WorldWideScience

Sample records for high-resolution infrared absorption

  1. High-resolution infrared imaging

    Science.gov (United States)

    Falco, Charles M.

    2010-08-01

    The hands and mind of an artist are intimately involved in the creative process of image formation, intrinsically making paintings significantly more complex than photographs to analyze. In spite of this difficulty, several years ago the artist David Hockney and I identified optical evidence within a number of paintings that demonstrated artists began using optical projections as early as c1425 - nearly 175 years before Galileo - as aids for producing portions of their images. In the course of our work, Hockney and I developed insights that I have been applying to a new approach to computerized image analysis. Recently I developed and characterized a portable high resolution infrared for capturing additional information from paintings. Because many pigments are semi-transparent in the IR, in a number of cases IR photographs ("reflectograms") have revealed marks made by the artists that had been hidden under paint ever since they were made. I have used this IR camera to capture photographs ("reflectograms") of hundreds of paintings in over a dozen museums on three continents and, in some cases, these reflectograms have provided new insights into decisions the artists made in creating the final images that we see in the visible.

  2. Upper limits for stratospheric H2O2 and HOCl from high resolution balloon-borne infrared solar absorption spectra

    Science.gov (United States)

    Larsen, J. C.; Rinsland, C. P.; Goldman, A.; Murcray, D. G.; Murcray, F. J.

    1985-01-01

    Solar absorption spectra from two stratospheric balloon flights have been analyzed for the presence of H2O2 and HOCl absorption in the 1230.0 to 1255.0 per cm region. The data were recorded at 0.02 per cm resolution during sunset with the University of Denver interferometer system on October 27, 1978 and March 23, 1981. Selected spectral regions were analyzed with the technique of nonlinear least squares spectral curve fitting. Upper limits of 0.33 ppbv for H2O2 and 0.36 ppbv for HOCl near 28 km are derived from the 1978 flight data while upper limits of 0.44 ppbv for H2O2 and 0.43 ppbv for HOCl at 29.5 km are obtained from the 1981 flight data.

  3. High resolution infrared acquisitions droning over the LUSI mud eruption.

    Science.gov (United States)

    Di Felice, Fabio; Romeo, Giovanni; Di Stefano, Giuseppe; Mazzini, Adriano

    2016-04-01

    The use of low-cost hand-held infrared (IR) thermal cameras based on uncooled micro-bolometer detector arrays became more widespread during the recent years. Thermal cameras have the ability to estimate temperature values without contact and therefore can be used in circumstances where objects are difficult or dangerous to reach such as volcanic eruptions. Since May 2006 the Indonesian LUSI mud eruption continues to spew boiling mud, water, aqueous vapor, CO2, CH4 and covers a surface of nearly 7 km2. At this locality we performed surveys over the unreachable erupting crater. In the framework of the LUSI Lab project (ERC grant n° 308126), in 2014 and 2015, we acquired high resolution infrared images using a specifically equipped remote-controlled drone flying at an altitude of m 100. The drone is equipped with GPS and an autopilot system that allows pre-programming the flying path or designing grids. The mounted thermal camera has peak spectral sensitivity in LW wavelength (μm 10) that is characterized by low water vapor and CO2 absorption. The low distance (high resolution) acquisitions have a temperature detail every cm 40, therefore it is possible to detect and observe physical phenomena such as thermodynamic behavior, hot mud and fluids emissions locations and their time shifts. Despite the harsh logistics and the continuously varying gas concentrations we managed to collect thermal images to estimate the crater zone spatial thermal variations. We applied atmosphere corrections to calculate infrared absorption by high concentration of water vapor. Thousands of images have been stitched together to obtain a mosaic of the crater zone. Regular monitoring with heat variation measurements collected, e.g. every six months, could give important information about the volcano activity estimating its evolution. A future data base of infrared high resolution and visible images stored in a web server could be a useful monitoring tool. An interesting development will be

  4. High Resolution Wavenumber Standards for the Infrared. (IUPAC Recommendations 1995)

    Science.gov (United States)

    Guelachvili, G.; Birk, M.; Bord, C.; Brault, J.; Brown, L.; Carli, B.; Cole, A.; Evenson, D.; Fayt, A.; Hausamann, D.; hide

    1995-01-01

    The calibration of high resolution infrared spectra is generally more precise than accurate even when they are recorded with Fourier interferometers. In order to improve the consistency of the spectral measurements, an IUPAC project has been undertaken. Its aim was to recommend a selection of spectral lines as wavenumber standards for absolute calibration in the infrared. This paper will report the final recommendations in the spectral range extending from about 4 to about 7000 cm(be).

  5. High resolution mid-infrared spectroscopy based on frequency upconversion

    DEFF Research Database (Denmark)

    Dam, Jeppe Seidelin; Hu, Qi; Tidemand-Lichtenberg, Peter

    2013-01-01

    We present high resolution upconversion of incoherent infrared radiation by means of sum-frequency mixing with a laser followed by simple CCD Si-camera detection. Noise associated with upconversion is, in strong contrast to room temperature direct mid-IR detection, extremely small, thus very faint...

  6. Quantum-state resolved reactive scattering at the gas-liquid interface: F +squalane (C30H62) dynamics via high-resolution infrared absorption of nascent HF(v,J)

    Science.gov (United States)

    Zolot, Alexander M.; Dagdigian, Paul J.; Nesbitt, David J.

    2008-11-01

    Exothermic chemical reaction dynamics at the gas-liquid interface have been investigated by colliding a supersonic beam of F atoms [Ecom=0.7(3)kcal/mol] with a continuously refreshed liquid hydrocarbon (squalane) surface under high vacuum conditions. Absolute HF(v,J) product densities are determined by infrared laser absorption spectroscopy, with velocity distributions along the probe axis derived from high resolution Dopplerimetry. Nascent HF(v ⩽3) products are formed in a highly nonequilibrium (inverted) vibrational distribution [⟨Evib⟩=13.2(2)kcal/mol], reflecting insufficient time for complete thermal accommodation with the surface prior to desorption. Colder, but still non-Boltzmann, rotational state populations [⟨Erot⟩=1.0(1)kcal/mol] indicate that some fraction of molecules directly scatter into the gas phase without rotationally equilibrating with the surface. Nascent HF also recoils from the liquid surface with excess translational energy, resulting in Doppler broadened linewidths that increase systematically with internal HF excitation. The data are consistent with microscopic branching in HF-surface dynamics following the reactive event, with (i) a direct reactive scattering fraction of newly formed product molecules leaving the surface promptly and (ii) a trapping desorption fraction that accommodates rotationally (though still not vibrationally) with the bulk liquid. Comparison with analogous gas phase F +hydrocarbon processes reveals that the liquid acts as a partial "heat sink" for vibrational energy flow on the time scale of the chemical reaction event.

  7. Invited article: High resolution digital camera for infrared reflectography.

    Science.gov (United States)

    Falco, Charles M

    2009-07-01

    This paper describes the characteristics of a high resolution infrared (IR) imaging system operating over the wavelength range of 830-1100 nm, based on a modified 8 Mpixels commercial digital camera, with which nonspecialists can obtain IR reflectograms of works of art in situ in a museum environment. The relevant imaging properties of sensitivity, resolution, noise, and contrast are characterized and the capabilities of this system are illustrated with an example that has revealed important new information about the working practices of a 16th century artist.

  8. High-Resolution Mars Camera Test Image of Moon (Infrared)

    Science.gov (United States)

    2005-01-01

    This crescent view of Earth's Moon in infrared wavelengths comes from a camera test by NASA's Mars Reconnaissance Orbiter spacecraft on its way to Mars. The mission's High Resolution Imaging Science Experiment camera took the image on Sept. 8, 2005, while at a distance of about 10 million kilometers (6 million miles) from the Moon. The dark feature on the right is Mare Crisium. From that distance, the Moon would appear as a star-like point of light to the unaided eye. The test verified the camera's focusing capability and provided an opportunity for calibration. The spacecraft's Context Camera and Optical Navigation Camera also performed as expected during the test. The Mars Reconnaissance Orbiter, launched on Aug. 12, 2005, is on course to reach Mars on March 10, 2006. After gradually adjusting the shape of its orbit for half a year, it will begin its primary science phase in November 2006. From the mission's planned science orbit about 300 kilometers (186 miles) above the surface of Mars, the high resolution camera will be able to discern features as small as one meter or yard across.

  9. THE HIGH-RESOLUTION INFRARED SPECTRUM OF HCl{sup +}

    Energy Technology Data Exchange (ETDEWEB)

    Doménech, J. L.; Herrero, V. J.; Tanarro, I. [Molecular Physics Department, Instituto de Estructura de la Materia (IEM-CSIC), Serrano 123, E-28006 Madrid (Spain); Drouin, B. J. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109-8099 (United States); Cernicharo, J., E-mail: jl.domenech@csic.es [Molecular Astrophysics Group, Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), Sor Juana Inés de la Cruz 3, Cantoblanco, E-28049 Madrid (Spain)

    2016-12-20

    The chloroniumyl cation, HCl{sup +}, has been recently identified in space from Herschel 's spectra. A joint analysis of extensive vis-UV spectroscopy emission data together with a few high-resolution and high-accuracy millimeter-wave data provided the necessary rest frequencies to support the astronomical identification. Nevertheless, the analysis did not include any infrared (IR) vibration–rotation data. Furthermore, with the end of the Herschel mission, IR observations from the ground may be one of the few available means to further study this ion in space. In this work, we provide a set of accurate rovibrational transition wavenumbers, as well as a new and improved global fit of vis-UV, IR, and millimeter-wave spectroscopy laboratory data, that will aid in future studies of this molecule.

  10. Applications of High Resolution Mid-Infrared Spectroscopy for Atmospheric and Environmental Measurements

    Science.gov (United States)

    Roscioli, Joseph R.; McManus, J. Barry; Nelson, David; Zahniser, Mark; Herndon, Scott C.; Shorter, Joanne; Yacovitch, Tara I.; Jervis, Dylan; Dyroff, Christoph; Kolb, Charles E.

    2016-06-01

    For the past 20 years, high resolution infrared spectroscopy has served as a valuable tool to measure gas-phase concentrations of ambient gas samples. We review recent advances in atmospheric sampling using direct absorption high resolution mid-infrared spectroscopy from the perspective of light sources, detectors, and optical designs. Developments in diode, quantum cascade and interband cascade laser technology have led to thermoelectrically-cooled single-mode laser sources capable of operation between 800 wn and 3100 wn, with 10 mW power. Advances in detector and preamplifier technology have yielded thermoelectriocally-cooled sensors capable of room-temperature operation with extremely high detectivities. Finally, novel spectrometer optical designs have led to robust multipass absorption cells capable of >400 m effective pathlength in a compact package. In combination with accurate spectroscopic databases, these developments have afforded dramatic improvements in measurement sensitivity, accuracy, precision, and selectivity. We will present several examples of the applications of high resolution mid-IR spectrometers in real-world field measurements at sampling towers and aboard mobile platforms such as vehicles and airplanes.

  11. High-Resolution X-ray Emission and X-ray Absorption Spectroscopy

    NARCIS (Netherlands)

    Groot, F.M.F. de

    2000-01-01

    In this review, high-resolution X-ray emission and X-ray absorption spectroscopy will be discussed. The focus is on the 3d transition-metal systems. To understand high-resolution X-ray emission and reso-nant X-ray emission, it is first necessary to spend some time discussing the X-ray absorption

  12. High-resolution absorption measurements of NH3 at high temperatures: 2100-5500 cm-1

    Science.gov (United States)

    Barton, Emma J.; Yurchenko, Sergei N.; Tennyson, Jonathan; Clausen, Sønnik; Fateev, Alexander

    2017-03-01

    High-resolution absorption spectra of NH3 in the region 2100-5500 cm-1 at 1027 °C and approximately atmospheric pressure (1045±3 mbar) are measured. An NH3 concentration of 10% in volume fraction is used in the measurements. Spectra are recorded in a high-temperature gas-flow cell using a Fourier Transform Infrared (FTIR) spectrometer at a nominal resolution of 0.09 cm-1. The spectra are analysed by comparison to a variational line list, BYTe, and experimental energy levels determined using the MARVEL procedure. 2308 lines have been assigned to 45 different bands, of which 1755 and 15 have been assigned or observed for the first time in this work.

  13. High-Resolution Structural Monitoring of Ionospheric Absorption Events

    Science.gov (United States)

    2013-07-01

    the Van Allen radiation belts , because artificial enhancements of the radiation belts could have catastrophic impacts on space systems, as well as on...precipitation of beta particles from the radiation belts to lower altitudes; these precipitation events are driven by the dynamics of wave -particle...Array (LWA) to provide a significant riometric capability, in order to search for anomalous absorption events that are associated with radiation belt

  14. The high resolution spectrum of methyltrioxorhenium reinvestigated with new infrared and millimeter-wave measurements

    CERN Document Server

    Asselin, Pierre; Huet, Thérèse; Margulès, Laurent; Motiyenko, Roman; Hendricks, Richard; Tarbutt, Michael; Tokunaga, Sean; Darquié, Benoît

    2016-01-01

    Following our first paper about high resolution spectroscopy of methyltrioxorhenium (MTO) [Stoeffler et al. PCCP, 13, 854, (2011)], the present study reports a deeper investigation of the ground state, and Re=O antisymmetric (nu\\_as) and symmetric (nu\\_s) stretching excited states of both CH3(187Re)O3 and CH3(185Re)O3 isotopologues, thanks to new devices implemented within our consortium. We carry out high resolution millimeter-wave (MMW) and infrared (IR) spectroscopy in room temperature absorption cells, in a pulsed supersonic jet and in a cryogenic buffer gas cell. This collection of sensitive spectrometers enables us to probe both levels of a vibrational transition in low and room temperature gaseous environments. We thus report a new series of measurements providing particularly accurate rotational and rovibrational data for such a large and heavy organometallic molecule that is solid at room temperature.The combination of the new MMW and IR data leads to an improvement of the rovibrational model of MTO:...

  15. High resolution near-infrared electronic spectroscopy of HCBr

    Science.gov (United States)

    Chang, Bor-Chen; Sears, Trevor J.

    1996-08-01

    The rotationally resolved spectrum of the HCBr à 1A″(0,2,0)←X˜ 1A'(0,0,0) Ka=0←1 transition between 12760 and 12850 cm-1 was obtained for the first time at Doppler-limited resolution using a transient frequency-modulation absorption technique. Rotational structure of HC 79Br and HC 81Br was identified and analyzed. The analysis shows R″(C-Br)=1.852 Å and R'(C-Br)=1.749 Å. The observed band indicates a linear-bent transition. This yields an upper limit of approximately 1600 cm-1 for the barrier to linearity above the zero-point energy for the à 1A″ state. Perturbations caused by singlet-triplet interactions were also found in the observed spectrum. The analysis of these perturbations indicates a very low-lying ã 3A″ state.

  16. High-Resolution Infrared Imaging of Young Outflow-Sources

    Science.gov (United States)

    Preibisch, Thomas; Schertl, Dieter; Weigelt, Gerd

    For a better understanding of the mechanisms by which jets and outflows from young stellar objects are generated accelerated and collimated it is essential to look as close as possible to their launching point at the disk/star boundary. High-spatial resolution is therefore of crucial importance for further progress in this field. In this contribution we present recent results from our near-infrared bispectrum speckle interferometry studies of several outflow sources. With a spatial resolution of up to 0.055'' our images have the highest spatial resolution achieved so far for these objects and exhibit previously unseen complex structures. Our results include the identification of two distinct bipolar outflow systems originating simultaneously from the protostar S140 IRS1 the detection of an episodic precessing jet from S140 IRS3 and the discovery of a micro-jet from one of the embedded sources in Mon R2 IRS3. We will also discuss the relation of the observed circumstellar structures to the jets and outflows from the young stellar objects

  17. High resolution near-infrared electronic spectroscopy of HCBr

    Energy Technology Data Exchange (ETDEWEB)

    Chang, B.; Sears, T.J. [Department of Chemistry, Brookhaven National Laboratory, Upton, New York 11973-5000 (United States)

    1996-08-01

    The rotationally resolved spectrum of the HCBr {tilde {ital A}}{sup 1}{ital A}{double_prime}(0,2,0){l_arrow}{tilde {ital X}}{sup 1}{ital A}{prime}(0,0,0) {ital K}{sub {ital a}}=0{l_arrow}1 transition between 12760 and 12850 cm{sup {minus}1} was obtained for the first time at Doppler-limited resolution using a transient frequency-modulation absorption technique. Rotational structure of HC{sup 79}Br and HC{sup 81}Br was identified and analyzed. The analysis shows {ital R}{double_prime}(C{endash}Br)=1.85{sub 2} A and {ital R}{prime}(C{endash}Br)=1.74{sub 9} A. The observed band indicates a linear{endash}bent transition. This yields an upper limit of approximately 1600 cm{sup {minus}1} for the barrier to linearity above the zero-point energy for the {tilde {ital A}}{sup 1}{ital A}{double_prime} state. Perturbations caused by singlet{endash}triplet interactions were also found in the observed spectrum. The analysis of these perturbations indicates a very low-lying {tilde {ital a}}{sup 3}{ital A}{double_prime} state. {copyright} {ital 1996 American Institute of Physics.}

  18. CRIRES+ : A Cross-dispersed High-resolution Infrared Spectrograph for ESO's VLT

    Science.gov (United States)

    Hatzes, Artie; CRIRES+ Team

    2017-06-01

    CRIRES+ is a major upgrade to the former CRyogenic high resolution Infra-Red Echelle Spectrograph of ESO's 8.2m Very Large Telescope. The major science drivers for this upgrade are the confirmation and characterization (e.g. determination of the mass) of rocky planets in the so-called habitable zone of M-dwarf stars via radial velocity measurements, the characterization of exoplanet atmospheres, and the study of magnetic fields in low mass stars and brown dwarfs. CRIRES+ will maintain the high resolving power (R = 100,000) of its predecessor in the Y, J, H, K, L and M bands, but it will include the following improvements: 1) CRIRES+ will be cross-dispersed recording 8-9 diffraction orders at a time, increasing the observing efficiency approximately by an order of magnitude. 2) New detectors with better sensitivity and cosmetics over the old devices. 3) A new gas absorption cell for improved wavelength calibration. This along with the increased wavelength coverage should yield a radial velocity measurement precision to better than 2-5 m/s in K-band. In addition, in Y to K bands, a new Fabry-Perot etalon device will ensure a precision of 100 m/s. 4) A polarimetric unit which will measure both circular and linear polarization. We present the current status and schedule of the project. The instrument is currently scheduled to be installed at the telescope beginning 2018.

  19. High resolution infrared synchrotron study of CH2D81Br: ground state constants and analysis of the ν5, ν6 and ν9 fundamentals

    DEFF Research Database (Denmark)

    Baldacci, A.; Stoppa, P.; Visinoni, R.

    2012-01-01

    The high resolution infrared absorption spectrum of CH2D81Br has been recorded by Fourier transform spectroscopy in the range 550–1075 cm1, with an unapodized resolution of 0.0025 cm-1, employing a synchrotron radiation source. This spectral region is characterized by the ν6 (593.872 cm-1), ν5 (768...

  20. Evolution of INO Uncooled Infrared Cameras Towards Very High Resolution Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Bergeron, Alain; Jerominek, Hubert; Chevalier, Claude; Noc, Loic Le; Tremblay, Bruno; Alain, Christine; Martel, Anne; Blanchard, Nathalie; Morissette, Martin; Mercier, Luc; Gagnon, Lucie; Couture, Patrick; Desnoyers, Nichola; Demers, Mathieu; Lamontagne, Frederic; Levesque, Frederic; Verreault, Sonia; Duchesne, Francois; Lambert, Julie; Girard, Marc, E-mail: alain.bergeron@ino.ca [INO, 2740 rue Einstein, Quebec City, QC, G1P 4S4 (Canada)

    2011-02-01

    Along the years INO has been involved in development of various uncooled infrared devices. Todays, the infrared imagers exhibit good resolutions and find their niche in numerous applications. Nevertheless, there is still a trend toward high resolution imaging for demanding applications. At the same time, low-resolution for mass market applications are sought for low-cost imaging solutions. These two opposite requirements reflect the evolution of infrared cameras from the origin, when only few pixel-count FPAs were available, to megapixel-count FPA of the recent years. This paper reviews the evolution of infrared camera technologies at INO from the uncooled bolometer detector capability up to the recent achievement of 1280x960 pixels infrared camera core using INO's patented microscan technology.

  1. [Determination of sulfur in plant using a high-resolution continuum source atomic absorption spectrometer].

    Science.gov (United States)

    Wang, Yu; Li, Jia-xi

    2009-05-01

    A method for the analysis of sulfur (S) in plant by molecular absorption of carbon monosulfide (CS) using a high-resolution continuum source atomic absorption spectrometer (CS AAS) with a fuel-rich air/acetylene flame has been devised. The strong CS absorption band was found around 258 nm. The half-widths of some absorption bands were of the order of picometers, the same as the common atomic absorption lines. The experimental procedure in this study provided optimized instrumental conditions (the ratio of acetylene to air, the burner height) and parameters, and researched the spectral interferences and chemical interferences. The influence of the organic solvents on the CS absorption signals and the different digestion procedures for the determination of sulfur were also investigated. The limit of detection achieved for sulfur was 14 mg x L(-1), using the CS wavelength of 257. 961 nm and a measurement time of 3 s. The accuracy and precision were verified by analysis of two plant standard reference materials. The major applications of this method have been used for the determination of sulfur in plant materials, such as leaves. Compared to the others, this method for the analysis of sulfur is rapid, easy and simple for sulfur determination in plant.

  2. Sensitivity of MENA Tropical Rainbelt to Dust Shortwave Absorption: A High Resolution AGCM Experiment

    KAUST Repository

    Bangalath, Hamza Kunhu

    2016-06-13

    Shortwave absorption is one of the most important, but the most uncertain, components of direct radiative effect by mineral dust. It has a broad range of estimates from different observational and modeling studies and there is no consensus on the strength of absorption. To elucidate the sensitivity of the Middle East and North Africa (MENA) tropical summer rainbelt to a plausible range of uncertainty in dust shortwave absorption, AMIP-style global high resolution (25 km) simulations are conducted with and without dust, using the High-Resolution Atmospheric Model (HiRAM). Simulations with dust comprise three different cases by assuming dust as a very efficient, standard and inefficient absorber. Inter-comparison of these simulations shows that the response of the MENA tropical rainbelt is extremely sensitive to the strength of shortwave absorption. Further analyses reveal that the sensitivity of the rainbelt stems from the sensitivity of the multi-scale circulations that define the rainbelt. The maximum response and sensitivity are predicted over the northern edge of the rainbelt, geographically over Sahel. The sensitivity of the responses over the Sahel, especially that of precipitation, is comparable to the mean state. Locally, the response in precipitation reaches up to 50% of the mean, while dust is assumed to be a very efficient absorber. Taking into account that Sahel has a very high climate variability and is extremely vulnerable to changes in precipitation, the present study suggests the importance of reducing uncertainty in dust shortwave absorption for a better simulation and interpretation of the Sahel climate.

  3. High resolution absorption coefficients for Freon-12. [by using tunable diode laser spectroscopy

    Science.gov (United States)

    Hoell, J. M.; Bair, C. H.; Williams, B.; Harward, C.

    1979-01-01

    The ultra high resolution absorption coefficients of the Q-branch of Freon-12 obtained with tunable diode laser spectroscopy are presented. Continuous spectra are presented from 1155/cm to 1163/cm, and absolute wavelength calibration was obtained using SO2 spectra as a standard and a 5 cm Ge etalon for relative calibration between SO2 lines. The Freon-12 data obtained at a pressure of 0.05 torr showed a rich and highly structured spectra, but with the exception of three isolated features, collisional broadening reduces the spectra to a structureless continuum for nitrogen pressures greater than 20 torr. The spectra at 1161/cm continue to exhibit structure at atmospheric pressure.

  4. Nimbus-2 High-Resolution Infrared Radiometer (HRIR) Imagery of Cloud Cover at Night on 70 mm Film V001

    Data.gov (United States)

    National Aeronautics and Space Administration — The HRIRN2IM data product contains scanned negatives of photofacsimile 70mm film strips from the Nimbus-2 High-Resolution Infrared Radiometer. The images contain...

  5. Nimbus-1 High-Resolution Infrared Radiometer (HRIR) Imagery of Cloud Cover at Night on 70 mm Film V001

    Data.gov (United States)

    National Aeronautics and Space Administration — The HRIRN1IM data product contains scanned negatives of photofacsimile 70mm film strips from the Nimbus-1 High-Resolution Infrared Radiometer. The images contain...

  6. Nimbus-6 High Resolution Infrared Radiometer (HIRS) Level 1 Calibrated Radiances for the Global Atmospheric Research Program (GARP) V001

    Data.gov (United States)

    National Aeronautics and Space Administration — The Nimbus-6 High Resolution Infrared Radiometer (HIRS) Level 1 Calibrated Radiances for the Global Atmospheric Research Program (GARP) data product contains daily...

  7. High-Resolution Infrared Thermography of Esophageal Temperature During Radiofrequency Ablation of Atrial Fibrillation.

    Science.gov (United States)

    Daly, Matthew G; Melton, Iain; Roper, Graham; Lim, Gary; Crozier, Ian G

    2018-02-01

    Catheter ablation for atrial fibrillation has potential to cause esophageal thermal injury. Esophageal temperature monitoring during ablation is commonly used; however, it has not eliminated thermal injuries, possibly because conventional sensors have poor spatial sampling and response characteristics. To enhance understanding of temperature dynamics that may underlie esophageal injury, we tested a high-resolution, intrabody, infrared thermography catheter to continuously image esophageal temperatures during ablation. Atrial fibrillation ablation patients were instrumented with a flexible, 9F infrared temperature catheter inserted nasally (n=8) or orally (n=8) into the esophagus adjacent to the left atrium. Ablation was performed while the infrared catheter continuously recorded surface temperatures from 7680 points per second circumferentially over a 6-cm length of esophagus. Physicians were blinded to temperature data. Endoscopy was performed within 24 hours to document esophageal injury. Thermal imaging showed that most patients (10/16) experienced ≥1 events where peak esophageal temperature was >40°C. Three patients experienced temperatures >50°C; and 1 experienced >60°C. Analysis of temperature data for each subject's maximum thermal event revealed high gradients (2.3±1.4°C/mm) and rates of change (1.5±1.3°C/s) with an average length of esophageal involvement of 11.0±5.4 mm. Endoscopy identified 3 distinct thermal lesions, all in patients with temperatures >50°C; all resolved within 2 weeks. Infrared thermography provided dynamic, high-resolution mapping of esophageal temperatures during cardiac ablation. Esophageal thermal injury occurred with temperatures >50°C and was associated with large spatiotemporal gradients. Additional studies are warranted to determine the relationships between thermal parameters and esophageal injury. © 2018 American Heart Association, Inc.

  8. Reconstruction of the projected electrostatic potential in high-resolution transmission electron microscopy including phenomenological absorption

    Energy Technology Data Exchange (ETDEWEB)

    Lentzen, M., E-mail: m.lentzen@fz-juelich.de [Institute of Solid State Research and Ernst Ruska Centre for Microscopy, Research Centre Juelich, 52425 Juelich (Germany)

    2010-04-15

    The projected electrostatic potential is reconstructed from a high-resolution exit wave function through a maximum-likelihood refinement algorithm. The theory of an already existing algorithm is extended to include the effects of phenomenological absorption. Various tests with a simulated exit wave function of YBa{sub 2}Cu{sub 3}O{sub 7} in [1 0 0] orientation used as a source show that the reconstruction is successful, regardless of the strongly differing scattering power of atomic columns, even for the case of strong dynamical diffraction. Object thickness, the amount of absorption, and a residual defocus aberration of the wave function-parameters often unknown or difficult to measure in experiments-can be determined accurately with the aid of the refinement algorithm in a self-consistent way. For the next generation of instruments, with information limits of 0.05 nm and better, reconstruction accuracies of better than 2% can be expected, which is sufficient to measure and display the structural and chemical information with the aid of an accurate projected potential map.

  9. Probing Conditions at Ionized/Molecular Gas Interfaces With High Resolution Near-Infrared Spectroscopy

    Science.gov (United States)

    Kaplan, Kyle Franklin

    2017-08-01

    Regions of star formation and star death in our Galaxy trace the cycle of gas and dust in the interstellar medium (ISM). Gas in dense molecular clouds collapses to form stars, and stars at the end of their lives return the gas that made up their outer layers back out into the Galaxy. Hot stars generate copious amounts of ultraviolet photons which interact with the surrounding medium and dominate the energetics, ionization state, and chemistry of the gas. The interface where molecular gas is being dissociated into neutral atomic gas by far-UV photons from a nearby hot source is called a photodissociation or photon-dominated region (PDR). PDRs are found primarily in star forming regions where O and B stars serve as the source of UV photons, and in planetary nebulae where the hot core of the dying star acts as the UV source. The main target of this dissertation is molecular hydrogen (H2), the most abundant molecule in the Universe, made from hydrogen formed during the Big Bang. H2 makes up the overwhelming majority of molecules found in the ISM and in PDRs. Far-UV radiation absorbed by H2 will excite an electron in the molecule. The molecule then either dissociates ( 10% of the time; Field et al. 1966) or decays into excited rotational and vibrational ("rovibrational") levels of the electronic ground state. These excited rovibrational levels then decay via a radiative cascade to the ground rovibrational state (v = 0, J = 0), giving rise to a large number of transitions observable in emission from the mid-IR to the optical (Black & van Dishoeck, 1987). These transitions provide an excellent probe of the excitation and conditions within the gas. These transitions are also observed in warm H2, such as in shocks, where collisions excite H2 to higher rovibrational levels. High resolution near-infrared spectroscopy, with its ability to see through dust, and avoid telluric absorption and emission, serves as an effective tool to detect emission from ions, atoms, and molecules

  10. High resolution infrared spectroscopy of carbon dioxide clusters up to (CO2)13

    OpenAIRE

    Norooz Oliaee, J.; Dehghany, M.; McKellar, A. R. W.; Moazzen-Ahmadi, N.

    2011-01-01

    Thirteen specific infrared bands in the 2350 cm−1 region are assigned to carbon dioxide clusters, (CO2)N, with N = 6, 7, 9, 10, 11, 12 and 13. The spectra are observed in direct absorption using a tuneable infrared laser to probe a pulsed supersonic jet expansion of a dilute mixture of CO2 in He carrier gas. Assignments are aided by cluster structure calculations made using two reliable CO2 intermolecular potential functions. For (CO2)6, two highly symmetric isomers are observed, one with S6 ...

  11. High-Resolution IR Absorption Spectroscopy of Polycyclic Aromatic Hydrocarbons: The Realm of Anharmonicity

    Science.gov (United States)

    Maltseva, Elena; Petrignani, Annemieke; Candian, Alessandra; Mackie, Cameron J.; Huang, Xinchuan; Lee, Timothy J.; Tielens, Alexander G. G. M.; Oomens, Jos; Buma, Wybren Jan

    2016-01-01

    We report on an experimental and theoretical investigation of the importance of anharmonicity in the 3 micrometers CH stretching region of Polycyclic Aromatic Hydrocarbon (PAH) molecules. We present mass-resolved, high-resolution spectra of the gas-phase cold ((is) approximately 4K) linear PAH molecules naphthalene, anthracene, and tetracene. The measured IR spectra show a surprisingly high number of strong vibrational bands. For naphthalene, the observed bands are well separated and limited by the rotational contour, revealing the band symmetries. Comparisons are made to the harmonic and anharmonic approaches of the widely used Gaussian software. We also present calculated spectra of these acenes using the computational program SPECTRO, providing anharmonic predictions enhanced with a Fermi-resonance treatment that utilizes intensity redistribution. We demonstrate that the anharmonicity of the investigated acenes is strong, dominated by Fermi resonances between the fundamental and double combination modes, with triple combination bands as possible candidates to resolve remaining discrepancies. The anharmonic spectra as calculated with SPECTRO lead to predictions of the main modes that fall within 0.5% of the experimental frequencies. The implications for the Aromatic Infrared Bands, specifically the 3-m band are discussed.

  12. Determination of sulfur in food by high resolution continuum source flame molecular absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Zambrzycka, Elżbieta; Godlewska-Żyłkiewicz, Beata, E-mail: bgodlew@uwb.edu.pl

    2014-11-01

    In the present work, a fast, simple and sensitive analytical method for determination of sulfur in food and beverages by high resolution continuum source flame molecular absorption spectrometry was developed. The determination was performed via molecular absorption of carbon monosulfide, CS. Different CS rotational lines (257.959 nm, 258.033 nm, 258.055 nm), number of pixels and types of standard solution of sulfur, namely: sulfuric acid, sodium sulfate, ammonium sulfate, sodium sulfite, sodium sulfide, DL-cysteine, and L-cystine, were studied in terms of sensitivity, repeatability of results as well as limit of detection and limit of quantification. The best results were obtained for measurements of absorption of the CS molecule at 258.055 nm at the wavelength range covering 3 pixels and DL-cysteine in 0.2 mol L{sup −1} HNO{sub 3} solution as a calibration standard. Under optimized conditions the limit of detection and the limit of quantification achieved for sulfur were 10.9 mg L{sup −1} and 36.4 mg L{sup −1}, respectively. The repeatability of the results expressed as relative standard deviation was typically < 5%. The accuracy of the method was tested by analysis of digested biological certified reference materials (soya bean flour, corn flour and herbs) and recovery experiment for beverage samples with added known amount of sulfur standard. The recovery of analyte from such samples was in the range of 93–105% with the repeatability in the range of 4.1–5.0%. The developed method was applied for the determination of sulfur in milk (194 ± 10 mg kg{sup −1}), egg white (2188 ± 29 mg kg{sup −1}), mineral water (31.0 ± 0.9 mg L{sup −1}), white wine (260 ± 4 mg L{sup −1}) and red wine (82 ± 2 mg L{sup −1}), as well as in sample rich in ions, such as bitter mineral water (6900 ± 100 mg L{sup −1}). - Highlights: • HR-CS FMAS technique was used for sulfur measurement via molecular absorption of carbon monosulfide, CS. • Organic DL

  13. High-Resolution Infrared Imaging and Polarimetry plus Spectroscopy of Evolved Red and Yellow Supergiants

    Science.gov (United States)

    Gordon, Michael Scott; Humphreys, Roberta; Jones, Terry J.; Gehrz, Robert D.

    2018-01-01

    To what extent mass loss and periods of enhanced stellar outflow can influence the terminal state of the most massive stars remains an outstanding question in the fields of stellar physics, chemical enrichment of the Local Universe, andsupernova research. For my dissertation, I focus on characterizing the stellar ejecta around supergiants through a combination of observing techniques. Using the LBT, MMT, IRTF, VLT, and SOFIA observatories, I have performed high-resolution imaging, spectroscopy, and polarimetry—methods that provide us with keen insight on mass-loss histories and 3D morphology of the Local Group's most fascinating stars.Based on spectroscopic evidence for mass loss in the optical and the presence ofcircumstellar (CS) dust in infrared SEDs, we find that 30%–40% of observed yellow supergiants in M31 and M33 are likely in a post-RSG state. We also presentnear-IR spectra from IRTF/SPeX of optically-obscured RSGs in M33. These IR-bright sources likely have some of the highest mass-loss rates and are self-obscured in the optical by their own CS ejecta. For Galactic red supergiants (RSGs), we are able to observe the gas and CS dust ejecta both close in to the central star and at larger distances. The resulting radial profiles are valuable probes on timescale for the ejecta when combined with radiative-transfer models. We find evidence for both variable/high mass-loss events and constant mass loss over the last few thousand years. Finally, we discuss the use of high-resolution imaging polarimetry with VLT/NACO of two co-eval RSG clusters toward the Galactic center. The resulting polarized intensity images in the near-infrared provide unprecedented spatial and contrast resolution of the scattered light from extended nebular material.

  14. High Resolution Infrared Spectroscopy in Astronomy Proceedings of an ESO Workshop Held at Garching, Germany, 18-21 November 2003

    CERN Document Server

    Käufl, Hans Ulrich; Moorwood, Alan F. M

    2005-01-01

    Two specialized new instruments for ESO's VLT, VISIR and CRIRES, spawned the idea for this workshop. CRIRES is a dedicated very high resolution infrared spectrograph; VISIR features a high resolution spectroscopic mode. Together, the instruments combine the sensitivity of an 8m-telescope with the now well-established reliability of VLT-facility instruments. High resolution here means that lines in cool stellar atmospheres and HII-regions can be resolved. The astrophysical topics discussed in this rather specialized workshop range from the inner solar system to active galactic nuclei. There are many possibilities for new discoveries with these instruments, but the unique capability, which becomes available through high-resolution infrared spectroscopy, is the observation of molecular rotational-vibrational transitions in many astrophysical environments. Particularly interesting and surprising in this context, many papers on modeling and laboratory spectroscopy at the workshop appear to indicate that astronomic...

  15. Multisensor Fusion of Landsat Images for High-Resolution Thermal Infrared Images Using Sparse Representations

    Directory of Open Access Journals (Sweden)

    Hong Sung Jin

    2017-01-01

    Full Text Available Land surface temperature (LST is an important parameter in the analysis of climate and human-environment interactions. Landsat Earth observation satellite data including a thermal band have been used for environmental research and applications; however, the spatial resolution of this thermal band is relatively low. This study investigates an efficient method of fusing Landsat panchromatic and thermal infrared images using a sparse representation (SR technique. The application of SR is used for the estimation of missing details of the available thermal infrared (TIR image to enhance its spatial features. First, we propose a method of building a proper dictionary considering the spatial resolution of the original thermal image. Second, a sparse representation relation between low- and high-resolution images is constructed in terms of the Landsat spectral response. We then compare the fused images created with different sampling factors and patch sizes. The results of both qualitative and quantitative evaluation show that the proposed method improves spatial resolution and preserves the thermal properties of basic LST data for use with environmental problems.

  16. Physical Properties of T Dwarfs Inferred from High-Resolution Near-Infrared Spectra

    Science.gov (United States)

    Rice, Emily L.; Barman, T. S.; McLean, I. S.; Kirkpatrick, J. D.

    2010-01-01

    T dwarfs are ideal laboratories for understanding cool, complex atmospheres and calibrating low-mass evolutionary models in preparation for spectral studies of exoplanetary atmospheres. We present the expanded sample of T dwarfs from the NIRSPEC Brown Dwarf Spectroscopic Survey (BDSS). High-resolution near-infrared spectra from the cross-dispersed echelle spectrometer NIRSPEC on Keck II provide an unequaled combination of resolving power and wavelength coverage for detailed study of these intrinsically faint objects. The sample of 14 objects covers spectral types from T0 to T7.5, including two unresolved binaries and two peculiar objects. Physical properties of the T dwarfs are inferred from comparison of the observed spectra with synthetic spectra from PHOENIX "cond" model atmospheres, in which dust opacity is removed. We estimate effective temperature, surface gravity, radial and projected rotational velocity for the targets and compare to previously derived quantities. Furthermore we identify successes and deficiencies in the synthetic spectra, particularly in the reproduction of T0-T4 spectra.

  17. Multi-Sensor Fusion of Infrared and Electro-Optic Signals for High Resolution Night Images

    Directory of Open Access Journals (Sweden)

    Victor Lawrence

    2012-07-01

    Full Text Available Electro-optic (EO image sensors exhibit the properties of high resolution and low noise level at daytime, but they do not work in dark environments. Infrared (IR image sensors exhibit poor resolution and cannot separate objects with similar temperature. Therefore, we propose a novel framework of IR image enhancement based on the information (e.g., edge from EO images, which improves the resolution of IR images and helps us distinguish objects at night. Our framework superimposing/blending the edges of the EO image onto the corresponding transformed IR image improves their resolution. In this framework, we adopt the theoretical point spread function (PSF proposed by Hardie et al. for the IR image, which has the modulation transfer function (MTF of a uniform detector array and the incoherent optical transfer function (OTF of diffraction-limited optics. In addition, we design an inverse filter for the proposed PSF and use it for the IR image transformation. The framework requires four main steps: (1 inverse filter-based IR image transformation; (2 EO image edge detection; (3 registration; and (4 blending/superimposing of the obtained image pair. Simulation results show both blended and superimposed IR images, and demonstrate that blended IR images have better quality over the superimposed images. Additionally, based on the same steps, simulation result shows a blended IR image of better quality when only the original IR image is available.

  18. High-Resolution Infrared Spectroscopic Observations of the Upper Scorpius Eclipsing Binary EPIC 203868608

    Science.gov (United States)

    Johnson, Marshall C.; Mace, Gregory N.; Kim, Hwihyun; Kaplan, Kyle; McLane, Jacob; Sokal, Kimberly R.

    2017-06-01

    EPIC 203868608 is a source in the ~10 Myr old Upper Scorpius OB association. Using K2 photometry and ground-based follow-up observations, David et al. (2016) found that it consists of two brown dwarfs with a tertiary object at a projected separation of ~20 AU; the former objects appear to be a double-lined eclipsing binary with a period of 4.5 days. This is one of only two known eclipsing SB2s where both components are below the hydrogen-burning limit. We present additional follow-up observations of this system from the IGRINS high-resolution near-infrared spectrograph at McDonald Observatory. Our measured radial velocities do not follow the orbital solution presented by David et al. (2016). Instead, our combined IGRINS plus literature radial velocity dataset appears to indicate a period significantly different than that of the eclipsing binary obvious from the K2 light curve. We will discuss possible scenarios to account for the conflicting observations of this system.

  19. Infrared absorption spectroscopy and chemical kinetics of free radicals

    Energy Technology Data Exchange (ETDEWEB)

    Curl, R.F.; Glass, G.P. [Rice Univ., Houston, TX (United States)

    1993-12-01

    This research is directed at the detection, monitoring, and study of chemical kinetic behavior by infrared absorption spectroscopy of small free radical species thought to be important intermediates in combustion. During the last year, infrared kinetic spectroscopy using excimer laser flash photolysis and color-center laser probing has been employed to study the high resolution spectrum of HCCN, the rate constant of the reaction between ethynyl (C{sub 2}H) radical and H{sub 2} in the temperature region between 295 and 875 K, and the recombination rate of propargyl (CH{sub 2}CCH) at room temperature.

  20. High Resolution Infrared Radiative Transfer of Earth-like planets Influenced by Multiple Clouds

    Science.gov (United States)

    Vasquez, Mayte; Schreier, Franz; Trautmann, Thomas; Rauer, Heike; Kitzmann, Daniel; Patzer, A. B. C.; Gimeno Garc&ía, Sebastián.

    2012-07-01

    Background:, The emission spectrum of the modern Earth around different types of stars has been modeled in order to study the effects of different incident stellar radiation in the atmosphere. The Earth-like planetary spectra have also been studied in the presence of clouds. Clouds have an impact on the radiative transfer in planetary atmospheres by changing the spectra (intensities and shapes) due to extinction events (scattering and absorption). Thereby, they can influence the atmospheric and surface temperatures and can also generate false-negative biomarker signatures. Methods:, The spectra of Earth-like have been modeled using a line-by-line radiative transfer model coupled with a multiple scattering solver. The atmospheres of these planets were calculated using a convective climate model taking as reference the atmospheric profile from the modern Earth. All main molecular bands found in the thermal region (H2O, CO2, N2O, CH4 and O3) were analyzed at high resolution in order to assess their detectability in the presence of low (water) and high-level (ice) clouds for different percent coverage. Results:, The resulting calculations indicate that the modern Earth spectrum for a cloud-free atmosphere changes in the presence of different stellar types. The pressure-temperature profile and the molecular concentrations of the Earth were altered. In the presence of clouds, the atmospheric temperatures were modified as well. The water cloud cooled down the surface and tropospheric temperatures of the planets while the ice cloud warmed them up. The presence of clouds also decreased the depth of the absorption bands and modified their shapes, consequently producing a false-negative detection of some of the bands. Keywords:, radiation, planets, atmospheres, clouds, aerosols, molecules, scattering, habitability, modeling.

  1. High-resolution infrared spectrum of triacetylene: The ν5 state revisited and new vibrational states

    Science.gov (United States)

    Doney, K. D.; Zhao, D.; Linnartz, H.

    2015-10-01

    New data are presented that follow from a high-resolution survey, from 3302 to 3352 cm-1, through expanding acetylene plasma, and covering the Csbnd H asymmetric (ν5) fundamental band of triacetylene (HC6H). Absorption signals are recorded using continuous wave cavity ring-down spectroscopy (cw-CRDS). A detailed analysis of the resulting spectra allows revisiting the molecular parameters of the ν5 fundamental band in terms of interactions with a perturbing state, which is observed for the first time. Moreover, four fully resolved hot bands (501 1011, 501 1111, 501 1311, and 101 801 1110), with band origins at 3328.5829(2), 3328.9994(2), 3328.2137(2) and 3310.8104(2) cm-1, respectively, are reported for the first time. These involve low lying bending vibrations that have been studied previously, which guarantees unambiguous identifications. Combining available data allows to derive accurate molecular parameters, both for the ground state as well as the excited states involved in the bands.

  2. High-resolution IR absorption spectroscopy of polycyclic aromatic hydrocarbons: the realm of anharmonicity

    NARCIS (Netherlands)

    Maltseva, E.; Petrignani, A.; Candian, A.; Mackie, C.J.; Huang, X.; Lee, T.J.; Tielens, A.G.G.M.; Oomens, J.; Buma, W.J.

    2015-01-01

    We report on an experimental and theoretical investigation of the importance of anharmonicity in the 3-μm CH stretching region of polycyclic aromatic hydrocarbon (PAH) molecules. We present mass-resolved, high-resolution spectra of the gas-phase cold (∼4K) linear PAH molecules naphthalene,

  3. The High Resolution Far-Infrared Spectrum of Methane at the Soleil Synchrotron

    Science.gov (United States)

    Boudon, V.; Pirali, O.; Roy, P.; Manceron, L.; Vander Auwera, J.

    2009-06-01

    As a tetrahedral molecule, methane has no permanent dipole moment. The spectrum of this molecule, however, displays faint absorption lines in the THz region, due to centrifugal distorsion effects. This is important for planetary applications since this region is used to measure methane concentration in some planetary atmospheres, in particular in the case of Titan. Up to now, all measurements were relying on some old low resolution spectra Even if these results have been reexamined recently, it seemed highly desirable to obtain much more precise laboratory data. The high-intensity synchrotron radiation, combined with a 150 m optical path in a White cell and a Bruker IFS 125 HR FTIR spectrometer at the AILES beamline of SOLEIL, enabled us to record this very weak spectrum at high resolution for the first time. Spectra were recorded at 9.91, 20, 50 and 100 mbar pressure with a resolution of 0.0011, 0.002, 0.005 and 0.01 cm^{-1}, respectively. The rotational clusters are fully resolved and the good signal-to-noise ratio should enable precise measurement of transition intensities, yielding an accurate determination of the dipole moment derivative. Such results should allow a better determination of CH_4 concentration in planetary objects. A. Coustenis, R. K. Achterberg, B. J. Conrath et al., Icarus 189, 35-62 (2007). M. Oldani, M. Andrist, A. Bauder and A. G. Robiette, J. Mol. Spectrosc., 110, 95-105 (1985). E. H. Wishnow, G. S. Orton, I. Ozier and H. P. Gush, J. Quant. Spectrosc. Radiat. Transfer 103, 102-117 (2007).

  4. High resolution infrared spectroscopy of carbon dioxide clusters up to (CO2)13.

    Science.gov (United States)

    Norooz Oliaee, J; Dehghany, M; McKellar, A R W; Moazzen-Ahmadi, N

    2011-07-28

    Thirteen specific infrared bands in the 2350 cm(-1) region are assigned to carbon dioxide clusters, (CO(2))(N), with N = 6, 7, 9, 10, 11, 12 and 13. The spectra are observed in direct absorption using a tuneable infrared laser to probe a pulsed supersonic jet expansion of a dilute mixture of CO(2) in He carrier gas. Assignments are aided by cluster structure calculations made using two reliable CO(2) intermolecular potential functions. For (CO(2))(6), two highly symmetric isomers are observed, one with S(6) symmetry (probably the more stable form), and the other with S(4) symmetry. (CO(2))(13) is also symmetric (S(6)), but the remaining clusters are asymmetric tops with no symmetry elements. The observed rotational constants tend to be slightly (≈2%) smaller than those from the predicted structures. The bands have increasing vibrational blueshifts with increasing cluster size, similar to those predicted by the resonant dipole-dipole interaction model but significantly larger in magnitude. © 2011 American Institute of Physics

  5. High-resolution continuum source electrothermal atomic absorption spectrometry - An analytical and diagnostic tool for trace analysis

    Energy Technology Data Exchange (ETDEWEB)

    Welz, Bernhard [Instituto de Quimica, Departamento de Quimica Analitica, Universidade Federal da Bahia, Campus Universitario de Ondina, 40170-290 Salvador - BA (Brazil); Departamento de Quimica, Universidade Federal de Santa Catarina, 88040-900 Florianopolis - SC (Brazil)], E-mail: w.bernardo@terra.com.br; Borges, Daniel L.G.; Lepri, Fabio G. [Departamento de Quimica, Universidade Federal de Santa Catarina, 88040-900 Florianopolis - SC (Brazil); Vale, Maria Goreti R. [Instituto de Quimica, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves 9500, 91501-970 Porto Alegre - RS (Brazil); Heitmann, Uwe [ISAS - Institute for Analytical Sciences, Department of Interface Spectroscopy, Albert-Einstein-Str. 9, 12489 Berlin (Germany)

    2007-09-15

    The literature about applications of high-resolution continuum source atomic absorption spectrometry (HR-CS AAS) with electrothermal atomization is reviewed. The historic development of HR-CS AAS is briefly summarized and the main advantages of this technique, mainly the 'visibility' of the spectral environment around the analytical line at high resolution and the unequaled simultaneous background correction are discussed. Simultaneous multielement CS AAS has been realized only in a very limited number of cases. The direct analysis of solid samples appears to have gained a lot from the special features of HR-CS AAS, and the examples from the literature suggest that calibration can be carried out against aqueous standards. Low-temperature losses of nickel and vanadyl porphyrins could be detected and avoided in the analysis of crude oil due to the superior background correction system. The visibility of the spectral environment around the analytical line revealed that the absorbance signal measured for phosphorus at the 213.6 nm non-resonance line without a modifier is mostly due to the PO molecule, and not to atomic phosphorus. The future possibility to apply high-resolution continuum source molecular absorption for the determination of non-metals is discussed.

  6. Masterpieces unmasked: New high-resolution infrared cameras produce rich, detailed images of artwork, and create new controversies

    CERN Multimedia

    Marshall, J

    2002-01-01

    Luca Pezzati is a physicist who heads a group called Art Diagnostics, which is a part of the Opificio delle Pietre Dure, an institute devoted to the research and conservation of artworks in Italy. Pezzati and his group use high-resolution infrared scanning device to produce colour images of what lies below the surface of paintings. Their scanner is able to produce the best-known quality of images without harming the painting under examination (1 page).

  7. HIGH-RESOLUTION FOURIER TRANSFORM INFRARED SPECTRUM OF THE ν2 + ν12 BAND OF ETHYLENE (12C2H4)

    Science.gov (United States)

    Lebron, G. B.; Tan, T. L.

    2013-09-01

    The high-resolution Fourier transform infrared absorption spectrum of the ν2 + ν12 combination band of normal ethylene (12C2H4) in the 3050-3105 cm-1 region was recorded at a resolution of 0.0063 cm-1 and at an ambient temperature of 296 K. Upper state rovibrational analysis was carried out using a standard Watson's Hamiltonian in asymmetric reduction in Ir representation. The band center, rotational constants and centrifugal distortion constants up to quartic terms of the upper ν2 + ν12 = 1 state were determined from the final fit that included 102 infrared transitions. The root-mean-square deviation of the fit was 0.000729 cm-1.

  8. Sensitivity of tropical rainbelt over Africa and Middle East to dust shortwave absorption: Experiments using a high resolution AGCM

    KAUST Repository

    Bangalath, Hamza Kunhu

    2015-04-01

    Response of the rainbelt over Africa to dust direct radiative forcing has been an area of lively debate and is a subject of ongoing research. Previous modeling studies have contrasting results producing different amplitudes or even signs of responses. Uncertainties in the dust radiative forcing are thought to be the major cause of discrepancies in the simulated responses among various studies. The imaginary part of mineral dust shortwave refractive index, which defines the dust absorptivity, has a wide range of values estimated from various observational and modeling studies, as it depends on dust chemical composition and mineralogy. Balkanski et al. (2007) estimated dust shortwave refractive indices by assuming 3 different hematite contents, 0.9%, 1.5% and 2.7% by volume, which corresponds to inefficient, standard, and very efficient dust shortwave absorption, respectively. To investigate the sensitivity of the position and intensity of the tropical rainbelt over Africa and its extension to the Arabian Peninsula to dust shortwave absorption, we have conducted ensembles of numerical simulations for each of the three dust absorptivity scenarios using a high resolution Atmospheric General Circulation Model (AGCM), GFDL\\'s High Resolution Atmospheric Model (HiRAM), at a spatial resolution of 25 km. We found that the strength and the latitudinal extent of the rainbelt are very sensitive to dust shortwave absorption, as well as circulations at various spatiotemporal scales that drive the climate of the region. Reference: Balkanski, Y., M. Schulz, T. Claquin, and S. Guibert (2007), Reevaluation of mineral aerosol radiative forcings suggests a better agreement with satellite and AERONET data, Atmos. Chem. Phys., 7, 81 - 95.

  9. Frequency comb vernier spectroscopy for broadband, high-resolution, high-sensitivity absorption and dispersion spectra

    NARCIS (Netherlands)

    Gohle, C.; Stein, B.; Schliesser, A.; Udem, T.; Hansch, T.W.

    2007-01-01

    A femtosecond frequency comb provides a vast number of equidistantly spaced narrow band laser modes that can be simultaneously tuned and frequency calibrated with 15 digit accuracy. Our Vernier spectrometer utilizes all of theses modes in a massively parallel manner to rapidly record both absorption

  10. Decay studies of Sr isotpes with high resolution and total absorption techniques

    CERN Document Server

    Perez-Cerdan, Ana-Belen

    2012-04-03

    High Resolution measurements The beta/EC decay of 77,78Sr and 76,78Rb have been studied in this work. Measurements were carried out of the energies and intensities of the emitted gamma-rays and conversion electrons as well as gamma-gamma and gamma-X-ray coincidences in the decays of 77,78Sr, which have extended our knowledge of their decay schemes including spin and parity assignments to the levels populated in the daughter nucleus, 77Rb and 78Rb respectively. For the decay of 78Sr, 16 new levels and 44 new gamma-ray transitions have been identified. The very much improved experimental knowledge of the 78Rb levels populated in the decay and the strong link between the parent and the daughter states has allowed us to infer some possible level configurations by comparison with HF+BCS calculations using the SG2 Skyrme force. For the decay of 77Sr, 9 new levels and 15 new gamma-ray transitions have been identified. The levels in the low energy part of the level scheme have been discussed in terms of HF+BCS+QRPA c...

  11. High-resolution X-ray absorption spectroscopy of iron carbonyl complexes

    OpenAIRE

    Atkins, A.J.; Bauer, M; Jacob, C.R.

    2015-01-01

    We apply high-energy-resolution fluorescence-detected (HERFD) X-ray absorption near-edge spectroscopy (XANES) to study iron carbonyl complexes. Mono-, bi-, and tri-nuclear carbonyl complexes and pure carbonyl complexes as well as carbonyl complexes containing hydrocarbon ligands are considered. The HERFD-XANES spectra reveal multiple pre-edge peaks with individual signatures for each complex, which could not be detected previously with conventional XANES spectroscopy. These peaks are assigned...

  12. High-resolution Absorption Spectra of Acetylene in 142.8-152.3 nm

    Science.gov (United States)

    Hu, Ya-hua; Zhen, Chen; Dai, Jing-hua; Zhou, Xiao-guo; Liu, Shi-lin

    2008-10-01

    The absorption spectra of acetylene molecules was measured under jet-cooled conditions in the wavelength range of 142.8-152.3 nm, with a tunable and highly resolved vacuum ultraviolet (VUV) laser generated by two-photon resonant four wave difference frequency mixing processes. Due to the sufficient vibrational and rotational cooling effect of the molecular beam and the higher resolution VUV laser, the observed absorption spectra exhibit more distinct spectral features than the previous works measured at room temperature. The major three vibrational bands are assigned as a C-C symmetry stretching vibrational progress (u2 = 0-2) of the tilde C1 IIu state of acetylene. The observed shoulder peak at 148.2 nm is assigned to the first overtone band of the trans-bending mode u4 of the tilde C1 IIustate of acetylene. Additionally, the two components, 4o2(μ1IIu) and 4o2(κ1 IIuare suggested to exhibit in the present absorption spectra, due to their Renner-Teller effect and transition selection rule. All band origins and bandwidths are obtained subsequently, and it is found that bandwidths are broadened and lifetimes decrease gradually with the excitation of vibration.

  13. Broadband, high-resolution investigation of advanced absorption line shapes at high temperature

    Science.gov (United States)

    Schroeder, Paul J.; Cich, Matthew J.; Yang, Jinyu; Swann, William C.; Coddington, Ian; Newbury, Nathan R.; Drouin, Brian J.; Rieker, Gregory B.

    2017-08-01

    Spectroscopic studies of planetary atmospheres and high-temperature processes (e.g., combustion) require absorption line-shape models that are accurate over extended temperature ranges. To date, advanced line shapes, like the speed-dependent Voigt and Rautian profiles, have not been tested above room temperature with broadband spectrometers. We investigate pure water vapor spectra from 296 to 1305 K acquired with a dual-frequency comb spectrometer spanning from 6800 to 7200 c m-1 at a point spacing of 0.0033 c m-1 and absolute frequency accuracy of fall within theoretical predictions, suggesting that this mechanism captures the dominant narrowing physics for these high-temperature conditions.

  14. High-resolution X-ray absorption spectroscopy of iron carbonyl complexes.

    Science.gov (United States)

    Atkins, Andrew J; Bauer, Matthias; Jacob, Christoph R

    2015-06-07

    We apply high-energy-resolution fluorescence-detected (HERFD) X-ray absorption near-edge spectroscopy (XANES) to study iron carbonyl complexes. Mono-, bi-, and tri-nuclear carbonyl complexes and pure carbonyl complexes as well as carbonyl complexes containing hydrocarbon ligands are considered. The HERFD-XANES spectra reveal multiple pre-edge peaks with individual signatures for each complex, which could not be detected previously with conventional XANES spectroscopy. These peaks are assigned and analysed with the help of TD-DFT calculations. We demonstrate that the pre-edge peaks can be used to distinguish the different types of iron-iron interactions in carbonyl complexes. This opens up new possibilities for applying HERFD-XANES spectroscopy to probe the electronic structure of iron catalysts.

  15. Feasibility of high-resolution continuum source molecular absorption spectrometry in flame and furnace for sulphur determination in petroleum products

    Energy Technology Data Exchange (ETDEWEB)

    Kowalewska, Zofia, E-mail: zofia.kowalewska@obr.pl

    2011-07-15

    For the first time, high-resolution molecular absorption spectrometry with a high-intensity xenon lamp as radiation source has been applied for the determination of sulphur in crude oil and petroleum products. The samples were analysed as xylene solutions using vaporisation in acetylene-air flame or in an electrothermally heated graphite furnace. The sensitive rotational lines of the CS molecule, belonging to the {Delta}{nu} = 0 vibrational sequence within the electronic transition X{sup 1}{Sigma}{sup +} {yields} A{sup 1}{Pi}, were applied. For graphite furnace molecular absorption spectrometry, the Pd + Mg organic modifier was selected. Strong interactions with Pd atoms enable easier decomposition of sulphur-containing compounds, likely through the temporal formation of Pd{sub x}S{sub y} molecules. At the 258.056 nm line, with the wavelength range covering central pixel {+-} 5 pixels and with application of interactive background correction, the detection limit was 14 ng in graphite furnace molecular absorption spectrometry and 18 mg kg{sup -1} in flame molecular absorption spectrometry. Meanwhile, application of 2-points background correction found a characteristic mass of 12 ng in graphite furnace molecular absorption spectrometry and a characteristic concentration of 104 mg kg{sup -1} in flame molecular absorption spectrometry. The range of application of the proposed methods turned out to be significantly limited by the properties of the sulphur compounds of interest. In the case of volatile sulphur compounds, which can be present in light petroleum products, severe difficulties were encountered. On the contrary, heavy oils and residues from distillation as well as crude oil could be analysed using both flame and graphite furnace vaporisation. The good accuracy of the proposed methods for these samples was confirmed by their mutual consistency and the results from analysis of reference samples (certified reference materials and home reference materials with

  16. The high-resolution absorption spectroscopy branch on the VUV beamline DESIRS at SOLEIL.

    Science.gov (United States)

    de Oliveira, Nelson; Joyeux, Denis; Roudjane, Mourad; Gil, Jean François; Pilette, Bertrand; Archer, Lucy; Ito, Kenji; Nahon, Laurent

    2016-07-01

    A VUV absorption spectroscopy facility designed for ultra-high spectral resolution is in operation as a dedicated branch on the DESIRS beamline at Synchrotron SOLEIL. This branch includes a unique VUV Fourier transform spectrometer (FTS) and a dedicated versatile gas sample chamber. The FTS instrument can cover a large UV-VUV spectral range from 4 to 30 eV, with an ultimate line width of 0.08 cm(-1) on a large spectral window, ΔE/E = 7%, over which all spectral features can be acquired in a multiplex way. The performance can be considered to be a middle ground between broadband moderate-resolution spectrometers based on gratings and ultra-high-spectral-resolution VUV tunable-laser-based techniques over very narrow spectral windows. The various available gaseous-sample-handling setups, which function over a wide range of pressures and temperatures, and the acquisition methodology are described. A selection of experimental results illustrates the performance and limitations of the FTS-based facility.

  17. Direct determination of fluorine in niobium oxide using slurry sampling electrothermal high-resolution continuum source molecular absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Mao Dong; Becker-Ross, Helmut [Leibniz-Institut für Analytische Wissenschaften—ISAS—e.V., Department Berlin, Albert-Einstein-Str. 9, 12489 Berlin (Germany); Okruss, Michael, E-mail: michael.okruss@isas.de [Leibniz-Institut für Analytische Wissenschaften—ISAS—e.V., Department Berlin, Albert-Einstein-Str. 9, 12489 Berlin (Germany); Geisler, Sebastian; Florek, Stefan [Leibniz-Institut für Analytische Wissenschaften—ISAS—e.V., Department Berlin, Albert-Einstein-Str. 9, 12489 Berlin (Germany); Richter, Silke; Meckelburg, Angela [BAM Federal Institute for Materials Research and Testing, Department of Analytical Chemistry, Reference Materials, Richard-Willstätter-Str. 11, 12489 Berlin (Germany)

    2014-04-01

    Aiming for a round-robin test, a new method for the direct determination of fluorine in niobium oxide has been developed. It is based on the use of high-resolution molecular absorption spectra of calcium mono-fluoride (CaF) generated in the graphite tube, combined with the slurry sampling technique. The absorption measurement was performed at the 606.44 nm CaF rotational line. By using graphite tubes with zirconium carbide (ZrC) modified platform, the molecular absorption sensitivity of CaF has been improved by a factor of 20, and no additional chemical modifier was necessary. Generally, non-spectral interferences were observed in the presence of HCl, H{sub 2}SO{sub 4}, and H{sub 3}PO{sub 4}. For HCl, additional spectral interference occurred due to an overlap of the absorption spectra of CaF and CaCl. However, due to the absence of these mentioned substances in the current material, such interferences do not exist for this application. The characteristic mass found for the CaF 606.44 nm line was 0.1 ng; the limit of detection was 5 mg fluorine per kg solid sample (3σ criterion). The results obtained by the method were within the range of certified values. Comparing to the classical method such as the pyrohydrolysis-photometric method, the developed new method showed clear advantages regarding sensitivity and specificity. The time requirement for one sample analysis was strongly shortened from several hours to only some minutes. - Highlights: • First time determination of fluorine in niobium oxide using the slurry sampling technique • Application of calcium fluoride molecular absorption in graphite tube with ZrC modification • Higher specificity, better sensitivity, and huge time saving compared with the classical method based on pyrohydrolysis • New method verified by successful participation in round robin test.

  18. Nimbus-3 High-Resolution Infrared Radiometer (HRIR) Imagery of Cloud Cover at Day and Night on 70 mm Film V001

    Data.gov (United States)

    National Aeronautics and Space Administration — The HRIRN3IM data product contains scanned negatives of photofacsimile 70mm film strips from the Nimbus-3 High-Resolution Infrared Radiometer. The images contain...

  19. NOAA Climate Data Record (CDR) of Intersatellite Calibrated Clear-Sky High Resolution Infrared Radiation Sounder (HIRS) Channel 12 Brightness Temperature Version 3

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The High-Resolution Infrared Radiation Sounder (HIRS) of intersatellite calibrated channel 12 brightness temperature (TB) product is a gridded global monthly time...

  20. Surface Temperature Mapping of the University of Northern Iowa Campus Using High Resolution Thermal Infrared Aerial Imageries

    Directory of Open Access Journals (Sweden)

    Ramanathan Sugumaran

    2008-08-01

    Full Text Available The goal of this project was to map the surface temperature of the University of Northern Iowa campus using high-resolution thermal infrared aerial imageries. A thermal camera with a spectral bandwidth of 3.0-5.0 μm was flown at the average altitude of 600 m, achieving ground resolution of 29 cm. Ground control data was used to construct the pixelto-temperature conversion model, which was later used to produce temperature maps of the entire campus and also for validation of the model. The temperature map then was used to assess the building rooftop conditions and steam line faults in the study area. Assessment of the temperature map revealed a number of building structures that may be subject to insulation improvement due to their high surface temperatures leaks. Several hot spots were also identified on the campus for steam pipelines faults. High-resolution thermal infrared imagery proved highly effective tool for precise heat anomaly detection on the campus, and it can be used by university facility services for effective future maintenance of buildings and grounds.

  1. High-resolution spectroscopy and global analysis of CF4 rovibrational bands to model its atmospheric absorption

    Science.gov (United States)

    Carlos, M.; Gruson, O.; Richard, C.; Boudon, V.; Rotger, M.; Thomas, X.; Maul, C.; Sydow, C.; Domanskaya, A.; Georges, R.; Soulard, P.; Pirali, O.; Goubet, M.; Asselin, P.; Huet, T. R.

    2017-11-01

    CF4, or tetrafluoromethane, is a chemically inert and strongly absorbing greenhouse gas, mainly of anthropogenic origin. In order to monitor and reduce its atmospheric emissions and concentration, it is thus necessary to obtain an accurate model of its infrared absorption. Such models allow opacity calculations for radiative transfer atmospheric models. In the present work, we perform a global analysis (divided into two distinct fitting schemes) of 17 rovibrational bands of CF4. This gives a reliable model of many of its lower rovibrational levels and allows the calculation of the infrared absorption in the strongly absorbing ν3 region (1283 cm-1 / 7.8 μm), including the main hot band, namely ν3 +ν2 -ν2 as well as ν3 +ν1 -ν1 ; we could also extrapolate the ν3 +ν4 -ν4 absorption. This represents almost 92% of the absorption at room temperature in this spectral region. A new accurate value of the C-F bond length is evaluated to re = 1.314860(21) Å. The present results have been used to update the HITRAN, GEISA and TFMeCaSDa (VAMDC) databases.

  2. High resolution scanning of radial strips cut from increment cores by near infrared spectroscopy

    Science.gov (United States)

    P. David Jones; Laurence R. Schimleck; Chi-Leung So; Alexander III Clark; Richard F. Daniels

    2007-01-01

    Near infrared (NIR) spectroscopy provides a rapid method for the determination of wood properties of radial strips. The spatial resolution of the NIR measurements has generally been limited to sections 10 mm wide and as a consequence the estimation of wood properties of individual rings or within rings has not been possible. Many different NIR instruments can be used...

  3. High-resolution ground target infrared signature modeling for combat target identification training

    Science.gov (United States)

    Sanders, Jeffrey S.

    2003-09-01

    Recent world events have accelerated the evolution of the US military from monolithic formations arrayed against a known enemy, to a force that must respond to rapidly changing world events. New technologies are part of the Army's evolution and thermal imaging sensors are becoming more and more prevalent on the modern battlefield. These sensors are integrated into advanced weapon systems or commonly used for battlefield surveillance. Thermal imaging systems give the soldier the ability to deliver deadly force onto an enemy at long ranges at any time of day or night. The ability to differentiate friendly and threat forces in this situation is critical for the avoidance of friendly fire incidents and for the proper use of battlefield resources. The ability to foresee the location of the Army's next battlefield is becoming more difficult, and we don't know where the next battlefield will be from year to year. Infrared target recognition training tools need to be flexible, adaptable, and be based on not only the latest intelligence data but have geographically specific training available to the soldier. To address this training issue, personnel of the Measurement and Signatures Division at the National Ground Intelligence Center have created the Simulated Infrared Earth Environment Lab (SIREEL) web site. The SIREEL web site contains extensive infrared signature data on numerous threat and friendly vehicles and the site is designed to provide country-specific vehicle identification training in support of US military deployments. The bulk of the content currently on the site consists of infrared signature data collected over a decade of intelligence gathering. The site also employs state of the art infrared signature modeling capabilities to provide the soldier in training the most flexible training possible. If measured data on a vehicle is not available, the website developers have the capability to calculate the infrared signature of ground vehicles in any location

  4. Time-Resolved Quantitative Measurement of OH HO2 and CH2O in Fuel Oxidation Reactions by High Resolution IR Absorption Spectroscopy.

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Haifeng; Rotavera, Brandon; Taatjes, Craig A.

    2014-08-01

    Combined with a Herriott-type multi-pass slow flow reactor, high-resolution differential direct absorption spectroscopy has been used to probe, in situ and quantitatively, hydroxyl (OH), hydroperoxy (HO 2 ) and formaldehyde (CH 2 O) molecules in fuel oxidation reactions in the reactor, with a time resolution of about 1 micro-second. While OH and CH 2 O are probed in the mid-infrared (MIR) region near 2870nm and 3574nm respectively, HO 2 can be probed in both regions: near-infrared (NIR) at 1509nm and MIR at 2870nm. Typical sensitivities are on the order of 10 10 - 10 11 molecule cm -3 for OH at 2870nm, 10 11 molecule cm -3 for HO 2 at 1509nm, and 10 11 molecule cm -3 for CH 2 O at 3574nm. Measurements of multiple important intermediates (OH and HO 2 ) and product (CH 2 O) facilitate to understand and further validate chemical mechanisms of fuel oxidation chemistry.

  5. Long-Wave Infrared Semiconductor Negative Refraction Metamaterials for High-Resolution Imaging

    Science.gov (United States)

    2011-02-14

    semiconductor metamaterial lies in the collective response of highly-doped plasmonic layers, interlaced by undoped layers, to the incident long-wave infrared...specific attention to modal cross-talk and out-of-plane scattering in quasi-planar photonics . An algorithm capable of accurate numerical computation... photonics are all examples of planar optics, where the op- tical radiation is controllably guided on the plane of a photonic chip. A number of planar

  6. Using high-resolution laboratory and ground-based solar spectra to assess CH4 absorption coefficient calculations

    Science.gov (United States)

    Mendonca, J.; Strong, K.; Sung, K.; Devi, V. M.; Toon, G. C.; Wunch, D.; Franklin, J. E.

