WorldWideScience

Sample records for high-resolution multiplex pathogen

  1. High resolution multiplexed functional imaging in live embryos (Conference Presentation)

    Science.gov (United States)

    Xu, Dongli; Zhou, Weibin; Peng, Leilei

    2017-02-01

    Fourier multiplexed fluorescence lifetime imaging (FmFLIM) scanning laser optical tomography (FmFLIM-SLOT) combines FmFLIM and Scanning laser optical tomography (SLOT) to perform multiplexed 3D FLIM imaging of live embryos. The system had demonstrate multiplexed functional imaging of zebrafish embryos genetically express Foster Resonant Energy Transfer (FRET) sensors. However, previous system has a 20 micron resolution because the focused Gaussian beam diverges quickly from the focused plane, makes it difficult to achieve high resolution imaging over a long projection depth. Here, we present a high-resolution FmFLIM-SLOT system with achromatic Bessel beam, which achieves 3 micron resolution in 3D deep tissue imaging. In Bessel-FmFLIM-SLOT, multiple laser excitation lines are firstly intensity modulated by a Michelson interferometer with a spinning polygon mirror optical delay line, which enables Fourier multiplexed multi-channel lifetime measurements. Then, a spatial light modulator and a prism are used to transform the modulated Gaussian laser beam to an achromatic Bessel beam. The achromatic Bessel beam scans across the whole specimen with equal angular intervals as sample rotated. After tomography reconstruction and the frequency domain lifetime analysis method, both the 3D intensity and lifetime image of multiple excitation-emission can be obtained. Using Bessel-FmFLIM-SLOT system, we performed cellular-resolution FLIM tomography imaging of live zebrafish embryo. Genetically expressed FRET sensors in these embryo will allow non-invasive observation of multiple biochemical processes in vivo.

  2. Towards a pathogenic Escherichia coli detection platform using multiplex SYBR®Green Real-time PCR methods and high resolution melting analysis.

    Directory of Open Access Journals (Sweden)

    Dafni-Maria Kagkli

    Full Text Available Escherichia coli is a group of bacteria which has raised a lot of safety concerns in recent years. Five major intestinal pathogenic groups have been recognized amongst which the verocytotoxin or shiga-toxin (stx1 and/or stx2 producing E. coli (VTEC or STEC respectively have received a lot of attention recently. Indeed, due to the high number of outbreaks related to VTEC strains, the European Food Safety Authority (EFSA has requested the monitoring of the "top-five" serogroups (O26, O103, O111, O145 and O157 most often encountered in food borne diseases and addressed the need for validated VTEC detection methods. Here we report the development of a set of intercalating dye Real-time PCR methods capable of rapidly detecting the presence of the toxin genes together with intimin (eae in the case of VTEC, or aggregative protein (aggR, in the case of the O104:H4 strain responsible for the outbreak in Germany in 2011. All reactions were optimized to perform at the same annealing temperature permitting the multiplex application in order to minimize the need of material and to allow for high-throughput analysis. In addition, High Resolution Melting (HRM analysis allowing the discrimination among strains possessing similar virulence traits was established. The development, application to food samples and the flexibility in use of the methods are thoroughly discussed. Together, these Real-time PCR methods facilitate the detection of VTEC in a new highly efficient way and could represent the basis for developing a simple pathogenic E. coli platform.

  3. Ultra-high resolution HLA genotyping and allele discovery by highly multiplexed cDNA amplicon pyrosequencing

    Directory of Open Access Journals (Sweden)

    Lank Simon M

    2012-08-01

    Full Text Available Abstract Background High-resolution HLA genotyping is a critical diagnostic and research assay. Current methods rarely achieve unambiguous high-resolution typing without making population-specific frequency inferences due to a lack of locus coverage and difficulty in exon-phase matching. Achieving high-resolution typing is also becoming more challenging with traditional methods as the database of known HLA alleles increases. Results We designed a cDNA amplicon-based pyrosequencing method to capture 94% of the HLA class I open-reading-frame with only two amplicons per sample, and an analogous method for class II HLA genes, with a primary focus on sequencing the DRB loci. We present a novel Galaxy server-based analysis workflow for determining genotype. During assay validation, we performed two GS Junior sequencing runs to determine the accuracy of the HLA class I amplicons and DRB amplicon at different levels of multiplexing. When 116 amplicons were multiplexed, we unambiguously resolved 99%of class I alleles to four- or six-digit resolution, as well as 100% unambiguous DRB calls. The second experiment, with 271 multiplexed amplicons, missed some alleles, but generated high-resolution, concordant typing for 93% of class I alleles, and 96% for DRB1 alleles. In a third, preliminary experiment we attempted to sequence novel amplicons for other class II loci with mixed success. Conclusions The presented assay is higher-throughput and higher-resolution than existing HLA genotyping methods, and suitable for allele discovery or large cohort sampling. The validated class I and DRB primers successfully generated unambiguously high-resolution genotypes, while further work is needed to validate additional class II genotyping amplicons.

  4. High-resolution photon spectroscopy with a microwave-multiplexed 4-pixel transition edge sensor array

    Science.gov (United States)

    Guss, Paul; Rabin, Michael; Croce, Mark; Hoteling, Nathan; Schwellenbach, David; Kruschwitz, Craig; Mocko, Veronika; Mukhopadhyay, Sanjoy

    2017-09-01

    We demonstrate very high-resolution photon spectroscopy with a microwave-multiplexed 4-pixel transition edge sensor (TES) array. The readout circuit consists of superconducting microwave resonators coupled to radio frequency superconducting-quantum-interference devices (RF-SQUIDs) and transduces changes in input current to changes in phase of a microwave signal. We used a flux-ramp modulation to linearize the response and avoid low-frequency noise. The result is a very high-resolution photon spectroscopy with a microwave-multiplexed 4-pixel transition edge sensor array. We performed and validated a small-scale demonstration and test of all the components of our concept system, which encompassed microcalorimetry, microwave multiplexing, RF-SQUIDs, and software-defined radio (SDR). We shall display data we acquired in the first simultaneous combination of all key innovations in a 4-pixel demonstration, including microcalorimetry, microwave multiplexing, RF-SQUIDs, and SDR. We present the energy spectrum of a gadolinium-153 (153Gd) source we measured using our 4-pixel TES array and the RF-SQUID multiplexer. For each pixel, one can observe the two 97.4 and 103.2 keV photopeaks. We measured the 153Gd photon source with an achieved energy resolution of 70 eV, full width half maximum (FWHM) at 100 keV, and an equivalent readout system noise of 90 pA/pHz at the TES. This demonstration establishes a path for the readout of cryogenic x-ray and gamma ray sensor arrays with more elements and spectral resolving powers. We believe this project has improved capabilities and substantively advanced the science useful for missions such as nuclear forensics, emergency response, and treaty verification through the explored TES developments.

  5. Development of a multiplexed readout with high position resolution for positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sangwon; Choi, Yong [Molecular Imaging Research & Education (MiRe) Laboratory, Department of Electronic Engineering, Sogang University, Seoul 04107 (Korea, Republic of); Kang, Jihoon [Department of Biomedical Engineering, Chonnam National University, Yeosu 550-749 (Korea, Republic of); Jung, Jin Ho [Molecular Imaging Research & Education (MiRe) Laboratory, Department of Electronic Engineering, Sogang University, Seoul 04107 (Korea, Republic of)

    2017-04-01

    Detector signals for positron emission tomography (PET) are commonly multiplexed to reduce the number of digital processing channels so that the system can remain cost effective while also maintaining imaging performance. In this work, a multiplexed readout combining Anger position estimation algorithm and position decoder circuit (PDC) was developed to reduce the number of readout channels by a factor of 24, 96-to-4. The data acquisition module consisted of a TDC (50 ps resolution), 4-channel ADCs (12 bit, 105 MHz sampling rate), 2 GB SDRAM and USB3.0. The performance of the multiplexed readout was assessed with a high-resolution PET detector block composed of 2×3 detector modules, each consisting of an 8×8 array of 1.52×1.52×6 mm{sup 3} LYSO, a 4×4 array of 3×3 mm{sup 2} silicon photomultiplier (SiPM) and 13.4×13.4 mm{sup 2} light guide with 0.7 mm thickness. The acquired flood histogram showed that all 384 crystals could be resolved. The average energy resolution at 511 keV was 13.7±1.6% full-width-at-half-maximum (FWHM) and the peak-to-valley ratios of the flood histogram on the horizontal and vertical lines were 18.8±0.8 and 22.8±1.3, respectively. The coincidence resolving time of a pair of detector blocks was 6.2 ns FWHM. The reconstructed phantom image showed that rods down to a diameter of 1.6 mm could be resolved. The results of this study indicate that the multiplexed readout would be useful in developing a PET with a spatial resolution less than the pixel size of the photosensor, such as a SiPM array.

  6. Time-domain multiplexed high resolution fiber optics strain sensor system based on temporal response of fiber Fabry-Perot interferometers.

    Science.gov (United States)

    Chen, Jiageng; Liu, Qingwen; He, Zuyuan

    2017-09-04

    We developed a multiplexed strain sensor system with high resolution using fiber Fabry-Perot interferometers (FFPI) as sensing elements. The temporal responses of the FFPIs excited by rectangular laser pulses are used to obtain the strain applied on each FFPI. The FFPIs are connected by cascaded couplers and delay fiber rolls for the time-domain multiplexing. A compact optoelectronic system performing closed-loop cyclic interrogation is employed to improve the sensing resolution and the frequency response. In the demonstration experiment, 3-channel strain sensing with resolutions better than 0.1 nε and frequency response higher than 100 Hz is realized.

  7. High throughput, multiplexed pathogen detection authenticates plague waves in medieval Venice, Italy.

    Science.gov (United States)

    Tran, Thi-Nguyen-Ny; Signoli, Michel; Fozzati, Luigi; Aboudharam, Gérard; Raoult, Didier; Drancourt, Michel

    2011-03-10

    Historical records suggest that multiple burial sites from the 14th-16th centuries in Venice, Italy, were used during the Black Death and subsequent plague epidemics. High throughput, multiplexed real-time PCR detected DNA of seven highly transmissible pathogens in 173 dental pulp specimens collected from 46 graves. Bartonella quintana DNA was identified in five (2.9%) samples, including three from the 16th century and two from the 15th century, and Yersinia pestis DNA was detected in three (1.7%) samples, including two from the 14th century and one from the 16th century. Partial glpD gene sequencing indicated that the detected Y. pestis was the Orientalis biotype. These data document for the first time successive plague epidemics in the medieval European city where quarantine was first instituted in the 14th century.

  8. High Throughput, Multiplexed Pathogen Detection Authenticates Plague Waves in Medieval Venice, Italy

    Science.gov (United States)

    Tran, Thi-Nguyen-Ny; Signoli, Michel; Fozzati, Luigi; Aboudharam, Gérard; Raoult, Didier; Drancourt, Michel

    2011-01-01

    Background Historical records suggest that multiple burial sites from the 14th–16th centuries in Venice, Italy, were used during the Black Death and subsequent plague epidemics. Methodology/Principal Findings High throughput, multiplexed real-time PCR detected DNA of seven highly transmissible pathogens in 173 dental pulp specimens collected from 46 graves. Bartonella quintana DNA was identified in five (2.9%) samples, including three from the 16th century and two from the 15th century, and Yersinia pestis DNA was detected in three (1.7%) samples, including two from the 14th century and one from the 16th century. Partial glpD gene sequencing indicated that the detected Y. pestis was the Orientalis biotype. Conclusions These data document for the first time successive plague epidemics in the medieval European city where quarantine was first instituted in the 14th century. PMID:21423736

  9. Whole brain, high resolution spin-echo resting state fMRI using PINS multiplexing at 7 T

    NARCIS (Netherlands)

    Koopmans, P.J.; Boyacioglu, R.; Barth, M.; Norris, David Gordon

    2012-01-01

    This article demonstrates the application of spin-echo EPI for resting state fMRI at 7 T. A short repetition time of 1860 ms was made possible by the use of slice multiplexing which permitted whole brain coverage at high spatial resolution (84 slices of 1.6 mm thickness). Radiofrequency power

  10. Detection of respiratory bacterial pathogens causing atypical pneumonia by multiplex Lightmix® RT-PCR.

    Science.gov (United States)

    Wagner, Karoline; Springer, Burkard; Imkamp, Frank; Opota, Onya; Greub, Gilbert; Keller, Peter M

    2018-04-01

    Pneumonia is a severe infectious disease. In addition to common viruses and bacterial pathogens (e.g. Streptococcus pneumoniae), fastidious respiratory pathogens like Chlamydia pneumoniae, Mycoplasma pneumoniae and Legionella spp. can cause severe atypical pneumonia. They do not respond to penicillin derivatives, which may cause failure of antibiotic empirical therapy. The same applies for infections with B. pertussis and B. parapertussis, the cause of pertussis disease, that may present atypically and need to be treated with macrolides. Moreover, these fastidious bacteria are difficult to identify by culture or serology, and therefore often remain undetected. Thus, rapid and accurate identification of bacterial pathogens causing atypical pneumonia is crucial. We performed a retrospective method evaluation study to evaluate the diagnostic performance of the new, commercially available Lightmix ® multiplex RT-PCR assay that detects these fastidious bacterial pathogens causing atypical pneumonia. In this retrospective study, 368 clinical respiratory specimens, obtained from patients suffering from atypical pneumonia that have been tested negative for the presence of common agents of pneumonia by culture and viral PCR, were investigated. These clinical specimens have been previously characterized by singleplex RT-PCR assays in our diagnostic laboratory and were used to evaluate the diagnostic performance of the respiratory multiplex Lightmix ® RT-PCR. The multiplex RT-PCR displayed a limit of detection between 5 and 10 DNA copies for different in-panel organisms and showed identical performance characteristics with respect to specificity and sensitivity as in-house singleplex RT-PCRs for pathogen detection. The Lightmix ® multiplex RT-PCR assay represents a low-cost, time-saving and accurate diagnostic tool with high throughput potential. The time-to-result using an automated DNA extraction device for respiratory specimens followed by multiplex RT-PCR detection was

  11. Results of Multiplex Polymerase Chain Reaction Assay to Identify Urethritis Pathogens

    Directory of Open Access Journals (Sweden)

    Mehmet Sarıer

    2017-03-01

    Full Text Available Objective: The purpose of this study was to evaluate the results of multiplex polymerase chain reaction (PCR test applied to identify the pathogens in male patients who attended our urology clinic with a pre-diagnosis of urethritis related with sexual intercourse. Materials and Methods: In this study, we included a total of 91 male patients, who sought medical advice in our clinic between August 2015 and October 2016 due to complaints of urethral discharge, dysuria and urethral itching, having a visible urethral discharge during the physical examination or a positive leukocyte esterase test (Combur-Test®-Roche in the first urine sample. In the urethral swab samples of these patients, urethritis pathogens were searched with a multiplex PCR test. The multiplex PCR kit, which is able to identify nine pathogens and produced by PathoFinder® (Holland, was used in the process. The pathogens that could be detected by the kit were Chlamydia trachomatis, Neisseria gonorrhoeae, Mycoplasma hominis, Mycoplasma genitalium, Ureaplasma urealyticum, Gardnerella vaginalis, Trichomonas vaginalis, Treponema pallidum, and Candida albicans. Results: The average age of the subjects was 35.1 (19-57 years. Sixty one out of 91 patients (67% were found to have a pathogen in the urethral swab sample. In 45 patients (49.4%, only one pathogen, in 12 (13.1% - two different pathogens and in 4 (4.3% patients, 3 different pathogens were detected. The pathogens found were as follows: Ureaplasma urealyticum in 22 patients (27.1%, Gardnerella vaginalis in 15 (18.6%, Neisseria gonorrhoeae in 13 (16.1%, Mycoplasma genitalium (10 patients; 12.3%, Mycoplasma hominis (8 patients; 9.9%, Chlamydia trachomatis (8 patients; 9.9%, Trichomonas vaginalis (3 patients; 3.8%, and Candida albicans (2 patients; 2.4%. None of the patients were identified with Treponema pallidum. None of the pathogens were identified in 30 patients (32.9% whose samples were examined by PCR method. Conclusion

  12. Phase division multiplexed EIT for enhanced temporal resolution.

    Science.gov (United States)

    Dowrick, T; Holder, D

    2018-03-29

    The most commonly used EIT paradigm (time division multiplexing) limits the temporal resolution of impedance images due to the need to switch between injection electrodes. Advances have previously been made using frequency division multiplexing (FDM) to increase temporal resolution, but in cases where a fixed range of frequencies is available, such as imaging fast neural activity, an upper limit is placed on the total number of simultaneous injections. The use of phase division multiplexing (PDM) where multiple out of phase signals can be injected at each frequency is investigated to increase temporal resolution. TDM, FDM and PDM were compared in head tank experiments, to compare transfer impedance measurements and spatial resolution between the three techniques. A resistor phantom paradigm was established to investigate the imaging of one-off impedance changes, of magnitude 1% and with durations as low as 500 µs (similar to those seen in nerve bundles), using both PDM and TDM approaches. In head tank experiments, a strong correlation (r  >  0.85 and p  EIT injections.

  13. High-resolution gamma-ray spectroscopy with a microwave-multiplexed transition-edge sensor array

    Energy Technology Data Exchange (ETDEWEB)

    Noroozian, Omid [National Institute of Standards and Technology, Boulder, Colorado 80305 (United States); Center for Astrophysics and Space Astronomy, University of Colorado, Boulder, Colorado 80309 (United States); Mates, John A. B.; Bennett, Douglas A.; Brevik, Justus A.; Fowler, Joseph W.; Gao, Jiansong; Hilton, Gene C.; Horansky, Robert D.; Irwin, Kent D.; Schmidt, Daniel R.; Vale, Leila R.; Ullom, Joel N. [National Institute of Standards and Technology, Boulder, Colorado 80305 (United States); Kang, Zhao [Department of Physics, University of Colorado, Boulder, Colorado 80309 (United States)

    2013-11-11

    We demonstrate very high resolution photon spectroscopy with a microwave-multiplexed two-pixel transition-edge sensor (TES) array. We measured a {sup 153}Gd photon source and achieved an energy resolution of 63 eV full-width-at-half-maximum at 97 keV and an equivalent readout system noise of 86 pA/√(Hz) at the TES. The readout circuit consists of superconducting microwave resonators coupled to radio-frequency superconducting-quantum-interference-devices and transduces changes in input current to changes in phase of a microwave signal. We use flux-ramp modulation to linearize the response and evade low-frequency noise. This demonstration establishes one path for the readout of cryogenic X-ray and gamma-ray sensor arrays with more than 10{sup 3} elements and spectral resolving powers R=λ/Δλ>10{sup 3}.

  14. Simultaneous Detection of 13 Key Bacterial Respiratory Pathogens by Combination of Multiplex PCR and Capillary Electrophoresis.

    Science.gov (United States)

    Jiang, Lu Xi; Ren, Hong Yu; Zhou, Hai Jian; Zhao, Si Hong; Hou, Bo Yan; Yan, Jian Ping; Qin, Tian; Chen, Yu

    2017-08-01

    Lower respiratory tract infections continue to pose a significant threat to human health. It is important to accurately and rapidly detect respiratory bacteria. To compensate for the limits of current respiratory bacteria detection methods, we developed a combination of multiplex polymerase chain reaction (PCR) and capillary electrophoresis (MPCE) assay to detect thirteen bacterial pathogens responsible for lower respiratory tract infections, including Streptococcus pneumoniae, Haemophilus influenzae, Moraxella catarrhalis, Pseudomonas aeruginosa, Klebsiella pneumoniae, Escherichia coli, Staphylococcus aureus, Mycoplasma pneumoniae, Legionella spp., Bordetella pertussis, Mycobacterium tuberculosis complex, Corynebacterium diphtheriae, and Streptococcus pyogenes. Three multiplex PCR reactions were built, and the products were analyzed by capillary electrophoresis using the high-throughput DNA analyzer. The specificity of the MPCE assay was examined and the detection limit was evaluated using DNA samples from each bacterial strain and the simulative samples of each strain. This assay was further evaluated using 152 clinical specimens and compared with real-time PCR reactions. For this assay, three nested-multiplex-PCRs were used to detect these clinical specimens. The detection limits of the MPCE assay for the 13 pathogens were very low and ranged from 10-7 to 10-2 ng/μL. Furthermore, analysis of the 152 clinical specimens yielded a specificity ranging from 96.5%-100.0%, and a sensitivity of 100.0% for the 13 pathogens. This study revealed that the MPCE assay is a rapid, reliable, and high-throughput method with high specificity and sensitivity. This assay has great potential in the molecular epidemiological survey of respiratory pathogens. Copyright © 2017 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  15. Multiplexed lateral flow microarray assay for detection of citrus pathogens Xylella fastidiosa and Xanthomonas axonopodis pv citri

    Energy Technology Data Exchange (ETDEWEB)

    Cary,; Bruce, R [Santa Fe, NM; Stubben, Christopher J [Los Alamos, NM

    2011-03-22

    The invention provides highly sensitive and specific assays for the major citrus pathogens Xylella fastidiosa and Xanthomonas axonopodis, including a field deployable multiplexed assay capable of rapidly assaying for both pathogens simultaneously. The assays are directed at particular gene targets derived from pathogenic strains that specifically cause the major citrus diseases of citrus variegated chlorosis (Xylella fastidiosa 9a5c) and citrus canker (Xanthomonas axonopodis pv citri). The citrus pathogen assays of the invention offer femtomole sensitivity, excellent linear dynamic range, and rapid and specific detection.

  16. Multiplexed, high density electrophysiology with nanofabricated neural probes.

    Directory of Open Access Journals (Sweden)

    Jiangang Du

    Full Text Available Extracellular electrode arrays can reveal the neuronal network correlates of behavior with single-cell, single-spike, and sub-millisecond resolution. However, implantable electrodes are inherently invasive, and efforts to scale up the number and density of recording sites must compromise on device size in order to connect the electrodes. Here, we report on silicon-based neural probes employing nanofabricated, high-density electrical leads. Furthermore, we address the challenge of reading out multichannel data with an application-specific integrated circuit (ASIC performing signal amplification, band-pass filtering, and multiplexing functions. We demonstrate high spatial resolution extracellular measurements with a fully integrated, low noise 64-channel system weighing just 330 mg. The on-chip multiplexers make possible recordings with substantially fewer external wires than the number of input channels. By combining nanofabricated probes with ASICs we have implemented a system for performing large-scale, high-density electrophysiology in small, freely behaving animals that is both minimally invasive and highly scalable.

  17. Detection and typing of highly pathogenic porcine reproductive and respiratory syndrome virus by multiplex real-time rt-PCR.

    Directory of Open Access Journals (Sweden)

    Kerstin Wernike

    Full Text Available Porcine reproductive and respiratory syndrome (PRRS causes economic losses in the pig industry worldwide, and PRRS viruses (PRRSV are classified into the two distinct genotypes "North American (NA, type 2" and "European (EU, type 1". In 2006, a highly pathogenic NA strain of PRRSV (HP-PRRSV, characterized by high fever as well as high morbidity and mortality, emerged in swine farms in China. Therefore, a real-time reverse transcription polymerase chain reaction (RT-qPCR assay specific for HP-PRRSV was developed and combined with type 1- and type 2-specific RT-qPCR systems. Furthermore, an internal control, based on a heterologous RNA, was successfully introduced. This final multiplex PRRSV RT-qPCR, detecting and typing PRRSV, had an analytical sensitivity of less than 200 copies per µl for the type 1-assay and 20 copies per µl for the type 2- and HP assays and a high diagnostic sensitivity. A panel of reference strains and field isolates was reliably detected and samples from an animal trial with a Chinese HP-PRRS strain were used for test validation. The new multiplex PRRSV RT-qPCR system allows for the first time the highly sensitive detection and rapid differentiation of PRRSV of both genotypes as well as the direct detection of HP-PRRSV.

  18. Multiplex detection of plant pathogens through the luminex magplex bead system

    NARCIS (Netherlands)

    Vlugt, van der R.A.A.; Raaij, van H.M.G.; Weerdt, de M.; Bergervoet, J.H.W.

    2015-01-01

    Here we describe a versatile multiplex method for both the serological and molecular detection of plant pathogens. The Luminex MagPlex bead system uses small paramagnetic microspheres (“beads”), either coated with specific antibodies or oligonucleotides, which capture respectively viruses and/or

  19. Multiplex identification of sepsis-causing Gram-negative pathogens from the plasma of infected blood.

    Science.gov (United States)

    Chung, Boram; Park, Chulmin; Cho, Sung-Yeon; Shin, Juyoun; Shin, Sun; Yim, Seon-Hee; Lee, Dong-Gun; Chung, Yeun-Jung

    2018-02-01

    Early and accurate detection of bacterial pathogens in the blood is the most crucial step for sepsis management. Gram-negative bacteria are the most common organisms causing severe sepsis and responsible for high morbidity and mortality. We aimed to develop a method for rapid multiplex identification of clinically important Gram-negative pathogens and also validated whether our system can identify Gram-negative pathogens with the cell-free plasm DNA from infected blood. We designed five MLPA probe sets targeting the genes specific to major Gram-negative pathogens (uidA and lacY for E. coli, ompA for A. baumannii, phoE for K. pneumoniae, and ecfX for P. aeruginosa) and one set targeting the CTX-M group 1 to identify the ESBL producing Gram-negative pathogens. All six target-specific peaks were clearly separated without any non-specific peaks in a multiplex reaction condition. The minimum detection limit was 100 fg of pathogen DNA. When we tested 28 Gram-negative clinical isolates, all of them were successfully identified without any non-specific peaks. To evaluate the clinical applicability, we tested seven blood samples from febrile patients. Three blood culture positive cases showed E. coli specific peaks, while no peak was detected in the other four culture negative samples. This technology can be useful for detection of major sepsis-causing, drug-resistant Gram-negative pathogens and also the major ESBL producing Gram-negatives from the blood of sepsis patients in a clinical setting. This system can help early initiation of effective antimicrobial treatment against Gram-negative pathogens for sepsis patients, which is very crucial for better treatment outcomes. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Determination of foodborne pathogenic bacteria by multiplex PCR-microchip capillary electrophoresis with genetic algorithm-support vector regression optimization.

    Science.gov (United States)

    Li, Yongxin; Li, Yuanqian; Zheng, Bo; Qu, Lingli; Li, Can

    2009-06-08

    A rapid and sensitive method based on microchip capillary electrophoresis with condition optimization of genetic algorithm-support vector regression (GA-SVR) was developed and applied to simultaneous analysis of multiplex PCR products of four foodborne pathogenic bacteria. Four pairs of oligonucleotide primers were designed to exclusively amplify the targeted gene of Vibrio parahemolyticus, Salmonella, Escherichia coli (E. coli) O157:H7, Shigella and the quadruplex PCR parameters were optimized. At the same time, GA-SVR was employed to optimize the separation conditions of DNA fragments in microchip capillary electrophoresis. The proposed method was applied to simultaneously detect the multiplex PCR products of four foodborne pathogenic bacteria under the optimal conditions within 8 min. The levels of detection were as low as 1.2 x 10(2) CFU mL(-1) of Vibrio parahemolyticus, 2.9 x 10(2) CFU mL(-1) of Salmonella, 8.7 x 10(1) CFU mL(-1) of E. coli O157:H7 and 5.2 x 10(1) CFU mL(-1) of Shigella, respectively. The relative standard deviation of migration time was in the range of 0.74-2.09%. The results demonstrated that the good resolution and less analytical time were achieved due to the application of the multivariate strategy. This study offers an efficient alternative to routine foodborne pathogenic bacteria detection in a fast, reliable, and sensitive way.

  1. Impact of Aerosol Dust on xMAP Multiplex Detection of Different Class Pathogens

    Directory of Open Access Journals (Sweden)

    Denis A. Kleymenov

    2017-11-01

    Full Text Available Environmental or city-scale bioaerosol surveillance can provide additional value for biodefense and public health. Efficient bioaerosol monitoring should rely on multiplex systems capable of detecting a wide range of biologically hazardous components potentially present in air (bacteria, viruses, toxins and allergens. xMAP technology from LuminexTM allows multiplex bead-based detection of antigens or nucleic acids, but its use for simultaneous detection of different classes of pathogens (bacteria, virus, toxin is questionable. Another problem is the detection of pathogens in complex matrices, e.g., in the presence of dust. In the this research, we developed the model xMAP multiplex test-system aiRDeTeX 1.0, which enables detection of influenza A virus, Adenovirus type 6 Salmonella typhimurium, and cholera toxin B subunit representing RNA virus, DNA virus, gram-negative bacteria and toxin respectively as model organisms of biologically hazardous components potentially present in or spreadable through the air. We have extensively studied the effect of matrix solution (PBS, distilled water, environmental dust and ultrasound treatment for monoplex and multiplex detection efficiency of individual targets. All targets were efficiently detectable in PBS and in the presence of dust. Ultrasound does not improve the detection except for bacterial LPS.

  2. Synovial fluid multiplex PCR is superior to culture for detection of low-virulent pathogens causing periprosthetic joint infection.

    Science.gov (United States)

    Morgenstern, Christian; Cabric, Sabrina; Perka, Carsten; Trampuz, Andrej; Renz, Nora

    2018-02-01

    Analysis of joint aspirate is the standard preoperative investigation for diagnosis of periprosthetic joint infection (PJI). We compared the diagnostic performance of culture and multiplex polymerase chain reaction (PCR) of synovial fluid for diagnosis of PJI. Patients in whom aspiration of the prosthetic hip or knee joint was performed before revision arthroplasty were prospectively included. The performance of synovial fluid culture and multiplex PCR was compared by McNemar's chi-squared test. A total of 142 patients were included, 82 with knee and 60 with hip prosthesis. PJI was diagnosed in 77 patients (54%) and aseptic failure in 65 patients (46%). The sensitivity of synovial fluid culture and PCR was 52% and 60%, respectively, showing concordant results in 116 patients (82%). In patients with PJI, PCR missed 6 high-virulent pathogens (S. aureus, streptococci, E. faecalis, E. coli) which grew in synovial fluid culture, whereas synovial fluid culture missed 12 pathogens detected by multiplex PCR, predominantly low-virulent pathogens (Cutibacterium acnes and coagulase-negative staphylococci). In patients with aseptic failure, PCR detected 6 low-virulent organisms (predominantly C. acnes). While the overall performance of synovial fluid PCR was comparable to culture, PCR was superior for detection of low-virulent bacteria such as Cutibacterium spp. and coagulase-negative staphylococci. In addition, synovial fluid culture required several days for growth, whereas multiplex PCR provided results within 5hours in an automated manner. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. High-Resolution Spin-on-Patterning of Perovskite Thin Films for a Multiplexed Image Sensor Array.

    Science.gov (United States)

    Lee, Woongchan; Lee, Jongha; Yun, Huiwon; Kim, Joonsoo; Park, Jinhong; Choi, Changsoon; Kim, Dong Chan; Seo, Hyunseon; Lee, Hakyong; Yu, Ji Woong; Lee, Won Bo; Kim, Dae-Hyeong

    2017-10-01

    Inorganic-organic hybrid perovskite thin films have attracted significant attention as an alternative to silicon in photon-absorbing devices mainly because of their superb optoelectronic properties. However, high-definition patterning of perovskite thin films, which is important for fabrication of the image sensor array, is hardly accomplished owing to their extreme instability in general photolithographic solvents. Here, a novel patterning process for perovskite thin films is described: the high-resolution spin-on-patterning (SoP) process. This fast and facile process is compatible with a variety of spin-coated perovskite materials and perovskite deposition techniques. The SoP process is successfully applied to develop a high-performance, ultrathin, and deformable perovskite-on-silicon multiplexed image sensor array, paving the road toward next-generation image sensor arrays. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Time multiplexing for increased FOV and resolution in virtual reality

    Science.gov (United States)

    Miñano, Juan C.; Benitez, Pablo; Grabovičkić, Dejan; Zamora, Pablo; Buljan, Marina; Narasimhan, Bharathwaj

    2017-06-01

    We introduce a time multiplexing strategy to increase the total pixel count of the virtual image seen in a VR headset. This translates into an improvement of the pixel density or the Field of View FOV (or both) A given virtual image is displayed by generating a succession of partial real images, each representing part of the virtual image and together representing the virtual image. Each partial real image uses the full set of physical pixels available in the display. The partial real images are successively formed and combine spatially and temporally to form a virtual image viewable from the eye position. Partial real images are imaged through different optical channels depending of its time slot. Shutters or other schemes are used to avoid that a partial real image be imaged through the wrong optical channels or at the wrong time slot. This time multiplexing strategy needs real images be shown at high frame rates (>120fps). Available display and shutters technologies are discussed. Several optical designs for achieving this time multiplexing scheme in a compact format are shown. This time multiplexing scheme allows increasing the resolution/FOV of the virtual image not only by increasing the physical pixel density but also by decreasing the pixels switching time, a feature that may be simpler to achieve in certain circumstances.

  5. A PDMS/paper/glass hybrid microfluidic biochip integrated with aptamer-functionalized graphene oxide nano-biosensors for one-step multiplexed pathogen detection

    OpenAIRE

    Zuo, Peng; Li, XiuJun; Dominguez, Delfina C.; Ye, Bang-Ce

    2013-01-01

    Infectious pathogens often cause serious public health concerns throughout the world. There is an increasing demand for simple, rapid and sensitive approaches for multiplexed pathogen detection. In this paper we have developed a polydimethylsiloxane (PDMS)/paper/glass hybrid microfluidic system integrated with aptamer-functionalized graphene oxide (GO) nano-biosensors for simple, one-step, multiplexed pathogen detection. The paper substrate used in this hybrid microfluidic system facilitated ...

  6. Multiplex TaqMan® detection of pathogenic and multi-drug resistant Salmonella.

    Science.gov (United States)

    Singh, Prashant; Mustapha, Azlin

    2013-09-02

    Overuse of antibiotics in the medical and animal industries is one of the major causes for the development of multi-drug-resistant (MDR) food pathogens that are often difficult to treat. In the past few years, higher incidences of outbreaks caused by MDR Salmonella have been increasingly documented. The objective of this study was to develop a rapid multiplex real-time polymerase chain reaction (PCR) assay for simultaneous detection of pathogenic and MDR Salmonella spp. A multiplex TaqMan®real-time PCR was designed by targeting the invasin virulence gene (invA), and four commonly found antibiotic resistance genes, viz. ampicillin, chloramphenicol, streptomycin and tetracycline. To avoid false negative results and to increase the reliability of the assay, an internal amplification control (IAC) was added which was detected using a locked nucleic acid (LNA) probe. In serially diluted (5 ng-50 fg) DNA samples, the assay was able to detect 100 genomic equivalents of Salmonella, while in a multiplex format, the sensitivity was 1000 genomic equivalents. The assay performed equally well on artificially contaminated samples of beef trim, ground beef of different fat contents (73:27, 80:20, 85:15 and 93:7), chicken rinse, ground chicken, ground turkey, egg, spinach and tomato. While the detection limit for un-enriched inoculated food samples was 10(4) CFU/g, this was improved to 10 CFU/g after a 12-h enrichment in buffered peptone water, with 100% reproducibility. The multiplex real-time assay developed in this study can be used as a valuable tool to detect MDR virulent Salmonella, thus enhancing the safety of food. © 2013.

  7. Multiplex detection of plant pathogens using a microsphere immunoassay technology.

    Directory of Open Access Journals (Sweden)

    Ratthaphol Charlermroj

    Full Text Available Plant pathogens are a serious problem for seed export, plant disease control and plant quarantine. Rapid and accurate screening tests are urgently required to protect and prevent plant diseases spreading worldwide. A novel multiplex detection method was developed based on microsphere immunoassays to simultaneously detect four important plant pathogens: a fruit blotch bacterium Acidovorax avenae subsp. citrulli (Aac, chilli vein-banding mottle virus (CVbMV, potyvirus, watermelon silver mottle virus (WSMoV, tospovirus serogroup IV and melon yellow spot virus (MYSV, tospovirus. An antibody for each plant pathogen was linked on a fluorescence-coded magnetic microsphere set which was used to capture corresponding pathogen. The presence of pathogens was detected by R-phycoerythrin (RPE-labeled antibodies specific to the pathogens. The assay conditions were optimized by identifying appropriate antibody pairs, blocking buffer, concentration of RPE-labeled antibodies and assay time. Once conditions were optimized, the assay was able to detect all four plant pathogens precisely and accurately with substantially higher sensitivity than enzyme-linked immunosorbent assay (ELISA when spiked in buffer and in healthy watermelon leaf extract. The assay time of the microsphere immunoassay (1 hour was much shorter than that of ELISA (4 hours. This system was also shown to be capable of detecting the pathogens in naturally infected plant samples and is a major advancement in plant pathogen detection.

  8. Multiplex detection of plant pathogens using a microsphere immunoassay technology.

    Science.gov (United States)

    Charlermroj, Ratthaphol; Himananto, Orawan; Seepiban, Channarong; Kumpoosiri, Mallika; Warin, Nuchnard; Oplatowska, Michalina; Gajanandana, Oraprapai; Grant, Irene R; Karoonuthaisiri, Nitsara; Elliott, Christopher T

    2013-01-01

    Plant pathogens are a serious problem for seed export, plant disease control and plant quarantine. Rapid and accurate screening tests are urgently required to protect and prevent plant diseases spreading worldwide. A novel multiplex detection method was developed based on microsphere immunoassays to simultaneously detect four important plant pathogens: a fruit blotch bacterium Acidovorax avenae subsp. citrulli (Aac), chilli vein-banding mottle virus (CVbMV, potyvirus), watermelon silver mottle virus (WSMoV, tospovirus serogroup IV) and melon yellow spot virus (MYSV, tospovirus). An antibody for each plant pathogen was linked on a fluorescence-coded magnetic microsphere set which was used to capture corresponding pathogen. The presence of pathogens was detected by R-phycoerythrin (RPE)-labeled antibodies specific to the pathogens. The assay conditions were optimized by identifying appropriate antibody pairs, blocking buffer, concentration of RPE-labeled antibodies and assay time. Once conditions were optimized, the assay was able to detect all four plant pathogens precisely and accurately with substantially higher sensitivity than enzyme-linked immunosorbent assay (ELISA) when spiked in buffer and in healthy watermelon leaf extract. The assay time of the microsphere immunoassay (1 hour) was much shorter than that of ELISA (4 hours). This system was also shown to be capable of detecting the pathogens in naturally infected plant samples and is a major advancement in plant pathogen detection.

  9. Highly multiplexible thermal kinetic inductance detectors for x-ray imaging spectroscopy

    International Nuclear Information System (INIS)

    Ulbricht, Gerhard; Mazin, Benjamin A.; Szypryt, Paul; Walter, Alex B.; Bockstiegel, Clint; Bumble, Bruce

    2015-01-01

    For X-ray imaging spectroscopy, high spatial resolution over a large field of view is often as important as high energy resolution, but current X-ray detectors do not provide both in the same device. Thermal Kinetic Inductance Detectors (TKIDs) are being developed as they offer a feasible way to combine the energy resolution of transition edge sensors with pixel counts approaching CCDs and thus promise significant improvements for many X-ray spectroscopy applications. TKIDs are a variation of Microwave Kinetic Inductance Detectors (MKIDs) and share their multiplexibility: working MKID arrays with 2024 pixels have recently been demonstrated and much bigger arrays are under development. In this work, we present a TKID prototype, which is able to achieve an energy resolution of 75 eV at 5.9 keV, even though its general design still has to be optimized. We further describe TKID fabrication, characterization, multiplexing, and working principle and demonstrate the necessity of a data fitting algorithm in order to extract photon energies. With further design optimizations, we expect to be able to improve our TKID energy resolution to less than 10 eV at 5.9 keV

  10. Highly multiplexible thermal kinetic inductance detectors for x-ray imaging spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ulbricht, Gerhard, E-mail: ulbricht@physics.ucsb.edu; Mazin, Benjamin A.; Szypryt, Paul; Walter, Alex B.; Bockstiegel, Clint [Department of Physics, University of California, Santa Barbara, California 93106 (United States); Bumble, Bruce [NASA Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, California 91125 (United States)

    2015-06-22

    For X-ray imaging spectroscopy, high spatial resolution over a large field of view is often as important as high energy resolution, but current X-ray detectors do not provide both in the same device. Thermal Kinetic Inductance Detectors (TKIDs) are being developed as they offer a feasible way to combine the energy resolution of transition edge sensors with pixel counts approaching CCDs and thus promise significant improvements for many X-ray spectroscopy applications. TKIDs are a variation of Microwave Kinetic Inductance Detectors (MKIDs) and share their multiplexibility: working MKID arrays with 2024 pixels have recently been demonstrated and much bigger arrays are under development. In this work, we present a TKID prototype, which is able to achieve an energy resolution of 75 eV at 5.9 keV, even though its general design still has to be optimized. We further describe TKID fabrication, characterization, multiplexing, and working principle and demonstrate the necessity of a data fitting algorithm in order to extract photon energies. With further design optimizations, we expect to be able to improve our TKID energy resolution to less than 10 eV at 5.9 keV.

  11. Multiplex real-time PCR (TaqMan) assay for the simultaneous detection and discrimination of potato powdery and common scab diseases and pathogens.

    Science.gov (United States)

    Qu, X S; Wanner, L A; Christ, B J

    2011-03-01

    To develop a multiplex real-time PCR assay using TaqMan probes for the simultaneous detection and discrimination of potato powdery scab and common scab, two potato tuber diseases with similar symptoms, and the causal pathogens Spongospora subterranea and plant pathogenic Streptomyces spp. Real-time PCR primers and a probe for S. subterranea were designed based on the DNA sequence of the ribosomal RNA ITS2 region. Primers and a probe for pathogenic Streptomyces were designed based on the DNA sequence of the txtAB genes. The two sets of primer pairs and probes were used in a single real-time PCR assay. The multiplex real-time PCR assay was confirmed to be specific for S. subterranea and pathogenic Streptomyces. The assay detected DNA quantities of 100 fg for each of the two pathogens and linear responses and high correlation coefficients between the amount of DNA and C(t) values for each pathogen were achieved. The presence of two sets of primer pairs and probes and of plant extracts did not alter the sensitivity and efficiency of multiplex PCR amplification. Using the PCR assay, we could discriminate between powdery scab and common scab tubers with similar symptoms. Common scab and powdery scab were detected in some tubers with no visible symptoms. Mixed infections of common scab and powdery scab on single tubers were also revealed. This multiplex real-time PCR assay is a rapid, cost efficient, specific and sensitive tool for the simultaneous detection and discrimination of the two pathogens on infected potato tubers when visual symptoms are inconclusive or not present. Accurate and quick identification and discrimination of the cause of scab diseases on potatoes will provide critical information to potato growers and researchers for disease management. This is important because management strategies for common and powdery scab diseases are very different. © 2011 The Authors. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology.

  12. Simultaneous aptasensor for multiplex pathogenic bacteria detection based on multicolor upconversion nanoparticles labels.

    Science.gov (United States)

    Wu, Shijia; Duan, Nuo; Shi, Zhao; Fang, Congcong; Wang, Zhouping

    2014-03-18

    A highly sensitive and specific multiplex method for the simultaneous detection of three pathogenic bacteria was fabricated using multicolor upconversion nanoparticles (UCNPs) as luminescence labels coupled with aptamers as the molecular recognition elements. Multicolor UCNPs were synthesized via doping with various rare-earth ions to obtain well-separated emission peaks. The aptamer sequences were selected using the systematic evolution of ligands by exponential enrichment (SELEX) strategy for Staphylococcus aureus, Vibrio parahemolyticus, and Salmonella typhimurium. When applied in this method, aptamers can be used for the specific recognition of the bacteria from complex mixtures, including those found in real food matrixes. Aptamers and multicolor UCNPs were employed to selectively capture and simultaneously quantify the three target bacteria on the basis of the independent peaks. Under optimal conditions, the correlation between the concentration of three bacteria and the luminescence signal was found to be linear from 50-10(6) cfu mL(-1). Improved by the magnetic separation and concentration effect of Fe3O4 magnetic nanoparticles, the limits of detection of the developed method were found to be 25, 10, and 15 cfu mL(-1) for S. aureus, V. parahemolyticus, and S. typhimurium, respectively. The capability of the bioassay in real food samples was also investigated, and the results were consistent with experimental results obtained from plate-counting methods. This proposed method for the detection of various pathogenic bacteria based on multicolor UCNPs has great potential in the application of food safety and multiplex nanosensors.

  13. High-Speed Microscale Optical Tracking Using Digital Frequency-Domain Multiplexing

    OpenAIRE

    MacLachlan, Robert A.; Riviere, Cameron N.

    2009-01-01

    Position-sensitive detectors (PSDs), or lateral-effect photodiodes, are commonly used for high-speed, high-resolution optical position measurement. This paper describes the instrument design for multidimensional position and orientation measurement based on the simultaneous position measurement of multiple modulated sources using frequency-domain-multiplexed (FDM) PSDs. The important advantages of this optical configuration in comparison with laser/mirror combinations are that it has a large ...

  14. Development and assessment of multiplex high resolution melting assay as a tool for rapid single-tube identification of five Brucella species.

    Science.gov (United States)

    Gopaul, Krishna K; Sells, Jessica; Lee, Robin; Beckstrom-Sternberg, Stephen M; Foster, Jeffrey T; Whatmore, Adrian M

    2014-12-11

    The zoonosis brucellosis causes economically significant reproductive problems in livestock and potentially debilitating disease of humans. Although the causative agent, organisms from the genus Brucella, can be differentiated into a number of species based on phenotypic characteristics, there are also significant differences in genotype that are concordant with individual species. This paper describes the development of a five target multiplex assay to identify five terrestrial Brucella species using real-time polymerase chain reaction (PCR) and subsequent high resolution melt curve analysis. This technology offers a robust and cost effective alternative to previously described hydrolysis-probe Single Nucleotide Polymorphism (SNP)-based species defining assays. Through the use of Brucella whole genome sequencing five species defining SNPs were identified. Individual HRM assays were developed to these target these changes and, following optimisation of primer concentrations, it was possible to multiplex all five assays in a single tube. In a validation exercise using a panel of 135 Brucella strains of terrestrial and marine origin, it was possible to distinguish the five target species from the other species within this panel. The HRM multiplex offers a number of diagnostic advantages over previously described SNP-based typing approaches. Further, and uniquely for HRM, the successful multiplexing of five assays in a single tube allowing differentiation of five Brucella species in the diagnostic laboratory in a cost-effective and timely manner is described. However there are possible limitations to using this platform on DNA extractions direct from clinical material.

  15. Massively multiplexed microbial identification using resequencing DNA microarrays for outbreak investigation

    Science.gov (United States)

    Leski, T. A.; Ansumana, R.; Jimmy, D. H.; Bangura, U.; Malanoski, A. P.; Lin, B.; Stenger, D. A.

    2011-06-01

    Multiplexed microbial diagnostic assays are a promising method for detection and identification of pathogens causing syndromes characterized by nonspecific symptoms in which traditional differential diagnosis is difficult. Also such assays can play an important role in outbreak investigations and environmental screening for intentional or accidental release of biothreat agents, which requires simultaneous testing for hundreds of potential pathogens. The resequencing pathogen microarray (RPM) is an emerging technological platform, relying on a combination of massively multiplex PCR and high-density DNA microarrays for rapid detection and high-resolution identification of hundreds of infectious agents simultaneously. The RPM diagnostic system was deployed in Sierra Leone, West Africa in collaboration with Njala University and Mercy Hospital Research Laboratory located in Bo. We used the RPM-Flu microarray designed for broad-range detection of human respiratory pathogens, to investigate a suspected outbreak of avian influenza in a number of poultry farms in which significant mortality of chickens was observed. The microarray results were additionally confirmed by influenza specific real-time PCR. The results of the study excluded the possibility that the outbreak was caused by influenza, but implicated Klebsiella pneumoniae as a possible pathogen. The outcome of this feasibility study confirms that application of broad-spectrum detection platforms for outbreak investigation in low-resource locations is possible and allows for rapid discovery of the responsible agents, even in cases when different agents are suspected. This strategy enables quick and cost effective detection of low probability events such as outbreak of a rare disease or intentional release of a biothreat agent.

  16. Rapid Identification of Pathogenic Fungi Directly from Cultures by Using Multiplex PCR

    OpenAIRE

    Luo, Guizhen; Mitchell, Thomas G.

    2002-01-01

    A multiplex PCR method was developed to identify simultaneously multiple fungal pathogens in a single reaction. Five sets of species-specific primers were designed from the internal transcribed spacer (ITS) regions, ITS1 and ITS2, of the rRNA gene to identify Candida albicans, Candida glabrata, Candida parapsilosis, Candida tropicalis, and Aspergillus fumigatus. Another set of previously published ITS primers, CN4 and CN5, were used to identify Cryptococcus neoformans. Three sets of primers w...

  17. A multiplexed reverse transcriptase PCR assay for identification of viral respiratory pathogens at point-of-care

    Energy Technology Data Exchange (ETDEWEB)

    Letant, S E; .Ortiz, J I; Tammero, L; Birch, J M; Derlet, R W; Cohen, S; Manning, D; McBride, M T

    2007-04-11

    We have developed a nucleic acid-based assay that is rapid, sensitive, specific, and can be used for the simultaneous detection of 5 common human respiratory pathogens including influenza A, influenza B, parainfluenza type 1 and 3, respiratory syncytial virus, and adenovirus group B, C, and E. Typically, diagnosis on an un-extracted clinical sample can be provided in less than 3 hours, including sample collection, preparation, and processing, as well as data analysis. Such a multiplexed panel would enable rapid broad-spectrum pathogen testing on nasal swabs, and therefore allow implementation of infection control measures, and timely administration of antiviral therapies. This article presents a summary of the assay performance in terms of sensitivity and specificity. Limits of detection are provided for each targeted respiratory pathogen, and result comparisons are performed on clinical samples, our goal being to compare the sensitivity and specificity of the multiplexed assay to the combination of immunofluorescence and shell vial culture currently implemented at the UCDMC hospital. Overall, the use of the multiplexed RT-PCR assay reduced the rate of false negatives by 4% and reduced the rate of false positives by up to 10%. The assay correctly identified 99.3% of the clinical negatives, 97% of adenovirus, 95% of RSV, 92% of influenza B, and 77% of influenza A without any extraction performed on the clinical samples. The data also showed that extraction will be needed for parainfluenza virus, which was only identified correctly 24% of the time on un-extracted samples.

  18. High resolution capacitance detection circuit for rotor micro-gyroscope

    Directory of Open Access Journals (Sweden)

    Ming-Yuan Ren

    2014-03-01

    Full Text Available Conventional methods for rotor position detection of micro-gyroscopes include common exciting electrodes (single frequency and common sensing electrodes (frequency multiplex, but they have encountered some problems. So we present a high resolution and low noise pick-off circuit for micro-gyroscopes which utilizes the time multiplex method. The detecting circuit adopts a continuous-time current sensing circuit for capacitance measurement, and its noise analysis of the charge amplifier is introduced. The equivalent output noise power spectral density of phase-sensitive demodulation is 120 nV/Hz1/2. Tests revealed that the whole circuitry has a relative capacitance resolution of 1 × 10−8.

  19. Characterization of highly multiplexed monolithic PET / gamma camera detector modules

    Science.gov (United States)

    Pierce, L. A.; Pedemonte, S.; DeWitt, D.; MacDonald, L.; Hunter, W. C. J.; Van Leemput, K.; Miyaoka, R.

    2018-04-01

    PET detectors use signal multiplexing to reduce the total number of electronics channels needed to cover a given area. Using measured thin-beam calibration data, we tested a principal component based multiplexing scheme for scintillation detectors. The highly-multiplexed detector signal is no longer amenable to standard calibration methodologies. In this study we report results of a prototype multiplexing circuit, and present a new method for calibrating the detector module with multiplexed data. A 50 × 50 × 10 mm3 LYSO scintillation crystal was affixed to a position-sensitive photomultiplier tube with 8 × 8 position-outputs and one channel that is the sum of the other 64. The 65-channel signal was multiplexed in a resistive circuit, with 65:5 or 65:7 multiplexing. A 0.9 mm beam of 511 keV photons was scanned across the face of the crystal in a 1.52 mm grid pattern in order to characterize the detector response. New methods are developed to reject scattered events and perform depth-estimation to characterize the detector response of the calibration data. Photon interaction position estimation of the testing data was performed using a Gaussian Maximum Likelihood estimator and the resolution and scatter-rejection capabilities of the detector were analyzed. We found that using a 7-channel multiplexing scheme (65:7 compression ratio) with 1.67 mm depth bins had the best performance with a beam-contour of 1.2 mm FWHM (from the 0.9 mm beam) near the center of the crystal and 1.9 mm FWHM near the edge of the crystal. The positioned events followed the expected Beer–Lambert depth distribution. The proposed calibration and positioning method exhibited a scattered photon rejection rate that was a 55% improvement over the summed signal energy-windowing method.

  20. Molecular serotyping, virulence gene profiling and pathogenicity of Streptococcus agalactiae isolated from tilapia farms in Thailand by multiplex PCR.

    Science.gov (United States)

    Kannika, K; Pisuttharachai, D; Srisapoome, P; Wongtavatchai, J; Kondo, H; Hirono, I; Unajak, S; Areechon, N

    2017-06-01

    This study aimed to biotype Streptococcus agalactiae isolated from tilapia farms in Thailand based on molecular biotyping methods and to determine the correlation between the serotype and virulence of bacteria. In addition to a biotyping (serotyping) technique based on multiplex PCR of cps genes, in this study, we developed multiplex PCR typing of Group B streptococcus (GBS) virulence genes to examine three clusters of virulence genes and their correlation with the pathogenicity of S. agalactiae. The epidemiology of S. agalactiae in Thailand was analysed to provide bacterial genetic information towards a future rational vaccine strategy for tilapia culture systems. Streptococcus agalactiae were isolated from diseased tilapia from different areas of Thailand. A total of 124 S. agalactiae isolates were identified by phenotypic analysis and confirmed by 16S rRNA PCR. Bacterial genotyping was conducted based on (i) molecular serotyping of the capsular polysaccharide (cps) gene cluster and (ii) virulence gene profiling using multiplex PCR analysis of 14 virulence genes (lmb, scpB, pavA, cspA, spb1, cyl, bca, rib, fbsA, fbsB, cfb, hylB, bac and pbp1A/ponA). Only serotypes Ia and III were found in this study; serotype Ia lacks the lmb, scpB and spb1 genes, whereas serotype III lacks only the bac gene. Virulence tests in juvenile Nile tilapia demonstrated a correlation between the pathogenicity of the bacteria and their virulence gene profile, with serotype III showing higher virulence than serotype Ia. Epidemiological analysis showed an almost equal distribution in all regions of Thailand, except serotype III was found predominantly in the southern areas. Only two serotypes of S. agalactiae were isolated from diseased tilapia in Thailand. Serotype Ia showed fewer virulence genes and lower virulence than serotype III. Both serotypes showed a similar distribution throughout Thailand. We identified two major serotypes of S. agalactiae isolates associated with the outbreak in

  1. Demonstration of Time Domain Multiplexed Readout for Magnetically Coupled Calorimeters

    Science.gov (United States)

    Porst, J.-P.; Adams, J. S.; Balvin, M.; Bandler, S.; Beyer, J.; Busch, S. E.; Drung, D.; Seidel, G. M.; Smith, S. J.; Stevenson, T. R.

    2012-01-01

    Magnetically coupled calorimeters (MCC) have extremely high potential for x-ray applications due to the inherent high energy resolution capability and being non-dissipative. Although very high energy-resolution has been demonstrated, until now there has been no demonstration of multiplexed read-out. We report on the first realization of a time domain multiplexed (TDM) read-out. While this has many similarities with TDM of transition-edge-sensors (TES), for MGGs the energy resolution is limited by the SQUID read-out noise and requires the well established scheme to be altered in order to minimize degradation due to noise aliasing effects. In cur approach, each pixel is read out by a single first stage SQUID (SQ1) that is operated in open loop. The outputs of the SQ1 s are low-pass filtered with an array of low cross-talk inductors, then fed into a single-stage SQUID TD multiplexer. The multiplexer is addressed from room temperature and read out through a single amplifier channel. We present results achieved with a new detector platform. Noise performance is presented and compared to expectations. We have demonstrated multiplexed X-ray spectroscopy at 5.9keV with delta_FWHM=10eV. In an optimized setup, we show it is possible to multiplex 32 detectors without significantly degrading the Intrinsic detector resolution.

  2. Simultaneous Detection of Brown Rot- and Soft Rot-Causing Bacterial Pathogens from Potato Tubers Through Multiplex PCR.

    Science.gov (United States)

    Ranjan, R K; Singh, Dinesh; Baranwal, V K

    2016-11-01

    Ralstonia solanacearum (Smith) Yabuuchi et al. and Erwinia carotovora subsp. carotovora (Jones) Bergey et al. (Pectobacterium carotovorum subsp. carotovorum) are the two major bacterial pathogens of potato causing brown rot (wilt) and soft rot diseases, respectively, in the field and during storage. Reliable and early detection of these pathogens are keys to avoid occurrence of these diseases in potato crops and reduce yield loss. In the present study, multiplex polymerase chain reaction (PCR) protocol was developed for simultaneous detection of R. solanacearum and E. carotovora subsp. carotovora from potato tubers. A set of oligos targeting the pectatelyase (pel) gene of E. carotovora subsp. carotovora and the universal primers based on 16S r RNA gene of R. solanacearum were used. The standardized multiplex PCR protocol could detect R. solanacearum and E. carotovora subsp. carotovora up to 0.01 and 1.0 ng of genomic DNA, respectively. The protocol was further validated on 96 stored potato tuber samples, collected from different potato-growing states of India, viz. Uttarakhand, Odisha, Meghalaya and Delhi. 53.1 % tuber samples were positive for R. solanacearum, and 15.1 % of samples were positive for E. carotovora subsp. carotovora, and both the pathogens were positive in 26.0 % samples when BIO-PCR was used. This method offers sensitive, specific, reliable and fast detection of two major bacterial pathogens from potato tubers simultaneously, particularly pathogen-free seed certification in large scale.

  3. A PDMS/paper/glass hybrid microfluidic biochip integrated with aptamer-functionalized graphene oxide nano-biosensors for one-step multiplexed pathogen detection.

    Science.gov (United States)

    Zuo, Peng; Li, XiuJun; Dominguez, Delfina C; Ye, Bang-Ce

    2013-10-07

    Infectious pathogens often cause serious public health concerns throughout the world. There is an increasing demand for simple, rapid and sensitive approaches for multiplexed pathogen detection. In this paper we have developed a polydimethylsiloxane (PDMS)/paper/glass hybrid microfluidic system integrated with aptamer-functionalized graphene oxide (GO) nano-biosensors for simple, one-step, multiplexed pathogen detection. The paper substrate used in this hybrid microfluidic system facilitated the integration of aptamer biosensors on the microfluidic biochip, and avoided complicated surface treatment and aptamer probe immobilization in a PDMS or glass-only microfluidic system. Lactobacillus acidophilus was used as a bacterium model to develop the microfluidic platform with a detection limit of 11.0 cfu mL(-1). We have also successfully extended this method to the simultaneous detection of two infectious pathogens - Staphylococcus aureus and Salmonella enterica. This method is simple and fast. The one-step 'turn on' pathogen assay in a ready-to-use microfluidic device only takes ~10 min to complete on the biochip. Furthermore, this microfluidic device has great potential in rapid detection of a wide variety of different other bacterial and viral pathogens.

  4. Detection of HPV and co-infecting pathogens in healthy Italian women by multiplex real-time PCR.

    Science.gov (United States)

    Camporiondo, Maria Pia; Farchi, Francesca; Ciccozzi, Massimo; Denaro, Aurelia; Gallone, Domenica; Maracchioni, Fabio; Favalli, Cartesio; Ciotti, Marco

    2016-01-01

    Several pathogens can be transmitted sexually and are an important cause of morbidity among sexually active women. The aim of the study was to detect the presence of human papillomavirus (HPV), Chlamydia trachomatis (CT), Neisseria gonorrhoeae (NG), Trichomonas vaginalis (TV), Mycoplasma hominis (MH), Mycoplasma genitalium (MG), Ureaplasma urealyticum (UU), and Ureaplasma parvum (UP) in a group of 309 healthy women enrolled at the San Camillo - Forlanini hospital of Rome by using two multiplex real-time PCR assays based on TOCE® technology. The women's ages ranged from 34 to 60 years, median 49 [IQR 45-54]. Of the 309 women tested, HPV DNA was detected in 77/309 (24.9%) patients. Of these, 44 (14.2%) harboured a single infection while 33 (10.7%) were infected by multiple genotypes. Prevalence of HPV infection was highest among females aged 40-50 years (15.2%). Of the other pathogens sought, CT, MG and NG were not detected while positive results were found for MH (12/309, 3.9%), TV (4/309, 1.3%), UP (89/309, 28.8%) and UU (14/309, 4.5%). Co-infections were as follows: 5 MH/HPV, 4 TV/HPV, 34 UP/HPV and 9 UU/HPV. In HPV-positive women, the probability of being infected by UP and UU was 2.5 (p=0.00045) and 6 fold higher (p=0.0016) than in HPV-negative women. The study supports the use of multiplex real-time PCR assays in a routine diagnostic setting. The high sensitivity and specificity of these assays along with the simultaneous detection of the most common sexually transmitted pathogens confers an advantage with respect to more obsolete methods reducing costs and time to diagnosis.

  5. Massively parallel digital high resolution melt for rapid and absolutely quantitative sequence profiling

    Science.gov (United States)

    Velez, Daniel Ortiz; Mack, Hannah; Jupe, Julietta; Hawker, Sinead; Kulkarni, Ninad; Hedayatnia, Behnam; Zhang, Yang; Lawrence, Shelley; Fraley, Stephanie I.

    2017-02-01

    In clinical diagnostics and pathogen detection, profiling of complex samples for low-level genotypes represents a significant challenge. Advances in speed, sensitivity, and extent of multiplexing of molecular pathogen detection assays are needed to improve patient care. We report the development of an integrated platform enabling the identification of bacterial pathogen DNA sequences in complex samples in less than four hours. The system incorporates a microfluidic chip and instrumentation to accomplish universal PCR amplification, High Resolution Melting (HRM), and machine learning within 20,000 picoliter scale reactions, simultaneously. Clinically relevant concentrations of bacterial DNA molecules are separated by digitization across 20,000 reactions and amplified with universal primers targeting the bacterial 16S gene. Amplification is followed by HRM sequence fingerprinting in all reactions, simultaneously. The resulting bacteria-specific melt curves are identified by Support Vector Machine learning, and individual pathogen loads are quantified. The platform reduces reaction volumes by 99.995% and achieves a greater than 200-fold increase in dynamic range of detection compared to traditional PCR HRM approaches. Type I and II error rates are reduced by 99% and 100% respectively, compared to intercalating dye-based digital PCR (dPCR) methods. This technology could impact a number of quantitative profiling applications, especially infectious disease diagnostics.

  6. Development of a multiplex PCR assay for rapid and simultaneous detection of four genera of fish pathogenic bacteria.

    Science.gov (United States)

    Zhang, D F; Zhang, Q Q; Li, A H

    2014-11-01

    Species of genus Aeromonas, Vibrio, Edwardsiella and Streptococcus are the most common fish pathogenic bacteria that cause economically devastating losses in aquaculture. A multiplex polymerase chain reaction (mPCR) was developed for the simultaneous detection and differentiation of the four genera of fish pathogenic bacteria. Through the use of genus-specific primers instead of species-specific ones, the current mPCR covered much more target bacterial species compared with previously reported species-specific mPCR methods. The specificity of the four putative genus-specific primers was validated experimentally while used exclusively (uniplex PCR) or combined (mPCR) against bacterial genomic DNA templates of the target bacteria and nontarget bacteria. The PCR amplicons for the following genera were obtained as expected: Aeromonas (875 bp), Vibrio (524 bp), Edwardsiella (302 bp) and Streptococcus (197 bp), and the fragments could be separated clearly on the agarose gel electrophoresis. The mPCR did not produce nonspecific amplification products when used to amplify 21 nontarget species of bacteria. The mPCR detection limits for each target bacterial genera were 50 colony-forming units (CFU) in pure culture and 100 CFU in fish tissue samples. In conclusion, the mPCR assay was proven to be a powerful alternative to the conventional culture-based method, given its rapid, specific, sensitive and reliable detection of target pathogens. The fish pathogenic bacteria of genus Aeromonas, Vibrio, Edwardsiella and Streptococcus frequently cause severe outbreaks of diseases in cultured fish, and the genus-specific multiplex PCR assay developed in this study can detect the bacteria of the four genera when present in the samples either alone or mixed. The mPCR assay is expected to identify the causative agents more efficiently than uniplex PCR or species-specific multiplex PCR for clinical diagnosis, resulting in the earlier implementation of control measures. This m

  7. Clinical utility of an optimised multiplex real-time PCR assay for the identification of pathogens causing sepsis in Vietnamese patients

    Directory of Open Access Journals (Sweden)

    Ngo Tat Trung

    2018-02-01

    Conclusion: The combination of culture and the multiplex RT-PCR assay provided an excellent diagnostic accomplishment and significantly supported the identification of causative pathogens in clinical samples obtained from septic patients.

  8. A rapid genotyping method for an obligate fungal pathogen, Puccinia striiformis f.sp. tritici, based on DNA extraction from infected leaf and Multiplex PCR genotyping

    Directory of Open Access Journals (Sweden)

    Enjalbert Jérôme

    2011-07-01

    Full Text Available Abstract Background Puccinia striiformis f.sp. tritici (PST, an obligate fungal pathogen causing wheat yellow/stripe rust, a serious disease, has been used to understand the evolution of crop pathogen using molecular markers. However, numerous questions regarding its evolutionary history and recent migration routes still remains to be addressed, which need the genotyping of a large number of isolates, a process that is limited by both DNA extraction and genotyping methods. To address the two issues, we developed here a method for direct DNA extraction from infected leaves combined with optimized SSR multiplexing. Findings We report here an efficient protocol for direct fungal DNA extraction from infected leaves, avoiding the costly and time consuming step of spore multiplication. The genotyping strategy we propose, amplified a total of 20 SSRs in three Multiplex PCR reactions, which were highly polymorphic and were able to differentiate different PST populations with high efficiency and accuracy. Conclusion These two developments enabled a genotyping strategy that could contribute to the development of molecular epidemiology of yellow rust disease, both at a regional or worldwide scale.

  9. A novel multiplex PCR assay for simultaneous detection of nine clinically significant bacterial pathogens associated with bovine mastitis.

    Science.gov (United States)

    Ashraf, Aqeela; Imran, Muhammad; Yaqub, Tahir; Tayyab, Muhammad; Shehzad, Wasim; Thomson, Peter C

    2017-06-01

    For rapid and simultaneous detection of nine bovine mastitic pathogens, a sensitive and specific multiplex PCR assay was developed. The assay was standardized using reference strains and validated on mastitic milk cultures which were identified to species level based on 16S rRNA sequencing. Multiplex PCR assay also efficiently detected the target bacterial strains directly from milk. The detection limit of the assay was up to 50 pg for DNA isolated from pure cultures and 10 4  CFU/ml for spiked milk samples. As estimated by latent class analysis, the assay was sensitive up to 88% and specific up to 98% for targeted mastitic pathogens, compared with the bacterial culture method and the 16S rRNA sequence analysis. This novel molecular assay could be useful for monitoring and maintaining the bovine udder health, ensuring the bacteriological safety of milk, and conducting epidemiological studies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Performance of Multiplexed XY Resistive Micromegas detectors in a high intensity beam

    Science.gov (United States)

    Banerjee, D.; Burtsev, V.; Chumakov, A.; Cooke, D.; Depero, E.; Dermenev, A. V.; Donskov, S. V.; Dubinin, F.; Dusaev, R. R.; Emmenegger, S.; Fabich, A.; Frolov, V. N.; Gardikiotis, A.; Gninenko, S. N.; Hösgen, M.; Karneyeu, A. E.; Ketzer, B.; Kirsanov, M. M.; Konorov, I. V.; Kramarenko, V. A.; Kuleshov, S. V.; Levchenko, E.; Lyubovitskij, V. E.; Lysan, V.; Mamon, S.; Matveev, V. A.; Mikhailov, Yu. V.; Myalkovskiy, V. V.; Peshekhonov, V. D.; Peshekhonov, D. V.; Polyakov, V. A.; Radics, B.; Rubbia, A.; Samoylenko, V. D.; Tikhomirov, V. O.; Tlisov, D. A.; Toropin, A. N.; Vasilishin, B.; Arenas, G. Vasquez; Ulloa, P.; Crivelli, P.

    2018-02-01

    We present the performance of multiplexed XY resistive Micromegas detectors tested in the CERN SPS 100 GeV/c electron beam at intensities up to 3 . 3 × 105e- /(s ṡcm2) . So far, all studies with multiplexed Micromegas have only been reported for tests with radioactive sources and cosmic rays. The use of multiplexed modules in high intensity environments was not explored due to the effect of ambiguities in the reconstruction of the hit point caused by the multiplexing feature. For the specific mapping and beam intensities analyzed in this work with a multiplexing factor of five, more than 50% level of ambiguity is introduced due to particle pile-up as well as fake clusters due to the mapping feature. Our results prove that by using the additional information of cluster size and integrated charge from the signal clusters induced on the XY strips, the ambiguities can be reduced to a level below 2%. The tested detectors are used in the CERN NA64 experiment for tracking the incoming particles bending in a magnetic field in order to reconstruct their momentum. The average hit detection efficiency of each module was found to be ∼96% at the highest beam intensities. By using four modules a tracking resolution of 1.1% was obtained with ∼85% combined tracking efficiency.

  11. Clinical utility of an optimised multiplex real-time PCR assay for the identification of pathogens causing sepsis in Vietnamese patients.

    Science.gov (United States)

    Tat Trung, Ngo; Van Tong, Hoang; Lien, Tran Thi; Van Son, Trinh; Thanh Huyen, Tran Thi; Quyen, Dao Thanh; Hoan, Phan Quoc; Meyer, Christian G; Song, Le Huu

    2018-02-01

    For the identification of bacterial pathogens, blood culture is still the gold standard diagnostic method. However, several disadvantages apply to blood cultures, such as time and rather large volumes of blood sample required. We have previously established an optimised multiplex real-time PCR method in order to diagnose bloodstream infections. In the present study, we evaluated the diagnostic performance of this optimised multiplex RT-PCR in blood samples collected from 110 septicaemia patients enrolled at the 108 Military Central Hospital, Hanoi, Vietnam. Positive results were obtained by blood culture, the Light Cylcler-based SeptiFast ® assay and our multiplex RT-PCR in 35 (32%), 31 (28%), and 31 (28%) samples, respectively. Combined use of the three methods confirmed 50 (45.5%) positive cases of bloodstream infection, a rate significantly higher compared to the exclusive use of one of the three methods (P=0.052, 0.012 and 0.012, respectively). The sensitivity, specificity and area under the curve (AUC) of our assay were higher compared to that of the SeptiFast ® assay (77.4%, 86.1% and 0.8 vs. 67.7%, 82.3% and 0.73, respectively). Combined use of blood culture and multiplex RT-PCR assay showed a superior diagnostic performance, as the sensitivity, specificity, and AUC reached 83.3%, 100%, and 0.95, respectively. The concordance between blood culture and the multiplex RT-PCR assay was highest for Klebsiella pneumonia (100%), followed by Streptococcus spp. (77.8%), Escherichia coli (66.7%), Staphylococcus spp. (50%) and Salmonella spp. (50%). In addition, the use of the newly established multiplex RT-PCR assay increased the spectrum of identifiable agents (Acintobacter baumannii, 1/32; Proteus mirabilis, 1/32). The combination of culture and the multiplex RT-PCR assay provided an excellent diagnostic accomplishment and significantly supported the identification of causative pathogens in clinical samples obtained from septic patients. Copyright © 2017 The

  12. Towards Multiplex Molecular Diagnosis—A Review of Microfluidic Genomics Technologies

    Directory of Open Access Journals (Sweden)

    Ismail Hussain Kamal Basha

    2017-08-01

    Full Text Available Highly sensitive and specific pathogen diagnosis is essential for correct and timely treatment of infectious diseases, especially virulent strains, in people. Point-of-care pathogen diagnosis can be a tremendous help in managing disease outbreaks as well as in routine healthcare settings. Infectious pathogens can be identified with high specificity using molecular methods. A plethora of microfluidic innovations in recent years have now made it increasingly feasible to develop portable, robust, accurate, and sensitive genomic diagnostic devices for deployment at the point of care. However, improving processing time, multiplexed detection, sensitivity and limit of detection, specificity, and ease of deployment in resource-limited settings are ongoing challenges. This review outlines recent techniques in microfluidic genomic diagnosis and devices with a focus on integrating them into a lab on a chip that will lead towards the development of multiplexed point-of-care devices of high sensitivity and specificity.

  13. Multiplexed activity-based protein profiling of the human pathogen Aspergillus fumigatus reveals large functional changes upon exposure to human serum.

