side of the Alps. Implications in terms of local accessibility are also analyzed, focusing on the Autonomous Province of Bolzano/Bozen-South Tyrol. Finally, the paper discusses the importance of time-based maps for the understanding of sociospatial dynamics and the possible implications for spatial development.

  14. Horizontal high speed stacking for batteries with prismatic cans

    Energy Technology Data Exchange (ETDEWEB)

    Bartos, Andrew L.; Lin, Yhu-Tin; Turner, III, Raymond D.

    2016-06-14

    A system and method for stacking battery cells or related assembled components. Generally planar, rectangular (prismatic-shaped) battery cells are moved from an as-received generally vertical stacking orientation to a generally horizontal stacking orientation without the need for robotic pick-and-place equipment. The system includes numerous conveyor belts that work in cooperation with one another to deliver, rotate and stack the cells or their affiliated assemblies. The belts are outfitted with components to facilitate the cell transport and rotation. The coordinated movement between the belts and the components promote the orderly transport and rotation of the cells from a substantially vertical stacking orientation into a substantially horizontal stacking orientation. The approach of the present invention helps keep the stacked assemblies stable so that subsequent assembly steps--such as compressing the cells or attaching electrical leads or thermal management components--may proceed with a reduced chance of error.

  15. High Speed Heuristics for Real-Time Personnel Assignment Models

    Science.gov (United States)

    1994-01-26

    Minimum Norm Problems Over Transportation Polytopes, Linear Algebra and its Applications, Vol. 31, pp. 103-118, 1980. [2] Beck, P., L. Lasdon and M...Analysis, 13, 145-154, 1976. [5] R.H. Bartels, " A penalty linear programming method using reduced- 0 gradient basis-exchange techniques", Linear Algebra ...1992. [8] Wets, R.J.B. and C. Witzgall, "Algorithms for frames and lineality spaces of cones," Journal of Research of the National Bureau of

  16. Cost-Benefit Analysis of High-Speed Rail Link between Hong Kong and Mainland China

    Directory of Open Access Journals (Sweden)

    R. Tao

    2011-07-01

    Full Text Available The Legislative Council in Hong Kong has approved a funding of USD$8.60 billion to build the high-speed rail (HSR line linking mainland China. HSR is a break-through technology that allows trains running at a speed over 250 km per hour. The most controversial part of the HSR investment is whether its cost could be compensated by the social benefits. In this study, a cost-benefit analysis of the Hong Kong to mainland HSR (HKM-HSR line is carried out. First, all the direct and indirect costs, and social benefits are defined; then, monetary equivalents are assigned to these elements; third, all the future values are discounted into present values and aggregated. The results show that the project has a positive net present value (NPV up to USD$2,068.49 million, which proves that the investment is worth. In addition, other transport alternatives, i.e. the existing roadway and conventional railway, are examined and compared with HKM-HSR, which unveils that HSR has the largest positive NPV among these three passenger transportation modes because of its excellent performance in ticket revenue, travel time savings and safety improvement.

  17. Thoracic spine injury after a high-speed motor vehicle crash.

    Science.gov (United States)

    Tilney, Peter

    2010-01-01

    In late October, a hospital-based flight team was activated at 9:30 pm for an approximately 30-year-old man involved in a high-speed motor vehicle crash into a tree. Per emergency medical services (EMS) documentation, flight service was requested for advanced airway management and rapid transport of the patient to a Level 1 trauma center. Ground transport was estimated at 60+ minutes, whereas actual flight time was less than 15 minutes. On the crew's arrival at the designated landing zone, they were escorted to an ambulance where a 100-kg man was immobilized on a stretcher. Because the landing area was at a remote location, the flight team did not witness the scene; however, the ground paramedic reported that the patient was the single-occupant driver of a small sedan. Given the extent of damage to the front and passenger side of the vehicle, it was determined that the patient was driving at a high rate of speed when he struck the tree. He required approximately 20 to 25 minutes of extrication. An empty bottle of zolpidem (Ambien) was found on the floor of the vehicle; the 30-day prescription had been filled approximately a week before the accident occurred. 2010 Air Medical Journal Associates. Published by Elsevier Inc. All rights reserved.

  18. Detecting and Blocking Network Attacks at Ultra High Speeds

    Energy Technology Data Exchange (ETDEWEB)

    Paxson, Vern

    2010-11-29

    Stateful, in-depth, in-line traffic analysis for intrusion detection and prevention has grown increasingly more difficult as the data rates of modern networks rise. One point in the design space for high-performance network analysis - pursued by a number of commercial products - is the use of sophisticated custom hardware. For very high-speed processing, such systems often cast the entire analysis process in ASICs. This project pursued a different architectural approach, which we term Shunting. Shunting marries a conceptually quite simple hardware device with an Intrusion Prevention System (IPS) running on commodity PC hardware. The overall design goal is was to keep the hardware both cheap and readily scalable to future higher speeds, yet also retain the unparalleled flexibility that running the main IPS analysis in a full general-computing environment provides. The Shunting architecture we developed uses a simple in-line hardware element that maintains several large state tables indexed by packet header fields, including IP/TCP flags, source and destination IP addresses, and connection tuples. The tables yield decision values the element makes on a packet-by-packet basis: forward the packet, drop it, or divert ('shunt') it through the IPS (the default). By manipulating table entries, the IPS can, on a fine-grained basis: (i) specify the traffic it wishes to examine, (ii) directly block malicious traffic, and (iii) 'cut through' traffic streams once it has had an opportunity to 'vet' them, or (iv) skip over large items within a stream before proceeding to further analyze it. For the Shunting architecture to yield benefits, it needs to operate in an environment for which the monitored network traffic has the property that - after proper vetting - much of it can be safely skipped. This property does not universally hold. For example, if a bank needs to examine all Web traffic involving its servers for regulatory compliance, then a

  19. Fire protection for high speed line tunnels; Risk analysis and exceptional robotic application results

    NARCIS (Netherlands)

    Linde, F.W.J. van de; Gijsbers, F.B.J.; Klok, G.J.

    2006-01-01

    The Green Hart Tunnel in The Netherlands is a 7 km long high speed railway tunnel with an exterior diameter of 14.5 metres. A separation wall devides the tunnel into two single tubes. High speed trains will pass the tunnel at speeds of more than 300 kph. Inside the tunnel 200,000 m2 fire resistant

  20. Fire ventilation for the high-speed line south train tunnels

    NARCIS (Netherlands)

    Leur, P.H.E. van de; Oerle, N.J. van; Lemaire, A.D.; Molag, M.

    1999-01-01

    In The Netherlands, the High-Speed Line South project currently under development as a part of the European railway network for high speed trains. In support of a Quantitative Risk Assessment, CFD calculations provide data on the consequences of fire scenarios for escaping passengers. The paper

  1. Calibration and test capabilities of the Langley 7- by 10- foot high speed tunnel

    Science.gov (United States)

    Fox, C. H., Jr.; Huffman, J. K.

    1977-01-01

    The results of a new subsonic calibration of the Langley 7 by 10 foot high speed tunnel with the test section in a solid wall configuration are presented. A description of the test capabilities of the 7 by 10 foot high speed tunnel is also given.

  2. Parallel scanning laser ophthalmoscope (PSLO) for high-speed retinal imaging

    NARCIS (Netherlands)

    Vienola, K.V.; Braaf, Boy; Damodaran, Mathi; Vermeer, Koenraad A.; de Boer, Johannes F.

    2014-01-01

    Purpose High-speed imaging of the retina is crucial for obtaining high quality images in the presence of eye motion. To improve the speed of traditional scanners, a high-speed ophthalmic device is presented using a digital micro-mirror device (DMD) for confocal imaging with multiple simultaneous

  3. L1 Adaptive Manoeuvring Control of Unmanned High-speed Water Craft

    DEFF Research Database (Denmark)

    Svendsen, Casper H.; Holck, Niels Ole; Galeazzi, Roberto

    2012-01-01

    This work addresses the issue of designing an adaptive robust control system to govern the steering of a high speed unmanned personal watercraft (PWC) maintaining equal performance across the craft’s envelope of operation. The maneuvering dynamics of a high speed PWC is presented and a strong...