    2017-03-01

    A quadratic-speed-dependent Voigt line shape (qSDV) with line mixing (qSDV+LM), together with spectroscopic line parameters from Devi et al. [1,2] for the 2v3 band of CH4, was used to retrieve total columns of CH4 from atmospheric solar absorption spectra. The qSDV line shape (Tran et al., 2013) [3] with line mixing (Lévy et al., 1992) [4] was implemented into the forward model of GFIT (the retrieval algorithm that is at the heart of the GGG software (Wunch et al., 2015) [5]) to calculate CH4 absorption coefficients. High-resolution laboratory spectra of CH4 were used to assess absorption coefficients calculated using a Voigt line shape and spectroscopic parameters from the atm line list (Toon, 2014) [6]. The same laboratory spectra were used to test absorption coefficients calculated using the qSDV+LM line shape with spectroscopic line parameters from Devi et al. [1,2] for the 2v3 band of CH4 and a Voigt line shape for lines that don't belong to the 2v3 band. The spectral line list for lines that don't belong to the 2v3 band is an amalgamation of multiple spectral line lists. We found that for the P, Q, and R branches of the 2v3 band, the qSDV+LM simulated the laboratory spectra better than the Voigt line shape. The qSDV+LM was also used in the spectral fitting of high-resolution solar absorption spectra from four ground-based remote sensing sites and compared to spectra fitted with a Voigt line shape. The average root mean square (RMS) residual for 131,124 solar absorption spectra fitted with absorption coefficients calculated using the qSDV+LM for the 2v3 band of CH4 and the new spectral line list for lines for lines that don't belong to the 2v3 band, was reduced in the P, Q, and R branches by 5%, 13%, and 3%, respectively when compared with spectra fitted using a Voigt line shape and the atm line list. We found that the average total column of CH4 retrieved from these 131,124 spectra, with the qSDV+LM was 1.1±0.3% higher than the retrievals performed using a

  7. Determination of boron isotope ratios by high-resolution continuum source molecular absorption spectrometry using graphite furnace vaporizers

    Science.gov (United States)

    Abad, Carlos; Florek, Stefan; Becker-Ross, Helmut; Huang, Mao-Dong; Heinrich, Hans-Joachim; Recknagel, Sebastian; Vogl, Jochen; Jakubowski, Norbert; Panne, Ulrich

    2017-10-01

    Boron isotope amount ratios n(10B)/n(11B) have been determined by monitoring the absorption spectrum of boron monohydride (BH) in a graphite furnace using high-resolution continuum source molecular absorption spectrometry (HR-CS-MAS). Bands (0 → 0) and (1 → 1) for the electronic transition X1Σ+ → A1Π were evaluated around wavelengths 433.1 nm and 437.1 nm respectively. Clean and free of memory effect molecular spectra of BH were recorded. In order to eliminate the memory effect of boron, a combination of 2% (v/v) hydrogen gas in argon and 1% trifluoromethane in argon, an acid solution of calcium chloride and mannitol as chemical modifiers was used. Partial least square regression (PLS) for analysis of samples and reference materials were applied. For this, a spectral library with different isotopes ratios for PLS regression was built. Results obtained around the 433.1 nm and 437.1 nm spectral regions are metrologically compatible with those reported by mass spectrometric methods. Moreover, for the evaluated region of 437 nm, an accuracy of 0.15‰ is obtained as the average deviation from the isotope reference materials. Expanded uncertainties with a coverage factor of k = 2 range between 0.15 and 0.44‰. This accuracy and precision are compatible with those obtained by mass spectrometry for boron isotope ratio measurements.

  8. CRIRES-POP: a library of high resolution spectra in the near-infrared. II. Data reduction and the spectrum of the K giant 10 Leonis

    Science.gov (United States)

    Nicholls, C. P.; Lebzelter, T.; Smette, A.; Wolff, B.; Hartman, H.; Käufl, H.-U.; Przybilla, N.; Ramsay, S.; Uttenthaler, S.; Wahlgren, G. M.; Bagnulo, S.; Hussain, G. A. J.; Nieva, M.-F.; Seemann, U.; Seifahrt, A.

    2017-02-01

    Context. High resolution stellar spectral atlases are valuable resources to astronomy. They are rare in the 1-5 μm region for historical reasons, but once available, high resolution atlases in this part of the spectrum will aid the study of a wide range of astrophysical phenomena. Aims: The aim of the CRIRES-POP project is to produce a high resolution near-infrared spectral library of stars across the H-R diagram. The aim of this paper is to present the fully reduced spectrum of the K giant 10 Leo that will form the basis of the first atlas within the CRIRES-POP library, to provide a full description of the data reduction processes involved, and to provide an update on the CRIRES-POP project. Methods: All CRIRES-POP targets were observed with almost 200 different observational settings of CRIRES on the ESO Very Large Telescope, resulting in a basically complete coverage of its spectral range as accessible from the ground. We reduced the spectra of 10 Leo with the CRIRES pipeline, corrected the wavelength solution and removed telluric absorption with Molecfit, then resampled the spectra to a common wavelength scale, shifted them to rest wavelengths, flux normalised, and median combined them into one final data product. Results: We present the fully reduced, high resolution, near-infrared spectrum of 10 Leo. This is also the first complete spectrum from the CRIRES instrument. The spectrum is available online. Conclusions: The first CRIRES-POP spectrum has exceeded our quality expectations and will form the centre of a state-of-the-art stellar atlas. This first CRIRES-POP atlas will soon be available, and further atlases will follow. All CRIRES-POP data products will be freely and publicly available online. The spectrum is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/598/A79

  9. River pollution remediation monitored by optical and infrared high-resolution satellite images.

    Science.gov (United States)

    Trivero, Paolo; Borasi, Maria; Biamino, Walter; Cavagnero, Marco; Rinaudo, Caterina; Bonansea, Matias; Lanfri, Sofia

    2013-09-01

    The Bormida River Basin, located in the northwestern region of Italy, has been strongly contaminated by the ACNA chemical factory. This factory was in operation from 1892 to 1998, and contamination from the factory has had deleterious consequences on the water quality, agriculture, natural ecosystems and human health. Attempts have been made to remediate the site. The aims of this study were to use high-resolution satellite images combined with a classical remote sensing methodology to monitor vegetation conditions along the Bormida River, both upstream and downstream of the ACNA chemical factory site, and to compare the results obtained at different times before and after the remediation process. The trends of the Normalised Difference Vegetation Index (NDVI) and the Enhanced Vegetation Index (EVI) along the riverbanks are used to assess the effect of water pollution on vegetation. NDVI and EVI values show that the contamination produced by the ACNA factory had less severe effects in the year 2007, when most of the remediation activities were concluded, than in 2006 and 2003. In 2007, the contamination effects were noticeable up to 6 km downstream of the factory, whereas in 2003 and 2006 the influence range was up to about 12 km downstream of the factory. The results of this study show the effectiveness of remediation activities that have been taking place in this area. In addition, the comparison between NDVI and EVI shows that the EVI is more suitable to characterise the vegetation health and can be considered an additional tool to assess vegetation health and to monitor restoration activities.

  10. High-resolution submillimeter and near-infrared studies of the transition disk around Sz 91

    Energy Technology Data Exchange (ETDEWEB)

    Tsukagoshi, Takashi; Momose, Munetake [College of Science, Ibaraki University, Bunkyo 2-1-1, Mito 310-8512 (Japan); Hashimoto, Jun [Department of Physics and Astronomy, The University of Oklahoma, 440 West Brooks Street, Norman, OK 73019 (United States); Kudo, Tomoyuki; Saito, Masao; Ohashi, Nagayoshi; Kawabe, Ryohei; Akiyama, Eiji [National Astronomical Observatory Japan (NAOJ), Osawa 2-21-1, Mitaka, Tokyo 181-8588 (Japan); Andrews, Sean; Wilner, David [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Kitamura, Yoshimi [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Yoshinodai 3-1-1, Sagamihara, Kanagawa 229-8510 (Japan); Abe, Lyu [Lboratoire Lagrange (UMR 7293), Université de Nice-Sophia Antipolis, CNRS, Observatoire de la Côte d' Azur, 28 avenue Valrose, F-06108 Nice Cedex 2 (France); Brandner, Wolfgang [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Brandt, Timothy D. [Department of Astrophysical Sciences, Princeton University, Peyton Hall, Ivy Lane, Princeton, NJ 08544 (United States); Carson, Joseph [Department of Physics and Astronomy, College of Charleston, 58 Coming Street, Charleston, SC 29424 (United States); Currie, Thayne [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street M5S 3H4, Toronto, Ontario (Canada); Egner, Sebastian E.; Guyon, Olivier [Subaru Telescope, 650 North A' ohoku Place, Hilo, HI 96720 (United States); Goto, Miwa [Universitäts-Sternwarte München, Ludwig-Maximilians-Universität, Scheinerstr. 1, D-81679 München (Germany); Grady, Carol, E-mail: ttsuka@mx.ibaraki.ac.jp [Exoplanets and Stellar Astrophysics Laboratory, Code 667, Goddard Space Flight Center, Greenbelt, MD 20771 (United States); and others

    2014-03-10

    To reveal the structures of a transition disk around a young stellar object in Lupus, Sz 91 , we have performed aperture synthesis 345 GHz continuum and CO(3-2) observations with the Submillimeter Array (∼1''-3'' resolution) and high-resolution imaging of polarized intensity at the K{sub s} -band using the HiCIAO instrument on the Subaru Telescope (0.''25 resolution). Our observations successfully resolved the inner and outer radii of the dust disk to be 65 and 170 AU, respectively, which indicates that Sz 91 is a transition disk source with one of the largest known inner holes. The model fitting analysis of the spectral energy distribution reveals an H{sub 2} mass of 2.4 × 10{sup –3} M {sub ☉} in the cold (T < 30 K) outer part at 65 AU 3 × 10{sup –9} M {sub ☉}) of hot (T ∼ 180 K) dust possibly remains inside the inner hole of the disk. The structure of the hot component could be interpreted as either an unresolved self-luminous companion body (not directly detected in our observations) or a narrow ring inside the inner hole. Significant CO(3-2) emission with a velocity gradient along the major axis of the dust disk is concentrated on the Sz 91 position, suggesting a rotating gas disk with a radius of 420 AU. The Sz 91 disk is possibly a rare disk in an evolutionary stage immediately after the formation of protoplanets because of the large inner hole and the lower disk mass than other transition disks studied thus far.

  11. Microwave, High-Resolution Infrared, and Quantum Chemical Investigations of CHBrF2

    DEFF Research Database (Denmark)

    Cazzoli, Gabriele; Cludi, Lino; Puzzarini, Cristina

    2011-01-01

    A combined microwave, infrared, and computational investigation of CHBrF2 is reported. For the vibrational ground state, measurements in the millimeter- and sub-millimeter-wave regions for (CHBrF2)-Br-79 and (CHBrF2)-Br-81 provided rotational and centrifugal-distortion constants up to the sextic...... analysis by high-level quantum chemical calculations at the coupled-cluster level. In this context, the importance of relativistic effects, which are of the order of 6.5% and included in the present work using second-order direct perturbation theory, needs to be emphasized for accurate predictions...

  12. HIGH-RESOLUTION FOURIER TRANSFORM SPECTROSCOPY OF Nb i IN THE NEAR-INFRARED

    Energy Technology Data Exchange (ETDEWEB)

    Er, A.; Güzelçimen, F.; Başar, Gö.; Öztürk, I. K. [Faculty of Science, Physics Department, Istanbul University, TR-34134 Vezneciler, Istanbul (Turkey); Tamanis, M.; Ferber, R. [Laser Centre, The University of Latvia, Rainis Boulevard 19, LV-1586 Riga (Latvia); Kröger, S., E-mail: gbasar@istanbul.edu.tr, E-mail: sophie.kroeger@htw-berlin.de [Hochschule für Technik und Wirtschaft Berlin, Wilhelminenhofstrasse 75A, D-12459 Berlin (Germany)

    2015-11-15

    In this study, a Fourier Transform spectrum of Niobium (Nb) is investigated in the near-infrared spectral range from 6000 to 12,000 cm{sup −1} (830–1660 nm). The Nb spectrum is produced using a hollow cathode discharge lamp in an argon atmosphere. Both Nb and Ar spectral lines are visible in the spectrum. A total of 110 spectral lines are assigned to the element Nb. Of these lines, 90 could be classified as transitions between known levels of atomic Nb. From these classified Nb i transitions, 27 have not been listed in literature previously. Additionally, 8 lines are classified for the first time.

  13. Packet based serial link realized in FPGA dedicated for high resolution infrared image transmission

    Science.gov (United States)

    Bieszczad, Grzegorz

    2015-05-01

    In article the external digital interface specially designed for thermographic camera built in Military University of Technology is described. The aim of article is to illustrate challenges encountered during design process of thermal vision camera especially related to infrared data processing and transmission. Article explains main requirements for interface to transfer Infra-Red or Video digital data and describes the solution which we elaborated based on Low Voltage Differential Signaling (LVDS) physical layer and signaling scheme. Elaborated link for image transmission is built using FPGA integrated circuit with built-in high speed serial transceivers achieving up to 2500Gbps throughput. Image transmission is realized using proprietary packet protocol. Transmission protocol engine was described in VHDL language and tested in FPGA hardware. The link is able to transmit 1280x1024@60Hz 24bit video data using one signal pair. Link was tested to transmit thermal-vision camera picture to remote monitor. Construction of dedicated video link allows to reduce power consumption compared to solutions with ASIC based encoders and decoders realizing video links like DVI or packed based Display Port, with simultaneous reduction of wires needed to establish link to one pair. Article describes functions of modules integrated in FPGA design realizing several functions like: synchronization to video source, video stream packeting, interfacing transceiver module and dynamic clock generation for video standard conversion.

  14. Fiber-coupled high resolution infrared array spectrometer for the Kuiper Airborne Observatory

    Science.gov (United States)

    Glenar, D. A.; Reuter, D.; Mumma, M. J.; Chin, G.; Wiedemann, G.; Jennings, D.

    1990-01-01

    A novel cryogenic grating spectrometer (FCAS) is being designed for observations of volatiles in cometary and planetary atmospheres, and in newly forming planetary systems. The instrument features two-dimensional detector arrays coupled to a high-dispersion echelle by infrared fibers, and will achieve a spectral resolving power of about 40,000. The primary observational platform for this instrument will be the Kuiper Airborne Observatory, but it will also be configured for use at ground-based observatories. Initially, the spectrometer will use a 58 x 62, 1- to 5-micron InSb array. Larger-format IR arrays and arrays of different composition, will later be incorporated as they become available. The instrument will be used in two modes. The first uses a large format IR array in the spectral image plane for the customary one-dimensional spectral-one-dimensional spatial coverage. In the second mode, a massive, coherent bundle of infrared transmitting ZrF4 fibers will be installed after the dispersive element, to reformat the two-dimensional array into an elongated one-dimensional array for wide spectral coverage, allowing multiple lines to be measured in a single integration with high sensitivity. The overall instrument design is discussed, and the system sensitivity is estimated.

  15. High-Resolution Infrared Spectroscopy of Imidazole Clusters in Helium Droplets Using Quantum Cascade Lasers

    Science.gov (United States)

    Mani, Devendra; Can, Cihad; Pal, Nitish; Schwaab, Gerhard; Havenith, Martina

    2017-06-01

    Imidazole ring is a part of many biologically important molecules and drugs. Imidazole monomer, dimer and its complexes with water have earlier been studied using infrared spectroscopy in helium droplets^{1,2} and molecular beams^{3}. These studies were focussed on the N-H and O-H stretch regions, covering the spectral region of 3200-3800 \\wn. We have extended the studies on imidazole clusters into the ring vibration region. The imidazole clusters were isolated in helium droplets and were probed using a combination of infrared spectroscopy and mass spectrometry. The spectra in the region of 1000-1100 \\wn and 1300-1460 \\wn were recorded using quantum cascade lasers. Some of the observed bands could be assigned to imidazole monomer and higher order imidazole clusters, using pickup curve analysis and ab initio calculations. Work is still in progress. The results will be discussed in detail in the talk. References: 1) M.Y. Choi and R.E. Miller, J. Phys. Chem. A, 110, 9344 (2006). 2) M.Y. Choi and R.E. Miller, Chem. Phys. Lett., 477, 276 (2009). 3) J. Zischang, J. J. Lee and M. Suhm, J. Chem. Phys., 135, 061102 (2011). Note: This work was supported by the Cluster of Excellence RESOLV (Ruhr-Universitat EXC1069) funded by the Deutsche Forschungsgemeinschaft.

  16. Near-infrared high-resolution real-time omnidirectional imaging platform for drone detection

    Science.gov (United States)

    Popovic, Vladan; Ott, Beat; Wellig, Peter; Leblebici, Yusuf

    2016-10-01

    Recent technological advancements in hardware systems have made higher quality cameras. State of the art panoramic systems use them to produce videos with a resolution of 9000 x 2400 pixels at a rate of 30 frames per second (fps).1 Many modern applications use object tracking to determine the speed and the path taken by each object moving through a scene. The detection requires detailed pixel analysis between two frames. In fields like surveillance systems or crowd analysis, this must be achieved in real time.2 In this paper, we focus on the system-level design of multi-camera sensor acquiring near-infrared (NIR) spectrum and its ability to detect mini-UAVs in a representative rural Swiss environment. The presented results show the UAV detection from the trial that we conducted during a field trial in August 2015.

  17. High-Resolution Observations of the Infrared Spectrum of Neutral Neon

    Science.gov (United States)

    Sansonetti, Craig J.; Blackwell, Marion M.; Saloman, E. B.

    2004-01-01

    We have observed the spectrum of neutral neon (Ne I) emitted by a microwave-excited electrodeless discharge lamp with the National Institute of Standards and Technology 2 m Fourier transform spectrometer. The spectra cover the regions 6929 Å to 11 000 Å with a resolution of 0.01 cm−1 and 11 000 Å to 47 589 Å with a resolution of 0.007 cm−1. We present a line list that includes more than 650 classified lines and provides an accurate and comprehensive description of the infrared spectrum. The response of the Fourier transform spectrometer was determined by using a radiometrically calibrated tungsten strip lamp, providing relative intensities that for moderate to strong lines are accurate to approximately 10 % over the entire range of the observations. The identities of many lines that were previously multiply classified are unambiguously resolved. PMID:27366619

  18. High-resolution mid-infrared spectroscopy of buffer-gas-cooled methyltrioxorhenium molecules

    CERN Document Server

    Tokunaga, Sean; Tarbutt, M; Darquié, B

    2016-01-01

    We demonstrate cryogenic buffer-gas cooling of gas-phase methyltrioxorhenium (MTO). This molecule is closely related to chiral organometallic molecules where the parity-violating energy differences between enantiomers may be measurable. The molecules are produced with a rotational temperature of approximately 6~K by laser ablation of an MTO pellet inside a cryogenic helium buffer gas cell. Facilitated by the low temperature, we demonstrate absorption spectroscopy of the 10.2~$\\mu$m antisymmetric Re=O stretching mode of MTO with a resolution of 8~MHz and a frequency accuracy of 30~MHz. We partially resolve the hyperfine structure and measure the nuclear quadrupole coupling of the excited vibrational state.

  19. High-resolution optical coherence tomography, autofluorescence, and infrared reflectance imaging in Sjögren reticular dystrophy.

    Science.gov (United States)

    Schauwvlieghe, Pieter-Paul; Torre, Kara Della; Coppieters, Frauke; Van Hoey, Anneleen; De Baere, Elfride; De Zaeytijd, Julie; Leroy, Bart P; Brodie, Scott E

    2013-01-01

    To describe the phenotype of three cases of Sjögren reticular dystrophy in detail, including high-resolution optical coherence tomography, autofluorescence imaging, and near-infrared reflectance imaging. Two unrelated teenagers were independently referred for ophthalmologic evaluation. Both underwent a full ophthalmologic workup, including electrophysiologic and extensive imaging with spectral-domain optical coherence tomography, autofluorescence imaging, and near-infrared reflectance imaging. In addition, mutation screening of ABCA4, PRPH2, and the mitochondrial tRNA gene was performed in Patient 1. Subsequently, the teenage sister of Patient 2 was examined. Strikingly similar phenotypes were present in these three patients. Fundoscopy showed bilateral foveal pigment alterations, and a lobular network of deep retinal, pigmented deposits throughout the posterior pole, tapering toward the midperiphery, with relative sparing of the immediate perifoveal macula and peripapillary area. This network is mildly to moderately hyperautofluorescent on autofluorescence and bright on near-infrared reflectance imaging. Optical coherence tomography showed abnormalities of the retinal pigment epithelium-Bruch membrane complex, photoreceptor outer segments, and photoreceptor inner/outer segment interface. The results of retinal function test were entirely normal. No molecular cause was detected in Patient 1. Imaging suggested that the lobular network of deep retinal deposits in Sjögren reticular dystrophy is the result of accumulation of both pigment and lipofuscin between photoreceptors and retinal pigment epithelium, as well as within the retinal pigment epithelium.

  20. High-Resolution Infrared Spectroscopy of Carbon-Sulfur Chains: II. C_5S and SC_5S

    Science.gov (United States)

    Thorwirth, Sven; Salomon, Thomas; Dudek, John B.

    2016-06-01

    Unbiased high-resolution infrared survey scans of the ablation products from carbon-sulfur targets in the 2100 to 2150 cm-1 regime reveal two bands previously not observed in the gas phase. On the basis of comparison against laboratory matrix-isolation work and new high-level quantum-chemical calculations these bands are attributed to the linear C_5S and SC_5S clusters. While polar C_5S was studied earlier using Fourier-transform microwave techniques, the present work marks the first gas-phase spectroscopic detection of SC_5S. H. Wang, J. Szczepanski, P. Brucat, and M. Vala 2005, Int. J. Quant. Chem. 102, 795 Y. Kasai, K. Obi, Y. Ohshima, Y. Hirahara, Y. Endo, K. Kawaguchi, and A. Murakami 1993, ApJ 410, L45 V. D. Gordon, M. C. McCarthy, A. J. Apponi, and P. Thaddeus 2001, ApJS 134, 311

  1. High-Resolution Near-Infrared Polarimetry of a Circumstellar Disk around UX Tau A

    Science.gov (United States)

    Tanii, Ryoko; Itoh, Yoichi; Kudo, Tomoyuki; Hioki, Tomonori; Oasa, Yumiko; Gupta, Ranjan; Sen, Asoke K.; Wisniewski, John P.; Muto, Takayuki; Grady, Carol A.; Hashimoto, Jun; Fukagawa, Misato; Mayama, Satoshi; Hornbeck, Jeremy; Sitko, Michael L.; Russell, Ray W.; Werren, Chelsea; Curé, Michel; Currie, Thayne; Ohashi, Nagayoshi; Okamoto, Yoshiko; Momose, Munetake; Honda, Mitsuhiko; Inutsuka, Shu-ichi; Takeuchi, Taku; Dong, Ruobing; Abe, Lyu; Brandner, Wolfgang; Brandt, Timothy D.; Carson, Joseph; Egner, Sebastian E.; Feldt, Markus; Fukue, Tsubasa; Goto, Miwa; Guyon, Olivier; Hayano, Yutaka; Hayashi, Masahiko; Hayashi, Saeko S.; Henning, Thomas; Hodapp, Klaus W.; Ishii, Miki; Iye, Masanori; Janson, Markus; Kandori, Ryo; Knapp, Gillian R.; Kusakabe, Nobuhiko; Kuzuhara, Masayuki; Matsuo, Taro; McElwain, Michael W.; Miyama, Shoken; Morino, Jun-ichi; Moro-Martín, Amaya; Nishimura, Tetsuro; Pyo, Tae-Soo; Serabyn, Eugene; Suto, Hiroshi; Suzuki, Ryuji; Takami, Michihiro; Takato, Naruhisa; Terada, Hiroshi; Thalmann, Christian; Tomono, Daigo; Turner, Edwin L.; Watanabe, Makoto; Yamada, Toru; Takami, Hideki; Usuda, Tomonori; Tamura, Motohide

    2012-12-01

    We present H-band polarimetric imagery of UX Tau A taken with HiCIAO/AO188 on the Subaru Telescope. UX Tau A has been classified as a pre-transitional disk object, with a gap structure separating its inner and outer disks. Our imagery taken with the 0.''15 (21 AU) radius coronagraphic mask has revealed a strongly polarized circumstellar disk surrounding UX Tau A, which extends to 120 AU, at a spatial resolution of 0.''1 (14 AU). It is inclined by 46° ± 2°, since the west side is nearest. Although SED modeling and sub-millimeter imagery have suggested the presence of a gap in the disk, with the inner edge of the outer disk estimated to be located at 25-30 AU, we detect no evidence of a gap at the limit of our inner working angle (23 AU) at the near-infrared wavelength. We attribute the observed strong polarization (up to 66%) to light scattering by dust grains in the disk. However, neither polarization models of the circumstellar disk based on Rayleigh-scattering nor Mie-scattering approximations were consistent with the observed azimuthal profile of the polarization degrees of the disk. Instead, a geometric optics model of the disk with nonspherical grains with radii of 30μm is consistent with the observed profile. We suggest that the dust grains have experienced frequent collisional coagulations, and have grown in the circumstellar disk of UX Tau A.

  2. High-Resolution Near-Infrared Polarimetry of a Circumstellar Disk around UX Tau A

    Science.gov (United States)

    Serabyn, G.; Grady, C. A.; Currie, T.

    2012-01-01

    We present H-band polarimetric imagery of UX Tau A taken with HiCIAO/AO188 on the Subaru Telescope. UX Tau A has been classified as a pre-transitional disk object, with a gap structure separating its inner and outer disks. Our imagery taken with the 0.15" (21 AU) radius coronagraphic mask has revealed a strongly polarized circumstellar disk surrounding UX Tau A which extends to 120 AU, at a spatial resolution of 0.1" (14 AU). It is inclined by 46 degrees plus or minus 2 degrees as the west side is nearest. Although SED modeling and sub-millimeter imagery suggested the presence of a gap in the disk, with the inner edge of the outer disk estimated to be located at 25 - 30 AU, we detect no evidence of a gap at the limit of our inner working angle (23AU) at the near-infrared wavelength. We attribute the observed strong polarization (up to 66 %) to light scattering by dust grains in the disk. However, neither polarization models of the circumstellar disk based on Rayleigh scattering nor Mie scattering approximations were consistent with the observed azimuthal profile of the polarization degrees of the disk. Instead, a geometric optics model of the disk with nonspherical grains with the radii of 30 micrometers is consistent with the observed profile. We suggest that the dust grains have experienced frequent collisional coagulations and have grown in the circumstellar disk of UX Tau A.

  3. Calibration of high resolution remote sensing instruments in the visible and near infrared

    Science.gov (United States)

    Schüller, L.; Fischer, J.; Armbruster, W.; Bartsch, B.

    1997-05-01

    Measurements of the reflected solar radiation with high spectral resolution airborne instruments are usually used to develop new remote sensing techniques. The observed spectral features in the signals provide the possibility to define useful band settings for future satellite instruments. A precise wavelength and radiometric calibration is a prerequisite for such tasks. In this paper, a calibration procedure for the airborne spectrometer OVID is presented. The Optical Visible and near Infrared Detector consists of two similar detector systems, (600 - 1100 nm = VIS and 900 - 1700 nm = NIR). The spectral resolution is ~1.7 nm for the VIS-system and ~6 nm for the IR-system. This instrument is applied for the retrieval of water vapour content, aerosol and cloud properties. Besides the spectral and intensity calibration, also corrections for the dark current signals and for defective pixels have been performed. An indirect verification of the calibration procedure by the comparison of OVID measurements in cloudy and cloud free atmospheres with radiative transfer simulations is discussed in this paper. The used radiation transfer model MOMO is based on the matrix operator method.

  4. Simultaneous determination of rhodium and ruthenium by high-resolution continuum source graphite furnace atomic absorption spectrometry

    Science.gov (United States)

    Zambrzycka-Szelewa, Elżbieta; Lulewicz, Marta; Godlewska-Żyłkiewicz, Beata

    2017-07-01

    In the present paper a fast, simple and sensitive analytical method for simultaneous determination of rhodium and ruthenium by high-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS GFAAS) was developed. Among six pairs of absorption atomic lines of Rh and Ru, which are close enough to enable their simultaneous detection, two pairs were selected for further studies. Best results were obtained for measurements of the resonance line of rhodium at 343.489 nm and the adjacent secondary line of ruthenium at 343.674 nm (23% intensity of this line). For evaluated lines, the absorbance values were obtained using three pixels. The pyrolysis and atomization temperatures were 1200 °C and 2600 °C, respectively. Under these conditions the limits of detection achieved for Rh and Ru were found to be 1.0 μg L- 1 and 1.9 μg L- 1, respectively. The characteristic mass was 12.9 pg for Rh and 71.7 pg for Ru. Repeatability of the results expressed as a relative standard deviation was typically below 6%. The trueness of the method was confirmed by analysis of the certified reference material - platinum ore (SARM 76). The recovery of Rh and Ru from the platinum ore was 93.0 ± 4.6% and 90.1 ± 2.5%, respectively. The method was successfully applied to the direct simultaneous determination of trace amounts of rhodium and ruthenium in spiked river water, road runoff, and municipal sewage. Separation of interfering matrix on cation exchange resin was required before analysis of road dust and tunnel dust (CW-7) by HR-CS GFAAS.

  5. The chemical generation of NO for the determination of nitrite by high-resolution continuum source molecular absorption spectrometry.

    Science.gov (United States)

    Brandao, Geovani C; Lima, Daniel C; Ferreira, Sergio L C

    2012-08-30

    In the present work, we propose a method for the determination of nitrite based on the chemical generation of nitric oxide (NO) and its detection by high-resolution continuum source molecular absorption spectrometry. NO is generated by the reduction of nitrite in acidic media with ascorbic acid as the reducing agent and then transferred into a quartz cell by a stream of argon carrier gas. The conditions under which the NO is generated are as follows: 0.4 mol L(-1) hydrochloric acid, 1.5%(w/v) ascorbic acid, an argon gas pressure of 0.03 MPa and an injection time of the reducing agent of 4s. All measurements of molecular absorption were performed using the NO line at 215.360 nm, and the signal was measured by peak height. Under these conditions, the method described has limits of detection and quantification of 0.045 and 0.150 μg mL(-1) of nitrite, respectively. The calibration curve is linear for nitrite concentrations in the range 0.15-15 μg mL(-1). The precision, estimated as the relative standard deviation (RSD), was 3.5% and 4.4% for solutions with nitrite concentrations of 0.5 and 5.0 μg mL(-1), respectively. This method was applied to the analysis of different water samples (well water, drinking water and river water) collected in Cachoeira City, Bahia State, Brazil. The results were in agreement with those obtained by a spectrophotometric method using the Griess reaction. Addition/recovery tests were also performed to check the validity of the proposed method. Recoveries of 93-106% were achieved. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Fast sequential determination of antimony and lead in pewter alloys using high-resolution continuum source flame atomic absorption spectrometry.

    Science.gov (United States)

    Dessuy, Morgana B; de Jesus, Robson M; Brandao, Geovani C; Ferreira, Sergio L C; Vale, Maria Goreti R; Welz, Bernhard

    2013-01-01

    A simple method has been developed to determine antimony and lead in pewter alloy cups produced in Brazil, using fast sequential determination by high-resolution continuum source flame atomic absorption spectrometry. The samples were dissolved in HCl and H(2)O(2), employing a cold finger system in order to avoid analyte losses. The main resonance line of lead at 217.001 nm and a secondary line of antimony at 212.739 nm were used. The limits of detection for lead and antimony were 0.02 and 5.7 mg L(-1), respectively. The trueness of the method was established by recovery tests and comparing the results obtained by the proposed method with those obtained by inductively coupled plasma optical emission spectrometry. The results were compared using a student's t-test and there was no significant difference at a 95% confidence interval. With the developed methods, it was possible to determine accurately antimony and lead in pewter samples. The lead concentration found in the analysed samples was around 1 mg g(-1), which means that they are not lead free; however, the content was below the maximum allowed level of 5 mg g(-1). The antimony content, which was found to be between 40 and 46 mg g(-1), is actually of greater concern, as antimony is known to be potentially toxic already at very low concentrations, although there is no legislation yet for this element.

  7. Mid-Infrared OPO for High Resolution Measurements of Trace Gases in the Mars Atmosphere

    Science.gov (United States)

    Yu, Anthony W.; Numata,Kenji; Riris, haris; Abshire, James B.; Allan, Graham; Sun, Xiaoli; Krainak, Michael A.

    2008-01-01

    The Martian atmosphere is composed primarily (>95%) of CO2 and N2 gas, with CO, O2, CH4, and inert gases such as argon comprising most of the remainder. It is surprisingly dynamic with various processes driving changes in the distribution of CO2, dust, haze, clouds and water vapor on global scales in the meteorology of Mars atmosphere [I]. The trace gases and isotopic ratios in the atmosphere offer important but subtle clues as to the origins of the planet's atmosphere, hydrology, geology, and potential for biology. In the search for life on Mars, an important process is the ability of bacteria to metabolize inorganic substrates (H2, CO2 and rock) to derive energy and produce methane as a by-product of anaerobic metabolism. Trace gases have been measured in the Mars atmosphere from Earth, Mars orbit, and from the Mars surface. The concentration of water vapor and various carbon-based trace gases are observed in variable concentrations. Within the past decade multiple groups have reported detection of CH4, with concentrations in the 10's of ppb, using spectroscopic observations from Earth [2]. Passive spectrometers in the mid-infrared (MIR) are restricted to the sunlit side of the planet, generally in the mid latitudes, and have limited spectral and spatial resolution. To accurately map the global distribution and to locate areas of possibly higher concentrations of these gases such as plumes or vents requires an instrument with high sensitivity and fine spatial resolution that also has global coverage and can measure during both day and night. Our development goal is a new MIR lidar capable of measuring, on global scales, with sensitivity, resolution and precision needed to characterize the trace gases and isotopic ratios of the Martian atmosphere. An optical parametric oscillator operating in the MIR is well suited for this instrument. The sufficient wavelength tuning range of the OPO can extend the measurements to other organic molecules, CO2, atmospheric water

  8. Age Determinations of Early-M Type Pre-Main Sequence Stars Using a High-Resolution Near-Infrared Spectroscopic Method

    Science.gov (United States)

    Takagi, Yuhei; Itoh, Yoichi; Oasa, Yumiko; Sugitani, Koji

    2011-06-01

    We present a method for determining the age of early-M type pre-main sequence (PMS) stars based on estimations of the surface gravity. The surface gravity was measured using high-resolution near-infrared K-band spectroscopy. The age of the PMS stars can be determined from the surface gravity, which correlates with the photospheric contraction. To estimate the surface gravity while avoiding veiling contamination, we developed a surface gravity indicator using equivalent width ratios (EWRs) of nearby absorption lines. We derived a relationship between the ratios of the Sc (22057.8 Å and 22071.3 Å) and Na (22062.4 Å and 22089.7 Å) absorption lines and the surface gravity by observing giants and main-sequence stars. The surface gravities of early-M type stars were determined with an accuracy of 0.1 in logg. The ages of target PMS stars were estimated within a factor of 1.5 by comparing the surface gravity with the evolution model of Baraffe et al. (1998, A&A, 337, 403). The ages of 4 PMS stars were estimated to be older than indicated by previous age determinations made using the photometric method. The EWR method allows estimating the age of PMS stars without contaminating the uncertainty of the distance, extinction, and veiling.

  9. High-resolution absorption measurements of NH3 at high temperatures: 500–2100cm−1

    DEFF Research Database (Denmark)

    Barton, Emma J.; Yurchenko, Sergei N.; Tennyson, Jonathan

    2015-01-01

    High-resolution absorption spectra of NH3 in the region 500–2100 cm -1 at temperatures up to1027 1C and approximately atmospheric pressure (1013±20 mbar) are measured. NH3 concentrations of 1000 ppm,0.5% and 1% in volume fraction were used in the measurements. Spectra are recorded in high tempera...

  10. High-resolution absorption measurements of NH3 at high temperatures: 2100–5500 cm−1

    DEFF Research Database (Denmark)

    Barton, Emma J.; Yurchenko, Sergei N.; Tennyson, Jonathan

    2017-01-01

    High-resolution absorption spectra of NH3 in the region 2100–5500 cm−1 at 1027 °C and approximately atmospheric pressure (1045±3 mbar) are measured. An NH3 concentration of 10% in volume fraction is used in the measurements. Spectra are recorded in a high-temperature gas-flow cell using a Fourier...

  11. Application of High-Resolution Thermal Infrared Remote Sensing and GIS to Assess the Urban Heat Island Effect

    Science.gov (United States)

    Lo, C. P.; Quattrochi, D. A.; Luvall, J. C.

    1997-01-01

    Day and night airborne thermal infrared image data at 5 m spatial resolution acquired with the 15-channel (0.45 micron - 12.2 micron) Advanced Thermal and Land Applications Sensor (ATLAS) over Alabama, Huntsville on 7 September, 1994 were used to study changes in the thermal signatures of urban land cover types between day and night. Thermal channel number 13 (9.6 micron - 10.2 micron) data with the best noise-equivalent temperature change (NEAT) of 0.25 C after atmospheric corrections and temperature calibration were selected for use in this analysis. This research also examined the relation between land cover irradiance and vegetation amount, using the Normalized Difference Vegetation Index (NDVI), obtained by ratioing the difference and the sum of the red (channel number 3: 0.60-0.63 micron) and reflected infrared (channel number 6: 0.76-0.90 micron) ATLAS data. Based on the mean radiance values, standard deviations, and NDVI extracted from 351 pairs of polygons of day and night channel number 13 images for the city of Huntsville, a spatial model of warming and cooling characteristics of commercial, residential, agricultural, vegetation, and water features was developed using a GIS approach. There is a strong negative correlation between NDVI and irradiance of residential, agricultural, and vacant/transitional land cover types, indicating that the irradiance of a land cover type is greatly influenced by the amount of vegetation present. The predominance of forests, agricultural, and residential uses associated with varying degrees of tree cover showed great contrasts with commercial and services land cover types in the center of the city, and favors the development of urban heat islands. The high-resolution thermal infrared images match the complexity of the urban environment, and are capable of characterizing accurately the urban land cover types for the spatial modeling of the urban heat island effect using a GIS approach.

  12. Determination of silicon in biomass and products of pyrolysis process via high-resolution continuum source atomic absorption spectrometry.

    Science.gov (United States)

    Nakadi, Flávio V; Prodanov, Caroline; Boschetti, Wiliam; Vale, Maria Goreti R; Welz, Bernhard; de Andrade, Jailson B

    2018-03-01

    Thermochemical processes can convert the biomass into fuels, such as bio-oil. The biomass submitted to pyrolysis process, such as fibers, are generally rich in silicon, an element that can lead to damages in an engine when there is high concentration in a fuel. High-resolution continuum source atomic absorption spectrometry (HR-CS AAS) is an interesting alternative for Si determination in the products and byproducts of the pyrolysis process because, besides the flame (F) and graphite furnace (GF) atomizers, it has enhanced the application of direct analysis of solid samples (SS) within GF. This study aimed the development of methods to determine Si in biomass samples, their products and byproducts using HR-CS AAS. A high-resolution continuum source atomic absorption spectrometer contrAA 700 equipped with F and GF atomizers was used throughout the study. HR-CS F AAS (λ = 251.611nm, 1 detection pixel, N2O/C2H2 flame) was used to evaluate Si content in biomass and ash, after a microwave-assisted acid digestion with HNO3 and HF. HR-CS GF AAS (Tpyr = 1400°C, Tatom = 2650°C) has evaluated Si in pyrolysis water and bio-oil at 251.611nm, and in peach pit biomass and ash at 221.174nm using SS, both wavelengths with 1 detection pixel. Rhodium (300μg) was applied as permanent modifier and 10μgPd + 6μg Mg were pipetted onto the standards/samples at each analysis. Three different biomass samples were studied: palm tree fiber, coconut fiber and peach pit, and three certified reference materials (CRM) were used to verify the accuracy of the methods. The figures of merit were LOD 0.09-20mgkg-1, and LOQ 0.3-20mgkg-1, considering all the methods. There were no significant differences between the CRM certified values and the determined ones, using a Student t-test with a confidence interval of 95% (n = 5). Si concentration ranged from 0.11-0.92% mm-1, 1.1-1.7mgkg-1, 3.3-13mgkg-1, and 0.41-1.4%mm-1, in biomass, bio-oil, pyrolysis water and ash, respectively. Si remained mostly

  13. Determination of silicon and aluminum in silicon carbide nanocrystals by high-resolution continuum source graphite furnace atomic absorption spectrometry.

    Science.gov (United States)

    Dravecz, Gabriella; Bencs, László; Beke, Dávid; Gali, Adam

    2016-01-15

    The determination of Al contaminant and the main component Si in silicon carbide (SiC) nanocrystals with the size-distribution of 1-8nm dispersed in an aqueous solution was developed using high-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS-GFAAS). The vaporization/atomization processes were investigated in a transversally heated graphite atomizer by evaporating solution samples of Al and Si preserved in various media (HCl, HNO3). For Si, the best results were obtained by applying a mixture of 5µg Pd plus 5µg Mg, whereas for Al, 10µg Mg (each as nitrate solution) was dispensed with the samples, but the results obtained without modifier were found to be better. This way a maximum pyrolysis temperature of 1200°C for Si and 1300°C for Al could be used, and the optimum (compromise) atomization temperature was 2400°C for both analytes. The Si and Al contents of different sized SiC nanocrystals, dispersed in aqueous solutions, were determined against aqueous (external) calibration standards. The correlation coefficients (R values) of the calibrations were found to be 0.9963 for Si and 0.9991 for Al. The upper limit of the linear calibration range was 2mg/l Si and 0.25mg/l Al. The limit of detection was 3µg/l for Si and 0.5µg/l for Al. The characteristic mass (m0) was calculated to be 389pg Si and 6.4pg Al. The Si and Al content in the solution samples were found to be in the range of 1.0-1.7mg/l and 0.1-0.25mg/l, respectively. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Determination of Chlorine in Milk via Molecular Absorption of SrCl Using High-Resolution Continuum Source Graphite Furnace Atomic Absorption Spectrometry.

    Science.gov (United States)

    Ozbek, Nil; Akman, Suleyman

    2016-07-20

    Total chlorine in milk was determined via the molecular absorption of diatomic strontium monochloride at 635.862 nm using high-resolution continuum source graphite furnace atomic absorption spectrometry. The effects of coating the graphite furnace, using different modifiers, amount of molecule-forming element, and different calibrants were investigated and optimized. Chlorine concentrations in milk samples were determined in a Zr-coated graphite furnace using 25 μg of Sr as the molecule-forming reagent and applying a pyrolysis temperature of 600 °C and a molecule-forming temperature of 2300 °C. Linearity was maintained up to 500 μg mL(-1) of Cl. The method was tested by analyzing a certified reference wastewater. The results were in the uncertainty limits of the certified value. The limit of detection of the method was 1.76 μg mL(-1). The chlorine concentrations in various cow milk samples taken from the market were found in the range of 588-1472 mg L(-1).

  15. The use of high-resolution infrared thermography (HRIT) for the study of ice nucleation and ice propagation in plants.

    Science.gov (United States)

    Wisniewski, Michael; Neuner, Gilbert; Gusta, Lawrence V

    2015-05-08

    Freezing events that occur when plants are actively growing can be a lethal event, particularly if the plant has no freezing tolerance. Such frost events often have devastating effects on agricultural production and can also play an important role in shaping community structure in natural populations of plants, especially in alpine, sub-arctic, and arctic ecosystems. Therefore, a better understanding of the freezing process in plants can play an important role in the development of methods of frost protection and understanding mechanisms of freeze avoidance. Here, we describe a protocol to visualize the freezing process in plants using high-resolution infrared thermography (HRIT). The use of this technology allows one to determine the primary sites of ice formation in plants, how ice propagates, and the presence of ice barriers. Furthermore, it allows one to examine the role of extrinsic and intrinsic nucleators in determining the temperature at which plants freeze and evaluate the ability of various compounds to either affect the freezing process or increase freezing tolerance. The use of HRIT allows one to visualize the many adaptations that have evolved in plants, which directly or indirectly impact the freezing process and ultimately enables plants to survive frost events.

  16. Determination of total mercury for marine environmental monitoring studies by solid sampling continuum source high resolution atomic absorption spectrometry

    Science.gov (United States)

    Mandjukov, Petko; Orani, Anna Maria; Han, Eunmi; Vassileva, Emilia

    2015-01-01

    The most critical step in almost all commonly used analytical procedures for Hg determination is the sample preparation due to its extreme volatility. One of the possible solutions of this problem is the application of methods for direct analysis of solid samples. The possibilities for solid sampling high resolution continuum source atomic absorption spectrometry (HR CS AAS) determination of total mercury in various marine environmental samples e.g. sediments and biota are object of the present study. The instrumental parameters were optimized in order to obtain reproducible and interference free analytical signal. A calibration technique based on the use of solid standard certified reference materials similar to the nature of the analyzed sample was developed and applied to various CRMs and real samples. This technique allows simple and reliable evaluation of the uncertainty of the result and the metrological characteristics of the method. A validation approach in line with the requirements of ISO 17025 standard and Eurachem guidelines was followed. With this in mind, selectivity, working range (0.06 to 25 ng for biota and 0.025 to 4 ng for sediment samples, expressed as total Hg) linearity (confirmed by Student's t-test), bias (1.6-4.3%), repeatability (4-9%), reproducibility (9-11%), and absolute limit of detection (0.025 ng for sediment, 0.096 ng for marine biota) were systematically assessed using solid CRMs. The relative expanded uncertainty was estimated at 15% for sediment sample and 8.5% for marine biota sample (k = 2). Demonstration of traceability of measurement results is also presented. The potential of the proposed analytical procedure, based on solid sampling HR CS AAS technique was demonstrated by direct analysis of sea sediments form the Caribbean region and various CRMs. Overall, the use of solid sampling HR CS AAS permits obtaining significant advantages for the determination of this complex analyte in marine samples, such as straightforward

  17. Determination of total mercury for marine environmental monitoring studies by solid sampling continuum source high resolution atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Mandjukov, Petko; Orani, Anna Maria; Han, Eunmi; Vassileva, Emilia, E-mail: e.vasileva-veleva@iaea.org

    2015-01-01

    The most critical step in almost all commonly used analytical procedures for Hg determination is the sample preparation due to its extreme volatility. One of the possible solutions of this problem is the application of methods for direct analysis of solid samples. The possibilities for solid sampling high resolution continuum source atomic absorption spectrometry (HR CS AAS) determination of total mercury in various marine environmental samples e.g. sediments and biota are object of the present study. The instrumental parameters were optimized in order to obtain reproducible and interference free analytical signal. A calibration technique based on the use of solid standard certified reference materials similar to the nature of the analyzed sample was developed and applied to various CRMs and real samples. This technique allows simple and reliable evaluation of the uncertainty of the result and the metrological characteristics of the method. A validation approach in line with the requirements of ISO 17025 standard and Eurachem guidelines was followed. With this in mind, selectivity, working range (0.06 to 25 ng for biota and 0.025 to 4 ng for sediment samples, expressed as total Hg) linearity (confirmed by Student's t-test), bias (1.6–4.3%), repeatability (4–9%), reproducibility (9–11%), and absolute limit of detection (0.025 ng for sediment, 0.096 ng for marine biota) were systematically assessed using solid CRMs. The relative expanded uncertainty was estimated at 15% for sediment sample and 8.5% for marine biota sample (k = 2). Demonstration of traceability of measurement results is also presented. The potential of the proposed analytical procedure, based on solid sampling HR CS AAS technique was demonstrated by direct analysis of sea sediments form the Caribbean region and various CRMs. Overall, the use of solid sampling HR CS AAS permits obtaining significant advantages for the determination of this complex analyte in marine samples, such as

  18. Characterization of metallic nanoparticles by high-resolution X-ray absorption and X-ray emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kuehn, Timna-Josua

    2012-03-15

    In almost all areas of technology, metallic nanoparticles are of interest due to their special thermal, electronic, magnetic and optical properties. Their special properties are mainly due to their small size which implies the relevance of quantum effects as well as the significance of the surface: For 2 nm nanoparticles, the surface-to-volume ratio is already 1:1. However, the identification of surface-to-volume interactions - that are responsible for the new properties - is a difficult task due to the small size that inhibits a lot of 'standard' techniques to be applicable. Here X-ray absorption/emission spectroscopy (XAS/XES) is a favorable tool for the characterization of nanoparticles, independent on size, degree of crystallinity and shape/condition of the surface. Using XAS, a tempered nanosized Co{sub 3}Pt/C catalyst have been investigated. Its outstanding oxygen-reduction reaction (ORR) properties in a fuel cell could be related to a lowered Pt 5d-band center connected to a tightened Pt-Pt bonding distance, leading to a weakening of the oxygen adsorption strength so that the ORR may proceed faster. One drawback remains, however, as the properties found by (standard) XAS are summed up for different chemical environments of the chosen element. Thus, no distinction can be made between, e.g., the pure metal in a nanoparticles' interior and the ligated metal in the outer shells or surface. Here, high-resolution fluorescence-detected XAS (HRFD-XAS) provides additional opportunities as, due to its chemical sensitivity, it leads to site-selective XAS. For a system of 6 nm sized Co nanoparticles, build up of a metallic core surrounded by a protecting shell, that resulted from the 'smooth oxidation' process, this technique of site-selective XAS was proven to be applicable. For the first time, the interior and outer shell of a metallic nanoparticle could be characterized separately. In particular, the Co-hcp phase could be determined for the

  19. High-Resolution Infrared Spectroscopic Measurements of Comet 2PlEncke: Unusual Organic Composition and Low Rotational Temperatures

    Science.gov (United States)

    Radeva, Yana L.; Mumma, Michael J.; Villanueva, Geronimo L.; Bonev, Boncho P.; DiSanti, Michael A.; A'Hearn, Michael F.; Dello Russo, Neil

    2013-01-01

    We present high-resolution infrared spectroscopic measurements of the ecliptic comet 2P/Encke, observed on 4-6 Nov. 2003 during its close approach to the Earth, using the Near Infrared Echelle Spectrograph on the Keck II telescope. We present flux-calibrated spectra, production rates, and mixing ratios for H2O, CH3OH, HCN, H2CO, C2H2, C2H6, CH4 and CO. Comet 2P/Encke is a dynamical end-member among comets because of its short period of 3.3 years. Relative to "organics-normal" comets, we determined that 2PlEncke is depleted in HCN, H2CO, C2H2, C2H6, CH4 and CO, but it is enriched in CH3OH. We compared mixing ratios of these organic species measured on separate dates, and we see no evidence of macroscopic chemical heterogeneity in the nucleus of 2P/Encke, however, this conclusion is limited by sparse temporal sampling. The depleted abundances of most measured species suggest that 2P/Encke may have formed closer to the young Sun, before its insertion to the Kuiper belt, compared with "organics-normal" comets - as was previously suggested for other depleted comets (e.g. C/1999 S4 (LINEAR)). We measured very low rotational temperatures of 20 - 30 K for H2O, CH3OH and HCN in the near nucleus region of 2P/Encke, which correlate with one of the lowest cometary gas production rates (approx. 2.6 x 10(exp 27) molecules/s) measured thus far in the infrared. This suggests that we are seeing the effects of more efficient radiative cooling, insufficient collisional excitation, and/or inefficient heating by fast H-atoms (and icy grains) in the observed region of the coma. Its extremely short orbital period, very low gas production rate, and classification as an ecliptic comet, make 2PlEncke an important addition to our growing database, and contribute significantly to the establishment of a chemical taxonomy of comets.

  20. High-Resolution Infrared Spectra and Simultaneous Rovibrational Analysis of the nu2, nu3, nu5, and nu6 Bands of H3SiF.

    Science.gov (United States)

    Papousek; Bürger; Rahner; Schulz; Hollenstein; Quack

    1999-06-01

    A high-resolution FT infrared spectrum of H3SiF (resolution 0.0024 cm-1) in the region 620-1130 cm-1 was measured and used to analyze the fundamental bands nu2 (A1), 990.851 cm-1; nu3 (A1), 875.011 cm-1; nu5 (E), 962.213 cm-1; and nu6 (E), 729.528 cm-1. A total number of 7241 transition wavenumbers (including 53 perturbation-allowed transitions) with J' absorption band strengths which are important for infrared laser chemistry. Copyright 1999 Academic Press.

  1. High-resolution excitation and absorption spectroscopy of gas-phase p-coumaric acid: unveiling an elusive chromophore

    NARCIS (Netherlands)

    Smolarek, S.; Vdovin, A.; Perrier, D.L.; Smit, J.P.; Drabbels, M.; Buma, W.J.

    2010-01-01

    We report on the first successful high-resolution spectroscopic studies on isolated para-coumaric acid, the chromophore of the photoactive yellow protein which has become a model system for studying biological light-induced signal transduction. Employing various double-resonance multiphoton

  2. Infrared Absorption Cross Sections of Cold Propane in the Low Frequency Region Between 600 - 1300 \\wn

    Science.gov (United States)

    Wong, Andy; Hargreaves, Robert J.; Billinghurst, Brant E.; Bernath, Peter F.

    2017-06-01

    Propane is one of several hydrocarbons present in the atmospheres of the Giant Planets, Jupiter and Saturn. In order to characterize the atmospheres of the Giant Planets, it is necessary to provide absorption cross sections which can be used to determine abundances. Absorption cross sections have been obtained from high resolution transmission spectra recorded at the Canadian Light Source Far Infrared beamline. The experimental conditions used mimic those of the atmospheres belonging to the Giant Planets using He and H_{2} as foreign broadeners.

  3. Fourier Transform Near Infrared Microspectroscopy, Infrared Chemical Imaging, High-Resolution Nuclear Magnetic Resonance and Fluorescence Microspectroscopy Detection of Single Cancer Cells and Single Viral Particles

    CERN Document Server

    Baianu,I C; Hofmann, N E; Korban, S S; Lozano, P; You, T

    2004-01-01

    Single Cancer Cells from Human tumors are being detected and imaged by Fourier Transform Infrared (FT-IR), Fourier Transform Near Infrared (FT-NIR)Hyperspectral Imaging and Fluorescence Correlation Microspectroscopy. The first FT-NIR chemical, microscopic images of biological systems approaching one micron resolution are here reported. Chemical images obtained by FT-NIR and FT-IR Microspectroscopy are also presented for oil in soybean seeds and somatic embryos under physiological conditions. FT-NIR spectra of oil and proteins were obtained for volumes as small as two cubic microns. Related, HR-NMR analyses of oil contents in somatic embryos as well as 99% accurate calibrations are also presented here with nanoliter precision. Such high-resolution, 400 MHz H-1 NMR analyses allowed the selection of mutagenized embryos with higher oil content (e.g. >~20%) compared to the average levels in non-mutagenized control embryos. Moreover, developmental changes in single soybean seeds and/or somatic embryos may be monito...

  4. Near Infrared Microspectroscopy, Fluorescence Microspectroscopy, Infrared Chemical Imaging and High Resolution Nuclear Magnetic Resonance Analysis of Soybean Seeds, Somatic Embryos and Single Cells

    CERN Document Server

    Baianu, I C; Hofmann, N E; Korban, S S; Lozano, P; You, T; AOCS 94th Meeting, Kansas

    2002-01-01

    Novel methodologies are currently being developed and established for the chemical analysis of soybean seeds, embryos and single cells by Fourier Transform Infrared (FT-IR), Fourier Transform Near Infrared (FT-NIR) Microspectroscopy, Fluorescence and High-Resolution NMR (HR-NMR). The first FT-NIR chemical images of biological systems approaching one micron resolution are presented here. Chemical images obtained by FT-NIR and FT-IR Microspectroscopy are presented for oil in soybean seeds and somatic embryos under physiological conditions. FT-NIR spectra of oil and proteins were obtained for volumes as small as two cubic microns. Related, HR-NMR analyses of oil contents in somatic embryos are also presented here with nanoliter precision. Such 400 MHz 1H NMR analyses allowed the selection of mutagenized embryos with higher oil content (e.g. ~20%) compared to non-mutagenized control embryos. Moreover, developmental changes in single soybean seeds and/or somatic embryos may be monitored by FT-NIR with a precision ...

  5. A Search for Supernova Remnants with Infrared [FeII] Emission: A Study of NGC 6946 with the WIYN High Resolution Infrared Camera (WHIRC)

    Science.gov (United States)

    Bruursema, Justice; Meixner, Margaret; Long, Knox S.; Otsuka, Masaaki

    2018-01-01

    Supernovae and supernova remnants (SNRs) play an important role in the evolution of the interstellar medium of their host galaxies. To better understand this role, it will be necessary to obtain large samples of these objects and examine how their properties relate to their physical environments. In this study, we employ a relatively unexplored technique to identify large numbers of SNRs using both narrow and broadband infrared imaging. We used the WIYN High Resolution Infrared Camera (WHIRC) on the 3.5m WIYN telescope to image nearby galaxy NGC 6946 in broadbands J and H and narrowbands designed to measure 1.64 μm [Fe II] emission, and Paβ emission. The uniqueness of our method lies in the use of additional narrowband “off” filters, adjacent to the [Fe II] and Paβ filters, but offset by 4500 km s-1. The “off” filters and broadband filters provide the information needed to determine which objects are strongly emitting [Fe II]. Our final analysis resulted in the identification of 72 supernova remnant candidates (SNRcs) which we are confident are SNRs, however spectroscopic observations will be needed to confirm their classification. The strength of our results, as discussed below, gives us confidence that our [Fe II] emission search method is an effective way to locate SNRcs.

  6. Study of the v4= 2 and v4= 3 States of PF 3by High Resolution Infrared Spectroscopy

    Science.gov (United States)

    Badaoui, M.; Ben Sari-Zizi, N.; Najib, H.; Graner, G.

    1997-08-01

    In order to study thev4= 2 andv4= 3 states of PF3, two high resolution (≈3 × 10-3cm-1) infrared spectra were used. In the 14 μm region, 2ν40and the hot band 3ν4±1- ν4±1could be analysed but the 2ν4±2and 3ν4±3- ν4±1bands were not observed. Among the hot bands of ν4at 28 μm, however, the hot bands 2ν4±2- ν4±1and 3ν4±3- 2ν4±2could be identified. Altogether 1166 transitions of 2ν40and 198 energy levels deduced from 2ν4±2- ν4±1were fitted to a model taking into account thel(2,2) interaction between thev4= 20andv4= 2±2states. Five microwave transitions were also included in the fit. A standard deviation of 0.241 × 10-3cm-1was obtained. A similar model forv4= 3 implyingl(2,2) interaction terms betweenv4= 3±1and 3±3as well as between 3+1and 3-1was used to fit 491 energy levels ofv4= 3±1and 97 ofv4= 3±3. These were deduced from hot bands; six microwave transitions were also included in the fit, which gave a standard deviation σ = 1.201 × 10-3cm-1. The anharmonic constants deduced from the experimental bandcenters (2ν40)0= 692.84694(3) cm-1and (3ν4±1)0= 1039.0697(3) cm-1arex44= -0.2154 cm-1andg44= 0.4474 cm-1. The experimental bandcenters (2ν4±2)0= 694.695 cm-1and (3ν4±3)0= 1042.633 cm-1are in fair agreement with the predictions from ν4and the above-mentioned anharmonic constants.

  7. A new approach for the determination of sulphur in food samples by high-resolution continuum source flame atomic absorption spectrometer.

    Science.gov (United States)

    Ozbek, N; Baysal, A

    2015-02-01

    The new approach for the determination of sulphur in foods was developed, and the sulphur concentrations of various fresh and dried food samples determined using a high-resolution continuum source flame atomic absorption spectrometer with an air/acetylene flame. The proposed method was optimised and the validated using standard reference materials, and certified values were found to be within the 95% confidence interval. The sulphur content of foods ranged from less than the LOD to 1.5mgg(-1). The method is accurate, fast, simple and sensitive. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Low-cost very high resolution intertidal vegetation monitoring enabled by near-infrared kite aerial photography

    OpenAIRE

    Pauly, K.; De Clerck, O.

    2011-01-01

    With ecosystem services of intertidal habitats under rising pressure of human disturbance and climate change, monitoring habitat diversity is increasingly required. However, field-based surveys are time and resourceintensive and often do not provide spatially explicit information. While airborne (multi-spectral) photography and LIDA (Laser Imaging Detecting And Ranging) offer an efficient, very high resolution and high-quality solution, the costs for skilled crew and equipment often preclude ...

  9. Determination of macro- and micronutrients in plant leaves by high-resolution continuum source flame atomic absorption spectrometry combining instrumental and sample preparation strategies

    Science.gov (United States)

    Oliveira, Silvana R.; Gomes Neto, José A.; Nóbrega, Joaquim A.; Jones, Bradley T.

    2010-04-01

    A method for determination of B, Ca, Cu, Fe, K, Mg, Mn, Mo, P, S and Zn in plant tissues by high-resolution continuum source flame atomic absorption spectrometry (HR-CS FAAS) is proposed. This method is based on special features of HR-CS-AAS, such as side pixel registration, wavelength integrated absorbance, and molecular absorption bands, for determining macro- and micronutrients in foliar analysis without requiring several different strategies for sample preparation and adjustment of the analytes concentration ranges. Plant samples were analyzed and results for certified materials were in agreement at a 95% confidence level (paired t-test) with reference values. Recoveries of analytes added to plant digests varied within the 82-112% interval. Relative standard deviations ( n = 12) were lower than or equal to 5.7% for all analytes in all concentration ranges.

  10. High-resolution excitation and absorption spectroscopy of gas-phase p-coumaric acid: unveiling an elusive chromophore.

    Science.gov (United States)

    Smolarek, Szymon; Vdovin, Alexander; Perrier, Dayinta L; Smit, Jorrit P; Drabbels, Marcel; Buma, Wybren J

    2010-05-12

    We report on the first successful high-resolution spectroscopic studies on isolated para-coumaric acid, the chromophore of the photoactive yellow protein which has become a model system for studying biological light-induced signal transduction. Employing various double-resonance multiphoton ionization techniques in combination with mass-resolved ion detection and the results of quantum chemical calculations, we identify three conformations the molecule can adopt under our experimental conditions. The vibrational activity in the excitation spectra allows us to conclude that in the Franck-Condon region accessed from the ground state S(1) is the V'(pipi*) state. Interestingly, we find considerable out-of-plane vibrational activity, indicating that the molecule adopts a nonplanar geometry in S(1). The ionization requirements show that after excitation rapid internal conversion takes place to a lower-lying npi* state. Such a state has been postulated by ab initio calculations on para-coumaric acid and derivatives, but until the present study no direct evidence had been found for its presence.

  11. Investigating effects of sample pretreatment on protein stability using size-exclusion chromatography and high-resolution continuum source atomic absorption spectrometry.

    Science.gov (United States)

    Rakow, Tobias; El Deeb, Sami; Hahne, Thomas; El-Hady, Deia Abd; AlBishri, Hassan M; Wätzig, Hermann

    2014-09-01

    In this study, size-exclusion chromatography and high-resolution atomic absorption spectrometry methods have been developed and evaluated to test the stability of proteins during sample pretreatment. This especially includes different storage conditions but also adsorption before or even during the chromatographic process. For the development of the size exclusion method, a Biosep S3000 5 μm column was used for investigating a series of representative model proteins, namely bovine serum albumin, ovalbumin, monoclonal immunoglobulin G antibody, and myoglobin. Ambient temperature storage was found to be harmful to all model proteins, whereas short-term storage up to 14 days could be done in an ordinary refrigerator. Freezing the protein solutions was always complicated and had to be evaluated for each protein in the corresponding solvent. To keep the proteins in their native state a gentle freezing temperature should be chosen, hence liquid nitrogen should be avoided. Furthermore, a high-resolution continuum source atomic absorption spectrometry method was developed to observe the adsorption of proteins on container material and chromatographic columns. Adsorption to any container led to a sample loss and lowered the recovery rates. During the pretreatment and high-performance size-exclusion chromatography, adsorption caused sample losses of up to 33%. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. High-resolution infrared spectroscopy of CH2D79Br: ro-vibrational analysis of the ν4 and ν8 fundamental bands

    DEFF Research Database (Denmark)

    Stoppa, P.; Visinoni, R.; Baldacci, A.

    2017-01-01

    The high-resolution Fourier transform infrared spectrum of CH2D79Br has been recorded and analysed in the region of the ν4 and ν8 fundamentals located in the range 1125−1360 cm−1. The strong ν4 band, centred at 1225 cm−1, shows an a/b-hybrid structure with predominant a-type character, whereas ν8....../ν8/2ν6/ν5+ν6 by also including in the dataset the assigned transitions of the 2ν6−ν6 and ν5+ν6−ν6 hot bands obtained from previous analysis....

  13. High-Resolution Infrared Spectroscopy of the v1 + v4 Band of 14NF3:Reductions of the Rovibrational Hamiltonian

    Directory of Open Access Journals (Sweden)

    Hamid Najib

    2012-01-01

    Full Text Available The high-resolution Fourier transform infrared spectrum of nitrogen trifluoride NF3 has been studied in the v1 + v4 perpendicular band region around 1523 cm−1. All experimental data have been refined applying various reduction forms of the effective rovibrational Hamiltonian developed for an isolated degenerate state of a symmetric top molecule. The v1 = v4 = 1 excited state of the 14NF3 oblate molecule was treated with models taking into account ℓ- and k-type intravibrational resonances. Parameters up to sixth order have been accurately determined and the unitary equivalence of the derived parameter sets in different reductions was demonstrated.

  14. High resolution X-ray absorption on metallicity selected C{sub 60} peapods, single-, and double walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Kramberger, Christian [Department of Mechanical Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Ayala, Paola; Simon, Ferenc; Friedrich, Alexander; Liu, Xianjie; Pichler, Thomas [Faculty of Physics, University of Vienna, Strudlhofgasse 4, 1090 Vienna (Austria); Shiozawa, Hidetsugu [Advanced Technology Institute, University of Surrey, Guildford GU2 7XH (United Kingdom); Ruemmeli, Mark [IFW Dresden, Helmholtzstrasse 20, 01069 Dresden (Germany); Miyata, Yasumitsu; Kataura, Hiromichi [Nanotechnology Research Institute, AIST, Tsukuba 305-8562 (Japan); Hoffmann, Patrick [BESSY, Albert-Einstein-Strasse 15, 12481 Berlin (Germany)

    2011-11-15

    We have investigated the C1s core level X-ray absorption of bulk samples of C{sub 60}-peapods and double wall carbon nanotubes (DWNTs) derived from either metallic or semiconducting single-walled carbon nanotubes (SWNTs). The clear cut separation of the different species unveils their distinct electronic van Hove singularities (VHS). The core level spectra of peapods are a quantitative superpositon of the conduction band of nanotubes and unoccupied molecular orbitals of C{sub 60}. The outer shell metallicity selected DWNTs reveal changes in the {pi}* resonance due to the inner shell VHS. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Tunable mid-infrared absorption of metamaterial integrated with graphene

    Science.gov (United States)

    Chen, X. B.; Li, Q.; Ghosh, P.; Min, Q.

    2017-06-01

    A metal-isolator-metal (MIM) metamaterial absorber with embedded graphene shows tunable at mid-infrared frequency regime. We report tunable absorption spectra of the MIM structure for different Fermi levels of graphene.

  16. Component analyses of urinary nanocrystallites of uric acid stone formers by combination of high-resolution transmission electron microscopy, fast Fourier transformation, energy dispersive X-ray spectroscopy, X-ray diffraction and Fourier transform infrared spectroscopy.

    Science.gov (United States)

    Sun, Xin-Yuan; Xue, Jun-Fa; Xia, Zhi-Yue; Ouyang, Jian-Ming

    2015-06-01

    This study aimed to analyse the components of nanocrystallites in urines of patients with uric acid (UA) stones. X-ray diffraction (XRD), Fourier transform infrared spectroscopy, high-resolution transmission electron microscopy (HRTEM), fast Fourier transformation (FFT) of HRTEM, and energy dispersive X-ray spectroscopy (EDS) were performed to analyse the components of these nanocrystallites. XRD and FFT showed that the main component of urinary nanocrystallites was UA, which contains a small amount of calcium oxalate monohydrate and phosphates. EDS showed the characteristic absorption peaks of C, O, Ca and P. The formation of UA stones was closely related to a large number of UA nanocrystallites in urine. A combination of HRTEM, FFT, EDS and XRD analyses could be performed accurately to analyse the components of urinary nanocrystallites.

  17. High-resolution continuum source graphite furnace molecular absorption spectrometry compared with ion chromatography for quantitative determination of dissolved fluoride in river water samples.

    Science.gov (United States)

    Ley, Philip; Sturm, Manfred; Ternes, Thomas A; Meermann, Björn

    2017-10-03

    In addition to beneficial health effects, fluoride can also have adverse effects on humans, animals, and plants if the daily intake is strongly elevated. One main source of fluoride uptake is water, and thus several ordinances exist in Germany that declare permissible concentrations of fluoride in, for example, drinking water, mineral water, and landfill seepage water. Controlling the fluoride concentrations in aqueous matrices necessitate valid and fast analytical methods. In this work an alternative method for the determination of fluoride in surface waters based on high-resolution continuum source graphite furnace molecular absorption spectrometry (HR-CS-GFMAS) was applied. Fluoride detection was made possible by the formation of a diatomic molecule, GaF, and detection of characteristic molecular absorption. On HR-CS-GFMAS parameter optimization, the method was adapted to surface water sample analysis. The influence of potential main matrix constituents such as Na+, Ca2+, Mg2+, and Cl- as well as surface water sampling/storage conditions on the molecular absorption signal of GaF was investigated. Method validation demonstrated a low limit of detection (8.1 μg L-1) and a low limit of quantification (26.9 μg L-1), both sufficient for direct river water sample analysis after 0.45-μm filtration. The optimized HR-CS-GFMAS method was applied for the analysis of real water samples from the rivers Rhine and Moselle. For method validation, samples were also analyzed by an ion chromatography (IC) method. IC and HR-CS-GFMAS results both agreed well. In comparison with IC, HR-CS-GFMAS has higher sample throughput, a lower limit of detection and a lower limit of quantification, and higher selectivity, and is a very suitable method for the analysis of dissolved fluoride in river water. Graphical abstract High-resolution continuum source graphite furnace molecular absorption spectrometry (HR-CS-GFMAS) was applied for the quantitative analysis of dissolved fluoride in river

  18. High resolution Fourier transform infrared spectroscopy of the ground state, ν3, 2ν3 and ν4 levels of 13CHF3

    Science.gov (United States)

    Bolotova, I. B.; Ulenikov, O. N.; Bekhtereva, E. S.; Albert, S.; Chen, Z.; Hollenstein, H.; Zindel, D.; Quack, M.

    2017-07-01

    We report high resolution (δ ν ˜ ⩽ 0.001cm-1) Fourier Transform Infrared (FTIR) spectra of the trifluoromethane (fluoroform) isotopomer 13CHF3 including results from synchrotron based spectroscopy at the Swiss light source (SLS). The analysis is extended to the pure rotational spectra in the Terahertz (far-infrared) range (15-100 cm-1, δν˜FWHM = 0.0006cm-1), the ν3 fundamental (ν˜0 = 695.292cm-1), the associated ;hot; band 2ν3 -ν3 providing information on the level 2ν3 (ν˜0 = 1389.807cm-1) and the ν4 fundamental (ν˜0 = 1369.013cm-1) coupled to 2ν3 . The results are discussed in relation to the 13C isotope effect on the vibrational quantum dynamics as derived by theory and in relation to fluoroform as a greenhouse gas.

  19. Characterization of surface properties over permafrost soils using a high resolution mid-infrared camera as part of the Carbon in the Arctic Vulnerability Experiment (CARVE)

    Science.gov (United States)

    Steiner, N.; McDonald, K. C.; Podest, E.; Dinardo, S. J.; Miller, C. E.

