WorldWideScience

Sample records for high-resolution hyperspectral imaging

  1. a Spatio-Spectral Camera for High Resolution Hyperspectral Imaging

    Science.gov (United States)

    Livens, S.; Pauly, K.; Baeck, P.; Blommaert, J.; Nuyts, D.; Zender, J.; Delauré, B.

    2017-08-01

    Imaging with a conventional frame camera from a moving remotely piloted aircraft system (RPAS) is by design very inefficient. Less than 1 % of the flying time is used for collecting light. This unused potential can be utilized by an innovative imaging concept, the spatio-spectral camera. The core of the camera is a frame sensor with a large number of hyperspectral filters arranged on the sensor in stepwise lines. It combines the advantages of frame cameras with those of pushbroom cameras. By acquiring images in rapid succession, such a camera can collect detailed hyperspectral information, while retaining the high spatial resolution offered by the sensor. We have developed two versions of a spatio-spectral camera and used them in a variety of conditions. In this paper, we present a summary of three missions with the in-house developed COSI prototype camera (600-900 nm) in the domains of precision agriculture (fungus infection monitoring in experimental wheat plots), horticulture (crop status monitoring to evaluate irrigation management in strawberry fields) and geology (meteorite detection on a grassland field). Additionally, we describe the characteristics of the 2nd generation, commercially available ButterflEYE camera offering extended spectral range (475-925 nm), and we discuss future work.

  2. A SPATIO-SPECTRAL CAMERA FOR HIGH RESOLUTION HYPERSPECTRAL IMAGING

    Directory of Open Access Journals (Sweden)

    S. Livens

    2017-08-01

    Full Text Available Imaging with a conventional frame camera from a moving remotely piloted aircraft system (RPAS is by design very inefficient. Less than 1 % of the flying time is used for collecting light. This unused potential can be utilized by an innovative imaging concept, the spatio-spectral camera. The core of the camera is a frame sensor with a large number of hyperspectral filters arranged on the sensor in stepwise lines. It combines the advantages of frame cameras with those of pushbroom cameras. By acquiring images in rapid succession, such a camera can collect detailed hyperspectral information, while retaining the high spatial resolution offered by the sensor. We have developed two versions of a spatio-spectral camera and used them in a variety of conditions. In this paper, we present a summary of three missions with the in-house developed COSI prototype camera (600–900 nm in the domains of precision agriculture (fungus infection monitoring in experimental wheat plots, horticulture (crop status monitoring to evaluate irrigation management in strawberry fields and geology (meteorite detection on a grassland field. Additionally, we describe the characteristics of the 2nd generation, commercially available ButterflEYE camera offering extended spectral range (475–925 nm, and we discuss future work.

  3. Rapid calibrated high-resolution hyperspectral imaging using tunable laser source

    Science.gov (United States)

    Nguyen, Lam K.; Margalith, Eli

    2009-05-01

    We present a novel hyperspectral imaging technique based on tunable laser technology. By replacing the broadband source and tunable filters of a typical NIR imaging instrument, several advantages are realized, including: high spectral resolution, highly variable field-of-views, fast scan-rates, high signal-to-noise ratio, and the ability to use optical fiber for efficient and flexible sample illumination. With this technique, high-resolution, calibrated hyperspectral images over the NIR range can be acquired in seconds. The performance of system features will be demonstrated on two example applications: detecting melamine contamination in wheat gluten and separating bovine protein from wheat protein in cattle feed.

  4. HIGH RESOLUTION AIRBORNE LASER SCANNING AND HYPERSPECTRAL IMAGING WITH A SMALL UAV PLATFORM

    Directory of Open Access Journals (Sweden)

    M. Gallay

    2016-06-01

    Full Text Available The capabilities of unmanned airborne systems (UAS have become diverse with the recent development of lightweight remote sensing instruments. In this paper, we demonstrate our custom integration of the state-of-the-art technologies within an unmanned aerial platform capable of high-resolution and high-accuracy laser scanning, hyperspectral imaging, and photographic imaging. The technological solution comprises the latest development of a completely autonomous, unmanned helicopter by Aeroscout, the Scout B1-100 UAV helicopter. The helicopter is powered by a gasoline two-stroke engine and it allows for integrating 18 kg of a customized payload unit. The whole system is modular providing flexibility of payload options, which comprises the main advantage of the UAS. The UAS integrates two kinds of payloads which can be altered. Both payloads integrate a GPS/IMU with a dual GPS antenna configuration provided by OXTS for accurate navigation and position measurements during the data acquisition. The first payload comprises a VUX-1 laser scanner by RIEGL and a Sony A6000 E-Mount photo camera. The second payload for hyperspectral scanning integrates a push-broom imager AISA KESTREL 10 by SPECIM. The UAS was designed for research of various aspects of landscape dynamics (landslides, erosion, flooding, or phenology in high spectral and spatial resolution.

  5. Extended data analysis strategies for high resolution imaging MS : new methods to deal with extremely large image hyperspectral datasets

    NARCIS (Netherlands)

    Klerk, L.A.; Broersen, A.; Fletcher, I.W.; Liere, van R.; Heeren, R.M.A.

    2007-01-01

    The large size of the hyperspectral datasets that are produced with modern mass spectrometric imaging techniques makes it difficult to analyze the results. Unsupervised statistical techniques are needed to extract relevant information from these datasets and reduce the data into a surveyable

  6. High Resolution Temperature Measurement of Liquid Stainless Steel Using Hyperspectral Imaging

    Directory of Open Access Journals (Sweden)

    Wim Devesse

    2017-01-01

    Full Text Available A contactless temperature measurement system is presented based on a hyperspectral line camera that captures the spectra in the visible and near infrared (VNIR region of a large set of closely spaced points. The measured spectra are used in a nonlinear least squares optimization routine to calculate a one-dimensional temperature profile with high spatial resolution. Measurements of a liquid melt pool of AISI 316L stainless steel show that the system is able to determine the absolute temperatures with an accuracy of 10%. The measurements are made with a spatial resolution of 12 µm/pixel, justifying its use in applications where high temperature measurements with high spatial detail are desired, such as in the laser material processing and additive manufacturing fields.

  7. Hyperspectral imaging flow cytometer

    Science.gov (United States)

    Sinclair, Michael B.; Jones, Howland D. T.

    2017-10-25

    A hyperspectral imaging flow cytometer can acquire high-resolution hyperspectral images of particles, such as biological cells, flowing through a microfluidic system. The hyperspectral imaging flow cytometer can provide detailed spatial maps of multiple emitting species, cell morphology information, and state of health. An optimized system can image about 20 cells per second. The hyperspectral imaging flow cytometer enables many thousands of cells to be characterized in a single session.

  8. High resolution metric imaging payload

    Science.gov (United States)

    Delclaud, Y.

    2017-11-01

    Alcatel Space Industries has become Europe's leader in the field of high and very high resolution optical payloads, in the frame work of earth observation system able to provide military government with metric images from space. This leadership allowed ALCATEL to propose for the export market, within a French collaboration frame, a complete space based system for metric observation.

  9. High-resolution hyperspectral ground mapping for robotic vision

    Science.gov (United States)

    Neuhaus, Frank; Fuchs, Christian; Paulus, Dietrich

    2018-04-01

    Recently released hyperspectral cameras use large, mosaiced filter patterns to capture different ranges of the light's spectrum in each of the camera's pixels. Spectral information is sparse, as it is not fully available in each location. We propose an online method that avoids explicit demosaicing of camera images by fusing raw, unprocessed, hyperspectral camera frames inside an ego-centric ground surface map. It is represented as a multilayer heightmap data structure, whose geometry is estimated by combining a visual odometry system with either dense 3D reconstruction or 3D laser data. We use a publicly available dataset to show that our approach is capable of constructing an accurate hyperspectral representation of the surface surrounding the vehicle. We show that in many cases our approach increases spatial resolution over a demosaicing approach, while providing the same amount of spectral information.

  10. Hyperspectral image processing methods

    Science.gov (United States)

    Hyperspectral image processing refers to the use of computer algorithms to extract, store and manipulate both spatial and spectral information contained in hyperspectral images across the visible and near-infrared portion of the electromagnetic spectrum. A typical hyperspectral image processing work...

  11. Section on High Resolution Optical Imaging (HROI)

    Data.gov (United States)

    Federal Laboratory Consortium — The Section on High Resolution Optical Imaging (HROI) develops novel technologies for studying biological processes at unprecedented speed and resolution. Research...

  12. Semiconductor crystal high resolution imager

    Science.gov (United States)

    Levin, Craig S. (Inventor); Matteson, James (Inventor)

    2011-01-01

    A radiation imaging device (10). The radiation image device (10) comprises a subject radiation station (12) producing photon emissions (14), and at least one semiconductor crystal detector (16) arranged in an edge-on orientation with respect to the emitted photons (14) to directly receive the emitted photons (14) and produce a signal. The semiconductor crystal detector (16) comprises at least one anode and at least one cathode that produces the signal in response to the emitted photons (14).

  13. Classification of high resolution satellite images

    OpenAIRE

    Karlsson, Anders

    2003-01-01

    In this thesis the Support Vector Machine (SVM)is applied on classification of high resolution satellite images. Sveral different measures for classification, including texture mesasures, 1st order statistics, and simple contextual information were evaluated. Additionnally, the image was segmented, using an enhanced watershed method, in order to improve the classification accuracy.

  14. High-emulation mask recognition with high-resolution hyperspectral video capture system

    Science.gov (United States)

    Feng, Jiao; Fang, Xiaojing; Li, Shoufeng; Wang, Yongjin

    2014-11-01

    We present a method for distinguishing human face from high-emulation mask, which is increasingly used by criminals for activities such as stealing card numbers and passwords on ATM. Traditional facial recognition technique is difficult to detect such camouflaged criminals. In this paper, we use the high-resolution hyperspectral video capture system to detect high-emulation mask. A RGB camera is used for traditional facial recognition. A prism and a gray scale camera are used to capture spectral information of the observed face. Experiments show that mask made of silica gel has different spectral reflectance compared with the human skin. As multispectral image offers additional spectral information about physical characteristics, high-emulation mask can be easily recognized.

  15. Smartphone microendoscopy for high resolution fluorescence imaging

    Directory of Open Access Journals (Sweden)

    Xiangqian Hong

    2016-09-01

    Full Text Available High resolution optical endoscopes are increasingly used in diagnosis of various medical conditions of internal organs, such as the cervix and gastrointestinal (GI tracts, but they are too expensive for use in resource-poor settings. On the other hand, smartphones with high resolution cameras and Internet access have become more affordable, enabling them to diffuse into most rural areas and developing countries in the past decade. In this paper, we describe a smartphone microendoscope that can take fluorescence images with a spatial resolution of 3.1 μm. Images collected from ex vivo, in vitro and in vivo samples using the device are also presented. The compact and cost-effective smartphone microendoscope may be envisaged as a powerful tool for detecting pre-cancerous lesions of internal organs in low and middle-income countries (LMICs.

  16. A new hyperspectral image compression paradigm based on fusion

    Science.gov (United States)

    Guerra, Raúl; Melián, José; López, Sebastián.; Sarmiento, Roberto

    2016-10-01

    The on-board compression of remote sensed hyperspectral images is an important task nowadays. One of the main difficulties is that the compression of these images must be performed in the satellite which carries the hyperspectral sensor. Hence, this process must be performed by space qualified hardware, having area, power and speed limitations. Moreover, it is important to achieve high compression ratios without compromising the quality of the decompress image. In this manuscript we proposed a new methodology for compressing hyperspectral images based on hyperspectral image fusion concepts. The proposed compression process has two independent steps. The first one is to spatially degrade the remote sensed hyperspectral image to obtain a low resolution hyperspectral image. The second step is to spectrally degrade the remote sensed hyperspectral image to obtain a high resolution multispectral image. These two degraded images are then send to the earth surface, where they must be fused using a fusion algorithm for hyperspectral and multispectral image, in order to recover the remote sensed hyperspectral image. The main advantage of the proposed methodology for compressing remote sensed hyperspectral images is that the compression process, which must be performed on-board, becomes very simple, being the fusion process used to reconstruct image the more complex one. An extra advantage is that the compression ratio can be fixed in advanced. Many simulations have been performed using different fusion algorithms and different methodologies for degrading the hyperspectral image. The results obtained in the simulations performed corroborate the benefits of the proposed methodology.

  17. Filtering high resolution hyperspectral imagery and analyzing it for quantification of water quality parameters and aquatic vegetation

    Science.gov (United States)

    Pande-Chhetri, Roshan

    High resolution hyperspectral imagery (airborne or ground-based) is gaining momentum as a useful analytical tool in various fields including agriculture and aquatic systems. These images are often contaminated with stripes and noise resulting in lower signal-to-noise ratio, especially in aquatic regions where signal is naturally low. This research investigates effective methods for filtering high spatial resolution hyperspectral imagery and use of the imagery in water quality parameter estimation and aquatic vegetation classification. The striping pattern of the hyperspectral imagery is non-parametric and difficult to filter. In this research, a de-striping algorithm based on wavelet analysis and adaptive Fourier domain normalization was examined. The result of this algorithm was found superior to other available algorithms and yielded highest Peak Signal to Noise Ratio improvement. The algorithm was implemented on individual image bands and on selected bands of the Maximum Noise Fraction (MNF) transformed images. The results showed that image filtering in the MNF domain was efficient and produced best results. The study investigated methods of analyzing hyperspectral imagery to estimate water quality parameters and to map aquatic vegetation in case-2 waters. Ground-based hyperspectral imagery was analyzed to determine chlorophyll-a (Chl-a) concentrations in aquaculture ponds. Two-band and three-band indices were implemented and the effect of using submerged reflectance targets was evaluated. Laboratory measured values were found to be in strong correlation with two-band and three-band spectral indices computed from the hyperspectral image. Coefficients of determination (R2) values were found to be 0.833 and 0.862 without submerged targets and stronger values of 0.975 and 0.982 were obtained using submerged targets. Airborne hyperspectral images were used to detect and classify aquatic vegetation in a black river estuarine system. Image normalization for water

  18. Limiting liability via high resolution image processing

    Energy Technology Data Exchange (ETDEWEB)

    Greenwade, L.E.; Overlin, T.K.

    1996-12-31

    The utilization of high resolution image processing allows forensic analysts and visualization scientists to assist detectives by enhancing field photographs, and by providing the tools and training to increase the quality and usability of field photos. Through the use of digitized photographs and computerized enhancement software, field evidence can be obtained and processed as `evidence ready`, even in poor lighting and shadowed conditions or darkened rooms. These images, which are most often unusable when taken with standard camera equipment, can be shot in the worst of photographic condition and be processed as usable evidence. Visualization scientists have taken the use of digital photographic image processing and moved the process of crime scene photos into the technology age. The use of high resolution technology will assist law enforcement in making better use of crime scene photography and positive identification of prints. Valuable court room and investigation time can be saved and better served by this accurate, performance based process. Inconclusive evidence does not lead to convictions. Enhancement of the photographic capability helps solve one major problem with crime scene photos, that if taken with standard equipment and without the benefit of enhancement software would be inconclusive, thus allowing guilty parties to be set free due to lack of evidence.

  19. GRANULOMETRIC MAPS FROM HIGH RESOLUTION SATELLITE IMAGES

    Directory of Open Access Journals (Sweden)

    Catherine Mering

    2011-05-01

    Full Text Available A new method of land cover mapping from satellite images using granulometric analysis is presented here. Discontinuous landscapes such as steppian bushes of semi arid regions and recently growing urban settlements are especially concerned by this study. Spatial organisations of the land cover are quantified by means of the size distribution analysis of the land cover units extracted from high resolution remotely sensed images. A granulometric map is built by automatic classification of every pixel of the image according to the granulometric density inside a sliding neighbourhood. Granulometric mapping brings some advantages over traditional thematic mapping by remote sensing by focusing on fine spatial events and small changes in one peculiar category of the landscape.

  20. Hyperspectral image processing

    CERN Document Server

    Wang, Liguo

    2016-01-01

    Based on the authors’ research, this book introduces the main processing techniques in hyperspectral imaging. In this context, SVM-based classification, distance comparison-based endmember extraction, SVM-based spectral unmixing, spatial attraction model-based sub-pixel mapping, and MAP/POCS-based super-resolution reconstruction are discussed in depth. Readers will gain a comprehensive understanding of these cutting-edge hyperspectral imaging techniques. Researchers and graduate students in fields such as remote sensing, surveying and mapping, geosciences and information systems will benefit from this valuable resource.

  1. High-resolution CCD imaging alternatives

    Science.gov (United States)

    Brown, D. L.; Acker, D. E.

    1992-08-01

    High resolution CCD color cameras have recently stimulated the interest of a large number of potential end-users for a wide range of practical applications. Real-time High Definition Television (HDTV) systems are now being used or considered for use in applications ranging from entertainment program origination through digital image storage to medical and scientific research. HDTV generation of electronic images offers significant cost and time-saving advantages over the use of film in such applications. Further in still image systems electronic image capture is faster and more efficient than conventional image scanners. The CCD still camera can capture 3-dimensional objects into the computing environment directly without having to shoot a picture on film develop it and then scan the image into a computer. 2. EXTENDING CCD TECHNOLOGY BEYOND BROADCAST Most standard production CCD sensor chips are made for broadcast-compatible systems. One popular CCD and the basis for this discussion offers arrays of roughly 750 x 580 picture elements (pixels) or a total array of approximately 435 pixels (see Fig. 1). FOR. A has developed a technique to increase the number of available pixels for a given image compared to that produced by the standard CCD itself. Using an inter-lined CCD with an overall spatial structure several times larger than the photo-sensitive sensor areas each of the CCD sensors is shifted in two dimensions in order to fill in spatial gaps between adjacent sensors.

  2. Dynamic high resolution imaging of rats

    International Nuclear Information System (INIS)

    Miyaoka, R.S.; Lewellen, T.K.; Bice, A.N.

    1990-01-01

    A positron emission tomography with the sensitivity and resolution to do dynamic imaging of rats would be an invaluable tool for biological researchers. In this paper, the authors determine the biological criteria for dynamic positron emission imaging of rats. To be useful, 3 mm isotropic resolution and 2-3 second time binning were necessary characteristics for such a dedicated tomograph. A single plane in which two objects of interest could be imaged simultaneously was considered acceptable. Multi-layered detector designs were evaluated as a possible solution to the dynamic imaging and high resolution imaging requirements. The University of Washington photon history generator was used to generate data to investigate a tomograph's sensitivity to true, scattered and random coincidences for varying detector ring diameters. Intrinsic spatial uniformity advantages of multi-layered detector designs over conventional detector designs were investigated using a Monte Carlo program. As a result, a modular three layered detector prototype is being developed. A module will consist of a layer of five 3.5 mm wide crystals and two layers of six 2.5 mm wide crystals. The authors believe adequate sampling can be achieved with a stationary detector system using these modules. Economical crystal decoding strategies have been investigated and simulations have been run to investigate optimum light channeling methods for block decoding strategies. An analog block decoding method has been proposed and will be experimentally evaluated to determine whether it can provide the desired performance

  3. Hyperspectral fundus imager

    Science.gov (United States)

    Truitt, Paul W.; Soliz, Peter; Meigs, Andrew D.; Otten, Leonard John, III

    2000-11-01

    A Fourier Transform hyperspectral imager was integrated onto a standard clinical fundus camera, a Zeiss FF3, for the purposes of spectrally characterizing normal anatomical and pathological features in the human ocular fundus. To develop this instrument an existing FDA approved retinal camera was selected to avoid the difficulties of obtaining new FDA approval. Because of this, several unusual design constraints were imposed on the optical configuration. Techniques to calibrate the sensor and to define where the hyperspectral pushbroom stripe was located on the retina were developed, including the manufacturing of an artificial eye with calibration features suitable for a spectral imager. In this implementation the Fourier transform hyperspectral imager can collect over a hundred 86 cm-1 spectrally resolved bands with 12 micro meter/pixel spatial resolution within the 1050 nm to 450 nm band. This equates to 2 nm to 8 nm spectral resolution depending on the wavelength. For retinal observations the band of interest tends to lie between 475 nm and 790 nm. The instrument has been in use over the last year successfully collecting hyperspectral images of the optic disc, retinal vessels, choroidal vessels, retinal backgrounds, and macula diabetic macular edema, and lesions of age-related macular degeneration.

  4. Infrared upconversion hyperspectral imaging

    DEFF Research Database (Denmark)

    Kehlet, Louis Martinus; Tidemand-Lichtenberg, Peter; Dam, Jeppe Seidelin

    2015-01-01

    In this Letter, hyperspectral imaging in the mid-IR spectral region is demonstrated based on nonlinear frequency upconversion and subsequent imaging using a standard Si-based CCD camera. A series of upconverted images are acquired with different phase match conditions for the nonlinear frequency...... conversion process. From this, a sequence of monochromatic images in the 3.2-3.4 mu m range is generated. The imaged object consists of a standard United States Air Force resolution target combined with a polystyrene film, resulting in the presence of both spatial and spectral information in the infrared...... image. (C) 2015 Optical Society of America...

  5. Multipurpose Hyperspectral Imaging System

    Science.gov (United States)

    Mao, Chengye; Smith, David; Lanoue, Mark A.; Poole, Gavin H.; Heitschmidt, Jerry; Martinez, Luis; Windham, William A.; Lawrence, Kurt C.; Park, Bosoon

    2005-01-01

    A hyperspectral imaging system of high spectral and spatial resolution that incorporates several innovative features has been developed to incorporate a focal plane scanner (U.S. Patent 6,166,373). This feature enables the system to be used for both airborne/spaceborne and laboratory hyperspectral imaging with or without relative movement of the imaging system, and it can be used to scan a target of any size as long as the target can be imaged at the focal plane; for example, automated inspection of food items and identification of single-celled organisms. The spectral resolution of this system is greater than that of prior terrestrial multispectral imaging systems. Moreover, unlike prior high-spectral resolution airborne and spaceborne hyperspectral imaging systems, this system does not rely on relative movement of the target and the imaging system to sweep an imaging line across a scene. This compact system (see figure) consists of a front objective mounted at a translation stage with a motorized actuator, and a line-slit imaging spectrograph mounted within a rotary assembly with a rear adaptor to a charged-coupled-device (CCD) camera. Push-broom scanning is carried out by the motorized actuator which can be controlled either manually by an operator or automatically by a computer to drive the line-slit across an image at a focal plane of the front objective. To reduce the cost, the system has been designed to integrate as many as possible off-the-shelf components including the CCD camera and spectrograph. The system has achieved high spectral and spatial resolutions by using a high-quality CCD camera, spectrograph, and front objective lens. Fixtures for attachment of the system to a microscope (U.S. Patent 6,495,818 B1) make it possible to acquire multispectral images of single cells and other microscopic objects.