  4. Tri-state high speed rail study : Chicago - Milwaukee - Twin Cities corridor

    Science.gov (United States)

    1991-05-01

    This report, the Final Report for the Tri-State Study of High Speed Rail Service, describes the work carried out by TMS/Benesch in analyzing the potential for high speed rail in the Tri-State Corridor. Specifically, the study provides a pre-feasibili...

  5. Impact of high-speed railway accessibility on the location choices of office establishments

    NARCIS (Netherlands)

    Willigers, J.

    2006-01-01

    High-speed railways are becoming increasingly common in Europe. In the Netherlands soon the HSL-South will be opened. This high-speed railway line connects the Randstad to Brussels and Paris. A prominent aim of this new railway is to improve international competitiveness of the Netherlands. As a

  6. Developing seamless connections in the urban transit network : a look toward high-speed rail interconnectivity.

    Science.gov (United States)

    2014-07-01

    In the past, U.S. studies on high-speed rail (HSR) have focused primarily on the economic implications of high-speed rail development. Recently, however, studies have begun evaluating multimodal connectivity of HSR stations. The ways in which differe...

  7. Automatic in-process chatter avoidance in the high-speed milling process

    NARCIS (Netherlands)

    Dijk, N.J.M. van; Doppenberg, E.J.J.; Faassen, R.P.H.; Wouw, N. van de; Oosterling, J.A.J.; Nijmeijer, H.

    2010-01-01

    High-speed milling is often used in industry to maximize productivity of the manufacturing of high-technology components, such as aeronautical components, mold, and dies. The occurrence of chatter highly limits the efficiency and accuracy of high-speed milling operations. In this paper, two control

  8. A New High-Speed Low Distortion Switched-Current Cell

    DEFF Research Database (Denmark)

    Shah, Peter Jivan; Toumazou, Christofer

    1996-01-01

    A new switched-current cell is presented which simultaneously offers high speed, low distortion, low gain error, and a virtual ground input. In a simulation example 0.01% distortion was achieved at 50MHz sampling rate which makes the cell very well suited for high accuracy high speed filtering...

  9. Evaluation of intrusion detection technologies for high speed rail grade crossings : final report.

    Science.gov (United States)

    2003-12-01

    The rail industry is in the process of developing a prototype system for high speed rail. One of the concerns when using high speed rail is the danger of obstructions on the track. This level of danger is much higher than with traditional railway veh...

  10. Evaluation of a new device for sterilizing dental high-speed handpieces

    DEFF Research Database (Denmark)

    Larsen, T; Andersen, H K; Fiehn, N E

    1997-01-01

    Dental high-speed turbines and handpieces can take up and expel microorganisms during operation and thus need regular sterilization. This study established a method for validating devices used to sterilize high-speed turbines and handpieces. The air and water channels and turbine chambers were...

  11. Flow-Visualization Techniques Used at High Speed by Configuration Aerodynamics Wind-Tunnel-Test Team

    Science.gov (United States)

    Lamar, John E. (Editor)

    2001-01-01

    This paper summarizes a variety of optically based flow-visualization techniques used for high-speed research by the Configuration Aerodynamics Wind-Tunnel Test Team of the High-Speed Research Program during its tenure. The work of other national experts is included for completeness. Details of each technique with applications and status in various national wind tunnels are given.

  12. Verification of high-speed solar wind stream forecasts using operational solar wind models

    DEFF Research Database (Denmark)

    Reiss, Martin A.; Temmer, Manuela; Veronig, Astrid M.

    2016-01-01

    High-speed solar wind streams emanating from coronal holes are frequently impinging on the Earth's magnetosphere causing recurrent, medium-level geomagnetic storm activity. Modeling high-speed solar wind streams is thus an essential element of successful space weather forecasting. Here we evaluate...

  13. Spectral domain optical coherence tomography - Ultra-high speed, ultra-high resolution ophthalmic imaging

    NARCIS (Netherlands)

    Chen, T.; Cense, B.; Pierce, M. C.; Nassif, N. A.; Park, B. H.; Yun, S. H.; White, B.; Bouma, B. E.; Tearney, G. J.; de Boer, J.F.

    2005-01-01

    Objective: To introduce a new ophthalmic optical coherence tomography technology that allows unprecedented simultaneous ultra-high speed and ultra-high resolution. Methods: Using a superluminescent diode source, a clinically viable ultra-high speed, ultra-high resolution spectral domain optical

  14. Ultra-high-speed optical signal processing of serial data signals

    DEFF Research Database (Denmark)

    Clausen, Anders; Mulvad, Hans Christian Hansen; Palushani, Evarist

    2012-01-01

    To ensure that ultra high-speed serial data signals can be utilised in future optical communication networks, it is indispensable to have all-optical signal processing elements at our disposal. In this paper, the most recent advances in our use of non-linear materials incorporated in different...... function blocks for high-speed signal processing are reviewed....

  15. Innovative Airbreathing Propulsion Concepts for High-speed Applications

    Science.gov (United States)

    Whitlow, Woodrow, Jr.

    2002-01-01

    The current cost to launch payloads to low earth orbit (LEO) is approximately loo00 U.S. dollars ($) per pound ($22000 per kilogram). This high cost limits our ability to pursue space science and hinders the development of new markets and a productive space enterprise. This enterprise includes NASA's space launch needs and those of industry, universities, the military, and other U.S. government agencies. NASA's Advanced Space Transportation Program (ASTP) proposes a vision of the future where space travel is as routine as in today's commercial air transportation systems. Dramatically lower launch costs will be required to make this vision a reality. In order to provide more affordable access to space, NASA has established new goals in its Aeronautics and Space Transportation plan. These goals target a reduction in the cost of launching payloads to LEO to $lo00 per pound ($2200 per kilogram) by 2007 and to $100' per pound by 2025 while increasing safety by orders of magnitude. Several programs within NASA are addressing innovative propulsion systems that offer potential for reducing launch costs. Various air-breathing propulsion systems currently are being investigated under these programs. The NASA Aerospace Propulsion and Power Base Research and Technology Program supports long-term fundamental research and is managed at GLenn Research Center. Currently funded areas relevant to space transportation include hybrid hyperspeed propulsion (HHP) and pulse detonation engine (PDE) research. The HHP Program currently is addressing rocket-based combined cycle and turbine-based combined cycle systems. The PDE research program has the goal of demonstrating the feasibility of PDE-based hybrid-cycle and combined cycle propulsion systems that meet NASA's aviation and access-to-space goals. The ASTP also is part of the Base Research and Technology Program and is managed at the Marshall Space Flight Center. As technologies developed under the Aerospace Propulsion and Power Base

  16. A simulation-based study of HighSpeed TCP and its deployment

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Evandro de [Univ. of California, Berkeley, CA (United States)

    2003-05-01

    The current congestion control mechanism used in TCP has difficulty reaching full utilization on high speed links, particularly on wide-area connections. For example, the packet drop rate needed to fill a Gigabit pipe using the present TCP protocol is below the currently achievable fiber optic error rates. HighSpeed TCP was recently proposed as a modification of TCP's congestion control mechanism to allow it to achieve reasonable performance in high speed wide-area links. In this research, simulation results showing the performance of HighSpeed TCP and the impact of its use on the present implementation of TCP are presented. Network conditions including different degrees of congestion, different levels of loss rate, different degrees of bursty traffic and two distinct router queue management policies were simulated. The performance and fairness of HighSpeed TCP were compared to the existing TCP and solutions for bulk-data transfer using parallel streams.