    Science.gov (United States)

    Wiedner, Susan D; Burnum, Kristin E; Pederson, LeeAnna M; Anderson, Lindsey N; Fortuin, Suereta; Chauvigné-Hines, Lacie M; Shukla, Anil K; Ansong, Charles; Panisko, Ellen A; Smith, Richard D; Wright, Aaron T

    2012-09-28

    Environmental adaptability is critical for survival of the fungal human pathogen Aspergillus fumigatus in the immunocompromised host lung. We hypothesized that exposure of the fungal pathogen to human serum would lead to significant alterations to the organism's physiology, including metabolic activity and stress response. Shifts in functional pathway and corresponding enzyme reactivity of A. fumigatus upon exposure to the human host may represent much needed prognostic indicators of fungal infection. To address this, we employed a multiplexed activity-based protein profiling (ABPP) approach coupled to quantitative mass spectrometry-based proteomics to measure broad enzyme reactivity of the fungus cultured with and without human serum. ABPP showed a shift from aerobic respiration to ethanol fermentation and utilization over time in the presence of human serum, which was not observed in serum-free culture. Our approach provides direct insight into this pathogen's ability to survive, adapt, and proliferate. Additionally, our multiplexed ABPP approach captured a broad swath of enzyme reactivity and functional pathways and provides a method for rapid assessment of the A. fumigatus response to external stimuli.

  14. Multiplexed Activity-based Protein Profiling of the Human Pathogen Aspergillus fumigatus Reveals Large Functional Changes upon Exposure to Human Serum*

    Science.gov (United States)

    Wiedner, Susan D.; Burnum, Kristin E.; Pederson, LeeAnna M.; Anderson, Lindsey N.; Fortuin, Suereta; Chauvigné-Hines, Lacie M.; Shukla, Anil K.; Ansong, Charles; Panisko, Ellen A.; Smith, Richard D.; Wright, Aaron T.

    2012-01-01

    Environmental adaptability is critical for survival of the fungal human pathogen Aspergillus fumigatus in the immunocompromised host lung. We hypothesized that exposure of the fungal pathogen to human serum would lead to significant alterations to the organism's physiology, including metabolic activity and stress response. Shifts in functional pathway and corresponding enzyme reactivity of A. fumigatus upon exposure to the human host may represent much needed prognostic indicators of fungal infection. To address this, we employed a multiplexed activity-based protein profiling (ABPP) approach coupled to quantitative mass spectrometry-based proteomics to measure broad enzyme reactivity of the fungus cultured with and without human serum. ABPP showed a shift from aerobic respiration to ethanol fermentation and utilization over time in the presence of human serum, which was not observed in serum-free culture. Our approach provides direct insight into this pathogen's ability to survive, adapt, and proliferate. Additionally, our multiplexed ABPP approach captured a broad swath of enzyme reactivity and functional pathways and provides a method for rapid assessment of the A. fumigatus response to external stimuli. PMID:22865858

  15. Multiplex PCR assay for simultaneous detection of six major bacterial pathogens of rice.

    Science.gov (United States)

    Cui, Z; Ojaghian, M R; Tao, Z; Kakar, K U; Zeng, J; Zhao, W; Duan, Y; Vera Cruz, C M; Li, B; Zhu, B; Xie, G

    2016-05-01

    The aim of this study was to develop a multiplex PCR (mPCR) assay for rapid, sensitive and simultaneous detection of six important rice pathogens: Xanthomonas oryzae pv. oryzae, X. oryzae pv. oryzicola, Pseudomonas fuscovaginae, Burkholderia glumae, Burkholderia gladioli and Acidovorax avenae subsp. avenae. Specific primers were designed through a bioinformatics pipeline. Sensitivity of detection was established using both traditional PCR and quantitative real-time PCR on isolated DNA and on bacterial cells both in vitro and in simulated diseased seeds and the parameters were optimized for an mPCR assay. A total of 150 bacterial strains were tested for specificity. The mPCR assay accurately predicted the presence of pathogens among 44 symptomatic and asymptomatic rice seed, sheath and leaf samples. This study confirmed that this mPCR assay is a rapid, reliable and simple tool for the simultaneous detection of six important rice bacterial pathogens. This study is the first report of a method allowing simultaneous detection of six major rice pathogens. The ability to use crude extracts from plants without bacterial isolation or DNA extraction enhances the value of this mPCR technology for rapid detection and aetiological/epidemiological studies. © 2016 The Society for Applied Microbiology.

  16. Evaluation of an Internally Controlled Multiplex Tth Endonuclease Cleavage Loop-Mediated Isothermal Amplification (TEC-LAMP Assay for the Detection of Bacterial Meningitis Pathogens

    Directory of Open Access Journals (Sweden)

    Owen Higgins

    2018-02-01

    Full Text Available Bacterial meningitis infection is a leading global health concern for which rapid and accurate diagnosis is essential to reduce associated morbidity and mortality. Loop-mediated isothermal amplification (LAMP offers an effective low-cost diagnostic approach; however, multiplex LAMP is difficult to achieve, limiting its application. We have developed novel real-time multiplex LAMP technology, TEC-LAMP, using Tth endonuclease IV and a unique LAMP primer/probe. This study evaluates the analytical specificity, limit of detection (LOD and clinical application of an internally controlled multiplex TEC-LAMP assay for detection of leading bacterial meningitis pathogens: Streptococcus pneumoniae, Neisseria meningitidis and Haemophilus influenzae. Analytical specificities were established by testing 168 bacterial strains, and LODs were determined using Probit analysis. The TEC-LAMP assay was 100% specific, with LODs for S. pneumoniae, N. meningitidis and H. influenzae of 39.5, 17.3 and 25.9 genome copies per reaction, respectively. Clinical performance was evaluated by testing 65 archived PCR-positive samples. Compared to singleplex real-time PCR, the multiplex TEC-LAMP assay demonstrated diagnostic sensitivity and specificity of 92.3% and 100%, respectively. This is the first report of a single-tube internally controlled multiplex LAMP assay for bacterial meningitis pathogen detection, and the first report of Tth endonuclease IV incorporation into nucleic acid amplification diagnostic technology.

  17. Evaluation of an Internally Controlled Multiplex Tth Endonuclease Cleavage Loop-Mediated Isothermal Amplification (TEC-LAMP) Assay for the Detection of Bacterial Meningitis Pathogens

    Science.gov (United States)

    Clancy, Eoin; Cormican, Martin; Boo, Teck Wee; Cunney, Robert

    2018-01-01

    Bacterial meningitis infection is a leading global health concern for which rapid and accurate diagnosis is essential to reduce associated morbidity and mortality. Loop-mediated isothermal amplification (LAMP) offers an effective low-cost diagnostic approach; however, multiplex LAMP is difficult to achieve, limiting its application. We have developed novel real-time multiplex LAMP technology, TEC-LAMP, using Tth endonuclease IV and a unique LAMP primer/probe. This study evaluates the analytical specificity, limit of detection (LOD) and clinical application of an internally controlled multiplex TEC-LAMP assay for detection of leading bacterial meningitis pathogens: Streptococcus pneumoniae, Neisseria meningitidis and Haemophilus influenzae. Analytical specificities were established by testing 168 bacterial strains, and LODs were determined using Probit analysis. The TEC-LAMP assay was 100% specific, with LODs for S. pneumoniae, N. meningitidis and H. influenzae of 39.5, 17.3 and 25.9 genome copies per reaction, respectively. Clinical performance was evaluated by testing 65 archived PCR-positive samples. Compared to singleplex real-time PCR, the multiplex TEC-LAMP assay demonstrated diagnostic sensitivity and specificity of 92.3% and 100%, respectively. This is the first report of a single-tube internally controlled multiplex LAMP assay for bacterial meningitis pathogen detection, and the first report of Tth endonuclease IV incorporation into nucleic acid amplification diagnostic technology. PMID:29425124

  18. Miniaturized high-temperature superconducting multiplexer with cascaded quadruplet structure

    Science.gov (United States)

    Xu, Zhang; Jingping, Liu; Shaolin, Yan; Lan, Fang; Bo, Zhang; Xinjie, Zhao

    2015-06-01

    In this paper, compact high temperature superconducting (HTS) multiplexers are presented for satellite communication applications. The first multiplexer consists of an input coupling node and three high-order bandpass filters, which is named triplexer. The node is realized by a loop microstrip line instead of conventional T-junction to eliminate the redundant susceptance due to combination of three filters. There are two eight-pole band-pass filters and one ten-pole band-pass filter with cascaded quadruplet structure for realizing high isolation. Moreover, the triplexer is extended to a multiplexer with six channels so as to verify the expansibility of the suggested approach. The triplexer is fabricated using double-sided YBa2Cu3O7 thin films on a 38 × 25 mm2 LaAlO3 substrate. The experimental results, when compared with those ones from the T-junction multiplexer, show that our multiplexer has lower insertion loss, smaller sizes and higher isolation between any two channels. Also, good agreement has been achieved between simulations and measurements, which illustrate the effectiveness of our methods for the design of high performance HTS multiplexers.

  19. Quadruplex MAPH: improvement of throughput in high-resolution copy number screening.

    Science.gov (United States)

    Tyson, Jess; Majerus, Tamsin Mo; Walker, Susan; Armour, John Al

    2009-09-28

    Copy number variation (CNV) in the human genome is recognised as a widespread and important source of human genetic variation. Now the challenge is to screen for these CNVs at high resolution in a reliable, accurate and cost-effective way. Multiplex Amplifiable Probe Hybridisation (MAPH) is a sensitive, high-resolution technology appropriate for screening for CNVs in a defined region, for a targeted population. We have developed MAPH to a highly multiplexed format ("QuadMAPH") that allows the user a four-fold increase in the number of loci tested simultaneously. We have used this method to analyse a genomic region of 210 kb, including the MSH2 gene and 120 kb of flanking DNA. We show that the QuadMAPH probes report copy number with equivalent accuracy to simplex MAPH, reliably demonstrating diploid copy number in control samples and accurately detecting deletions in Hereditary Non-Polyposis Colorectal Cancer (HNPCC) samples. QuadMAPH is an accurate, high-resolution method that allows targeted screening of large numbers of subjects without the expense of genome-wide approaches. Whilst we have applied this technique to a region of the human genome, it is equally applicable to the genomes of other organisms.

  20. Preliminary Assessment of Microwave Readout Multiplexing Factor

    Energy Technology Data Exchange (ETDEWEB)

    Croce, Mark Philip [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Koehler, Katrina Elizabeth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rabin, Michael W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bennett, D. A. [National Inst. of Standards and Technology (NIST), Boulder, CO (United States); Mates, J. A. B. [National Inst. of Standards and Technology (NIST), Boulder, CO (United States); Gard, J. D. [National Inst. of Standards and Technology (NIST), Boulder, CO (United States); Becker, D. [National Inst. of Standards and Technology (NIST), Boulder, CO (United States); Schmidt, D. R. [National Inst. of Standards and Technology (NIST), Boulder, CO (United States); Ullom, J. N. [National Inst. of Standards and Technology (NIST), Boulder, CO (United States)

    2017-01-23

    Ultra-high resolution microcalorimeter gamma spectroscopy is a new non-destructive assay technology for measurement of plutonium isotopic composition, with the potential to reduce total measurement uncertainty to a level competitive with destructive analysis methods [1-4]. Achieving this level of performance in practical applications requires not only the energy resolution now routinely achieved with transition-edge sensor microcalorimeter arrays (an order of magnitude better than for germanium detectors) but also high throughput. Microcalorimeter gamma spectrometers have not yet achieved detection efficiency and count rate capability that is comparable to germanium detectors, largely because of limits from existing readout technology. Microcalorimeter detectors must be operated at low temperature to achieve their exceptional energy resolution. Although the typical 100 mK operating temperatures can be achieved with reliable, cryogen-free systems, the cryogenic complexity and heat load from individual readout channels for large sensor arrays is prohibitive. Multiplexing is required for practical systems. The most mature multiplexing technology at present is time-division multiplexing (TDM) [3, 5-6]. In TDM, the sensor outputs are switched by applying bias current to one SQUID amplifier at a time. Transition-edge sensor (TES) microcalorimeter arrays as large as 256 pixels have been developed for X-ray and gamma-ray spectroscopy using TDM technology. Due to bandwidth limits and noise scaling, TDM is limited to a maximum multiplexing factor of approximately 32-40 sensors on one readout line [8]. Increasing the size of microcalorimeter arrays above the kilopixel scale, required to match the throughput of germanium detectors, requires the development of a new readout technology with a much higher multiplexing factor.

  1. Use of a New High Resolution Melting Method for Genotyping Pathogenic Leptospira spp.

    Directory of Open Access Journals (Sweden)

    Florence Naze

    Full Text Available Leptospirosis is a worldwide zoonosis that is endemic in tropical areas, such as Reunion Island. The species Leptospira interrogans is the primary agent in human infections, but other pathogenic species, such as L. kirschner and L. borgpetersenii, are also associated with human leptospirosis.In this study, a melting curve analysis of the products that were amplified with the primer pairs lfb1 F/R and G1/G2 facilitated an accurate species classification of Leptospira reference strains. Next, we combined an unsupervised high resolution melting (HRM method with a new statistical approach using primers to amplify a two variable-number tandem-repeat (VNTR for typing at the subspecies level. The HRM analysis, which was performed with ScreenClust Software, enabled the identification of genotypes at the serovar level with high resolution power (Hunter-Gaston index 0.984. This method was also applied to Leptospira DNA from blood samples that were obtained from Reunion Island after 1998. We were able to identify a unique genotype that is identical to that of the L. interrogans serovars Copenhageni and Icterohaemorrhagiae, suggesting that this genotype is the major cause of leptospirosis on Reunion Island.Our simple, rapid, and robust genotyping method enables the identification of Leptospira strains at the species and subspecies levels and supports the direct genotyping of Leptospira in biological samples without requiring cultures.

  2. Quadruplex MAPH: improvement of throughput in high-resolution copy number screening

    Directory of Open Access Journals (Sweden)

    Walker Susan

    2009-09-01

    Full Text Available Abstract Background Copy number variation (CNV in the human genome is recognised as a widespread and important source of human genetic variation. Now the challenge is to screen for these CNVs at high resolution in a reliable, accurate and cost-effective way. Results Multiplex Amplifiable Probe Hybridisation (MAPH is a sensitive, high-resolution technology appropriate for screening for CNVs in a defined region, for a targeted population. We have developed MAPH to a highly multiplexed format ("QuadMAPH" that allows the user a four-fold increase in the number of loci tested simultaneously. We have used this method to analyse a genomic region of 210 kb, including the MSH2 gene and 120 kb of flanking DNA. We show that the QuadMAPH probes report copy number with equivalent accuracy to simplex MAPH, reliably demonstrating diploid copy number in control samples and accurately detecting deletions in Hereditary Non-Polyposis Colorectal Cancer (HNPCC samples. Conclusion QuadMAPH is an accurate, high-resolution method that allows targeted screening of large numbers of subjects without the expense of genome-wide approaches. Whilst we have applied this technique to a region of the human genome, it is equally applicable to the genomes of other organisms.

  3. Detection of selected antibiotic resistance genes using multiplex PCR assay in mastitis pathogens in the Czech Republic

    Directory of Open Access Journals (Sweden)

    Vladimir Pyatov

    2017-01-01

    Full Text Available The aim of this research was to develop multiplex polymerase chain reaction assays for the detection of aminoglycoside (strA, strB, sulphonamide (sulI, sulII, tetracycline (tetA, tetB, tetK, tetM, tetO, macrolide and lincosamide (msrA, ermA, ermB, ermC, mefA/E genes of resistance in mastitis pathogens (Escherichia coli, Staphylococcus aureus, Streptococcus uberis, Streptococcus agalactiae and Streptococcus dysgalactiae. Applying the established assays, we investigated the distribution of antibiotic resistance genes in the above mentioned species isolated from milk samples in the Czech Republic. Each assay consisted of seven pairs of primers. Six of them amplified fragments of antibiotic resistance genes and one pair a fragment of a species specific gene. Polymerase chain reaction conditions were optimized to amplify seven gene fragments simultaneously in one reaction. In total, 249 isolates were used, among which 111 were positive for E. coli, 52 for S. aureus and 86 for Streptococcus spp. The majority (60.2% of bacteria carried at least one antibiotic resistance gene and 44.6% were multidrug-resistant. The designed multiplex polymerase chain reaction assays may be applied as diagnostic method to replace or complement standard techniques of antibiotic susceptibility testing in the mentioned pathogens.

  4. Characterization of highly multiplexed monolithic PET / gamma camera detector modules

    DEFF Research Database (Denmark)

    Pierce, L. A.; Pedemonte, Stefano; Dewitt, Sharon

    2018-01-01

    tube with 8 × 8 position-outputs and one channel that is the sum of the other 64. The 65-channel signal was multiplexed in a resistive circuit, with 65:5 or 65:7 multiplexing. A 0.9 mm beam of 511 keV photons was scanned across the face of the crystal in a 1.52 mm grid pattern in order to characterize...... and scatter-rejection capabilities of the detector were analyzed. We found that using a 7-channel multiplexing scheme (65:7 compression ratio) with 1.67 mm depth bins had the best performance with a beam-contour of 1.2 mm FWHM (from the 0.9 mm beam) near the center of the crystal and 1.9 mm FWHM near the edge...... the detector response. New methods are developed to reject scattered events and perform depthestimation to characterize the detector response of the calibration data. Photon interaction position estimation of the testing data was performed using a Gaussian Maximum Likelihood estimator and the resolution...

  5. Dual-excitation upconverting nanoparticle and quantum dot aptasensor for multiplexed food pathogen detection.

    Science.gov (United States)

    Kurt, Hasan; Yüce, Meral; Hussain, Babar; Budak, Hikmet

    2016-07-15

    In this report, a dual-excitation sensing method was developed using aptamer-functionalized quantum dots and upconverting nanoparticles, exhibiting Stokes and anti-Stokes type excitation profiles, respectively. Conjugation of the aptamer-functionalized luminescent nanoparticles with the magnetic beads, comprising short DNA sequences that were partially complementary to the aptamer sequences, enabled facile separation of the analyte-free conjugates for fluorescent measurement. UV-Visible spectroscopy, Circular Dichroism spectroscopy, Dynamic Light Scattering and Polyacrylamide Gel Electrophoresis techniques were used to characterize the aptamer probes developed. The target-specific luminescent conjugates were applied for multiplex detection of model food pathogens, Salmonella typhimurium, and Staphylococcus aureus, in which the fluorescent emission spectra were obtained under UV excitation at 325nm for quantum dots and NIR excitation at 980nm for upconverting nanoparticles, respectively. The dual-excitation strategy was aimed to minimize cross-talk between the luminescent signals for multiplexed detection, and yielded limit of detection values of 16 and 28cfumL(-1) for Staphylococcus aureus, and Salmonella typhimurium, respectively. By employing a greater number of quantum dots and upconverting nanoparticles with non-overlapping fluorescent emissions, the proposed methodology might be exploited further to detect several analytes, simultaneously. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Signal-to-noise ratios of multiplexing spectrometers in high backgrounds

    Science.gov (United States)

    Knacke, R. F.

    1978-01-01

    Signal-to-noise ratios and the amount of multiplexing gain achieved with a Michelson spectrometer during detector and background noise are studied. Noise caused by the warm background is found in 10 and 20-micron atmospheric windows in high resolution Fourier spectroscopy. An equation is derived for the signal-to-noise ratio based on the number of channels, total time to obtain the complete spectrum, the signal power in one spectral element, and the detector noise equivalent power in the presence of negligible background. Similar expressions are derived for backgrounds yielding a noise equivalent power to a spectral element, and backgrounds having flat spectra in the frequency range under investigation.

  7. Development of multiplex loop mediated isothermal amplification (m-LAMP) label-based gold nanoparticles lateral flow dipstick biosensor for detection of pathogenic Leptospira

    International Nuclear Information System (INIS)

    Nurul Najian, A.B.; Engku Nur Syafirah, E.A.R.; Ismail, Nabilah; Mohamed, Maizan; Yean, Chan Yean

    2016-01-01

    In recent years extensive numbers of molecular diagnostic methods have been developed to meet the need of point-of-care devices. Efforts have been made towards producing rapid, simple and inexpensive DNA tests, especially in the diagnostics field. We report on the development of a label-based lateral flow dipstick for the rapid and simple detection of multiplex loop-mediated isothermal amplification (m-LAMP) amplicons. A label-based m-LAMP lateral flow dipstick assay was developed for the simultaneous detection of target DNA template and a LAMP internal control. This biosensor operates through a label based system, in which probe-hybridization and the additional incubation step are eliminated. We demonstrated this m-LAMP assay by detecting pathogenic Leptospira, which causes the re-emerging disease Leptospirosis. The lateral flow dipstick was developed to detect of three targets, the LAMP target amplicon, the LAMP internal control amplicon and a chromatography control. Three lines appeared on the dipstick, indicating positive results for all representative pathogenic Leptospira species, whereas two lines appeared, indicating negative results, for other bacterial species. The specificity of this biosensor assay was 100% when it was tested with 13 representative pathogenic Leptospira species, 2 intermediate Leptospira species, 1 non-pathogenic Leptospira species and 28 other bacteria species. This study found that this DNA biosensor was able to detect DNA at concentrations as low as 3.95 × 10 −1 genomic equivalent ml −1 . An integrated m-LAMP and label-based lateral flow dipstick was successfully developed, promising simple and rapid visual detection in clinical diagnostics and serving as a point-of-care device. - Highlights: • We develop multiplex LAMP label-based lateral flow dipstick biosensor for detection of pathogenic Leptospira. • We design primers for multiplex LAMP targeting the conserved LipL32 gene of pathogenic Leptospira and LAMP internal

  8. Development of multiplex loop mediated isothermal amplification (m-LAMP) label-based gold nanoparticles lateral flow dipstick biosensor for detection of pathogenic Leptospira

    Energy Technology Data Exchange (ETDEWEB)

    Nurul Najian, A.B.; Engku Nur Syafirah, E.A.R.; Ismail, Nabilah [Department of Medical Microbiology & Parasitology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan (Malaysia); Mohamed, Maizan [Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, City Campus, Pengkalan Chepa, Locked Bag 36, 16100 Kota Bharu, Kelantan (Malaysia); Yean, Chan Yean, E-mail: yeancyn@yahoo.com [Department of Medical Microbiology & Parasitology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan (Malaysia); Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan (Malaysia)

    2016-01-15

    In recent years extensive numbers of molecular diagnostic methods have been developed to meet the need of point-of-care devices. Efforts have been made towards producing rapid, simple and inexpensive DNA tests, especially in the diagnostics field. We report on the development of a label-based lateral flow dipstick for the rapid and simple detection of multiplex loop-mediated isothermal amplification (m-LAMP) amplicons. A label-based m-LAMP lateral flow dipstick assay was developed for the simultaneous detection of target DNA template and a LAMP internal control. This biosensor operates through a label based system, in which probe-hybridization and the additional incubation step are eliminated. We demonstrated this m-LAMP assay by detecting pathogenic Leptospira, which causes the re-emerging disease Leptospirosis. The lateral flow dipstick was developed to detect of three targets, the LAMP target amplicon, the LAMP internal control amplicon and a chromatography control. Three lines appeared on the dipstick, indicating positive results for all representative pathogenic Leptospira species, whereas two lines appeared, indicating negative results, for other bacterial species. The specificity of this biosensor assay was 100% when it was tested with 13 representative pathogenic Leptospira species, 2 intermediate Leptospira species, 1 non-pathogenic Leptospira species and 28 other bacteria species. This study found that this DNA biosensor was able to detect DNA at concentrations as low as 3.95 × 10{sup −1} genomic equivalent ml{sup −1}. An integrated m-LAMP and label-based lateral flow dipstick was successfully developed, promising simple and rapid visual detection in clinical diagnostics and serving as a point-of-care device. - Highlights: • We develop multiplex LAMP label-based lateral flow dipstick biosensor for detection of pathogenic Leptospira. • We design primers for multiplex LAMP targeting the conserved LipL32 gene of pathogenic Leptospira and LAMP

  9. Simultaneous Detection of Key Bacterial Pathogens Related to Pneumonia and Meningitis Using Multiplex PCR Coupled With Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Chi Zhang

    2018-04-01

    Full Text Available Pneumonia and meningitis continue to present an enormous public health burden and pose a major threat to young children. Among the causative organisms of pneumonia and meningitis, bacteria are the most common causes of serious disease and deaths. It is challenging to accurately and rapidly identify these agents. To solve this problem, we developed and validated a 12-plex PCR coupled with matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS method (bacterial pathogen-mass spectrometry, BP-MS that can be used to simultaneously screen for 11 key bacterial pathogens related to pneumonia and meningitis. Forty-six nasopharyngeal swabs and 12 isolates were used to determine the specificity of the method. The results showed that, using the BP-MS method, we could accurately identify the expected bacteria without cross-reactivity with other pathogens. For the 11 target bacterial pathogens, the analytical sensitivity of the BP-MS method was as low as 10 copies/reaction. To further evaluate the clinical effectiveness of this method, 204 nasopharyngeal swabs from hospitalized children with suspected pneumonia were tested using this method. In total, 81.9% (167/204 of the samples were positive for at least one of the 11 target pathogens. Among the 167 bacteria-positive samples, the rate of multiple infections was 55.7% (93/167, and the most frequent combination was Streptococcus pneumoniae with Haemophilus influenzae, representing 46.2% (43/93 two-pathogen mixed infections. We used real-time PCR and nested PCR to confirm positive results, with identical results obtained for 81.4% (136/167 of the samples. The BP-MS method is a sensitive and specific molecular detection technique in a multiplex format and with high sample throughput. Therefore, it will be a powerful tool for pathogen screening and antibiotic selection at an early stage of disease.

  10. Detection of sexually transmitted infection and human papillomavirus in negative cytology by multiplex-PCR

    Directory of Open Access Journals (Sweden)

    Chung Hyun-Jae

    2010-09-01

    Full Text Available Abstract Background The aim of this study was to determine the prevalence of human papillomavirus (HPV and 15 species that cause sexually transmitted infections (STIs in negative cytology. In addition, we compared the diagnostic performance of multiplex polymerase chain reaction (PCR with widely available techniques used to detect HPV. Methods We recruited 235 women of reproductive age who had negative cytology findings in a liquid-based cervical smear. STIs were identified by multiplex PCR, and HPV genotypes by multiplex PCR, hybrid capture 2, and DNA microaray; discordant results were analyzed by direct sequencing. Results Approximately 96.6% of patients with negative cytology results were positive for pathogens that cause STIs. The pathogens most frequently detected were Gardnerella vaginalis, Ureaplasma urealyticum. The incidence of HPV in negative cytology was 23.3%. Low-risk HPV infection was significantly correlated with Chalmaydia trachomatis, and high-risk HPV infection was significantly correlated with Group β streptococcus. The analytical sensitivities of the multiplex PCR and DNA microarray were higher than 80%, and the analytical specificity was nearly 100% for all tests. Conclusions Multiplex PCR yielded results that most of patients with negative cytology were positive for pathogens that cause STIs, and were more similar to that of DNA microarray, than that of hybrid capture 2 in terms of analytical sensitivity and prediction value of HPV infection.

  11. High-Speed Microscale Optical Tracking Using Digital Frequency-Domain Multiplexing.

    Science.gov (United States)

    Maclachlan, Robert A; Riviere, Cameron N

    2009-06-01

    Position-sensitive detectors (PSDs), or lateral-effect photodiodes, are commonly used for high-speed, high-resolution optical position measurement. This paper describes the instrument design for multidimensional position and orientation measurement based on the simultaneous position measurement of multiple modulated sources using frequency-domain-multiplexed (FDM) PSDs. The important advantages of this optical configuration in comparison with laser/mirror combinations are that it has a large angular measurement range and allows the use of a probe that is small in comparison with the measurement volume. We review PSD characteristics and quantitative resolution limits, consider the lock-in amplifier measurement system as a communication link, discuss the application of FDM to PSDs, and make comparisons with time-domain techniques. We consider the phase-sensitive detector as a multirate DSP problem, explore parallels with Fourier spectral estimation and filter banks, discuss how to choose the modulation frequencies and sample rates that maximize channel isolation under design constraints, and describe efficient digital implementation. We also discuss hardware design considerations, sensor calibration, probe construction and calibration, and 3-D measurement by triangulation using two sensors. As an example, we characterize the resolution, speed, and accuracy of an instrument that measures the position and orientation of a 10 mm × 5 mm probe in 5 degrees of freedom (DOF) over a 30-mm cube with 4-μm peak-to-peak resolution at 1-kHz sampling.

  12. A multiplex PCR assay for the detection and quantification of Sclerotinia sclerotiorum and Botrytis cinerea.

    Science.gov (United States)

    Reich, J D; Alexander, T W; Chatterton, S

    2016-05-01

    Traditional culture methods for identifying the plant fungal pathogens Sclerotinia sclerotiorum (Lib.) de Bary and Botrytis cinerea Pers.:Fr. are slow and laborious. The goal of this study was to develop a multiplex real-time PCR (qPCR) assay to detect and quantify DNA from S. sclerotiorum and B. cinerea. A primer set (SsIGS_5) for S. sclerotiorum was designed that targeted the intergenic spacer (IGS) regions of the ribosomal DNA. Addition of a probe to the assay increased its specificity: when the primer/probe set was tested against 21 fungal species (35 strains), amplification was detected from all S. sclerotiorum strains and no other species. For qPCR, the SsIGS_5 primer and probe set exhibited a linear range from 7·0 ng to 0·07 pg target DNA (R(2)  = 0·99). SsIGS_5 was then multiplexed with a previously published primer/probe set for B. cinerea to develop a high-throughput method for the detection and quantification of DNA from both pathogens. When multiplexed, the sensitivity and specificity of both assays were not different from individual qPCR reactions. The multiplex assay is currently being used to detect and quantify S. sclerotiorum and B. cinerea DNA from aerosol samples collected in commercial seed alfalfa fields. A primer and probe set for the quantification of Sclerotinia sclerotiorum DNA in a PCR assay was developed. The probe-based nature of this assay signifies an improvement over previous assays for this species by allowing multiplex reactions while maintaining high sensitivity. The primer/probe set was used in a multiplex real-time PCR assay for the quantification of S. sclerotiorum and Botrytis cinerea DNA, enabling rapid analysis of environmental samples. In crops susceptible to both pathogens, this multiplex assay can be used to quickly quantify the presence of each pathogen. © 2016 Her Majesty the Queen in Right of Canada © 2016 The Society for Applied Microbiology. Reproduced with the permission of the Office of the

  13. Rapid diagnosis of sepsis with TaqMan-Based multiplex real-time PCR.

    Science.gov (United States)

    Liu, Chang-Feng; Shi, Xin-Ping; Chen, Yun; Jin, Ye; Zhang, Bing

    2018-02-01

    The survival rate of septic patients mainly depends on a rapid and reliable diagnosis. A rapid, broad range, specific and sensitive quantitative diagnostic test is the urgent need. Thus, we developed a TaqMan-Based Multiplex real-time PCR assays to identify bloodstream pathogens within a few hours. Primers and TaqMan probes were designed to be complementary to conserved regions in the 16S rDNA gene of different kinds of bacteria. To evaluate accurately, sensitively, and specifically, the known bacteria samples (Standard strains, whole blood samples) are determined by TaqMan-Based Multiplex real-time PCR. In addition, 30 blood samples taken from patients with clinical symptoms of sepsis were tested by TaqMan-Based Multiplex real-time PCR and blood culture. The mean frequency of positive for Multiplex real-time PCR was 96% at a concentration of 100 CFU/mL, and it was 100% at a concentration greater than 1000 CFU/mL. All the known blood samples and Standard strains were detected positively by TaqMan-Based Multiplex PCR, no PCR products were detected when DNAs from other bacterium were used in the multiplex assay. Among the 30 patients with clinical symptoms of sepsis, 18 patients were confirmed positive by Multiplex real-time PCR and seven patients were confirmed positive by blood culture. TaqMan-Based Multiplex real-time PCR assay with highly sensitivity, specificity and broad detection range, is a rapid and accurate method in the detection of bacterial pathogens of sepsis and should have a promising usage in the diagnosis of sepsis. © 2017 Wiley Periodicals, Inc.

  14. Rapid detection and typing of pathogenic nonpneumophila Legionella spp. isolates using a multiplex real-time PCR assay.

    Science.gov (United States)

    Benitez, Alvaro J; Winchell, Jonas M

    2016-04-01

    We developed a single tube multiplex real-time PCR assay that allows for the rapid detection and typing of 9 nonpneumophila Legionella spp. isolates that are clinically relevant. The multiplex assay is capable of simultaneously detecting and discriminating L. micdadei, L. bozemanii, L. dumoffii, L. longbeachae, L. feeleii, L. anisa, L. parisiensis, L. tucsonensis serogroup (sg) 1 and 3, and L. sainthelensis sg 1 and 2 isolates. Evaluation of the assay with nucleic acid from each of these species derived from both clinical and environmental isolates and typing strains demonstrated 100% sensitivity and 100% specificity when tested against 43 other Legionella spp. Typing of L. anisa, L. parisiensis, and L. tucsonensis sg 1 and 3 isolates was accomplished by developing a real-time PCR assay followed by high-resolution melt (HRM) analysis targeting the ssrA gene. Further typing of L. bozemanii, L. longbeachae, and L. feeleii isolates to the serogroup level was accomplished by developing a real-time PCR assay followed by HRM analysis targeting the mip gene. When used in conjunction with other currently available diagnostic tests, these assays may aid in rapidly identifying specific etiologies associated with Legionella outbreaks, clusters, sporadic cases, and potential environmental sources. Published by Elsevier Inc.

  15. An accurate, specific, sensitive, high-throughput method based on a microsphere immunoassay for multiplex detection of three viruses and bacterial fruit blotch bacterium in cucurbits.

    Science.gov (United States)

    Charlermroj, Ratthaphol; Makornwattana, Manlika; Himananto, Orawan; Seepiban, Channarong; Phuengwas, Sudtida; Warin, Nuchnard; Gajanandana, Oraprapai; Karoonuthaisiri, Nitsara

    2017-09-01

    To employ a microsphere immunoassay (MIA) to simultaneously detect multiple plant pathogens (potyviruses, Watermelon silver mottle virus, Melon yellow spot virus, and Acidovorax avenae subsp. citrulli) in actual plant samples, several factors need to be optimized and rigorously validated. Here, a simple extraction method using a single extraction buffer was successfully selected to detect the four pathogens in various cucurbit samples (cucumber, cantaloupe, melon, and watermelon). The extraction method and assay performance were validated with inoculated and field cucurbit samples. The MIA showed 98-99% relative accuracy, 97-100% relative specificity and 92-100% relative sensitivity when compared to commercial ELISA kits and reverse transcription PCR. In addition, the MIA was also able to accurately detect multiple-infected field samples. The results demonstrate that one common extraction method for all tested cucurbit samples could be applied to detect multiple pathogens; avoiding the need for multiple protocols to be employed. This multiplex method can therefore be instrumental for high-throughput screening of multiple plant pathogens with many advantages such as a shorter assay time (2.5h) with single assay format, a lower cost of detection ($5 vs $19.7 for 4 pathogens/sample) and less labor requirement. Its multiplex capacity can also be expanded to detect up to 50 different pathogens upon the availability of specific antibodies. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Development of a multiplexing fingerprint and high wavenumber Raman spectroscopy technique for real-time in vivo tissue Raman measurements at endoscopy

    Science.gov (United States)

    Bergholt, Mads Sylvest; Zheng, Wei; Huang, Zhiwei

    2013-03-01

    We report on the development of a novel multiplexing Raman spectroscopy technique using a single laser light together with a volume phase holographic (VPH) grating that simultaneously acquires both fingerprint (FP) and high wavenumber (HW) tissue Raman spectra at endoscopy. We utilize a customized VPH dual-transmission grating, which disperses the incident Raman scattered light vertically onto two separate segments (i.e., -150 to 1950 cm-1 1750 to 3600 cm-1) of a charge-coupled device camera. We demonstrate that the multiplexing Raman technique can acquire high quality in vivo tissue Raman spectra ranging from 800 to 3600 cm-1 within 1.0 s with a spectral resolution of 3 to 6 cm-1 during clinical endoscopy. The rapid multiplexing Raman spectroscopy technique covering both FP and HW ranges developed in this work has potential for improving in vivo tissue diagnosis and characterization at endoscopy.

  17. Characteristics of Multiplexed Grooved Nozzles for High Flow Rate Electrospray

    International Nuclear Information System (INIS)

    Kim, Kyoung Tae; Kim, Woo Jin; Kim, Sang Soo

    2007-01-01

    The electrospray operated in the cone-jet mode can generate highly charged micro droplets in an almost uniform size at flow rates. Therefore, the multiplexing system which can retain the characteristics of the cone-jet mode is inevitable for the electrospray application. This experiment reports the multiplexed grooved nozzle system with the extractor. The effects of the grooves and the extractor on the performance of the electrospray were evaluated through experiments. Using the grooved nozzle, the stable cone-jet mode can be achieved at the each groove in the grooved mode. Furthermore, the number of nozzles per unit area is increased by the extractor. The multiplexing density is 12 jets per cm 2 at 30 mm distance from the nozzle tip to the ground plate. The multiplexing system for the high flow rate electrospray is realized with the extractor which can diminish the space charge effect without sacrificing characteristics of the cone-jet mode

  18. Comparison of multiplex reverse transcription-PCR-enzyme ...

    African Journals Online (AJOL)

    Comparison of multiplex reverse transcription-PCR-enzyme hybridization assay with immunofluorescence techniques for the detection of four viral respiratory pathogens in pediatric community acquired pneumonia.

  19. High Frequency High Spectral Resolution Focal Plane Arrays for AtLAST

    Science.gov (United States)

    Baryshev, Andrey

    2018-01-01

    Large collecting area single dish telescope such as ATLAST will be especially effective for medium (R 1000) and high (R 50000) spectral resolution observations. Large focal plane array is a natural solution to increase mapping speed. For medium resolution direct detectors with filter banks (KIDs) and or heterodyne technology can be employed. We will analyze performance limits of comparable KID and SIS focal plane array taking into account quantum limit and high background condition of terrestrial observing site. For large heterodyne focal plane arrays, a high current density AlN junctions open possibility of large instantaneous bandwidth >40%. This and possible multi frequency band FPSs presents a practical challenge for spatial sampling and scanning strategies. We will discuss phase array feeds as a possible solution, including a modular back-end system, which can be shared between KID and SIS based FPA. Finally we will discuss achievable sensitivities and pixel co unts for a high frequency (>500 GHz) FPAs and address main technical challenges: LO distribution, wire counts, bias line multiplexing, and monolithic vs. discrete mixer component integration.

  20. 76 FR 71982 - Advancing Regulatory Science for Highly Multiplexed Microbiology/Medical Countermeasure Devices...

    Science.gov (United States)

    2011-11-21

    ... Multiplexed Microbiology Devices: Their clinical application and public health/clinical needs; inclusion of...] Advancing Regulatory Science for Highly Multiplexed Microbiology/ Medical Countermeasure Devices; Public... Multiplexed Microbiology/ Medical Countermeasure Devices'' that published in the Federal Register of August 8...

  1. High Resolution Tracking Devices Based on Capillaries Filled with Liquid Scintillator

    CERN Multimedia

    Bonekamper, D; Vassiltchenko, V; Wolff, T

    2002-01-01

    %RD46 %title\\\\ \\\\The aim of the project is to develop high resolution tracking devices based on thin glass capillary arrays filled with liquid scintillator. This technique provides high hit densities and a position resolution better than 20 $\\mu$m. Further, their radiation hardness makes them superior to other types of tracking devices with comparable performance. Therefore, the technique is attractive for inner tracking in collider experiments, microvertex devices, or active targets for short-lived particle detection. High integration levels in the read-out based on the use of multi-pixel photon detectors and the possibility of optical multiplexing allow to reduce considerably the number of output channels, and, thus, the cost for the detector.\\\\ \\\\New optoelectronic devices have been developed and tested: the megapixel Electron Bombarded CCD (EBCCD), a high resolution image-detector having an outstanding capability of single photo-electron detection; the Vacuum Image Pipeline (VIP), a high-speed gateable pi...

  2. A high-throughput multiplex method adapted for GMO detection.

    Science.gov (United States)

    Chaouachi, Maher; Chupeau, Gaëlle; Berard, Aurélie; McKhann, Heather; Romaniuk, Marcel; Giancola, Sandra; Laval, Valérie; Bertheau, Yves; Brunel, Dominique

    2008-12-24

    A high-throughput multiplex assay for the detection of genetically modified organisms (GMO) was developed on the basis of the existing SNPlex method designed for SNP genotyping. This SNPlex assay allows the simultaneous detection of up to 48 short DNA sequences (approximately 70 bp; "signature sequences") from taxa endogenous reference genes, from GMO constructions, screening targets, construct-specific, and event-specific targets, and finally from donor organisms. This assay avoids certain shortcomings of multiplex PCR-based methods already in widespread use for GMO detection. The assay demonstrated high specificity and sensitivity. The results suggest that this assay is reliable, flexible, and cost- and time-effective for high-throughput GMO detection.

  3. Development of a chip-based multiplexed immunoassay using liposomal nanovesicles and its application in the detection of pathogens causing female lower genital tract infections

    Directory of Open Access Journals (Sweden)

    Wen-Hsiang Su

    2013-03-01

    Conclusion: This microarray chip was a rapid, easy, inexpensive and sensitive tool for detecting female lower genital tract Candida infection in a one-time vaginal sampling process, although the data on the four other pathogens were still unavailable. A larger population study is encouraged to test the validity of this multiplexed immunoassay chip.

  4. Multiplexing a high-throughput liability assay to leverage efficiencies.

    Science.gov (United States)

    Herbst, John; Anthony, Monique; Stewart, Jeremy; Connors, David; Chen, Taosheng; Banks, Martyn; Petrillo, Edward W; Agler, Michele

    2009-06-01

    In order to identify potential cytochrome P-450 3A4 (drug-metabolizing enzyme) inducers at an early stage of the drug discovery process, a cell-based transactivation high-throughput luciferase reporter assay for the human pregnane X receptor (PXR) in HepG2 cells has been implemented and multiplexed with a viability end point for data interpretation, as part of a Lead Profiling portfolio of assays. As a routine part of Lead Profiling operations, assays are periodically evaluated for utility as well as for potential improvements in technology or process. We used a recent evaluation of our PXR-transactivation assay as a model for the application of Lean Thinking-based process analysis to lab-bench assay optimization and automation. This resulted in the development of a 384-well multiplexed homogeneous assay simultaneously detecting PXR transactivation and HepG2 cell cytotoxicity. In order to multiplex fluorescent and luminescent read-outs, modifications to each assay were necessary, which included optimization of multiple assay parameters such as cell density, plate type, and reagent concentrations. Subsequently, a set of compounds including known cytotoxic compounds and PXR inducers were used to validate the multiplexed assay. Results from the multiplexed assay correlate well with those from the singleplexed assay formats measuring PXR transactivation and viability separately. Implementation of the multiplexed assay for routine compound profiling provides improved data quality, sample conservation, cost savings, and resource efficiencies.

  5. Rapid focused sequencing: a multiplexed assay for simultaneous detection and strain typing of Bacillus anthracis, Francisella tularensis, and Yersinia pestis.

    Directory of Open Access Journals (Sweden)

    Rosemary S Turingan

    Full Text Available BACKGROUND: The intentional release of Bacillus anthracis in the United States in 2001 has heightened concern about the use of pathogenic microorganisms in bioterrorism attacks. Many of the deadliest bacteria, including the Class A Select Agents Bacillus anthracis, Francisella tularensis, and Yersinia pestis, are highly infectious via the pulmonary route when released in aerosolized form. Hence, rapid, sensitive, and reliable methods for detection of these biothreats and characterization of their potential impact on the exposed population are of critical importance to initiate and support rapid military, public health, and clinical responses. METHODOLOGY/PRINCIPAL FINDINGS: We have developed microfluidic multiplexed PCR and sequencing assays based on the simultaneous interrogation of three pathogens per assay and ten loci per pathogen. Microfluidic separation of amplified fluorescently labeled fragments generated characteristic electrophoretic signatures for identification of each agent. The three sets of primers allowed significant strain typing and discrimination from non-pathogenic closely-related species and environmental background strains based on amplicon sizes alone. Furthermore, sequencing of the 10 amplicons per pathogen, termed "Rapid Focused Sequencing," allowed an even greater degree of strain discrimination and, in some cases, can be used to determine virulence. Both amplification and sequencing assays were performed in microfluidic biochips developed for fast thermal cycling and requiring 7 µL per reaction. The 30-plex sequencing assay resulted in genotypic resolution of 84 representative strains belonging to each of the three biothreat species. CONCLUSIONS/SIGNIFICANCE: The microfluidic multiplexed assays allowed identification and strain differentiation of the biothreat agents Bacillus anthracis, Francisella tularensis, and Yersinia pestis and clear discrimination from closely-related species and several environmental

  6. High-resolution melt-curve analysis of random-amplified-polymorphic-DNA markers, for the characterisation of pathogenic Leptospira

    DEFF Research Database (Denmark)

    Tulsiani, Suhella; Craig, S B; Graham, G C

    2010-01-01

    A new test for pathogenic Leptospira isolates, based on RAPD-PCR and high-resolution melt (HRM) analysis (which measures the melting temperature of amplicons in real time, using a fluorescent DNA-binding dye), has recently been developed. A characteristic profile of the amplicons can be used...... typed against 13 previously published RAPD primers, using a real-time cycler (the Corbett Life Science RotorGene 6000) and the optimised reagents from a commercial kit (Quantace SensiMix). RAPD-HRM at specific temperatures generated defining amplicon melt profiles for each of the tested serovars....... These profiles were evaluated as difference-curve graphs generated using the RotorGene software package, with a cut-off of at least 8 'U' (plus or minus). The results demonstrated that RAPD-HRM can be used to measure serovar diversity and establish identity, with a high degree of stability. The characterisation...

  7. 76 FR 48169 - Advancing Regulatory Science for Highly Multiplexed Microbiology/Medical Countermeasure Devices...

    Science.gov (United States)

    2011-08-08

    ... microbiology/MCM device, their clinical application and public health/clinical needs and quality criteria for... topics: 1. Clinical Application of Highly Multiplexed Microbiology Devices: Their clinical application... to evaluate the analytical and clinical performance of highly multiplexed microbiology devices...

  8. Nanoparticle discrimination based on wavelength and lifetime-multiplexed cathodoluminescence microscopy

    NARCIS (Netherlands)

    Garming, Mathijs W H; Weppelman, I Gerward C; de Boer, Pascal; Martínez, Felipe Perona; Schirhagl, Romana; Hoogenboom, Jacob P; Moerland, Robert J

    2017-01-01

    Nanomaterials can be identified in high-resolution electron microscopy images using spectrally-selective cathodoluminescence. Capabilities for multiplex detection can however be limited, e.g., due to spectral overlap or availability of filters. Also, the available photon flux may be limited due to

  9. Prevalence of Listeria monocytogenes, Yersinia enterocolitica, Staphylococcus aureus, and Salmonella enterica Typhimurium in meat and meat products using multiplex polymerase chain reaction

    Directory of Open Access Journals (Sweden)

    C. Latha

    2017-08-01

    Full Text Available Aim: The objective of the study was to investigate the occurrence of Listeria monocytogenes, Yersinia enterocolitica, Staphylococcus aureus, and Salmonella enterica Typhimurium in meat and meat products using the multiplex polymerase chain reaction (PCR method. Materials and Methods: The assay combined an enrichment step in tryptic soy broth with yeast extract formulated for the simultaneous growth of target pathogens, DNA isolation and multiplex PCR. A total of 1134 samples including beef (n=349, chicken (n=325, pork (n=310, chevon (n=50, and meat products (n=100 were collected from different parts of Kerala, India. All the samples were subjected to multiplex PCR analysis and culture-based detection for the four pathogens in parallel. Results: Overall occurrence of L. monocytogenes was 0.08 % by cultural method. However, no L. monocytogenes was obtained by multiplex PCR method. Yersinia enterocolitica was obtained from beef and pork samples. A high prevalence of S. aureus (46.7% was found in all types of meat samples tested. None of the samples was positive for S. Typhimurium. Conclusion: Multiplex PCR assay used in this study can detect more than one pathogen simultaneously by amplifying more than one target gene in a single reaction, which can save time and labor cost.

  10. High Time-Resolution 640-Gb/s Clock Recovery Using Time-Domain Optical Fourier Transformation and Narrowband Optical Filter

    DEFF Research Database (Denmark)

    Guan, P.; Mulvad, Hans Christian Hansen; Kasai, K.

    2010-01-01

    We present a novel scheme for subharmonic clock recovery from an optical time-division-multiplexing signal using time-domain optical Fourier transformation and a narrowband optical filter. High-resolution 640-Gb/s clock recovery is successfully demonstrated with no pattern dependence. The clock...

  11. Development of a novel depth of interaction PET detector using highly multiplexed G-APD cross-strip encoding

    Energy Technology Data Exchange (ETDEWEB)

    Kolb, A., E-mail: armin.kolb@med.uni-tuebingen.de; Parl, C.; Liu, C. C.; Pichler, B. J. [Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, 72076 Tübingen (Germany); Mantlik, F. [Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, 72076 Tübingen, Germany and Department of Empirical Inference, Max Planck Institute for Intelligent Systems, 72076 Tübingen (Germany); Lorenz, E. [Max Planck Institute for Physics, Föhringer Ring 6, 80805 München (Germany); Renker, D. [Department of Physics, Technische Universität München, 85748 Garching (Germany)

    2014-08-15

    Purpose: The aim of this study was to develop a prototype PET detector module for a combined small animal positron emission tomography and magnetic resonance imaging (PET/MRI) system. The most important factor for small animal imaging applications is the detection sensitivity of the PET camera, which can be optimized by utilizing longer scintillation crystals. At the same time, small animal PET systems must yield a high spatial resolution. The measured object is very close to the PET detector because the bore diameter of a high field animal MR scanner is limited. When used in combination with long scintillation crystals, these small-bore PET systems generate parallax errors that ultimately lead to a decreased spatial resolution. Thus, we developed a depth of interaction (DoI) encoding PET detector module that has a uniform spatial resolution across the whole field of view (FOV), high detection sensitivity, compactness, and insensitivity to magnetic fields. Methods: The approach was based on Geiger mode avalanche photodiode (G-APD) detectors with cross-strip encoding. The number of readout channels was reduced by a factor of 36 for the chosen block elements. Two 12 × 2 G-APD strip arrays (25μm cells) were placed perpendicular on each face of a 12 × 12 lutetium oxyorthosilicate crystal block with a crystal size of 1.55 × 1.55 × 20 mm. The strip arrays were multiplexed into two channels and used to calculate the x, y coordinates for each array and the deposited energy. The DoI was measured in step sizes of 1.8 mm by a collimated {sup 18}F source. The coincident resolved time (CRT) was analyzed at all DoI positions by acquiring the waveform for each event and applying a digital leading edge discriminator. Results: All 144 crystals were well resolved in the crystal flood map. The average full width half maximum (FWHM) energy resolution of the detector was 12.8% ± 1.5% with a FWHM CRT of 1.14 ± 0.02 ns. The average FWHM DoI resolution over 12 crystals was 2.90

  12. Multiplexed phase-space imaging for 3D fluorescence microscopy.

    Science.gov (United States)

    Liu, Hsiou-Yuan; Zhong, Jingshan; Waller, Laura

    2017-06-26

    Optical phase-space functions describe spatial and angular information simultaneously; examples of optical phase-space functions include light fields in ray optics and Wigner functions in wave optics. Measurement of phase-space enables digital refocusing, aberration removal and 3D reconstruction. High-resolution capture of 4D phase-space datasets is, however, challenging. Previous scanning approaches are slow, light inefficient and do not achieve diffraction-limited resolution. Here, we propose a multiplexed method that solves these problems. We use a spatial light modulator (SLM) in the pupil plane of a microscope in order to sequentially pattern multiplexed coded apertures while capturing images in real space. Then, we reconstruct the 3D fluorescence distribution of our sample by solving an inverse problem via regularized least squares with a proximal accelerated gradient descent solver. We experimentally reconstruct a 101 Megavoxel 3D volume (1010×510×500µm with NA 0.4), demonstrating improved acquisition time, light throughput and resolution compared to scanning aperture methods. Our flexible patterning scheme further allows sparsity in the sample to be exploited for reduced data capture.

  13. Molecular differentiation of Opisthorchis viverrini and Clonorchis sinensis eggs by multiplex real-time PCR with high resolution melting analysis.

    Science.gov (United States)

    Kaewkong, Worasak; Intapan, Pewpan M; Sanpool, Oranuch; Janwan, Penchom; Thanchomnang, Tongjit; Laummaunwai, Porntip; Lulitanond, Viraphong; Doanh, Pham Ngoc; Maleewong, Wanchai

    2013-12-01

    Opisthorchis viverrini and Clonorchis sinensis are parasites known to be carcinogenic and causative agents of cholangiocarcinoma in Asia. The standard method for diagnosis for those parasite infections is stool examination to detect parasite eggs. However, the method has low sensitivity, and eggs of O. viverrini and C. sinensis are difficult to distinguish from each other and from those of some other trematodes. Here, we report a multiplex real-time PCR coupled with high resolution melting (HRM) analysis for the differentiation of O. viverrini and C. sinensis eggs in fecal samples. Using 2 pairs of species-specific primers, DNA sequences from a portion of the mitochondrial NADH dehydrogenase subunit 2 (nad 2) gene, were amplified to generate 209 and 165 bp products for O. viverrini and C. sinensis, respectively. The distinct characteristics of HRM patterns were analyzed, and the melting temperatures peaked at 82.4±0.09℃ and 85.9±0.08℃ for O. viverrini and C. sinensis, respectively. This technique was able to detect as few as 1 egg of O. viverrini and 2 eggs of C. sinensis in a 150 mg fecal sample, which is equivalent to 7 and 14 eggs per gram of feces, respectively. The method is species-specific, rapid, simple, and does not require fluorescent probes or post-PCR processing for discrimination of eggs of the 2 species. It offers a new tool for differentiation and detection of Asian liver fluke infections in stool specimens.

  14. Real-time RT-PCR high-resolution melting curve analysis and multiplex RT-PCR to detect and differentiate grapevine leafroll-associated associated virus 3 variant groups I, II, III and VI

    Directory of Open Access Journals (Sweden)

    Bester Rachelle

    2012-09-01

    Full Text Available Abstract Background Grapevine leafroll-associated virus 3 (GLRaV-3 is the main contributing agent of leafroll disease worldwide. Four of the six GLRaV-3 variant groups known have been found in South Africa, but their individual contribution to leafroll disease is unknown. In order to study the pathogenesis of leafroll disease, a sensitive and accurate diagnostic assay is required that can detect different variant groups of GLRaV-3. Methods In this study, a one-step real-time RT-PCR, followed by high-resolution melting (HRM curve analysis for the simultaneous detection and identification of GLRaV-3 variants of groups I, II, III and VI, was developed. A melting point confidence interval for each variant group was calculated to include at least 90% of all melting points observed. A multiplex RT-PCR protocol was developed to these four variant groups in order to assess the efficacy of the real-time RT-PCR HRM assay. Results A universal primer set for GLRaV-3 targeting the heat shock protein 70 homologue (Hsp70h gene of GLRaV-3 was designed that is able to detect GLRaV-3 variant groups I, II, III and VI and differentiate between them with high-resolution melting curve analysis. The real-time RT-PCR HRM and the multiplex RT-PCR were optimized using 121 GLRaV-3 positive samples. Due to a considerable variation in melting profile observed within each GLRaV-3 group, a confidence interval of above 90% was calculated for each variant group, based on the range and distribution of melting points. The intervals of groups I and II could not be distinguished and a 95% joint confidence interval was calculated for simultaneous detection of group I and II variants. An additional primer pair targeting GLRaV-3 ORF1a was developed that can be used in a subsequent real-time RT-PCR HRM to differentiate between variants of groups I and II. Additionally, the multiplex RT-PCR successfully validated 94.64% of the infections detected with the real-time RT-PCR HRM

  15. Thermally multiplexed polymerase chain reaction.

    Science.gov (United States)

    Phaneuf, Christopher R; Pak, Nikita; Saunders, D Curtis; Holst, Gregory L; Birjiniuk, Joav; Nagpal, Nikita; Culpepper, Stephen; Popler, Emily; Shane, Andi L; Jerris, Robert; Forest, Craig R

    2015-07-01

    Amplification of multiple unique genetic targets using the polymerase chain reaction (PCR) is commonly required in molecular biology laboratories. Such reactions are typically performed either serially or by multiplex PCR. Serial reactions are time consuming, and multiplex PCR, while powerful and widely used, can be prone to amplification bias, PCR drift, and primer-primer interactions. We present a new thermocycling method, termed thermal multiplexing, in which a single heat source is uniformly distributed and selectively modulated for independent temperature control of an array of PCR reactions. Thermal multiplexing allows amplification of multiple targets simultaneously-each reaction segregated and performed at optimal conditions. We demonstrate the method using a microfluidic system consisting of an infrared laser thermocycler, a polymer microchip featuring 1 μl, oil-encapsulated reactions, and closed-loop pulse-width modulation control. Heat transfer modeling is used to characterize thermal performance limitations of the system. We validate the model and perform two reactions simultaneously with widely varying annealing temperatures (48 °C and 68 °C), demonstrating excellent amplification. In addition, to demonstrate microfluidic infrared PCR using clinical specimens, we successfully amplified and detected both influenza A and B from human nasopharyngeal swabs. Thermal multiplexing is scalable and applicable to challenges such as pathogen detection where patients presenting non-specific symptoms need to be efficiently screened across a viral or bacterial panel.

  16. Technical Considerations for Reduced Representation Bisulfite Sequencing with Multiplexed Libraries

    Science.gov (United States)

    Chatterjee, Aniruddha; Rodger, Euan J.; Stockwell, Peter A.; Weeks, Robert J.; Morison, Ian M.

    2012-01-01

    Reduced representation bisulfite sequencing (RRBS), which couples bisulfite conversion and next generation sequencing, is an innovative method that specifically enriches genomic regions with a high density of potential methylation sites and enables investigation of DNA methylation at single-nucleotide resolution. Recent advances in the Illumina DNA sample preparation protocol and sequencing technology have vastly improved sequencing throughput capacity. Although the new Illumina technology is now widely used, the unique challenges associated with multiplexed RRBS libraries on this platform have not been previously described. We have made modifications to the RRBS library preparation protocol to sequence multiplexed libraries on a single flow cell lane of the Illumina HiSeq 2000. Furthermore, our analysis incorporates a bioinformatics pipeline specifically designed to process bisulfite-converted sequencing reads and evaluate the output and quality of the sequencing data generated from the multiplexed libraries. We obtained an average of 42 million paired-end reads per sample for each flow-cell lane, with a high unique mapping efficiency to the reference human genome. Here we provide a roadmap of modifications, strategies, and trouble shooting approaches we implemented to optimize sequencing of multiplexed libraries on an a RRBS background. PMID:23193365

  17. Detection of pneumonia associated pathogens using a prototype multiplexed pneumonia test in hospitalized patients with severe pneumonia.

    Directory of Open Access Journals (Sweden)

    Berit Schulte

    Full Text Available Severe pneumonia remains an important cause of morbidity and mortality. Polymerase chain reaction (PCR has been shown to be more sensitive than current standard microbiological methods--particularly in patients with prior antibiotic treatment--and therefore, may improve the accuracy of microbiological diagnosis for hospitalized patients with pneumonia. Conventional detection techniques and multiplex PCR for 14 typical bacterial pneumonia-associated pathogens were performed on respiratory samples collected from adult hospitalized patients enrolled in a prospective multi-center study. Patients were enrolled from March until September 2012. A total of 739 fresh, native samples were eligible for analysis, of which 75 were sputa, 421 aspirates, and 234 bronchial lavages. 276 pathogens were detected by microbiology for which a valid PCR result was generated (positive or negative detection result by Curetis prototype system. Among these, 120 were identified by the prototype assay, 50 pathogens were not detected. Overall performance of the prototype for pathogen identification was 70.6% sensitivity (95% confidence interval (CI lower bound: 63.3%, upper bound: 76.9% and 95.2% specificity (95% CI lower bound: 94.6%, upper bound: 95.7%. Based on the study results, device cut-off settings were adjusted for future series production. The overall performance with the settings of the CE series production devices was 78.7% sensitivity (95% CI lower bound: 72.1% and 96.6% specificity (95% CI lower bound: 96.1%. Time to result was 5.2 hours (median for the prototype test and 43.5 h for standard-of-care. The Pneumonia Application provides a rapid and moderately sensitive assay for the detection of pneumonia-causing pathogens with minimal hands-on time.Deutsches Register Klinischer Studien (DRKS DRKS00005684.

  18. Simultaneous Detection of Five Pathogens from Cerebrospinal Fluid Specimens Using Luminex Technology

    Directory of Open Access Journals (Sweden)

    Linfu Zhou

    2016-02-01

    Full Text Available Early diagnosis and treatment are crucial for the outcome of central nervous system (CNS infections. In this study, we developed a multiplex PCR-Luminex assay for the simultaneous detection of five major pathogens, including Mycobacterium tuberculosis, Cryptococcus neoformans, Streptococcus pneumoniae, and herpes simplex virus types 1 and 2, which frequently cause CNS infections. Through the hybridization reaction between multiplex PCR-amplified targets and oligonucleotide “anti-TAG” sequences, we found that the PCR-Luminex assay could detect as low as 101–102 copies of synthetic pathogen DNAs. Furthermore, 163 cerebrospinal fluid (CSF specimens from patients with suspected CNS infections were used to evaluate the efficiency of this multiplex PCR-Luminex method. Compared with Ziehl-Neelsen stain, this assay showed a high diagnostic accuracy for tuberculosis meningitis (sensitivity, 90.7% and specificity, 99.1%. For cryptococcal meningitis, the sensitivity and specificity were 92% and 97.1%, respectively, compared with the May Grunwald Giemsa (MGG stain. For herpes simplex virus types 1 and 2 encephalitis, the sensitivities were 80.8% and 100%, and the specificities were 94.2% and 99%, respectively, compared with Enzyme Linked Immunosorbent Assay (ELISA assays. Taken together, this multiplex PCR-Luminex assay showed potential efficiency for the simultaneous detection of five pathogens and may be a promising supplement to conventional methods for diagnosing CNS infections.

  19. Rapid and inexpensive body fluid identification by RNA profiling-based multiplex High Resolution Melt (HRM) analysis.

    Science.gov (United States)

    Hanson, Erin K; Ballantyne, Jack

    2013-01-01

    Positive identification of the nature of biological material present on evidentiary items can be crucial for understanding the circumstances surrounding a crime. However, traditional protein-based methods do not permit the identification of all body fluids and tissues, and thus molecular based strategies for the conclusive identification of all forensically relevant biological fluids and tissues need to be developed. Messenger RNA (mRNA) profiling is an example of such a molecular-based approach. Current mRNA body fluid identification assays involve capillary electrophoresis (CE) or quantitative RT-PCR (qRT-PCR) platforms, each with its own limitations. Both platforms require the use of expensive fluorescently labeled primers or probes. CE-based assays require separate amplification and detection steps thus increasing the analysis time. For qRT-PCR assays, only 3-4 markers can be included in a single reaction since each requires a different fluorescent dye. To simplify mRNA profiling assays, and reduce the time and cost of analysis, we have developed single- and multiplex body fluid High Resolution Melt (HRM) assays for the identification of common forensically relevant biological fluids and tissues. The incorporated biomarkers include IL19 (vaginal secretions), IL1F7 (skin), ALAS2 (blood), MMP10 (menstrual blood), HTN3 (saliva) and TGM4 (semen).  The HRM assays require only unlabeled PCR primers and a single saturating intercalating fluorescent dye (Eva Green). Each body-fluid-specific marker can easily be identified by the presence of a distinct melt peak. Usually, HRM assays are used to detect variants or isoforms for a single gene target. However, we have uniquely developed duplex and triplex HRM assays to permit the simultaneous detection of multiple targets per reaction. Here we describe the development and initial performance evaluation of the developed HRM assays. The results demonstrate the potential use of HRM assays for rapid, and relatively inexpensive

  20. Simultaneous multiplexed materials characterization using a high-precision hard X-ray micro-slit array

    International Nuclear Information System (INIS)

    Zhang, Fan; Allen, Andrew J.; Levine, Lyle E.; Mancini, Derrick C.; Ilavsky, Jan

    2015-01-01

    A novel measurement scheme that allows multiplexed simultaneous measurements from multiple nearby sample volumes is reported. The needs both for increased experimental throughput and for in operando characterization of functional materials under increasingly realistic experimental conditions have emerged as major challenges across the whole of crystallography. A novel measurement scheme that allows multiplexed simultaneous measurements from multiple nearby sample volumes is presented. This new approach enables better measurement statistics or direct probing of heterogeneous structure, dynamics or elemental composition. To illustrate, the submicrometer precision that optical lithography provides has been exploited to create a multiplexed form of ultra-small-angle scattering based X-ray photon correlation spectroscopy (USAXS-XPCS) using micro-slit arrays fabricated by photolithography. Multiplexed USAXS-XPCS is applied to follow the equilibrium dynamics of a simple colloidal suspension. While the dependence of the relaxation time on momentum transfer, and its relationship with the diffusion constant and the static structure factor, follow previous findings, this measurements-in-parallel approach reduces the statistical uncertainties of this photon-starved technique to below those associated with the instrument resolution. More importantly, we note the potential of the multiplexed scheme to elucidate the response of different components of a heterogeneous sample under identical experimental conditions in simultaneous measurements. In the context of the X-ray synchrotron community, this scheme is, in principle, applicable to all in-line synchrotron techniques. Indeed, it has the potential to open a new paradigm for in operando characterization of heterogeneous functional materials, a situation that will be even further enhanced by the ongoing development of multi-bend achromat storage ring designs as the next evolution of large-scale X-ray synchrotron facilities around

  1. Development and Validation of a Multiplex PCR-Based Assay for the Upper Respiratory Tract Bacterial Pathogens Haemophilus influenzae, Streptococcus pneumoniae, and Moraxella catarrhalis.

    Science.gov (United States)

    Post; White; Aul; Zavoral; Wadowsky; Zhang; Preston; Ehrlich

    1996-06-01

    Background: Conventional simplex polymerase chain reaction (PCR)-based assays are limited in that they only provide for the detection of a single infectious agent. Many clinical diseases, however, present in a nonspecific, or syndromic, fashion, thereby necessitating the simultaneous assessment of multiple pathogens. Panel-based molecular diagnostic testing can be accomplished by the development of multiplex PCR-based assays, which can detect, individually or severally, different pathogens that are associated with syndromic illness. As part of a larger program of panel development, an assay that can simultaneously detect Haemophilus influenzae, Streptococcus pneumoniae, and Moraxella catarrhalis was developed. These organisms were chosen as they are the most common bacterial pathogens associated with both the acute and chronic forms of otitis media; they are also responsible for a high percentage of sinus infections in both children and adults. In addition, H. influenzae and S. pneumoniae are commonly associated with septic meningitits. Methods and Results: Multiple individual PCR-based assays were developed for each of the three target organisms which were then evaluated for sensitivity and specificity. Utilizing the simplex assays that met our designated performance criteria, a matrix style approach was used to develop a duplex H. influenzae-S. pneumoniae assay. The duplex assay was then used as a single component in the development of a triplex assay, wherein the various M. catarrhalis primer-probe sets were tested for compatibility with the existing assay. A single-step PCR protocol, with species-specific primers for each of the three target organisms and a liquid hybridization-gel retardation amplimer detection system, was developed, which amplifies and then discriminates among each of the amplification products according to size. This assay is able to detect all three organisms in a specific manner, either individually or severally. Dilutional experiments

  2. Microfluidic impact printer with interchangeable cartridges for versatile non-contact multiplexed micropatterning.

    Science.gov (United States)

    Ding, Yuzhe; Huang, Eric; Lam, Kit S; Pan, Tingrui

    2013-05-21

    Biopatterning has been increasingly used for well-defined cellular microenvironment, patterned surface topology, and guided biological cues; however, it meets challenges on biocompatibility, thermal and chemical sensitivity, as well as limited availability of reagents. In this paper, we aim at combining the desired features from non-contact inkjet printing and dot-matrix impact printing to establish a versatile multiplexed micropatterning platform, referred to as Microfluidic Impact Printer (MI-Printer), for emerging biomedical applications. Using this platform, we can achieve the distinct features of no cross-contamination, sub-microliter ink loading with a minimal dead volume, high-throughput printing, biocompatible non-contact processing, sequential patterning with self-alignment, wide adaptability for complex media (e.g., cell suspension or colloidal solutions), interchangeable/disposable cartridge design, and simple assembly and configuration, all highly desirable towards laboratory-based research and development. Specifically, the printing resolution of the MI-printer platform has been experimentally characterized and theoretically analysed. Optimal printing resolution of 80 μm has been repeatedly obtained. Furthermore, two useful functions of the MI-printer, multiplexed printing and combinatorial printing, have been experimentally demonstrated with less than 10 μm misalignment. Moreover, molecular and biological patterning, utilizing the multiplexed and combinatorial printing, has been implemented to illustrate the utility of this versatile printing technique for emerging biomedical applications.

  3. Combination of microbiological culture and multiplex PCR increases the range of vaginal microorganisms identified in cervical cancer patients at high risk for bacterial vaginosis and vaginitis.

    Science.gov (United States)

    Schmidt, Katarzyna; Cybulski, Zefiryn; Roszak, Andrzej; Grabiec, Alicja; Talaga, Zofia; Urbański, Bartosz; Odważna, Joanna; Wojciechowicz, Jacek

    2015-05-01

    Bacterial vaginosis (BV) and vaginitis in cervical cancer patients might becaused by mixed aerobic, anaerobic, and atypical bacteria. Since genital tract infections can be complicated, early and accurate identification of causal pathogens is vital. The purpose of this study was i) to determinate if currently used aerobic culture methods are sufficiently sensitive to identify pathogens that can appear in the cervix of women after cancer treatment; ii) to investigate if molecular methods can improve the diagnostic process of BV and vaginitis, as well as broaden the range of detectable pathogens that would otherwise be difficult to cultivate. A one-year hospital-based study was conducted in 2011/2012. Cervical swabs from 130 patients were examined by microbiological culture and multiplex PCR. Swab samples were positive for 107 and 93 women by microbiological culture and multiplex PCR, respectively The most common bacteria isolated from culture were: Escherichia coli, Enterococcus faecalis, Streptococcus agalactiae, and Staphylococcus aureus, and using the molecular technique were: Gardnerella vaginalis, Bacteroides fragilis, Ureoplasma ureoliticum/parvum, Mobiluncus curtisii and Atopobium vaginae. Multiplex PCR might contribute to the diagnosis of genital tract infections and it broadens the number of detectable microorganisms responsible for BV. Combination of these two methods may become the basis for standardized diagnosis of BV and vaginitis.

  4. Paper-based microfluidics with high resolution, cut on a glass fiber membrane for bioassays.

    Science.gov (United States)

    Fang, Xueen; Wei, Shasha; Kong, Jilie

    2014-03-07

    In this report, we describe a simple, low-cost, straight forward and highly reproducible fabrication method of microfluidic systems. This system was cut on a glass fiber membrane by a common cutter without using any other sophisticated equipment or organic solvents. This format represents a novel type of paper-based microfluidics with high resolution of the microchannel down to ~137 μm, comparable to those made by conventional photolithography. We successfully applied this method to microfluidics to create a star micro-array format of multiplexed urine tests in this study.

  5. Multiplex families with epilepsy

    Science.gov (United States)

    Afawi, Zaid; Oliver, Karen L.; Kivity, Sara; Mazarib, Aziz; Blatt, Ilan; Neufeld, Miriam Y.; Helbig, Katherine L.; Goldberg-Stern, Hadassa; Misk, Adel J.; Straussberg, Rachel; Walid, Simri; Mahajnah, Muhammad; Lerman-Sagie, Tally; Ben-Zeev, Bruria; Kahana, Esther; Masalha, Rafik; Kramer, Uri; Ekstein, Dana; Shorer, Zamir; Wallace, Robyn H.; Mangelsdorf, Marie; MacPherson, James N.; Carvill, Gemma L.; Mefford, Heather C.; Jackson, Graeme D.; Scheffer, Ingrid E.; Bahlo, Melanie; Gecz, Jozef; Heron, Sarah E.; Corbett, Mark; Mulley, John C.; Dibbens, Leanne M.; Korczyn, Amos D.

    2016-01-01

    Objective: To analyze the clinical syndromes and inheritance patterns of multiplex families with epilepsy toward the ultimate aim of uncovering the underlying molecular genetic basis. Methods: Following the referral of families with 2 or more relatives with epilepsy, individuals were classified into epilepsy syndromes. Families were classified into syndromes where at least 2 family members had a specific diagnosis. Pedigrees were analyzed and molecular genetic studies were performed as appropriate. Results: A total of 211 families were ascertained over an 11-year period in Israel. A total of 169 were classified into broad familial epilepsy syndrome groups: 61 generalized, 22 focal, 24 febrile seizure syndromes, 33 special syndromes, and 29 mixed. A total of 42 families remained unclassified. Pathogenic variants were identified in 49/211 families (23%). The majority were found in established epilepsy genes (e.g., SCN1A, KCNQ2, CSTB), but in 11 families, this cohort contributed to the initial discovery (e.g., KCNT1, PCDH19, TBC1D24). We expand the phenotypic spectrum of established epilepsy genes by reporting a familial LAMC3 homozygous variant, where the predominant phenotype was epilepsy with myoclonic-atonic seizures, and a pathogenic SCN1A variant in a family where in 5 siblings the phenotype was broadly consistent with Dravet syndrome, a disorder that usually occurs sporadically. Conclusion: A total of 80% of families were successfully classified, with pathogenic variants identified in 23%. The successful characterization of familial electroclinical and inheritance patterns has highlighted the value of studying multiplex families and their contribution towards uncovering the genetic basis of the epilepsies. PMID:26802095

  6. Simultaneous measurements of auto-immune and infectious disease specific antibodies using a high throughput multiplexing tool.