  6. Planetary Hyperspectral Imager (PHI)

    Science.gov (United States)

    Silvergate, Peter

    1996-01-01

    A hyperspectral imaging spectrometer was breadboarded. Key innovations were use of a sapphire prism and single InSb focal plane to cover the entire spectral range, and a novel slit optic and relay optics to reduce thermal background. Operation over a spectral range of 450 - 4950 nm (approximately 3.5 spectral octaves) was demonstrated. Thermal background reduction by a factor of 8 - 10 was also demonstrated.

  7. Simulation of Hyperspectral Images

    Science.gov (United States)

    Richsmeier, Steven C.; Singer-Berk, Alexander; Bernstein, Lawrence S.

    2004-01-01

    A software package generates simulated hyperspectral imagery for use in validating algorithms that generate estimates of Earth-surface spectral reflectance from hyperspectral images acquired by airborne and spaceborne instruments. This software is based on a direct simulation Monte Carlo approach for modeling three-dimensional atmospheric radiative transport, as well as reflections from surfaces characterized by spatially inhomogeneous bidirectional reflectance distribution functions. In this approach, "ground truth" is accurately known through input specification of surface and atmospheric properties, and it is practical to consider wide variations of these properties. The software can treat both land and ocean surfaces, as well as the effects of finite clouds with surface shadowing. The spectral/spatial data cubes computed by use of this software can serve both as a substitute for, and a supplement to, field validation data.

  8. Illumination compensation in ground based hyperspectral imaging

    Science.gov (United States)

    Wendel, Alexander; Underwood, James

    2017-07-01

    Hyperspectral imaging has emerged as an important tool for analysing vegetation data in agricultural applications. Recently, low altitude and ground based hyperspectral imaging solutions have come to the fore, providing very high resolution data for mapping and studying large areas of crops in detail. However, these platforms introduce a unique set of challenges that need to be overcome to ensure consistent, accurate and timely acquisition of data. One particular problem is dealing with changes in environmental illumination while operating with natural light under cloud cover, which can have considerable effects on spectral shape. In the past this has been commonly achieved by imaging known reference targets at the time of data acquisition, direct measurement of irradiance, or atmospheric modelling. While capturing a reference panel continuously or very frequently allows accurate compensation for illumination changes, this is often not practical with ground based platforms, and impossible in aerial applications. This paper examines the use of an autonomous unmanned ground vehicle (UGV) to gather high resolution hyperspectral imaging data of crops under natural illumination. A process of illumination compensation is performed to extract the inherent reflectance properties of the crops, despite variable illumination. This work adapts a previously developed subspace model approach to reflectance and illumination recovery. Though tested on a ground vehicle in this paper, it is applicable to low altitude unmanned aerial hyperspectral imagery also. The method uses occasional observations of reference panel training data from within the same or other datasets, which enables a practical field protocol that minimises in-field manual labour. This paper tests the new approach, comparing it against traditional methods. Several illumination compensation protocols for high volume ground based data collection are presented based on the results. The findings in this paper are

  9. High resolution imaging of boron carbide microstructures

    International Nuclear Information System (INIS)

    MacKinnon, I.D.R.; Aselage, T.; Van Deusen, S.B.

    1986-01-01

    Two samples of boron carbide have been examined using high resolution transmission electron microscopy (HRTEM). A hot-pressed B 13 C 2 sample shows a high density of variable width twins normal to (10*1). Subtle shifts or offsets of lattice fringes along the twin plane and normal to approx.(10*5) were also observed. A B 4 C powder showed little evidence of stacking disorder in crystalline regions

  10. Hyperspectral image analysis. A tutorial

    DEFF Research Database (Denmark)

    Amigo Rubio, Jose Manuel; Babamoradi, Hamid; Elcoroaristizabal Martin, Saioa

    2015-01-01

    This tutorial aims at providing guidelines and practical tools to assist with the analysis of hyperspectral images. Topics like hyperspectral image acquisition, image pre-processing, multivariate exploratory analysis, hyperspectral image resolution, classification and final digital image processi...... to differentiate between several types of plastics by using Near infrared hyperspectral imaging and Partial Least Squares - Discriminant Analysis. Thus, the reader is guided through every single step and oriented in order to adapt those strategies to the user's case....... will be exposed, and some guidelines given and discussed. Due to the broad character of current applications and the vast number of multivariate methods available, this paper has focused on an industrial chemical framework to explain, in a step-wise manner, how to develop a classification methodology...

  11. High-Resolution and Non-destructive Evaluation of the Spatial Distribution of Nitrate and Its Dynamics in Spinach (Spinacia oleracea L. Leaves by Near-Infrared Hyperspectral Imaging

    Directory of Open Access Journals (Sweden)

    Hao-Yu Yang

    2017-11-01

    Full Text Available Nitrate is an important component of the nitrogen cycle and is therefore present in all plants. However, excessive nitrogen fertilization results in a high nitrate content in vegetables, which is unhealthy for humans. Understanding the spatial distribution of nitrate in leaves is beneficial for improving nitrogen assimilation efficiency and reducing its content in vegetables. In this study, near-infrared (NIR hyperspectral imaging was used for the non-destructive and effective evaluation of nitrate content in spinach (Spinacia oleracea L. leaves. Leaf samples with different nitrate contents were collected under various fertilization conditions, and reference data were obtained using reflectometer apparatus RQflex 10. Partial least squares regression analysis revealed that there was a high correlation between the reference data and NIR spectra (r2 = 0.74, root mean squared error of cross-validation = 710.16 mg/kg. Furthermore, the nitrate content in spinach leaves was successfully mapped at a high spatial resolution, clearly displaying its distribution in the petiole, vein, and blade. Finally, the mapping results demonstrated dynamic changes in the nitrate content in intact leaf samples under different storage conditions, showing the value of this non-destructive tool for future analyses of the nitrate content in vegetables.

  12. Sparse Representations of Hyperspectral Images

    KAUST Repository

    Swanson, Robin J.

    2015-01-01

    Hyperspectral image data has long been an important tool for many areas of sci- ence. The addition of spectral data yields significant improvements in areas such as object and image classification, chemical and mineral composition detection, and astronomy. Traditional capture methods for hyperspectral data often require each wavelength to be captured individually, or by sacrificing spatial resolution. Recently there have been significant improvements in snapshot hyperspectral captures using, in particular, compressed sensing methods. As we move to a compressed sensing image formation model the need for strong image priors to shape our reconstruction, as well as sparse basis become more important. Here we compare several several methods for representing hyperspectral images including learned three dimensional dictionaries, sparse convolutional coding, and decomposable nonlocal tensor dictionaries. Addi- tionally, we further explore their parameter space to identify which parameters provide the most faithful and sparse representations.

  13. Sparse Representations of Hyperspectral Images

    KAUST Repository

    Swanson, Robin J.

    2015-11-23

    Hyperspectral image data has long been an important tool for many areas of sci- ence. The addition of spectral data yields significant improvements in areas such as object and image classification, chemical and mineral composition detection, and astronomy. Traditional capture methods for hyperspectral data often require each wavelength to be captured individually, or by sacrificing spatial resolution. Recently there have been significant improvements in snapshot hyperspectral captures using, in particular, compressed sensing methods. As we move to a compressed sensing image formation model the need for strong image priors to shape our reconstruction, as well as sparse basis become more important. Here we compare several several methods for representing hyperspectral images including learned three dimensional dictionaries, sparse convolutional coding, and decomposable nonlocal tensor dictionaries. Addi- tionally, we further explore their parameter space to identify which parameters provide the most faithful and sparse representations.

  14. Hyperspectral image analysis. A tutorial

    International Nuclear Information System (INIS)

    Amigo, José Manuel; Babamoradi, Hamid; Elcoroaristizabal, Saioa

    2015-01-01

    This tutorial aims at providing guidelines and practical tools to assist with the analysis of hyperspectral images. Topics like hyperspectral image acquisition, image pre-processing, multivariate exploratory analysis, hyperspectral image resolution, classification and final digital image processing will be exposed, and some guidelines given and discussed. Due to the broad character of current applications and the vast number of multivariate methods available, this paper has focused on an industrial chemical framework to explain, in a step-wise manner, how to develop a classification methodology to differentiate between several types of plastics by using Near infrared hyperspectral imaging and Partial Least Squares – Discriminant Analysis. Thus, the reader is guided through every single step and oriented in order to adapt those strategies to the user's case. - Highlights: • Comprehensive tutorial of Hyperspectral Image analysis. • Hierarchical discrimination of six classes of plastics containing flame retardant. • Step by step guidelines to perform class-modeling on hyperspectral images. • Fusion of multivariate data analysis and digital image processing methods. • Promising methodology for real-time detection of plastics containing flame retardant.

  15. Image processor for high resolution video

    International Nuclear Information System (INIS)

    Pessoa, P.P.; Assis, J.T.; Cardoso, S.B.; Lopes, R.T.

    1989-01-01

    In this paper, we discuss an image presentation and processing system developed in Turbo Pascal 5.0 Language. Our system allows the visualization and processing of images in 16 different colors, taken at a time from a set of 64 possible ones. Digital filters of the mean, mediam Laplacian, gradient and histograms equalization type have been implemented, so as to allow a better image quality. Possible applications of our system are also discussed e.g., satellites, computerized tomography, medicine, microscopes. (author) [pt

  16. High resolution transmission imaging without lenses

    International Nuclear Information System (INIS)

    Rodenburg, J M; Hurst, A C; Maiden, A

    2010-01-01

    The whole history of transmission imaging has been dominated by the lens, whether used in visible-light optics, electron optics or X-ray optics. Lenses can be thought of as a very efficient method of processing a wave front scattered from an object into an image of that object. An alternative approach is to undertake this image-formation process using a computational technique. The crudest scattering experiment is to simply record the intensity of a diffraction pattern. Recent progress in so-called diffractive imaging has shown that it is possible to recover the phase of a scattered wavefield from its diffraction pattern alone, as long as the object (or the illumination on the object) is of finite extent. In this paper we present results from a very efficient phase retrieval method which can image infinitely large fields of view. It may have important applications in improving resolution in electron microscopy, or at least allowing low specification microscopes to achieve resolution comparable to state-of-the-art machines.

  17. Reproducible high-resolution multispectral image acquisition in dermatology

    Science.gov (United States)

    Duliu, Alexandru; Gardiazabal, José; Lasser, Tobias; Navab, Nassir

    2015-07-01

    Multispectral image acquisitions are increasingly popular in dermatology, due to their improved spectral resolution which enables better tissue discrimination. Most applications however focus on restricted regions of interest, imaging only small lesions. In this work we present and discuss an imaging framework for high-resolution multispectral imaging on large regions of interest.

  18. High Resolution Astrophysical Observations Using Speckle Imaging

    Science.gov (United States)

    1986-04-11

    reserved. Printed in U.S A . A NEW OPTICAL SOURCE ASSOCIATED WITH T TAURI P. NISENSON, R. V. STACHNIK, M. KAROVSKA , AND R. NOYES Harvard-Smithsonian Center...NISENSON, STACHNIK, KAROVSKA . AND NoYEs (see page L18) APPENDIX F ON THE a ORIONIS TRIPLE SYSTEM M. Karovska , P. Nisenson, R. Noyes Harvard-Smithsonian...3.5 and 4.0 at a wavelengtRh of 530 nm. In Addition, Karovska (1984) inferred the possible existence of a second companion from an image recon

  19. High resolution imaging detectors and applications

    CERN Document Server

    Saha, Swapan K

    2015-01-01

    Interferometric observations need snapshots of very high time resolution of the order of (i) frame integration of about 100 Hz or (ii) photon-recording rates of several megahertz (MHz). Detectors play a key role in astronomical observations, and since the explanation of the photoelectric effect by Albert Einstein, the technology has evolved rather fast. The present-day technology has made it possible to develop large-format complementary metal oxide–semiconductor (CMOS) and charge-coupled device (CCD) array mosaics, orthogonal transfer CCDs, electron-multiplication CCDs, electron-avalanche photodiode arrays, and quantum-well infrared (IR) photon detectors. The requirements to develop artifact-free photon shot noise-limited images are higher sensitivity and quantum efficiency, reduced noise that includes dark current, read-out and amplifier noise, smaller point-spread functions, and higher spectral bandwidth. This book aims to address such systems, technologies and design, evaluation and calibration, control...

  20. Medical hyperspectral imaging: a review

    Science.gov (United States)

    Lu, Guolan; Fei, Baowei

    2014-01-01

    Abstract. Hyperspectral imaging (HSI) is an emerging imaging modality for medical applications, especially in disease diagnosis and image-guided surgery. HSI acquires a three-dimensional dataset called hypercube, with two spatial dimensions and one spectral dimension. Spatially resolved spectral imaging obtained by HSI provides diagnostic information about the tissue physiology, morphology, and composition. This review paper presents an overview of the literature on medical hyperspectral imaging technology and its applications. The aim of the survey is threefold: an introduction for those new to the field, an overview for those working in the field, and a reference for those searching for literature on a specific application. PMID:24441941

  1. 1024 matrix image reconstruction: usefulness in high resolution chest CT

    International Nuclear Information System (INIS)

    Jeong, Sun Young; Chung, Myung Jin; Chong, Se Min; Sung, Yon Mi; Lee, Kyung Soo

    2006-01-01

    We tried to evaluate whether high resolution chest CT with a 1,024 matrix has a significant advantage in image quality compared to a 512 matrix. Each set of 512 and 1024 matrix high resolution chest CT scans with both 0.625 mm and 1.25 mm slice thickness were obtained from 26 patients. Seventy locations that contained twenty-four low density lesions without sharp boundary such as emphysema, and forty-six sharp linear densities such as linear fibrosis were selected; these were randomly displayed on a five mega pixel LCD monitor. All the images were masked for information concerning the matrix size and slice thickness. Two chest radiologists scored the image quality of each ar rowed lesion as follows: (1) undistinguishable, (2) poorly distinguishable, (3) fairly distinguishable, (4) well visible and (5) excellently visible. The scores were compared from the aspects of matrix size, slice thickness and the different observers by using ANOVA tests. The average and standard deviation of image quality were 3.09 (± .92) for the 0.625 mm x 512 matrix, 3.16 (± .84) for the 0.625 mm x 1024 matrix, 2.49 (± 1.02) for the 1.25 mm x 512 matrix, and 2.35 (± 1.02) for the 1.25 mm x 1024 matrix, respectively. The image quality on both matrices of the high resolution chest CT scans with a 0.625 mm slice thickness was significantly better than that on the 1.25 mm slice thickness (ρ < 0.001). However, the image quality on the 1024 matrix high resolution chest CT scans was not significantly different from that on the 512 matrix high resolution chest CT scans (ρ = 0.678). The interobserver variation between the two observers was not significant (ρ = 0.691). We think that 1024 matrix image reconstruction for high resolution chest CT may not be clinical useful

  2. High-resolution axial MR imaging of tibial stress injuries

    Directory of Open Access Journals (Sweden)

    Mammoto Takeo

    2012-05-01

    Full Text Available Abstract Purpose To evaluate the relative involvement of tibial stress injuries using high-resolution axial MR imaging and the correlation with MR and radiographic images. Methods A total of 33 patients with exercise-induced tibial pain were evaluated. All patients underwent radiograph and high-resolution axial MR imaging. Radiographs were taken at initial presentation and 4 weeks later. High-resolution MR axial images were obtained using a microscopy surface coil with 60 × 60 mm field of view on a 1.5T MR unit. All images were evaluated for abnormal signals of the periosteum, cortex and bone marrow. Results Nineteen patients showed no periosteal reaction at initial and follow-up radiographs. MR imaging showed abnormal signals in the periosteal tissue and partially abnormal signals in the bone marrow. In 7 patients, periosteal reaction was not seen at initial radiograph, but was detected at follow-up radiograph. MR imaging showed abnormal signals in the periosteal tissue and entire bone marrow. Abnormal signals in the cortex were found in 6 patients. The remaining 7 showed periosteal reactions at initial radiograph. MR imaging showed abnormal signals in the periosteal tissue in 6 patients. Abnormal signals were seen in the partial and entire bone marrow in 4 and 3 patients, respectively. Conclusions Bone marrow abnormalities in high-resolution axial MR imaging were related to periosteal reactions at follow-up radiograph. Bone marrow abnormalities might predict later periosteal reactions, suggesting shin splints or stress fractures. High-resolution axial MR imaging is useful in early discrimination of tibial stress injuries.

  3. High-resolution axial MR imaging of tibial stress injuries

    Science.gov (United States)

    2012-01-01

    Purpose To evaluate the relative involvement of tibial stress injuries using high-resolution axial MR imaging and the correlation with MR and radiographic images. Methods A total of 33 patients with exercise-induced tibial pain were evaluated. All patients underwent radiograph and high-resolution axial MR imaging. Radiographs were taken at initial presentation and 4 weeks later. High-resolution MR axial images were obtained using a microscopy surface coil with 60 × 60 mm field of view on a 1.5T MR unit. All images were evaluated for abnormal signals of the periosteum, cortex and bone marrow. Results Nineteen patients showed no periosteal reaction at initial and follow-up radiographs. MR imaging showed abnormal signals in the periosteal tissue and partially abnormal signals in the bone marrow. In 7 patients, periosteal reaction was not seen at initial radiograph, but was detected at follow-up radiograph. MR imaging showed abnormal signals in the periosteal tissue and entire bone marrow. Abnormal signals in the cortex were found in 6 patients. The remaining 7 showed periosteal reactions at initial radiograph. MR imaging showed abnormal signals in the periosteal tissue in 6 patients. Abnormal signals were seen in the partial and entire bone marrow in 4 and 3 patients, respectively. Conclusions Bone marrow abnormalities in high-resolution axial MR imaging were related to periosteal reactions at follow-up radiograph. Bone marrow abnormalities might predict later periosteal reactions, suggesting shin splints or stress fractures. High-resolution axial MR imaging is useful in early discrimination of tibial stress injuries. PMID:22574840

  4. High-resolution SPECT for small-animal imaging

    International Nuclear Information System (INIS)

    Qi Yujin

    2006-01-01

    This article presents a brief overview of the development of high-resolution SPECT for small-animal imaging. A pinhole collimator has been used for high-resolution animal SPECT to provide better spatial resolution and detection efficiency in comparison with a parallel-hole collimator. The theory of imaging characteristics of the pinhole collimator is presented and the designs of the pinhole aperture are discussed. The detector technologies used for the development of small-animal SPECT and the recent advances are presented. The evolving trend of small-animal SPECT is toward a multi-pinhole and a multi-detector system to obtain a high resolution and also a high detection efficiency. (authors)

  5. Structure Identification in High-Resolution Transmission Electron Microscopic Images

    DEFF Research Database (Denmark)

    Vestergaard, Jacob Schack; Kling, Jens; Dahl, Anders Bjorholm

    2014-01-01

    A connection between microscopic structure and macroscopic properties is expected for almost all material systems. High-resolution transmission electron microscopy is a technique offering insight into the atomic structure, but the analysis of large image series can be time consuming. The present ...

  6. A method for generating high resolution satellite image time series

    Science.gov (United States)

    Guo, Tao

    2014-10-01

    There is an increasing demand for satellite remote sensing data with both high spatial and temporal resolution in many applications. But it still is a challenge to simultaneously improve spatial resolution and temporal frequency due to the technical limits of current satellite observation systems. To this end, much R&D efforts have been ongoing for years and lead to some successes roughly in two aspects, one includes super resolution, pan-sharpen etc. methods which can effectively enhance the spatial resolution and generate good visual effects, but hardly preserve spectral signatures and result in inadequate analytical value, on the other hand, time interpolation is a straight forward method to increase temporal frequency, however it increase little informative contents in fact. In this paper we presented a novel method to simulate high resolution time series data by combing low resolution time series data and a very small number of high resolution data only. Our method starts with a pair of high and low resolution data set, and then a spatial registration is done by introducing LDA model to map high and low resolution pixels correspondingly. Afterwards, temporal change information is captured through a comparison of low resolution time series data, and then projected onto the high resolution data plane and assigned to each high resolution pixel according to the predefined temporal change patterns of each type of ground objects. Finally the simulated high resolution data is generated. A preliminary experiment shows that our method can simulate a high resolution data with a reasonable accuracy. The contribution of our method is to enable timely monitoring of temporal changes through analysis of time sequence of low resolution images only, and usage of costly high resolution data can be reduces as much as possible, and it presents a highly effective way to build up an economically operational monitoring solution for agriculture, forest, land use investigation

  7. A subspace approach to high-resolution spectroscopic imaging.

    Science.gov (United States)

    Lam, Fan; Liang, Zhi-Pei

    2014-04-01

    To accelerate spectroscopic imaging using sparse sampling of (k,t)-space and subspace (or low-rank) modeling to enable high-resolution metabolic imaging with good signal-to-noise ratio. The proposed method, called SPectroscopic Imaging by exploiting spatiospectral CorrElation, exploits a unique property known as partial separability of spectroscopic signals. This property indicates that high-dimensional spectroscopic signals reside in a very low-dimensional subspace and enables special data acquisition and image reconstruction strategies to be used to obtain high-resolution spatiospectral distributions with good signal-to-noise ratio. More specifically, a hybrid chemical shift imaging/echo-planar spectroscopic imaging pulse sequence is proposed for sparse sampling of (k,t)-space, and a low-rank model-based algorithm is proposed for subspace estimation and image reconstruction from sparse data with the capability to incorporate prior information and field inhomogeneity correction. The performance of the proposed method has been evaluated using both computer simulations and phantom studies, which produced very encouraging results. For two-dimensional spectroscopic imaging experiments on a metabolite phantom, a factor of 10 acceleration was achieved with a minimal loss in signal-to-noise ratio compared to the long chemical shift imaging experiments and with a significant gain in signal-to-noise ratio compared to the accelerated echo-planar spectroscopic imaging experiments. The proposed method, SPectroscopic Imaging by exploiting spatiospectral CorrElation, is able to significantly accelerate spectroscopic imaging experiments, making high-resolution metabolic imaging possible. Copyright © 2014 Wiley Periodicals, Inc.