  17. Passenger Sharing of the High-Speed Railway from Sensitivity Analysis Caused by Price and Run-time Based on the Multi-Agent System

    Directory of Open Access Journals (Sweden)

    Ma Ning

    2013-09-01

    Full Text Available Purpose: Nowadays, governments around the world are active in constructing the high-speed railway. Therefore, it is significant to make research on this increasingly prevalent transport.Design/methodology/approach: In this paper, we simulate the process of the passenger’s travel mode choice by adjusting the ticket fare and the run-time based on the multi-agent system (MAS.Findings: From the research we get the conclusion that increasing the run-time appropriately and reducing the ticket fare in some extent are effective ways to enhance the passenger sharing of the high-speed railway.Originality/value: We hope it can provide policy recommendations for the railway sectors in developing the long-term plan on high-speed railway in the future.

  18. CONSIDERATION OF AERODYNAMIC IMPACT IN SETTING THE MAXIMUM PERMISSIBLE SPEEDS OF HIGH-SPEED TRAIN

    Directory of Open Access Journals (Sweden)

    S. T. Djabbarov

    2017-10-01

    Full Text Available Purpose. Studies of the effect of aerodynamic pressure on the maximum permissible speeds of a high-speed train on the existing railway infrastructure. Methodology. The study of the magnitude and direction of the aerodynamic pressure, its effect on the maximum speeds of a high-speed train was carried out on a train model composed of axisymmetric bodies with conical forms of head and tail parts. Findings. Determined the values of the aerodynamic pressure at different distances from the train are, when the high-speed train moves at a speed of 200 km/h or more. The maximum speeds of a high-speed train are determined taking into account the state of the infrastructure of the existing railway, ensuring the safe operation of a high-speed railway. Originality. Theoretical studies of aerodynamic pressure from secondary air currents formed during the movement of high-speed trains are performed on a model of a train composed of identical axisymmetric bodies with conical forms of head and tail moving in a compressible medium. The results of the research allow the regularity of the change in aerodynamic pressure during the movement of a high-speed train. Practical value. The obtained results allow to establish: 1 the maximum permissible speeds of a high-speed train taking into account the technical condition of permanent devices and structures of the existing railway infrastructure; 2 technical parameters of individual objects and structural elements of the infrastructure of high-speed iron subjected to the effect of aerodynamic pressure for a given maximum speed of high-speed trains.

  19. HIGH-SPEED RAILWAY AND TOURISM: IS THERE AN IMPACT ON INTERMEDIATE CITIES? EVIDENCE FROM TWO CASE STUDIES IN CASTILLA-LA MANCHA (SPAIN

    Directory of Open Access Journals (Sweden)

    Carmen VÁZQUEZ VARELA

    2016-12-01

    Full Text Available The expectations of cities served by High Speed Rail are numerous. Improvements in a destination’s accessibility could lead to an increase in transport demand and the revitalization of urban and business tourism. However, High Speed Rail services do not automatically affect the choice of destination even if they improve accessibility. Even so, they can improve visitation rates when tourist amenities are located near High Speed Rail stations becoming therefore easily accessible. The development of tourism is also influenced by the collective strategies of local stakeholders. Larger cities also appear able to leverage higher tourist volumes from the construction of High Speed Rail and most analyses to date have focused upon them. Thus we focus here on how the arrival of High Speed Rail services has impacted tourism on medium sized cities. Using a diachronic study of different socio-economic variables and tourist features, this article analyses the impact that the new rail infrastructure can have on tourism in two selected cases in Spain: Cuenca and Toledo.

  20. Comparison of high-speed rail and maglev system costs

    Energy Technology Data Exchange (ETDEWEB)

    Rote, D.M.

    1998-07-01

    This paper compares the two modes of transportation, and notes important similarities and differences in the technologies and in how they can be implemented to their best advantage. Problems with making fair comparisons of the costs and benefits are discussed and cost breakdowns based on data reported in the literature are presented and discussed in detail. Cost data from proposed and actual construction projects around the world are summarized and discussed. Results from the National Maglev Initiative and the recently-published Commercial Feasibility Study are included in the discussion. Finally, estimates will be given of the expected cost differences between HSR and maglev systems implemented under simple and complex terrain conditions. The extent to which the added benefits of maglev technology offset the added costs is examined.

  1. Civil law

    NARCIS (Netherlands)

    Hesselink, M.W.; Gibbons, M.T.

    2014-01-01

    The concept of civil law has two distinct meanings. that is, disputes between private parties (individuals, corporations), as opposed to other branches of the law, such as administrative law or criminal law, which relate to disputes between individuals and the state. Second, the term civil law is

  2. 49 CFR 221.7 - Civil penalty.

    Science.gov (United States)

    2010-10-01

    ... persons, or has caused death or injury, a penalty not to exceed $100,000 per violation may be assessed... 49 Transportation 4 2010-10-01 2010-10-01 false Civil penalty. 221.7 Section 221.7 Transportation... TRANSPORTATION REAR END MARKING DEVICE-PASSENGER, COMMUTER AND FREIGHT TRAINS General § 221.7 Civil penalty. Any...

  3. Design of high-speed turnouts and crossings

    Science.gov (United States)

    Raif, Lukáš; Puda, Bohuslav; Havlík, Jiří; Smolka, Marek

    2017-09-01

    Recently, the new ways to improve the railway switches and crossings have been sought, as the railway transport increases its operating speed. The expectation of these adjustments is to decrease the dynamic load, which usually increases together with velocity, and this influences the comfort of the vehicle passage, the wear of the structural parts and the cost of maintenance. These adjustments are primarily the turnout elements such as the optimized geometry of the turnout branch line by means of transition curves application, which minimizes the lateral acceleration during the vehicle passage through the track curve. The rail inclination is solved either by means of inclination in fastening system, or by machining of the rail head shape, because this ways of adjustment retain the wheel-rail interaction characteristics along the whole length of the turnout. Secondly, it is the crossing with movable part, which excludes the interruption of the running surface and optimization of the railway stiffness throughout the whole turnout length as well. We can see that the different stiffness along the turnout influences the dynamic load and it is necessary to optimize the discontinuities in the stiffness along the whole length of the turnout. For this purpose, the numeric modeling is carried out to seek the areas with the highest stiffness and subsequently, the system of stiffness optimization will be designed.

  4. An overview of high-speed networking for workstations

    Energy Technology Data Exchange (ETDEWEB)

    Hake, K.

    1995-04-01

    The telecommunications industry provides new technologies for GIS (Geographic Information System) workstation upgrades: Fast Ethernet, 100VG-AnyLAN, and Asynchronous Transfer Mode (ATM). These network technologies are based on approved standards and have industry backing (alliance for Fast Ethernet). This paper briefly examines these technologies. Fast Ethernet is an extension to its predecessor 10 Mbps Ethernet, providing a 10x increase in transmission rate. 100VG-AnyLAN offers extensions to Ethernet but embraces the Token Ring technology, allowing internetworking and better performance for networked video. ATM takes a radial approach by simplifying the information quantum to a 53-byte cell, resulting in rapid data handling for telecommunications equipment and allowing efficient transport of data, video, and voice communications. Switched Ethernet and Full Duplexing are among the other technologies competing for this market. The ultimate test of usefulness for any technology lies in how they handle the GIS environment requirements; working demonstration systems will help clarify marketing rhetoric and determine which vendor best implemented the standard.

  5. HIGH SPEED RAILWAY LINES – FUTURE PART OF CZECH RAILWAY NETWORK?

    Directory of Open Access Journals (Sweden)

    Lukáš Týfa

    2017-08-01

    Full Text Available The paper first describes high speed rail generally and explains the relationship between high speed and conventional railway networks (according to the vehicle types in operation on the network. The core of the paper is comprised of the methodology for choosing the best route for a railway line and its application to the high speed railway connection Praha – Brno. The Algorithm used assumes the existence of more route proposals, which could be different in terms of the operational conception, line routing or types of vehicles used. The optimal variant is the one with the lowest daily cost, which includes infrastructure and vehicle costs; investment and operational costs. The results from applying this model confirmed the assumption, that a dedicated high speed railway line, only for high speed trains, has the same or lower investment costs than a line for both high speed and conventional trains. Furthermore, a dedicated high line also has a lower cost for infrastructure maintenance but a higher cost for buying high speed multiple units.