    Directory of Open Access Journals (Sweden)

    Atul Asati

    Full Text Available Considering importance of ganglioside antibodies as biomarkers in various immune-mediated neuropathies and neurological disorders, we developed a high throughput multiplexing tool for the assessment of gangliosides-specific antibodies based on Biolpex/Luminex platform. In this report, we demonstrate that the ganglioside high throughput multiplexing tool is robust, highly specific and demonstrating ∼100-fold higher concentration sensitivity for IgG detection than ELISA. In addition to the ganglioside-coated array, the high throughput multiplexing tool contains beads coated with influenza hemagglutinins derived from H1N1 A/Brisbane/59/07 and H1N1 A/California/07/09 strains. Influenza beads provided an added advantage of simultaneous detection of ganglioside- and influenza-specific antibodies, a capacity important for the assay of both infectious antigen-specific and autoimmune antibodies following vaccination or disease. Taken together, these results support the potential adoption of the ganglioside high throughput multiplexing tool for measuring ganglioside antibodies in various neuropathic and neurological disorders.

  7. Breaking New Ground with High Resolution Turn-By-Turn BPMs at the ESRF

    CERN Document Server

    Farvacque, L; Scheidt, K

    2001-01-01

    This High-Resolution, Turn-by-Turn BPM system is a low-cost extension to the existing BPM system, based on the RF-multiplexing concept, used for slow Closed-Orbit measurements. With this extension Beam Position measurements in both planes, at all (224) BPMs in the 844 m ESRF Storage Ring, for up to 2048 Orbit Turns with 1 μm resolution are performed. The data acquisition is synchronised to a single, flat 1 μs, transverse deflection kick to the 1μs beamfill in the 2.8μs revolution period. The high quality of this synchronisation, together with the good reproducibility of the deflection kick and the overall stability of the Closed Orbit beam allows to repeat the kick and acquisition in many cycles. The subsequent averaging of the data obtained in these cycles yields the 1um resolution. The latter allows lattice measurements with high precision such as the localisation of very small focussing errors and modulation in Beta values and phase advances. It also finds an unique ...

  8. A high resolution gamma-ray spectrometer based on superconducting microcalorimeters

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, D. A.; Horansky, R. D. [National Institute of Standards and Technology, Boulder, Colorado 80305 (United States); University of Denver, Denver, Colorado 80208 (United States); Schmidt, D. R.; Doriese, W. B.; Fowler, J. W.; Kotsubo, V.; Mates, J. A. B. [National Institute of Standards and Technology, Boulder, Colorado 80305 (United States); University of Colorado, Boulder, Colorado 80309 (United States); Hoover, A. S.; Winkler, R.; Rabin, M. W. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Alpert, B. K.; Beall, J. A.; Fitzgerald, C. P.; Hilton, G. C.; Irwin, K. D.; O' Neil, G. C.; Reintsema, C. D.; Schima, F. J.; Swetz, D. S.; Vale, L. R. [National Institute of Standards and Technology, Boulder, Colorado 80305 (United States); and others

    2012-09-15

    Improvements in superconductor device fabrication, detector hybridization techniques, and superconducting quantum interference device readout have made square-centimeter-sized arrays of gamma-ray microcalorimeters, based on transition-edge sensors (TESs), possible. At these collecting areas, gamma microcalorimeters can utilize their unprecedented energy resolution to perform spectroscopy in a number of applications that are limited by closely-spaced spectral peaks, for example, the nondestructive analysis of nuclear materials. We have built a 256 pixel spectrometer with an average full-width-at-half-maximum energy resolution of 53 eV at 97 keV, a useable dynamic range above 400 keV, and a collecting area of 5 cm{sup 2}. We have demonstrated multiplexed readout of the full 256 pixel array with 236 of the pixels (91%) giving spectroscopic data. This is the largest multiplexed array of TES microcalorimeters to date. This paper will review the spectrometer, highlighting the instrument design, detector fabrication, readout, operation of the instrument, and data processing. Further, we describe the characterization and performance of the newest 256 pixel array.

  9. A novel, multiplexed, probe-based quantitative PCR assay for the soybean root- and stem-rot pathogen, Phytophthora sojae, utilizes its transposable element.

    Science.gov (United States)

    Haudenshield, James S; Song, Jeong Y; Hartman, Glen L

    2017-01-01

    Phytophthora root rot of soybean [Glycine max (L.) Merr.] is caused by the oomycete Phytophthora sojae (Kaufm. & Gerd.). P. sojae has a narrow host range, consisting primarily of soybean, and it is a serious pathogen worldwide. It exists in root and stem tissues as mycelium, wherein it can form oospores which subsequently germinate to release motile, infectious zoospores. Molecular assays detecting DNA of P. sojae are useful in disease diagnostics, and for determining the presence of the organism in host tissues, soils, and runoff or ponded water from potentially infested fields. Such assays as published have utilized ITS sequences from the nuclear ribosomal RNA genes in conventional PCR or dye-binding quantitative PCR (Q-PCR) but are not amenable to multiplexing, and some of these assays did not utilize control strategies for type I or type II errors. In this study, we describe primers and a bifunctional probe with specificity to a gypsy-like retroelement in the P. sojae genome to create a fluorogenic 5'-exonuclease linear hydrolysis assay, with a multiplexed internal control reaction detecting an exogenous target to validate negative calls, and with uracil-deglycosylase-mediated protection against carryover contamination. The assay specifically detected 13 different P. sojae isolates, and excluded 17 other Phytophthora species along with 20 non-Phytophthora fungal and oomycete species pathogenic on soybean. A diagnostic limit of detection of 34 fg total P. sojae DNA was observed in serial dilutions, equivalent to 0.3 genome, and a practical detection sensitivity of four zoospores per sample was achieved, despite losses during DNA extraction.

  10. Molecular identification of common Salmonella serovars using multiplex DNA sensor-based suspension array.

    Science.gov (United States)

    Aydin, Muhsin; Carter-Conger, Jacqueline; Gao, Ning; Gilmore, David F; Ricke, Steven C; Ahn, Soohyoun

    2018-04-01

    Salmonella is one of major foodborne pathogens and the leading cause of foodborne illness-related hospitalizations and deaths. It is critical to develop a sensitive and rapid detection assay that can identify Salmonella to ensure food safety. In this study, a DNA sensor-based suspension array system of high multiplexing ability was developed to identify eight Salmonella serovars commonly associated with foodborne outbreaks to the serotype level. Each DNA sensor was prepared by activating pre-encoded microspheres with oligonucleotide probes that are targeting virulence genes and serovar-specific regions. The mixture of 12 different types of DNA sensors were loaded into a 96-well microplate and used as a 12-plex DNA sensor array platform. DNA isolated from Salmonella was amplified by multiplex polymerase chain reaction (mPCR), and the presence of Salmonella was determined by reading fluorescent signals from hybridization between probes on DNA sensors and fluorescently labeled target DNA using the Bio-Plex® system. The developed multiplex array was able to detect synthetic DNA at the concentration as low as 100 fM and various Salmonella serovars as low as 100 CFU/mL within 1 h post-PCR. Sensitivity of this assay was further improved to 1 CFU/mL with 6-h enrichment. The array system also correctly and specifically identified serotype of tested Salmonella strains without any cross-reactivity with other common foodborne pathogens. Our results indicate the developed DNA sensor suspension array can be a rapid and reliable high-throughput method for simultaneous detection and molecular identification of common Salmonella serotypes.

  11. Quantitative multiplex detection of pathogen biomarkers

    Energy Technology Data Exchange (ETDEWEB)

    Mukundan, Harshini; Xie, Hongzhi; Swanson, Basil I.; Martinez, Jennifer; Grace, Wynne K.

    2016-02-09

    The present invention addresses the simultaneous detection and quantitative measurement of multiple biomolecules, e.g., pathogen biomarkers through either a sandwich assay approach or a lipid insertion approach. The invention can further employ a multichannel, structure with multi-sensor elements per channel.

  12. Quantitative multiplex detection of pathogen biomarkers

    Science.gov (United States)

    Mukundan, Harshini; Xie, Hongzhi; Swanson, Basil I; Martinez, Jennifer; Grace, Wynne K

    2014-10-14

    The present invention addresses the simultaneous detection and quantitative measurement of multiple biomolecules, e.g., pathogen biomarkers through either a sandwich assay approach or a lipid insertion approach. The invention can further employ a multichannel, structure with multi-sensor elements per channel.

  13. Front-end multiplexing—applied to SQUID multiplexing: Athena X-IFU and QUBIC experiments

    Science.gov (United States)

    Prele, D.

    2015-08-01

    As we have seen for digital camera market and a sensor resolution increasing to "megapixels", all the scientific and high-tech imagers (whatever the wave length - from radio to X-ray range) tends also to always increases the pixels number. So the constraints on front-end signals transmission increase too. An almost unavoidable solution to simplify integration of large arrays of pixels is front-end multiplexing. Moreover, "simple" and "efficient" techniques allow integration of read-out multiplexers in the focal plane itself. For instance, CCD (Charge Coupled Device) technology has boost number of pixels in digital camera. Indeed, this is exactly a planar technology which integrates both the sensors and a front-end multiplexed readout. In this context, front-end multiplexing techniques will be discussed for a better understanding of their advantages and their limits. Finally, the cases of astronomical instruments in the millimeter and in the X-ray ranges using SQUID (Superconducting QUantum Interference Device) will be described.

  14. Front-end multiplexing—applied to SQUID multiplexing: Athena X-IFU and QUBIC experiments

    International Nuclear Information System (INIS)

    Prele, D.

    2015-01-01

    As we have seen for digital camera market and a sensor resolution increasing to 'megapixels', all the scientific and high-tech imagers (whatever the wave length - from radio to X-ray range) tends also to always increases the pixels number. So the constraints on front-end signals transmission increase too. An almost unavoidable solution to simplify integration of large arrays of pixels is front-end multiplexing. Moreover, 'simple' and 'efficient' techniques allow integration of read-out multiplexers in the focal plane itself. For instance, CCD (Charge Coupled Device) technology has boost number of pixels in digital camera. Indeed, this is exactly a planar technology which integrates both the sensors and a front-end multiplexed readout. In this context, front-end multiplexing techniques will be discussed for a better understanding of their advantages and their limits. Finally, the cases of astronomical instruments in the millimeter and in the X-ray ranges using SQUID (Superconducting QUantum Interference Device) will be described

  15. Highly pathogenic avian influenza.

    Science.gov (United States)

    Swayne, D E; Suarez, D L

    2000-08-01

    Highly pathogenic (HP) avian influenza (AI) (HPAI) is an extremely contagious, multi-organ systemic disease of poultry leading to high mortality, and caused by some H5 and H7 subtypes of type A influenza virus, family Orthomyxoviridae. However, most AI virus strains are mildly pathogenic (MP) and produce either subclinical infections or respiratory and/or reproductive diseases in a variety of domestic and wild bird species. Highly pathogenic avian influenza is a List A disease of the Office International des Epizooties, while MPAI is neither a List A nor List B disease. Eighteen outbreaks of HPAI have been documented since the identification of AI virus as the cause of fowl plague in 1955. Mildly pathogenic avian influenza viruses are maintained in wild aquatic bird reservoirs, occasionally crossing over to domestic poultry and causing outbreaks of mild disease. Highly pathogenic avian influenza viruses do not have a recognised wild bird reservoir, but can occasionally be isolated from wild birds during outbreaks in domestic poultry. Highly pathogenic avian influenza viruses have been documented to arise from MPAI viruses through mutations in the haemagglutinin surface protein. Prevention of exposure to the virus and eradication are the accepted methods for dealing with HPAI. Control programmes, which imply allowing a low incidence of infection, are not an acceptable method for managing HPAI, but have been used during some outbreaks of MPAI. The components of a strategy to deal with MPAI or HPAI include surveillance and diagnosis, biosecurity, education, quarantine and depopulation. Vaccination has been used in some control and eradication programmes for AI.

  16. Shift-Peristrophic Multiplexing for High Density Holographic Data Storage

    Directory of Open Access Journals (Sweden)

    Zenta Ushiyama

    2014-03-01

    Full Text Available Holographic data storage is a promising technology that provides very large data storage capacity, and the multiplexing method plays a significant role in increasing this capacity. Various multiplexing methods have been previously researched. In the present study, we propose a shift-peristrophic multiplexing technique that uses spherical reference waves, and experimentally verify that this method efficiently increases the data capacity. In the proposed method, a series of holograms is recorded with shift multiplexing, in which the recording material is rotated with its axis perpendicular to the material’s surface. By iterating this procedure, multiplicity is shown to improve. This method achieves more than 1 Tbits/inch2 data density recording. Furthermore, a capacity increase of several TB per disk is expected by maximizing the recording medium performance.

  17. Randomized controlled clinical trial evaluating multiplex polymerase chain reaction for pathogen identification and therapy adaptation in critical care patients with pulmonary or abdominal sepsis.

    Science.gov (United States)

    Tafelski, Sascha; Nachtigall, Irit; Adam, Thomas; Bereswill, Stefan; Faust, Jana; Tamarkin, Andrey; Trefzer, Tanja; Deja, Maria; Idelevich, Evgeny A; Wernecke, Klaus-Dieter; Becker, Karsten; Spies, Claudia

    2015-06-01

    To determine whether a multiplex polymerase chain reaction (PCR)-based test could reduce the time required for initial pathogen identification in patients in an intensive care unit (ICU) setting. This double-blind, parallel-group randomized controlled trial** enrolled adults with suspected pulmonary or abdominal sepsis caused by an unknown pathogen. Both the intervention and control groups underwent the standard blood culture (BC) testing, but additional pathogen identification, based on the results of a LightCycler® SeptiFast PCR test, were provided in the intervention group. The study enrolled 37 patients in the control group and 41 in the intervention group. Baseline clinical and demographic characteristics were similar in both groups. The PCR-based test identified a pathogen in 10 out of 41 (24.4%) patients in the intervention group, with a mean duration from sampling to providing the information to the ICU of 15.9 h. In the control group, BC results were available after a significantly longer period (38.1 h). The LightCycler® SeptiFast PCR test demonstrated a significant reduction in the time required for initial pathogen identification, compared with standard BC. © The Author(s) 2015 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  18. High-Capacity Multi-Core Fibers for Space-Division Multiplexing

    DEFF Research Database (Denmark)

    Ye, Feihong

    The transmission capacity of the present optical fiber communication systems based on time division multiplexing (TDM) and wavelength-division multiplexing (WDM) using single-mode fibers (SMFs) is reaching its limit of around 100 Tbit/s per fiber due to the fiber nonlinearities, fiber fuse...... phenomenon and the optical amplifier bandwidth. To meet the ever increasing global data traffic growth and to overcome the looming capacity crunch, a new multiplexing technology using new optical fibers is urgently needed. Space-division multiplexing (SDM) is a promising scheme to overcome the capacity limit...... of the present SMF-based systems. Among the proposed SDM schemes, the one based on uncoupled multi-core fibers (MCFs) having multiple cores in a mutual cladding has proven effective in substantially increasing the transmission capacity per fiber with least system complexity as demonstrated in several state...

  19. Sub-GHz-resolution C-band Nyquist-filtering interleaver on a high-index-contrast photonic integrated circuit.

    Science.gov (United States)

    Zhuang, Leimeng; Zhu, Chen; Corcoran, Bill; Burla, Maurizio; Roeloffzen, Chris G H; Leinse, Arne; Schröder, Jochen; Lowery, Arthur J

    2016-03-21

    Modern optical communications rely on high-resolution, high-bandwidth filtering to maximize the data-carrying capacity of fiber-optic networks. Such filtering typically requires high-speed, power-hungry digital processes in the electrical domain. Passive optical filters currently provide high bandwidths with low power consumption, but at the expense of resolution. Here, we present a passive filter chip that functions as an optical Nyquist-filtering interleaver featuring sub-GHz resolution and a near-rectangular passband with 8% roll-off. This performance is highly promising for high-spectral-efficiency Nyquist wavelength division multiplexed (N-WDM) optical super-channels. The chip provides a simple two-ring-resonator-assisted Mach-Zehnder interferometer, which has a sub-cm2 footprint owing to the high-index-contrast Si3N4/SiO2 waveguide, while manifests low wavelength-dependency enabling C-band (> 4 THz) coverage with more than 160 effective free spectral ranges of 25 GHz. This device is anticipated to be a critical building block for spectrally-efficient, chip-scale transceivers and ROADMs for N-WDM super-channels in next-generation optical communication networks.

  20. Development of multiplex real-time PCR assay for the detection of Brucella spp., Leptospira spp. and Campylobacter foetus

    Directory of Open Access Journals (Sweden)

    Abdelfattah M. Selim

    2014-12-01

    Full Text Available Abortion among dairy cattle is one of the major causes of economic losses in the livestock industry. This study describes a 1-step multiplex real-time polymerase chain reaction (PCR to detect Brucella spp., Leptospira spp. and Campylobacter foetus, these are significant bacteria commonly implicated in bovine abortion. ß-actin was added to the same PCR reaction as an internal control to detect any extraction failure or PCR inhibition. The detection limit of multiplex real-time PCR using purified DNA from cultured organisms was set to 5 fg for Leptospira spp. and C. foetus and to 50 fg for Brucella spp. The multiplex real-time PCR did not produce any non-specific amplification when tested with different strains of the 3 pathogens. This multiplex real-time PCR provides a valuable tool for diagnosis, simultaneous and rapid detection for the 3 pathogens causing abortion in bovine.

  1. A Novel Multiplex HRM Assay to Detect Clopidogrel Resistance.

    Science.gov (United States)

    Zhang, Lichen; Ma, Xiaowei; You, Guoling; Zhang, Xiaoqing; Fu, Qihua

    2017-11-22

    Clopidogrel is an antiplatelet medicine used to prevent blood clots in patients who have had a heart attack, stroke, or other symptoms. Variability in the clinical response to clopidogrel treatment has been attributed to genetic factors. In particular, five SNPs of rs4244285, rs4986893, rs12248560, rs662 and rs1045642 have been associated with resistance to clopidogrel therapy in Chinese population. This work involves the development of a multiplex high-resolution melting (HRM) assay to genotype all five of these loci in 2 tubes. Amplicons corresponding to distinct SNPs in a common tube were designed with the aid of uMelt prediction software to have different melting temperatures Tm by addition of a GC-rich tail to the 5' end of the certain primers. Two kinds of commercial methods, Digital Fluorescence Molecular Hybridization (DFMH) and Sanger sequencing, were used as a control. Three hundred sixteen DFMH pretested samples from consecutive acute coronary syndrome patients were used for a blinded study of multiplex HRM. The sensitivity of HRM was 100% and the specificity was 99.93% reflecting detection of variants other than the known resistance SNPs. Multiplex HRM is an effective closed-tube, highly accurate, fast, and inexpensive method for genotyping the 5 clopidogrel resistance associated SNPs.

  2. A Multiplex PCR/LDR Assay for the Simultaneous Identification of Category A Infectious Pathogens: Agents of Viral Hemorrhagic Fever and Variola Virus.

    Directory of Open Access Journals (Sweden)

    Sanchita Das

    Full Text Available CDC designated category A infectious agents pose a major risk to national security and require special action for public health preparedness. They include viruses that cause viral hemorrhagic fever (VHF syndrome as well as variola virus, the agent of smallpox. VHF is characterized by hemorrhage and fever with multi-organ failure leading to high morbidity and mortality. Smallpox, a prior scourge, has been eradicated for decades, making it a particularly serious threat if released nefariously in the essentially non-immune world population. Early detection of the causative agents, and the ability to distinguish them from other pathogens, is essential to contain outbreaks, implement proper control measures, and prevent morbidity and mortality. We have developed a multiplex detection assay that uses several species-specific PCR primers to generate amplicons from multiple pathogens; these are then targeted in a ligase detection reaction (LDR. The resultant fluorescently-labeled ligation products are detected on a universal array enabling simultaneous identification of the pathogens. The assay was evaluated on 32 different isolates associated with VHF (ebolavirus, marburgvirus, Crimean Congo hemorrhagic fever virus, Lassa fever virus, Rift Valley fever virus, Dengue virus, and Yellow fever virus as well as variola virus and vaccinia virus (the agent of smallpox and its vaccine strain, respectively. The assay was able to detect all viruses tested, including 8 sequences representative of different variola virus strains from the CDC repository. It does not cross react with other emerging zoonoses such as monkeypox virus or cowpox virus, or six flaviviruses tested (St. Louis encephalitis virus, Murray Valley encephalitis virus, Powassan virus, Tick-borne encephalitis virus, West Nile virus and Japanese encephalitis virus.

  3. A Multiplex PCR/LDR Assay for the Simultaneous Identification of Category A Infectious Pathogens: Agents of Viral Hemorrhagic Fever and Variola Virus.

    Science.gov (United States)

    Das, Sanchita; Rundell, Mark S; Mirza, Aashiq H; Pingle, Maneesh R; Shigyo, Kristi; Garrison, Aura R; Paragas, Jason; Smith, Scott K; Olson, Victoria A; Larone, Davise H; Spitzer, Eric D; Barany, Francis; Golightly, Linnie M

    2015-01-01

    CDC designated category A infectious agents pose a major risk to national security and require special action for public health preparedness. They include viruses that cause viral hemorrhagic fever (VHF) syndrome as well as variola virus, the agent of smallpox. VHF is characterized by hemorrhage and fever with multi-organ failure leading to high morbidity and mortality. Smallpox, a prior scourge, has been eradicated for decades, making it a particularly serious threat if released nefariously in the essentially non-immune world population. Early detection of the causative agents, and the ability to distinguish them from other pathogens, is essential to contain outbreaks, implement proper control measures, and prevent morbidity and mortality. We have developed a multiplex detection assay that uses several species-specific PCR primers to generate amplicons from multiple pathogens; these are then targeted in a ligase detection reaction (LDR). The resultant fluorescently-labeled ligation products are detected on a universal array enabling simultaneous identification of the pathogens. The assay was evaluated on 32 different isolates associated with VHF (ebolavirus, marburgvirus, Crimean Congo hemorrhagic fever virus, Lassa fever virus, Rift Valley fever virus, Dengue virus, and Yellow fever virus) as well as variola virus and vaccinia virus (the agent of smallpox and its vaccine strain, respectively). The assay was able to detect all viruses tested, including 8 sequences representative of different variola virus strains from the CDC repository. It does not cross react with other emerging zoonoses such as monkeypox virus or cowpox virus, or six flaviviruses tested (St. Louis encephalitis virus, Murray Valley encephalitis virus, Powassan virus, Tick-borne encephalitis virus, West Nile virus and Japanese encephalitis virus).

  4. Multiplexed single-molecule force spectroscopy using a centrifuge.

    Science.gov (United States)

    Yang, Darren; Ward, Andrew; Halvorsen, Ken; Wong, Wesley P

    2016-03-17

    We present a miniature centrifuge force microscope (CFM) that repurposes a benchtop centrifuge for high-throughput single-molecule experiments with high-resolution particle tracking, a large force range, temperature control and simple push-button operation. Incorporating DNA nanoswitches to enable repeated interrogation by force of single molecular pairs, we demonstrate increased throughput, reliability and the ability to characterize population heterogeneity. We perform spatiotemporally multiplexed experiments to collect 1,863 bond rupture statistics from 538 traceable molecular pairs in a single experiment, and show that 2 populations of DNA zippers can be distinguished using per-molecule statistics to reduce noise.

  5. Ultra-High Capacity Silicon Photonic Interconnects through Spatial Multiplexing

    Science.gov (United States)

    Chen, Christine P.

    -fabrication. Through ModePROP simulations, optimizing device performance dynamically post-fabrication is analyzed, through either electro-optical or thermo-optical means. By biasing the arm introducing the slight spectral offset, we can quantifiably improve device performance. Scaling bandwidth is experimentally demonstrated through the device at 3 modes, 2 wavelengths, and 40 Gb/s data rate for 240 Gb/s aggregate bandwidth, with the potential to reduce power penalty per the device optimization process we described. A main motivation for this on-chip spatial multiplexing is the need to reduce costs. As the laser source serves as the greatest power consumer in an optical system, mode-division multiplexing and other forms of spatial multiplexing can be implemented to push its potentially prohibitive cost metrics down. In order to demonstrate an intelligent platform capable of dynamically multicasting data and reallocating power as needed by the system, we must first initialize the switch fabric to control with an electronic interface. A dithering mechanism, whereby exact cross, bar, and sub-percentage states are enforced through the device, is described here. Such a method could be employed for actuating the device table of bias values to states automatically. We then employ a dynamic power reallocation algorithm through a data acquisition unit, showing real-time channel recovery for channels experiencing power loss by diverting power from paths that could tolerate it. The data that is being multicast through the system is experimentally shown to be error-free at 40 Gb/s data rate, when transmitting from one to three clients and going from automatic bar/cross states to equalized power distribution. For the last portion of this topic, the switch fabric was inserted into a high-performance computing system. In order to run benchmarks at 10 Gb/s data ontop of the switch fabric, a newer model of the control plane was implemented to toggle states according to the command issued by the server

  6. An Integrated Quantum Dot Barcode Smartphone Optical Device for Wireless Multiplexed Diagnosis of Infected Patients

    Science.gov (United States)

    Ming, Kevin

    Integrating mobile-cellular devices with multiplex molecular diagnostics can potentially provide the most powerful platform for tracking, managing and preventing the transmission of infectious diseases. With over 6.9 billion subscriptions globally, handheld mobile-cellular devices can be programmed to spatially map, temporally track, and transmit information on infections over wide geographical space and boundaries. Current cell phone diagnostic technologies have poor limit of detection, dynamic range, and cannot detect multiple pathogen targets simultaneously, limiting their utility to single infections with high load. Here we combined recent advances in quantum dot barcode technology for molecular detection with smartphones to engineer a simple and low-cost chip-based wireless multiplex diagnostic device. We validated our device using a variety of synthetic genomic targets for the respiratory virus and blood-borne pathogens, and demonstrated that it could detect clinical samples after simple amplification. More importantly, we confirmed that the device is capable of detecting patients infected with a single or multiple infectious pathogens (e.g., HIV and hepatitis B) in a single test. This device advances the capacity for global surveillance of infectious diseases and has the potential to accelerate knowledge exchange-transfer of emerging or exigent disease threats with healthcare and military organizations in real-time.

  7. High Speed and High Spatial Density Parameter Measurement Using Fiber Optic Sensing Technology

    Science.gov (United States)

    Parker, Allen R. Jr. (Inventor); Chan, Hon Man (Inventor); Richards, William Lance (Inventor); Piazza, Anthony (Inventor); Hamory, Philip J (Inventor)

    2017-01-01

    The present invention is an improved fiber optic sensing system (FOSS) having the ability to provide both high spatial resolution and high frequency strain measurements. The inventive hybrid FOSS fiber combines sensors from high acquisition speed and low spatial resolution Wavelength-Division Multiplexing (WDM) systems and from low acquisition speed and high spatial resolution Optical Frequency Domain Reflection (OFDR) systems. Two unique light sources utilizing different wavelengths are coupled with the hybrid FOSS fiber to generate reflected data from both the WDM sensors and OFDR sensors operating on a single fiber optic cable without incurring interference from one another. The two data sets are then de-multiplexed for analysis, optionally with conventionally-available WDM and OFDR system analyzers.

  8. Multiplexed homogeneous proximity ligation assays for high throughput protein biomarker research in serological material

    DEFF Research Database (Denmark)

    Lundberg, Martin; Thorsen, Stine Buch; Assarsson, Erika

    2011-01-01

    A high throughput protein biomarker discovery tool has been developed based on multiplexed proximity ligation assays (PLA) in a homogeneous format in the sense of no washing steps. The platform consists of four 24-plex panels profiling 74 putative biomarkers with sub pM sensitivity each consuming...... sequences are united by DNA ligation upon simultaneous target binding forming a PCR amplicon. Multiplex PLA thereby converts multiple target analytes into real-time PCR amplicons that are individually quantificatied using microfluidic high capacity qPCR in nano liter volumes. The assay shows excellent...

  9. Development of Multiplex Microsatellite PCR Panels for the Seagrass Thalassia hemprichii (Hydrocharitaceae

    Directory of Open Access Journals (Sweden)

    Kor-jent van Dijk

    2014-11-01

    Full Text Available Premise of the study: New microsatellites were developed for the seagrass Thalassia hemprichii (Hydrocharitaceae, a long-lived seagrass species that is found throughout the shallow waters of tropical and subtropical Indo-West Pacific. Three multiplex PCR panels were designed utilizing new and previously developed markers, resulting in a toolkit for generating a 16-locus genotype. Methods and Results: Through the use of microsatellite enrichment and next-generation sequencing, 16 new, validated, polymorphic microsatellite markers were isolated. Diversity was between two and four alleles per locus totaling 36 alleles. These markers, plus previously developed microsatellite markers for T. hemprichii and T. testudinum, were tested for suitability in multiplex PCR panels. Conclusions: The generation of an easily replicated suite of multiplex panels of codominant molecular markers will allow for high-resolution and detailed genetic structure analysis and clonality assessment with minimal genotyping costs. We suggest the establishment of a T. hemprichii primer convention for the unification of future data sets.

  10. A multiplex PCR/LDR assay for simultaneous detection and identification of the NIAID category B bacterial food and water-borne pathogens.

    Science.gov (United States)

    Rundell, Mark S; Pingle, Maneesh; Das, Sanchita; Hussain, Aashiq; Ocheretina, Oksana; Charles, Macarthur; Larone, Davise H; Spitzer, Eric D; Golightly, Linnie; Barany, Francis

    2014-06-01

    Enteric pathogens that cause gastroenteritis remain a major global health concern. The goal of this study was to develop a multiplex PCR/ligation detection reaction (LDR) assay for the detection of all NIAID category B bacterial food and water-borne pathogens directly from stool specimens. To validate the PCR/LDR assay, clinical isolates of Campylobacter spp., Vibrio spp., Shigella spp., Salmonella spp., Listeria monocytogenes, Yersinia enterocolitica, and diarrheagenic Escherichia coli were tested. The sensitivity and specificity of the assay were assessed using a large number of seeded culture-negative stool specimens and a smaller set of clinical specimens from Haiti. The overall sensitivity ranged from 91% to 100% (median 100%) depending on the species. For the majority of organisms, the sensitivity was 100%. The overall specificity based on initial testing ranged from 98% to 100% depending on the species. After additional testing of discordant samples, the lowest specificity was 99.4%. PCR/LDR detected additional category B agents (particularly diarrheagenic E. coli) in 11/40 specimens from Haiti that were culture-positive for V. cholerae and in approximately 1% of routine culture-negative stool specimens from a hospital in New York. This study demonstrated the ability of the PCR/LDR assay to detect a large comprehensive panel of category B enteric bacterial pathogens as well as mixed infections. This type of assay has the potential to provide earlier warnings of possible public health threats and more accurate surveillance of food and water-borne pathogens. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Multiplexed Western Blotting Using Microchip Electrophoresis.

    Science.gov (United States)

    Jin, Shi; Furtaw, Michael D; Chen, Huaxian; Lamb, Don T; Ferguson, Stephen A; Arvin, Natalie E; Dawod, Mohamed; Kennedy, Robert T

    2016-07-05

    Western blotting is a commonly used protein assay that combines the selectivity of electrophoretic separation and immunoassay. The technique is limited by long time, manual operation with mediocre reproducibility, and large sample consumption, typically 10-20 μg per assay. Western blots are also usually used to measure only one protein per assay with an additional housekeeping protein for normalization. Measurement of multiple proteins is possible; however, it requires stripping membranes of antibody and then reprobing with a second antibody. Miniaturized alternatives to Western blot based on microfluidic or capillary electrophoresis have been developed that enable higher-throughput, automation, and greater mass sensitivity. In one approach, proteins are separated by electrophoresis on a microchip that is dragged along a polyvinylidene fluoride membrane so that as proteins exit the chip they are captured on the membrane for immunoassay. In this work, we improve this method to allow multiplexed protein detection. Multiple injections made from the same sample can be deposited in separate tracks so that each is probed with a different antibody. To further enhance multiplexing capability, the electrophoresis channel dimensions were optimized for resolution while keeping separation and blotting times to less than 8 min. Using a 15 μm deep × 50 μm wide × 8.6 cm long channel, it is possible to achieve baseline resolution of proteins that differ by 5% in molecular weight, e.g., ERK1 (44 kDa) from ERK2 (42 kDa). This resolution allows similar proteins detected by cross-reactive antibodies in a single track. We demonstrate detection of 11 proteins from 9 injections from a single Jurkat cell lysate sample consisting of 400 ng of total protein using this procedure. Thus, multiplexed Western blots are possible without cumbersome stripping and reprobing steps.

  12. Evaluation of a PCR multiplex for detection and differentiation of Mycoplasma synoviae, M. gallisepticum, and M. gallisepticum strain F-vaccine

    Directory of Open Access Journals (Sweden)

    Elena Mettifogo

    2015-01-01

    Full Text Available Mycoplasma gallisepticum (MG and Mycoplasma synoviae (MS are the mycoplasma infections of most concern for commercial poultry industry. MG infection is commonly designated as chronic respiratory disease (CRD of chickens and infections sinusitis of turkeys. MS causes sub clinical upper respiratory infection and tenosynovitis or bursitis in chickens and turkeys. The multiplex PCR was standardized to detect simultaneously the MS, MG field strains and MG F-vaccine strain specific. The generic PCR for detection of any species of Mollicutes Class was performed and compared to the multiplex PCR and to PCR using species-specific primers. A total of 129 avian tracheal swabs were collected from broiler-breeders, layer hens and broilers in seven different farms and were examined by multiplex PCR methods. The system (multiplex PCR demonstrated to be very rapid, sensitive, and specific. Therefore, the results showed a high prevalence of MS in the flocks examined (27.9%, and indicate that the MS is a recurrent pathogen in Brazilian commercial poultry flocks.

  13. Multiplex detection of pathogen biomarkers in human blood, serum, and saliva using silicon photonic microring resonators

    Science.gov (United States)

    Estrada, I. A.; Burlingame, R. W.; Wang, A. P.; Chawla, K.; Grove, T.; Wang, J.; Southern, S. O.; Iqbal, M.; Gunn, L. C.; Gleeson, M. A.

    2015-05-01

    Genalyte has developed a multiplex silicon photonic chip diagnostics platform (MaverickTM) for rapid detection of up to 32 biological analytes from a drop of sample in just 10 to 20 minutes. The chips are manufactured with waveguides adjacent to ring resonators, and probed with a continuously variable wavelength laser. A shift in the resonant wavelength as mass binds above the ring resonators is measured and is directly proportional to the amount of bound macromolecules. We present here the ability to multiplex the detection of hemorrhagic fever antigens in whole blood, serum, and saliva in a 16 minute assay. Our proof of concept testing of a multiplex antigencapture chip has the ability to detect Zaire Ebola (ZEBOV) recombinant soluble glycoprotein (rsGP), Marburg virus (MARV) Angola recombinant glycoprotein (rGP) and dengue nonstructural protein I (NS1). In parallel, detection of 2 malaria antigens has proven successful, but has yet to be incorporated into multiplex with the others. Each assay performs with sensitivity ranging from 1.6 ng/ml to 39 ng/ml depending on the antigen detected, and with minimal cross-reactivity.

  14. A novel nested multiplex polymerase chain reaction (PCR assay for differential detection of Entamoeba histolytica, E. moshkovskii and E. dispar DNA in stool samples

    Directory of Open Access Journals (Sweden)

    Parija Subhash C

    2007-05-01

    Full Text Available Abstract Background E. histolytica, a pathogenic amoeba, is indistinguishable in its cyst and trophozoite stages from those of non-pathogenic E. moshkovskii and E. dispar by light microscopy. We have developed a nested multiplex PCR targeting a 16S-like rRNA gene for differential detection of all the three morphologically similar forms of E. histolytica, E. moshkovskii and E. dispar simultaneously in stool samples. Results The species specific product size for E. histolytica, E. moshkovskii and E. dispar was 439, 553 and 174 bp respectively, which was clearly different for all the three Entamoeba species. The nested multiplex PCR showed a sensitivity of 94% and specificity of 100% for the demonstration of E. histolytica, E. moshkovskii and E. dispar DNA in stool samples. The PCR was positive for E. histolytica, E. moshkovskii and E. dispar in a total of 190 out of 202 stool specimens (94% sensitive that were positive for E. histolytica/E. dispar/E. moshkovskii by examination of stool by microscopy and/or culture. All the 35 negative control stool samples that were negative for E. histolytica/E. dispar/E. moshkovskii by microscopy and culture were also found negative by the nested multiplex PCR (100% specific. The result from the study shows that only 34.6% of the patient stool samples that were positive for E. histolytica/E. dispar/E. moshkovskii by examination of stool by microscopy and/or culture, were actually positive for pathogenic E. histolytica and the remaining majority of the stool samples were positive for non-pathogenic E. dispar or E. moshkovskii as demonstrated by the use of nested multiplex PCR. Conclusion The present study reports a new nested multiplex PCR strategy for species specific detection and differentiation of E. histolytica, E. dispar and E. moshkovskii DNA in stool specimens. The test is highly specific, sensitive and also rapid, providing the results within 12 hours of receiving stool specimens.

  15. Multiplexed Engineering in Biology.

    Science.gov (United States)

    Rogers, Jameson K; Church, George M

    2016-03-01

    Biotechnology is the manufacturing technology of the future. However, engineering biology is complex, and many possible genetic designs must be evaluated to find cells that produce high levels of a desired drug or chemical. Recent advances have enabled the design and construction of billions of genetic variants per day, but evaluation capacity remains limited to thousands of variants per day. Here we evaluate biological engineering through the lens of the design–build–test cycle framework and highlight the role that multiplexing has had in transforming the design and build steps. We describe a multiplexed solution to the ‘test’ step that is enabled by new research. Achieving a multiplexed test step will permit a fully multiplexed engineering cycle and boost the throughput of biobased product development by up to a millionfold.

  16. Combining target enrichment with barcode multiplexing for high throughput SNP discovery

    Directory of Open Access Journals (Sweden)

    Lunke Sebastian

    2010-11-01

    Full Text Available Abstract Background The primary goal of genetic linkage analysis is to identify genes affecting a phenotypic trait. After localisation of the linkage region, efficient genetic dissection of the disease linked loci requires that functional variants are identified across the loci. These functional variations are difficult to detect due to extent of genetic diversity and, to date, incomplete cataloguing of the large number of variants present both within and between populations. Massively parallel sequencing platforms offer unprecedented capacity for variant discovery, however the number of samples analysed are still limited by cost per sample. Some progress has been made in reducing the cost of resequencing using either multiplexing methodologies or through the utilisation of targeted enrichment technologies which provide the ability to resequence genomic areas of interest rather that full genome sequencing. Results We developed a method that combines current multiplexing methodologies with a solution-based target enrichment method to further reduce the cost of resequencing where region-specific sequencing is required. Our multiplex/enrichment strategy produced high quality data with nominal reduction of sequencing depth. We undertook a genotyping study and were successful in the discovery of novel SNP alleles in all samples at uniplex, duplex and pentaplex levels. Conclusion Our work describes the successful combination of a targeted enrichment method and index barcode multiplexing to reduce costs, time and labour associated with processing large sample sets. Furthermore, we have shown that the sequencing depth obtained is adequate for credible SNP genotyping analysis at uniplex, duplex and pentaplex levels.

  17. 76 FR 24793 - Highly Pathogenic Avian Influenza

    Science.gov (United States)

    2011-05-03

    .... APHIS-2006-0074] RIN 0579-AC36 Highly Pathogenic Avian Influenza AGENCY: Animal and Plant Health... any subtype of highly pathogenic avian influenza is considered to exist. The interim rule also imposed... avian influenza, or that have moved through regions where any subtype of highly pathogenic avian...

  18. One-Step Multiplex RT-qPCR Assay for the detection of Peste des petits ruminants virus, Capripoxvirus, Pasteurella multocida and Mycoplasma capricolum subspecies (ssp.) capripneumoniae

    International Nuclear Information System (INIS)

    Settypalli, T.B.K.; Lamien, C.; Spergser, J.; Lelenta, M.; Wade, A.; Gelaye, E.; Loitsch, A.; Minoungou, G.; Thiaucourt, F.; Diallo, A.

    2016-01-01

    17 samples, PPRV in 45, and PM in six samples. In addition, three samples showed a co-infection of PPRV and PM. Overall, the one-step multiplex RT-qPCR assay developed will be a valuable tool for rapid detection of individual and co-infections of the targeted pathogens with high specificity and sensitivity. (author)

  19. One-Step Multiplex RT-qPCR Assay for the Detection of Peste des petits ruminants virus, Capripoxvirus, Pasteurella multocida and Mycoplasma capricolum subspecies (ssp. capripneumoniae.

    Directory of Open Access Journals (Sweden)

    Tirumala Bharani Kumar Settypalli

    17 samples, PPRV in 45, and PM in six samples. In addition, three samples showed a co-infection of PPRV and PM. Overall, the one-step multiplex RT-qPCR assay developed will be a valuable tool for rapid detection of individual and co-infections of the targeted pathogens with high specificity and sensitivity.

  20. Simulation of path delay multiplexing-based Fourier transform spectrometer for fiber Bragg grating interrogation.

    Science.gov (United States)

    Chelliah, Pandian; Sahoo, Trilochan; Singh, Sheela; Sujatha, Annie

    2015-10-20

    A Fourier transform spectrometer (FTS) used for interrogating a fiber Bragg grating (FBG) consists of a scanning-type interferometer. The FTS has a broad wavelength range of operation and good multiplexing capability. However, it has poor wavelength resolution and interrogation speed. We propose a modification to the FTS using path delay multiplexing to improve the same. Using this method, spatial resolution and interrogation time can be improved by n times by using n path delays. In this paper, simulation results for n=2, 5 are shown.

  1. Multiplexing milli-volt transmitter for operation in high ambient temperatures

    International Nuclear Information System (INIS)

    Phillips, G.J.

    1980-01-01

    A high integrity method of multiplexing up to two hundred and fifty millivolt level signals and transmitting the data to a remote measuring station via a 12 core flexible cable is described. The system was designed for operation in the normally hazardous and therefore inaccessible areas where high ambient temperatures are experienced. Additionally, because one potential application is in nuclear reactor systems, the design is tolerant to high levels of gamma background. The system's high reliability, high integrity and relatively small and conventional cable installation, makes it applicable to situations which depend upon temperature measurement for plant or personnel safety. (author)

  2. Innovative diffraction gratings for high-resolution resonant inelastic soft x-ray scattering spectroscopy

    International Nuclear Information System (INIS)

    Voronov, D.L.; Warwick, T.; Gullikson, E. M.; Salmassi, F.; Padmore, H. A.

    2016-01-01

    High-resolution Resonant Inelastic X-ray Scattering (RIXS) requires diffraction gratings with very exacting characteristics. The gratings should provide both very high dispersion and high efficiency which are conflicting requirements and extremely challenging to satisfy in the soft x-ray region for a traditional grazing incidence geometry. To achieve high dispersion one should increase the groove density of a grating; this however results in a diffraction angle beyond the critical angle range and results in drastic efficiency loss. The problem can be solved by use of multilayer coated blazed gratings (MBG). In this work we have investigated the diffraction characteristics of MBGs via numerical simulations and have developed a procedure for optimization of grating design for a multiplexed high resolution imaging spectrometer for RIXS spectroscopy to be built in sector 6 at the Advanced Light Source (ALS). We found that highest diffraction efficiency can be achieved for gratings optimized for 4"t"h or 5"t"h order operation. Fabrication of such gratings is an extremely challenging technological problem. We present a first experimental prototype of these gratings and report its performance. High order and high line density gratings have the potential to be a revolutionary new optical element that should have great impact in the area of soft x-ray RIXS.

  3. A multiplex ligation detection assay for the characterization of Salmonella enterica strains

    NARCIS (Netherlands)

    Aarts, H.J.M.; Vos, P.; Larsson, J.T.; Hoek, van A.H.A.M.; Huehn, S.; Weijers, T.; Gronlund, H.A.; Malorny, B.

    2011-01-01

    A proof of principle of a multi-target assay for genotyping Salmonella has been developed targeting 62 genomic marker sequences of Salmonella related to pathogenicity. The assay is based on multiplex ligation detection reaction (LDR) followed by customized ArrayTube (R) microarray detection. The

  4. Simultaneous Detection of Four Foodborne Viruses in Food Samples Using a One-Step Multiplex Reverse Transcription PCR.

    Science.gov (United States)

    Lee, Shin-Young; Kim, Mi-Ju; Kim, Hyun-Joong; Jeong, KwangCheol Casey; Kim, Hae-Yeong

    2018-02-28

    A one-step multiplex reverse transcription PCR (RT-PCR) method comprising six primer sets (for the detection of norovirus GI and GII, hepatitis A virus, rotavirus, and astrovirus) was developed to simultaneously detect four kinds of pathogenic viruses. The size of the PCR products for norovirus GI and GII, hepatitis A virus (VP3/VP1 and P2A regions), rotavirus, and astrovirus were 330, 164, 244, 198, 629, and 449 bp, respectively. The RT-PCR with the six primer sets showed specificity for the pathogenic viruses. The detection limit of the developed multiplex RT-PCR, as evaluated using serially diluted viral RNAs, was comparable to that of one-step single RT-PCR. Moreover, this multiplex RT-PCR was evaluated using food samples such as water, oysters, lettuce, and vegetable product. These food samples were artificially spiked with the four kinds of viruses in diverse combinations, and the spiked viruses in all food samples were detected successfully.

  5. Multiplex enrichment quantitative PCR (ME-qPCR): a high-throughput, highly sensitive detection method for GMO identification.

    Science.gov (United States)

    Fu, Wei; Zhu, Pengyu; Wei, Shuang; Zhixin, Du; Wang, Chenguang; Wu, Xiyang; Li, Feiwu; Zhu, Shuifang

    2017-04-01

    Among all of the high-throughput detection methods, PCR-based methodologies are regarded as the most cost-efficient and feasible methodologies compared with the next-generation sequencing or ChIP-based methods. However, the PCR-based methods can only achieve multiplex detection up to 15-plex due to limitations imposed by the multiplex primer interactions. The detection throughput cannot meet the demands of high-throughput detection, such as SNP or gene expression analysis. Therefore, in our study, we have developed a new high-throughput PCR-based detection method, multiplex enrichment quantitative PCR (ME-qPCR), which is a combination of qPCR and nested PCR. The GMO content detection results in our study showed that ME-qPCR could achieve high-throughput detection up to 26-plex. Compared to the original qPCR, the Ct values of ME-qPCR were lower for the same group, which showed that ME-qPCR sensitivity is higher than the original qPCR. The absolute limit of detection for ME-qPCR could achieve levels as low as a single copy of the plant genome. Moreover, the specificity results showed that no cross-amplification occurred for irrelevant GMO events. After evaluation of all of the parameters, a practical evaluation was performed with different foods. The more stable amplification results, compared to qPCR, showed that ME-qPCR was suitable for GMO detection in foods. In conclusion, ME-qPCR achieved sensitive, high-throughput GMO detection in complex substrates, such as crops or food samples. In the future, ME-qPCR-based GMO content identification may positively impact SNP analysis or multiplex gene expression of food or agricultural samples. Graphical abstract For the first-step amplification, four primers (A, B, C, and D) have been added into the reaction volume. In this manner, four kinds of amplicons have been generated. All of these four amplicons could be regarded as the target of second-step PCR. For the second-step amplification, three parallels have been taken for

  6. Microarray multiplex assay for the simultaneous detection and discrimination of hepatitis B, hepatitis C, and human immunodeficiency type-1 viruses in human blood samples

    International Nuclear Information System (INIS)

    Hsia, Chu Chieh; Chizhikov, Vladimir E.; Yang, Amy X.; Selvapandiyan, Angamuthu; Hewlett, Indira; Duncan, Robert; Puri, Raj K.; Nakhasi, Hira L.; Kaplan, Gerardo G.

    2007-01-01

    Hepatitis B virus (HBV), hepatitis C virus (HCV), and human immunodeficiency virus type-1 (HIV-1) are transfusion-transmitted human pathogens that have a major impact on blood safety and public health worldwide. We developed a microarray multiplex assay for the simultaneous detection and discrimination of these three viruses. The microarray consists of 16 oligonucleotide probes, immobilized on a silylated glass slide. Amplicons from multiplex PCR were labeled with Cy-5 and hybridized to the microarray. The assay detected 1 International Unit (IU), 10 IU, 20 IU of HBV, HCV, and HIV-1, respectively, in a single multiplex reaction. The assay also detected and discriminated the presence of two or three of these viruses in a single sample. Our data represent a proof-of-concept for the possible use of highly sensitive multiplex microarray assay to screen and confirm the presence of these viruses in blood donors and patients

  7. Next Generation Molecular Histology Using Highly Multiplexed Ion Beam Imaging (MIBI) of Breast Cancer Tissue Specimens for Enhanced Clinical Guidance

    Science.gov (United States)

    2016-07-01

    AWARD NUMBER: W81XWH- 14-1-0192 TITLE: Next-Generation Molecular Histology Using Highly Multiplexed Ion Beam Imaging (MIBI) of Breast Cancer...DATES COVERED 4. TITLE AND SUBTITLE Next-Generation Molecular Histology Using Highly Multiplexed Ion Beam Imaging (MIBI) of Breast Cancer Tissue

  8. An ultra-high discrimination Y chromosome short tandem repeat multiplex DNA typing system.

    Directory of Open Access Journals (Sweden)

    Erin K Hanson

    Full Text Available In forensic casework, Y chromosome short tandem repeat markers (Y-STRs are often used to identify a male donor DNA profile in the presence of excess quantities of female DNA, such as is found in many sexual assault investigations. Commercially available Y-STR multiplexes incorporating 12-17 loci are currently used in forensic casework (Promega's PowerPlex Y and Applied Biosystems' AmpFlSTR Yfiler. Despite the robustness of these commercial multiplex Y-STR systems and the ability to discriminate two male individuals in most cases, the coincidence match probabilities between unrelated males are modest compared with the standard set of autosomal STR markers. Hence there is still a need to develop new multiplex systems to supplement these for those cases where additional discriminatory power is desired or where there is a coincidental Y-STR match between potential male participants. Over 400 Y-STR loci have been identified on the Y chromosome. While these have the potential to increase the discrimination potential afforded by the commercially available kits, many have not been well characterized. In the present work, 91 loci were tested for their relative ability to increase the discrimination potential of the commonly used 'core' Y-STR loci. The result of this extensive evaluation was the development of an ultra high discrimination (UHD multiplex DNA typing system that allows for the robust co-amplification of 14 non-core Y-STR loci. Population studies with a mixed African American and American Caucasian sample set (n = 572 indicated that the overall discriminatory potential of the UHD multiplex was superior to all commercial kits tested. The combined use of the UHD multiplex and the Applied Biosystems' AmpFlSTR Yfiler kit resulted in 100% discrimination of all individuals within the sample set, which presages its potential to maximally augment currently available forensic casework markers. It could also find applications in human evolutionary

  9. Nanoscale organization of the pathogen receptor DC-SIGN mapped by single-molecule high-resolution fluorescence microscopy.

    NARCIS (Netherlands)

    Bakker, B.I. de; Lange, F. de; Cambi, A.; Korterik, J.P.; Dijk, E.M. van; Hulst, N.F. van; Figdor, C.G.; Garcia-Parajo, M.F.

    2007-01-01

    DC-SIGN, a C-type lectin exclusively expressed on dendritic cells (DCs), plays an important role in pathogen recognition by binding with high affinity to a large variety of microorganisms. Recent experimental evidence points to a direct relation between the function of DC-SIGN as a viral receptor

  10. Nanoscale organization of the pathogen receptor DC-SIGN mapped by single-molecule high-resolution flourescence microscopy

    NARCIS (Netherlands)

    de Bakker, B.I.; de Lange, Frank; Cambi, Alessandra; Cambi, A.; Korterik, Jeroen P.; van Dijk, E.M.H.P.; van Hulst, N.F.; Figdor, Carl; Garcia Parajo, M.F.

    2007-01-01

    DC-SIGN, a C-type lectin exclusively expressed on dendritic cells (DCs), plays an important role in pathogen recognition by binding with high affinity to a large variety of microorganisms. Recent experimental evidence points to a direct relation between the function of DC-SIGN as a viral receptor

  11. Development and first evaluation of a novel multiplex real-time PCR on whole blood samples for rapid pathogen identification in critically ill patients with sepsis.

    Science.gov (United States)

    van de Groep, Kirsten; Bos, Martine P; Savelkoul, Paul H M; Rubenjan, Anna; Gazenbeek, Christel; Melchers, Willem J G; van der Poll, Tom; Juffermans, Nicole P; Ong, David S Y; Bonten, Marc J M; Cremer, Olaf L

    2018-04-26

    Molecular tests may enable early adjustment of antimicrobial therapy and be complementary to blood culture (BC) which has imperfect sensitivity in critically ill patients. We evaluated a novel multiplex real-time PCR assay to diagnose bloodstream pathogens directly in whole blood samples (BSI-PCR). BSI-PCR included 11 species- and four genus-specific PCRs, a molecular Gram-stain PCR, and two antibiotic resistance markers. We collected 5 mL blood from critically ill patients simultaneously with clinically indicated BC. Microbial DNA was isolated using the Polaris method followed by automated DNA extraction. Sensitivity and specificity were calculated using BC as reference. BSI-PCR was evaluated in 347 BC-positive samples (representing up to 50 instances of each pathogen covered by the test) and 200 BC-negative samples. Bacterial species-specific PCR sensitivities ranged from 65 to 100%. Sensitivity was 26% for the Gram-positive PCR, 32% for the Gram-negative PCR, and ranged 0 to 7% for yeast PCRs. Yeast detection was improved to 40% in a smaller set-up. There was no overall association between BSI-PCR sensitivity and time-to-positivity of BC (which was highly variable), yet Ct-values were lower for true-positive versus false-positive PCR results. False-positive results were observed in 84 (4%) of the 2200 species-specific PCRs in 200 culture-negative samples, and ranged from 0 to 6% for generic PCRs. Sensitivity of BSI-PCR was promising for individual bacterial pathogens, but still insufficient for yeasts and generic PCRs. Further development of BSI-PCR will focus on improving sensitivity by increasing input volumes and on subsequent implementation as a bedside test.

  12. Development of multiplex loop mediated isothermal amplification (m-LAMP) label-based gold nanoparticles lateral flow dipstick biosensor for detection of pathogenic Leptospira.

    Science.gov (United States)

    Nurul Najian, A B; Engku Nur Syafirah, E A R; Ismail, Nabilah; Mohamed, Maizan; Yean, Chan Yean

    2016-01-15

    In recent years extensive numbers of molecular diagnostic methods have been developed to meet the need of point-of-care devices. Efforts have been made towards producing rapid, simple and inexpensive DNA tests, especially in the diagnostics field. We report on the development of a label-based lateral flow dipstick for the rapid and simple detection of multiplex loop-mediated isothermal amplification (m-LAMP) amplicons. A label-based m-LAMP lateral flow dipstick assay was developed for the simultaneous detection of target DNA template and a LAMP internal control. This biosensor operates through a label based system, in which probe-hybridization and the additional incubation step are eliminated. We demonstrated this m-LAMP assay by detecting pathogenic Leptospira, which causes the re-emerging disease Leptospirosis. The lateral flow dipstick was developed to detect of three targets, the LAMP target amplicon, the LAMP internal control amplicon and a chromatography control. Three lines appeared on the dipstick, indicating positive results for all representative pathogenic Leptospira species, whereas two lines appeared, indicating negative results, for other bacterial species. The specificity of this biosensor assay was 100% when it was tested with 13 representative pathogenic Leptospira species, 2 intermediate Leptospira species, 1 non-pathogenic Leptospira species and 28 other bacteria species. This study found that this DNA biosensor was able to detect DNA at concentrations as low as 3.95 × 10(-1) genomic equivalent ml(-1). An integrated m-LAMP and label-based lateral flow dipstick was successfully developed, promising simple and rapid visual detection in clinical diagnostics and serving as a point-of-care device. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Helicity multiplexed broadband metasurface holograms.

    Science.gov (United States)

    Wen, Dandan; Yue, Fuyong; Li, Guixin; Zheng, Guoxing; Chan, Kinlong; Chen, Shumei; Chen, Ming; Li, King Fai; Wong, Polis Wing Han; Cheah, Kok Wai; Pun, Edwin Yue Bun; Zhang, Shuang; Chen, Xianzhong

    2015-09-10

    Metasurfaces are engineered interfaces that contain a thin layer of plasmonic or dielectric nanostructures capable of manipulating light in a desirable manner. Advances in metasurfaces have led to various practical applications ranging from lensing to holography. Metasurface holograms that can be switched by the polarization state of incident light have been demonstrated for achieving polarization multiplexed functionalities. However, practical application of these devices has been limited by their capability for achieving high efficiency and high image quality. Here we experimentally demonstrate a helicity multiplexed metasurface hologram with high efficiency and good image fidelity over a broad range of frequencies. The metasurface hologram features the combination of two sets of hologram patterns operating with opposite incident helicities. Two symmetrically distributed off-axis images are interchangeable by controlling the helicity of the input light. The demonstrated helicity multiplexed metasurface hologram with its high performance opens avenues for future applications with functionality switchable optical devices.

  14. Development of a Massive, Highly Multiplexible, Phonon-Mediated Particle Detector Using Kinetic Inductance Detectors

    Science.gov (United States)

    Chang, Y.-Y.; Cornell, B.; Aralis, T.; Bumble, B.; Golwala, S. R.

    2018-04-01

    We present a status update on the development of a phonon-mediated particle detector using kinetic inductance detector (KID). The design is intended for O(1) kg substrate, using O(102) KIDs on a single readout line, to image the athermal phonon distribution at energy resolution. The design specification is set by the need to improve position reconstruction fidelity while maintaining low energy threshold for future rare-event searches such as for low-mass dark matter. We report on the design, which shows negligible crosstalk and > 95% inductor current uniformity, using the coplanar waveguide feedline, ground shield, and a new class of KIDs with symmetric coplanar stripline (sCPS) inductor. The multiplexing is designed upon the frequency-geometry relation we develop for the sCPS KIDs. We introduce the fabrications of the Nb RF assessment prototypes and the high phonon collection efficiency Al-Nb devices. We achieve ≲ 0.07% frequency displacement on a 80-KID RF assessment prototype, and the result indicates that we may place more than 180 resonances in our 0.4 GHz readout band with minimal frequency misordering. The coupling quality factors are ˜ 105 as designed. Finally, we update our work in progress in fabricating the O(102) KID, bi-material, O(1) kg detectors, and the expected position and energy resolutions.

  15. Campylobacter ureolyticus: an emerging gastrointestinal pathogen?

    LENUS (Irish Health Repository)

    Bullman, Susan

    2011-03-01

    A total of 7194 faecal samples collected over a 1-year period from patients presenting with diarrhoea were screened for Campylobacter spp. using EntericBio(®) , a multiplex-PCR system. Of 349 Campylobacter-positive samples, 23.8% were shown to be Campylobacter ureolyticus, using a combination of 16S rRNA gene analysis and highly specific primers targeting the HSP60 gene of this organism. This is, to the best of our knowledge, the first report of C. ureolyticus in the faeces of patients presenting with gastroenteritis and may suggest a role for this organism as an emerging enteric pathogen.

  16. Recent advances in high-capacity free-space optical and radio-frequency communications using orbital angular momentum multiplexing

    Science.gov (United States)

    Ren, Yongxiong; Xie, Guodong; Yan, Yan; Li, Long; Zhao, Zhe; Wang, Jian; Tur, Moshe; Molisch, Andreas F.; Ashrafi, Solyman

    2017-01-01

    There is a continuing growth in the demand for data bandwidth, and the multiplexing of multiple independent data streams has the potential to provide the needed data capacity. One technique uses the spatial domain of an electromagnetic (EM) wave, and space division multiplexing (SDM) has become increasingly important for increased transmission capacity and spectral efficiency of a communication system. A subset of SDM is mode division multiplexing (MDM), in which multiple orthogonal beams each on a different mode can be multiplexed. A potential modal basis set to achieve MDM is to use orbital angular momentum (OAM) of EM waves. In such a system, multiple OAM beams each carrying an independent data stream are multiplexed at the transmitter, propagate through a common medium and are demultiplexed at the receiver. As a result, the total capacity and spectral efficiency of the communication system can be multiplied by a factor equal to the number of transmitted OAM modes. Over the past few years, progress has been made in understanding the advantages and limitations of using multiplexed OAM beams for communication systems. In this review paper, we highlight recent advances in the use of OAM multiplexing for high-capacity free-space optical and millimetre-wave communications. We discuss different technical challenges (e.g. atmospheric turbulence and crosstalk) as well as potential techniques to mitigate such degrading effects. This article is part of the themed issue ‘Optical orbital angular momentum’. PMID:28069770

  17. Design of a high speed, high resolution thermometry system for 1.5 GHz superconducting radio frequency cavities

    Science.gov (United States)

    Knobloch, Jens; Muller, Henry; Padamsee, Hasan

    1994-11-01

    Presented in this paper are the description and the test results of a new stationary thermometry system used to map the temperature of the outer surface of 1.5 GHz superconducting single-cell cavities during operation at 1.6 K. The system comprises 764 removable carbon thermometers whose signals are multiplexed and scanned by a Macintosh computer. A complete temperature map can be obtained in as little as 0.1 s at a temperature resolution of about 0.2 mK. Alternatively, it has been demonstrated that if the acquisition time is increased to several seconds, then a temperature resolution on the order of 30 μK is possible. To our knowledge, these are the fastest acquisition times so far achieved with L-band cavities at these resolutions.

  18. A fully sealed plastic chip for multiplex PCR and its application in bacteria identification.

    Science.gov (United States)

    Xu, Youchun; Yan, He; Zhang, Yan; Jiang, Kewei; Lu, Ying; Ren, Yonghong; Wang, Hui; Wang, Shan; Xing, Wanli

    2015-07-07

    Multiplex PCR is an effective tool for simultaneous multiple target detection but is limited by the intrinsic interference and competition among primer pairs when it is performed in one reaction tube. Dividing a multiplex PCR into many single PCRs is a simple strategy to overcome this issue. Here, we constructed a plastic, easy-to-use, fully sealed multiplex PCR chip based on reversible centrifugation for the simultaneous detection of 63 target DNA sequences. The structure of the chip is quite simple, which contains sine-shaped infusing channels and a number of reaction chambers connecting to one side of these channels. Primer pairs for multiplex PCR were sequentially preloaded in the different reaction chambers, and the chip was enclosed with PCR-compatible adhesive tape. For usage, the PCR master mix containing a DNA template is pipetted into the infusing channels and centrifuged into the reaction chambers, leaving the infusing channels filled with air to avoid cross-contamination of the different chambers. Then, the chip is sealed and placed on a flat thermal cycler for PCR. Finally, amplification products can be detected in situ using a fluorescence scanner or recovered by reverse centrifugation for further analyses. Therefore, our chip possesses two functions: 1) it can be used for multi-target detection based on end-point in situ fluorescence detection; and 2) it can work as a sample preparation unit for analyses that need multiplex PCR such as hybridization and target sequencing. The performance of this chip was carefully examined and further illustrated in the identification of 8 pathogenic bacterial genomic DNA samples and 13 drug-resistance genes. Due to simplicity of its structure and operation, accuracy and generality, high-throughput capacity, and versatile functions (i.e., for in situ detection and sample preparation), our multiplex PCR chip has great potential in clinical diagnostics and nucleic acid-based point-of-care testing.

  19. Optimization of the segmented method for optical compression and multiplexing system

    Science.gov (United States)

    Al Falou, Ayman

    2002-05-01

    Because of the constant increasing demands of images exchange, and despite the ever increasing bandwidth of the networks, compression and multiplexing of images is becoming inseparable from their generation and display. For high resolution real time motion pictures, electronic performing of compression requires complex and time-consuming processing units. On the contrary, by its inherent bi-dimensional character, coherent optics is well fitted to perform such processes that are basically bi-dimensional data handling in the Fourier domain. Additionally, the main limiting factor that was the maximum frame rate is vanishing because of the recent improvement of spatial light modulator technology. The purpose of this communication is to benefit from recent optical correlation algorithms. The segmented filtering used to store multi-references in a given space bandwidth product optical filter can be applied to networks to compress and multiplex images in a given bandwidth channel.

  20. A multiplex ligation detection assay for the characterization of Salmonella enterica strains

    DEFF Research Database (Denmark)

    Aarts, Henk J.M.; Vos, Pieter; Larsson, Jonas T.

    2011-01-01

    A proof of principle of a multi-target assay for genotyping Salmonella has been developed targeting 62 genomic marker sequences of Salmonella related to pathogenicity. The assay is based on multiplex ligation detection reaction (LDR) followed by customized ArrayTube® microarray detection. The fea...... assessors that support bio-traceability models....

  1. Signal multiplexing scheme for LINAC

    International Nuclear Information System (INIS)

    Sujo, C.I.; Mohan, Shyam; Joshi, Gopal; Singh, S.K.; Karande, Jitendra

    2004-01-01

    For the proper operation of the LINAC some signals, RF (radio frequency) as well as LF (low frequency) have to be available at the Master Control Station (MCS). These signals are needed to control, calibrate and characterize the RF fields in the resonators. This can be achieved by proper multiplexing of various signals locally and then routing the selected signals to the MCS. A multiplexing scheme has been designed and implemented, which will allow the signals from the selected cavity to the MCS. High isolation between channels and low insertion loss for a given signal are important issues while selecting the multiplexing scheme. (author)

  2. Continuous-Flow Detector for Rapid Pathogen Identification

    Energy Technology Data Exchange (ETDEWEB)

    Barrett, Louise M. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Microfluidics; Skulan, Andrew J. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Microfluidics; Singh, Anup K. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Microfluidics; Cummings, Eric B. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Microfluidics; Fiechtner, Gregory J. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Microfluidics

    2006-09-01

    This report describes the continued development of a low-power, portable detector for the rapid identification of pathogens such as B. anthracis and smallpox. Based on our successful demonstration of the continuous filter/concentrator inlet, we believe strongly that the inlet section will enable differentiation between viable and non-viable populations, between types of cells, and between pathogens and background contamination. Selective, continuous focusing of particles in a microstream enables highly selective and sensitive identification using fluorescently labeled antibodies and other receptors such as peptides, aptamers, or small ligands to minimize false positives. Processes such as mixing and lysing will also benefit from the highly localized particle streams. The concentrator is based on faceted prisms to contract microfluidic flows while maintaining uniform flowfields. The resulting interfaces, capable of high throughput, serve as high-, low-, and band-pass filters to direct selected bioparticles to a rapid, affinity-based detection system. The proposed device is superior to existing array-based detectors as antibody-pathogen binding can be accomplished in seconds rather than tens of minutes or even hours. The system is being designed to interface with aerosol collectors under development by the National Laboratories or commercial systems. The focused stream is designed to be interrogated using diode lasers to differentiate pathogens by light scattering. Identification of particles is done using fluorescently labeled antibodies to tag the particles, followed by multiplexed laser-induced fluorescence (LIF) detection (achieved by labeling each antibody with a different dye).

  3. A high spatial resolution distributed optical fiber grating sensing system based on OFDR

    Science.gov (United States)

    Dong, Ke; Xiong, Yuchuan; Wen, Hongqiao; Tong, Xinlin; Zhang, Cui; Deng, Chengwei

    2017-10-01

    A distributed optical fiber grating sensing system with large capacity and high spatial resolution is presented. Since highdensity identical weak grating array was utilized as sensing fiber, the multiplexing number was greatly increased, meanwhile, optical frequency domain reflectometry (OFDR) technology was used to implement high resolution distributed sensing system. In order to eliminate the nonlinear effect of tunable light source, a windowed FFT algorithm based on cubic spline interpolation was applied. The feasibility of the algorithm was experimentally testified, ultimately, the spatial resolution of system can reach mm-level. The influence of the crosstalk signal in the grating array on the OFDR system was analyzed. A method that a long enough delay fiber was added before the first FBG to remove crosstalk signal was proposed. The experiment was verified using an optical fiber with 113 uniform Bragg gratings at an interval of 10cm whose reflectivity are less than 1%. It demonstrates that crosstalk signal and measurement signal can be completely separated in the distance domain after adding a long enough delay fiber. Finally, the temperature experiment of distributed grating sensing system was carried out. The results display that each raster's center wavelength in the fiber link is independent of each other and the center wavelength drift has a good linear relationship with the temperature. The sensitivity of linear fitting is equal to 11.1pm/°C.

  4. Advanced combinational microfluidic multiplexer for fuel cell reactors

    International Nuclear Information System (INIS)

    Lee, D W; Kim, Y; Cho, Y-H; Doh, I

    2013-01-01

    An advanced combinational microfluidic multiplexer capable to address multiple fluidic channels for fuel cell reactors is proposed. Using only 4 control lines and two different levels of control pressures, the proposed multiplexer addresses up to 19 fluidic channels, at least two times larger than the previous microfluidic multiplexers. The present multiplexer providing high control efficiency and simple structure for channel addressing would be used in the application areas of the integrated microfluidic systems such as fuel cell reactors and dynamic pressure generators

  5. High-resolution X-ray television and high-resolution video recorders

    International Nuclear Information System (INIS)

    Haendle, J.; Horbaschek, H.; Alexandrescu, M.

    1977-01-01

    The improved transmission properties of the high-resolution X-ray television chain described here make it possible to transmit more information per television image. The resolution in the fluoroscopic image, which is visually determined, depends on the dose rate and the inertia of the television pick-up tube. This connection is discussed. In the last few years, video recorders have been increasingly used in X-ray diagnostics. The video recorder is a further quality-limiting element in X-ray television. The development of function patterns of high-resolution magnetic video recorders shows that this quality drop may be largely overcome. The influence of electrical band width and number of lines on the resolution in the X-ray television image stored is explained in more detail. (orig.) [de

  6. Performance of automated multiplex PCR using sonication fluid for diagnosis of periprosthetic joint infection: a prospective cohort.

    Science.gov (United States)

    Renz, Nora; Feihl, Susanne; Cabric, Sabrina; Trampuz, Andrej

    2017-12-01

    Sonication of explanted prostheses improved the microbiological diagnosis of periprosthetic joint infections (PJI). We evaluated the performance of automated multiplex polymerase chain reaction (PCR) using sonication fluid for the microbiological diagnosis of PJI. In a prospective cohort using uniform definition criteria for PJI, explanted joint prostheses were investigated by sonication and the resulting sonication fluid was analyzed by culture and multiplex PCR. McNemar's Chi-squared test was used to compare the performance of diagnostic tests. Among 111 patients, PJI was diagnosed in 78 (70%) and aseptic failure in 33 (30%). For the diagnosis of PJI, the sensitivity and specificity of periprosthetic tissue culture was 51 and 100%, of sonication fluid culture 58 and 100%, and of sonication fluid PCR 51 and 94%, respectively. Among 70 microorganisms, periprosthetic tissue culture grew 52 (74%), sonication fluid culture grew 50 (71%) and sonication fluid PCR detected 37 pathogens (53%). If only organisms are considered, for which primers are included in the test panel, PCR detected 37 of 58 pathogens (64%). The sonication fluid PCR missed 19 pathogens (predominantly oral streptococci and anaerobes), whereas 7 additional microorganisms were detected only by PCR (including Cutibacterium spp. and coagulase-negative staphylococci). The performance of multiplex PCR using sonication fluid is comparable to culture of periprosthetic tissue or sonication fluid. The advantages of PCR are short processing time (PCR, especially of low-virulent organisms.

  7. High core count single-mode multicore fiber for dense space division multiplexing

    DEFF Research Database (Denmark)

    Aikawa, K.; Sasaki, Y.; Amma, Y.

    2016-01-01

    Multicore fibers and few-mode fibers have the potential to realize dense-space-division multiplexing systems. Several dense-space-division multiplexing system transmission experiments over multicore fibers and few-mode fibers have been demonstrated so far. Multicore fibers, including recent resul...