  8. High-resolution investigations of edge effects in neutron imaging

    International Nuclear Information System (INIS)

    Strobl, M.; Kardjilov, N.; Hilger, A.; Kuehne, G.; Frei, G.; Manke, I.

    2009-01-01

    Edge enhancement is the main effect measured by the so-called inline or propagation-based neutron phase contrast imaging method. The effect has originally been explained by diffraction, and high spatial coherence has been claimed to be a necessary precondition. However, edge enhancement has also been found in conventional imaging with high resolution. In such cases the effects can produce artefacts and hinder quantification. In this letter the edge effects at cylindrical shaped samples and long straight edges have been studied in detail. The enhancement can be explained by refraction and total reflection. Using high-resolution imaging, where spatial resolutions better than 50 μm could be achieved, refraction and total reflection peaks - similar to diffraction patterns - could be separated and distinguished.

  9. Adaptive optics with pupil tracking for high resolution retinal imaging.

    Science.gov (United States)

    Sahin, Betul; Lamory, Barbara; Levecq, Xavier; Harms, Fabrice; Dainty, Chris

    2012-02-01

    Adaptive optics, when integrated into retinal imaging systems, compensates for rapidly changing ocular aberrations in real time and results in improved high resolution images that reveal the photoreceptor mosaic. Imaging the retina at high resolution has numerous potential medical applications, and yet for the development of commercial products that can be used in the clinic, the complexity and high cost of the present research systems have to be addressed. We present a new method to control the deformable mirror in real time based on pupil tracking measurements which uses the default camera for the alignment of the eye in the retinal imaging system and requires no extra cost or hardware. We also present the first experiments done with a compact adaptive optics flood illumination fundus camera where it was possible to compensate for the higher order aberrations of a moving model eye and in vivo in real time based on pupil tracking measurements, without the real time contribution of a wavefront sensor. As an outcome of this research, we showed that pupil tracking can be effectively used as a low cost and practical adaptive optics tool for high resolution retinal imaging because eye movements constitute an important part of the ocular wavefront dynamics.

  10. Precision crystal alignment for high-resolution electron microscope imaging

    International Nuclear Information System (INIS)

    Wood, G.J.; Beeching, M.J.

    1990-01-01

    One of the more difficult tasks involved in obtaining quality high-resolution electron micrographs is the precise alignment of a specimen into the required zone. The current accepted procedure, which involves changing to diffraction mode and searching for symmetric point diffraction pattern, is insensitive to small amounts of misalignment and at best qualitative. On-line analysis of the fourier space representation of the image, both for determining and correcting crystal tilt, is investigated. 8 refs., 42 figs

  11. High-Resolution Imaging of Colliding and Merging Galaxies

    Science.gov (United States)

    Whitmore, Brad

    1991-07-01

    We propose to obtain high-resolution images, using the WF/PC, of two colliding and merging galaxies (i.e., NGC 4038/4039 = "The Antennae" and NGC 7252 ="Atoms-for-Peace Galaxy". Our goal is to use HST to make critical observations of each object in order to gain a better understanding of the various phases of the merger process. Our primary objective is to determine whether globular clusters are formed during mergers\\?

  12. High resolution multiplexed functional imaging in live embryos (Conference Presentation)

    Science.gov (United States)

    Xu, Dongli; Zhou, Weibin; Peng, Leilei

    2017-02-01

    Fourier multiplexed fluorescence lifetime imaging (FmFLIM) scanning laser optical tomography (FmFLIM-SLOT) combines FmFLIM and Scanning laser optical tomography (SLOT) to perform multiplexed 3D FLIM imaging of live embryos. The system had demonstrate multiplexed functional imaging of zebrafish embryos genetically express Foster Resonant Energy Transfer (FRET) sensors. However, previous system has a 20 micron resolution because the focused Gaussian beam diverges quickly from the focused plane, makes it difficult to achieve high resolution imaging over a long projection depth. Here, we present a high-resolution FmFLIM-SLOT system with achromatic Bessel beam, which achieves 3 micron resolution in 3D deep tissue imaging. In Bessel-FmFLIM-SLOT, multiple laser excitation lines are firstly intensity modulated by a Michelson interferometer with a spinning polygon mirror optical delay line, which enables Fourier multiplexed multi-channel lifetime measurements. Then, a spatial light modulator and a prism are used to transform the modulated Gaussian laser beam to an achromatic Bessel beam. The achromatic Bessel beam scans across the whole specimen with equal angular intervals as sample rotated. After tomography reconstruction and the frequency domain lifetime analysis method, both the 3D intensity and lifetime image of multiple excitation-emission can be obtained. Using Bessel-FmFLIM-SLOT system, we performed cellular-resolution FLIM tomography imaging of live zebrafish embryo. Genetically expressed FRET sensors in these embryo will allow non-invasive observation of multiple biochemical processes in vivo.

  13. Image thresholding in the high resolution target movement monitor

    Science.gov (United States)

    Moss, Randy H.; Watkins, Steve E.; Jones, Tristan H.; Apel, Derek B.; Bairineni, Deepti

    2009-03-01

    Image thresholding in the High Resolution Target Movement Monitor (HRTMM) is examined. The HRTMM was developed at the Missouri University of Science and Technology to detect and measure wall movements in underground mines to help reduce fatality and injury rates. The system detects the movement of a target with sub-millimeter accuracy based on the images of one or more laser dots projected on the target and viewed by a high-resolution camera. The relative position of the centroid of the laser dot (determined by software using thresholding concepts) in the images is the key factor in detecting the target movement. Prior versions of the HRTMM set the image threshold based on a manual, visual examination of the images. This work systematically examines the effect of varying threshold on the calculated centroid position and describes an algorithm for determining a threshold setting. First, the thresholding effects on the centroid position are determined for a stationary target. Plots of the centroid positions as a function of varying thresholds are obtained to identify clusters of thresholds for which the centroid position does not change for stationary targets. Second, the target is moved away from the camera in sub-millimeter increments and several images are obtained at each position and analyzed as a function of centroid position, target movement and varying threshold values. With this approach, the HRTMM can accommodate images in batch mode without the need for manual intervention. The capability for the HRTMM to provide automated, continuous monitoring of wall movement is enhanced.

  14. A hyperspectral image data exploration workbench for environmental science applications

    International Nuclear Information System (INIS)

    Woyna, M.A.; Christiansen, J.H.; Zawada, D.G.; Simunich, K.L.

    1994-01-01

    The Hyperspectral Image Data Exploration Workbench (HIDEW) software system has been developed by Argonne National Laboratory to enable analysts at Unix workstations to conveniently access and manipulate high-resolution imagery data for analysis, mapping purposes, and input to environmental modeling applications. HIDEW is fully object-oriented, including the underlying database. This system was developed as an aid to site characterization work and atmospheric research projects

  15. A hyperspectral image data exploration workbench for environmental science applications

    Energy Technology Data Exchange (ETDEWEB)

    Woyna, M.A.; Christiansen, J.H.; Zawada, D.G.; Simunich, K.L.

    1994-08-01

    The Hyperspectral Image Data Exploration Workbench (HIDEW) software system has been developed by Argonne National Laboratory to enable analysts at Unix workstations to conveniently access and manipulate high-resolution imagery data for analysis, mapping purposes, and input to environmental modeling applications. HIDEW is fully object-oriented, including the underlying database. This system was developed as an aid to site characterization work and atmospheric research projects.

  16. Fast iterative segmentation of high resolution medical images

    International Nuclear Information System (INIS)

    Hebert, T.J.

    1996-01-01

    Various applications in positron emission tomography (PET), single photon emission computed tomography (SPECT) and magnetic resonance imaging (MRI) require segmentation of 20 to 60 high resolution images of size 256x256 pixels in 3-9 seconds per image. This places particular constraints on the design of image segmentation algorithms. This paper examines the trade-offs in segmenting images based on fitting a density function to the pixel intensities using curve-fitting versus the maximum likelihood method. A quantized data representation is proposed and the EM algorithm for fitting a finite mixture density function to the quantized representation for an image is derived. A Monte Carlo evaluation of mean estimation error and classification error showed that the resulting quantized EM algorithm dramatically reduces the required computation time without loss of accuracy

  17. Using High-Resolution Hyperspectral and Thermal Airborne Imagery to Assess Physiological Condition in the Context of Wheat Phenotyping

    Directory of Open Access Journals (Sweden)

    Victoria Gonzalez-Dugo

    2015-10-01

    Full Text Available There is a growing need for developing high-throughput tools for crop phenotyping that would increase the rate of genetic improvement. In most cases, the indicators used for this purpose are related with canopy structure (often acquired with RGB cameras and multispectral sensors allowing the calculation of NDVI, but using approaches related with the crop physiology are rare. High-resolution hyperspectral remote sensing imagery provides optical indices related to physiological condition through the quantification of photosynthetic pigment and chlorophyll fluorescence emission. This study demonstrates the use of narrow-band indicators of stress as a potential tool for phenotyping under rainfed conditions using two airborne datasets acquired over a wheat experiment with 150 plots comprising two species and 50 varieties (bread and durum wheat. The flights were performed at the early stem elongation stage and during the milking stage. Physiological measurements made at the time of flights demonstrated that the second flight was made during the terminal stress, known to largely determine final yield under rainfed conditions. The hyperspectral imagery enabled the extraction of thermal, radiance, and reflectance spectra from 260 spectral bands from each plot for the calculation of indices related to photosynthetic pigment absorption in the visible and red-edge regions, the quantification of chlorophyll fluorescence emission, as well as structural indices related to canopy structure. Under the conditions of this study, the structural indices (i.e., NDVI did not show a good performance at predicting yield, probably because of the large effects of terminal water stress. Thermal indices, indices related to chlorophyll fluorescence (calculated using the FLD method, and carotenoids pigment indices (PRI and CAR demonstrated to be better suited for screening complex traits such as crop yield. The study concludes that the indicators derived from high-resolution

  18. The inelastic contribution to high resolution images of defects

    International Nuclear Information System (INIS)

    Krivanek, O.L.; Ahn, C.C.; Wood, G.J.

    1990-01-01

    The importance of the contribution due to inelastically scattered electrons to unfiltered HREM images is examined, with emphasis on imaging of defects in semiconductors. Whenever the low energy loss spectrum contains sharp peaks, the contribution is not featureless. At specimen thickness of a few tens of nm, it may change the image appearance in a major way. The strongest effect occurs in high resolution, medium voltage (200 to 500 kV) electron microscope images of defects at focus values minimizing the contrast of the elastic image in low Z materials such as Al and Si. In higher Z materials or those with no sharp 'plasmons', the contribution is small. 23 refs., 8 figs

  19. Quantifying and containing the curse of high resolution coronal imaging

    Directory of Open Access Journals (Sweden)

    V. Delouille

    2008-10-01

    Full Text Available Future missions such as Solar Orbiter (SO, InterHelioprobe, or Solar Probe aim at approaching the Sun closer than ever before, with on board some high resolution imagers (HRI having a subsecond cadence and a pixel area of about (80 km2 at the Sun during perihelion. In order to guarantee their scientific success, it is necessary to evaluate if the photon counts available at these resolution and cadence will provide a sufficient signal-to-noise ratio (SNR. For example, if the inhomogeneities in the Quiet Sun emission prevail at higher resolution, one may hope to locally have more photon counts than in the case of a uniform source. It is relevant to quantify how inhomogeneous the quiet corona will be for a pixel pitch that is about 20 times smaller than in the case of SoHO/EIT, and 5 times smaller than TRACE. We perform a first step in this direction by analyzing and characterizing the spatial intermittency of Quiet Sun images thanks to a multifractal analysis. We identify the parameters that specify the scale-invariance behavior. This identification allows next to select a family of multifractal processes, namely the Compound Poisson Cascades, that can synthesize artificial images having some of the scale-invariance properties observed on the recorded images. The prevalence of self-similarity in Quiet Sun coronal images makes it relevant to study the ratio between the SNR present at SoHO/EIT images and in coarsened images. SoHO/EIT images thus play the role of "high resolution" images, whereas the "low-resolution" coarsened images are rebinned so as to simulate a smaller angular resolution and/or a larger distance to the Sun. For a fixed difference in angular resolution and in Spacecraft-Sun distance, we determine the proportion of pixels having a SNR preserved at high resolution given a particular increase in effective area. If scale-invariance continues to prevail at smaller scales, the conclusion reached with SoHO/EIT images can be transposed

  20. Multiband and Lossless Compression of Hyperspectral Images

    Directory of Open Access Journals (Sweden)

    Raffaele Pizzolante

    2016-02-01

    Full Text Available Hyperspectral images are widely used in several real-life applications. In this paper, we investigate on the compression of hyperspectral images by considering different aspects, including the optimization of the computational complexity in order to allow implementations on limited hardware (i.e., hyperspectral sensors, etc.. We present an approach that relies on a three-dimensional predictive structure. Our predictive structure, 3D-MBLP, uses one or more previous bands as references to exploit the redundancies among the third dimension. The achieved results are comparable, and often better, with respect to the other state-of-art lossless compression techniques for hyperspectral images.

  1. High resolution ultrasound and photoacoustic imaging of single cells

    Directory of Open Access Journals (Sweden)

    Eric M. Strohm

    2016-03-01

    Full Text Available High resolution ultrasound and photoacoustic images of stained neutrophils, lymphocytes and monocytes from a blood smear were acquired using a combined acoustic/photoacoustic microscope. Photoacoustic images were created using a pulsed 532 nm laser that was coupled to a single mode fiber to produce output wavelengths from 532 nm to 620 nm via stimulated Raman scattering. The excitation wavelength was selected using optical filters and focused onto the sample using a 20× objective. A 1000 MHz transducer was co-aligned with the laser spot and used for ultrasound and photoacoustic images, enabling micrometer resolution with both modalities. The different cell types could be easily identified due to variations in contrast within the acoustic and photoacoustic images. This technique provides a new way of probing leukocyte structure with potential applications towards detecting cellular abnormalities and diseased cells at the single cell level.

  2. High resolution imaging of surface patterns of single bacterial cells

    International Nuclear Information System (INIS)

    Greif, Dominik; Wesner, Daniel; Regtmeier, Jan; Anselmetti, Dario

    2010-01-01

    We systematically studied the origin of surface patterns observed on single Sinorhizobium meliloti bacterial cells by comparing the complementary techniques atomic force microscopy (AFM) and scanning electron microscopy (SEM). Conditions ranged from living bacteria in liquid to fixed bacteria in high vacuum. Stepwise, we applied different sample modifications (fixation, drying, metal coating, etc.) and characterized the observed surface patterns. A detailed analysis revealed that the surface structure with wrinkled protrusions in SEM images were not generated de novo but most likely evolved from similar and naturally present structures on the surface of living bacteria. The influence of osmotic stress to the surface structure of living cells was evaluated and also the contribution of exopolysaccharide and lipopolysaccharide (LPS) by imaging two mutant strains of the bacterium under native conditions. AFM images of living bacteria in culture medium exhibited surface structures of the size of single proteins emphasizing the usefulness of AFM for high resolution cell imaging.

  3. High Resolution Energetic X-ray Imager (HREXI)

    Science.gov (United States)

    Grindlay, Jonathan

    We propose to design and build the first imaging hard X-ray detector system that incorporates 3D stacking of closely packed detector readouts in finely-spaced imaging arrays with their required data processing and control electronics. In virtually all imaging astronomical detectors, detector readout is done with flex connectors or connections that are not vertical but rather horizontal , requiring loss of focal plane area. For high resolution pixel detectors needed for high speed event-based X-ray imaging, from low energy applications (CMOS) with focusing X-ray telescopes, to hard X-ray applications with pixelated CZT for large area coded aperture telescopes, this new detector development offers great promise. We propose to extend our previous and current APRA supported ProtoEXIST program that has developed the first large area imaging CZT detectors and demonstrated their astrophysical capabilities on two successful balloon flight to a next generation High Resolution Energetic X-ray Imager (HREXI), which would incorporate microvia technology for the first time to connect the readout ASIC on each CZT crystal directly to its control and data processing system. This 3-dimensional stacking of detector and readout/control system means that large area (>2m2) imaging detector planes for a High Resolution Wide-field hard X-ray telescope can be built with initially greatly reduced detector gaps and ultimately with no gaps. This increases detector area, efficiency, and simplicity of detector integration. Thus higher sensitivity wide-field imagers will be possible at lower cost. HREXI will enable a post-Swift NASA mission such as the EREXS concept proposed to PCOS to be conducted as a future MIDEX mission. This mission would conduct a high resolution (<2 arcmin) , broad band (5 200 keV) hard X-ray survey of black holes on all scales with ~10X higher sensitivity than Swift. In the current era of Time Domain Astrophysics, such a survey capability, in conjunction with a n

  4. DETECTION OF BARCHAN DUNES IN HIGH RESOLUTION SATELLITE IMAGES

    Directory of Open Access Journals (Sweden)

    M. A. Azzaoui

    2016-06-01

    Full Text Available Barchan dunes are the fastest moving sand dunes in the desert. We developed a process to detect barchans dunes on High resolution satellite images. It consisted of three steps, we first enhanced the image using histogram equalization and noise reduction filters. Then, the second step proceeds to eliminate the parts of the image having a texture different from that of the barchans dunes. Using supervised learning, we tested a coarse to fine textural analysis based on Kolomogorov Smirnov test and Youden’s J-statistic on co-occurrence matrix. As an output we obtained a mask that we used in the next step to reduce the search area. In the third step we used a gliding window on the mask and check SURF features with SVM to get barchans dunes candidates. Detected barchans dunes were considered as the fusion of overlapping candidates. The results of this approach were very satisfying in processing time and precision.

  5. A parallel solution for high resolution histological image analysis.

    Science.gov (United States)

    Bueno, G; González, R; Déniz, O; García-Rojo, M; González-García, J; Fernández-Carrobles, M M; Vállez, N; Salido, J

    2012-10-01

    This paper describes a general methodology for developing parallel image processing algorithms based on message passing for high resolution images (on the order of several Gigabytes). These algorithms have been applied to histological images and must be executed on massively parallel processing architectures. Advances in new technologies for complete slide digitalization in pathology have been combined with developments in biomedical informatics. However, the efficient use of these digital slide systems is still a challenge. The image processing that these slides are subject to is still limited both in terms of data processed and processing methods. The work presented here focuses on the need to design and develop parallel image processing tools capable of obtaining and analyzing the entire gamut of information included in digital slides. Tools have been developed to assist pathologists in image analysis and diagnosis, and they cover low and high-level image processing methods applied to histological images. Code portability, reusability and scalability have been tested by using the following parallel computing architectures: distributed memory with massive parallel processors and two networks, INFINIBAND and Myrinet, composed of 17 and 1024 nodes respectively. The parallel framework proposed is flexible, high performance solution and it shows that the efficient processing of digital microscopic images is possible and may offer important benefits to pathology laboratories. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  6. Acquisition and Processing of High Resolution Hyperspectral Imageries for the 3d Mapping of Urban Heat Islands and Microparticles of Montreal

    Science.gov (United States)

    Mongeau, R.; Baudouin, Y.; Cavayas, F.

    2017-10-01

    Ville de Montreal wanted to develop a system to identify heat islands and microparticles at the urban scale and to study their formation. UQAM and UdeM universities have joined their expertise under the framework "Observatoire Spatial Urbain" to create a representative geospatial database of thermal and atmospheric parameters collected during the summer months. They innovated in the development of a methodology for processing high resolution hyperspectral images (1-2 m). In partnership with Ville de Montreal, they integrated 3D geospatial data (topography, transportation and meteorology) in the process. The 3D mapping of intraurban heat islands as well as air micro-particles makes it possible, initially, to identify the problematic situations for future civil protection interventions during extreme heat. Moreover, it will be used as a reference for the Ville de Montreal to establish a strategy for public domain tree planting and in the analysis of urban development projects.

  7. High-resolution imaging in the scanning transmission electron microscope

    International Nuclear Information System (INIS)

    Pennycook, S.J.; Jesson, D.E.