  6. INDUSTRIAL ROBOT REPEATABILITY TESTING WITH HIGH SPEED CAMERA PHANTOM V2511

    Directory of Open Access Journals (Sweden)

    Jerzy Józwik

    2016-12-01

    Full Text Available Apart from accuracy, one of the parameters describing industrial robots is positioning accuracy. The parameter in question, which is the subject of this paper, is often the decisive factor determining whether to apply a given robot to perform certain tasks or not. Articulated robots are predominantly used in such processes as: spot weld-ing, transport of materials and other welding applications, where high positioning repeatability is required. It is therefore essential to recognise the parameter in question and to control it throughout the operation of the robot. This paper presents methodology for robot positioning accuracy measurements based on vision technique. The measurements were conducted with Phantom v2511 high-speed camera and TEMA Motion software, for motion analysis. The object of the measurements was a 6-axis Yaskawa Motoman HP20F industrial robot. The results of measurements obtained in tests provided data for the calculation of positioning accuracy of the robot, which was then juxtaposed against robot specifications. Also analysed was the impact of the direction of displacement on the value of attained pose errors. Test results are given in a graphic form.

  7. On forecasting ionospheric total electron content responses to high-speed solar wind streams

    Directory of Open Access Journals (Sweden)

    Meng Xing

    2016-01-01

    Full Text Available Conditions in the ionosphere have become increasingly important to forecast, since more and more spaceborne and ground-based technological systems rely on ionospheric weather. Here we explore the feasibility of ionospheric forecasts with the current generation of physics-based models. In particular, we focus on total electron content (TEC predictions using the Global Ionosphere-Thermosphere Model (GITM. Simulations are configured in a forecast mode and performed for four typical high-speed-stream events during 2007–2012. The simulated TECs are quantified through a metric, which divides the globe into a number of local regions and robustly differentiates between quiet and disturbed periods. Proposed forecast products are hourly global maps color-coded by the TEC disturbance level of each local region. To assess the forecasts, we compare the simulated TEC disturbances with global TEC maps derived from Global Positioning System (GPS satellite observations. The forecast performance is found to be merely acceptable, with a large number of regions where the observed variations are not captured by the simulations. Examples of model-data agreements and disagreements are investigated in detail, aiming to understand the model behavior and improve future forecasts. For one event, we identify two adjacent regions with similar TEC observations but significant differences in how local chemistry versus plasma transport contribute to electron density changes in the simulation. Suggestions for further analysis are described.

  8. Impact on ozone of high-speed stratospheric aircraft: effects of the emission scenario

    Directory of Open Access Journals (Sweden)

    G. Pitari

    1994-08-01

    Full Text Available A photochemical-transport two-dimensional model has been used to assess the impact of a projected fleet of high-speed stratospheric aircraft using different emissions scenarios. It is shown that the presence in the background atmosphere of nitric acid trihydrate aerosols is responsible for a lower stratospheric denoxification in addition to that caused by the sulfate aerosol layer. This has the effect of further decreasing the relative role of the odd nitrogen catalytic cycle for ozone destruction, so that the lower stratosphere is primarily controlled by chlorine species. The effect of aircraft injection of nitric oxides is that of decreasing the level of ClO, so that the lower stratospheric ozone (below about 20-25 km altitude increases. The net effect on global ozone is that of a small increase even at Mach 2.4, and is enhanced by adopting emission scenarios including altitude restriction at 15 or 18 km. Reductions of the emission index (EI of nitric oxides below relatively small values (about 15 are shown to reduce the aircraft-induced ozone increase, because of the associated smaller decrease of ClO. This conclusion is no more valid when the emission index is raised at the present values (about 45.

  9. Impact on ozone of high-speed stratospheric aircraft: effects of the emission scenario

    Directory of Open Access Journals (Sweden)

    G. Visconti

    Full Text Available A photochemical-transport two-dimensional model has been used to assess the impact of a projected fleet of high-speed stratospheric aircraft using different emissions scenarios. It is shown that the presence in the background atmosphere of nitric acid trihydrate aerosols is responsible for a lower stratospheric denoxification in addition to that caused by the sulfate aerosol layer. This has the effect of further decreasing the relative role of the odd nitrogen catalytic cycle for ozone destruction, so that the lower stratosphere is primarily controlled by chlorine species. The effect of aircraft injection of nitric oxides is that of decreasing the level of ClO, so that the lower stratospheric ozone (below about 20-25 km altitude increases. The net effect on global ozone is that of a small increase even at Mach 2.4, and is enhanced by adopting emission scenarios including altitude restriction at 15 or 18 km. Reductions of the emission index (EI of nitric oxides below relatively small values (about 15 are shown to reduce the aircraft-induced ozone increase, because of the associated smaller decrease of ClO. This conclusion is no more valid when the emission index is raised at the present values (about 45.

  10. Investigating high speed phenomena in laser plasma interactions using dilation x-ray imager (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Nagel, S. R., E-mail: nagel7@llnl.gov; Bell, P. M.; Bradley, D. K.; Ayers, M. J.; Piston, K.; Felker, B. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550 (United States); Hilsabeck, T. J.; Kilkenny, J. D.; Chung, T.; Sammuli, B. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Hares, J. D.; Dymoke-Bradshaw, A. K. L. [Kentech Instruments Ltd., Wallingford, Oxfordshire OX10 (United Kingdom)

    2014-11-15

    The DIlation X-ray Imager (DIXI) is a new, high-speed x-ray framing camera at the National Ignition Facility (NIF) sensitive to x-rays in the range of ≈2–17 keV. DIXI uses the pulse-dilation technique to achieve a temporal resolution of less than 10 ps, a ≈10× improvement over conventional framing cameras currently employed on the NIF (≈100 ps resolution), and otherwise only attainable with 1D streaked imaging. The pulse-dilation technique utilizes a voltage ramp to impart a velocity gradient on the signal-bearing electrons. The temporal response, spatial resolution, and x-ray sensitivity of DIXI are characterized with a short x-ray impulse generated using the COMET laser facility at Lawrence Livermore National Laboratory. At the NIF a pinhole array at 10 cm from target chamber center (tcc) projects images onto the photocathode situated outside the NIF chamber wall with a magnification of ≈64×. DIXI will provide important capabilities for warm-dense-matter physics, high-energy-density science, and inertial confinement fusion, adding important capabilities to temporally resolve hot-spot formation, x-ray emission, fuel motion, and mix levels in the hot-spot at neutron yields of up to 10{sup 17}. We present characterization data as well as first results on electron-transport phenomena in buried-layer foil experiments.

  11. OCCURRENCE OF HIGH-SPEED SOLAR WIND STREAMS OVER THE GRAND MODERN MAXIMUM

    Energy Technology Data Exchange (ETDEWEB)

    Mursula, K.; Holappa, L. [ReSoLVE Centre of Excellence, Department of Physics, University of Oulu (Finland); Lukianova, R., E-mail: kalevi.mursula@oulu.fi [Geophysical Center of Russian Academy of Science, Moscow (Russian Federation)

    2015-03-01

    In the declining phase of the solar cycle (SC), when the new-polarity fields of the solar poles are strengthened by the transport of same-signed magnetic flux from lower latitudes, the polar coronal holes expand and form non-axisymmetric extensions toward the solar equator. These extensions enhance the occurrence of high-speed solar wind (SW) streams (HSS) and related co-rotating interaction regions in the low-latitude heliosphere, and cause moderate, recurrent geomagnetic activity (GA) in the near-Earth space. Here, using a novel definition of GA at high (polar cap) latitudes and the longest record of magnetic observations at a polar cap station, we calculate the annually averaged SW speeds as proxies for the effective annual occurrence of HSS over the whole Grand Modern Maximum (GMM) from 1920s onward. We find that a period of high annual speeds (frequent occurrence of HSS) occurs in the declining phase of each of SCs 16-23. For most cycles the HSS activity clearly reaches a maximum in one year, suggesting that typically only one strong activation leading to a coronal hole extension is responsible for the HSS maximum. We find that the most persistent HSS activity occurred in the declining phase of SC 18. This suggests that cycle 19, which marks the sunspot maximum period of the GMM, was preceded by exceptionally strong polar fields during the previous sunspot minimum. This gives interesting support for the validity of solar dynamo theory during this dramatic period of solar magnetism.