  8. Microwave multiplex readout for superconducting sensors

    Energy Technology Data Exchange (ETDEWEB)

    Ferri, E., E-mail: elena.ferri@mib.infn.it [Università Milano-Bicocca, Milan (Italy); INFN Sez. di Milano-Bicocca, Milan (Italy); Becker, D.; Bennett, D. [NIST, Boulder, CO (United States); Faverzani, M. [Università Milano-Bicocca, Milan (Italy); INFN Sez. di Milano-Bicocca, Milan (Italy); Fowler, J.; Gard, J. [NIST, Boulder, CO (United States); Giachero, A. [Università Milano-Bicocca, Milan (Italy); INFN Sez. di Milano-Bicocca, Milan (Italy); Hays-Wehle, J.; Hilton, G. [NIST, Boulder, CO (United States); Maino, M. [Università Milano-Bicocca, Milan (Italy); INFN Sez. di Milano-Bicocca, Milan (Italy); Mates, J. [NIST, Boulder, CO (United States); Puiu, A.; Nucciotti, A. [Università Milano-Bicocca, Milan (Italy); INFN Sez. di Milano-Bicocca, Milan (Italy); Reintsema, C.; Schmidt, D.; Swetz, D.; Ullom, J.; Vale, L. [NIST, Boulder, CO (United States)

    2016-07-11

    The absolute neutrino mass scale is still an outstanding challenge in both particle physics and cosmology. The calorimetric measurement of the energy released in a nuclear beta decay is a powerful tool to determine the effective electron-neutrino mass. In the last years, the progress on low temperature detector technologies has allowed to design large scale experiments aiming at pushing down the sensitivity on the neutrino mass below 1 eV. Even with outstanding performances in both energy (~ eV on keV) and time resolution (~ 1 μs) on the single channel, a large number of detectors working in parallel is required to reach a sub-eV sensitivity. Microwave frequency domain readout is the best available technique to readout large array of low temperature detectors, such as Transition Edge Sensors (TESs) or Microwave Kinetic Inductance Detectors (MKIDs). In this way a multiplex factor of the order of thousands can be reached, limited only by the bandwidth of the available commercial fast digitizers. This microwave multiplexing system will be used to readout the HOLMES detectors, an array of 1000 microcalorimeters based on TES sensors in which the {sup 163}Ho will be implanted. HOLMES is a new experiment for measuring the electron neutrino mass by means of the electron capture (EC) decay of {sup 163}Ho. We present here the microwave frequency multiplex which will be used in the HOLMES experiment and the microwave frequency multiplex used to readout the MKID detectors developed in Milan as well.

  9. Spiral Transformation for High-Resolution and Efficient Sorting of Optical Vortex Modes

    Science.gov (United States)

    Wen, Yuanhui; Chremmos, Ioannis; Chen, Yujie; Zhu, Jiangbo; Zhang, Yanfeng; Yu, Siyuan

    2018-05-01

    Mode sorting is an essential function for optical multiplexing systems that exploit the orthogonality of the orbital angular momentum mode space. The familiar log-polar optical transformation provides a simple yet efficient approach whose resolution is, however, restricted by a considerable overlap between adjacent modes resulting from the limited excursion of the phase along a complete circle around the optical vortex axis. We propose and experimentally verify a new optical transformation that maps spirals (instead of concentric circles) to parallel lines. As the phase excursion along a spiral in the wave front of an optical vortex is theoretically unlimited, this new optical transformation can separate orbital angular momentum modes with superior resolution while maintaining unity efficiency.

  10. High dynamic range image acquisition based on multiplex cameras

    Science.gov (United States)

    Zeng, Hairui; Sun, Huayan; Zhang, Tinghua

    2018-03-01

    High dynamic image is an important technology of photoelectric information acquisition, providing higher dynamic range and more image details, and it can better reflect the real environment, light and color information. Currently, the method of high dynamic range image synthesis based on different exposure image sequences cannot adapt to the dynamic scene. It fails to overcome the effects of moving targets, resulting in the phenomenon of ghost. Therefore, a new high dynamic range image acquisition method based on multiplex cameras system was proposed. Firstly, different exposure images sequences were captured with the camera array, using the method of derivative optical flow based on color gradient to get the deviation between images, and aligned the images. Then, the high dynamic range image fusion weighting function was established by combination of inverse camera response function and deviation between images, and was applied to generated a high dynamic range image. The experiments show that the proposed method can effectively obtain high dynamic images in dynamic scene, and achieves good results.

  11. Capsular typing of Streptococcus agalactiae (Lancefield group B streptococci) from fish using multiplex PCR and serotyping

    Science.gov (United States)

    Streptococcus spp. including Streptococcus agalactiae (Lancefield group B streptococci) are considered emerging pathogens responsible for approximately $1 billion USD in annual losses to the global tilapia (Oreochromis sp.) aquaculture industry. This study evaluated a published multiplex PCR capsul...

  12. Two-beam ultrabroadband coherent anti-Stokes Raman spectroscopy for high resolution gas-phase multiplex imaging

    International Nuclear Information System (INIS)

    Bohlin, Alexis; Kliewer, Christopher J.

    2014-01-01

    We propose and develop a method for wideband coherent anti-Stokes Raman spectroscopy (CARS) in the gas phase and demonstrate the single-shot measurement of N 2 , H 2 , CO 2 , O 2 , and CH 4 . Pure-rotational and vibrational O-, Q-, and S- branch spectra are collected simultaneously, with high spectral and spatial resolution, and within a single-laser-shot. The relative intensity of the rotational and vibrational signals can be tuned arbitrarily using polarization techniques. The ultrashort 7 fs pump and Stokes pulses are automatically overlapped temporally and spatially using a two-beam CARS technique, and the crossed probe beam allows for excellent spatial sectioning of the probed location

  13. Validation of microsatellite multiplexes for parentage analysis in a coral reef fish (Lutjanus carponotatus, Lutjanidae)

    KAUST Repository

    Harrison, Hugo B.

    2014-05-25

    Parentage analysis is an important tool for identifying connectivity patterns in coral reef fishes, but often requires numerous highly polymorphic markers. We isolated 21 polymorphic microsatellite markers from the stripey snapper, Lutjanus carponotatus and describe their integration into three multiplex PCRs. All markers were highly polymorphic with a mean of 24.9 ± 1.8 SE alleles per locus and an average observed heterozygosity of 0.797 ± 0.038 SE across 285 genotyped individuals. Using a simulated dataset, we conclude that the complete marker set provides sufficient resolution to resolve parent–offspring relationships in natural populations with 99.6 ± 0.1 % accuracy in parentage assignments. This multiplex assay provides an effective means of investigating larval dispersal and population connectivity in this fishery-targeted coral reef fish species and informing the design of marine protected area networks for biodiversity conservation and fisheries management.

  14. Label and label-free based surface-enhanced Raman scattering for pathogen bacteria detection: A review.

    Science.gov (United States)

    Liu, Yu; Zhou, Haibo; Hu, Ziwei; Yu, Guangxia; Yang, Danting; Zhao, Jinshun

    2017-08-15

    Rapid, accurate detection of pathogen bacteria is a highly topical research area for the sake of food safety and public health. Surface-enhanced Raman scattering (SERS) is being considered as a powerful and attractive technique for pathogen bacteria detection, due to its sensitivity, high speed, comparatively low cost, multiplexing ability and portability. This contribution aims to give a comprehensive overview of SERS as a technique for rapid detection of pathogen bacteria based on label and label-free strategies. A brief tutorial on SERS is given first of all. Then we summarize the recent trends and developments of label and label-free based SERS applied to detection of pathogen bacteria, including the relatively complete interpretation of SERS spectra. In addition, multifunctional SERS platforms for pathogen bacteria in matrix are discussed as well. Furthermore, an outlook of the work done and a perspective on the future directions of SERS as a reliable tool for real-time pathogen bacteria detection are given. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. A simple, high throughput method to locate single copy sequences from Bacterial Artificial Chromosome (BAC libraries using High Resolution Melt analysis

    Directory of Open Access Journals (Sweden)

    Caligari Peter DS

    2010-05-01

    Full Text Available Abstract Background The high-throughput anchoring of genetic markers into contigs is required for many ongoing physical mapping projects. Multidimentional BAC pooling strategies for PCR-based screening of large insert libraries is a widely used alternative to high density filter hybridisation of bacterial colonies. To date, concerns over reliability have led most if not all groups engaged in high throughput physical mapping projects to favour BAC DNA isolation prior to amplification by conventional PCR. Results Here, we report the first combined use of Multiplex Tandem PCR (MT-PCR and High Resolution Melt (HRM analysis on bacterial stocks of BAC library superpools as a means of rapidly anchoring markers to BAC colonies and thereby to integrate genetic and physical maps. We exemplify the approach using a BAC library of the model plant Arabidopsis thaliana. Super pools of twenty five 384-well plates and two-dimension matrix pools of the BAC library were prepared for marker screening. The entire procedure only requires around 3 h to anchor one marker. Conclusions A pre-amplification step during MT-PCR allows high multiplexing and increases the sensitivity and reliability of subsequent HRM discrimination. This simple gel-free protocol is more reliable, faster and far less costly than conventional PCR screening. The option to screen in parallel 3 genetic markers in one MT-PCR-HRM reaction using templates from directly pooled bacterial stocks of BAC-containing bacteria further reduces time for anchoring markers in physical maps of species with large genomes.

  16. Multiplexed Quantitation of Intraphagocyte Mycobacterium tuberculosis Secreted Protein Effectors

    Directory of Open Access Journals (Sweden)

    Fadel Sayes

    2018-04-01

    Full Text Available Summary: The pathogenic potential of Mycobacterium tuberculosis largely depends on ESX secretion systems exporting members of the multigenic Esx, Esp, and PE/PPE protein families. To study the secretion and regulation patterns of these proteins while circumventing immune cross-reactions due to their extensive sequence homologies, we developed an approach that relies on the recognition of their MHC class II epitopes by highly discriminative T cell receptors (TCRs of a panel of T cell hybridomas. The latter were engineered so that each expresses a unique fluorescent reporter linked to specific antigen recognition. The resulting polychromatic and multiplexed imaging assay enabled us to measure the secretion of mycobacterial effectors inside infected host cells. We applied this novel technology to a large panel of mutants, clinical isolates, and host-cell types to explore the host-mycobacteria interplay and its impact on the intracellular bacterial secretome, which also revealed the unexpected capacity of phagocytes from lung granuloma to present mycobacterial antigens via MHC class II. : Sayes et al. develop an approach to express distinct fluorescent reporters that is based on the recognition of specific Mycobacterium tuberculosis MHC class II epitopes by highly discriminative T cell hybridomas. This multiplexed technology allows the study of secretion, subcellular location, and regulation patterns of these instrumental protein members. Keywords: mycobacterium tuberculosis, type VII secretion systems, intracellular bacteria, T-cell hybridomas, mycobacterial virulence factors, bacterial antigen presentation, lentiviral vectors, reporter T cells, in vivo antigen presentation, protein localization

  17. 77 FR 34783 - Highly Pathogenic Avian Influenza

    Science.gov (United States)

    2012-06-12

    ... [Docket No. APHIS-2006-0074] RIN 0579-AC36 Highly Pathogenic Avian Influenza AGENCY: Animal and Plant... regions where any subtype of highly pathogenic avian influenza (HPAI) is considered to exist. The interim... avian influenza (HPAI). On January 24, 2011, we published in the Federal Register (76 FR 4046-4056...

  18. A novel IPTV program multiplex access system to EPON

    Science.gov (United States)

    Xu, Xian; Liu, Deming; He, Wei; Lu, Xi

    2007-11-01

    With the rapid development of high speed networks, such as Ethernet Passive Optical Network (EPON), traffic patterns in access networks have evolved from traditional text-oriented service to the mixed text-, voice- and video- based services, leading to so called "Triple Play". For supporting IPTV service in EPON access network infrastructure, in this article we propose a novel IPTV program multiplex access system to EPON, which enables multiple IPTV program source servers to seamlessly access to IPTV service access port of optical line terminal (OLT) in EPON. There are two multiplex schemes, namely static multiplex scheme and dynamic multiplex scheme, in implementing the program multiplexing. Static multiplex scheme is to multiplex all the IPTV programs and forward them to the OLT, regardless of the need of end-users. While dynamic multiplex scheme can dynamically multiplex and forward IPTV programs according to what the end-users actually demand and those watched by no end-user would not be multiplexed. By comparing these two schemes, a reduced traffic of EPON can be achieved by using dynamic multiplex scheme, especially when most end-users are watching the same few IPTV programs. Both schemes are implemented in our system, with their hardware and software designs described.

  19. Two-beam ultrabroadband coherent anti-Stokes Raman spectroscopy for high resolution gas-phase multiplex imaging

    Energy Technology Data Exchange (ETDEWEB)

    Bohlin, Alexis; Kliewer, Christopher J., E-mail: cjkliew@sandia.gov [Combustion Research Facility, Sandia National Laboratories, Livermore, California 94550 (United States)

    2014-01-20

    We propose and develop a method for wideband coherent anti-Stokes Raman spectroscopy (CARS) in the gas phase and demonstrate the single-shot measurement of N{sub 2}, H{sub 2}, CO{sub 2}, O{sub 2}, and CH{sub 4}. Pure-rotational and vibrational O-, Q-, and S- branch spectra are collected simultaneously, with high spectral and spatial resolution, and within a single-laser-shot. The relative intensity of the rotational and vibrational signals can be tuned arbitrarily using polarization techniques. The ultrashort 7 fs pump and Stokes pulses are automatically overlapped temporally and spatially using a two-beam CARS technique, and the crossed probe beam allows for excellent spatial sectioning of the probed location.

  20. Functional Multiplex PageRank

    Science.gov (United States)

    Iacovacci, Jacopo; Rahmede, Christoph; Arenas, Alex; Bianconi, Ginestra

    2016-10-01

    Recently it has been recognized that many complex social, technological and biological networks have a multilayer nature and can be described by multiplex networks. Multiplex networks are formed by a set of nodes connected by links having different connotations forming the different layers of the multiplex. Characterizing the centrality of the nodes in a multiplex network is a challenging task since the centrality of the node naturally depends on the importance associated to links of a certain type. Here we propose to assign to each node of a multiplex network a centrality called Functional Multiplex PageRank that is a function of the weights given to every different pattern of connections (multilinks) existent in the multiplex network between any two nodes. Since multilinks distinguish all the possible ways in which the links in different layers can overlap, the Functional Multiplex PageRank can describe important non-linear effects when large relevance or small relevance is assigned to multilinks with overlap. Here we apply the Functional Page Rank to the multiplex airport networks, to the neuronal network of the nematode C. elegans, and to social collaboration and citation networks between scientists. This analysis reveals important differences existing between the most central nodes of these networks, and the correlations between their so-called pattern to success.

  1. Multiplex PageRank.

    Directory of Open Access Journals (Sweden)

    Arda Halu

    Full Text Available Many complex systems can be described as multiplex networks in which the same nodes can interact with one another in different layers, thus forming a set of interacting and co-evolving networks. Examples of such multiplex systems are social networks where people are involved in different types of relationships and interact through various forms of communication media. The ranking of nodes in multiplex networks is one of the most pressing and challenging tasks that research on complex networks is currently facing. When pairs of nodes can be connected through multiple links and in multiple layers, the ranking of nodes should necessarily reflect the importance of nodes in one layer as well as their importance in other interdependent layers. In this paper, we draw on the idea of biased random walks to define the Multiplex PageRank centrality measure in which the effects of the interplay between networks on the centrality of nodes are directly taken into account. In particular, depending on the intensity of the interaction between layers, we define the Additive, Multiplicative, Combined, and Neutral versions of Multiplex PageRank, and show how each version reflects the extent to which the importance of a node in one layer affects the importance the node can gain in another layer. We discuss these measures and apply them to an online multiplex social network. Findings indicate that taking the multiplex nature of the network into account helps uncover the emergence of rankings of nodes that differ from the rankings obtained from one single layer. Results provide support in favor of the salience of multiplex centrality measures, like Multiplex PageRank, for assessing the prominence of nodes embedded in multiple interacting networks, and for shedding a new light on structural properties that would otherwise remain undetected if each of the interacting networks were analyzed in isolation.

  2. Multiplex PageRank.

    Science.gov (United States)

    Halu, Arda; Mondragón, Raúl J; Panzarasa, Pietro; Bianconi, Ginestra

    2013-01-01

    Many complex systems can be described as multiplex networks in which the same nodes can interact with one another in different layers, thus forming a set of interacting and co-evolving networks. Examples of such multiplex systems are social networks where people are involved in different types of relationships and interact through various forms of communication media. The ranking of nodes in multiplex networks is one of the most pressing and challenging tasks that research on complex networks is currently facing. When pairs of nodes can be connected through multiple links and in multiple layers, the ranking of nodes should necessarily reflect the importance of nodes in one layer as well as their importance in other interdependent layers. In this paper, we draw on the idea of biased random walks to define the Multiplex PageRank centrality measure in which the effects of the interplay between networks on the centrality of nodes are directly taken into account. In particular, depending on the intensity of the interaction between layers, we define the Additive, Multiplicative, Combined, and Neutral versions of Multiplex PageRank, and show how each version reflects the extent to which the importance of a node in one layer affects the importance the node can gain in another layer. We discuss these measures and apply them to an online multiplex social network. Findings indicate that taking the multiplex nature of the network into account helps uncover the emergence of rankings of nodes that differ from the rankings obtained from one single layer. Results provide support in favor of the salience of multiplex centrality measures, like Multiplex PageRank, for assessing the prominence of nodes embedded in multiple interacting networks, and for shedding a new light on structural properties that would otherwise remain undetected if each of the interacting networks were analyzed in isolation.

  3. Analogue multiplexer

    International Nuclear Information System (INIS)

    Gorshkov, V.A.; Kuznetsov, A.N.

    1980-01-01

    In systems of signal recording from several parallel spectrometric channels one can considerably reduce the total apparatus volume using a special unit - an analog multiplexer. A description of the multiplexer in the CAMAC system on the base of fast linear gating circuits which allows one analog-to-code converter to attend four spectrometric channels is given. On the example of the 4-channel spectrometer the logics of interaction of the multiple with analog-to-digital coxernver and signal recorder is shown. Electrical and functional multiplexer flow-sheets are given and its main characteristics are presented

  4. Comparison of the EntericBio multiplex PCR system with routine culture for detection of bacterial enteric pathogens.

    LENUS (Irish Health Repository)

    O'Leary, James

    2009-11-01

    The EntericBio system uses a multiplex PCR assay for the simultaneous detection of Campylobacter spp., Salmonella enterica, Shigella spp., and Escherichia coli O157 from feces. It combines overnight broth enrichment with PCR amplification and detection by hybridization. An evaluation of this system was conducted by comparing the results obtained with the system with those obtained by routine culture, supplemented with alternative PCR detection methods. In a study of 773 samples, routine culture and the EntericBio system yielded 94.6 and 92.4% negative results, respectively. Forty-two samples had positive results by culture, and all of these were positive with the EntericBio system. This system detected an additional 17 positive samples (Campylobacter spp., n = 12; Shigella spp., n = 1; E. coli O157, n = 4), but the results for 5 samples (Campylobacter spp., n = 2; Shigella spp., n = 1; E. coli O157, n = 2) could not be confirmed. The target for Shigella spp. detected by the EntericBio system is the ipaH gene, and the molecular indication of the presence of Shigella spp. was investigated by sequence analysis, which confirmed that the ipaH gene was present in a Klebsiella pneumoniae isolate from the patient. The sensitivity, specificity, positive predictive value, and negative predictive value were 100%, 99.3%, 91.5%, and 100%, respectively. Turnaround times were significantly reduced with the EntericBio system, and a result was available between 24 and 32 h after receipt of the sample in the laboratory. In addition, the amount of laboratory waste was significantly reduced by use of this system. In summary, the EntericBio system proved convenient to use, more sensitive than the conventional culture used in this study, and highly specific; and it generated results significantly faster than routine culture for the pathogens tested.

  5. ANL high resolution injector

    International Nuclear Information System (INIS)

    Minehara, E.; Kutschera, W.; Hartog, P.D.; Billquist, P.

    1985-01-01

    The ANL (Argonne National Laboratory) high-resolution injector has been installed to obtain higher mass resolution and higher preacceleration, and to utilize effectively the full mass range of ATLAS (Argonne Tandem Linac Accelerator System). Preliminary results of the first beam test are reported briefly. The design and performance, in particular a high-mass-resolution magnet with aberration compensation, are discussed. 7 refs., 5 figs., 2 tabs

  6. Tomographic Small-Animal Imaging Using a High-Resolution Semiconductor Camera

    Science.gov (United States)

    Kastis, GA; Wu, MC; Balzer, SJ; Wilson, DW; Furenlid, LR; Stevenson, G; Barber, HB; Barrett, HH; Woolfenden, JM; Kelly, P; Appleby, M

    2015-01-01

    We have developed a high-resolution, compact semiconductor camera for nuclear medicine applications. The modular unit has been used to obtain tomographic images of phantoms and mice. The system consists of a 64 x 64 CdZnTe detector array and a parallel-hole tungsten collimator mounted inside a 17 cm x 5.3 cm x 3.7 cm tungsten-aluminum housing. The detector is a 2.5 cm x 2.5 cm x 0.15 cm slab of CdZnTe connected to a 64 x 64 multiplexer readout via indium-bump bonding. The collimator is 7 mm thick, with a 0.38 mm pitch that matches the detector pixel pitch. We obtained a series of projections by rotating the object in front of the camera. The axis of rotation was vertical and about 1.5 cm away from the collimator face. Mouse holders were made out of acrylic plastic tubing to facilitate rotation and the administration of gas anesthetic. Acquisition times were varied from 60 sec to 90 sec per image for a total of 60 projections at an equal spacing of 6 degrees between projections. We present tomographic images of a line phantom and mouse bone scan and assess the properties of the system. The reconstructed images demonstrate spatial resolution on the order of 1–2 mm. PMID:26568676

  7. Highly multiplexed and quantitative cell-surface protein profiling using genetically barcoded antibodies.

    Science.gov (United States)

    Pollock, Samuel B; Hu, Amy; Mou, Yun; Martinko, Alexander J; Julien, Olivier; Hornsby, Michael; Ploder, Lynda; Adams, Jarrett J; Geng, Huimin; Müschen, Markus; Sidhu, Sachdev S; Moffat, Jason; Wells, James A

    2018-03-13

    Human cells express thousands of different surface proteins that can be used for cell classification, or to distinguish healthy and disease conditions. A method capable of profiling a substantial fraction of the surface proteome simultaneously and inexpensively would enable more accurate and complete classification of cell states. We present a highly multiplexed and quantitative surface proteomic method using genetically barcoded antibodies called phage-antibody next-generation sequencing (PhaNGS). Using 144 preselected antibodies displayed on filamentous phage (Fab-phage) against 44 receptor targets, we assess changes in B cell surface proteins after the development of drug resistance in a patient with acute lymphoblastic leukemia (ALL) and in adaptation to oncogene expression in a Myc-inducible Burkitt lymphoma model. We further show PhaNGS can be applied at the single-cell level. Our results reveal that a common set of proteins including FLT3, NCR3LG1, and ROR1 dominate the response to similar oncogenic perturbations in B cells. Linking high-affinity, selective, genetically encoded binders to NGS enables direct and highly multiplexed protein detection, comparable to RNA-sequencing for mRNA. PhaNGS has the potential to profile a substantial fraction of the surface proteome simultaneously and inexpensively to enable more accurate and complete classification of cell states. Copyright © 2018 the Author(s). Published by PNAS.

  8. Highly efficient volume hologram multiplexing in thick dye-doped jelly-like gelatin.

    Science.gov (United States)

    Katarkevich, Vasili M; Rubinov, Anatoli N; Efendiev, Terlan Sh

    2014-08-01

    Dye-doped jelly-like gelatin is a thick-layer self-developing photosensitive medium that allows single and multiplexed volume phase holograms to be successfully recorded using pulsed laser radiation. In this Letter, we present a method for multiplexed recording of volume holograms in a dye-doped jelly-like gelatin, which provides significant increase in their diffraction efficiency. The method is based on the recovery of the photobleached dye molecule concentration in the hologram recording zone of gel, thanks to molecule diffusion from other unexposed gel areas. As an example, an optical recording of a multiplexed hologram consisting of three superimposed Bragg gratings with mean values of the diffraction efficiency and angular selectivity of ∼75% and ∼21', respectively, is demonstrated by using the proposed method.

  9. Roles of the spreading scope and effectiveness in spreading dynamics on multiplex networks

    Science.gov (United States)

    Li, Ming; Liu, Run-Ran; Peng, Dan; Jia, Chun-Xiao; Wang, Bing-Hong

    2018-02-01

    Comparing with single networks, the multiplex networks bring two main effects on the spreading process among individuals. First, the pathogen or information can be transmitted to more individuals through different layers at one time, which enlarges the spreading scope. Second, through different layers, an individual can also transmit the pathogen or information to the same individuals more than once at one time, which makes the spreading more effective. To understand the different roles of the spreading scope and effectiveness, we propose an epidemic model on multiplex networks with link overlapping, where the spreading effectiveness of each interaction as well as the variety of channels (spreading scope) can be controlled by the number of overlapping links. We find that for Poisson degree distribution, increasing the epidemic scope (the first effect) is more efficient than enhancing epidemic probability (the second effect) to facilitate the spreading process. However, for power-law degree distribution, the effects of the two factors on the spreading dynamics become complicated. Enhancing epidemic probability makes pathogen or rumor easier to outbreak in a finite system. But after that increasing epidemic scopes is still more effective for a wide spreading. Theoretical results along with reasonable explanation for these phenomena are all given in this paper, which indicates that the epidemic scope could play an important role in the spreading dynamics.

  10. The detection and differentiation of canine respiratory pathogens using oligonucleotide microarrays.

    Science.gov (United States)

    Wang, Lih-Chiann; Kuo, Ya-Ting; Chueh, Ling-Ling; Huang, Dean; Lin, Jiunn-Horng

    2017-05-01

    Canine respiratory diseases are commonly seen in dogs along with co-infections with multiple respiratory pathogens, including viruses and bacteria. Virus infections in even vaccinated dogs were also reported. The clinical signs caused by different respiratory etiological agents are similar, which makes differential diagnosis imperative. An oligonucleotide microarray system was developed in this study. The wild type and vaccine strains of canine distemper virus (CDV), influenza virus, canine herpesvirus (CHV), Bordetella bronchiseptica and Mycoplasma cynos were detected and differentiated simultaneously on a microarray chip. The detection limit is 10, 10, 100, 50 and 50 copy numbers for CDV, influenza virus, CHV, B. bronchiseptica and M. cynos, respectively. The clinical test results of nasal swab samples showed that the microarray had remarkably better efficacy than the multiplex PCR-agarose gel method. The positive detection rate of microarray and agarose gel was 59.0% (n=33) and 41.1% (n=23) among the 56 samples, respectively. CDV vaccine strain and pathogen co-infections were further demonstrated by the microarray but not by the multiplex PCR-agarose gel. The oligonucleotide microarray provides a highly efficient diagnosis alternative that could be applied to clinical usage, greatly assisting in disease therapy and control. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. 78 FR 16513 - Application of Advances in Nucleic Acid and Protein Based Detection Methods to Multiplex...

    Science.gov (United States)

    2013-03-15

    ... Methods to Multiplex Detection of Transfusion- Transmissible Agents and Blood Cell Antigens in Blood... Transfusion-Transmissible Agents and Blood Cell Antigens in Blood Donations; Public Workshop AGENCY: Food and... technological advances in gene based and protein based pathogen and blood cell antigen detection methods and to...

  12. Pathogenicity of highly pathogenic avian influenza virus in mammals

    NARCIS (Netherlands)

    de Wit, Emmie; Kawaoka, Yoshihiro; de Jong, Menno D.; Fouchier, Ron A. M.

    2008-01-01

    In recent years, there has been an increase in outbreaks of highly pathogenic avian influenza (HPAI) in poultry. Occasionally, these outbreaks have resulted in transmission of influenza viruses to humans and other mammals, with symptoms ranging from conjunctivitis to pneumonia and death. Here, the

  13. Chasing halorespirers: High throughput multiplex detection of dechlorinating bacteria using Pri-Lock probes

    Energy Technology Data Exchange (ETDEWEB)

    Maphosa, F.; Doorn, R. van; Vos, W. de; Cor Schoen, C.; Smidt, H.

    2009-07-01

    Bioremediation management strategies for sites contaminated with chlorinated compounds require monitoring technologies that enable simultaneous detection and quantification of a wide range of microorganisms involved in reductive dechlorination. Many multiplex, quantitative detection methods available suffer from compromises between the level of multiplexing, throughput and accuracy of quantification. (Author)

  14. Prototype data terminal-multiplexer/demultiplexer

    Science.gov (United States)

    Leck, D. E.; Goodwin, J. E.

    1972-01-01

    The design and operation of a quad redundant data terminal and a multiplexer/demultiplexer (MDU) is described. The most unique feature is the design of the quad redundant data terminal. This is one of the few designs where the unit is fail/op, fail/op, fail/safe. Laboratory tests confirm that the unit will operate satisfactorily with the failure of three out of four channels. Although the design utilizes state-of-the-art technology, the waveform error checks, the voting techniques, and the parity bit checks are believed to be used in unique configurations. Correct word selection routines are also novel. The MDU design, while not redundant, utilizes, the latest state-of-the-art advantages of light coupler and interested amplifiers. Much of the technology employed was an evolution of prior NASA contracts related to the Addressable Time Division Data System. A good example of the earlier technology development was the development of a low level analog multiplexer, a high level analog multiplexer, and a digital multiplexer. A list of all drawings is included for reference and all schematic, block and timing diagrams are incorporated.

  15. Control of Angular Intervals for Angle-Multiplexed Holographic Memory

    Science.gov (United States)

    Kinoshita, Nobuhiro; Muroi, Tetsuhiko; Ishii, Norihiko; Kamijo, Koji; Shimidzu, Naoki

    2009-03-01

    In angle-multiplexed holographic memory, the full width at half maximum of the Bragg selectivity curves is dependent on the angle formed between the medium and incident laser beams. This indicates the possibility of high density and high multiplexing number by varying the angular intervals between adjacent holograms. We propose an angular interval scheduling for closely stacking holograms into medium even when the angle range is limited. We obtained bit error rates of the order of 10-4 under the following conditions: medium thickness of 1 mm, laser beam wavelength of 532 nm, and angular multiplexing number of 300.

  16. High sensitive photonic crystal multiplexed biosensor array using H0 sandwiched cavities

    Directory of Open Access Journals (Sweden)

    Arafa Safia

    2017-01-01

    Full Text Available We theoretically investigate a high sensitive photonic crystal integrated biosensor array structure which is potentially used for label-free multiplexed sensing. The proposed device consists of an array of three sandwiched H0 cavities patterned above silicon on insulator (SOI substrate; each cavity has been designed for different cavity spacing and different resonant wavelength. Results obtained by performing finite-difference time-domain (FDTD simulations, indicate that the response of each detection unit shifts independently in terms of refractive index variations. The optimized design makes possible the combination of sensing as a function of location, as well as a function of time in the same platform. A refractive index sensitivity of 520nm/RIU and a quality factor over 104 are both achieved with an accompanied crosstalk of less than -26 dB. In addition, the device presents an improved detection limit (DL of 1.24.10-6 RIU and a wide measurement range. These features make the designed device a promising element for performing label-free multiplexed detection in monolithic substrate for medical diagnostics and environmental monitoring.

  17. Multiplex gas chromatography

    Science.gov (United States)

    Valentin, Jose R.

    1990-01-01

    The principles of the multiplex gas chromatography (GC) technique, which is a possible candidate for chemical analysis of planetary atmospheres, are discussed. Particular attention is given to the chemical modulators developed by present investigators for multiplex GC, namely, the thermal-desorption, thermal-decomposition, and catalytic modulators, as well as to mechanical modulators. The basic technique of multiplex GC using chemical modulators and a mechanical modulator is demonstrated. It is shown that, with the chemical modulators, only one gas stream consisting of the carrier in combination with the components is being analyzed, resulting in a simplified instrument that requires relatively few consumables. The mechanical modulator demonstrated a direct application of multiplex GC for the analysis of gases in atmosphere of Titan at very low pressures.

  18. Pathogen detection and gut bacteria identification in Apis cerana ...

    African Journals Online (AJOL)

    acer

    other lactic acid bacteria, were isolated from larvae and adult workers, but gave conflicting preliminary identities based on their biochemistry-morphology versus sequence analysis of a partial fragment (1.4 kb) of their 16S rRNA. Key words: Apis cerana indica, bee pathogens, gut bacteria, multiplex polymerase chain ...

  19. High Resolution Imaging with MUSTANG-2 on the GBT

    Science.gov (United States)

    Stanchfield, Sara; Ade, Peter; Aguirre, James; Brevik, Justus A.; Cho, Hsiao-Mei; Datta, Rahul; Devlin, Mark; Dicker, Simon R.; Dober, Bradley; Duff, Shannon M.; Egan, Dennis; Ford, Pam; Hilton, Gene; Hubmayr, Johannes; Irwin, Kent; Knowles, Kenda; Marganian, Paul; Mason, Brian Scott; Mates, John A. B.; McMahon, Jeff; Mello, Melinda; Mroczkowski, Tony; Romero, Charles; Sievers, Jonathon; Tucker, Carole; Vale, Leila R.; Vissers, Michael; White, Steven; Whitehead, Mark; Ullom, Joel; Young, Alexander

    2018-01-01

    We present early science results from MUSTANG-2, a 90 GHz feedhorn-coupled, microwave SQUID-multiplexed TES bolometer array operating on the Robert C. Byrd Green Bank Telescope (GBT). The feedhorn and waveguide-probe-coupled detector technology is a mature technology, which has been used on instruments such as the South Pole Telescope, the Atacama Cosmology Telescope, and the Atacama B-mode Search telescope. The microwave SQUID multiplexer-based readout system developed for MUSTANG-2 currently reads out 66 detectors with a single coaxial cable and will eventually allow thousands of detectors to be multiplexed. This microwave SQUID multiplexer combines the proven abilities of millimeter wave TES detectors with the multiplexing capabilities of KIDs with no degradation in noise performance of the detectors. Each multiplexing device is read out using warm electronics consisting of a commercially available ROACH board, a DAC/ADC card, and an Intermediate Frequency mixer circuit. The hardware was originally developed by the Collaboration for Astronomy Signal Processing and Electronic Research (CASPER) group, whose primary goal is to develop scalable FPGA-based hardware with the flexibility to be used in a wide range of radio signal processing applications. MUSTANG-2 is the first on-sky instrument to use microwave SQUID multiplexing and is available as a shared-risk/PI instrument on the GBT. In MUSTANG-2’s first season 7 separate proposals were awarded a total of 230 hours of telescope time.

  20. Development of an In-House Multiplex Nested RT-PCR Method for Detecting Acute HIV-1 Infection in High Risk Populations.

    Science.gov (United States)

    Liu, Zhiying; Li, Wei; Xu, Meng; Sheng, Bo; Yang, Zixuan; Jiao, Yanmei; Zhang, Tong; Mou, Danlei; Chen, Dexi; Wu, Hao

    2015-01-01

    The detection of acute HIV infection (AHI) among high risk populations can help reduce secondary transmission of HIV. The nucleic acid testing (NAT) can shorten the test window period by up to 7-12 days. In this study, we describe an in-house NAT based on the multiplex nested RT-PCR method to detect the HIV RNA. We also evaluated it in a high risk cohort in Beijing. Four primer pairs were designed and evaluated for the detection of different HIV-1 subtypes in group M. Multiplex RT-PCR and nested PCR were performed. The sensitivity, specialty, primers compatibility among HIV subtypes were evaluated simultaneously. In an MSM cohort in Beijing during a 3-year period, a total of 11,808 blood samples that were negative by ELISA or indeterminate by Western blot were analyzed by this multiplex nested RT-PCR with pooling strategy. The multiplex nested RT-PCR was successfully applied for the detection of at least six HIV-1 subtypes. The sensitivity was 40 copies/ml and the specificity was 100%. A total of 29 people were tested HIV-1 positive with acute infection in a MSM cohort of Beijing during a 3 years period. This multiplex nested RT-PCR provides a useful tool for the rapid detection of acute HIV-1 infection. When used in combination with the 3(rd) generation ELISA, it can improve the detection rate of HIV infection, especially in the source limited regions.

  1. Prevalence of Listeria monocytogenes, Vibrio parahaemolyticus, Staphylococcus aureus, and Salmonella spp. in seafood products using multiplex polymerase chain reaction.

    Science.gov (United States)

    Zarei, Mehdi; Maktabi, Siavash; Ghorbanpour, Masoud

    2012-02-01

    Although several etiological agents can be transmitted through seafood consumption, Listeria monocytogenes, Vibrio parahaemolyticus, Staphylococcus aureus, and Salmonella spp. are considered among the most important pathogens in terms of public health and disease. In this study, multiplex polymerase chain reaction (PCR), as a rapid and cost-effective method, was used to determine the prevalence of these pathogens in 245 samples of raw/fresh, frozen, and ready-to-eat (RTE) seafood products marketed in Iran. The prevalence of L. monocytogenes in raw/fresh fish and shrimp samples was 1.4%, whereas 2.9% of the raw/fresh fish and 7.1% of the shrimp samples were contaminated with V. parahaemolyticus. No contamination with L. monocytogenes and V. parahaemolyticus was found in frozen and RTE seafood products. The prevalence of S. aureus was found to be higher than other investigated pathogens. S. aureus was detected in 5% of the raw/fresh samples of fish and shrimp, 17.5% of the frozen, and 12.3% of the RTE samples. Further, our findings indicate that 2.9% of the fish samples, 4.3% of the shrimp samples, and 1.5% of the RTE samples were contaminated with Salmonella spp. Owing to the potential hazard of these pathogenic bacteria, multiplex PCR can provide a rapid and cost-effective method for the surveillance of these pathogens in seafood products.

  2. A novel lab-on-chip platform with integrated solid phase PCR and Supercritical Angle Fluorescence (SAF) microlens array for highly sensitive and multiplexed pathogen detection

    DEFF Research Database (Denmark)

    Hung, Tran Quang; Chin, Wai Hoe; Sun, Yi

    2016-01-01

    technology. In this paper, we addressed this challenge by combining the SP-PCR with super critical angle fluorescence (SAF) microlens array embedded in a microchip. We fabricated miniaturized SAF microlens array as part of a microfluidic chamber in thermoplastic material and performed multiplexed SP...

  3. Consideration for wavelength multiplexing versus time multiplexing in optical transport network

    DEFF Research Database (Denmark)

    Limal, Emmanuel; Stubkjær, Kristian Elmholdt

    1999-01-01

    We compare optical wavelength multiplexing and time multiplexing techniquesfor optical transport network by studying the space switch sizes of OXCs andtheir interfaces as a function of the fraction of add/drop traffic....

  4. Ultra high speed optical transmission using subcarrier-multiplexed four-dimensional LDPC-coded modulation.

    Science.gov (United States)

    Batshon, Hussam G; Djordjevic, Ivan; Schmidt, Ted

    2010-09-13

    We propose a subcarrier-multiplexed four-dimensional LDPC bit-interleaved coded modulation scheme that is capable of achieving beyond 480 Gb/s single-channel transmission rate over optical channels. Subcarrier-multiplexed four-dimensional LDPC coded modulation scheme outperforms the corresponding dual polarization schemes by up to 4.6 dB in OSNR at BER 10(-8).

  5. Differentiation of minute virus of mice and mouse parvovirus by high resolution melting curve analysis.

    Science.gov (United States)

    Rao, Dan; Wu, Miaoli; Wang, Jing; Yuan, Wen; Zhu, Yujun; Cong, Feng; Xu, Fengjiao; Lian, Yuexiao; Huang, Bihong; Wu, Qiwen; Chen, Meili; Zhang, Yu; Huang, Ren; Guo, Pengju

    2017-12-01

    Murine parvovirus is one of the most prevalent infectious pathogens in mouse colonies. A specific primer pair targeting the VP2 gene of minute virus of mice (MVM) and mouse parvovirus (MPV) was utilized for high resolution melting (HRM) analysis. The resulting melting curves could distinguish these two virus strains and there was no detectable amplification of the other mouse pathogens which included rat parvovirus (KRV), ectromelia virus (ECT), mouse adenovirus (MAD), mouse cytomegalovirus (MCMV), polyoma virus (Poly), Helicobactor hepaticus (H. hepaticus) and Salmonella typhimurium (S. typhimurium). The detection limit of the standard was 10 copies/μL. This study showed that the PCR-HRM assay could be an alternative useful method with high specificity and sensitivity for differentiating murine parvovirus strains MVM and MPV. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Highly multiplexed simultaneous detection of RNAs and proteins in single cells.

    Science.gov (United States)

    Frei, Andreas P; Bava, Felice-Alessio; Zunder, Eli R; Hsieh, Elena W Y; Chen, Shih-Yu; Nolan, Garry P; Gherardini, Pier Federico

    2016-03-01

    To enable the detection of expression signatures specific to individual cells, we developed PLAYR (proximity ligation assay for RNA), a method for highly multiplexed transcript quantification by flow and mass cytometry that is compatible with standard antibody staining. When used with mass cytometry, PLAYR allowed for the simultaneous quantification of more than 40 different mRNAs and proteins. In primary cells, we quantified multiple transcripts, with the identity and functional state of each analyzed cell defined on the basis of the expression of a separate set of transcripts or proteins. By expanding high-throughput deep phenotyping of cells beyond protein epitopes to include RNA expression, PLAYR opens a new avenue for the characterization of cellular metabolism.

  7. Large resistive 2D Micromegas with genetic multiplexing and some imaging applications

    Science.gov (United States)

    Bouteille, S.; Attié, D.; Baron, P.; Calvet, D.; Magnier, P.; Mandjavidze, I.; Procureur, S.; Riallot, M.

    2016-10-01

    The performance of the first large resistive Micromegas detectors with 2D readout and genetic multiplexing is presented. These detectors have a 50 × 50cm2 active area and are equipped with 1024 strips both in X- and Y-directions. The same genetic multiplexing pattern is applied on both coordinates, resulting in the compression of signals on 2 × 61 readout channels. Four such detectors have been built at CERN, and extensively tested with cosmics. The resistive strip film allows for very high gain operation, compensating for the charge spread on the 2 dimensions as well as the S / N loss due to the huge, 1 nF input capacitance. This film also creates a significantly different signal shape in the X- and Y-coordinates due to the charge evacuation along the resistive strips. All in all a detection efficiency above 95% is achieved with a 1 cm drift gap. Though not yet optimal, the measured 300 μm spatial resolution allows for very precise imaging in the field of muon tomography, and some applications of these detectors are presented.

  8. Extracting information from multiplex networks

    Science.gov (United States)

    Iacovacci, Jacopo; Bianconi, Ginestra

    2016-06-01

    Multiplex networks are generalized network structures that are able to describe networks in which the same set of nodes are connected by links that have different connotations. Multiplex networks are ubiquitous since they describe social, financial, engineering, and biological networks as well. Extending our ability to analyze complex networks to multiplex network structures increases greatly the level of information that is possible to extract from big data. For these reasons, characterizing the centrality of nodes in multiplex networks and finding new ways to solve challenging inference problems defined on multiplex networks are fundamental questions of network science. In this paper, we discuss the relevance of the Multiplex PageRank algorithm for measuring the centrality of nodes in multilayer networks and we characterize the utility of the recently introduced indicator function Θ ˜ S for describing their mesoscale organization and community structure. As working examples for studying these measures, we consider three multiplex network datasets coming for social science.

  9. Multiplexed data independent acquisition (MSX-DIA) applied by high resolution mass spectrometry improves quantification quality for the analysis of histone peptides.

    Science.gov (United States)

    Sidoli, Simone; Fujiwara, Rina; Garcia, Benjamin A

    2016-08-01

    We present the MS-based application of the innovative, although scarcely exploited, multiplexed data-independent acquisition (MSX-DIA) for the analysis of histone PTMs. Histones are golden standard for complexity in MS based proteomics, due to their large number of combinatorial modifications, leading to isobaric peptides after proteolytic digestion. DIA has, thus, gained popularity for the purpose as it allows for MS/MS-based quantification without upfront assay development. In this work, we evaluated the performance of traditional DIA versus MSX-DIA in terms of MS/MS spectra quality, instrument scan rate and quantification precision using histones from HeLa cells. We used an MS/MS isolation window of 10 and 6 m/z for DIA and MSX-DIA, respectively. Four MS/MS scans were multiplexed for MSX-DIA. Despite MSX-DIA was programmed to perform two-fold more MS/MS events than traditional DIA, it acquired on average ∼5% more full MS scans, indicating even faster scan rate. Results highlighted an overall decrease of background ion signals using MSX-DIA, and we illustrated specific examples where peptides of different precursor masses were co-fragmented by DIA but not MSX-DIA. Taken together, MSX-DIA proved thus to be a more favorable method for histone analysis in data independent mode. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Low-Incidence, High-Consequence Pathogens

    Centers for Disease Control (CDC) Podcasts

    2014-02-21

    Dr. Stephan Monroe, a deputy director at CDC, discusses the impact of low-incidence, high-consequence pathogens globally.  Created: 2/21/2014 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 2/26/2014.

  11. Ultra-high resolution protein crystallography

    International Nuclear Information System (INIS)

    Takeda, Kazuki; Hirano, Yu; Miki, Kunio

    2010-01-01

    Many protein structures have been determined by X-ray crystallography and deposited with the Protein Data Bank. However, these structures at usual resolution (1.5< d<3.0 A) are insufficient in their precision and quantity for elucidating the molecular mechanism of protein functions directly from structural information. Several studies at ultra-high resolution (d<0.8 A) have been performed with synchrotron radiation in the last decade. The highest resolution of the protein crystals was achieved at 0.54 A resolution for a small protein, crambin. In such high resolution crystals, almost all of hydrogen atoms of proteins and some hydrogen atoms of bound water molecules are experimentally observed. In addition, outer-shell electrons of proteins can be analyzed by the multipole refinement procedure. However, the influence of X-rays should be precisely estimated in order to derive meaningful information from the crystallographic results. In this review, we summarize refinement procedures, current status and perspectives for ultra high resolution protein crystallography. (author)

  12. Single-base resolution and long-coverage sequencing based on single-molecule nanomanipulation

    International Nuclear Information System (INIS)

    An Hongjie; Huang Jiehuan; Lue Ming; Li Xueling; Lue Junhong; Li Haikuo; Zhang Yi; Li Minqian; Hu Jun

    2007-01-01

    We show new approaches towards a novel single-molecule sequencing strategy which consists of high-resolution positioning isolation of overlapping DNA fragments with atomic force microscopy (AFM), subsequent single-molecule PCR amplification and conventional Sanger sequencing. In this study, a DNA labelling technique was used to guarantee the accuracy in positioning the target DNA. Single-molecule multiplex PCR was carried out to test the contamination. The results showed that the two overlapping DNA fragments isolated by AFM could be successfully sequenced with high quality and perfect contiguity, indicating that single-base resolution and long-coverage sequencing have been achieved simultaneously

  13. High-resolution analysis of 16q22.1 in breast carcinoma using DNA amplifiable probes (multiplex amplifiable probe hybridization technique) and immunohistochemistry.

    Science.gov (United States)

    Rakha, Emad A; Armour, John A L; Pinder, Sarah E; Paish, Claire E; Ellis, Ian O

    2005-05-01

    Loss of the chromosomal material at 16q22.1 is one of the most frequent genetic aberrations found in both lobular and low-grade nonlobular invasive carcinoma of the breast, indicating the presence of a tumour suppressor gene (TSG) at this region in these tumours. However, the TSG (s) at the 16q22.1 in the more frequent nonlobular carcinomas is still unknown. Multiplex Amplifiable Probe Hybridisation (MAPH) is a simple, accurate and a high-resolution technique that provides an alternative approach to DNA copy-number measurement. The aim of our study was to examine the most likely candidate genes at 16q22.1 using MAPH assay combined with protein expression analysis by immunohistochemistry. We identified deletion at 16q22.1 that involves some or all of these genes. We also noticed that the smallest region of deletion at 16q22.1 could be delineated to a 3 Mb region centromeric to the P-cadherin gene. Apart from the correlation between E-cadherin protein expression and its gene copy number, no correlation was detected between the expression of E2F-4, CTCF, TRF2 or P-cadherin with their gene's copy number. In the malignant tissues, no significant loss or decrease of protein expression of any gene other than E-cadherin was seen in association with any specific tumour type. No expression of VE-cadherin or Ksp-cadherin was detected in the normal and/or malignant tissues of the breast in these cases. However, there was a correlation between increased nuclear expression of E2F-4 and tumours with higher histological grade (p = 0.04) and positive lymph node disease (p = 0.02), suggesting that it may have an oncogenic rather than a tumour suppressor role. The malignant breast tissues also showed abnormal cytoplasmic cellular localisation of CTCF, compared to its expression in the normal parenchymal cells. In conclusion, we have demonstrated that MAPH is a potential technique for assessment of genomic imbalances in malignant tissues. Although our results support E-cadherin as the

  14. Parallel segmented outlet flow high performance liquid chromatography with multiplexed detection

    International Nuclear Information System (INIS)

    Camenzuli, Michelle; Terry, Jessica M.; Shalliker, R. Andrew; Conlan, Xavier A.; Barnett, Neil W.; Francis, Paul S.

    2013-01-01

    Graphical abstract: -- Highlights: •Multiplexed detection for liquid chromatography. •‘Parallel segmented outlet flow’ distributes inner and outer portions of the analyte zone. •Three detectors were used simultaneously for the determination of opiate alkaloids. -- Abstract: We describe a new approach to multiplex detection for HPLC, exploiting parallel segmented outlet flow – a new column technology that provides pressure-regulated control of eluate flow through multiple outlet channels, which minimises the additional dead volume associated with conventional post-column flow splitting. Using three detectors: one UV-absorbance and two chemiluminescence systems (tris(2,2′-bipyridine)ruthenium(III) and permanganate), we examine the relative responses for six opium poppy (Papaver somniferum) alkaloids under conventional and multiplexed conditions, where approximately 30% of the eluate was distributed to each detector and the remaining solution directed to a collection vessel. The parallel segmented outlet flow mode of operation offers advantages in terms of solvent consumption, waste generation, total analysis time and solute band volume when applying multiple detectors to HPLC, but the manner in which each detection system is influenced by changes in solute concentration and solution flow rates must be carefully considered

  15. Parallel segmented outlet flow high performance liquid chromatography with multiplexed detection

    Energy Technology Data Exchange (ETDEWEB)

    Camenzuli, Michelle [Australian Centre for Research on Separation Science (ACROSS), School of Science and Health, University of Western Sydney (Parramatta), Sydney, NSW (Australia); Terry, Jessica M. [Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 3216 (Australia); Shalliker, R. Andrew, E-mail: r.shalliker@uws.edu.au [Australian Centre for Research on Separation Science (ACROSS), School of Science and Health, University of Western Sydney (Parramatta), Sydney, NSW (Australia); Conlan, Xavier A.; Barnett, Neil W. [Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 3216 (Australia); Francis, Paul S., E-mail: paul.francis@deakin.edu.au [Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 3216 (Australia)

    2013-11-25

    Graphical abstract: -- Highlights: •Multiplexed detection for liquid chromatography. •‘Parallel segmented outlet flow’ distributes inner and outer portions of the analyte zone. •Three detectors were used simultaneously for the determination of opiate alkaloids. -- Abstract: We describe a new approach to multiplex detection for HPLC, exploiting parallel segmented outlet flow – a new column technology that provides pressure-regulated control of eluate flow through multiple outlet channels, which minimises the additional dead volume associated with conventional post-column flow splitting. Using three detectors: one UV-absorbance and two chemiluminescence systems (tris(2,2′-bipyridine)ruthenium(III) and permanganate), we examine the relative responses for six opium poppy (Papaver somniferum) alkaloids under conventional and multiplexed conditions, where approximately 30% of the eluate was distributed to each detector and the remaining solution directed to a collection vessel. The parallel segmented outlet flow mode of operation offers advantages in terms of solvent consumption, waste generation, total analysis time and solute band volume when applying multiple detectors to HPLC, but the manner in which each detection system is influenced by changes in solute concentration and solution flow rates must be carefully considered.

  16. Rapid multiplex detection of 10 foodborne pathogens with an up-converting phosphor technology-based 10-channel lateral flow assay

    Science.gov (United States)

    Zhao, Yong; Wang, Haoran; Zhang, Pingping; Sun, Chongyun; Wang, Xiaochen; Wang, Xinrui; Yang, Ruifu; Wang, Chengbin; Zhou, Lei

    2016-01-01

    The rapid high-throughput detection of foodborne pathogens is essential in controlling food safety. In this study, a 10-channel up-converting phosphor technology-based lateral flow (TC-UPT-LF) assay was established for the rapid and simultaneous detection of 10 epidemic foodborne pathogens. Ten different single-target UPT-LF strips were developed and integrated into one TC-UPT-LF disc with optimization. Without enrichment the TC-UPT-LF assay had a detection sensitivity of 104 CFU mL−1 or 105 CFU mL−1 for each pathogen, and after sample enrichment it was 10 CFU/0.6 mg. The assay also showed good linearity, allowing quantitative detection, with a linear fitting coefficient of determination (R2) of 0.916–0.998. The 10 detection channels did not cross-react, so multiple targets could be specifically detected. When 279 real food samples were tested, the assay was highly consistent (100%) with culture-based methods. The results for 110 food samples artificially contaminated with single or multiple targets showed a high detection rate (≥80%) for most target bacteria. Overall, the TC-UPT-LF assay allows the rapid, quantitative, and simultaneous detection of 10 kinds of foodborne pathogens within 20 min, and is especially suitable for the rapid detection and surveillance of foodborne pathogens in food and water. PMID:26884128

  17. Secondary structure of bovine albumin as studied by polarization-sensitive multiplex CARS spectroscopy

    NARCIS (Netherlands)

    Voroshilov, A.; Voroshilov, Artemy; Otto, Cornelis; Greve, Jan

    1996-01-01

    The first application of polarization-sensitive multiplex coherent anti-Stokes Raman spectroscopy (MCARS) in the absence of resonance enhancement to the resolution of the secondary structure of a protein in solution is reported. Polarization MCARS spectra of bovine albumin in D2O were obtained in

  18. Validation of microsatellite multiplexes for parentage analysis in a coral reef fish (Lutjanus carponotatus, Lutjanidae)

    KAUST Repository

    Harrison, Hugo B.; Feldheim, Kevin Andrew; Jones, Geoffrey P.; Mansour, Hicham; Perumal, Sadhasivam; Williamson, David H.; Berumen, Michael L.

    2014-01-01

    simulated dataset, we conclude that the complete marker set provides sufficient resolution to resolve parent–offspring relationships in natural populations with 99.6 ± 0.1 % accuracy in parentage assignments. This multiplex assay provides an effective means

  19. High resolution solar observations

    International Nuclear Information System (INIS)

    Title, A.

    1985-01-01

    Currently there is a world-wide effort to develop optical technology required for large diffraction limited telescopes that must operate with high optical fluxes. These developments can be used to significantly improve high resolution solar telescopes both on the ground and in space. When looking at the problem of high resolution observations it is essential to keep in mind that a diffraction limited telescope is an interferometer. Even a 30 cm aperture telescope, which is small for high resolution observations, is a big interferometer. Meter class and above diffraction limited telescopes can be expected to be very unforgiving of inattention to details. Unfortunately, even when an earth based telescope has perfect optics there are still problems with the quality of its optical path. The optical path includes not only the interior of the telescope, but also the immediate interface between the telescope and the atmosphere, and finally the atmosphere itself

  20. High speed, High resolution terahertz spectrometers

    International Nuclear Information System (INIS)

    Kim, Youngchan; Yee, Dae Su; Yi, Miwoo; Ahn, Jaewook

    2008-01-01

    A variety of sources and methods have been developed for terahertz spectroscopy during almost two decades. Terahertz time domain spectroscopy (THz TDS)has attracted particular attention as a basic measurement method in the fields of THz science and technology. Recently, asynchronous optical sampling (AOS)THz TDS has been demonstrated, featuring rapid data acquisition and a high spectral resolution. Also, terahertz frequency comb spectroscopy (TFCS)possesses attractive features for high precision terahertz spectroscopy. In this presentation, we report on these two types of terahertz spectrometer. Our high speed, high resolution terahertz spectrometer is demonstrated using two mode locked femtosecond lasers with slightly different repetition frequencies without a mechanical delay stage. The repetition frequencies of the two femtosecond lasers are stabilized by use of two phase locked loops sharing the same reference oscillator. The time resolution of our terahertz spectrometer is measured using the cross correlation method to be 270 fs. AOS THz TDS is presented in Fig. 1, which shows a time domain waveform rapidly acquired on a 10ns time window. The inset shows a zoom into the signal with 100ps time window. The spectrum obtained by the fast Fourier Transformation (FFT)of the time domain waveform has a frequency resolution of 100MHz. The dependence of the signal to noise ratio (SNR)on the measurement time is also investigated

  1. Optimization of a coherent synchrotron radiation source in the Tera-hertz range for high-resolution spectroscopy of molecules of astrophysical interest

    International Nuclear Information System (INIS)

    Barros, J.

    2012-01-01

    Fourier Transform spectroscopy is the most used multiplex tool for high-resolution measurements in the infrared range. Its extension to the Tera-hertz domain is of great interest for spectroscopic studies of interstellar molecules. This application is however hampered by the lack of dedicated, broadband sources with a sufficient intensity and stability. In this work, Coherent Synchrotron Radiation (CSR) was used as a source for molecular spectroscopy at high resolution on the AILES infrared and Tera-hertz beamline of SOLEIL synchrotron. The beamline being optimized for far-infrared, we could characterize the properties of CSR and compare them to the incoherent synchrotron radiation. A double detection system allowed to correct the effect of the source-related instabilities, hence to significantly increase the signal-to-noise ratio. Pure rotational spectra were measured using these developments. The case of the propynal molecule, for which a refined set of rotational and centrifugal distortion constants was calculated, proves the complementarity between CSR and the classical microwave or infrared sources. (author)

  2. Simultaneous frequency stabilization and high-power dense wavelength division multiplexing (HP-DWDM) using an external cavity based on volume Bragg gratings (VBGs)

    Science.gov (United States)

    Hengesbach, Stefan; Klein, Sarah; Holly, Carlo; Witte, Ulrich; Traub, Martin; Hoffmann, Dieter

    2016-03-01

    Multiplexing technologies enable the development of high-brightness diode lasers for direct industrial applications. We present a High-Power Dense Wavelength Division Multiplexer (HP-DWDM) with an average channel spacing of 1.7 (1.5) nm and a subsequent external cavity mirror to provide feedback for frequency stabilization and multiplexing in one step. The "self-optimizing" multiplexing unit consists of four reflective Volume Bragg Gratings (VBGs) with 99% diffraction efficiency and seven dielectric mirrors to overlay the radiation of five input channels with an adjustable channel spacing of 1-2 nm. In detail, we focus on the analysis of the overall optical efficiency, the change of the beam parameter product and the spectral width. The performance is demonstrated using five 90 μm multimode 9xx single emitters with M2angular intensity distribution changes strongly and the beam parameter product decreases by a factor of 1.2 to 1.9. Thereby the angular intensity distribution is more affected than the width of the beam waist. The spectral width per emitter decreases to 3-200 pm (FWHM) depending on the injection current and the reflectance of the feedback mirror (0.75%, 1.5%, 4%, 6% or 8%). The overall optical multiplexing efficiency ranges between 77% and 86%. With some modifications (e.g. enhanced AR-coatings) we expect 90-95%.

  3. Detection of virulence genes in Uropathogenic E. coli (UPEC strains by Multiplex-PCR method

    Directory of Open Access Journals (Sweden)

    Javad Mohammadi

    2017-06-01

    Full Text Available Background & Objectives: Urinary tract infection caused by E. coli is one of the most common illnesses in all age groups worldwide. Presence of virulence genes is a key factor in bacterial pathogens in uroepithelial cells. The present study was performed to detect iha, iroN, ompT genes in the Uropathogenic E.coli isolates from clinical samples using multiplex-PCR method in Kerman. Materials & Methods: In this descriptive cross-sectional study, 200 samples of patients with urinary tract infections in Kerman hospitals were collected. After biochemical and microbiological tests, all strains were tested with regard to the presence of iha, iroN, and ompT genes using multiplex-PCR method. Results: The results of Multiplex-PCR showed that all specimens had one, two, or three virulence genes simultaneously. The highest and lowest frequency distribution of genes was related to iha (56.7% and iroN (20% respectively. Conclusion: According to the prevalence of urinary tract infection in the community and distribution of resistance and virulence factors, the fast and accurate detection of the strains and virulence genes is necessary

  4. Multiplex amplification of large sets of human exons.

    Science.gov (United States)

    Porreca, Gregory J; Zhang, Kun; Li, Jin Billy; Xie, Bin; Austin, Derek; Vassallo, Sara L; LeProust, Emily M; Peck, Bill J; Emig, Christopher J; Dahl, Fredrik; Gao, Yuan; Church, George M; Shendure, Jay

    2007-11-01

    A new generation of technologies is poised to reduce DNA sequencing costs by several orders of magnitude. But our ability to fully leverage the power of these technologies is crippled by the absence of suitable 'front-end' methods for isolating complex subsets of a mammalian genome at a scale that matches the throughput at which these platforms will routinely operate. We show that targeting oligonucleotides released from programmable microarrays can be used to capture and amplify approximately 10,000 human exons in a single multiplex reaction. Additionally, we show integration of this protocol with ultra-high-throughput sequencing for targeted variation discovery. Although the multiplex capture reaction is highly specific, we found that nonuniform capture is a key issue that will need to be resolved by additional optimization. We anticipate that highly multiplexed methods for targeted amplification will enable the comprehensive resequencing of human exons at a fraction of the cost of whole-genome resequencing.

  5. A capillary-based multiplexed isothermal nucleic acid-based test for sexually transmitted diseases in patients.

    Science.gov (United States)

    Xu, Gaolian; Zhao, Hang; Cooper, Jonathan M; Reboud, Julien

    2016-10-06

    We demonstrate a multiplexed loop mediated isothermal amplification (LAMP) assay for infectious disease diagnostics, where the analytical process flow of target pathogens genomic DNA is performed manually by moving magnetic beads through a series of plugs in a capillary. Heat is provided by a water bath and the results are read by the naked eye, enabling applications in low resource settings.

  6. Molecular typing of Salmonella enterica serovar typhi isolates from various countries in Asia by a multiplex PCR assay on variable-number tandem repeats.

    Science.gov (United States)

    Liu, Yichun; Lee, May-Ann; Ooi, Eng-Eong; Mavis, Yeo; Tan, Ai-Ling; Quek, Hung-Hiang

    2003-09-01

    A multiplex PCR method incorporating primers flanking three variable-number tandem repeat (VNTR) loci (arbitrarily labeled TR1, TR2, and TR3) in the CT18 strain of Salmonella enterica serovar Typhi has been developed for molecular typing of S. enterica serovar Typhi clinical isolates from several Asian countries, including Singapore, Indonesia, India, Bangladesh, Malaysia, and Nepal. We have demonstrated that the multiplex PCR could be performed on crude cell lysates and that the VNTR banding profiles produced could be easily analyzed by visual inspection after conventional agarose gel electrophoresis. The assay was highly discriminative in identifying 49 distinct VNTR profiles among 59 individual isolates. A high level of VNTR profile heterogeneity was observed in isolates from within the same country and among countries. These VNTR profiles remained stable after the strains were passaged extensively under routine laboratory culture conditions. In contrast to the S. enterica serovar Typhi isolates, an absence of TR3 amplicons and a lack of length polymorphisms in TR1 and TR2 amplicons were observed for other S. enterica serovars, such as Salmonella enterica serovar Typhimurium, Salmonella enterica serovar Enteritidis, and Salmonella enterica serovar Paratyphi A, B, and C. DNA sequencing of the amplified VNTR regions substantiated these results, suggesting the high stability of the multiplex PCR assay. The multiplex-PCR-based VNTR profiling developed in this study provides a simple, rapid, reproducible, and high-resolution molecular tool for the epidemiological analysis of S. enterica serovar Typhi strains.

  7. High-Resolution Sonars: What Resolution Do We Need for Target Recognition?

    Directory of Open Access Journals (Sweden)

    Pailhas Yan

    2010-01-01

    Full Text Available Target recognition in sonar imagery has long been an active research area in the maritime domain, especially in the mine-counter measure context. Recently it has received even more attention as new sensors with increased resolution have been developed; new threats to critical maritime assets and a new paradigm for target recognition based on autonomous platforms have emerged. With the recent introduction of Synthetic Aperture Sonar systems and high-frequency sonars, sonar resolution has dramatically increased and noise levels decreased. Sonar images are distance images but at high resolution they tend to appear visually as optical images. Traditionally algorithms have been developed specifically for imaging sonars because of their limited resolution and high noise levels. With high-resolution sonars, algorithms developed in the image processing field for natural images become applicable. However, the lack of large datasets has hampered the development of such algorithms. Here we present a fast and realistic sonar simulator enabling development and evaluation of such algorithms.We develop a classifier and then analyse its performances using our simulated synthetic sonar images. Finally, we discuss sensor resolution requirements to achieve effective classification of various targets and demonstrate that with high resolution sonars target highlight analysis is the key for target recognition.

  8. Electronics for a Next-Generation SQUID-Based Time-Domain Multiplexing System

    International Nuclear Information System (INIS)

    Reintsema, C. D.; Doriese, W. R.; Hilton, G. C.; Irwin, K. D.; Krinsky, J. W.; Adams, J. S.; Baker, R.; Bandler, S. R.; Kelly, R. L.; Kilbourne, C. A.; Porter, F. S.; Figueroa-Feliciano, E.; Wikus, P.

    2009-01-01

    A decade has elapsed since the design, development and realization of a SQUID-based time-division multiplexer at NIST. During this time the system has been used extensively for low-temperature-detector-array measurements. Concurrently, there have been substantial advancements both in detector array and commercial electronic component technology. The relevance and applicability of the technology has blossomed as well, often accompanied by more demanding measurement requirements. These factors have motivated a complete redesign of the NIST room-temperature read-out electronics. The redesign has leveraged advancements in component technology to achieve new capabilities better suited to the SQUID multiplexers and detector arrays being realized today. As examples of specific performance enhancements, the overall system bandwidth has been increased by a factor of four (a row switching rate of 6.24 MHz), the compactness has been increased by over a factor of two (a higher number of detector columns and rows per circuit board), and there are two high speed outputs per column (allowing fast switching of SQUID offsets in addition to digital feedback). The system architecture, design implementations, and performance advantages of the new system will be discussed. As an application example, the science chain flight electronics for the Micro-X High Resolution Microcalorimeter X-ray Imaging Rocket will be described as both a motivation for, and a direct implementation of the new system.

  9. An Outbreak Of Highly Pathogenic Avian Influenza (Hpai) In A Mixed ...

    African Journals Online (AJOL)

    An Outbreak Of Highly Pathogenic Avian Influenza (Hpai) In A Mixed Farm By The Introduction Of A Water Fowl. ... C A Meseko, A T Oladokun, B Shehu. Abstract. Avian influenza (AI) is caused by a range of Influenza type A viruses of high and low pathogenicity (Fauci, 2005). H5N1 Highly Pathogenic Avian Influenza (HPAI) ...

  10. High-throughput screening of cellulase F mutants from multiplexed plasmid sets using an automated plate assay on a functional proteomic robotic workcell

    Directory of Open Access Journals (Sweden)

    Qureshi Nasib

    2006-05-01

    Full Text Available Abstract Background The field of plasmid-based functional proteomics requires the rapid assay of proteins expressed from plasmid libraries. Automation is essential since large sets of mutant open reading frames are being cloned for evaluation. To date no integrated automated platform is available to carry out the entire process including production of plasmid libraries, expression of cloned genes, and functional testing of expressed proteins. Results We used a functional proteomic assay in a multiplexed setting on an integrated plasmid-based robotic workcell for high-throughput screening of mutants of cellulase F, an endoglucanase from the anaerobic fungus Orpinomyces PC-2. This allowed us to identify plasmids containing optimized clones expressing mutants with improved activity at lower pH. A plasmid library of mutagenized clones of the celF gene with targeted variations in the last four codons was constructed by site-directed PCR mutagenesis and transformed into Escherichia coli. A robotic picker integrated into the workcell was used to inoculate medium in a 96-well deep well plate, combining the transformants into a multiplexed set in each well, and the plate was incubated on the workcell. Plasmids were prepared from the multiplexed culture on the liquid handler component of the workcell and used for in vitro transcription/translation. The multiplexed expressed recombinant proteins were screened for improved activity and stability in an azo-carboxymethylcellulose plate assay. The multiplexed wells containing mutants with improved activity were identified and linked back to the corresponding multiplexed cultures stored in glycerol. Spread plates were prepared from the glycerol stocks and the workcell was used to pick single colonies from the spread plates, prepare plasmid, produce recombinant protein, and assay for activity. The screening assay and subsequent deconvolution of the multiplexed wells resulted in identification of improved Cel

  11. Multiplex polymerase chain reaction for the detection of high-risk-human papillomavirus types in formalin-fixed paraffin-embedded cervical tissues

    Directory of Open Access Journals (Sweden)

    Mini P Singh

    2017-01-01

    Full Text Available Detecting high-risk-human papillomavirus (HPV types has become an integral part of the cervical cancer screening programmes. This study aimed to develop a multiplex polymerase chain reaction (PCR for identification of HPV types 16 and 18 along with the beta globin gene in formalin-fixed and paraffin-embedded cervical biopsy specimens. A total of 59 samples from patients with cervical abnormalities were tested. HPV 16 positivity was 50% in cervical cancers and 52.9% in cervical intraepithelial neoplasia. Our multiplex PCR protocol can be used as a simple and cost-effective tool for high-risk-HPV detection in cervical cancer screening programmes.

  12. Identification of methicillin-resistant Staphylococcus aureus (MRSA) strains isolated from burn patients by multiplex PCR.

    Science.gov (United States)

    Montazeri, Effat Abbasi; Khosravi, Azar Dokht; Jolodar, Abbas; Ghaderpanah, Mozhgan; Azarpira, Samireh

    2015-05-01

    Methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-resistant coagulase-negative staphylococci (MRCoNS) as important human pathogens are causes of nosocomial infections worldwide. Burn patients are at a higher risk of local and systemic infections with these microorganisms. A screening method for MRSA by using a multiplex polymerase chain reaction (PCR) targeting the 16S ribosomal RNA (rRNA), mecA, and nuc genes was developed. The aim of the present study was to investigate the potential of this PCR assay for the detection of MRSA strains in samples from burn patients. During an 11-month period, 230 isolates (53.11%) of Staphylococcus spp. were collected from burn patients. The isolates were identified as S. aureus by using standard culture and biochemical tests. DNA was extracted from bacterial colonies and multiplex PCR was used to detect MRSA and MRCoNS strains. Of the staphylococci isolates, 149 (64.9%) were identified as S. aureus and 81 (35.21%) were described as CoNS. Among the latter, 51 (62.97%) were reported to be MRCoNS. From the total S. aureus isolates, 132 (88.6%) were detected as MRSA and 17 (11.4%) were methicillin-susceptible S. aureus (MSSA). The presence of the mecA gene in all isolates was confirmed by using multiplex PCR as a gold standard method. This study presented a high MRSA rate in the region under investigation. The 16S rRNA-mecA-nuc multiplex PCR is a good tool for the rapid characterization of MRSA strains. This paper emphasizes the need for preventive measures and choosing effective antimicrobials against MRSA and MRCoNS infections in the burn units. Copyright © 2014 Elsevier Ltd and ISBI. All rights reserved.

  13. SQUID readout multiplexers for transition-edge sensor arrays

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Adrian T. [Physics Department, University of California, Berkeley, CA 94720 (United States) and Physics Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)]. E-mail: atl@physics.berkeley.edu

    2006-04-15

    Two classes of SQUID multiplexer are being developed for large arrays of cryogenic sensors, distinguished by their operation in either the time domain or frequency domain. Several systems optimized for use with Transition-Edge Sensors (TES) are reaching a high level of maturity, and will be deployed on funded astrophysics experiments in the next several years. A useful technical figure of merit is the product of the number of detectors multplexed multipled by the bandwidth of the detectors, which can be termed the 'total signal bandwidth' of a multiplexer system. This figure of merit is comparable within a factor of two for the mature systems. Several new concepts for increasing the total bandwidth are being developed in the broad class of frequency domain multiplexers. Another notable area of progress is in the level of integration of muliplexer and detector array. The time domain system for SCUBA-II is a sophisticated bump-bonded sandwich structure, and the Jena/MPI group is integrating detectors and a time domain multiplexer on one substrate. Finally, the Kinetic Inductance Detectors (KID)/HEMT (non-SQUID) detector/multiplexer system, will be discussed briefly.

  14. Laboratory Tests of Multiplex Detection of PCR Amplicons Using the Luminex 100 Flow Analyzer

    Energy Technology Data Exchange (ETDEWEB)

    Venkateswaran, K.S.; Nasarabadi, S.; Langlois, R.G.