    1992-03-01

    The high-resolution imaging of crystalline materials in the scanning transmission electron microscopy (STEM) is reviewed with particular emphasis on the conditions under which an incoherent image can be obtained. It is shown that a high-angle annular detector can be used to break the coherence of the imaging process, in the transverse plane through the geometry of the detector, or in three dimensions if multiphonon diffuse scattering is detected. In the latter case, each atom can be treated as a highly independent source of high-angle scattering. The most effective fast electron states are therefore tightly bound s-type Bloch states. Furthermore, they add constructively for each incident angle in the coherent STEM probe, so that s states are responsible for practically the entire image contrast. Dynamical effects are largely removed, and almost perfect incoherent imaging is achieved. s states are relatively insensitive to neighboring strings, so that incoherent imaging is maintained for superlattice and interfaces, and supercell calculations are unnecessary. With an optimum probe profile, the incoherent image represents a direct image of the crystal projection, with compositional sensitivity built in through the strong dependence of the scattering cross sections on atomic number Z

  8. High resolution 3D imaging of synchrotron generated microbeams

    Energy Technology Data Exchange (ETDEWEB)

    Gagliardi, Frank M., E-mail: frank.gagliardi@wbrc.org.au [Alfred Health Radiation Oncology, The Alfred, Melbourne, Victoria 3004, Australia and School of Medical Sciences, RMIT University, Bundoora, Victoria 3083 (Australia); Cornelius, Iwan [Imaging and Medical Beamline, Australian Synchrotron, Clayton, Victoria 3168, Australia and Centre for Medical Radiation Physics, University of Wollongong, Wollongong, New South Wales 2500 (Australia); Blencowe, Anton [Division of Health Sciences, School of Pharmacy and Medical Sciences, The University of South Australia, Adelaide, South Australia 5000, Australia and Division of Information Technology, Engineering and the Environment, Mawson Institute, University of South Australia, Mawson Lakes, South Australia 5095 (Australia); Franich, Rick D. [School of Applied Sciences and Health Innovations Research Institute, RMIT University, Melbourne, Victoria 3000 (Australia); Geso, Moshi [School of Medical Sciences, RMIT University, Bundoora, Victoria 3083 (Australia)

    2015-12-15

    Purpose: Microbeam radiation therapy (MRT) techniques are under investigation at synchrotrons worldwide. Favourable outcomes from animal and cell culture studies have proven the efficacy of MRT. The aim of MRT researchers currently is to progress to human clinical trials in the near future. The purpose of this study was to demonstrate the high resolution and 3D imaging of synchrotron generated microbeams in PRESAGE® dosimeters using laser fluorescence confocal microscopy. Methods: Water equivalent PRESAGE® dosimeters were fabricated and irradiated with microbeams on the Imaging and Medical Beamline at the Australian Synchrotron. Microbeam arrays comprised of microbeams 25–50 μm wide with 200 or 400 μm peak-to-peak spacing were delivered as single, cross-fire, multidirectional, and interspersed arrays. Imaging of the dosimeters was performed using a NIKON A1 laser fluorescence confocal microscope. Results: The spatial fractionation of the MRT beams was clearly visible in 2D and up to 9 mm in depth. Individual microbeams were easily resolved with the full width at half maximum of microbeams measured on images with resolutions of as low as 0.09 μm/pixel. Profiles obtained demonstrated the change of the peak-to-valley dose ratio for interspersed MRT microbeam arrays and subtle variations in the sample positioning by the sample stage goniometer were measured. Conclusions: Laser fluorescence confocal microscopy of MRT irradiated PRESAGE® dosimeters has been validated in this study as a high resolution imaging tool for the independent spatial and geometrical verification of MRT beam delivery.

  9. High resolution 3D imaging of synchrotron generated microbeams

    International Nuclear Information System (INIS)

    Gagliardi, Frank M.; Cornelius, Iwan; Blencowe, Anton; Franich, Rick D.; Geso, Moshi

    2015-01-01

    Purpose: Microbeam radiation therapy (MRT) techniques are under investigation at synchrotrons worldwide. Favourable outcomes from animal and cell culture studies have proven the efficacy of MRT. The aim of MRT researchers currently is to progress to human clinical trials in the near future. The purpose of this study was to demonstrate the high resolution and 3D imaging of synchrotron generated microbeams in PRESAGE® dosimeters using laser fluorescence confocal microscopy. Methods: Water equivalent PRESAGE® dosimeters were fabricated and irradiated with microbeams on the Imaging and Medical Beamline at the Australian Synchrotron. Microbeam arrays comprised of microbeams 25–50 μm wide with 200 or 400 μm peak-to-peak spacing were delivered as single, cross-fire, multidirectional, and interspersed arrays. Imaging of the dosimeters was performed using a NIKON A1 laser fluorescence confocal microscope. Results: The spatial fractionation of the MRT beams was clearly visible in 2D and up to 9 mm in depth. Individual microbeams were easily resolved with the full width at half maximum of microbeams measured on images with resolutions of as low as 0.09 μm/pixel. Profiles obtained demonstrated the change of the peak-to-valley dose ratio for interspersed MRT microbeam arrays and subtle variations in the sample positioning by the sample stage goniometer were measured. Conclusions: Laser fluorescence confocal microscopy of MRT irradiated PRESAGE® dosimeters has been validated in this study as a high resolution imaging tool for the independent spatial and geometrical verification of MRT beam delivery

  10. Camouflage target detection via hyperspectral imaging plus information divergence measurement

    Science.gov (United States)

    Chen, Yuheng; Chen, Xinhua; Zhou, Jiankang; Ji, Yiqun; Shen, Weimin

    2016-01-01

    Target detection is one of most important applications in remote sensing. Nowadays accurate camouflage target distinction is often resorted to spectral imaging technique due to its high-resolution spectral/spatial information acquisition ability as well as plenty of data processing methods. In this paper, hyper-spectral imaging technique together with spectral information divergence measure method is used to solve camouflage target detection problem. A self-developed visual-band hyper-spectral imaging device is adopted to collect data cubes of certain experimental scene before spectral information divergences are worked out so as to discriminate target camouflage and anomaly. Full-band information divergences are measured to evaluate target detection effect visually and quantitatively. Information divergence measurement is proved to be a low-cost and effective tool for target detection task and can be further developed to other target detection applications beyond spectral imaging technique.

  11. A hyperspectral image analysis workbench for environmental science applications

    Energy Technology Data Exchange (ETDEWEB)

    Christiansen, J.H.; Zawada, D.G.; Simunich, K.L.; Slater, J.C.

    1992-10-01

    A significant challenge to the information sciences is to provide more powerful and accessible means to exploit the enormous wealth of data available from high-resolution imaging spectrometry, or ``hyperspectral`` imagery, for analysis, for mapping purposes, and for input to environmental modeling applications. As an initial response to this challenge, Argonne`s Advanced Computer Applications Center has developed a workstation-based prototype software workbench which employs Al techniques and other advanced approaches to deduce surface characteristics and extract features from the hyperspectral images. Among its current capabilities, the prototype system can classify pixels by abstract surface type. The classification process employs neural network analysis of inputs which include pixel spectra and a variety of processed image metrics, including image ``texture spectra`` derived from fractal signatures computed for subimage tiles at each wavelength.

  12. A hyperspectral image analysis workbench for environmental science applications

    Energy Technology Data Exchange (ETDEWEB)

    Christiansen, J.H.; Zawada, D.G.; Simunich, K.L.; Slater, J.C.

    1992-01-01

    A significant challenge to the information sciences is to provide more powerful and accessible means to exploit the enormous wealth of data available from high-resolution imaging spectrometry, or hyperspectral'' imagery, for analysis, for mapping purposes, and for input to environmental modeling applications. As an initial response to this challenge, Argonne's Advanced Computer Applications Center has developed a workstation-based prototype software workbench which employs Al techniques and other advanced approaches to deduce surface characteristics and extract features from the hyperspectral images. Among its current capabilities, the prototype system can classify pixels by abstract surface type. The classification process employs neural network analysis of inputs which include pixel spectra and a variety of processed image metrics, including image texture spectra'' derived from fractal signatures computed for subimage tiles at each wavelength.

  13. Porous silicon phantoms for high-resolution scintillation imaging

    Energy Technology Data Exchange (ETDEWEB)

    Di Francia, G. [Portici Research Centre, ENEA, Via Vecchio Macello, 80055 Portici, Naples (Italy); Scafe, R. [Casaccia Research Centre, ENEA, 00060 S.Maria di Galeria, Rome (Italy)]. E-mail: scafe@casaccia.enea.it; De Vincentis, G. [Department of Radiological Sciences, University of Rome ' La Sapienza' , V.le Regina Elena, 324, 00161 Rome (Italy); La Ferrara, V. [Portici Research Centre, ENEA, Via Vecchio Macello, 80055 Portici, Naples (Italy); Iurlaro, G. [Casaccia Research Centre, ENEA, 00060 S.Maria di Galeria, Rome (Italy); Nasti, I. [Portici Research Centre, ENEA, Via Vecchio Macello, 80055 Portici, Naples (Italy); Montani, L. [Casaccia Research Centre, ENEA, 00060 S.Maria di Galeria, Rome (Italy); Pellegrini, R. [Department of Experimental Medicine, University of Rome ' La Sapienza' , V.le Regina Elena, 324, 00161 Rome (Italy); Betti, M. [Department of Experimental Medicine, University of Rome ' La Sapienza' , V.le Regina Elena, 324, 00161 Rome (Italy); Martucciello, N. [Portici Research Centre, ENEA, Via Vecchio Macello, 80055 Portici, Naples (Italy); Pani, R. [Department of Experimental Medicine, University of Rome ' La Sapienza' , V.le Regina Elena, 324, 00161 Rome (Italy)

    2006-12-20

    High resolution radionuclide imaging requires phantoms with precise geometries and known activities using either Anger cameras equipped with pinhole collimators or dedicated small animal devices. Porous silicon samples, having areas of different shape and size, can be made and loaded with a radioactive material, obtaining: (a) precise radio-emitting figures corresponding to the porous areas geometry (b) a radioactivity of each figure depending on the pore's specifications, and (c) the same emission energy to be used in true exams. To this aim a sample with porous circular areas has been made and loaded with a {sup 99m}TcO{sub 4} {sup -} solution. Imaging has been obtained using both general purpose and pinhole collimators. This first sample shows some defects that are analyzed and discussed.

  14. Chandra High Resolution Imaging of NGC 1365 and NGC 4151

    Science.gov (United States)

    Wang, Junfeng; Fabbiano, G.; Elvis, M.; Risaliti, G.; Karovska, M.; Zezas, A.; Mazzarella, J. M.; Lord, S.; Howell, J. H.; Mundell, C. G.

    2010-07-01

    We present Chandra high resolution imaging of the circumnuclear regions of two nearby active galaxies, namely the starburst/AGN composite Seyfert 1.8 NGC 1365 and the archetypal Seyfert 1 NGC 4151. In NGC 1365, the X-ray morphology shows a biconical soft X-ray-emission region extending ~5 kpc in projection from the nucleus, coincident with the optical high-excitation outflows. Chandra HRC imaging of the NGC 4151 nucleus resolves X-ray emission from the 4 arcsec radio jet and the narrow line region (NLR) clouds. Our results demonstrate the unique power of spatially resolved spectroscopy with Chandra, and support previous claims that frequent jet-ISM interaction may explain why jets in Seyfert galaxies appear small, slow, and thermally dominated.

  15. High-resolution imaging of solar system objects

    International Nuclear Information System (INIS)

    Goldberg, B.A.

    1988-01-01

    The strategy of this investigation has been to develop new high-resolution imaging capabilities and to apply them to extended observing programs. These programs have included Io's neutral sodium cloud and comets. The Io observing program was carried out at Table Mountain Observatory (1976 to 1981), providing a framework interpreting Voyager measurements of the Io torus, and serving as an important reference for studying asymmetries and time variabilities in the Jovian magnetosphere. Comet observations made with the 3.6 m Canada-France-Hawaii Telescope and 1.6 m AMOS telescope (1984 to 1987) provide basis for studying early coma development in Halley, the kinematics of its nucleus, and the internal and external structure of the nucleus. Images of GZ from the ICE encounter period form the basis for unique comparisons with in situ magnetic field and dust impact measurements to determine the ion tail and dust coma structure, respectively

  16. High resolution microphotonic needle for endoscopic imaging (Conference Presentation)

    Science.gov (United States)

    Tadayon, Mohammad Amin; Mohanty, Aseema; Roberts, Samantha P.; Barbosa, Felippe; Lipson, Michal

    2017-02-01

    GRIN (Graded index) lens have revolutionized micro endoscopy enabling deep tissue imaging with high resolution. The challenges of traditional GRIN lenses are their large size (when compared with the field of view) and their limited resolution. This is because of the relatively weak NA in standard graded index lenses. Here we introduce a novel micro-needle platform for endoscopy with much higher resolution than traditional GRIN lenses and a FOV that corresponds to the whole cross section of the needle. The platform is based on polymeric (SU-8) waveguide integrated with a microlens micro fabricated on a silicon substrate using a unique molding process. Due to the high index of refraction of the material the NA of the needle is much higher than traditional GRIN lenses. We tested the probe in a fluorescent dye solution (19.6 µM Alexa Flour 647 solution) and measured a numerical aperture of 0.25, focal length of about 175 µm and minimal spot size of about 1.6 µm. We show that the platform can image a sample with the field of view corresponding to the cross sectional area of the waveguide (80x100 µm2). The waveguide size can in principle be modified to vary size of the imaging field of view. This demonstration, combined with our previous work demonstrating our ability to implant the high NA needle in a live animal, shows that the proposed system can be used for deep tissue imaging with very high resolution and high field of view.

  17. Common hyperspectral image database design

    Science.gov (United States)

    Tian, Lixun; Liao, Ningfang; Chai, Ali

    2009-11-01

    This paper is to introduce Common hyperspectral image database with a demand-oriented Database design method (CHIDB), which comprehensively set ground-based spectra, standardized hyperspectral cube, spectral analysis together to meet some applications. The paper presents an integrated approach to retrieving spectral and spatial patterns from remotely sensed imagery using state-of-the-art data mining and advanced database technologies, some data mining ideas and functions were associated into CHIDB to make it more suitable to serve in agriculture, geological and environmental areas. A broad range of data from multiple regions of the electromagnetic spectrum is supported, including ultraviolet, visible, near-infrared, thermal infrared, and fluorescence. CHIDB is based on dotnet framework and designed by MVC architecture including five main functional modules: Data importer/exporter, Image/spectrum Viewer, Data Processor, Parameter Extractor, and On-line Analyzer. The original data were all stored in SQL server2008 for efficient search, query and update, and some advance Spectral image data Processing technology are used such as Parallel processing in C#; Finally an application case is presented in agricultural disease detecting area.

  18. A mechanical microcompressor for high resolution imaging of motile specimens.

    Science.gov (United States)

    Zinskie, Jessica A; Shribak, Michael; Bruist, Michael F; Aufderheide, Karl J; Janetopoulos, Chris

    2015-10-01

    In order to obtain fine details in 3 dimensions (3D) over time, it is critical for motile biological specimens to be appropriately immobilized. Of the many immobilization options available, the mechanical microcompressor offers many benefits. Our device, previously described, achieves gentle flattening of a cell, allowing us to image finely detailed structures of numerous organelles and physiological processes in living cells. We have imaged protozoa and other small metazoans using differential interference contrast (DIC) microscopy, orientation-independent (OI) DIC, and real-time birefringence imaging using a video-enhanced polychromatic polscope. We also describe an enhancement of our previous design by engineering a new device where the coverslip mount is fashioned onto the top of the base; so the entire apparatus is accessible on top of the stage. The new location allows for easier manipulation of the mount when compressing or releasing a specimen on an inverted microscope. Using this improved design, we imaged immobilized bacteria, yeast, paramecia, and nematode worms and obtained an unprecedented view of cell and specimen details. A variety of microscopic techniques were used to obtain high resolution images of static and dynamic cellular and physiological events. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. High resolution ultrastructure imaging of fractures in human dental tissues

    Directory of Open Access Journals (Sweden)

    Tan Sui

    2014-01-01

    Full Text Available Human dental hard tissues are dentine, cementum, and enamel. These are hydrated mineralised composite tissues with a hierarchical structure and versatile thermo-mechanical properties. The hierarchical structure of dentine and enamel was imaged by transmission electron microscopy (TEM of samples prepared by focused ion beam (FIB milling. High resolution TEM was carried out in the vicinity of a crack tip in dentine. An intricate “random weave” pattern of hydroxyapatile crystallites was observed and this provided a possible explanation for toughening of the mineralized dentine tissue at the nano-scale. The results reported here provide the basis for improved understanding of the relationship between the multi-scale nature and the mechanical properties of hierarchically structured biomaterials, and will also be useful for the development of better prosthetic and dental restorative materials.

  20. Precision cosmology with time delay lenses: high resolution imaging requirements

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Xiao-Lei; Liao, Kai [Department of Astronomy, Beijing Normal University, 19 Xinjiekouwai Street, Beijing, 100875 (China); Treu, Tommaso; Agnello, Adriano [Department of Physics, University of California, Broida Hall, Santa Barbara, CA 93106 (United States); Auger, Matthew W. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Marshall, Philip J., E-mail: xlmeng919@gmail.com, E-mail: tt@astro.ucla.edu, E-mail: aagnello@physics.ucsb.edu, E-mail: mauger@ast.cam.ac.uk, E-mail: liaokai@mail.bnu.edu.cn, E-mail: dr.phil.marshall@gmail.com [Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, 452 Lomita Mall, Stanford, CA 94305 (United States)

    2015-09-01

    Lens time delays are a powerful probe of cosmology, provided that the gravitational potential of the main deflector can be modeled with sufficient precision. Recent work has shown that this can be achieved by detailed modeling of the host galaxies of lensed quasars, which appear as ''Einstein Rings'' in high resolution images. The distortion of these arcs and counter-arcs, as measured over a large number of pixels, provides tight constraints on the difference between the gravitational potential between the quasar image positions, and thus on cosmology in combination with the measured time delay. We carry out a systematic exploration of the high resolution imaging required to exploit the thousands of lensed quasars that will be discovered by current and upcoming surveys with the next decade. Specifically, we simulate realistic lens systems as imaged by the Hubble Space Telescope (HST), James Webb Space Telescope (JWST), and ground based adaptive optics images taken with Keck or the Thirty Meter Telescope (TMT). We compare the performance of these pointed observations with that of images taken by the Euclid (VIS), Wide-Field Infrared Survey Telescope (WFIRST) and Large Synoptic Survey Telescope (LSST) surveys. We use as our metric the precision with which the slope γ' of the total mass density profile ρ{sub tot}∝ r{sup −γ'} for the main deflector can be measured. Ideally, we require that the statistical error on γ' be less than 0.02, such that it is subdominant to other sources of random and systematic uncertainties. We find that survey data will likely have sufficient depth and resolution to meet the target only for the brighter gravitational lens systems, comparable to those discovered by the SDSS survey. For fainter systems, that will be discovered by current and future surveys, targeted follow-up will be required. However, the exposure time required with upcoming facilitites such as JWST, the Keck Next Generation

  1. Precision cosmology with time delay lenses: High resolution imaging requirements

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Xiao -Lei [Beijing Normal Univ., Beijing (China); Univ. of California, Santa Barbara, CA (United States); Treu, Tommaso [Univ. of California, Santa Barbara, CA (United States); Univ. of California, Los Angeles, CA (United States); Agnello, Adriano [Univ. of California, Santa Barbara, CA (United States); Univ. of California, Los Angeles, CA (United States); Auger, Matthew W. [Univ. of Cambridge, Cambridge (United Kingdom); Liao, Kai [Beijing Normal Univ., Beijing (China); Univ. of California, Santa Barbara, CA (United States); Univ. of California, Los Angeles, CA (United States); Marshall, Philip J. [Stanford Univ., Stanford, CA (United States)

    2015-09-28

    Lens time delays are a powerful probe of cosmology, provided that the gravitational potential of the main deflector can be modeled with sufficient precision. Recent work has shown that this can be achieved by detailed modeling of the host galaxies of lensed quasars, which appear as ``Einstein Rings'' in high resolution images. The distortion of these arcs and counter-arcs, as measured over a large number of pixels, provides tight constraints on the difference between the gravitational potential between the quasar image positions, and thus on cosmology in combination with the measured time delay. We carry out a systematic exploration of the high resolution imaging required to exploit the thousands of lensed quasars that will be discovered by current and upcoming surveys with the next decade. Specifically, we simulate realistic lens systems as imaged by the Hubble Space Telescope (HST), James Webb Space Telescope (JWST), and ground based adaptive optics images taken with Keck or the Thirty Meter Telescope (TMT). We compare the performance of these pointed observations with that of images taken by the Euclid (VIS), Wide-Field Infrared Survey Telescope (WFIRST) and Large Synoptic Survey Telescope (LSST) surveys. We use as our metric the precision with which the slope γ' of the total mass density profile ρtot∝ r–γ' for the main deflector can be measured. Ideally, we require that the statistical error on γ' be less than 0.02, such that it is subdominant to other sources of random and systematic uncertainties. We find that survey data will likely have sufficient depth and resolution to meet the target only for the brighter gravitational lens systems, comparable to those discovered by the SDSS survey. For fainter systems, that will be discovered by current and future surveys, targeted follow-up will be required. Furthermore, the exposure time required with upcoming facilitites such as JWST, the Keck Next Generation Adaptive

  2. Heuristic optimization in penumbral image for high resolution reconstructed image

    International Nuclear Information System (INIS)

    Azuma, R.; Nozaki, S.; Fujioka, S.; Chen, Y. W.; Namihira, Y.

    2010-01-01

    Penumbral imaging is a technique which uses the fact that spatial information can be recovered from the shadow or penumbra that an unknown source casts through a simple large circular aperture. The size of the penumbral image on the detector can be mathematically determined as its aperture size, object size, and magnification. Conventional reconstruction methods are very sensitive to noise. On the other hand, the heuristic reconstruction method is very tolerant of noise. However, the aperture size influences the accuracy and resolution of the reconstructed image. In this article, we propose the optimization of the aperture size for the neutron penumbral imaging.

  3. Structure recognition from high resolution images of ceramic composites

    Energy Technology Data Exchange (ETDEWEB)

    Ushizima, Daniela; Perciano, Talita; Krishnan, Harinarayan; Loring, Burlen; Bale, Hrishikesh; Parkinson, Dilworth; Sethian, James

    2015-01-05

    Fibers provide exceptional strength-to-weight ratio capabilities when woven into ceramic composites, transforming them into materials with exceptional resistance to high temperature, and high strength combined with improved fracture toughness. Microcracks are inevitable when the material is under strain, which can be imaged using synchrotron X-ray computed micro-tomography (mu-CT) for assessment of material mechanical toughness variation. An important part of this analysis is to recognize fibrillar features. This paper presents algorithms for detecting and quantifying composite cracks and fiber breaks from high-resolution image stacks. First, we propose recognition algorithms to identify the different structures of the composite, including matrix cracks and fibers breaks. Second, we introduce our package F3D for fast filtering of large 3D imagery, implemented in OpenCL to take advantage of graphic cards. Results show that our algorithms automatically identify micro-damage and that the GPU-based implementation introduced here takes minutes, being 17x faster than similar tools on a typical image file.