    2016-12-01

    Freeze/thaw and hydrologic cycling have important influence over surface processes in Arctic ecosystems and in Arctic carbon cycling. The seasonal freezing and thawing of soils bracket negative and positive modes of CO2 and CH4 flux of the bulk landscape. Hydrologic processes, such as seasonal inundation of thawed tundra create a complex microtopography where greenhouse-gas sources and sinks occur over short distances. Because of a high spatial variability hydrologic features must be mapped at fine resolution. These mappings can then be compared to local and regional scale observations of surface conditions, such as temperature and freeze/thaw state, to create better estimates of these important surface fields. The Carbon in the Arctic Vulnerability Experiment (CARVE) monitors carbon gas cycling in Alaskan using aircraft-deployed gas sampling instruments along with remote sensing observations of the land surface condition. A nadir-pointed, forward looking infrared (FLIR) imager mounted on the CARVE air-craft is used to measure upwelling mid-infrared spectral radiance at 3-5 microns. The FLIR instrument was operated during the spring, summer and fall seasons, 2013 through 2015. The instantaneous field of view (IFOV) of the FLIR instrument allows for a sub-meter resolution from a height of 500 m. High resolution data products allows for the discrimination of individual landscape components such as soil, vegetation and surface water features in the image footprint. We assess the effectiveness of the FLIR thermal images in monitoring thawing and inundation processes at very high resolutions. Analyses of FLIR datasets over focused study areas emphasizing exploration of the FLIR dataset utility for detailed land surface characterization as related to surface moisture and temperature. Emphasis is given to the Barrow CMDL station site and employ the tram-based data collections there. We will also examine potential at other high latitude sites of interest, e.g. Atqasuk

  20. Micro-sampling method based on high-resolution continuum source graphite furnace atomic absorption spectrometry for calcium determination in blood and mitochondrial suspensions.

    Science.gov (United States)

    Gómez-Nieto, Beatriz; Gismera, Mª Jesús; Sevilla, Mª Teresa; Satrústegui, Jorgina; Procopio, Jesús R

    2017-08-01

    A micro-sampling and straightforward method based on high resolution continuum source atomic absorption spectrometry (HR-CS AAS) was developed to determine extracellular and intracellular Ca in samples of interest in clinical and biomedical analysis. Solid sampling platforms were used to introduce the micro-samples into the graphite furnace atomizer. The secondary absorption line for Ca, located at 239.856nm, was selected to carry out the measurements. Experimental parameters such as pyrolysis and atomization temperatures and the amount of sample introduced for the measurements were optimized. Calibration was performed using aqueous standards and the approach to measure at the wings of the absorption lines was employed for the expansion of the linear response range. The limit of detection was of 0.02mgL-1 Ca (0.39ng Ca) and the upper limit of linear range was increased up to 8.0mgL-1 Ca (160ng Ca). The proposed method was used to determine Ca in mitochondrial suspensions and whole blood samples with successful results. Adequate recoveries (within 91-107%) were obtained in the tests performed for validation purposes. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Application of Internal Standard Method for Several 3d-Transition Metallic Elements in Flame Atomic Absorption Spectrometry Using a Multi-wavelength High-resolution Spectrometer.

    Science.gov (United States)

    Toya, Yusuke; Itagaki, Toshiko; Wagatsuma, Kazuaki

    2017-01-01

    We investigated a simultaneous internal standard method in flame atomic absorption spectrometry (FAAS), in order to better the analytical precision of 3d-transition metals contained in steel materials. For this purpose, a new spectrometer system for FAAS, comprising a bright xenon lamp as the primary radiation source and a high-resolution Echelle monochromator, was employed to measure several absorption lines at a wavelength width of ca. 0.3 nm at the same time, which enables the absorbances of an analytical line and also an internal standard line to be estimated. In considering several criteria for selecting an internal standard element and the absorption line, it could be suggested that platinum-group elements: ruthenium, rhodium, or palladium, were suitable for an internal standard element to determine the 3d-transition metal elements, such as titanium, iron, and nickel, by measuring an appropriate pair of these absorption lines simultaneously. Several variances of the absorption signal, such as a variation in aspirated amounts of sample solution and a short-period drift of the primary light source, would be corrected and thus reduced, when the absorbance ratio of the analytical line to the internal standard line was measured. In Ti-Pd, Ni-Rh, and Fe-Ru systems chosen as typical test samples, the repeatability of the signal respnses was investigated with/without the internal standard method, resulting in better precision when the internal standard method was applied in the FAAS with a nitrous oxide-acetylene flame rather than an air-acetylene flame.

  2. Drone with thermal infrared camera provides high resolution georeferenced imagery of the Waikite geothermal area, New Zealand

    Science.gov (United States)

    Harvey, M. C.; Rowland, J. V.; Luketina, K. M.

    2016-10-01

    Drones are now routinely used for collecting aerial imagery and creating digital elevation models (DEM). Lightweight thermal sensors provide another payload option for generation of very high-resolution aerial thermal orthophotos. This technology allows for the rapid and safe survey of thermal areas, often present in inaccessible or dangerous terrain. Here we present a 2.2 km2 georeferenced, temperature-calibrated thermal orthophoto of the Waikite geothermal area, New Zealand. The image represents a mosaic of nearly 6000 thermal images captured by drone over a period of about 2 weeks. This is thought by the authors to be the first such image published of a significant geothermal area produced by a drone equipped with a thermal camera. Temperature calibration of the image allowed calculation of heat loss (43 ± 12 MW) from thermal lakes and streams in the survey area (loss from evaporation, conduction and radiation). An RGB (visible spectrum) orthomosaic photo and digital elevation model was also produced for this area, with ground resolution and horizontal position error comparable to commercially produced LiDAR and aerial imagery obtained from crewed aircraft. Our results show that thermal imagery collected by drones has the potential to become a key tool in geothermal science, including geological, geochemical and geophysical surveys, environmental baseline and monitoring studies, geotechnical studies and civil works.

  3. Retrieval of Atmospheric CO2 and CH4 Variations Using Ground-Based High Resolution Fourier Transform Infrared Spectra

    Directory of Open Access Journals (Sweden)

    Tian Yuan

    2015-01-01

    Full Text Available High resolution Fourier transform near IR solar spectra are used to estimate the column-averaged dry-air mole fraction (DMF of CO2 and CH4 variations in the atmosphere. The preliminary retrieval results for CO2 and CH4 variations in the area of Hefei, China, are presented, and the underlying error sources are also analyzed. Both a forward analysis and an inversion algorithm are included in the retrieval. The forward analysis uses the modeled atmospheric transmittance to line-by-line (LBL convolute the instrument line shape function. The influences of the temperature, pressure, humidity, and a priori gases are considered in the atmospheric transmittance model. The inversion algorithm is based on the nonlinear iterative and nonlinear least squares spectral fitting, which is used to obtain VCDCO2 and VCDCH4 (which represent vertical column density of CO2 and CH4, resp.. Furthermore, the VCDO2 is also retrieved for converting the VCDs into DMFs. DMFs are final products of data analysis. The inversion results can clearly resolve the tiny variations of CO2 and CH4 under strong atmospheric background. Spectral fitting residuals for both VCDCO2 and VCDCH4 are less than 0.5%. Finally, CO2 and CH4 diurnal variations are investigated based on a typical observation. About 2 ppm amplitude for DMFCO2 diurnal variations and less than 15 ppb amplitude for DMFCH4 are observed.

  4. Infrared absorption of human breast tissues in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Liu Chenglin [Department of Physics, Surface Physics Laboratory (National Key laboratory), Synchrotron Radiation Research Center, Fudan University, Shanghai 200433 (China); Physics Department of Yancheng Teachers' College, Yancheng 224002 (China); Zhang Yuan [Department of Physics, Surface Physics Laboratory (National Key laboratory), Synchrotron Radiation Research Center, Fudan University, Shanghai 200433 (China); Yan Xiaohui [Department of Physics, Surface Physics Laboratory (National Key laboratory), Synchrotron Radiation Research Center, Fudan University, Shanghai 200433 (China); Zhang Xinyi [Department of Physics, Surface Physics Laboratory (National Key laboratory), Synchrotron Radiation Research Center, Fudan University, Shanghai 200433 (China) and Shanghai Research Center of Acupuncture and Meridian, Pudong, Shanghai 201203 (China)]. E-mail: xy-zhang@fudan.edu.cn; Li Chengxiang [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029 (China); Yang Wentao [Cancer Hospital, Medical Center, Fudan University, Shanghai 200032 (China); Shi Daren [Cancer Hospital, Medical Center, Fudan University, Shanghai 200032 (China)

    2006-07-15

    The spectral characteristics of human breast tissues in normal status and during different cancerous stages have been investigated by synchrotron radiation based Fourier transform infrared (SR-FTIR) absorption spectroscopy. Thanks to the excellent synchrotron radiation infrared (IR) source, higher resolving power is achieved in SR-FTIR absorption spectra than in conventional IR absorption measurements. Obvious variations in IR absorption spectrum of breast tissues were found as they change from healthy to diseased, or say in progression to cancer. On the other hand, some specific absorption peaks were found in breast cancer tissues by SR-FTIR spectroscopic methods. These spectral characteristics of breast tissue may help us in early diagnosis of breast cancer.

  5. Physical and Chemical Properties of Jupiter's Polar Vortices and Regions of Auroral Influence Revealed Through High-Resolution Infrared Imaging

    Science.gov (United States)

    Fernandes, Josh; Orton, Glenn S.; Sinclair, James; Kasaba, Yasumasa; Sato, Takao M.; Fujiyoshi, Takuya; Momary, Thomas W.; Yanamandra-Fisher, Padma A.

    2016-10-01

    We report characterization of the physical and chemical properties of Jupiter's polar regions derived from mid-infrared imaging of Jupiter covering all longitudes at unprecedented spatial resolution using the COMICS instrument at the Subaru Telescope on the nights of January 24 and 25, 2016 (UT). Because of Jupiter's slight axial tilt of 3°, the low angular resolution and incomplete longitudinal coverage of previous mid-infrared observations, the physical and chemical properties of Jupiter's polar regions have been poorly characterized. In advance of the Juno mission's exploration of the polar regions, this study focuses on mapping the 3-dimensional structure of Jupiter's polar regions, specifically to characterize the polar vortices and compact regions of auroral influence. Using mid-infrared images taken in the 7.8 - 24.2 µm range, we determined the 3-dimensional temperature field, mapped the para-H2 fraction and aerosol opacity at 700 mbar and lower pressures, and constrained the distribution of gaseous NH3 in Jupiter's northern and southern polar regions. Retrievals of these atmospheric parameters was performed using NEMESIS, a radiative transfer forward model and retrieval code. Preliminary results indicate that there are vortices at both poles, each with very distinct low-latitude boundaries approximately 60° (planetocentric) from the equator, which can be defined by sharp thermal gradients extending at least from the upper troposphere (500 mbar) and into the stratosphere (0.1 mbar). These polar regions are characterized by lower temperatures, lower aerosol number densities, and lower NH3 volume mixing ratios, compared with the regions immediately outside the vortex boundaries. These images also provided the highest resolution of prominent auroral-related stratospheric heating to date, revealing a teardrop-shaped morphology in the north and a sharp-edged oval shape in the south. Both appear to be contained inside the locus of H3+ auroral emission detected

  6. Method development for the determination of bromine in coal using high-resolution continuum source graphite furnace molecular absorption spectrometry and direct solid sample analysis

    Science.gov (United States)

    Pereira, Éderson R.; Castilho, Ivan N. B.; Welz, Bernhard; Gois, Jefferson S.; Borges, Daniel L. G.; Carasek, Eduardo; de Andrade, Jailson B.

    2014-06-01

    This work reports a simple approach for Br determination in coal using direct solid sample analysis in a graphite tube furnace and high-resolution continuum source molecular absorption spectrometry. The molecular absorbance of the calcium mono-bromide (CaBr) molecule has been measured using the rotational line at 625.315 nm. Different chemical modifiers (zirconium, ruthenium, palladium and a mixture of palladium and magnesium nitrates) have been evaluated in order to increase the sensitivity of the CaBr absorption, and Zr showed the best overall performance. The pyrolysis and vaporization temperatures were 800 °C and 2200 °C, respectively. Accuracy and precision of the method have been evaluated using certified coal reference materials (BCR 181, BCR 182, NIST 1630a, and NIST 1632b) with good agreement (between 98 and 103%) with the informed values for Br. The detection limit was around 4 ng Br, which corresponds to about 1.5 μg g- 1 Br in coal, based on a sample mass of 3 mg. In addition, the results were in agreement with those obtained using electrothermal vaporization inductively coupled plasma mass spectrometry, based on a Student t-test at a 95% confidence level. A mechanism for the formation of the CaBr molecule is proposed, which might be considered for other diatomic molecules as well.

  7. Solid sampling determination of total fluorine in baby food samples by high-resolution continuum source graphite furnace molecular absorption spectrometry.

    Science.gov (United States)

    Ozbek, Nil; Akman, Suleyman

    2016-11-15

    This study describes the applicability of solid sampling technique for the determination of fluorine in various baby foods via molecular absorption of calcium monofluoride generated in a graphite furnace of high-resolution continuum source atomic absorption spectrometry. Fluorine was determined at CaF wavelength, 606.440nm in a graphite tube applying a pyrolysis temperature of 1000°C and a molecule forming temperature of 2200°C. The limit of detection and characteristic mass of the method were 0.20ng and 0.17ng of fluorine, respectively. The fluorine concentrations determined in standard reference sample (bush branches and leaves) were in good agreement with the certified values. By applying the optimized parameters, the concentration of fluorine in various baby foods were determined. The fluorine concentrations were ranged from

  8. Determination of sulfur in human hair using high resolution continuum source graphite furnace molecular absorption spectrometry and its correlation with total protein and albumin

    Science.gov (United States)

    Ozbek, Nil; Baysal, Asli

    2017-04-01

    Human hair is a valuable contributor for biological monitoring. It is an information storage point to assess the effects of environmental, nutritional or occupational sources on the body. Human proteins, amino acids or other compounds are among the key components to find the sources of different effects or disorders in the human body. Sulfur is a significant one of these compounds, and it has great affinity to some metals and compounds. This property of the sulfur affects the human health positively or negatively. In this manuscript, sulfur was determined in hair samples of autistic and age-match control group children via molecular absorption of CS using a high-resolution continuum source graphite furnace atomic absorption spectrometer. For this purpose, hair samples were appropriately washed and dried at 75 °C. Then samples were dissolved in microwave digestion using HNO3 for sulfur determination. Extraction was performed with HCl hydrolysation by incubation for 24 h at 110 °C for total protein and albumin determination. The validity of the method for the sulfur determination was tested using hair standard reference materials. The results were in the uncertainty limits of the certified values at 95% confidence level. Finally correlation of sulfur levels of autistic children's hair with their total protein and albumin levels were done.

  9. Evaluation of solid sampling for determination of Mo, Ni, Co, and V in soil by high-resolution continuum source graphite furnace atomic absorption spectrometry

    Science.gov (United States)

    Babos, Diego Victor; Barros, Ariane Isis; Ferreira, Edilene Cristina; Neto, José Anchieta Gomes

    2017-04-01

    New methods are proposed for the determination of Mo, Ni, Co, and V in soils using high-resolution continuum source graphite furnace atomic absorption spectrometry with direct solid sampling. Cobalt and V were simultaneously determined, and different analytical lines of Ni and V were monitored to adjust sensitivity for each sample. Accuracy was checked by means of soil certified reference materials, and also by flame atomic absorption spectrometry as comparative technique. The results for Mo, Ni, Co, and V found by proposed methods were in agreement with certified values and with those obtained by the comparative technique at 95% confidence level. The concentrations found in different soil samples were in the ranges 0.19-1.84 mg kg- 1 (Mo), 9.2-22.7 mg kg- 1 (Ni), 1.1-10.7 mg kg- 1 (Co), and 35.6-426.1 mg kg- 1 (V). The relative standard deviations were in the ranges 3.2-10% (Mo), 2.8-9.8% (Ni), 4.0-9.2% (Co), and 1.2-8.0% (V). The limits of quantification for Mo, Ni, Co, and V were 0.027, 0.071, 0.15, and 1.43 ng, respectively.

  10. Infrared Absorption in Acetanilide by Solitons

    DEFF Research Database (Denmark)

    Careri, G.; Buontempo, U.; Carta, F.

    1983-01-01

    The infrared spectrum of acetanilide shows a new band that is red shifted from the main amide-I maximum by about 15 cm-1, the intensity of which increases at low temperature. It is suggested that this band may arise from the creation of amide-I solitons that are similar (but not identical) to those...

  11. Microwave, high-resolution infrared, and quantum chemical investigations of CHBrF2: ground and v4 = 1 states.

    Science.gov (United States)

    Cazzoli, Gabriele; Cludi, Lino; Puzzarini, Cristina; Stoppa, Paolo; Pietropolli Charmet, Andrea; Tasinato, Nicola; Baldacci, Agostino; Baldan, Alessandro; Giorgianni, Santi; Wugt Larsen, René; Stopkowicz, Stella; Gauss, Jürgen

    2011-02-03

    A combined microwave, infrared, and computational investigation of CHBrF(2) is reported. For the vibrational ground state, measurements in the millimeter- and sub-millimeter-wave regions for CH(79)BrF(2) and CH(81)BrF(2) provided rotational and centrifugal-distortion constants up to the sextic terms as well as the hyperfine parameters (quadrupole-coupling and spin-rotation interaction constants) of the bromine nucleus. The determination of the latter was made possible by recording of spectra at sub-Doppler resolution, achieved by means of the Lamb-dip technique, and supporting the spectra analysis by high-level quantum chemical calculations at the coupled-cluster level. In this context, the importance of relativistic effects, which are of the order of 6.5% and included in the present work using second-order direct perturbation theory, needs to be emphasized for accurate predictions of the bromine quadrupole-coupling constants. The infrared measurements focused on the ν(4) fundamental band of CH(79)BrF(2). Fourier transform investigations using a synchrotron radiation source provided the necessary resolution for the observation and analysis of the rotational structure. The spectroscopic parameters of the v(4) = 1 state were found to be close to those of the vibrational ground state, indicating that the ν(4) band is essentially unaffected by perturbations.

  12. High-resolution fast temperature mapping of a gas turbine combustor simulator with femtosecond infrared laser written fiber Bragg gratings

    Science.gov (United States)

    Walker, Robert B.; Yun, Sangsig; Ding, Huimin; Charbonneau, Michel; Coulas, David; Ramachandran, Nanthan; Mihailov, Stephen J.

    2017-02-01

    Femtosecond infrared (fs-IR) written fiber Bragg gratings (FBGs), have demonstrated great potential for extreme sensing. Such conditions are inherent to the advanced gas turbine engines under development to reduce greenhouse gas emissions; and the ability to measure temperature gradients in these harsh environments is currently limited by the lack of sensors and controls capable of withstanding the high temperature, pressure and corrosive conditions present. This paper discusses fabrication and deployment of several fs-IR written FBG arrays, for monitoring the sidewall and exhaust temperature gradients of a gas turbine combustor simulator. Results include: contour plots of measured temperature gradients contrasted with thermocouple data, discussion of deployment strategies and comments on reliability.

  13. Combining High Resolution InSAR and infrared photogrammetry for studying dome degassing and densification mechanisms at Volcán de Colima, Mexico

    Science.gov (United States)

    Salzer, Jacqueline T.; Milillo, Pietro; Varley, Nick; Perissin, Daniele; Pantaleo, Michele; Walter, Thomas R.

    2017-04-01

    Active volcanoes often display cyclic behaviour with alternating quiescent and eruptive periods. Continuously monitoring volcanic processes such as deformation, seismicity and degassing, irrespective of their current status, is crucial for understanding the parameters governing the fluid transport within the edifice and the transitions between different regimes. However, mapping the deformation and details of fluid escape at the summit of steep sloped volcanoes and integrating these with other types of data is challenging. Here we present for the first time the near-3D surface deformation field derived from high resolution radar interferometry (InSAR) acquired by the satellite TerraSAR-X at a degassing volcano dome and interpret the results in combination with overflight infrared and topographic data. We find that the results strongly differ depending on the chosen InSAR time series method, which potentially overprints the true physical complexities of small scale, shallow deformation processes. We present a new method for accurate mapping of heterogeneities in the dome deformation, and comparison to the topography and precisely located surface temperature anomalies. The identified deformation is dominated by strong but highly localized subsidence of the summit dome. Our results highlight the competing effects of the topography, permeability and shallow volcanic structures controlling the degassing pathways. On small spatial scales compaction sufficiently reduced the dome permeability to redirect the fluid flow. High resolution InSAR monitoring of volcanic domes thus provides valuable data for constraining models of their internal structure, degassing pathways and densification processes.

  14. High-resolution infrared spectrum of jet-cooled methyl acetate in the C=O stretching region: internal rotations of two inequivalent methyl tops.

    Science.gov (United States)

    Sunahori, Fumie X; Borho, Nicole; Liu, Xunchen; Xu, Yunjie

    2011-12-21

    The jet-cooled high resolution infrared (IR) spectrum of methyl acetate (MA), CH(3)-C(=O)-O-CH(3), in the C=O fundamental band region was recorded by using a rapid scan IR laser spectrometer equipped with an astigmatic multipass cell. No high resolution IR analyses of the ro-vibrational transitions between the ground and non-torsionally excited vibrational states have hitherto been reported for molecules with two inequivalent methyl rotors. Because of the two chemically different methyl tops in MA, i.e., the acetyl -CH(3) and methoxy -CH(3), each rotational energy level is split into more than two torsional sublevels by internal rotations of these methyl groups. We were able to assign ro-vibrational transitions of four torsional species by using the ground state combination differences calculated from the molecular constants of the vibrational ground state recently determined by a global fit of the microwave and millimeter wave lines [M. Tudorie, I. Kleiner, J. T. Hougen, S. Melandri, L. W. Sutikdja, and W. Stahl, J. Mol. Spectrosc. 269, 211 (2011)]. The assigned lines were successfully fitted using the BELGI-Cs-IR program to an overall standard deviation which is comparable to the measurement accuracy. This study is also of interest in understanding the role of methyl rotors in the intramolecular vibrational-energy redistribution processes in mid-size organic molecules.

  15. New Measurements of s-Process Enrichments in Planetary Nebulae from High-Resolution Near-Infrared Spectra

    Science.gov (United States)

    Dinerstein, Harriet L.; Karakas, Amanda; Sterling, Nicholas C.; Kaplan, Kyle

    2017-06-01

    We present preliminary results from a high-spectral resolution survey of near-infrared emission lines of neutron-capture elements in planetary nebulae using the Immersion Grating Infrared Spectrometer, IGRINS (Park et al. 2014, SPIE. 9147, 1), which spans the H- and K-bands at spectral resolving power R ≈ 45,000. Both the [Kr III] and [Se IV] lines identified by Dinerstein (2001, ApJL, 550, L223) are seen in nearly all of an initial sample of ≈ 15 nebulae, with improved accuracy over earlier studies based on lower-resolution data (Sterling & Dinerstein 2008, ApJS, 174, 158; Sterling, Porter, & Dinerstein 2015, ApJS, 218, 25). Several new detections of the [Rb IV], [Cd IV], and [Ge VI] lines identified by Sterling et al. (2016, ApJL, 819, 9), as well as a [Br V] line, were made. About half the objects in this sample descend from stars with [Fe/H] = -0.7 ± 0.2 dex, while the remainder have -0.3 ≤ [Fe/H] ≤ 0. We compare the measured enhancements of Se, Kr, Rb, and Cd with predictions of their production by slow-neutron captures (the s-process) during the AGB from theoretical evolutionary models for the corresponding metallicities and various initial masses. New nucleosynthesis calculations were carried out for [Fe/H] = -0.7 for initial masses between 1.1 and 3 M⊙ using the Monash stellar evolution and post-processing codes described in Karakas & Lugaro (2016, ApJ, 825, 26), which provides the nucleosynthesis predictions for the metal-rich end of our sample. The Monash models predict enrichments larger by factors of two or more than those from FRUITY (Cristallo et al. 2015, ApJS, 219, 40) and NuGRID (Pignatari et al. 2016, ApJS, 225, 24) models for the same masses and metallicities. We find that the Monash models are in substantially better agreement than the others with the abundances derived from the IGRINS observations.This work is based on data taken at the McDonald Observatory of the University of Texas at Austin. IGRINS was developed with support from

  16. TESTING THE HYPOTHESIS THAT METHANOL MASER RINGS TRACE CIRCUMSTELLAR DISKS: HIGH-RESOLUTION NEAR-INFRARED AND MID-INFRARED IMAGING

    Energy Technology Data Exchange (ETDEWEB)

    De Buizer, James M. [Stratospheric Observatory for Infrared Astronomy-USRA, NASA Ames Research Center, MS N232-12, Moffett Field, CA 94035 (United States); Bartkiewicz, Anna; Szymczak, Marian, E-mail: jdebuizer@sofia.usra.edu [Torun Centre for Astronomy, Nicolaus Copernicus University, Gagarina 11, 87-100 Torun (Poland)

    2012-08-01

    Milliarcsecond very long baseline interferometry maps of regions containing 6.7 GHz methanol maser emission have lead to the recent discovery of ring-like distributions of maser spots and the plausible hypothesis that they may be tracing circumstellar disks around forming high-mass stars. We aimed to test this hypothesis by imaging these regions in the near- and mid-infrared at high spatial resolution and compare the observed emission to the expected infrared morphologies as inferred from the geometries of the maser rings. In the near-infrared we used the Gemini North adaptive optics system of ALTAIR/NIRI, while in the mid-infrared we used the combination of the Gemini South instrument T-ReCS and super-resolution techniques. Resultant images had a resolution of {approx}150 mas in both the near-infrared and mid-infrared. We discuss the expected distribution of circumstellar material around young and massive accreting (proto)stars and what infrared emission geometries would be expected for the different maser ring orientations under the assumption that the masers are coming from within circumstellar disks. Based upon the observed infrared emission geometries for the four targets in our sample and the results of spectral energy distribution modeling of the massive young stellar objects associated with the maser rings, we do not find compelling evidence in support of the hypothesis that methanol masers rings reside in circumstellar disks.

  17. Fast sequential multi-element determination of major and minor elements in environmental samples and drinking waters by high-resolution continuum source flame atomic absorption spectrometry.

    Science.gov (United States)

    Gómez-Nieto, Beatriz; Gismera, Ma Jesús; Sevilla, Ma Teresa; Procopio, Jesús R

    2015-01-07

    The fast sequential multi-element determination of 11 elements present at different concentration levels in environmental samples and drinking waters has been investigated using high-resolution continuum source flame atomic absorption spectrometry. The main lines for Cu (324.754 nm), Zn (213.857 nm), Cd (228.802 nm), Ni (232.003 nm) and Pb (217.001 nm), main and secondary absorption lines for Mn (279.482 and 279.827 nm), Fe (248.327, 248.514 and 302.064 nm) and Ca (422.673 and 239.856 nm), secondary lines with different sensitivities for Na (589.592 and 330.237 nm) and K (769.897 and 404.414 nm) and a secondary line for Mg (202.582 nm) have been chosen to perform the analysis. A flow injection system has been used for sample introduction so sample consumption has been reduced up to less than 1 mL per element, measured in triplicate. Furthermore, the use of multiplets for Fe and the side pixel registration approach for Mg have been studied in order to reduce sensitivity and extend the linear working range. The figures of merit have been calculated and the proposed method was applied to determine these elements in a pine needles reference material (SRM 1575a), drinking and natural waters and soil extracts. Recoveries of analytes added at different concentration levels to water samples and extracts of soils were within 88-115% interval. In this way, the fast sequential multi-element determination of major and minor elements can be carried out, in triplicate, with successful results without requiring additional dilutions of samples or several different strategies for sample preparation using about 8-9 mL of sample. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Simultaneous determination of Cd and Fe in grain products using direct solid sampling and high-resolution continuum source electrothermal atomic absorption spectrometry.

    Science.gov (United States)

    dos Santos, Lisia M G; Araujo, Rennan G O; Welz, Bernhard; Jacob, Silvana do C; Vale, Maria Goreti R; Becker-Ross, Helmut

    2009-04-30

    Cadmium and iron are antagonistic elements in the sense that they produce different effects in the human body. Both elements have to be determined routinely in grain products, cadmium because of its toxicity, and iron because all grain products, according to Brazilian law, have to contain a minimum of 42 mg kg(-1) Fe to combat anemia. A routine screening method has been developed for the quasi simultaneous determination of cadmium and iron using high-resolution continuum source electrothermal atomic absorption spectrometry and direct solid sampling. The primary absorption line at 228.802 nm has been used for Cd, and an adjacent secondary line at 228.726 nm for the determination of Fe. Various chemical modifiers have been investigated, and a mixture of tungsten and iridium, applied as a permanent modifier, showed the best performance; it stabilized Cd up to a pyrolysis temperature of 700 degrees C and did not over-stabilize Fe. Two atomization temperatures were used sequentially, 1700 degrees C for Cd and 2600 degrees C for Fe, because of their significantly different volatilities. The characteristic masses obtained were 0.9 pg for Cd and 1.2 ng for Fe. The limits of detection (3 sigma, n=10) were 0.6 microg kg(-1) for Cd and 0.5 mg kg(-1) for Fe. The relative standard deviation ranged from 3 to 7% for Cd and from 4 to 13% for Fe, which is satisfactory for the purpose. The accuracy of the method was confirmed by the analysis of three certified reference materials; the results were in agreement with the certified values at a 95% confidence interval. The Cd content in the investigated grain products was between 0.9 and 10.5 microg kg(-1), but most of them did not contain the required minimum amount of iron.

  19. Determination of mercury in airborne particulate matter collected on glass fiber filters using high-resolution continuum source graphite furnace atomic absorption spectrometry and direct solid sampling

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Rennan G.O., E-mail: rgoa01@terra.com.br [Laboratorio de Quimica Analitica Ambiental, Departamento de Quimica, Universidade Federal de Sergipe, Campus Sao Cristovao, 49.100-000, Sao Cristovao, SE (Brazil); Departamento de Quimica, Universidade Federal de Santa Catarina, 88040-900, Florianopolis, SC (Brazil); Vignola, Fabiola; Castilho, Ivan N.B. [Departamento de Quimica, Universidade Federal de Santa Catarina, 88040-900, Florianopolis, SC (Brazil); Borges, Daniel L.G.; Welz, Bernhard [Departamento de Quimica, Universidade Federal de Santa Catarina, 88040-900, Florianopolis, SC (Brazil); Instituto Nacional de Ciencia e Tecnologia do CNPq, INCT de Energia e Ambiente, Universidade Federal da Bahia, 40170-115 Salvador, BA (Brazil); Vale, Maria Goreti R. [Instituto Nacional de Ciencia e Tecnologia do CNPq, INCT de Energia e Ambiente, Universidade Federal da Bahia, 40170-115 Salvador, BA (Brazil); Instituto de Quimica, Universidade Federal do Rio Grande do Sul, 91501-970 Porto Alegre, RS (Brazil); Smichowski, Patricia [Comision Nacional de Energia Atomica (CNEA) and Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Buenos Aires (Argentina); Ferreira, Sergio L.C. [Instituto Nacional de Ciencia e Tecnologia do CNPq, INCT de Energia e Ambiente, Universidade Federal da Bahia, 40170-115 Salvador, BA (Brazil); Instituto de Quimica, Universidade Federal da Bahia, 40170-290, Salvador, BA (Brazil); Becker-Ross, Helmut [Leibniz-Institut fuer Analytische Wissenschaften-ISAS-e.V., Department Berlin, 12489 Berlin (Germany)

    2011-05-15

    A study has been undertaken to assess the capability of high-resolution continuum source graphite furnace atomic absorption spectrometry for the determination of mercury in airborne particulate matter (APM) collected on glass fiber filters using direct solid sampling. The main Hg absorption line at 253.652 nm was used for all determinations. The certified reference material NIST SRM 1648 (Urban Particulate Matter) was used to check the accuracy of the method, and good agreement was obtained between published and determined values. The characteristic mass was 22 pg Hg. The limit of detection (3{sigma}), based on ten atomizations of an unexposed filter, was 40 ng g{sup -1}, corresponding to 0.12 ng m{sup -3} in the air for a typical air volume of 1440 m{sup 3} collected within 24 h. The limit of quantification was 150 ng g{sup -1}, equivalent to 0.41 ng m{sup -3} in the air. The repeatability of measurements was better than 17% RSD (n = 5). Mercury concentrations found in filter samples loaded with APM collected in Buenos Aires, Argentina, were between < 40 ng g{sup -1} and 381 {+-} 24 ng g{sup -1}. These values correspond to a mercury concentration in the air between < 0.12 ng m{sup -3} and 1.47 {+-} 0.09 ng m{sup -3}. The proposed procedure was found to be simple, fast and reliable, and suitable as a screening procedure for the determination of mercury in APM samples.

  20. Fast arsenic speciation in water by on-site solid phase extraction and high-resolution continuum source graphite furnace atomic absorption spectrometry

    Science.gov (United States)

    Mihucz, Victor G.; Bencs, László; Koncz, Kornél; Tatár, Enikő; Weiszburg, Tamás; Záray, Gyula

    2017-02-01

    A method of high-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS-GFAAS), combined with on-site separation/solid phase extraction (SPE) has been developed for the speciation of inorganic As (iAs) in geothermal and drinking water samples. The HR-CS-GFAAS calibration curves were linear up to 200 μg/L As, but using second order polynomial fitting, accurate calibration could be performed up to 500 μg/L. It has been demonstrated that sample pH should not be higher than 8 for an accurate speciation of As(V) with a recovery of ≈ 95%. Geothermal water had fairly high salt content (≈ 2200 mg/L) due to the presence of chlorides and sulfates at mg/L levels. Therefore, a two-fold dilution of these types of samples before SPE is recommended, especially, for total As determinations, when the As concentration is as high as 400 μg/L. For drinking water, sampled from public wells with records of As concentrations higher than the 10 μg/L in the past, the reduction of As contamination below the WHO's health limit value could be observed. However, the electrical conductivity was close to 2500 μS/cm, i.e., the guideline limit for drinking water, which was due to their higher chloride content. The proposed fit-for-purpose SPE-HR-CS-GFAAS method could be a candidate for screening drinking water quality.

  1. Multivariate optimization of ultrasound-assisted extraction for determination of Cu, Fe, Ni and Zn in vegetable oils by high-resolution continuum source atomic absorption spectrometry.

    Science.gov (United States)

    Trindade, Alex S N; Dantas, Alailson F; Lima, Daniel C; Ferreira, Sérgio L C; Teixeira, Leonardo S G

    2015-10-15

    An assisted liquid-liquid extraction of copper, iron, nickel and zinc from vegetable oil samples with subsequent determination by high-resolution continuum source flame atomic absorption spectrometry (HR-CS FAAS) was optimized by applying a full factorial design in two levels and the response surface methodology, Box-Behnken. The effects of the acid concentration and the amplitude, cycle and time of sonication on the extraction of the analytes, as well as their interactions, were assessed. In the selected condition (sonication amplitude = 66%, sonication time = 79 s, sonication cycle = 74%), using 0.5 mol L(-1) HCl as the extractant, the limits of quantification were 0.14, 0.20, 0.21 and 0.04 μg g(-1) for Cu, Fe, Ni and Zn, respectively, with R.S.D. ranging from 1.4% to 3.6%. The proposed method was applied for the determination of the analytes in soybean, canola and sunflower oils. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Investigation of chemical modifiers for the direct determination of arsenic in fish oil using high-resolution continuum source graphite furnace atomic absorption spectrometry.

    Science.gov (United States)

    Pereira, Éderson R; de Almeida, Tarcísio S; Borges, Daniel L G; Carasek, Eduardo; Welz, Bernhard; Feldmann, Jörg; Campo Menoyo, Javier Del

    2016-04-01

    High-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS GF AAS) has been applied for the development of a method for the determination of total As in fish oil samples using direct analysis. The method does not use any sample pretreatment, besides dilution with 1-propanole, in order to decrease the oil viscosity. The stability and sensitivity of As were evaluated using ruthenium and iridium as permanent chemical modifiers and palladium added in solution over the sample. The best results were obtained with ruthenium as the permanent modifier and palladium in solution added to samples and standard solutions. Under these conditions, aqueous standard solutions could be used for calibration for the fish oil samples diluted with 1-propanole. The pyrolysis and atomization temperatures were 1400 °C and 2300 °C, respectively, and the limit of detection and characteristic mass were 30 pg and 43 pg, respectively. Accuracy and precision of the method have been evaluated using microwave-assisted acid digestion of the samples with subsequent determination by HR-CS GF AAS and ICP-MS; the results were in agreement (95% confidence level) with those of the proposed method. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Determination of macro and trace elements in multivitamin dietary supplements by high-resolution continuum source graphite furnace atomic absorption spectrometry with slurry sampling.

    Science.gov (United States)

    Krawczyk, Magdalena

    2014-01-01

    In this research, three different commercially available multivitamin dietary supplements were analyzed by high-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS GFAAS) with slurry sampling. The concentrations of Cr, Cu, Fe, Mn, and Se were determined and compared to the amounts stated by producers. The safety of multivitamin dietary supplements depends on various factors including the manufacturing process and the purity and origins of the raw ingredients. For this reason, this research determined concentrations of several toxic elements (As, Cd, and Pb). Microwave-assisted high pressure Teflon bomb digestion was used to determine total amounts of elements in samples. Samples were prepared as slurries at a concentration of 0.1% (m/v) for macro elements (Cr, Cu, Fe, Mn, and Se) and at a concentration of % (m/v) for trace elements (As, Cd, and Pb) in acidic media (3M HNO3). The influence of acid concentration, Triton X-100 addition, sonication time, and sonication power on absorbance was investigated. The accuracy of this method was validated by analyses of NRCC LUTS-1 (Lobster hepatopancreas), NRCC DORM-1 (Dogfish Muscle), NRCC DOLT-2 (Dogfish Liver), NBS SRM 1570 (Spinach Leaves) and NBS SRM 1573 (Tomato Leaves) certified reference materials. The measured elements contents in these reference materials (except NRCC DOLT-2) were in satisfactory agreement with the certified values according to the t-test for a 95% confidence level. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Solid sampling high-resolution continuum source graphite furnace atomic absorption spectrometry for gold determination in geological samples after preconcentration onto carbon nanotubes

    Science.gov (United States)

    Dobrowolski, Ryszard; Mróz, Agnieszka; Dąbrowska, Marzena; Olszański, Piotr

    2017-06-01

    A novelty method for the determination of gold in geological samples by solid sampling high-resolution continuum source graphite furnace atomic absorption spectrometry (SS HR CS GF AAS) after solid-phase extraction onto modified carbon nanotubes (CNT) was described. The methodology developed is based on solid phase extraction of Au(III) ions from digested samples to eliminate strong interference caused by iron compounds and problems related to inhomogeneities of the samples. The use of aqueous or solid standard for calibration was studied and the slope of calibration curve was the same for both of these modes. This statement indicates the possibility to perform the calibration of the method using aqueous standard solutions. Under optimum conditions the absolute detection limit for gold was equal to 2.24 · 10- 6 μg g- 1 while the adsorption capacity of modified carbon nanotubes was 264 mg g- 1. The proposed procedure was validated by the application of certified reference materials (CRMs) with different content of gold and different matrix, the results were in good agreement with certified values. The method was successfully applied for separation and determination of gold ions in complex geological samples, with precision generally better than 8%.

  5. A simple and fast method for assessment of the nitrogen-phosphorus-potassium rating of fertilizers using high-resolution continuum source atomic and molecular absorption spectrometry

    Science.gov (United States)

    Bechlin, Marcos André; Fortunato, Felipe Manfroi; da Silva, Ricardo Moutinho; Ferreira, Edilene Cristina; Gomes Neto, José Anchieta

    2014-11-01

    The determination of N, P, and K in fertilizers by high-resolution continuum source flame atomic and molecular absorption spectrometry is proposed. Under optimized conditions, measurements of the diatomic molecules NO and PO at 215.360 and 247.620 nm, respectively, and K using the wing of the alternative line at 404.722 nm allowed calibration curves to be constructed in the ranges 500-5000 mg L- 1 N (r = 0.9994), 100-2000 mg L- 1 P (r = 0.9946), and 100-2500 mg L- 1 K (r = 0.9995). Commercial fertilizers were analyzed by the proposed method and the concentrations of N, P, and K were found to be in agreement with those obtained by Kjeldahl, spectrophotometric, and flame atomic emission spectrometry methods, respectively, at a 95% confidence level (paired t-test). A phosphate rock certified reference material (CRM) was analyzed and the results for P and K were in agreement with the reference values. Recoveries from spiked CRM were in the ranges 97-105% (NO3--N), 95-103% (NH4+-N), 93-103% (urea-N), 99-108% (P), and 99-102% (K). The relative standard deviations (n = 12) for N, P, and K were 6, 4, and 2%, respectively.

  6. Investigation of chemical modifiers for sulfur determination in diesel fuel samples by high-resolution continuum source graphite furnace molecular absorption spectrometry using direct analysis

    Energy Technology Data Exchange (ETDEWEB)

    Huber, Charles S. [Instituto Federal Sul-rio-grandense, Câmpus Pelotas, Pelotas, RS (Brazil); Universidade Federal do Rio Grande do Sul, Instituto de Química, Porto Alegre, RS (Brazil); Vale, Maria Goreti R. [Universidade Federal do Rio Grande do Sul, Instituto de Química, Porto Alegre, RS (Brazil); Instituto Nacional de Ciência e Tecnologia do CNPq, INCT de Energia e Ambiente, Universidade Federal da Bahia, Salvador, BA (Brazil); Welz, Bernhard [Instituto Nacional de Ciência e Tecnologia do CNPq, INCT de Energia e Ambiente, Universidade Federal da Bahia, Salvador, BA (Brazil); Universidade Federal de Santa Catarina, Departamento de Química, Florianópolis, SC (Brazil); Andrade, Jailson B. [Instituto Nacional de Ciência e Tecnologia do CNPq, INCT de Energia e Ambiente, Universidade Federal da Bahia, Salvador, BA (Brazil); Dessuy, Morgana B., E-mail: mbdessuy@ufrgs.br [Universidade Federal do Rio Grande do Sul, Instituto de Química, Porto Alegre, RS (Brazil); Instituto Nacional de Ciência e Tecnologia do CNPq, INCT de Energia e Ambiente, Universidade Federal da Bahia, Salvador, BA (Brazil)

    2015-06-01

    High-resolution continuum source graphite furnace molecular absorption spectrometry has been applied for sulfur determination in diesel fuel. The sharp rotational lines of the carbon monosulfide molecule (formed during the vaporization step) were used to measure the absorbance. The analytical line at 258.056 nm was monitored using the sum of three pixels. Different chemical modifiers were investigated and the mixture of palladium and magnesium was used as chemical modifier in combination with iridium as permanent modifier. L-Cysteine was chosen as sulfur standard and the calibration was done against aqueous standard solutions. The proposed method was applied for the analyses of four diesel samples: two S10 samples and two S500 samples. The trueness of the method was checked with a certified reference material (CRM) of sulfur in diesel fuel (NIST 2724b). Accurate results, for samples and CRM, were achieved after a dilution with propan-1-ol. The following figures of merit were obtained: characteristic mass of 17 ± 3 ng, limit of detection and limit of quantification of 1.4 mg kg{sup −1} and 4.7 mg kg{sup −1}, respectively. - Highlights: • Ir, Ru and Zr were investigated as permanent modifiers. • Ca, Mg, Pd and Pd/Mg were investigated as modifiers in solution. • Indirect determination of sulfur monitoring the molecular absorbance of the CS • Direct analysis of diesel samples using a dilution in propan-1-ol.

  7. Evaluation of solid sampling high-resolution continuum source graphite furnace atomic absorption spectrometry for direct determination of chromium in medicinal plants

    Energy Technology Data Exchange (ETDEWEB)

    Virgilio, Alex; Nobrega, Joaquim A. [Department of Chemistry, Federal University of Sao Carlos, Post Office Box 676, 13560-970, Sao Carlos-SP (Brazil); Rego, Jardes F. [Department of Analytical Chemistry, Institute of Chemistry, Sao Paulo State University-UNESP, Post Office Box 355, 14801-970, Araraquara-SP (Brazil); Neto, Jose A. Gomes, E-mail: anchieta@iq.unesp.br [Department of Analytical Chemistry, Institute of Chemistry, Sao Paulo State University-UNESP, Post Office Box 355, 14801-970, Araraquara-SP (Brazil)

    2012-12-01

    A method for Cr determination in medicinal plants using direct solid sampling graphite furnace high-resolution continuum source atomic absorption spectrometry was developed. Modifiers were dispensable. Pyrolysis and atomization temperatures were 1500 Degree-Sign C and 2400 Degree-Sign C, respectively. Slopes of calibration curves (50-750 pg Cr, R{sup 2} > 0.999) using aqueous and solid standards coincides in 96%, indicated feasibility of aqueous calibration for solid sampling of medicinal plants. Accuracy was checked by analysis of four plant certified reference materials. Results were in agreement at 95% confidence level with certified and non-certified values. Ten samples of medicinal plants were analyzed and Cr contents were in the 1.3-17.7 {mu}g g{sup -1} Cr range. The highest RSD (n = 5) was 15.4% for the sample Melissa officinalis containing 13.9 {+-} 2.1 {mu}g g{sup -1} Cr. The limit of detection was 3.3 ng g{sup -1} Cr. - Highlights: Black-Right-Pointing-Pointer Direct solid sampling is first time employed for Cr in plant materials. Black-Right-Pointing-Pointer Calibration curves with liquids and solids are coincident. Black-Right-Pointing-Pointer Microanalysis of plants for Cr is validated by reference materials. Black-Right-Pointing-Pointer The proposed HR-CS GF AAS method is environmental friendly.

  8. Anisotropy of infrared absorption in (110) porous silicon layers

    Energy Technology Data Exchange (ETDEWEB)

    Timoshenko, V. Yu.; Osminkina, L.A.; Efimova, A.I.; Fomenko, M.A.; Golovan, L.A.; Kashkarov, P.K. [Moscow State M. V. Lomonosov University, Physics Department, 119992 Moscow (Russian Federation); Kovalev, D.; Kuenzner, N.; Gross, E.; Diener, J.; Koch, F. [Technische Universitaet Muenchen, Physik-Department E16, 85747 Garching (Germany)

    2005-06-01

    In-plane birefringent porous Si (PSi) layers formed from heavily boron-doped (110)Si wafers are investigated by using polarization-resolved infrared absorption (IR) spectroscopy. The absorption by free charge carriers and by Si-H{sub x} (x=1,2,3) surface bond vibrations are found to exhibit strong anisotropy (dichroism), which originates from the form anisotropy of Si nanocrystals assembling (110)PSi layers. The free carrier absorption dichroism is explained by using the effective medium approximation and classical Drude model and considering additional carrier scattering in anisotropically shaped Si nanocrystals. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. MISTiC Winds, a Micro-Satellite Constellation Approach to High Resolution Observations of the Atmosphere using Infrared Sounding and 3D Winds Measurements

    Science.gov (United States)

    Maschhoff, K. R.; Polizotti, J. J.; Susskind, J.; Aumann, H. H.

    2015-12-01

    MISTiCTM Winds is an approach to improve short-term weather forecasting based on a miniature high resolution, wide field, thermal emission spectrometry instrument that will provide global tropospheric vertical profiles of atmospheric temperature and humidity at high (3-4 km) horizontal and vertical ( 1 km) spatial resolution. MISTiC's extraordinarily small size, payload mass of less than 15 kg, and minimal cooling requirements can be accommodated aboard a 27U-class CubeSat or an ESPA-Class micro-satellite. Low fabrication and launch costs enable a LEO sun-synchronous sounding constellation that would collectively provide frequent IR vertical profiles and vertically resolved atmospheric motion vector wind observations in the troposphere. These observations are highly complementary to present and emerging environmental observing systems, and would provide a combination of high vertical and horizontal resolution not provided by any other environmental observing system currently in operation. The spectral measurements that would be provided by MISTiC Winds are similar to those of NASA's Atmospheric Infrared Sounder that was built by BAE Systems and operates aboard the AQUA satellite. These new observations, when assimilated into high resolution numerical weather models, would revolutionize short-term and severe weather forecasting, save lives, and support key economic decisions in the energy, air transport, and agriculture arenas-at much lower cost than providing these observations from geostationary orbit. In addition, this observation capability would be a critical tool for the study of transport processes for water vapor, clouds, pollution, and aerosols. Key technical risks are being reduced through laboratory and airborne testing under NASA's Instrument Incubator Program.

  10. Application of high-resolution continuum source flame atomic absorption spectrometry to reveal, evaluate and overcome certain spectral effects in Pb determination of unleaded gasoline

    Science.gov (United States)

    Kowalewska, Zofia; Laskowska, Hanna; Gzylewski, Michał

    2017-06-01

    High-resolution continuum source and line source flame atomic absorption spectrometry (HR-CS FAAS and LS FAAS, respectively) were applied for Pb determination in unleaded aviation or automotive gasoline that was dissolved in methyl-isobutyl ketone. When using HR-CS FAAS, a structured background (BG) was registered in the vicinity of both the 217.001 nm and 283.306 nm Pb lines. In the first case, the BG, which could be attributed to absorption by the OH molecule, directly overlaps with the 217 nm line, but it is of relatively low intensity. For the 283 nm line, the structured BG occurs due to uncompensated absorption by OH molecules present in the flame. BG lines of relatively high intensity are situated at a large distance from the 283 nm line, which enables accurate analysis, not only when using simple variants of HR-CS FAAS but also for LS FAAS with a bandpass of 0.1 nm. The lines of the structured spectrum at 283 nm can have ;absorption; (maxima) or ;emission; (minima) character. The intensity of the OH spectra can significantly depend on the flame character and composition of the investigated organic solution. The best detection limit for the analytical procedure, which was 0.01 mg L- 1 for Pb in the investigated solution, could be achieved using HR-CS FAAS with the 283 nm Pb line, 5 pixels for the analyte line measurement and iterative background correction (IBC). In this case, least squares background correction (LSBC) is not recommended. However, LSBC (available as the ;permanent structures; option) would be recommended when using the 217 nm Pb line. In LS FAAS, an additional phenomenon related to the nature of the organic matrix (for example, isooctane or toluene) can play an important role. The effect is of continuous character and probably due to the simultaneous efficient correction of the continuous background (IBC) it is not observed in HR-CS FAAS. The fact that the effect does not depend on the flame character indicates that it is not radiation

  11. Ultrasound-assisted single-drop microextraction for the determination of cadmium in vegetable oils using high-resolution continuum source electrothermal atomic absorption spectrometry

    Science.gov (United States)

    Almeida, Jorge S.; Anunciação, Taiana A.; Brandão, Geovani C.; Dantas, Alailson F.; Lemos, Valfredo A.; Teixeira, Leonardo S. G.

    2015-05-01

    This work presents an ultrasound-assisted single-drop microextraction procedure for the determination of cadmium in vegetable oils using high-resolution continuum source electrothermal atomic absorption spectrometry. Some initial tests showed that the best extraction efficiency was obtained when using ultrasound instead of mechanical agitation, indicating that acoustic cavitation improved the extraction process. Nitric, hydrochloric and acetic acids were evaluated for use in the extraction process, and HNO3 gave the best results. A two-level full-factorial design was applied to investigate the best conditions for the extraction of Cd from the oil samples. The influences of the sonication amplitude, time and temperature of the extraction were evaluated. The results of the design revealed that all of the variables had a significant effect on the experimental results. Afterward, a Box-Behnken design was applied to determine the optimum conditions for the determination of cadmium in vegetable oil samples. According to a multivariate study, the optimum conditions were as follows: sonication amplitude of 60%, extraction time of 15 min, extraction temperature of 46 °C and 0.1 mol L- 1 HNO3 as the extractor solution. Under optimized conditions, the developed method allows for the determination of Cd in oil samples with a limit of quantification of 7.0 ng kg- 1. Addition and recovery experiments were performed in vegetable oil samples to evaluate the accuracy of the method, and the recoveries obtained varied from 90% to 115%. The samples were also analyzed after the acid digestion procedure, and the paired t-test (95% confidence level) did not show significant differences from the proposed method.

  12. Ultrasound-assisted single-drop microextraction for the determination of cadmium in vegetable oils using high-resolution continuum source electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Jorge S.; Anunciação, Taiana A. [Departamento de Química Analítica, Instituto de Química, Universidade Federal da Bahia, Campus Universitário de Ondina, Salvador, Bahia 40170-280 (Brazil); Brandão, Geovani C. [Departamento de Química Analítica, Instituto de Química, Universidade Federal da Bahia, Campus Universitário de Ondina, Salvador, Bahia 40170-280 (Brazil); INCT de Energia e Ambiente, Instituto de Química, Universidade Federal da Bahia, Campus Universitário de Ondina, Salvador, Bahia 40170-280 (Brazil); Dantas, Alailson F. [Departamento de Química Analítica, Instituto de Química, Universidade Federal da Bahia, Campus Universitário de Ondina, Salvador, Bahia 40170-280 (Brazil); Lemos, Valfredo A. [Laboratório de Química Analítica (LQA), Universidade Estadual do Sudoeste da Bahia, Campus de Jequié, Jequié, Bahia 45506-191 (Brazil); and others

    2015-05-01

    This work presents an ultrasound-assisted single-drop microextraction procedure for the determination of cadmium in vegetable oils using high-resolution continuum source electrothermal atomic absorption spectrometry. Some initial tests showed that the best extraction efficiency was obtained when using ultrasound instead of mechanical agitation, indicating that acoustic cavitation improved the extraction process. Nitric, hydrochloric and acetic acids were evaluated for use in the extraction process, and HNO{sub 3} gave the best results. A two-level full-factorial design was applied to investigate the best conditions for the extraction of Cd from the oil samples. The influences of the sonication amplitude, time and temperature of the extraction were evaluated. The results of the design revealed that all of the variables had a significant effect on the experimental results. Afterward, a Box–Behnken design was applied to determine the optimum conditions for the determination of cadmium in vegetable oil samples. According to a multivariate study, the optimum conditions were as follows: sonication amplitude of 60%, extraction time of 15 min, extraction temperature of 46 °C and 0.1 mol L{sup −1} HNO{sub 3} as the extractor solution. Under optimized conditions, the developed method allows for the determination of Cd in oil samples with a limit of quantification of 7.0 ng kg{sup −1}. Addition and recovery experiments were performed in vegetable oil samples to evaluate the accuracy of the method, and the recoveries obtained varied from 90% to 115%. The samples were also analyzed after the acid digestion procedure, and the paired t-test (95% confidence level) did not show significant differences from the proposed method. - Highlights: • The determination of cadmium in vegetable oils was developed using UA-SDME. • HR-CS ET-AAS was employed as a detection technique with direct drop sampling. • The procedure allowed for a reduction in the consumption of reagents and

  13. Speciation analysis of volatile and non-volatile vanadium compounds in Brazilian crude oils using high-resolution continuum source graphite furnace atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Lepri, Fabio G. [Departamento de Quimica, Universidade Federal de Santa Catarina, 88040-900 Florianopolis, SC (Brazil); Welz, Bernhard [Departamento de Quimica, Universidade Federal de Santa Catarina, 88040-900 Florianopolis, SC (Brazil)]. E-mail: welz@qmc.ufsc.br; Borges, Daniel L.G. [Departamento de Quimica, Universidade Federal de Santa Catarina, 88040-900 Florianopolis, SC (Brazil); Silva, Alessandra F. [Departamento de Quimica, Universidade Federal de Santa Catarina, 88040-900 Florianopolis, SC (Brazil); Vale, Maria Goreti R. [Instituto de Quimica, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves 9500, 91501-970 Porto Alegre, RS (Brazil); Heitmann, Uwe [ISAS - Institute of Analytical Sciences, Department Berlin, Albert-Einstein-Str. 9, 12489 Berlin (Germany)

    2006-02-03

    A method is proposed that makes possible determining total and 'thermally stable' vanadium in crude oil without prior separation, and to calculate 'volatile' vanadium by difference. The volatile fraction is believed to be largely vanadyl porphyrine complexes. The method is based on the unsurpassed background correction capability of high-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS GF AAS), which allows pyrolysis temperatures as low as 300 deg. C to be used. The samples were prepared as oil-in-water emulsions, and aqueous standards emulsified in the same way were used for calibration. Total vanadium has been determined using a pyrolysis temperature of 400 deg. C, and 'thermally stable' vanadium using a pyrolysis temperature of 800 deg. C. The content of total vanadium in 12 Brazilian crude oil samples was found to be between less than 0.04 and about 30 mg kg{sup -1}. The volatile fraction was between 5 and 51% of the total content, and there was no correlation between the total and the volatile vanadium content. The limits of detection and quantification were 0.04 and 0.12 mg kg{sup -1} of V in crude oil, respectively, based on a mass of 2 g of oil in 10 mL of emulsion. The precision was better than 4% at the 3 mg kg{sup -1} level and better than 1.5% at the 30 mg kg{sup -1} level of V in crude oil.

  14. Simultaneous determination of V, Ni and Fe in fuel fly ash using solid sampling high resolution continuum source graphite furnace atomic absorption spectrometry.

    Science.gov (United States)

    Cárdenas Valdivia, A; Vereda Alonso, E; López Guerrero, M M; Gonzalez-Rodriguez, J; Cano Pavón, J M; García de Torres, A

    2018-03-01

    A green and simple method has been proposed in this work for the simultaneous determination of V, Ni and Fe in fuel ash samples by solid sampling high resolution continuum source graphite furnace atomic absorption spectrometry (SS HR CS GFAAS). The application of fast programs in combination with direct solid sampling allows eliminating pretreatment steps, involving minimal manipulation of sample. Iridium treated platforms were applied throughout the present study, enabling the use of aqueous standards for calibration. Correlation coefficients for the calibration curves were typically better than 0.9931. The concentrations found in the fuel ash samples analysed ranged from 0.66% to 4.2% for V, 0.23-0.7% for Ni and 0.10-0.60% for Fe. Precision (%RSD) were 5.2%, 10.0% and 9.8% for V, Ni and Fe, respectively, obtained as the average of the %RSD of six replicates of each fuel ash sample. The optimum conditions established were applied to the determination of the target analytes in fuel ash samples. In order to test the accuracy and applicability of the proposed method in the analysis of samples, five ash samples from the combustion of fuel in power stations, were analysed. The method accuracy was evaluated by comparing the results obtained using the proposed method with the results obtained by ICP OES previous acid digestion. The results showed good agreement between them. The goal of this work has been to develop a fast and simple methodology that permits the use of aqueous standards for straightforward calibration and the simultaneous determination of V, Ni and Fe in fuel ash samples by direct SS HR CS GFAAS. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Determination of Pb (Lead), Cd (Cadmium), Cr (Chromium), Cu (Copper), and Ni (Nickel) in Chinese tea with high-resolution continuum source graphite furnace atomic absorption spectrometry.

    Science.gov (United States)

    Zhong, Wen-Si; Ren, Ting; Zhao, Li-Jiao

    2016-01-01

    The contents of lead, cadmium, chromium, copper, and nickel were determined in 25 tea samples from China, including green, yellow, white, oolong, black, Pu'er, and jasmine tea products, using high-resolution continuum source graphite furnace atomic absorption spectrometry. The methods used for sample preparation, digestion, and quantificational analysis were established, generating satisfactory analytical precisions (represented by relative standard deviations ranging from 0.6% to 2.5%) and recoveries (98.91-101.32%). The lead contents in tea leaves were 0.48-10.57 mg/kg, and 80% of these values were below the maximum values stated by the guidelines in China. The contents of cadmium and chromium ranged from 0.01 mg/kg to 0.39 mg/kg and from 0.27 mg/kg to 2.45 mg/kg, respectively, remaining in compliance with the limits stipulated by China's Ministry of Agriculture. The copper contents were 7.73-63.71 mg/kg; only 64% of these values complied with the standards stipulated by the Ministry of Agriculture. The nickel contents ranged from 2.70 mg/kg to 13.41 mg/kg. Consequently, more attention must be paid to the risks of heavy metal contamination in tea. The quantitative method established in this work lays a foundation for preventing heavy metal toxicity in human from drinking tea and will help establish regulations to control the contents of heavy metals in tea. Copyright © 2015. Published by Elsevier B.V.

  16. A simple and fast method for assessment of the nitrogen–phosphorus–potassium rating of fertilizers using high-resolution continuum source atomic and molecular absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Bechlin, Marcos André; Fortunato, Felipe Manfroi; Moutinho da Silva, Ricardo; Ferreira, Edilene Cristina; Gomes Neto, José Anchieta, E-mail: anchieta@iq.unesp.br

    2014-11-01

    The determination of N, P, and K in fertilizers by high-resolution continuum source flame atomic and molecular absorption spectrometry is proposed. Under optimized conditions, measurements of the diatomic molecules NO and PO at 215.360 and 247.620 nm, respectively, and K using the wing of the alternative line at 404.722 nm allowed calibration curves to be constructed in the ranges 500–5000 mg L{sup −1} N (r = 0.9994), 100–2000 mg L{sup −1} P (r = 0.9946), and 100–2500 mg L{sup −1} K (r = 0.9995). Commercial fertilizers were analyzed by the proposed method and the concentrations of N, P, and K were found to be in agreement with those obtained by Kjeldahl, spectrophotometric, and flame atomic emission spectrometry methods, respectively, at a 95% confidence level (paired t-test). A phosphate rock certified reference material (CRM) was analyzed and the results for P and K were in agreement with the reference values. Recoveries from spiked CRM were in the ranges 97–105% (NO{sub 3}{sup −}-N), 95–103% (NH{sub 4}{sup +}-N), 93–103% (urea-N), 99–108% (P), and 99–102% (K). The relative standard deviations (n = 12) for N, P, and K were 6, 4, and 2%, respectively. - Highlights: • A single technique is proposed to analyze NPK fertilizer. • HR-CS FAAS is proposed for the first time for N, P and K determination in fertilizers. • The method employs the same sample preparation and dilution for the three analytes. • Addition of H{sub 2}O{sub 2} allows analysis of fertilizers with different nitrogen species. • Proposal provides advantages over traditional methods in terms of cost and time.

  17. Direct determination of chromium in infant formulas employing high-resolution continuum source electrothermal atomic absorption spectrometry and solid sample analysis.

    Science.gov (United States)

    Silva, Arlene S; Brandao, Geovani C; Matos, Geraldo D; Ferreira, Sergio L C

    2015-11-01

    The present work proposed an analytical method for the direct determination of chromium in infant formulas employing the high-resolution continuum source electrothermal atomic absorption spectrometry combined with the solid sample analysis (SS-HR-CS ET AAS). Sample masses up to 2.0mg were directly weighted on a solid sampling platform and introduced into the graphite tube. In order to minimize the formation of carbonaceous residues and to improve the contact of the modifier solution with the solid sample, a volume of 10 µL of a solution containing 6% (v/v) H2O2, 20% (v/v) ethanol and 1% (v/v) HNO3 was added. The pyrolysis and atomization temperatures established were 1600 and 2400 °C, respectively, using magnesium as chemical modifier. The calibration technique was evaluated by comparing the slopes of calibration curves established using aqueous and solid standards. This test revealed that chromium can be determined employing the external calibration technique using aqueous standards. Under these conditions, the method developed allows the direct determination of chromium with limit of quantification of 11.5 ng g(-1), precision expressed as relative standard deviation (RSD) in the range of 4.0-17.9% (n=3) and a characteristic mass of 1.2 pg of chromium. The accuracy was confirmed by analysis of a certified reference material of tomato leaves furnished by National Institute of Standards and Technology. The method proposed was applied for the determination of chromium in five different infant formula samples. The chromium content found varied in the range of 33.9-58.1 ng g(-1) (n=3). These samples were also analyzed employing ICP-MS. A statistical test demonstrated that there is no significant difference between the results found by two methods. The chromium concentrations achieved are lower than the maximum limit permissible for chromium in foods by Brazilian Legislation. Copyright © 2015. Published by Elsevier B.V.

  18. Determination of Pb (Lead, Cd (Cadmium, Cr (Chromium, Cu (Copper, and Ni (Nickel in Chinese tea with high-resolution continuum source graphite furnace atomic absorption spectrometry

    Directory of Open Access Journals (Sweden)

    Wen-Si Zhong

    2016-01-01

    Full Text Available The contents of lead, cadmium, chromium, copper, and nickel were determined in 25 tea samples from China, including green, yellow, white, oolong, black, Pu'er, and jasmine tea products, using high-resolution continuum source graphite furnace atomic absorption spectrometry. The methods used for sample preparation, digestion, and quantificational analysis were established, generating satisfactory analytical precisions (represented by relative standard deviations ranging from 0.6% to 2.5% and recoveries (98.91–101.32%. The lead contents in tea leaves were 0.48–10.57 mg/kg, and 80% of these values were below the maximum values stated by the guidelines in China. The contents of cadmium and chromium ranged from 0.01 mg/kg to 0.39 mg/kg and from 0.27 mg/kg to 2.45 mg/kg, respectively, remaining in compliance with the limits stipulated by China's Ministry of Agriculture. The copper contents were 7.73–63.71 mg/kg; only 64% of these values complied with the standards stipulated by the Ministry of Agriculture. The nickel contents ranged from 2.70 mg/kg to 13.41 mg/kg. Consequently, more attention must be paid to the risks of heavy metal contamination in tea. The quantitative method established in this work lays a foundation for preventing heavy metal toxicity in human from drinking tea and will help establish regulations to control the contents of heavy metals in tea.

  19. Direct determination of bromine in plastic materials by means of solid sampling high-resolution continuum source graphite furnace molecular absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Flórez, M.R.; Resano, M., E-mail: mresano@unizar.es

    2013-10-01

    This work investigates the potential of high-resolution continuum source graphite furnace molecular absorption spectrometry for the direct determination of bromine in polymers, which could be interesting in view of the current regulations restricting the use of organobrominated compounds. The method developed is based on the addition of Ca (300 μg) and Pd (30 μg) to favor the formation of CaBr, which is monitored at the main molecular “lines” (rotational spectra) found in the vicinity of 625.315 nm. It was found that accurate results could be obtained for all the samples investigated (polyethylene, polypropylene and acrylonitrile butadiene styrene certified reference materials) using any of the lines studied and constructing the calibration curve with aqueous standards. Furthermore, the combined use of the main four CaBr lines available in the spectral area simultaneously monitored permits to easily expand the linear range up to 2000 ng, provides a limit of detection of 1.8 ng (1.8 μg g{sup −1} for a mass of 1 mg) and further improves precision to values between 3–7% RSD. Overall, the method proposed seems suited for the fast and simple control of these types of samples (approximately 10 min for sample are required), circumventing the traditional problems associated with sample digestion (e.g., losses of volatile compounds), and providing sufficient sensitivity to easily comply with regulations. - Highlights: • Owing to the extended use of BFRs, Br determination in plastics is of great interest. • Solid sampling HR CS GFMAS permits the direct determination of Br, as CaBr, in plastics. • A fast and simple methodology with aqueous standards for calibration is proposed. • A LOD of 1.8 μg g{sup −1} and precision values in the 3–7% RSD range are achieved.

  20. Investigation of spectral interferences in the determination of lead in fertilizers and limestone samples using high-resolution continuum source graphite furnace atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Borges, Aline R. [Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, RS (Brazil); Instituto Nacional de Ciência e Tecnologia do CNPq — INCT de Energia e Ambiente, Universidade Federal da Bahia, Salvador, BA (Brazil); Becker, Emilene M.; François, Luciane L.; Jesus, Alexandre de [Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, RS (Brazil); Vale, Maria Goreti R. [Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, RS (Brazil); Instituto Nacional de Ciência e Tecnologia do CNPq — INCT de Energia e Ambiente, Universidade Federal da Bahia, Salvador, BA (Brazil); Welz, Bernhard [Instituto Nacional de Ciência e Tecnologia do CNPq — INCT de Energia e Ambiente, Universidade Federal da Bahia, Salvador, BA (Brazil); Departamento de Química, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC (Brazil); Dessuy, Morgana B., E-mail: mbdessuy@ufrgs.br [Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, RS (Brazil); Andrade, Jailson B. de [Instituto Nacional de Ciência e Tecnologia do CNPq — INCT de Energia e Ambiente, Universidade Federal da Bahia, Salvador, BA (Brazil)

    2014-11-01

    In the present work, spectral interferences on the determination of lead in fertilizer and limestone samples were investigated using high-resolution continuum source graphite furnace atomic absorption spectrometry at the main analytical lines: 217.001 and 283.306 nm. For these investigations, samples were introduced into the furnace as slurry together with a mixture of Pd and Mg as chemical modifier. Spectral interferences were observed for some samples at both analytical lines. In order to verify whether a wet digestion procedure would avoid these interferences, a reference method for wet digestion of fertilizers was employed as an alternative sample preparation procedure. However, the same interferences were also observed in the digested samples. In order to identify and eliminate the fine-structured background using a least-squares background correction, reference spectra were generated using the combination of different species. The use of the latter technique allowed the elimination of spectral interferences for most of the investigated samples, making possible the determination of lead in fertilizer and limestone samples free of interferences. The best results were found using a reference spectrum of NH{sub 4}H{sub 2}PO{sub 4} at 217.001 nm, and a mixture of H{sub 2}SO{sub 4} + Ca and HNO{sub 3} + Ca at the 283.306 nm line. The accuracy of the method was evaluated using a certified reference material “Trace Elements in Multi-Nutrient Fertilizer”. Similar results were obtained using line source graphite furnace atomic absorption spectrometry with Zeeman-effect background correction, indicating that the latter technique was also capable to correct the spectral interferences, at least in part. - Highlights: • Spectral interferences on the determination of lead in fertilizers and limestone. • The analytical lines at 217.001 nm and 283.306 nm using HR-CS GF AAS. • Various combinations of compounds were used to create reference spectra. • LSBC

  1. Transient Infrared Measurement of Laser Absorption Properties of Porous Materials

    Directory of Open Access Journals (Sweden)

    Marynowicz Andrzej

    2016-06-01

    Full Text Available The infrared thermography measurements of porous building materials have become more frequent in recent years. Many accompanying techniques for the thermal field generation have been developed, including one based on laser radiation. This work presents a simple optimization technique for estimation of the laser beam absorption for selected porous building materials, namely clinker brick and cement mortar. The transient temperature measurements were performed with the use of infrared camera during laser-induced heating-up of the samples’ surfaces. As the results, the absorbed fractions of the incident laser beam together with its shape parameter are reported.

  2. Infrared Laser Therapy using IR absorption of biomolecules

    Energy Technology Data Exchange (ETDEWEB)

    Awazu, K; Ishii, K; Hazama, H, E-mail: awazu@see.eng.osaka-u.ac.jp [Medical Beam Physics Lab., Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871 (Japan)

    2011-02-01

    Since numerous characteristic absorption lines caused by molecular vibration exist in the mid-infrared (MIR) wavelength region, selective excitation or selective dissociation of molecules is possible by tuning the laser wavelength to the characteristic absorption lines of target molecules. By applying this feature to the medical fields, less-invasive treatment and non-destructive diagnosis with absorption spectroscopy are possible using tunable MIR lasers. A high-energy nanosecond pulsed MIR tunable laser was obtained with difference-frequency generation (DFG) between a Nd:YAG and a tunable Cr:forsterite lasers. The MIR-DFG laser was tunable in a wavelength range of 5.5-10 {mu}m and generated a laser pulses with an energy of up to 1.4 mJ, a pulse width of 5 ns, and a pulse repetition rate of 10 Hz. Selective removal of atherosclerotic lesion was successfully demonstrated with the MIR-DFG laser tuned at a wavelength of 5.75 {mu}m, which corresponds to the characteristic absorption of the ester bond in cholesterol esters in the atherosclerotic lesions. We have developed a non-destructive diagnostic probe with an attenuated total reflection (ATR) prism and two hollow optical fibres. An absorption spectrum of cholesterol was measured with the ATR probe by scanning the wavelength of the MIR-DFG laser, and the spectrum was in good agreement with that measured with a commercial Fourier transform infrared spectrometer.