  12. Wireless Sensor Networks of Infrastructure Health Monitoring for High-Speed Railway

    Directory of Open Access Journals (Sweden)

    Haijian Li

    2016-01-01

    Full Text Available High-speed railways (HSRs have been widely deployed all over the world in recent years and China has entered an era with both high investments and rapid expansion of HSR transport infrastructure. One of the most challenging issues is how to keep the security and safety of millions of HSR infrastructures. Meanwhile, the emerging sensing and wireless sensor network (WSN technologies for infrastructure health monitoring (IHM are being substituted for traditional tethered monitoring systems. This paper presents a two-layer architecture of WSN which will be appropriate for infrastructure health monitoring of HSR. The upper layer is named as tree access network and the lower layer is called star detection network. By adapting to the special characteristics of IHM network, we design a short network address and an optimized communication frame structure, which can satisfy the actual requirements and special characteristics of the IHM network. In order to implement a better transmission performance, we propose a novel transmission power based method which adopts the knowledge update mechanism to detect the optimization result. In the end, the details of address assignment and network construction are discussed, and the effectiveness of the proposed method is validated by a practical instance.

  13. Quiescence near the X-point of MAST measured by high speed visible imaging

    Science.gov (United States)

    Walkden, N. R.; Harrison, J.; Silburn, S. A.; Farley, T.; Henderson, S. S.; Kirk, A.; Militello, F.; Thornton, A.; The MAST Team

    2017-12-01

    Using high speed imaging of the divertor volume, the region close to the X-point in MAST is shown to be quiescent. This is confirmed by three different analysis techniques and the quiescent X-point region (QXR) spans from the separatrix to the \\psiN = 1.02 flux surface. Local reductions to the atomic density and effects associated with the camera viewing geometry are ruled out as causes of the QXR, leaving quiescence in the local plasma conditions as being the most likely cause. The QXR is found to be ubiquitous across a significant operational space in MAST including L-mode and H-mode discharges across maximal ranges of 9.8×1019~m-2 in line integrated density, 0.36 MA in plasma current, 0.11 T in toroidal magnetic field and 3.2 MW in NBI power. When mapped to the divertor target the QXR occupies approximately an e-folding length of the heat-flux profile, containing  ∼60% of the total heat flux to the target, and also shows a tendency towards higher frequency shorter lived fluctuations in the ion-saturation current. This is consistent with short-lived divertor localised filamentary structures observed further down the outer divertor leg in the camera images, and suggests a complex multi-region picture of filamentary transport in the divertor.

  14. Heat pipe radiation cooling (HPRC) for high-speed aircraft propulsion. Phase 2 (feasibility) final report

    Energy Technology Data Exchange (ETDEWEB)

    Martin, R.A.; Merrigan, M.A.; Elder, M.G.; Sena, J.T.; Keddy, E.S. [Los Alamos National Lab., NM (United States); Silverstein, C.C. [CCS Associates, Bethel Park, PA (United States)

    1994-03-25

    The National Aeronautics and Space Administration (NASA), Los Alamos National Laboratory (Los Alamos), and CCS Associates are conducting the Heat Pipe Radiation Cooling (HPRC) for High-Speed Aircraft Propulsion program to determine the advantages and demonstrate the feasibility of using high-temperature heat pipes to cool hypersonic engine components. This innovative approach involves using heat pipes to transport heat away from the combustor, nozzle, or inlet regions, and to reject it to the environment by thermal radiation from adjacent external surfaces. HPRC is viewed as an alternative (or complementary) cooling technique to the use of pumped cryogenic or endothermic fuels to provide regenerative fuel or air cooling of the hot surfaces. The HPRC program has been conducted through two phases, an applications phase and a feasibility phase. The applications program (Phase 1) included concept and assessment analyses using hypersonic engine data obtained from US engine company contacts. The applications phase culminated with planning for experimental verification of the HPRC concept to be pursued in a feasibility program. The feasibility program (Phase 2), recently completed and summarized in this report, involved both analytical and experimental studies.

  15. On-Board Video Recording Unravels Bird Behavior and Mortality Produced by High-Speed Trains

    Directory of Open Access Journals (Sweden)

    Eladio L. García de la Morena

    2017-10-01

    Full Text Available Large high-speed railway (HSR networks are planned for the near future to accomplish increased transport demand with low energy consumption. However, high-speed trains produce unknown avian mortality due to birds using the railway and being unable to avoid approaching trains. Safety and logistic difficulties have precluded until now mortality estimation in railways through carcass removal, but information technologies can overcome such problems. We present the results obtained with an experimental on-board system to record bird-train collisions composed by a frontal recording camera, a GPS navigation system and a data storage unit. An observer standing in the cabin behind the driver controlled the system and filled out a form with data of collisions and bird observations in front of the train. Photographs of the train front taken before and after each journey were used to improve the record of killed birds. Trains running the 321.7 km line between Madrid and Albacete (Spain at speeds up to 250–300 km/h were equipped with the system during 66 journeys along a year, totaling approximately 14,700 km of effective recording. The review of videos produced 1,090 bird observations, 29.4% of them corresponding to birds crossing the infrastructure under the catenary and thus facing collision risk. Recordings also showed that 37.7% bird crossings were of animals resting on some element of the infrastructure moments before the train arrival, and that the flight initiation distance of birds (mean ± SD was between 60 ± 33 m (passerines and 136 ± 49 m (raptors. Mortality in the railway was estimated to be 60.5 birds/km year on a line section with 53 runs per day and 26.1 birds/km year in a section with 25 runs per day. Our results are the first published estimation of bird mortality in a HSR and show the potential of information technologies to yield useful data for monitoring the impact of trains on birds via on-board recording systems. Moreover

  16. A Case Study of the High-speed Train Crash Outside Santiago de Compostela, Galicia, Spain.

    Science.gov (United States)

    Forsberg, Rebecca; Vázquez, José Antonio Iglesias

    2016-04-01

    The worldwide use of rail transport has increased, and the train speeds are escalating. Concurrently, the number of train disasters has been amplified globally. Consequently, railway safety has become an important issue for the future. High-velocity crashes increase the risk for injuries and mortality; nevertheless, there are relatively few studies on high-speed train crashes and the influencing factors on travelers' injuries occurring in the crash phase. The aim of this study was to investigate the fatal and non-fatal injuries and the main interacting factors that contributed to the injury process in the crash phase of the 2013 high-velocity train crash that occurred at Angrois, outside Santiago de Compostela, Spain. Hospital records (n=157) of all the injured who were admitted to the six hospitals in the region were reviewed and compiled by descriptive statistics. The instant fatalities (n=63) were collected on site. Influencing crash factors were observed on the crash site, by carriage inspections, and by reviewing official reports concerning the approximated train speed. The main interacting factors that contributed in the injury process in the crash phase were, among other things, the train speed, the design of the concrete structure of the curve, the robustness of the carriage exterior, and the interior environment of the carriages. Of the 222 people on board (218 passengers and four crew), 99% (n=220) were fatally or non-fatally injured in the crash. Thirty-three percent (n=72) suffered fatal injuries, of which 88% (n=63) died at the crash site and 13% (n=9) at the hospital. Twenty-one percent (n=32) of those admitted to hospital suffered multi-trauma (ie, extensive, severe, and/or critical injuries). The head, face, and neck sustained 42% (n=123) of the injuries followed by the trunk (chest, abdomen, and pelvis; n=92; 32%). Fractures were the most frequent (n=200; 69%) injury. A mass-casualty incident with an extensive amount of fatal, severe, and critical

  17. High Speed Rail System and the Tourism Market: Between Accessibility, Image and Coordination Tool

    OpenAIRE

    marie delaplace; sylvie bazin; francesca pagliara; Antonio Sposaro

    2014-01-01

    the aim of this P is to propose a state-of-the-art concerning the interaction between High-Speed Rail systems and the tourism market, in order to identify the possible best practices aiming to enhance the value of the tourist activities. This question arises because there are many projects of High-Speed Rail and others are ongoing, whose economic justification is based on the benefits deriving from them. In November 2013 there were 21.472 km of High Speed Railways (i.e., whose speed is greate...