  4. Cheetah: A high frame rate, high resolution SWIR image camera

    Science.gov (United States)

    Neys, Joel; Bentell, Jonas; O'Grady, Matt; Vermeiren, Jan; Colin, Thierry; Hooylaerts, Peter; Grietens, Bob

    2008-10-01

    A high resolution, high frame rate InGaAs based image sensor and associated camera has been developed. The sensor and the camera are capable of recording and delivering more than 1700 full 640x512pixel frames per second. The FPA utilizes a low lag CTIA current integrator in each pixel, enabling integration times shorter than one microsecond. On-chip logics allows for four different sub windows to be read out simultaneously at even higher rates. The spectral sensitivity of the FPA is situated in the SWIR range [0.9-1.7 μm] and can be further extended into the Visible and NIR range. The Cheetah camera has max 16 GB of on-board memory to store the acquired images and transfer the data over a Gigabit Ethernet connection to the PC. The camera is also equipped with a full CameralinkTM interface to directly stream the data to a frame grabber or dedicated image processing unit. The Cheetah camera is completely under software control.

  5. Spectro-spatial relationship between UAV derived high resolution DEM and SWIR hyperspectral data: application to an ombrotrophic peatland

    Science.gov (United States)

    Arroyo-Mora, J. Pablo; Kalacska, Margaret; Lucanus, Oliver; Soffer, Raymond; Leblanc, George

    2017-10-01

    Peatlands cover 3% of the globe and are key ecosystems for climate regulation. To better understand the potential effects of climate change in peatlands, a major challenge is to determine the complex relationship between hydrology, microtopography, vegetation patterns, and gas exchange. Here we study the spectral and spatial relationship of microtopographic features (e.g. hollows and hummocks) and near-surface water through narrow-band spectral indices derived from hyperspectral imagery. We used a very high resolution digital elevation model (2.5 cm horizontal, 2.2 cm vertical resolution) derived from an UAV based Structure from Motion photogrammetry to map hollows and hummocks in the peatland area. We also created a 2 cm spatial resolution orthophoto mosaic to enhance the visual identification of these hollows and hummocks. Furthermore, we collected SWIR airborne hyperspectral (880-2450 nm) imagery at 1 m pixel resolution over four time periods, from April to June 2016 (phenological gradient: vegetation greening). Our results revealed an increase in the water indices values (NDWI1640 and NDWI2130) and a decrease in the moisture stress index (MSI) between April and June. In addition, for the same period the NDWI2130 shows a bimodal distribution indicating potential to quantitatively assess moisture differences between mosses and vascular plants. Our results, using the digital surface model to extract NDWI2130 values, showed significant differences between hollows and hummocks for each time period, with higher moisture values for hollows (i.e. moss dominated). However, for June, the water index for hummocks approximated the values found in hollows. Our study shows the advantages of using fine spatial and spectral scales to detect temporal trends in near surface water in a peatland.

  6. High Resolution 3D Radar Imaging of Comet Interiors

    Science.gov (United States)

    Asphaug, E. I.; Gim, Y.; Belton, M.; Brophy, J.; Weissman, P. R.; Heggy, E.

    2012-12-01

    Knowing the interiors of comets and other primitive bodies is fundamental to our understanding of how planets formed. We have developed a Discovery-class mission formulation, Comet Radar Explorer (CORE), based on the use of previously flown planetary radar sounding techniques, with the goal of obtaining high resolution 3D images of the interior of a small primitive body. We focus on the Jupiter-Family Comets (JFCs) as these are among the most primitive bodies reachable by spacecraft. Scattered in from far beyond Neptune, they are ultimate targets of a cryogenic sample return mission according to the Decadal Survey. Other suitable targets include primitive NEOs, Main Belt Comets, and Jupiter Trojans. The approach is optimal for small icy bodies ~3-20 km diameter with spin periods faster than about 12 hours, since (a) navigation is relatively easy, (b) radar penetration is global for decameter wavelengths, and (c) repeated overlapping ground tracks are obtained. The science mission can be as short as ~1 month for a fast-rotating JFC. Bodies smaller than ~1 km can be globally imaged, but the navigation solutions are less accurate and the relative resolution is coarse. Larger comets are more interesting, but radar signal is unlikely to be reflected from depths greater than ~10 km. So, JFCs are excellent targets for a variety of reasons. We furthermore focus on the use of Solar Electric Propulsion (SEP) to rendezvous shortly after the comet's perihelion. This approach leaves us with ample power for science operations under dormant conditions beyond ~2-3 AU. This leads to a natural mission approach of distant observation, followed by closer inspection, terminated by a dedicated radar mapping orbit. Radar reflections are obtained from a polar orbit about the icy nucleus, which spins underneath. Echoes are obtained from a sounder operating at dual frequencies 5 and 15 MHz, with 1 and 10 MHz bandwidths respectively. The dense network of echoes is used to obtain global 3D

  7. Target Detection Using an AOTF Hyperspectral Imager

    Science.gov (United States)

    Cheng, L-J.; Mahoney, J.; Reyes, F.; Suiter, H.

    1994-01-01

    This paper reports results of a recent field experiment using a prototype system to evaluate the acousto-optic tunable filter polarimetric hyperspectral imaging technology for target detection applications.

  8. Hyperspectral laser-induced autofluorescence imaging of dental caries

    Science.gov (United States)

    Bürmen, Miran; Fidler, Aleš; Pernuš, Franjo; Likar, Boštjan

    2012-01-01

    Dental caries is a disease characterized by demineralization of enamel crystals leading to the penetration of bacteria into the dentine and pulp. Early detection of enamel demineralization resulting in increased enamel porosity, commonly known as white spots, is a difficult diagnostic task. Laser induced autofluorescence was shown to be a useful method for early detection of demineralization. The existing studies involved either a single point spectroscopic measurements or imaging at a single spectral band. In the case of spectroscopic measurements, very little or no spatial information is acquired and the measured autofluorescence signal strongly depends on the position and orientation of the probe. On the other hand, single-band spectral imaging can be substantially affected by local spectral artefacts. Such effects can significantly interfere with automated methods for detection of early caries lesions. In contrast, hyperspectral imaging effectively combines the spatial information of imaging methods with the spectral information of spectroscopic methods providing excellent basis for development of robust and reliable algorithms for automated classification and analysis of hard dental tissues. In this paper, we employ 405 nm laser excitation of natural caries lesions. The fluorescence signal is acquired by a state-of-the-art hyperspectral imaging system consisting of a high-resolution acousto-optic tunable filter (AOTF) and a highly sensitive Scientific CMOS camera in the spectral range from 550 nm to 800 nm. The results are compared to the contrast obtained by near-infrared hyperspectral imaging technique employed in the existing studies on early detection of dental caries.

  9. Coded aperture subreflector array for high resolution radar imaging

    Science.gov (United States)

    Lynch, Jonathan J.; Herrault, Florian; Kona, Keerti; Virbila, Gabriel; McGuire, Chuck; Wetzel, Mike; Fung, Helen; Prophet, Eric

    2017-05-01

    HRL Laboratories has been developing a new approach for high resolution radar imaging on stationary platforms. High angular resolution is achieved by operating at 235 GHz and using a scalable tile phased array architecture that has the potential to realize thousands of elements at an affordable cost. HRL utilizes aperture coding techniques to minimize the size and complexity of the RF electronics needed for beamforming, and wafer level fabrication and integration allow tiles containing 1024 elements to be manufactured with reasonable costs. This paper describes the results of an initial feasibility study for HRL's Coded Aperture Subreflector Array (CASA) approach for a 1024 element micromachined antenna array with integrated single-bit phase shifters. Two candidate electronic device technologies were evaluated over the 170 - 260 GHz range, GaN HEMT transistors and GaAs Schottky diodes. Array structures utilizing silicon micromachining and die bonding were evaluated for etch and alignment accuracy. Finally, the overall array efficiency was estimated to be about 37% (not including spillover losses) using full wave array simulations and measured device performance, which is a reasonable value at 235 GHz. Based on the measured data we selected GaN HEMT devices operated passively with 0V drain bias due to their extremely low DC power dissipation.

  10. Textural Segmentation of High-Resolution Sidescan Sonar Images

    National Research Council Canada - National Science Library

    Kalcic, Maria; Bibee, Dale

    1995-01-01

    .... The high resolution of the 455 kHz sonar imagery also provides much information about the surficial bottom sediments, however their acoustic scattering properties are not well understood at high frequencies...

  11. Roads Data Conflation Using Update High Resolution Satellite Images

    Science.gov (United States)

    Abdollahi, A.; Riyahi Bakhtiari, H. R.

    2017-11-01

    Urbanization, industrialization and modernization are rapidly growing in developing countries. New industrial cities, with all the problems brought on by rapid population growth, need infrastructure to support the growth. This has led to the expansion and development of the road network. A great deal of road network data has made by using traditional methods in the past years. Over time, a large amount of descriptive information has assigned to these map data, but their geometric accuracy and precision is not appropriate to today's need. In this regard, the improvement of the geometric accuracy of road network data by preserving the descriptive data attributed to them and updating of the existing geo databases is necessary. Due to the size and extent of the country, updating the road network maps using traditional methods is time consuming and costly. Conversely, using remote sensing technology and geographic information systems can reduce costs, save time and increase accuracy and speed. With increasing the availability of high resolution satellite imagery and geospatial datasets there is an urgent need to combine geographic information from overlapping sources to retain accurate data, minimize redundancy, and reconcile data conflicts. In this research, an innovative method for a vector-to-imagery conflation by integrating several image-based and vector-based algorithms presented. The SVM method for image classification and Level Set method used to extract the road the different types of road intersections extracted from imagery using morphological operators. For matching the extracted points and to find the corresponding points, matching function which uses the nearest neighborhood method was applied. Finally, after identifying the matching points rubber-sheeting method used to align two datasets. Two residual and RMSE criteria used to evaluate accuracy. The results demonstrated excellent performance. The average root-mean-square error decreased from 11.8 to 4.1 m.

  12. Special issue on high-resolution optical imaging

    Science.gov (United States)

    Smith, Peter J. S.; Davis, Ilan; Galbraith, Catherine G.; Stemmer, Andreas

    2013-09-01

    The pace of development in the field of advanced microscopy is truly breath-taking, and is leading to major breakthroughs in our understanding of molecular machines and cell function. This special issue of Journal of Optics draws attention to a number of interesting approaches, ranging from fluorescence and imaging of unlabelled cells, to computational methods, all of which are describing the ever increasing detail of the dynamic behaviour of molecules in the living cell. This is a field which traditionally, and currently, demonstrates a marvellous interplay between the disciplines of physics, chemistry and biology, where apparent boundaries to resolution dissolve and living cells are viewed in ever more clarity. It is fertile ground for those interested in optics and non-conventional imaging to contribute high-impact outputs in the fields of cell biology and biomedicine. The series of articles presented here has been selected to demonstrate this interdisciplinarity and to encourage all those with a background in the physical sciences to 'dip their toes' into the exciting and dynamic discoveries surrounding cell function. Although single molecule super-resolution microscopy is commercially available, specimen preparation and interpretation of single molecule data remain a major challenge for scientists wanting to adopt the techniques. The paper by Allen and Davidson [1] provides a much needed detailed introduction to the practical aspects of stochastic optical reconstruction microscopy, including sample preparation, image acquisition and image analysis, as well as a brief description of the different variants of single molecule localization microscopy. Since super-resolution microscopy is no longer restricted to three-dimensional imaging of fixed samples, the review by Fiolka [2] is a timely introduction to techniques that have been successfully applied to four-dimensional live cell super-resolution microscopy. The combination of multiple high-resolution techniques

  13. Hyperspectral imaging and its applications

    Science.gov (United States)

    Serranti, S.; Bonifazi, G.

    2016-04-01

    Hyperspectral imaging (HSI) is an emerging technique that combines the imaging properties of a digital camera with the spectroscopic properties of a spectrometer able to detect the spectral attributes of each pixel in an image. For these characteristics, HSI allows to qualitatively and quantitatively evaluate the effects of the interactions of light with organic and/or inorganic materials. The results of this interaction are usually displayed as a spectral signature characterized by a sequence of energy values, in a pre-defined wavelength interval, for each of the investigated/collected wavelength. Following this approach, it is thus possible to collect, in a fast and reliable way, spectral information that are strictly linked to chemical-physical characteristics of the investigated materials and/or products. Considering that in an hyperspectral image the spectrum of each pixel can be analyzed, HSI can be considered as one of the best nondestructive technology allowing to perform the most accurate and detailed information extraction. HSI can be applied in different wavelength fields, the most common are the visible (VIS: 400-700 nm), the near infrared (NIR: 1000-1700 nm) and the short wave infrared (SWIR: 1000-2500 nm). It can be applied for inspections from micro- to macro-scale, up to remote sensing. HSI produces a large amount of information due to the great number of continuous collected spectral bands. Such an approach, when successful, is quite challenging being usually reliable, robust and characterized by lower costs, if compared with those usually associated to commonly applied analytical off-line and/or on-line analytical approaches. More and more applications have been thus developed and tested, in these last years, especially in food inspection, with a large range of investigated products, such as fruits and vegetables, meat, fish, eggs and cereals, but also in medicine and pharmaceutical sector, in cultural heritage, in material characterization and in

  14. Detection of wheat powdery mildew by differentiating background factors using hyperspectral imaging

    Science.gov (United States)

    Accurate assessment of crop disease severities is the key for precision application of pesticides to prevent disease infestation. In-situ hyperspectral imaging technology can provide high-resolution imagery with spectra for rapid identification of crop disease and determining disease infestation pat...

  15. Automated cart with VIS/NIR hyperspectral reflectance and fluorescence imaging capabilities

    Science.gov (United States)

    A system to take high-resolution VIS/NIR hyperspectral reflectance and fluorescence images in outdoor fields using ambient lighting or a pulsed laser (355 nm), respectively, for illumination was designed, built, and tested. Components of the system include a semi-autonomous cart, a gated-intensified...

  16. How nonlinear optics can merge interferometry for high resolution imaging

    Science.gov (United States)

    Ceus, D.; Reynaud, F.; Tonello, A.; Delage, L.; Grossard, L.

    2017-11-01

    High resolution stellar interferometers are very powerful efficient instruments to get a better knowledge of our Universe through the spatial coherence analysis of the light. For this purpose, the optical fields collected by each telescope Ti are mixed together. From the interferometric pattern, two expected information called the contrast Cij and the phase information φij are extracted. These information lead to the Vij, called the complex visibility, with Vij=Cijexp(jφij). For each telescope doublet TiTj, it is possible to get a complex visibility Vij. The Zernike Van Cittert theorem gives a relationship between the intensity distribution of the object observed and the complex visibility. The combination of the acquired complex visibilities and a reconstruction algorithm allows imaging reconstruction. To avoid lots of technical difficulties related to infrared optics (components transmission, thermal noises, thermal cooling…), our team proposes to explore the possibility of using nonlinear optical techniques. This is a promising alternative detection technique for detecting infrared optical signals. This way, we experimentally demonstrate that frequency conversion does not result in additional bias on the interferometric data supplied by a stellar interferometer. In this presentation, we report on wavelength conversion of the light collected by each telescope from the infrared domain to the visible. The interferometric pattern is observed in the visible domain with our, so called, upconversion interferometer. Thereby, one can benefit from mature optical components mainly used in optical telecommunications (waveguide, coupler, multiplexer…) and efficient low-noise detection schemes up to the single-photon counting level.

  17. The hyperspectral imaging trade-off

    DEFF Research Database (Denmark)

    Carstensen, Jens Michael

    , this will be the standard situation, and it enables the detection of small spectral features like peaks, valleys and shoulders for a wide range of chemistries. Everything else being equal this is what you would wish for, and hyperspectral imaging is often used in research and in remote sensing because of the needs and cost......Although it has no clear-cut definition, hyperspectral imaging in the UV-Visible-NIR wavelength region seems to mean spectral image sampling in bands from 10 nm width or narrower that enables spectral reconstruction over some wavelength interval. For non-imaging spectral applications...... structures in these projects. However, hyperspectral imaging is a sampling choice within spectral imaging that typically will impose some trade-offs, and these trade-offs will not be optimal for many applications. The purpose of this presentation is to point out and increase the awareness of these trade...

  18. High-resolution seismic imaging of the Sohagpur Gondwana basin ...

    Indian Academy of Sciences (India)

    The quality of the high-resolution seismic data depends mainly on the data ..... metric rift geometry. Based on the .... Biswas S K 2003 Regional tectonic framework of the .... Sheth H C, Ray J S, Ray R, Vanderkluysen L, Mahoney J. J, Kumar A ...

  19. Image Segmentation of Hyperspectral Imagery

    National Research Council Canada - National Science Library

    Wellman, Mark

    2003-01-01

    .... Army tactical applications. An important tactical application of infrared (IR) hyperspectral imagery is the detection of low-contrast targets, including those targets that may employ camouflage, concealment, and deception (CCD) techniques 1, 2...

  20. An integral design strategy combining optical system and image processing to obtain high resolution images

    Science.gov (United States)

    Wang, Jiaoyang; Wang, Lin; Yang, Ying; Gong, Rui; Shao, Xiaopeng; Liang, Chao; Xu, Jun

    2016-05-01

    In this paper, an integral design that combines optical system with image processing is introduced to obtain high resolution images, and the performance is evaluated and demonstrated. Traditional imaging methods often separate the two technical procedures of optical system design and imaging processing, resulting in the failures in efficient cooperation between the optical and digital elements. Therefore, an innovative approach is presented to combine the merit function during optical design together with the constraint conditions of image processing algorithms. Specifically, an optical imaging system with low resolution is designed to collect the image signals which are indispensable for imaging processing, while the ultimate goal is to obtain high resolution images from the final system. In order to optimize the global performance, the optimization function of ZEMAX software is utilized and the number of optimization cycles is controlled. Then Wiener filter algorithm is adopted to process the image simulation and mean squared error (MSE) is taken as evaluation criterion. The results show that, although the optical figures of merit for the optical imaging systems is not the best, it can provide image signals that are more suitable for image processing. In conclusion. The integral design of optical system and image processing can search out the overall optimal solution which is missed by the traditional design methods. Especially, when designing some complex optical system, this integral design strategy has obvious advantages to simplify structure and reduce cost, as well as to gain high resolution images simultaneously, which has a promising perspective of industrial application.

  1. Kernel based subspace projection of hyperspectral images

    DEFF Research Database (Denmark)

    Larsen, Rasmus; Nielsen, Allan Aasbjerg; Arngren, Morten

    In hyperspectral image analysis an exploratory approach to analyse the image data is to conduct subspace projections. As linear projections often fail to capture the underlying structure of the data, we present kernel based subspace projections of PCA and Maximum Autocorrelation Factors (MAF...

  2. High resolution SPM imaging of organic molecules with functionalized tips

    Czech Academy of Sciences Publication Activity Database

    Jelínek, Pavel

    2017-01-01

    Roč. 29, č. 34 (2017), 1-18, č. článku 343002. ISSN 0953-8984 R&D Projects: GA MŠk LM2015087; GA MŠk 8E15B010; GA ČR(CZ) GC14-16963J Grant - others:AV ČR(CZ) Praemium Academiae Institutional support: RVO:68378271 Keywords : atomic- force microscopy * scanning tunneling microscope * on-surface synthesis * single-molecule * AFM * STM * high resolution * molecules * surfaces Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 2.649, year: 2016

  3. Design and Test of Portable Hyperspectral Imaging Spectrometer

    Directory of Open Access Journals (Sweden)

    Chunbo Zou

    2017-01-01

    Full Text Available We design and implement a portable hyperspectral imaging spectrometer, which has high spectral resolution, high spatial resolution, small volume, and low weight. The flight test has been conducted, and the hyperspectral images are acquired successfully. To achieve high performance, small volume, and regular appearance, an improved Dyson structure is designed and used in the hyperspectral imaging spectrometer. The hyperspectral imaging spectrometer is suitable for the small platform such as CubeSat and UAV (unmanned aerial vehicle, and it is also convenient to use for hyperspectral imaging acquiring in the laboratory and the field.

  4. Orientational imaging of a single plasmonic nanoparticle using dark-field hyperspectral imaging

    Science.gov (United States)

    Mehta, Nishir; Mahigir, Amirreza; Veronis, Georgios; Gartia, Manas Ranjan

    2017-08-01

    Orientation of plasmonic nanostructures is an important feature in many nanoscale applications such as catalyst, biosensors DNA interactions, protein detections, hotspot of surface enhanced Raman spectroscopy (SERS), and fluorescence resonant energy transfer (FRET) experiments. However, due to diffraction limit, it is challenging to obtain the exact orientation of the nanostructure using standard optical microscope. Hyperspectral Imaging Microscopy is a state-of-the-art visualization technology that combines modern optics with hyperspectral imaging and computer system to provide the identification and quantitative spectral analysis of nano- and microscale structures. In this work, initially we use transmitted dark field imaging technique to locate single nanoparticle on a glass substrate. Then we employ hyperspectral imaging technique at the same spot to investigate orientation of single nanoparticle. No special tagging or staining of nanoparticle has been done, as more likely required in traditional microscopy techniques. Different orientations have been identified by carefully understanding and calibrating shift in spectral response from each different orientations of similar sized nanoparticles. Wavelengths recorded are between 300 nm to 900 nm. The orientations measured by hyperspectral microscopy was validated using finite difference time domain (FDTD) electrodynamics calculations and scanning electron microscopy (SEM) analysis. The combination of high resolution nanometer-scale imaging techniques and the modern numerical modeling capacities thus enables a meaningful advance in our knowledge of manipulating and fabricating shaped nanostructures. This work will advance our understanding of the behavior of small nanoparticle clusters useful for sensing, nanomedicine, and surface sciences.