  3. Thermal signatures of urban land cover types: High-resolution thermal infrared remote sensing of urban heat island in Huntsville, AL

    Science.gov (United States)

    Lo, Chor Pang

    1996-01-01

    The main objective of this research is to apply airborne high-resolution thermal infrared imagery for urban heat island studies, using Huntsville, AL, a medium-sized American city, as the study area. The occurrence of urban heat islands represents human-induced urban/rural contrast, which is caused by deforestation and the replacement of the land surface by non-evaporating and non-porous materials such as asphalt and concrete. The result is reduced evapotranspiration and more rapid runoff of rain water. The urban landscape forms a canopy acting as a transitional zone between the atmosphere and the land surface. The composition and structure of this canopy have a significant impact on the thermal behavior of the urban environment. Research on the trends of surface temperature at rapidly growing urban sites in the United States during the last 30 to 50 years suggests that significant urban heat island effects have caused the temperatures at these sites to rise by 1 to 2 C. Urban heat islands have caused changes in urban precipitation and temperature that are at least similar to, if not greater than, those predicted to develop over the next 100 years by global change models. Satellite remote sensing, particularly NOAA AVHRR thermal data, has been used in the study of urban heat islands. Because of the low spatial resolution (1.1 km at nadir) of the AVHRR data, these studies can only examine and map the phenomenon at the macro-level. The present research provides the rare opportunity to utilize 5-meter thermal infrared data acquired from an airplane to characterize more accurately the thermal responses of different land cover types in the urban landscape as input to urban heat island studies.

  4. High-resolution Near-infrared Observations of a Small Cluster Associated with a Bright-rimmed Cloud in W5

    Science.gov (United States)

    Imai, Rieko; Sugitani, Koji; Miao, Jingqi; Fukuda, Naoya; Watanabe, Makoto; Kusune, Takayoshi; Pickles, Andrew J.

    2017-08-01

    We carried out near-infrared (IR) observations to examine star formation toward the bright-rimmed cloud SFO 12, of which the main exciting star is O7V star in W5-W. We found a small young stellar object (YSO) cluster of six members embedded in the head of SFO 12 facing its exciting star, aligned along the UV radiation incident direction from the exciting star. We carried out high-resolution near-IR observations with the Subaru adaptive optics (AO) system and revealed that three of the cluster members appear to have circumstellar envelopes, one of which shows an arm-like structure in its envelope. Our near-IR and {L}\\prime -band photometry and Spitzer IRAC data suggest that formation of two members at the tip side occurred in advance of other members toward the central part, under our adopted assumptions. Our near-IR data and previous studies imply that more YSOs are distributed in the region just outside the cloud head on the side of the main exciting star, but there is little sign of star formation toward the opposite side. We infer that star formation has been sequentially occurring from the exciting star side to the central part. We examined archival data of far-infrared and CO (J=3-2) which reveals that, unlike in the optical image, SFO 12 has a head-tail structure that is along the UV incident direction. This suggests that SFO 12 is affected by strong UV from the main exciting star. We discuss the formation of this head-tail structure and star formation there by comparing with a radiation-driven implosion (RDI) model.

  5. Mapping bare soil in South West Wales, UK, using high resolution colour infra-red aerial photography for water quality and flood risk management applications

    Science.gov (United States)

    Sykes, Helena; Neale, Simon; Coe, Sarah

    2016-04-01

    Natural Resources Wales is a UK government body responsible for environmental regulation, among other areas. River walks in Water Framework Directive (WFD) priority catchments in South West Wales, UK, identified soil entering water courses due to poaching and bank erosion, leading to deterioration in the water quality and jeopardising the water quality meeting legal minimum standards. Bare soil has also been shown to cause quicker and higher hydrograph peaks in rural catchments than if those areas were vegetated, which can lead to flooding of domestic properties during peak storm flows. The aim was to target farm visits by operational staff to advise on practices likely to improve water quality and to identify areas where soft engineering solutions such as revegetation could alleviate flood risk in rural areas. High resolution colour-infrared aerial photography, 25cm in the three colour bands and 50cm in the near infrared band, was used to map bare soil in seven catchments using supervised classification of a five band stack including the Normalised Difference Vegetation Index (NDVI). Mapping was combined with agricultural land use and field boundary data to filter out arable fields, which are supposed to bare soil for part of their cycle, and was very successful when compared to ground truthing, with the exception of silage fields which contained sparse, no or unproductive vegetation at the time the imagery was acquired leading to spectral similarity to bare soil. A raindrop trace model was used to show the path sediment from bare soil areas would take when moving through the catchment to a watercourse, with hedgerows inserted as barriers following our observations from ground truthing. The findings have been used to help farmers gain funding for improvements such as fencing to keep animals away from vulnerable river banks. These efficient and automated methods can be rolled out to more catchments in Wales and updated using aerial imagery acquired more recently to

  6. Absorption of infrared radiation by human dental hard substances

    Science.gov (United States)

    Roth, Klaus K.; Duczynski, Edwin W.; von der Heide, Hans-Joachim; Struve, Bert

    1993-12-01

    Absorption spectra of enamel, dentin, synthetic hydroxyapatite and deionized water were taken in the wavelength band 500 to 3000 nm. It could be shown that infrared radiation is mainly absorbed in the aqueous components of dental hard tissues. Because of their decreased water content extinctions measured are slightly lower than those of deionized water. Furthermore, mineral absorptions could be detected in the range of 2760 to 2840 nm with a maximum at 2800 nm in enamel and a smaller one at 2500 nm in dentin.

  7. Determination of molecular line parameters for acrolein (C(3)H(4)O) using infrared tunable diode laser absorption spectroscopy.

    Science.gov (United States)

    Harward, Charles N; Thweatt, W David; Baren, Randall E; Parrish, Milton E

    2006-04-01

    Acrolein (C(3)H(4)O) molecular line parameters, including infrared (IR) absorption positions, strengths, and nitrogen broadened half-widths, must be determined since they are not included in the high resolution transmission (HITRAN) molecular absorption database of spectral lines. These parameters are required for developing a quantitative analytical method for measuring acrolein in a single puff of cigarette smoke using tunable diode laser absorption spectroscopy (TDLAS). The task is complex since acrolein has many highly overlapping infrared absorption lines in the room temperature spectrum and the cigarette smoke matrix contains thousands of compounds. This work describes the procedure for estimating the molecular line parameters for these overlapping absorption lines in the wavenumber range (958.7-958.9 cm(-1)) using quantitative reference spectra taken with the infrared lead-salt TDLAS instrument at different pressures and concentrations. The nitrogen broadened half-width for acrolein is 0.0937 cm(-1)atm(-1) and to our knowledge, is the first time it has been reported in the literature.

  8. Marine sediments monitoring studies for trace elements with the application of fast temperature programs and solid sampling high resolution continuum source atomic absorption spectrometry

    Science.gov (United States)

    Orani, Anna Maria; Han, Eunmi; Mandjukov, Petko; Vassileva, Emilia

    2015-01-01

    Analytical procedure for the determination of As, Cd, Cu, Ni, Co and Cr in marine sediment samples using high-resolution continuum source graphite furnace atomic absorption spectrometry (HR CS AAS) and direct solid sample analysis has been developed. The application of fast programs in combination with direct solid sampling allows to eliminate the drying and pretreatment steps, however makes impossible the use of liquid standards for calibration. Iridium treated platforms were applied throughout the present study. Calibration technique based on the use of solid certified reference materials (marine sediments) similar to the nature of the analyzed sample and statistics of regression analysis were applied to the real sediment samples. The instrumental parameters were optimized in order to obtain reproducible and interference free analytical signals. The ISO-17025 requirements and Eurachem guidelines were followed in the validation of the proposed analytical procedure. Accordingly, blanks, selectivity, calibration, linearity, working range, trueness, repeatability reproducibility, limits of detection and quantification and expanded uncertainty (k = 2) for all investigated elements were assessed. Two different approaches for the estimation of measurement uncertainty were applied and obtained results compared. The major contributors to the combined uncertainty of the analyte mass fraction were found to be the homogeneity of the samples and the microbalance precision. The influence of sample particle sizes on the total combined uncertainty was also evaluated. Traceability to SI system of units of the obtained by the proposed analytical procedure results was demonstrated. Additionally, validation of the methodology developed was effectuated by the comparison of the obtained results with independent method e.g. ICP-MS with external calibration. The use of solid sampling HR CS AAS for the determination of trace elements in marine sediment matrix gives significant advantages

  9. Method development for the determination of fluorine in toothpaste via molecular absorption of aluminum mono fluoride using a high-resolution continuum source nitrous oxide/acetylene flame atomic absorption spectrophotometer.

    Science.gov (United States)

    Ozbek, Nil; Akman, Suleyman

    2012-05-30

    Fluorine was determined via the rotational molecular absorption line of aluminum mono fluoride (AlF) generated in C(2)H(2)/N(2)O flame at 227.4613 nm using a high-resolution continuum source flame atomic absorption spectrophotometer (HR-CS-FAAS). The effects of AlF wavelength, burner height, fuel rate (C(2)H(2)/N(2)O) and amount of Al on the accuracy, precision and sensitivity were investigated and optimized. The Al-F absorption band at 227.4613 nm was found to be the most suitable analytical line with respect to sensitivity and spectral interferences. Maximum sensitivity and a good linearity were obtained in acetylene-nitrous oxide flame at a flow rate of 210 L h(-1) and a burner height of 8mm using 3000 mg L(-1) of Al for 10-1000 mg L(-1)of F. The accuracy and precision of the method were tested by analyzing spiked samples and waste water certified reference material. The results were in good agreement with the certified and spiked amounts as well as the precision of several days during this study was satisfactory (RSD<10%). The limit of detection and characteristic concentration of the method were 5.5 mg L(-1) and 72.8 mg L(-1), respectively. Finally, the fluorine concentrations in several toothpaste samples were determined. The results found and given by the producers were not significantly different. The method was simple, fast, accurate and sensitive. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Infrared Absorption by Atmospheric Aerosols in Mexico City during MILAGRO.

    Science.gov (United States)

    Kelley, K. L.; Mangu, A.; Gaffney, J. S.; Marley, N. A.

    2007-12-01

    Past research in our group using cylindrical internal reflectance spectroscopy has indicated that aqueous aerosols could contribute to the radiative warming as greenhouse species (1,2). Although aerosol radiative effects have been known for sometime and are considered one of the major uncertainties in climate change modeling, most of the studies have focused on the forcing due to scattering and absorption of radiation in the uv- visible region (3). Infrared spectral information also allows the confirmation of key functional groups that are responsible for enhanced absorption observations from secondary organics in the uv-visible region. This work extends our efforts to evaluate the infrared absorption by aerosols, particularly organics, that are now found to be a major fraction of urban and regional aerosols in the 0.1 to 1.0 micron size range and to help identify key types of organics that can contribute to aerosol absorption. During the MILAGRO campaign, quartz filter samples were taken at 12-hour intervals from 5 am to 5 pm (day) and from 5 pm to 5 am (night) during the month of March 2006. These samples were taken at the two super-sites, T-0 (Instituto Mexicano de Petroleo in Mexico City) and T-1 (Universidad Technologica de Tecamac, State of Mexico). The samples have been characterized for total carbon content (stable isotope mass spectroscopy) and natural radionuclide tracers, as well as for their UV-visible spectroscopic properties by using integrating sphere diffuse reflectance spectroscopy (Beckman DU with a Labsphere accessory). These same samples have been characterized in the mid and near infrared spectral ranges using diffuse reflection spectroscopy (Nicolet 6700 FTIR with a Smart Collector accessory). Aerosol samples were removed from the surfaces of the aerosol filters by using Si-Carb sampler. The samples clearly indicate the presence of carbonyl organic constituents and the spectra are quite similar to those observed for humic and fulvic acids

  11. NEW ACCURATE MEASUREMENT OF {sup 36}ArH{sup +} AND {sup 38}ArH{sup +} RO-VIBRATIONAL TRANSITIONS BY HIGH RESOLUTION IR ABSORPTION SPECTROSCOPY

    Energy Technology Data Exchange (ETDEWEB)

    Cueto, M.; Herrero, V. J.; Tanarro, I.; Doménech, J. L. [Molecular Physics Department, Instituto de Estructura de la Materia (IEM-CSIC), Serrano 123, E-28006 Madrid (Spain); Cernicharo, J. [Department of Astrophysics, CAB. INTA-CSIC. Crta Torrejón-Ajalvir Km 4, E-28850 Torrejón de Ardoz, Madrid (Spain); Barlow, M. J.; Swinyard, B. M., E-mail: jl.domenech@csic.es [Department of Physics and Astronomy, University College London. Gower Street, London WC1E 6BT (United Kingdom)

    2014-03-01

    The protonated argon ion, {sup 36}ArH{sup +}, was recently identified in the Crab Nebula from Herschel spectra. Given the atmospheric opacity at the frequency of its J = 1-0 and J = 2-1 rotational transitions (617.5 and 1234.6 GHz, respectively), and the current lack of appropriate space observatories after the recent end of the Herschel mission, future studies on this molecule will rely on mid-infrared observations. We report on accurate wavenumber measurements of {sup 36}ArH{sup +} and {sup 38}ArH{sup +} rotation-vibration transitions in the v = 1-0 band in the range 4.1-3.7 μm (2450-2715 cm{sup –1}). The wavenumbers of the R(0) transitions of the v = 1-0 band are 2612.50135 ± 0.00033 and 2610.70177 ± 0.00042 cm{sup –1} (±3σ) for {sup 36}ArH{sup +} and {sup 38}ArH{sup +}, respectively. The calculated opacity for a gas thermalized at a temperature of 100 K and with a linewidth of 1 km s{sup –1} of the R(0) line is 1.6 × 10{sup –15} × N({sup 36}ArH{sup +}). For column densities of {sup 36}ArH{sup +} larger than 1 × 10{sup 13} cm{sup –2}, significant absorption by the R(0) line can be expected against bright mid-IR sources.

  12. Far-Infrared Absorption of PbSe Nanorods

    KAUST Repository

    Hyun, Byung-Ryool

    2011-07-13

    Measurements of the far-infrared absorption spectra of PbSe nanocrystals and nanorods are presented. As the aspect ratio of the nanorods increases, the Fröhlich sphere resonance splits into two peaks. We analyze this splitting with a classical electrostatic model, which is based on the dielectric function of bulk PbSe but without any free-carrier contribution. Good agreement between the measured and calculated spectra indicates that resonances in the local field factors underlie the measured spectra. © 2011 American Chemical Society.

  13. Effect of pyridine on infrared absorption spectra of copper phthalocyanine.

    Science.gov (United States)

    Singh, Sukhwinder; Tripathi, S K; Saini, G S S

    2008-02-01

    Infrared absorption spectra of copper phthalocyanine in KBr pellet and pyridine solution in 400-1625 and 2900-3200 cm(-1)regions are reported. In the IR spectra of solid sample, presence of weak bands, which are forbidden according to the selection rules of D4h point group, is explained on the basis of distortion in the copper phthalocyanine molecule caused by the crystal packing effects. Observation of a new band at 1511 cm(-1) and change in intensity of some other bands in pyridine are interpreted on the basis of coordination of the solvent molecule with the central copper ion.

  14. Infrared absorption peaks in nitrogen doped CZ silicon

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, N. [RIAST, Osaka Prefecture University, Gakuen-cho, Sakai, Osaka 599-8570 (Japan); JEITA Nitrogen Measurement WG, 3-11 Kanda-surugadai, Chiyoda-ku, Tokyo 101-0062 (Japan)]. E-mail: inouen@riast.osakafu-u.ac.jp; Nakatsu, M. [RIAST, Osaka Prefecture University, Gakuen-cho, Sakai, Osaka 599-8570 (Japan); Ono, H. [Japan Fine Ceramics Center, 2-4-3 Nishi-shinbashi, Minato-ku, Tokyo 105-0003 (Japan); JEITA Nitrogen Measurement WG, 3-11 Kanda-surugadai, Chiyoda-ku, Tokyo 101-0062 (Japan); Inoue, Y. [Tokyo University of Education, Bunkyo-ku, Tokyo 117-0002 (Japan)

    2006-10-15

    Dependences on annealing temperature and nitrogen concentration were examined for new local vibration mode infrared absorption peaks at 856, 973, 984 and 1002 cm{sup -1} in nitrogen-doped CZ silicon crystal. The new absorption peaks were so weak that two sets of samples were examined for temperature and concentration dependences, respectively, to get reliable results. The peak at 1002 cm{sup -1} behaved similarly for annealing, though much weaker, to the known peaks at 810 and 1018 cm{sup -1} which are attributed to interstitial N pair accompanied by the two oxygen interstitials (NNO {sub i}O {sub i}). This suggests that the origin contains 2 O {sub i} also. It was strong in low concentration regime, which is similar to the behavior of shallow thermal donors. This suggests that the structure contains one nitrogen rather than two (N-O interstitial pair). The results were compared with the electronic transition absorption by shallow thermal donors (STD). The absorptions at 1002 and 240 cm{sup -1} behaved similarly. These suggest that the peak at 1002 cm{sup -1} is likely due to NOO {sub i}O {sub i} which is the candidate for STD. The temperature dependence of the other new peaks was slightly different from each other. Origin of the other peaks is not clear yet.

  15. Mid-infrared absorption spectroscopy using quantum cascade lasers

    Science.gov (United States)

    Haibach, Fred; Erlich, Adam; Deutsch, Erik

    2011-06-01

    Block Engineering has developed an absorption spectroscopy system based on widely tunable Quantum Cascade Lasers (QCL). The QCL spectrometer rapidly cycles through a user-selected range in the mid-infrared spectrum, between 6 to 12 μm (1667 to 833 cm-1), to detect and identify substances on surfaces based on their absorption characteristics from a standoff distance of up to 2 feet with an eye-safe laser. It can also analyze vapors and liquids in a single device. For military applications, the QCL spectrometer has demonstrated trace explosive, chemical warfare agent (CWA), and toxic industrial chemical (TIC) detection and analysis. The QCL's higher power density enables measurements from diffuse and highly absorbing materials and substrates. Other advantages over Fourier Transform Infrared (FTIR) spectroscopy include portability, ruggedness, rapid analysis, and the ability to function from a distance through free space or a fiber optic probe. This paper will discuss the basic technology behind the system and the empirical data on various safety and security applications.

  16. Broadband infrared absorption enhancement by electroless-deposited silver nanoparticles

    Directory of Open Access Journals (Sweden)

    Gritti Claudia

    2016-07-01

    Full Text Available Decorating semiconductor surfaces with plasmonic nanoparticles (NPs is considered a viable solution for enhancing the absorptive properties of photovoltaic and photodetecting devices. We propose to deposit silver NPs on top of a semiconductor wafer by a cheap and fast electroless plating technique. Optical characterization confirms that the random array of electroless-deposited NPs improves absorption by up to 20% in a broadband of near-infrared frequencies from the bandgap edge to 2000 nm. Due to the small filling fraction of particles, the reflection in the visible range is practically unchanged, which points to the possible applications of such deposition method for harvesting photons in nanophotonics and photovoltaics. The broadband absorption is a consequence of the resonant behavior of particles with different shapes and sizes, which strongly localize the incident light at the interface of a high-index semiconductor substrate. Our hypothesis is substantiated by examining the plasmonic response of the electroless-deposited NPs using both electron energy loss spectroscopy and numerical calculations.

  17. Organic/Inorganic Hybrid Nanocomposite Infrared Photodetection by Intraband Absorption

    Science.gov (United States)

    Lantz, Kevin Richard

    Se CQDs embedded in the conjugated polymer poly[2-methoxy-5-(2'-ethylhexyloxy)-1,4-(1-cyanovinylene)phenylene] (MEH-CN-PPV). Photoluminescence (PL) spectroscopy of MEH-CN-PPV thin films was conducted to determine the dependence of polymer morphology on deposition method in order to identify a reliable device fabrication technique. Three different deposition methods were investigated: drop-casting and spin-casting, which are solution-based; and matrix-assisted pulsed laser evaporation (MAPLE), which is a vacuum-based method that gently evaporates polymers (or hybrid nanocomposites) and limits substrate exposure to solvents. It was found that MAPLE deposition provides repeatable control of the thin film morphology and thickness, which is important for nanocomposite device optimization. Ultra-fast PL spectroscopy of MEH-CN-PPV/CdSe thin films was investigated to determine the charge generation and relaxation dynamics in the hybrid nanocomposite thin films. The mathematical fitting of time-integrated and time-resolved PL provided a rigorous and unique model of the charge dynamics, which enabled calculation of the radiative and non-radiative decay lifetimes in the polymer and CQD. These results imply that long-lived electrons exist in the conduction band of the CQD, which demonstrate that it should be possible to generate a mid- to long-wave infrared photocurrent based on intraband transitions. In fact, room-temperature, intraband, mid-infrared absorption was measured in thin films of MEH-CN-PPV/CdSe hybrid nanocomposites by Fourier transform infrared (FTIR) absorbance spectroscopy. In addition, the hybrid nanocomposite confined energy levels and corresponding oscillator strengths were calculated in order to model the absorption spectrum. The calculated absorption peaks agree well with the measured peaks, demonstrating that the developed computer model provides a useful design tool for determining the impact of important materials system properties, such as CQD size, organic

  18. Raman and Infrared Absorption Study of Indigoid-based Pigments

    Science.gov (United States)

    Manciu, Felicia; Durrer, William; Reza, Layra; Ramirez, Alejandra; Chianelli, Russell

    2009-04-01

    A fascinating aspect of Maya pigments is that despite the environmentally harsh humidity and high temperatures they resist fading and they have unprecedented stability. In this investigation, we address the question of how organic dye binds to inorganic palygorskite to form pigments. Our analysis by Raman and infrared absorption spectroscopies proves that different processes are taking place for the indigo-palygorskite system as compared with the thioindigo-palygorskite complex. While partial elimination of the selection rules for the centrosymmetric indigo and disappearance of the indigo N-H bonding, with conversion to dehydroindigo, is observed for the first compound, the latter shows no evident structure modification. The interaction between indigo and palygorskite is likely through oxygen and nitrogen. Only oxygen plays this role for the thioindigo-palygorskite complex.

  19. High Resolution Elevation Contours

    Data.gov (United States)

    Minnesota Department of Natural Resources — This dataset contains contours generated from high resolution data sources such as LiDAR. Generally speaking this data is 2 foot or less contour interval.

  20. Importance of chromophore environment on the near infrared absorption of polymeric waveguides

    OpenAIRE

    Le Duff, Anne-Claire; Ricci, Vincent; Pliska, Tomas; Canva, Michael; Stegeman, George I.; Chan, Kwok Pong; Twieg, Robert

    2000-01-01

    International audience; The near-infrared absorption of two chromophore functionalized polymers and combinations of seventeen different guest chromophores in seven different organic polymer matrices were investigated to assess the effect of chromophore structure and environment on absorption. The near-infrared absorption losses were found to be dramatically larger by as much as 2-3 orders of magnitude in polymer matrices than in solution. Furthermore, the absorption of the long-wavelength tai...

  1. Infrared absorption spectroscopy of diacetylene ions trapped in solid argon.

    Science.gov (United States)

    Szczepanski, Jan; Wang, Haiyan; Jones, Brittnee; Arrington, Caleb A; Vala, Martin T

    2005-03-07

    The C4H2+ diacetylene radical cation has been generated in a pulsed jet electrical discharge through both a diacetylene/argon mixture and an acetylene/argon mixture. The product mixture was trapped on a 12 K cryostat window and studied via Fourier transform infrared absorption spectroscopy. The diacetylene cation was also produced via low energy electron bombardment of an effusive C4H2/Ar beam. Two new infrared bands at 3201.6 and 1827.9 cm(-1) have been identified as vibrations of the diacetylene cation, viz the v4 (sigmau) (C-H stretching) and the v5(sigmau) (C[triple bond]C stretching) modes, respectively. Geometry optimization and harmonic frequency calculations, carried out at various spin unrestricted levels (B3LYP, CCSD(T)) for spin doublet structures, indicate that, in its electronic ground state X2pi(g), the C4H2+ cation is linear. Three additional new bands at 2957.5, 1693.8 and 594.5 cm(-1) have been tentatively assigned to the C-H stretching, C[triple bond]C stretching and C[triple bond]C-H (in-plane) bending modes, respectively, of the nonlinear diacetylene anion (C4H2-, X2B(u)).

  2. Nitrogen and hydrogen related infrared absorption in CVD diamond films

    Energy Technology Data Exchange (ETDEWEB)

    Titus, E. [Department of Mechanical Engineering, University of Aveiro, 3810-193 (Portugal)]. E-mail: elby@mec.ua.pt; Ali, N. [Department of Mechanical Engineering, University of Aveiro, 3810-193 (Portugal); Cabral, G. [Department of Mechanical Engineering, University of Aveiro, 3810-193 (Portugal); Madaleno, J.C. [Department of Mechanical Engineering, University of Aveiro, 3810-193 (Portugal); Neto, V.F. [Department of Mechanical Engineering, University of Aveiro, 3810-193 (Portugal); Gracio, J. [Department of Mechanical Engineering, University of Aveiro, 3810-193 (Portugal); Ramesh Babu, P [Materials Ireland, Polymer research Centre, School of Physics, Dublin (Ireland); Sikder, A.K. [Department of Physics, Indian Institute of Technology (IIT), Bombay (India); Okpalugo, T.I. [Northern Ireland Bio-Engineering Centre, NIBEC, University of Ulster (United Kingdom); Misra, D.S. [Department of Physics, Indian Institute of Technology (IIT), Bombay (India)

    2006-09-25

    In this paper, we investigate on the presence of hydrogen and nitrogen related infrared absorptions in chemical vapour deposited (CVD) diamond films. Investigations were carried out in cross sections of diamond windows, deposited using hot filament CVD (HFCVD). The results of Scanning Electron Microscopy (SEM), Fourier Transform Infrared (FTIR) and Raman spectroscopy carried out in a cross section of self-standing diamond sheets are presented. The FTIR spectra showed several features that have not been reported before. In order to confirm the frequency of nitrogen related vibrations, ab-initio calculations were carried out using GAMESS program. The investigations showed the presence of several C-N related peaks in one-phonon (1000-1333 cm{sup -1}). The deconvolution of the spectra in the three-phonon region (2700-3150 cm{sup -1}) also showed a number of vibration modes corresponding to sp {sup m}CH {sub n} phase of carbon. Elastic recoil detection analysis (ERDA) was employed to compare the H content measured using FTIR technique. Using these measurements we point out that the oscillator strength of the different IR modes varies depending upon the structure and H content of CVD diamond sheets.

  3. nBn Infrared Detector Containing Graded Absorption Layer

    Science.gov (United States)

    Gunapala, Sarath D.; Ting, David Z.; Hill, Cory J.; Bandara, Sumith V.

    2009-01-01

    It has been proposed to modify the basic structure of an nBn infrared photodetector so that a plain electron-donor- type (n-type) semiconductor contact layer would be replaced by a graded n-type III V alloy semiconductor layer (i.e., ternary or quarternary) with appropriate doping gradient. The abbreviation nBn refers to one aspect of the unmodified basic device structure: There is an electron-barrier ("B" ) layer between two n-type ("n" ) layers, as shown in the upper part of the figure. One of the n-type layers is the aforementioned photon-absorption layer; the other n-type layer, denoted the contact layer, collects the photocurrent. The basic unmodified device structure utilizes minority-charge-carrier conduction, such that, for reasons too complex to explain within the space available for this article, the dark current at a given temperature can be orders of magnitude lower (and, consequently, signal-to-noise ratios can be greater) than in infrared detectors of other types. Thus, to obtain a given level of performance, less cooling (and, consequently, less cooling equipment and less cooling power) is needed. [In principle, one could obtain the same advantages by means of a structure that would be called pBp because it would include a barrier layer between two electron-acceptor- type (p-type) layers.] The proposed modifications could make it practical to utilize nBn photodetectors in conjunction with readily available, compact thermoelectric coolers in diverse infrared- imaging applications that could include planetary exploration, industrial quality control, monitoring pollution, firefighting, law enforcement, and medical diagnosis.

  4. Water Continuum Absorption in the Infrared and Millimeter Spectral Regions.

    Science.gov (United States)

    Ma, Qiancheng

    1990-01-01

    The absorption coefficient due to the water continuum is calculated both in the high-frequency (infrared) wing and in the low-frequency (millimeter) wing of the pure rotational band. The statistical theory proposed by Rosenkranz to calculate the continuum absorption in the high-frequency wing is reviewed and extended. In this review, we discuss specifically the validity and the limitation of the approximations made by Rosenkranz. We then discuss several extensions to his theory, including increasing the number of rotational states used to calculate the band-average relaxation parameter, correcting the normalization factor, and eliminating the "boxcar approximation." These improvements allow us to eliminate some inconsistencies in the original formulation of Rosenkranz while obtaining substantially the same final results. As a consequence, we confirm his conclusions about the origin, magnitude, and temperature-dependence of the water continuum absorption in the high-frequency wing of the pure rotational band. A new theory is developed to calculate the continuum in the low-frequency wing, i.e., in the millimeter spectral region. This theory is based on a generalization of Fano's theory in which the spectral density is calculated for a system consisting of a pair of water molecules. The internal states are written in terms of the line space of the system, and the resolvent operator is obtained using the Lanczos algorithm. For the interaction between two water molecules, we include only the leading dipole-dipole anisotropic potential and model the isotropic interaction by a Lennard-Jones potential. Using reasonable values for the two Lennard-Jones potential parameters, and the known rotational constants and permanent dipole moment of a water molecule, we calculate the absorption coefficient for frequencies up to 450 GHz for temperatures between 282 and 315 K. Without any free parameters, the present results are in good agreement with an empirical model for the water

  5. High-resolution multiphoton cryomicroscopy.

    Science.gov (United States)

    König, Karsten; Uchugonova, Aisada; Breunig, Hans Georg

    2014-03-15

    An ultracompact high-resolution multiphoton cryomicroscope with a femtosecond near infrared fiber laser has been utilized to study the cellular autofluorescence during freezing and thawing of cells. Cooling resulted in an increase of the intracellular fluorescence intensity followed by morphological modifications at temperatures below -10 °C, depending on the application of the cryoprotectant DMSO and the cooling rate. Furthermore, fluorescence lifetime imaging revealed an increase of the mean lifetime with a decrease in temperature. Non-destructive, label-free optical biopsies of biomaterial in ice can be obtained with sub-20 mW mean powers. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Validation of an analytical method based on the high-resolution continuum source flame atomic absorption spectrometry for the fast-sequential determination of several hazardous/priority hazardous metals in soil.

    Science.gov (United States)

    Frentiu, Tiberiu; Ponta, Michaela; Hategan, Raluca

    2013-03-01

    The aim of this paper was the validation of a new analytical method based on the high-resolution continuum source flame atomic absorption spectrometry for the fast-sequential determination of several hazardous/priority hazardous metals (Ag, Cd, Co, Cr, Cu, Ni, Pb and Zn) in soil after microwave assisted digestion in aqua regia. Determinations were performed on the ContrAA 300 (Analytik Jena) air-acetylene flame spectrometer equipped with xenon short-arc lamp as a continuum radiation source for all elements, double monochromator consisting of a prism pre-monocromator and an echelle grating monochromator, and charge coupled device as detector. For validation a method-performance study was conducted involving the establishment of the analytical performance of the new method (limits of detection and quantification, precision and accuracy). Moreover, the Bland and Altman statistical method was used in analyzing the agreement between the proposed assay and inductively coupled plasma optical emission spectrometry as standardized method for the multielemental determination in soil. The limits of detection in soil sample (3σ criterion) in the high-resolution continuum source flame atomic absorption spectrometry method were (mg/kg): 0.18 (Ag), 0.14 (Cd), 0.36 (Co), 0.25 (Cr), 0.09 (Cu), 1.0 (Ni), 1.4 (Pb) and 0.18 (Zn), close to those in inductively coupled plasma optical emission spectrometry: 0.12 (Ag), 0.05 (Cd), 0.15 (Co), 1.4 (Cr), 0.15 (Cu), 2.5 (Ni), 2.5 (Pb) and 0.04 (Zn). Accuracy was checked by analyzing 4 certified reference materials and a good agreement for 95% confidence interval was found in both methods, with recoveries in the range of 94-106% in atomic absorption and 97-103% in optical emission. Repeatability found by analyzing real soil samples was in the range 1.6-5.2% in atomic absorption, similar with that of 1.9-6.1% in optical emission spectrometry. The Bland and Altman method showed no statistical significant difference between the two spectrometric

  7. Simultaneous determination of Cd and Fe in beans and soil of different regions of Brazil using high-resolution continuum source graphite furnace atomic absorption spectrometry and direct solid sampling.

    Science.gov (United States)

    dos Santos, Lisia M G; Welz, Bernhard; Araujo, Rennan G O; Jacob, Silvana do C; Vale, Maria Goreti R; Martens, Andreas; Gonzaga Martens, Irland B; Becker-Ross, Helmut

    2009-11-11

    A fast routine screening method for the simultaneous determination of cadmium and iron in bean and soil samples is proposed, using high-resolution continuum source graphite furnace atomic absorption spectrometry and direct solid sampling. The primary absorption line at 228.802 nm has been used for the determination of cadmium, and an adjacent secondary line, at 228.726 nm, for iron. Fourteen bean samples and 10 soil samples from nine states all over Brazil have been analyzed. The limits of detection (3 sigma, n = 10) were 2.0 microg kg(-1) for Cd and 4.5 mg kg(-1) for Fe. The relative standard deviation ranged from 4 to 7% for Cd and from 5 to 28% for Fe, which is usually acceptable for a screening method. The accuracy of the method has been confirmed by the analysis of two certified reference materials; the results were in agreement with the certified values at a 95% confidence interval.

  8. Photoacoustic Experimental System to Confirm Infrared Absorption Due to Greenhouse Gases

    Science.gov (United States)

    Kaneko, Fumitoshi; Monjushiro, Hideaki; Nishiyama, Masayoshi; Kasai, Toshio; Harris, Harold H.

    2010-01-01

    An experimental system for detecting infrared absorption using the photoacoustic (PA) effect is described. It is aimed for use at high-school level to illustrate the difference in infrared (IR) absorption among the gases contained in the atmosphere in connection with the greenhouse effect. The experimental system can be built with readily…

  9. Solid-phase extraction and separation procedure for trace aluminum in water samples and its determination by high-resolution continuum source flame atomic absorption spectrometry (HR-CS FAAS).

    Science.gov (United States)

    Ciftci, Harun; Er, Cigdem

    2013-03-01

    In the present study, a separation/preconcentration procedure for determination of aluminum in water samples has been developed by using a new atomic absorption spectrometer concept with a high-intensity xenon short-arc lamp as continuum radiation source, a high-resolution double-echelle monochromator, and a charge-coupled device array detector. Sample solution pH, sample volume, flow rate of sample solution, volume, and concentration of eluent for solid-phase extraction of Al chelates with 4-[(dicyanomethyl)diazenyl] benzoic acid on polymeric resin (Duolite XAD-761) have been investigated. The adsorbed aluminum on resin was eluted with 5 mL of 2 mol L(-1) HNO(3) and its concentration was determined by high-resolution continuum source flame atomic absorption spectrometry (HR-CS FAAS). Under the optimal conditions, limit of detection obtained with HR-CS FAAS and Line Source FAAS (LS-FAAS) were 0.49 μg L(-1) and 3.91 μg L(-1), respectively. The accuracy of the procedure was confirmed by analyzing certified materials (NIST SRM 1643e, Trace elements in water) and spiked real samples. The developed procedure was successfully applied to water samples.

  10. High resolution absorption cross sections in the transmission window region of the Schumann-Runge bands and Herzberg continuum of O2

    Science.gov (United States)

    Yoshino, K.; Esmond, J. R.; Cheung, A. S.-C.; Freeman, D. E.; Parkinson, W. H.

    1992-01-01

    Results are presented on measurements, conducted in the wavelength region 180-195 nm, and at different pressures of oxygen (between 2.5-760 torr) in order to separate the pressure-dependent absorption from the main cross sections, of the absorption cross sections of the Schumann-Runge bands in the window region between the rotational lines of S-R bands of O2. The present cross sections supersede the earlier published cross sections (Yoshino et al., 1983). The combined cross sections are presented graphically; they are available at wavenumber intervals of about 0.1/cm from the National Space Science Data Center. The Herzberg continuum cross sections are derived after subtracting calculated contributions from the Schumann-Runge bands. These are significantly smaller than any previous measurements.

  11. All-Semiconductor Plasmonic Resonator for Surface-Enhanced Infrared Absorption Spectroscopy

    Directory of Open Access Journals (Sweden)

    Wei Wei

    2017-01-01

    Full Text Available Infrared absorption spectroscopy remains a challenge due to the weak light-matter interaction between micron-wavelengthed infrared light and nano-sized molecules. A highly doped semiconductor supports intrinsic plasmon modes at infrared frequencies, and is compatible with the current epitaxial growth processing, which makes it promising for various applications. Here, we propose an all-semiconductor plasmonic resonator to enhance the infrared absorption of the adsorbed molecules. An optical model is employed to investigate the effect of structural parameters on the spectral features of the resonator and the enhanced infrared absorption characteristics are further discussed. When a molecular layer is deposited upon the resonator, the weak molecular absorption signal can be significantly enhanced. A high enhancement factor of 470 can be achieved once the resonance wavelength of the resonator is overlapped with the desired vibrational mode of the molecules. Our study offers a promising approach to engineering semiconductor optics devices for mid-infrared sensing applications.

  12. Quantification of atmospheric formaldehyde by infrared absorption spectroscopy

    Science.gov (United States)

    Hoffnagle, John; Fleck, Derek; Rella, Chris; Kim-Hak, David

    2017-04-01

    Formaldehyde is a toxic, carcinogenic compound that can contaminate ambient air as a result of combustion or outgassing of commercial products such as adhesives used to fabricate plywood and to affix indoor carpeting. Like many small molecules, formaldehyde has an infrared absorption spectrum exhibiting bands of ro-vibrational transitions that are well resolved at low pressure and therefore well suited for optical analysis of formaldehyde concentration. We describe progress in applying cavity ring-down spectroscopy of the 2v5 band (the first overtone of the asymmetric C-H stretch, origin at 1770 nm) to the quantitative analysis of formaldehyde concentration in ambient air. Preliminary results suggest that a sensitivity of 1-2 ppb in a measurement interval of a few seconds, and 0.1-0.2 ppb in a few minutes, should be achievable with a compact, robust, and field-deployable instrument. Finally, we note that recent satellites monitoring snapshots of formaldehyde columns give insights into global formaldehyde production, migration and lifetime. The ability to monitor formaldehyde with a small and portable analyzer has the potential to aid in validation of these snapshots and to provide complementary data to show vertical dispersions with high spatial accuracy.

  13. High resolution absorption spectroscopy of exploding wire plasmas using an x-pinch x-ray source and spherically bent crystal.

    Science.gov (United States)

    Knapp, P F; Pikuz, S A; Shelkovenko, T A; Hammer, D A; Hansen, S B

    2011-06-01

    We present here the use of absorption spectroscopy of the continuum radiation from x-pinch-produced point x-ray sources as a diagnostic to investigate the properties of aluminum plasmas created by pulsed power machines. This technique is being developed to determine the charge state, temperature, and density as a function of time and space under conditions that are inaccessible to x-ray emission spectroscopic diagnostics. The apparatus and its characterization are described, and the spectrometer dispersion, magnification, and resolution are calculated and compared with experimental results. Spectral resolution of about 5000 and spatial resolution of about 20 μm are demonstrated. This spectral resolution is the highest available to date in an absorption experiment. The beneficial properties of the x-pinch x-ray source as the backlighter for this diagnostic are the small source size (<5 μm), smooth continuum radiation, and short pulse duration (<0.1 ns). Results from a closely spaced (1 mm) exploding wire pair are shown and the general features are discussed. © 2011 American Institute of Physics

  14. Absolute atomic oxygen and nitrogen densities in radio-frequency driven atmospheric pressure cold plasmas: Synchrotron vacuum ultra-violet high-resolution Fourier-transform absorption measurements

    Energy Technology Data Exchange (ETDEWEB)

    Niemi, K.; O' Connell, D.; Gans, T. [York Plasma Institute, Department of Physics, University of York, York YO10 5DD (United Kingdom); Oliveira, N. de; Joyeux, D.; Nahon, L. [Synchrotron Soleil, l' Orme des Merisiers, St. Aubin BP 48, 91192 Gif sur Yvette Cedex (France); Booth, J. P. [Laboratoire de Physique des Plasmas-CNRS, Ecole Polytechnique, 91128 Palaiseau (France)

    2013-07-15

    Reactive atomic species play a key role in emerging cold atmospheric pressure plasma applications, in particular, in plasma medicine. Absolute densities of atomic oxygen and atomic nitrogen were measured in a radio-frequency driven non-equilibrium plasma operated at atmospheric pressure using vacuum ultra-violet (VUV) absorption spectroscopy. The experiment was conducted on the DESIRS synchrotron beamline using a unique VUV Fourier-transform spectrometer. Measurements were carried out in plasmas operated in helium with air-like N{sub 2}/O{sub 2} (4:1) admixtures. A maximum in the O-atom concentration of (9.1 {+-} 0.7) Multiplication-Sign 10{sup 20} m{sup -3} was found at admixtures of 0.35 vol. %, while the N-atom concentration exhibits a maximum of (5.7 {+-} 0.4) Multiplication-Sign 10{sup 19} m{sup -3} at 0.1 vol. %.

  15. Mistic winds, a microsatellite constellation approach to high-resolution observations of the atmosphere using infrared sounding and 3d winds measurements

    Science.gov (United States)

    Maschhoff, K. R.; Polizotti, J. J.; Aumann, H. H.; Susskind, J.

    2016-10-01

    MISTiC Winds is an approach to improve short-term weather forecasting based on a miniature high resolution, wide field, thermal emission spectrometry instrument that will provide global tropospheric vertical profiles of atmospheric temperature and humidity at high (3-4 km) horizontal and vertical ( 1 km) spatial resolution. MISTiC's extraordinarily small size, payload mass of less than 15 kg, and minimal cooling requirements can be accommodated aboard a 27U-class CubeSat or an ESPA-Class micro-satellite. Low fabrication and launch costs enable a LEO sunsynchronous sounding constellation that would collectively provide frequent IR vertical profiles and vertically resolved atmospheric motion vector wind observations in the troposphere. These observations are highly complementary to present and emerging environmental observing systems, and would provide a combination of high vertical and horizontal resolution not provided by any other environmental observing system currently in operation. The spectral measurements that would be provided by MISTiC Winds are similar to those of NASA's AIRS that was built by BAE Systems and operates aboard the AQUA satellite. These new observations, when assimilated into high resolution numerical weather models, would revolutionize short-term and severe weather forecasting, save lives, and support key economic decisions in the energy, air transport, and agriculture arenas-at much lower cost than providing these observations from geostationary orbit. In addition, this observation capability would be a critical tool for the study of transport processes for water vapor, clouds, pollution, and aerosols. Key remaining technical risks are being reduced through laboratory and airborne testing under NASA's Instrument Incubator Program.

  16. MISTiC Winds: A micro-satellite constellation approach to high resolution observations of the atmosphere using infrared sounding and 3D winds measurements

    Science.gov (United States)

    Maschhoff, K. R.; Polizotti, J. J.; Aumann, H. H.; Susskind, J.

    2016-09-01

    MISTiCTM Winds is an approach to improve short-term weather forecasting based on a miniature high resolution, wide field, thermal emission spectrometry instrument that will provide global tropospheric vertical profiles of atmospheric temperature and humidity at high (3-4 km) horizontal and vertical ( 1 km) spatial resolution. MISTiC's extraordinarily small size, payload mass of less than 15 kg, and minimal cooling requirements can be accommodated aboard a 27U-class CubeSat or an ESPA-Class micro-satellite. Low fabrication and launch costs enable a LEO sunsynchronous sounding constellation that would collectively provide frequent IR vertical profiles and vertically resolved atmospheric motion vector wind observations in the troposphere. These observations are highly complementary to present and emerging environmental observing systems, and would provide a combination of high vertical and horizontal resolution not provided by any other environmental observing system currently in operation. The spectral measurements that would be provided by MISTiC Winds are similar to those of NASA's AIRS that was built by BAE Systems and operates aboard the AQUA satellite. These new observations, when assimilated into high resolution numerical weather models, would revolutionize short-term and severe weather forecasting, save lives, and support key economic decisions in the energy, air transport, and agriculture arenas-at much lower cost than providing these observations from geostationary orbit. In addition, this observation capability would be a critical tool for the study of transport processes for water vapor, clouds, pollution, and aerosols. Key remaining technical risks are being reduced through laboratory and airborne testing under NASA's Instrument Incubator Program.

  17. High resolution synchrotron radiation Fourier transform infrared spectrum of the COH-bending mode in methanol-D1 (CH2DOH)

    Science.gov (United States)

    Mukhopadhyay, Indra; Billinghurst, B. E.

    2017-09-01

    In this work the high resolution synchrotron radiation Fourier transform spectrum in the range 1180-1300 cm-1 corresponding to the COH-bending vibrational mode has been recorded and analyzed. The spectrum shows a structure analogous to a parallel band. Since the COH bending motion is one of the main contributors to the asymmetry in the torsional hindering potential barrier, the torsional barrier height in the excited state is expected to be quite different from that of the ground state. This makes the spectrum to spread over a wide region. Although the spectrum corresponding to the P- and R-branch looks very complicated, the Q-branches are well resolved and can be identified without much difficulty. It was possible to assign the spectra for K = 0 to 10 for the trans- (e0) species. The interesting feature of the spectra is the absence of the lines for two other lower lying gauche symmetry species e1 and o1. The spectra due to any perpendicular transitions were absent as well. However some weak c-type transitions from gauche states (o1 and e1) in the ground state to the trans-species (e0) in the COD bending mode for low K-values ΔK = 0 have been seen to be present in the spectra. These along with similar transitions for the OCD vibrational band are under investigation and the results will be communicated elsewhere. In the present work, analysis of the spectrum has been carried out to obtain precise term values and molecular parameters in the excited COH-bending state for the trans-species. The results will be shown valuable to assign similar spectra for the methanol-D2. This work represents the first reported high resolution study of this illusive vibrational mode in methanol-D1.

  18. MISTiC Winds, a Micro-Satellite Constellation Approach to High Resolution Observations of the Atmosphere Using Infrared Sounding and 3D Winds Measurements

    Science.gov (United States)

    Maschhoff, K. R.; Polizotti, J. J.; Aumann, H. H.; Susskind, J.

    2016-01-01

    MISTiC(TM) Winds is an approach to improve short-term weather forecasting based on a miniature high resolution, wide field, thermal emission spectrometry instrument that will provide global tropospheric vertical profiles of atmospheric temperature and humidity at high (3-4 km) horizontal and vertical ( 1 km) spatial resolution. MISTiCs extraordinarily small size, payload mass of less than 15 kg, and minimal cooling requirements can be accommodated aboard a 27U-class CubeSat or an ESPA-Class micro-satellite. Low fabrication and launch costs enable a LEO sunsynchronous sounding constellation that would collectively provide frequent IR vertical profiles and vertically resolved atmospheric motion vector wind observations in the troposphere. These observations are highly complementary to present and emerging environmental observing systems, and would provide a combination of high vertical and horizontal resolution not provided by any other environmental observing system currently in operation. The spectral measurements that would be provided by MISTiC Winds are similar to those of NASA's AIRS that was built by BAE Systems and operates aboard the AQUA satellite. These new observations, when assimilated into high resolution numerical weather models, would revolutionize short-term and severe weather forecasting, save lives, and support key economic decisions in the energy, air transport, and agriculture arenasat much lower cost than providing these observations from geostationary orbit. In addition, this observation capability would be a critical tool for the study of transport processes for water vapor, clouds, pollution, and aerosols. Key remaining technical risks are being reduced through laboratory and airborne testing under NASA's Instrument Incubator Program.

  19. Infrared reflection-absorption spectroscopy and polarization-modulated infrared reflection-absorption spectroscopy studies of the aequorin langmuir monolayer.

    Science.gov (United States)

    Wang, Chengshan; Micic, Miodrag; Ensor, Mark; Daunert, Sylvia; Leblanc, Roger M

    2008-04-03

    The Langmuir monolayer of aequorin and apoaequorin was studied by infrared reflection-absorption spectroscopy (IRRAS) and polarization-modulated IRRAS techniques. The alpha-helices in the aequorin Langmuir monolayer were parallel to the air-water interface at zero surface pressure. When the surface pressure increased to 15 mN.(m-1), the alpha-helices became tilted and the turns became parallel to the air-water interface. As for apoaequorin, the alpha-helices were also parallel to the air-water interface at 0 mN.m(-1). However, the alpha-helix became tilted and the turns became parallel to the air-water interface quickly at 5 mN.m(-1). With further compression of the apoaequorin Langmuir monolayer, the orientation remained the same. The different behaviors of aequorin and apoaequorin at the air-water interface were explained by the fact that aequorin formed dimers at the air-water interface but apoaequorin was a monomer. It is more difficult for a dimer to be tilted by the compression of the Langmuir monolayer.

  20. Ultra high resolution tomography

    Energy Technology Data Exchange (ETDEWEB)

    Haddad, W.S.

    1994-11-15

    Recent work and results on ultra high resolution three dimensional imaging with soft x-rays will be presented. This work is aimed at determining microscopic three dimensional structure of biological and material specimens. Three dimensional reconstructed images of a microscopic test object will be presented; the reconstruction has a resolution on the order of 1000 A in all three dimensions. Preliminary work with biological samples will also be shown, and the experimental and numerical methods used will be discussed.

  1. Methanogenic activity tests by Infrared Tunable Diode Laser Absorption Spectroscopy.

    Science.gov (United States)

    Martinez-Cruz, Karla; Sepulveda-Jauregui, Armando; Escobar-Orozco, Nayeli; Thalasso, Frederic

    2012-10-01

    Methanogenic activity (MA) tests are commonly carried out to estimate the capability of anaerobic biomass to treat effluents, to evaluate anaerobic activity in bioreactors or natural ecosystems, or to quantify inhibitory effects on methanogenic activity. These activity tests are usually based on the measurement of the volume of biogas produced by volumetric, pressure increase or gas chromatography (GC) methods. In this study, we present an alternative method for non-invasive measurement of methane produced during activity tests in closed vials, based on Infrared Tunable Diode Laser Absorption Spectroscopy (MA-TDLAS). This new method was tested during model acetoclastic and hydrogenotrophic methanogenic activity tests and was compared to a more traditional method based on gas chromatography. From the results obtained, the CH(4) detection limit of the method was estimated to 60 ppm and the minimum measurable methane production rate was estimated to 1.09(.)10(-3) mg l(-1) h(-1), which is below CH(4) production rate usually reported in both anaerobic reactors and natural ecosystems. Additionally to sensitivity, the method has several potential interests compared to more traditional methods among which short measurements time allowing the measurement of a large number of MA test vials, non-invasive measurements avoiding leakage or external interferences and similar cost to GC based methods. It is concluded that MA-TDLAS is a promising method that could be of interest not only in the field of anaerobic digestion but also, in the field of environmental ecology where CH(4) production rates are usually very low. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Importance of chromophore environment on the near-infrared absorption of polymeric waveguides.

    Science.gov (United States)

    Le Duff, A C; Ricci, V; Pliska, T; Canva, M; Stegeman, G I; Chan, K P; Twieg, R

    2000-02-20

    The near-infrared absorption of two chromophore functionalized polymers and combinations of seventeen different guest chromophores in seven different organic polymer matrices were investigated to assess the effect of chromophore structure and environment on absorption. The near-infrared absorption losses were found to be dramatically larger by as much as 2-3 orders of magnitude in polymer matrices than in solution. Furthermore, the absorption of the long-wavelength tail appears to be related to the glass transition temperature of the polymer matrix that contains the chromophore. These results are interpreted in terms of inhomogeneous broadening.

  3. High resolution infrared and Raman spectroscopy of ν 2 and associated combination and hot bands of 13C12CD2

    Science.gov (United States)

    Di Lonardo, G.; Fusina, L.; Baldan, A.; Martínez, R. Z.; Bermejo, D.

    2011-11-01

    Infrared and Raman spectra of dideuterated acetylene containing one 13C atom, 13C12CD2, have been recorded and analysed to obtain detailed information on the fundamental ν 2 band and associated combination and hot bands. Infrared spectra were recorded at 4 × 10-3 cm-1 resolution in the region 1150-2900cm-1, which contains combination and hot bands from the ground and the bending v 4 = 1 and v 5 = 1 states. The Q-branches of the ν 2 fundamental and associated hot bands (ν 2 + ν 4 - ν 4, ν 2 + ν 5 - ν 5, ν 2 + 2ν 4 - 2ν 4, ν 2 + 2ν 5 - 2ν 5 and ν 2 + ν 4 + ν 5 - (ν 4 + ν 5)) were recorded using inverse Raman spectroscopy, with an instrumental resolution of about 3 × 10-3 cm-1. In addition, the observation of the 2ν 2 - ν 2 Raman band was carried out populating the v 2 = 1 state by stimulated Raman pumping. In total, 11 Raman and 9 infrared bands were analysed, involving all the l-vibrational components of the excited stretching-bending manifolds up to v t = v 4 + v 5 = 2. A simultaneous analysis of all infrared and Raman assigned transitions has been performed on the basis of a theoretical model which takes into account the rotation and vibration l-type resonances within each vibrational manifold and the Darling-Dennison anharmonic resonance between the ν 2 + 2ν 4 and ν 2 + 2ν 5 states. The parameters obtained reproduce the assigned transition wavenumbers with a standard deviation of the same order of magnitude as the experimental uncertainty.

  4. Brown carbon absorption in the red and near-infrared spectral region

    Directory of Open Access Journals (Sweden)

    A. Hoffer

    2017-06-01

    Full Text Available Black carbon (BC aerosols have often been assumed to be the only light-absorbing carbonaceous particles in the red and near-infrared spectral regions of solar radiation in the atmosphere. Here we report that tar balls (a specific type of organic aerosol particles from biomass burning do absorb red and near-infrared radiation significantly. Tar balls were produced in a laboratory experiment, and their chemical and optical properties were measured. The absorption of these particles in the range between 470 and 950 nm was measured with an aethalometer, which is widely used to measure atmospheric aerosol absorption. We find that the absorption coefficient of tar balls at 880 nm is more than 10 % of that at 470 nm. The considerable absorption of red and infrared light by tar balls also follows from their relatively low absorption Ångström coefficient (and significant mass absorption coefficient in the spectral range between 470 and 950 nm. Our results support the previous finding that tar balls may play an important role in global warming. Due to the non-negligible absorption of tar balls in the near-infrared region, the absorption measured in the field at near-infrared wavelengths cannot solely be due to soot particles.

  5. Brown carbon absorption in the red and near-infrared spectral region

    Science.gov (United States)

    Hoffer, András; Tóth, Ádám; Pósfai, Mihály; Eddy Chung, Chul; Gelencsér, András

    2017-06-01

    Black carbon (BC) aerosols have often been assumed to be the only light-absorbing carbonaceous particles in the red and near-infrared spectral regions of solar radiation in the atmosphere. Here we report that tar balls (a specific type of organic aerosol particles from biomass burning) do absorb red and near-infrared radiation significantly. Tar balls were produced in a laboratory experiment, and their chemical and optical properties were measured. The absorption of these particles in the range between 470 and 950 nm was measured with an aethalometer, which is widely used to measure atmospheric aerosol absorption. We find that the absorption coefficient of tar balls at 880 nm is more than 10 % of that at 470 nm. The considerable absorption of red and infrared light by tar balls also follows from their relatively low absorption Ångström coefficient (and significant mass absorption coefficient) in the spectral range between 470 and 950 nm. Our results support the previous finding that tar balls may play an important role in global warming. Due to the non-negligible absorption of tar balls in the near-infrared region, the absorption measured in the field at near-infrared wavelengths cannot solely be due to soot particles.

  6. Infrared absorption spectroscopic study of Nd 3 substituted Zn–Mg ...

    Indian Academy of Sciences (India)

    Compositions of polycrystalline ZnMg1-Fe2–NdO4 ( = 0.00, 0.20, 0.40, 0.60, 0.80 and 1.00; = 0.00, 0.05 and 0.10) ferrites were prepared by standard ceramic method and characterized by X-ray diffraction, scanning electron microscopy and infrared absorption spectroscopy. Far infrared absorption spectra show ...

  7. Refractive-index and absorption fluctuations in the infrared caused by temperature, humidity, and pressure fluctuations

    Science.gov (United States)

    Hill, R. J.; Clifford, S. F.; Lawrence, R. S.

    1980-10-01

    The dependence of fluctuations in atmospheric absorption and refraction upon fluctuations in temperature, humidity, and pressure is found for infrared frequencies. This dependence has contributions from line and continuum absorption and from anomalous refraction by water vapor. The functions that relate these fluctuations are necessary for evaluating degradation of electromagnetic radiation by turbulence. They are computed for a given choice of mean atmospheric conditions and graphed as functions of frequency in the wavelength range 5.7 microns to radio waves. It is found that turbulent fluctuations in total pressure give a negligible contribution to absorption and refraction fluctuations. Humidity fluctuations dominate absorption fluctuations, but contributions by temperature and humidity affect refraction fluctuations. Sufficiently strong humidity fluctuations can dominate the refraction fluctuations for some infrared frequencies but not for visible frequencies. The variance of log amplitude is examined for scintillation of infrared light to determine whether absorption or refraction fluctuations dominate under several conditions.

  8. Near infrared light absorption in magnetic nanoemulsion under external magnetic field

    Science.gov (United States)

    Brojabasi, Surajit; Mahendran, V.; Lahiri, B. B.; Philip, John

    2014-07-01

    We study the magnetic field dependent near infrared photon absorption behavior in a magnetically polarizable oil-in-water emulsion of droplet radius ~110 nm. The absorption of near infrared photons in magnetic nanoemulsion is found to be dependent on the volume fraction and applied magnetic field, which is attributed to the variation in the Mie absorption efficiency during the structural transitions of nanoemulsion droplets in dispersion. Also, the absorption linearly increases with incident near infrared photon energy up to certain external magnetic field. The imaginary part of the refractive index (k1) of magnetic nanoemulsion obtained from the near infrared absorption profile in the Rayleigh regime is found to vary with external magnetic field and the sample volume fraction (ϕ). The measured k1 follows a power law increment with sample volume fraction (k1~ϕ, where p is the exponent). The exponent (p) decreases with external magnetic field implying that the structural transition of nanoemulsion droplets increases k1. After a critical magnetic field (beyond Rayleigh regime), field induced absorption of near infrared photons decreases because of the increase in the aspect ratio of the chain like aggregates and interchain spacing which in turn reduces the Mie absorption efficiency.

  9. Simultaneous Speciation, Structure, and Equilibrium Constant Determination in the Ni2+-EDTA-CN-Ternary System via High-Resolution Laboratory X-ray Absorption Fine Structure Spectroscopy and Theoretical Calculations.

    Science.gov (United States)

    Bajnóczi, Éva G; Németh, Zoltán; Vankó, György

    2017-11-20

    Even quite simple chemical systems can involve many components and chemical states, and sometimes it can be very difficult to differentiate them by their hardly separable physical-chemical properties. The Ni II -EDTA-CN - (EDTA = ethylenediaminetetraacetic acid) ternary system is a good example for this problem where, in spite of its fairly simple components and numerous investigations, several molecular combinations can exist, all of them not having been identified unambiguously yet. In order to achieve a detailed understanding of the reaction steps and chemical equilibria, methods are required in which the structural transitions in the different reaction steps can be followed via element-selective complex spectral feature sets. With the help of our recently developed von Hámos type high-resolution laboratory X-ray absorption spectrometer, both the structural variations and stability constants of the forming complexes were determined from the same measurement series, proving that X-ray absorption spectroscopy can be considered as a multifaced, table-top tool in coordination chemistry. Furthermore, with the help of theoretical calculations, independent structural evidence was also given for the formation of the [NiEDTA(CN)] 3- mixed complex.

  10. The Compositional Evolution of C/2012 S1 (ISON) from Ground-Based High-Resolution Infrared Spectroscopy as Part of a Worldwide Observing Campaign

    Science.gov (United States)

    Russo, N. Dello; Vervack, R. J., Jr.; Kawakita, H.; Cochran, A.; McKay, A. J.; Harris, W. M.; Weaver, H.A.; Lisse, C. M.; DiSanti, M. A.; Kobayashi, H.

    2015-01-01

    Volatile production rates, relative abundances, rotational temperatures, and spatial distributions in the coma were measured in C/2012 S1 (ISON) using long-slit high-dispersion (lambda/delta lambda approximately 2.5 times 10 (sup 4)) infrared spectroscopy as part of a worldwide observing campaign. Spectra were obtained on Universal Time 2013 October 26 and 28 with NIRSPEC (Near Infrared Spectrometer) at the W.M. Keck Observatory, and Universal Time 2013 November 19 and 20 with CSHELL (Cryogenic Echelle Spectrograph) at the NASA IRTF (Infrared Telescope Facility). H2O was detected on all dates, with production rates increasing markedly from (8.7 plus or minus 1.5) times 10 (sup 27) molecules per second on October 26 (Heliocentric Distance = 1.12 Astronomical Units) to (3.7 plus or minus 0.4) times 10 (sup 29) molecules per second on November 20 (Heliocentric Distance = 0.43 Astronomical Units). Short-term variability of H2O production is also seen as observations on November 19 show an increase in H2O production rate of nearly a factor of two over a period of about 6 hours. C2H6, CH3OH and CH4 abundances in ISON (International Scientific Optical Network) are slightly depleted relative to H2O when compared to mean values for comets measured at infrared wavelengths. On the November dates, C2H2, HCN and OCS abundances relative to H2O appear to be within the range of mean values, whereas H2CO and NH3 were significantly enhanced. There is evidence that the abundances with respect to H2O increased for some species but not others between October 28 (Heliocentric Distance = 1.07 Astronomical Units) and November 19 (Heliocentric Distance = 0.46 Astronomical Units). The high mixing ratios of H2CO to CH3OH and C2H2 to C2H6 on November 19, and changes in the mixing ratios of some species with respect to H2O between October 28 to November 19, indicates compositional changes that may be the result of a transition from sampling radiation-processed outer layers in this dynamically

  11. High resolution infrared and Raman spectra of (13)C(12)CD2: The CD stretching fundamentals and associated combination and hot bands.

    Science.gov (United States)

    Di Lonardo, G; Fusina, L; Canè, E; Tamassia, F; Martínez, R Z; Bermejo, D

    2015-09-07

    Infrared and Raman spectra of mono (13)C fully deuterated acetylene, (13)C(12)CD2, have been recorded and analysed to obtain detailed information on the C-D stretching fundamentals and associated combination, overtone, and hot bands. Infrared spectra were recorded at an instrumental resolution ranging between 0.006 and 0.01 cm(-1) in the region 1800-7800 cm(-1). Sixty new bands involving the ν1 and ν3 C-D stretching modes also associated with the ν4 and ν5 bending vibrations have been observed and analysed. In total, 5881 transitions have been assigned in the investigated spectral region. In addition, the Q branch of the ν1 fundamental was recorded using inverse Raman spectroscopy, with an instrumental resolution of about 0.003 cm(-1). The transitions relative to each stretching mode, i.e., the fundamental band, its first overtone, and associated hot and combination bands involving bending states with υ4 + υ5 up to 2 were fitted simultaneously. The usual Hamiltonian appropriate to a linear molecule, including vibration and rotation l-type and the Darling-Dennison interaction between υ4 = 2 and υ5 = 2 levels associated with the stretching states, was adopted for the analysis. The standard deviation for each global fit is ≤0.0004 cm(-1), of the same order of magnitude of the measurement precision. Slightly improved parameters for the bending and the ν2 manifold have been also determined. Precise values of spectroscopic parameters deperturbed from the resonance interactions have been obtained. They provide quantitative information on the anharmonic character of the potential energy surface, which can be useful, in addition to those reported in the literature, for the determination of a general anharmonic force field for the molecule. Finally, the obtained values of the Darling-Dennison constants can be valuable for understanding energy flows between independent vibrations.

  12. High resolution infrared and Raman spectra of 13C12CD2: The CD stretching fundamentals and associated combination and hot bands

    Science.gov (United States)

    Di Lonardo, G.; Fusina, L.; Canè, E.; Tamassia, F.; Martínez, R. Z.; Bermejo, D.

    2015-09-01

    Infrared and Raman spectra of mono 13C fully deuterated acetylene, 13C12CD2, have been recorded and analysed to obtain detailed information on the C—D stretching fundamentals and associated combination, overtone, and hot bands. Infrared spectra were recorded at an instrumental resolution ranging between 0.006 and 0.01 cm-1 in the region 1800-7800 cm-1. Sixty new bands involving the ν1 and ν3 C—D stretching modes also associated with the ν4 and ν5 bending vibrations have been observed and analysed. In total, 5881 transitions have been assigned in the investigated spectral region. In addition, the Q branch of the ν1 fundamental was recorded using inverse Raman spectroscopy, with an instrumental resolution of about 0.003 cm-1. The transitions relative to each stretching mode, i.e., the fundamental band, its first overtone, and associated hot and combination bands involving bending states with υ4 + υ5 up to 2 were fitted simultaneously. The usual Hamiltonian appropriate to a linear molecule, including vibration and rotation l-type and the Darling-Dennison interaction between υ4 = 2 and υ5 = 2 levels associated with the stretching states, was adopted for the analysis. The standard deviation for each global fit is ≤0.0004 cm-1, of the same order of magnitude of the measurement precision. Slightly improved parameters for the bending and the ν2 manifold have been also determined. Precise values of spectroscopic parameters deperturbed from the resonance interactions have been obtained. They provide quantitative information on the anharmonic character of the potential energy surface, which can be useful, in addition to those reported in the literature, for the determination of a general anharmonic force field for the molecule. Finally, the obtained values of the Darling-Dennison constants can be valuable for understanding energy flows between independent vibrations.

  13. Recommendations for the presentation of infrared absorption spectra in data collections condensed phases

    CERN Document Server

    Becker, E D

    2013-01-01

    Recommendations for the Presentation of Infrared Absorption Spectra in Data Collections-A. Condensed Phases presents the recommendations related to the infrared spectra of condensed phase materials that are proposed for permanent retention in data collections. These recommendations are based on two reports published by the Coblentz Society. This book emphasizes the three levels of quality evaluation for infrared spectra as designated by the Coblentz Society, including critically defined physical data, research quality analytical spectra, and approved analytical spectra. This text discusses the

  14. Improving the mid-infrared energy absorption efficiency by using a dual-band metamaterial absorber

    Directory of Open Access Journals (Sweden)

    Nan Zhang

    2014-04-01

    Full Text Available In this paper, a dual-band mid-infrared metamaterial absorber was proposed to improve the energy absorption efficiency. Up to 99% absorption was obtained at 9.03 and 11.83 μm in the simulation, and each absorption band can be tuned by the dielectric spacing layer, i.e., the dielectric constant and its thickness. The dual-band absorption mechanism was analyzed, and the quite well absorption performance at large incident angles was also presented. The results of this study can be applied in the field of thermal absorbing and solar energy harvesting.

  15. Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.

    2012-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This DS consists of the locally enhanced ALOS image mosaics for each of the 24 mineral project areas (referred to herein as areas of interest), whose locality names, locations, and main mineral occurrences are shown on the index map of Afghanistan (fig. 1). ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420-500 nanometer, nm), green (520-600 nm), red (610-690 nm), and near-infrared (760-890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520-770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency, but the image processing has altered the original pixel structure and all image values of the JAXA

  16. Low Efficiency Upconversion Nanoparticles for High-Resolution Coalignment of Near-Infrared and Visible Light Paths on a Light Microscope.

    Science.gov (United States)

    Sundaramoorthy, Sriramkumar; Garcia Badaracco, Adrian; Hirsch, Sophia M; Park, Jun Hong; Davies, Tim; Dumont, Julien; Shirasu-Hiza, Mimi; Kummel, Andrew C; Canman, Julie C

    2017-03-08

    The combination of near-infrared (NIR) and visible wavelengths in light microscopy for biological studies is increasingly common. For example, many fields of biology are developing the use of NIR for optogenetics, in which an NIR laser induces a change in gene expression and/or protein function. One major technical barrier in working with both NIR and visible light on an optical microscope is obtaining their precise coalignment at the imaging plane position. Photon upconverting particles (UCPs) can bridge this gap as they are excited by NIR light but emit in the visible range via an anti-Stokes luminescence mechanism. Here, two different UCPs have been identified, high-efficiency micro540-UCPs and lower efficiency nano545-UCPs, that respond to NIR light and emit visible light with high photostability even at very high NIR power densities (>25 000 Suns). Both of these UCPs can be rapidly and reversibly excited by visible and NIR light and emit light at visible wavelengths detectable with standard emission settings used for Green Fluorescent Protein (GFP), a commonly used genetically encoded fluorophore. However, the high efficiency micro540-UCPs were suboptimal for NIR and visible light coalignment, due to their larger size and spatial broadening from particle-to-particle energy transfer consistent with a long-lived excited state and saturated power dependence. In contrast, the lower efficiency nano-UCPs were superior for precise coalignment of the NIR beam with the visible light path (∼2 μm versus ∼8 μm beam broadening, respectively) consistent with limited particle-to-particle energy transfer, superlinear power dependence for emission, and much smaller particle size. Furthermore, the nano-UCPs were superior to a traditional two-camera method for NIR and visible light path alignment in an in vivo Infrared-Laser-Evoked Gene Operator (IR-LEGO) optogenetics assay in the budding yeast Saccharomyces cerevisiae. In summary, nano-UCPs are powerful new tools for

  17. High resolution infrared and Raman spectra of {sup 13}C{sup 12}CD{sub 2}: The CD stretching fundamentals and associated combination and hot bands

    Energy Technology Data Exchange (ETDEWEB)

    Di Lonardo, G.; Fusina, L., E-mail: luciano.fusina@unibo.it; Canè, E.; Tamassia, F. [Dipartimento di Chimica Industriale “Toso Montanari,” Università di Bologna, Viale Risorgimento 4, I-40136 Bologna (Italy); Martínez, R. Z.; Bermejo, D. [Instituto de Estructura de la Materia, IEM-CSIC, Serrano 123, 28006 Madrid (Spain)

    2015-09-07

    Infrared and Raman spectra of mono {sup 13}C fully deuterated acetylene, {sup 13}C{sup 12}CD{sub 2}, have been recorded and analysed to obtain detailed information on the C—D stretching fundamentals and associated combination, overtone, and hot bands. Infrared spectra were recorded at an instrumental resolution ranging between 0.006 and 0.01 cm{sup −1} in the region 1800–7800 cm{sup −1}. Sixty new bands involving the ν{sub 1} and ν{sub 3} C—D stretching modes also associated with the ν{sub 4} and ν{sub 5} bending vibrations have been observed and analysed. In total, 5881 transitions have been assigned in the investigated spectral region. In addition, the Q branch of the ν{sub 1} fundamental was recorded using inverse Raman spectroscopy, with an instrumental resolution of about 0.003 cm{sup −1}. The transitions relative to each stretching mode, i.e., the fundamental band, its first overtone, and associated hot and combination bands involving bending states with υ{sub 4} + υ{sub 5} up to 2 were fitted simultaneously. The usual Hamiltonian appropriate to a linear molecule, including vibration and rotation l-type and the Darling–Dennison interaction between υ{sub 4} = 2 and υ{sub 5} = 2 levels associated with the stretching states, was adopted for the analysis. The standard deviation for each global fit is ≤0.0004 cm{sup −1}, of the same order of magnitude of the measurement precision. Slightly improved parameters for the bending and the ν{sub 2} manifold have been also determined. Precise values of spectroscopic parameters deperturbed from the resonance interactions have been obtained. They provide quantitative information on the anharmonic character of the potential energy surface, which can be useful, in addition to those reported in the literature, for the determination of a general anharmonic force field for the molecule. Finally, the obtained values of the Darling–Dennison constants can be valuable for understanding energy flows

  18. A deep search for the release of volcanic gases on Mars using ground-based high-resolution infrared and submillimeter spectroscopy: Sensitive upper limits for OCS and SO2

    Science.gov (United States)

    Khayat, A.; Villanueva, G. L.; Mumma, M. J.; Tokunaga, A. T.