    2000-05-05

    Lawrence Livermore National Laboratory (LLNL) demonstrated the power of flow cytometry in detecting the biological agents simulants at JFT III. LLNL pioneered in the development of advanced nucleic acid analyzer (ANM) for portable real time identification. Recent advances in flow cytometry provide a means for multiplexed nucleic acid detection and immunoassay of pathogenic microorganisms. We are presently developing multiplexed immunoassays for the simultaneous detection of different simulants. Our goal is to build an integrated instrument for both nucleic acid analysis and immuno detection. In this study we evaluated the Luminex LX 100 for concurrent identification of more than one PCR amplified product. ANAA has real-time Taqman fluorescent detection capability for rapid identification of field samples. However, its multiplexing ability is limited by the combination of available fluorescent labels. Hence integration of ANAA with flow cytometry can give the rapidity of ANAA amplification and the multiplex capability of flow cytometry. Multiplexed flow cytometric analysis is made possible using a set of fluorescent latex microsphere that are individually identified by their red and infrared fluorescence. A green fluorochrome is used as the assay signal. Methods were developed for the identification of specific nucleic acid sequences from Bacillus globigii (Bg), Bacillus thuringensis (Bt) and Erwinia herbicola (Eh). Detection sensitivity using different reporter fluorochromes was tested with the LX 100, and also different assay formats were evaluated for their suitability for rapid testing. A blind laboratory trial was carried out December 22-27, 1999 to evaluate bead assays for multiplex identification of Bg and Bt PCR products. This report summarizes the assay development, fluorochrome comparisons, and the results of the blind trial conducted at LLNL for the laboratory evaluation of the LX 100 flow analyzer.

  15. Detection of influenza viruses by coupling multiplex reverse-transcription loop-mediated isothermal amplification with cascade invasive reaction using nanoparticles as a sensor

    Directory of Open Access Journals (Sweden)

    Ge Y

    2017-04-01

    Full Text Available Yiyue Ge,1 Qiang Zhou,2 Kangchen Zhao,1 Ying Chi,1 Bin Liu,3 Xiaoyan Min,4 Zhiyang Shi,1 Bingjie Zou,2 Lunbiao Cui1 1Institute of Pathogenic Microbiology, Key Laboratories of Enteric Pathogenic Microbiology (Ministry of Health, Jiangsu Provincial Center for Disease Control and Prevention, 2Department of Pharmacology, Jinling Hospital, Medical School of Nanjing University, 3Department of Biomedical Engineering, Nanjing Medical University, 4Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China Abstract: Influenza virus infections represent a worldwide public health and economic problem due to the significant morbidity and mortality caused by seasonal epidemics and pandemics. Sensitive and convenient methodologies for detection of influenza viruses are essential for further disease control. Loop-mediated isothermal amplification (LAMP is the most commonly used method of nucleic acid isothermal amplification. However, with regard to multiplex LAMP, differentiating the ladder-like LAMP products derived from multiple targets is still challenging today. The requirement of specialized instruments has further hindered the on-site application of multiplex LAMP. We have developed an integrated assay coupling multiplex reverse transcription LAMP with cascade invasive reaction using nanoparticles (mRT-LAMP-CIRN as a sensor for the detection of three subtypes of influenza viruses: A/H1N1pdm09, A/H3 and influenza B. The analytic sensitivities of the mRT-LAMP-CIRN assay were 101 copies of RNA for both A/H1N1pdm09 and A/H3, and 102 copies of RNA for influenza B. This assay demonstrated highly specific detection of target viruses and could differentiate them from other genetically or clinically related viruses. Clinical specimen analysis showed the mRT-LAMP-CIRN assay had an overall sensitivity and specificity of 98.3% and 100%, respectively. In summary, the mRT-LAMP-CIRN assay is

  16. Design, development and evaluation of a resistor-based multiplexing circuit for a 20×20 SiPM array

    International Nuclear Information System (INIS)

    Wang, Zhonghai; Sun, Xishan; Lou, Kai; Meier, Joseph; Zhou, Rong; Yang, Chaowen; Zhu, Xiaorong; Shao, Yiping

    2016-01-01

    One technical challenge in developing a large-size scintillator detector with multiple Silicon Photomultiplier (SiPM) arrays is to read out a large number of detector output channels. To achieve this, different signal multiplexing circuits have been studied and applied with different performances and cost-effective tradeoffs. Resistor-based multiplexing circuits exhibit simplicity and signal integrity, but also present the disadvantage of timing shift among different channels. In this study, a resistor-based multiplexing circuit for a large-sized SiPM array readout was developed and evaluated by simulation and experimental studies. Similarly to a multiplexing circuit used for multi-anode PMT, grounding and branching resistors were connected to each SiPM output channel. The grounding resistor was used to simultaneously reduce the signal crosstalk among different channels and to improve timing performance. Both grounding and branching resistor values were optimized to maintain a balanced performance of the event energy, timing, and positioning. A multiplexing circuit was implemented on a compact PCB and applied for a flat-panel detector which consisted of a 32×32 LYSO scintillator crystals optically coupled to 5×5 SiPM arrays for a total 20×20 output channels. Test results showed excellent crystal identification for all 1024 LYSO crystals (each with 2×2×30 mm"3 size) with "2"2Na flood-source irradiation. The measured peak-to-valley ratio from typical crystal map profile is around 3:1 to 6.6:1, an average single crystal energy resolution of about 17.3%, and an average single crystal timing resolution of about 2 ns. Timing shift among different crystals, as reported in some other resistor-based multiplexing circuit designs, was not observed. In summary, we have designed and implemented a practical resistor-based multiplexing circuit that can be readily applied for reading out a large SiPM array with good detector performance.

  17. Design, development and evaluation of a resistor-based multiplexing circuit for a 20×20 SiPM array

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhonghai [College of Physical Science and Technology, Key Laboratory of Radiation Physics and Technology, Ministry of Education, Sichuan University, Chengdu (China); Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Tx (United States); Sun, Xishan [Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Tx (United States); Lou, Kai [Department of Electrical and Computer Engineering, Rice University, Houston, Tx (United States); Meier, Joseph [Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Tx (United States); Zhou, Rong; Yang, Chaowen [College of Physical Science and Technology, Key Laboratory of Radiation Physics and Technology, Ministry of Education, Sichuan University, Chengdu (China); Zhu, Xiaorong [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Tx (United States); Shao, Yiping [Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Tx (United States)

    2016-04-21

    One technical challenge in developing a large-size scintillator detector with multiple Silicon Photomultiplier (SiPM) arrays is to read out a large number of detector output channels. To achieve this, different signal multiplexing circuits have been studied and applied with different performances and cost-effective tradeoffs. Resistor-based multiplexing circuits exhibit simplicity and signal integrity, but also present the disadvantage of timing shift among different channels. In this study, a resistor-based multiplexing circuit for a large-sized SiPM array readout was developed and evaluated by simulation and experimental studies. Similarly to a multiplexing circuit used for multi-anode PMT, grounding and branching resistors were connected to each SiPM output channel. The grounding resistor was used to simultaneously reduce the signal crosstalk among different channels and to improve timing performance. Both grounding and branching resistor values were optimized to maintain a balanced performance of the event energy, timing, and positioning. A multiplexing circuit was implemented on a compact PCB and applied for a flat-panel detector which consisted of a 32×32 LYSO scintillator crystals optically coupled to 5×5 SiPM arrays for a total 20×20 output channels. Test results showed excellent crystal identification for all 1024 LYSO crystals (each with 2×2×30 mm{sup 3} size) with {sup 22}Na flood-source irradiation. The measured peak-to-valley ratio from typical crystal map profile is around 3:1 to 6.6:1, an average single crystal energy resolution of about 17.3%, and an average single crystal timing resolution of about 2 ns. Timing shift among different crystals, as reported in some other resistor-based multiplexing circuit designs, was not observed. In summary, we have designed and implemented a practical resistor-based multiplexing circuit that can be readily applied for reading out a large SiPM array with good detector performance.

  18. Silicon Chip-to-Chip Mode-Division Multiplexing

    DEFF Research Database (Denmark)

    Baumann, Jan Markus; Porto da Silva, Edson; Ding, Yunhong

    2018-01-01

    A chip-to-chip mode-division multiplexing connection is demonstrated using a pair of multiplexers/demultiplexers fabricated on the silicon-on-insulator platform. Successful mode multiplexing and demultiplexing is experimentally demonstrated, using the LP01, LP11a and LP11b modes.......A chip-to-chip mode-division multiplexing connection is demonstrated using a pair of multiplexers/demultiplexers fabricated on the silicon-on-insulator platform. Successful mode multiplexing and demultiplexing is experimentally demonstrated, using the LP01, LP11a and LP11b modes....

  19. Berkeley High-Resolution Ball

    International Nuclear Information System (INIS)

    Diamond, R.M.

    1984-10-01

    Criteria for a high-resolution γ-ray system are discussed. Desirable properties are high resolution, good response function, and moderate solid angle so as to achieve not only double- but triple-coincidences with good statistics. The Berkeley High-Resolution Ball involved the first use of bismuth germanate (BGO) for anti-Compton shield for Ge detectors. The resulting compact shield permitted rather close packing of 21 detectors around a target. In addition, a small central BGO ball gives the total γ-ray energy and multiplicity, as well as the angular pattern of the γ rays. The 21-detector array is nearly complete, and the central ball has been designed, but not yet constructed. First results taken with 9 detector modules are shown for the nucleus 156 Er. The complex decay scheme indicates a transition from collective rotation (prolate shape) to single- particle states (possibly oblate) near spin 30 h, and has other interesting features

  20. Identification and genetic mapping of highly polymorphic microsatellite loci from an EST database of the septoria tritici blotch pathogen Mycosphaerella graminicola.

    Science.gov (United States)

    Goodwin, Stephen B; van der Lee, Theo A J; Cavaletto, Jessica R; Te Lintel Hekkert, Bas; Crane, Charles F; Kema, Gert H J

    2007-05-01

    A database of 30,137 EST sequences from Mycosphaerella graminicola, the septoria tritici blotch fungus of wheat, was scanned with a custom software pipeline for di- and trinucleotide units repeated tandemly six or more times. The bioinformatics analysis identified 109 putative SSR loci, and for 99 of them, flanking primers were developed successfully and tested for amplification and polymorphism by PCR on five field isolates of diverse origin, including the parents of the standard M. graminicola mapping population. Seventy-seven of the 99 primer pairs generated an easily scored banding pattern and 51 were polymorphic, with up to four alleles per locus, among the isolates tested. Among these 51 loci, 23 were polymorphic between the parents of the mapping population. Twenty-one of these as well as two previously published microsatellite loci were positioned on the existing genetic linkage map of M. graminicola on 13 of the 24 linkage groups. Most (66%) of the primer pairs also amplified bands in the closely related barley pathogen Septoria passerinii, but only six were polymorphic among four isolates tested. A subset of the primer pairs also revealed polymorphisms when tested with DNA from the related banana black leaf streak (Black Sigatoka) pathogen, M. fijiensis. The EST database provided an excellent source of new, highly polymorphic microsatellite markers that can be multiplexed for high-throughput genetic analyses of M. graminicola and related species.

  1. Multiplex measuring systems in physics

    International Nuclear Information System (INIS)

    Soroko, L.M.

    1980-01-01

    The principles of operation of multiplex devices used in different spheres of physics are discussed. The ''multiplex'' notion means that the data output of the device is an integral image of the functional dependence under investigation, but not its readings as in usual instruments. The analysis of the present state of developments of the multiplex systems in optics, nuclear magnetic resonance spectroscopy, in time-of-flight spectrometers for slow and fast neutrons, as well as elementary particle detectors, is given. The construction algorithms for the digital codes are presented, the history of development of the multiplex measuring principle is given [ru

  2. Computed tomography with selectable image resolution

    International Nuclear Information System (INIS)

    Dibianca, F.A.; Dallapiazza, D.G.

    1981-01-01

    A computed tomography system x-ray detector has a central group of half-width detector elements and groups of full-width elements on each side of the central group. To obtain x-ray attenuation data for whole body layers, the half-width elements are switched effectively into paralleled pairs so all elements act like full-width elements and an image of normal resolution is obtained. For narrower head layers, the elements in the central group are used as half-width elements so resolution which is twice as great as normal is obtained. The central group is also used in the half-width mode and the outside groups are used in the full-width mode to obtain a high resolution image of a body zone within a full body layer. In one embodiment data signals from the detector are switched by electronic multiplexing and in another embodiment a processor chooses the signals for the various kinds of images that are to be reconstructed. (author)

  3. Rapid high resolution genotyping of Francisella tularensis by whole genome sequence comparison of annotated genes ("MLST+".

    Directory of Open Access Journals (Sweden)

    Markus H Antwerpen

    Full Text Available The zoonotic disease tularemia is caused by the bacterium Francisella tularensis. This pathogen is considered as a category A select agent with potential to be misused in bioterrorism. Molecular typing based on DNA-sequence like canSNP-typing or MLVA has become the accepted standard for this organism. Due to the organism's highly clonal nature, the current typing methods have reached their limit of discrimination for classifying closely related subpopulations within the subspecies F. tularensis ssp. holarctica. We introduce a new gene-by-gene approach, MLST+, based on whole genome data of 15 sequenced F. tularensis ssp. holarctica strains and apply this approach to investigate an epidemic of lethal tularemia among non-human primates in two animal facilities in Germany. Due to the high resolution of MLST+ we are able to demonstrate that three independent clones of this highly infectious pathogen were responsible for these spatially and temporally restricted outbreaks.

  4. High-Resolution PET Detector. Final report

    International Nuclear Information System (INIS)

    Karp, Joel

    2014-01-01

    The objective of this project was to develop an understanding of the limits of performance for a high resolution PET detector using an approach based on continuous scintillation crystals rather than pixelated crystals. The overall goal was to design a high-resolution detector, which requires both high spatial resolution and high sensitivity for 511 keV gammas. Continuous scintillation detectors (Anger cameras) have been used extensively for both single-photon and PET scanners, however, these instruments were based on NaI(Tl) scintillators using relatively large, individual photo-multipliers. In this project we investigated the potential of this type of detector technology to achieve higher spatial resolution through the use of improved scintillator materials and photo-sensors, and modification of the detector surface to optimize the light response function.We achieved an average spatial resolution of 3-mm for a 25-mm thick, LYSO continuous detector using a maximum likelihood position algorithm and shallow slots cut into the entrance surface

  5. Experimental demonstration of subcarrier multiplexed quantum key distribution system.

    Science.gov (United States)

    Mora, José; Ruiz-Alba, Antonio; Amaya, Waldimar; Martínez, Alfonso; García-Muñoz, Víctor; Calvo, David; Capmany, José

    2012-06-01

    We provide, to our knowledge, the first experimental demonstration of the feasibility of sending several parallel keys by exploiting the technique of subcarrier multiplexing (SCM) widely employed in microwave photonics. This approach brings several advantages such as high spectral efficiency compatible with the actual secure key rates, the sharing of the optical fainted pulse by all the quantum multiplexed channels reducing the system complexity, and the possibility of upgrading with wavelength division multiplexing in a two-tier scheme, to increase the number of parallel keys. Two independent quantum SCM channels featuring a sifted key rate of 10 Kb/s/channel over a link with quantum bit error rate <2% is reported.

  6. Integrated photonics : compact multiplexing

    NARCIS (Netherlands)

    Pile, D.; Chen, H.; Uden, van R.G.H.; Okonkwo, C.M.; Koonen, A.M.J.

    2015-01-01

    Spatial multiplexers (SMUXs) for mode division multiplexing often involve multiple strategies for mode-selective excitation and the minimization of insertion and other losses. Haoshuo Chen, Roy van Uden, Chigo Okonkwo and Ton Koonen, working at the COBRA Institute at the Eindhoven University of

  7. Subcortical White Matter Changes with Normal Aging Detected by Multi-Shot High Resolution Diffusion Tensor Imaging.

    Directory of Open Access Journals (Sweden)

    Sheng Xie

    Full Text Available Subcortical white matter builds neural connections between cortical and subcortical regions and constitutes the basis of neural networks. It plays a very important role in normal brain function. Various studies have shown that white matter deteriorates with aging. However, due to the limited spatial resolution provided by traditional diffusion imaging techniques, microstructural information from subcortical white matter with normal aging has not been comprehensively assessed. This study aims to investigate the deterioration effect with aging in the subcortical white matter and provide a baseline standard for pathological disorder diagnosis. We apply our newly developed multi-shot high resolution diffusion tensor imaging, using self-feeding multiplexed sensitivity-encoding, to measure subcortical white matter changes in regions of interest of healthy persons with a wide age range. Results show significant fractional anisotropy decline and radial diffusivity increasing with age, especially in the anterior part of the brain. We also find that subcortical white matter has more prominent changes than white matter close to the central brain. The observed changes in the subcortical white matter may be indicative of a mild demyelination and a loss of myelinated axons, which may contribute to normal age-related functional decline.

  8. Dynamic Optically Multiplexed Imaging

    Science.gov (United States)

    2015-07-29

    Dynamic Optically Multiplexed Imaging Yaron Rachlin, Vinay Shah, R. Hamilton Shepard, and Tina Shih Lincoln Laboratory, Massachusetts Institute of...V. Shah, and T. Shih “Design Architectures for Optically Multiplexed Imaging,” in submission 9 R. Gupta , P. Indyk, E. Price, and Y. Rachlin

  9. High capacity fiber optic sensor networks using hybrid multiplexing techniques and their applications

    Science.gov (United States)

    Sun, Qizhen; Li, Xiaolei; Zhang, Manliang; Liu, Qi; Liu, Hai; Liu, Deming

    2013-12-01

    Fiber optic sensor network is the development trend of fiber senor technologies and industries. In this paper, I will discuss recent research progress on high capacity fiber sensor networks with hybrid multiplexing techniques and their applications in the fields of security monitoring, environment monitoring, Smart eHome, etc. Firstly, I will present the architecture of hybrid multiplexing sensor passive optical network (HSPON), and the key technologies for integrated access and intelligent management of massive fiber sensor units. Two typical hybrid WDM/TDM fiber sensor networks for perimeter intrusion monitor and cultural relics security are introduced. Secondly, we propose the concept of "Microstructure-Optical X Domin Refecltor (M-OXDR)" for fiber sensor network expansion. By fabricating smart micro-structures with the ability of multidimensional encoded and low insertion loss along the fiber, the fiber sensor network of simple structure and huge capacity more than one thousand could be achieved. Assisted by the WDM/TDM and WDM/FDM decoding methods respectively, we built the verification systems for long-haul and real-time temperature sensing. Finally, I will show the high capacity and flexible fiber sensor network with IPv6 protocol based hybrid fiber/wireless access. By developing the fiber optic sensor with embedded IPv6 protocol conversion module and IPv6 router, huge amounts of fiber optic sensor nodes can be uniquely addressed. Meanwhile, various sensing information could be integrated and accessed to the Next Generation Internet.

  10. Polarization-multiplexing ghost imaging

    Science.gov (United States)

    Dongfeng, Shi; Jiamin, Zhang; Jian, Huang; Yingjian, Wang; Kee, Yuan; Kaifa, Cao; Chenbo, Xie; Dong, Liu; Wenyue, Zhu

    2018-03-01

    A novel technique for polarization-multiplexing ghost imaging is proposed to simultaneously obtain multiple polarimetric information by a single detector. Here, polarization-division multiplexing speckles are employed for object illumination. The light reflected from the objects is detected by a single-pixel detector. An iterative reconstruction method is used to restore the fused image containing the different polarimetric information by using the weighted sum of the multiplexed speckles based on the correlation coefficients obtained from the detected intensities. Next, clear images of the different polarimetric information are recovered by demultiplexing the fused image. The results clearly demonstrate that the proposed method is effective.

  11. A Dual Filtration-Based Multiplex PCR Method for Simultaneous Detection of Viable Escherichia coli O157:H7, Listeria monocytogenes, and Staphylococcus aureus on Fresh-Cut Cantaloupe.

    Directory of Open Access Journals (Sweden)

    Ke Feng

    Full Text Available Fresh-cut cantaloupe is particularly susceptible to contamination with pathogenic bacteria, such as Escherichia coli O157:H7, Listeria monocytogenes, and Staphylococcus aureus. Therefore, development of rapid, yet accurate detection techniques is necessary to ensure food safety. In this study, a multiplex PCR system and propidium monoazide (PMA concentration were optimized to detect all viable pathogens in a single tube. A dual filtration system utilized a filtration membrane with different pore sizes to enrich pathogens found on fresh-cut cantaloupe. The results revealed that an optimized multiplex PCR system has the ability to effectively detect three pathogens in the same tube. The viable pathogens were simultaneously detected for PMA concentrations above 10 μg/ml. The combination of a nylon membrane (15 μm and a micro pore filtration membrane (0.22 μm formed the dual filtration system used to enrich pathogens. The achieved sensitivity of PMA-mPCR based on this dual filtration system was 2.6 × 103 cfu/g for L. monocytogenes, 4.3 × 10 cfu/g for E. coli O157:H7, and 3.1 × 102 cfu/g for S. aureus. Fresh-cut cantaloupe was inoculated with the three target pathogens using concentrations of 103, 102, 10, and 1 cfu/g. After 6-h of enrichment culture, assay sensitivity increased to 1 cfu/g for each of these pathogens. Thus, this technique represents an efficient and rapid detection tool for implementation on fresh-cut cantaloupe.

  12. Monitoring paneer for Listeria monocytogenes - A high risk food ...

    African Journals Online (AJOL)

    A multiplex polymerase chain reaction (PCR) assay was developed and applied to spiked and natural paneer samples to detect Listeria monocytogenes, a high risk food pathogen. The sensitivity of the assay on L. monocytogenes spiked paneer samples was 104 cells prior to enrichment, was improved to 103 cells after 4 h ...

  13. Investigation into constant envelope orthogonal frequency division multiplexing for polarization-division multiplexing coherent optical communication

    Science.gov (United States)

    Li, Yupeng; Ding, Ding

    2017-09-01

    Benefiting from the high spectral efficiency and low peak-to-average power ratio, constant envelope orthogonal frequency division multiplexing (OFDM) is a promising technique in coherent optical communication. Polarization-division multiplexing (PDM) has been employed as an effective way to double the transmission capacity in the commercial 100 Gb/s PDM-QPSK system. We investigated constant envelope OFDM together with PDM. Simulation results show that the acceptable maximum launch power into the fiber improves 10 and 6 dB for 80- and 320-km transmission, respectively (compared with the conventional PDM OFDM system). The maximum reachable distance of the constant envelope OFDM system is able to reach 800 km, and even 1200 km is reachable if an ideal erbium doped fiber amplifier is employed.

  14. The epizootiology of the highly pathogenic avian influenza prior to ...

    African Journals Online (AJOL)

    The epizootiology of the highly pathogenic avian influenza prior to the anticipated pandemic of the early twenty first century. ... Transmission of highly pathogenic H5N1 from domestic fowls back to migratory waterfowl in western China has increased the geographic spread. This has grave consequences for the poultry ...

  15. All Inkjet-Printed Amperometric Multiplexed Biosensors Based on Nanostructured Conductive Hydrogel Electrodes.

    Science.gov (United States)

    Li, Lanlan; Pan, Lijia; Ma, Zhong; Yan, Ke; Cheng, Wen; Shi, Yi; Yu, Guihua

    2018-02-12

    Multiplexing, one of the main trends in biosensors, aims to detect several analytes simultaneously by integrating miniature sensors on a chip. However, precisely depositing electrode materials and selective enzymes on distinct microelectrode arrays remains an obstacle to massively produced multiplexed sensors. Here, we report on a "drop-on-demand" inkjet printing process to fabricate multiplexed biosensors based on nanostructured conductive hydrogels in which the electrode material and several kinds of enzymes were printed on the electrode arrays one by one by employing a multinozzle inkjet system. The whole inkjet printing process can be finished within three rounds of printing and only one round of alignment. For a page of sensor arrays containing 96 working electrodes, the printing process took merely ∼5 min. The multiplexed assays can detect glucose, lactate, and triglycerides in real time with good selectivity and high sensitivity, and the results in phosphate buffer solutions and calibration serum samples are comparable. The inkjet printing process exhibited advantages of high efficiency and accuracy, which opens substantial possibilities for massive fabrication of integrated multiplexed biosensors for human health monitoring.

  16. A multiplex PCR assay for simultaneous detection of Escherichia coli O157:H7, Bacillus cereus, Vibrio parahaemolyticus, Salmonella spp., Listeria monocytogenes, and Staphylococcus aureus in Korean ready-to-eat food.

    Science.gov (United States)

    Lee, Nari; Kwon, Kyung Yoon; Oh, Su Kyung; Chang, Hyun-Joo; Chun, Hyang Sook; Choi, Sung-Wook

    2014-07-01

    A multiplex polymerase chain reaction (PCR) assay was developed for simultaneous detection of Escherichia coli O157:H7, Bacillus cereus, Vibrio parahaemolyticus, Salmonella spp., Listeria monocytogenes, and Staphylococcus aureus in various Korean ready-to-eat foods. The six specific primer pairs for multiplex PCR were selected based on the O157 antigen (rfbE) gene of E. coli O157:H7, the DNA gyrase subunit B (gyrB) gene of B. cereus, the toxin regulatory protein (toxR) gene of V. parahaemolyticus, the invasion protein A (invA) gene of Salmonella spp., the hemolysin (hly) gene of L. monocytogenes, and the thermonuclease (nuc) gene of S. aureus. The 16S rRNA gene was targeted as an internal control gene in the presence of bacterial DNA. The specificity and sensitivity assays for multiplex primer pairs were investigated by testing different strains. When this multiplex PCR assay was applied to evaluate the validity of detecting six foodborne pathogens in artificially inoculated several ready-to-eat food samples, the assay was able to specifically simultaneously detect as few as 1 colony-forming unit/mL of each pathogen after enrichment for 12 h. Their presence in naturally contaminated samples also indicates that the developed multiplex PCR assay is an effective and informative supplement for practical use.

  17. High resolution sequence stratigraphy in China

    International Nuclear Information System (INIS)

    Zhang Shangfeng; Zhang Changmin; Yin Yanshi; Yin Taiju

    2008-01-01

    Since high resolution sequence stratigraphy was introduced into China by DENG Hong-wen in 1995, it has been experienced two development stages in China which are the beginning stage of theory research and development of theory research and application, and the stage of theoretical maturity and widely application that is going into. It is proved by practices that high resolution sequence stratigraphy plays more and more important roles in the exploration and development of oil and gas in Chinese continental oil-bearing basin and the research field spreads to the exploration of coal mine, uranium mine and other strata deposits. However, the theory of high resolution sequence stratigraphy still has some shortages, it should be improved in many aspects. The authors point out that high resolution sequence stratigraphy should be characterized quantitatively and modelized by computer techniques. (authors)

  18. Rapid Sequential in Situ Multiplexing with DNA Exchange Imaging in Neuronal Cells and Tissues.

    Science.gov (United States)

    Wang, Yu; Woehrstein, Johannes B; Donoghue, Noah; Dai, Mingjie; Avendaño, Maier S; Schackmann, Ron C J; Zoeller, Jason J; Wang, Shan Shan H; Tillberg, Paul W; Park, Demian; Lapan, Sylvain W; Boyden, Edward S; Brugge, Joan S; Kaeser, Pascal S; Church, George M; Agasti, Sarit S; Jungmann, Ralf; Yin, Peng

    2017-10-11

    To decipher the molecular mechanisms of biological function, it is critical to map the molecular composition of individual cells or even more importantly tissue samples in the context of their biological environment in situ. Immunofluorescence (IF) provides specific labeling for molecular profiling. However, conventional IF methods have finite multiplexing capabilities due to spectral overlap of the fluorophores. Various sequential imaging methods have been developed to circumvent this spectral limit but are not widely adopted due to the common limitation of requiring multirounds of slow (typically over 2 h at room temperature to overnight at 4 °C in practice) immunostaining. We present here a practical and robust method, which we call DNA Exchange Imaging (DEI), for rapid in situ spectrally unlimited multiplexing. This technique overcomes speed restrictions by allowing for single-round immunostaining with DNA-barcoded antibodies, followed by rapid (less than 10 min) buffer exchange of fluorophore-bearing DNA imager strands. The programmability of DEI allows us to apply it to diverse microscopy platforms (with Exchange Confocal, Exchange-SIM, Exchange-STED, and Exchange-PAINT demonstrated here) at multiple desired resolution scales (from ∼300 nm down to sub-20 nm). We optimized and validated the use of DEI in complex biological samples, including primary neuron cultures and tissue sections. These results collectively suggest DNA exchange as a versatile, practical platform for rapid, highly multiplexed in situ imaging, potentially enabling new applications ranging from basic science, to drug discovery, and to clinical pathology.

  19. A low noise ASIC for two dimensional neutron gas detector with performance of high spatial resolution (Contract research)

    International Nuclear Information System (INIS)

    Yamagishi, Hideshi; Toh, Kentaro; Nakamura, Tatsuya; Sakasai, Kaoru; Soyama, Kazuhiko

    2012-02-01

    An ASD-ASIC (Amplifier-Shaper-Discriminator ASIC) with fast response and low noise performances has been designed for two-dimensional position sensitive neutron gas detectors (InSPaD). The InSPaD is a 2D neutron detector system with 3 He gas and provides a high spatial resolution by making distinction between proton and triton particles generated in the gas chamber. The new ASD-ASIC is required to have very low noise, a wide dynamic range, good output linearity and high counting rate. The new ASD-ASIC has been designed by using CMOS and consisted of 64-channel ASDs, a 16-channel multiplexer with LVTTL drivers and sum amplifier system for summing all analog signals. The performances were evaluated by the Spice simulation. It was confirmed that the new ASD-ASIC had very low noise performance, wide dynamic range and fast signal processing functions. (author)

  20. Development of AMS high resolution injector system

    International Nuclear Information System (INIS)

    Bao Yiwen; Guan Xialing; Hu Yueming

    2008-01-01

    The Beijing HI-13 tandem accelerator AMS high resolution injector system was developed. The high resolution energy achromatic system consists of an electrostatic analyzer and a magnetic analyzer, which mass resolution can reach 600 and transmission is better than 80%. (authors)

  1. Rapid Detection and Differentiation of Clonorchis sinensis and Opisthorchis viverrini Using Real-Time PCR and High Resolution Melting Analysis

    OpenAIRE

    Cai, Xian-Quan; Yu, Hai-Qiong; Li, Rong; Yue, Qiao-Yun; Liu, Guo-Hua; Bai, Jian-Shan; Deng, Yan; Qiu, De-Yi; Zhu, Xing-Quan

    2014-01-01

    Clonorchis sinensis and Opisthorchis viverrini are both important fish-borne pathogens, causing serious public health problem in Asia. The present study developed an assay integrating real-time PCR and high resolution melting (HRM) analysis for the specific detection and rapid identification of C. sinensis and O. viverrini. Primers targeting COX1 gene were highly specific for these liver flukes, as evidenced by the negative amplification of closely related trematodes. Assays using genomic DNA...

  2. Resolution enhancement of low quality videos using a high-resolution frame

    NARCIS (Netherlands)

    Pham, T.Q.; Van Vliet, L.J.; Schutte, K.

    2006-01-01

    This paper proposes an example-based Super-Resolution (SR) algorithm of compressed videos in the Discrete Cosine Transform (DCT) domain. Input to the system is a Low-Resolution (LR) compressed video together with a High-Resolution (HR) still image of similar content. Using a training set of

  3. High resolution, high speed ultrahigh vacuum microscopy

    International Nuclear Information System (INIS)

    Poppa, Helmut

    2004-01-01

    The history and future of transmission electron microscopy (TEM) is discussed as it refers to the eventual development of instruments and techniques applicable to the real time in situ investigation of surface processes with high resolution. To reach this objective, it was necessary to transform conventional high resolution instruments so that an ultrahigh vacuum (UHV) environment at the sample site was created, that access to the sample by various in situ sample modification procedures was provided, and that in situ sample exchanges with other integrated surface analytical systems became possible. Furthermore, high resolution image acquisition systems had to be developed to take advantage of the high speed imaging capabilities of projection imaging microscopes. These changes to conventional electron microscopy and its uses were slowly realized in a few international laboratories over a period of almost 40 years by a relatively small number of researchers crucially interested in advancing the state of the art of electron microscopy and its applications to diverse areas of interest; often concentrating on the nucleation, growth, and properties of thin films on well defined material surfaces. A part of this review is dedicated to the recognition of the major contributions to surface and thin film science by these pioneers. Finally, some of the important current developments in aberration corrected electron optics and eventual adaptations to in situ UHV microscopy are discussed. As a result of all the path breaking developments that have led to today's highly sophisticated UHV-TEM systems, integrated fundamental studies are now possible that combine many traditional surface science approaches. Combined investigations to date have involved in situ and ex situ surface microscopies such as scanning tunneling microscopy/atomic force microscopy, scanning Auger microscopy, and photoemission electron microscopy, and area-integrating techniques such as x-ray photoelectron

  4. Frequency-domain multiplexing of TES microcalorimeter array with CABBAGE

    International Nuclear Information System (INIS)

    Iyomoto, N.; Ichitsubo, T.; Mitsuda, K.; Yamasaki, N.Y.; Fujimoto, R.; Oshima, T.; Futamoto, K.; Takei, Y.; Fujimori, T.; Yoshida, K.; Ishisaki, Y.; Morita, U.; Koga, T.; Shinozaki, K.; Sato, K.; Takai, N.; Ohashi, T.; Miyazaki, T.; Nakayama, S.; Tanaka, K.; Morooka, T.; Chinone, K.

    2004-01-01

    Properties of Transition-Edge Sensor (TES) microcalorimeters operated with AC bias are studied utilizing the calorimeter Wheatstone bridge circuit called Calorimeter Bridge Biased by an AC Generator (CABBAGE). The CABBAGE eliminates the AC carrier significantly, thus enables us to study the AC responses of the TES with high sensitivity. We tested two kinds of TES devices operating at 110 and 440 mK, respectively. With the 110 mK device biased with 25 kHz, an energy resolution of 28 eV is obtained for Mn Kα line. On the other hand, we multiplexed the signals from two 440 mK device biased with 50 and 20 kHz, respectively, and obtained 167 and 271 eV energy resolutions. Even at the balance point of the bridge, AC signal did not disappear and odd-order harmonics were observed. They are considered to arise from the current dependence of the TES resistance, which is characterized by β≡d log R/d log I. Numerical solution for the CABBAGE response can reproduce the experimental results well if β=0.24±0.02. Since the harmonics may cause severe problem in the SQUID operation even after attenuated by a band-pass filter, especially at high bias frequency operation such as several hundred kHz, it is important to make β small

  5. Real-time high resolution 3D imaging of the lyme disease spirochete adhering to and escaping from the vasculature of a living host.

    Directory of Open Access Journals (Sweden)

    Tara J Moriarty

    2008-06-01

    Full Text Available Pathogenic spirochetes are bacteria that cause a number of emerging and re-emerging diseases worldwide, including syphilis, leptospirosis, relapsing fever, and Lyme borreliosis. They navigate efficiently through dense extracellular matrix and cross the blood-brain barrier by unknown mechanisms. Due to their slender morphology, spirochetes are difficult to visualize by standard light microscopy, impeding studies of their behavior in situ. We engineered a fluorescent infectious strain of Borrelia burgdorferi, the Lyme disease pathogen, which expressed green fluorescent protein (GFP. Real-time 3D and 4D quantitative analysis of fluorescent spirochete dissemination from the microvasculature of living mice at high resolution revealed that dissemination was a multi-stage process that included transient tethering-type associations, short-term dragging interactions, and stationary adhesion. Stationary adhesions and extravasating spirochetes were most commonly observed at endothelial junctions, and translational motility of spirochetes appeared to play an integral role in transendothelial migration. To our knowledge, this is the first report of high resolution 3D and 4D visualization of dissemination of a bacterial pathogen in a living mammalian host, and provides the first direct insight into spirochete dissemination in vivo.

  6. [Highly pathogenic avian influenza--monitoring of migratory waterfowl].

    Science.gov (United States)

    Otsuki, Koichi; Ito, Toshihiro

    2006-10-01

    Since 1979, the group belonging to Departments of Veterinary Microbiology, Veterinary Public Health and the Avian Zoonoses Research Centre, Faculty of Agriculture, Tottori University is continuing isolation of avian influenza virus from such migratory waterfowls as whistling swan, pintail and tufted dugs flying from Siberia and/or northern China. They have already isolated many interesting influenza viruses. Serotype of the isolates is various; some H5 and H7 and human types of viruses were also isolated; and its pathogenicity for chickens is not high. It was interested that low pathogenic H5N3 virus isolated from whistling swan acquired severe pathogenicity during passage in chicks.

  7. Multiplexing of spatial modes in the mid-IR region

    Science.gov (United States)

    Gailele, Lucas; Maweza, Loyiso; Dudley, Angela; Ndagano, Bienvenu; Rosales-Guzman, Carmelo; Forbes, Andrew

    2017-02-01

    Traditional optical communication systems optimize multiplexing in polarization and wavelength both trans- mitted in fiber and free-space to attain high bandwidth data communication. Yet despite these technologies, we are expected to reach a bandwidth ceiling in the near future. Communications using orbital angular momentum (OAM) carrying modes offers infinite dimensional states, providing means to increase link capacity by multiplexing spatially overlapping modes in both the azimuthal and radial degrees of freedom. OAM modes are multiplexed and de-multiplexed by the use of spatial light modulators (SLM). Implementation of complex amplitude modulation is employed on laser beams phase and amplitude to generate Laguerre-Gaussian (LG) modes. Modal decomposition is employed to detect these modes due to their orthogonality as they propagate in space. We demonstrate data transfer by sending images as a proof-of concept in a lab-based scheme. We demonstrate the creation and detection of OAM modes in the mid-IR region as a precursor to a mid-IR free-space communication link.

  8. A high resolution solar atlas for fluorescence calculations

    Science.gov (United States)

    Hearn, M. F.; Ohlmacher, J. T.; Schleicher, D. G.

    1983-01-01

    The characteristics required of a solar atlas to be used for studying the fluorescence process in comets are examined. Several sources of low resolution data were combined to provide an absolutely calibrated spectrum from 2250 A to 7000A. Three different sources of high resolution data were also used to cover this same spectral range. The low resolution data were then used to put each high resolution spectrum on an absolute scale. The three high resolution spectra were then combined in their overlap regions to produce a single, absolutely calibrated high resolution spectrum over the entire spectral range.

  9. Ultrasensitive multiplex optical quantification of bacteria in large samples of biofluids

    Science.gov (United States)

    Pazos-Perez, Nicolas; Pazos, Elena; Catala, Carme; Mir-Simon, Bernat; Gómez-de Pedro, Sara; Sagales, Juan; Villanueva, Carlos; Vila, Jordi; Soriano, Alex; García de Abajo, F. Javier; Alvarez-Puebla, Ramon A.

    2016-01-01

    Efficient treatments in bacterial infections require the fast and accurate recognition of pathogens, with concentrations as low as one per milliliter in the case of septicemia. Detecting and quantifying bacteria in such low concentrations is challenging and typically demands cultures of large samples of blood (~1 milliliter) extending over 24–72 hours. This delay seriously compromises the health of patients. Here we demonstrate a fast microorganism optical detection system for the exhaustive identification and quantification of pathogens in volumes of biofluids with clinical relevance (~1 milliliter) in minutes. We drive each type of bacteria to accumulate antibody functionalized SERS-labelled silver nanoparticles. Particle aggregation on the bacteria membranes renders dense arrays of inter-particle gaps in which the Raman signal is exponentially amplified by several orders of magnitude relative to the dispersed particles. This enables a multiplex identification of the microorganisms through the molecule-specific spectral fingerprints. PMID:27364357

  10. High Resolution X-ray Diffraction Dataset for Bacillus licheniformis Gamma Glutamyl Transpeptidase-acivicin complex: SUMO-Tag Renders High Expression and Solubility.

    Science.gov (United States)

    Kumari, Shobha; Pal, Ravi Kant; Gupta, Rani; Goel, Manisha

    2017-02-01

    Gamma glutamyl transpeptidase, (GGT) is a ubiquitous protein which plays a central role in glutathione metabolism and has myriad clinical implications. It has been shown to be a virulence factor for pathogenic bacteria, inhibition of which results in reduced colonization potential. However, existing inhibitors are effective but toxic and therefore search is on for novel inhibitors, which makes it imperative to understand the interactions of various inhibitors with the protein in substantial detail. High resolution structures of protein bound to different inhibitors can serve this purpose. Gamma glutamyl transpeptidase from Bacillus licheniformis is one of the model systems that have been used to understand the structure-function correlation of the protein. The structures of the native protein (PDB code 4OTT), of its complex with glutamate (PDB code 4OTU) and that of its precursor mimic (PDB code 4Y23) are available, although at moderate/low resolution. In the present study, we are reporting the preliminary analysis of, high resolution X-ray diffraction data collected for the co-crystals of B. licheniformis, Gamma glutamyl transpeptidase, with its inhibitor, Acivicin. Crystals belong to the orthorhombic space group P2 1 2 1 2 1 and diffract X-ray to 1.45 Å resolution. This is the highest resolution data reported for all GGT structures available till now. The use of SUMO fused expression system enhanced yield of the target protein in the soluble fraction, facilitating recovery of protein with high purity. The preliminary analysis of this data set shows clear density for the inhibitor, acivicin, in the protein active site.

  11. On-chip mode division multiplexing technologies

    DEFF Research Database (Denmark)

    Ding, Yunhong; Frellsen, Louise Floor; Guan, Xiaowei

    2016-01-01

    Space division multiplexing (SDM) is currently widely investigated in order to provide enhanced capacity thanks to the utilization of space as a new degree of multiplexing freedom in both optical fiber communication and on-chip interconnects. Basic components allowing the processing of spatial...... photonic integrated circuit mode (de) multiplexer for few-mode fibers (FMFs)....

  12. Light-Addressed Electrodeposition of Enzyme-Entrapped Chitosan Membranes for Multiplexed Enzyme-Based Bioassays Using a Digital Micromirror Device

    Directory of Open Access Journals (Sweden)

    Yeu-Long Jiang

    2013-08-01

    Full Text Available This paper describes a light-addressed electrolytic system used to perform an electrodeposition of enzyme-entrapped chitosan membranes for multiplexed enzyme-based bioassays using a digital micromirror device (DMD. In this system, a patterned light illumination is projected onto a photoconductive substrate serving as a photo-cathode to electrolytically produce hydroxide ions, which leads to an increased pH gradient. The high pH generated at the cathode can cause a local gelation of chitosan through sol-gel transition. By controlling the illumination pattern on the DMD, a light-addressed electrodeposition of chitosan membranes with different shapes and sizes, as well as multiplexed micropatterning, was performed. The effect of the illumination time of the light pattern on the dimensional resolution of chitosan membrane formation was examined experimentally. Moreover, multiplexed enzyme-based bioassay of enzyme-entrapped chitosan membranes was also successfully demonstrated through the electrodeposition of the chitosan membranes with various shapes/sizes and entrapping different enzymes. As a model experiment, glucose and ethanol were simultaneously detected in a single detection chamber without cross-talk using shape-coded chitosan membranes entrapped with glucose oxidase (GOX, peroxidase (POD, and Amplex Red (AmR or alcohol oxidase (AOX, POD, and AmR by using same fluorescence indicator (AmR.

  13. High-resolution SPECT for small-animal imaging

    International Nuclear Information System (INIS)

    Qi Yujin

    2006-01-01

    This article presents a brief overview of the development of high-resolution SPECT for small-animal imaging. A pinhole collimator has been used for high-resolution animal SPECT to provide better spatial resolution and detection efficiency in comparison with a parallel-hole collimator. The theory of imaging characteristics of the pinhole collimator is presented and the designs of the pinhole aperture are discussed. The detector technologies used for the development of small-animal SPECT and the recent advances are presented. The evolving trend of small-animal SPECT is toward a multi-pinhole and a multi-detector system to obtain a high resolution and also a high detection efficiency. (authors)

  14. A multiplex coding imaging spectrometer for X-ray astronomy

    International Nuclear Information System (INIS)

    Rocchia, R.; Deschamps, J.Y.; Koch-Miramond, L.; Tarrius, A.

    1985-06-01

    The paper describes a multiplex coding system associated with a solid state spectrometer Si(Li) designed to be placed at the focus of a grazing incidence telescope. In this instrument the spectrometric and imaging functions are separated. The coding system consists in a movable mask with pseudo randomly distributed holes, located in the focal plane of the telescope. The pixel size lies in the range 100-200 microns. The close association of the coding system with a Si(Li) detector gives an imaging spectrometer combining the good efficiency (50% between 0,5 and 10 keV) and energy resolution (ΔE approximately 90 to 160 eV) of solid state spectrometers with the spatial resolution of the mask. Simulations and results obtained with a laboratory model are presented

  15. Rapid detection of Shigella and enteroinvasive Escherichia coli in produce enrichments by a conventional multiplex PCR assay.

    Science.gov (United States)

    Binet, Rachel; Deer, Deanne M; Uhlfelder, Samantha J

    2014-06-01

    Faster detection of contaminated foods can prevent adulterated foods from being consumed and minimize the risk of an outbreak of foodborne illness. A sensitive molecular detection method is especially important for Shigella because ingestion of as few as 10 of these bacterial pathogens can cause disease. The objectives of this study were to compare the ability of four DNA extraction methods to detect Shigella in six types of produce, post-enrichment, and to evaluate a new and rapid conventional multiplex assay that targets the Shigella ipaH, virB and mxiC virulence genes. This assay can detect less than two Shigella cells in pure culture, even when the pathogen is mixed with background microflora, and it can also differentiate natural Shigella strains from a control strain and eliminate false positive results due to accidental laboratory contamination. The four DNA extraction methods (boiling, PrepMan Ultra [Applied Biosystems], InstaGene Matrix [Bio-Rad], DNeasy Tissue kit [Qiagen]) detected 1.6 × 10(3)Shigella CFU/ml post-enrichment, requiring ∼18 doublings to one cell in 25 g of produce pre-enrichment. Lower sensitivity was obtained, depending on produce type and extraction method. The InstaGene Matrix was the most consistent and sensitive and the multiplex assay accurately detected Shigella in less than 90 min, outperforming, to the best of our knowledge, molecular assays currently in place for this pathogen. Published by Elsevier Ltd.

  16. Nanoparticle discrimination based on wavelength and lifetime-multiplexed cathodoluminescence microscopy.

    Science.gov (United States)

    Garming, Mathijs W H; Weppelman, I Gerward C; de Boer, Pascal; Martínez, Felipe Perona; Schirhagl, Romana; Hoogenboom, Jacob P; Moerland, Robert J

    2017-08-31

    Nanomaterials can be identified in high-resolution electron microscopy images using spectrally-selective cathodoluminescence. Capabilities for multiplex detection can however be limited, e.g., due to spectral overlap or availability of filters. Also, the available photon flux may be limited due to degradation under electron irradiation. Here, we demonstrate single-pass cathodoluminescence-lifetime based discrimination of different nanoparticles, using a pulsed electron beam. We also show that cathodoluminescence lifetime is a robust parameter even when the nanoparticle cathodoluminescence intensity decays over an order of magnitude. We create lifetime maps, where the lifetime of the cathodoluminescence emission is correlated with the emission intensity and secondary-electron images. The consistency of lifetime-based discrimination is verified by also correlating the emission wavelength and the lifetime of nanoparticles. Our results show how cathodoluminescence lifetime provides an additional channel of information in electron microscopy.

  17. Luminex and other multiplex high throughput technologies for the identification of, and host response to, environmental triggers of type 1 diabetes.

    Science.gov (United States)

    Purohit, Sharad; Sharma, Ashok; She, Jin-Xiong

    2015-01-01

    Complex interactions between a series of environmental factors and genes result in progression to clinical type 1 diabetes in genetically susceptible individuals. Despite several decades of research in the area, these interactions remain poorly understood. Several studies have yielded associations of certain foods, infections, and immunizations with the onset and progression of diabetes autoimmunity, but most findings are still inconclusive. Environmental triggers are difficult to identify mainly due to (i) large number and complex nature of environmental exposures, including bacteria, viruses, dietary factors, and environmental pollutants, (ii) reliance on low throughput technology, (iii) less efforts in quantifying host response, (iv) long silent period between the exposure and clinical onset of T1D which may lead to loss of the exposure fingerprints, and (v) limited sample sets. Recent development in multiplex technologies has enabled systematic evaluation of different classes of molecules or macroparticles in a high throughput manner. However, the use of multiplex assays in type 1 diabetes research is limited to cytokine assays. In this review, we will discuss the potential use of multiplex high throughput technologies in identification of environmental triggers and host response in type 1 diabetes.

  18. Modular time division multiplexer: Efficient simultaneous characterization of fast and slow transients in multiple samples

    Science.gov (United States)

    Kim, Stephan D.; Luo, Jiajun; Buchholz, D. Bruce; Chang, R. P. H.; Grayson, M.

    2016-09-01

    A modular time division multiplexer (MTDM) device is introduced to enable parallel measurement of multiple samples with both fast and slow decay transients spanning from millisecond to month-long time scales. This is achieved by dedicating a single high-speed measurement instrument for rapid data collection at the start of a transient, and by multiplexing a second low-speed measurement instrument for slow data collection of several samples in parallel for the later transients. The MTDM is a high-level design concept that can in principle measure an arbitrary number of samples, and the low cost implementation here allows up to 16 samples to be measured in parallel over several months, reducing the total ensemble measurement duration and equipment usage by as much as an order of magnitude without sacrificing fidelity. The MTDM was successfully demonstrated by simultaneously measuring the photoconductivity of three amorphous indium-gallium-zinc-oxide thin films with 20 ms data resolution for fast transients and an uninterrupted parallel run time of over 20 days. The MTDM has potential applications in many areas of research that manifest response times spanning many orders of magnitude, such as photovoltaics, rechargeable batteries, amorphous semiconductors such as silicon and amorphous indium-gallium-zinc-oxide.

  19. High resolution time integration for SN radiation transport

    International Nuclear Information System (INIS)

    Thoreson, Greg; McClarren, Ryan G.; Chang, Jae H.

    2009-01-01

    First-order, second-order, and high resolution time discretization schemes are implemented and studied for the discrete ordinates (S N ) equations. The high resolution method employs a rate of convergence better than first-order, but also suppresses artificial oscillations introduced by second-order schemes in hyperbolic partial differential equations. The high resolution method achieves these properties by nonlinearly adapting the time stencil to use a first-order method in regions where oscillations could be created. We employ a quasi-linear solution scheme to solve the nonlinear equations that arise from the high resolution method. All three methods were compared for accuracy and convergence rates. For non-absorbing problems, both second-order and high resolution converged to the same solution as the first-order with better convergence rates. High resolution is more accurate than first-order and matches or exceeds the second-order method

  20. A strain-specific multiplex RT-PCR for Australian rabbit haemorrhagic disease viruses uncovers a new recombinant virus variant in rabbits and hares.

    Science.gov (United States)

    Hall, R N; Mahar, J E; Read, A J; Mourant, R; Piper, M; Huang, N; Strive, T

    2018-04-01

    Rabbit haemorrhagic disease virus (RHDV, or GI.1) is a calicivirus in the genus Lagovirus that has been widely utilized in Australia as a biological control agent for the management of overabundant wild European rabbit (Oryctolagus cuniculus) populations since 1996. Recently, two exotic incursions of pathogenic lagoviruses have been reported in Australia; GI.1a-Aus, previously called RHDVa-Aus, is a GI.1a virus detected in January 2014, and the novel lagovirus GI.2 (previously known as RHDV2). Furthermore, an additional GI.1a strain, GI.1a-K5 (also known as 08Q712), was released nationwide in March 2017 as a supplementary tool for wild rabbit management. To discriminate between these lagoviruses, a highly sensitive strain-specific multiplex RT-PCR assay was developed, which allows fast, cost-effective and sensitive detection of the four pathogenic lagoviruses currently known to be circulating in Australia. In addition, we developed a universal RT-qPCR assay to be used in conjunction with the multiplex assay that broadly detects all four viruses and facilitates quantification of viral RNA load in samples. These assays enable rapid detection, identification and quantification of pathogenic lagoviruses in the Australian context. Using these assays, a novel recombinant lagovirus was detected in rabbit tissue samples, which contained the non-structural genes of GI.1a-Aus and the structural genes of GI.2. This variant was also recovered from the liver of a European brown hare (Lepus europaeus). The impact of this novel recombinant on Australian wild lagomorph populations and its competitiveness in relation to circulating field strains, particularly GI.2, requires further studies. © 2017 Blackwell Verlag GmbH.

  1. Steatocystoma multiplex hos 39-årig kvinde

    DEFF Research Database (Denmark)

    Duffy, Jonas Raymond; Siersen, Hans Erik; Bonde, Christian T

    2011-01-01

    -coloured cystic lesions on the chest, abdomen, axillae and back. The patient's clinical presentations and history were compatible with steatocystoma multiplex. Various treatment options for steatocystoma multiplex and steatocystoma multiplex suppurativum have been published and include oral antibiotics...

  2. A novel multiplex PCR for the simultaneous detection of Salmonella enterica and Shigella species.

    Science.gov (United States)

    Radhika, M; Saugata, Majumder; Murali, H S; Batra, H V

    2014-01-01

    Salmonella enterica and Shigella species are commonly associated with food and water borne infections leading to gastrointestinal diseases. The present work was undertaken to develop a sensitive and reliable PCR based detection system for simultaneous detection of Salmonella enterica and Shigella at species level. For this the conserved regions of specific genes namely ipaH1, ipaH, wbgZ, wzy and invA were targeted for detection of Shigella genus, S. flexneri, S. sonnei, S. boydii and Salmonella enterica respectively along with an internal amplification control (IAC). The results showed that twenty Salmonella and eleven Shigella spp., were accurately identified by the assay without showing non-specificity against closely related other Enterobacteriaceae organisms and also against other pathogens. Further evaluation of multiplex PCR was undertaken on 50 natural samples of chicken, eggs and poultry litter and results compared with conventional culture isolation and identification procedure. The multiplex PCR identified the presence of Salmonella and Shigella strains with a short pre-enrichment step of 5 h in peptone water and the same samples were processed by conventional procedures for comparison. Therefore, this reported multiplex PCR can serve as an alternative to the tedious time-consuming procedure of culture and identification in food safety laboratories.

  3. High tracking resolution detectors. Final Technical Report

    International Nuclear Information System (INIS)

    Vasile, Stefan; Li, Zheng

    2010-01-01

    High-resolution tracking detectors based on Active Pixel Sensor (APS) have been valuable tools in Nuclear Physics and High-Energy Physics research, and have contributed to major discoveries. Their integration time, radiation length and readout rate is a limiting factor for the planed luminosity upgrades in nuclear and high-energy physics collider-based experiments. The goal of this program was to demonstrate and develop high-gain, high-resolution tracking detector arrays with faster readout, and shorter radiation length than APS arrays. These arrays may operate as direct charged particle detectors or as readouts of high resolution scintillating fiber arrays. During this program, we developed in CMOS large, high-resolution pixel sensor arrays with integrated readout, and reset at pixel level. Their intrinsic gain, high immunity to surface and moisture damage, will allow operating these detectors with minimal packaging/passivation requirements and will result in radiation length superior to APS. In Phase I, we designed and fabricated arrays with calorimetric output capable of sub-pixel resolution and sub-microsecond readout rate. The technical effort was dedicated to detector and readout structure development, performance verification, as well as to radiation damage and damage annealing.

  4. Explaining HIV Risk Multiplexity: A Social Network Analysis.

    Science.gov (United States)

    Felsher, Marisa; Koku, Emmanuel

    2018-04-21

    Risk multiplexity (i.e., overlap in drug-use, needle exchange and sexual relations) is a known risk factor for HIV. However, little is known about predictors of multiplexity. This study uses egocentric data from the Colorado Springs study to examine how individual, behavioral and social network factors influence engagement in multiplex risk behavior. Analyses revealed that compared to Whites, Hispanics were significantly more likely to engage in risk multiplexity and Blacks less so. Respondents who were similar to each other (e.g., in terms of race) had significantly higher odds of being in risk multiplex relationships, and respondents' risk perceptions and network size were significantly associated with engaging in multiplex risk behaviors. Findings from interaction analysis showed the effect of knowing someone with HIV on the odds of multiplexity depends partly on whether respondents' know their HIV status. Findings suggest that demographics, HIV behaviors and network factors impact engagement in multiplex risk behaviors, highlighting the need for multi-level interventions aimed at reducing HIV risk behavior.

  5. Ultra high resolution tomography

    Energy Technology Data Exchange (ETDEWEB)

    Haddad, W.S.

    1994-11-15

    Recent work and results on ultra high resolution three dimensional imaging with soft x-rays will be presented. This work is aimed at determining microscopic three dimensional structure of biological and material specimens. Three dimensional reconstructed images of a microscopic test object will be presented; the reconstruction has a resolution on the order of 1000 A in all three dimensions. Preliminary work with biological samples will also be shown, and the experimental and numerical methods used will be discussed.

  6. Percolation in real multiplex networks

    Science.gov (United States)

    Bianconi, Ginestra; Radicchi, Filippo

    2016-12-01

    We present an exact mathematical framework able to describe site-percolation transitions in real multiplex networks. Specifically, we consider the average percolation diagram valid over an infinite number of random configurations where nodes are present in the system with given probability. The approach relies on the locally treelike ansatz, so that it is expected to accurately reproduce the true percolation diagram of sparse multiplex networks with negligible number of short loops. The performance of our theory is tested in social, biological, and transportation multiplex graphs. When compared against previously introduced methods, we observe improvements in the prediction of the percolation diagrams in all networks analyzed. Results from our method confirm previous claims about the robustness of real multiplex networks, in the sense that the average connectedness of the system does not exhibit any significant abrupt change as its individual components are randomly destroyed.

  7. Rapidly expanding range of highly pathogenic avian influenza viruses

    Science.gov (United States)

    Hall, Jeffrey S.; Dusek, Robert J.; Spackman, Erica

    2015-01-01

    The movement of highly pathogenic avian influenza (H5N8) virus across Eurasia and into North America and the virus’ propensity to reassort with co-circulating low pathogenicity viruses raise concerns among poultry producers, wildlife biologists, aviculturists, and public health personnel worldwide. Surveillance, modeling, and experimental research will provide the knowledge required for intelligent policy and management decisions.

  8. Multiplex and high-throughput DNA detection using surface plasmon mediated fluorescence

    Science.gov (United States)

    Mei, Zhong

    The overall objective of this research project was to develop a user-friendly and sensitive biosensor for nucleic acid aptamers with multiplexing and high-throughput capability. The sensing was based on the fluorescence signals emitted by the fluorophores coupling with plamonic nanoparticle (gold nanorod) deposited on a patterned substrate. Gold nanorods (GNRs) were synthesized using a binary mixture of hexadecyltrimethylammonium bromide (CTAB) and sodium oleate (NaOL) in seed mediated growth method. Polytetrafluoroethylene (PTFE) printed glass slides were selectively coated with a gold thin-film to define hydrophilic areas for GNR deposition. Due to the wettablity contrast, GNR solution dropped on the slide was induced to assemble exclusively in the hydrophilic spots. By controlling temperature and humidity of the evaporation process, vertically-standing GNR arrays were achieved on the pattered slide. Fluorescence was conjugated to GNR surface via DNA double strand with tunable length. Theoretical simulation predicted a flat layer ( 30 nm thick) of uniform "hot spots" presented on the GNR tips, which could modify the nearby fluorescence. Experimentally, the vertical GNR arrays yielded metallic enhanced fluorescence (MEF) effect, which was dependent on the spectrum overlap and GNR-fluorophore distance. Specifically, the maximum enhancement of Quasar 670 and Alexa 750 was observed when it was coupled with GNR664 (plasmonic wavelength 664 nm) and GNR778 respectively at a distance of 16 nm, while the carboxyfluorescein (FAM) was at maximal intensity when attached to gold nanosphere520. This offers an opportunity for multiplexed DNA sensing. Based on this, we developed a novel GNR mediated fluorescence biosensor for DNA detection. Fluorescence labeled haipin-DNA probes were introduced to designated spots of GNR array with the matching LSPR wavelengths on the substrate. The fluorescence was quenched originally because of Forster resonance energy transfer (FRET) effect

  9. High-throughput antibody development and retrospective epitope mapping

    DEFF Research Database (Denmark)

    Rydahl, Maja Gro

    the binding profile - in more or less high resolution - of two small molecular probes, 11 carbohydrate binding modules and 24 monoclonal antibodies. This was made possible by combining the HTP multiplexing capacity of carbohydrate microarrays with diverse glycomic tools, to downstream characterize...

  10. High-Resolution Genetics Identifies the Lipid Transfer Protein Sec14p as Target for Antifungal Ergolines.

    Directory of Open Access Journals (Sweden)

    Ireos Filipuzzi

    2016-11-01

    Full Text Available Invasive infections by fungal pathogens cause more deaths than malaria worldwide. We found the ergoline compound NGx04 in an antifungal screen, with selectivity over mammalian cells. High-resolution chemogenomics identified the lipid transfer protein Sec14p as the target of NGx04 and compound-resistant mutations in Sec14p define compound-target interactions in the substrate binding pocket of the protein. Beyond its essential lipid transfer function in a variety of pathogenic fungi, Sec14p is also involved in secretion of virulence determinants essential for the pathogenicity of fungi such as Cryptococcus neoformans, making Sec14p an attractive antifungal target. Consistent with this dual function, we demonstrate that NGx04 inhibits the growth of two clinical isolates of C. neoformans and that NGx04-related compounds have equal and even higher potency against C. neoformans. Furthermore NGx04 analogues showed fungicidal activity against a fluconazole resistant C. neoformans strain. In summary, we present genetic evidence that NGx04 inhibits fungal Sec14p and initial data supporting NGx04 as a novel antifungal starting point.

  11. Human infection with highly pathogenic H5N1 influenza virus

    NARCIS (Netherlands)

    Gambotto, Andrea; Barratt-Boyes, Simon M.; de Jong, Menno D.; Neumann, Gabriele; Kawaoka, Yoshihiro

    2008-01-01

    Highly pathogenic H5N1 influenza A viruses have spread relentlessly across the globe since 2003, and they are associated with widespread death in poultry, substantial economic loss to farmers, and reported infections of more than 300 people with a mortality rate of 60%. The high pathogenicity of

  12. Multiplex polymerase chain reaction assay for the detection of minute virus of mice and mouse parvovirus infections in laboratory mice.

    Science.gov (United States)

    Wang, K W; Chueh, L L; Wang, M H; Huang, Y T; Fang, B H; Chang, C Y; Fang, M C; Chou, J Y; Hsieh, S C; Wan, C H

    2013-04-01

    Mouse parvoviruses are among the most prevalent infectious pathogens in contemporary mouse colonies. To improve the efficiency of routine screening for mouse parvovirus infections, a multiplex polymerase chain reaction (PCR) assay targeting the VP gene was developed. The assay detected minute virus of mice (MVM), mouse parvovirus (MPV) and a mouse housekeeping gene (α-actin) and was able to specifically detect MVM and MPV at levels as low as 50 copies. Co-infection with the two viruses with up to 200-fold differences in viral concentrations can easily be detected. The multiplex PCR assay developed here could be a useful tool for monitoring mouse health and the viral contamination of biological materials.

  13. Determinants of public cooperation in multiplex networks

    Science.gov (United States)

    Battiston, Federico; Perc, Matjaž; Latora, Vito

    2017-07-01

    Synergies between evolutionary game theory and statistical physics have significantly improved our understanding of public cooperation in structured populations. Multiplex networks, in particular, provide the theoretical framework within network science that allows us to mathematically describe the rich structure of interactions characterizing human societies. While research has shown that multiplex networks may enhance the resilience of cooperation, the interplay between the overlap in the structure of the layers and the control parameters of the corresponding games has not yet been investigated. With this aim, we consider here the public goods game on a multiplex network, and we unveil the role of the number of layers and the overlap of links, as well as the impact of different synergy factors in different layers, on the onset of cooperation. We show that enhanced public cooperation emerges only when a significant edge overlap is combined with at least one layer being able to sustain some cooperation by means of a sufficiently high synergy factor. In the absence of either of these conditions, the evolution of cooperation in multiplex networks is determined by the bounds of traditional network reciprocity with no enhanced resilience. These results caution against overly optimistic predictions that the presence of multiple social domains may in itself promote cooperation, and they help us better understand the complexity behind prosocial behavior in layered social systems.

  14. A high resolution portable spectroscopy system

    International Nuclear Information System (INIS)

    Kulkarni, C.P.; Vaidya, P.P.; Paulson, M.; Bhatnagar, P.V.; Pande, S.S.; Padmini, S.

    2003-01-01

    Full text: This paper describes the system details of a High Resolution Portable Spectroscopy System (HRPSS) developed at Electronics Division, BARC. The system can be used for laboratory class, high-resolution nuclear spectroscopy applications. The HRPSS consists of a specially designed compact NIM bin, with built-in power supplies, accommodating a low power, high resolution MCA, and on-board embedded computer for spectrum building and communication. A NIM based spectroscopy amplifier and a HV module for detector bias are integrated (plug-in) in the bin. The system communicates with a host PC via a serial link. Along-with a laptop PC, and a portable HP-Ge detector, the HRPSS offers a laboratory class performance for portable applications

  15. Spatial analysis of various multiplex cinema types

    Directory of Open Access Journals (Sweden)

    Young-Seo Park

    2016-03-01

    Full Text Available This study identifies the spatial characteristics and relationships of each used space according to the multiplex type. In this study, multiplexes are classified according to screen rooms and circulation systems, and each used space is quantitatively analyzed. The multiplex type based on screen rooms and moving line systems influences the relationship and characteristics of each used space in various ways. In particular, the structure of the used space of multiplexes has a significant effect on profit generation and audience convenience.

  16. Identification of the GST-T1 and GST-M1 null genotypes using high resolution melting analysis.

    Science.gov (United States)

    Drobná, Zuzana; Del Razo, Luz Maria; Garcia-Vargas, Gonzalo; Sánchez-Ramírez, Blanca; González-Horta, Carmen; Ballinas-Casarrubias, Lourdes; Loomis, Dana; Stýblo, Miroslav

    2012-01-13

    Glutathione S-transferases, including GST-T1 and GST-M1, are known to be involved in the phase II detoxification pathways for xenobiotics as well as in the metabolism of endogenous compounds. Polymorphisms in these genes have been linked to an increased susceptibility to carcinogenesis and associated with risk factors that predispose to certain inflammatory diseases. In addition, GST-T1 and GST-M1 null genotypes have been shown to be responsible for interindividual variations in the metabolism of arsenic, a known human carcinogen. To assess the specific GST genotypes in the Mexican population chronically exposed to arsenic, we have developed a multiplex High Resolution Melting PCR (HRM-PCR) analysis using a LightCycler480 instrument. This method is based on analysis of the PCR product melting curve that discriminates PCR products according to their lengths and base sequences. Three pairs of primers that specifically recognize GST-T1, GST-M1, and β-globin, an internal control, to produce amplicons of different length were designed and combined with LightCycler480 High Resolution Melting Master Mix containing ResoLight, a completely saturating DNA dye. Data collected from melting curve analysis were evaluated using LightCycler480 software to determine specific melting temperatures of individual melting curves representing target genes. Using this newly developed multiplex HRM-PCR analysis, we evaluated GST-T1 and GST-M1 genotypes in 504 DNA samples isolated from the blood of individuals residing in Zimapan, Lagunera, and Chihuahua regions in Mexico. We found that the Zimapan and Lagunera populations have similar GST-T1 and GST-M1 genotype frequencies which differ from those of the Chihuahua population. In addition, 14 individuals have been identified as carriers of the double null genotype, i.e., null genotypes in both GST-T1 and GST-M1 genes. Although this procedure does not distinguish between biallelic (+/+) and monoallelic (+/-) genotypes, it can be used in an

  17. High Resolution Elevation Contours

    Data.gov (United States)

    Minnesota Department of Natural Resources — This dataset contains contours generated from high resolution data sources such as LiDAR. Generally speaking this data is 2 foot or less contour interval.

  18. Extension of least squares spectral resolution algorithm to high-resolution lipidomics data

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Ying-Xu [Department of Chemistry, University of Bergen, PO Box 7803, N-5020 Bergen (Norway); Mjøs, Svein Are, E-mail: svein.mjos@kj.uib.no [Department of Chemistry, University of Bergen, PO Box 7803, N-5020 Bergen (Norway); David, Fabrice P.A. [Bioinformatics and Biostatistics Core Facility, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL) and Swiss Institute of Bioinformatics (SIB), Lausanne (Switzerland); Schmid, Adrien W. [Proteomics Core Facility, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne (Switzerland)

    2016-03-31

    Lipidomics, which focuses on the global study of molecular lipids in biological systems, has been driven tremendously by technical advances in mass spectrometry (MS) instrumentation, particularly high-resolution MS. This requires powerful computational tools that handle the high-throughput lipidomics data analysis. To address this issue, a novel computational tool has been developed for the analysis of high-resolution MS data, including the data pretreatment, visualization, automated identification, deconvolution and quantification of lipid species. The algorithm features the customized generation of a lipid compound library and mass spectral library, which covers the major lipid classes such as glycerolipids, glycerophospholipids and sphingolipids. Next, the algorithm performs least squares resolution of spectra and chromatograms based on the theoretical isotope distribution of molecular ions, which enables automated identification and quantification of molecular lipid species. Currently, this methodology supports analysis of both high and low resolution MS as well as liquid chromatography-MS (LC-MS) lipidomics data. The flexibility of the methodology allows it to be expanded to support more lipid classes and more data interpretation functions, making it a promising tool in lipidomic data analysis. - Highlights: • A flexible strategy for analyzing MS and LC-MS data of lipid molecules is proposed. • Isotope distribution spectra of theoretically possible compounds were generated. • High resolution MS and LC-MS data were resolved by least squares spectral resolution. • The method proposed compounds that are likely to occur in the analyzed samples. • The proposed compounds matched results from manual interpretation of fragment spectra.

  19. Extension of least squares spectral resolution algorithm to high-resolution lipidomics data

    International Nuclear Information System (INIS)

    Zeng, Ying-Xu; Mjøs, Svein Are; David, Fabrice P.A.; Schmid, Adrien W.

    2016-01-01

    Lipidomics, which focuses on the global study of molecular lipids in biological systems, has been driven tremendously by technical advances in mass spectrometry (MS) instrumentation, particularly high-resolution MS. This requires powerful computational tools that handle the high-throughput lipidomics data analysis. To address this issue, a novel computational tool has been developed for the analysis of high-resolution MS data, including the data pretreatment, visualization, automated identification, deconvolution and quantification of lipid species. The algorithm features the customized generation of a lipid compound library and mass spectral library, which covers the major lipid classes such as glycerolipids, glycerophospholipids and sphingolipids. Next, the algorithm performs least squares resolution of spectra and chromatograms based on the theoretical isotope distribution of molecular ions, which enables automated identification and quantification of molecular lipid species. Currently, this methodology supports analysis of both high and low resolution MS as well as liquid chromatography-MS (LC-MS) lipidomics data. The flexibility of the methodology allows it to be expanded to support more lipid classes and more data interpretation functions, making it a promising tool in lipidomic data analysis. - Highlights: • A flexible strategy for analyzing MS and LC-MS data of lipid molecules is proposed. • Isotope distribution spectra of theoretically possible compounds were generated. • High resolution MS and LC-MS data were resolved by least squares spectral resolution. • The method proposed compounds that are likely to occur in the analyzed samples. • The proposed compounds matched results from manual interpretation of fragment spectra.

  20. Bilevel alarm monitoring multiplexer

    International Nuclear Information System (INIS)

    Johnson, C.S.

    1977-06-01

    This report describes the operation of the Bilevel Alarm Monitoring Multiplexer used in the Adaptive Intrusion Data System (AIDS) to transfer and control alarm signals being sent to the Nova 2 computer, the Memory Controlled Data Processor, and its own integral Display Panel. The multiplexer can handle 48 alarm channels and format the alarms into binary formats compatible with the destination of the alarm data

  1. Ultra-high resolution coded wavefront sensor

    KAUST Repository

    Wang, Congli

    2017-06-08

    Wavefront sensors and more general phase retrieval methods have recently attracted a lot of attention in a host of application domains, ranging from astronomy to scientific imaging and microscopy. In this paper, we introduce a new class of sensor, the Coded Wavefront Sensor, which provides high spatio-temporal resolution using a simple masked sensor under white light illumination. Specifically, we demonstrate megapixel spatial resolution and phase accuracy better than 0.1 wavelengths at reconstruction rates of 50 Hz or more, thus opening up many new applications from high-resolution adaptive optics to real-time phase retrieval in microscopy.

  2. Multiplexed Detection of Attomoles of Nucleic Acids Using Fluorescent Nanoparticle Counting Platform.

    Science.gov (United States)

    Pei, Xiaojing; Yin, Haoyan; Lai, Tiancheng; Zhang, Junlong; Liu, Feng; Xu, Xiao; Li, Na

    2018-01-16

    The sensitive multiplexed detection of nucleic acids in a single sample by a simple manner is of pivotal importance for the diagnosis and therapy of human diseases. Herein, we constructed an automatic fluorescent nanoparticle (FNP) counting platform with a common fluorescence microscopic imaging setup for nonamplification multiplexed detection of attomoles of nucleic acids. Taking the advantages of the highly bright, multicolor emitting FNPs and magnetic separation, the platform enables sensitive multiplexed detection without the need for extra fluorescent labels. Quantification for multiplex DNAs, multiplex microRNAs (miRNA), as well as a DNA and miRNA mixture was achieved with a similar dynamic range, a limit of detection down to 5 amol (5 μL detection volume), and a 81-115% spike recovery from different biological sample matrices. In particular, the sensitivity for multiplex miRNA is by far among the highest without using amplification or the lock nucleic acid hybridization enhancement strategy. Results regarding miRNA-141 from four different cell lines were agreeable with those of the quantitative reverse transcription polymerase chain reaction. Simultaneous detection of miRNA-141 and miRNA-21 in four different cell lines yielded consistent results with publications, indicating the potential for monitoring multiplex miRNA expression associated with the collaborative regulation of important cellular events. This work expands the rule set of multiplex nucleic acid detection strategies and shows promising potential application in clinical diagnosis.