  18. Civil Identity

    DEFF Research Database (Denmark)

    Petersen, Lars Axel

    of Israel to Luce Irigaray's Feminist agenda of elaborating gender specific civil identities. My intention is to investigate whether these different employments of 'civil identity' point towards a common, and fairly well defined object field asking questions of contemporary relevance to the philosophy......In this paper I will go through a catalogue of examples of contexts in which the term civil identity is currently used, ranging from the formal and technical process of linking a set of administrative and other events to an individual biological person by means of identity cards, fingerprints, iris...

  19. The Time Lens Concept Applied to Ultra-High-Speed OTDM Signal Processing

    DEFF Research Database (Denmark)

    Clausen, Anders; Palushani, Evarist; Mulvad, Hans Christian Hansen

    2013-01-01

    This survey paper presents some of the applications where the versatile time-lens concept successfully can be applied to ultra-high-speed serial systems by offering expected needed functionalities for future optical communication networks....

  20. High Speed Railway Environment Safety Evaluation Based on Measurement Attribute Recognition Model

    Directory of Open Access Journals (Sweden)

    Qizhou Hu

    2014-01-01

    Full Text Available In order to rationally evaluate the high speed railway operation safety level, the environmental safety evaluation index system of high speed railway should be well established by means of analyzing the impact mechanism of severe weather such as raining, thundering, lightning, earthquake, winding, and snowing. In addition to that, the attribute recognition will be identified to determine the similarity between samples and their corresponding attribute classes on the multidimensional space, which is on the basis of the Mahalanobis distance measurement function in terms of Mahalanobis distance with the characteristics of noncorrelation and nondimensionless influence. On top of the assumption, the high speed railway of China environment safety situation will be well elaborated by the suggested methods. The results from the detailed analysis show that the evaluation is basically matched up with the actual situation and could lay a scientific foundation for the high speed railway operation safety.

  1. OptoCeramic-Based High Speed Fiber Multiplexer for Multimode Fiber Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A fiber-based fixed-array laser transmitter can be combined with a fiber-arrayed detector to create the next-generation NASA array LIDAR systems. High speed optical...

  2. High speed television camera system processes photographic film data for digital computer analysis

    Science.gov (United States)

    Habbal, N. A.

    1970-01-01

    Data acquisition system translates and processes graphical information recorded on high speed photographic film. It automatically scans the film and stores the information with a minimal use of the computer memory.

  3. Analysis and improvement of calculation procedure of high-speed centrifugal pumps

    Science.gov (United States)

    Kraeva, E. M.; Masich, I. S.

    2017-10-01

    The model of flow around a flowing part of a high-speed centrifugal pump with a semi-open impeller is presented. The calculated ratios for design of lowflow pumps are obtained and confirmed experimentally.

  4. Integrated High-Speed Digital Optical True-Time-Delay Modules for Synthetic Aperture Radars Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Crystal Research, Inc. proposes an integrated high-speed digital optical true-time-delay module for advanced synthetic aperture radars. The unique feature of this...

  5. High-Speed, Low-Power ADC for Digital Beam Forming (DBF) Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In Phase 1, Ridgetop Group designed a high-speed, yet low-power silicon germanium (SiGe)-based, analog-to-digital converter (ADC) to be a key element for digital...

  6. Measurement and Analysis of High-speed Railway Subgrade Settlement in China: A Case Study

    National Research Council Canada - National Science Library

    Qulin Tan; Leijuan Li; Senlin Wang

    2014-01-01

    .... With the rapid development of China's high-speed railway, it puts a very high requirement for track smoothness, and thus the requirements of subgrade stability and deformation control become very stringent...

  7. Study on the subgrade deformation under high-speed train loading and water-soil interaction

    Science.gov (United States)

    Han, Jian; Zhao, Guo-Tang; Sheng, Xiao-Zhen; Jin, Xue-Song

    2016-04-01

    It is important to study the subgrade characteristics of high-speed railways in consideration of the water-soil coupling dynamic problem, especially when high-speed trains operate in rainy regions. This study develops a nonlinear water-soil interaction dynamic model of slab track coupling with subgrade under high-speed train loading based on vehicle-track coupling dynamics. By using this model, the basic dynamic characteristics, including water-soil interaction and without water induced by the high-speed train loading, are studied. The main factors-the permeability coefficient and the porosity-influencing the subgrade deformation are investigated. The developed model can characterize the soil dynamic behaviour more realistically, especially when considering the influence of water-rich soil.

  8. Advanced Modular, Multi-Channel, High Speed Fiber Optic Sensing System for Acoustic Emissions Monitoring Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Intelligent Fiber Optic Systems Corporation (IFOS) proposes to prove the feasibility of innovations based on ultra-light-weight, ultra-high-speed, multi-channel,...

  9. Formulating a strategy for securing high-speed rail in the United States.

    Science.gov (United States)

    2013-03-01

    This report presents an analysis of information relating to attacks, attempted attacks, and plots against high-speed rail (HSR) : systems. It draws upon empirical data from MTIs Database of Terrorist and Serious Criminal Attacks Against Public Sur...

  10. Estimating workforce development needs for high-speed rail in California : [research brief].

    Science.gov (United States)

    2012-03-01

    It is critical to understand the emergent workforce characteristics for the California High-Speed Rail (HSR) network. Knowledge about the size and characteristics of this workforce, including its training and education needs, is required to guide the...

  11. San Joaquin, California, High-Speed Rail Grade Crossing Data Acquisition Characteristics, Methodology, and Risk Assessment

    Science.gov (United States)

    2006-11-01

    This report discusses data acquisition and analysis for grade crossing risk analysis at the proposed San Joaquin High-Speed Rail Corridor in San Joaquin, California, and documents the data acquisition and analysis methodologies used to collect and an...

  12. Estimating workforce development needs for high-speed rail in California.

    Science.gov (United States)

    2012-03-01

    This study provides an assessment of the job creation and attendant education and training needs associated with the creation of the California High-Speed Rail (CHSR) network, scheduled to begin construction in September 2012. Given the high profile ...

  13. An assessment of high-speed rail safety issues and research needs

    Science.gov (United States)

    1990-12-01

    The objectives of the study were to provide the Federal Railroad Administration Office of Research and Development with the following information: A general description and operating characteristics of high-speed rail systems likely to be installed i...

  14. INFLUENCE OF HIGH SPEED OF CRYSTALLIZATION ON THE STRUCTURE OF ALUMINIUM ALLOYS

    Directory of Open Access Journals (Sweden)

    G. V. Dovnar

    2010-01-01

    Full Text Available The aim of the work is development of new compositions of aluminium alloys with refractory metals of transition group and cremnium due to range extension of alloying at usage of high speed of melts cooling.

  15. High-Speed, Low-Power ADC for Digital Beam Forming (DBF) Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Ridgetop Group will design a high-speed, low-power silicon germanium (SiGe)-based, analog-to-digital converter (ADC) to be a key element for digital beam forming...

  16. High-Speed Fiber Optic Micromultiplexer for Space and Airborne Lidar Project

    Data.gov (United States)

    National Aeronautics and Space Administration — To address the NASA Earth Science Division need for high-speed fiber optic multiplexers for next generation lidar systems, Luminit proposes to develop a new Fiber...