  5. High resolution imaging of tunnels by magnetic resonance neurography

    Energy Technology Data Exchange (ETDEWEB)

    Subhawong, Ty K.; Thawait, Shrey K.; Machado, Antonio J.; Carrino, John A.; Chhabra, Avneesh [Johns Hopkins Hospital, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD (United States); Wang, Kenneth C. [Baltimore VA Medical Center, Department of Radiology, Baltimore, MD (United States); Williams, Eric H. [Dellon Institute for Peripheral Nerve Surgery, Towson, MD (United States); Hashemi, Shahreyar Shar [Johns Hopkins Hospital, Division of Plastic and Reconstructive Surgery, Baltimore, MD (United States)

    2012-01-15

    Peripheral nerves often traverse confined fibro-osseous and fibro-muscular tunnels in the extremities, where they are particularly vulnerable to entrapment and compressive neuropathy. This gives rise to various tunnel syndromes, characterized by distinct patterns of muscular weakness and sensory deficits. This article focuses on several upper and lower extremity tunnels, in which direct visualization of the normal and abnormal nerve in question is possible with high resolution 3T MR neurography (MRN). MRN can also serve as a useful adjunct to clinical and electrophysiologic exams by discriminating adhesive lesions (perineural scar) from compressive lesions (such as tumor, ganglion, hypertrophic callous, or anomalous muscles) responsible for symptoms, thereby guiding appropriate treatment. (orig.)

  6. High resolution imaging of tunnels by magnetic resonance neurography

    International Nuclear Information System (INIS)

    Subhawong, Ty K.; Thawait, Shrey K.; Machado, Antonio J.; Carrino, John A.; Chhabra, Avneesh; Wang, Kenneth C.; Williams, Eric H.; Hashemi, Shahreyar Shar

    2012-01-01

    Peripheral nerves often traverse confined fibro-osseous and fibro-muscular tunnels in the extremities, where they are particularly vulnerable to entrapment and compressive neuropathy. This gives rise to various tunnel syndromes, characterized by distinct patterns of muscular weakness and sensory deficits. This article focuses on several upper and lower extremity tunnels, in which direct visualization of the normal and abnormal nerve in question is possible with high resolution 3T MR neurography (MRN). MRN can also serve as a useful adjunct to clinical and electrophysiologic exams by discriminating adhesive lesions (perineural scar) from compressive lesions (such as tumor, ganglion, hypertrophic callous, or anomalous muscles) responsible for symptoms, thereby guiding appropriate treatment. (orig.)

  7. Demystifying autofluorescence with excitation scanning hyperspectral imaging

    Science.gov (United States)

    Deal, Joshua; Harris, Bradley; Martin, Will; Lall, Malvika; Lopez, Carmen; Rider, Paul; Boudreaux, Carole; Rich, Thomas; Leavesley, Silas J.

    2018-02-01

    Autofluorescence has historically been considered a nuisance in medical imaging. Many endogenous fluorophores, specifically, collagen, elastin, NADH, and FAD, are found throughout the human body. Diagnostically, these signals can be prohibitive since they can outcompete signals introduced for diagnostic purposes. Recent advances in hyperspectral imaging have allowed the acquisition of significantly more data in a shorter time period by scanning the excitation spectra of fluorophores. The reduced acquisition time and increased signal-to-noise ratio allow for separation of significantly more fluorophores than previously possible. Here, we propose to utilize excitation-scanning of autofluorescence to examine tissues and diagnose pathologies. Spectra of autofluorescent molecules were obtained using a custom inverted microscope (TE-2000, Nikon Instruments) with a Xe arc lamp and thin film tunable filter array (VersaChrome, Semrock, Inc.) Scans utilized excitation wavelengths from 360 nm to 550 nm in 5 nm increments. The resultant spectra were used to examine hyperspectral image stacks from various collaborative studies, including an atherosclerotic rat model and a colon cancer study. Hyperspectral images were analyzed with ENVI and custom Matlab scripts including linear spectral unmixing (LSU) and principal component analysis (PCA). Initial results suggest the ability to separate the signals of endogenous fluorophores and measure the relative concentrations of fluorophores among healthy and diseased states of similar tissues. These results suggest pathology-specific changes to endogenous fluorophores can be detected using excitationscanning hyperspectral imaging. Future work will expand the library of pure molecules and will examine more defined disease states.

  8. Deep learning based classification for head and neck cancer detection with hyperspectral imaging in an animal model

    Science.gov (United States)

    Ma, Ling; Lu, Guolan; Wang, Dongsheng; Wang, Xu; Chen, Zhuo Georgia; Muller, Susan; Chen, Amy; Fei, Baowei

    2017-03-01

    Hyperspectral imaging (HSI) is an emerging imaging modality that can provide a noninvasive tool for cancer detection and image-guided surgery. HSI acquires high-resolution images at hundreds of spectral bands, providing big data to differentiating different types of tissue. We proposed a deep learning based method for the detection of head and neck cancer with hyperspectral images. Since the deep learning algorithm can learn the feature hierarchically, the learned features are more discriminative and concise than the handcrafted features. In this study, we adopt convolutional neural networks (CNN) to learn the deep feature of pixels for classifying each pixel into tumor or normal tissue. We evaluated our proposed classification method on the dataset containing hyperspectral images from 12 tumor-bearing mice. Experimental results show that our method achieved an average accuracy of 91.36%. The preliminary study demonstrated that our deep learning method can be applied to hyperspectral images for detecting head and neck tumors in animal models.

  9. A new high-resolution electromagnetic method for subsurface imaging

    Science.gov (United States)

    Feng, Wanjie

    For most electromagnetic (EM) geophysical systems, the contamination of primary fields on secondary fields ultimately limits the capability of the controlled-source EM methods. Null coupling techniques were proposed to solve this problem. However, the small orientation errors in the null coupling systems greatly restrict the applications of these systems. Another problem encountered by most EM systems is the surface interference and geologic noise, which sometimes make the geophysical survey impossible to carry out. In order to solve these problems, the alternating target antenna coupling (ATAC) method was introduced, which greatly removed the influence of the primary field and reduced the surface interference. But this system has limitations on the maximum transmitter moment that can be used. The differential target antenna coupling (DTAC) method was proposed to allow much larger transmitter moments and at the same time maintain the advantages of the ATAC method. In this dissertation, first, the theoretical DTAC calculations were derived mathematically using Born and Wolf's complex magnetic vector. 1D layered and 2D blocked earth models were used to demonstrate that the DTAC method has no responses for 1D and 2D structures. Analytical studies of the plate model influenced by conductive and resistive backgrounds were presented to explain the physical phenomenology behind the DTAC method, which is the magnetic fields of the subsurface targets are required to be frequency dependent. Then, the advantages of the DTAC method, e.g., high-resolution, reducing the geologic noise and insensitive to surface interference, were analyzed using surface and subsurface numerical examples in the EMGIMA software. Next, the theoretical advantages, such as high resolution and insensitive to surface interference, were verified by designing and developing a low-power (moment of 50 Am 2) vertical-array DTAC system and testing it on controlled targets and scaled target coils. At last, a

  10. High-resolution MR imaging of wrist cartilage

    International Nuclear Information System (INIS)

    Rominger, M.B.; Bernreuter, W.K.; Listinsky, J.J.; Lee, D.H.; Kenney, P.J.; Colgin, S.L.

    1991-01-01

    This paper reports that cartilage is an important prognostic factor in arthritis. MR imaging can demonstrate both articular cartilage and subchondral bone. Our purpose was to compare various sequences, for wrist cartilage imaging and determine how extensive damage must be before it is detectable with MR imaging. Six cadaver wrists were imaged before and after arthroscopic cartilage injury (coronal and axial T1- and T2-weighted SE sequences, 3-mm sections; SPGR 45 degrees flip angle volume images with fat saturation. 1.2-mm sections; plus T1-weighted coronal images with fat saturation after injury; General Electric Signa, 1.5 T, with transmit-receive extremity coil). Twenty-two defects were created arthroscopically. Five normal volunteers were imaged for comparison. The greatest contrast among bone, cartilage, and synovial fluid was achieved with T1-weighted fat-suppressed SE image and SPGR. Gradient-recalled volume sequences generated very thin sections but were susceptible to artifact

  11. Linearized inversion frameworks toward high-resolution seismic imaging

    KAUST Repository

    Aldawood, Ali

    2016-01-01

    installed along the earth surface or down boreholes. Seismic imaging is a powerful tool to map these reflected and scattered energy back to their subsurface scattering or reflection points. Seismic imaging is conventionally based on the single

  12. LIFTERS-hyperspectral imaging at LLNL

    Energy Technology Data Exchange (ETDEWEB)

    Fields, D. [Lawrence Livermore National Lab., CA (United States); Bennett, C.; Carter, M.

    1994-11-15

    LIFTIRS, the Livermore Imaging Fourier Transform InfraRed Spectrometer, recently developed at LLNL, is an instrument which enables extremely efficient collection and analysis of hyperspectral imaging data. LIFTIRS produces a spatial format of 128x128 pixels, with spectral resolution arbitrarily variable up to a maximum of 0.25 inverse centimeters. Time resolution and spectral resolution can be traded off for each other with great flexibility. We will discuss recent measurements made with this instrument, and present typical images and spectra.

  13. A Gimbal-Stabilized Compact Hyperspectral Imaging System, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The Gimbal-stabilized Compact Hyperspectral Imaging System (GCHIS) fully integrates multi-sensor spectral imaging, stereovision, GPS and inertial measurement,...

  14. High Resolution Imaging of the Sun with CORONAS-1

    Science.gov (United States)

    Karovska, Margarita

    1998-01-01

    We applied several image restoration and enhancement techniques, to CORONAS-I images. We carried out the characterization of the Point Spread Function (PSF) using the unique capability of the Blind Iterative Deconvolution (BID) technique, which recovers the real PSF at a given location and time of observation, when limited a priori information is available on its characteristics. We also applied image enhancement technique to extract the small scale structure imbeded in bright large scale structures on the disk and on the limb. The results demonstrate the capability of the image post-processing to substantially increase the yield from the space observations by improving the resolution and reducing noise in the images.

  15. High resolution PET breast imager with improved detection efficiency

    Science.gov (United States)

    Majewski, Stanislaw

    2010-06-08

    A highly efficient PET breast imager for detecting lesions in the entire breast including those located close to the patient's chest wall. The breast imager includes a ring of imaging modules surrounding the imaged breast. Each imaging module includes a slant imaging light guide inserted between a gamma radiation sensor and a photodetector. The slant light guide permits the gamma radiation sensors to be placed in close proximity to the skin of the chest wall thereby extending the sensitive region of the imager to the base of the breast. Several types of photodetectors are proposed for use in the detector modules, with compact silicon photomultipliers as the preferred choice, due to its high compactness. The geometry of the detector heads and the arrangement of the detector ring significantly reduce dead regions thereby improving detection efficiency for lesions located close to the chest wall.

  16. Classification of high-resolution multi-swath hyperspectral data using Landsat 8 surface reflectance data as a calibration target and a novel histogram based unsupervised classification technique to determine natural classes from biophysically relevant fit parameters

    Science.gov (United States)

    McCann, C.; Repasky, K. S.; Morin, M.; Lawrence, R. L.; Powell, S. L.

    2016-12-01

    Compact, cost-effective, flight-based hyperspectral imaging systems can provide scientifically relevant data over large areas for a variety of applications such as ecosystem studies, precision agriculture, and land management. To fully realize this capability, unsupervised classification techniques based on radiometrically-calibrated data that cluster based on biophysical similarity rather than simply spectral similarity are needed. An automated technique to produce high-resolution, large-area, radiometrically-calibrated hyperspectral data sets based on the Landsat surface reflectance data product as a calibration target was developed and applied to three subsequent years of data covering approximately 1850 hectares. The radiometrically-calibrated data allows inter-comparison of the temporal series. Advantages of the radiometric calibration technique include the need for minimal site access, no ancillary instrumentation, and automated processing. Fitting the reflectance spectra of each pixel using a set of biophysically relevant basis functions reduces the data from 80 spectral bands to 9 parameters providing noise reduction and data compression. Examination of histograms of these parameters allows for determination of natural splitting into biophysical similar clusters. This method creates clusters that are similar in terms of biophysical parameters, not simply spectral proximity. Furthermore, this method can be applied to other data sets, such as urban scenes, by developing other physically meaningful basis functions. The ability to use hyperspectral imaging for a variety of important applications requires the development of data processing techniques that can be automated. The radiometric-calibration combined with the histogram based unsupervised classification technique presented here provide one potential avenue for managing big-data associated with hyperspectral imaging.

  17. Using Adobe Acrobat to create high-resolution line art images.

    Science.gov (United States)

    Woo, Hyoun Sik; Lee, Jeong Min

    2009-08-01

    The purpose of this article is to introduce a method for using Adobe Acrobat to make high-resolution and high-quality line art images. High-resolution and high-quality line art images for radiology journal submission can be generated using Adobe Acrobat as a steppingstone, and the customized PDF conversion settings can be used for converting hybrid images, including both bitmap and vector components.

  18. Linearized inversion frameworks toward high-resolution seismic imaging

    KAUST Repository

    Aldawood, Ali

    2016-09-01

    Seismic exploration utilizes controlled sources, which emit seismic waves that propagate through the earth subsurface and get reflected off subsurface interfaces and scatterers. The reflected and scattered waves are recorded by recording stations installed along the earth surface or down boreholes. Seismic imaging is a powerful tool to map these reflected and scattered energy back to their subsurface scattering or reflection points. Seismic imaging is conventionally based on the single-scattering assumption, where only energy that bounces once off a subsurface scatterer and recorded by a receiver is projected back to its subsurface position. The internally multiply scattered seismic energy is considered as unwanted noise and is usually suppressed or removed from the recorded data. Conventional seismic imaging techniques yield subsurface images that suffer from low spatial resolution, migration artifacts, and acquisition fingerprint due to the limited acquisition aperture, number of sources and receivers, and bandwidth of the source wavelet. Hydrocarbon traps are becoming more challenging and considerable reserves are trapped in stratigraphic and pinch-out traps, which require highly resolved seismic images to delineate them. This thesis focuses on developing and implementing new advanced cost-effective seismic imaging techniques aiming at enhancing the resolution of the migrated images by exploiting the sparseness of the subsurface reflectivity distribution and utilizing the multiples that are usually neglected when imaging seismic data. I first formulate the seismic imaging problem as a Basis pursuit denoise problem, which I solve using an L1-minimization algorithm to obtain the sparsest migrated image corresponding to the recorded data. Imaging multiples may illuminate subsurface zones, which are not easily illuminated by conventional seismic imaging using primary reflections only. I then develop an L2-norm (i.e. least-squares) inversion technique to image

  19. Mapping Soil Organic Matter with Hyperspectral Imaging

    Science.gov (United States)

    Moni, Christophe; Burud, Ingunn; Flø, Andreas; Rasse, Daniel

    2014-05-01

    Soil organic matter (SOM) plays a central role for both food security and the global environment. Soil organic matter is the 'glue' that binds soil particles together, leading to positive effects on soil water and nutrient availability for plant growth and helping to counteract the effects of erosion, runoff, compaction and crusting. Hyperspectral measurements of samples of soil profiles have been conducted with the aim of mapping soil organic matter on a macroscopic scale (millimeters and centimeters). Two soil profiles have been selected from the same experimental site, one from a plot amended with biochar and another one from a control plot, with the specific objective to quantify and map the distribution of biochar in the amended profile. The soil profiles were of size (30 x 10 x 10) cm3 and were scanned with two pushbroomtype hyperspectral cameras, one which is sensitive in the visible wavelength region (400 - 1000 nm) and one in the near infrared region (1000 - 2500 nm). The images from the two detectors were merged together into one full dataset covering the whole wavelength region. Layers of 15 mm were removed from the 10 cm high sample such that a total of 7 hyperspectral images were obtained from the samples. Each layer was analyzed with multivariate statistical techniques in order to map the different components in the soil profile. Moreover, a 3-dimensional visalization of the components through the depth of the sample was also obtained by combining the hyperspectral images from all the layers. Mid-infrared spectroscopy of selected samples of the measured soil profiles was conducted in order to correlate the chemical constituents with the hyperspectral results. The results show that hyperspectral imaging is a fast, non-destructive technique, well suited to characterize soil profiles on a macroscopic scale and hence to map elements and different organic matter quality present in a complete pedon. As such, we were able to map and quantify biochar in our

  20. Very high resolution satellite data: New challenges in image analysis

    Digital Repository Service at National Institute of Oceanography (India)

    Sathe, P.V.; Muraleedharan, P.M.

    with the exception that a ground-based view covers the entire optical range from 400 to 700 nm while satellite images will be wavelength-specific. Although the images will not surpass details observed by a human eye, they will, in principle, be comparable with aerial...

  1. Virtual ultrasound sources in high-resolution ultrasound imaging

    DEFF Research Database (Denmark)

    Nikolov, Svetoslav; Jensen, Jørgen Arendt

    2002-01-01

    beamforming procedure for 3D ultrasound imaging. The position of the virtual source, and the created waveform are investigated with simulation, and with pulse-echo measurements. There is good agreement between the estimated wavefront and the theoretically tted one. Several examples of the use of virtual...... source elements are considered. Using SAF on data acquired for a conventional linear array imaging improves the penetration depth for the particular imaging situation from 80 to 110 mm. The independent use of virtual source elements in the elevation plane decreases the respective size of the point spread...

  2. Hyperspectral Image Analysis of Food Quality

    DEFF Research Database (Denmark)

    Arngren, Morten

    inspection.Near-infrared spectroscopy can address these issues by offering a fast and objectiveanalysis of the food quality. A natural extension to these single spectrumNIR systems is to include image information such that each pixel holds a NIRspectrum. This augmented image information offers several......Assessing the quality of food is a vital step in any food processing line to ensurethe best food quality and maximum profit for the farmer and food manufacturer.Traditional quality evaluation methods are often destructive and labourintensive procedures relying on wet chemistry or subjective human...... extensions to the analysis offood quality. This dissertation is concerned with hyperspectral image analysisused to assess the quality of single grain kernels. The focus is to highlight thebenefits and challenges of using hyperspectral imaging for food quality presentedin two research directions. Initially...

  3. Adaptive Optics Technology for High-Resolution Retinal Imaging

    Science.gov (United States)

    Lombardo, Marco; Serrao, Sebastiano; Devaney, Nicholas; Parravano, Mariacristina; Lombardo, Giuseppe

    2013-01-01

    Adaptive optics (AO) is a technology used to improve the performance of optical systems by reducing the effects of optical aberrations. The direct visualization of the photoreceptor cells, capillaries and nerve fiber bundles represents the major benefit of adding AO to retinal imaging. Adaptive optics is opening a new frontier for clinical research in ophthalmology, providing new information on the early pathological changes of the retinal microstructures in various retinal diseases. We have reviewed AO technology for retinal imaging, providing information on the core components of an AO retinal camera. The most commonly used wavefront sensing and correcting elements are discussed. Furthermore, we discuss current applications of AO imaging to a population of healthy adults and to the most frequent causes of blindness, including diabetic retinopathy, age-related macular degeneration and glaucoma. We conclude our work with a discussion on future clinical prospects for AO retinal imaging. PMID:23271600

  4. A mechanical microcompressor for high resolution imaging of motile specimens

    OpenAIRE

    Zinskie, Jessica A.; Shribak, Michael; Bruist, Michael F.; Aufderheide, Karl J.; Janetopoulos, Chris

    2015-01-01

    In order to obtain fine details in 3 dimensions (3D) over time, it is critical for motile biological specimens to be appropriately immobilized. Of the many immobilization options available, the mechanical microcompressor offers many benefits. Our device, previously described, achieves gentle flattening of a cell, allowing us to image finely detailed structures of numerous organelles and physiological processes in living cells. We have imaged protozoa and other small metazoans using differenti...

  5. Study of fish response using particle image velocimetry and high-speed, high-resolution imaging

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Z. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Richmond, M. C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mueller, R. P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gruensch, G. R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2004-10-01

    Fish swimming has fascinated both engineers and fish biologists for decades. Digital particle image velocimetry (DPIV) and high-speed, high-resolution digital imaging are recently developed analysis tools that can help engineers and biologists better understand how fish respond to turbulent environments. This report details studies to evaluate DPIV. The studies included a review of existing literature on DPIV, preliminary studies to test the feasibility of using DPIV conducted at our Flow Biology Laboratory in Richland, Washington September through December 2003, and applications of high-speed, high-resolution digital imaging with advanced motion analysis to investigations of fish injury mechanisms in turbulent shear flows and bead trajectories in laboratory physical models. Several conclusions were drawn based on these studies, which are summarized as recommendations for proposed research at the end of this report.

  6. Dedicated mobile high resolution prostate PET imager with an insertable transrectal probe

    Science.gov (United States)

    Majewski, Stanislaw; Proffitt, James

    2010-12-28

    A dedicated mobile PET imaging system to image the prostate and surrounding organs. The imaging system includes an outside high resolution PET imager placed close to the patient's torso and an insertable and compact transrectal probe that is placed in close proximity to the prostate and operates in conjunction with the outside imager. The two detector systems are spatially co-registered to each other. The outside imager is mounted on an open rotating gantry to provide torso-wide 3D images of the prostate and surrounding tissue and organs. The insertable probe provides closer imaging, high sensitivity, and very high resolution predominately 2D view of the prostate and immediate surroundings. The probe is operated in conjunction with the outside imager and a fast data acquisition system to provide very high resolution reconstruction of the prostate and surrounding tissue and organs.

  7. High-resolution satellite image segmentation using Hölder exponents

    Indian Academy of Sciences (India)

    Keywords. High resolution image; texture analysis; segmentation; IKONOS; Hölder exponent; cluster. ... are that. • it can be used as a tool to measure the roughness ... uses reinforcement learning to learn the reward values of ..... The numerical.

  8. High resolution X radiography imaging detector-micro gap chamber

    International Nuclear Information System (INIS)

    Long Huqiang; Wang Yun; Xu Dong; Xie Kuanzhong; Bian Jianjiang

    2007-01-01

    Micro gap chamber (MGC) is a new type of Two-Dimensional position sensitive detector having excellent properties on the space and time resolution, counting rate, 2D compact structure and the flexible of application. It will become a candidate of a new tracking detector for high energy physics experiment. The basic structure and properties of MGC as well as its main research subjects are presented in this paper. Furthermore, the feasibility and validity of utilizing diamond films as the MGC gap material were also discussed in detail. So, a potential radiography imaging detector is provided in order to realize X image and X ray diffraction experiment having very good spatial and time resolution in the 3rd Generation of Synchrotron Radiation Facility. (authors)

  9. High-resolution flow imaging of the carotid arteries

    International Nuclear Information System (INIS)

    Masaryk, T.J.; Modic, M.T.; Haacke, E.M.; Lenz, G.W.; Ross, J.S.