  3. SQUID multiplexing using baseband feedback for space application of transition-edge sensor microcalorimeters

    Energy Technology Data Exchange (ETDEWEB)

    Takei, Y; Yamasaki, N Y; Hirakoso, W; Kimura, S; Mitsuda, K, E-mail: takei@astro.isas.jaxa.j [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Sagamihara, 229-8510 (Japan)

    2009-11-15

    A microcalorimeter array based on a transition-edge sensor (TES) thermometer is a promising imaging spectrometer for use in future x-ray astronomy missions. A TES microcalorimeter achieves {approx}<5 eV energy resolution and an array of >100 pixels also provides a moderate imaging capability. For a large format array, signal multiplexing at the low temperature stage is mandatory in order to reduce heat loads from cold stage preamplifiers and through wirings. We are developing frequency division multiplexing (FDM). In FDM, each TES is ac-biased with a different carrier frequency. Signals from several pixels are summed and then read out by one dc SQUID (superconducting quantum interference device). The maximum number of multiplexed pixels is limited by the bandwidth of a SQUID in a flux-locked loop. Assuming 1 m cable length between the room temperature and the cold stage, the bandwidth is only <1 MHz with a standard flux-locked loop, due to the delay and phase shift of wirings. We report our development of baseband feedback, a new feedback scheme that overcomes the bandwidth limitation. In baseband feedback, the signal ({approx}<10 kHz) from the TES is sent back to the SQUID after the phase of carrier frequency ({approx}1 MHz) has been adjusted. We demonstrated open-loop gain of 8 for 10 kHz signal at 5 MHz carrier frequency, which indicates the possibility of {approx}40-pixel multiplexing of the TES signal.

  4. Near-Atomic Resolution Structure of a Highly Neutralizing Fab Bound to Canine Parvovirus.

    Science.gov (United States)

    Organtini, Lindsey J; Lee, Hyunwook; Iketani, Sho; Huang, Kai; Ashley, Robert E; Makhov, Alexander M; Conway, James F; Parrish, Colin R; Hafenstein, Susan

    2016-11-01

    Canine parvovirus (CPV) is a highly contagious pathogen that causes severe disease in dogs and wildlife. Previously, a panel of neutralizing monoclonal antibodies (MAb) raised against CPV was characterized. An antibody fragment (Fab) of MAb E was found to neutralize the virus at low molar ratios. Using recent advances in cryo-electron microscopy (cryo-EM), we determined the structure of CPV in complex with Fab E to 4.1 Å resolution, which allowed de novo building of the Fab structure. The footprint identified was significantly different from the footprint obtained previously from models fitted into lower-resolution maps. Using single-chain variable fragments, we tested antibody residues that control capsid binding. The near-atomic structure also revealed that Fab binding had caused capsid destabilization in regions containing key residues conferring receptor binding and tropism, which suggests a mechanism for efficient virus neutralization by antibody. Furthermore, a general technical approach to solving the structures of small molecules is demonstrated, as binding the Fab to the capsid allowed us to determine the 50-kDa Fab structure by cryo-EM. Using cryo-electron microscopy and new direct electron detector technology, we have solved the 4 Å resolution structure of a Fab molecule bound to a picornavirus capsid. The Fab induced conformational changes in regions of the virus capsid that control receptor binding. The antibody footprint is markedly different from the previous one identified by using a 12 Å structure. This work emphasizes the need for a high-resolution structure to guide mutational analysis and cautions against relying on older low-resolution structures even though they were interpreted with the best methodology available at the time. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  5. A multiplex microplatform for the detection of multiple DNA methylation events using gold-DNA affinity.

    Science.gov (United States)

    Sina, Abu Ali Ibn; Foster, Matthew Thomas; Korbie, Darren; Carrascosa, Laura G; Shiddiky, Muhammad J A; Gao, Jing; Dey, Shuvashis; Trau, Matt

    2017-10-07

    We report a new multiplexed strategy for the electrochemical detection of regional DNA methylation across multiple regions. Using the sequence dependent affinity of bisulfite treated DNA towards gold surfaces, the method integrates the high sensitivity of a micro-fabricated multiplex device comprising a microarray of gold electrodes, with the powerful multiplexing capability of multiplex-PCR. The synergy of this combination enables the monitoring of the methylation changes across several genomic regions simultaneously from as low as 500 pg μl -1 of DNA with no sequencing requirement.

  6. High-throughput biosensors for multiplexed foodborne pathogen detection

    Science.gov (United States)

    Incidental contamination of foods by harmful bacteria (such as E. coli and Salmonella) and the toxins that they produce is a serious threat to public health and the economy in the United States. The presence of such bacteri and toxins in foods must be rapidly determined at various stages of food pr...

  7. Frequency multiplexing for readout of spin qubits

    Energy Technology Data Exchange (ETDEWEB)

    Hornibrook, J. M.; Colless, J. I.; Mahoney, A. C.; Croot, X. G.; Blanvillain, S.; Reilly, D. J., E-mail: david.reilly@sydney.edu.au [ARC Centre of Excellence for Engineered Quantum Systems, School of Physics, University of Sydney, Sydney, NSW 2006 (Australia); Lu, H.; Gossard, A. C. [Materials Department, University of California, Santa Barbara, California 93106 (United States)

    2014-03-10

    We demonstrate a low loss, chip-level frequency multiplexing scheme for readout of scaled-up spin qubit devices. By integrating separate bias tees and resonator circuits on-chip for each readout channel, we realise dispersive gate-sensing in combination with charge detection based on two radio frequency quantum point contacts. We apply this approach to perform multiplexed readout of a double quantum dot in the few-electron regime and further demonstrate operation of a 10-channel multiplexing device. Limitations for scaling spin qubit readout to large numbers of multiplexed channels are discussed.

  8. Preliminary study of visual effect of multiplex hologram

    Science.gov (United States)

    Fu, Huaiping; Xiong, Bingheng; Yang, Hong; Zhang, Xueguo

    2004-06-01

    The process of any movement of real object can be recorded and displayed by a multiplex holographic stereogram. An embossing multiplex holographic stereogram and a multiplex rainbow holographic stereogram have been made by us, the multiplex rainbow holographic stereogram reconstructs the dynamic 2D line drawing of speech organs, the embossing multiplex holographic stereogram reconstructs the process of an old man drinking water. In this paper, we studied the visual result of an embossing multiplex holographic stereogram made with 80 films of 2-D pictures. Forty-eight persons of aged from 13 to 67 were asked to see the hologram and then to answer some questions about the feeling of viewing. The results indicate that this kind of holograms could be accepted by human visual sense organ without any problem. This paper also discusses visual effect of the multiplex holography stereograms base on visual perceptual psychology. It is open out that the planar multiplex holograms can be recorded and present the movement of real animal and object. Not only have the human visual perceptual constancy for shape, just as that size, color, etc... but also have visual perceptual constancy for binocular parallax.

  9. High-Spatial-Multiplicity Multicore Fibers for Future Dense Space-Division-Multiplexing Systems

    DEFF Research Database (Denmark)

    Matsuo, Shoichiro; Takenaga, Katsuhiro; Sasaki, Yusuke

    2016-01-01

    Multicore fibers and few-mode fibers have potential application in realizing dense-space-division multiplexing systems. However, there are some tradeoff requirements for designing the fibers. In this paper, the tradeoff requirements such as spatial channel count, crosstalk, differential mode dela...

  10. Rivers and flooded areas identified by medium-resolution remote sensing improve risk prediction of the highly pathogenic avian influenza H5N1 in Thailand

    Directory of Open Access Journals (Sweden)

    Weerapong Thanapongtharm

    2013-11-01

    Full Text Available Thailand experienced several epidemic waves of the highly pathogenic avian influenza (HPAI H5N1 between 2004 and 2005. This study investigated the role of water in the landscape, which has not been previously assessed because of a lack of high-resolution information on the distribution of flooded land at the time of the epidemic. Nine Landsat 7- Enhanced Thematic Mapper Plus scenes covering 174,610 km2 were processed using k-means unsupervised classification to map the distribution of flooded areas as well as permanent lakes and reservoirs at the time of the main epidemic HPAI H5N1 wave of October 2004. These variables, together with other factors previously identified as significantly associated with risk, were entered into an autologistic regression model in order to quantify the gain in risk explanation over previously published models. We found that, in addition to other factors previously identified as associated with risk, the proportion of land covered by flooding along with expansion of rivers and streams, derived from an existing, sub-district level (administrative level no. 3 geographical information system database, was a highly significant risk factor in this 2004 HPAI epidemic. These results suggest that water-borne transmission could have partly contributed to the spread of HPAI H5N1 during the epidemic. Future work stemming from these results should involve studies where the actual distribution of small canals, rivers, ponds, rice paddy fields and farms are mapped and tested against farm-level data with respect to HPAI H5N1.

  11. Sensitive simultaneous detection of seven sexually transmitted agents in semen by multiplex-PCR and of HPV by single PCR.

    Directory of Open Access Journals (Sweden)

    Fabrícia Gimenes

    Full Text Available Sexually transmitted diseases (STDs may impair sperm parameters and functions thereby promoting male infertility. To date limited molecular studies were conducted to evaluate the frequency and type of such infections in semen Thus, we aimed at conceiving and validating a multiplex PCR (M-PCR assay for the simultaneous detection of the following STD pathogens in semen: Chlamydia trachomatis, Neisseria gonorrhoeae, Mycoplasma genitalium, Trichomonas vaginalis, Herpes virus simplex (HSV -1 and -2, and Treponema pallidum; We also investigated the potential usefulness of this M-PCR assay in screening programs for semen pathogens. In addition, we aimed: to detect human Papillomavirus (HPV and genotypes by single PCR (sPCR in the same semen samples; to determine the prevalence of the seven STDs, HPV and co-infections; to assess the possibility that these infections affect semen parameters and thus fertility. The overall validation parameters of M-PCR were extremely high including agreement (99.2%, sensitivity (100.00%, specificity (99.70%, positive (96.40% and negative predictive values (100.00% and accuracy (99.80%. The prevalence of STDs was very high (55.3%. Furthermore, associations were observed between STDs and changes in semen parameters, highlighting the importance of STD detection in semen. Thus, this M-PCR assay has great potential for application in semen screening programs for pathogens in infertility and STD clinics and in sperm banks.

  12. Demonstration of hybrid orbital angular momentum multiplexing and time-division multiplexing passive optical network.

    Science.gov (United States)

    Wang, Andong; Zhu, Long; Liu, Jun; Du, Cheng; Mo, Qi; Wang, Jian

    2015-11-16

    Mode-division multiplexing passive optical network (MDM-PON) is a promising scheme for next-generation access networks to further increase fiber transmission capacity. In this paper, we demonstrate the proof-of-concept experiment of hybrid mode-division multiplexing (MDM) and time-division multiplexing (TDM) PON architecture by exploiting orbital angular momentum (OAM) modes. Bidirectional transmissions with 2.5-Gbaud 4-level pulse amplitude modulation (PAM-4) downstream and 2-Gbaud on-off keying (OOK) upstream are demonstrated in the experiment. The observed optical signal-to-noise ratio (OSNR) penalties for downstream and upstream transmissions at a bit-error rate (BER) of 2 × 10(-3) are less than 2.0 dB and 3.0 dB, respectively.

  13. Current situation on highly pathogenic avian influenza

    Science.gov (United States)

    Avian influenza is one of the most important diseases affecting the poultry industry worldwide. Avian influenza viruses can cause a range of clinical disease in poultry. Viruses that cause severe disease and mortality are referred to as highly pathogenic avian influenza (HPAI) viruses. The Asian ...

  14. High resolution data acquisition

    Science.gov (United States)

    Thornton, Glenn W.; Fuller, Kenneth R.

    1993-01-01

    A high resolution event interval timing system measures short time intervals such as occur in high energy physics or laser ranging. Timing is provided from a clock (38) pulse train (37) and analog circuitry (44) for generating a triangular wave (46) synchronously with the pulse train (37). The triangular wave (46) has an amplitude and slope functionally related to the time elapsed during each clock pulse in the train. A converter (18, 32) forms a first digital value of the amplitude and slope of the triangle wave at the start of the event interval and a second digital value of the amplitude and slope of the triangle wave at the end of the event interval. A counter (26) counts the clock pulse train (37) during the interval to form a gross event interval time. A computer (52) then combines the gross event interval time and the first and second digital values to output a high resolution value for the event interval.

  15. High resolution time integration for Sn radiation transport

    International Nuclear Information System (INIS)

    Thoreson, Greg; McClarren, Ryan G.; Chang, Jae H.

    2008-01-01

    First order, second order and high resolution time discretization schemes are implemented and studied for the S n equations. The high resolution method employs a rate of convergence better than first order, but also suppresses artificial oscillations introduced by second order schemes in hyperbolic differential equations. All three methods were compared for accuracy and convergence rates. For non-absorbing problems, both second order and high resolution converged to the same solution as the first order with better convergence rates. High resolution is more accurate than first order and matches or exceeds the second order method. (authors)

  16. Structure of high-resolution NMR spectra

    CERN Document Server

    Corio, PL

    2012-01-01

    Structure of High-Resolution NMR Spectra provides the principles, theories, and mathematical and physical concepts of high-resolution nuclear magnetic resonance spectra.The book presents the elementary theory of magnetic resonance; the quantum mechanical theory of angular momentum; the general theory of steady state spectra; and multiple quantum transitions, double resonance and spin echo experiments.Physicists, chemists, and researchers will find the book a valuable reference text.

  17. Tumor specific lung cancer diagnostics with multiplexed FRET immunoassays

    Science.gov (United States)

    Geißler, D.; Hill, D.; Löhmannsröben, H.-G.; Thomas, E.; Lavigne, A.; Darbouret, B.; Bois, E.; Charbonnière, L. J.; Ziessel, R. F.; Hildebrandt, N.

    2010-02-01

    An optical multiplexed homogeneous (liquid phase) immunoassay based on FRET from a terbium complex to eight different fluorescent dyes is presented. We achieved highly sensitive parallel detection of four different lung cancer specific tumor markers (CEA, NSE, SCC and CYFRA21-1) within a single assay and show a proof-of-principle for 5- fold multiplexing. The method is well suited for fast and low-cost miniaturized point-of-care testing as well as for highthroughput screening in a broad range of in-vitro diagnostic applications.

  18. High-resolution melting (HRM) re-analysis of a polyposis patients cohort reveals previously undetected heterozygous and mosaic APC gene mutations.

    Science.gov (United States)

    Out, Astrid A; van Minderhout, Ivonne J H M; van der Stoep, Nienke; van Bommel, Lysette S R; Kluijt, Irma; Aalfs, Cora; Voorendt, Marsha; Vossen, Rolf H A M; Nielsen, Maartje; Vasen, Hans F A; Morreau, Hans; Devilee, Peter; Tops, Carli M J; Hes, Frederik J

    2015-06-01

    Familial adenomatous polyposis is most frequently caused by pathogenic variants in either the APC gene or the MUTYH gene. The detection rate of pathogenic variants depends on the severity of the phenotype and sensitivity of the screening method, including sensitivity for mosaic variants. For 171 patients with multiple colorectal polyps without previously detectable pathogenic variant, APC was reanalyzed in leukocyte DNA by one uniform technique: high-resolution melting (HRM) analysis. Serial dilution of heterozygous DNA resulted in a lowest detectable allelic fraction of 6% for the majority of variants. HRM analysis and subsequent sequencing detected pathogenic fully heterozygous APC variants in 10 (6%) of the patients and pathogenic mosaic variants in 2 (1%). All these variants were previously missed by various conventional scanning methods. In parallel, HRM APC scanning was applied to DNA isolated from polyp tissue of two additional patients with apparently sporadic polyposis and without detectable pathogenic APC variant in leukocyte DNA. In both patients a pathogenic mosaic APC variant was present in multiple polyps. The detection of pathogenic APC variants in 7% of the patients, including mosaics, illustrates the usefulness of a complete APC gene reanalysis of previously tested patients, by a supplementary scanning method. HRM is a sensitive and fast pre-screening method for reliable detection of heterozygous and mosaic variants, which can be applied to leukocyte and polyp derived DNA.

  19. Developments of Highly Multiplexed, Multi-chroic Pixels for Balloon-Borne Platforms

    Science.gov (United States)

    Aubin, F.; Hanany, S.; Johnson, B. R.; Lee, A.; Suzuki, A.; Westbrook, B.; Young, K.

    2018-02-01

    We present our work to develop and characterize low thermal conductance bolometers that are part of sinuous antenna multi-chroic pixels (SAMP). We use longer, thinner and meandered bolometer legs to achieve 9 pW/K thermal conductance bolometers. We also discuss the development of inductor-capacitor chips operated at 4 K to extend the multiplexing factor of the frequency domain multiplexing to 105, an increase of 60% compared to the factor currently demonstrated for this readout system. This technology development is motivated by EBEX-IDS, a balloon-borne polarimeter designed to characterize the polarization of foregrounds and to detect the primordial gravity waves through their B-mode signature on the polarization of the cosmic microwave background. EBEX-IDS will operate 20,562 transition edge sensor bolometers spread over 7 frequency bands between 150 and 360 GHz. Balloon and satellite platforms enable observations at frequencies inaccessible from the ground and with higher instantaneous sensitivity. This development improves the readiness of the SAMP and frequency domain readout technologies for future satellite applications.

  20. Modular high power diode lasers with flexible 3D multiplexing arrangement optimized for automated manufacturing

    Science.gov (United States)

    Könning, Tobias; Bayer, Andreas; Plappert, Nora; Faßbender, Wilhelm; Dürsch, Sascha; Küster, Matthias; Hubrich, Ralf; Wolf, Paul; Köhler, Bernd; Biesenbach, Jens

    2018-02-01

    A novel 3-dimensional arrangement of mirrors is used to re-arrange beams from 1-D and 2-D high power diode laser arrays. The approach allows for a variety of stacking geometries, depending on individual requirements. While basic building blocks, including collimating optics, always remain the same, most adaptations can be realized by simple rearrangement of a few optical components. Due to fully automated alignment processes, the required changes can be realized in software by changing coordinates, rather than requiring customized mechanical components. This approach minimizes development costs due to its flexibility, while reducing overall product cost by using similar building blocks for a variety of products and utilizing a high grade of automation. The modules can be operated with industrial grade water, lowering overall system and maintenance cost. Stackable macro coolers are used as the smallest building block of the system. Each cooler can hold up to five diode laser bars. Micro optical components, collimating the beam, are mounted directly to the cooler. All optical assembly steps are fully automated. Initially, the beams from all laser bars propagate in the same direction. Key to the concept is an arrangement of deflectors, which re-arrange the beams into a 2-D array of the desired shape and high fill factor. Standard multiplexing techniques like polarization- or wavelengths-multiplexing have been implemented as well. A variety of fiber coupled modules ranging from a few hundred watts of optical output power to multiple kilowatts of power, as well as customized laser spot geometries like uniform line sources, have been realized.

  1. Homologous Recombination and Xylella fastidiosa Host-Pathogen Associations in South America.

    Science.gov (United States)

    Coletta-Filho, Helvécio D; Francisco, Carolina S; Lopes, João R S; Muller, Christiane; Almeida, Rodrigo P P

    2017-03-01

    Homologous recombination affects the evolution of bacteria such as Xylella fastidiosa, a naturally competent plant pathogen that requires insect vectors for dispersal. This bacterial species is taxonomically divided into subspecies, with phylogenetic clusters within subspecies that are host specific. One subspecies, pauca, is primarily limited to South America, with the exception of recently reported strains in Europe and Costa Rica. Despite the economic importance of X. fastidiosa subsp. pauca in South America, little is known about its genetic diversity. Multilocus sequence typing (MLST) has previously identified six sequence types (ST) among plant samples collected in Brazil (both subsp. pauca and multiplex). Here, we report on a survey of X. fastidiosa genetic diversity (MLST based) performed in six regions in Brazil and two in Argentina, by sampling five different plant species. In addition to the six previously reported ST, seven new subsp. pauca and two new subsp. multiplex ST were identified. The presence of subsp. multiplex in South America is considered to be the consequence of a single introduction from its native range in North America more than 80 years ago. Different phylogenetic approaches clustered the South American ST into four groups, with strains infecting citrus (subsp. pauca); coffee and olive (subsp. pauca); coffee, hibiscus, and plum (subsp. pauca); and plum (subsp. multiplex). In areas where these different genetic clusters occurred sympatrically, we found evidence of homologous recombination in the form of bidirectional allelic exchange between subspp. pauca and multiplex. In fact, the only strain of subsp. pauca isolated from a plum host had an allele that originated from subsp. multiplex. These signatures of bidirectional homologous recombination between endemic and introduced ST indicate that gene flow occurs in short evolutionary time frames in X. fastidiosa, despite the ecological isolation (i.e., host plant species) of genotypes.

  2. High-resolution multi-slice PET

    International Nuclear Information System (INIS)

    Yasillo, N.J.; Chintu Chen; Ordonez, C.E.; Kapp, O.H.; Sosnowski, J.; Beck, R.N.

    1992-01-01

    This report evaluates the progress to test the feasibility and to initiate the design of a high resolution multi-slice PET system. The following specific areas were evaluated: detector development and testing; electronics configuration and design; mechanical design; and system simulation. The design and construction of a multiple-slice, high-resolution positron tomograph will provide substantial improvements in the accuracy and reproducibility of measurements of the distribution of activity concentrations in the brain. The range of functional brain research and our understanding of local brain function will be greatly extended when the development of this instrumentation is completed

  3. High resolution NMR spectroscopy of synthetic polymers in bulk

    International Nuclear Information System (INIS)

    Komorski, R.A.

    1986-01-01

    The contents of this book are: Overview of high-resolution NMR of solid polymers; High-resolution NMR of glassy amorphous polymers; Carbon-13 solid-state NMR of semicrystalline polymers; Conformational analysis of polymers of solid-state NMR; High-resolution NMR studies of oriented polymers; High-resolution solid-state NMR of protons in polymers; and Deuterium NMR of solid polymers. This work brings together the various approaches for high-resolution NMR studies of bulk polymers into one volume. Heavy emphasis is, of course, given to 13C NMR studies both above and below Tg. Standard high-power pulse and wide-line techniques are not covered

  4. High resolution integral holography using Fourier ptychographic approach.

    Science.gov (United States)

    Li, Zhaohui; Zhang, Jianqi; Wang, Xiaorui; Liu, Delian

    2014-12-29

    An innovative approach is proposed for calculating high resolution computer generated integral holograms by using the Fourier Ptychographic (FP) algorithm. The approach initializes a high resolution complex hologram with a random guess, and then stitches together low resolution multi-view images, synthesized from the elemental images captured by integral imaging (II), to recover the high resolution hologram through an iterative retrieval with FP constrains. This paper begins with an analysis of the principle of hologram synthesis from multi-projections, followed by an accurate determination of the constrains required in the Fourier ptychographic integral-holography (FPIH). Next, the procedure of the approach is described in detail. Finally, optical reconstructions are performed and the results are demonstrated. Theoretical analysis and experiments show that our proposed approach can reconstruct 3D scenes with high resolution.

  5. Design of Genomic Signatures of Pathogen Identification & Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Slezak, T; Gardner, S; Allen, J; Vitalis, E; Jaing, C

    2010-02-09

    This chapter will address some of the many issues associated with the identification of signatures based on genomic DNA/RNA, which can be used to identify and characterize pathogens for biodefense and microbial forensic goals. For the purposes of this chapter, we define a signature as one or more strings of contiguous genomic DNA or RNA bases that are sufficient to identify a pathogenic target of interest at the desired resolution and which could be instantiated with particular detection chemistry on a particular platform. The target may be a whole organism, an individual functional mechanism (e.g., a toxin gene), or simply a nucleic acid indicative of the organism. The desired resolution will vary with each program's goals but could easily range from family to genus to species to strain to isolate. The resolution may not be taxonomically based but rather pan-mechanistic in nature: detecting virulence or antibiotic-resistance genes shared by multiple microbes. Entire industries exist around different detection chemistries and instrument platforms for identification of pathogens, and we will only briefly mention a few of the techniques that we have used at Lawrence Livermore National Laboratory (LLNL) to support our biosecurity-related work since 2000. Most nucleic acid based detection chemistries involve the ability to isolate and amplify the signature target region(s), combined with a technique to detect the amplification. Genomic signature based identification techniques have the advantage of being precise, highly sensitive and relatively fast in comparison to biochemical typing methods and protein signatures. Classical biochemical typing methods were developed long before knowledge of DNA and resulted in dozens of tests (Gram's stain, differential growth characteristics media, etc.) that could be used to roughly characterize the major known pathogens (of course some are uncultivable). These tests could take many days to complete and precise resolution

  6. High-spatial resolution and high-spectral resolution detector for use in the measurement of solar flare hard x rays

    International Nuclear Information System (INIS)

    Desai, U.D.; Orwig, L.E.

    1988-01-01

    In the areas of high spatial resolution, the evaluation of a hard X-ray detector with 65 micron spatial resolution for operation in the energy range from 30 to 400 keV is proposed. The basic detector is a thick large-area scintillator faceplate, composed of a matrix of high-density scintillating glass fibers, attached to a proximity type image intensifier tube with a resistive-anode digital readout system. Such a detector, combined with a coded-aperture mask, would be ideal for use as a modest-sized hard X-ray imaging instrument up to X-ray energies as high as several hundred keV. As an integral part of this study it was also proposed that several techniques be critically evaluated for X-ray image coding which could be used with this detector. In the area of high spectral resolution, it is proposed to evaluate two different types of detectors for use as X-ray spectrometers for solar flares: planar silicon detectors and high-purity germanium detectors (HPGe). Instruments utilizing these high-spatial-resolution detectors for hard X-ray imaging measurements from 30 to 400 keV and high-spectral-resolution detectors for measurements over a similar energy range would be ideally suited for making crucial solar flare observations during the upcoming maximum in the solar cycle

  7. Quantitative, multiplexed workflow for deep analysis of human blood plasma and biomarker discovery by mass spectrometry.

    Science.gov (United States)

    Keshishian, Hasmik; Burgess, Michael W; Specht, Harrison; Wallace, Luke; Clauser, Karl R; Gillette, Michael A; Carr, Steven A

    2017-08-01

    Proteomic characterization of blood plasma is of central importance to clinical proteomics and particularly to biomarker discovery studies. The vast dynamic range and high complexity of the plasma proteome have, however, proven to be serious challenges and have often led to unacceptable tradeoffs between depth of coverage and sample throughput. We present an optimized sample-processing pipeline for analysis of the human plasma proteome that provides greatly increased depth of detection, improved quantitative precision and much higher sample analysis throughput as compared with prior methods. The process includes abundant protein depletion, isobaric labeling at the peptide level for multiplexed relative quantification and ultra-high-performance liquid chromatography coupled to accurate-mass, high-resolution tandem mass spectrometry analysis of peptides fractionated off-line by basic pH reversed-phase (bRP) chromatography. The overall reproducibility of the process, including immunoaffinity depletion, is high, with a process replicate coefficient of variation (CV) of 4,500 proteins are detected and quantified per patient sample on average, with two or more peptides per protein and starting from as little as 200 μl of plasma. The approach can be multiplexed up to 10-plex using tandem mass tags (TMT) reagents, further increasing throughput, albeit with some decrease in the number of proteins quantified. In addition, we provide a rapid protocol for analysis of nonfractionated depleted plasma samples analyzed in 10-plex. This provides ∼600 quantified proteins for each of the ten samples in ∼5 h of instrument time.

  8. High resolution photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Arko, A.J.

    1988-01-01

    Photoelectron Spectroscopy (PES) covers a very broad range of measurements, disciplines, and interests. As the next generation light source, the FEL will result in improvements over the undulator that are larger than the undulater improvements over bending magnets. The combination of high flux and high inherent resolution will result in several orders of magnitude gain in signal to noise over measurements using synchrotron-based undulators. The latter still require monochromators. Their resolution is invariably strongly energy-dependent so that in the regions of interest for many experiments (h upsilon > 100 eV) they will not have a resolving power much over 1000. In order to study some of the interesting phenomena in actinides (heavy fermions e.g.) one would need resolving powers of 10 4 to 10 5 . These values are only reachable with the FEL

  9. Fluorescence-intensity multiplexing: simultaneous seven-marker, two-color immunophenotyping using flow cytometry.

    Science.gov (United States)

    Bradford, Jolene A; Buller, Gayle; Suter, Michael; Ignatius, Michael; Beechem, Joseph M

    2004-10-01

    labeling reagents can generate characteristic and distinguishable multivariate patterns. Combining multiple antibodies and fluorescent labels with fluorescence intensity multiplexing enables the resolution of more cellular targets than detection-channels, allowing sophisticated multiparameter flow cytometric studies to be performed on less complex 2- or 3-detection-channel flow cytometers. For typical biological samples, approximately 2-4 cellular targets per detection channel can be resolved using this technique. Copyright 2004 Wiley-Liss, Inc.

  10. Multiplex High-Throughput Targeted Proteomic Assay To Identify Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Baud, Anna; Wessely, Frank; Mazzacuva, Francesca; McCormick, James; Camuzeaux, Stephane; Heywood, Wendy E; Little, Daniel; Vowles, Jane; Tuefferd, Marianne; Mosaku, Olukunbi; Lako, Majlinda; Armstrong, Lyle; Webber, Caleb; Cader, M Zameel; Peeters, Pieter; Gissen, Paul; Cowley, Sally A; Mills, Kevin

    2017-02-21

    Induced pluripotent stem cells have great potential as a human model system in regenerative medicine, disease modeling, and drug screening. However, their use in medical research is hampered by laborious reprogramming procedures that yield low numbers of induced pluripotent stem cells. For further applications in research, only the best, competent clones should be used. The standard assays for pluripotency are based on genomic approaches, which take up to 1 week to perform and incur significant cost. Therefore, there is a need for a rapid and cost-effective assay able to distinguish between pluripotent and nonpluripotent cells. Here, we describe a novel multiplexed, high-throughput, and sensitive peptide-based multiple reaction monitoring mass spectrometry assay, allowing for the identification and absolute quantitation of multiple core transcription factors and pluripotency markers. This assay provides simpler and high-throughput classification into either pluripotent or nonpluripotent cells in 7 min analysis while being more cost-effective than conventional genomic tests.

  11. A multiplex PCR for detection of six viruses in ducks.

    Science.gov (United States)

    Wang, Yongjuan; Zhu, Shanyuan; Hong, Weiming; Wang, Anping; Zuo, Weiyong

    2017-10-01

    In this study, six pairs of specific primers that can amplify DNA fragments of different sizes were designed and synthesized according to viral protein gene sequences published in GenBank. Then, a multiplex PCR method was established for rapid detection of duck hepatitis virus 1, duck plague virus, duck Tembusu virus, muscovy duck parvovirus, muscovy duck reovirus, and duck H9N2 avian influenza virus, and achieve simple and rapid detection of viral diseases in ducks. Single PCR was used to confirm primer specificity, and PCR conditions were optimized to construct a multiplex PCR system. Specificity and sensitivity assays were also developed. The multiplex PCR was used to detect duck embryos infected with mixed viruses and those with clinically suspected diseases to verify the feasibility of the multiplex PCR. Results show that the primers can specifically amplify target fragments, without any cross-amplification with other viruses. The multiplex PCR system can amplify six DNA fragments from the pooled viral genomes and specifically detect nucleic acids of the six duck susceptible viruses when the template amount is 10 2 copies/μl. In addition, the system can be used to detect viral nucleic acids in duck embryos infected with the six common viruses. The detection results for clinical samples are consistent with those detected by single PCR. Therefore, the established multiplex PCR method can perform specific, sensitive, and high-throughput detection of six duck-infecting viruses and can be applied to clinical identification and diagnosis of viral infection in ducks. Copyright © 2017. Published by Elsevier B.V.

  12. Laguerre Gaussian beam multiplexing through turbulence

    CSIR Research Space (South Africa)

    Trichili, A

    2014-08-17

    Full Text Available We analyze the effect of atmospheric turbulence on the propagation of multiplexed Laguerre Gaussian modes. We present a method to multiplex Laguerre Gaussian modes using digital holograms and decompose the resulting field after encountering a...

  13. High-resolution regional climate model evaluation using variable-resolution CESM over California

    Science.gov (United States)

    Huang, X.; Rhoades, A.; Ullrich, P. A.; Zarzycki, C. M.

    2015-12-01

    Understanding the effect of climate change at regional scales remains a topic of intensive research. Though computational constraints remain a problem, high horizontal resolution is needed to represent topographic forcing, which is a significant driver of local climate variability. Although regional climate models (RCMs) have traditionally been used at these scales, variable-resolution global climate models (VRGCMs) have recently arisen as an alternative for studying regional weather and climate allowing two-way interaction between these domains without the need for nudging. In this study, the recently developed variable-resolution option within the Community Earth System Model (CESM) is assessed for long-term regional climate modeling over California. Our variable-resolution simulations will focus on relatively high resolutions for climate assessment, namely 28km and 14km regional resolution, which are much more typical for dynamically downscaled studies. For comparison with the more widely used RCM method, the Weather Research and Forecasting (WRF) model will be used for simulations at 27km and 9km. All simulations use the AMIP (Atmospheric Model Intercomparison Project) protocols. The time period is from 1979-01-01 to 2005-12-31 (UTC), and year 1979 was discarded as spin up time. The mean climatology across California's diverse climate zones, including temperature and precipitation, is analyzed and contrasted with the Weather Research and Forcasting (WRF) model (as a traditional RCM), regional reanalysis, gridded observational datasets and uniform high-resolution CESM at 0.25 degree with the finite volume (FV) dynamical core. The results show that variable-resolution CESM is competitive in representing regional climatology on both annual and seasonal time scales. This assessment adds value to the use of VRGCMs for projecting climate change over the coming century and improve our understanding of both past and future regional climate related to fine

  14. Section on High Resolution Optical Imaging (HROI)

    Data.gov (United States)

    Federal Laboratory Consortium — The Section on High Resolution Optical Imaging (HROI) develops novel technologies for studying biological processes at unprecedented speed and resolution. Research...

  15. Rapid and inexpensive body fluid identification by RNA profiling-based multiplex High Resolution Melt (HRM analysis [v1; ref status: indexed, http://f1000r.es/2hj

    Directory of Open Access Journals (Sweden)

    Erin K. Hanson

    2013-12-01

    Full Text Available Positive identification of the nature of biological material present on evidentiary items can be crucial for understanding the circumstances surrounding a crime. However, traditional protein-based methods do not permit the identification of all body fluids and tissues, and thus molecular based strategies for the conclusive identification of all forensically relevant biological fluids and tissues need to be developed. Messenger RNA (mRNA profiling is an example of such a molecular-based approach. Current mRNA body fluid identification assays involve capillary electrophoresis (CE or quantitative RT-PCR (qRT-PCR platforms, each with its own limitations. Both platforms require the use of expensive fluorescently labeled primers or probes. CE-based assays require separate amplification and detection steps thus increasing the analysis time. For qRT-PCR assays, only 3-4 markers can be included in a single reaction since each requires a different fluorescent dye. To simplify mRNA profiling assays, and reduce the time and cost of analysis, we have developed single- and multiplex body fluid High Resolution Melt (HRM assays for the identification of common forensically relevant biological fluids and tissues. The incorporated biomarkers include IL19 (vaginal secretions, IL1F7 (skin, ALAS2 (blood, MMP10 (menstrual blood, HTN3 (saliva and TGM4 (semen.  The HRM assays require only unlabeled PCR primers and a single saturating intercalating fluorescent dye (Eva Green. Each body-fluid-specific marker can easily be identified by the presence of a distinct melt peak. Usually, HRM assays are used to detect variants or isoforms for a single gene target. However, we have uniquely developed duplex and triplex HRM assays to permit the simultaneous detection of multiple targets per reaction. Here we describe the development and initial performance evaluation of the developed HRM assays. The results demonstrate the potential use of HRM assays for rapid, and relatively

  16. High angular resolution at LBT

    Science.gov (United States)

    Conrad, A.; Arcidiacono, C.; Bertero, M.; Boccacci, P.; Davies, A. G.; Defrere, D.; de Kleer, K.; De Pater, I.; Hinz, P.; Hofmann, K. H.; La Camera, A.; Leisenring, J.; Kürster, M.; Rathbun, J. A.; Schertl, D.; Skemer, A.; Skrutskie, M.; Spencer, J. R.; Veillet, C.; Weigelt, G.; Woodward, C. E.

    2015-12-01

    High angular resolution from ground-based observatories stands as a key technology for advancing planetary science. In the window between the angular resolution achievable with 8-10 meter class telescopes, and the 23-to-40 meter giants of the future, LBT provides a glimpse of what the next generation of instruments providing higher angular resolution will provide. We present first ever resolved images of an Io eruption site taken from the ground, images of Io's Loki Patera taken with Fizeau imaging at the 22.8 meter LBT [Conrad, et al., AJ, 2015]. We will also present preliminary analysis of two data sets acquired during the 2015 opposition: L-band fringes at Kurdalagon and an occultation of Loki and Pele by Europa (see figure). The light curves from this occultation will yield an order of magnitude improvement in spatial resolution along the path of ingress and egress. We will conclude by providing an overview of the overall benefit of recent and future advances in angular resolution for planetary science.

  17. Multiple-locus variable-number tandem-repeat analysis of pathogenic Yersinia enterocolitica in China.

    Directory of Open Access Journals (Sweden)

    Xin Wang

    Full Text Available The predominant bioserotypes of pathogenic Yersinia enterocolitica in China are 2/O: 9 and 3/O: 3; no pathogenic O: 8 strains have been found to date. Multiple-Locus Variable-Number Tandem-Repeat Analysis (MLVA based on seven loci was able to distinguish 104 genotypes among 218 pathogenic Y. enterocolitica isolates in China and from abroad, showing a high resolution. The major pathogenic serogroups in China, O: 3 and O: 9, were divided into two clusters based on MLVA genotyping. The different distribution of Y. enterocolitica MLVA genotypes maybe due to the recent dissemination of specific clones of 2/O: 9 and 3/O: 3 strains in China. MLVA was a helpful tool for bacterial pathogen surveillance and investigation of pathogenic Y. enterocolitica outbreaks.

  18. A method for generating high resolution satellite image time series

    Science.gov (United States)

    Guo, Tao

    2014-10-01

    There is an increasing demand for satellite remote sensing data with both high spatial and temporal resolution in many applications. But it still is a challenge to simultaneously improve spatial resolution and temporal frequency due to the technical limits of current satellite observation systems. To this end, much R&D efforts have been ongoing for years and lead to some successes roughly in two aspects, one includes super resolution, pan-sharpen etc. methods which can effectively enhance the spatial resolution and generate good visual effects, but hardly preserve spectral signatures and result in inadequate analytical value, on the other hand, time interpolation is a straight forward method to increase temporal frequency, however it increase little informative contents in fact. In this paper we presented a novel method to simulate high resolution time series data by combing low resolution time series data and a very small number of high resolution data only. Our method starts with a pair of high and low resolution data set, and then a spatial registration is done by introducing LDA model to map high and low resolution pixels correspondingly. Afterwards, temporal change information is captured through a comparison of low resolution time series data, and then projected onto the high resolution data plane and assigned to each high resolution pixel according to the predefined temporal change patterns of each type of ground objects. Finally the simulated high resolution data is generated. A preliminary experiment shows that our method can simulate a high resolution data with a reasonable accuracy. The contribution of our method is to enable timely monitoring of temporal changes through analysis of time sequence of low resolution images only, and usage of costly high resolution data can be reduces as much as possible, and it presents a highly effective way to build up an economically operational monitoring solution for agriculture, forest, land use investigation

  19. Multi-beam synchronous measurement based on PSD phase detection using frequency-domain multiplexing

    Science.gov (United States)

    Duan, Ying; Qin, Lan; Xue, Lian; Xi, Feng; Mao, Jiubing

    2013-10-01

    According to the principle of centroid measurement, position-sensitive detectors (PSD) are commonly used for micro displacement detection. However, single-beam detection method cannot satisfy such tasks as multi-dimension position measurement, three dimension vision reconstruction, and robot precision positioning, which require synchronous measurement of multiple light beams. Consequently, we designed PSD phase detection method using frequency-domain multiplexing for synchronous detection of multiple modulated light beams. Compared to previous PSD amplitude detection method, the phase detection method using FDM has advantages of simplified measuring system, low cost, high capability of resistance to light interference as well as improved resolution. The feasibility of multi-beam synchronous measurement based on PSD phase detection using FDM was validated by multi-beam measuring experiments. The maximum non-linearity error of the multi-beam synchronous measurement is 6.62%.

  20. Multiplexed image storage by electromagnetically induced transparency in a solid

    Science.gov (United States)

    Heinze, G.; Rentzsch, N.; Halfmann, T.

    2012-11-01

    We report on frequency- and angle-multiplexed image storage by electromagnetically induced transparency (EIT) in a Pr3+:Y2SiO5 crystal. Frequency multiplexing by EIT relies on simultaneous storage of light pulses in atomic coherences, driven in different frequency ensembles of the inhomogeneously broadened solid medium. Angular multiplexing by EIT relies on phase matching of the driving laser beams, which permits simultaneous storage of light pulses propagating under different angles into the crystal. We apply the multiplexing techniques to increase the storage capacity of the EIT-driven optical memory, in particular to implement multiplexed storage of larger two-dimensional amounts of data (images). We demonstrate selective storage and readout of images by frequency-multiplexed EIT and angular-multiplexed EIT, as well as the potential to combine both multiplexing approaches towards further enhanced storage capacities.

  1. Frequency-domain readout multiplexing of transition-edge sensor arrays

    Energy Technology Data Exchange (ETDEWEB)

    Lanting, T.M. [Physics Department, University of California, Berkeley, CA 94720 (United States)]. E-mail: tlanting@berkeley.edu; Arnold, K. [Physics Department, University of California, Berkeley, CA 94720 (United States); Cho, Hsiao-Mei [Physics Department, University of California, Berkeley, CA 94720 (United States); Clarke, John [Physics Department, University of California, Berkeley, CA 94720 (United States); Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Dobbs, Matt [Physics Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Holzapfel, William [Physics Department, University of California, Berkeley, CA 94720 (United States); Lee, Adrian T. [Physics Department, University of California, Berkeley, CA 94720 (United States); Physics Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Lueker, M. [Physics Department, University of California, Berkeley, CA 94720 (United States); Richards, P.L. [Physics Department, University of California, Berkeley, CA 94720 (United States); Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Smith, A.D. [Northrop-Grumman, Redondo Beach, CA 94278 (United States); Spieler, H.G. [Physics Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2006-04-15

    We have demonstrated frequency-domain readout multiplexing of eight channels for superconducting transition-edge sensor bolometer arrays. The multiplexed readout noise is 6.5 pA/{radical}Hz, well below the bolometer dark noise of 15-20 pA/{radical}Hz. We measure an upper limit on crosstalk of 0.004 between channels adjacent in frequency which meets our design requirement of 0.01. We have observed vibration insensitivity in our frequency-domain multiplexed transition-edge sensors, making this system very attractive for telescope and satellite observations. We also discuss extensions to our multiplexed readout. In particular, we are developing a SQUID flux-locked loop that is entirely cold and collaborating on digital multiplexer technology in order to scale up the number of multiplexed channels.

  2. Immunization of Epidemics in Multiplex Networks

    Science.gov (United States)

    Zhao, Dawei; Wang, Lianhai; Li, Shudong; Wang, Zhen; Wang, Lin; Gao, Bo

    2014-01-01

    Up to now, immunization of disease propagation has attracted great attention in both theoretical and experimental researches. However, vast majority of existing achievements are limited to the simple assumption of single layer networked population, which seems obviously inconsistent with recent development of complex network theory: each node could possess multiple roles in different topology connections. Inspired by this fact, we here propose the immunization strategies on multiplex networks, including multiplex node-based random (targeted) immunization and layer node-based random (targeted) immunization. With the theory of generating function, theoretical analysis is developed to calculate the immunization threshold, which is regarded as the most critical index for the effectiveness of addressed immunization strategies. Interestingly, both types of random immunization strategies show more efficiency in controlling disease spreading on multiplex Erdös-Rényi (ER) random networks; while targeted immunization strategies provide better protection on multiplex scale-free (SF) networks. PMID:25401755

  3. Immunization of epidemics in multiplex networks.

    Science.gov (United States)

    Zhao, Dawei; Wang, Lianhai; Li, Shudong; Wang, Zhen; Wang, Lin; Gao, Bo

    2014-01-01

    Up to now, immunization of disease propagation has attracted great attention in both theoretical and experimental researches. However, vast majority of existing achievements are limited to the simple assumption of single layer networked population, which seems obviously inconsistent with recent development of complex network theory: each node could possess multiple roles in different topology connections. Inspired by this fact, we here propose the immunization strategies on multiplex networks, including multiplex node-based random (targeted) immunization and layer node-based random (targeted) immunization. With the theory of generating function, theoretical analysis is developed to calculate the immunization threshold, which is regarded as the most critical index for the effectiveness of addressed immunization strategies. Interestingly, both types of random immunization strategies show more efficiency in controlling disease spreading on multiplex Erdös-Rényi (ER) random networks; while targeted immunization strategies provide better protection on multiplex scale-free (SF) networks.

  4. Multiplex PCR for rapid diagnosis and differentiation of pox and pox-like diseases in dromedary Camels.

    Science.gov (United States)

    Khalafalla, Abdelmalik I; Al-Busada, Khalid A; El-Sabagh, Ibrahim M

    2015-07-07

    Pox and pox-like diseases of camels are a group of exanthematous skin conditions that have become increasingly important economically. Three distinct viruses may cause them: camelpox virus (CMLV), camel parapox virus (CPPV) and camelus dromedary papilloma virus (CdPV). These diseases are often difficult to differentiate based on clinical presentation in disease outbreaks. Molecular methods such as PCR targeting species-specific genes have been developed and used to identify these diseases, but not simultaneously in a single tube. Recently, multiplex PCR has gained reputation as a convenient diagnostic method with cost-and timesaving benefits. In the present communication, we describe the development, optimization and validation of a multiplex PCR assay able to detect simultaneously the genome of the three viruses in one single test allowing for rapid and efficient molecular diagnosis. The assay was developed based on the evaluation and combination of published and new primer sets and was validated with viral genomic DNA extracted from known virus strains (n = 14) and DNA extracted from homogenized clinical skin specimens (n = 86). The assay detects correctly the target pathogens by amplification of targeted genes, even in case of co-infection. The method showed high sensitivity, and the specificity was confirmed by PCR-product sequencing. This assay provide rapid, sensitive and specific method for identifying three important viruses in specimens collected from dromedary camels with varying clinical presentations.

  5. Resolution enhancement of low-quality videos using a high-resolution frame

    Science.gov (United States)

    Pham, Tuan Q.; van Vliet, Lucas J.; Schutte, Klamer

    2006-01-01

    This paper proposes an example-based Super-Resolution (SR) algorithm of compressed videos in the Discrete Cosine Transform (DCT) domain. Input to the system is a Low-Resolution (LR) compressed video together with a High-Resolution (HR) still image of similar content. Using a training set of corresponding LR-HR pairs of image patches from the HR still image, high-frequency details are transferred from the HR source to the LR video. The DCT-domain algorithm is much faster than example-based SR in spatial domain 6 because of a reduction in search dimensionality, which is a direct result of the compact and uncorrelated DCT representation. Fast searching techniques like tree-structure vector quantization 16 and coherence search1 are also key to the improved efficiency. Preliminary results on MJPEG sequence show promising result of the DCT-domain SR synthesis approach.

  6. Multiplex real-time PCR assay for detection of Escherichia coli O157:H7 and screening for non-O157 Shiga toxin-producing E. coli.

    Science.gov (United States)

    Li, Baoguang; Liu, Huanli; Wang, Weimin

    2017-11-09

    enterica, Shigella strains, or any other pathogenic strains tested. A multiplex real-time PCR assay that can rapidly and simultaneously detect E. coli O157:H7 and screen for non-O157 STEC strains has been developed and assessed for efficacy. The inclusivity and exclusivity tests demonstrated high sensitivity and specificity of the multiplex real-time PCR assay. In addition, this multiplex assay was shown to be effective for the detection of E. coli O157:H7 from two common food matrices, beef and spinach, and may be applied for detection of E. coli O157:H7 and screening for non-O157 STEC strains from other food matrices as well.

  7. The spatial resolution of epidemic peaks.

    Directory of Open Access Journals (Sweden)

    Harriet L Mills

    2014-04-01

    Full Text Available The emergence of novel respiratory pathogens can challenge the capacity of key health care resources, such as intensive care units, that are constrained to serve only specific geographical populations. An ability to predict the magnitude and timing of peak incidence at the scale of a single large population would help to accurately assess the value of interventions designed to reduce that peak. However, current disease-dynamic theory does not provide a clear understanding of the relationship between: epidemic trajectories at the scale of interest (e.g. city; population mobility; and higher resolution spatial effects (e.g. transmission within small neighbourhoods. Here, we used a spatially-explicit stochastic meta-population model of arbitrary spatial resolution to determine the effect of resolution on model-derived epidemic trajectories. We simulated an influenza-like pathogen spreading across theoretical and actual population densities and varied our assumptions about mobility using Latin-Hypercube sampling. Even though, by design, cumulative attack rates were the same for all resolutions and mobilities, peak incidences were different. Clear thresholds existed for all tested populations, such that models with resolutions lower than the threshold substantially overestimated population-wide peak incidence. The effect of resolution was most important in populations which were of lower density and lower mobility. With the expectation of accurate spatial incidence datasets in the near future, our objective was to provide a framework for how to use these data correctly in a spatial meta-population model. Our results suggest that there is a fundamental spatial resolution for any pathogen-population pair. If underlying interactions between pathogens and spatially heterogeneous populations are represented at this resolution or higher, accurate predictions of peak incidence for city-scale epidemics are feasible.

  8. Molecular testing for viral and bacterial enteric pathogens: gold standard for viruses, but don't let culture go just yet?

    Science.gov (United States)

    Bloomfield, Maxim G; Balm, Michelle N D; Blackmore, Timothy K

    2015-04-01

    Contemporary diagnostic microbiology is increasingly adopting molecular methods as front line tests for a variety of samples. This trend holds true for detection of enteric pathogens (EP), where nucleic acid amplification tests (NAAT) for viruses are well established as the gold standard, and an increasing number of commercial multi-target assays are now available for bacteria and parasites. NAAT have significant sensitivity and turnaround time advantages over traditional methods, potentially returning same-day results. Multiplex panels offer an attractive 'one-stop shop' that may provide workflow and cost advantages to laboratories processing large sample volumes. However, there are a number of issues which need consideration. Reflex culture is required for antibiotic susceptibility testing and strain typing when needed for food safety and other epidemiological investigations. Surveillance systems will need to allow for differences in disease incidence due to the enhanced sensitivity of NAAT. Laboratories should be mindful of local epidemiology when selecting which pathogens to include in multiplex panels, and be thoughtful regarding which pathogens will not be detected. Multiplex panels may not be appropriate in certain situations, such as hospital-onset diarrhoea, where Clostridium difficile testing might be all that is required, and laboratories may wish to retain the flexibility to run single tests in such situations. The clinical impact of rapid results is also likely to be relatively minor, as infective diarrhoea is a self-limiting illness in the majority of cases. Laboratories will require strategies to assist users in the interpretation of the results produced by NAAT, particularly where pathogens are detected at low levels with uncertain clinical significance. These caveats aside, faecal NAAT are increasingly being used and introduce a new era of diagnosis of gastrointestinal infection.

  9. A cloud mask methodology for high resolution remote sensing data combining information from high and medium resolution optical sensors

    Science.gov (United States)

    Sedano, Fernando; Kempeneers, Pieter; Strobl, Peter; Kucera, Jan; Vogt, Peter; Seebach, Lucia; San-Miguel-Ayanz, Jesús

    2011-09-01

    This study presents a novel cloud masking approach for high resolution remote sensing images in the context of land cover mapping. As an advantage to traditional methods, the approach does not rely on thermal bands and it is applicable to images from most high resolution earth observation remote sensing sensors. The methodology couples pixel-based seed identification and object-based region growing. The seed identification stage relies on pixel value comparison between high resolution images and cloud free composites at lower spatial resolution from almost simultaneously acquired dates. The methodology was tested taking SPOT4-HRVIR, SPOT5-HRG and IRS-LISS III as high resolution images and cloud free MODIS composites as reference images. The selected scenes included a wide range of cloud types and surface features. The resulting cloud masks were evaluated through visual comparison. They were also compared with ad-hoc independently generated cloud masks and with the automatic cloud cover assessment algorithm (ACCA). In general the results showed an agreement in detected clouds higher than 95% for clouds larger than 50 ha. The approach produced consistent results identifying and mapping clouds of different type and size over various land surfaces including natural vegetation, agriculture land, built-up areas, water bodies and snow.

  10. Rapid multiplex high resolution melting method to analyze inflammatory related SNPs in preterm birth

    Directory of Open Access Journals (Sweden)

    Pereyra Silvana

    2012-01-01

    Full Text Available Abstract Background Complex traits like cancer, diabetes, obesity or schizophrenia arise from an intricate interaction between genetic and environmental factors. Complex disorders often cluster in families without a clear-cut pattern of inheritance. Genomic wide association studies focus on the detection of tens or hundreds individual markers contributing to complex diseases. In order to test if a subset of single nucleotide polymorphisms (SNPs from candidate genes are associated to a condition of interest in a particular individual or group of people, new techniques are needed. High-resolution melting (HRM analysis is a new method in which polymerase chain reaction (PCR and mutations scanning are carried out simultaneously in a closed tube, making the procedure fast, inexpensive and easy. Preterm birth (PTB is considered a complex disease, where genetic and environmental factors interact to carry out the delivery of a newborn before 37 weeks of gestation. It is accepted that inflammation plays an important role in pregnancy and PTB. Methods Here, we used real time-PCR followed by HRM analysis to simultaneously identify several gene variations involved in inflammatory pathways on preterm labor. SNPs from TLR4, IL6, IL1 beta and IL12RB genes were analyzed in a case-control study. The results were confirmed either by sequencing or by PCR followed by restriction fragment length polymorphism. Results We were able to simultaneously recognize the variations of four genes with similar accuracy than other methods. In order to obtain non-overlapping melting temperatures, the key step in this strategy was primer design. Genotypic frequencies found for each SNP are in concordance with those previously described in similar populations. None of the studied SNPs were associated with PTB. Conclusions Several gene variations related to the same inflammatory pathway were screened through a new flexible, fast and non expensive method with the purpose of analyzing

  11. High-Resolution Mass Spectrometers

    Science.gov (United States)

    Marshall, Alan G.; Hendrickson, Christopher L.

    2008-07-01

    Over the past decade, mass spectrometry has been revolutionized by access to instruments of increasingly high mass-resolving power. For small molecules up to ˜400 Da (e.g., drugs, metabolites, and various natural organic mixtures ranging from foods to petroleum), it is possible to determine elemental compositions (CcHhNnOoSsPp…) of thousands of chemical components simultaneously from accurate mass measurements (the same can be done up to 1000 Da if additional information is included). At higher mass, it becomes possible to identify proteins (including posttranslational modifications) from proteolytic peptides, as well as lipids, glycoconjugates, and other biological components. At even higher mass (˜100,000 Da or higher), it is possible to characterize posttranslational modifications of intact proteins and to map the binding surfaces of large biomolecule complexes. Here we review the principles and techniques of the highest-resolution analytical mass spectrometers (time-of-flight and Fourier transform ion cyclotron resonance and orbitrap mass analyzers) and describe some representative high-resolution applications.

  12. A laser ablation ICP-MS based method for multiplexed immunoblot analysis

    DEFF Research Database (Denmark)

    de Bang, Thomas Christian; Petersen, Jørgen; Pedas, Pai Rosager

    2015-01-01

    developed a multiplexed antibody-based assay and analysed selected PSII subunits in barley (Hordeum vulgare L.). A selection of antibodies were labelled with specific lanthanides and immunoreacted with thylakoids exposed to Mn deficiency after western blotting. Subsequently, western blot membranes were...... analysed by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), which allowed selective and relative quantitative analysis via the different lanthanides. The method was evaluated against established liquid chromatography electrospray ionization tandem mass spectrometry (LC...... by more than one technique. The developed method enables a higher number of proteins to be multiplexed in comparison to existing immunoassays. Furthermore, multiplexed protein analysis by LA-ICP-MS provides an analytical platform with high throughput appropriate for screening large collections of plants....

  13. Effects of fourth-order dispersion in very high-speed optical time-division multiplexed transmission.

    Science.gov (United States)

    Capmany, J; Pastor, D; Sales, S; Ortega, B

    2002-06-01

    We present a closed-form expression for computation of the output pulse's rms time width in an optical fiber link with up to fourth-order dispersion (FOD) by use of an optical source with arbitrary linewidth and chirp parameters. We then specialize the expression to analyze the effect of FOD on the transmission of very high-speed linear optical time-division multiplexing systems. By suitable source chirping, FOD can be compensated for to an upper link-length limit above which other techniques must be employed. Finally, a design formula to estimate the maximum attainable bit rate limited by FOD as a function of the link length is also presented.

  14. USGS High Resolution Orthoimagery Collection - Historical - National Geospatial Data Asset (NGDA) High Resolution Orthoimagery

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — USGS high resolution orthorectified images from The National Map combine the image characteristics of an aerial photograph with the geometric qualities of a map. An...

  15. Design and numerical optimization of a mode multiplexer based on few-mode fiber couplers

    International Nuclear Information System (INIS)

    Xie, Yiwei; Fu, Songnian; Liu, Hai; Zhang, Hailiang; Tang, Ming; Liu, Deming; Shum, P

    2013-01-01

    Mode division multiplexing (MDM) transmission based on few-mode fibers (FMFs) appears to be an alternative solution for overcoming the capacity limit of single-mode fibers (SMFs). A FMF coupler-based mode division multiplexer/demultiplexer (MMUX/DeMMUX) is proposed and theoretically investigated after the fabricated FMF is characterized. MMUXs/DeMMUXs with a mode contrast ratio (MCR) of more than 20 dB can be obtained for two-mode multiplexing and three-mode multiplexing over a wavelength span of 60 and 10 nm, respectively. We numerically verify the proposed MMUX/DeMMUX which has the advantages of high MCR, easy fabrication and maintenance, and low wavelength dependence. (paper)

  16. High throughput screening of ligand binding to macromolecules using high resolution powder diffraction

    Science.gov (United States)

    Von Dreele, Robert B.; D'Amico, Kevin

    2006-10-31

    A process is provided for the high throughput screening of binding of ligands to macromolecules using high resolution powder diffraction data including producing a first sample slurry of a selected polycrystalline macromolecule material and a solvent, producing a second sample slurry of a selected polycrystalline macromolecule material, one or more ligands and the solvent, obtaining a high resolution powder diffraction pattern on each of said first sample slurry and the second sample slurry, and, comparing the high resolution powder diffraction pattern of the first sample slurry and the high resolution powder diffraction pattern of the second sample slurry whereby a difference in the high resolution powder diffraction patterns of the first sample slurry and the second sample slurry provides a positive indication for the formation of a complex between the selected polycrystalline macromolecule material and at least one of the one or more ligands.

  17. Performance of the HIRS/2 instrument on TIROS-N. [High Resolution Infrared Radiation Sounder

    Science.gov (United States)

    Koenig, E. W.

    1980-01-01

    The High Resolution Infrared Radiation Sounder (HIRS/2) was developed and flown on the TIROS-N satellite as one means of obtaining atmospheric vertical profile information. The HIRS/2 receives visible and infrared spectrum radiation through a single telescope and selects 20 narrow radiation channels by means of a rotating filter wheel. A passive radiant cooler provides an operating temperature of 106.7 K for the HgCdTe and InSb detectors while the visible detector operates at instrument frame temperature. Low noise amplifiers and digital processing provide 13 bit data for spacecraft data multiplexing and transmission. The qualities of system performance that determine sounding capability are the dynamic range of data collection, the noise equivalent radiance of the system, the registration of the air columns sampled in each channel and the ability to upgrade the calibration of the instrument to maintain the performance standard throughout life. The basic features, operating characteristics and performance of the instrument in test are described. Early orbital information from the TIROS-N launched on October 13, 1978 is given and some observations on system quality are made.

  18. A novel multiplex PCR discriminates Bacillus anthracis and its genetically related strains from other Bacillus cereus group species.

    Directory of Open Access Journals (Sweden)

    Hirohito Ogawa

    Full Text Available Anthrax is an important zoonotic disease worldwide that is caused by Bacillus anthracis, a spore-forming pathogenic bacterium. A rapid and sensitive method to detect B. anthracis is important for anthrax risk management and control in animal cases to address public health issues. However, it has recently become difficult to identify B. anthracis by using previously reported molecular-based methods because of the emergence of B. cereus, which causes severe extra-intestinal infection, as well as the human pathogenic B. thuringiensis, both of which are genetically related to B. anthracis. The close genetic relation of chromosomal backgrounds has led to complexity of molecular-based diagnosis. In this study, we established a B. anthracis multiplex PCR that can screen for the presence of B. anthracis virulent plasmids and differentiate B. anthracis and its genetically related strains from other B. cereus group species. Six sets of primers targeting a chromosome of B. anthracis and B. anthracis-like strains, two virulent plasmids, pXO1 and pXO2, a bacterial gene, 16S rRNA gene, and a mammalian gene, actin-beta gene, were designed. The multiplex PCR detected approximately 3.0 CFU of B. anthracis DNA per PCR reaction and was sensitive to B. anthracis. The internal control primers also detected all bacterial and mammalian DNAs examined, indicating the practical applicability of this assay as it enables monitoring of appropriate amplification. The assay was also applied for detection of clinical strains genetically related to B. anthracis, which were B. cereus strains isolated from outbreaks of hospital infections in Japan, and field strains isolated in Zambia, and the assay differentiated B. anthracis and its genetically related strains from other B. cereus group strains. Taken together, the results indicate that the newly developed multiplex PCR is a sensitive and practical method for detecting B. anthracis.

  19. Immunization of epidemics in multiplex networks.

    Directory of Open Access Journals (Sweden)

    Dawei Zhao

    Full Text Available Up to now, immunization of disease propagation has attracted great attention in both theoretical and experimental researches. However, vast majority of existing achievements are limited to the simple assumption of single layer networked population, which seems obviously inconsistent with recent development of complex network theory: each node could possess multiple roles in different topology connections. Inspired by this fact, we here propose the immunization strategies on multiplex networks, including multiplex node-based random (targeted immunization and layer node-based random (targeted immunization. With the theory of generating function, theoretical analysis is developed to calculate the immunization threshold, which is regarded as the most critical index for the effectiveness of addressed immunization strategies. Interestingly, both types of random immunization strategies show more efficiency in controlling disease spreading on multiplex Erdös-Rényi (ER random networks; while targeted immunization strategies provide better protection on multiplex scale-free (SF networks.

  20. Optimizing diffusion in multiplexes by maximizing layer dissimilarity

    Science.gov (United States)

    Serrano, Alfredo B.; Gómez-Gardeñes, Jesús; Andrade, Roberto F. S.

    2017-05-01

    Diffusion in a multiplex depends on the specific link distribution between the nodes in each layer, but also on the set of the intralayer and interlayer diffusion coefficients. In this work we investigate, in a quantitative way, the efficiency of multiplex diffusion as a function of the topological similarity among multiplex layers. This similarity is measured by the distance between layers, taken among the pairs of layers. Results are presented for a simple two-layer multiplex, where one of the layers is held fixed, while the other one can be rewired in a controlled way in order to increase or decrease the interlayer distance. The results indicate that, for fixed values of all intra- and interlayer diffusion coefficients, a large interlayer distance generally enhances the global multiplex diffusion, providing a topological mechanism to control the global diffusive process. For some sets of networks, we develop an algorithm to identify the most sensitive nodes in the rewirable layer, so that changes in a small set of connections produce a drastic enhancement of the global diffusion of the whole multiplex system.

  1. Texton-based super-resolution for achieving high spatiotemporal resolution in hybrid camera system

    Science.gov (United States)

    Kamimura, Kenji; Tsumura, Norimichi; Nakaguchi, Toshiya; Miyake, Yoichi

    2010-05-01

    Many super-resolution methods have been proposed to enhance the spatial resolution of images by using iteration and multiple input images. In a previous paper, we proposed the example-based super-resolution method to enhance an image through pixel-based texton substitution to reduce the computational cost. In this method, however, we only considered the enhancement of a texture image. In this study, we modified this texton substitution method for a hybrid camera to reduce the required bandwidth of a high-resolution video camera. We applied our algorithm to pairs of high- and low-spatiotemporal-resolution videos, which were synthesized to simulate a hybrid camera. The result showed that the fine detail of the low-resolution video can be reproduced compared with bicubic interpolation and the required bandwidth could be reduced to about 1/5 in a video camera. It was also shown that the peak signal-to-noise ratios (PSNRs) of the images improved by about 6 dB in a trained frame and by 1.0-1.5 dB in a test frame, as determined by comparison with the processed image using bicubic interpolation, and the average PSNRs were higher than those obtained by the well-known Freeman’s patch-based super-resolution method. Compared with that of the Freeman’s patch-based super-resolution method, the computational time of our method was reduced to almost 1/10.

  2. Available number of multiplexed holograms based on signal-to-noise ratio analysis in reflection-type holographic memory using three-dimensional speckle-shift multiplexing.

    Science.gov (United States)

    Nishizaki, Tatsuya; Matoba, Osamu; Nitta, Kouichi

    2014-09-01

    The recording properties of three-dimensional speckle-shift multiplexing in reflection-type holographic memory are analyzed numerically. Three-dimensional recording can increase the number of multiplexed holograms by suppressing the cross-talk noise from adjacent holograms by using depth-direction multiplexing rather than in-plane multiplexing. Numerical results indicate that the number of multiplexed holograms in three-layer recording can be increased by 1.44 times as large as that of a single-layer recording when an acceptable signal-to-noise ratio is set to be 2 when NA=0.43 and the thickness of the recording medium is 0.5 mm.

  3. Strain measurement using multiplexed fiber optic sensors

    International Nuclear Information System (INIS)

    Kwon, Il Bum; Kim, Chi Yeop; Yoon, Dong Jin; Lee, Seung Seok

    2003-01-01

    FBG(Fiber Bragg grating) sensor, which is one of the fiber optic sensors for the application of smart structures, can not only measure one specific point but also multiple points by multiplexing techniques. We have proposed a novel multiplexing technique of FBG sensor by the intensity modulation of light source. This technique is applicable to WDM(Wavelength Division Multiplexing) technique and number of sensors in this system can be increased by using this technique with WDM technique.

  4. Immersion Gratings for Infrared High-resolution Spectroscopy

    Science.gov (United States)

    Sarugaku, Yuki; Ikeda, Yuji; Kobayashi, Naoto; Kaji, Sayumi; Sukegawa, Takashi; Sugiyama, Shigeru; Nakagawa, Takao; Arasaki, Takayuki; Kondo, Sohei; Nakanishi, Kenshi; Yasui, Chikako; Kawakita, Hideyo

    2016-10-01

    High-resolution spectroscopy in the infrared wavelength range is essential for observations of minor isotopologues, such as HDO for water, and prebiotic organic molecules like hydrocarbons/P-bearing molecules because numerous vibrational molecular bands (including non-polar molecules) are located in this wavelength range. High spectral resolution enables us to detect weak lines without spectral line confusion. This technique has been widely used in planetary sciences, e.g., cometary coma (H2O, CO, and organic molecules), the martian atmosphere (CH4, CO2, H2O and HDO), and the upper atmosphere of gas giants (H3+ and organic molecules such as C2H6). Spectrographs with higher resolution (and higher sensitivity) still have a potential to provide a plenty of findings. However, because the size of spectrographs scales with the spectral resolution, it is difficult to realize it.Immersion grating (IG), which is a diffraction grating wherein the diffraction surface is immersed in a material with a high refractive index (n > 2), provides n times higher spectral resolution compared to a reflective grating of the same size. Because IG reduces the size of spectrograph to 1/n compared to the spectrograph with the same spectral resolution using a conventional reflective grating, it is widely acknowledged as a key optical device to realize compact spectrographs with high spectral resolution.Recently, we succeeded in fabricating a CdZnTe immersion grating with the theoretically predicted diffraction efficiency by machining process using an ultrahigh-precision five-axis processing machine developed by Canon Inc. Using the same technique, we completed a practical germanium (Ge) immersion grating with both a reflection coating on the grating surface and the an AR coating on the entrance surface. It is noteworthy that the wide wavelength range from 2 to 20 um can be covered by the two immersion gratings.In this paper, we present the performances and the applications of the immersion

  5. High resolution tomographic instrument development

    International Nuclear Information System (INIS)

    1992-01-01

    Our recent work has concentrated on the development of high-resolution PET instrumentation reflecting in part the growing importance of PET in nuclear medicine imaging. We have developed a number of positron imaging instruments and have the distinction that every instrument has been placed in operation and has had an extensive history of application for basic research and clinical study. The present program is a logical continuation of these earlier successes. PCR-I, a single ring positron tomograph was the first demonstration of analog coding using BGO. It employed 4 mm detectors and is currently being used for a wide range of biological studies. These are of immense importance in guiding the direction for future instruments. In particular, PCR-II, a volume sensitive positron tomograph with 3 mm spatial resolution has benefited greatly from the studies using PCR-I. PCR-II is currently in the final stages of assembly and testing and will shortly be placed in operation for imaging phantoms, animals and ultimately humans. Perhaps the most important finding resulting from our previous study is that resolution and sensitivity must be carefully balanced to achieve a practical high resolution system. PCR-II has been designed to have the detection characteristics required to achieve 3 mm resolution in human brain under practical imaging situations. The development of algorithms by the group headed by Dr. Chesler is based on a long history of prior study including his joint work with Drs. Pelc and Reiderer and Stearns. This body of expertise will be applied to the processing of data from PCR-II when it becomes operational

  6. High resolution tomographic instrument development

    Energy Technology Data Exchange (ETDEWEB)

    1992-08-01

    Our recent work has concentrated on the development of high-resolution PET instrumentation reflecting in part the growing importance of PET in nuclear medicine imaging. We have developed a number of positron imaging instruments and have the distinction that every instrument has been placed in operation and has had an extensive history of application for basic research and clinical study. The present program is a logical continuation of these earlier successes. PCR-I, a single ring positron tomograph was the first demonstration of analog coding using BGO. It employed 4 mm detectors and is currently being used for a wide range of biological studies. These are of immense importance in guiding the direction for future instruments. In particular, PCR-II, a volume sensitive positron tomograph with 3 mm spatial resolution has benefited greatly from the studies using PCR-I. PCR-II is currently in the final stages of assembly and testing and will shortly be placed in operation for imaging phantoms, animals and ultimately humans. Perhaps the most important finding resulting from our previous study is that resolution and sensitivity must be carefully balanced to achieve a practical high resolution system. PCR-II has been designed to have the detection characteristics required to achieve 3 mm resolution in human brain under practical imaging situations. The development of algorithms by the group headed by Dr. Chesler is based on a long history of prior study including his joint work with Drs. Pelc and Reiderer and Stearns. This body of expertise will be applied to the processing of data from PCR-II when it becomes operational.

  7. High resolution tomographic instrument development

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    Our recent work has concentrated on the development of high-resolution PET instrumentation reflecting in part the growing importance of PET in nuclear medicine imaging. We have developed a number of positron imaging instruments and have the distinction that every instrument has been placed in operation and has had an extensive history of application for basic research and clinical study. The present program is a logical continuation of these earlier successes. PCR-I, a single ring positron tomograph was the first demonstration of analog coding using BGO. It employed 4 mm detectors and is currently being used for a wide range of biological studies. These are of immense importance in guiding the direction for future instruments. In particular, PCR-II, a volume sensitive positron tomograph with 3 mm spatial resolution has benefited greatly from the studies using PCR-I. PCR-II is currently in the final stages of assembly and testing and will shortly be placed in operation for imaging phantoms, animals and ultimately humans. Perhaps the most important finding resulting from our previous study is that resolution and sensitivity must be carefully balanced to achieve a practical high resolution system. PCR-II has been designed to have the detection characteristics required to achieve 3 mm resolution in human brain under practical imaging situations. The development of algorithms by the group headed by Dr. Chesler is based on a long history of prior study including his joint work with Drs. Pelc and Reiderer and Stearns. This body of expertise will be applied to the processing of data from PCR-II when it becomes operational.

  8. Xylella fastidiosa Isolates from Both subsp. multiplex and fastidiosa Cause Disease on Southern Highbush Blueberry (Vaccinium sp.) Under Greenhouse Conditions.