  17. Evaluation and Selection of Technology Concepts for a Hypersonic High Speed Standoff Missile

    National Research Council Canada - National Science Library

    Roth, Bryce

    1999-01-01

    This paper describes the application of a method for technology concept selection to the design of a hypersonic high-speed standoff missile capable of achieving pin-point strike of long-range targets...

  18. High-speed visual feedback for realizing high-performance robotic manipulation

    Science.gov (United States)

    Huang, S.; Bergström, N.; Yamakawa, Y.; Senoo, T.; Ishikawa, M.

    2017-02-01

    High-speed vision sensing becomes a driving factor in developing new methods for robotic manipulation. In this paper we present two such methods in order to realize high-performance manipulation. First, we present a dynamic compensation approach which aims to achieve simultaneously fast and accurate positioning under various (from system to external environment) uncertainties. Second, a high-speed motion strategy for manipulating flexible objects is introduced to address the issue of deformation uncertainties. Both methods rely on high-speed visual feedback and are model independent, which we believe is essential to ensure good flexibility in a wide range of applications. The high-speed visual feedback tracks the relative error between the working tool and the target in image coordinates, which implies that there is no need for accurate calibrations of the vision system. Tasks for validating these methods were implemented and experimental results were provided to illustrate the effectiveness of the proposed methods.

  19. Sequential multi-channel OCT in the retina using high-speed fiber optic switches

    Science.gov (United States)

    Wartak, Andreas; Augustin, Marco; Beer, Florian; Haindl, Richard; Baumann, Bernhard; Pircher, Michael; Hitzenberger, Christoph K.

    2017-07-01

    A sequential multi-channel OCT prototype featuring high-speed fiber optical switches to enable inter A-scan (A-scan rate: 100 kHz) sample arm switching was developed and human retinal image data is presented.

  20. Some design aspects of high-speed vertical-axis wind turbines

    National Research Council Canada - National Science Library

    Templin, R. J; South, P

    1977-01-01

    ... (rotor height to diameter ratio, solidity, number of blades, etc.) for high-speed vertical-axis wind turbines from kilowatt to megawatt sizes and shows that very large turbines are theoretically feasible...

  1. Mode Transition Variable Geometry for High Speed Inlets for Hypersonic Aircraft Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Hypersonic propulsion research has been a focus of the NASA aeronautics program for years. Previous high-speed cruise and space access programs have examined the...

  2. High-Speed Prediction for Real-Time Debris Risk Assessment Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Our innovation is a high-speed method for the prediction of aerodynamic debris fields that employs an extensive database of generalized empirical equations coupled...

  3. Microfluidics-based, time-resolved mechanical phenotyping of cells using high-speed imaging

    Science.gov (United States)

    Belotti, Yuri; Conneely, Michael; Huang, Tianjun; McKenna, Stephen; Nabi, Ghulam; McGloin, David

    2017-07-01

    We demonstrate a single channel hydrodynamic stretching microfluidic device that relies on high-speed imaging to allow repeated dynamic cell deformation measurements. Experiments on prostate cancer cells suggest richer data than current approaches.

  4. Advances on Propulsion Technology for High-Speed Aircraft. Volume 2

    National Research Council Canada - National Science Library

    2007-01-01

    .... The demand for supersonic vehicles is believed to boost in the incoming years. This VKI/RTO lecture series will review the current state of the art of high speed propulsion for both airplanes and space launchers...

  5. Advances on Propulsion Technology for High-Speed Aircraft. Volume 1

    National Research Council Canada - National Science Library

    2007-01-01

    .... The demand for supersonic vehicles is believed to boost in the incoming years. This VKI/RTO lecture series will review the current state of the art of high speed propulsion for both airplanes and space launchers...

  6. New high-speed line Nuremberg - Ingolstadt - Electrical engineering equipment; Neubaustrecke (NBS) Nuernberg - Ingolstadt - Technische Ausruestung

    Energy Technology Data Exchange (ETDEWEB)

    Krems, S. [Balfour Beatty Rail GmbH, Berlin (Germany); Matthes, U. [DB Projektbau GmbH, Nuernberg (Germany)

    2007-07-01

    The Bavarian fast railway line Nuremberg - Ingolstadt is equipped with most recent railway infrastructure for a 300 km/h fast high-speed traffic. The electrical engineering installations were implemented within a seven years period. Since December 2006 the line has been integrated into scheduled services and operated with high-speed trains. So far, the installations complied fully with all the requirements. (orig.)

  7. High speed data transmission coaxial-cable in the space communication system

    Science.gov (United States)

    Su, Haohang; Huang, Jing

    2018-01-01

    An effective method is proved based on the scattering parameter of high speed 8-core coaxial-cable measured by vector network analyzer, and the semi-physical simulation is made to receive the eye diagram at different data transmission rate. The result can be apply to analysis decay and distortion of the signal through the coaxial-cable at high frequency, and can extensively design for electromagnetic compatibility of high-speed data transmission system.

  8. Analysis of Contact Stresses in High Speed Sheet Metal Forming Processes

    OpenAIRE

    Bonnen, J.; Gillard, A.; Golovashchenko, S.; Ibrahim, R.; Mamutov, A.; SMITH, L.

    2012-01-01

    In high speed metal forming, determination of contact stresses applied to forming dies is necessary in order to identify the requirements to the die material. Contact stresses greatly control the die design due to their effects on die durability. Very high contact stresses and fracture under impulsive loading have been reported in literature on contact type of high speed forming. In pulsed forming operations using electro-hydraulic forming (EHF), a work piece is often accelerat...

  9. TECHNICAL APPROACH TO THE EFFICIENCY DETERMINATION OF HIGH-SPEED TRAINS

    Directory of Open Access Journals (Sweden)

    A. V. Momot

    2013-11-01

    Full Text Available Purpose. The aim of this article is to develop an approach and formulate arrangements concerning the definition of the economic appropriateness of high-speed movement implementation in Ukraine. Methodology. The economic feasibility for appropriateness of high-speed movement organization in Ukraine is an investment project, which involves step-by-step money investment into the construction. It will let get an annual profits from the passenger carriage. To solve such problems we use net present value, which UZ or newly created companies can get during the project realization and after its completion. Findings. Obtained studies can state the fact that the technical approach for full effectiveness definition of a construction and high-speed passenger trains service taking into account the cost of infrastructure, rolling stock, the impact of environmental factors, etc. was determined. Originality. We propose a scientific approach to determine the economic effectiveness of the construction and high-speed main lines service. It includes improved principles of defining the passenger traffic, the cost of high-speed rails construction, the number of rolling stock; optimizes income and expenditure calculations in the context of competitive advantages and the external factors impact on the company. A technical approach for the calculation of future traffic volumes along the high-speed line was improved. It differs essentially from the European one proposed by the French firm «SYSTRA», as it allows taking into account additional transit traffic through Ukraine. It helps to distribute the passengers on separate sections proportionally to the number of cities population, which are combined by high-speed main line, subject to the average population mobility, travel time and the coefficient that takes into account the frequency of additional passenger trips on a given section, depending on the purpose (business trip, transfer to a plane, recreation, etc

  10. Development of FPGA-based High-Speed serial links for High Energy Physics Experiments

    OpenAIRE

    Perrella, Sabrina

    2016-01-01

    High Energy Physics (HEP) experiments generate high volumes of data which need to be transferred over long distance. Then, for data read out, reliable and high-speed links are necessary. Over the years, due to their extreme high bandwidth, serial links (especially optical) have been preferred over the parallel ones. So that, now, high-speed serial links are commonly used in Trigger and Data Acquisition (TDAQ) systems of HEP experiments, not only for data transfer, but also for the distributio...

  11. Dynamic crystal rotation resolved by high-speed synchrotron X-ray Laue diffraction

    OpenAIRE

    Huang, J.W.; E, J. C.; Huang, J. Y.; Sun, T.; Fezzaa, K.; Luo, S.N.