    2017-11-01

    Recent volcanic activity has long been considered a distinct possibility that would place major constraints on the evolution of Mars' interior. Volcanic activity would result in the outgassing of sulfur-bearing species. As part of our multi-band search for active release of volcanic gases on Mars, we looked for carbonyl sulfide (OCS) at its combination band (ν1 +ν3) at 3.42 μ m (2924 cm-1), and sulfur dioxide (SO2) at 346.652 GHz, in two successive Mars years during its late Northern spring and mid Northern summer seasons (Ls= 43°-144°). The targeted volcanic districts, Tharsis and Syrtis Major, were observed during the two intervals, 15 Dec. 2011 to 6 Jan. 2012 in the first year, and 23 May 2014 to 12 June 2014 in the second year using the high resolution infrared spectrometer CSHELL on the NASA Infrared Telescope Facility, and the high resolution heterodyne receiver HARP at the James Clerk Maxwell Telescope atop Maunakea, Hawaii. No active release of such gases was detected, and we report 2σ upper limits of 1.8 ppbv and 3.1 ppbv for OCS and SO2, respectively, compared to 0.3 ppbv for SO2 (Encrenaz, T. et al. [2011] Astron. & Astrophys. 530, A37; Krasnopolsky, V.A. [2012] Icarus 217, 144-152) over the disk of Mars. Our retrieved upper limit on the SO2 outgassing rate of 156 tons/day (1.8 kg/s), corresponds to a mass rate of magma that is able to degas the SO2 of 104 kilotons/day (1200 kg/s), or 40,000 m3/day (0.46 m3/s). Our campaign places stringent limits on the concentration of sulfur-bearing species into the atmosphere of Mars.

  19. [Research on VOC concentration detection by photoelastic modulation infrared spectrum absorption method].

    Science.gov (United States)

    Hu, Miao; Wang, Tai-yong; Qiao, Zhi-feng; Geng, Bo; Xiao, Xin-hua

    2011-12-01

    In order to ensure high stability and strong anti-interference ability in static interference system for qualitative and quantitative analysis of gas, a static scans interference detection system was designed based on photoelastic modulation infrared spectrum absorption system. The system consists of infrared laser, polarizer, photoelastic modulator, polarization analyzer and CCD components. By photoelastic modulator the principal refractive index of optical crystal will change cyclically by the modulation signal, producing cyclical changes in the optical path difference. With the calculation of modulation phase variation, the authors can get the function of the crystal length, the modulation cycle, and the range of optical path difference. Based on phase delay value and the energy distribution of interference pattern, the authors got the formula for the corresponding interference light intensity. The experiment used ZnSe crystal as the photoelastic modulation crystal, the polarizer uses the DOP3212 polarizer, and the detector uses the TCD5390AP array CCD. The five groups have different concentrations with three common VOC gases (formaldehyde, benzene and xylene) for detecting the concentrations of gases. The experimental results with the traditional infrared absorption were compared with the test results of photoelastic modulation infrared spectrum absorption method. The method of photoelastic modulation infrared spectrum absorption had high stability and real-time features, while the detection accuracy is better than the traditional infrared absorption method.

  20. Infrared differential absorption lidar for stand-off detection of ...

    Indian Academy of Sciences (India)

    2014-02-14

    ) carbon dioxide laser-based differential absorption lidar (DIAL) system capable of stand-off detection of chemical clouds in aerosol and vapour form upto about 200 m range in the atmosphere has been developed and ...

  1. Low-Absorption Liquid Crystals for Infrared Beam Steering

    Science.gov (United States)

    2014-10-17

    SEEOR) is its relatively long optical beam path. In the VIS and NIR spectral regions, most liquid crystals have negligible absorption so that the...absorption; v.=variable intensity) [B. D. Mistry, ^ Handbook of Spectroscopic Data: Chemistry-UV, IR, PMR, CNMR and Mass Spectroscopy , Oxford, 2009...director was oriented at 45° with respect to the polarizer transmission axis. A linearly polarized He-Ne laser (>^=633nm), a tunable Argon-ion laser

  2. An Assessment of Polynomial Regression Techniques for the Relative Radiometric Normalization (RRN of High-Resolution Multi-Temporal Airborne Thermal Infrared (TIR Imagery

    Directory of Open Access Journals (Sweden)

    Mir Mustafizur Rahman

    2014-11-01

    Full Text Available Thermal Infrared (TIR remote sensing images of urban environments are increasingly available from airborne and satellite platforms. However, limited access to high-spatial resolution (H-res: ~1 m TIR satellite images requires the use of TIR airborne sensors for mapping large complex urban surfaces, especially at micro-scales. A critical limitation of such H-res mapping is the need to acquire a large scene composed of multiple flight lines and mosaic them together. This results in the same scene components (e.g., roads, buildings, green space and water exhibiting different temperatures in different flight lines. To mitigate these effects, linear relative radiometric normalization (RRN techniques are often applied. However, the Earth’s surface is composed of features whose thermal behaviour is characterized by complexity and non-linearity. Therefore, we hypothesize that non-linear RRN techniques should demonstrate increased radiometric agreement over similar linear techniques. To test this hypothesis, this paper evaluates four (linear and non-linear RRN techniques, including: (i histogram matching (HM; (ii pseudo-invariant feature-based polynomial regression (PIF_Poly; (iii no-change stratified random sample-based linear regression (NCSRS_Lin; and (iv no-change stratified random sample-based polynomial regression (NCSRS_Poly; two of which (ii and iv are newly proposed non-linear techniques. When applied over two adjacent flight lines (~70 km2 of TABI-1800 airborne data, visual and statistical results show that both new non-linear techniques improved radiometric agreement over the previously evaluated linear techniques, with the new fully-automated method, NCSRS-based polynomial regression, providing the highest improvement in radiometric agreement between the master and the slave images, at ~56%. This is ~5% higher than the best previously evaluated linear technique (NCSRS-based linear regression.

  3. High-resolution infrared and millimeterwave spectra of the v3=1 vibrational state of 14NF 3 at 907 cm -1

    Science.gov (United States)

    Najib, H.; Ben Sari-Zizi, N.; Demaison, J.; Bakri, B.; Colmont, J.-M.; MKadmi, E. B.

    2003-08-01

    The ν3±1 perpendicular band of 14NF 3 ( ν˜0=907.541 cm -1) has been studied with a resolution of 2.5 × 10 -3 cm -1, and 3682 infrared (IR) transitions ( Jmax=55, Kmax=45) have been assigned. These transitions were complemented by 183 millimeterwave (MMW) rotational lines ( Jmax=25, Kmax=19) in the 150-550 GHz region (precision 50-100 kHz). The kl=+1 level reveals a strong A1/ A2 splitting due to the l(2,2) rotational interaction ( q=-4.05 × 10 -3 cm -1) while the kl=-2 and +4 levels exhibit small A1/ A2 splittings due to l(2,-4) and l(0,6) rotational interactions. All these splittings were observed by both experimental methods. Assuming the v3=1 vibrational state as isolated, a Hamiltonian model of interactions in the D reduction, with l(2,-1) rotational interaction ( r=-1.96 × 10 -4 cm -1) added, accounted for the observations. A set of 26 molecular constants reproduced the IR observations with σIR=0.175 × 10 -3 cm -1 and the MMW data with σMMW=134 kHz. The Q reduction was also performed and found of comparable quality while the QD reduction behaved poorly. This may be explained by a predicted Coriolis interaction between v3=1 and v1=1 ( A1, 1032.001 cm -1) which induces a slow convergence of the Hamiltonian in the QD reduction but has no major influence on the other reductions. The experimental equilibrium structure could be calculated as: re(N-F)=1.3676 Å and ∠(FNF)=101.84°.

  4. A mid-infrared absorption diagnostic for acetylene detection

    Science.gov (United States)

    KC, Utsav; Nasir, Ehson F.; Farooq, Aamir

    2015-08-01

    Acetylene is an important combustion intermediate and plays a critical role in soot formation. Accurate measurements of trace concentrations of acetylene can be very useful in validating hydrocarbon oxidation and soot formation mechanisms. Strongest vibrational band of acetylene near 13.7 μm is probed here to develop a highly sensitive absorption diagnostic. Experiments are carried out behind reflected shock waves to measure absorption cross sections of acetylene near 730 cm-1 over a wide range of temperatures (1000-2200 K) and pressures (1-5 bar). The diagnostic is demonstrated by measuring acetylene formation during the shock-heated pyrolysis and oxidation of propene.

  5. Infrared reflection absorption study of water interaction with H ...

    Indian Academy of Sciences (India)

    Water adsorption on clean and hydrogenated Si(100) surfaces was studied under ultra high vacuum conditions using surface infrared spectroscopy. The study shows that H–Si–Si–OH and SiH2 ... Author Affiliations. G Ranga Rao1. Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India ...

  6. Halloysite nanotubes as a solid sorbent in ultrasound-assisted dispersive micro solid-phase extraction for the determination of bismuth in water samples using high-resolution continuum source graphite-furnace atomic absorption spectrometry

    Science.gov (United States)

    Krawczyk-Coda, Magdalena

    2017-03-01

    In this research, a simple, accurate, and inexpensive preconcentration procedure was developed for the determination of bismuth in water samples, using high-resolution continuum source graphite furnace atomic absorption spectrometry (HR CS GFAAS). During the preconcentration step, halloysite nanotubes (HNTs) were used as a solid sorbent in ultrasound-assisted dispersive micro solid-phase extraction (USA DMSPE). The influence of the pH of the sample solution, amount of HNTs, and extraction time, as well as of the main parameters of HR CS GFAAS, on absorbance was investigated. The limit of detection was 0.005 μg L- 1. The preconcentration factor achieved for bismuth was 32. The relative standard deviation (RSD) was 4%. The accuracy of this method was validated by analyses of NIST SRM 1643e (Trace elements in water) and TMDA-54.5 (A high level fortified sample for trace elements) certified reference materials. The measured bismuth contents in these certified reference materials were in satisfactory agreement with the certified values according to the t-test for a 95% confidence level. The proposed method has been successfully applied to the determination of bismuth in five different real water samples (seawater, lake water, river water, stream water and rain water).

  7. Trace elements determination in high salinity petroleum produced formation water by high-resolution continuum source graphite furnace atomic absorption spectrometry after matrix separation using Chelex-100® resin

    Science.gov (United States)

    Freire, Aline Soares; Santelli, Ricardo Erthal

    2012-05-01

    This study describes a procedure used for the determination of trace metals (Co, Cu, Mn, Ni and Pb) in high salinity petroleum produced formation water (PFW) employing high-resolution continuum source graphite furnace atomic absorption spectrometry for detection and Chelex-100® resin for matrix elimination and analytes preconcentration. Using 15.0 mL of PFW for the separation/preconcentration, detection limits of 0.006, 0.07, 0.03, 0.08 and 0.02 μg L- 1 were obtained for Co, Cu, Mn, Ni and Pb, respectively. The accuracy of the proposed method was evaluated by analyzing three seawater certified reference materials and by recovery tests, and the data indicate that the methodology can be successfully applied to this kind of samples. The precision values, expressed as relative standard deviation (% RSD, n = 10) for 2.0 μg L- 1, were found to be 3.5, 4.0, 9.0, 5.3 and 5.9 for Co, Cu, Mn, Ni and Pb, respectively. The proposed procedure was applied for the determination of these metals in medium and high salinity PFW samples obtained from Brazilian offshore petroleum exploration platforms.

  8. Cobalt internal standard for Ni to assist the simultaneous determination of Mo and Ni in plant materials by high-resolution continuum source graphite furnace atomic absorption spectrometry employing direct solid sample analysis.

    Science.gov (United States)

    de Babos, Diego Victor; Bechlin, Marcos André; Barros, Ariane Isis; Ferreira, Edilene Cristina; Gomes Neto, José Anchieta; de Oliveira, Silvana Ruella

    2016-05-15

    A new method is proposed for the simultaneous determination of Mo and Ni in plant materials by high-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS GFAAS), employing direct solid sample analysis (DSS) and internal standardization (IS). Cobalt was used as internal standard to minimize matrix effects during Ni determinations, enabling the use of aqueous standards for calibration. Correlation coefficients for the calibration curves were typically better than 0.9937. The performance of the method was checked by analysis of six plant certified reference materials, and the results for Mo and Ni were in agreement with the certified values (95% confidence level, t-test). Analysis was made of different types of plant materials used as renewable sources of energy, including sugarcane leaves, banana tree fiber, soybean straw, coffee pods, orange bagasse, peanut hulls, and sugarcane bagasse. The concentrations found for Mo and Ni ranged from 0.08 to 0.63 ng mg(-1) and from 0.41 to 6.92 ng mg(-1), respectively. Precision (RSD) varied from 2.1% to 11% for Mo and from 3.7% to 10% for Ni. Limits of quantification of 0.055 and 0.074 ng were obtained for Mo and Ni, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. A comparison of laser ablation-inductively coupled plasma-mass spectrometry and high-resolution continuum source graphite furnace molecular absorption spectrometry for the direct determination of bromine in polymers

    Science.gov (United States)

    de Gois, Jefferson S.; Van Malderen, Stijn J. M.; Cadorim, Heloisa R.; Welz, Bernhard; Vanhaecke, Frank

    2017-06-01

    This work describes the development and comparison of two methods for the direct determination of Br in polymer samples via solid sampling, one using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) and the other using high-resolution continuum source graphite furnace molecular absorption spectrometry with direct solid sample analysis (HR-CS SS-GF MAS). The methods were optimized and their accuracy was evaluated by comparing the results obtained for 6 polymeric certified reference materials (CRMs) with the corresponding certified values. For Br determination with LA-ICP-MS, the 79Br+ signal could be monitored interference-free. For Br determination via HR-CS SS-GF MAS, the CaBr molecule was monitored at 625.315 nm with integration of the central pixel ± 1. Bromine quantification by LA-ICP-MS was performed via external calibration against a single CRM while using the 12C+ signal as an internal standard. With HR-CS SS-GF MAS, Br quantification could be accomplished using external calibration against aqueous standard solutions. Except for one LA-ICP-MS result, the concentrations obtained with both techniques were in agreement with the certified values within the experimental uncertainty as evidenced using a t-test (95% confidence level). The limit of quantification was determined to be 100 μg g- 1 Br for LA-ICP-MS and 10 μg g- 1 Br for HR-CS SS-GF MAS.

  10. Slurry sampling high-resolution continuum source electrothermal atomic absorption spectrometry for direct beryllium determination in soil and sediment samples after elimination of SiO interference by least-squares background correction.

    Science.gov (United States)

    Husáková, Lenka; Urbanová, Iva; Šafránková, Michaela; Šídová, Tereza

    2017-12-01

    In this work a simple, efficient, and environmentally-friendly method is proposed for determination of Be in soil and sediment samples employing slurry sampling and high-resolution continuum source electrothermal atomic absorption spectrometry (HR-CS-ETAAS). The spectral effects originating from SiO species were identified and successfully corrected by means of a mathematical correction algorithm. Fractional factorial design has been employed to assess the parameters affecting the analytical results and especially to help in the development of the slurry preparation and optimization of measuring conditions. The effects of seven analytical variables including particle size, concentration of glycerol and HNO3 for stabilization and analyte extraction, respectively, the effect of ultrasonic agitation for slurry homogenization, concentration of chemical modifier, pyrolysis and atomization temperature were investigated by a 27-3 replicate (n = 3) design. Using the optimized experimental conditions, the proposed method allowed the determination of Be with a detection limit being 0.016mgkg-1 and characteristic mass 1.3pg. Optimum results were obtained after preparing the slurries by weighing 100mg of a sample with particle size samples by slurry sampling with those determined after microwave-assisted extraction by inductively coupled plasma time of flight mass spectrometry (TOF-ICP-MS). The reported method has a precision better than 7%. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Infrared Evanescent-Absorption Spectroscopy with Chalcogenide Glass-Fibers

    OpenAIRE

    Sanghera, J S; Kung, F H; Pureza, P. C.; Nguyen, V Q; Miklos, R. E.; Aggarwal, I D

    1994-01-01

    We have used telluride glass fibers fabricated in house to measure the evanescent-absorption spectra of water, methanol, ethanol, isopropanol, acetone, ethanoic acid, hexane, and chloroform. Furthermore, detection limits of less than 2 vol. % solute were obtained for mixtures of water and methanol, ethanol, isopropanol, acetone, and ethanoic acid. Techniques to reduce the detection limits are discussed.

  12. Infrared differential absorption lidar for stand-off detection of ...

    Indian Academy of Sciences (India)

    2014-02-14

    Feb 14, 2014 ... bon dioxide laser-based differential absorption lidar (DIAL) system capable of stand-off detection of chemical clouds in ... technical details of trolley-mounted CO2 DIAL system and the data generated during the test and evaluation of this sensor using ... High-energy pulses of laser. Pramana – J. Phys., Vol.

  13. Plasmonic nanopatch array with integrated metal-organic framework for enhanced infrared absorption gas sensing

    Science.gov (United States)

    Chong, Xinyuan; Kim, Ki-joong; Zhang, Yujing; Li, Erwen; Ohodnicki, Paul R.; Chang, Chih-Hung; Wang, Alan X.

    2017-06-01

    In this letter, we present a nanophotonic device consisting of plasmonic nanopatch array (NPA) with integrated metal-organic framework (MOF) for enhanced infrared absorption gas sensing. By designing a gold NPA on a sapphire substrate, we are able to achieve enhanced optical field that spatially overlaps with the MOF layer, which can adsorb carbon dioxide (CO2) with high capacity. Experimental results show that this hybrid plasmonic-MOF device can effectively increase the infrared absorption path of on-chip gas sensors by more than 1100-fold. The demonstration of infrared absorption spectroscopy of CO2 using the hybrid plasmonic-MOF device proves a promising strategy for future on-chip gas sensing with ultra-compact size.

  14. A mid-infrared absorption diagnostic for acetylene detection

    KAUST Repository

    KC, Utsav

    2015-05-14

    Acetylene is an important combustion intermediate and plays a critical role in soot formation. Accurate measurements of trace concentrations of acetylene can be very useful in validating hydrocarbon oxidation and soot formation mechanisms. Strongest vibrational band of acetylene near 13.7 μm is probed here to develop a highly sensitive absorption diagnostic. Experiments are carried out behind reflected shock waves to measure absorption cross sections of acetylene near 730 cm−1 over a wide range of temperatures (1000–2200 K) and pressures (1–5 bar). The diagnostic is demonstrated by measuring acetylene formation during the shock-heated pyrolysis and oxidation of propene. © 2015 Springer-Verlag Berlin Heidelberg

  15. Infrared Absorption of Nanocermets Close to the Percolation Threshold

    OpenAIRE

    Berthier, Serge; Peiro, J

    1997-01-01

    We present a two dimensional simulation of the optical absorption of gold granular films, using a real space renormalization procedure. This numerical effective medium theory takes into account the actual morphology of the films. The results are compared both with experimental measurements and with other theoretical predictions asserting that the optical properties around the percolation threshold cannot be described by an effective dielectric function. Nevertheless, we obtain good agreement ...

  16. Broadband infrared absorption enhancement by electroless-deposited silver nanoparticles

    DEFF Research Database (Denmark)

    Gritti, Claudia; Raza, Søren; Kadkhodazadeh, Shima

    2017-01-01

    Decorating semiconductor surfaces with plasmonic nanoparticles (NPs) is considered a viable solution for enhancing the absorptive properties of photovoltaic and photodetecting devices. We propose to deposit silver NPs on top of a semiconductor wafer by a cheap and fast electroless plating technique...... of a high-index semiconductor substrate. Our hypothesis is substantiated by examining the plasmonic response of the electroless-deposited NPs using both electron energy loss spectroscopy and numerical calculations....

  17. On the infrared absorption coefficient measurement of thick heavily Zn doped GaAs using spectrally resolved modulated photothermal infrared radiometry

    Science.gov (United States)

    Pawlak, M.; Pal, S.; Ludwig, A.; Wieck, A. D.

    2017-10-01

    In this paper, we report on measurements of the infrared absorption coefficient in the mid-infrared range of a heavily Zn-doped GaAs wafer using spectrally resolved modulated photothermal infrared radiometry (PTR). The method allows us to measure the infrared absorption coefficient of (i) much thicker samples as compared to the one used in Fourier Transform Infrared (FTIR) spectroscopy in transmission configuration and (ii) with non-mirror-like surfaces as would be required for measurements in the reflection configuration. From the best fits of the theoretical model to the PTR results, the values of the infrared absorption coefficient and thermal diffusivity of GaAs wafer are obtained. These values of infrared absorption coefficients are compared both with the literature values on very thin, similarly doped GaAs:Be sample and with infrared absorption coefficients calculated from FTIR specular reflectance measurements on the same sample. FTIR reflectance measurements demand additional assumptions for the evaluation of absorption coefficient and mirror-like surfaces. The results obtained from both experimental methods yield the same order of the infrared absorption coefficients. It is observed that the infrared absorption coefficient decreases with increasing wavelength because of inter-valence band transitions. However, only the infrared spectrum estimated using PTR exhibits free carrier absorption effect at a shorter wavelength as observed in previous works on very thin Be-doped GaAs samples. It is worth mentioning that the presented method is not limited to semiconductors, but can be used for other highly infrared absorbing samples. In addition, the spectrally resolved PTR measurements simultaneously provide the same values of thermal diffusivity of the GaAs wafer within estimation uncertainties thus demonstrating the reliability of the PTR method in the measurement of thermal diffusivity of such samples.

  18. The use of infrared absorption to determine density of liquid hydrogen.

    Science.gov (United States)

    Unland, H. D.; Timmerhaus, K. D.; Kropschot, R. H.

    1972-01-01

    Experimental evaluation of the use of infrared absorption for determining the density of liquid hydrogen, and discussion of the feasibility of an airborne densitometer based on this concept. The results indicate that infrared absorption of liquid hydrogen is highly sensitive to the density of hydrogen, and, under the operating limitations of the equipment and experimental techniques used, the determined values proved to be repeatable to an accuracy of 2.7%. The desiderata and limitations of an in-flight density-determining device are outlined, and some of the feasibility problems are defined.

  19. Mid-infrared intersubband absorption from p-Ge quantum wells grown on Si substrates

    Energy Technology Data Exchange (ETDEWEB)

    Gallacher, K.; Millar, R. W.; Paul, D. J., E-mail: Douglas.Paul@glasgow.ac.uk [School of Engineering, University of Glasgow, Rankine Building, Oakfield Avenue, Glasgow G12 8LT (United Kingdom); Ballabio, A.; Frigerio, J.; Isella, G. [L-NESS, Dipartimento di Fisica del Politecnico di Milano, Polo Territoriale di Como, Via Anzani 42, Como I-22100 (Italy); Bashir, A.; MacLaren, I. [School of Physics and Astronomy, University of Glasgow, Kelvin Building, University Avenue, Glasgow G12 8QQ (United Kingdom); Ortolani, M. [Center for Life NanoScience@Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291, Rome I-00161 (Italy)

    2016-02-29

    Mid-infrared intersubband absorption from p-Ge quantum wells with Si{sub 0.5}Ge{sub 0.5} barriers grown on a Si substrate is demonstrated from 6 to 9 μm wavelength at room temperature and can be tuned by adjusting the quantum well thickness. Fourier transform infra-red transmission and photoluminescence measurements demonstrate clear absorption peaks corresponding to intersubband transitions among confined hole states. The work indicates an approach that will allow quantum well intersubband photodetectors to be realized on Si substrates in the important atmospheric transmission window of 8–13 μm.

  20. The Relationship Between Dynamics and Structure in the Far Infrared Absorption Spectrum of Liquid Water

    Energy Technology Data Exchange (ETDEWEB)

    Woods, K.

    2005-01-14

    Using an intense source of far-infrared radiation, the absorption spectrum of liquid water is measured at a temperature ranging from 269 to 323 K. In the infrared spectrum we observe modes that are related to the local structure of liquid water. Here we present a FIR measured spectrum that is sensitive to the low frequency (< 100cm{sup -1}) microscopic details that exist in liquid water.

  1. Infrared absorption nano-spectroscopy using sample photoexpansion induced by tunable quantum cascade lasers.

    Science.gov (United States)

    Lu, Feng; Belkin, Mikhail A

    2011-10-10

    We report a simple technique that allows obtaining mid-infrared absorption spectra with nanoscale spatial resolution under low-power illumination from tunable quantum cascade lasers. Light absorption is detected by measuring associated sample thermal expansion with an atomic force microscope. To detect minute thermal expansion we tune the repetition frequency of laser pulses in resonance with the mechanical frequency of the atomic force microscope cantilever. Spatial resolution of better than 50 nm is experimentally demonstrated.

  2. Mid-infrared two photon absorption sensitivity of commercial detectors

    Science.gov (United States)

    Boiko, D. L.; Antonov, A. V.; Kuritsyn, D. I.; Yablonskiy, A. N.; Sergeev, S. M.; Orlova, E. E.; Vaks, V. V.

    2017-10-01

    We report on broad-band two-photon absorption (TPA) in several commercially available MIR inter-band bulk semiconductor photodetectors with the spectral cutoff in the range of 4.5-6 μm. The highest TPA responsivity of 2 × 10-5 A.mm2/W2 is measured for a nitrogen-cooled InSb photovoltaic detector. Its performance as a two-photon detector is validated by measuring the second-order interferometric autocorrelation function of a multimode quantum cascade laser emitting at the wavelength of 8 μm.

  3. Effect of different precursors on generation of reference spectra for structural molecular background correction by solid sampling high-resolution continuum source graphite furnace atomic absorption spectrometry: Determination of antimony in cosmetics.

    Science.gov (United States)

    Barros, Ariane Isis; Victor de Babos, Diego; Ferreira, Edilene Cristina; Gomes Neto, José Anchieta

    2016-12-01

    Different precursors were evaluated for the generation of reference spectra and correction of the background caused by SiO molecules in the determination of Sb in facial cosmetics by high-resolution continuum source graphite furnace atomic absorption spectrometry employing direct solid sample analysis. Zeolite and mica were the most effective precursors for background correction during Sb determination using the 217.581nm and 231.147nm lines. Full 2 3 factorial design and central composite design were used to optimize the atomizer temperature program. The optimum pyrolysis and atomization temperatures were 1500 and 2100°C, respectively. A Pd(NO 3 ) 2 /Mg(NO 3 ) 2 mixture was employed as the chemical modifier, and calibration was performed at 217.581nm with aqueous standards containing Sb in the range 0.5-2.25ng, resulting in a correlation coefficient of 0.9995 and a slope of 0.1548s ng -1 . The sample mass was in the range 0.15-0.25mg. The accuracy of the method was determined by analysis of Montana Soil (II) certified reference material, together with addition/recovery tests. The Sb concentration found was in agreement with the certified value, at a 95% confidence level (paired t-test). Recoveries of Sb added to the samples were in the range 82-108%. The limit of quantification was 0.9mgkg -1 and the relative standard deviation (n=3) ranged from 0.5% to 7.1%. From thirteen analyzed samples, Sb was not detected in ten samples (blush, eye shadow and compact powder); three samples (two blush and one eye shadow) presented Sb concentration in the 9.1-14.5mgkg -1 range. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Trace elements determination in high salinity petroleum produced formation water by high-resolution continuum source graphite furnace atomic absorption spectrometry after matrix separation using Chelex-100 Registered-Sign resin

    Energy Technology Data Exchange (ETDEWEB)

    Freire, Aline Soares [Departamento de Geoquimica, Universidade Federal Fluminense, Outeiro Sao Joao Batista s/n, Centro, Niteroi/RJ, 24020-150 (Brazil); Departamento de Quimica Analitica, Universidade Federal do Rio de Janeiro Av. Athos da Silveira Ramos 149, Centro de Tecnologia, Bloco A, Cidade Universitaria, Rio de Janeiro/RJ, 21941-909 (Brazil); Santelli, Ricardo Erthal, E-mail: santelli@iq.ufrj.br [Departamento de Geoquimica, Universidade Federal Fluminense, Outeiro Sao Joao Batista s/n, Centro, Niteroi/RJ, 24020-150 (Brazil); Departamento de Quimica Analitica, Universidade Federal do Rio de Janeiro Av. Athos da Silveira Ramos 149, Centro de Tecnologia, Bloco A, Cidade Universitaria, Rio de Janeiro/RJ, 21941-909 (Brazil)

    2012-05-15

    This study describes a procedure used for the determination of trace metals (Co, Cu, Mn, Ni and Pb) in high salinity petroleum produced formation water (PFW) employing high-resolution continuum source graphite furnace atomic absorption spectrometry for detection and Chelex-100 Registered-Sign resin for matrix elimination and analytes preconcentration. Using 15.0 mL of PFW for the separation/preconcentration, detection limits of 0.006, 0.07, 0.03, 0.08 and 0.02 {mu}g L{sup -1} were obtained for Co, Cu, Mn, Ni and Pb, respectively. The accuracy of the proposed method was evaluated by analyzing three seawater certified reference materials and by recovery tests, and the data indicate that the methodology can be successfully applied to this kind of samples. The precision values, expressed as relative standard deviation (% RSD, n = 10) for 2.0 {mu}g L{sup -1}, were found to be 3.5, 4.0, 9.0, 5.3 and 5.9 for Co, Cu, Mn, Ni and Pb, respectively. The proposed procedure was applied for the determination of these metals in medium and high salinity PFW samples obtained from Brazilian offshore petroleum exploration platforms. - Highlights: Black-Right-Pointing-Pointer Petroleum-produced formation water were analyzed for Co, Cu, Mn, Ni and Pb determination. Black-Right-Pointing-Pointer In batch analyte preconcentration/matrix separation using Chelex-100 Registered-Sign was used. Black-Right-Pointing-Pointer Detection limits between 0.006 and 0.08 {mu}g L{sup -1} were found by using HR-CS-GFAAS. Black-Right-Pointing-Pointer Trace elements characterization is possible using the developed method. Black-Right-Pointing-Pointer Maximum trace element concentrations found could support future Brazilian directives.

  5. Using Thermal Infrared Absorption and Emission to Determine Trace Gases

    Science.gov (United States)

    Clerbaux, Cathy; Drummond, James R.; Flaud, Jean-Marie; Orphal, Johannes

    The light emerging from the top of the atmosphere in the greater part of the infrared region is thermal radiation from the Earth's surface. The resultant spectra obtained depend on the temperature difference between the emitting feature and absorbing gas. In this region the greenhouse gases, carbon dioxide, CO2, methane, CH4, ozone, O3, and water, H2O, are observed as well as carbon monoxide, CO, a product indicative of fossil fuel combustion, methanol, CH3OH, from biomass burning, and ammonia, NH3, from agriclulture. Chapter 3 describes the techniques for retrieving atmospheric abundances of these and other species from a number of satellite instruments, and concludes with suggestions for future developments.

  6. Inapplicability of small-polaron model for the explanation of infrared absorption spectrum in acetanilide.

    Science.gov (United States)

    Zeković, Slobodan; Ivić, Zoran

    2009-01-01

    The applicability of small-polaron model for the interpretation of infrared absorption spectrum in acetanilide has been critically reexamined. It is shown that the energy difference between the normal and anomalous peak, calculated by means of small-polaron theory, displays pronounced temperature dependence which is in drastic contradiction with experiment. It is demonstrated that self-trapped states, which are recently suggested to explain theoretically the experimental absorption spectrum in protein, cannot cause the appearance of the peaks in absorption spectrum for acetanilide.

  7. FDTD/TDSE study of surface-enhanced infrared absorption by metal nanoparticles.

    Energy Technology Data Exchange (ETDEWEB)

    Chang, S.-H.; Schatz, G. C.; Gray, S. K.; Chemistry; Northwestern Univ.; National Cheng-Kung Univ.

    2006-01-01

    We study surface-enhanced infrared absorption, including multiphoton processes, due to the excitation of surface plasmons on metal nanoparticles. The time-dependent Schroedinger equation and finite-difference time-domain method are self-consistently coupled to treat the problem.

  8. Infrared absorption of H- and D- in the alkaline-earth fluorides

    NARCIS (Netherlands)

    Jones, G. D.; Sung, J. J. Y.; Hume, T.; Ing, L. S.; Bradley, I. V.; Wells, J. P. R.

    2001-01-01

    A revisit is made to the infrared absorption spectra of H- and D- local modes in the alkaline-earth fluorides. New data on the intensity ratios of the various harmonic lines, observation of a fourth harmonic for H- in CaF2 and revised values for the anharmonic potential well constants are presented,

  9. Effect of hydrogen bonding on infrared absorption intensity

    CERN Document Server

    Athokpam, Bijyalaxmi; McKenzie, Ross H

    2016-01-01

    We consider how the infrared intensity of an O-H stretch in a hydrogen bonded complex varies as the strength of the H-bond varies from weak to strong. We obtain trends for the fundamental and overtone transitions as a function of donor-acceptor distance R, which is a common measure of H-bond strength. Our calculations use a simple two-diabatic state model that permits symmetric and asymmetric bonds, i.e. where the proton affinity of the donor and acceptor are equal and unequal, respectively. The dipole moment function uses a Mecke form for the free OH dipole moment, associated with the diabatic states. The transition dipole moment is calculated using one-dimensional vibrational eigenstates associated with the H-atom transfer coordinate on the ground state adiabatic surface of our model. Over 20-fold intensity enhancements for the fundamental are found for strong H-bonds, where there are significant non-Condon effects. The isotope effect on the intensity yields a non-monotonic H/D intensity ratio as a function...

  10. Systems having optical absorption layer for mid and long wave infrared and methods for making the same

    Energy Technology Data Exchange (ETDEWEB)

    Kuzmenko, Paul J

    2013-10-01

    An optical system according to one embodiment includes a substrate; and an optical absorption layer coupled to the substrate, wherein the optical absorption layer comprises a layer of diamond-like carbon, wherein the optical absorption layer absorbs at least 50% of mid wave infrared light (3-5 .mu.m wavelength) and at least 50% of long wave infrared light (8-13 .mu.m wavelength). A method for applying an optical absorption layer to an optical system according to another embodiment includes depositing a layer of diamond-like carbon of an optical absorption layer above a substrate using plasma enhanced chemical vapor deposition, wherein the optical absorption layer absorbs at least 50% of mid wave infrared light (3-5 .mu.m wavelength) and at least 50% of long wave infrared light (8-13 .mu.m wavelength). Additional systems and methods are also presented.

  11. Separation and preconcentration of platinum-group metals from spent autocatalysts solutions using a hetero-polymeric S, N-containing sorbent and determination by high-resolution continuum source graphite furnace atomic absorption spectrometry.

    Science.gov (United States)

    Eskina, Vasilina V; Dalnova, Olga A; Filatova, Daria G; Baranovskaya, Vasilisa B; Karpov, Yuri A

    2016-10-01

    This paper describes the potential of high-resolution continuum source graphite furnace atomic absorption spectrometry for determination of Pt, Pd and Rh after separation and concentration by original in-house developed heterochain polymer S, N-containing sorbent. The methods of sample preparation of spent ceramic-based autocatalysts were considered, two of which were used: autoclave decomposition in mixture of acids HCl:HNO3 (3:1) and high-temperature melting with K2S2O7. Both methods anyway limit the direct determination of analytes by HR CS GFAAS. Using the first method it is an incomplete digestion of spent autocatalysts samples, since the precipitate is Si, and the rhodium metal dissolves with difficulty and partially passes into solution. In contrast to the first method, the second method allow to completely transfer analytes into solution, however, the background signal produced by the chemical composition of the flux, overlaps the analytical zone. It was found, that Pt, Pd and Rh contained in the spent ceramic automotive catalysts could be effectively separated and concentrated by heterochain polymer S, N-containing sorbent, which has high sorption capacity, selectivity and resistant to dilute acids. The chosen HR CS GFAAS analysis conditions enable us to determine Pt, Pd and Rh with good metrological characteristics. The concentrations of Pt, Pd and Rh in two samples of automobile exhaust catalysts were found in range of 0.00015-0.00050; 0.170-0.189; 0.0180-0.0210wt%, respectively. The relative standard deviation obtained by HR CS GFAAS was not more than 5%. Limits of detection by HR CS GFAAS achieved were 6.2·10(-6)wt% for Pt, 1.8·10(-6)wt% for Pd, and 3.4·10(-6)wt% for Rh. Limits of determination achieved by HR CS GFAAS were 1.1·10(-5)wt% for Pt, 6.9·10(-5)wt% for Pd, and 8.3·10(-5)wt% for Rh. To control the accuracy of PGM in sorption concentrates by HR CS GFAAS method, it was appropriate to conduct an inter-method comparative experiment. The

  12. A Group Increment Scheme for Infrared Absorption Intensities of Greenhouse Gases

    Science.gov (United States)

    Kokkila, Sara I.; Bera, Partha P.; Francisco, Joseph S.; Lee, Timothy J.

    2012-01-01

    A molecule's absorption in the atmospheric infrared (IR) window (IRW) is an indicator of its efficiency as a greenhouse gas. A model for estimating the absorption of a fluorinated molecule within the IRW was developed to assess its radiative impact. This model will be useful in comparing different hydrofluorocarbons and hydrofluoroethers contribution to global warming. The absorption of radiation by greenhouse gases, in particular hydrofluoroethers and hydrofluorocarbons, was investigated using ab initio quantum mechanical methods. Least squares regression techniques were used to create a model based on this data. The placement and number of fluorines in the molecule were found to affect the absorption in the IR window and were incorporated into the model. Several group increment models are discussed. An additive model based on one-carbon groups is found to work satisfactorily in predicting the ab initio calculated vibrational intensities.

  13. Optical absorption and near infrared emissions of Nd3+ doped fluorophosphate glass.

    Science.gov (United States)

    Tian, Ying; Zhang, Junjie; Jing, Xufeng; Xu, Shiqing

    2012-12-01

    Fluorophosphate glass doped with Nd(3+) has been synthesized with low OH content. Near infrared emissions centered around 0.9, 1.06, and 1.3 μm have been successfully obtained in present glass excited by a conventional 800 nm laser diode. Based on the absorption spectrum, radiative properties were calculated and discussed using the Judd-Ofelt theory. The luminescence characteristics and energy transfer mechanism were investigated. Desirable low OH(-) concentration and spectroscopic characteristics of Nd(3+)-doped fluorophosphate glass indicate that it is a promising material for near-infrared lasers. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Dual-band absorption of mid-infrared metamaterial absorber based on distinct dielectric spacing layers.

    Science.gov (United States)

    Zhang, Nan; Zhou, Peiheng; Cheng, Dengmu; Weng, Xiaolong; Xie, Jianliang; Deng, Longjiang

    2013-04-01

    We present the simulation, fabrication, and characterization of a dual-band metamaterial absorber in the mid-infrared regime. Two pairs of circular-patterned metal-dielectric stacks are employed to excite the dual-band absorption peaks. Dielectric characteristics of the dielectric spacing layer determine energy dissipation in each resonant stack, i.e., dielectric or ohmic loss. By controlling material parameters, both two mechanisms are introduced into our structure. Up to 98% absorption is obtained at 9.03 and 13.32 μm in the simulation, which is in reasonable agreement with experimental results. The proposed structure holds promise for various applications, e.g., thermal radiation modulators and multicolor infrared focal plane arrays.

  15. Bimodal Exciplex Formation in Bimolecular Photoinduced Electron Transfer Revealed by Ultrafast Time-Resolved Infrared Absorption

    OpenAIRE

    Koch, Marius; Licari, Giuseppe Léonardo; Vauthey, Eric

    2015-01-01

    The dynamics of a moderately exergonic photoinduced charge separation has been investigated by ultrafast time-resolved infrared absorption with the dimethylanthracene/phthalonitrile donor/acceptor pair in solvents covering a broad range of polarity. A distinct spectral signature of an exciplex could be identified in the −C≡N stretching region. On the basis of quantum chemistry calculations, the 4–5 times larger width of this band compared to those of the ions and of the locally excited donor ...

  16. Integration of Absorption Feature Information from Visible to Longwave Infrared Spectral Ranges for Mineral Mapping

    Directory of Open Access Journals (Sweden)

    Veronika Kopačková

    2017-09-01

    Full Text Available Merging hyperspectral data from optical and thermal ranges allows a wider variety of minerals to be mapped and thus allows lithology to be mapped in a more complex way. In contrast, in most of the studies that have taken advantage of the data from the visible (VIS, near-infrared (NIR, shortwave infrared (SWIR and longwave infrared (LWIR spectral ranges, these different spectral ranges were analysed and interpreted separately. This limits the complexity of the final interpretation. In this study a presentation is made of how multiple absorption features, which are directly linked to the mineral composition and are present throughout the VIS, NIR, SWIR and LWIR ranges, can be automatically derived and, moreover, how these new datasets can be successfully used for mineral/lithology mapping. The biggest advantage of this approach is that it overcomes the issue of prior definition of endmembers, which is a requested routine employed in all widely used spectral mapping techniques. In this study, two different airborne image datasets were analysed, HyMap (VIS/NIR/SWIR image data and Airborne Hyperspectral Scanner (AHS, LWIR image data. Both datasets were acquired over the Sokolov lignite open-cast mines in the Czech Republic. It is further demonstrated that even in this case, when the absorption feature information derived from multispectral LWIR data is integrated with the absorption feature information derived from hyperspectral VIS/NIR/SWIR data, an important improvement in terms of more complex mineral mapping is achieved.

  17. Surface Texturing Investigated for a High Solar Absorptance Low Infrared Emittance Solar Collector

    Science.gov (United States)

    Jaworske, Donald A.

    2001-01-01

    The objective of this work was to design, build, and vacuum test a high solar absorptance, low infrared emittance solar collector for heat engine and thermal switching applications. Mini-satellites proposed by the Applied Physics Laboratory for operation in environments that are subject to radiation threat may utilize a heat engine for power and a thermal bus for thermal control. To achieve this goal, a surface having high solar absorptance and low infrared emittance is needed. At the NASA Glenn Research Center, one concept being pursued to achieve this goal is texturing high thermal conductivity graphite epoxy composites using a directed atomic oxygen beam and then coating the textured surface with a reflective metallic coating. Coupons were successfully textured, coated, and evaluated. A variety of texturing conditions were explored, and textures were documented by scanning electron microscopy. Copper, gold, silver, iridium, and aluminum coatings were applied, and the highest solar absorptance to infrared emittance ratio was found to be 1.3. A full-sized solar collector was manufactured with this ratio, and the amount of heat collected was observed using an Inconel calorimeter installed in a bench-top vacuum chamber equipped with a solar simulator. Results to date indicate good heat flow through the system, with 9 W of heat flow measured by the calorimeter.

  18. Surface-enhanced near-infrared absorption on nanoporous gold nanoparticle array chip (Conference Presentation)

    Science.gov (United States)

    Shih, Wei-Chuan; Zhao, Fusheng

    2017-02-01

    Near-infrared (NIR) absorption spectroscopy in the 1-2.5 μm wavelength range can provide chemical information based on the overtones and combination bands of fundamental vibrational modes in the infrared (IR) wavelength range. NIR absorption features are significantly broader and weaker due to the fact that the underlying processes are quantum mechanically forbidden. However, substantially lower water absorption allows NIR spectroscopy to be performed on samples with high water content, e.g., biological specimen and other in situ measurements, which otherwise restricts the use of IR light. However, small NIR absorption cross-section results in less sensitivity compared to measuring the IR fundamentals. In addition, NIR measurements are more challenging compared to in other spectral regions because of the lack of high-sensitivity detectors. To overcome these barriers, we propose the use of plasmonic nanostructures. Nanoporous gold nanoparticle (NPG-NP) array chip showcases tunable pore and ligament sizes ranging from nanometers to microns. The nanoporous structure and sub-wavelength nanoparticle shape contribute to its unique LSPR properties. NPG-NP features large specific surface area and high-density plasmonic field enhancement known as "hot-spots". Hence, NPG-NP has found many applications in nanoplasmonic sensor development. In our recent studies, we have shown that NPG-NP array chip can be utilized for high-sensitivity detection by various enhanced spectroscopic modalities, as photothermal agents, and for disease biomarker detection. In this paper, we show the first experimental demonstration of effective and robust surface-enhanced near-infrared absorption (SENIRA) on NPG-NP array chip.

  19. Monitoring the Impacts of Wildfires on Forest Ecosystems and Public Health in the Exo-Urban Environment Using High-Resolution Satellite Aerosol Products from the Visible Infrared Imaging Radiometer Suite (VIIRS).

    Science.gov (United States)

    Huff, Amy K; Kondragunta, Shobha; Zhang, Hai; Hoff, Raymond M

    2015-01-01

    Increasing development of exo-urban environments and the spread of urbanization into forested areas is making humans and forest ecosystems more susceptible to the risks associated with wildfires. Larger and more damaging wildfires are having a negative impact on forest ecosystem services, and smoke from wildfires adversely affects the public health of people living in exo-urban environments. Satellite aerosol measurements are valuable tools that can track the evolution of wildfires and monitor the transport of smoke plumes. Operational users, such as air quality forecasters and fire management officials, can use satellite observations to complement ground-based and aircraft measurements of wildfire activity. To date, wildfire applications of satellite aerosol products, such as aerosol optical depth (AOD), have been limited by the relatively coarse resolution of available AOD data. However, the new Visible Infrared Imaging Radiometer Suite (VIIRS) instrument on the Suomi National Polar-orbiting Partnership (S-NPP) satellite has high-resolution AOD that is ideally suited to monitoring wildfire impacts on the exo-urban scale. Two AOD products are available from VIIRS: the 750-m × 750-m nadir resolution Intermediate Product (IP) and the 6-km × 6-km resolution Environmental Data Record product, which is aggregated from IP measurements. True color (red, green, and blue [RGB]) imagery and a smoke mask at 750-m × 750-m resolution are also available from VIIRS as decision aids for wildfire applications; they serve as counterparts to AOD measurements by providing visible information about areas of smoke in the atmosphere. To meet the needs of operational users, who do not have time to process raw data files and need access to VIIRS products in near-real time (NRT), VIIRS AOD and RGB NRT imagery are available from the Infusing satellite Data into Environmental Applications (IDEA) web site. A key feature of IDEA is an interactive visualization tool that allows users to

  20. IDENTIFICATION OF ADULTERANT AND ALCOHOL ROUTE IN BIODIESEL USING MID-INFRARED ABSORPTION SPECTROSCOPY

    Directory of Open Access Journals (Sweden)

    Maryleide Ventura da Silva

    2014-01-01

    Full Text Available Mid-infrared absorption spectroscopy was used to analyze soybean oil, ethylic and methylic soybean biodiesel, and blends prepared with soybean oil mixed with biodiesel, in order to evaluate this method as an alternative to assess oil as impurities or adulterant in biodiesel. We also aimed to determine whether the biodiesel was prepared by the ethyl or methyl routes, by inspecting the infrared spectra. The C-O functional groups between 1100 and 1200 cm-1 are different for oil and biodiesel, which allows them to be used to distinguish impurities (residual oil in biofuel. The peak C-O-C at 1017 cm-1 is characteristic for methylic biodiesel, and the peak O-C-C at 1035 cm-1 for ethylic biodiesel. These vibrational modes can therefore be used to indicate the route used to prepare the biofuel. Results indicated that infrared spectroscopy is appropriate for monitoring the quality of biofuel for commercial sale.

  1. Infrared absorption spectroscopy of carbon monoxide on nickel films: a low temperature thermal detection technique

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, R.B.

    1978-11-01

    Sensitive vibrational spectra of carbon monoxide molecules adsorbed on evaporated nickel films have been measured by attaching a thermometer to the sample, cooling the assembly to liquid helium temperatures, and recording the temperature changes which occur when infrared radiation is absorbed. The measurements are made in an ultrahigh vacuum chamber in which the sample surface can be cleaned, heated, exposed to gas molecules and cooled to 1.6 K for the infrared measurements. The spectra of chemisorbed CO molecules are interpreted in terms of the linear and bridge adsorption sites on the nickel surface, and they show how the distribution of molecules among these sites changes when the CO coverage increases and intermolecular forces become important. The spectra of physically adsorbed molecules in both monolayer and multilayer films are also reported. Absorptions as small as five parts in 10/sup 5/ of the incident radiation can presently be detected in spectra covering broad bands of infrared frequencies with a resolution of 2 cm/sup -1/. This high sensitivity is attributable to the low noise and reduced background signal of the thermal detection scheme, to the stability of the rapid scan Fourier transform infrared spectrometer, and to the automated computerized data acquisition electronics. Better performance is expected in future experiments on single crystal samples as well as evaporated films. This will make it possible to study molecules with weaker absorptions than CO and to look for evidence of chemical reactions between different adsorbed molecules.

  2. SiC absorption of near-infrared laser radiation at high temperatures

    Science.gov (United States)

    Adelmann, B.; Hellmann, R.

    2016-07-01

    We report on a theoretical and experimental investigation of the temperature-dependent optical absorption of nitrogen-doped 4H-SiC for a temperature range between room temperature and the decomposition point. The theoretical model is based on free carrier absorption including the temperature dependence of the electron mobility. With respect to laser material processing of silicon carbide, the analysis focusses on a near-infrared wavelength range. At room temperature, the calculated absorption is in excellent agreement to transmission and reflection measurements. For the experimental study of the absorption at higher temperatures induced by intense 1070-nm laser irradiation, a two-color pyrometer is employed with the thermal emission of the laser interaction zone being collected coaxial to the impinging laser. Exemplarily, the simulated temperature-dependent absorption is used to determine the heating of a 0.4-mm-thick 4H-SiC specimen during laser irradiation and compared to the experimentally determined temperature. In an initial time domain of the irradiation with an attained temperature below 1350 K, the simulated and measured temperatures are in good agreement. Above 1350 K, however, the measured temperature reveals a sharp and fast increase up to 2100 K which is not predicted by the model. This discrepancy is attributed to a strong additional absorption mechanism caused by carbonization at the surface which is confirmed by EDX analysis.

  3. Infrared Absorption Spectroscopy and Chemical Kinetics of Free Radicals. Final Performance Report, August 1, 1985--July 31, 1994

    Science.gov (United States)

    Curl, R. F.; Glass, G. P.

    1995-06-01

    This research was directed at the detection, monitoring, and study (by infrared absorption spectroscopy) of the chemical kinetic behavior of small free radical species thought to be important intermediates in combustion. The work typically progressed from the detection and analysis of the infrared spectrum of combustion radical to the utilization of the infrared spectrum thus obtained in the investigation of chemical kinetics of the radical species. The methodology employed was infrared kinetic spectroscopy. In this technique the radical is produced by UV flash photolysis using an excimer laser and then its transient infrared absorption is observed using a single frequency cw laser as the source of the infrared probe light. When the probe laser frequency is near the center of an absorption line of the radical produced by the flash, the transient infrared absorption rises rapidly and then decays as the radical reacts with the precursor or with substances introduced for the purpose of studying the reaction kinetics or with itself. The decay times observed in these studies varied from less than one microsecond to more than one millisecond. By choosing appropriate time windows after the flash and the average infrared detector signal in a window as data channels, the infrared spectrum of the radical may be obtained. By locking the infrared probe laser to the center of the absorption line and measuring the rate of decay of the transient infrared absorption signal as the chemical composition of the gas mixture is varied, the chemical kinetics of the radical may be investigated. In what follows the systems investigated and the results obtained are outlined.

  4. Determination of the carrier concentration in CdSe crystals from the effective infrared absorption coefficient measured by means of the photothermal infrared radiometry

    Energy Technology Data Exchange (ETDEWEB)

    Pawlak, M. [Nicolaus Copernicus University, Faculty of Physics, Astronomy and Informatics, Institute of Physics, Torun (Poland)

    2014-11-11

    In this paper, a non-contact method that allows to determine the carrier concentration in CdSe crystals is presented. The method relies on the measurement of the effective infrared absorption coefficient by means of the photothermal infrared radiometry (PTR). In order to obtain the effective infrared absorption coefficient and thermal diffusivity, the frequency characteristics of the PTR signal were analyzed in the frame of a one-dimensional heat transport model for infrared semitransparent crystals. The carrier concentrations were estimated using a theory introduced by Ruda and a recently proposed normalization procedure for the PTR signal. The deduced carrier concentrations of the investigated CdSe crystals are in reasonable agreement with those obtained using Hall measurements and infrared spectroscopy. The method presented in this paper can also be applied to other semiconductors with the carrier concentration in the range of 10{sup 14}-10{sup 17} cm{sup -3}. (orig.)

  5. Cryogenic far-infrared laser absorptivity measurements of the Herschel Space Observatory telescope mirror coatings.

    Science.gov (United States)

    Fischer, Jacqueline; Klaassen, Tjeerd; Hovenier, Niels; Jakob, Gerd; Poglitsch, Albrecht; Sternberg, Oren

    2004-07-01

    Far-infrared laser calorimetry was used to measure the absorptivity, and thus the emissivity, of aluminum-coated silicon carbide mirror samples produced during the coating qualification run of the Herschel Space Observatory telescope to be launched by the European Space Agency in 2007. The samples were measured at 77 K to simulate the operating temperature of the telescope in its planned orbit about the second Lagrangian point, L2, of the Earth-Sun system. Together, the telescope's equilibrium temperature in space and the emissivity of the mirror surfaces will determine the far-infrared-submillimeter background and thus the sensitivity of two of the three astronomical instruments aboard the observatory if stray-light levels can be kept low relative to the mirror emission. Absorptivities of both clean and dust-contaminated samples were measured at 70, 118, 184, and 496 microm. Theoretical fits to the data predict absorptivities of 0.2-0.4% for the clean sample and 0.2-0.8% for the dusty sample, over the spectral range of the Herschel Space Observatory instruments.

  6. Infrared Spectroscopy of CO Ro-vibrational Absorption Lines toward the Obscured AGN IRAS 08572+3915

    OpenAIRE

    Shirahata, Mai; Nakagawa, Takao; Usuda, Tomonori; Goto, Miwa; Suto, Hiroshi; Geballe, T. R.

    2012-01-01

    We present high-resolution spectroscopy of gaseous CO absorption in the fundamental ro-vibrational band toward the heavily obscured active galactic nucleus (AGN) IRAS 08572+3915. We have detected absorption lines up to highly excited rotational levels (J 200 km s-1) of which is due to blueshifted (-160 km s-1) gas at a temperature of ~ 270 K absorbing at velocities as high as -400 km s-1. A much weaker but even warmer (~ 700 K) component, which is highly redshifted (+100 km s-1), is also dete...

  7. High resolution and high precision absorption spectroscopy using high finesse cavities: application to the study of molecules with atmospheric interest; Cavites de haute finesse pour la spectroscopie d'absorption haute sensibilite et haute precision: application a l'etude de molecules d'interet atmospherique

    Energy Technology Data Exchange (ETDEWEB)

    Motto-Ros, V.

    2005-12-15

    High finesse cavities are used to measure very weak absorption features. Two different methodologies are investigated and applied to the study of molecules with atmospheric interest. First, Continuous Wave - Cavity Ring Down Spectroscopy (CW-CRDS) is used to study the atmospheric spectra of water vapour in the near infrared range. These measurements are performed for temperature and pressure of atmospheric relevance for DIAL applications (Differential Absorption Lidar). This study, financed by the European Space Agency (ESA), goes with the WALES mission (Water Vapour Lidar Experiment in Space). The experimental setup was conceived in order to control pressure, temperature and relative humidity conditions. A particular attention is done to characterize and describe the spectrometer. Then, measurements of red Oxygen B band are performed to demonstrate the huge performance of Optical Feedback Cavity Enhanced Absorption Spectroscopy (OF-CEAS). The desired optical feedback is obtained by light injection into the high finesse cavity through a glass plate placed inside the cavity and closed to the Brewster angle. We show a measurement dynamical range of 5 orders of magnitude (10{sup -5} to 10{sup -10} /cm) and a sensitivity of 10{sup -10} /cm/{radical} Hz. Also, sampling absorption spectra by the super linear cavity frequency comb allows very precise frequency measurements. This is demonstrated by the determination of Oxygen pressure shifts with an absolute accuracy of around 5 x 10{sup -5} cm{sup -1}/atm. To our knowledge, we provide the highest accuracy ever reported for this parameter. (author)

  8. Orientation of non-spherical protonated water clusters revealed by infrared absorption dichroism.

    Science.gov (United States)

    Daldrop, Jan O; Saita, Mattia; Heyden, Matthias; Lorenz-Fonfria, Victor A; Heberle, Joachim; Netz, Roland R

    2018-01-22

    Infrared continuum bands that extend over a broad frequency range are a key spectral signature of protonated water clusters. They are observed for many membrane proteins that contain internal water molecules, but their microscopic mechanism has remained unclear. Here we compute infrared spectra for protonated and unprotonated water chains, discs, and droplets from ab initio molecular dynamics simulations. The continuum bands of the protonated clusters exhibit significant anisotropy for chains and discs, with increased absorption along the direction of maximal cluster extension. We show that the continuum band arises from the nuclei motion near the excess charge, with a long-ranged amplification due to the electronic polarizability. Our experimental, polarization-resolved light-dark difference spectrum of the light-driven proton pump bacteriorhodopsin exhibits a pronounced dichroic continuum band. Our results suggest that the protonated water cluster responsible for the continuum band of bacteriorhodopsin is oriented perpendicularly to the membrane normal.

  9. Source brightness fluctuation correction of solar absorption fourier transform mid infrared spectra

    Directory of Open Access Journals (Sweden)

    T. Ridder

    2011-06-01

    Full Text Available The precision and accuracy of trace gas observations using solar absorption Fourier Transform infrared spectrometry depend on the stability of the light source. Fluctuations in the source brightness, however, cannot always be avoided. Current correction schemes, which calculate a corrected interferogram as the ratio of the raw DC interferogram and a smoothed DC interferogram, are applicable only to near infrared measurements. Spectra in the mid infrared spectral region below 2000 cm−1 are generally considered uncorrectable, if they are measured with a MCT detector. Such measurements introduce an unknown offset to MCT interferograms, which prevents the established source brightness fluctuation correction. This problem can be overcome by a determination of the offset using the modulation efficiency of the instrument. With known modulation efficiency the offset can be calculated, and the source brightness correction can be performed on the basis of offset-corrected interferograms. We present a source brightness fluctuation correction method which performs the smoothing of the raw DC interferogram in the interferogram domain by an application of a running mean instead of high-pass filtering the corresponding spectrum after Fourier transformation of the raw DC interferogram. This smoothing can be performed with the onboard software of commercial instruments. The improvement of MCT spectra and subsequent ozone profile and total column retrievals is demonstrated. Application to InSb interferograms in the near infrared spectral region proves the equivalence with the established correction scheme.

  10. Fourier transform infrared absorption spectroscopy characterization of gaseous atmospheric pressure plasmas with 2 mm spatial resolution

    Energy Technology Data Exchange (ETDEWEB)

    Laroche, G. [Laboratoire d' Ingenierie de Surface, Centre de Recherche sur les Materiaux Avances, Departement de genie des mines, de la metallurgie et des materiaux, Universite Laval, 1065, avenue de la Medecine, Quebec G1V 0A6 (Canada); Centre de recherche du CHUQ, Hopital St Francois d' Assise, 10, rue de l' Espinay, local E0-165, Quebec G1L 3L5 (Canada); Vallade, J. [Laboratoire Procedes, Materiaux et Energie Solaire, PROMES, CNRS, Technosud, Rambla de la Thermodynamique, F-66100 Perpignan (France); Agence de l' environnement et de la Ma Latin-Small-Letter-Dotless-I -carettrise de l' Energie, 20, avenue du Gresille, BP 90406, F-49004 Angers Cedex 01 (France); Bazinette, R.; Hernandez, E.; Hernandez, G.; Massines, F. [Laboratoire Procedes, Materiaux et Energie Solaire, PROMES, CNRS, Technosud, Rambla de la Thermodynamique, F-66100 Perpignan (France); Nijnatten, P. van [OMT Solutions bv, High Tech Campus 9, 5656AE Eindhoven (Netherlands)

    2012-10-15

    This paper describes an optical setup built to record Fourier transform infrared (FTIR) absorption spectra in an atmospheric pressure plasma with a spatial resolution of 2 mm. The overall system consisted of three basic parts: (1) optical components located within the FTIR sample compartment, making it possible to define the size of the infrared beam (2 mm Multiplication-Sign 2 mm over a path length of 50 mm) imaged at the site of the plasma by (2) an optical interface positioned between the spectrometer and the plasma reactor. Once through the plasma region, (3) a retro-reflector module, located behind the plasma reactor, redirected the infrared beam coincident to the incident path up to a 45 Degree-Sign beamsplitter to reflect the beam toward a narrow-band mercury-cadmium-telluride detector. The antireflective plasma-coating experiments performed with ammonia and silane demonstrated that it was possible to quantify 42 and 2 ppm of these species in argon, respectively. In the case of ammonia, this was approximately three times less than this gas concentration typically used in plasma coating experiments while the silane limit of quantification was 35 times lower. Moreover, 70% of the incoming infrared radiation was focused within a 2 mm width at the site of the plasma, in reasonable agreement with the expected spatial resolution. The possibility of reaching this spatial resolution thus enabled us to measure the gaseous precursor consumption as a function of their residence time in the plasma.

  11. Near-infrared radiation absorption properties of covellite (CuS using first-principles calculations

    Directory of Open Access Journals (Sweden)

    Lihua Xiao

    2016-08-01

    Full Text Available First-principles density functional theory was used to investigate the electronic structure, optical properties and the origin of the near-infrared (NIR absorption of covellite (CuS. The calculated lattice constant and optical properties are found to be in reasonable agreement with experimental and theoretical findings. The electronic structure reveals that the valence and conduction bands of covellite are determined by the Cu 3d and S 3p states. By analyzing its optical properties, we can fully understand the potential of covellite (CuS as a NIR absorbing material. Our results show that covellite (CuS exhibits NIR absorption due to its metal-like plasma oscillation in the NIR range.

  12. Solvothermal synthesis of gallium-doped zinc oxide nanoparticles with tunable infrared absorption

    Science.gov (United States)

    Zhou, Haifeng; Wang, Hua; Tian, Xingyou; Zheng, Kang; Xu, Fei; Su, Zheng; Tian, Konghu; li, Qiulong; Fang, Fei

    2014-12-01

    The doping of ZnO nanoparticles (NPs) has been attracting a lot of attention both for fundamental studies and potential applications. In this manuscript, we report the preparation of gallium doped zinc oxide (GZO) NPs through the solvothermal method. In order to obtain the effective Ga doping in the ZnO crystalline lattice, we identified the optimal reaction conditions in terms of different Zn precursors, temperature, and heating rate. The results show that GZO NPs with tunable infrared absorption can be received using different molar ratios of Ga(NO3)3 and zinc stearate (Zn[CH3(CH2)16COO]2, ZnSt2) kept in the sealed autoclaves at 160 °C for 8 h. Furthermore, the growth of the GZO NPs was investigated by monitoring the optical absorption spectral and the corresponding chemical composition of aliquots extracted at different reaction time intervals.

  13. Organic narrowband near-infrared photodetectors based on intermolecular charge-transfer absorption

    Science.gov (United States)

    Siegmund, Bernhard; Mischok, Andreas; Benduhn, Johannes; Zeika, Olaf; Ullbrich, Sascha; Nehm, Frederik; Böhm, Matthias; Spoltore, Donato; Fröb, Hartmut; Körner, Christian; Leo, Karl; Vandewal, Koen

    2017-06-01

    Blending organic electron donors and acceptors yields intermolecular charge-transfer states with additional optical transitions below their optical gaps. In organic photovoltaic devices, such states play a crucial role and limit the operating voltage. Due to its extremely weak nature, direct intermolecular charge-transfer absorption often remains undetected and unused for photocurrent generation. Here, we use an optical microcavity to increase the typically negligible external quantum efficiency in the spectral region of charge-transfer absorption by more than 40 times, yielding values over 20%. We demonstrate narrowband detection with spectral widths down to 36 nm and resonance wavelengths between 810 and 1,550 nm, far below the optical gap of both donor and acceptor. The broad spectral tunability via a simple variation of the cavity thickness makes this innovative, flexible and potentially visibly transparent device principle highly suitable for integrated low-cost spectroscopic near-infrared photodetection.

  14. Study of cancer cell lines with Fourier transform infrared (FTIR)/vibrational absorption (VA) spectroscopy

    DEFF Research Database (Denmark)

    Uceda Otero, E. P.; Eliel, G. S. N.; Fonseca, E. J. S.

    2013-01-01

    absorption (VA) spectroscopy can be used as a useful tool in medical diagnostics that provides in principle additional information and detail to that which can be obtained/provided from conventional histological studies, and more conventional mass spectroscopic and NMR techniques. The use of high level......In this work we have used Fourier transform infrared (FTIR) / vibrational absorption (VA) spectroscopy to study two cancer cell lines: the Henrietta Lacks (HeLa) human cervix carcinoma and 5637 human bladder carcinoma cell lines. Our goal is to experimentally investigate biochemical changes...... and differences in these cells lines utilizing FTIR spectroscopy. We have used the chemometrical and statistical method principal component analysis (PCA) to investigate the spectral differences. We have been able to identify certain bands in the spectra which are so-called biomarkers for two types of cell lines...

  15. Indirect absorption spectroscopy using quantum cascade lasers: mid-infrared refractometry and photothermal spectroscopy.

    Science.gov (United States)

    Pfeifer, Marcel; Ruf, Alexander; Fischer, Peer

    2013-11-04

    We record vibrational spectra with two indirect schemes that depend on the real part of the index of refraction: mid-infrared refractometry and photothermal spectroscopy. In the former, a quantum cascade laser (QCL) spot is imaged to determine the angles of total internal reflection, which yields the absorption line via a beam profile analysis. In the photothermal measurements, a tunable QCL excites vibrational resonances of a molecular monolayer, which heats the surrounding medium and changes its refractive index. This is observed with a probe laser in the visible. Sub-monolayer sensitivities are demonstrated.

  16. Giant Two-photon Absorption in Circular Graphene Quantum Dots in Infrared Region

    Science.gov (United States)

    Feng, Xiaobo; Li, Zhisong; Li, Xin; Liu, Yingkai

    2016-01-01

    We investigate theoretically the two-photon absorption (TPA) for circular graphene quantum dots (GQDs) with the edge of armchair and zigzag on the basis of electronic energy states obtained by solving the Dirac-Weyl equation numerically under finite difference method. The expressions for TPA cross section are derived and the transition selection rules are obtained. Results reveal that the TPA is significantly greater in GQDs than conventional semiconductor QDs in infrared spectrum (2–6 um) with a resonant TPA cross section of up to 1011 GM. The TPA peaks are tuned by the GQDs’ size, edge and electron relaxation rate. PMID:27629800

  17. Near-infrared optical absorption enhanced in black silicon via Ag nanoparticle-induced localized surface plasmon

    OpenAIRE

    Zhang, Peng; Li, Shibin; Liu, Chunhua; Wei, Xiongbang; Wu, Zhiming; Jiang, Yadong; Chen, Zhi

    2014-01-01

    Due to the localized surface plasmon (LSP) effect induced by Ag nanoparticles inside black silicon, the optical absorption of black silicon is enhanced dramatically in near-infrared range (1,100 to 2,500 nm). The black silicon with Ag nanoparticles shows much higher absorption than black silicon fabricated by chemical etching or reactive ion etching over ultraviolet to near-infrared (UV-VIS-NIR, 250 to 2,500 nm). The maximum absorption even increased up to 93.6% in the NIR range (820 to 2,500...

  18. Infrared absorption of hydrogen-related defects in ammonothermal GaN

    Energy Technology Data Exchange (ETDEWEB)

    Suihkonen, Sami, E-mail: sami.suihkonen@aalto.fi [Department of Micro- and Nanosciences, Aalto University, P.O. Box 13500, FI-00076 Aalto (Finland); Pimputkar, Siddha; Speck, James S.; Nakamura, Shuji [Materials Department, Solid State Lighting and Energy Electronics Center, University of California, Santa Barbara, California 93106-5050 (United States)

    2016-05-16

    Polarization controlled Fourier transform infrared (FTIR) absorption measurements were performed on a high quality m-plane ammonothermal GaN crystal grown using basic chemistry. The polarization dependence of characteristic absorption peaks of hydrogen-related defects at 3000–3500 cm{sup −1} was used to identify and determine the bond orientation of hydrogenated defect complexes in the GaN lattice. Majority of hydrogen was found to be bonded in gallium vacancy complexes decorated with one to three hydrogen atoms (V{sub Ga}-H{sub 1,2,3}) but also hydrogenated oxygen defect complexes, hydrogen in bond-center sites, and lattice direction independent absorption were observed. Absorption peak intensity was used to determine a total hydrogenated V{sub Ga} density of approximately 4 × 10{sup 18} cm{sup −3}, with main contribution from V{sub Ga}-H{sub 1,2}. Also, a significant concentration of electrically passive V{sub Ga}-H{sub 3} was detected. The high density of hydrogenated defects is expected to have a strong effect on the structural, optical, and electrical properties of ammonothermal GaN crystals.

  19. Five-Channel Infrared Laser Absorption Spectrometer for Combustion Product Monitoring Aboard Manned Spacecraft

    Science.gov (United States)

    Briggs, Ryan M.; Frez, Clifford; Borgentun, Carl E.; Bagheri, Mahmood; Forouhar, Siamak; May, Randy D.

    2014-01-01

    Continuous combustion product monitoring aboard manned spacecraft can prevent chronic exposure to hazardous compounds and also provides early detection of combustion events. As future missions extend beyond low-Earth orbit, analysis of returned environmental samples becomes impractical and safety monitoring should be performed in situ. Here, we describe initial designs of a five-channel tunable laser absorption spectrometer to continuously monitor combustion products with the goal of minimal maintenance and calibration over long-duration missions. The instrument incorporates dedicated laser channels to simultaneously target strong mid-infrared absorption lines of CO, HCl, HCN, HF, and CO2. The availability of low-power-consumption semiconductor lasers operating in the 2 to 5 micron wavelength range affords the flexibility to select absorption lines for each gas with maximum interaction strength and minimal interference from other gases, which enables the design of a compact and mechanically robust spectrometer with low-level sensitivity. In this paper, we focus primarily on absorption line selection based on the availability of low-power single-mode semiconductor laser sources designed specifically for the target wavelength range.

  20. Development and integration of near atmospheric N2 ambient sputtered Au thin film for enhanced infrared absorption

    Science.gov (United States)

    Gaur, Surender P.; Kothari, Prateek; Maninder, K.; Kumar, Prem; Rangra, Kamaljit; Kumar, Dinesh

    2017-05-01

    The exceedingly fragile nature of thermally grown Au-black coating makes handling and patterning a critical issue. Infrared absorption characteristics of near atmospheric, N2 ambient DC sputtered Au thin films are studied for this purpose. The thin Au films are sputtered at different chamber pressures in Ar and N2/Ar gas ambient from 4.5 to 8.0 mbar and optimized for enhanced infrared absorption. The absorber film sputtered in N2/Ar ambient at 8.0 mbar chamber pressure offers significant absorption of medium to long wave infrared radiations. The micro-patterning of sputtered Au thin film is carried out by using conventional photolithography and metal lift off methods on a prefabricated μ-infrared detector array on Si (1 0 0) substrate. The steady state temperature response of sputtered film has been examined using nondestructive thermal imaging method under external heating of the detector array.