    Science.gov (United States)

    Oliver, J E; Cobine, P A; De La Fuente, L

    2015-07-01

    Xylella fastidiosa is a xylem-limited gram-negative plant pathogen that affects numerous crop species, including grape, citrus, peach, pecan, and almond. Recently, X. fastidiosa has also been found to be the cause of bacterial leaf scorch on blueberry in the southeastern United States. Thus far, all X. fastidiosa isolates obtained from infected blueberry have been classified as X. fastidiosa subsp. multiplex; however, X. fastidiosa subsp. fastidiosa isolates are also present in the southeastern United States and commonly cause Pierce's disease of grapevines. In this study, seven southeastern U.S. isolates of X. fastidiosa, including three X. fastidiosa subsp. fastidiosa isolates from grape, one X. fastidiosa subsp. fastidiosa isolate from elderberry, and three X. fastidiosa subsp. multiplex isolates from blueberry, were used to infect the southern highbush blueberry 'Rebel'. Following inoculation, all isolates colonized blueberry, and isolates from both X. fastidiosa subsp. multiplex and X. fastidiosa subsp. fastidiosa caused symptoms, including characteristic stem yellowing and leaf scorch symptoms as well as dieback of the stem tips. Two X. fastidiosa subsp. multiplex isolates from blueberry caused more severe symptoms than the other isolates examined, and infection with these two isolates also had a significant impact on host mineral nutrient content in sap and leaves. These findings have potential implications for understanding X. fastidiosa host adaptation and expansion and the development of emerging diseases caused by this bacterium.

  9. Multiplex congruity: friendship networks and perceived popularity as correlates of adolescent alcohol use.

    Science.gov (United States)

    Fujimoto, Kayo; Valente, Thomas W

    2015-01-01

    Adolescents interact with their peers in multiple social settings and form various types of peer relationships that affect drinking behavior. Friendship and popularity perceptions constitute critical relationships during adolescence. These two relations are commonly measured by asking students to name their friends, and this network is used to construct drinking exposure and peer status variables. This study takes a multiplex network approach by examining the congruity between friendships and popularity as correlates of adolescent drinking. Using data on friendship and popularity nominations among high school adolescents in Los Angeles, California (N = 1707; five schools), we examined the associations between an adolescent's drinking and drinking by (a) their friends only; (b) multiplexed friendships, friends also perceived as popular; and (c) congruent, multiplexed-friends, close friends perceived as popular. Logistic regression results indicated that friend-only drinking, but not multiplexed-friend drinking, was significantly associated with self-drinking (AOR = 3.51, p < 0.05). However, congruent, multiplexed-friend drinking also was associated with self-drinking (AOR = 3.10, p < 0.05). This study provides insight into how adolescent health behavior is predicated on the multiplexed nature of peer relationships. The results have implications for the design of health promotion interventions for adolescent drinking. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Detection of foodborne pathogens by qPCR: A practical approach for food industry applications

    Directory of Open Access Journals (Sweden)

    María-José Chapela

    2015-12-01

    Full Text Available Microbiological analysis of food is an integrated part of microbial safety management in the food chain. Monitoring and controlling foodborne pathogens are traditionally carried out by conventional microbiological methods based on culture-dependent approaches in control laboratories and private companies. However, polymerase chain reaction (PCR has revolutionized microbiological analysis allowing detection of pathogenic microorganisms in food, without the necessity of classical isolation and identification. However, at present, PCR and quantitative polymerase chain reaction (qPCR are essential analytical tools for researchers working in the field of foodborne pathogens. This manuscript reviews recently described qPCR methods applied for foodborne bacteria detection, serving as economical, safe, and reliable alternatives for application in the food industry and control laboratories. Multiplex qPCR, which allows the simultaneous detection of more than one pathogen in one single reaction, saving considerable effort, time, and money, is emphasized in the article.

  11. High resolution Neutron and Synchrotron Powder Diffraction

    International Nuclear Information System (INIS)

    Hewat, A.W.

    1986-01-01

    The use of high-resolution powder diffraction has grown rapidly in the past years, with the development of Rietveld (1967) methods of data analysis and new high-resolution diffractometers and multidetectors. The number of publications in this area has increased from a handful per year until 1973 to 150 per year in 1984, with a ten-year total of over 1000. These papers cover a wide area of solid state-chemistry, physics and materials science, and have been grouped under 20 subject headings, ranging from catalysts to zeolites, and from battery electrode materials to pre-stressed superconducting wires. In 1985 two new high-resolution diffractometers are being commissioned, one at the SNS laboratory near Oxford, and one at the ILL in Grenoble. In different ways these machines represent perhaps the ultimate that can be achieved with neutrons and will permit refinement of complex structures with about 250 parameters and unit cell volumes of about 2500 Angstrom/sp3/. The new European Synchotron Facility will complement the Grenoble neutron diffractometers, and extend the role of high-resolution powder diffraction to the direct solution of crystal structures, pioneered in Sweden

  12. High resolution (transformers.

    Science.gov (United States)

    Garcia-Souto, Jose A; Lamela-Rivera, Horacio

    2006-10-16

    A novel fiber-optic interferometric sensor is presented for vibrations measurements and analysis. In this approach, it is shown applied to the vibrations of electrical structures within power transformers. A main feature of the sensor is that an unambiguous optical phase measurement is performed using the direct detection of the interferometer output, without external modulation, for a more compact and stable implementation. High resolution of the interferometric measurement is obtained with this technique (transformers are also highlighted.

  13. High-resolution wavefront control of high-power laser systems

    International Nuclear Information System (INIS)

    Brase, J.; Brown, C.; Carrano, C.; Kartz, M.; Olivier, S.; Pennington, D.; Silva, D.

    1999-01-01

    Nearly every new large-scale laser system application at LLNL has requirements for beam control which exceed the current level of available technology. For applications such as inertial confinement fusion, laser isotope separation, laser machining, and laser the ability to transport significant power to a target while maintaining good beam quality is critical. There are many ways that laser wavefront quality can be degraded. Thermal effects due to the interaction of high-power laser or pump light with the internal optical components or with the ambient gas are common causes of wavefront degradation. For many years, adaptive optics based on thing deformable glass mirrors with piezoelectric or electrostrictive actuators have be used to remove the low-order wavefront errors from high-power laser systems. These adaptive optics systems have successfully improved laser beam quality, but have also generally revealed additional high-spatial-frequency errors, both because the low-order errors have been reduced and because deformable mirrors have often introduced some high-spatial-frequency components due to manufacturing errors. Many current and emerging laser applications fall into the high-resolution category where there is an increased need for the correction of high spatial frequency aberrations which requires correctors with thousands of degrees of freedom. The largest Deformable Mirrors currently available have less than one thousand degrees of freedom at a cost of approximately $1M. A deformable mirror capable of meeting these high spatial resolution requirements would be cost prohibitive. Therefore a new approach using a different wavefront control technology is needed. One new wavefront control approach is the use of liquid-crystal (LC) spatial light modulator (SLM) technology for the controlling the phase of linearly polarized light. Current LC SLM technology provides high-spatial-resolution wavefront control, with hundreds of thousands of degrees of freedom, more

  14. Identification of genomic differences between Campylobacter jejuni subsp. jejuni and C. jejuni subsp. doylei at the nap locus leads to the development of a C. jejuni subspeciation multiplex PCR method

    Directory of Open Access Journals (Sweden)

    Heath Sekou

    2007-02-01

    Full Text Available Abstract Background The human bacterial pathogen Campylobacter jejuni contains two subspecies: C. jejuni subsp. jejuni (Cjj and C. jejuni subsp. doylei (Cjd. Although Cjd strains are isolated infrequently in many parts of the world, they are obtained primarily from human clinical samples and result in an unusual clinical symptomatology in that, in addition to gastroenteritis, they are associated often with bacteremia. In this study, we describe a novel multiplex PCR method, based on the nitrate reductase (nap locus, that can be used to unambiguously subspeciate C. jejuni isolates. Results Internal and flanking napA and napB primer sets were designed, based on existing C. jejuni and Campylobacter coli genome sequences to create two multiplex PCR primer sets, nap mpx1 and nap mpx2. Genomic DNA from 161 C. jejuni subsp. jejuni (Cjj and 27 C. jejuni subsp. doylei (Cjd strains were amplified with these multiplex primer sets. The Cjd strains could be distinguished clearly from the Cjj strains using either nap mpx1 or mpx2. In addition, combination of either nap multiplex method with an existing lpxA speciation multiplex method resulted in the unambiguous and simultaneous speciation and subspeciation of the thermophilic Campylobacters. The Cjd nap amplicons were also sequenced: all Cjd strains tested contained identical 2761 bp deletions in napA and several Cjd strains contained deletions in napB. Conclusion The nap multiplex PCR primer sets are robust and give a 100% discrimination of C. jejuni subspecies. The ability to rapidly subspeciate C. jejuni as well as speciate thermophilic Campylobacter species, most of which are pathogenic in humans, in a single amplification will be of value to clinical laboratories in strain identification and the determination of the environmental source of campylobacterioses caused by Cjd. Finally, the sequences of the Cjd napA and napB loci suggest that Cjd strains arose from a common ancestor, providing clues as to

  15. Non-labeling multiplex surface enhanced Raman scattering (SERS) detection of volatile organic compounds (VOCs)

    DEFF Research Database (Denmark)

    Wong, Chi Lok; Dinish, U. S.; Schmidt, Michael Stenbæk

    2014-01-01

    chemical sensing layer for the enrichment of gas molecules on sensor surface. The leaning nano-pillar substrate also showed highly reproducible SERS signal in cyclic VOCs detection, which can reduce the detection cost in practical applications. Further, multiplex SERS detection on different combination...... device for multiplex, specific and highly sensitive detection of complex VOCs samples that can find potential applications in exhaled breath analysis, hazardous gas analysis, homeland security and environmental monitoring....

  16. High resolution optical DNA mapping

    Science.gov (United States)

    Baday, Murat

    Many types of diseases including cancer and autism are associated with copy-number variations in the genome. Most of these variations could not be identified with existing sequencing and optical DNA mapping methods. We have developed Multi-color Super-resolution technique, with potential for high throughput and low cost, which can allow us to recognize more of these variations. Our technique has made 10--fold improvement in the resolution of optical DNA mapping. Using a 180 kb BAC clone as a model system, we resolved dense patterns from 108 fluorescent labels of two different colors representing two different sequence-motifs. Overall, a detailed DNA map with 100 bp resolution was achieved, which has the potential to reveal detailed information about genetic variance and to facilitate medical diagnosis of genetic disease.

  17. A multiplex branched DNA assay for parallel quantitative gene expression profiling.

    Science.gov (United States)

    Flagella, Michael; Bui, Son; Zheng, Zhi; Nguyen, Cung Tuong; Zhang, Aiguo; Pastor, Larry; Ma, Yunqing; Yang, Wen; Crawford, Kimberly L; McMaster, Gary K; Witney, Frank; Luo, Yuling

    2006-05-01

    We describe a novel method to quantitatively measure messenger RNA (mRNA) expression of multiple genes directly from crude cell lysates and tissue homogenates without the need for RNA purification or target amplification. The multiplex branched DNA (bDNA) assay adapts the bDNA technology to the Luminex fluorescent bead-based platform through the use of cooperative hybridization, which ensures an exceptionally high degree of assay specificity. Using in vitro transcribed RNA as reference standards, we demonstrated that the assay is highly specific, with cross-reactivity less than 0.2%. We also determined that the assay detection sensitivity is 25,000 RNA transcripts with intra- and interplate coefficients of variance of less than 10% and less than 15%, respectively. Using three 10-gene panels designed to measure proinflammatory and apoptosis responses, we demonstrated sensitive and specific multiplex gene expression profiling directly from cell lysates. The gene expression change data demonstrate a high correlation coefficient (R(2)=0.94) compared with measurements obtained using the single-plex bDNA assay. Thus, the multiplex bDNA assay provides a powerful means to quantify the gene expression profile of a defined set of target genes in large sample populations.

  18. High-Resolution Electronics: Spontaneous Patterning of High-Resolution Electronics via Parallel Vacuum Ultraviolet (Adv. Mater. 31/2016).

    Science.gov (United States)

    Liu, Xuying; Kanehara, Masayuki; Liu, Chuan; Sakamoto, Kenji; Yasuda, Takeshi; Takeya, Jun; Minari, Takeo

    2016-08-01

    On page 6568, T. Minari and co-workers describe spontaneous patterning based on the parallel vacuum ultraviolet (PVUV) technique, enabling the homogeneous integration of complex, high-resolution electronic circuits, even on large-scale, flexible, transparent substrates. Irradiation of PVUV to the hydrophobic polymer surface precisely renders the selected surface into highly wettable regions with sharply defined boundaries, which spontaneously guides a metal nanoparticle ink into a series of circuit lines and gaps with the widths down to a resolution of 1 μm. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. High resolution UV spectroscopy and laser-focused nanofabrication

    NARCIS (Netherlands)

    Myszkiewicz, G.

    2005-01-01

    This thesis combines two at first glance different techniques: High Resolution Laser Induced Fluorescence Spectroscopy (LIF) of small aromatic molecules and Laser Focusing of atoms for Nanofabrication. The thesis starts with the introduction to the high resolution LIF technique of small aromatic

  20. High-resolution spectrometer at PEP

    International Nuclear Information System (INIS)

    Weiss, J.M.; HRS Collaboration.

    1982-01-01

    A description is presented of the High Resolution Spectrometer experiment (PEP-12) now running at PEP. The advanced capabilities of the detector are demonstrated with first physics results expected in the coming months

  1. 2 original article non-attenuation of highly pathogenic avian

    African Journals Online (AJOL)

    Dr Oboro VO

    AFRICAN JOURNAL OF CLINICAL AND EXPERIMENTAL MICROBIOLOGY JANUARY 2010. ISBN 1595-689X ... NON-ATTENUATION OF HIGHLY PATHOGENIC AVIAN INFLUENZA. H5N1 BY .... Diagnostic PCR was conducted to determine ...

  2. Reliable discrimination of 10 ungulate species using high resolution melting analysis of faecal DNA.

    Directory of Open Access Journals (Sweden)

    Ana Ramón-Laca

    Full Text Available Identifying species occupying an area is essential for many ecological and conservation studies. Faecal DNA is a potentially powerful method for identifying cryptic mammalian species. In New Zealand, 10 species of ungulate (Order: Artiodactyla have established wild populations and are managed as pests because of their impacts on native ecosystems. However, identifying the ungulate species present within a management area based on pellet morphology is unreliable. We present a method that enables reliable identification of 10 ungulate species (red deer, sika deer, rusa deer, fallow deer, sambar deer, white-tailed deer, Himalayan tahr, Alpine chamois, feral sheep, and feral goat from swabs of faecal pellets. A high resolution melting (HRM assay, targeting a fragment of the 12S rRNA gene, was developed. Species-specific primers were designed and combined in a multiplex PCR resulting in fragments of different length and therefore different melting behaviour for each species. The method was developed using tissue from each of the 10 species, and was validated in blind trials. Our protocol enabled species to be determined for 94% of faecal pellet swabs collected during routine monitoring by the New Zealand Department of Conservation. Our HRM method enables high-throughput and cost-effective species identification from low DNA template samples, and could readily be adapted to discriminate other mammalian species from faecal DNA.

  3. High-resolution structure of the native histone octamer

    International Nuclear Information System (INIS)

    Wood, Christopher M.; Nicholson, James M.; Lambert, Stanley J.; Chantalat, Laurent; Reynolds, Colin D.; Baldwin, John P.

    2005-01-01

    The high-resolution (1.90 Å) model of the native histone octamer allows structural comparisons to be made with the nucleosome-core particle, along with an identification of a likely core-histone binding site. Crystals of native histone octamers (H2A–H2B)–(H4–H3)–(H3′–H4′)–(H2B′–H2A′) from chick erythrocytes in 2 M KCl, 1.35 M potassium phosphate pH 6.9 diffract X-rays to 1.90 Å resolution, yielding a structure with an R work value of 18.7% and an R free of 22.2%. The crystal space group is P6 5 , the asymmetric unit of which contains one complete octamer. This high-resolution model of the histone-core octamer allows further insight into intermolecular interactions, including water molecules, that dock the histone dimers to the tetramer in the nucleosome-core particle and have relevance to nucleosome remodelling. The three key areas analysed are the H2A′–H3–H4 molecular cluster (also H2A–H3′–H4′), the H4–H2B′ interaction (also H4′–H2B) and the H2A′–H4 β-sheet interaction (also H2A–H4′). The latter of these three regions is important to nucleosome remodelling by RNA polymerase II, as it is shown to be a likely core-histone binding site, and its disruption creates an instability in the nucleosome-core particle. A majority of the water molecules in the high-resolution octamer have positions that correlate to similar positions in the high-resolution nucleosome-core particle structure, suggesting that the high-resolution octamer model can be used for comparative studies with the high-resolution nucleosome-core particle

  4. Quantitation of Marek's disease and chicken anemia viruses in organs of experimentally infected chickens and commercial chickens by multiplex real-time PCR.

    Science.gov (United States)

    Davidson, Irit; Raibshtein, I; Al-Touri, A

    2013-06-01

    The worldwide distribution of chicken anemia virus (CAV) and Marek's disease virus (MDV) is well documented. In addition to their economic significance in single- or dual-virus infections, the two viruses can often accompany various other pathogens and affect poultry health either directly, by causing tumors, anemia, and delayed growth, or indirectly, by aggravating other diseases, as a result of their immunosuppressive effects. After a decade of employing the molecular diagnosis of those viruses, which replaced conventional virus isolation, we present the development of a real-time multiplex PCR for the simultaneous detection of both viruses. The real-time PCRs for MDV and for CAV alone are more sensitive than the respective end-point PCRs. In addition, the multiplex real-time shows a similar sensitivity when compared to the single real-time PCR for each virus. The newly developed real-time multiplex PCR is of importance in terms of the diagnosis and detection of low copies of each virus, MDV and CAV in single- and in multiple-virus infections, and its applicability will be further evaluated.

  5. Requirements on high resolution detectors

    Energy Technology Data Exchange (ETDEWEB)

    Koch, A. [European Synchrotron Radiation Facility, Grenoble (France)

    1997-02-01

    For a number of microtomography applications X-ray detectors with a spatial resolution of 1 {mu}m are required. This high spatial resolution will influence and degrade other parameters of secondary importance like detective quantum efficiency (DQE), dynamic range, linearity and frame rate. This note summarizes the most important arguments, for and against those detector systems which could be considered. This article discusses the mutual dependencies between the various figures which characterize a detector, and tries to give some ideas on how to proceed in order to improve present technology.

  6. High-resolution clean-sc

    NARCIS (Netherlands)

    Sijtsma, P.; Snellen, M.

    2016-01-01

    In this paper a high-resolution extension of CLEAN-SC is proposed: HR-CLEAN-SC. Where CLEAN-SC uses peak sources in “dirty maps” to define so-called source components, HR-CLEAN-SC takes advantage of the fact that source components can likewise be derived from points at some distance from the peak,

  7. Planning for shallow high resolution seismic surveys

    CSIR Research Space (South Africa)

    Fourie, CJS

    2008-11-01

    Full Text Available of the input wave. This information can be used in conjunction with this spreadsheet to aid the geophysicist in designing shallow high resolution seismic surveys to achieve maximum resolution and penetration. This Excel spreadsheet is available free from...

  8. Antibody array in a multiwell plate format for the sensitive and multiplexed detection of important plant pathogens.

    Science.gov (United States)

    Charlermroj, Ratthaphol; Himananto, Orawan; Seepiban, Channarong; Kumpoosiri, Mallika; Warin, Nuchnard; Gajanandana, Oraprapai; Elliott, Christopher T; Karoonuthaisiri, Nitsara

    2014-07-15

    The global seed market is considered to be an important industry with a total value of $10,543 million US dollars in 2012. Because plant pathogens such as bacteria and viruses cause a significant economic loss to both producers and exporters, the seed export industry urgently requires rapid, sensitive, and inexpensive testing for the pathogens to prevent disease spreading worldwide. This study developed an antibody array in a multiwell plate format to simultaneously detect four crucial plant pathogens, namely, a bacterial fruit blotch bacterium Acidovorax avenae subsp. citrulli (Aac), Chilli veinal mottle virus (ChiVMV, potyvirus), Watermelon silver mottle virus (WSMoV, tospovirus serogroup IV), and Melon yellow spot virus (MYSV, tospovirus). The capture antibodies specific to the pathogens were immobilized on each well at preassigned positions by an automatic microarrayer. The antibodies on the arrays specifically captured the corresponding pathogens present in the sample extracts. The presence of pathogens bound on the capture antibodies was subsequently detected by a cocktail of fluorescently conjugated secondary antibodies. The limits of detection of the developed antibody array for the detection of Aac, ChiVMV, WSMoV, and MYSV were 5 × 10(5) CFU/mL, 30 ng/mL, 1000 ng/mL, and 160 ng/mL, respectively, which were very similar to those of the conventional ELISA method. The antibody array in a multiwell plate format accurately detected plant pathogens in single and multiple detections. Moreover, this format enables easy handling of the assay at a higher speed of operation.

  9. Multiplex serology of paraneoplastic antineuronal antibodies.

    Science.gov (United States)

    Maat, Peter; Brouwer, Eric; Hulsenboom, Esther; VanDuijn, Martijn; Schreurs, Marco W J; Hooijkaas, Herbert; Smitt, Peter A E Sillevis

    2013-05-31

    Paraneoplastic neurological syndromes (PNS) are devastating neurological disorders secondary to cancer, associated with onconeural autoantibodies. Such antibodies are directed against neuronal antigens aberrantly expressed by the tumor. The detection of onconeural antibodies in a patient is extremely important in diagnosing a neurological syndrome as paraneoplastic (70% is not yet known to have cancer) and in directing the search for the underlying neoplasm. At present six onconeural antibodies are considered 'well characterized' and recognize the antigens HuD, CDR62 (Yo), amphiphysin, CRMP-5 (CV2), NOVA-1 (Ri), and Ma2. The gold standard of detection is the characteristic immunohistochemical staining pattern on brain tissue sections combined with confirmation by immunoblotting using recombinant purified proteins. Since all six onconeural antibodies are usually analyzed simultaneously and objective cut-off values for these analyses are warranted, we developed a multiplex assay based on Luminex technology. Reaction of serial dilutions of six onconeural standard sera with microsphere-bound antigens showed lower limits of detection than with Western blotting. Using the six standard sera at a dilution of 1:200, the average within-run coefficient of variation (CV) was 4% (range 1.9-7.3%). The average between-run within-day CV was 5.1% (range 2.9-6.7%) while the average between-day CV was 8.1% (range 2.8-11.6%). The shelf-life of the antigen coupled microspheres was at least two months. The sensitivity of the multiplex assay ranged from 83% (Ri) to 100% (Yo, amphiphysin, CV2) and the specificity from 96% (CV2) to 100% (Ri). In conclusion, Luminex-based multiplex serology is highly reproducible with high sensitivity and specificity for the detection of onconeural antibodies. Conventional immunoblotting for diagnosis of onconeural antibodies in the setting of a routine laboratory may be replaced by this novel, robust technology. Copyright © 2013 Elsevier B.V. All rights

  10. Cavity enhanced eigenmode multiplexing for volume holographic data storage

    Science.gov (United States)

    Miller, Bo E.; Takashima, Yuzuru

    2017-08-01

    Previously, we proposed and experimentally demonstrated enhanced recording speeds by using a resonant optical cavity to semi-passively increase the reference beam power while recording image bearing holograms. In addition to enhancing the reference beam power the cavity supports the orthogonal reference beam families of its eigenmodes, which can be used as a degree of freedom to multiplex data pages and increase storage densities for volume Holographic Data Storage Systems (HDSS). While keeping the increased recording speed of a cavity enhanced reference arm, image bearing holograms are multiplexed by orthogonal phase code multiplexing via Hermite-Gaussian eigenmodes in a Fe:LiNbO3 medium with a 532 nm laser at two Bragg angles for expedited recording of four multiplexed holograms. We experimentally confirmed write rates are enhanced by an average factor of 1.1, and page crosstalk is about 2.5%. This hybrid multiplexing opens up a pathway to increase storage density while minimizing modifications to current angular multiplexing HDSS.

  11. Double random phase spread spectrum spread space technique for secure parallel optical multiplexing with individual encryption key

    Science.gov (United States)

    Hennelly, B. M.; Javidi, B.; Sheridan, J. T.

    2005-09-01

    A number of methods have been recently proposed in the literature for the encryption of 2-D information using linear optical systems. In particular the double random phase encoding system has received widespread attention. This system uses two Random Phase Keys (RPK) positioned in the input spatial domain and the spatial frequency domain and if these random phases are described by statistically independent white noises then the encrypted image can be shown to be a white noise. Decryption only requires knowledge of the RPK in the frequency domain. The RPK may be implemented using a Spatial Light Modulators (SLM). In this paper we propose and investigate the use of SLMs for secure optical multiplexing. We show that in this case it is possible to encrypt multiple images in parallel and multiplex them for transmission or storage. The signal energy is effectively spread in the spatial frequency domain. As expected the number of images that can be multiplexed together and recovered without loss is proportional to the ratio of the input image and the SLM resolution. Many more images may be multiplexed with some loss in recovery. Furthermore each individual encryption is more robust than traditional double random phase encoding since decryption requires knowledge of both RPK and a lowpass filter in order to despread the spectrum and decrypt the image. Numerical simulations are presented and discussed.

  12. Comparison of three multiplex PCR assays for the detection of respiratory viral infections: evaluation of xTAG respiratory virus panel fast assay, RespiFinder 19 assay and RespiFinder SMART 22 assay

    Directory of Open Access Journals (Sweden)

    Dabisch-Ruthe Mareike

    2012-07-01

    in 16 TS samples (32% by RespiFinder-19. Fewer infections were found in summer (RespiFinder-19: 20%; RVP: 6%. All positive results were verified using monoplex PCR. Conclusions Multiplex PCR tests have a broad spectrum of pathogens to test at a time. Analysis of multiple inoculated samples revealed a different focus of the detected virus types by the three assays. Analysis of clinical samples showed a high concordance of detected viruses by the RespiFinder-19 compared to monoplex tests.

  13. Gamma-ray spectrometer system with high efficiency and high resolution

    International Nuclear Information System (INIS)

    Moss, C.E.; Bernard, W.; Dowdy, E.J.; Garcia, C.; Lucas, M.C.; Pratt, J.C.

    1983-01-01

    Our gamma-ray spectrometer system, designed for field use, offers high efficiency and high resolution for safeguards applications. The system consists of three 40% high-purity germanium detectors and a LeCroy 3500 data acquisition system that calculates a composite spectrum for the three detectors. The LeCroy 3500 mainframe can be operated remotely from the detector array with control exercised through modems and the telephone system. System performance with a mixed source of 125 Sb, 154 Eu, and 155 Eu confirms the expected efficiency of 120% with the overall resolution showing little degradation over that of the worst detector

  14. 17 bit 4.35 mW 1 kHz Delta Sigma ADC and 256-to-1 multiplexer for remote handling instrumentation equipment

    Energy Technology Data Exchange (ETDEWEB)

    Verbeeck, Jens, E-mail: jens.verbeeck@esat.kuleuven.be [KU Leuven, Department ESAT-MICAS, Kasteelpark Arenberg 10, 3001 Heverlee (Belgium); KH Kempen University College, IBW-RELIC, Kleinhoefstraat 4, 2440 Geel (Belgium); Van Uffelen, Marco [Fusion for Energy, c/Josep, n° 2, Torres Diagonal Litoral, Ed. B3, 08019 Barcelona (Spain); Steyaert, Michiel [KU Leuven, Department ESAT-MICAS, Kasteelpark Arenberg 10, 3001 Heverlee (Belgium); Leroux, Paul [KU Leuven, Department ESAT-MICAS, Kasteelpark Arenberg 10, 3001 Heverlee (Belgium); KH Kempen University College, IBW-RELIC, Kleinhoefstraat 4, 2440 Geel (Belgium)

    2013-10-15

    Highlights: ► We present a radiation hard 17 bit-1 kHz 4.35 mW Delta Sigma ADC. ► A radiation tolerant 256-to-1 multiplexer is shown. ► We propose a generic radiation tolerant ASIC for use in an instrumentation link. ► The ASIC can interface more than hundred pressure or resistive sensors. ► All building blocks have a simulated radiation tolerance of more than 1 MGy. -- Abstract: A radiation tolerant Delta-Sigma Analog-to-Digital Converter (ADC) and multiplexer is presented. The design features a 1.5 V, 17 bit ADC consuming 4.35 mW at a sample frequency of 1 MHz. The ADC features a bandwidth of 1 kHz and utilizes a Correlated Double Sampling technique (CDS) to remove offset and 1/f noise. The circuit maintains its 17 bit resolution upon a simulated radiation dose exceeding 1 MGy and varying temperatures between 0 °C and 85 °C. Next a multiplexer is presented. It can multiplex 256 channels at a clock frequency of 128 MHz or has a data throughput of 256 MSample/s. In addition the bit period of the multiplexer varies less then 1.5% due to the influence of temperature or radiation, which proves the temperature and radiation tolerance.

  15. Multiplex engineering of industrial yeast genomes using CRISPRm.

    Science.gov (United States)

    Ryan, Owen W; Cate, Jamie H D

    2014-01-01

    Global demand has driven the use of industrial strains of the yeast Saccharomyces cerevisiae for large-scale production of biofuels and renewable chemicals. However, the genetic basis of desired domestication traits is poorly understood because robust genetic tools do not exist for industrial hosts. We present an efficient, marker-free, high-throughput, and multiplexed genome editing platform for industrial strains of S. cerevisiae that uses plasmid-based expression of the CRISPR/Cas9 endonuclease and multiple ribozyme-protected single guide RNAs. With this multiplex CRISPR (CRISPRm) system, it is possible to integrate DNA libraries into the chromosome for evolution experiments, and to engineer multiple loci simultaneously. The CRISPRm tools should therefore find use in many higher-order synthetic biology applications to accelerate improvements in industrial microorganisms.

  16. High resolution metric imaging payload

    Science.gov (United States)

    Delclaud, Y.

    2017-11-01

    Alcatel Space Industries has become Europe's leader in the field of high and very high resolution optical payloads, in the frame work of earth observation system able to provide military government with metric images from space. This leadership allowed ALCATEL to propose for the export market, within a French collaboration frame, a complete space based system for metric observation.

  17. High-resolution X-ray diffraction studies of multilayers

    DEFF Research Database (Denmark)

    Christensen, Finn Erland; Hornstrup, Allan; Schnopper, H. W.

    1988-01-01

    High-resolution X-ray diffraction studies of the perfection of state-of-the-art multilayers are presented. Data were obtained using a triple-axis perfect-crystal X-ray diffractometer. Measurements reveal large-scale figure errors in the substrate. A high-resolution triple-axis set up is required...

  18. Isotope specific resolution recovery image reconstruction in high resolution PET imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kotasidis, Fotis A. [Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211 Geneva, Switzerland and Wolfson Molecular Imaging Centre, MAHSC, University of Manchester, M20 3LJ, Manchester (United Kingdom); Angelis, Georgios I. [Faculty of Health Sciences, Brain and Mind Research Institute, University of Sydney, NSW 2006, Sydney (Australia); Anton-Rodriguez, Jose; Matthews, Julian C. [Wolfson Molecular Imaging Centre, MAHSC, University of Manchester, Manchester M20 3LJ (United Kingdom); Reader, Andrew J. [Montreal Neurological Institute, McGill University, Montreal QC H3A 2B4, Canada and Department of Biomedical Engineering, Division of Imaging Sciences and Biomedical Engineering, King' s College London, St. Thomas’ Hospital, London SE1 7EH (United Kingdom); Zaidi, Habib [Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211 Geneva (Switzerland); Geneva Neuroscience Centre, Geneva University, CH-1205 Geneva (Switzerland); Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, PO Box 30 001, Groningen 9700 RB (Netherlands)

    2014-05-15

    Purpose: Measuring and incorporating a scanner-specific point spread function (PSF) within image reconstruction has been shown to improve spatial resolution in PET. However, due to the short half-life of clinically used isotopes, other long-lived isotopes not used in clinical practice are used to perform the PSF measurements. As such, non-optimal PSF models that do not correspond to those needed for the data to be reconstructed are used within resolution modeling (RM) image reconstruction, usually underestimating the true PSF owing to the difference in positron range. In high resolution brain and preclinical imaging, this effect is of particular importance since the PSFs become more positron range limited and isotope-specific PSFs can help maximize the performance benefit from using resolution recovery image reconstruction algorithms. Methods: In this work, the authors used a printing technique to simultaneously measure multiple point sources on the High Resolution Research Tomograph (HRRT), and the authors demonstrated the feasibility of deriving isotope-dependent system matrices from fluorine-18 and carbon-11 point sources. Furthermore, the authors evaluated the impact of incorporating them within RM image reconstruction, using carbon-11 phantom and clinical datasets on the HRRT. Results: The results obtained using these two isotopes illustrate that even small differences in positron range can result in different PSF maps, leading to further improvements in contrast recovery when used in image reconstruction. The difference is more pronounced in the centre of the field-of-view where the full width at half maximum (FWHM) from the positron range has a larger contribution to the overall FWHM compared to the edge where the parallax error dominates the overall FWHM. Conclusions: Based on the proposed methodology, measured isotope-specific and spatially variant PSFs can be reliably derived and used for improved spatial resolution and variance performance in resolution

  19. Isotope specific resolution recovery image reconstruction in high resolution PET imaging

    International Nuclear Information System (INIS)

    Kotasidis, Fotis A.; Angelis, Georgios I.; Anton-Rodriguez, Jose; Matthews, Julian C.; Reader, Andrew J.; Zaidi, Habib

    2014-01-01

    Purpose: Measuring and incorporating a scanner-specific point spread function (PSF) within image reconstruction has been shown to improve spatial resolution in PET. However, due to the short half-life of clinically used isotopes, other long-lived isotopes not used in clinical practice are used to perform the PSF measurements. As such, non-optimal PSF models that do not correspond to those needed for the data to be reconstructed are used within resolution modeling (RM) image reconstruction, usually underestimating the true PSF owing to the difference in positron range. In high resolution brain and preclinical imaging, this effect is of particular importance since the PSFs become more positron range limited and isotope-specific PSFs can help maximize the performance benefit from using resolution recovery image reconstruction algorithms. Methods: In this work, the authors used a printing technique to simultaneously measure multiple point sources on the High Resolution Research Tomograph (HRRT), and the authors demonstrated the feasibility of deriving isotope-dependent system matrices from fluorine-18 and carbon-11 point sources. Furthermore, the authors evaluated the impact of incorporating them within RM image reconstruction, using carbon-11 phantom and clinical datasets on the HRRT. Results: The results obtained using these two isotopes illustrate that even small differences in positron range can result in different PSF maps, leading to further improvements in contrast recovery when used in image reconstruction. The difference is more pronounced in the centre of the field-of-view where the full width at half maximum (FWHM) from the positron range has a larger contribution to the overall FWHM compared to the edge where the parallax error dominates the overall FWHM. Conclusions: Based on the proposed methodology, measured isotope-specific and spatially variant PSFs can be reliably derived and used for improved spatial resolution and variance performance in resolution

  20. Isotope specific resolution recovery image reconstruction in high resolution PET imaging.

    Science.gov (United States)

    Kotasidis, Fotis A; Angelis, Georgios I; Anton-Rodriguez, Jose; Matthews, Julian C; Reader, Andrew J; Zaidi, Habib

    2014-05-01

    Measuring and incorporating a scanner-specific point spread function (PSF) within image reconstruction has been shown to improve spatial resolution in PET. However, due to the short half-life of clinically used isotopes, other long-lived isotopes not used in clinical practice are used to perform the PSF measurements. As such, non-optimal PSF models that do not correspond to those needed for the data to be reconstructed are used within resolution modeling (RM) image reconstruction, usually underestimating the true PSF owing to the difference in positron range. In high resolution brain and preclinical imaging, this effect is of particular importance since the PSFs become more positron range limited and isotope-specific PSFs can help maximize the performance benefit from using resolution recovery image reconstruction algorithms. In this work, the authors used a printing technique to simultaneously measure multiple point sources on the High Resolution Research Tomograph (HRRT), and the authors demonstrated the feasibility of deriving isotope-dependent system matrices from fluorine-18 and carbon-11 point sources. Furthermore, the authors evaluated the impact of incorporating them within RM image reconstruction, using carbon-11 phantom and clinical datasets on the HRRT. The results obtained using these two isotopes illustrate that even small differences in positron range can result in different PSF maps, leading to further improvements in contrast recovery when used in image reconstruction. The difference is more pronounced in the centre of the field-of-view where the full width at half maximum (FWHM) from the positron range has a larger contribution to the overall FWHM compared to the edge where the parallax error dominates the overall FWHM. Based on the proposed methodology, measured isotope-specific and spatially variant PSFs can be reliably derived and used for improved spatial resolution and variance performance in resolution recovery image reconstruction. The

  1. Photocleavage-based affinity purification of biomarkers from serum: Application to multiplex allergy testing.

    Directory of Open Access Journals (Sweden)

    Zhi Wan

    Full Text Available Multiplex serological immunoassays, such as implemented on microarray or microsphere-based platforms, provide greater information content and higher throughput, while lowering the cost and blood volume required. These features are particularly attractive in pediatric food allergy testing to facilitate high throughput multi-allergen analysis from finger- or heel-stick collected blood. However, the miniaturization and microfluidics necessary for creating multiplex assays make them highly susceptible to the "matrix effect" caused by interference from non-target agents in serum and other biofluids. Such interference can result in lower sensitivity, specificity, reproducibility and quantitative accuracy. These problems have in large part prevented wide-spread implementation of multiplex immunoassays in clinical laboratories. We report the development of a novel method to eliminate the matrix effect by utilizing photocleavable capture antibodies to purify and concentrate blood-based biomarkers (a process termed PC-PURE prior to detection in a multiplex immunoassay. To evaluate this approach, it was applied to blood-based allergy testing. Patient total IgE was purified and enriched using PC-PURE followed by multiplex microsphere-based detection of allergen-specific IgEs (termed the AllerBead assay. AllerBead was formatted to detect the eight most common pediatric food allergens: milk, soy, wheat, egg, peanuts, tree nuts, fin fish and shellfish, which account for >90% of all pediatric food allergies. 205 serum samples obtained from Boston Children's Hospital were evaluated. When PC-PURE was employed with AllerBead, excellent agreement was obtained with the standard, non-multiplex, ImmunoCAP® assay (average sensitivity above published negative predictive cutoffs = 96% and average Pearson r = 0.90; average specificity = 97%. In contrast, poor ImmunoCAP®-correlation was observed when PC-PURE was not utilized (average sensitivity above published negative

  2. 61.3-Gbps hybrid fiber-wireless in-home network enabled by optical heterodyne and polarization multiplexing

    NARCIS (Netherlands)

    Cao, Z.; Li, F.; Liu, Y.; Yu, J.; Wang, Q.; Oh, C.W.; Jiao, Y.; Tran, N.C.; Boom, van den H.P.A.; Tangdiongga, E.; Koonen, A.M.J.

    2014-01-01

    A hybrid fiber-wireless in-home network is proposed to support high-speed multiple input and multiple output (MIMO) orthogonal frequency division multiplexing systems operating at millimeter wave (mm-wave) band by employing optical heterodyne (OH) and polarization multiplexing (PolMux). OH enables

  3. Multiplex Recurrence Networks

    Science.gov (United States)

    Eroglu, Deniz; Marwan, Norbert

    2017-04-01

    The complex nature of a variety of phenomena in physical, biological, or earth sciences is driven by a large number of degrees of freedom which are strongly interconnected. Although the evolution of such systems is described by multivariate time series (MTS), so far research mostly focuses on analyzing these components one by one. Recurrence based analyses are powerful methods to understand the underlying dynamics of a dynamical system and have been used for many successful applications including examples from earth science, economics, or chemical reactions. The backbone of these techniques is creating the phase space of the system. However, increasing the dimension of a system requires increasing the length of the time series in order get significant and reliable results. This requirement is one of the challenges in many disciplines, in particular in palaeoclimate, thus, it is not easy to create a phase space from measured MTS due to the limited number of available obervations (samples). To overcome this problem, we suggest to create recurrence networks from each component of the system and combine them into a multiplex network structure, the multiplex recurrence network (MRN). We test the MRN by using prototypical mathematical models and demonstrate its use by studying high-dimensional palaeoclimate dynamics derived from pollen data from the Bear Lake (Utah, US). By using the MRN, we can distinguish typical climate transition events, e.g., such between Marine Isotope Stages.

  4. Real time quantitative amplification detection on a microarray: towards high multiplex quantitative PCR.

    NARCIS (Netherlands)

    Pierik, A.; Moamfa, M; van Zelst, M.; Clout, D.; Stapert, H.; Dijksman, Johan Frederik; Broer, D.; Wimberger-Friedl, R.

    2012-01-01

    Quantitative real-time polymerase chain reaction (qrtPCR) is widely used as a research and diagnostic tool. Notwithstanding its many powerful features, the method is limited in the degree of multiplexing to about 6 due to spectral overlap of the available fluorophores. A new method is presented that

  5. Real time quantitative amplification detection on a microarray : towards high multiplex quantitative PCR

    NARCIS (Netherlands)

    Pierik, Anke; Boamfa, M.; Zelst, van M.; Clout, D.; Stapert, H.R.; Dijksman, J.F.; Broer, D.J.; Wimberger-Friedl, R.

    2012-01-01

    Quantitative real-time polymerase chain reaction (qrtPCR) is widely used as a research and diagnostic tool. Notwithstanding its many powerful features, the method is limited in the degree of multiplexing to about 6 due to spectral overlap of the available fluorophores. A new method is presented that

  6. High-Speed Turbo-TCM-Coded Orthogonal Frequency-Division Multiplexing Ultra-Wideband Systems

    Directory of Open Access Journals (Sweden)

    Wang Yanxia

    2006-01-01

    Full Text Available One of the UWB proposals in the IEEE P802.15 WPAN project is to use a multiband orthogonal frequency-division multiplexing (OFDM system and punctured convolutional codes for UWB channels supporting a data rate up to 480 Mbps. In this paper, we improve the proposed system using turbo TCM with QAM constellation for higher data rate transmission. We construct a punctured parity-concatenated trellis codes, in which a TCM code is used as the inner code and a simple parity-check code is employed as the outer code. The result shows that the system can offer a much higher spectral efficiency, for example, 1.2 Gbps, which is 2.5 times higher than the proposed system. We identify several essential requirements to achieve the high rate transmission, for example, frequency and time diversity and multilevel error protection. Results are confirmed by density evolution.

  7. Scalable Algorithms for Large High-Resolution Terrain Data

    DEFF Research Database (Denmark)

    Mølhave, Thomas; Agarwal, Pankaj K.; Arge, Lars Allan

    2010-01-01

    In this paper we demonstrate that the technology required to perform typical GIS computations on very large high-resolution terrain models has matured enough to be ready for use by practitioners. We also demonstrate the impact that high-resolution data has on common problems. To our knowledge, so...

  8. High resolution NMR imaging using a high field yokeless permanent magnet.

    Science.gov (United States)

    Kose, Katsumi; Haishi, Tomoyuki

    2011-01-01

    We measured the homogeneity and stability of the magnetic field of a high field (about 1.04 tesla) yokeless permanent magnet with 40-mm gap for high resolution nuclear magnetic resonance (NMR) imaging. Homogeneity was evaluated using a 3-dimensional (3D) lattice phantom and 3D spin-echo imaging sequences. In the central sphere (20-mm diameter), peak-to-peak magnetic field inhomogeneity was about 60 ppm, and the root-mean-square was 8 ppm. We measured room temperature, magnet temperature, and NMR frequency of the magnet simultaneously every minute for about 68 hours with and without the thermal insulator of the magnet. A simple mathematical model described the magnet's thermal property. Based on magnet performance, we performed high resolution (up to [20 µm](2)) imaging with internal NMR lock sequences of several biological samples. Our results demonstrated the usefulness of the high field small yokeless permanent magnet for high resolution NMR imaging.

  9. High resolution NMR imaging using a high field yokeless permanent magnet

    International Nuclear Information System (INIS)

    Kose, Katsumi; Haishi, Tomoyuki

    2011-01-01

    We measured the homogeneity and stability of the magnetic field of a high field (about 1.04 tesla) yokeless permanent magnet with 40-mm gap for high resolution nuclear magnetic resonance (NMR) imaging. Homogeneity was evaluated using a 3-dimensional (3D) lattice phantom and 3D spin-echo imaging sequences. In the central sphere (20-mm diameter), peak-to-peak magnetic field inhomogeneity was about 60 ppm, and the root-mean-square was 8 ppm. We measured room temperature, magnet temperature, and NMR frequency of the magnet simultaneously every minute for about 68 hours with and without the thermal insulator of the magnet. A simple mathematical model described the magnet's thermal property. Based on magnet performance, we performed high resolution (up to [20 μm] 2 ) imaging with internal NMR lock sequences of several biological samples. Our results demonstrated the usefulness of the high field small yokeless permanent magnet for high resolution NMR imaging. (author)

  10. Progress in high-resolution x-ray holographic microscopy

    International Nuclear Information System (INIS)

    Jacobsen, C.; Kirz, J.; Howells, M.; McQuaid, K.; Rothman, S.; Feder, R.; Sayre, D.

    1987-07-01

    Among the various types of x-ray microscopes that have been demonstrated, the holographic microscope has had the largest gap between promise and performance. The difficulties of fabricating x-ray optical elements have led some to view holography as the most attractive method for obtaining the ultimate in high resolution x-ray micrographs; however, we know of no investigations prior to 1987 that clearly demonstrated submicron resolution in reconstructed images. Previous efforts suffered from problems such as limited resolution and dynamic range in the recording media, low coherent x-ray flux, and aberrations and diffraction limits in visible light reconstruction. We have addressed the recording limitations through the use of an undulator x-ray source and high-resolution photoresist recording media. For improved results in the readout and reconstruction steps, we have employed metal shadowing and transmission electron microscopy, along with numerical reconstruction techniques. We believe that this approach will allow holography to emerge as a practical method of high-resolution x-ray microscopy. 30 refs., 4 figs

  11. Progress in high-resolution x-ray holographic microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Jacobsen, C.; Kirz, J.; Howells, M.; McQuaid, K.; Rothman, S.; Feder, R.; Sayre, D.

    1987-07-01

    Among the various types of x-ray microscopes that have been demonstrated, the holographic microscope has had the largest gap between promise and performance. The difficulties of fabricating x-ray optical elements have led some to view holography as the most attractive method for obtaining the ultimate in high resolution x-ray micrographs; however, we know of no investigations prior to 1987 that clearly demonstrated submicron resolution in reconstructed images. Previous efforts suffered from problems such as limited resolution and dynamic range in the recording media, low coherent x-ray flux, and aberrations and diffraction limits in visible light reconstruction. We have addressed the recording limitations through the use of an undulator x-ray source and high-resolution photoresist recording media. For improved results in the readout and reconstruction steps, we have employed metal shadowing and transmission electron microscopy, along with numerical reconstruction techniques. We believe that this approach will allow holography to emerge as a practical method of high-resolution x-ray microscopy. 30 refs., 4 figs.

  12. High-resolution spectroscopy of gases for industrial applications

    DEFF Research Database (Denmark)

    Fateev, Alexander; Clausen, Sønnik

    High-resolution spectroscopy of gases is a powerful technique which has various fundamental and practical applications: in situ simultaneous measurements of gas temperature and gas composition, radiative transfer modeling, validation of existing and developing of new databases and etc. Existing...... databases (e.g. HITRAN, HITEMP or CDSD) can normally be used for absorption spectra calculations at limited temperature/pressure ranges. Therefore experimental measurements of absorption/transmission spectra gases (e.g. CO2, H2O or SO2) at high-resolution and elevated temperatures are essential both...... for analysis of complex experimental data and further development of the databases. High-temperature gas cell facilities available at DTU Chemical Engineering are presented and described. The gas cells and high-resolution spectrometers allow us to perform high-quality reference measurements of gases relevant...

  13. HIGH RESOLUTION ANALOG / DIGITAL POWER SUPPLY CONTROLLER

    International Nuclear Information System (INIS)

    Medvedko, Evgeny A

    2003-01-01

    Corrector magnets for the SPEAR-3 synchrotron radiation source require precision, high-speed control for use with beam-based orbit feedback. A new Controller Analog/Digital Interface card (CANDI) has been developed for these purposes. The CANDI has a 24-bit DAC for current control and three 24-bit Δ-Σ ADCs to monitor current and voltages. The ADCs can be read and the DAC updated at the 4 kHz rate needed for feedback control. A precision 16-bit DAC provides on-board calibration. Programmable multiplexers control internal signal routing for calibration, testing, and measurement. Feedback can be closed internally on current setpoint, externally on supply current, or beam position. Prototype and production tests are reported in this paper. Noise is better than 17 effective bits in a 10 mHz to 2 kHz bandwidth. Linearity and temperature stability are excellent

  14. Towards high-resolution positron emission tomography for small volumes

    International Nuclear Information System (INIS)

    McKee, B.T.A.

    1982-01-01

    Some arguments are made regarding the medical usefulness of high spatial resolution in positron imaging, even if limited to small imaged volumes. Then the intrinsic limitations to spatial resolution in positron imaging are discussed. The project to build a small-volume, high resolution animal research prototype (SHARP) positron imaging system is described. The components of the system, particularly the detectors, are presented and brief mention is made of data acquisition and image reconstruction methods. Finally, some preliminary imaging results are presented; a pair of isolated point sources and 18 F in the bones of a rabbit. Although the detector system is not fully completed, these first results indicate that the goals of high sensitivity and high resolution (4 mm) have been realized. (Auth.)

  15. High-resolution X-ray crystal structure of bovine H-protein using the high-pressure cryocooling method

    International Nuclear Information System (INIS)

    Higashiura, Akifumi; Ohta, Kazunori; Masaki, Mika; Sato, Masaru; Inaka, Koji; Tanaka, Hiroaki; Nakagawa, Atsushi

    2013-01-01

    Using the high-pressure cryocooling method, the high-resolution X-ray crystal structure of bovine H-protein was determined at 0.86 Å resolution. This is the first ultra-high-resolution structure obtained from a high-pressure cryocooled crystal. Recently, many technical improvements in macromolecular X-ray crystallography have increased the number of structures deposited in the Protein Data Bank and improved the resolution limit of protein structures. Almost all high-resolution structures have been determined using a synchrotron radiation source in conjunction with cryocooling techniques, which are required in order to minimize radiation damage. However, optimization of cryoprotectant conditions is a time-consuming and difficult step. To overcome this problem, the high-pressure cryocooling method was developed (Kim et al., 2005 ▶) and successfully applied to many protein-structure analyses. In this report, using the high-pressure cryocooling method, the X-ray crystal structure of bovine H-protein was determined at 0.86 Å resolution. Structural comparisons between high- and ambient-pressure cryocooled crystals at ultra-high resolution illustrate the versatility of this technique. This is the first ultra-high-resolution X-ray structure obtained using the high-pressure cryocooling method

  16. High resolution drift chambers

    International Nuclear Information System (INIS)

    Va'vra, J.

    1985-07-01

    High precision drift chambers capable of achieving less than or equal to 50 μm resolutions are discussed. In particular, we compare so called cool and hot gases, various charge collection geometries, several timing techniques and we also discuss some systematic problems. We also present what we would consider an ''ultimate'' design of the vertex chamber. 50 refs., 36 figs., 6 tabs

  17. High resolution neutron spectroscopy for helium isotopes

    International Nuclear Information System (INIS)

    Abdel-Wahab, M.S.; Klages, H.O.; Schmalz, G.; Haesner, B.H.; Kecskemeti, J.; Schwarz, P.; Wilczynski, J.

    1992-01-01

    A high resolution fast neutron time-of-flight spectrometer is described, neutron time-of-flight spectra are taken using a specially designed TDC in connection to an on-line computer. The high time-of-flight resolution of 5 ps/m enabled the study of the total cross section of 4 He for neutrons near the 3/2 + resonance in the 5 He nucleus. The resonance parameters were determined by a single level Breit-Winger fit to the data. (orig.)

  18. A high-resolution regional reanalysis for Europe

    Science.gov (United States)

    Ohlwein, C.

    2015-12-01

    Reanalyses gain more and more importance as a source of meteorological information for many purposes and applications. Several global reanalyses projects (e.g., ERA, MERRA, CSFR, JMA9) produce and verify these data sets to provide time series as long as possible combined with a high data quality. Due to a spatial resolution down to 50-70km and 3-hourly temporal output, they are not suitable for small scale problems (e.g., regional climate assessment, meso-scale NWP verification, input for subsequent models such as river runoff simulations). The implementation of regional reanalyses based on a limited area model along with a data assimilation scheme is able to generate reanalysis data sets with high spatio-temporal resolution. Within the Hans-Ertel-Centre for Weather Research (HErZ), the climate monitoring branch concentrates efforts on the assessment and analysis of regional climate in Germany and Europe. In joint cooperation with DWD (German Meteorological Service), a high-resolution reanalysis system based on the COSMO model has been developed. The regional reanalysis for Europe matches the domain of the CORDEX EURO-11 specifications, albeit at a higher spatial resolution, i.e., 0.055° (6km) instead of 0.11° (12km) and comprises the assimilation of observational data using the existing nudging scheme of COSMO complemented by a special soil moisture analysis with boundary conditions provided by ERA-Interim data. The reanalysis data set covers the past 20 years. Extensive evaluation of the reanalysis is performed using independent observations with special emphasis on precipitation and high-impact weather situations indicating a better representation of small scale variability. Further, the evaluation shows an added value of the regional reanalysis with respect to the forcing ERA Interim reanalysis and compared to a pure high-resolution dynamical downscaling approach without data assimilation.

  19. Reduced γ–γ time walk to below 50 ps using the multiplexed-start and multiplexed-stop fast-timing technique with LaBr_3(Ce) detectors

    International Nuclear Information System (INIS)

    Régis, J.-M.; Saed-Samii, N.; Rudigier, M.; Ansari, S.; Dannhoff, M.; Esmaylzadeh, A.; Fransen, C.; Gerst, R.-B.; Jolie, J.; Karayonchev, V.; Müller-Gatermann, C.; Stegemann, S.

    2016-01-01

    The electronic γ–γ fast-timing technique using arrays consisting of many LaBr_3(Ce) detectors is a powerful method to determine lifetimes of nuclear excited states with a lower limit of about 5 ps. This method requires the determination of the energy-dependent time walk of the zero time which is represented by the centroid of a prompt γ–γ time distribution. The full-energy peak versus full-energy peak prompt response difference which represents the linearly combined mean γ–γ time walk of a fast-timing array consisting of 8 LaBr_3(Ce) detectors was measured using a standard "1"5"2Eu γ-ray source for the energy region of 40–1408 keV. The data were acquired using a “multiplexed-start and multiplexed-stop” analogue electronics circuitry and analysed by employing the generalized centroid difference method. Concerning the cylindrical 1.5 in.×1.5 in. LaBr_3(Ce) crystals which are coupled to the Hamamatsu R9779 photomultiplier tubes, the best fast-timing array time resolution of 202(3) ps is obtained for the two prompt γ lines of "6"0Co by using the leading-edge timing principle. When using the zero-crossover timing principle the time resolution is degraded by up to 30%, dependent on the energy and the shaping delay time of the constant fraction discriminator model Ortec 935. The smallest γ–γ time walk to below 50 ps is obtained by using a shaping delay time of about 17 ns and an optimum “time-walk adjustment” needed for detector output pulses with amplitudes smaller than 400 mV.

  20. User Multiplexing in Relay Enhanced LTE-Advanced Networks

    DEFF Research Database (Denmark)

    Teyeb, Oumer Mohammed; Frederiksen, Frank; Redana, Simone

    2010-01-01

    is radio relaying. This uses relay nodes that act as surrogate base stations for mobile users whose radio links with the base stations are not experiencing good enough conditions. In the downlink, the data that is destined for the relayed users may first have to be multiplexed by the base station, sent...... over the wireless backhaul link towards the relay node, and de-multiplexed and forwarded to the individual users by the relay node. The reverse process also has to be undertaken in the uplink. In this paper, we present a novel multiplexing scheme which is able to adapt the addressing and bitmapping...... of user identification to the actual number of users being served by the relay nodes, and thus greatly reduce the multiplexing overhead....

  1. Measurement methods for high energy particle identification in gaseous mixture detectors

    International Nuclear Information System (INIS)

    Marchand, Patrick.

    1981-01-01

    In this work, we discuss some methods for high energy particle identification. We study and design a MWPC equipped with a preamplifier gap for increased resolution. In addition, we propose a new mehod of counting primary collisions. The electronic system used for multiplexing analog wire signals is also described [fr

  2. Multiple routes transmitted epidemics on multiplex networks

    International Nuclear Information System (INIS)

    Zhao, Dawei; Li, Lixiang; Peng, Haipeng; Luo, Qun; Yang, Yixian

    2014-01-01

    This letter investigates the multiple routes transmitted epidemic process on multiplex networks. We propose detailed theoretical analysis that allows us to accurately calculate the epidemic threshold and outbreak size. It is found that the epidemic can spread across the multiplex network even if all the network layers are well below their respective epidemic thresholds. Strong positive degree–degree correlation of nodes in multiplex network could lead to a much lower epidemic threshold and a relatively smaller outbreak size. However, the average similarity of neighbors from different layers of nodes has no obvious effect on the epidemic threshold and outbreak size. -- Highlights: •We studies multiple routes transmitted epidemic process on multiplex networks. •SIR model and bond percolation theory are used to analyze the epidemic processes. •We derive equations to accurately calculate the epidemic threshold and outbreak size. •ASN has no effect on the epidemic threshold and outbreak size. •Strong positive DDC leads to a lower epidemic threshold and a smaller outbreak size.

  3. Multiple routes transmitted epidemics on multiplex networks

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Dawei [Information Security Center, State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, P.O. Box 145, Beijing 100876 (China); National Engineering Laboratory for Disaster Backup and Recovery, Beijing University of Posts and Telecommunications, Beijing 100876 (China); Shandong Provincial Key Laboratory of Computer Network, Shandong Computer Science Center, Jinan 250014 (China); Li, Lixiang [Information Security Center, State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, P.O. Box 145, Beijing 100876 (China); National Engineering Laboratory for Disaster Backup and Recovery, Beijing University of Posts and Telecommunications, Beijing 100876 (China); Peng, Haipeng, E-mail: penghaipeng@bupt.edu.cn [Information Security Center, State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, P.O. Box 145, Beijing 100876 (China); National Engineering Laboratory for Disaster Backup and Recovery, Beijing University of Posts and Telecommunications, Beijing 100876 (China); Luo, Qun; Yang, Yixian [Information Security Center, State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, P.O. Box 145, Beijing 100876 (China); National Engineering Laboratory for Disaster Backup and Recovery, Beijing University of Posts and Telecommunications, Beijing 100876 (China)

    2014-02-01

    This letter investigates the multiple routes transmitted epidemic process on multiplex networks. We propose detailed theoretical analysis that allows us to accurately calculate the epidemic threshold and outbreak size. It is found that the epidemic can spread across the multiplex network even if all the network layers are well below their respective epidemic thresholds. Strong positive degree–degree correlation of nodes in multiplex network could lead to a much lower epidemic threshold and a relatively smaller outbreak size. However, the average similarity of neighbors from different layers of nodes has no obvious effect on the epidemic threshold and outbreak size. -- Highlights: •We studies multiple routes transmitted epidemic process on multiplex networks. •SIR model and bond percolation theory are used to analyze the epidemic processes. •We derive equations to accurately calculate the epidemic threshold and outbreak size. •ASN has no effect on the epidemic threshold and outbreak size. •Strong positive DDC leads to a lower epidemic threshold and a smaller outbreak size.

  4. MiniX-STR multiplex system population study in Japan and application to degraded DNA analysis.

    Science.gov (United States)

    Asamura, H; Sakai, H; Kobayashi, K; Ota, M; Fukushima, H

    2006-05-01

    We sought to evaluate a more effective system for analyzing X-chromosomal short tandem repeats (X-STRs) in highly degraded DNA. To generate smaller amplicon lengths, we designed new polymerase chain reaction (PCR) primers for DXS7423, DXS6789, DXS101, GATA31E08, DXS8378, DXS7133, DXS7424, and GATA165B12 at X-linked short tandem repeat (STR) loci, devising two miniX-multiplex PCR systems. Among 333 Japanese individuals, these X-linked loci were detected in amplification products ranging in length from 76 to 169 bp, and statistical analyses of the eight loci indicated a high usefulness for the Japanese forensic practice. Results of tests on highly degraded DNA indicated the miniX-STR multiplex strategies to be an effective system for analyzing degraded DNA. We conclude that analysis by the current miniX-STR multiplex systems offers high effectiveness for personal identification from degraded DNA samples.

  5. Automated data processing of high-resolution mass spectra

    DEFF Research Database (Denmark)

    Hansen, Michael Adsetts Edberg; Smedsgaard, Jørn

    of the massive amounts of data. We present an automated data processing method to quantitatively compare large numbers of spectra from the analysis of complex mixtures, exploiting the full quality of high-resolution mass spectra. By projecting all detected ions - within defined intervals on both the time...... infusion of crude extracts into the source taking advantage of the high sensitivity, high mass resolution and accuracy and the limited fragmentation. Unfortunately, there has not been a comparable development in the data processing techniques to fully exploit gain in high resolution and accuracy...... infusion analyses of crude extract to find the relationship between species from several species terverticillate Penicillium, and also that the ions responsible for the segregation can be identified. Furthermore the process can automate the process of detecting unique species and unique metabolites....

  6. Error-free 320 Gb/s simultaneous add-drop multiplexing

    DEFF Research Database (Denmark)

    Mulvad, Hans Christian Hansen; Oxenløwe, Leif Katsuo; Clausen, Anders

    2007-01-01

    We report on the first demonstration of error-free time-division add-drop multiplexing at 320 Gb/s. The add- and drop-operations are performed simultaneously in a non-linear optical loop mirror with only 100 m of highly non-linear fibre....

  7. Achieving sensitive, high-resolution laser spectroscopy at CRIS

    Energy Technology Data Exchange (ETDEWEB)

    Groote, R. P. de [Instituut voor Kern- en Stralingsfysica, KU Leuven (Belgium); Lynch, K. M., E-mail: kara.marie.lynch@cern.ch [EP Department, CERN, ISOLDE (Switzerland); Wilkins, S. G. [The University of Manchester, School of Physics and Astronomy (United Kingdom); Collaboration: the CRIS collaboration

    2017-11-15

    The Collinear Resonance Ionization Spectroscopy (CRIS) experiment, located at the ISOLDE facility, has recently performed high-resolution laser spectroscopy, with linewidths down to 20 MHz. In this article, we present the modifications to the beam line and the newly-installed laser systems that have made sensitive, high-resolution measurements possible. Highlights of recent experimental campaigns are presented.

  8. An integrated lab-on-chip for rapid identification and simultaneous differentiation of tropical pathogens.

    Directory of Open Access Journals (Sweden)

    Jeslin J L Tan

    Full Text Available Tropical pathogens often cause febrile illnesses in humans and are responsible for considerable morbidity and mortality. The similarities in clinical symptoms provoked by these pathogens make diagnosis difficult. Thus, early, rapid and accurate diagnosis will be crucial in patient management and in the control of these diseases. In this study, a microfluidic lab-on-chip integrating multiplex molecular amplification and DNA microarray hybridization was developed for simultaneous detection and species differentiation of 26 globally important tropical pathogens. The analytical performance of the lab-on-chip for each pathogen ranged from 102 to 103 DNA or RNA copies. Assay performance was further verified with human whole blood spiked with Plasmodium falciparum and Chikungunya virus that yielded a range of detection from 200 to 4×105 parasites, and from 250 to 4×107 PFU respectively. This lab-on-chip was subsequently assessed and evaluated using 170 retrospective patient specimens in Singapore and Thailand. The lab-on-chip had a detection sensitivity of 83.1% and a specificity of 100% for P. falciparum; a sensitivity of 91.3% and a specificity of 99.3% for P. vivax; a positive 90.0% agreement and a specificity of 100% for Chikungunya virus; and a positive 85.0% agreement and a specificity of 100% for Dengue virus serotype 3 with reference methods conducted on the samples. Results suggested the practicality of an amplification microarray-based approach in a field setting for high-throughput detection and identification of tropical pathogens.

  9. An atlas of high-resolution IRAS maps on nearby galaxies

    Science.gov (United States)

    Rice, Walter

    1993-01-01

    An atlas of far-infrared IRAS maps with near 1 arcmin angular resolution of 30 optically large galaxies is presented. The high-resolution IRAS maps were produced with the Maximum Correlation Method (MCM) image construction and enhancement technique developed at IPAC. The MCM technique, which recovers the spatial information contained in the overlapping detector data samples of the IRAS all-sky survey scans, is outlined and tests to verify the structural reliability and photometric integrity of the high-resolution maps are presented. The infrared structure revealed in individual galaxies is discussed. The atlas complements the IRAS Nearby Galaxy High-Resolution Image Atlas, the high-resolution galaxy images encoded in FITS format, which is provided to the astronomical community as an IPAC product.

  10. Reduced Set of Virulence Genes Allows High Accuracy Prediction of Bacterial Pathogenicity in Humans

    Science.gov (United States)

    Iraola, Gregorio; Vazquez, Gustavo; Spangenberg, Lucía; Naya, Hugo

    2012-01-01

    Although there have been great advances in understanding bacterial pathogenesis, there is still a lack of integrative information about what makes a bacterium a human pathogen. The advent of high-throughput sequencing technologies has dramatically increased the amount of completed bacterial genomes, for both known human pathogenic and non-pathogenic strains; this information is now available to investigate genetic features that determine pathogenic phenotypes in bacteria. In this work we determined presence/absence patterns of different virulence-related genes among more than finished bacterial genomes from both human pathogenic and non-pathogenic strains, belonging to different taxonomic groups (i.e: Actinobacteria, Gammaproteobacteria, Firmicutes, etc.). An accuracy of 95% using a cross-fold validation scheme with in-fold feature selection is obtained when classifying human pathogens and non-pathogens. A reduced subset of highly informative genes () is presented and applied to an external validation set. The statistical model was implemented in the BacFier v1.0 software (freely available at ), that displays not only the prediction (pathogen/non-pathogen) and an associated probability for pathogenicity, but also the presence/absence vector for the analyzed genes, so it is possible to decipher the subset of virulence genes responsible for the classification on the analyzed genome. Furthermore, we discuss the biological relevance for bacterial pathogenesis of the core set of genes, corresponding to eight functional categories, all with evident and documented association with the phenotypes of interest. Also, we analyze which functional categories of virulence genes were more distinctive for pathogenicity in each taxonomic group, which seems to be a completely new kind of information and could lead to important evolutionary conclusions. PMID:22916122

  11. Development of high speed integrated circuit for very high resolution timing measurements

    International Nuclear Information System (INIS)

    Mester, Christian

    2009-10-01

    A multi-channel high-precision low-power time-to-digital converter application specific integrated circuit for high energy physics applications has been designed and implemented in a 130 nm CMOS process. To reach a target resolution of 24.4 ps, a novel delay element has been conceived. This nominal resolution has been experimentally verified with a prototype, with a minimum resolution of 19 ps. To further improve the resolution, a new interpolation scheme has been described. The ASIC has been designed to use a reference clock with the LHC bunch crossing frequency of 40 MHz and generate all required timing signals internally, to ease to use within the framework of an LHC upgrade. Special care has been taken to minimise the power consumption. (orig.)

  12. Development of high speed integrated circuit for very high resolution timing measurements

    Energy Technology Data Exchange (ETDEWEB)

    Mester, Christian

    2009-10-15

    A multi-channel high-precision low-power time-to-digital converter application specific integrated circuit for high energy physics applications has been designed and implemented in a 130 nm CMOS process. To reach a target resolution of 24.4 ps, a novel delay element has been conceived. This nominal resolution has been experimentally verified with a prototype, with a minimum resolution of 19 ps. To further improve the resolution, a new interpolation scheme has been described. The ASIC has been designed to use a reference clock with the LHC bunch crossing frequency of 40 MHz and generate all required timing signals internally, to ease to use within the framework of an LHC upgrade. Special care has been taken to minimise the power consumption. (orig.)

  13. High-resolution MRI in detecting subareolar breast abscess.

    Science.gov (United States)

    Fu, Peifen; Kurihara, Yasuyuki; Kanemaki, Yoshihide; Okamoto, Kyoko; Nakajima, Yasuo; Fukuda, Mamoru; Maeda, Ichiro

    2007-06-01

    Because subareolar breast abscess has a high recurrence rate, a more effective imaging technique is needed to comprehensively visualize the lesions and guide surgery. We performed a high-resolution MRI technique using a microscopy coil to reveal the characteristics and extent of subareolar breast abscess. High-resolution MRI has potential diagnostic value in subareolar breast abscess. This technique can be used to guide surgery with the aim of reducing the recurrence rate.

  14. High-throughput multiplex real-time PCR assay for the simultaneous quantification of DNA and RNA viruses infecting cassava plants.

    Science.gov (United States)

    Otti, G; Bouvaine, S; Kimata, B; Mkamillo, G; Kumar, P L; Tomlins, K; Maruthi, M N

    2016-05-01

    To develop a multiplex TaqMan-based real-time PCR assay (qPCR) for the simultaneous detection and quantification of both RNA and DNA viruses affecting cassava (Manihot esculenta) in eastern Africa. The diagnostic assay was developed for two RNA viruses; Cassava brown streak virus (CBSV) and Uganda cassava brown streak virus (UCBSV) and two predominant DNA viruses; African cassava mosaic virus (ACMV) and East African cassava mosaic virus (EACMV), which cause the economically important cassava brown streak disease (CBSD) and cassava mosaic disease (CMD) respectively. Our method, developed by analysing PCR products of viruses, was highly sensitive to detect target viruses from very low quantities of 4-10 femtograms. Multiplexing did not diminish sensitivity or accuracy compared to uniplex alternatives. The assay reliably detected and quantified four cassava viruses in field samples where CBSV and UCBSV synergy was observed in majority of mixed-infected varieties. We have developed a high-throughput qPCR diagnostic assay capable of specific and sensitive quantification of predominant DNA and RNA viruses of cassava in eastern Africa. The qPCR methods are a great improvement on the existing methods and can be used for monitoring virus spread as well as for accurate evaluation of the cassava varieties for virus resistance. © 2016 The Society for Applied Microbiology.

  15. Recent applications of gas chromatography with high-resolution mass spectrometry.

    Science.gov (United States)

    Špánik, Ivan; Machyňáková, Andrea

    2018-01-01

    Gas chromatography coupled to high-resolution mass spectrometry is a powerful analytical method that combines excellent separation power of gas chromatography with improved identification based on an accurate mass measurement. These features designate gas chromatography with high-resolution mass spectrometry as the first choice for identification and structure elucidation of unknown volatile and semi-volatile organic compounds. Gas chromatography with high-resolution mass spectrometry quantitative analyses was previously focused on the determination of dioxins and related compounds using magnetic sector type analyzers, a standing requirement of many international standards. The introduction of a quadrupole high-resolution time-of-flight mass analyzer broadened interest in this method and novel applications were developed, especially for multi-target screening purposes. This review is focused on the development and the most interesting applications of gas chromatography coupled to high-resolution mass spectrometry towards analysis of environmental matrices, biological fluids, and food safety since 2010. The main attention is paid to various approaches and applications of gas chromatography coupled to high-resolution mass spectrometry for non-target screening to identify contaminants and to characterize the chemical composition of environmental, food, and biological samples. The most interesting quantitative applications, where a significant contribution of gas chromatography with high-resolution mass spectrometry over the currently used methods is expected, will be discussed as well. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Direct, Specific and Rapid Detection of Staphylococcal Proteins and Exotoxins Using a Multiplex Antibody Microarray.

    Directory of Open Access Journals (Sweden)

    Bettina Stieber

    Full Text Available S. aureus is a pathogen in humans and animals that harbors a wide variety of virulence factors and resistance genes. This bacterium can cause a wide range of mild to life-threatening diseases. In the latter case, fast diagnostic procedures are important. In routine diagnostic laboratories, several genotypic and phenotypic methods are available to identify S. aureus strains and determine their resistances. However, there is a demand for multiplex routine diagnostic tests to directly detect staphylococcal toxins and proteins.In this study, an antibody microarray based assay was established and validated for the rapid detection of staphylococcal markers and exotoxins. The following targets were included: staphylococcal protein A, penicillin binding protein 2a, alpha- and beta-hemolysins, Panton Valentine leukocidin, toxic shock syndrome toxin, enterotoxins A and B as well as staphylokinase. All were detected simultaneously within a single experiment, starting from a clonal culture on standard media. The detection of bound proteins was performed using a new fluorescence reading device for microarrays.110 reference strains and clinical isolates were analyzed using this assay, with a DNA microarray for genotypic characterization performed in parallel. The results showed a general high concordance of genotypic and phenotypic data. However, genotypic analysis found the hla gene present in all S. aureus isolates but its expression under given conditions depended on the clonal complex affiliation of the actual isolate.The multiplex antibody assay described herein allowed a rapid and reliable detection of clinically relevant staphylococcal toxins as well as resistance- and species-specific markers.