    2016-01-01

    Dynamic compression experiments are performed on single-crystal Si under split Hopkinson pressure bar loading, together with simultaneous high-speed (250?350?ns resolution) synchrotron X-ray Laue diffraction and phase-contrast imaging. A methodology is presented which determines crystal rotation parameters, i.e. instantaneous rotation axes and angles, from two unindexed Laue diffraction spots. Two-dimensional translation is obtained from dynamic imaging by a single camera. High-speed motion o...

  12. High-speed atomic force microscopy combined with inverted optical microscopy for studying cellular events

    OpenAIRE

    Suzuki, Yuki; Sakai, Nobuaki; Yoshida, Aiko; Uekusa, Yoshitsugu; Yagi, Akira; Imaoka, Yuka; Ito, Shuichi; Karaki, Koichi; Takeyasu, Kunio

    2013-01-01

    A hybrid atomic force microscopy (AFM)-optical fluorescence microscopy is a powerful tool for investigating cellular morphologies and events. However, the slow data acquisition rates of the conventional AFM unit of the hybrid system limit the visualization of structural changes during cellular events. Therefore, high-speed AFM units equipped with an optical/fluorescence detection device have been a long-standing wish. Here we describe the implementation of high-speed AFM coupled with an optic...

  13. High Speed PAM -8 Optical Interconnects with Digital Equalization based on Neural Network

    DEFF Research Database (Denmark)

    Gaiarin, Simone; Pang, Xiaodan; Ozolins, Oskars

    2016-01-01

    We experimentally evaluate a high-speed optical interconnection link with neural network equalization. Enhanced equalization performances are shown comparing to standard linear FFE for an EML-based 32 GBd PAM-8 signal after 4-km SMF transmission.......We experimentally evaluate a high-speed optical interconnection link with neural network equalization. Enhanced equalization performances are shown comparing to standard linear FFE for an EML-based 32 GBd PAM-8 signal after 4-km SMF transmission....

  14. Dynamic Range Enhancement of High-Speed Electrical Signal Data via Non-Linear Compression

    Science.gov (United States)

    Laun, Matthew C. (Inventor)

    2016-01-01

    Systems and methods for high-speed compression of dynamic electrical signal waveforms to extend the measuring capabilities of conventional measuring devices such as oscilloscopes and high-speed data acquisition systems are discussed. Transfer function components and algorithmic transfer functions can be used to accurately measure signals that are within the frequency bandwidth but beyond the voltage range and voltage resolution capabilities of the measuring device.

  15. Stability Analysis of High-Speed Boundary-Layer Flow with Gas Injection

    Science.gov (United States)

    2014-06-01

    boundary-layer flow with gas injection 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Alexander V. Fedorov ...distribution unlimited Stability analysis of high-speed boundary-layer flow with gas injection Alexander V. Fedorov * and Vitaly G. Soudakov...Laminar Flow, AGARD Report Number 709, 1984. 2. Fedorov , A., “Transition and Stability of High-Speed Boundary Layers,” Annu. Rev. Fluid Mech., Vol

  16. Assessment of modern methods in numerical simulations of high speed flows

    Science.gov (United States)

    Pindera, M. Z.; Yang, H. Q.; Przekwas, A. J.; Tucker, K.

    1992-01-01

    Results of extensive studies on CFD algorithms for 2D inviscid flows in Cartesian and body fitted coordinates geometries are reviewed. These studies represent part of an ongoing investigation of combustion instabilities involving the interactions of high-speed nonlinear acoustic waves. Four numerical methods for the treatment of high speed flows are compared, namely, Roe-Sweby TVD, Yee symmetric TVD; Osher-Chakravarthy TVD; and the Colella's multi-dimensional Godunov method.

  17. Fundamental Structure of High-Speed Reacting Flows: Supersonic Combustion and Detonation

    Science.gov (United States)

    2016-04-30

    liquid rocket engines, studied the concept of rotating detonation rocket engine in both gaseous and two-phase propellants . Recently, there have been...AFRL-AFOSR-VA-TR-2016-0195 Fundamental Structure of High-Speed Reacting Flows: Supersonic Combustion and Detonation Kenneth Yu MARYLAND UNIV COLLEGE...MARCH 2016 4. TITLE AND SUBTITLE FUNDAMENTAL STRUCTURE OF HIGH-SPEED REACTING FLOWS: SUPERSONIC COMBUSTION AND DETONATION 5a. CONTRACT NUMBER

  18. Research on high-speed railway's vibration analysis checking based on intelligent mobile terminal

    Science.gov (United States)

    Li, Peigang; Xie, Shulin; Zhao, Xuefeng

    2017-04-01

    Recently, the development of high-speed railway meets the requirement of society booming and it has gradually become the first choice for long-length journey. Since ensuring the safety and stable operation are of great importance to high-speed trains owing to its unique features, vibration analysis checking is one of main means to be adopted. Due to the popularization of Smartphone, in this research, a novel public-participating method to achieve high-speed railway's vibration analysis checking based on smartphone and an inspection application of high-speed railway line built in the intelligent mobile terminal were proposed. Utilizing the accelerometer, gyroscope, GPS and other high-performance sensors which were integrated in smartphone, the application can obtain multiple parameters like acceleration, angle, etc and pinpoint the location. Therefore, through analyzing the acceleration data in time domain and frequency domain using fast Fourier transform, the research compared much of data from monitoring tests under different measure conditions and measuring points. Furthermore, an idea of establishing a system about analysis checking was outlined in paper. It has been validated that the smartphone-based high-speed railway line inspection system is reliable and feasible on the high-speed railway lines. And it has more advantages, such as convenience, low cost and being widely used. Obviously, the research has important practical significance and broad application prospects.

  19. Defect visualization in FRP-bonded concrete by using high speed camera and motion magnification technique

    Science.gov (United States)

    Qiu, Qiwen; Lau, Denvid

    2017-04-01

    High speed camera has the unique capacity of recording fast-moving objects. By using the video processing technique (e.g. motion magnification), the small motions recorded by the high speed camera can be visualized. Combined use of video camera and motion magnification technique is strongly encouraged to inspect the structures from a distant scene of interest, due to the commonplace availability, operational convenience, and cost-efficiency. This paper presents a non-contact method to evaluate the defect in FRP-bonded concrete structural element based on the surface motion analysis of high speed video. In this study, an instant air pressure is used to initiate the vibration of FRP-bonded concrete and cause the distinct vibration for the interfacial defects. The entire structural surface under the air pressure is recorded by a high-speed camera and the surface motion in video is amplified by motion magnification processing technique. The experimental results demonstrate that motion in the interfacial defect region can be visualized in the high-speed video with motion magnification. This validates the effectiveness of the new NDT method for defect detection in the whole composites structural member. The use of high-speed camera and motion magnification technique has the advantages of remote detection, efficient inspection, and sensitive measurement, which would be beneficial to structural health monitoring.

  20. Verification of high-speed solar wind stream forecasts using operational solar wind models

    DEFF Research Database (Denmark)

    Reiss, Martin A.; Temmer, Manuela; Veronig, Astrid M.

    2016-01-01

    High-speed solar wind streams emanating from coronal holes are frequently impinging on the Earth's magnetosphere causing recurrent, medium-level geomagnetic storm activity. Modeling high-speed solar wind streams is thus an essential element of successful space weather forecasting. Here we evaluat...... score, TS ≈ 0.37). The predicted high-speed streams show typical uncertainties in the arrival time of about 1 day and uncertainties in the speed of about 100 km/s. General advantages and disadvantages of the investigated solar wind models are diagnosed and outlined.......High-speed solar wind streams emanating from coronal holes are frequently impinging on the Earth's magnetosphere causing recurrent, medium-level geomagnetic storm activity. Modeling high-speed solar wind streams is thus an essential element of successful space weather forecasting. Here we evaluate...... high-speed stream forecasts made by the empirical solar wind forecast (ESWF) and the semiempirical Wang-Sheeley-Arge (WSA) model based on the in situ plasma measurements from the Advanced Composition Explorer (ACE) spacecraft for the years 2011 to 2014. While the ESWF makes use of an empirical relation...