  1. Accurate Theoretical Methane Line Lists in the Infrared up to 3000 K and Quasi-continuum Absorption/Emission Modeling for Astrophysical Applications

    Science.gov (United States)

    Rey, Michael; Nikitin, Andrei V.; Tyuterev, Vladimir G.

    2017-10-01

    Modeling atmospheres of hot exoplanets and brown dwarfs requires high-T databases that include methane as the major hydrocarbon. We report a complete theoretical line list of 12CH4 in the infrared range 0-13,400 cm-1 up to T max = 3000 K computed via a full quantum-mechanical method from ab initio potential energy and dipole moment surfaces. Over 150 billion transitions were generated with the lower rovibrational energy cutoff 33,000 cm-1 and intensity cutoff down to 10-33 cm/molecule to ensure convergent opacity predictions. Empirical corrections for 3.7 million of the strongest transitions permitted line position accuracies of 0.001-0.01 cm-1. Full data are partitioned into two sets. “Light lists” contain strong and medium transitions necessary for an accurate description of sharp features in absorption/emission spectra. For a fast and efficient modeling of quasi-continuum cross sections, billions of tiny lines are compressed in “super-line” libraries according to Rey et al. These combined data will be freely accessible via the TheoReTS information system (http://theorets.univ-reims.fr, http://theorets.tsu.ru), which provides a user-friendly interface for simulations of absorption coefficients, cross-sectional transmittance, and radiance. Comparisons with cold, room, and high-T experimental data show that the data reported here represent the first global theoretical methane lists suitable for high-resolution astrophysical applications.

  2. Constructing a WISE High Resolution Galaxy Atlas

    Science.gov (United States)

    Jarrett, T. H.; Masci, F.; Tsai, C. W.; Petty, S.; Cluver, M.; Assef, Roberto J.; Benford, D.; Blain, A.; Bridge, C.; Donoso, E.; hide

    2012-01-01

    After eight months of continuous observations, the Wide-field Infrared Survey Explorer (WISE) mapped the entire sky at 3.4 micron, 4.6 micron, 12 micron, and 22 micron. We have begun a dedicated WISE High Resolution Galaxy Atlas project to fully characterize large, nearby galaxies and produce a legacy image atlas and source catalog. Here we summarize the deconvolution techniques used to significantly improve the spatial resolution of WISE imaging, specifically designed to study the internal anatomy of nearby galaxies. As a case study, we present results for the galaxy NGC 1566, comparing the WISE enhanced-resolution image processing to that of Spitzer, Galaxy Evolution Explorer, and ground-based imaging. This is the first paper in a two-part series; results for a larger sample of nearby galaxies are presented in the second paper.

  3. Ammonia in Jupiter's Troposphere From High-Resolution 5 μm Spectroscopy

    Science.gov (United States)

    Giles, Rohini S.; Fletcher, Leigh N.; Irwin, Patrick G. J.; Orton, Glenn S.; Sinclair, James A.

    2017-11-01

    Jupiter's tropospheric ammonia (NH3) abundance is studied using spatially resolved 5 μm observations from the cryogenic high-resolution infrared spectrograph (CRIRES) at the European Southern Observatory's Very Large Telescope. The high-resolving power (R = 96,000) allows the line shapes of three NH3 absorption features to be resolved. We find that within the 1-4 bar pressure range, the NH3 abundance decreases with altitude. The instrument slit was aligned north-south along Jupiter's central meridian, allowing us to search for latitudinal variability. There is considerable uncertainty in the large-scale latitudinal variability, as the increase in cloud opacity in zones compared to belts can mask absorption features. However, we do find evidence for a strong NH3 enhancement at 4-6°N, consistent with a localized "ammonia plume" on the southern edge of Jupiter's North Equatorial Belt.

  4. Soft and broadband infrared metamaterial absorber based on gold nanorod/liquid crystal hybrid with tunable total absorption.

    Science.gov (United States)

    Su, Zhaoxian; Yin, Jianbo; Zhao, Xiaopeng

    2015-11-18

    We design a soft infrared metamaterial absorber based on gold nanorods dispersed in liquid crystal (LC) placed on a gold film and theoretically investigate its total absorption character. Because the nanorods align with the LC molecule, the gold nanorods/LC hybrid exhibits different permittivity as a function of tilt angle of LC. At a certain tilt angle, the absorber shows an omnidirectional total absorption effect. By changing the tilt angle of LC by an external electric field, the total absorption character can be adjusted. The total absorption character also depends on the concentration, geometric dimension of nanorods, and defect of nanorod arrangement in LC. When the LC contains different size of gold nanorods, a broadband absorption can be easily realized. The characteristics including flexibility, omnidirectional, broadband and tunability make the infrared metamaterial absorber possess potential use in smart metamaterial devices.

  5. A study of thermaů decomposition and combustion products of disposable polyethylene terephtalate plastic using high resolution fourier transform infrared spectroscopy, selected ion flow tube mass spectrometry and gas chromatography mass spectrometry

    Czech Academy of Sciences Publication Activity Database

    Sovová, Kristýna; Ferus, Martin; Matulková, Irena; Španěl, Patrik; Dryahina, Kseniya; Dvořák, O.; Civiš, Svatopluk

    2008-01-01

    Roč. 106, 9-10 (2008), s. 1205-1214 ISSN 0026-8976 R&D Projects: GA AV ČR IAA400400705; GA ČR GA202/06/0776 Institutional research plan: CEZ:AV0Z40400503 Keywords : polyethylene terephtalate (PET) * combustion * high resolution FTIR spectroscopy * GC-MS * SIFT-MS Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.478, year: 2008

  6. Collision-Induced Infrared Absorption by Molecular Hydrogen Pairs at Thousands of Kelvin

    Directory of Open Access Journals (Sweden)

    Xiaoping Li

    2010-01-01

    Full Text Available Collision-induced absorption by hydrogen and helium in the stellar atmospheres of cool white dwarfs causes the emission spectra to differ significantly from the expected blackbody spectra of the cores. For detailed modeling of radiative processes at temperatures up to 7000 K, the existing H2–H2 induced dipole and potential energy surfaces of high quality must be supplemented by calculations with the H2 bonds stretched or compressed far from the equilibrium length. In this work, we describe new dipole and energy surfaces, based on more than 20 000 ab initio calculations for H2–H2. Our results agree well with previous ab initio work (where those data exist; the calculated rototranslational absorption spectrum at 297.5 K matches experiment similarly well. We further report the calculated absorption spectra of H2–H2 for frequencies from the far infrared to 20 000 cm−1, at temperatures of 600 K, 1000 K, and 2000 K, for which there are no experimental data.

  7. Enhanced High Resolution RBS System

    Science.gov (United States)

    Pollock, Thomas J.; Hass, James A.; Klody, George M.

    2011-06-01

    Improvements in full spectrum resolution with the second NEC high resolution RBS system are summarized. Results for 50 Å TiN/HfO films on Si yielding energy resolution on the order of 1 keV are also presented. Detector enhancements include improved pulse processing electronics, upgraded shielding for the MCP/RAE detector, and reduced noise generated from pumping. Energy resolution measurements on spectra front edge coupled with calculations using 0.4mStr solid angle show that beam energy spread at 400 KeV from the Pelletron® accelerator is less than 100 eV. To improve user throughput, magnet control has been added to the automatic data collection. Depth profiles derived from experimental data are discussed. For the thin films profiled, depth resolutions were on the Angstrom level with the non-linear energy/channel conversions ranging from 100 to 200 eV.

  8. High resolution tomographic instrument development

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    Our recent work has concentrated on the development of high-resolution PET instrumentation reflecting in part the growing importance of PET in nuclear medicine imaging. We have developed a number of positron imaging instruments and have the distinction that every instrument has been placed in operation and has had an extensive history of application for basic research and clinical study. The present program is a logical continuation of these earlier successes. PCR-I, a single ring positron tomograph was the first demonstration of analog coding using BGO. It employed 4 mm detectors and is currently being used for a wide range of biological studies. These are of immense importance in guiding the direction for future instruments. In particular, PCR-II, a volume sensitive positron tomograph with 3 mm spatial resolution has benefited greatly from the studies using PCR-I. PCR-II is currently in the final stages of assembly and testing and will shortly be placed in operation for imaging phantoms, animals and ultimately humans. Perhaps the most important finding resulting from our previous study is that resolution and sensitivity must be carefully balanced to achieve a practical high resolution system. PCR-II has been designed to have the detection characteristics required to achieve 3 mm resolution in human brain under practical imaging situations. The development of algorithms by the group headed by Dr. Chesler is based on a long history of prior study including his joint work with Drs. Pelc and Reiderer and Stearns. This body of expertise will be applied to the processing of data from PCR-II when it becomes operational.

  9. High resolution tomographic instrument development

    Energy Technology Data Exchange (ETDEWEB)

    1992-08-01

    Our recent work has concentrated on the development of high-resolution PET instrumentation reflecting in part the growing importance of PET in nuclear medicine imaging. We have developed a number of positron imaging instruments and have the distinction that every instrument has been placed in operation and has had an extensive history of application for basic research and clinical study. The present program is a logical continuation of these earlier successes. PCR-I, a single ring positron tomograph was the first demonstration of analog coding using BGO. It employed 4 mm detectors and is currently being used for a wide range of biological studies. These are of immense importance in guiding the direction for future instruments. In particular, PCR-II, a volume sensitive positron tomograph with 3 mm spatial resolution has benefited greatly from the studies using PCR-I. PCR-II is currently in the final stages of assembly and testing and will shortly be placed in operation for imaging phantoms, animals and ultimately humans. Perhaps the most important finding resulting from our previous study is that resolution and sensitivity must be carefully balanced to achieve a practical high resolution system. PCR-II has been designed to have the detection characteristics required to achieve 3 mm resolution in human brain under practical imaging situations. The development of algorithms by the group headed by Dr. Chesler is based on a long history of prior study including his joint work with Drs. Pelc and Reiderer and Stearns. This body of expertise will be applied to the processing of data from PCR-II when it becomes operational.

  10. Rotationally resolved infrared spectroscopy of adamantane

    NARCIS (Netherlands)

    Pirali, O.; Boudon, V.; Oomens, J.; Vervloet, M.

    2012-01-01

    We present the first rotationally resolved spectra of adamantane (C(10)H(16)) applying gas-phase Fourier transform infrared (IR) absorption spectroscopy. High-resolution IR spectra are recorded in the 334500 cm(-1)range using as source of IR radiation both synchrotron radiation (at the AILES

  11. Rotationally resolved infrared spectroscopy of adamantane

    NARCIS (Netherlands)

    Pirali, O.; Boudon, V.; Oomens, J.; Vervloet, M.

    2012-01-01

    We present the first rotationally resolved spectra of adamantane (C10H16) applying gas-phase Fourier transform infrared (IR) absorption spectroscopy. High-resolution IR spectra are recorded in the 33-4500 cm−1range using as source of IR radiation both synchrotron radiation (at the AILES beamline of

  12. Near-infrared optical absorption enhanced in black silicon via Ag nanoparticle-induced localized surface plasmon.

    Science.gov (United States)

    Zhang, Peng; Li, Shibin; Liu, Chunhua; Wei, Xiongbang; Wu, Zhiming; Jiang, Yadong; Chen, Zhi

    2014-01-01

    Due to the localized surface plasmon (LSP) effect induced by Ag nanoparticles inside black silicon, the optical absorption of black silicon is enhanced dramatically in near-infrared range (1,100 to 2,500 nm). The black silicon with Ag nanoparticles shows much higher absorption than black silicon fabricated by chemical etching or reactive ion etching over ultraviolet to near-infrared (UV-VIS-NIR, 250 to 2,500 nm). The maximum absorption even increased up to 93.6% in the NIR range (820 to 2,500 nm). The high absorption in NIR range makes LSP-enhanced black silicon a potential material used for NIR-sensitive optoelectronic device. 78.67.Bf; 78.30.Fs; 78.40.-q; 42.70.Gi.

  13. Infrared Absorption Spectroscopy and Chemical Kinetics of Free Radicals, Final Technical Report

    Science.gov (United States)

    Curl, Robert F.; Glass, Graham P.

    2004-11-01

    This research was directed at the detection, monitoring, and study of the chemical kinetic behavior by infrared absorption spectroscopy of small free radical species thought to be important intermediates in combustion. Work on the reaction of OH with acetaldehyde has been completed and published and work on the reaction of O({sup 1}D) with CH{sub 4} has been completed and submitted for publication. In the course of our investigation of branching ratios of the reactions of O({sup 1}D) with acetaldehyde and methane, we discovered that hot atom chemistry effects are not negligible at the gas pressures (13 Torr) initially used. Branching ratios of the reaction of O({sup 1}D) with CH{sub 4} have been measured at a tenfold higher He flow and fivefold higher pressure.

  14. Study on the surface hydroxyl group on solid breeding materials by infrared absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Satoru; Taniguchi, Masaki [Tokyo Univ. (Japan). Faculty of Engineering

    1996-10-01

    Hydroxyl groups on the surface of Li{sub 2}O were studied by using a diffuse reflectance method with Fourier transform infrared absorption spectroscopy at high temperature up to 973K under controlled D{sub 2}O or D{sub 2} partial pressure. It was found that hydroxyl groups could exist on Li{sub 2}O surface up to 973K under Ar atmosphere. Under D{sub 2}O containing atmosphere, only the sharp peak at 2520cm{sup -1} was observed at 973K in the O-D stretching vibration region. Below 973K, multiple peaks due to the surface -OD were observed and they showed different behavior with temperature or atmosphere. Multiple peaks mean that surface is not homogeneous for D{sub 2}O adsorption. Assignment of the observed peaks to the surface bonding structure was also discussed. (author)

  15. Accurate frequency of the 119 micron methanol laser from tunable far-infrared absorption spectroscopy

    Science.gov (United States)

    Inguscio, M.; Zink, L. R.; Evenson, K. M.; Jennings, D. A.

    1990-01-01

    High-accuracy absorption spectroscopy of CH3OH in the far infrared is discussed. In addition to 22 transitions in the ground state, the frequency of the (n, tau, J, K), (0, 1, 16, 8) to (0, 2, 15, 7) transition in the nu5 excited vibrational level, which is responsible for the laser emission at 119 microns, was measured. The measured frequency is 2,522,782.57(10) MHz at zero pressure, with a pressure shift of 6.1(32) kHz/Pa (0.805/420/ MHz/torr). An accurate remeasurement of the laser emission frequency has also been performed, and the results are in good agreement.

  16. Broadband Epsilon-Near-Zero Perfect Absorption in the Near-Infrared

    Science.gov (United States)

    Yoon, Junho; Zhou, Ming; Badsha, Md. Alamgir; Kim, Tae Young; Jun, Young Chul; Hwangbo, Chang Kwon

    2015-08-01

    Perfect absorption (PA) of incident light is important for both fundamental light-matter interaction studies and practical device applications. PA studies so far have mainly used resonant nanostructures that require delicate structural patterning. Here, we realize tunable and broadband PA in the near-infrared region using relatively simple thin film coatings. We adjust the growth condition of an ITO film and control its epsilon-near-zero (ENZ) wavelength. We show that this results in highly tunable PA in the telecommunication window. Then, using an ITO multilayer of different ENZ wavelengths, we demonstrate broadband PA that covers a wide range of near-infrared wavelengths. The use of ENZ coatings makes PA adjustable during the film growth and does not require any structural patterning afterward. It also facilitates the chip-scale integration of perfect absorbers with other device components. Broadband PA relaxes the single wavelength condition in previous PA studies, and thus it is suitable for many practical device applications, including sensors, photodetectors, and energy harvesting devices.

  17. Tunable Nanoantennas for Surface Enhanced Infrared Absorption Spectroscopy by Colloidal Lithography and Post-Fabrication Etching.

    Science.gov (United States)

    Chen, Kai; Duy Dao, Thang; Nagao, Tadaaki

    2017-03-08

    We fabricated large-area metallic (Al and Au) nanoantenna arrays on Si substrates using cost-effective colloidal lithography with different micrometer-sized polystyrene spheres. Variation of the sphere size leads to tunable plasmon resonances in the middle infrared (MIR) range. The enhanced near-fields allow us to detect the surface phonon polaritons in the natural SiO2 thin layers. We demonstrated further tuning capability of the resonances by employing dry etching of the Si substrates with the nanoantennas acting as the etching masks. The effective refractive index of the nanoantenna surroundings is efficiently decreased giving rise to blueshifts of the resonances. In addition, partial removal of the Si substrates elevates the nanoantennas from the high-refractive-index substrates making more enhanced near-fields accessible for molecular sensing applications as demonstrated here with surface-enhanced infrared absorption (SEIRA) spectroscopy for a thin polymer film. We also directly compared the plasmonic enhancement from the Al and Au nanoantenna arrays.

  18. High-resolution three-dimensional imaging of a depleted CMOS sensor using an edge Transient Current Technique based on the Two Photon Absorption process (TPA-eTCT)

    CERN Document Server

    García, Marcos Fernández; Echeverría, Richard Jaramillo; Moll, Michael; Santos, Raúl Montero; Moya, David; Pinto, Rogelio Palomo; Vila, Iván

    2016-01-01

    For the first time, the deep n-well (DNW) depletion space of a High Voltage CMOS sensor has been characterized using a Transient Current Technique based on the simultaneous absorption of two photons. This novel approach has allowed to resolve the DNW implant boundaries and therefore to accurately determine the real depleted volume and the effective doping concentration of the substrate. The unprecedented spatial resolution of this new method comes from the fact that measurable free carrier generation in two photon mode only occurs in a micrometric scale voxel around the focus of the beam. Real three-dimensional spatial resolution is achieved by scanning the beam focus within the sample.

  19. High-resolution three-dimensional imaging of a depleted CMOS sensor using an edge Transient Current Technique based on the Two Photon Absorption process (TPA-eTCT)

    Energy Technology Data Exchange (ETDEWEB)

    García, Marcos Fernández; Sánchez, Javier González; Echeverría, Richard Jaramillo [Instituto de Física de Cantabria (CSIC-UC), Avda. los Castros s/n, E-39005 Santander (Spain); Moll, Michael [CERN, Organisation europénne pour la recherche nucléaire, CH-1211 Genéve 23 (Switzerland); Santos, Raúl Montero [SGIker Laser Facility, UPV/EHU, Sarriena, s/n - 48940 Leioa-Bizkaia (Spain); Moya, David [Instituto de Física de Cantabria (CSIC-UC), Avda. los Castros s/n, E-39005 Santander (Spain); Pinto, Rogelio Palomo [Departamento de Ingeniería Electrónica, Escuela Superior de Ingenieros Universidad de Sevilla (Spain); Vila, Iván [Instituto de Física de Cantabria (CSIC-UC), Avda. los Castros s/n, E-39005 Santander (Spain)

    2017-02-11

    For the first time, the deep n-well (DNW) depletion space of a High Voltage CMOS sensor has been characterized using a Transient Current Technique based on the simultaneous absorption of two photons. This novel approach has allowed to resolve the DNW implant boundaries and therefore to accurately determine the real depleted volume and the effective doping concentration of the substrate. The unprecedented spatial resolution of this new method comes from the fact that measurable free carrier generation in two photon mode only occurs in a micrometric scale voxel around the focus of the beam. Real three-dimensional spatial resolution is achieved by scanning the beam focus within the sample.

  20. Absorption of crystalline water ice in the far infrared at different temperatures

    Science.gov (United States)

    Reinert, C.; Mutschke, H.; Krivov, A. V.; Löhne, T.; Mohr, P.

    2015-01-01

    The optical properties of ice in the far infrared are important for models of protoplanetary and debris disks. In this report, we derive a new set of data for the absorption (represented by the imaginary part of the refractive index κ) of crystalline water ice in this spectral range. The study includes a detailed inspection of the temperature dependence, which has not been conducted in such detail before. We measured the transmission of three ice layers with different thicknesses at temperatures ϑ = 10...250 K and present data at wavelengths λ = 80...625 μm. We found a change in the spectral dependence of κ at a wavelength of 175 ± 6 μm. At shorter wavelengths, κ exhibits a constant flat slope and no significant temperature dependence. Long-ward of that wavelength, the slope gets steeper and has a clear, approximately linear temperature dependence. This change in behaviour is probably caused by a characteristic absorption band of water ice. The measured data were fitted by a power-law model that analytically describes the absorption behaviour at an arbitrary temperature. This model can readily be applied to any object of interest, for instance a protoplanetary or debris disk. To illustrate how the model works, we simulated the spectral energy distribution (SED) of the resolved, large debris disk around the nearby solar-type star HD 207129. Replacing our ice model by another, commonly used data set for water ice results in a different SED slope at longer wavelengths. This leads to changes in the characteristic model parameters of the disk, such as the inferred particle size distribution, and affects the interpretation of the underlying collisional physics of the disk.

  1. Evaluation of Advanced Bionics high resolution mode.

    Science.gov (United States)

    Buechner, Andreas; Frohne-Buechner, Carolin; Gaertner, Lutz; Lesinski-Schiedat, Anke; Battmer, Rolf-Dieter; Lenarz, Thomas

    2006-07-01

    The objective of this paper is to evaluate the advantages of the Advanced Bionic high resolution mode for speech perception, through a retrospective analysis. Forty-five adult subjects were selected who had a minimum experience of three months' standard mode (mean of 10 months) before switching to high resolution mode. Speech perception was tested in standard mode immediately before fitting with high resolution mode, and again after a maximum of six months high resolution mode usage (mean of two months). A significant improvement was found, between 11 and 17%, depending on the test material. The standard mode preference does not give any indication about the improvement when switching to high resolution. Users who are converted within any study achieve a higher performance improvement than those converted in the clinical routine. This analysis proves the significant benefits of high resolution mode for users, and also indicates the need for guidelines for individual optimization of parameter settings in a high resolution mode program.

  2. Linear Absorption and Two-Dimensional Infrared Spectra of N-Methylacetamide in Chloroform Revisited : Polarizability and Multipole Effects

    NARCIS (Netherlands)

    Jansen, Thomas L. C.

    2014-01-01

    The effect of solvent polarizability and multipole effects on the amide I vibrational spectra of a peptide unit is investigated. Four molecular dynamics force fields of increasing complexity for the solvent are used to model both the linear absorption and two-dimensional infrared spectra. It is

  3. Combined electrochemistry and surface-enhanced infrared absorption spectroscopy of gramicidin A incorporated into tethered bilayer lipid membranes

    NARCIS (Netherlands)

    Kozuch, J.; Steinem, C.; Hildebrandt, P.; Millo, D.

    2012-01-01

    Support from the support: Tethered bilayer lipid membranes containing the cation-channel-forming peptide gramicidin A were assembled on nanostructured Au films. The combination of surface-enhanced infrared absorption (SEIRA) and electrochemical impedance spectroscopy (EIS) was used for the in situ

  4. Wavelength standards in the infrared

    CERN Document Server

    Rao, KN

    2012-01-01

    Wavelength Standards in the Infrared is a compilation of wavelength standards suitable for use with high-resolution infrared spectrographs, including both emission and absorption standards. The book presents atomic line emission standards of argon, krypton, neon, and xenon. These atomic line emission standards are from the deliberations of Commission 14 of the International Astronomical Union, which is the recognized authority for such standards. The text also explains the techniques employed in determining spectral positions in the infrared. One of the techniques used includes the grating con

  5. Investigation of (235)U, (226)Ra, (232)Th, (40)K, (137)Cs, and heavy metal concentrations in Anzali international wetland using high-resolution gamma-ray spectrometry and atomic absorption spectroscopy.

    Science.gov (United States)

    Zare, Mohammad Reza; Kamali, Mahdi; Fallahi Kapourchali, Maryam; Bagheri, Hashem; Khoram Bagheri, Mahdi; Abedini, Ali; Pakzad, Hamid Reza

    2016-02-01

    Measurements of natural radioactivity levels and heavy metals in sediment and soil samples of the Anzali international wetland were carried out by two HPGe-gamma ray spectrometry and atomic absorption spectroscopy techniques. The concentrations of (235)U, (226)Ra, (232)Th, (40)K, and (137)Cs in sediment samples ranged between 1.05 ± 0.51-5.81 ± 0.61, 18.06 ± 0.63-33.36 ± .0.34, 17.57 ± 0.38-45.84 ± 6.23, 371.88 ± 6.36-652.28 ± 11.60, and 0.43 ± 0.06-63.35 ± 0.94 Bq/kg, while in the soil samples they vary between 2.36-5.97, 22.71-38.37, 29.27-42.89, 472.66-533, and 1.05-9.60 Bq/kg for (235)U, (226)Ra, (232)Th, (40)K, and (137)Cs, respectively. Present results are compared with the available literature data and also with the world average values. The radium equivalent activity was well below the defined limit of 370 Bq/kg. The external hazard indices were found to be less than 1, indicating a low dose. Heavy metal concentrations were found to decrease in order as Fe > Mn > Sr > Zn > Cu > Cr > Ni > Pb > Co > Cd. These measurements will serve as background reference levels for the Anzali wetland.

  6. Surface-enhanced infrared absorption spectroscopy (SEIRAS) to probe monolayers of membrane proteins.

    Science.gov (United States)

    Ataka, Kenichi; Stripp, Sven Timo; Heberle, Joachim

    2013-10-01

    Surface-enhanced infrared absorption spectroscopy (SEIRAS) represents a variation of conventional infrared spectroscopy and exploits the signal enhancement exerted by the plasmon resonance of nano-structured metal thin films. The surface enhancement decays in about 10nm with the distance from the surface and is, thus, perfectly suited to selectively probe monolayers of biomembranes. Peculiar to membrane proteins is their vectorial functionality, the probing of which requires proper orientation within the membrane. To this end, the metal surface used in SEIRAS is chemically modified to generate an oriented membrane protein film. Monolayers of uniformly oriented membrane proteins are formed by tethering His-tagged proteins to a nickel nitrilo-triacetic acid (Ni-NTA) modified gold surface and SEIRAS commands molecular sensitivity to probe each step of surface modification. The solid surface used as plasmonic substrate for SEIRAS, can also be employed as an electrode to investigate systems where electron transfer reactions are relevant, like e.g. cytochrome c oxidase or plant-type photosystems. Furthermore, the interaction of these membrane proteins with water-soluble proteins, like cytochrome c or hydrogenase, is studied on the molecular level by SEIRAS. The impact of the membrane potential on protein functionality is verified by monitoring light-dark difference spectra of a monolayer of sensory rhodopsin (SRII) at different applied potentials. It is demonstrated that the interpretations of all of these experiments critically depend on the orientation of the solid-supported membrane protein. Finally, future directions of SEIRAS including cellular systems are discussed. This article is part of a Special Issue entitled: FTIR in membrane proteins and peptide studies. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. X-RAY ABSORPTION, NUCLEAR INFRARED EMISSION, AND DUST COVERING FACTORS OF AGNs: TESTING UNIFICATION SCHEMES

    Energy Technology Data Exchange (ETDEWEB)

    Mateos, S.; Carrera, F. J.; Alonso-Herrero, A.; Hernán-Caballero, A.; Barcons, X. [Instituto de Física de Cantabria (CSIC-Universidad de Cantabria), E-39005, Santander (Spain); Ramos, A. Asensio; Almeida, C. Ramos [Instituto de Astrofísica de Canarias, E-38205, La Laguna, Tenerife (Spain); Watson, M. G.; Blain, A. [Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Caccianiga, A.; Ballo, L. [INAF-Osservatorio Astronomico di Brera, via Brera 28, I-20121 Milano (Italy); Braito, V., E-mail: mateos@ifca.unican.es [INAF-Osservatorio Astronomico di Brera, Via Bianchi 46, I-23807 Merate (Italy)

    2016-03-10

    We present the distributions of the geometrical covering factors of the dusty tori (f{sub 2}) of active galactic nuclei (AGNs) using an X-ray selected complete sample of 227 AGNs drawn from the Bright Ultra-hard XMM-Newton Survey. The AGNs have z from 0.05 to 1.7, 2–10 keV luminosities between 10{sup 42} and 10{sup 46} erg s{sup −1}, and Compton-thin X-ray absorption. Employing data from UKIDSS, 2MASS, and the Wide-field Infrared Survey Explorer in a previous work, we determined the rest-frame 1–20 μm continuum emission from the torus, which we model here with the clumpy torus models of Nenkova et al. Optically classified type 1 and type 2 AGNs are intrinsically different, with type 2 AGNs having, on average, tori with higher f{sub 2} than type 1 AGNs. Nevertheless, ∼20% of type 1 AGNs have tori with large covering factors, while ∼23%–28% of type 2 AGNs have tori with small covering factors. Low f{sub 2} are preferred at high AGN luminosities, as postulated by simple receding torus models, although for type 2 AGNs the effect is certainly small. f{sub 2} increases with the X-ray column density, which implies that dust extinction and X-ray absorption take place in material that share an overall geometry and most likely belong to the same structure, the putative torus. Based on our results, the viewing angle, AGN luminosity, and also f{sub 2} determine the optical appearance of an AGN and control the shape of the rest-frame ∼1–20 μm nuclear continuum emission. Thus, the torus geometrical covering factor is a key ingredient of unification schemes.

  8. Infrared absorption of CH3OSO detected with time-resolved Fourier-transform spectroscopy.

    Science.gov (United States)

    Chen, Jin-Dah; Lee, Yuan-Pern

    2011-03-07

    A step-scan Fourier-transform spectrometer coupled with a multipass absorption cell was employed to detect temporally resolved infrared absorption spectra of CH(3)OSO produced upon irradiation of a flowing gaseous mixture of CH(3)OS(O)Cl in N(2) or CO(2) at 248 nm. Two intense transient features with origins near 1152 and 994 cm(-1) are assigned to syn-CH(3)OSO; the former is attributed to overlapping bands at 1154 ± 3 and 1151 ± 3 cm(-1), assigned to the S=O stretching mixed with CH(3) rocking (ν(8)) and the S=O stretching mixed with CH(3) wagging (ν(9)) modes, respectively, and the latter to the C-O stretching (ν(10)) mode at 994 ± 6 cm(-1). Two weak bands at 2991 ± 6 and 2956 ± 3 cm(-1) are assigned as the CH(3) antisymmetric stretching (ν(2)) and symmetric stretching (ν(3)) modes, respectively. Observed vibrational transition wavenumbers agree satisfactorily with those predicted with quantum-chemical calculations at level B3P86∕aug-cc-pVTZ. Based on rotational parameters predicted at that level, the simulated rotational contours of these bands agree satisfactorily with experimental results. The simulation indicates that the S=O stretching mode of anti-CH(3)OSO near 1164 cm(-1) likely makes a small contribution to the observed band near 1152 cm(-1). A simple kinetic model of self-reaction is employed to account for the decay of CH(3)OSO and yields a second-order rate coefficient k=(4 ± 2)×10(-10) cm(3)molecule(-1)s(-1). © 2011 American Institute of Physics.

  9. Section on High Resolution Optical Imaging (HROI)

    Data.gov (United States)

    Federal Laboratory Consortium — The Section on High Resolution Optical Imaging (HROI) develops novel technologies for studying biological processes at unprecedented speed and resolution. Research...

  10. Optical absorption and near infrared emission properties of Nd 3+ ions in alkali lead tellurofluoroborate glasses

    Science.gov (United States)

    Saleem, S. A.; Jamalaiah, B. C.; Kumar, J. Suresh; Babu, A. Mohan; Moorthy, L. Rama; Jayasimhadri, M.; Jang, Kiwan; Lee, Ho Sueb; Yi, Soung Soo; Jeong, Jung Hyun

    2009-12-01

    Nd 3+ doped H 3BO 3-PbO-TeO 2-RF (R = Li, Na and K) glasses were prepared through melt quenching technique. Optical absorption and near infrared (NIR) fluorescence spectra were recorded at room temperature. The spectral intensities were analyzed in terms of the Judd-Ofelt (J-O) parameters ( Ω λ = 2, 4, 6). The covalency effect of Nd-O bond on the J-O parameters was estimated from the relative absorbance ratio (R) between 4I 9/2 → 4F 7/2 and 4I 9/2 → 4S 3/2 transitions. The effect of Nd-O covalency on the Ω4 and Ω6 intensity parameters as well as on the spontaneous emission probabilities ( AR) was discussed. Lomheim and Shazer hybrid method was applied to determine the fluorescence branching ratios ( βR) of each emission transition from the 4F 3/2 metastable level to its lower lying levels. The evaluated total radiative transition probabilities ( AT), stimulated emission cross-sections ( σe) and gain bandwidth parameters ( σe × Δ λP) were compared with the earlier reports.

  11. Phase transitions of amorphous solid acetone in confined geometry investigated by reflection absorption infrared spectroscopy.

    Science.gov (United States)

    Shin, Sunghwan; Kang, Hani; Kim, Jun Soo; Kang, Heon

    2014-11-26

    We investigated the phase transformations of amorphous solid acetone under confined geometry by preparing acetone films trapped in amorphous solid water (ASW) or CCl4. Reflection absorption infrared spectroscopy (RAIRS) and temperature-programmed desorption (TPD) were used to monitor the phase changes of the acetone sample with increasing temperature. An acetone film trapped in ASW shows an abrupt change in the RAIRS features of the acetone vibrational bands during heating from 80 to 100 K, which indicates the transformation of amorphous solid acetone to a molecularly aligned crystalline phase. Further heating of the sample to 140 K produces an isotropic solid phase, and eventually a fluid phase near 157 K, at which the acetone sample is probably trapped in a pressurized, superheated condition inside the ASW matrix. Inside a CCl4 matrix, amorphous solid acetone crystallizes into a different, isotropic structure at ca. 90 K. We propose that the molecularly aligned crystalline phase formed in ASW is created by heterogeneous nucleation at the acetone-water interface, with resultant crystal growth, whereas the isotropic crystalline phase in CCl4 is formed by homogeneous crystal growth starting from the bulk region of the acetone sample.

  12. Surface-Enhanced Infrared Absorption of o-Nitroaniline on Nickel Nanoparticles Synthesized by Electrochemical Deposition

    Directory of Open Access Journals (Sweden)

    Yufang Niu

    2014-01-01

    Full Text Available Nickel nanoparticles were electrochemically deposited on indium-tin oxide (ITO coated glass plate in a modified Watt’s electrolyte. The surface-enhanced infrared absorption (SEIRA effect of the nanoparticles was evaluated by attenuated total reflection spectroscopy (ATR-FTIR using o-nitroaniline as a probe molecule. Electrodeposition parameters such as deposition time, pH value, and the type of surfactants were investigated. The morphology and the microstructure of the deposits were characterized by the field emission scanning electron microscope (FESEM and the atomic force microscope (AFM, respectively. The results indicate that the optimum parameters were potential of 1.3 V, time of 30 s, and pH of 8.92 in the solution of 0.3756 mol/L diethanolamine, 0.1 mol/L nickel sulfate, 0.01 mol/L nickel chloride, and 0.05 mol/L boric acid. The FESEM observation shows that the morphology of nickel nanoparticles with best enhancement effect is spherical and narrowly distributed particles with the average size of 50 nm. SEIRA enhancement factor is about 68.

  13. Evaluation of tropospheric water vapor profiling using eye-safe, infrared differential absorption lidar

    Energy Technology Data Exchange (ETDEWEB)

    Rye, B.J. [Colorado Univ., Boulder, CO (United States). Cooperative Inst. for Research in Environmental Sciences]|[National Oceanic and Atmospheric Administration, Boulder, CO (United States). Environmental Technology Lab.; Machol, J.L.; Grund, C.J.; Hardesty, R.M. [National Oceanic and Atmospheric Administration, Boulder, CO (United States). Environmental Technology Lab.

    1996-05-14

    Continuous, high quality profiles of water vapor, free of systematic bias, and of moderate temporal and spatial resolution are fundamental to the success of the ARM CART program. In addition, these should be acquired over long periods at low operational and maintenance cost. The development and verification of realistic climate model parameterizations for clouds and net radiation balance, and the correction of other CART site sensor observations for interferences due to the presence of water vapor are critically dependent on water vapor profile measurements. To date, application of profiles have been limited by vertical resolution and uniqueness and high operating cost, or diminished daytime performance, lack of eye-safety, and high maintenance cost. Recent developments in infrared laser and detector technology make possible compact IR differential absorption lidar (DIAL) systems at eye-safe wavelengths. In the studies reported here, we develop DIAL system performance models and examine the potential of solving some of the shortcomings of previous methods using parameters representative of current technologies. These simulations are also applied to determine the strengths and weaknesses unique to the DIAL method for this application.

  14. Plasmonic nanoantenna array with single-chip integrated metal-organic framework for infrared absorption gas sensing (Conference Presentation)

    Science.gov (United States)

    Chong, Xinyuan; Kim, Ki-Joong; Li, Erwen; Zhang, Yujing; Ohodnicki, Paul R.; Chang, Chih-Hung; Wang, Alan X.

    2017-03-01

    Surface-enhanced infrared absorption (SEIRA) is a spectroscopic technique used to identify molecular fingerprints by resonant detection of infrared vibrational modes through coupling with the plasmonic modes of metallic nanostructures. Many reported works have demonstrated its capability to enhance the infrared absorption of solid or liquid samples. However, this technique has not been successfully applied to gas sensing yet due to the short light-matter interaction length and intrinsically weak absorption of gas compared to solid or liquid materials. Usually, IR gas sensing is conducted in a gas cell with a long absorption path. In the paper, we propose an integrated photonic device to expand the application of SEIRA to gas sensing by combining metal-organic framework (MOF) ZIF-8 (zeolitic imidazole framework) with plasmonic nanoantenna array. The device consists of an Au nanopatch array on sapphire substrate and is covered by a thin layer of MOF material. The MOF thin film, which is a new class of highly nanoporous material, serves as a gas absorber to selectively adsorb and concentrate CO2 from ambient environment into the thin layer, which has a high spatial overlap with the high intensity optical field of the plasmonic nanopatch antenna array. Namely, we can effectively increase the gas molecule concentration at the hot-spots for the SEIRA device. The experimentally demonstrated peak IR enhancement factor of the device for carbon dioxide sensing is over 1,100 times.

  15. Reflectance-mode interferometric near-infrared spectroscopy quantifies brain absorption, scattering, and blood flow index in vivo.

    Science.gov (United States)

    Borycki, Dawid; Kholiqov, Oybek; Srinivasan, Vivek J

    2017-02-01

    Interferometric near-infrared spectroscopy (iNIRS) is a new technique that measures time-of-flight- (TOF-) resolved autocorrelations in turbid media, enabling simultaneous estimation of optical and dynamical properties. Here, we demonstrate reflectance-mode iNIRS for noninvasive monitoring of a mouse brain in vivo. A method for more precise quantification with less static interference from superficial layers, based on separating static and dynamic components of the optical field autocorrelation, is presented. Absolute values of absorption, reduced scattering, and blood flow index (BFI) are measured, and changes in BFI and absorption are monitored during a hypercapnic challenge. Absorption changes from TOF-resolved iNIRS agree with absorption changes from continuous wave NIRS analysis, based on TOF-integrated light intensity changes, an effective path length, and the modified Beer-Lambert Law. Thus, iNIRS is a promising approach for quantitative and noninvasive monitoring of perfusion and optical properties in vivo.

  16. Fundamental constants and high-resolution spectroscopy

    Science.gov (United States)

    Bonifacio, P.; Rahmani, H.; Whitmore, J. B.; Wendt, M.; Centurion, M.; Molaro, P.; Srianand, R.; Murphy, M. T.; Petitjean, P.; Agafonova, I. I.; D'Odorico, S.; Evans, T. M.; Levshakov, S. A.; Lopez, S.; Martins, C. J. A. P.; Reimers, D.; Vladilo, G.

    2014-01-01

    Absorption-line systems detected in high resolution quasar spectra can be used to compare the value of dimensionless fundamental constants such as the fine-structure constant, α, and the proton-to-electron mass ratio, μ = m_p/m_e, as measured in remote regions of the Universe to their value today on Earth. In recent years, some evidence has emerged of small temporal and also spatial variations in α on cosmological scales which may reach a fractional level of ≈ 10 ppm (parts per million). We are conducting a Large Programme of observations with the Very Large Telescope's Ultraviolet and Visual Echelle Spectrograph (UVES), and are obtaining high-resolution ({R ≈ 60 000}) and high signal-to-noise ratio (S/N ≈ 100) spectra calibrated specifically to study the variations of the fundamental constants. We here provide a general overview of the Large Programme and report on the first results for these two constants, discussed in detail in Molaro et al. (2013) and Rahmani et al. (2013). A stringent bound for Δα/α is obtained for the absorber at z_abs = 1.6919 towards HE 2217-2818. The absorption profile is complex with several very narrow features, and is modeled with 32 velocity components. The relative variation in α in this system is +1.3± 2.4_stat ± 1.0_sys ppm if Al II λ 1670 Å and three Fe II transitions are used, and +1.1 ± 2.6_stat ppm in a slightly different analysis with only Fe II transitions used. This is one of the tightest bounds on α-variation from an individual absorber and reveals no evidence for variation in α at the 3-ppm precision level (1σ confidence). The expectation at this sky position of the recently-reported dipolar variation of α is (3.2-5.4)±1.7 ppm depending on dipole model used and this constraint of Δα/α at face value is not supporting this expectation but not inconsistent with it at the 3σ level. For the proton-to-electron mass ratio the analysis of the H_2 absorption lines of the z_abs ≈ 2.4018 damped Lyα system

  17. Superconducting High Resolution Fast-Neutron Spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Hau, Ionel Dragos [Univ. of California, Berkeley, CA (United States)

    2006-01-01

    Superconducting high resolution fast-neutron calorimetric spectrometers based on 6LiF and TiB{sub 2} absorbers have been developed. These novel cryogenic spectrometers measure the temperature rise produced in exothermal (n, α) reactions with fast neutrons in 6Li and 10B-loaded materials with heat capacity C operating at temperatures T close to 0.1 K. Temperature variations on the order of 0.5 mK are measured with a Mo/Cu thin film multilayer operated in the transition region between its superconducting and its normal state. The advantage of calorimetry for high resolution spectroscopy is due to the small phonon excitation energies kBT on the order of μeV that serve as signal carriers, resulting in an energy resolution ΔE ~ (kBT2C)1/2, which can be well below 10 keV. An energy resolution of 5.5 keV has been obtained with a Mo/Cu superconducting sensor and a TiB2 absorber using thermal neutrons from a 252Cf neutron source. This resolution is sufficient to observe the effect of recoil nuclei broadening in neutron spectra, which has been related to the lifetime of the first excited state in 7Li. Fast-neutron spectra obtained with a 6Li-enriched LiF absorber show an energy resolution of 16 keV FWHM, and a response in agreement with the 6Li(n, α)3H reaction cross section and Monte Carlo simulations for energies up to several MeV. The energy resolution of order of a few keV makes this novel instrument applicable to fast-neutron transmission spectroscopy based on the unique elemental signature provided by the neutron absorption and scattering resonances. The optimization of the energy resolution based on analytical and numerical models of the detector response is discussed in the context of these applications.

  18. Experimental Characterization of Near-Infrared Laser Energy Absorption, Scattering, and Transmittance in Biological Tissue

    Science.gov (United States)

    2007-03-01

    upon incident radiation is absorption. Absorption is the process in which radiant energy is absorbed or taken up by a substance. General absorption...absorption. During absorption, the attenuation of the beam results in a transfer of energy to the tissue which is sometimes detected as heat, fluorescence ...water and tissue chromophores that include certain cellular pigments . The natural chromophores present include the biological pigments — specifically

  19. Infrared Pulse-laser Long-path Absorption Measurement of Carbon Dioxide Using a Raman-shifted Dye Laser

    Science.gov (United States)

    Minato, Atsushi; Sugimoto, Nobuo; Sasano, Yasuhiro

    1992-01-01

    A pulsed laser source is effective in infrared laser long-path absorption measurements when the optical path length is very long or the reflection from a hard target is utilized, because higher signal-to-noise ratio is obtained in the detection of weak return signals. We have investigated the performance of a pulse-laser long-path absorption system using a hydrogen Raman shifter and a tunable dye laser pumped by a Nd:YAG laser, which generates second Stokes radiation in the 2-micron region.

  20. High Resolution Measurements and Electronic Structure Calculations of a Diazanaphthalene

    Science.gov (United States)

    Gruet, Sébastien; Goubet, Manuel; Pirali, Olivier

    2014-06-01

    Polycyclic Aromatic Hydrocarbons (PAHs) have long been suspected to be the carriers of so called Unidentified Infrared Bands (UIBs). Most of the results published in the literature report rotationally unresolved spectra of pure carbon as well as heteroatom-containing PAHs species. To date for this class of molecules, the principal source of rotational informations is ruled by microwave (MW) spectroscopy while high resolution measurements reporting rotational structure of the infrared (IR) vibrational bands are very scarce. Recently, some high resolution techniques provided interesting new results to rotationally resolve the IR and far-IR bands of these large carbonated molecules of astrophysical interest. One of them is to use the bright synchrotron radiation as IR continuum source of a high resolution Fourier transform (FTIR) spectrometer. We report the very complementary analysis of the [1,6] naphthyridine (a N-bearing PAH) for which we recorded the microwave spectrum at the PhLAM laboratory (Lille) and the high resolution far-infrared spectrum on the AILES beamline at synchrotron facility SOLEIL. MW spectroscopy provided highly accurate rotational constants in the ground state to perform Ground State Combinations Differences (GSCD) allowing the analysis of the two most intense FT-FIR bands in the 50-900 wn range. Moreover, during this presentation the negative value of the inertial defect in the GS of the molecule will be discussed. A. Leger, J. L. Puget, Astron. Astrophys. 137, L5-L8 (1984) L. J. Allamandola et al. Astrophys. J. 290, L25-L28 (1985). Z. Kisiel et al. J. Mol. Spectrosc. 217, 115 (2003) S. Thorwirth et al. Astrophys. J. 662, 1309 (2007) D. McNaughton et al. J. Chem. Phys. 124, 154305 (2011). S. Albert et al. Faraday Discuss. 150, 71-99 (2011) B. E. Brumfield et al. Phys. Chem. Lett. 3, 1985-1988 (2012) O. Pirali et al. Phys. Chem. Chem. Phys. 15, 10141 (2013).

  1. High resolution imaging of the Venus night side using a Rockwell 128x128 HgCdTe array

    Science.gov (United States)

    Hodapp, K.-W.; Sinton, W.; Ragent, B.; Allen, D.

    1989-01-01

    The University of Hawaii operates an infrared camera with a 128x128 HgCdTe detector array on loan from JPL's High Resolution Imaging Spectrometer (HIRIS) project. The characteristics of this camera system are discussed. The infrared camera was used to obtain images of the night side of Venus prior to and after inferior conjunction in 1988. The images confirm Allen and Crawford's (1984) discovery of bright features on the dark hemisphere of Venus visible in the H and K bands. Our images of these features are the best obtained to date. Researchers derive a pseudo rotation period of 6.5 days for these features and 1.74 microns brightness temperatures between 425 K and 480 K. The features are produced by nonuniform absorption in the middle cloud layer (47 to 57 Km altitude) of thermal radiation from the lower Venus atmosphere (20 to 30 Km altitude). A more detailed analysis of the data is in progress.

  2. High Resolution Global View of Io

    Science.gov (United States)

    1997-01-01

    Io, the most volcanic body in the solar system is seen in the highest resolution obtained to date by NASA's Galileo spacecraft. The smallest features that can be discerned are 2.5 kilometers in size. There are rugged mountains several kilometers high, layered materials forming plateaus, and many irregular depressions called volcanic calderas. Several of the dark, flow-like features correspond to hot spots, and may be active lava flows. There are no landforms resembling impact craters, as the volcanism covers the surface with new deposits much more rapidly than the flux of comets and asteroids can create large impact craters. The picture is centered on the side of Io that always faces away from Jupiter; north is to the top.Color images acquired on September 7, 1996 have been merged with higher resolution images acquired on November 6, 1996 by the Solid State Imaging (CCD) system aboard NASA's Galileo spacecraft. The color is composed of data taken, at a range of 487,000 kilometers, in the near-infrared, green, and violet filters and has been enhanced to emphasize the extraordinary variations in color and brightness that characterize Io's face. The high resolution images were obtained at ranges which varied from 245,719 kilometers to 403,100 kilometers.Launched in October 1989, Galileo entered orbit around Jupiter on December 7, 1995. The spacecraft's mission is to conduct detailed studies of the giant planet, its largest moons and the Jovian magnetic environment. The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  3. Feasibility study of mid-infrared absorption spectroscopy using electrospray ionization

    Science.gov (United States)

    Ahmed, Tahsin; Foster, Erick; Bohn, Paul; Howard, Scott

    2016-09-01

    Precise detection of trace amount of molecules, such as the disease biomarkers present in biofluids or explosive residues, requires high sensitivity detection. electrospray ionization-mass spectrometry (ESI-MS) is a common and effective technique for sensitive trace molecular detection in small-volume liquid samples. In ESI-MS, nano-liter volume samples are ionized and aerosolized by ESI, and fed into MS for mass analysis. ESI-MS has proven to be a reliable ionization technique for coupling liquid phase separations like liquid chromatography (LC) and capillary zone electrophoresis (CE) with the highly specific resolving power of MS. While CE and ESI can be performed on a microfluidic chip having a footprint of a few cm2, MS is typically at least 100 times bigger in size than a micro-chip. A reduced size, weight, and power profile would enable semi-portable applications in forensics, environmental monitoring, defense, and biological/pharmaceutical applications. To achieve this goal, we present an initial study evaluating the use of mid-infrared absorption spectroscopy (MIRAS) in place of MS to create a ESI-MIRAS system. To establish feasibility, we perform ESI-MIRAS on phospholipid samples, which have been previously demonstrated to be separable by CE. Phospholipids are biomarkers of degenerative neurological, kidney, and bone diseases and can be found in biofluids such as blood, urine and cerebrospinal fluid. To establish sensitivity limits, calibration samples of 100 μM concentration are electrospray deposited on to a grounded Si wafer for different times (1 minutes to 4 minutes with a 1 minute step). The minimum detectable concentration-time product, where a FTIR globar is used as the MIR source, is found 200 μM·s.

  4. High-Resolution and Non-destructive Evaluation of the Spatial Distribution of Nitrate and Its Dynamics in Spinach (Spinacia oleracea L.) Leaves by Near-Infrared Hyperspectral Imaging.

    Science.gov (United States)

    Yang, Hao-Yu; Inagaki, Tetsuya; Ma, Te; Tsuchikawa, Satoru

    2017-01-01

    Nitrate is an important component of the nitrogen cycle and is therefore present in all plants. However, excessive nitrogen fertilization results in a high nitrate content in vegetables, which is unhealthy for humans. Understanding the spatial distribution of nitrate in leaves is beneficial for improving nitrogen assimilation efficiency and reducing its content in vegetables. In this study, near-infrared (NIR) hyperspectral imaging was used for the non-destructive and effective evaluation of nitrate content in spinach (Spinacia oleracea L.) leaves. Leaf samples with different nitrate contents were collected under various fertilization conditions, and reference data were obtained using reflectometer apparatus RQflex 10. Partial least squares regression analysis revealed that there was a high correlation between the reference data and NIR spectra (r2 = 0.74, root mean squared error of cross-validation = 710.16 mg/kg). Furthermore, the nitrate content in spinach leaves was successfully mapped at a high spatial resolution, clearly displaying its distribution in the petiole, vein, and blade. Finally, the mapping results demonstrated dynamic changes in the nitrate content in intact leaf samples under different storage conditions, showing the value of this non-destructive tool for future analyses of the nitrate content in vegetables.

  5. High-Resolution and Non-destructive Evaluation of the Spatial Distribution of Nitrate and Its Dynamics in Spinach (Spinacia oleracea L. Leaves by Near-Infrared Hyperspectral Imaging

    Directory of Open Access Journals (Sweden)

    Hao-Yu Yang

    2017-11-01

    Full Text Available Nitrate is an important component of the nitrogen cycle and is therefore present in all plants. However, excessive nitrogen fertilization results in a high nitrate content in vegetables, which is unhealthy for humans. Understanding the spatial distribution of nitrate in leaves is beneficial for improving nitrogen assimilation efficiency and reducing its content in vegetables. In this study, near-infrared (NIR hyperspectral imaging was used for the non-destructive and effective evaluation of nitrate content in spinach (Spinacia oleracea L. leaves. Leaf samples with different nitrate contents were collected under various fertilization conditions, and reference data were obtained using reflectometer apparatus RQflex 10. Partial least squares regression analysis revealed that there was a high correlation between the reference data and NIR spectra (r2 = 0.74, root mean squared error of cross-validation = 710.16 mg/kg. Furthermore, the nitrate content in spinach leaves was successfully mapped at a high spatial resolution, clearly displaying its distribution in the petiole, vein, and blade. Finally, the mapping results demonstrated dynamic changes in the nitrate content in intact leaf samples under different storage conditions, showing the value of this non-destructive tool for future analyses of the nitrate content in vegetables.

  6. A polychromator-type near-infrared spectrometer with a high-sensitivity and high-resolution photodiode array detector for pharmaceutical process monitoring on the millisecond time scale.

    Science.gov (United States)

    Murayama, Kodai; Genkawa, Takuma; Ishikawa, Daitaro; Komiyama, Makoto; Ozaki, Yukihiro

    2013-02-01

    In the fine chemicals industry, particularly in the pharmaceutical industry, advanced sensing technologies have recently begun being incorporated into the process line in order to improve safety and quality in accordance with process analytical technology. For estimating the quality of powders without preparation during drug formulation, near-infrared (NIR) spectroscopy has been considered the most promising sensing approach. In this study, we have developed a compact polychromator-type NIR spectrometer equipped with a photodiode (PD) array detector. This detector is consisting of 640 InGaAs-PD elements with 20-μm pitch. Some high-specification spectrometers, which use InGaAs-PD with 512 elements, have a wavelength resolution of about 1.56 nm when covering 900-1700 nm range. On the other hand, the newly developed detector, having the PD with one of the world's highest density, enables wavelength resolution of below 1.25 nm. Moreover, thanks to the combination with a highly integrated charge amplifier array circuit, measurement speed of the detector is higher by two orders than that of existing PD array detectors. The developed spectrometer is small (120 mm × 220 mm × 200 mm) and light (6 kg), and it contains various key devices including the high-density and high-sensitivity PD array detector, NIR technology, and spectroscopy technology for a spectroscopic analyzer that has the required detection mechanism and high sensitivity for powder measurement, as well as a high-speed measuring function for blenders. Moreover, we have evaluated the characteristics of the developed NIR spectrometer, and the measurement of powder samples confirmed that it has high functionality.

  7. VT Hydrography Dataset - High Resolution NHD

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The Vermont Hydrography Dataset (VHD) is compliant with the local resolution (also known as High Resolution) National Hydrography Dataset (NHD)...

  8. High Resolution Silicon Deformable Mirrors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this proposal we describe a plan to build a deformable mirror suitable for space-based operation in systems for high-resolution imaging. The prototype DM will be...

  9. High Resolution Silicon Deformable Mirrors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal describes a plan to build a prototype small stroke, high precision deformable mirror suitable for space-based operation in systems for high-resolution...

  10. Structure of high-resolution NMR spectra

    CERN Document Server

    Corio, PL

    2012-01-01

    Structure of High-Resolution NMR Spectra provides the principles, theories, and mathematical and physical concepts of high-resolution nuclear magnetic resonance spectra.The book presents the elementary theory of magnetic resonance; the quantum mechanical theory of angular momentum; the general theory of steady state spectra; and multiple quantum transitions, double resonance and spin echo experiments.Physicists, chemists, and researchers will find the book a valuable reference text.

  11. Infrared Spectroscopy of CO Ro-Vibrational Absorption Lines toward the Obscured AGN IRAS 08572+3915

    Science.gov (United States)

    Shirahata, Mai; Nakagawa, Takao; Usuda, Tomonori; Goto, Miwa; Suto, Hiroshi; Geballe, Thomas R.

    2013-02-01

    We present high-resolution spectroscopy of gaseous CO absorption in the fundamental ro-vibrational band toward the heavily obscured active galactic nucleus (AGN) IRAS 08572+3915. We have detected absorption lines up to highly excited rotational levels (J ≤ 17). The velocity profiles reveal three distinct components, the strongest and broadest (Δυ > 200 km s-1) of which is due to blueshifted (-160 km s-1) gas at a temperature of ˜270 K absorbing at velocities as high as -400 km s-1. A much weaker but even warmer (˜700 K) component, which is highly redshifted (+100 km s-1), is also detected, in addition to a cold (˜20 K) component centered at the systemic velocity of the galaxy. On the assumption of local thermodynamic equilibrium, the column density of CO in the 270 K component is NCO ˜4.5 × 1018 cm-2, which in fully molecular gas corresponds to an H2 column density of NH2 ˜ 2.5 × 1022 cm-2. The thermal excitation of CO up to the observed high rotational levels requires a density greater than nc (H2) > 2 × 107cm-3, implying that the thickness of the warm absorbing layer is extremely small (Δd warm components, as well as their temperatures, indicate that they originate in molecular clouds near the central engine of the AGN.

  12. Infrared absorptivities of several diesel engine soots; application to the analysis of soot in used engine oils

    Energy Technology Data Exchange (ETDEWEB)

    Ryason, P.R.; Hillyer, M.J.; Hansen, T.P.

    1994-10-01

    Soot was recovered from end-of-test (EOT) oils from several different Diesel engines. After resuspending the recovered soots in fresh high dispersancy engine oil, the infrared absorptivities of the soots were determined over a range of frequencies. On the basis of a statistical analysis of the data, recommended 1870 c{sup -1} absorptivities for soots from various engine tests are: GM 6.2 L, Mack T-8, Cummins L-10 HST, 59.0 {+-} 0.5; GM 6.2 L, Mack T-8, Caterpillar 3176, 0.02% sulfur fuel, 58.2 {+-} 0.4; Caterpillar 3176, 0.02% sulfur fuel and 0.2% sulfur fuel, 56.7 {+-} 0.3; Caterpillar 3116, 53.3{+-} 0.4 and OM 602A, 47.8 {+-} 0.2. In all cases, the units for the absorptivity are cm{sup -2}/centigram. Over the range of 3800 cm{sup -1} to 1870 cm{sup -1}, the dependence of absorptivity on frequency was linear for all the soots. Use of these absorptivities to determine soot concentrations in used engine oils is discussed. Of particular concern are the procedures required to obtain reproducible results. Special care must be taken to assure compositional uniformity of samples. 6 refs., 6 tabs.

  13. The Near-infrared CO Absorption Band as a Probe to the Innermost Part of an AGN-obscuring Material

    Science.gov (United States)

    Baba, Shunsuke; Nakagawa, Takao; Isobe, Naoki; Shirahata, Mai

    2018-01-01

    We performed a systematic analysis of the 4.67 μm CO ro-vibrational absorption band toward nearby active galactic nuclei (AGNs) and analyzed the absorption profiles of 10 nearby galaxies collected from the AKARI and Spitzer spectroscopic observations that show the CO absorption feature by fitting a plane-parallel local thermal equilibrium gas model. We found that CO gas is warm (200–500 K) and has a large column density ({N}{{H}}≳ {10}23 {{cm}}-2). The heating of the gas is not explicable by either UV heating or shock heating because these processes cannot represent the large column densities of the warm gas. Instead, X-ray photons from the nuclei, which can produce large columns of warm gas with up to {N}{{H}}∼ {10}24 {{cm}}-2, are the most convincing power source. The hydrogen column density estimated from the CO band is smaller than that inferred from X-ray observations. These results indicate that the region probed by the near-infrared CO absorption is in the vicinity of the nuclei and is located outside the X-ray emitting region. Furthermore, the covering factors of nearly unity required by the observed deep absorption profiles suggest that the probed region is close to the continuum source, which can be designated as the inner rim of the obscuring material around the AGN.

  14. POLLUX: A UV High-Resolution Spectropolatimeter for LUVOIR

    Science.gov (United States)

    Bouret, Jean-Claude; Neiner, Coralie; Lopez Ariste, Arturo; Vivès, Sébastien; Muslimov, Eduard; Lopes, Louise; Costeraste, Josiane; Brachet, Frank; POLLUX Consortium

    2018-01-01

    The Large Ultraviolet/Optical/Infrared Surveyor (LUVOIR) is one of four large mission concept studies led by NASA for the 2020 Decadal Survey. A versatile suite of instruments is envisioned for LUVOIR, to advance our understanding of the origin and evolution of galaxies, stars and planets that make up our Universe, and the life within it. We present POLLUX, a high-resolution spectropolarimeter, operating at UV wavelengths, designed for the 15-meter primary mirror option of LUVOIR. POLLUX study is supported by the French Space Agency (CNES) and developed by a European consortium of scientists.POLLUX will operate over a broad spectral range (98 to 390 nm), at high spectral resolution (R = 120,000). This will permit to resolve narrow UV emission and absorption lines, thus to follow the baryon cycle over cosmic time, from galaxies forming stars out of interstellar gas and grains, and stars forming planets, to the various forms of feedback into the interstellar and intergalactic medium (ISM and IGM), and active galactic nuclei (AGN).The most innovative characteristic of POLLUX is its unique spectropolarimetric capability, that will enable detection of the polarized light reflected from Earth-like exoplanets or from their circumplanetary material, and moons, and characterization of the magnetospheres of stars and planets, and their interactions. The magnetospheric properties of planets in the solar system will be accessible to exquisite level of details, while the influence of magnetic fields at the galactic scale and in the IGM will be measured. UV circular and linear polarisation will provide a full picture of magnetic field properties and impact for a variety of media and objects, from AGN outflows to all types of stars. It will probe the physics of accretion disks around young stars and white dwarfs, or supermassive black holes in AGNs, and constrain the properties, especially sphericity, of stellar ejecta and explosions. Since the parameter space opened by POLLUX is

  15. CO adsorption on Pd(100) studied by multimodal ambient pressure X-ray photoelectron and infrared reflection absorption spectroscopies

    Science.gov (United States)

    Head, Ashley R.; Karslıoǧlu, Osman; Gerber, Timm; Yu, Yi; Trotochaud, Lena; Raso, Joseph; Kerger, Philipp; Bluhm, Hendrik

    2017-11-01

    The adsorption of CO on Pd(100) was investigated using simultaneous ambient pressure X-ray photoelectron spectroscopy (APXPS) and infrared reflection absorption infrared spectroscopy (IRRAS). The measurements were performed as a function of CO partial pressures from ultra-high vacuum to 0.5 Torr. Total CO coverages estimated from the complementary APXPS and IRRAS measurements are in good agreement. A signal for atop CO, which is uncommon for Pd(100), was observed in the IRRAS data and was used to identify the C 1 s binding energy of this species. Discerning this binding configuration of CO on the Pd(100) surface at elevated pressures has significance for catalytic reactions involving CO, where bridging CO is often the only configuration considered. We also detail the combined APXPS/IRRAS instrumentation and discuss ways to improve these multimodal measurements, which should have wide applicability across many areas of surface and interface science.

  16. Far-infrared absorption of La1-xCaxMnO3-y at high pressure.

    Science.gov (United States)

    Sacchetti, A; Guidi, M Cestelli; Arcangeletti, E; Nucara, A; Calvani, P; Piccinini, M; Marcelli, A; Postorino, P

    2006-01-27

    The first far-infrared absorption spectra of manganite samples at pressures P up to 10 GPa were obtained on La1-xCaxMnO3-y by use of synchrotron radiation. For x=0.25 and 0.20 (y=0), P promotes partial metallization at room temperature through a strong reduction of the insulating gap. An x=0.20 sample with y=0.08 does not show any charge delocalization effect up to 10 GPa. An Urbach-like model of disordered Jahn-Teller wells is shown to well fit the far-infrared band edge and allows one to obtain a reliable pressure dependence of the energy gap.

  17. Temperatures and Species Concentration in Propellant Dark Zones via Fitting Infrared (IR) Spectral Absorption Data

    National Research Council Canada - National Science Library

    Vanderhoff, J

    1997-01-01

    In a continuing investigation of the dark zone of double-base and nitramine propellants during self-sustained combustion, least-squares fitting has been developed and updated simulations of infrared (IR...

  18. Electromagnetic radiation energy arrangement. [coatings for solar energy absorption and infrared reflection

    Science.gov (United States)

    Lipkis, R. R.; Vehrencamp, J. E. (Inventor)

    1965-01-01

    A solar energy collector and infrared energy reflector is described which comprises a vacuum deposited layer of aluminum of approximately 200 to 400 Angstroms thick on one side of a substrate. An adherent layer of titanium with a thickness of between 800 and 1000 Angstroms is vacuum deposited on the aluminum substrate and is substantially opaque to solar energy and substantially transparent to infrared energy.

  19. Effect of graphene on far-infrared transmission and absorption of FeF2 photonic crystals

    Science.gov (United States)

    Gao, Ying; Zhou, Sheng; Fu, Shufang

    2017-10-01

    The influence of graphene (Gr) on the far-infrared transmission and absorption of FeF2 photonic crystals (PCs) is investigated by the forth-order transfer matrix since Gr is anisotropic when the external field is perpendicular to the surface of PCs. The numerical results show that the transmission and absorption spectra largely depend on the structural symmetry of Gr/FeF2 PCs and the position of Gr layer. The optimal structure and number of dielectric bi-layers (N) are discussed. In addition, the introduction of Gr leads to the disappearance of the defect modes in the band gap. Meanwhile, the line width of absorption around of the resonant frequencies of FeF2 has been extremely broadened, which is compared with the one of FeF2 PCs. Once N is beyond a critical value, the absorber will become the reflector. The effect of Fermi energy and external field on the absorption is also investigated.

  20. Validation of AIRS high-resolution stratospheric temperature retrievals

    Science.gov (United States)

    Meyer, Catrin I.; Hoffmann, Lars

    2014-10-01

    This paper focuses on stratospheric temperature observations by the Atmospheric InfraRed Sounder (AIRS) aboard NASA's Aqua satellite. We validate a nine-year record (2003 - 2011) of data retrieved with a scientific retrieval processor independent from the operational processor operated by NASA. The retrieval discussed here provides stratospheric temperature profiles for each individual AIRS footprint and has nine times better horizontal sampling than the operational data provided by NASA. The high-resolution temperature data are considered optimal for for gravity wave studies. For validation the high-resolution retrieval data are compared with results from the AIRS operational Level-2 data and the ERA-Interim meteorological reanalysis. Due to the large amount of data we performed statistical comparisons of monthly zonal mean cross-sections and time series. The comparisons show that the high-resolution temperature data are in good agreement with the validation data sets. The bias in the zonal averages is mostly within ±2K. The bias reaches a maximum of 7K to ERA-Interim and 4K to the AIRS operational data at the stratopause, it is related to the different resolutions of the data sets. Variability is nearly the same in all three data sets, having maximum standard deviations around the polar vortex in the mid and upper stratosphere. The validation presented here indicates that the high-resolution temperature retrievals are well-suited for scientific studies. In particular, we expect that they will become a valuable asset for future studies of stratospheric gravity waves.

  1. Development of an infrared absorption measurement system for large aperture optics

    Science.gov (United States)

    Chen, Jian; Dong, Jingtao; Li, Bingbing; Wu, Zhouling

    2017-08-01

    Surface absorption defect has significant effects on the laser damage in the high power laser systems. Photothermal absorption measurement system based on the laser induced surface thermal lensing (STL) effect has been widely used in the research on the correlation between laser damage susceptibility and properties of weak absorption defects for small optical specimens. In this paper, we present the progress in the development of an automated measurement system for large aperture optics with a size around 400mm. The wavelength at 1064nm is used as the pump laser to investigate the absorption properties for the inspected site. The system which shows a measurement sensitivity of absorbance down to 0.1 ppm and measurement repeatability of 10% requires little special skills from the operators and is therefore more reliable and reproducible. The specific applications of the system include weak absorption measurement, local absorption defects detection as well as laser-coating-interaction dynamics monitoring. The high sensitive automated system proposed in this work is an effective diagnostic tool for the examination of large aperture optics with desired optical properties.

  2. An infrared metamaterial selective absorber with emitter considering atmospheric absorption for low observability (Conference Presentation)

    Science.gov (United States)

    Kim, Jagyeong; Han, Kiwook; Hahn, Jae W.

    2016-09-01

    Advancement in stealth technology is very crucial for the protection from enemy. Detection of IR electromagnetic wave is performed by detecting the IR radiation from aircraft fuselage or reflected laser by using laser guided missile. In this research, we designed the metamaterial selective absorber with emitter considering atmospheric absorption to minimize observability from these detecting system. The model is designed as T-asymmetric structure for dual-band absorption or emission, and these two parts can be independently tuned. One part is designed as emitter which emit the radiation in the wavelength region where atmospheric absorption is strong. In order to select the target wavelength region, we used the MODTRAN database to calculate the molecular absorption in the atmosphere and strong absorptions occurs at 2μm, 4μm and 5-8μm wavelength regions. The other part is designed as an absorber which absorbs the IR signal from laser guided missile at 1.064μm. Selective emission or absorption at these wavelength region can be achieved by tuning the geometry of the structure. These mechanisms suppose the thermal equilibrium state so that the Kirchhoff law is satisfied. FDTD simulations of the designed structure was conducted to confirm the electromagnetic resonance. Also, we calculated the detected energy from the designed structure and compared with that from conventional aircraft surface. According to the calculation results, the measured signal from the suggested structure decreases to 1/10 of the signal from conventional surface.

  3. Qualitative interpretation of high resolution aeromagnetic (HRAM ...

    African Journals Online (AJOL)

    Qualitative interpretation of high resolution aeromagnetic (HRAM) data from some parts of offshore Niger delta, Nigeria. ... Open Access DOWNLOAD FULL TEXT ... The original raster map, obtained from the Nigeria Geological Survey Agency (NGSA) in half degree sheet, was subjected to qualitative data analysis using the ...

  4. A High-Resolution Stopwatch for Cents

    Science.gov (United States)

    Gingl, Z.; Kopasz, K.

    2011-01-01

    A very low-cost, easy-to-make stopwatch is presented to support various experiments in mechanics. The high-resolution stopwatch is based on two photodetectors connected directly to the microphone input of a sound card. Dedicated free open-source software has been developed and made available to download. The efficiency is demonstrated by a free…

  5. Compressive sensing for high resolution radar imaging

    NARCIS (Netherlands)

    Anitori, L.; Otten, M.P.G.; Hoogeboom, P.

    2010-01-01

    In this paper we present some preliminary results on the application of Compressive Sensing (CS) to high resolution radar imaging. CS is a recently developed theory which allows reconstruction of sparse signals with a number of measurements much lower than what is required by the Shannon sampling

  6. Compact high-resolution spectral phase shaper

    NARCIS (Netherlands)

    Postma, S.; van der Walle, P.; Offerhaus, Herman L.; van Hulst, N.F.

    2005-01-01

    The design and operation of a high-resolution spectral phase shaper with a footprint of only 7×10 cm2 is presented. The liquid-crystal modulator has 4096 elements. More than 600 independent degrees of freedom can be positioned with a relative accuracy of 1 pixel. The spectral shaping of pulses from

  7. High resolution analysis of interphase chromosome domains

    NARCIS (Netherlands)

    Visser, A. E.; Jaunin, F.; Fakan, S.; Aten, J. A.