    1986-01-01

    Recently, high-contrast vascular images have been demonstrated using short TEs, gating and subtraction. However, to obtain short TE values, large gradients are required. This potentially limits the field of view, signal-to-noise- ratio, and resolution. Furthermore, gating in different parts of the cardiac cycle can lead to pixel misregistration. In this study, additional refocusing gradients were applied so that no velocity-dependent dephasing occurs at the echo restoring signal from moving blood. Two cardiac-gated sequences using the same trigger delay and one acquisition were obtained. Preliminary results indicate that good quality vascular images of the carotid bifurcation can be obtained with modifications of the spin-echo technique of with short TEs utilizing a gradient echo technique

  10. High-resolution MR imaging of glenohumeral instability lesions

    International Nuclear Information System (INIS)

    Rafii, M.; Firooznia, H.; Sherman, O.; Minkoff, J.; Sherman, M.; Golimbu, C.

    1991-01-01

    This paper determines the accuracy of conventual MR imaging in the diagnosis of glenohumeral instabilities and evaluates various pathologic aspects of these lesions. Records were reviewed in 80 consecutive patients with known or suspected instability who underwent MR imaging. The routine shoulder protocol included a proton density- or T2-weighted sequence. Surgical correlation was available in 31 cases. Diagnosis of glenohumeral instability was based on the presence of a combination of findings of appropriately located tear, osseous abnormality of glenoid margin, capsular abnormalities and Hill-Sachs deformity. In 28 surgically correlated patients with glenohumeral instability an accurate diagnosis was made in all but 1 case of posterior instability. A false diagnosis of instability was suggested in 3 cases by signal abnormality of the labrum and/or a prominent capsule

  11. Design and development of a very high resolution thermal imager

    Science.gov (United States)

    Kuerbitz, Gunther; Duchateau, Ruediger

    1998-10-01

    The design goal of this project was to develop a thermal imaging system with ultimate geometrical resolution without sacrificing thermal sensitivity. It was necessary to fulfil the criteria for a future advanced video standard. This video standard is the so-called HDTV standard (HDTV High Definition TeleVision). The thermal imaging system is a parallel scanning system working in the 7...11 micrometer spectral region. The detector for that system has to have 576 X n (n number of TDI stages) detector elements taking into account a twofold interlace. It must be carefully optimized in terms of range performance and size of optics entrance pupil as well as producibility and yield. This was done in strong interaction with the detector manufacturer. The 16:9 aspect ratio of the HDTV standard together with the high number of 1920 pixels/line impose high demands on the scanner design in terms of scan efficiency and linearity. As an advanced second generation thermal imager the system has an internal thermal reference. The electronics is fully digitized and comprises circuits for Non Uniformity Correction (NUC), scan conversion, electronic zoom, auto gain and level, edge enhancement, up/down and left/right reversion etc. It can be completely remote-controlled via a serial interface.

  12. Investigation of carbonates in the Sutter's Mill meteorite grains with hyperspectral infrared imaging micro-spectroscopy

    Science.gov (United States)

    Yesiltas, Mehmet

    2018-04-01

    Synchrotron-based high spatial resolution hyperspectral infrared imaging technique provides thousands of infrared spectra with high resolution, thus allowing us to acquire detailed spatial maps of chemical molecular structures for many grains in short times. Utilizing this technique, thousands of infrared spectra were analyzed at once instead of inspecting each spectrum separately. Sutter's Mill meteorite is a unique carbonaceous type meteorite with highly heterogeneous chemical composition. Multiple grains from the Sutter's Mill meteorite have been studied using this technique and the presence of both hydrous and anhydrous silicate minerals have been observed. It is observed that the carbonate mineralogy varies from simple to more complex carbonates even within a few microns in the meteorite grains. These variations, the type and distribution of calcite-like vs. dolomite-like carbonates are presented by means of hyperspectral FTIR imaging spectroscopy with high resolution. Various scenarios for the formation of different carbonate compositions in the Sutter's Mill parent body are discussed.

  13. High Resolution HST Images of Pluto and Charon

    Science.gov (United States)

    1994-05-01

    At the Edge of the Solar System Click here to jump to photo. The remote planet Pluto and its moon Charon orbit the Sun at a mean distance of almost 6,000 million kilometres, or nearly fourty times farther out than the Earth. During a recent investigation by an international group of astronomers [1], the best picture ever of Pluto and Charon [2] was secured with the European Space Agency's Faint Object Camera at the Hubble Space Telescope (HST). It shows the two objects as individual disks, and it is likely that further image enhancement will allow us to see surface features on Pluto. A Very Special Pair of Celestial Objects Almost all the known facts about these two bodies show that they are quite unusual: Pluto's orbit around the Sun is much more elongated and more inclined to the main plane of the Solar System than that of any other major planet; Charon's orbit around Pluto is nearly perpendicular to this plane; their mutual distance is amazingly small when compared to their size; Charon is half the size of Pluto and the ratio of their masses is much closer to unity than is the case for all other planets and their moons. Moreover, both are small and solid bodies, in contrast to the other, large and gaseous planets in the outer Solar System. We do not know why this is so. But there is another important aspect which makes Pluto and Charon even more interesting: at this very large distance from the Sun, any evolutionary changes happen very slowly. It is therefore likely that Pluto and Charon hold important clues to the conditions that prevailed in the early Solar System and thus to the origin and the evolution of the Solar System as a whole. Long and Difficult Analysis Ahead The present image shows that the overall quality of the new data obtained with the ESA Faint Object Camera on the refurbished Hubble Space Telescope is extremely good. However, such an image represents only the first step of a subsequent, detailed analysis with the ultimate goal of determining

  14. Image Quality in High-resolution and High-cadence Solar Imaging

    Science.gov (United States)

    Denker, C.; Dineva, E.; Balthasar, H.; Verma, M.; Kuckein, C.; Diercke, A.; González Manrique, S. J.

    2018-03-01

    Broad-band imaging and even imaging with a moderate bandpass (about 1 nm) provides a photon-rich environment, where frame selection (lucky imaging) becomes a helpful tool in image restoration, allowing us to perform a cost-benefit analysis on how to design observing sequences for imaging with high spatial resolution in combination with real-time correction provided by an adaptive optics (AO) system. This study presents high-cadence (160 Hz) G-band and blue continuum image sequences obtained with the High-resolution Fast Imager (HiFI) at the 1.5-meter GREGOR solar telescope, where the speckle-masking technique is used to restore images with nearly diffraction-limited resolution. The HiFI employs two synchronized large-format and high-cadence sCMOS detectors. The median filter gradient similarity (MFGS) image-quality metric is applied, among others, to AO-corrected image sequences of a pore and a small sunspot observed on 2017 June 4 and 5. A small region of interest, which was selected for fast-imaging performance, covered these contrast-rich features and their neighborhood, which were part of Active Region NOAA 12661. Modifications of the MFGS algorithm uncover the field- and structure-dependency of this image-quality metric. However, MFGS still remains a good choice for determining image quality without a priori knowledge, which is an important characteristic when classifying the huge number of high-resolution images contained in data archives. In addition, this investigation demonstrates that a fast cadence and millisecond exposure times are still insufficient to reach the coherence time of daytime seeing. Nonetheless, the analysis shows that data acquisition rates exceeding 50 Hz are required to capture a substantial fraction of the best seeing moments, significantly boosting the performance of post-facto image restoration.

  15. Evaluation of camouflage effectiveness using hyperspectral images

    Science.gov (United States)

    Zavvartorbati, Ahmad; Dehghani, Hamid; Rashidi, Ali Jabar

    2017-10-01

    Recent advances in camouflage engineering have made it more difficult to detect targets. Assessing the effectiveness of camouflage against different target detection methods leads to identifying the strengths and weaknesses of camouflage designs. One of the target detection methods is to analyze the content of the scene using remote sensing hyperspectral images. In the process of evaluating camouflage designs, there must be comprehensive and efficient evaluation criteria. Three parameters were considered as the main factors affecting the target detection and based on these factors, camouflage effectiveness assessment criteria were proposed. To combine the criteria in the form of a single equation, the equation used in target visual search models was employed and for determining the criteria, a model was presented based on the structure of the computational visual attention systems. Also, in software implementations on the HyMap hyperspectral image, a variety of camouflage levels were created for the real targets in the image. Assessing the camouflage levels using the proposed criteria, comparing and analyzing the results can show that the provided criteria and model are effective for the evaluation of camouflage designs using hyperspectral images.

  16. High resolution LBT imaging of Io and Jupiter

    Science.gov (United States)

    Conrad, A.; de Kleer, K.; Leisenring, J.; La Camera, A.; Arcidiacono, C.; Bertero, M.; Boccacci, P.; Defrère, D.; de Pater, I.; Hinz, P.; Hoffman, K.-H.; Kürster, M.; Rathbun, J.; Schertl, D.; Skemer, A.; Skrutskie, M.; Spencer, J.; Veillet, C.; Weigelt, G.; Woodward, C.

    2015-10-01

    We report here results from observing Io at high angular resolution, ˜32 mas at 4.8 μm, with LBT at two favorable oppositions as described in our report given at the 2011 EPSC [1]. Analysis of datasets acquired during the last two oppositions has yielded spatially resolved M-band emission at Loki Patera [2], L-band fringes at an eruption site, an occultation of Loki and Pele by Europa, and sufficient sub-earth longitude (SEL) and parallactic angle coverage to produce a full disk map.We summarize completed results for the first of these, and give brief progress reports for the latter three. Finally, we provide plans for imaging the full disk of Jupiter using the MCAO system which is in its commissioning phase at LBT.

  17. High-resolution imaging methods in array signal processing

    DEFF Research Database (Denmark)

    Xenaki, Angeliki

    in active sonar signal processing for detection and imaging of submerged oil contamination in sea water from a deep-water oil leak. The submerged oil _eld is modeled as a uid medium exhibiting spatial perturbations in the acoustic parameters from their mean ambient values which cause weak scattering...... of the incident acoustic energy. A highfrequency active sonar is selected to insonify the medium and receive the backscattered waves. High-frequency acoustic methods can both overcome the optical opacity of water (unlike methods based on electromagnetic waves) and resolve the small-scale structure...... of the submerged oil field (unlike low-frequency acoustic methods). The study shows that high-frequency acoustic methods are suitable not only for large-scale localization of the oil contamination in the water column but also for statistical characterization of the submerged oil field through inference...

  18. Software for Simulation of Hyperspectral Images

    Science.gov (United States)

    Richtsmeier, Steven C.; Singer-Berk, Alexander; Bernstein, Lawrence S.

    2002-01-01

    A package of software generates simulated hyperspectral images for use in validating algorithms that generate estimates of Earth-surface spectral reflectance from hyperspectral images acquired by airborne and spaceborne instruments. This software is based on a direct simulation Monte Carlo approach for modeling three-dimensional atmospheric radiative transport as well as surfaces characterized by spatially inhomogeneous bidirectional reflectance distribution functions. In this approach, 'ground truth' is accurately known through input specification of surface and atmospheric properties, and it is practical to consider wide variations of these properties. The software can treat both land and ocean surfaces and the effects of finite clouds with surface shadowing. The spectral/spatial data cubes computed by use of this software can serve both as a substitute for and a supplement to field validation data.

  19. A high-resolution full-field range imaging system

    Science.gov (United States)

    Carnegie, D. A.; Cree, M. J.; Dorrington, A. A.

    2005-08-01

    There exist a number of applications where the range to all objects in a field of view needs to be obtained. Specific examples include obstacle avoidance for autonomous mobile robots, process automation in assembly factories, surface profiling for shape analysis, and surveying. Ranging systems can be typically characterized as being either laser scanning systems where a laser point is sequentially scanned over a scene or a full-field acquisition where the range to every point in the image is simultaneously obtained. The former offers advantages in terms of range resolution, while the latter tend to be faster and involve no moving parts. We present a system for determining the range to any object within a camera's field of view, at the speed of a full-field system and the range resolution of some point laser scans. Initial results obtained have a centimeter range resolution for a 10 second acquisition time. Modifications to the existing system are discussed that should provide faster results with submillimeter resolution.

  20. AUTOMATIC INTERPRETATION OF HIGH RESOLUTION SAR IMAGES: FIRST RESULTS OF SAR IMAGE SIMULATION FOR SINGLE BUILDINGS

    Directory of Open Access Journals (Sweden)

    J. Tao

    2012-09-01

    Full Text Available Due to the all-weather data acquisition capabilities, high resolution space borne Synthetic Aperture Radar (SAR plays an important role in remote sensing applications like change detection. However, because of the complex geometric mapping of buildings in urban areas, SAR images are often hard to interpret. SAR simulation techniques ease the visual interpretation of SAR images, while fully automatic interpretation is still a challenge. This paper presents a method for supporting the interpretation of high resolution SAR images with simulated radar images using a LiDAR digital surface model (DSM. Line features are extracted from the simulated and real SAR images and used for matching. A single building model is generated from the DSM and used for building recognition in the SAR image. An application for the concept is presented for the city centre of Munich where the comparison of the simulation to the TerraSAR-X data shows a good similarity. Based on the result of simulation and matching, special features (e.g. like double bounce lines, shadow areas etc. can be automatically indicated in SAR image.

  1. Facilities for High Resolution Imaging of the Sun

    Science.gov (United States)

    von der Lühe, Oskar

    2018-04-01

    The Sun is the only star where physical processes can be observed at their intrinsic spatial scales. Even though the Sun in a mere 150 million km from Earth, it is difficult to resolve fundamental processes in the solar atmosphere, because they occur at scales of the order of the kilometer. They can be observed only with telescopes which have apertures of several meters. The current state-of-the-art are solar telescopes with apertures of 1.5 m which resolve 50 km on the solar surface, soon to be superseded by telescopes with 4 m apertures with 20 km resolution. The US American 4 m DSI Solar Telescope is currently constructed on Maui, Hawaii, and is expected to have first light in 2020. The European solar community collaborates intensively to pursue the 4 m European Solar Telescope with a construction start in the Canaries early in the next decade. Solar telescopes with slightly smaller are also in the planning by the Russian, Indian and Chinese communities. In order to achieve a resolution which approaches the diffraction limit, all modern solar telescopes use adaptive optics which compensates virtually any scene on the solar disk. Multi-conjugate adaptive optics designed to compensate fields of the order on one minute of arc have been demonstrated and will become a facility feature of the new telescopes. The requirements for high precision spectro-polarimetry – about one part in 104 – makes continuous monitoring of (MC)AO performance and post-processing image reconstruction methods a necessity.

  2. Single photon imaging at ultra-high resolution

    Energy Technology Data Exchange (ETDEWEB)

    Bellazzini, R. [INFN sez. Pisa, Pisa (Italy); Spandre, G. [INFN sez. Pisa, Pisa (Italy)], E-mail: Gloria.Spandre@pi.infn.it; Minuti, M.; Brez, A.; Baldini, L.; Latronico, L.; Omodei, N.; Sgro, C.; Bregeon, J.; Razzano, M.; Pinchera, M. [INFN sez. Pisa, Pisa (Italy); Tremsin, A.; McPhate, J.; Vallerga, J.V.; Siegmund, O. [SSL, Berkeley (United States)

    2008-06-11

    We present a detection system capable of imaging both single photon/positive ion and multiple coincidence photons/positive ions with extremely high spatial resolution. In this detector the photoelectrons excited by the incoming photons are multiplied by microchannel plate(s) (MCP). The process of multiplication is spatially constrained within an MCP pore, which can be as small as 4 {mu}m for commercially available MCPs. An electron cloud originated by a single photoelectron is then encoded by a pixellated custom analog ASIC consisting of 105 K charge sensitive pixels of 50 {mu}m in size arranged on a hexagonal grid. Each pixel registers the charge with an accuracy of <100 electrons rms. Computation of the event centroid from the readout charges results in an accurate event position. A large number of simultaneous photons spatially separated by {approx}0.4 mm can be detected simultaneously allowing multiple coincidence operation for the experiments where a large number of incoming photons/positive ions have to be detected simultaneously. The experimental results prove that the spatial resolution of the readout system itself is {approx}3 {mu}m FWHM enabling detection resolution better than 6 {mu}m for the small pore MCPs. An attractive feature of the detection system is its capability to register the timing of each incoming photon/positive ion (in single photon detection mode) or of the first incoming particle (for the multiple coincidence detection) with an accuracy of {approx}130 ps FWHM. There is also virtually no dark count noise in the detection system making it suitable for low count rate applications.

  3. Information Extraction of High Resolution Remote Sensing Images Based on the Calculation of Optimal Segmentation Parameters

    Science.gov (United States)

    Zhu, Hongchun; Cai, Lijie; Liu, Haiying; Huang, Wei

    2016-01-01

    Multi-scale image segmentation and the selection of optimal segmentation parameters are the key processes in the object-oriented information extraction of high-resolution remote sensing images. The accuracy of remote sensing special subject information depends on this extraction. On the basis of WorldView-2 high-resolution data, the optimal segmentation parameters methodof object-oriented image segmentation and high-resolution image information extraction, the following processes were conducted in this study. Firstly, the best combination of the bands and weights was determined for the information extraction of high-resolution remote sensing image. An improved weighted mean-variance method was proposed andused to calculatethe optimal segmentation scale. Thereafter, the best shape factor parameter and compact factor parameters were computed with the use of the control variables and the combination of the heterogeneity and homogeneity indexes. Different types of image segmentation parameters were obtained according to the surface features. The high-resolution remote sensing images were multi-scale segmented with the optimal segmentation parameters. Ahierarchical network structure was established by setting the information extraction rules to achieve object-oriented information extraction. This study presents an effective and practical method that can explain expert input judgment by reproducible quantitative measurements. Furthermore the results of this procedure may be incorporated into a classification scheme. PMID:27362762

  4. Ultra-High-Resolution Computed Tomography of the Lung: Image Quality of a Prototype Scanner

    OpenAIRE

    Kakinuma, Ryutaro; Moriyama, Noriyuki; Muramatsu, Yukio; Gomi, Shiho; Suzuki, Masahiro; Nagasawa, Hirobumi; Kusumoto, Masahiko; Aso, Tomohiko; Muramatsu, Yoshihisa; Tsuchida, Takaaki; Tsuta, Koji; Maeshima, Akiko Miyagi; Tochigi, Naobumi; Watanabe, Shun-ichi; Sugihara, Naoki

    2015-01-01

    Purpose: The image noise and image quality of a prototype ultra-high-resolution computed tomography (U-HRCT) scanner was evaluated and compared with those of conventional high-resolution CT (C-HRCT) scanners. Materials and Methods: This study was approved by the institutional review board. A U-HRCT scanner prototype with 0.25 mm × 4 rows and operating at 120 mAs was used. The C-HRCT images were obtained using a 0.5 mm × 16 or 0.5 mm × 64 detector-row CT scanner operating at 150 mAs. Images fr...

  5. Retrieving high-resolution images over the Internet from an anatomical image database

    Science.gov (United States)

    Strupp-Adams, Annette; Henderson, Earl

    1999-12-01

    The Visible Human Data set is an important contribution to the national collection of anatomical images. To enhance the availability of these images, the National Library of Medicine has supported the design and development of a prototype object-oriented image database which imports, stores, and distributes high resolution anatomical images in both pixel and voxel formats. One of the key database modules is its client-server Internet interface. This Web interface provides a query engine with retrieval access to high-resolution anatomical images that range in size from 100KB for browser viewable rendered images, to 1GB for anatomical structures in voxel file formats. The Web query and retrieval client-server system is composed of applet GUIs, servlets, and RMI application modules which communicate with each other to allow users to query for specific anatomical structures, and retrieve image data as well as associated anatomical images from the database. Selected images can be downloaded individually as single files via HTTP or downloaded in batch-mode over the Internet to the user's machine through an applet that uses Netscape's Object Signing mechanism. The image database uses ObjectDesign's object-oriented DBMS, ObjectStore that has a Java interface. The query and retrieval systems has been tested with a Java-CDE window system, and on the x86 architecture using Windows NT 4.0. This paper describes the Java applet client search engine that queries the database; the Java client module that enables users to view anatomical images online; the Java application server interface to the database which organizes data returned to the user, and its distribution engine that allow users to download image files individually and/or in batch-mode.

  6. Blind estimation of blur in hyperspectral images

    Science.gov (United States)

    Zhang, Mo; Vozel, Benoit; Chehdi, Kacem; Uss, Mykhail; Abramov, Sergey; Lukin, Vladimir

    2017-10-01

    Hyperspectral images acquired by remote sensing systems are generally degraded by noise and can be sometimes more severely degraded by blur. When no knowledge is available about the degradations present on the original image, blind restoration methods can only be considered. By blind, we mean absolutely no knowledge neither of the blur point spread function (PSF) nor the original latent channel and the noise level. In this study, we address the blind restoration of the degraded channels component-wise, according to a sequential scheme. For each degraded channel, the sequential scheme estimates the blur point spread function (PSF) in a first stage and deconvolves the degraded channel in a second and final stage by means of using the PSF previously estimated. We propose a new component-wise blind method for estimating effectively and accurately the blur point spread function. This method follows recent approaches suggesting the detection, selection and use of sufficiently salient edges in the current processed channel for supporting the regularized blur PSF estimation. Several modifications are beneficially introduced in our work. A new selection of salient edges through thresholding adequately the cumulative distribution of their corresponding gradient magnitudes is introduced. Besides, quasi-automatic and spatially adaptive tuning of the involved regularization parameters is considered. To prove applicability and higher efficiency of the proposed method, we compare it against the method it originates from and four representative edge-sparsifying regularized methods of the literature already assessed in a previous work. Our attention is mainly paid to the objective analysis (via ݈l1-norm) of the blur PSF error estimation accuracy. The tests are performed on a synthetic hyperspectral image. This synthetic hyperspectral image has been built from various samples from classified areas of a real-life hyperspectral image, in order to benefit from realistic spatial

  7. Snapshot hyperspectral imaging and practical applications

    International Nuclear Information System (INIS)

    Wong, G

    2009-01-01

    Traditional broadband imaging involves the digital representation of a remote scene within a reduced colour space. Hyperspectral imaging exploits the full spectral dimension, which better reflects the continuous nature of actual spectra. Conventional techniques are all time-delayed whereby spatial or spectral scanning is required for hypercube generation. An innovative and patented technique developed at Heriot-Watt University offers significant potential as a snapshot sensor, to enable benefits for the wider public beyond aerospace imaging. This student-authored paper seeks to promote awareness of this field within the photonic community and its potential advantages for real-time practical applications.