  17. Multi-resolution voxel phantom modeling: a high-resolution eye model for computational dosimetry.

    Science.gov (United States)

    Caracappa, Peter F; Rhodes, Ashley; Fiedler, Derek

    2014-09-21

    Voxel models of the human body are commonly used for simulating radiation dose with a Monte Carlo radiation transport code. Due to memory limitations, the voxel resolution of these computational phantoms is typically too large to accurately represent the dimensions of small features such as the eye. Recently reduced recommended dose limits to the lens of the eye, which is a radiosensitive tissue with a significant concern for cataract formation, has lent increased importance to understanding the dose to this tissue. A high-resolution eye model is constructed using physiological data for the dimensions of radiosensitive tissues, and combined with an existing set of whole-body models to form a multi-resolution voxel phantom, which is used with the MCNPX code to calculate radiation dose from various exposure types. This phantom provides an accurate representation of the radiation transport through the structures of the eye. Two alternate methods of including a high-resolution eye model within an existing whole-body model are developed. The accuracy and performance of each method is compared against existing computational phantoms.

  18. Rapid and high-throughput detection of highly pathogenic bacteria by Ibis PLEX-ID technology.

    Directory of Open Access Journals (Sweden)

    Daniela Jacob

    Full Text Available In this manuscript, we describe the identification of highly pathogenic bacteria using an assay coupling biothreat group-specific PCR with electrospray ionization mass spectrometry (PCR/ESI-MS run on an Ibis PLEX-ID high-throughput platform. The biothreat cluster assay identifies most of the potential bioterrorism-relevant microorganisms including Bacillus anthracis, Francisella tularensis, Yersinia pestis, Burkholderia mallei and pseudomallei, Brucella species, and Coxiella burnetii. DNA from 45 different reference materials with different formulations and different concentrations were chosen and sent to a service screening laboratory that uses the PCR/ESI-MS platform to provide a microbial identification service. The standard reference materials were produced out of a repository built up in the framework of the EU funded project "Establishment of Quality Assurances for Detection of Highly Pathogenic Bacteria of Potential Bioterrorism Risk" (EQADeBa. All samples were correctly identified at least to the genus level.

  19. A micro-controlled universal message multiplexer

    International Nuclear Information System (INIS)

    Fontaine, G.; Guglielmi, L.; Jaeger, J.J.; Szafran, S.

    1981-01-01

    Based on the Motorola 6800, this multiplexer is designed to provide a microprocessor development tool in the specific environment of a high energy physics laboratory. The basic philosophy of this device is to allow communication of a target (prototype) processor with a host computer under control of a human operator. The host can be an experimental on-line computer or any remote machine with a time-sharing network. It is thus possible to speed up design and debugging of a physics application program by taking advantage of the sophisticated resources usually available in a computer centre (powerful editor, large disk space, source management via ''Patchy'' etc...). In addition to the classical cross-macroassembler, a loader is available on the host for down-line loading binary code, via the multiplexer, into the prototype memory. Such a scheme is easiextended to the communication of any host interactive processing program with a data acquisition microprocessor, and provides the latter with a convenient and easily portable extension of its computing power. A typical application of this mode is described in a separate paper

  20. High-resolution intravital microscopy.

    Directory of Open Access Journals (Sweden)

    Volker Andresen

    Full Text Available Cellular communication constitutes a fundamental mechanism of life, for instance by permitting transfer of information through synapses in the nervous system and by leading to activation of cells during the course of immune responses. Monitoring cell-cell interactions within living adult organisms is crucial in order to draw conclusions on their behavior with respect to the fate of cells, tissues and organs. Until now, there is no technology available that enables dynamic imaging deep within the tissue of living adult organisms at sub-cellular resolution, i.e. detection at the level of few protein molecules. Here we present a novel approach called multi-beam striped-illumination which applies for the first time the principle and advantages of structured-illumination, spatial modulation of the excitation pattern, to laser-scanning-microscopy. We use this approach in two-photon-microscopy--the most adequate optical deep-tissue imaging-technique. As compared to standard two-photon-microscopy, it achieves significant contrast enhancement and up to 3-fold improved axial resolution (optical sectioning while photobleaching, photodamage and acquisition speed are similar. Its imaging depth is comparable to multifocal two-photon-microscopy and only slightly less than in standard single-beam two-photon-microscopy. Precisely, our studies within mouse lymph nodes demonstrated 216% improved axial and 23% improved lateral resolutions at a depth of 80 µm below the surface. Thus, we are for the first time able to visualize the dynamic interactions between B cells and immune complex deposits on follicular dendritic cells within germinal centers (GCs of live mice. These interactions play a decisive role in the process of clonal selection, leading to affinity maturation of the humoral immune response. This novel high-resolution intravital microscopy method has a huge potential for numerous applications in neurosciences, immunology, cancer research and

  1. High-Resolution Intravital Microscopy

    Science.gov (United States)

    Andresen, Volker; Pollok, Karolin; Rinnenthal, Jan-Leo; Oehme, Laura; Günther, Robert; Spiecker, Heinrich; Radbruch, Helena; Gerhard, Jenny; Sporbert, Anje; Cseresnyes, Zoltan; Hauser, Anja E.; Niesner, Raluca

    2012-01-01

    Cellular communication constitutes a fundamental mechanism of life, for instance by permitting transfer of information through synapses in the nervous system and by leading to activation of cells during the course of immune responses. Monitoring cell-cell interactions within living adult organisms is crucial in order to draw conclusions on their behavior with respect to the fate of cells, tissues and organs. Until now, there is no technology available that enables dynamic imaging deep within the tissue of living adult organisms at sub-cellular resolution, i.e. detection at the level of few protein molecules. Here we present a novel approach called multi-beam striped-illumination which applies for the first time the principle and advantages of structured-illumination, spatial modulation of the excitation pattern, to laser-scanning-microscopy. We use this approach in two-photon-microscopy - the most adequate optical deep-tissue imaging-technique. As compared to standard two-photon-microscopy, it achieves significant contrast enhancement and up to 3-fold improved axial resolution (optical sectioning) while photobleaching, photodamage and acquisition speed are similar. Its imaging depth is comparable to multifocal two-photon-microscopy and only slightly less than in standard single-beam two-photon-microscopy. Precisely, our studies within mouse lymph nodes demonstrated 216% improved axial and 23% improved lateral resolutions at a depth of 80 µm below the surface. Thus, we are for the first time able to visualize the dynamic interactions between B cells and immune complex deposits on follicular dendritic cells within germinal centers (GCs) of live mice. These interactions play a decisive role in the process of clonal selection, leading to affinity maturation of the humoral immune response. This novel high-resolution intravital microscopy method has a huge potential for numerous applications in neurosciences, immunology, cancer research and developmental biology

  2. High-level fluorescence labeling of gram-positive pathogens.

    Directory of Open Access Journals (Sweden)

    Simone Aymanns

    Full Text Available Fluorescence labeling of bacterial pathogens has a broad range of interesting applications including the observation of living bacteria within host cells. We constructed a novel vector based on the E. coli streptococcal shuttle plasmid pAT28 that can propagate in numerous bacterial species from different genera. The plasmid harbors a promoterless copy of the green fluorescent variant gene egfp under the control of the CAMP-factor gene (cfb promoter of Streptococcus agalactiae and was designated pBSU101. Upon transfer of the plasmid into streptococci, the bacteria show a distinct and easily detectable fluorescence using a standard fluorescence microscope and quantification by FACS-analysis demonstrated values that were 10-50 times increased over the respective controls. To assess the suitability of the construct for high efficiency fluorescence labeling in different gram-positive pathogens, numerous species were transformed. We successfully labeled Streptococcus pyogenes, Streptococcus agalactiae, Streptococcus dysgalactiae subsp. equisimilis, Enterococcus faecalis, Enterococcus faecium, Streptococcus mutans, Streptococcus anginosus and Staphylococcus aureus strains utilizing the EGFP reporter plasmid pBSU101. In all of these species the presence of the cfb promoter construct resulted in high-level EGFP expression that could be further increased by growing the streptococcal and enterococcal cultures under high oxygen conditions through continuous aeration.

  3. Reduced γ–γ time walk to below 50 ps using the multiplexed-start and multiplexed-stop fast-timing technique with LaBr{sub 3}(Ce) detectors

    Energy Technology Data Exchange (ETDEWEB)

    Régis, J.-M., E-mail: regis@ikp.uni-koeln.de [Institut für Kernphysik der Universität zu Köln, Zülpicher Str. 77, 50937 Köln (Germany); Saed-Samii, N., E-mail: nima@ikp.uni-koeln.de [Institut für Kernphysik der Universität zu Köln, Zülpicher Str. 77, 50937 Köln (Germany); Rudigier, M. [Institut für Kernphysik der Universität zu Köln, Zülpicher Str. 77, 50937 Köln (Germany); Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom); Ansari, S.; Dannhoff, M.; Esmaylzadeh, A.; Fransen, C.; Gerst, R.-B.; Jolie, J.; Karayonchev, V.; Müller-Gatermann, C.; Stegemann, S. [Institut für Kernphysik der Universität zu Köln, Zülpicher Str. 77, 50937 Köln (Germany)

    2016-07-01

    The electronic γ–γ fast-timing technique using arrays consisting of many LaBr{sub 3}(Ce) detectors is a powerful method to determine lifetimes of nuclear excited states with a lower limit of about 5 ps. This method requires the determination of the energy-dependent time walk of the zero time which is represented by the centroid of a prompt γ–γ time distribution. The full-energy peak versus full-energy peak prompt response difference which represents the linearly combined mean γ–γ time walk of a fast-timing array consisting of 8 LaBr{sub 3}(Ce) detectors was measured using a standard {sup 152}Eu γ-ray source for the energy region of 40–1408 keV. The data were acquired using a “multiplexed-start and multiplexed-stop” analogue electronics circuitry and analysed by employing the generalized centroid difference method. Concerning the cylindrical 1.5 in.×1.5 in. LaBr{sub 3}(Ce) crystals which are coupled to the Hamamatsu R9779 photomultiplier tubes, the best fast-timing array time resolution of 202(3) ps is obtained for the two prompt γ lines of {sup 60}Co by using the leading-edge timing principle. When using the zero-crossover timing principle the time resolution is degraded by up to 30%, dependent on the energy and the shaping delay time of the constant fraction discriminator model Ortec 935. The smallest γ–γ time walk to below 50 ps is obtained by using a shaping delay time of about 17 ns and an optimum “time-walk adjustment” needed for detector output pulses with amplitudes smaller than 400 mV.

  4. High resolution melting (HRM) analysis of DNA--its role and potential in food analysis.

    Science.gov (United States)

    Druml, Barbara; Cichna-Markl, Margit

    2014-09-01

    DNA based methods play an increasing role in food safety control and food adulteration detection. Recent papers show that high resolution melting (HRM) analysis is an interesting approach. It involves amplification of the target of interest in the presence of a saturation dye by the polymerase chain reaction (PCR) and subsequent melting of the amplicons by gradually increasing the temperature. Since the melting profile depends on the GC content, length, sequence and strand complementarity of the product, HRM analysis is highly suitable for the detection of single-base variants and small insertions or deletions. The review gives an introduction into HRM analysis, covers important aspects in the development of an HRM analysis method and describes how HRM data are analysed and interpreted. Then we discuss the potential of HRM analysis based methods in food analysis, i.e. for the identification of closely related species and cultivars and the identification of pathogenic microorganisms. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. One-step Multiplex RT-PCR Method for Simultaneous Detection of Seed Transmissible Bacterium and Virus Occurring on Brassicaceae Crop Seeds

    Directory of Open Access Journals (Sweden)

    Kyusik Jeong

    2011-04-01

    Full Text Available The aim of this research was to develop specific and sensitive PCR-based procedures for simultaneous detection of economically important plant pathogenic bacteria and seed borne virus in commercial Brassicaceae crop seeds, Xanthomonns campestris pv. campestris (Xcc and Lettuce Mosaic Virus (LMV. Bacterial and virus diseases of Brassicaceae leaves are responsible for heavy losses. PCR with arbitral primers: selection of specific primers, performance of PCR with specific primers and determination of the threshold level for pathogens detection. To detect simultaneously the Xcc and LMV in commercial Brassicaceae crop seeds (lettuce, kohlrabi, radish, chinese cabbage and cabbage, two pairs of specific primer (LMV-F/R, Xcc-F/R were synthesized by using primer-blast program (http://www.ncbi.nlm.nih.gov/tools/ primer-blast/. The multiplex PCR for the two pathogens in Brassicaceae crop seeds could detect specifically without interference among primers and/or cDNA of other plant pathogens. The pathogen detection limit was determined at 1 ng of RNA extracted from pathogens. In the total PCR results for pathogen detection using commercial kohlrabi (10 varieties, lettuce (50 varieties, radish (20 varieties, chinese cabbage (20 varieties and cabbage (20 varieties, LMV and Xcc were detected from 39 and 2 varieties, respectively. In the PCR result of lettuce, LMV and Xcc were simultaneously detected in 8 varieties.

  6. Pathogens and host immunity in the ancient human oral cavity

    Science.gov (United States)

    Warinner, Christina; Matias Rodrigues, João F.; Vyas, Rounak; Trachsel, Christian; Shved, Natallia; Grossmann, Jonas; Radini, Anita; Hancock, Y.; Tito, Raul Y.; Fiddyment, Sarah; Speller, Camilla; Hendy, Jessica; Charlton, Sophy; Luder, Hans Ulrich; Salazar-García, Domingo C.; Eppler, Elisabeth; Seiler, Roger; Hansen, Lars; Samaniego Castruita, José Alfredo; Barkow-Oesterreicher, Simon; Teoh, Kai Yik; Kelstrup, Christian; Olsen, Jesper V.; Nanni, Paolo; Kawai, Toshihisa; Willerslev, Eske; von Mering, Christian; Lewis, Cecil M.; Collins, Matthew J.; Gilbert, M. Thomas P.; Rühli, Frank; Cappellini, Enrico

    2014-01-01

    Calcified dental plaque (dental calculus) preserves for millennia and entraps biomolecules from all domains of life and viruses. We report the first high-resolution taxonomic and protein functional characterization of the ancient oral microbiome and demonstrate that the oral cavity has long served as a reservoir for bacteria implicated in both local and systemic disease. We characterize: (i) the ancient oral microbiome in a diseased state, (ii) 40 opportunistic pathogens, (iii) the first evidence of ancient human-associated putative antibiotic resistance genes, (iv) a genome reconstruction of the periodontal pathogen Tannerella forsythia, (v) 239 bacterial and 43 human proteins, allowing confirmation of a long-term association between host immune factors, “red-complex” pathogens, and periodontal disease, and (vi) DNA sequences matching dietary sources. Directly datable and nearly ubiquitous, dental calculus permits the simultaneous investigation of pathogen activity, host immunity, and diet, thereby extending the direct investigation of common diseases into the human evolutionary past. PMID:24562188

  7. Multiplex real-time PCR assays for detection of eight Shiga toxin-producing Escherichia coli in food samples by melting curve analysis.

    Science.gov (United States)

    Singh, Prashant; Mustapha, Azlin

    2015-12-23

    Shiga toxin-producing Escherichia coli (STEC) are pathogenic strains of E. coli that can cause bloody diarrhea and kidney failure. Seven STEC serogroups, O157, O26, O45, O103, O111, O121 and O145 are responsible for more than 71% of the total infections caused by this group of pathogens. All seven serogroups are currently considered as adulterants in non-intact beef products in the U.S. In this study, two multiplex melt curve real-time PCR assays with internal amplification controls (IACs) were standardized for the detection of eight STEC serogroups. The first multiplex assay targeted E. coli serogroups O145, O121, O104, and O157; while the second set detected E. coli serogroups O26, O45, O103 and O111. The applicability of the assays was tested using 11 different meat and produce samples. For food samples spiked with a cocktail of four STEC serogroups with a combined count of 10 CFU/25 g food, all targets of the multiplex assays were detected after an enrichment period of 6h. The assays also worked efficiently when 325 g of food samples were spiked with 10 CFU of STECs. The assays are not dependent on fluorescent-labeled probes or immunomagnetic beads, and can be used for the detection of eight STEC serogroups in less than 11h. Routine preliminary screening of STECs in food samples is performed by testing for the presence of STEC virulence genes. The assays developed in this study can be useful as a first- or second-tier test for the identification of the eight O serogroup-specific genes in suspected food samples. Copyright © 2015. Published by Elsevier B.V.

  8. Hyper-resolution urban flood modeling using high-resolution radar precipitation and LiDAR data

    Science.gov (United States)

    Noh, S. J.; Lee, S.; Lee, J.; Seo, D. J.

    2016-12-01

    Floods occur most frequently among all natural hazards, often causing widespread economic damage and loss of human lives. In particular, urban flooding is becoming increasingly costly and difficult to manage with a greater concentration of population and assets in urban centers. Despite of known benefits for accurate representation of small scale features and flow interaction among different flow domains, which have significant impact on flood propagation, high-resolution modeling has not been fully utilized due to expensive computation and various uncertainties from model structure, input and parameters. In this study, we assess the potential of hyper-resolution hydrologic-hydraulic modeling using high-resolution radar precipitation and LiDAR data for improved urban flood prediction and hazard mapping. We describe a hyper-resolution 1D-2D coupled urban flood model for pipe and surface flows and evaluate the accuracy of the street-level inundation information produced. For detailed geometric representation of urban areas and for computational efficiency, we use 1 m-resolution topographical data, processed from LiDAR measurements, in conjunction with adaptive mesh refinement. For street-level simulation in large urban areas at grid sizes of 1 to 10 m, a hybrid parallel computing scheme using MPI and openMP is also implemented in a high-performance computing system. The modeling approach developed is applied for the Johnson Creek Catchment ( 40 km2), which makes up the Arlington Urban Hydroinformatics Testbed. In addition, discussion will be given on availability of hyper-resolution simulation archive for improved real-time flood mapping.

  9. 'Mitominis': multiplex PCR analysis of reduced size amplicons for compound sequence analysis of the entire mtDNA control region in highly degraded samples.

    Science.gov (United States)

    Eichmann, Cordula; Parson, Walther

    2008-09-01

    The traditional protocol for forensic mitochondrial DNA (mtDNA) analyses involves the amplification and sequencing of the two hypervariable segments HVS-I and HVS-II of the mtDNA control region. The primers usually span fragment sizes of 300-400 bp each region, which may result in weak or failed amplification in highly degraded samples. Here we introduce an improved and more stable approach using shortened amplicons in the fragment range between 144 and 237 bp. Ten such amplicons were required to produce overlapping fragments that cover the entire human mtDNA control region. These were co-amplified in two multiplex polymerase chain reactions and sequenced with the individual amplification primers. The primers were carefully selected to minimize binding on homoplasic and haplogroup-specific sites that would otherwise result in loss of amplification due to mis-priming. The multiplexes have successfully been applied to ancient and forensic samples such as bones and teeth that showed a high degree of degradation.

  10. Free-grazing ducks and highly pathogenic avian influenza, Thailand

    NARCIS (Netherlands)

    Gilbert, Marius; Chaitaweesup, P.; Parakamawongsa, T.; Premashthira, S.; Tiensin, T.; Kalpravidh, W.; Wagner, H.; Slingenbergh, J.

    Thailand has recently had 3 epidemic waves of highly pathogenic avian influenza (HPAI); virus was again detected in July 2005. Risk factors need to be identified to better understand disease ecology and assist HPAI surveillance and detection. This study analyzed the spatial distribution of HPAI

  11. Analysis of the impact of spatial resolution on land/water classifications using high-resolution aerial imagery

    Science.gov (United States)

    Enwright, Nicholas M.; Jones, William R.; Garber, Adrienne L.; Keller, Matthew J.

    2014-01-01

    Long-term monitoring efforts often use remote sensing to track trends in habitat or landscape conditions over time. To most appropriately compare observations over time, long-term monitoring efforts strive for consistency in methods. Thus, advances and changes in technology over time can present a challenge. For instance, modern camera technology has led to an increasing availability of very high-resolution imagery (i.e. submetre and metre) and a shift from analogue to digital photography. While numerous studies have shown that image resolution can impact the accuracy of classifications, most of these studies have focused on the impacts of comparing spatial resolution changes greater than 2 m. Thus, a knowledge gap exists on the impacts of minor changes in spatial resolution (i.e. submetre to about 1.5 m) in very high-resolution aerial imagery (i.e. 2 m resolution or less). This study compared the impact of spatial resolution on land/water classifications of an area dominated by coastal marsh vegetation in Louisiana, USA, using 1:12,000 scale colour-infrared analogue aerial photography (AAP) scanned at four different dot-per-inch resolutions simulating ground sample distances (GSDs) of 0.33, 0.54, 1, and 2 m. Analysis of the impact of spatial resolution on land/water classifications was conducted by exploring various spatial aspects of the classifications including density of waterbodies and frequency distributions in waterbody sizes. This study found that a small-magnitude change (1–1.5 m) in spatial resolution had little to no impact on the amount of water classified (i.e. percentage mapped was less than 1.5%), but had a significant impact on the mapping of very small waterbodies (i.e. waterbodies ≤ 250 m2). These findings should interest those using temporal image classifications derived from very high-resolution aerial photography as a component of long-term monitoring programs.

  12. Interlaboratory study of DNA extraction from multiple ground samples, multiplex real-time PCR, and multiplex qualitative PCR for individual kernel detection system of genetically modified maize.

    Science.gov (United States)

    Akiyama, Hiroshi; Sakata, Kozue; Makiyma, Daiki; Nakamura, Kosuke; Teshima, Reiko; Nakashima, Akie; Ogawa, Asako; Yamagishi, Toru; Futo, Satoshi; Oguchi, Taichi; Mano, Junichi; Kitta, Kazumi

    2011-01-01

    In many countries, the labeling of grains, feed, and foodstuff is mandatory if the genetically modified (GM) organism content exceeds a certain level of approved GM varieties. We previously developed an individual kernel detection system consisting of grinding individual kernels, DNA extraction from the individually ground kernels, GM detection using multiplex real-time PCR, and GM event detection using multiplex qualitative PCR to analyze the precise commingling level and varieties of GM maize in real sample grains. We performed the interlaboratory study of the DNA extraction with multiple ground samples, multiplex real-time PCR detection, and multiplex qualitative PCR detection to evaluate its applicability, practicality, and ruggedness for the individual kernel detection system of GM maize. DNA extraction with multiple ground samples, multiplex real-time PCR, and multiplex qualitative PCR were evaluated by five laboratories in Japan, and all results from these laboratories were consistent with the expected results in terms of the commingling level and event analysis. Thus, the DNA extraction with multiple ground samples, multiplex real-time PCR, and multiplex qualitative PCR for the individual kernel detection system is applicable and practicable in a laboratory to regulate the commingling level of GM maize grain for GM samples, including stacked GM maize.

  13. Fluorescence-Based Multiplex Protein Detection Using Optically Encoded Microbeads

    Directory of Open Access Journals (Sweden)

    Dae Hong Jeong

    2012-03-01

    Full Text Available Potential utilization of proteins for early detection and diagnosis of various diseases has drawn considerable interest in the development of protein-based multiplex detection techniques. Among the various techniques for high-throughput protein screening, optically-encoded beads combined with fluorescence-based target monitoring have great advantages over the planar array-based multiplexing assays. This review discusses recent developments of analytical methods of screening protein molecules on microbead-based platforms. These include various strategies such as barcoded microbeads, molecular beacon-based techniques, and surface-enhanced Raman scattering-based techniques. Their applications for label-free protein detection are also addressed. Especially, the optically-encoded beads such as multilayer fluorescence beads and SERS-encoded beads are successful for generating a large number of coding.

  14. Image Quality in High-resolution and High-cadence Solar Imaging

    Science.gov (United States)

    Denker, C.; Dineva, E.; Balthasar, H.; Verma, M.; Kuckein, C.; Diercke, A.; González Manrique, S. J.

    2018-03-01

    Broad-band imaging and even imaging with a moderate bandpass (about 1 nm) provides a photon-rich environment, where frame selection (lucky imaging) becomes a helpful tool in image restoration, allowing us to perform a cost-benefit analysis on how to design observing sequences for imaging with high spatial resolution in combination with real-time correction provided by an adaptive optics (AO) system. This study presents high-cadence (160 Hz) G-band and blue continuum image sequences obtained with the High-resolution Fast Imager (HiFI) at the 1.5-meter GREGOR solar telescope, where the speckle-masking technique is used to restore images with nearly diffraction-limited resolution. The HiFI employs two synchronized large-format and high-cadence sCMOS detectors. The median filter gradient similarity (MFGS) image-quality metric is applied, among others, to AO-corrected image sequences of a pore and a small sunspot observed on 2017 June 4 and 5. A small region of interest, which was selected for fast-imaging performance, covered these contrast-rich features and their neighborhood, which were part of Active Region NOAA 12661. Modifications of the MFGS algorithm uncover the field- and structure-dependency of this image-quality metric. However, MFGS still remains a good choice for determining image quality without a priori knowledge, which is an important characteristic when classifying the huge number of high-resolution images contained in data archives. In addition, this investigation demonstrates that a fast cadence and millisecond exposure times are still insufficient to reach the coherence time of daytime seeing. Nonetheless, the analysis shows that data acquisition rates exceeding 50 Hz are required to capture a substantial fraction of the best seeing moments, significantly boosting the performance of post-facto image restoration.

  15. Pathogens and host immunity in the ancient human oral cavity

    DEFF Research Database (Denmark)

    Warinner, Christina; Rodrigues, João F Matias; Vyas, Rounak

    2014-01-01

    Calcified dental plaque (dental calculus) preserves for millennia and entraps biomolecules from all domains of life and viruses. We report the first, to our knowledge, high-resolution taxonomic and protein functional characterization of the ancient oral microbiome and demonstrate that the oral...... cavity has long served as a reservoir for bacteria implicated in both local and systemic disease. We characterize (i) the ancient oral microbiome in a diseased state, (ii) 40 opportunistic pathogens, (iii) ancient human-associated putative antibiotic resistance genes, (iv) a genome reconstruction...... calculus permits the simultaneous investigation of pathogen activity, host immunity and diet, thereby extending direct investigation of common diseases into the human evolutionary past....

  16. Smartphone microendoscopy for high resolution fluorescence imaging

    Directory of Open Access Journals (Sweden)

    Xiangqian Hong

    2016-09-01

    Full Text Available High resolution optical endoscopes are increasingly used in diagnosis of various medical conditions of internal organs, such as the cervix and gastrointestinal (GI tracts, but they are too expensive for use in resource-poor settings. On the other hand, smartphones with high resolution cameras and Internet access have become more affordable, enabling them to diffuse into most rural areas and developing countries in the past decade. In this paper, we describe a smartphone microendoscope that can take fluorescence images with a spatial resolution of 3.1 μm. Images collected from ex vivo, in vitro and in vivo samples using the device are also presented. The compact and cost-effective smartphone microendoscope may be envisaged as a powerful tool for detecting pre-cancerous lesions of internal organs in low and middle-income countries (LMICs.

  17. Multiplex network analysis of employee performance and employee social relationships

    Science.gov (United States)

    Cai, Meng; Wang, Wei; Cui, Ying; Stanley, H. Eugene

    2018-01-01

    In human resource management, employee performance is strongly affected by both formal and informal employee networks. Most previous research on employee performance has focused on monolayer networks that can represent only single categories of employee social relationships. We study employee performance by taking into account the entire multiplex structure of underlying employee social networks. We collect three datasets consisting of five different employee relationship categories in three firms, and predict employee performance using degree centrality and eigenvector centrality in a superimposed multiplex network (SMN) and an unfolded multiplex network (UMN). We use a quadratic assignment procedure (QAP) analysis and a regression analysis to demonstrate that the different categories of relationship are mutually embedded and that the strength of their impact on employee performance differs. We also use weighted/unweighted SMN/UMN to measure the predictive accuracy of this approach and find that employees with high centrality in a weighted UMN are more likely to perform well. Our results shed new light on how social structures affect employee performance.

  18. Multiplexing schemes for an achromatic programmable diffractive lens

    Energy Technology Data Exchange (ETDEWEB)

    Millan, M S; Perez-Cabre, E; Oton, J [Technical University of Catalonia, Dep. Optics and Optometry, Terrassa-Barcelona, 08222 (Spain)], E-mail: millan@oo.upc.edu

    2008-11-01

    A multiplexed programmable diffractive lens, displayed on a pixelated liquid crystal device under broadband illumination, is proposed to compensate for the severe chromatic aberration that affects diffractive elements. The proposed lens is based on multiplexing a set of sublenses with a common focal length for different wavelengths. We consider different types of integration of the optical information (spatial only, temporal only and hybrid spatial-temporal) combined with a proper selection of the spectral bandwidth. The properties and limits of the achromatic programmable multiplexed lens are described. Experimental results are presented and discussed.

  19. Multiplexing schemes for an achromatic programmable diffractive lens

    International Nuclear Information System (INIS)

    Millan, M S; Perez-Cabre, E; Oton, J

    2008-01-01

    A multiplexed programmable diffractive lens, displayed on a pixelated liquid crystal device under broadband illumination, is proposed to compensate for the severe chromatic aberration that affects diffractive elements. The proposed lens is based on multiplexing a set of sublenses with a common focal length for different wavelengths. We consider different types of integration of the optical information (spatial only, temporal only and hybrid spatial-temporal) combined with a proper selection of the spectral bandwidth. The properties and limits of the achromatic programmable multiplexed lens are described. Experimental results are presented and discussed.

  20. High resolution mid-infrared spectroscopy based on frequency upconversion

    DEFF Research Database (Denmark)

    Dam, Jeppe Seidelin; Hu, Qi; Tidemand-Lichtenberg, Peter

    2013-01-01

    signals can be analyzed. The obtainable frequency resolution is usually in the nm range where sub nm resolution is preferred in many applications, like gas spectroscopy. In this work we demonstrate how to obtain sub nm resolution when using upconversion. In the presented realization one object point...... high resolution spectral performance by observing emission from hot water vapor in a butane gas burner....

  1. Climate change and high-resolution whole-building numerical modelling

    NARCIS (Netherlands)

    Blocken, B.J.E.; Briggen, P.M.; Schellen, H.L.; Hensen, J.L.M.

    2010-01-01

    This paper briefly discusses the need of high-resolution whole-building numerical modelling in the context of climate change. High-resolution whole-building numerical modelling can be used for detailed analysis of the potential consequences of climate change on buildings and to evaluate remedial

  2. Eigenmode multiplexing with SLM for volume holographic data storage

    Science.gov (United States)

    Chen, Guanghao; Miller, Bo E.; Takashima, Yuzuru

    2017-08-01

    The cavity supports the orthogonal reference beam families as its eigenmodes while enhancing the reference beam power. Such orthogonal eigenmodes are used as additional degree of freedom to multiplex data pages, consequently increase storage densities for volume Holographic Data Storage Systems (HDSS) when the maximum number of multiplexed data page is limited by geometrical factor. Image bearing holograms are multiplexed by orthogonal phase code multiplexing via Hermite-Gaussian eigenmodes in a Fe:LiNbO3 medium with a 532 nm laser at multiple Bragg angles by using Liquid Crystal on Silicon (LCOS) spatial light modulators (SLMs) in reference arms. Total of nine holograms are recorded with three angular and three eigenmode.

  3. New approach to 3-D, high sensitivity, high mass resolution space plasma composition measurements

    International Nuclear Information System (INIS)

    McComas, D.J.; Nordholt, J.E.

    1990-01-01

    This paper describes a new type of 3-D space plasma composition analyzer. The design combines high sensitivity, high mass resolution measurements with somewhat lower mass resolution but even higher sensitivity measurements in a single compact and robust design. While the lower resolution plasma measurements are achieved using conventional straight-through time-of-flight mass spectrometry, the high mass resolution measurements are made by timing ions reflected in a linear electric field (LEF), where the restoring force that an ion experiences is proportional to the depth it travels into the LEF region. Consequently, the ion's equation of motion in that dimension is that of a simple harmonic oscillator and its travel time is simply proportional to the square root of the ion's mass/charge (m/q). While in an ideal LEF, the m/q resolution can be arbitrarily high, in a real device the resolution is limited by the field linearity which can be achieved. In this paper we describe how a nearly linear field can be produced and discuss how the design can be optimized for various different plasma regimes and spacecraft configurations

  4. Multiplex molecular testing for management of infectious gastroenteritis in a hospital setting: a comparative diagnostic and clinical utility study.

    Science.gov (United States)

    Halligan, E; Edgeworth, J; Bisnauthsing, K; Bible, J; Cliff, P; Aarons, E; Klein, J; Patel, A; Goldenberg, S

    2014-08-01

    Laboratory diagnosis and clinical management of inpatients with diarrhoea is complex and time consuming. Tests are often requested sequentially and undertaken in different laboratories. This causes prolonged unnecessary presumptive isolation of patients, because most cases are non-infectious. A molecular multiplex test (Luminex(®) Gastrointestinal Pathogen Panel (GPP)) was compared with conventional testing over 8 months to determine diagnostic accuracy, turnaround times, laboratory costs, use of isolation facilities and user acceptability. A total of 262 (12%) patients had a pathogen detected by conventional methods compared with 483 (22.1%) by GPP. Most additional cases were detected in patients developing symptoms in the first 4 days of admission. Additional cases were detected because of presumed improved diagnostic sensitivity but also because clinicians had not requested the correct pathogen. Turnaround time (41.8 h) was faster than bacterial culture (66.5 h) and parasite investigation (66.5 h) but slower than conventional testing for Clostridium difficile (17.3 h) and viruses (27 h). The test could allow simplified requesting by clinicians and a consolidated laboratory workflow, reducing the overall number of specimens received by the laboratory. A total of 154 isolation days were saved at an estimated cost of £30 800. Consumables and labour were estimated at £150 641 compared with £63 431 for conventional testing. Multiplex molecular testing using a panel of targets allowed enhanced detection and a consolidated laboratory workflow. This is likely to be of greater benefit to cases that present within the first 4 days of hospital admission. © 2013 The Authors Clinical Microbiology and Infection © 2013 European Society of Clinical Microbiology and Infectious Diseases.

  5. High resolution CT of the chest

    Energy Technology Data Exchange (ETDEWEB)

    Barneveld Binkhuysen, F H [Eemland Hospital (Netherlands), Dept. of Radiology

    1996-12-31

    Compared to conventional CT high resolution CT (HRCT) shows several extra anatomical structures which might effect both diagnosis and therapy. The extra anatomical structures were discussed briefly in this article. (18 refs.).

  6. All-in-One CRISPR-Cas9/FokI-dCas9 Vector-Mediated Multiplex Genome Engineering in Cultured Cells.

    Science.gov (United States)

    Sakuma, Tetsushi; Sakamoto, Takuya; Yamamoto, Takashi

    2017-01-01

    CRISPR-Cas9 enables highly convenient multiplex genome engineering in cultured cells, because it utilizes generic Cas9 nuclease and an easily customizable single-guide RNA (sgRNA) for site-specific DNA double-strand break induction. We previously established a multiplex CRISPR-Cas9 assembly system for constructing an all-in-one vector simultaneously expressing multiple sgRNAs and Cas9 nuclease or other Cas9 variants including FokI-dCas9, which supersedes the wild-type Cas9 with regard to high specificity. In this chapter, we describe a streamlined protocol to design and construct multiplex CRISPR-Cas9 or FokI-dCas9 vectors, to introduce them into cultured cells by lipofection or electroporation, to enrich the genomically edited cells with a transient puromycin selection, to validate the mutation efficiency by Surveyor nuclease assay, and to perform off-target analyses. We show that our protocol enables highly efficient multiplex genome engineering even in hard-to-transfect HepG2 cells.

  7. Methodology of high-resolution photography for mural condition database

    Science.gov (United States)

    Higuchi, R.; Suzuki, T.; Shibata, M.; Taniguchi, Y.

    2015-08-01

    Digital documentation is one of the most useful techniques to record the condition of cultural heritage. Recently, high-resolution images become increasingly useful because it is possible to show general views of mural paintings and also detailed mural conditions in a single image. As mural paintings are damaged by environmental stresses, it is necessary to record the details of painting condition on high-resolution base maps. Unfortunately, the cost of high-resolution photography and the difficulty of operating its instruments and software have commonly been an impediment for researchers and conservators. However, the recent development of graphic software makes its operation simpler and less expensive. In this paper, we suggest a new approach to make digital heritage inventories without special instruments, based on our recent our research project in Üzümlü church in Cappadocia, Turkey. This method enables us to achieve a high-resolution image database with low costs, short time, and limited human resources.

  8. High-Resolution MRI in Rectal Cancer

    International Nuclear Information System (INIS)

    Dieguez, Adriana

    2010-01-01

    High-resolution MRI is the best method of assessing the relation of the rectal tumor with the potential circumferential resection margin (CRM). Therefore it is currently considered the method of choice for local staging of rectal cancer. The primary surgery of rectal cancer is total mesorectal excision (TME), which plane of dissection is formed by the mesorectal fascia surrounding mesorectal fat and rectum. This fascia will determine the circumferential margin of resection. At the same time, high resolution MRI allows adequate pre-operative identification of important prognostic risk factors, improving the selection and indication of therapy for each patient. This information includes, besides the circumferential margin of resection, tumor and lymph node staging, extramural vascular invasion and the description of lower rectal tumors. All these should be described in detail in the report, being part of the discussion in the multidisciplinary team, the place where the decisions involving the patient with rectal cancer will take place. The aim of this study is to provide the information necessary to understand the use of high resolution MRI in the identification of prognostic risk factors in rectal cancer. The technical requirements and standardized report for this study will be describe, as well as the anatomical landmarks of importance for the total mesorectal excision (TME), as we have said is the surgery of choice for rectal cancer. (authors) [es

  9. High-resolution coherent three-dimensional spectroscopy of Br2.

    Science.gov (United States)

    Chen, Peter C; Wells, Thresa A; Strangfeld, Benjamin R

    2013-07-25

    In the past, high-resolution spectroscopy has been limited to small, simple molecules that yield relatively uncongested spectra. Larger and more complex molecules have a higher density of peaks and are susceptible to complications (e.g., effects from conical intersections) that can obscure the patterns needed to resolve and assign peaks. Recently, high-resolution coherent two-dimensional (2D) spectroscopy has been used to resolve and sort peaks into easily identifiable patterns for molecules where pattern-recognition has been difficult. For very highly congested spectra, however, the ability to resolve peaks using coherent 2D spectroscopy is limited by the bandwidth of instrumentation. In this article, we introduce and investigate high-resolution coherent three-dimensional spectroscopy (HRC3D) as a method for dealing with heavily congested systems. The resulting patterns are unlike those in high-resolution coherent 2D spectra. Analysis of HRC3D spectra could provide a means for exploring the spectroscopy of large and complex molecules that have previously been considered too difficult to study.

  10. Profile and Fate of Bacterial Pathogens in Sewage Treatment Plants Revealed by High-Throughput Metagenomic Approach.

    Science.gov (United States)

    Li, Bing; Ju, Feng; Cai, Lin; Zhang, Tong

    2015-09-01

    The broad-spectrum profile of bacterial pathogens and their fate in sewage treatment plants (STPs) were investigated using high-throughput sequencing based metagenomic approach. This novel approach could provide a united platform to standardize bacterial pathogen detection and realize direct comparison among different samples. Totally, 113 bacterial pathogen species were detected in eight samples including influent, effluent, activated sludge (AS), biofilm, and anaerobic digestion sludge with the abundances ranging from 0.000095% to 4.89%. Among these 113 bacterial pathogens, 79 species were reported in STPs for the first time. Specially, compared to AS in bulk mixed liquor, more pathogen species and higher total abundance were detected in upper foaming layer of AS. This suggests that the foaming layer of AS might impose more threat to onsite workers and citizens in the surrounding areas of STPs because pathogens in foaming layer are easily transferred into air and cause possible infections. The high removal efficiency (98.0%) of total bacterial pathogens suggests that AS treatment process is effective to remove most bacterial pathogens. Remarkable similarities of bacterial pathogen compositions between influent and human gut indicated that bacterial pathogen profiles in influents could well reflect the average bacterial pathogen communities of urban resident guts within the STP catchment area.

  11. Social contagions on correlated multiplex networks

    Science.gov (United States)

    Wang, Wei; Cai, Meng; Zheng, Muhua

    2018-06-01

    The existence of interlayer degree correlations has been disclosed by abundant multiplex network analysis. However, how they impose on the dynamics of social contagions are remain largely unknown. In this paper, we propose a non-Markovian social contagion model in multiplex networks with inter-layer degree correlations to delineate the behavior spreading, and develop an edge-based compartmental (EBC) theory to describe the model. We find that multiplex networks promote the final behavior adoption size. Remarkably, it can be observed that the growth pattern of the final behavior adoption size, versus the behavioral information transmission probability, changes from discontinuous to continuous once decreasing the behavior adoption threshold in one layer. We finally unravel that the inter-layer degree correlations play a role on the final behavior adoption size but have no effects on the growth pattern, which is coincidence with our prediction by using the suggested theory.

  12. Competitive PCR-High Resolution Melting Analysis (C-PCR-HRMA) for large genomic rearrangements (LGRs) detection: A new approach to assess quantitative status of BRCA1 gene in a reference laboratory.

    Science.gov (United States)

    Minucci, Angelo; De Paolis, Elisa; Concolino, Paola; De Bonis, Maria; Rizza, Roberta; Canu, Giulia; Scaglione, Giovanni Luca; Mignone, Flavio; Scambia, Giovanni; Zuppi, Cecilia; Capoluongo, Ettore

    2017-07-01

    Evaluation of copy number variation (CNV) in BRCA1/2 genes, due to large genomic rearrangements (LGRs), is a mandatory analysis in hereditary breast and ovarian cancers families, if no pathogenic variants are found by sequencing. LGRs cannot be detected by conventional methods and several alternative methods have been developed. Since these approaches are expensive and time consuming, identification of alternative screening methods for LGRs detection is needed in order to reduce and optimize the diagnostic procedure. The aim of this study was to investigate a Competitive PCR-High Resolution Melting Analysis (C-PCR-HRMA) as molecular tool to detect recurrent BRCA1 LGRs. C-PCR-HRMA was performed on exons 3, 14, 18, 19, 20 and 21 of the BRCA1 gene; exons 4, 6 and 7 of the ALB gene were used as reference fragments. This study showed that it is possible to identify recurrent BRCA1 LGRs, by melting peak height ratio between target (BRCA1) and reference (ALB) fragments. Furthermore, we underline that a peculiar amplicon-melting profile is associated to a specific BRCA1 LGR. All C-PCR-HRMA results were confirmed by Multiplex ligation-dependent probe amplification. C-PCR-HRMA has proved to be an innovative, efficient and fast method for BRCA1 LGRs detection. Given the sensitivity, specificity and ease of use, c-PCR-HRMA can be considered an attractive and powerful alternative to other methods for BRCA1 CNVs screening, improving molecular strategies for BRCA testing in the context of Massive Parallel Sequencing. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. High temperature and bacteriophages can indirectly select for bacterial pathogenicity in environmental reservoirs.

    Directory of Open Access Journals (Sweden)

    Ville-Petri Friman

    2011-03-01

    Full Text Available The coincidental evolution hypothesis predicts that traits connected to bacterial pathogenicity could be indirectly selected outside the host as a correlated response to abiotic environmental conditions or different biotic species interactions. To investigate this, an opportunistic bacterial pathogen, Serratia marcescens, was cultured in the absence and presence of the lytic bacteriophage PPV (Podoviridae at 25°C and 37°C for four weeks (N = 5. At the end, we measured changes in bacterial phage-resistance and potential virulence traits, and determined the pathogenicity of all bacterial selection lines in the Parasemia plantaginis insect model in vivo. Selection at 37°C increased bacterial motility and pathogenicity but only in the absence of phages. Exposure to phages increased the phage-resistance of bacteria, and this was costly in terms of decreased maximum population size in the absence of phages. However, this small-magnitude growth cost was not greater with bacteria that had evolved in high temperature regime, and no trade-off was found between phage-resistance and growth rate. As a result, phages constrained the evolution of a temperature-mediated increase in bacterial pathogenicity presumably by preferably infecting the highly motile and virulent bacteria. In more general perspective, our results suggest that the traits connected to bacterial pathogenicity could be indirectly selected as a correlated response by abiotic and biotic factors in environmental reservoirs.

  14. High resolution gamma-ray spectroscopy at high count rates with a prototype High Purity Germanium detector

    Science.gov (United States)

    Cooper, R. J.; Amman, M.; Vetter, K.

    2018-04-01

    High-resolution gamma-ray spectrometers are required for applications in nuclear safeguards, emergency response, and fundamental nuclear physics. To overcome one of the shortcomings of conventional High Purity Germanium (HPGe) detectors, we have developed a prototype device capable of achieving high event throughput and high energy resolution at very high count rates. This device, the design of which we have previously reported on, features a planar HPGe crystal with a reduced-capacitance strip electrode geometry. This design is intended to provide good energy resolution at the short shaping or digital filter times that are required for high rate operation and which are enabled by the fast charge collection afforded by the planar geometry crystal. In this work, we report on the initial performance of the system at count rates up to and including two million counts per second.

  15. Detectors for high resolution dynamic pet

    International Nuclear Information System (INIS)

    Derenzo, S.E.; Budinger, T.F.; Huesman, R.H.

    1983-05-01

    This report reviews the motivation for high spatial resolution in dynamic positron emission tomography of the head and the technical problems in realizing this objective. We present recent progress in using small silicon photodiodes to measure the energy deposited by 511 keV photons in small BGO crystals with an energy resolution of 9.4% full-width at half-maximum. In conjunction with a suitable phototube coupled to a group of crystals, the photodiode signal to noise ratio is sufficient for the identification of individual crystals both for conventional and time-of-flight positron tomography

  16. Evaluation of multiplex ligation-dependent probe amplification analysis versus multiplex polymerase chain reaction assays in the detection of dystrophin gene rearrangements in an Iranian population subset

    Directory of Open Access Journals (Sweden)

    Nayereh Nouri

    2014-01-01

    Full Text Available Background: The Duchenne muscular dystrophy (DMD gene is located in the short arm of the X chromosome (Xp21. It spans 2.4 Mb of the human genomic DNA and is composed of 79 exons. Mutations in the Dystrophin gene result in DMD and Becker muscular dystrophy. In this study, the efficiency of multiplex ligation-dependent probe amplification (MLPA over multiplex polymerase chain reaction (PCR assays in an Iranian population was investigated. Materials and Methods: Multiplex PCR assays and MLPA analysis were carried out in 74 patients affected with DMD. Results: Multiplex PCR detected deletions in 51% of the patients with DMD. MLPA analysis could determine all the deletions detected by the multiplex PCR. Additionally, MLPA was able to identify one more deletion and duplication in patients without detectable mutations by multiplex PCR. Moreover, MLPA precisely determined the exact size of the deletions. Conclusion: Although MLPA analysis is more sensitive for detection of deletions and duplications in the dystrophin gene, multiplex PCR might be used for the initial analysis of the boys affected with DMD in the Iranian population as it was able to detect 95% of the rearrangements in patients with DMD.

  17. Spatial Frequency Multiplexing of Fiber-Optic Interferometric Refractive Index Sensors Based on Graded-Index Multimode Fibers

    Science.gov (United States)

    Liu, Li; Gong, Yuan; Wu, Yu; Zhao, Tian; Wu, Hui-Juan; Rao, Yun-Jiang

    2012-01-01

    Fiber-optic interferometric sensors based on graded-index multimode fibers have very high refractive-index sensitivity, as we previously demonstrated. In this paper, spatial-frequency multiplexing of this type of fiber-optic refractive index sensors is investigated. It is estimated that multiplexing of more than 10 such sensors is possible. In the multiplexing scheme, one of the sensors is used to investigate the refractive index and temperature responses. The fast Fourier transform (FFT) of the combined reflective spectra is analyzed. The intensity of the FFT spectra is linearly related with the refractive index and is not sensitive to the temperature.

  18. A multiplexable TALE-based binary expression system for in vivo cellular interaction studies.

    Science.gov (United States)

    Toegel, Markus; Azzam, Ghows; Lee, Eunice Y; Knapp, David J H F; Tan, Ying; Fa, Ming; Fulga, Tudor A

    2017-11-21

    Binary expression systems have revolutionised genetic research by enabling delivery of loss-of-function and gain-of-function transgenes with precise spatial-temporal resolution in vivo. However, at present, each existing platform relies on a defined exogenous transcription activator capable of binding a unique recognition sequence. Consequently, none of these technologies alone can be used to simultaneously target different tissues or cell types in the same organism. Here, we report a modular system based on programmable transcription activator-like effector (TALE) proteins, which enables parallel expression of multiple transgenes in spatially distinct tissues in vivo. Using endogenous enhancers coupled to TALE drivers, we demonstrate multiplexed orthogonal activation of several transgenes carrying cognate variable activating sequences (VAS) in distinct neighbouring cell types of the Drosophila central nervous system. Since the number of combinatorial TALE-VAS pairs is virtually unlimited, this platform provides an experimental framework for highly complex genetic manipulation studies in vivo.

  19. Performance Assessment of a Trypanosoma cruzi Chimeric Antigen in Multiplex Liquid Microarray Assays.

    Science.gov (United States)

    Santos, Fred Luciano Neves; Celedon, Paola Alejandra Fiorani; Zanchin, Nilson Ivo Tonin; Leitolis, Amanda; Crestani, Sandra; Foti, Leonardo; de Souza, Wayner Vieira; Gomes, Yara de Miranda; Krieger, Marco Aurélio

    2017-10-01

    Diagnosing chronic Chagas disease (CD) requires antibody-antigen detection methods, which are traditionally based on enzymatic assay techniques whose performance depend on the type and quality of antigen used. Previously, 4 recombinant chimeric proteins from the Instituto de Biologia Molecular do Paraná (IBMP-8.1 to 8.4) comprising immuno-dominant regions of diverse Trypanosoma cruzi antigens showed excellent diagnostic performance in enzyme-linked immunosorbent assays. Considering that next-generation platforms offer improved CD diagnostic accuracy with different T. cruzi -specific recombinant antigens, we assessed the performance of these chimeras in liquid microarrays (LMAs). The chimeric proteins were expressed in Escherichia coli and purified by chromatography. Sera from 653 chagasic and 680 healthy individuals were used to assess the performance of these chimeras in detecting specific anti- T. cruzi antibodies. Accuracies ranged from 98.1 to 99.3%, and diagnostic odds ratio values were 3,548 for IBMP-8.3, 4,826 for IBMP-8.1, 7,882 for IBMP-8.2, and 25,000 for IBMP-8.4. A separate sera bank (851 samples) was employed to assess cross-reactivity with other tropical diseases. Leishmania , a pathogen with high similarity to T. cruzi , showed cross-reactivity rates ranging from 0 to 2.17%. Inconclusive results were negligible (0 to 0.71%). Bland-Altman and Deming regression analysis based on 200 randomly selected CD-positive and negative samples demonstrated interchangeability with respect to CD diagnostic performance in both singleplex and multiplex assays. Our results suggested that these chimeras can potentially replace antigens currently used in commercially available assay kits. Moreover, the use of multiplex platforms, such as LMA assays employing 2 or more IBMP antigens, would abrogate the need for 2 different testing techniques when diagnosing CD. Copyright © 2017 American Society for Microbiology.

  20. Determinants of the Sympatric Host-Pathogen Relationship in Tuberculosis

    Science.gov (United States)

    David, Susana; Mateus, A. R. A.; Duarte, Elsa L.; Albuquerque, José; Portugal, Clara; Sancho, Luísa; Lavinha, João; Gonçalves, Guilherme

    2015-01-01

    Major contributions from pathogen genome analysis and host genetics have equated the possibility of Mycobacterium tuberculosis co-evolution with its human host leading to more stable sympatric host–pathogen relationships. However, the attribution to either sympatric or allopatric categories depends on the resolution or grain of genotypic characterization. We explored the influence on the sympatric host-pathogen relationship of clinical (HIV infection and multidrug-resistant tuberculosis [MDRTB]) and demographic (gender and age) factors in regards to the genotypic grain by using spacer oligonucleotide typing (spoligotyping) for classification of M. tuberculosis strains within the Euro-American lineage. We analyzed a total of 547 tuberculosis (TB) cases, from six year consecutive sampling in a setting with high TB-HIV coinfection (32.0%). Of these, 62.0% were caused by major circulating pathogen genotypes. The sympatric relationship was defined according to spoligotype in comparison to the international spoligotype database SpolDB4. While no significant association with Euro-American lineage was observed with any of the factors analyzed, increasing the resolution with spoligotyping evidenced a significant association of MDRTB with sympatric strains, regardless of the HIV status. Furthermore, distribution curves of the prevalence of sympatric and allopatric TB in relation to patients’ age showed an accentuation of the relevance of the age of onset in the allopatric relationship, as reflected in the trimodal distribution. On the contrary, sympatric TB was characterized by the tendency towards a typical (standard) distribution curve. Our results suggest that within the Euro-American lineage a greater degree of genotyping fine-tuning is necessary in modeling the biological processes behind the host-pathogen interplay. Furthermore, prevalence distribution of sympatric TB to age was suggestive of host genetic determinisms driven by more common variants. PMID:26529092

  1. High Resolution Thermometry for EXACT

    Science.gov (United States)

    Panek, J. S.; Nash, A. E.; Larson, M.; Mulders, N.

    2000-01-01

    High Resolution Thermometers (HRTs) based on SQUID detection of the magnetization of a paramagnetic salt or a metal alloy has been commonly used for sub-nano Kelvin temperature resolution in low temperature physics experiments. The main applications to date have been for temperature ranges near the lambda point of He-4 (2.177 K). These thermometers made use of materials such as Cu(NH4)2Br4 *2H2O, GdCl3, or PdFe. None of these materials are suitable for EXACT, which will explore the region of the He-3/He-4 tricritical point at 0.87 K. The experiment requirements and properties of several candidate paramagnetic materials will be presented, as well as preliminary test results.

  2. Moving through a multiplex holographic scene

    Science.gov (United States)

    Mrongovius, Martina

    2013-02-01

    This paper explores how movement can be used as a compositional element in installations of multiplex holograms. My holographic images are created from montages of hand-held video and photo-sequences. These spatially dynamic compositions are visually complex but anchored to landmarks and hints of the capturing process - such as the appearance of the photographer's shadow - to establish a sense of connection to the holographic scene. Moving around in front of the hologram, the viewer animates the holographic scene. A perception of motion then results from the viewer's bodily awareness of physical motion and the visual reading of dynamics within the scene or movement of perspective through a virtual suggestion of space. By linking and transforming the physical motion of the viewer with the visual animation, the viewer's bodily awareness - including proprioception, balance and orientation - play into the holographic composition. How multiplex holography can be a tool for exploring coupled, cross-referenced and transformed perceptions of movement is demonstrated with a number of holographic image installations. Through this process I expanded my creative composition practice to consider how dynamic and spatial scenes can be conveyed through the fragmented view of a multiplex hologram. This body of work was developed through an installation art practice and was the basis of my recently completed doctoral thesis: 'The Emergent Holographic Scene — compositions of movement and affect using multiplex holographic images'.

  3. High temperature and high resolution uv photoelectron spectroscopy using supersonic molecular beams

    International Nuclear Information System (INIS)

    Wang, Lai-Sheng; Reutt-Robey, J.E.; Niu, B.; Lee, Y.T.; Shirley, D.A.

    1989-07-01

    A high temperature molecular beam source with electron bombardment heating has been built for high resolution photoelectron spectroscopic studies of high temperature species and clusters. This source has the advantages of: producing an intense, continuous, seeded molecular beam, eliminating the interference of the heating mechanism from the photoelectron measurement. Coupling the source with our hemispherical electron energy analyzer, we can obtain very high resolution HeIα (584 angstrom) photoelectron spectra of high temperature species. Vibrationally-resolved photoelectron spectra of PbSe, As 2 , As 4 , and ZnCl 2 are shown to demonstrate the performance of the new source. 25 refs., 8 figs., 1 tab

  4. Assessing the performance of multiplexed tandem PCR for the diagnosis of pathogenic genotypes of Theileria orientalis using pooled blood samples from cattle.

    Science.gov (United States)

    Gebrekidan, Hagos; Gasser, Robin B; Stevenson, Mark A; McGrath, Sean; Jabbar, Abdul

    2017-02-01

    Oriental theileriosis caused by multiple genotypes of Theileria orientalis is an important tick-borne disease of bovines. Here, we assessed the performance of an established multiplexed tandem PCR (MT-PCR) for the diagnosis of the two recognized, pathogenic genotypes (chitose and ikeda) of T. orientalis in cattle using pooled blood samples. We used a total of 265 cattle blood samples, which were divided into two groups according to previous MT-PCR results for individual samples. Samples in group 1 (n = 155) were from a herd with a relatively high prevalence of T. orientalis infection; and those in group 2 (n = 110) were from four herds with a low prevalence. For group 1, 31 and 15 batches of five- and ten-pooled samples (selected at random), respectively, were formed. For group 2, 22 and 11 batches of five- and ten-pooled samples (selected at random), respectively, were formed. DNAs from individual pooled samples in each batch and group were then tested by MT-PCR. For group 1, the apparent prevalences estimated using the 31 batches of five-pooled samples (97%) and 15 batches of ten-pooled samples (100%) were significantly higher compared with individual samples (75%). For group 2, higher apparent prevalences (9% and 36%) were also recorded for the 22 and 11 batches of pooled samples, respectively, compared with individual samples (7%). Overall, the average infection intensity recorded for the genotypes of chitose and ikeda were considerably lower in pooled compared with individual samples. The diagnostic specificities of MT-PCR were estimated at 95% and 94%, respectively, when batches of five- and ten-pooled samples were tested, and 94% for individual samples. The diagnostic sensitivity of this assay was estimated at 98% same for all individual, five- and ten-pooled samples. This study shows that screening batches of five- and ten-pooled blood samples from cattle herds are similar to those obtained for individual samples, and, importantly, that the reduced cost

  5. Transmission of highly pathogenic avian influenza H7 virus

    NARCIS (Netherlands)

    Bos, M.E.H.

    2009-01-01

    Knowledge of the transmission of highly pathogenic avian influenza (HPAI) virus still has gaps, complicating epidemic control. A model was developed to back-calculate the day HPAI virus was introduced into a flock, based on within-flock mortality data of the Dutch HPAI H7N7 epidemic (2003). The

  6. Ribbon scanning confocal for high-speed high-resolution volume imaging of brain.

    Directory of Open Access Journals (Sweden)

    Alan M Watson

    Full Text Available Whole-brain imaging is becoming a fundamental means of experimental insight; however, achieving subcellular resolution imagery in a reasonable time window has not been possible. We describe the first application of multicolor ribbon scanning confocal methods to collect high-resolution volume images of chemically cleared brains. We demonstrate that ribbon scanning collects images over ten times faster than conventional high speed confocal systems but with equivalent spectral and spatial resolution. Further, using this technology, we reconstruct large volumes of mouse brain infected with encephalitic alphaviruses and demonstrate that regions of the brain with abundant viral replication were inaccessible to vascular perfusion. This reveals that the destruction or collapse of large regions of brain micro vasculature may contribute to the severe disease caused by Venezuelan equine encephalitis virus. Visualization of this fundamental impact of infection would not be possible without sampling at subcellular resolution within large brain volumes.

  7. Prospective study of pathogens in asymptomatic travellers and those with diarrhoea: aetiological agents revisited.

    Science.gov (United States)

    Lääveri, T; Antikainen, J; Pakkanen, S H; Kirveskari, J; Kantele, A

    2016-06-01

    Travellers' diarrhoea (TD) remains the most frequent health problem encountered by visitors to the (sub)tropics. Traditional stool culture identifies the pathogen in only 15% of cases. Exploiting PCR-based methods, we investigated TD pathogens with a focus on asymptomatic travellers and severity of symptoms. Pre- and post-travel stools of 382 travellers with no history of antibiotic use during travel were analysed with a multiplex quantitative PCR for Salmonella, Yersinia, Campylobacter, Shigella, Vibrio cholerae and five diarrhoeagenic Escherichia coli: enteroaggregative (EAEC), enteropathogenic (EPEC), enterotoxigenic (ETEC), enterohaemorrhagic (EHEC) and enteroinvasive (EIEC). The participants were categorized by presence/absence of TD during travel and on return, and by severity of symptoms. A pathogen was indentified in 61% of the asymptomatic travellers, 83% of those with resolved TD, and 83% of those with ongoing TD; 25%, 43% and 53% had multiple pathogens, respectively. EPEC, EAEC, ETEC and Campylobacter associated especially with ongoing TD symptoms. EAEC and EPEC proved more common than ETEC. To conclude, modern methodology challenges our perception of stool pathogens: all pathogens were common both in asymptomatic and symptomatic travellers. TD has a multibacterial nature, but diarrhoeal symptoms mostly associate with EAEC, EPEC, ETEC and Campylobacter. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Radiometric and signal-to-noise ratio properties of multiplex dispersive spectrometry

    International Nuclear Information System (INIS)

    Barducci, Alessandro; Guzzi, Donatella; Lastri, Cinzia; Nardino, Vanni; Marcoionni, Paolo; Pippi, Ivan

    2010-01-01

    Recent theoretical investigations have shown important radiometric disadvantages of interferential multiplexing in Fourier transform spectrometry that apparently can be applied even to coded aperture spectrometers. We have reexamined the methods of noninterferential multiplexing in order to assess their signal-to-noise ratio (SNR) performance, relying on a theoretical modeling of the multiplexed signals. We are able to show that quite similar SNR and radiometric disadvantages affect multiplex dispersive spectrometry. The effect of noise on spectral estimations is discussed.

  9. Free-space wavelength-multiplexed optical scanner demonstration.

    Science.gov (United States)

    Yaqoob, Zahid; Riza, Nabeel A

    2002-09-10

    Experimental demonstration of a no-moving-parts free-space wavelength-multiplexed optical scanner (W-MOS) is presented. With fast tunable lasers or optical filters and planar wavelength dispersive elements such as diffraction gratings, this microsecond-speed scanner enables large several-centimeter apertures for subdegree angular scans. The proposed W-MOS design incorporates a unique optical amplifier and variable optical attenuator combination that enables the calibration and modulation of the scanner response, leading to any desired scanned laser beam power shaping. The experimental setup uses a tunable laser centered at 1560 nm and a 600-grooves/mm blazed reflection grating to accomplish an angular scan of 12.92 degrees as the source is tuned over an 80-nm bandwidth. The values for calculated maximum optical beam divergance, required wavelength resolution, beam-pointing accuracy, and measured scanner insertion loss are 1.076 mrad, 0.172 nm, 0.06 mrad, and 4.88 dB, respectively.

  10. Topology-optimized silicon photonic wire mode (de)multiplexer

    DEFF Research Database (Denmark)

    Frellsen, Louise Floor; Frandsen, Lars Hagedorn; Ding, Yunhong

    2015-01-01

    We have designed and for the first time experimentally verified a topology optimized mode (de)multiplexer, which demultiplexes the fundamental and the first order mode of a double mode photonic wire to two separate single mode waveguides (and multiplexes vice versa). The device has a footprint...

  11. High resolution tsunami inversion for 2010 Chile earthquake

    Directory of Open Access Journals (Sweden)

    T.-R. Wu

    2011-12-01

    Full Text Available We investigate the feasibility of inverting high-resolution vertical seafloor displacement from tsunami waveforms. An inversion method named "SUTIM" (small unit tsunami inversion method is developed to meet this goal. In addition to utilizing the conventional least-square inversion, this paper also enhances the inversion resolution by Grid-Shifting method. A smooth constraint is adopted to gain stability. After a series of validation and performance tests, SUTIM is used to study the 2010 Chile earthquake. Based upon data quality and azimuthal distribution, we select tsunami waveforms from 6 GLOSS stations and 1 DART buoy record. In total, 157 sub-faults are utilized for the high-resolution inversion. The resolution reaches 10 sub-faults per wavelength. The result is compared with the distribution of the aftershocks and waveforms at each gauge location with very good agreement. The inversion result shows that the source profile features a non-uniform distribution of the seafloor displacement. The highly elevated vertical seafloor is mainly concentrated in two areas: one is located in the northern part of the epicentre, between 34° S and 36° S; the other is in the southern part, between 37° S and 38° S.

  12. High resolution tsunami inversion for 2010 Chile earthquake

    Science.gov (United States)

    Wu, T.-R.; Ho, T.-C.

    2011-12-01

    We investigate the feasibility of inverting high-resolution vertical seafloor displacement from tsunami waveforms. An inversion method named "SUTIM" (small unit tsunami inversion method) is developed to meet this goal. In addition to utilizing the conventional least-square inversion, this paper also enhances the inversion resolution by Grid-Shifting method. A smooth constraint is adopted to gain stability. After a series of validation and performance tests, SUTIM is used to study the 2010 Chile earthquake. Based upon data quality and azimuthal distribution, we select tsunami waveforms from 6 GLOSS stations and 1 DART buoy record. In total, 157 sub-faults are utilized for the high-resolution inversion. The resolution reaches 10 sub-faults per wavelength. The result is compared with the distribution of the aftershocks and waveforms at each gauge location with very good agreement. The inversion result shows that the source profile features a non-uniform distribution of the seafloor displacement. The highly elevated vertical seafloor is mainly concentrated in two areas: one is located in the northern part of the epicentre, between 34° S and 36° S; the other is in the southern part, between 37° S and 38° S.

  13. Link overlap, viability, and mutual percolation in multiplex networks

    International Nuclear Information System (INIS)

    Min, Byungjoon; Lee, Sangchul; Lee, Kyu-Min; Goh, K.-I.

    2015-01-01

    Many real-world complex systems are best modeled by multiplex networks. The multiplexity has proved to have broad impact on the system’s structure and function. Most theoretical studies on multiplex networks to date, however, have largely ignored the effect of the link overlap across layers despite strong empirical evidences for its significance. In this article, we investigate the effect of the link overlap in the viability of multiplex networks, both analytically and numerically. After a short recap of the original multiplex viability study, the distinctive role of overlapping links in viability and mutual connectivity is emphasized and exploited for setting up a proper analytic framework. A rich phase diagram for viability is obtained and greatly diversified patterns of hysteretic behavior in viability are observed in the presence of link overlap. Mutual percolation with link overlap is revisited as a limit of multiplex viability problem, and the controversy between existing results is clarified. The distinctive role of overlapping links is further demonstrated by the different responses of networks under random removals of overlapping and non-overlapping links, respectively, as well as under several link-removal strategies. Our results show that the link overlap facilitates the viability and mutual percolation; at the same time, the presence of link overlap poses a challenge in analytical approaches to the problem

  14. Risk maps for the spread of highly pathogenic avian influenza in poultry.

    Directory of Open Access Journals (Sweden)

    Gert Jan Boender

    2007-04-01

    Full Text Available Devastating epidemics of highly contagious animal diseases such as avian influenza, classical swine fever, and foot-and-mouth disease underline the need for improved understanding of the factors promoting the spread of these pathogens. Here the authors present a spatial analysis of the between-farm transmission of a highly pathogenic H7N7 avian influenza virus that caused a large epidemic in The Netherlands in 2003. The authors developed a method to estimate key parameters determining the spread of highly transmissible animal diseases between farms based on outbreak data. The method allows for the identification of high-risk areas for propagating spread in an epidemiologically underpinned manner. A central concept is the transmission kernel, which determines the probability of pathogen transmission from infected to uninfected farms as a function of interfarm distance. The authors show how an estimate of the transmission kernel naturally provides estimates of the critical farm density and local reproduction numbers, which allows one to evaluate the effectiveness of control strategies. For avian influenza, the analyses show that there are two poultry-dense areas in The Netherlands where epidemic spread is possible, and in which local control measures are unlikely to be able to halt an unfolding epidemic. In these regions an epidemic can only be brought to an end by the depletion of susceptible farms by infection or massive culling. The analyses provide an estimate of the spatial range over which highly pathogenic avian influenza viruses spread between farms, and emphasize that control measures aimed at controlling such outbreaks need to take into account the local density of farms.

  15. Concept for a new high resolution high intensity diffractometer

    Energy Technology Data Exchange (ETDEWEB)

    Stuhr, U [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-09-01

    A concept of a new time-of-flight powder-diffractometer for a thermal neutral beam tube at SINQ is presented. The design of the instrument optimises the contradictory conditions of high intensity and high resolution. The high intensity is achieved by using many neutron pulses simultaneously. By analysing the time-angle-pattern of the detected neutrons an assignment of the neutrons to a single pulse is possible. (author) 3 figs., tab., refs.

  16. High Throughput Sequencing for Detection of Foodborne Pathogens

    Directory of Open Access Journals (Sweden)

    Camilla Sekse

    2017-10-01

    Full Text Available High-throughput sequencing (HTS is becoming the state-of-the-art technology for typing of microbial isolates, especially in clinical samples. Yet, its application is still in its infancy for monitoring and outbreak investigations of foods. Here we review the published literature, covering not only bacterial but also viral and Eukaryote food pathogens, to assess the status and potential of HTS implementation to inform stakeholders, improve food safety and reduce outbreak impacts. The developments in sequencing technology and bioinformatics have outpaced the capacity to analyze and interpret the sequence data. The influence of sample processing, nucleic acid extraction and purification, harmonized protocols for generation and interpretation of data, and properly annotated and curated reference databases including non-pathogenic “natural” strains are other major obstacles to the realization of the full potential of HTS in analytical food surveillance, epidemiological and outbreak investigations, and in complementing preventive approaches for the control and management of foodborne pathogens. Despite significant obstacles, the achieved progress in capacity and broadening of the application range over the last decade is impressive and unprecedented, as illustrated with the chosen examples from the literature. Large consortia, often with broad international participation, are making coordinated efforts to cope with many of the mentioned obstacles. Further rapid progress can therefore be prospected for the next decade.

  17. Ultrasensitive Single Fluorescence-Labeled Probe-Mediated Single Universal Primer-Multiplex-Droplet Digital Polymerase Chain Reaction for High-Throughput Genetically Modified Organism Screening.

    Science.gov (United States)

    Niu, Chenqi; Xu, Yuancong; Zhang, Chao; Zhu, Pengyu; Huang, Kunlun; Luo, Yunbo; Xu, Wentao

    2018-05-01

    As genetically modified (GM) technology develops and genetically modified organisms (GMOs) become more available, GMOs face increasing regulations and pressure to adhere to strict labeling guidelines. A singleplex detection method cannot perform the high-throughput analysis necessary for optimal GMO detection. Combining the advantages of multiplex detection and droplet digital polymerase chain reaction (ddPCR), a single universal primer-multiplex-ddPCR (SUP-M-ddPCR) strategy was proposed for accurate broad-spectrum screening and quantification. The SUP increases efficiency of the primers in PCR and plays an important role in establishing a high-throughput, multiplex detection method. Emerging ddPCR technology has been used for accurate quantification of nucleic acid molecules without a standard curve. Using maize as a reference point, four heterologous sequences ( 35S, NOS, NPTII, and PAT) were selected to evaluate the feasibility and applicability of this strategy. Surprisingly, these four genes cover more than 93% of the transgenic maize lines and serve as preliminary screening sequences. All screening probes were labeled with FAM fluorescence, which allows the signals from the samples with GMO content and those without to be easily differentiated. This fiveplex screening method is a new development in GMO screening. Utilizing an optimal amplification assay, the specificity, limit of detection (LOD), and limit of quantitation (LOQ) were validated. The LOD and LOQ of this GMO screening method were 0.1% and 0.01%, respectively, with a relative standard deviation (RSD) < 25%. This method could serve as an important tool for the detection of GM maize from different processed, commercially available products. Further, this screening method could be applied to other fields that require reliable and sensitive detection of DNA targets.

  18. High-resolution genomic fingerprinting of Campylobacter jejuni and Campylobacter coli by analysis of amplified fragment length polymorphisms

    DEFF Research Database (Denmark)

    Kokotovic, Branko; On, Stephen L.W.

    1999-01-01

    A method for high-resolution genomic fingerprinting of the enteric pathogens Campylobacter jejuni and Campylobacter coli, based on the determination of amplified fragment length polymorphism, is described. The potential of this method for molecular epidemiological studies of these species...... is evaluated with 50 type, reference, and well-characterised field strains. Amplified fragment length polymorphism fingerprints comprised over 60 bands detected in the size range 35-500 bp. Groups of outbreak strains, replicate subcultures, and 'genetically identical' strains from humans, poultry and cattle......, proved indistinguishable by amplified fragment length polymorphism fingerprinting, but were differentiated fi-om unrelated isolates. Previously unknown relationships between three hippurate-negative C. jejuni strains, and two C. coil var, hyoilei strains, were identified. These relationships corresponded...

  19. Volumetric expiratory high-resolution CT of the lung

    International Nuclear Information System (INIS)

    Nishino, Mizuki; Hatabu, Hiroto

    2004-01-01

    We developed a volumetric expiratory high-resolution CT (HRCT) protocol that provides combined inspiratory and expiratory volumetric imaging of the lung without increasing radiation exposure, and conducted a preliminary feasibility assessment of this protocol to evaluate diffuse lung disease with small airway abnormalities. The volumetric expiratory high-resolution CT increased the detectability of the conducting airway to the areas of air trapping (P<0.0001), and added significant information about extent and distribution of air trapping (P<0.0001)

  20. Developing Visual Editors for High-Resolution Haptic Patterns

    DEFF Research Database (Denmark)

    Cuartielles, David; Göransson, Andreas; Olsson, Tony

    2012-01-01

    In this article we give an overview of our iterative work in developing visual editors for creating high resolution haptic patterns to be used in wearable, haptic feedback devices. During the past four years we have found the need to address the question of how to represent, construct and edit high...... resolution haptic patterns so that they translate naturally to the user’s haptic experience. To solve this question we have developed and tested several visual editors...