    2000-01-01

    Chromosome territories need to be well defined at high resolution before functional aspects of chromosome organization in interphase can be explored. To visualize chromosomes by electron microscopy (EM), the DNA of Chinese hamster fibroblasts was labeled in vivo with thymidine analogue BrdU. Labeled

  8. Multiphoton absorption in CsLiB6O10 with femtosecond infrared laser pulses

    Science.gov (United States)

    Reddy, J. N. Babu; Naik, V. B.; Elizabeth, Suja; Bhat, H. L.; Venkatram, N.; Rao, D. Narayana

    2008-09-01

    Nonlinear absorption and refraction characteristics of cesium lithium borate (CsLiB6O10) crystal have been studied using Z-scan technique. Ti:sapphire laser with 110 fs pulse width operating at 800 nm wavelength and pulse repetition rate of 1 kHz is used as the source of photons. Intensity of the laser pulse is varied from 0.541 to 1.283 T W/cm2 to estimate the intensity dependence of multiphoton absorption coefficients. Using the theory of multiphoton absorption proposed by Sutherland [Handbook of Nonlinear Optics, in 2nd ed., edited by D. G. McLean and S. Kirkpatrick, Dekker, New York (2003)], found that open aperture Z-scan data fit well for the five-photon absorption (5PA) process. 5PA coefficients are obtained by fitting the expressions into the open aperture experimental data for various peak intensities (I00). The nonlinear refractive index n2 estimated from closed aperture Z-scan experiment is 1.075×10-4 cm2/T W at an input peak intensity of 0.723 T W/cm2. The above experiment when repeated with a 532 nm, 6 ns pulsed laser led to an irreversible damage of the sample resulting in an asymmetric open aperture Z-scan profile. This indicates that it is not possible to observe multiphoton absorption in this regime of pulse width using 532 nm laser.

  9. CH4 and N2O Measurement Performance with Novel Mid-Infrared Tunable Laser Absorption Spectrometer

    Science.gov (United States)

    Wright, A. O.; Kita, D.

    2011-12-01

    Ongoing activities in the greenhouse gas (GHG) monitoring community have called for greater precision and accuracy in greenhouse gas (GHG) measurements, including CO2, CH4, and N2O. In past years this need has been served by Tunable Diode Laser Absorption Spectroscopy (TDLAS) that accesses near-infrared (NIR) single absorption transitions. We present the results of novel and commercial ready TDLAS spectrometers (the IRIS Series) utilizing mid-infrared (MIR) measurement of CH4 and N2O. Order-of-magnitude higher absorption transition strengths in the MIR compared to the NIR, combined with unique capabilities and selectivity of TDLAS, result in sub-ppb measurement noise for CH4 and N2O. The MIR laser output is generated by a small and rugged difference frequency generation (DFG) platform that uses semiconductor NIR lasers delivered fiber optically into a PPLN crystal. The spectrometer utilizes a multiple pass Herriott cell through which gas is drawn (< 0.5 LPM) by a small internal pump, with a resultant speed of response due to volumetric turnover of < 30 sec. Multiple inlet ports provide ability to sample from multiple points and/or run automated calibration routines. Optical surfaces in contact with the gas are passive and thus tolerant to aging/weathering. Data is presented for cylinder-sourced CH4 and N2O for assessing instrumental precision/variation in real time, and to independently assess the impact of ambient temperature variation on performance stability. Real ambient monitoring scenarios and results are also presented.

  10. Highly efficient absorption of visible and near infrared light in convex gold and nickel grooves

    DEFF Research Database (Denmark)

    Eriksen, René Lynge; Beermann, Jonas; Søndergaard, Thomas

    The realization of nonresonant light absorption with nanostructured metal surfaces by making practical use of nanofocusing optical energy in tapered plasmonic waveguides, is of one of the most fascinating and fundamental phenomena in plasmonics [1,2]. We recently realized broadband light absorpti...

  11. Principal component and sensitivity analysis of cirrus clouds using high-resolution IR radiance spectra: simulations and observations

    Science.gov (United States)

    Eldering, A.; Braverman, A.; Fetzer, E. J.

    2003-01-01

    A set of simulated and observed nadir-oriented high-resolution infrared emission spectra of synthetic cirrus clouds is analyzed to assess the spectrally dependent variability of radiance from the adjustment of some microphysical and bulk cirrus cloud properties.

  12. Fast sequential multi-element determination of Ca, Mg, K, Cu, Fe, Mn and Zn for foliar diagnosis using high-resolution continuum source flame atomic absorption spectrometry: Feasibility of secondary lines, side pixel registration and least-squares background correction

    Science.gov (United States)

    de Oliveira, Silvana Ruella; Raposo, Jorge Luiz, Jr.; Gomes Neto, José Anchieta

    2009-06-01

    The fast sequential multi-element determination of Ca, Mg, K, Cu, Fe, Mn and Zn in plant tissues by high-resolution continuum source flame atomic absorption spectrometry is proposed. For this, the main lines for Cu (324.754 nm), Fe (248.327 nm), Mn (279.482 nm) and Zn (213.857 nm) were selected, and the secondary lines for Ca (239.856 nm), Mg (202.582 nm) and K (404.414 nm) were evaluated. The side pixel registration approach was studied to reduce sensitivity and extend the linear working range for Mg by measuring at wings (202.576 nm; 202.577 nm; 202.578 nm; 202.580 nm; 202.585 nm; 202.586 nm; 202.587 nm; 202.588 nm) of the secondary line. The interference caused by NO bands on Zn at 213.857 nm was removed using the least-squares background correction. Using the main lines for Cu, Fe, Mn and Zn, secondary lines for Ca and K, and line wing at 202.588 nm for Mg, and 5 mL min - 1 sample flow-rate, calibration curves in the 0.1-0.5 mg L - 1 Cu, 0.5-4.0 mg L - 1 Fe, 0.5-4.0 mg L - 1 Mn, 0.2-1.0 mg L - 1 Zn, 10.0-100.0 mg L - 1 Ca, 5.0-40.0 mg L - 1 Mg and 50.0-250.0 mg L - 1 K ranges were consistently obtained. Accuracy and precision were evaluated after analysis of five plant standard reference materials. Results were in agreement at a 95% confidence level (paired t-test) with certified values. The proposed method was applied to digests of sugar-cane leaves and results were close to those obtained by line-source flame atomic absorption spectrometry. Recoveries of Ca, Mg, K, Cu, Fe, Mn and Zn in the 89-103%, 84-107%, 87-103%, 85-105%, 92-106%, 91-114%, 96-114% intervals, respectively, were obtained. The limits of detection were 0.6 mg L - 1 Ca, 0.4 mg L - 1 Mg, 0.4 mg L - 1 K, 7.7 µg L - 1 Cu, 7.7 µg L - 1 Fe, 1.5 µg L - 1 Mn and 5.9 µg L - 1 Zn.

  13. High resolution technology for FPD lithography tools

    Science.gov (United States)

    Yabu, Nobuhiko; Nagai, Yoshiyuki; Tomura, Satoshi; Yoshikawa, Tomohiro

    2013-06-01

    As the resolution of LCD panels adapted for Smartphone and Tablet PC rapidly becomes higher, the performance needed for lithography tools to produce them also becomes higher than ever. To respond to such needs, we have developed new lithography tools for mass production of high resolution LCD panels. We have executed various exposure tests to evaluate their performance. In this paper, we present the results of these tests. By employing higher NA projection optics, high resolution (2.0μm and under) has been achieved. We also present the effect of special illumination and the difference in profile between kinds of photoresist. Furthermore, we also refer what will be needed for masks and blanks in the next generation. To achieve even higher resolution, it is necessary for masks and blanks to have high flatness, low level of defects and small linewidth error.

  14. Ultra-High Resolution Spectroscopic Remote Sensing: A Microscope on Planetary Atmospheres

    Science.gov (United States)

    Kostiuk, Theodor

    2010-01-01

    Remote sensing of planetary atmospheres is not complete without studies of all levels of the atmosphere, including the dense cloudy- and haze filled troposphere, relatively clear and important stratosphere and the upper atmosphere, which are the first levels to experience the effects of solar radiation. High-resolution spectroscopy can provide valuable information on these regions of the atmosphere. Ultra-high spectral resolution studies can directly measure atmospheric winds, composition, temperature and non-thermal phenomena, which describe the physics and chemistry of the atmosphere. Spectroscopy in the middle to long infrared wavelengths can also probe levels where dust of haze limit measurements at shorter wavelength or can provide ambiguous results on atmospheric species abundances or winds. A spectroscopic technique in the middle infrared wavelengths analogous to a radio receiver. infrared heterodyne spectroscopy [1], will be describe and used to illustrate the detailed study of atmospheric phenomena not readily possible with other methods. The heterodyne spectral resolution with resolving power greater than 1,000.000 measures the true line shapes of emission and absorption lines in planetary atmospheres. The information on the region of line formation is contained in the line shapes. The absolute frequency of the lines can be measured to I part in 100 ,000,000 and can be used to accurately measure the Doppler frequency shift of the lines, directly measuring the line-of-sight velocity of the gas to --Im/s precision (winds). The technical and analytical methods developed and used to measure and analyze infrared heterodyne measurements will be described. Examples of studies on Titan, Venus, Mars, Earth, and Jupiter will be presented. 'These include atmospheric dynamics on slowly rotating bodies (Titan [2] and Venus [3] and temperature, composition and chemistry on Mars 141, Venus and Earth. The discovery and studies of unique atmospheric phenomena will also be

  15. Feasibility of tropospheric water vapor profiling using infrared heterodyne differential absorption lidar

    Energy Technology Data Exchange (ETDEWEB)

    Grund, C.J.; Hardesty, R.M. [National Oceanic and Atmospheric Administration Environmental Technology Laboratoy, Boulder, CO (United States); Rye, B.J. [Univ. of Colorado, Boulder, CO (United States)

    1996-04-01

    The development and verification of realistic climate model parameterizations for clouds and net radiation balance and the correction of other site sensor observations for interferences due to the presence of water vapor are critically dependent on water vapor profile measurements. In this study, we develop system performance models and examine the potential of infrared differential absoroption lidar (DIAL) to determine the concentration of water vapor.

  16. Radiation length imaging with high resolution telescopes

    OpenAIRE

    Stolzenberg, U.; Frey, A.; Schwenker, B; Wieduwilt, P.; Marinas, C; Lütticke, F.

    2016-01-01

    The construction of low mass vertex detectors with a high level of system integration is of great interest for next generation collider experiments. Radiation length images with a sufficient spatial resolution can be used to measure and disentangle complex radiation length $X$/$X_0$ profiles and contribute to the understanding of vertex detector systems. Test beam experiments with multi GeV particle beams and high-resolution tracking telescopes provide an opportunity to obtain precise 2D imag...

  17. High Resolution Spectra of HE Detonations

    Science.gov (United States)

    1980-07-07

    region. We shall assume for present purposes that the emissivity of the detonation products of a 50 to 100 lb HE explosion is also in the viciity of... speed . Incorporated in the emulsion layers are dye forming coup- lers which react simultaneously during I , developmentto produce a separate dye S...Best Available Cop 1~EV~ AFTAC-TR-80-24 HIGH RESOLUTION SPECTRA OF HE DETONATIONS HSS Inc 2 Alfred Circle Bedford, MA 01730 7 JULY 1980 AUG 4 9D

  18. High resolution NMR theory and chemical applications

    CERN Document Server

    Becker, Edwin D

    1969-01-01

    High Resolution NMR: Theory and Chemical Applications focuses on the applications of nuclear magnetic resonance (NMR), as well as chemical shifts, lattices, and couplings. The book first offers information on the theory of NMR, including nuclear spin and magnetic moment, spin lattice relaxation, line widths, saturation, quantum mechanical description of NMR, and ringing. The text then ponders on instrumentation and techniques and chemical shifts. Discussions focus on the origin of chemical shifts, reference compounds, empirical correlations of chemical shifts, modulation and phase detection,

  19. Simultaneous measurement of thermal diffusivity and effective infrared absorption coefficient in IR semitransparent and semiconducting n-CdMgSe crystals using photothermal radiometry

    Energy Technology Data Exchange (ETDEWEB)

    Pawlak, M., E-mail: mpawlak@fizyka.umk.pl [Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziądzka 5/7, Toruń (Poland); Maliński, M. [Department of Electronics and Computer Science, Koszalin University of Technology, 2 Śniadeckich St., Koszalin 75-453 (Poland)

    2015-01-10

    Highlights: • The new method of determination of the effective infrared absorption coefficient is presented. • The method can be used for transparent samples for the excitation radiation. • The effect of aluminum foil on the PTR signal in a transmission configuration is discussed. - Abstract: In this paper we propose a new procedure of simultaneous estimation of the effective infrared optical absorption coefficient and the thermal diffusivity of solid state samples using the photothermal infrared radiometry method in the transmission configuration. The proposed procedure relies on the analysis of the frequency dependent signal obtained from the samples covered with thin aluminum foil. This method can be applied for both optically opaque and transparent samples. The proposed method is illustrated with the results of the thermal diffusivity and the effective IR absorption coefficient obtained for several Cd{sub 1−x}Mg{sub x}Se crystals.

  20. Experimental determination of the absolute infrared absorption intensities of formyl radical HCO.

    Science.gov (United States)

    Ryazantsev, Sergey V; Tyurin, Daniil A; Feldman, Vladimir I

    2017-12-05

    Formyl radical HCO is an important reactive intermediate in combustion, atmospheric and extraterrestrial chemistry. Like in the case of other transients, the lack of knowledge of the absolute IR intensities limits the quantitative spectroscopic studies on this species. We report the first experimental determination of the absorption intensities for the fundamental vibrational bands of HCO. The measurements have been performed using matrix-isolation FTIR spectroscopy. Determination of the values was based on the repeated photodissociation and thermal recovery of the HCO radical using the known value of the absorption coefficient of CO. The experimentally determined values (93.2±6.0, 67.2±4.5, and 109.2±6.6kmmol(-1) for the ν1, ν2, and ν3 modes, respectively) have been compared to the calculated IR intensities obtained by DFT and UCCSD(T) computations. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Thermal changes in the absorption spectra of blood with supravascular infrared laser irradiation in vivo

    Science.gov (United States)

    Zalesskaya, G. A.; Astaf'eva, L. G.; Batai, L. E.

    2011-09-01

    We have studied the effect of laser radiation (λ = 1960 nm, power density from 6 to 25 W/cm2) on the absorption spectra of rat blood with supravascular irradiation. We have established that absorption of laser radiation leads to a decrease in the degree of oxygen saturation of mixed venous blood due to its heating. We have estimated the initial heating temperatures of venous blood and the surface of the irradiated tissue using an optothermal model, taking into account the characteristics of the laser radiation and the optical and thermal characteristics of the biological tissue. We consider the effect of radiation-induced thermal dissociation of oxyhemoglobin on the oxygen transport characteristics of the blood and metabolic processes.

  2. Computed tomography measurement of gaseous fuel concentration by infrared laser light absorption

    Science.gov (United States)

    Kawazoe, Hiromitsu; Inagaki, Kazuhisa; Emi, Y.; Yoshino, Fumio

    1997-11-01

    A system to measure gaseous hydrocarbon distributions was devised, which is based on IR light absorption by C-H stretch mode of vibration and computed tomography method. It is called IR-CT method in the paper. Affection of laser light power fluctuation was diminished by monitoring source light intensity by the second IR light detector. Calibration test for methane fuel was carried out to convert spatial data of line absorption coefficient into quantitative methane concentration. This system was applied to three flow fields. The first is methane flow with lifted flame which is generated by a gourd-shaped fuel nozzle. Feasibility of the IR-CT method was confirmed through the measurement. The second application is combustion field with diffusion flame. Calibration to determine absorptivity was undertaken, and measured line absorption coefficient was converted spatial fuel concentration using corresponding temperature data. The last case is modeled in cylinder gas flow of internal combustion engine, where gaseous methane was led to the intake valve in steady flow state. The fuel gas flow simulates behavior of gaseous gasoline which is evaporated at intake valve tulip. Computed tomography measurement of inner flow is essentially difficult because of existence of surrounding wall. In this experiment, IR laser beam was led to planed portion by IR light fiber. It is found that fuel convection by airflow takes great part in air-fuel mixture formation and the developed IR-CT system to measure fuel concentration is useful to analyze air-fuel mixture formation process and to develop new combustors.

  3. A MEMS Infrared Thermopile Fabricated from Silicon-On-Insulator with Phononic Crystal Structures and Carbon Nanotube Absorption Layer

    Science.gov (United States)

    Gray, Kory Forrest

    The goal of this project was to examine the possibility of creating a novel thermal infrared detector based on silicon CMOS technology that has been enhanced by the latest nano-engineering discoveries. Silicon typically is not thought as an efficient thermoelectric material. However recent advancements in nanotechnology have improved the potential for a highly sensitive infrared detector based on nano-structured silicon. The thermal conductivity of silicon has been shown to be reduced from 150 W/mK down to 60 W/mK just by decreasing the scale of the silicon from bulk down to the sub-micron scale. Further reduction of the thermal conductivity has been shown by patterning silicon with a phonon crystal structure which has been reported to have thermal conductivities down to 10 W/mK. The phonon crystal structure consists of a 2D array of holes that are etched into the silicon. The size and pitch of the holes are on the order of the mean free path of the phonons in silicon which is approximately 200-500nm. This particular device had 200nm holes on a 400nm pitch. The Seebeck coefficient of silicon can also be enhanced by the reduction of the material from the bulk to sub-micron scale and with degenerate level doping. The combination of decreased thermal conductivity and increased Seebeck coefficient allow silicon to be a promising material for thermoelectric infrared detectors. The highly doped silicon is desired to reduce the electrical resistance of the device. The low electrical resistance is required to reduce the Johnson noise of the device which is the dominant noise source for most thermal detectors. This project designed a MEMS thermopile using a silicon-on-insulator substrate, and a CMOS compatible process. The basic thermopile consists of a silicon dioxide membrane with phononic crystal patterned silicon thermocouples around the edges of the membrane. Vertical aligned, multi-walled, carbon nanotubes were used as the infrared absorption layer. A MEMS

  4. Characterizing a Quantum Cascade Tunable Infrared Laser Differential Absorption Spectrometer (QC-TILDAS for measurements of atmospheric ammonia

    Directory of Open Access Journals (Sweden)

    R. A. Ellis

    2010-03-01

    Full Text Available A compact, fast-response Quantum Cascade Tunable Infrared Laser Differential Absorption Spectrometer (QC-TILDAS for measurements of ammonia (NH3 has been evaluated under both laboratory and field conditions. Absorption of radiation from a pulsed, thermoelectrically cooled QC laser occurs at reduced pressure in a 0.5 L multiple pass absorption cell with an effective path length of 76 m. Detection is achieved using a thermoelectrically-cooled Mercury Cadmium Telluride (HgCdTe infrared detector. A novel sampling inlet was used, consisting of a short, heated, quartz tube with a hydrophobic coating to minimize the adsorption of NH3 to surfaces. The inlet contains a critical orifice that reduces the pressure, a virtual impactor for separation of particles, and additional ports for delivering NH3-free background air and calibration gas standards. The level of noise in this instrument has been found to be 0.23 ppb at 1 Hz. The sampling technique has been compared to the results of a conventional lead salt Tunable Diode Laser Absorption Spectrometer (TDLAS during a laboratory intercomparison. The effect of humidity and heat on the surface interaction of NH3 with sample tubing was investigated at mixing ratios ranging from 30–1000 ppb. Humidity was seen to worsen the NH3 time response and considerable improvement was observed when using a heated sampling line. A field intercomparison of the QC-TILDAS with a modified Thermo 42CTL chemiluminescence-based analyzer was also performed at Environment Canada's Centre for Atmospheric Research Experiments (CARE in the rural town of Egbert, ON between May–July 2008. Background tests and calibrations using two different permeation tube sources and an NH3 gas cylinder were regularly carried out throughout the study. Results indicate a very good correlation at 1 min time resolution (R2 = 0.93 between the two instruments at the

  5. Comparing the rates of absorption and weight loss during a desorption test using near infrared spectroscopy.

    Science.gov (United States)

    Qassem, M; Kyriacou, P A

    2013-05-01

    The importance of determining skin hydration has over the years prompt the development of many instruments and methods, specifically designed to assess this parameter or water contents especially in the stratum corneum, and have greatly matured to suit different anatomical sites and measure multiple attributes. Of those, Near Infrared Spectroscopy (NIRS) has gained wide interest as a precise, safe, fast and noninvasive technique for determining skin hydration due to its high sensitivity to hydrogen bonding and ability to measure the amount of water in skin directly using the intensities of overtone and combination bands of OH and HOH water bonds occurring in the NIR region, that are good indicators of the state of skin hydration. This paper reports near infrared spectrophotometric measurements using a highly sophisticated spectrophotometer in the region of 1000-2500 nm to study the water uptake and dehydration properties of skin in vitro using samples of porcine skin. Initial results of pure liquid water and skin samples have clearly displayed the prominent bands associated with water content, and desorption tests have been able to verify changes in these bands associated with water content, although a clear correlation between the rates of weight loss and absorbance loss at various hydration periods has not yet been established. These preliminary results are expected to further explain the relationship between water and skin, and its role within, in hope to aid the future development of a portable instrument based on near infrared spectroscopy that would be capable of directly measuring skin hydration and/or water content in a fast and noninvasive manner. © 2013 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd.

  6. Short-wave infrared barriode detectors using InGaAsSb absorption material lattice matched to GaSb

    Energy Technology Data Exchange (ETDEWEB)

    Craig, A. P.; Percy, B.; Marshall, A. R. J. [Physics Department, Lancaster University, Lancaster LA1 4YB (United Kingdom); Jain, M. [Amethyst Research Ltd., Kelvin Campus, West of Scotland Science Park, Glasgow G20 0SP (United Kingdom); Wicks, G.; Hossain, K. [Amethyst Research, Inc., 123 Case Circle, Ardmore, Oklahoma 73401 (United States); Golding, T. [Amethyst Research Ltd., Kelvin Campus, West of Scotland Science Park, Glasgow G20 0SP (United Kingdom); Amethyst Research, Inc., 123 Case Circle, Ardmore, Oklahoma 73401 (United States); McEwan, K.; Howle, C. [Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire SP4 0JQ (United Kingdom)

    2015-05-18

    Short-wave infrared barriode detectors were grown by molecular beam epitaxy. An absorption layer composition of In{sub 0.28}Ga{sub 0.72}As{sub 0.25}Sb{sub 0.75} allowed for lattice matching to GaSb and cut-off wavelengths of 2.9 μm at 250 K and 3.0 μm at room temperature. Arrhenius plots of the dark current density showed diffusion limited dark currents approaching those expected for optimized HgCdTe-based detectors. Specific detectivity figures of around 7×10{sup 10} Jones and 1×10{sup 10} Jones were calculated, for 240 K and room temperature, respectively. Significantly, these devices could support focal plane arrays working at higher operating temperatures.

  7. Interaction of plasma-generated water cluster ions with chemically-modified Si surfaces investigated by infrared absorption spectroscopy

    Directory of Open Access Journals (Sweden)

    Ayumi Hirano-Iwata

    2016-03-01

    Full Text Available We have investigated the interaction of water cluster ions generated by discharge plasma, with chemically modified Si surfaces using infrared absorption spectroscopy in the multiple internal reflection geometry. We observe that water cluster ions readily adsorb on SiO2-covered Si surfaces to form water droplets. We demonstrate that positively- and negatively-charged cluster ions adsorb on the SiO2-covered Si surface in different manners, indicating ionic interaction of the water droplets with the negatively-charged SiO2 surface. Water droplets formed on the protein-coated surface rupture the amide bond of the proteins, suggesting the function of protein decomposition of water cluster ions.

  8. Emergence of Very Broad Infrared Absorption Band By Hyperdoping of Silicon with Chalcogens

    Science.gov (United States)

    2013-06-03

    absorption of sulfur, selenium , and tellurium hyper- doped samples is shown in Figs. 2(a)–2(c), respectively. The ion-implanted dose for these samples was...implanted to a dose of 1 1016 cm2 with sulfur, selenium or tellurium, respectively. Filled symbols in (a) and (b) represent carrier concentration and...temperatures for Si implanted with (a) sulfur, (b) selenium , or (c) tellurium ions to the same dose of 1 1016 cm2, and laser melted. 1/(ad)fc is

  9. Hybrid tandem quantum dot/organic photovoltaic cells with complementary near infrared absorption

    Science.gov (United States)

    Kim, Taesoo; Palmiano, Elenita; Liang, Ru-Ze; Hu, Hanlin; Murali, Banavoth; Kirmani, Ahmad R.; Firdaus, Yuliar; Gao, Yangqin; Sheikh, Arif; Yuan, Mingjian; Mohammed, Omar F.; Hoogland, Sjoerd; Beaujuge, Pierre M.; Sargent, Edward H.; Amassian, Aram

    2017-05-01

    Monolithically integrated hybrid tandem solar cells that effectively combine solution-processed colloidal quantum dot (CQD) and organic bulk heterojunction subcells to achieve tandem performance that surpasses the individual subcell efficiencies have not been demonstrated to date. In this work, we demonstrate hybrid tandem cells with a low bandgap PbS CQD subcell harvesting the visible and near-infrared photons and a polymer:fullerene—poly (diketopyrrolopyrrole-terthiophene) (PDPP3T):[6,6]-phenyl-C60-butyric acid methyl ester (PC61BM)—top cell absorbing effectively the red and near-infrared photons of the solar spectrum in a complementary fashion. The two subcells are connected in series via an interconnecting layer (ICL) composed of a metal oxide layer, a conjugated polyelectrolyte, and an ultrathin layer of Au. The ultrathin layer of Au forms nano-islands in the ICL, reducing the series resistance, increasing the shunt resistance, and enhancing the device fill-factor. The hybrid tandems reach a power conversion efficiency (PCE) of 7.9%, significantly higher than the PCE of the corresponding individual single cells, representing one of the highest efficiencies reported to date for hybrid tandem solar cells based on CQD and polymer subcells.

  10. Hybrid tandem quantum dot/organic photovoltaic cells with complementary near infrared absorption

    KAUST Repository

    Kim, Taesoo

    2017-06-01

    Monolithically integrated hybrid tandem solar cells that effectively combine solution-processed colloidal quantum dot (CQD) and organic bulk heterojunction subcells to achieve tandem performance that surpasses the individual subcell efficiencies have not been demonstrated to date. In this work, we demonstrate hybrid tandem cells with a low bandgap PbS CQD subcell harvesting the visible and near-infrared photons and a polymer:fullerene—poly (diketopyrrolopyrrole-terthiophene) (PDPP3T):[6,6]-phenyl-C60-butyric acid methyl ester (PC61BM)—top cell absorbing effectively the red and near-infrared photons of the solar spectrum in a complementary fashion. The two subcells are connected in series via an interconnecting layer (ICL) composed of a metal oxide layer, a conjugated polyelectrolyte, and an ultrathin layer of Au. The ultrathin layer of Au forms nano-islands in the ICL, reducing the series resistance, increasing the shunt resistance, and enhancing the device fill-factor. The hybrid tandems reach a power conversion efficiency (PCE) of 7.9%, significantly higher than the PCE of the corresponding individual single cells, representing one of the highest efficiencies reported to date for hybrid tandem solar cells based on CQD and polymer subcells.

  11. Time evolution of vibrational temperatures in a CO2 glow discharge measured with infrared absorption spectroscopy

    Science.gov (United States)

    Klarenaar, B. L. M.; Engeln, R.; van den Bekerom, D. C. M.; van de Sanden, M. C. M.; Morillo-Candas, A. S.; Guaitella, O.

    2017-11-01

    Vibrational temperatures of CO2 are studied in a pulsed glow discharge by means of time-resolved in situ Fourier transform infrared spectroscopy, with a 10 μs temporal resolution. A method to analyze the infrared transmittance through vibrationally excited CO2 is presented and validated on a previously published CO2 spectrum, showing good agreement between fit and data. The discharge under study is pulsed with a typical duty cycle of 5–10 ms on–off, at 50 mA and 6.7 mbar. A rapid increase of the temperature of the asymmetric stretch vibration (T 3) is observed at the start of the pulse, reaching 1050 K, which is an elevation of 550 K above the rotational temperature ({T}{{rot}}) of 500 K. After the plasma pulse, the characteristic relaxation time of T 3 to {T}{{rot}} strongly depends on the rotational temperature. By adjusting the duty cycle, the rotational temperature directly after the discharge is varied from 530 to 860 K, resulting in relaxation times between 0.4 and 0.1 ms. Equivalently, as the gas heats up during the plasma pulse, the elevation of T 3 above {T}{{rot}} decreases strongly.

  12. Wavelet-denoising technique in near-infrared methane detection based on tunable diode laser absorption spectroscopy

    Science.gov (United States)

    Gao, Zong-li; Ye, Wei-lin; Zheng, Chuan-tao; Wang, Yi-ding

    2014-07-01

    A novel wavelet denoising (WD) assisted wavelength modulation technique is proposed for improving near-infrared detection performance on methane concentration based on tunable diode laser absorption spectroscopy (TDLAS). Due to the ability of multi-level analytical resolutions both in time- and frequency-domains, the noise contained in the differential signal is greatly suppressed. Sensor mechanical part, optical part and electrical part are integrated, and a portable detection device is finally developed. Theory and formulations of the WD-assisted wavelength modulation technique are presented, and experiments are carried out to prove the normal function on the extraction of the second harmonic (2f) signal from severely polluted differential signal by using the technique. By virtue of WD's suppression on noises, the sensing characteristics on CH4 concentration are improved, and the limit of detection (LOD) is decreased from 4×10-6 (without WD processing) to 10-6. The proposed technique can also be used for the measurement on the concentration of other gases with corresponding near-infrared distributed feedback lasers.

  13. Preparation, Infrared Emissivity, and Dielectric and Microwave Absorption Properties of Fe-Doped ZnO Powder

    Science.gov (United States)

    Su, Xiaolei; Jia, Yan; Liu, Xiaoqin; Wang, Junbo; Xu, Jie; He, Xinhai; Fu, Chong; Liu, Songtao

    2014-11-01

    Fe-doped ZnO powders have been synthesized by the coprecipitation method using zinc nitrate [Zn(NO3)2·6H2O] as starting material, urea [CO(NH2)2] as precipitator, and ferric nitrate [Fe(NO3)3·9H2O] as doping source. The microstructure of the prepared powders has been characterized by x-ray diffraction and scanning electron microscopy. Results show that, when the molar ratio of Fe to (Zn + Fe) was less than 0.09, the prepared powder was ZnO(Fe) solid solution, and the ZnFe2O4 impurity phase appeared when the Fe doping content was further increased. The electric permittivity in the frequency range of 8.2 GHz to 12.4 GHz and the average infrared emissivity in the wavelength range of 8 μm to 14 μm have been determined for the prepared powders. The average infrared emissivity decreased with increasing Fe doping content. The real ( ɛ') and imaginary part ( ɛ″) of the permittivity of the prepared powders showed opposite trends. When the molar ratio of Fe to (Zn + Fe) was 0.03, the prepared Fe-doped ZnO powder demonstrated the best microwave absorption in the frequency range of 8.2 GHz to 12.4 GHz.

  14. Determination of blue-light-induced infrared absorption based on mode-matching efficiency in an optical parametric oscillator

    Science.gov (United States)

    Wang, Yajun; Yang, Wenhai; Li, Zhixiu; Zheng, Yaohui

    2017-02-01

    Non-classical squeezed states of light at a compatible atomic wavelength have a potential application in quantum information protocols for quantum states delaying or storaging. An optical parametric oscillator (OPO) with periodically poled potassium titanyl phosphate (PPKTP) is the most effective method for generating this squeezed state. However, it is a challege for the nonlinear interaction in PPKTP crystal at the D1 line of rubidium atomic, due to a strong blue-light-induced infrared absorption (BLIIRA). In this paper, we report an indirect measurement method for the BLIIRA through measuring the mode-matching efficiency in an optical parametric oscillator. In contrast to previous works, our method is not limited by the absolute power variation induced from the change of frequency conversion loss and the impedance matching originated from the change of absorption loss. Therefore, the measurement process is performed at the phase-matching condition. The measured results show that BLIIRA coefficient is quadratic dependence of blue light intensity below 1 kW per square centimeter in our PPKTP device, which will provide important basis for optimizing squeezed state generation at 795 nm.

  15. A mid-infrared carbon monoxide sensor system using wideband absorption spectroscopy and a single-reflection spherical optical chamber

    Science.gov (United States)

    Dong, Ming; Zheng, Chuantao; Miao, Shuzhuo; Song, Fang; Wang, Yiding

    2017-09-01

    A mid-infrared carbon monoxide (CO) sensor system based on a dual-channel differential detection method was developed using a broadband light source in the 4.60 μm wavelength region and a single-reflection spherical optical chamber with ∼0.373 m absorption path length. CO detection was realized by targeting the wideband strong absorption lines within 4.55-4.65 μm. A dual-channel pyroelectric detector as well as a self-developed digital signal processor (DSP) based orthogonal lock-in amplifier was employed to process CO sensing signal. A minimum detection limit of ∼0.5 ppm in volume (ppmv) was achieved with a measurement time of 6 s, based on an Allan deviation analysis of the sensor system. The response time (1000 → 0 ppmv) was determined to be ∼7 s for the CO sensor operation. Due to the characteristics of low detection limit, fast response time and high cost performance, the proposed sensor has relatively good prospect in coal-mining operation.

  16. Ultra-high resolution coded wavefront sensor

    KAUST Repository

    Wang, Congli

    2017-06-08

    Wavefront sensors and more general phase retrieval methods have recently attracted a lot of attention in a host of application domains, ranging from astronomy to scientific imaging and microscopy. In this paper, we introduce a new class of sensor, the Coded Wavefront Sensor, which provides high spatio-temporal resolution using a simple masked sensor under white light illumination. Specifically, we demonstrate megapixel spatial resolution and phase accuracy better than 0.1 wavelengths at reconstruction rates of 50 Hz or more, thus opening up many new applications from high-resolution adaptive optics to real-time phase retrieval in microscopy.

  17. High resolution extremity CT for biomechanics modeling

    Energy Technology Data Exchange (ETDEWEB)

    Ashby, A.E.; Brand, H.; Hollerbach, K.; Logan, C.M.; Martz, H.E.

    1995-09-23

    With the advent of ever more powerful computing and finite element analysis (FEA) capabilities, the bone and joint geometry detail available from either commercial surface definitions or from medical CT scans is inadequate. For dynamic FEA modeling of joints, precise articular contours are necessary to get appropriate contact definition. In this project, a fresh cadaver extremity was suspended in parafin in a lucite cylinder and then scanned with an industrial CT system to generate a high resolution data set for use in biomechanics modeling.

  18. Detailed mitochondrial phenotyping by high resolution metabolomics.

    Directory of Open Access Journals (Sweden)

    James R Roede

    Full Text Available Mitochondrial phenotype is complex and difficult to define at the level of individual cell types. Newer metabolic profiling methods provide information on dozens of metabolic pathways from a relatively small sample. This pilot study used "top-down" metabolic profiling to determine the spectrum of metabolites present in liver mitochondria. High resolution mass spectral analyses and multivariate statistical tests provided global metabolic information about mitochondria and showed that liver mitochondria possess a significant phenotype based on gender and genotype. The data also show that mitochondria contain a large number of unidentified chemicals.

  19. A Portable, High Resolution, Surface Measurement Device

    Science.gov (United States)

    Ihlefeld, Curtis M.; Burns, Bradley M.; Youngquist, Robert C.

    2012-01-01

    A high resolution, portable, surface measurement device has been demonstrated to provide micron-resolution topographical plots. This device was specifically developed to allow in-situ measurements of defects on the Space Shuttle Orbiter windows, but is versatile enough to be used on a wide variety of surfaces. This paper discusses the choice of an optical sensor and then the decisions required to convert a lab bench optical measurement device into an ergonomic portable system. The necessary trade-offs between performance and portability are presented along with a description of the device developed to measure Orbiter window defects.

  20. A synchrotron infrared absorption study of pressure induced polymerization of acrylamide

    Science.gov (United States)

    Bhatt, Himal; Deo, M. N.

    2017-10-01

    The hydrogen bonded dimeric structure of the model amide based molecular crystal acrylamide has been investigated under pressure using micro-spectroscopy, employing synchrotron infrared radiation up to 24 GPa at room temperature. The high pressure spectra indicate systematic evolution of new features above 4 GPa, which have been identified to be due to the emergence of a polymeric phase. The polymerization gets completed up to 16.8 GPa and the observed changes are found to be irreversible upon the release of pressure. The behavior of Nsbnd H stretching modes indicate that the uniform inter- and intra-dimeric interactions, rather than depicting a drastic reconstruction across the phase transition, show subtle modifications and become diverse in the high pressure polymeric phase.

  1. SiO2/bi-layer GZO/Ag structures for near-infrared broadband wide-angle perfect absorption

    Science.gov (United States)

    Zhu, Chaoting; Li, Jia; Yang, Ye; Huang, Jinhua; Lu, Yuehui; Zhao, Xunna; Tan, Ruiqin; Dai, Ning; Song, Weijie

    2016-10-01

    In this work, near-infrared (NIR) perfect absorbers with a silicon dioxide (SiO2)/gallium-doped zinc oxide (GZO)/silver (Ag) multi-layer structure were designed and experimentally demonstrated. The results show that a broadband perfect absorption (PA) from 1.24 µm to 1.49 µm was achieved by adopting bi-layer GZO thin films with different carrier concentrations. This absorption remained higher than 97% for incident angles up to 60°. The perfect NIR absorber reported here has a simple structure as well as broadband and wide-angle absorption features, which is promising for practical applications.

  2. The ultrafast nonlinear optical response and multi-photon absorption of a new metal complex in the near-infrared spectral range

    Science.gov (United States)

    Kiran, A. J.; Lee, H. W.; Sampath Kumar, H. C.; Rudresha, B. J.; Bhat, B. R.; Yeom, D.-I.; Kim, K.; Rotermund, F.

    2010-03-01

    A new coordination compound, chloro(1,10-phenanthroline-N, N')(triphenylphosphine)copper(I) dichloromethane, incorporated in poly(methyl methacrylate) exhibits superior nonlinear optical properties in the near-infrared spectral region. Its nonlinear response time and third-order nonlinear optical susceptibility at 800 nm are <= 90 fs and 1.8 × 10 - 10 esu, respectively. Considerable nonlinear absorption is observed with this sample, near 800 and 1250 nm. The contribution of the excited states to the total nonlinear absorption process is discussed. The results reveal the potential of this newly designed compound for multi-photon absorption-based photonic applications.

  3. Photolysis of nitric acid in solid argon: The infrared absorption of peroxynitrous acid (HOONO)

    Energy Technology Data Exchange (ETDEWEB)

    Bingming Cheng; Jengwen Lee; Yuanpern Lee (National Tsing Hua Univ., Hsinchu (Taiwan))

    1991-04-04

    Nitric acid (HONO{sub 2}) in solid argon at 12 K was irradiated with ultraviolet light from various sources. Recombination of the fragments OH and NO{sub 2} from photolysis within the argon lattice site has led to the formation of peroxynitrous acid (HOONO). IR absorption lines at 3545.5, 1703.6, 1364.4, 952.0, and 772.8 cm{sup {minus}1} have been assigned to this molecule on the basis of isotopic shifts. Under certain conditions the lines at 3563.3, 1708.3, 1372.7, 957.4, and 782.9 cm{sup {minus}1} were also observed, and they have been attributed to HOONO in a less stable matrix site. The observed vibrational frequencies are in agreement with recent theoretical calculations on HOONO. The implication of the formation of HOONO from HONO{sub 2} to atmospheric chemistry is also discussed.

  4. High-Resolution PET Detector. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Karp, Joel

    2014-03-26

    The objective of this project was to develop an understanding of the limits of performance for a high resolution PET detector using an approach based on continuous scintillation crystals rather than pixelated crystals. The overall goal was to design a high-resolution detector, which requires both high spatial resolution and high sensitivity for 511 keV gammas. Continuous scintillation detectors (Anger cameras) have been used extensively for both single-photon and PET scanners, however, these instruments were based on NaI(Tl) scintillators using relatively large, individual photo-multipliers. In this project we investigated the potential of this type of detector technology to achieve higher spatial resolution through the use of improved scintillator materials and photo-sensors, and modification of the detector surface to optimize the light response function.We achieved an average spatial resolution of 3-mm for a 25-mm thick, LYSO continuous detector using a maximum likelihood position algorithm and shallow slots cut into the entrance surface.

  5. Principles of high resolution NMR in solids

    CERN Document Server

    Mehring, Michael

    1983-01-01

    The field of Nuclear Magnetic Resonance (NMR) has developed at a fascinating pace during the last decade. It always has been an extremely valuable tool to the organic chemist by supplying molecular "finger print" spectra at the atomic level. Unfortunately the high resolution achievable in liquid solutions could not be obtained in solids and physicists and physical chemists had to live with unresolved lines open to a wealth of curve fitting procedures and a vast amount of speculations. High resolution NMR in solids seemed to be a paradoxon. Broad structure­ less lines are usually encountered when dealing with NMR in solids. Only with the recent advent of mUltiple pulse, magic angle, cross-polarization, two-dimen­ sional and multiple-quantum spectroscopy and other techniques during the last decade it became possible to resolve finer details of nuclear spin interactions in solids. I have felt that graduate students, researchers and others beginning to get involved with these techniques needed a book which trea...

  6. Limiting liability via high resolution image processing

    Energy Technology Data Exchange (ETDEWEB)

    Greenwade, L.E.; Overlin, T.K.

    1996-12-31

    The utilization of high resolution image processing allows forensic analysts and visualization scientists to assist detectives by enhancing field photographs, and by providing the tools and training to increase the quality and usability of field photos. Through the use of digitized photographs and computerized enhancement software, field evidence can be obtained and processed as `evidence ready`, even in poor lighting and shadowed conditions or darkened rooms. These images, which are most often unusable when taken with standard camera equipment, can be shot in the worst of photographic condition and be processed as usable evidence. Visualization scientists have taken the use of digital photographic image processing and moved the process of crime scene photos into the technology age. The use of high resolution technology will assist law enforcement in making better use of crime scene photography and positive identification of prints. Valuable court room and investigation time can be saved and better served by this accurate, performance based process. Inconclusive evidence does not lead to convictions. Enhancement of the photographic capability helps solve one major problem with crime scene photos, that if taken with standard equipment and without the benefit of enhancement software would be inconclusive, thus allowing guilty parties to be set free due to lack of evidence.

  7. High-Resolution Scintimammography: A Pilot Study

    Energy Technology Data Exchange (ETDEWEB)

    Rachel F. Brem; Joelle M. Schoonjans; Douglas A. Kieper; Stan Majewski; Steven Goodman; Cahid Civelek

    2002-07-01

    This study evaluated a novel high-resolution breast-specific gamma camera (HRBGC) for the detection of suggestive breast lesions. Methods: Fifty patients (with 58 breast lesions) for whom a scintimammogram was clinically indicated were prospectively evaluated with a general-purpose gamma camera and a novel HRBGC prototype. The results of conventional and high-resolution nuclear studies were prospectively classified as negative (normal or benign) or positive (suggestive or malignant) by 2 radiologists who were unaware of the mammographic and histologic results. All of the included lesions were confirmed by pathology. Results: There were 30 benign and 28 malignant lesions. The sensitivity for detection of breast cancer was 64.3% (18/28) with the conventional camera and 78.6% (22/28) with the HRBGC. The specificity with both systems was 93.3% (28/30). For the 18 nonpalpable lesions, sensitivity was 55.5% (10/18) and 72.2% (13/18) with the general-purpose camera and the HRBGC, respectively. For lesions 1 cm, 7 of 15 were detected with the general-purpose camera and 10 of 15 with the HRBGC. Four lesions (median size, 8.5 mm) were detected only with the HRBGC and were missed by the conventional camera. Conclusion: Evaluation of indeterminate breast lesions with an HRBGC results in improved sensitivity for the detection of cancer, with greater improvement shown for nonpalpable and 1-cm lesions.

  8. Ultra-multiband absorption enhancement of graphene in a metal-dielectric-graphene sandwich structure covering terahertz to mid-infrared regime.

    Science.gov (United States)

    Wang, Zongpeng; Hou, Yumin

    2017-08-07

    We investigate the absorption enhancement of an unstructured graphene sheet in a broad frequency range from terahertz (THz) to mid-infrared regime. Ultra-multiband graphene absorption enhancement is observed by integrating graphene in a metal-dielectric-graphene (MDG) sandwich structure for polarized waves. Multiple order Fabry-Perot (FP) resonances are demonstrated to be responsible for the multiband absorption. Furthermore, perfect absorption is realized by introducing the MDG structure on a metal reflector to suppress the transmission channel. In addition, the absorption peaks can be easily tuned by changing the doping level of graphene. This work may have potential for improving the performance of graphene based optoelectrical devices and can be regarded as a demonstration of a tunable broadband near-perfect metamaterial absorber.

  9. Hydrogen as a Modifier of the Structure and Electronic Properties of Platinum in Acidic Zeolite. LTL: A Combined Infrared and X-ray Absorption Spectroscopy Study.

    NARCIS (Netherlands)

    Koningsberger, D.C.; Vaarkamp, M.; Mojet, B.L.; Kappers, M.J.; Miller, J.T.

    1995-01-01

    The structure and electronic properties of platinum in WH-LTL after reduction at 300 'C and heating in helium to 500 or 690 'C were determined using X-ray absorption and infrared spectroscopy. After reduction at 300 'C, the platinum particles were metallic, consisted of 4 or 5 atoms, and were

  10. Influence of temperature on water and aqueous glucose absorption spectra in the near- and mid-infrared regions at physiologically relevant temperatures

    DEFF Research Database (Denmark)

    Jensen, P.S.; Bak, J.; Andersson-Engels, S.

    2003-01-01

    Near- and mid-infrared absorption spectra of pure water and aqueous 1.0 g/dL glucose solutions in the wavenumber range 8000-950 cm(-1) were measured in the temperature range 30-42 C in steps of 2 degreesC. Measurements were carried out with an FT-IR spectrometer and a variable pathlength transmis...

  11. Infrared absorption, laser excitation and crystal-field analyses of the C-4v symmetry centre in KY3F10 doped with Pr3+

    NARCIS (Netherlands)

    Wells, J. P. R.; Yamaga, M.; Han, T. P. J.; Gallagher, H. G.

    2000-01-01

    We report a comprehensive spectroscopic study of KY3F10 doped with trivalent praseodymium. Employing both infrared absorption and laser excited fluorescence spectroscopy, we have constructed an energy level scheme of 39 crystal-field states. A C-4v symmetry, conventional crystal-field analysis can

  12. High resolution solar observations from first principles to applications

    Science.gov (United States)

    Verdoni, Angelo P.

    2009-10-01

    polarization optics for the Visible-light Imaging Magnetograph (VIM) is presented. VIM uses a set of two Liquid Crystal Variable Retarders (LCVRs) as the main components of its Stokes analyzer. Calibration of these components is a crucial step in providing reliable polarimetric measurements of the Sun using VIM. On 2007 July 15, using the Dunn Solar Telescope (DST) at the National Solar Observatory at Sacramento Peak (NSO/SP), New Mexico, the first polarimetric measurements using VIM were made. As a final step, illustrating an application of high-resolution solar observations, the results of a two-dimensional time-series acquired on 2006 June 11, using the DST at NSOP is presented. The data is used in a study of upflow events that are observed to occur in the Halpha 656.3 nm and Na D2 589.0 nm chromospheric absorption lines.

  13. A prototype stationary Fourier transform spectrometer for near-infrared absorption spectroscopy.

    Science.gov (United States)

    Li, Jinyang; Lu, Dan-feng; Qi, Zhi-mei

    2015-09-01

    A prototype stationary Fourier transform spectrometer (FTS) was constructed with a fiber-coupled lithium niobate (LiNbO3) waveguide Mach-Zehnder interferometer (MZI) for the purpose of rapid on-site spectroscopy of biological and chemical measurands. The MZI contains push-pull electrodes for electro-optic modulation, and its interferogram as a plot of intensity against voltage was obtained by scanning the modulating voltage from -60 to +60 V in 50 ms. The power spectrum of input signal was retrieved by Fourier transform processing of the interferogram combined with the wavelength dispersion of half-wave voltage determined for the MZI used. The prototype FTS operates in the single-mode wavelength range from 1200 to 1700 nm and allows for reproducible spectroscopy. A linear concentration dependence of the absorbance at λmax = 1451 nm for water in ethanolic solution was obtained using the prototype FTS. The near-infrared spectroscopy of solid samples was also implemented, and the different spectra obtained with different materials evidenced the chemical recognition capability of the prototype FTS. To make this prototype FTS practically applicable, work on improving its spectral resolution by increasing the maximum optical path length difference is in progress.

  14. Infrared absorption of cis-cis peroxynitrous acid (HOONO) in solid argon

    Science.gov (United States)

    Lo, Wen-Jui; Lee, Yuan Pern

    1994-10-01

    Nitric acid (HONO2) isolated in solid argon at 12 K was irradiated with 193 nm emission from an ArF excimer laser. Recombination of the photofragments led to formation of peroxynitrous acid (HOONO) in various conformers. In addition to previously reported lines due to trans-perp HOONO, lines at 3285.4, 1600.3, 1395.0, 927.2, 794.3, and 629.1 cm-1 were observed; they are assigned to cis-cis HOONO having a five-membered hydrogen-bonded ring. The observed vibrational frequencies and the corresponding isotopic shifts of both conformers are in agreement with recent theoretical calculations. Cis-cis HOONO was photolyzed much more rapidly than trans-perp HOONO upon irradiation at 308 nm with a XeCl laser. Lines due to a HO2...NO complex were also observed; they disappeared upon irradiation with the globar source of the infrared spectrometer. The mechanism of formation of various conformers of HOONO is discussed.

  15. Diamond-coated ATR prism for infrared absorption spectroscopy of surface-modified diamond nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Remes, Z., E-mail: remes@fzu.cz [Institute of Physics of the ASCR, v.v.i., Cukrovarnicka 10, Praha 6 (Czech Republic); Kozak, H.; Rezek, B.; Ukraintsev, E.; Babchenko, O.; Kromka, A. [Institute of Physics of the ASCR, v.v.i., Cukrovarnicka 10, Praha 6 (Czech Republic); Girard, H.A.; Arnault, J.-C.; Bergonzo, P. [CEA, LIST, Diamond Sensors Laboratory, F-91191 Gif-sur-Yvette (France)

    2013-04-01

    Linear antenna microwave chemical vapor deposition process was used to homogeneously coat a 7 cm long silicon prism by 85 nm thin nanocrystalline diamond (NCD) layer. To show the advantages of the NCD-coated prism for attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) of nanoparticles, we apply diamond nanoparticles (DNPs) of 5 nm nominal size with various surface modifications by a drop-casting of their methanol dispersions. ATR-FTIR spectra of as-received, air-annealed, plasma-oxidized, and plasma-hydrogenated DNPs were measured in the 4000–1500 cm{sup −1} spectral range. The spectra show high spectral resolution, high sensitivity to specific DNP surface moieties, and repeatability. The NCD coating provides mechanical protection against scratching and chemical stability of the surface. Moreover, unlike on bare Si surface, NCD hydrophilic properties enable optically homogeneous coverage by DNPs with some aggregation on submicron scale as evidenced by scanning electron microscopy and atomic force microscopy. Compared to transmission FTIR regime with KBr pellets, direct and uniform deposition of DNPs on NCD-ATR prism significantly simplifies and speeds up the analysis (from days to minutes). We discuss prospects for in situ monitoring of surface modifications and molecular grafting.

  16. Mid-infrared carbon monoxide detection system using differential absorption spectroscopy technique

    Science.gov (United States)

    Dong, Ming; Sui, Yue; Li, Guo-lin; Zheng, Chuan-tao; Chen, Mei-mei; Wang, Yi-ding

    2015-11-01

    A differential carbon monoxide (CO) concentration sensing device using a self-fabricated spherical mirror (e.g. light-collector) and a multi-pass gas-chamber is presented in this paper. Single-source dual-channel detection method is adopted to suppress the interferences from light source, optical path and environmental changes. Detection principle of the device is described, and both the optical part and the electrical part are developed. Experiments are carried out to evaluate the sensing performance on CO concentration. The results indicate that at 1.013×105 Pa and 298 K, the limit of detection (LoD) is about 11.5 mg/m3 with an absorption length of 40 cm. As the gas concentration gets larger than 115 mg/m3 (1.013×105 Pa, 298 K), the relative detection error falls into the range of -1.7%—+1.9%. Based on 12 h long-term measurement on the 115 mg/m3 and 1 150 mg/m3 CO samples, the maximum detection errors are about 0.9% and 5.5%, respectively. Due to the low cost and competitive characteristics, the proposed device shows potential applications in CO detection in the circumstances of coal-mine production and environmental protection.

  17. Cavity-Enhanced Near-Infrared Laser Absorption Spectrometer for the Measurement of Acetonitrile in Breath.

    Science.gov (United States)

    Gianella, Michele; Ritchie, Grant A D

    2015-07-07

    Elevated concentrations of acetonitrile have been found in the exhaled breath of patients with cystic fibrosis1 and may indicate the severity of their condition or the presence of an accompanying bacterial infection of the airways. There is therefore interest in detecting acetonitrile in exhaled breath. For this purpose, a cavity-enhanced laser absorption spectrometer (λ = 1.65 μm) with a preconcentration stage was built and is described here. The spectrometer has a limit of detection of 72 ppbv and 114 ppbv of acetonitrile in nitrogen and breath, respectively, with a measurement duration of just under 5 min. The preconcentration stage, which employs a carbon molecular sieve and an adsorption/thermal desorption cycle, can increase the acetonitrile concentration by up to a factor 93, thus, lowering the overall limit of detection to approximately 1 ppbv. The suitability of the system for acetonitrile measurements in breath is demonstrated with breath samples taken from the authors, which yielded acetonitrile concentrations of 23 ± 3 ppbv and 29 ± 3 ppbv, respectively.

  18. On the Role of Inertial Effects and Dipole-Dipole Coupling in the Theory of the Debye and Far-Infrared Absorption of Polar Fluids

    Science.gov (United States)

    Coffey, W. T.; Corcoran, P. M.; Evans, M. W.

    1987-03-01

    The theory of dielectric relaxation of an assembly of molecules containing rotating polar groups, originally developed by Budo, is extended to include inertial effects. It is shown that the inclusion of these effects gives rise to a resonance absorption in the far infrared band of frequencies. To obtain analytical formulae for the polarizability and the absorption coefficient the system is first treated in the harmonic approximation. Nonlinear effects are then taken account of by using the averaging method of Krylov and Bogoliubov. Inclusion of these effects indicates that the frequency of maximum far-infrared power absorption should decrease as the temperature increases in qualitative agreement with experimental findings. Also the nonlinear effects cause the angularvelocity correlation functions to become less oscillatory as temperature is increased. The present treatment gives rise to equations that in the harmonic approximation are formally similar to those of the itinerant oscillator model.

  19. High-Resolution Broadband Spectral Interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Erskine, D J; Edelstein, J

    2002-08-09

    We demonstrate solar spectra from a novel interferometric method for compact broadband high-resolution spectroscopy. The spectral interferometer (SI) is a hybrid instrument that uses a spectrometer to externally disperse the output of a fixed-delay interferometer. It also has been called an externally dispersed interferometer (EDI). The interferometer can be used with linear spectrometers for imaging spectroscopy or with echelle spectrometers for very broad-band coverage. EDI's heterodyning technique enhances the spectrometer's response to high spectral-density features, increasing the effective resolution by factors of several while retaining its bandwidth. The method is extremely robust to instrumental insults such as focal spot size or displacement. The EDI uses no moving parts, such as purely interferometric FTS spectrometers, and can cover a much wider simultaneous bandpass than other internally dispersed interferometers (e.g. HHS or SHS).

  20. Development of New High Resolution Neutron Detector

    Science.gov (United States)

    Mostella, L. D., III; Rajabali, M.; Loureiro, D. P.; Grzywacz, R.

    2017-09-01

    Beta-delayed neutron emission is a prevalent form of decay for neutron-rich nuclei. This occurs when an unstable nucleus undergoes beta decay, but produces a daughter nucleus in an excited state above the neutron separation energy. The daughter nucleus then de-excites by ejecting one or more neutrons. We wish to map the states from which these nuclei decay via neutron spectroscopy using NEXT, a new high resolution neutron detector. NEXT utilizes silicon photomultipliers and 6 mm thick pulse-shape discriminating plastic scintillators, allowing for smaller and more compact modular geometries in the NEXT array. Timing measurements for the detector were performed and a resolution of 893 ps (FWHM) has been achieved so far. Aspects of the detector that were investigated and will be presented here include scintillator geometry, wrapping materials, fitting functions for the digitized signals, and electronic components coupled to the silicon photomultipliers for signal shaping.

  1. High Resolution, High Frame Rate Video Technology

    Science.gov (United States)

    1990-01-01

    Papers and working group summaries presented at the High Resolution, High Frame Rate Video (HHV) Workshop are compiled. HHV system is intended for future use on the Space Shuttle and Space Station Freedom. The Workshop was held for the dual purpose of: (1) allowing potential scientific users to assess the utility of the proposed system for monitoring microgravity science experiments; and (2) letting technical experts from industry recommend improvements to the proposed near-term HHV system. The following topics are covered: (1) State of the art in the video system performance; (2) Development plan for the HHV system; (3) Advanced technology for image gathering, coding, and processing; (4) Data compression applied to HHV; (5) Data transmission networks; and (6) Results of the users' requirements survey conducted by NASA.

  2. High Resolution Regional Climate Simulations over Alaska

    Science.gov (United States)

    Monaghan, A. J.; Clark, M. P.; Arnold, J.; Newman, A. J.; Musselman, K. N.; Barlage, M. J.; Xue, L.; Liu, C.; Gutmann, E. D.; Rasmussen, R.

    2016-12-01

    In order to appropriately plan future projects to build and maintain infrastructure (e.g., dams, dikes, highways, airports), a number of U.S. federal agencies seek to better understand how hydrologic regimes may shift across the country due to climate change. Building on the successful completion of a series of high-resolution WRF simulations over the Colorado River Headwaters and contiguous USA, our team is now extending these simulations over the challenging U.S. States of Alaska and Hawaii. In this presentation we summarize results from a newly completed 4-km resolution WRF simulation over Alaska spanning 2002-2016 at 4-km spatial resolution. Our aim is to gain insight into the thermodynamics that drive key precipitation processes, particularly the extremes that are most damaging to infrastructure.

  3. High-Resolution Movement EEG Classification

    Directory of Open Access Journals (Sweden)

    Jakub Štastný

    2007-01-01

    Full Text Available The aim of the contribution is to analyze possibilities of high-resolution movement classification using human EEG. For this purpose, a database of the EEG recorded during right-thumb and little-finger fast flexion movements of the experimental subjects was created. The statistical analysis of the EEG was done on the subject's basis instead of the commonly used grand averaging. Statistically significant differences between the EEG accompanying movements of both fingers were found, extending the results of other so far published works. The classifier based on hidden Markov models was able to distinguish between movement and resting states (classification score of 94–100%, but it was unable to recognize the type of the movement. This is caused by the large fraction of other (nonmovement related EEG activities in the recorded signals. A classification method based on advanced EEG signal denoising is being currently developed to overcome this problem.

  4. Improved methods for high resolution electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, J.R.

    1987-04-01

    Existing methods of making support films for high resolution transmission electron microscopy are investigated and novel methods are developed. Existing methods of fabricating fenestrated, metal reinforced specimen supports (microgrids) are evaluated for their potential to reduce beam induced movement of monolamellar crystals of C/sub 44/H/sub 90/ paraffin supported on thin carbon films. Improved methods of producing hydrophobic carbon films by vacuum evaporation, and improved methods of depositing well ordered monolamellar paraffin crystals on carbon films are developed. A novel technique for vacuum evaporation of metals is described which is used to reinforce microgrids. A technique is also developed to bond thin carbon films to microgrids with a polymer bonding agent. Unique biochemical methods are described to accomplish site specific covalent modification of membrane proteins. Protocols are given which covalently convert the carboxy terminus of papain cleaved bacteriorhodopsin to a free thiol. 53 refs., 19 figs., 1 tab.

  5. High resolution multimodal clinical ophthalmic imaging system.

    Science.gov (United States)

    Mujat, Mircea; Ferguson, R Daniel; Patel, Ankit H; Iftimia, Nicusor; Lue, Niyom; Hammer, Daniel X

    2010-05-24

    We developed a multimodal adaptive optics (AO) retinal imager which is the first to combine high performance AO-corrected scanning laser ophthalmoscopy (SLO) and swept source Fourier domain optical coherence tomography (SSOCT) imaging modes in a single compact clinical prototype platform. Such systems are becoming ever more essential to vision research and are expected to prove their clinical value for diagnosis of retinal diseases, including glaucoma, diabetic retinopathy (DR), age-related macular degeneration (AMD), and retinitis pigmentosa. The SSOCT channel operates at a wavelength of 1 microm for increased penetration and visualization of the choriocapillaris and choroid, sites of major disease activity for DR and wet AMD. This AO system is designed for use in clinical populations; a dual deformable mirror (DM) configuration allows simultaneous low- and high-order aberration correction over a large range of refractions and ocular media quality. The system also includes a wide field (33 deg.) line scanning ophthalmoscope (LSO) for initial screening, target identification, and global orientation, an integrated retinal tracker (RT) to stabilize the SLO, OCT, and LSO imaging fields in the presence of lateral eye motion, and a high-resolution LCD-based fixation target for presentation of visual cues. The system was tested in human subjects without retinal disease for performance optimization and validation. We were able to resolve and quantify cone photoreceptors across the macula to within approximately 0.5 deg (approximately 100-150 microm) of the fovea, image and delineate ten retinal layers, and penetrate to resolve features deep into the choroid. The prototype presented here is the first of a new class of powerful flexible imaging platforms that will provide clinicians and researchers with high-resolution, high performance adaptive optics imaging to help guide therapies, develop new drugs, and improve patient outcomes.

  6. High-resolution transcriptome of human macrophages.

    Directory of Open Access Journals (Sweden)

    Marc Beyer

    Full Text Available Macrophages are dynamic cells integrating signals from their microenvironment to develop specific functional responses. Although, microarray-based transcriptional profiling has established transcriptional reprogramming as an important mechanism for signal integration and cell function of macrophages, current knowledge on transcriptional regulation of human macrophages is far from complete. To discover novel marker genes, an area of great need particularly in human macrophage biology but also to generate a much more thorough transcriptome of human M1- and M1-like macrophages, we performed RNA sequencing (RNA-seq of human macrophages. Using this approach we can now provide a high-resolution transcriptome profile of human macrophages under classical (M1-like and alternative (M2-like polarization conditions and demonstrate a dynamic range exceeding observations obtained by previous technologies, resulting in a more comprehensive understanding of the transcriptome of human macrophages. Using this approach, we identify important gene clusters so far not appreciated by standard microarray techniques. In addition, we were able to detect differential promoter usage, alternative transcription start sites, and different coding sequences for 57 gene loci in human macrophages. Moreover, this approach led to the identification of novel M1-associated (CD120b, TLR2, SLAMF7 as well as M2-associated (CD1a, CD1b, CD93, CD226 cell surface markers. Taken together, these data support that high-resolution transcriptome profiling of human macrophages by RNA-seq leads to a better understanding of macrophage function and will form the basis for a better characterization of macrophages in human health and disease.

  7. High-Resolution Transcriptome of Human Macrophages

    Science.gov (United States)

    Xue, Jia; Staratschek-Jox, Andrea; Vorholt, Daniela; Krebs, Wolfgang; Sommer, Daniel; Sander, Jil; Mertens, Christina; Nino-Castro, Andrea; Schmidt, Susanne V.; Schultze, Joachim L.

    2012-01-01

    Macrophages are dynamic cells integrating signals from their microenvironment to develop specific functional responses. Although, microarray-based transcriptional profiling has established transcriptional reprogramming as an important mechanism for signal integration and cell function of macrophages, current knowledge on transcriptional regulation of human macrophages is far from complete. To discover novel marker genes, an area of great need particularly in human macrophage biology but also to generate a much more thorough transcriptome of human M1- and M1-like macrophages, we performed RNA sequencing (RNA-seq) of human macrophages. Using this approach we can now provide a high-resolution transcriptome profile of human macrophages under classical (M1-like) and alternative (M2-like) polarization conditions and demonstrate a dynamic range exceeding observations obtained by previous technologies, resulting in a more comprehensive understanding of the transcriptome of human macrophages. Using this approach, we identify important gene clusters so far not appreciated by standard microarray techniques. In addition, we were able to detect differential promoter usage, alternative transcription start sites, and different coding sequences for 57 gene loci in human macrophages. Moreover, this approach led to the identification of novel M1-associated (CD120b, TLR2, SLAMF7) as well as M2-associated (CD1a, CD1b, CD93, CD226) cell surface markers. Taken together, these data support that high-resolution transcriptome profiling of human macrophages by RNA-seq leads to a better understanding of macrophage function and will form the basis for a better characterization of macrophages in human health and disease. PMID:23029029

  8. High-resolution Doppler model of the human gait

    Science.gov (United States)

    Geisheimer, Jonathan L.; Greneker, Eugene F., III; Marshall, William S.

    2002-07-01

    A high resolution Doppler model of the walking human was developed for analyzing the continuous wave (CW) radar gait signature. Data for twenty subjects were collected simultaneously using an infrared motion capture system along with a two channel 10.525 GHz CW radar. The motion capture system recorded three-dimensional coordinates of infrared markers placed on the body. These body marker coordinates were used as inputs to create the theoretical Doppler output using a model constructed in MATLAB. The outputs of the model are the simulated Doppler signals due to each of the major limbs and the thorax. An estimated radar cross section for each part of the body was assigned using the Lund & Browder chart of estimated body surface area. The resultant Doppler model was then compared with the actual recorded Doppler gait signature in the frequency domain using the spectrogram. Comparison of the two sets of data has revealed several identifiable biomechanical features in the radar gait signature due to leg and body motion. The result of the research shows that a wealth of information can be unlocked from the radar gait signature, which may be useful in security and biometric applications.

  9. Simulation of near-infrared light absorption considering individual head and prefrontal cortex anatomy: implications for optical neuroimaging.

    Directory of Open Access Journals (Sweden)

    Florian B Haeussinger

    Full Text Available Functional near-infrared spectroscopy (fNIRS is an established optical neuroimaging method for measuring functional hemodynamic responses to infer neural activation. However, the impact of individual anatomy on the sensitivity of fNIRS measuring hemodynamics within cortical gray matter is still unknown. By means of Monte Carlo simulations and structural MRI of 23 healthy subjects (mean age: 25.0±2.8 years, we characterized the individual distribution of tissue-specific NIR-light absorption underneath 24 prefrontal fNIRS channels. We, thereby, investigated the impact of scalp-cortex distance (SCD, frontal sinus volume as well as sulcal morphology on gray matter volumes (V(gray traversed by NIR-light, i.e. anatomy-dependent fNIRS sensitivity. The NIR-light absorption between optodes was distributed describing a rotational ellipsoid with a mean penetration depth of (23.6±0.7 mm considering the deepest 5% of light. Of the detected photon packages scalp and bone absorbed (96.4±9.7% and V(gray absorbed (3.1±1.8% of the energy. The mean V(gray volume (1.1±0.4 cm3 was negatively correlated (r=-.76 with the SCD and frontal sinus volume (r=-.57 and was reduced by 41.5% in subjects with relatively large compared to small frontal sinus. Head circumference was significantly positively correlated with the mean SCD (r=.46 and the traversed frontal sinus volume (r=.43. Sulcal morphology had no significant impact on V(gray. Our findings suggest to consider individual SCD and frontal sinus volume as anatomical factors impacting fNIRS sensitivity. Head circumference may represent a practical measure to partly control for these sources of error variance.

  10. Infrared Measurements of Atmospheric Constituents

    Science.gov (United States)

    Murcray, Frank J.

    1998-01-01

    This research program studies atmospheric trace gas concentrations and altitude distributions, particularly for those gases that are important in stratospheric chemistry and radiative balance. Measurements are made with infrared remote sensing instruments, either ground based or balloon-borne. Most of the ground based instruments are part of the Network for Detection of Stratospheric Change (NDSC), including a very high spectral resolution solar absorption spectrometer at Mauna Loa Observatory and similar system at McMurdo Station, Antarctica (operated in collaboration with the New Zealand NIWA). Additionally, we are deriving stratospheric constituent data from the spectra obtained at the DOE Atmospheric Radiation Measurements (ARM) program's site in north-central Oklahoma. We have an atmospheric emission spectrometer system at the South Pole (with additional support from NSF), and an identical NSF support instrument at Eureka, NWT, Canada. Our balloon-borne instruments include a very high resolution solar absorption spectrometer system, a smaller, slightly lower resolution solar spectrometer system, a high resolution atmospheric emission spectrometer, and several medium resolution emission spectrometers (CAESRs) that are usually flown piggyback. During the past year, we participated in the MANTRA balloon flight from Saskatoon, Saskatchewan, with the high resolution solar spectrometer system. Several of our instruments were extensively compared to (UARS) Upper Atmosphere Research Satellite observations, and so provide a data set with known connections to UARS. In the longer term, the data can be used to relate UARS data to (EOS) Earth Observing System and (ADEOS) Advanced Airborne Earth Observing System.

  11. Frequency combs enable rapid and high-resolution multidimensional coherent spectroscopy

    Science.gov (United States)

    Lomsadze, Bachana; Cundiff, Steven T.

    2017-09-01

    Dual laser frequency combs can rapidly measure high-resolution linear absorption spectra. However, one-dimensional linear techniques cannot distinguish the sources of resonances in a mixture of different analytes, nor can they separate inhomogeneous and homogeneous broadening. Here, we overcame these limitations by acquiring high-resolution multidimensional nonlinear coherent spectra with frequency combs. We experimentally differentiated and assigned the Doppler-broadened features of two naturally occurring isotopes of rubidium atoms (87Rb and 85Rb) according to the placement of their hyperfine energy states in a two-dimensional spectrum.

  12. Fourier Transform Infrared Absorption Spectroscopy for Quantitative Analysis of Gas Mixtures at Low Temperatures for Homeland Security Applications.

    Science.gov (United States)

    Meier, D C; Benkstein, K D; Hurst, W S; Chu, P M

    2017-05-01

    Performance standard specifications for point chemical vapor detectors are established in ASTM E 2885-13 and ASTM E 2933-13. The performance evaluation of the detectors requires the accurate delivery of known concentrations of the chemical target to the system under test. Referee methods enable the analyte test concentration and associated uncertainties in the analyte test concentration to be validated by independent analysis, which is especially important for reactive analytes. This work extends the capability of a previously demonstrated method for using Fourier transform infrared (FT-IR) absorption spectroscopy for quantitatively evaluating the composition of vapor streams containing hazardous materials at Acute Exposure Guideline Levels (AEGL) to include test conditions colder than laboratory ambient temperatures. The described method covers the use of primary reference spectra to establish analyte concentrations, the generation of secondary reference spectra suitable for measuring analyte concentrations under specified testing environments, and the use of additional reference spectra and spectral profile strategies to mitigate the uncertainties due to impurities and water condensation within the low-temperature (7 °C, -5 °C) test cell. Important benefits of this approach include verification of the test analyte concentration with characterized uncertainties by in situ measurements co-located with the detector under test, near-real-time feedback, and broad applicability to toxic industrial chemicals.

  13. A broadband ultrafast transient absorption spectrometer covering the range from near-infrared (NIR) down to green.

    Science.gov (United States)

    Schmidhammer, Uli; Jeunesse, Pierre; Stresing, Gerhard; Mostafavi, Mehran

    2014-01-01

    We present a new development for pump-probe absorption spectroscopy that allows the simultaneous measurement from the green part of the visible spectrum (510 nm) over the whole near-infrared range to >1600 nm, corresponding to 0.77-2.40 eV. The system is based on a sub-picosecond supercontinuum generated in bulk material used as a broadband probe that is dispersed with a custom-made prism spectrometer and detected by an InGaAs array with extended sensitivity to the visible. Two versions, with and without probe referencing, are implemented for operation at laser repetition rates of a few hertz and kilohertz, respectively. After presentation of the optical configuration of the spectrometer, its performance is characterized and further illustrated on two time scales, with the ultrafast radiolysis of isopropanol induced by a picosecond electron pulse and with the instantaneous response of a BK7 plate to a femtosecond light pulse. The photophysics of the dye IR-140 is resolved from the femto- to picosecond regime. Stable and easy day-to-day routine use of the spectrometer also can be achieved in non-optical laboratory surroundings. For operation in a hazardous environment, the optical probe beams can be transported to the detector unit by optical fibers.

  14. Potential drug – nanosensor conjugates: Raman, infrared absorption, surface – enhanced Raman, and density functional theory investigations of indolic molecules

    Energy Technology Data Exchange (ETDEWEB)

    Pięta, Ewa, E-mail: Ewa.Pieta@ifj.edu.pl [Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Krakow (Poland); Paluszkiewicz, Czesława [Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Krakow (Poland); Oćwieja, Magdalena [J. Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, PL-30239 Krakow (Poland); Kwiatek, Wojciech M. [Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Krakow (Poland)

    2017-05-15

    Highlights: • Molecular fragments involved in the adsorption process were determined. • Formation of hydrogen bonds with the negatively charged gold substrates was observed. • Indole moiety strongly interacts with gold nanosensors. • The synthesized sensors are characterized by high stability and reproducibility. • Chemical mechanism plays a crucial role in the enhancement of the Raman signal. - Abstract: An extremely important aspect of planning cancer treatment is not only the drug efficiency but also a number of challenges associated with the side effects and control of this process. That is why it is worth paying attention to the promising potential of the gold nanoparticles combined with a compound treated as a potential drug. This work presents Raman (RS), infrared absorption (IR) and surface–enhanced Raman scattering (SERS) spectroscopic investigations of N–acetyl–5–methoxytryptamine (melatonin) and α–methyl–DL–tryptophan, regarding as anti breast cancer agents. The experimental spectroscopic analysis was supported by the quantum-chemical calculations based on the B3LYP hybrid density functional theory (DFT) at the B3LYP 6–311G(d,p) level of theory. The studied compounds were adsorbed onto two colloidal gold nanosensors synthesized by a chemical reduction method using sodium borohydride (SB) and trisodium citrate (TC), respectively. Its morphology characteristics were obtained using transmission electron microscopy (TEM). It has been suggested that the NH moiety from the aromatic ring, a well-known proton donor, causes the formation of hydrogen bonds with the negatively charged gold surface.

  15. Forensic discrimination of three common brands of kitchen knives in China by ICP-AES and infrared absorption.

    Science.gov (United States)

    Bai, Ru-feng; Ma, Shu-hua; Zhang, Hai-dong; Chang, Lin; Zhang, Zhong; Liu, Li; Zhang, Feng-qin; Guo, Zhao-ming; Shi, Mei-sen

    2014-03-01

    A block of an injury instrument will be left in wounds sometimes, and the suspect instrument can be discriminated by comparison with the block that was left through elemental analysis. In this study, three brands (Shibazi, Zhangxiaoquan, Qiaoxifu) of kitchen knives with forged, chop, and slice application series were analyzed by inductively coupled plasma atomic emission spectroscopy (ICP-AES) and Infrared Absorption to investigate the type, number of elements and the reference range used for comparing. The results show that when regarding one or more element as the discriminative threshold, together with 5% relative standard deviation (RSD) as the reference range, all the samples could be distinguished among different series. Furthermore, within the same series, the discriminative capability could reach up to 88.57% for all samples. In addition, elements with high content, such as Cr, Mn, and C, were useful to discriminate among different series, and trace elements, such as Ni, Si, and Cu, were useful within the same series. However, in practice, it is necessary to evaluate the accuracy of the method by Standard Reference Material (SRM) before an examination is performed.

  16. Demonstration of a portable near-infrared CH4 detection sensor based on tunable diode laser absorption spectroscopy

    Science.gov (United States)

    Zheng, Chuan-Tao; Huang, Jian-Qiang; Ye, Wei-Lin; Lv, Mo; Dang, Jing-Min; Cao, Tian-Shu; Chen, Chen; Wang, Yi-Ding

    2013-11-01

    A portable near-infrared (NIR) CH4 detection sensor based on a distributed feedback (DFB) laser modulated at 1.654 μm is experimentally demonstrated. Intelligent temperature controller with an accuracy of -0.07 to +0.09 °C as well as a scan and modulation module generating saw-wave and cosine-wave signals are developed to drive the DFB laser, and a cost effective lock-in amplifier used to extract the second harmonic signal is integrated. Thorough experiments are carried out to obtain detection performances, including detection range, accuracy, stability and the minimum detection limit (MDL). Measurement results show that the absolute detection error relative to the standard value is less than 7% within the range of 0-100%, and the MDL is estimated to be about 11 ppm under an absorption length of 0.2 m and a noise level of 2 mVpp. Twenty-four hours monitoring on two gas samples (0.1% and 20%) indicates that the absolute errors are less than 7% and 2.5%, respectively, suggesting good long term stability. The sensor reveals competitive characteristics compared with other reported portable or handheld sensors. The developed sensor can also be used for the detection of other gases by adopting other DFB lasers with different center-wavelength using the same hardware and slightly modified software.

  17. Potential drug - nanosensor conjugates: Raman, infrared absorption, surface - enhanced Raman, and density functional theory investigations of indolic molecules

    Science.gov (United States)

    Pięta, Ewa; Paluszkiewicz, Czesława; Oćwieja, Magdalena; Kwiatek, Wojciech M.

    2017-05-01

    An extremely important aspect of planning cancer treatment is not only the drug efficiency but also a number of challenges associated with the side effects and control of this process. That is why it is worth paying attention to the promising potential of the gold nanoparticles combined with a compound treated as a potential drug. This work presents Raman (RS), infrared absorption (IR) and surface-enhanced Raman scattering (SERS) spectroscopic investigations of N-acetyl-5-methoxytryptamine (melatonin) and α-methyl-DL-tryptophan, regarding as anti breast cancer agents. The experimental spectroscopic analysis was supported by the quantum-chemical calculations based on the B3LYP hybrid density functional theory (DFT) at the B3LYP 6-311G(d,p) level of theory. The studied compounds were adsorbed onto two colloidal gold nanosensors synthesized by a chemical reduction method using sodium borohydride (SB) and trisodium citrate (TC), respectively. Its morphology characteristics were obtained using transmission electron microscopy (TEM). It has been suggested that the NH moiety from the aromatic ring, a well-known proton donor, causes the formation of hydrogen bonds with the negatively charged gold surface.

  18. Integrated High Resolution Monitoring of Mediterranean vegetation

    Science.gov (United States)

    Cesaraccio, Carla; Piga, Alessandra; Ventura, Andrea; Arca, Angelo; Duce, Pierpaolo; Mereu, Simone

    2017-04-01

    The study of the vegetation features in a complex and highly vulnerable ecosystems, such as Mediterranean maquis, leads to the need of using continuous monitoring systems at high spatial and temporal resolution, for a better interpretation of the mechanisms of phenological and eco-physiological processes. Near-surface remote sensing techniques are used to quantify, at high temporal resolution, and with a certain degree of spatial integration, the seasonal variations of the surface optical and radiometric properties. In recent decades, the design and implementation of global monitoring networks involved the use of non-destructive and/or cheaper approaches such as (i) continuous surface fluxes measurement stations, (ii) phenological observation networks, and (iii) measurement of temporal and spatial variations of the vegetation spectral properties. In this work preliminary results from the ECO-SCALE (Integrated High Resolution Monitoring of Mediterranean vegetation) project are reported. The project was manly aimed to develop an integrated system for environmental monitoring based on digital photography, hyperspectral radiometry , and micrometeorological techniques during three years of experimentation (2013-2016) in a Mediterranean site of Italy (Capo Caccia, Alghero). The main results concerned the analysis of chromatic coordinates indices from digital images, to characterized the phenological patterns for typical shrubland species, determining start and duration of the growing season, and the physiological status in relation to different environmental drought conditions; then the seasonal patterns of canopy phenology, was compared to NEE (Net Ecosystem Exchange) patterns, showing similarities. However, maximum values of NEE and ER (Ecosystem respiration), and short term variation, seemed mainly tuned by inter annual pattern of meteorological variables, in particular of temperature recorded in the months preceding the vegetation green-up. Finally, green signals

  19. High resolution measurement of the glycolytic rate

    Directory of Open Access Journals (Sweden)

    Carla X Bittner

    2010-09-01

    Full Text Available The glycolytic rate is sensitive to physiological activity, hormones, stress, aging and malignant transformation. Standard techniques to measure the glycolytic rate are based on radioactive isotopes, are not able to resolve single cells and have poor temporal resolution, limitations that hamper the study of energy metabolism in the brain and other organs. A new method is described in this article, which makes use of a recently-developed FRET glucose nanosensor to measure the rate of glycolysis in single cells with high temporal resolution. Used in cultured astrocytes, the method showed for the first time that glycolysis can be activated within seconds by a combination of glutamate and K+, supporting a role for astrocytes in neurometabolic and neurovascular coupling in the brain. It was also possible to make a direct comparison of metabolism in neurons and astrocytes lying in close proximity, paving the way to a high-resolution characterization of brain energy metabolism. Single-cell glycolytic rates were also measured in fibroblasts, adipocytes, myoblasts and tumor cells, showing higher rates for undifferentiated cells and significant metabolic heterogeneity within cell types. This method should facilitate the investigation of tissue metabolism at the single-cell level and is readily adaptable for high-throughput analysis.

  20. High resolution quantum metrology via quantum interpolation

    Science.gov (United States)

    Ajoy, Ashok; Liu, Yixiang; Saha, Kasturi; Marseglia, Luca; Jaskula, Jean-Christophe; Cappellaro, Paola

    2016-05-01

    Nitrogen Vacancy (NV) centers in diamond are a promising platform for quantum metrology - in particular for nanoscale magnetic resonance imaging to determine high resolution structures of single molecules placed outside the diamond. The conventional technique for sensing of external nuclear spins involves monitoring the effects of the target nuclear spins on the NV center coherence under dynamical decoupling (the CPMG/XY8 pulse sequence). However, the nuclear spin affects the NV coherence only at precise free evolution times - and finite timing resolution set by hardware often severely limits the sensitivity and resolution of the method. In this work, we overcome this timing resolution barrier by developing a technique to supersample the metrology signal by effectively implementing a quantum interpolation of the spin system dynamics. This method will enable spin sensing at high magnetic fields and high repetition rate, allowing significant improvements in sensitivity and spectral resolution. We experimentally demonstrate a resolution boost by over a factor of 100 for spin sensing and AC magnetometry. The method is shown to be robust, versatile to sensing normal and spurious signal harmonics, and ultimately limited in resolution only by the number of pulses that can be applied.

  1. AIRBORNE HIGH-RESOLUTION DIGITAL IMAGING SYSTEM

    Directory of Open Access Journals (Sweden)

    Prado-Molina, J.

    2006-04-01

    Full Text Available A low-cost airborne digital imaging system capable to perform aerial surveys with small-format cameras isintroduced. The equipment is intended to obtain high-resolution multispectral digital photographs constituting so aviable alternative to conventional aerial photography and satellite imagery. Monitoring software handles all theprocedures involved in image acquisition, including flight planning, real-time graphics for aircraft position updatingin a mobile map, and supervises the main variables engaged in the imaging process. This software also creates fileswith the geographical position of the central point of every image, and the flight path followed by the aircraftduring the entire survey. The cameras are mounted on a three-axis stabilized platform. A set of inertial sensorsdetermines platform's deviations independently from the aircraft and an automatic control system keeps thecameras at a continuous nadir pointing and heading, with a precision better than ± 1 arc-degree in three-axis. Thecontrol system is also in charge of saving the platform’s orientation angles when the monitoring software triggersthe camera. These external orientation parameters, together with a procedure for camera calibration give theessential elements for image orthocorrection. Orthomosaics are constructed using commercial GIS software.This system demonstrates the feasibility of large area coverage in a practical and economical way using smallformatcameras. Monitoring and automatization reduce the work while increasing the quality and the amount ofuseful images.

  2. Infrared

    Science.gov (United States)

    Vollmer, M.

    2013-11-01

    'Infrared' is a very wide field in physics and the natural sciences which has evolved enormously in recent decades. It all started in 1800 with Friedrich Wilhelm Herschel's discovery of infrared (IR) radiation within the spectrum of the Sun. Thereafter a few important milestones towards widespread use of IR were the quantitative description of the laws of blackbody radiation by Max Planck in 1900; the application of quantum mechanics to understand the rotational-vibrational spectra of molecules starting in the first half of the 20th century; and the revolution in source and detector technologies due to micro-technological breakthroughs towards the end of the 20th century. This has led to much high-quality and sophisticated equipment in terms of detectors, sources and instruments in the IR spectral range, with a multitude of different applications in science and technology. This special issue tries to focus on a few aspects of the astonishing variety of different disciplines, techniques and applications concerning the general topic of infrared radiation. Part of the content is based upon an interdisciplinary international conference on the topic held in 2012 in Bad Honnef, Germany. It is hoped that the information provided here may be useful for teaching the general topic of electromagnetic radiation in the IR spectral range in advanced university courses for postgraduate students. In the most general terms, the infrared spectral range is defined to extend from wavelengths of 780 nm (upper range of the VIS spectral range) up to wavelengths of 1 mm (lower end of the microwave range). Various definitions of near, middle and far infrared or thermal infrared, and lately terahertz frequencies, are used, which all fall in this range. These special definitions often depend on the scientific field of research. Unfortunately, many of these fields seem to have developed independently from neighbouring disciplines, although they deal with very similar topics in respect of the

  3. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Uruzgan mineral district in Afghanistan: Chapter V in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Uruzgan mineral district, which has tin and tungsten deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA, 2008, 2009), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such

  4. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Dusar-Shaida mineral district in Afghanistan: Chapter I in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.; Arko, Scott A.; Harbin, Michelle L.

    2012-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Dusar-Shaida mineral district, which has copper and tin deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2008), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such, the

  5. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Baghlan mineral district in Afghanistan: Chapter P in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.; Cagney, Laura E.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Baghlan mineral district, which has industrial clay and gypsum deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA, 2006, 2007, 2008), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from

  6. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Panjsher Valley mineral district in Afghanistan: Chapter M in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.; Cagney, Laura E.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Panjsher Valley mineral district, which has emerald and silver-iron deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA, 2009, 2010), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from

  7. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Aynak mineral district in Afghanistan: Chapter E in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.; Cagney, Laura E.; Arko, Scott A.; Harbin, Michelle L.

    2012-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Aynak mineral district, which has copper deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency ((c)JAXA,2008,2010), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such, the DS

  8. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Kundalyan mineral district in Afghanistan: Chapter H in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.; Cagney, Laura E.; Arko, Scott A.; Harbin, Michelle L.

    2012-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Kundalyan mineral district, which has porphyry copper and gold deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2008), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As

  9. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Parwan mineral district in Afghanistan: Chapter CC in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Parwan mineral district, which has gold and copper deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2006, 2007), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such

  10. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the South Helmand mineral district in Afghanistan: Chapter O in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.; Cagney, Laura E.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the South Helmand mineral district, which has travertine deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA, 2008, 2010), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such

  11. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Farah mineral district in Afghanistan: Chapter FF in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.

    2014-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Farah mineral district, which has spectral reflectance anomalies indicative of copper, zinc, lead, silver, and gold deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420-500 nanometer, nm), green (520-600 nm), red (610-690 nm), and near-infrared (760-890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520-770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency ((c)JAXA, 2007, 2008, 2010), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that

  12. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Takhar mineral district in Afghanistan: Chapter Q in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.; Cagney, Laura E.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Takhar mineral district, which has industrial evaporite deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA, 2008), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such

  13. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Tourmaline mineral district in Afghanistan: Chapter J in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.; Cagney, Laura E.; Arko, Scott A.; Harbin, Michelle L.

    2012-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Tourmaline mineral district, which has tin deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2008), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such, the DS products

  14. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Ghazni2 mineral district in Afghanistan: Chapter EE in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.

    2014-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Ghazni2 mineral district, which has spectral reflectance anomalies indicative of gold, mercury, and sulfur deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420-500 nanometer, nm), green (520-600 nm), red (610-690 nm), and near-infrared (760-890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520-770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency ((c)JAXA, 2008, 2009), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image

  15. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Zarkashan mineral district in Afghanistan: Chapter G in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.; Cagney, Laura E.

    2012-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Zarkashan mineral district, which has copper and gold deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2006,2007, 2008), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As

  16. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Katawas mineral district in Afghanistan: Chapter N in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.; Cagney, Laura E.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Katawas mineral district, which has gold deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420-500 nanometer, nm), green (520-600 nm), red (610-690 nm), and near-infrared (760-890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520-770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©AXA, 2008), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such, the DS products match JAXA

  17. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Kunduz mineral district in Afghanistan: Chapter S in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.; Arko, Scott A.; Harbin, Michelle L.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Kunduz mineral district, which has celestite deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2007,2008,2009), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such, the

  18. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Khanneshin mineral district in Afghanistan: Chapter A in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.; Cagney, Laura E.; Arko, Scott A.; Harbin, Michelle L.

    2012-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Khanneshin mineral district, which has uranium, thorium, rare-earth-element, and apatite deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420-500 nanometer, nm), green (520-600 nm), red (610-690 nm), and near-infrared (760-890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520-770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2007,2008,2010), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be

  19. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Haji-Gak mineral district in Afghanistan: Chapter C in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.; Cagney, Laura E.; Arko, Scott A.; Harbin, Michelle L.

    2012-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Haji-Gak mineral district, which has iron ore deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420-500 nanometer, nm), green (520-600 nm), red (610-690 nm), and near-infrared (760-890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520-770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency ((c)JAXA,2006,2007), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such, the DS products

  20. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Balkhab mineral district in Afghanistan: Chapter B in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.; Cagney, Laura E.

    2012-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Balkhab mineral district, which has copper deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420-500 nanometer, nm), green (520-600 nm), red (610-690 nm), and near-infrared (760-890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520-770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2007,2008), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such, the DS products match

  1. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Bakhud mineral district in Afghanistan: Chapter U in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.; Cagney, Laura E.; Davis, Philip A.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Bakhud mineral district, which has industrial fluorite deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2006,2007, 2008), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As

  2. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the North Takhar mineral district in Afghanistan: Chapter D in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.; Cagney, Laura E.

    2012-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the North Takhar mineral district, which has placer gold deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2006,2008), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such

  3. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Nalbandon mineral district in Afghanistan: Chapter L in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.; Cagney, Laura E.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Nalbandon mineral district, which has lead and zinc deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA, 2007, 2008, 2010), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As

  4. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Kandahar mineral district in Afghanistan: Chapter Z in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Kandahar mineral district, which has bauxite deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420-500 nanometer, nm), green (520-600 nm), red (610-690 nm), and near-infrared (760-890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520-770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency ((c)JAXA,2006,2007,2008), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such, the DS

  5. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Kharnak-Kanjar mineral district in Afghanistan: Chapter K in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.; Arko, Scott A.; Harbin, Michelle L.

    2012-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Kharnak-Kanjar mineral district, which has mercury deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2007,2008,2010), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such

  6. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Dudkash mineral district in Afghanistan: Chapter R in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.; Arko, Scott A.; Harbin, Michelle L.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Dudkash mineral district, which has industrial mineral deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2006,2007,2008,2009), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS

  7. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Herat mineral district in Afghanistan: Chapter T in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.; Arko, Scott A.; Harbin, Michelle L.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Herat mineral district, which has barium and limestone deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2007,2008,2009), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As

  8. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Ghunday-Achin mineral district in Afghanistan, in Davis, P.A, compiler, Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.; Arko, Scott A.; Harbin, Michelle L.; Davis, Philip A.

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Ghunday-Achin mineral district, which has magnesite and talc deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420–500 nanometer, nm), green (520–600 nm), red (610–690 nm), and near-infrared (760–890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520–770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency (©JAXA,2008,2009), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As

  9. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Badakhshan mineral district in Afghanistan: Chapter F in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.; Arko, Scott A.; Harbin, Michelle L.

    2012-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Badakhshan mineral district, which has gold deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420-500 nanometer, nm), green (520-600 nm), red (610-690 nm), and near-infrared (760-890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520-770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency ((c)JAXA,2007,2008), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such that original image values cannot be recreated from this DS. As such, the DS products

  10. Local-area-enhanced, 2.5-meter resolution natural-color and color-infrared satellite-image mosaics of the Ghazni1 mineral district in Afghanistan: Chapter DD in Local-area-enhanced, high-resolution natural-color and color-infrared satellite-image mosaics of mineral districts in Afghanistan

    Science.gov (United States)

    Davis, Philip A.

    2014-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Defense Task Force for Business and Stability Operations, prepared databases for mineral-resource target areas in Afghanistan. The purpose of the databases is to (1) provide useful data to ground-survey crews for use in performing detailed assessments of the areas and (2) provide useful information to private investors who are considering investment in a particular area for development of its natural resources. The set of satellite-image mosaics provided in this Data Series (DS) is one such database. Although airborne digital color-infrared imagery was acquired for parts of Afghanistan in 2006, the image data have radiometric variations that preclude their use in creating a consistent image mosaic for geologic analysis. Consequently, image mosaics were created using ALOS (Advanced Land Observation Satellite; renamed Daichi) satellite images, whose radiometry has been well determined (Saunier, 2007a,b). This part of the DS consists of the locally enhanced ALOS image mosaics for the Ghazni1 mineral district, which has spectral reflectance anomalies indicative of clay, aluminum, gold, silver, mercury, and sulfur deposits. ALOS was launched on January 24, 2006, and provides multispectral images from the AVNIR (Advanced Visible and Near-Infrared Radiometer) sensor in blue (420-500 nanometer, nm), green (520-600 nm), red (610-690 nm), and near-infrared (760-890 nm) wavelength bands with an 8-bit dynamic range and a 10-meter (m) ground resolution. The satellite also provides a panchromatic band image from the PRISM (Panchromatic Remote-sensing Instrument for Stereo Mapping) sensor (520-770 nm) with the same dynamic range but a 2.5-m ground resolution. The image products in this DS incorporate copyrighted data provided by the Japan Aerospace Exploration Agency ((c)JAXA, 2008, 2009), but the image processing has altered the original pixel structure and all image values of the JAXA ALOS data, such

  11. Search for water vapor in the high-resolution transmission spectrum of HD 189733b in the visible

    Science.gov (United States)

    Allart, R.; Lovis, C.; Pino, L.; Wyttenbach, A.; Ehrenreich, D.; Pepe, F.

    2017-10-01

    Context. Ground-based telescopes equipped with state-of-the-art spectrographs are able to obtain high-resolution transmission and emission spectra of exoplanets that probe the structure and composition of their atmospheres. Various atomic and molecular species, such as Na, CO, H2O have been already detected in a number of hot Jupiters. Molecular species have been observed only in the near-infrared while atomic species have been observed in the visible. In particular, the detection and abundance determination of water vapor bring important constraints to the planet formation process. Aims: We aim to search for water vapor in the atmosphere of the exoplanet HD 189733b using a high-resolution transmission spectrum in the visible obtained with HARPS. Methods: We used the atmospheric transmission code Molecfit to correct for telluric absorption features. Then we computed the high-resolution transmission spectrum of the planet using three transit datasets. We finally searched for water vapor absorption in the water band around 6500 Å using a cross-correlation technique that combines the signal of 600-900 individual lines. Results: Telluric features are corrected to the noise level. We place a 5-σ upper limit of 100 ppm on the strength of the 6500 Å water vapor band. The 1-σ precision of 20 ppm on the transmission spectrum demonstrates that space-like sensitivity can be achieved from the ground, even for a molecule that is a strong telluric absorber. Conclusions: This approach opens new possibilites for the detection of various atomic and molecular species with future instruments such as ESPRESSO at the VLT. Extrapolating from our results, we show that only one transit with ESPRESSO would be sufficient to detect water vapor on HD 189733b-like hot Jupiter with a cloud-free atmosphere. Upcoming near-IR spectrographs will be even more efficient and sensitive to a wider range of molecular species. Moreover, the detection of the same molecular species in different bands (e

  12. High-resolution phylogenetic microbial community profiling

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Esther; Coleman-Derr, Devin; Bowman, Brett; Schwientek, Patrick; Clum, Alicia; Copeland, Alex; Ciobanu, Doina; Cheng, Jan-Fang; Gies, Esther; Hallam, Steve; Tringe, Susannah; Woyke, Tanja

    2014-03-17

    The representation of bacterial and archaeal genome sequences is strongly biased towards cultivated organisms, which belong to merely four phylogenetic groups. Functional information and inter-phylum level relationships are still largely underexplored for candidate phyla, which are often referred to as microbial dark matter. Furthermore, a large portion of the 16S rRNA gene records in the GenBank database are labeled as environmental samples and unclassified, which is in part due to low read accuracy, potential chimeric sequences produced during PCR amplifications and the low resolution of short amplicons. In order to improve the phylogenetic classification of novel species and advance our knowledge of the ecosystem function of uncultivated microorganisms, high-throughput full length 16S rRNA gene sequencing methodologies with reduced biases are needed. We evaluated the performance of PacBio single-molecule real-time (SMRT) sequencing in high-resolution phylogenetic microbial community profiling. For this purpose, we compared PacBio and Illumina metagenomic shotgun and 16S rRNA gene sequencing of a mock community as well as of an environmental sample from Sakinaw Lake, British Columbia. Sakinaw Lake is known to contain a large age of microbial species from candidate phyla. Sequencing results show that community structure based on PacBio shotgun and 16S rRNA gene sequences is highly similar in both the mock and the environmental communities. Resolution power and community representation accuracy from SMRT sequencing data appeared to be independent of GC content of microbial genomes and was higher when compared to Illumina-based metagenome shotgun and 16S rRNA gene (iTag) sequences, e.g. full-length sequencing resolved all 23 OTUs in the mock community, while iTags did not resolve closely related species. SMRT sequencing hence offers various potential benefits when characterizing uncharted microbial communities.

  13. High resolution CT findings of pseudoalveolar sarcoidosis

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Ji Eun; Park, Jun Gyun; Choe, Kyu Ok; Kim, Sang Jin [Yonsei University College of Medicine, Seoul (Korea, Republic of); Ryu, Young Hoon; Im, Jung Gi [Seoul National University College of Medicine, Seoul (Korea, Republic of); Lee, Kyoung Soo [Sungkunkwan University College of Medicine, Seoul (Korea, Republic of); Song, Koun Sik [University of Ulsan College of Medicine, Seoul (Korea, Republic of); Kim, Hyae Young [National Cancer Centar, Seoul (Korea, Republic of)

    2002-08-01

    To determine the specific high-resolution CT features of sarcoidosis in which the observed pattern is predominantly pseudoalveolar. We retrospectively reviewed the HRCT findings in 15 cases in which chest radiography demonstrated pseudoalveolar consolidation. In all 15, sarcoidosis was pathologically proven. The distribution and characterization of the following CT features was meticulously scrutinized: distribution and characterization of pseudoalveolar lesions, air-bronchograms, micronodules, thickening of bronchovascular bundles and interlobular septa, lung distortion, ground-glass opacities and combined hilar and mediastinal lymphadenopathy. Follow-up CT scans were available in three cases after corticosteroid administration. Between one and 12 (mean, 5.6) pseudoalveolar lesions appeared as dense homogeneous or inhomogeneous opacities 1-4.5 cm in diameter and with an irregular margin located either at the lung periphery adjacent to the pleural surface or along the bronchovascular bundles, with mainly bilateral distribution (n=14, 93%). An air-bronchogram was observed in ten cases. Micronodules were observed at the periphery of the lesion or surrounding lung, which along with a thickened bronchovascular bundle was a consistent feature in all cases. Additional CT features included hilar and mediastinal lymphadenopathy (n=14, 93%), thickened interlobular septa (n=12, 80%), and ground-glass opacity (n=10, 67%). Lung distortion was noted in only one case (7%). After steroid administration pseudoalveolar lesions decreased in number and size in all three cases in which follow-up CT was available. The consistent HRCT features of pseudoalveolar sarcoidosis are bilateral multifocal dense homogenous or inhomogenous opacity and an irregular margin located either at the lung periphery adjacent to the pleural surface or along the bronchovascular bundles. Micronodules are present at the periphery of the lesion or surrounding lung. The features are reversible administration.

  14. High-resolution downscaling for hydrological management

    Science.gov (United States)

    Ulbrich, Uwe; Rust, Henning; Meredith, Edmund; Kpogo-Nuwoklo, Komlan; Vagenas, Christos

    2017-04-01

    Hydrological modellers and water managers require high-resolution climate data to model regional hydrologies and how these may respond to future changes in the large-scale climate. The ability to successfully model such changes and, by extension, critical infrastructure planning is often impeded by a lack of suitable climate data. This typically takes the form of too-coarse data from climate models, which are not sufficiently detailed in either space or time to be able to support water management decisions and hydrological research. BINGO (Bringing INnovation in onGOing water management; ) aims to bridge the gap between the needs of hydrological modellers and planners, and the currently available range of climate data, with the overarching aim of providing adaptation strategies for climate change-related challenges. Producing the kilometre- and sub-daily-scale climate data needed by hydrologists through continuous simulations is generally computationally infeasible. To circumvent this hurdle, we adopt a two-pronged approach involving (1) selective dynamical downscaling and (2) conditional stochastic weather generators, with the former presented here. We take an event-based approach to downscaling in order to achieve the kilometre-scale input needed by hydrological modellers. Computational expenses are minimized by identifying extremal weather patterns for each BINGO research site in lower-resolution simulations and then only downscaling to the kilometre-scale (convection permitting) those events during which such patterns occur. Here we (1) outline the methodology behind the selection of the events, and (2) compare the modelled precipitation distribution and variability (preconditioned on the extremal weather patterns) with that found in observations.

  15. X-ray absorption and infrared spectra of water and ice: A first-principles electronic structure study

    Science.gov (United States)

    Chen, Wei

    Water is of essential importance for chemistry and biology, yet the physics concerning many of its distinctive properties is not well known. In this thesis we present a theoretical study of the x-ray absorption (XA) and infrared (IR) spectra of water in liquid and solid phase. Our theoretical tools are the density functional theory (DFT), Car-Parrinello (CP) molecular dynamics (MD), and the so-called GW method. Since a systematic review of these ab initio methods is not the task of this thesis, we only briefly recall the main concepts of these methods as needed in the course of our exposition. The focus is, instead, an investigation of what is the important physics necessary for a better description of these excitation processes, in particular, core electron excitations (in XA) that reveal the local electronic structure, and vibrational excitations (in IR) associated to the molecular dynamics. The most interesting question we are trying to answer is: as we include better approximations and more complete physical descriptions of these processes, how do the aforementioned spectra reflect the underlying hydrogen-bonding network of water? The first part of this thesis consists of the first four chapters, which focus on the study of core level excitation of water and ice. The x-ray absorption spectra of water and ice are calculated with a many-body approach for electron-hole excitations. The experimental features, even the small effects of a temperature change in the liquid, are reproduced with quantitative detail using molecular configurations generated by ab initio molecular dynamics. We find that the spectral shape is controlled by two major modifications of the short range order that mark the transition from ice to water. One is associated to dynamic breaking of the hydrogen bonds which leads to a strong enhancement of the pre-edge intensity in the liquid. The other is due to densification, which follows the partial collapse of the hydrogen bond network and is

  16. Spectroscopic Characterisation of CARMENES Target Candidates from FEROS, CAFE and HRS High-Resolution Spectra

    Science.gov (United States)

    Passegger, Vera Maria; Reiners, Ansgar; Jeffers, Sandra V.; Wende, Sebastian; Schöfer, Patrick; Amado, Pedro J.; Caballero, Jose A.; Montes, David; Mundt, Reinhard; Ribas, Ignasi; Quirrenbach, Andreas

    2016-07-01

    CARMENES (Calar Alto high-Resolution search for M dwarfs with Exoearths with Near-infrared and optical Échelle Spectrographs) started a new planet survey on M-dwarfs in January this year. The new high-resolution spectrographs are operating in the visible and near-infrared at Calar Alto Observatory. They will perform high-accuracy radial-velocity measurements (goal 1 m s-1) of about 300 M-dwarfs with the aim to detect low-mass planets within habitable zones. We characterised the candidate sample for CARMENES and provide fundamental parameters for these stars in order to constrain planetary properties and understand star-planet systems. Using state-of-the-art model atmospheres (PHOENIX-ACES) and χ2-minimization with a downhill-simplex method we determine effective temperature, surface gravity and metallicity [Fe/H] for high-resolution spectra of around 480 stars of spectral types M0.0-6.5V taken with FEROS, CAFE and HRS. We find good agreement between the models and our observed high-resolution spectra. We show the performance of the algorithm, as well as results, parameter and spectral type distributions for the CARMENES candidate sample, which is used to define the CARMENES target sample. We also present first preliminary results obtained from CARMENES spectra.

  17. Preparation and microwave-infrared absorption of reduced graphene oxide/Cu–Ni ferrite/Al2O3 composites

    Science.gov (United States)

    De-yue, Ma; Xiao-xia, Li; Yu-xiang, Guo; Yu-run, Zeng

    2018-01-01

    Reduced graphene oxide (RGO)/Cu–Ni ferrite/Al2O3 composite was prepared by solvothermal method, and its properties were characterized by SEM, x-ray diffraction, energy-dispersive x-ray spectroscopy and FTIR. The electromagnetic parameters in 2–18 GHz and mid-infrared (IR) spectral transmittance of the composite were measured, respectively. The results show that Cu0.7Ni0.3Fe2O4 nanoparticles with an average size of tens nanometers adsorb on surface of RGO, and meanwhile, Al2O3 nanoparticles adhere to the surface of Cu0.7Ni0.3Fe2O4 nanoparticles and RGO. The composite has both dielectric and magnetic loss mechanism. Its reflection loss is lower than ‑19 dB in 2–18 GHz, and the maximum of ‑23.2 dB occurs at 15.6 GHz. With the increasing of Al2O3 amount, its reflection loss becomes lower and the maximum moves towards low frequency slightly. Compared with RGO/Cu–Ni ferrite composites, its magnetic loss and reflection loss slightly reduce with the increasing of Al2O3 amount, and the maximum of reflection loss shifts from a low frequency to a high one. However, its broadband IR absorption is significantly enhanced owing to nano-Al2O3. Therefore, RGO/Cu–Ni ferrite/Al2O3 composites can be used as excellent broadband microwave and IR absorbing materials, and maybe have broad application prospect in electromagnetic shielding, IR absorbing and coating materials.

  18. Hemodynamic measurements in rat brain and human muscle using diffuse near-infrared absorption and correlation spectroscopies

    Science.gov (United States)

    Yu, Guoqiang; Durduran, Turgut; Furuya, D.; Lech, G.; Zhou, Chao; Chance, Britten; Greenberg, J. H.; Yodh, Arjun G.

    2003-07-01

    Measurement of concentration, oxygenation, and flow characteristics of blood cells can reveal information about tissue metabolism and functional heterogeneity. An improved multifunctional hybrid system has been built on the basis of our previous hybrid instrument that combines two near-infrared diffuse optical techniques to simultaneously monitor the changes of blood flow, total hemoglobin concentration (THC) and blood oxygen saturation (StO2). Diffuse correlation spectroscopy (DCS) monitors blood flow (BF) by measuring the optical phase shifts caused by moving blood cells, while diffuse photon density wave spectroscopy (DPDW) measures tissue absorption and scattering. Higher spatial resolution, higher data acquisition rate and higher dynamic range of the improved system allow us to monitor rapid hemodynamic changes in rat brain and human muscles. We have designed two probes with different source-detector pairs and different separations for the two types of experiments. A unique non-contact probe mounted on the back of a camera, which allows continuous measurements without altering the blood flow, was employed to in vivo monitor the metabolic responses in rat brain during KCl induced cortical spreading depression (CSD). A contact probe was used to measure changes of blood flow and oxygenation in human muscle during and after cuff occlusion or exercise, where the non-contact probe is not appropriate for monitoring the moving target. The experimental results indicate that our multifunctional hybrid system is capable of in vivo and non-invasive monitoring of the hemodynamic changes in different tissues (smaller tissues in rat brain, larger tissues in human muscle) under different conditions (static versus moving). The time series images of flow during CSD obtained by our technique revealed spatial and temporal hemodynamic changes in rat brain. Two to three fold longer recovery times of flow and oxygenation after cuff occlusion or exercise from calf flexors in a

  19. Optimal design of an earth observation optical system with dual spectral and high resolution

    Science.gov (United States)

    Yan, Pei-pei; Jiang, Kai; Liu, Kai; Duan, Jing; Shan, Qiusha

    2017-02-01

    With the increasing demand of the high-resolution remote sensing images by military and civilians, Countries around the world are optimistic about the prospect of higher resolution remote sensing images. Moreover, design a visible/infrared integrative optic system has important value in earth observation. Because visible system can't identify camouflage and recon at night, so we should associate visible camera with infrared camera. An earth observation optical system with dual spectral and high resolution is designed. The paper mainly researches on the integrative design of visible and infrared optic system, which makes the system lighter and smaller, and achieves one satellite with two uses. The working waveband of the system covers visible, middle infrared (3-5um). Dual waveband clear imaging is achieved with dispersive RC system. The focal length of visible system is 3056mm, F/# is 10.91. And the focal length of middle infrared system is 1120mm, F/# is 4. In order to suppress the middle infrared thermal radiation and stray light, the second imaging system is achieved and the narcissus phenomenon is analyzed. The system characteristic is that the structure is simple. And the especial requirements of the Modulation Transfer Function (MTF), spot, energy concentration, and distortion etc. are all satisfied.

  20. Correlating Infrared and X-ray Absorption Energies for Molecular-Level Insight into Hydrogen Bond Making and Breaking in Solution.

    Science.gov (United States)

    Prémont-Schwarz, Mirabelle; Schreck, Simon; Iannuzzi, Marcella; Nibbering, Erik T J; Odelius, Michael; Wernet, Philippe

    2015-06-25

    While ubiquitous, the making and breaking of hydrogen bonds in solution is notoriously difficult to study due to the associated complex changes of nuclear and electronic structures. With the aim to reduce the according uncertainty in correlating experimental observables and hydrogen-bond configurations, we combine the information from proximate methods to study the N-H···O hydrogen bond in solution. We investigate hydrogen-bonding of the N-H group of N-methylaniline with oxygen from liquid DMSO and acetone with infrared spectra in the N-H stretching region and X-ray absorption spectra at the N K-edge. We experimentally observe blue shifts of the infrared stretching band and an X-ray absorption pre-edge peak when going from DMSO to acetone. With ab initio molecular dynamics simulations and calculated spectra, we qualitatively reproduce the experimental observables but we do not reach quantitative agreement with experiment. The infrared spectra support the notion of weakening the N-H···O hydrogen bond from DMSO to acetone. However, we fail to theoretically reproduce the measured shift of the X-ray absorption pre-edge peak. We discuss possible shortcomings of the simulation models and spectrum calculations. Common features and distinct differences with the O-H···O hydrogen bond are highlighted, and the implications for monitoring hydrogen-bond breaking in solution are discussed.

  1. HIGH RESOLUTION AIRBORNE SHALLOW WATER MAPPING

    Directory of Open Access Journals (Sweden)

    F. Steinbacher

    2012-07-01

    Full Text Available In order to meet the requirements of the European Water Framework Directive (EU-WFD, authorities face the problem of repeatedly performing area-wide surveying of all kinds of inland waters. Especially for mid-sized or small rivers this is a considerable challenge imposing insurmountable logistical efforts and costs. It is therefore investigated if large-scale surveying of a river system on an operational basis is feasible by employing airborne hydrographic laser scanning. In cooperation with the Bavarian Water Authority (WWA Weilheim a pilot project was initiated by the Unit of Hydraulic Engineering at the University of Innsbruck and RIEGL Laser Measurement Systems exploiting the possibilities of a new LIDAR measurement system with high spatial resolution and high measurement rate to capture about 70 km of riverbed and foreland for the river Loisach in Bavaria/Germany and the estuary and parts of the shoreline (about 40km in length of lake Ammersee. The entire area surveyed was referenced to classic terrestrial cross-section surveys with the aim to derive products for the monitoring and managing needs of the inland water bodies forced by the EU-WFD. The survey was performed in July 2011 by helicopter and airplane and took 3 days in total. In addition, high resolution areal images were taken to provide an optical reference, offering a wide range of possibilities on further research, monitoring, and managing responsibilities. The operating altitude was about 500 m to maintain eye-safety, even for the aided eye, the airspeed was about 55 kts for the helicopter and 75 kts for the aircraft. The helicopter was used in the alpine regions while the fixed wing aircraft was used in the plains and the urban area, using appropriate scan rates to receive evenly distributed point clouds. The resulting point density ranged from 10 to 25 points per square meter. By carefully selecting days with optimum water quality, satisfactory penetration down to the river

  2. High Resolution Airborne Shallow Water Mapping

    Science.gov (United States)

    Steinbacher, F.; Pfennigbauer, M.; Aufleger, M.; Ullrich, A.

    2012-07-01

    In order to meet the requirements of the European Water Framework Directive (EU-WFD), authorities face the problem of repeatedly performing area-wide surveying of all kinds of inland waters. Especially for mid-sized or small rivers this is a considerable challenge imposing insurmountable logistical efforts and costs. It is therefore investigated if large-scale surveying of a river system on an operational basis is feasible by employing airborne hydrographic laser scanning. In cooperation with the Bavarian Water Authority (WWA Weilheim) a pilot project was initiated by the Unit of Hydraulic Engineering at the University of Innsbruck and RIEGL Laser Measurement Systems exploiting the possibilities of a new LIDAR measurement system with high spatial resolution and high measurement rate to capture about 70 km of riverbed and foreland for the river Loisach in Bavaria/Germany and the estuary and parts of the shoreline (about 40km in length) of lake Ammersee. The entire area surveyed was referenced to classic terrestrial cross-section surveys with the aim to derive products for the monitoring and managing needs of the inland water bodies forced by the EU-WFD. The survey was performed in July 2011 by helicopter and airplane and took 3 days in total. In addition, high resolution areal images were taken to provide an optical reference, offering a wide range of possibilities on further research, monitoring, and managing responsibilities. The operating altitude was about 500 m to maintain eye-safety, even for the aided eye, the airspeed was about 55 kts for the helicopter and 75 kts for the aircraft. The helicopter was used in the alpine regions while the fixed wing aircraft was used in the plains and the urban area, using appropriate scan rates to receive evenly distributed point clouds. The resulting point density ranged from 10 to 25 points per square meter. By carefully selecting days with optimum water quality, satisfactory penetration down to the river bed was achieved

  3. High-resolution multimodal clinical multiphoton tomography of skin

    Science.gov (United States)

    König, Karsten

    2011-03-01

    This review focuses on multimodal multiphoton tomography based on near infrared femtosecond lasers. Clinical multiphoton tomographs for 3D high-resolution in vivo imaging have been placed into the market several years ago. The second generation of this Prism-Award winning High-Tech skin imaging tool (MPTflex) was introduced in 2010. The same year, the world's first clinical CARS studies have been performed with a hybrid multimodal multiphoton tomograph. In particular, non-fluorescent lipids and water as well as mitochondrial fluorescent NAD(P)H, fluorescent elastin, keratin, and melanin as well as SHG-active collagen has been imaged with submicron resolution in patients suffering from psoriasis. Further multimodal approaches include the combination of multiphoton tomographs with low-resolution wide-field systems such as ultrasound, optoacoustical, OCT, and dermoscopy systems. Multiphoton tomographs are currently employed in Australia, Japan, the US, and in several European countries for early diagnosis of skin cancer, optimization of treatment strategies, and cosmetic research including long-term testing of sunscreen nanoparticles as well as anti-aging products.

  4. High-Resolution Dual-Comb Spectroscopy with Ultra-Low Noise Frequency Combs

    Science.gov (United States)

    Hänsel, Wolfgang; Giunta, Michele; Beha, Katja; Perry, Adam J.; Holzwarth, R.

    2017-06-01

    Dual-comb spectroscopy is a powerful tool for fast broad-band spectroscopy due to the parallel interrogation of thousands of spectral lines. Here we report on the spectroscopic analysis of acetylene vapor in a pressurized gas cell using two ultra-low noise frequency combs with a repetition rate around 250 MHz. Optical referencing to a high-finesse cavity yields a sub-Hertz stability of all individual comb lines (including the virtual comb lines between 0 Hz and the carrier) and permits one to pick a small difference of repetition rate for the two frequency combs on the order of 300 Hz, thus representing an optical spectrum of 100 THz (˜3300 \\wn) within half the free spectral range (125 MHz). The transmission signal is derived straight from a photodetector and recorded with a high-resolution spectrum analyzer or digitized with a computer-controlled AD converter. The figure to the right shows a schematic of the experimental setup which is all fiber-coupled with polarization-maintaining fiber except for the spectroscopic cell. The graph on the lower right reveals a portion of the recorded radio-frequency spectrum which has been scaled to the optical domain. The location of the measured absorption coincides well with data taken from the HITRAN data base. Due to the intrinsic linewidth of all contributing comb lines, each sampling point in the transmission graph corresponds to the probing at an optical frequency with sub-Hertz resolution. This resolution is maintained in coherent wavelength conversion processes such as difference-frequency generation (DFG), sum-frequency generation (SFG) or non-linear broadening (self-phase modulation), and is therefore easily transferred to a wide spectral range from the mid infrared up to the visible spectrum.

  5. High resolution imaging detectors and applications

    CERN Document Server

    Saha, Swapan K

    2015-01-01

    Interferometric observations need snapshots of very high time resolution of the order of (i) frame integration of about 100 Hz or (ii) photon-recording rates of several megahertz (MHz). Detectors play a key role in astronomical observations, and since the explanation of the photoelectric effect by Albert Einstein, the technology has evolved rather fast. The present-day technology has made it possible to develop large-format complementary metal oxide–semiconductor (CMOS) and charge-coupled device (CCD) array mosaics, orthogonal transfer CCDs, electron-multiplication CCDs, electron-avalanche photodiode arrays, and quantum-well infrared (IR) photon detectors. The requirements to develop artifact-free photon shot noise-limited images are higher sensitivity and quantum efficiency, reduced noise that includes dark current, read-out and amplifier noise, smaller point-spread functions, and higher spectral bandwidth. This book aims to address such systems, technologies and design, evaluation and calibration, control...

  6. High resolution transmission electron microscopy of aluminophosphates

    Energy Technology Data Exchange (ETDEWEB)

    Ulan, J.G.; Gronsky, R. (Lawrence Berkeley Lab., CA (USA)); Szostak, R. (Georgia Inst. of Tech., Atlanta, GA (USA)); Sorby, K. (Oslo Univ. (Norway). Dept. of Chemistry)

    1990-04-01

    VPI-5 transforms to AlPO{sub 4}-8 under mild thermal treatment (100{degree}C, 18 hrs). HRTEM micrographs, oriented normal to the c axis, show extensive defect-free regions in VPI-5, while slip planes normal to the c axis are found in AlPO{sub 4}-8. Analysis of the HRTEM data, in conjunction with infrared and thermal analysis, adsorption studies and x-ray powder diffraction, has lead to a proposed structure for AlPO{sub 4}-8. Though the sheets containing the 18 member rings which define the pores in VPI-5 remain intact in AlPO{sub 4}-8, reduction in the porosity is attributed to blockages created by the movement of these sheets relative to each other. 8 refs., 7 figs.

  7. Global carbon monoxide vertical distributions from spaceborne high-resolution FTIR nadir measurements

    OpenAIRE

    B. Barret; Turquety, S.; Hurtmans, D; Clerbaux, C.; Hadji-Lazaro, J.; I. Bey; Auvray, M.; P.-F. Coheur

    2005-01-01

    This paper presents the first global distributions of CO vertical profiles retrieved from a thermal infrared FTS working in the nadir geometry. It is based on the exploitation of the high resolution and high quality spectra measured by the Interferometric Monitor of Greenhouse gases (IMG) which flew onboard the Japanese ADEOS platform in 1996-1997. The retrievals are performed with an algorithm based on the Optimal Estimation Method (OEM) and are characterized in terms of vertical sensitivity...

  8. EELT-HIRES the high-resolution spectrograph for the E-ELT

    OpenAIRE

    Marconi, A; Di Marcantonio, P; D'Odorico, V; Cristiani, S; Maiolino, R; Oliva, E; Origlia, L; Riva, M; Valenziano, L; Zerbi, FM; Abreu, M; Adibekyan, V; Allende Prieto, C; Amado, PJ; Benz, W

    2016-01-01

    The first generation of E-ELT instruments will include an optic-infrared High Resolution Spectrograph, conventionally indicated as EELT-HIRES, which will be capable of providing unique breakthroughs in the fields of exoplanets, star and planet formation, physics and evolution of stars and galaxies, cosmology and fundamental physics. A 2-year long phase A study for EELT-HIRES has just started and will be performed by a consortium composed of institutes and organisations from Brazil, Chile, Den...

  9. Bright Semiconductor Scintillator for High Resolution X-Ray Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Nagarkar, Vivek V.; Gaysinskiy, Valeriy; Ovechkina, Olena E.; Miller, Stuart; Singh, Bipin; Guo, Liang; Irving, Thomas (IIT); (Rad. Monitoring)

    2011-08-16

    We report on a novel approach to produce oxygen-doped zinc telluride (ZnTe:O), a remarkable group II-VI semiconductor scintillator, fabricated in the columnar-structured or polycrystalline forms needed to fulfill the needs of many demanding X-ray and {gamma}-ray imaging applications. ZnTe:O has one of the highest conversion efficiencies among known scintillators, emission around 680 nm (which is ideally suited for CCD sensors), high density of 6.4 g/cm{sup 3}, fast decay time of {approx}1 {micro}s with negligible afterglow, and orders of magnitude higher radiation resistance compared to commonly used scintillators. These properties allow the use of ZnTe:O in numerous applications, including X-ray imaging, nuclear medicine (particularly SPECT), room temperature radioisotope identification, and homeland security. Additionally, ZnTe:O offers distinct advantages for synchrotron-based high resolution imaging due to the absence of atomic absorption edges in the low energy range, which otherwise reduce resolution due to secondary X-ray formations. We have fabricated films of ZnTe:O using a vapor deposition technique that allows large-area structured scintillator fabrication in a time- and cost-efficient manner, and evaluated its performance for small-angle X-ray scattering (SAXS) at an Argonne National Laboratory synchrotron beamline. Details of the fabrication and characterization of the optical, scintillation and imaging properties of the ZnTe:O films are presented in this paper.

  10. Montecarlo simulation for a new high resolution elemental analysis methodology

    Energy Technology Data Exchange (ETDEWEB)

    Figueroa S, Rodolfo; Brusa, Daniel; Riveros, Alberto [Universidad de La Frontera, Temuco (Chile). Facultad de Ingenieria y Administracion

    1996-12-31

    Full text. Spectra generated by binary, ternary and multielement matrixes when irradiated by a variable energy photon beam are simulated by means of a Monte Carlo code. Significative jumps in the counting rate are shown when the photon energy is just over the edge associated to each element, because of the emission of characteristic X rays. For a given associated energy, the net height of these jumps depends mainly on the concentration and of the sample absorption coefficient. The spectra were obtained by a monochromatic energy scan considering all the emitted radiation by the sample in a 2{pi} solid angle, associating a single multichannel spectrometer channel to each incident energy (Multichannel Scaling (MCS) mode). The simulated spectra were made with Monte Carlo simulation software adaptation of the package called PENELOPE (Penetration and Energy Loss of Positrons and Electrons in matter). The results show that it is possible to implement a new high resolution spectroscopy methodology, where a synchrotron would be an ideal source, due to the high intensity and ability to control the energy of the incident beam. The high energy resolution would be determined by the monochromating system and not by the detection system and not by the detection system, which would basicalbe a photon counter. (author)

  11. Precision cosmology with time delay lenses: High resolution imaging requirements

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Xiao -Lei [Beijing Normal Univ., Beijing (China); Univ. of California, Santa Barbara, CA (United States); Treu, Tommaso [Univ. of California, Santa Barbara, CA (United States); Univ. of California, Los Angeles, CA (United States); Agnello, Adriano [Univ. of California, Santa Barbara, CA (United States); Univ. of California, Los Angeles, CA (United States); Auger, Matthew W. [Univ. of Cambridge, Cambridge (United Kingdom); Liao, Kai [Beijing Normal Univ., Beijing (China); Univ. of California, Santa Barbara, CA (United States); Univ. of California, Los Angeles, CA (United States); Marshall, Philip J. [Stanford Univ., Stanford, CA (United States)

    2015-09-28

    Lens time delays are a powerful probe of cosmology, provided that the gravitational potential of the main deflector can be modeled with sufficient precision. Recent work has shown that this can be achieved by detailed modeling of the host galaxies of lensed quasars, which appear as ``Einstein Rings'' in high resolution images. The distortion of these arcs and counter-arcs, as measured over a large number of pixels, provides tight constraints on the difference between the gravitational potential between the quasar image positions, and thus on cosmology in combination with the measured time delay. We carry out a systematic exploration of the high resolution imaging required to exploit the thousands of lensed quasars that will be discovered by current and upcoming surveys with the next decade. Specifically, we simulate realistic lens systems as imaged by the Hubble Space Telescope (HST), James Webb Space Telescope (JWST), and ground based adaptive optics images taken with Keck or the Thirty Meter Telescope (TMT). We compare the performance of these pointed observations with that of images taken by the Euclid (VIS), Wide-Field Infrared Survey Telescope (WFIRST) and Large Synoptic Survey Telescope (LSST) surveys. We use as our metric the precision with which the slope γ' of the total mass density profile ρtot∝ r–γ' for the main deflector can be measured. Ideally, we require that the statistical error on γ' be less than 0.02, such that it is subdominant to other sources of random and systematic uncertainties. We find that survey data will likely have sufficient depth and resolution to meet the target only for the brighter gravitational lens systems, comparable to those discovered by the SDSS survey. For fainter systems, that will be discovered by current and future surveys, targeted follow-up will be required. Furthermore, the exposure time required with upcoming facilitites such as JWST, the Keck Next Generation Adaptive

  12. Broadly tunable mode-hop-free mid-infrared light source with MgO:PPLN continuous-wave optical parametric oscillator.

    Science.gov (United States)

    Hong, Xiaoping; Shen, Xinglai; Gong, Mali; Wang, Feng

    2012-12-01

    We report a continuous-wave, broadly tunable mid-infrared MgO:PPLN optical parametric oscillator pumped by a fiber amplifier. Using pump tuning with synchronized temperature optimization, we achieve the broadest mode-hop-free (MHF) tuning of idler light over 30 cm(-1). We further use this tunable mid-infrared laser to demonstrate high-resolution absorption spectroscopy of methane across the MHF tuning range.

  13. Band engineering of amorphous silicon ruthenium thin film and its near-infrared absorption enhancement combined with nano-holes pattern on back surface of silicon substrate

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Anran; Zhong, Hao [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Li, Wei, E-mail: wli@uestc.edu.cn [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Gu, Deen; Jiang, Xiangdong [School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu 610054 (China); Jiang, Yadong [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China)

    2016-10-30

    Highlights: • The increase of Ru concentration leads to a narrower bandgap of a-Si{sub 1-x}Ru{sub x} thin film. • The absorption coefficient of a-Si{sub 1-x}Ru{sub x} is higher than that of SiGe. • A double-layer absorber comprising of a-Si{sub 1-x}Ru{sub x} film and Si nano-holes layer is achieved. - Abstract: Silicon is widely used in semiconductor industry but has poor performance in near-infrared photoelectronic devices because of its bandgap limit. In this study, a narrow bandgap silicon rich semiconductor is achieved by introducing ruthenium (Ru) into amorphous silicon (a-Si) to form amorphous silicon ruthenium (a-Si{sub 1-x}Ru{sub x}) thin films through co-sputtering. The increase of Ru concentration leads to an enhancement of light absorption and a narrower bandgap. Meanwhile, a specific light trapping technique is employed to realize high absorption of a-Si{sub 1-x}Ru{sub x} thin film in a finite thickness to avoid unnecessary carrier recombination. A double-layer absorber comprising of a-Si{sub 1-x}Ru{sub x} thin film and silicon random nano-holes layer is formed on the back surface of silicon substrates, and significantly improves near-infrared absorption while the leaky light intensity is less than 5%. This novel absorber, combining narrow bandgap thin film with light trapping structure, may have a potential application in near-infrared photoelectronic devices.

  14. N-Annulated perylene-substituted and fused porphyrin dimers with intense near-infrared one-photon and two-photon absorption

    KAUST Repository

    Luo, Jie

    2015-01-21

    Fusion of two N-annulated perylene (NP) units with a fused porphyrin dimer along the S0-S1 electronic transition moment axis has resulted in new near-infrared (NIR) dyes 1a/1b with very intense absorption (ε>1.3×105M-1cm-1) beyond 1250nm. Both compounds displayed moderate NIR fluorescence with fluorescence quantum yields of 4.4×10-6 and 6.0×10-6 for 1a and 1b, respectively. The NP-substituted porphyrin dimers 2a/2b have also been obtained by controlled oxidative coupling and cyclodehydrogenation, and they showed superimposed absorptions of the fused porphyrin dimer and the NP chromophore. The excited-state dynamics of all of these compounds have been studied by femtosecond transient absorption measurements, which revealed porphyrin dimer-like behaviour. These new chromophores also exhibited good nonlinear optical susceptibility with large two-photon absorption cross-sections in the NIR region due to extended π-conjugation. Time-dependent density functional theory calculations have been performed to aid our understanding of their electronic structures and absorption spectra.

  15. Temperature-dependent absorption cross-sections in the thermal infrared bands of SF{sub 5}CF{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Rinsland, C.P. E-mail: c.p.rinsland@larc.nasa.gov; Sharpe, S.W.; Sams, R.L

    2003-12-15

    Absorption cross-sections have been measured at five temperatures between 213 and 323 K in the infrared bands of SF{sub 5}CF{sub 3}. The spectra were recorded at a resolution of 0.112 cm{sup -1} using a commercial Fourier transform infrared spectrometer and a 20 cm temperature-controlled sample cell. Samples of SF{sub 5}CF{sub 3} were pressurized with high-purity nitrogen to a total pressure of 1013.3 hPa (760 Torr). Six or more spectra with varying SF{sub 5}CF{sub 3} column amounts were analyzed at each temperature. The full spectral range of the measurements was 520-6500 cm{sup -1}, with only weak bands observed beyond 1400 cm{sup -1}. Absorption of thermal radiation in the 8-12 {mu}m atmospheric window region being important for climate change, we report here the integrated cross-sections of the significant absorption bands in that spectral region. Our results closely match room temperature values reported previously. Only small variation of the integrated absorption cross-sections with temperature was found. Our results confirm the accuracy of the previous measurements, which find SF{sub 5}CF{sub 3} important for global climate change on a per molecule basis. Absorption cross-sections derived from a single, near Doppler-limited spectrum recorded at room temperature do not show any rotational fine structure in the 700-950 cm{sup -1} region.

  16. High resolution X-ray diffraction studies on unirradiated and ...

    Indian Academy of Sciences (India)

    High-resolution X-ray diffraction technique, employing a three-crystal monochromator–collimator ... observed by high-resolution electron microscopy in both ..... 1988 Nucl. Instrum. Meth. B34 228. Kato N 1992 J. Acta Crystallogr. A48 834. Kaur B, Bhat M, Licci F, Kumar R, Kotru P N and Bamzai K K. 2004 Nucl. Instrum. Meth ...

  17. Scalable Algorithms for Large High-Resolution Terrain Data

    DEFF Research Database (Denmark)

    Mølhave, Thomas; Agarwal, Pankaj K.; Arge, Lars Allan

    2010-01-01

    In this paper we demonstrate that the technology required to perform typical GIS computations on very large high-resolution terrain models has matured enough to be ready for use by practitioners. We also demonstrate the impact that high-resolution data has on common problems. To our knowledge, so...

  18. Achieving sensitive, high-resolution laser spectroscopy at CRIS

    Energy Technology Data Exchange (ETDEWEB)

    Groote, R. P. de [Instituut voor Kern- en Stralingsfysica, KU Leuven (Belgium); Lynch, K. M., E-mail: kara.marie.lynch@cern.ch [EP Department, CERN, ISOLDE (Switzerland); Wilkins, S. G. [The University of Manchester, School of Physics and Astronomy (United Kingdom); Collaboration: the CRIS collaboration

    2017-11-15

    The Collinear Resonance Ionization Spectroscopy (CRIS) experiment, located at the ISOLDE facility, has recently performed high-resolution laser spectroscopy, with linewidths down to 20 MHz. In this article, we present the modifications to the beam line and the newly-installed laser systems that have made sensitive, high-resolution measurements possible. Highlights of recent experimental campaigns are presented.

  19. High-resolution X-ray diffraction studies of multilayers

    DEFF Research Database (Denmark)

    Christensen, Finn Erland; Hornstrup, Allan; Schnopper, H. W.

    1988-01-01

    High-resolution X-ray diffraction studies of the perfection of state-of-the-art multilayers are presented. Data were obtained using a triple-axis perfect-crystal X-ray diffractometer. Measurements reveal large-scale figure errors in the substrate. A high-resolution triple-axis set up is required...

  20. High resolution UV spectroscopy and laser-focused nanofabrication

    NARCIS (Netherlands)

    Myszkiewicz, G.

    2005-01-01

    This thesis combines two at first glance different techniques: High Resolution Laser Induced Fluorescence Spectroscopy (LIF) of small aromatic molecules and Laser Focusing of atoms for Nanofabrication. The thesis starts with the introduction to the high resolution LIF technique of small aromatic

  1. Achieving sensitive, high-resolution laser spectroscopy at CRIS

    Science.gov (United States)

    de Groote, R. P.; Lynch, K. M.; Wilkins, S. G.

    2017-11-01

    The Collinear Resonance Ionization Spectroscopy (CRIS) experiment, located at the ISOLDE facility, has recently performed high-resolution laser spectroscopy, with linewidths down to 20 MHz. In this article, we present the modifications to the beam line and the newly-installed laser systems that have made sensitive, high-resolution measurements possible. Highlights of recent experimental campaigns are presented.

  2. On the Design of High Resolution Imaging Systems

    Science.gov (United States)

    Eckardt, A.; Reulke, R.

    2017-05-01

    The design of high-resolution systems is always a consideration of many parameters. Technological parameter of the imaging system, e.g. diameter of the imaging system, mass and power, as well as storage and data transfer, have an direct impact on spacecraft size and design. The paper describes the essential design parameters for the description of high-resolution systems.

  3. Atmospheric lifetimes, infrared absorption spectra, radiative forcings and global warming potentials of NF3 and CF3CF2Cl (CFC-115

    Directory of Open Access Journals (Sweden)

    A. Totterdill

    2016-09-01

    Full Text Available Fluorinated compounds such as NF3 and C2F5Cl (CFC-115 are characterised by very large global warming potentials (GWPs, which result from extremely long atmospheric lifetimes and strong infrared absorptions in the atmospheric window. In this study we have experimentally determined the infrared absorption cross sections of NF3 and CFC-115, calculated the radiative forcing and efficiency using two radiative transfer models and identified the effect of clouds and stratospheric adjustment. The infrared cross sections are within 10 % of previous measurements for CFC-115 but are found to be somewhat larger than previous estimates for NF3, leading to a radiative efficiency for NF3 that is 25 % larger than that quoted in the Intergovernmental Panel on Climate Change Fifth Assessment Report. A whole atmosphere chemistry–climate model was used to determine the atmospheric lifetimes of NF3 and CFC-115 to be (509 ± 21 years and (492 ± 22 years, respectively. The GWPs for NF3 are estimated to be 15 600, 19 700 and 19 700 over 20, 100 and 500 years, respectively. Similarly, the GWPs for CFC-115 are 6030, 7570 and 7480 over 20, 100 and 500 years, respectively.

  4. Atmospheric lifetimes, infrared absorption spectra, radiative forcings and global warming potentials of NF3 and CF3CF2Cl (CFC-115)

    Science.gov (United States)

    Totterdill, Anna; Kovács, Tamás; Feng, Wuhu; Dhomse, Sandip; Smith, Christopher J.; Gómez-Martín, Juan Carlos; Chipperfield, Martyn P.; Forster, Piers M.; Plane, John M. C.

    2016-09-01

    Fluorinated compounds such as NF3 and C2F5Cl (CFC-115) are characterised by very large global warming potentials (GWPs), which result from extremely long atmospheric lifetimes and strong infrared absorptions in the atmospheric window. In this study we have experimentally determined the infrared absorption cross sections of NF3 and CFC-115, calculated the radiative forcing and efficiency using two radiative transfer models and identified the effect of clouds and stratospheric adjustment. The infrared cross sections are within 10 % of previous measurements for CFC-115 but are found to be somewhat larger than previous estimates for NF3, leading to a radiative efficiency for NF3 that is 25 % larger than that quoted in the Intergovernmental Panel on Climate Change Fifth Assessment Report. A whole atmosphere chemistry-climate model was used to determine the atmospheric lifetimes of NF3 and CFC-115 to be (509 ± 21) years and (492 ± 22) years, respectively. The GWPs for NF3 are estimated to be 15 600, 19 700 and 19 700 over 20, 100 and 500 years, respectively. Similarly, the GWPs for CFC-115 are 6030, 7570 and 7480 over 20, 100 and 500 years, respectively.

  5. Infrared Fel Measurements of Power Limiting by 2-Photon Absorption in Insb and Optical Pulse Length Measurements

    NARCIS (Netherlands)

    Jaroszynski, D. A.; Ortega, J. M.; Prazeres, R.; Glotin, F.; Murdin, B. N.; Merveille, C.; Kar, A. K.; Kimmitt, M. F.; Pidgeon, C. R.

    1993-01-01

    We have performed the first optical experiment using the laser output of the CLIO free electron laser. In a transmission experiment we have observed strong power limiting at wavelengths longer than the absorption edge at 7.5 mum associated with induced free carrier absorption produced by direct

  6. Investigating Langmuir films at the air-water interface using a planar array infrared reflection-absorption spectrograph

    Science.gov (United States)

    Kim, Young Shin

    In this work, a new planar array infrared reflection-absorption spectrograph (PA-IRRAS) was developed to investigate a broad range of Langmuir films at the air-water interface. This instrument is capable of recording sample and reference spectra simultaneously with an optical setup that is the same as that of a single-beam instrument but splits the incident infrared beam into two sections on a plane mirror (H) or a water trough. With this design, the instrument could accommodate large infrared accessories, such as a water trough. In addition, water bands were subtracted to obtain a high quality spectrum for a poly(lactic acid) (PLA) Langmuir film on the water subphase with a resolution of about 8 cm-1 in 10.8 sec. With this instrument, two types of monolayer systems were studied; polymeric and lipid Langmuir films at the air-water interface. For the polymeric monolayer system, PA-IRRAS was used as a probe to follow the real-time conformational changes associated with intermolecular interactions of the polymer chains during the compression of the monolayers. It was found that the mixture of poly(D-lactic acid) (PDLA) and poly(L-lactic acid) (PLLA) (D/L) formed a stereocomplex when the mixed solution developed the two-dimensional monolayer at the air-water interface. The stereocomplexation occurred before film compression, indicating that there is no direct correlation between film compression and stereocomplexation. For the lipid monolayer system, PA-IRRAS was also used as a probe to investigate the origin of the disruption of a lipid monolayer upon protein adsorption at the air-water interface. Analysis of the time-resolved PA-IRRAS spectra revealed that Cu(II) ion-chelated DSIDA lipid monolayer (Cu 2+-DSIDA) was readily disrupted by myoglobin adsorption as demonstrated by a blue shift of 1.7 cm-1 and a lower intensity in the vas(CH2) stretch mode of the lipid monolayer over a period of five hours. To find the origin of the disruption of the lipid monolayer, a

  7. High Resolution FTIR Spectroscopy of Trisulfane Hsssh: a Candidate for Detecting Parity Violation in Chiral Molecules

    Science.gov (United States)

    Albert, Sieghard; Bolotova, Irina; Chen, Ziqiu; Fábri, Csaba; Quack, Martin; Seyfang, Georg; Zindel, Daniel

    2017-06-01

    The measurement of the parity violating energy difference Δ_{pv}{E} between the enantiomers of chiral molecules is among the major current challenges in high resolution spectroscopy and physical-chemical stereochemistry. Theoretical predictions have recently identified dithiine^{b} and trisulfane as suitable candidates for such experiments. We report the first successful high-resolution analyses of the Fourier transform infrared (FTIR) spectra of trisulfane. A band centered at 861.0292 cm^{-1} can be assigned unambiguously to the chiral trans conformer by means of ground state combination differences in comparison with known pure rotational spectra. A second band near 864.698 cm^{-1} is tentatively assigned to the cis conformer by comparison with theory. M. Quack , Fundamental Symmetries and Symmetry Violations from High-resolution Spectroscopy, Handbook of High Resolution Spectroscopy, M. Quack and F. Merkt eds.,John Wiley & Sons Ltd, Chichester, New York, 2001, vol. 1, ch. 18, pp. 659-722. S. Albert, I. Bolotova, Z. Chen, C. Fábri, L. Horný, M. Quack, G. Seyfang and D. Zindel, Phys.Chem.Chem.Phys.18, 21976-21993 (2016). C. Fábri, L. Horný and M. Quack, ChemPhysChem16, 3584-3589 (2015). M. Liedtke, K. M. T. Yamada, G. Winnewisser and J. Hahn, J.Mol.Struct.413, 265-270 (1997).

  8. Comparison between the ESFT method and LBL method of CO2 retrieval for high-resolution satellite

    Science.gov (United States)

    Li, Yanfen; Zhang, Chunmin; Wang, Dingyi; Chen, Jie; Liu, Dongdong; Rong, Piao

    2015-02-01

    The spectra of O2 A-band (0.76 μm) and CO2 near-infrared emissions (1.6 μm) for Medium-resolution Satellite (SCIAMACHY) are simulated by the SCIATRAN model (V3.1.29), and compared with the ESFT and LBL method, as the inversion accuracy and time consuming. The time consuming of LBL was more than ESFT with the relative error less than 1%, especially for the CO2 band. But for the CO2 (2.0 um) of High-resolution Satellite, the opposite result was found. That is to say, the LBL method was more suitable for High-resolution Satellite. Different wavelength intervals and integral wavelength steps are applied to the LBL to select the most appropriate combination for High-resolution SatelliteO2 A-band (0.76 μm) and CO2 near-infrared band (1.58 μm).

  9. Observation of mid-infrared intersubband absorption in non-polar m-plane AlGaN/GaN multiple quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Kotani, Teruhisa, E-mail: kotani.teruhisa@sharp.co.jp [Institute for Nano Quantum Information Electronics, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8505 (Japan); Institute of Industrial Science, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8505 (Japan); Life and Environment Laboratories, Sharp Corporation, 2613-1 Ichinomoto-cho, Tenri, Nara 632-8567 (Japan); Arita, Munetaka [Institute for Nano Quantum Information Electronics, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8505 (Japan); Arakawa, Yasuhiko [Institute for Nano Quantum Information Electronics, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8505 (Japan); Institute of Industrial Science, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8505 (Japan)

    2014-12-29

    Mid-infrared (4.20–4.84 μm) intersubband absorption in non-polar m-plane Al{sub 0.5}Ga{sub 0.5}N/GaN multiple-quantum wells is observed at room temperature. 10 period Al{sub 0.5}Ga{sub 0.5}N/GaN multiple-quantum wells were grown on free-standing m-plane GaN substrates by metalorganic chemical vapor deposition (MOCVD), and the high-quality structural and optica