  8. D Reconstruction from Uav-Based Hyperspectral Images

    Science.gov (United States)

    Liu, L.; Xu, L.; Peng, J.

    2018-04-01

    Reconstructing the 3D profile from a set of UAV-based images can obtain hyperspectral information, as well as the 3D coordinate of any point on the profile. Our images are captured from the Cubert UHD185 (UHD) hyperspectral camera, which is a new type of high-speed onboard imaging spectrometer. And it can get both hyperspectral image and panchromatic image simultaneously. The panchromatic image have a higher spatial resolution than hyperspectral image, but each hyperspectral image provides considerable information on the spatial spectral distribution of the object. Thus there is an opportunity to derive a high quality 3D point cloud from panchromatic image and considerable spectral information from hyperspectral image. The purpose of this paper is to introduce our processing chain that derives a database which can provide hyperspectral information and 3D position of each point. First, We adopt a free and open-source software, Visual SFM which is based on structure from motion (SFM) algorithm, to recover 3D point cloud from panchromatic image. And then get spectral information of each point from hyperspectral image by a self-developed program written in MATLAB. The production can be used to support further research and applications.

  9. Automated, feature-based image alignment for high-resolution imaging mass spectrometry of large biological samples

    NARCIS (Netherlands)

    Broersen, A.; Liere, van R.; Altelaar, A.F.M.; Heeren, R.M.A.; McDonnell, L.A.

    2008-01-01

    High-resolution imaging mass spectrometry of large biological samples is the goal of several research groups. In mosaic imaging, the most common method, the large sample is divided into a mosaic of small areas that are then analyzed with high resolution. Here we present an automated alignment

  10. Classification of high resolution remote sensing image based on geo-ontology and conditional random fields

    Science.gov (United States)

    Hong, Liang

    2013-10-01

    The availability of high spatial resolution remote sensing data provides new opportunities for urban land-cover classification. More geometric details can be observed in the high resolution remote sensing image, Also Ground objects in the high resolution remote sensing image have displayed rich texture, structure, shape and hierarchical semantic characters. More landscape elements are represented by a small group of pixels. Recently years, the an object-based remote sensing analysis methodology is widely accepted and applied in high resolution remote sensing image processing. The classification method based on Geo-ontology and conditional random fields is presented in this paper. The proposed method is made up of four blocks: (1) the hierarchical ground objects semantic framework is constructed based on geoontology; (2) segmentation by mean-shift algorithm, which image objects are generated. And the mean-shift method is to get boundary preserved and spectrally homogeneous over-segmentation regions ;(3) the relations between the hierarchical ground objects semantic and over-segmentation regions are defined based on conditional random fields framework ;(4) the hierarchical classification results are obtained based on geo-ontology and conditional random fields. Finally, high-resolution remote sensed image data -GeoEye, is used to testify the performance of the presented method. And the experimental results have shown the superiority of this method to the eCognition method both on the effectively and accuracy, which implies it is suitable for the classification of high resolution remote sensing image.

  11. High resolution NMR imaging using a high field yokeless permanent magnet.

    Science.gov (United States)

    Kose, Katsumi; Haishi, Tomoyuki

    2011-01-01

    We measured the homogeneity and stability of the magnetic field of a high field (about 1.04 tesla) yokeless permanent magnet with 40-mm gap for high resolution nuclear magnetic resonance (NMR) imaging. Homogeneity was evaluated using a 3-dimensional (3D) lattice phantom and 3D spin-echo imaging sequences. In the central sphere (20-mm diameter), peak-to-peak magnetic field inhomogeneity was about 60 ppm, and the root-mean-square was 8 ppm. We measured room temperature, magnet temperature, and NMR frequency of the magnet simultaneously every minute for about 68 hours with and without the thermal insulator of the magnet. A simple mathematical model described the magnet's thermal property. Based on magnet performance, we performed high resolution (up to [20 µm](2)) imaging with internal NMR lock sequences of several biological samples. Our results demonstrated the usefulness of the high field small yokeless permanent magnet for high resolution NMR imaging.

  12. High resolution NMR imaging using a high field yokeless permanent magnet

    International Nuclear Information System (INIS)

    Kose, Katsumi; Haishi, Tomoyuki

    2011-01-01

    We measured the homogeneity and stability of the magnetic field of a high field (about 1.04 tesla) yokeless permanent magnet with 40-mm gap for high resolution nuclear magnetic resonance (NMR) imaging. Homogeneity was evaluated using a 3-dimensional (3D) lattice phantom and 3D spin-echo imaging sequences. In the central sphere (20-mm diameter), peak-to-peak magnetic field inhomogeneity was about 60 ppm, and the root-mean-square was 8 ppm. We measured room temperature, magnet temperature, and NMR frequency of the magnet simultaneously every minute for about 68 hours with and without the thermal insulator of the magnet. A simple mathematical model described the magnet's thermal property. Based on magnet performance, we performed high resolution (up to [20 μm] 2 ) imaging with internal NMR lock sequences of several biological samples. Our results demonstrated the usefulness of the high field small yokeless permanent magnet for high resolution NMR imaging. (author)

  13. APPLICATION OF CONVOLUTIONAL NEURAL NETWORK IN CLASSIFICATION OF HIGH RESOLUTION AGRICULTURAL REMOTE SENSING IMAGES

    Directory of Open Access Journals (Sweden)

    C. Yao

    2017-09-01

    Full Text Available With the rapid development of Precision Agriculture (PA promoted by high-resolution remote sensing, it makes significant sense in management and estimation of agriculture through crop classification of high-resolution remote sensing image. Due to the complex and fragmentation of the features and the surroundings in the circumstance of high-resolution, the accuracy of the traditional classification methods has not been able to meet the standard of agricultural problems. In this case, this paper proposed a classification method for high-resolution agricultural remote sensing images based on convolution neural networks(CNN. For training, a large number of training samples were produced by panchromatic images of GF-1 high-resolution satellite of China. In the experiment, through training and testing on the CNN under the toolbox of deep learning by MATLAB, the crop classification finally got the correct rate of 99.66 % after the gradual optimization of adjusting parameter during training. Through improving the accuracy of image classification and image recognition, the applications of CNN provide a reference value for the field of remote sensing in PA.

  14. High-resolution MR imaging of talar osteochondral lesions with new classification

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, James Francis; Lau, Domily Ting Yi; Yeung, David Ka Wai [Prince of Wales Hospital, Chinese University of Hong Kong, Department of Imaging and Interventional Radiology, Shatin, NT (China); Wong, Margaret Wan Nar [Prince of Wales Hospital, Chinese University of Hong Kong, Department of Orthopaedics and Traumatology, Shatin (China)

    2012-04-15

    Retrospective review of high-resolution MR imaging features of talar dome osteochondral lesions and development of new classification system based on these features. Over the past 7 years, 70 osteochondral lesions of the talar dome from 70 patients (49 males, 21 females, mean age 42 years, range 15-62 years) underwent high-resolution MR imaging with a microscopy coil at 1.5 T. Sixty-one (87%) of 70 lesions were located on the medial central aspect and ten (13%) lesions were located on the lateral central aspect of the talar dome. Features evaluated included cartilage fracture, osteochondral junction separation, subchondral bone collapse, bone:bone separation, and marrow change. Based on these findings, a new five-part grading system was developed. Signal-to-noise characteristics of microscopy coil imaging at 1.5 T were compared to dedicated ankle coil imaging at 3 T. Microscopy coil imaging at 1.5 T yielded 20% better signal-to-noise characteristics than ankle coil imaging at 3 T. High-resolution MR revealed that osteochondral junction separation, due to focal collapse of the subchondral bone, was a common feature, being present in 28 (45%) of 61 medial central osteochondral lesions. Reparative cartilage hypertrophy and bone:bone separation in the absence of cartilage fracture were also common findings. Complete osteochondral separation was uncommon. A new five-part grading system incorporating features revealed by high-resolution MR imaging was developed. High-resolution MRI reveals clinically pertinent features of talar osteochondral lesions, which should help comprehension of symptomatology and enhance clinical decision-making. These features were incorporated in a new MR-based grading system. Whenever possible, symptomatic talar osteochondral lesions should be assessed by high-resolution MR imaging. (orig.)

  15. High-resolution MR imaging of talar osteochondral lesions with new classification

    International Nuclear Information System (INIS)

    Griffith, James Francis; Lau, Domily Ting Yi; Yeung, David Ka Wai; Wong, Margaret Wan Nar

    2012-01-01

    Retrospective review of high-resolution MR imaging features of talar dome osteochondral lesions and development of new classification system based on these features. Over the past 7 years, 70 osteochondral lesions of the talar dome from 70 patients (49 males, 21 females, mean age 42 years, range 15-62 years) underwent high-resolution MR imaging with a microscopy coil at 1.5 T. Sixty-one (87%) of 70 lesions were located on the medial central aspect and ten (13%) lesions were located on the lateral central aspect of the talar dome. Features evaluated included cartilage fracture, osteochondral junction separation, subchondral bone collapse, bone:bone separation, and marrow change. Based on these findings, a new five-part grading system was developed. Signal-to-noise characteristics of microscopy coil imaging at 1.5 T were compared to dedicated ankle coil imaging at 3 T. Microscopy coil imaging at 1.5 T yielded 20% better signal-to-noise characteristics than ankle coil imaging at 3 T. High-resolution MR revealed that osteochondral junction separation, due to focal collapse of the subchondral bone, was a common feature, being present in 28 (45%) of 61 medial central osteochondral lesions. Reparative cartilage hypertrophy and bone:bone separation in the absence of cartilage fracture were also common findings. Complete osteochondral separation was uncommon. A new five-part grading system incorporating features revealed by high-resolution MR imaging was developed. High-resolution MRI reveals clinically pertinent features of talar osteochondral lesions, which should help comprehension of symptomatology and enhance clinical decision-making. These features were incorporated in a new MR-based grading system. Whenever possible, symptomatic talar osteochondral lesions should be assessed by high-resolution MR imaging. (orig.)

  16. High-resolution wavefront shaping with a photonic crystal fiber for multimode fiber imaging

    NARCIS (Netherlands)

    Amitonova, L. V.; Descloux, A.; Petschulat, J.; Frosz, M. H.; Ahmed, G.; Babic, F.; Jiang, X.; Mosk, A. P.; Russell, P. S. J.; Pinkse, P.W.H.

    2016-01-01

    We demonstrate that a high-numerical-aperture photonic crystal fiber allows lensless focusing at an unparalleled res- olution by complex wavefront shaping. This paves the way toward high-resolution imaging exceeding the capabilities of imaging with multi-core single-mode optical fibers. We analyze

  17. High Resolution Radar Imaging using Coherent MultiBand Processing Techniques

    NARCIS (Netherlands)

    Dorp, Ph. van; Ebeling, R.P.; Huizing, A.G.

    2010-01-01

    High resolution radar imaging techniques can be used in ballistic missile defence systems to determine the type of ballistic missile during the boost phase (threat typing) and to discriminate different parts of a ballistic missile after the boost phase. The applied radar imaging technique is 2D

  18. Hyperspectral image classification using Support Vector Machine

    International Nuclear Information System (INIS)

    Moughal, T A

    2013-01-01

    Classification of land cover hyperspectral images is a very challenging task due to the unfavourable ratio between the number of spectral bands and the number of training samples. The focus in many applications is to investigate an effective classifier in terms of accuracy. The conventional multiclass classifiers have the ability to map the class of interest but the considerable efforts and large training sets are required to fully describe the classes spectrally. Support Vector Machine (SVM) is suggested in this paper to deal with the multiclass problem of hyperspectral imagery. The attraction to this method is that it locates the optimal hyper plane between the class of interest and the rest of the classes to separate them in a new high-dimensional feature space by taking into account only the training samples that lie on the edge of the class distributions known as support vectors and the use of the kernel functions made the classifier more flexible by making it robust against the outliers. A comparative study has undertaken to find an effective classifier by comparing Support Vector Machine (SVM) to the other two well known classifiers i.e. Maximum likelihood (ML) and Spectral Angle Mapper (SAM). At first, the Minimum Noise Fraction (MNF) was applied to extract the best possible features form the hyperspectral imagery and then the resulting subset of the features was applied to the classifiers. Experimental results illustrate that the integration of MNF and SVM technique significantly reduced the classification complexity and improves the classification accuracy.

  19. High-resolution storage phosphor imaging of the chest: Comparison with conventional screen-film systems

    International Nuclear Information System (INIS)

    Fuhrman, C.R.; Good, B.; Feist, J.; Gur, D.; Darby, J.

    1987-01-01

    An experimental high-resolution storage phosphor imaging system (Eastman Kodak) has been used to evaluate the image quality and impact on diagnostic interpretation of storage phosphor images relative to conventional screen-film images of the same patients. The elements of the system include a high-resolution laser scanner (4K X 5K X 12 bit); an image processing system; and a high-resolution (4K X 5K X 12 bit) laser printer. Each case was digitally printed onto film in two different formats: a full-size (14 X 14-inch) and a half-size format of four processed, minified images (7 X 7-inches each). The multiformat image includes an original, an unsharp-masked, a reversed (black bone) unsharp-masked, and a high-contrast unsharp-masked image. The results of this preliminary study (11 cases, eight readers) clearly indicate that after minimal adjustment, radiologists do not object to making diagnoses from minified images. Unsharp masked images were considered preferable to unprocessed images, and processed storage phosphor images were rated significantly better than conventional film images

  20. Ore minerals textural characterization by hyperspectral imaging

    Science.gov (United States)

    Bonifazi, Giuseppe; Picone, Nicoletta; Serranti, Silvia

    2013-02-01

    The utilization of hyperspectral detection devices, for natural resources mapping/exploitation through remote sensing techniques, dates back to the early 1970s. From the first devices utilizing a one-dimensional profile spectrometer, HyperSpectral Imaging (HSI) devices have been developed. Thus, from specific-customized devices, originally developed by Governmental Agencies (e.g. NASA, specialized research labs, etc.), a lot of HSI based equipment are today available at commercial level. Parallel to this huge increase of hyperspectral systems development/manufacturing, addressed to airborne application, a strong increase also occurred in developing HSI based devices for "ground" utilization that is sensing units able to play inside a laboratory, a processing plant and/or in an open field. Thanks to this diffusion more and more applications have been developed and tested in this last years also in the materials sectors. Such an approach, when successful, is quite challenging being usually reliable, robust and characterised by lower costs if compared with those usually associated to commonly applied analytical off- and/or on-line analytical approaches. In this paper such an approach is presented with reference to ore minerals characterization. According to the different phases and stages of ore minerals and products characterization, and starting from the analyses of the detected hyperspectral firms, it is possible to derive useful information about mineral flow stream properties and their physical-chemical attributes. This last aspect can be utilized to define innovative process mineralogy strategies and to implement on-line procedures at processing level. The present study discusses the effects related to the adoption of different hardware configurations, the utilization of different logics to perform the analysis and the selection of different algorithms according to the different characterization, inspection and quality control actions to apply.

  1. Isotope specific resolution recovery image reconstruction in high resolution PET imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kotasidis, Fotis A. [Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211 Geneva, Switzerland and Wolfson Molecular Imaging Centre, MAHSC, University of Manchester, M20 3LJ, Manchester (United Kingdom); Angelis, Georgios I. [Faculty of Health Sciences, Brain and Mind Research Institute, University of Sydney, NSW 2006, Sydney (Australia); Anton-Rodriguez, Jose; Matthews, Julian C. [Wolfson Molecular Imaging Centre, MAHSC, University of Manchester, Manchester M20 3LJ (United Kingdom); Reader, Andrew J. [Montreal Neurological Institute, McGill University, Montreal QC H3A 2B4, Canada and Department of Biomedical Engineering, Division of Imaging Sciences and Biomedical Engineering, King' s College London, St. Thomas’ Hospital, London SE1 7EH (United Kingdom); Zaidi, Habib [Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211 Geneva (Switzerland); Geneva Neuroscience Centre, Geneva University, CH-1205 Geneva (Switzerland); Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, PO Box 30 001, Groningen 9700 RB (Netherlands)

    2014-05-15

    Purpose: Measuring and incorporating a scanner-specific point spread function (PSF) within image reconstruction has been shown to improve spatial resolution in PET. However, due to the short half-life of clinically used isotopes, other long-lived isotopes not used in clinical practice are used to perform the PSF measurements. As such, non-optimal PSF models that do not correspond to those needed for the data to be reconstructed are used within resolution modeling (RM) image reconstruction, usually underestimating the true PSF owing to the difference in positron range. In high resolution brain and preclinical imaging, this effect is of particular importance since the PSFs become more positron range limited and isotope-specific PSFs can help maximize the performance benefit from using resolution recovery image reconstruction algorithms. Methods: In this work, the authors used a printing technique to simultaneously measure multiple point sources on the High Resolution Research Tomograph (HRRT), and the authors demonstrated the feasibility of deriving isotope-dependent system matrices from fluorine-18 and carbon-11 point sources. Furthermore, the authors evaluated the impact of incorporating them within RM image reconstruction, using carbon-11 phantom and clinical datasets on the HRRT. Results: The results obtained using these two isotopes illustrate that even small differences in positron range can result in different PSF maps, leading to further improvements in contrast recovery when used in image reconstruction. The difference is more pronounced in the centre of the field-of-view where the full width at half maximum (FWHM) from the positron range has a larger contribution to the overall FWHM compared to the edge where the parallax error dominates the overall FWHM. Conclusions: Based on the proposed methodology, measured isotope-specific and spatially variant PSFs can be reliably derived and used for improved spatial resolution and variance performance in resolution

  2. Isotope specific resolution recovery image reconstruction in high resolution PET imaging

    International Nuclear Information System (INIS)

    Kotasidis, Fotis A.; Angelis, Georgios I.; Anton-Rodriguez, Jose; Matthews, Julian C.; Reader, Andrew J.; Zaidi, Habib

    2014-01-01

    Purpose: Measuring and incorporating a scanner-specific point spread function (PSF) within image reconstruction has been shown to improve spatial resolution in PET. However, due to the short half-life of clinically used isotopes, other long-lived isotopes not used in clinical practice are used to perform the PSF measurements. As such, non-optimal PSF models that do not correspond to those needed for the data to be reconstructed are used within resolution modeling (RM) image reconstruction, usually underestimating the true PSF owing to the difference in positron range. In high resolution brain and preclinical imaging, this effect is of particular importance since the PSFs become more positron range limited and isotope-specific PSFs can help maximize the performance benefit from using resolution recovery image reconstruction algorithms. Methods: In this work, the authors used a printing technique to simultaneously measure multiple point sources on the High Resolution Research Tomograph (HRRT), and the authors demonstrated the feasibility of deriving isotope-dependent system matrices from fluorine-18 and carbon-11 point sources. Furthermore, the authors evaluated the impact of incorporating them within RM image reconstruction, using carbon-11 phantom and clinical datasets on the HRRT. Results: The results obtained using these two isotopes illustrate that even small differences in positron range can result in different PSF maps, leading to further improvements in contrast recovery when used in image reconstruction. The difference is more pronounced in the centre of the field-of-view where the full width at half maximum (FWHM) from the positron range has a larger contribution to the overall FWHM compared to the edge where the parallax error dominates the overall FWHM. Conclusions: Based on the proposed methodology, measured isotope-specific and spatially variant PSFs can be reliably derived and used for improved spatial resolution and variance performance in resolution

  3. Isotope specific resolution recovery image reconstruction in high resolution PET imaging.

    Science.gov (United States)

    Kotasidis, Fotis A; Angelis, Georgios I; Anton-Rodriguez, Jose; Matthews, Julian C; Reader, Andrew J; Zaidi, Habib

    2014-05-01

    Measuring and incorporating a scanner-specific point spread function (PSF) within image reconstruction has been shown to improve spatial resolution in PET. However, due to the short half-life of clinically used isotopes, other long-lived isotopes not used in clinical practice are used to perform the PSF measurements. As such, non-optimal PSF models that do not correspond to those needed for the data to be reconstructed are used within resolution modeling (RM) image reconstruction, usually underestimating the true PSF owing to the difference in positron range. In high resolution brain and preclinical imaging, this effect is of particular importance since the PSFs become more positron range limited and isotope-specific PSFs can help maximize the performance benefit from using resolution recovery image reconstruction algorithms. In this work, the authors used a printing technique to simultaneously measure multiple point sources on the High Resolution Research Tomograph (HRRT), and the authors demonstrated the feasibility of deriving isotope-dependent system matrices from fluorine-18 and carbon-11 point sources. Furthermore, the authors evaluated the impact of incorporating them within RM image reconstruction, using carbon-11 phantom and clinical datasets on the HRRT. The results obtained using these two isotopes illustrate that even small differences in positron range can result in different PSF maps, leading to further improvements in contrast recovery when used in image reconstruction. The difference is more pronounced in the centre of the field-of-view where the full width at half maximum (FWHM) from the positron range has a larger contribution to the overall FWHM compared to the edge where the parallax error dominates the overall FWHM. Based on the proposed methodology, measured isotope-specific and spatially variant PSFs can be reliably derived and used for improved spatial resolution and variance performance in resolution recovery image reconstruction. The

  4. High resolution MR imaging of the hip using pelvic phased-array coil

    Energy Technology Data Exchange (ETDEWEB)

    Niitsu, Mamoru; Mishima, Hajime; Itai, Yuji [Tsukuba Univ., Ibaraki (Japan). Inst. of Clinical Medicine

    1997-01-01

    A pelvic phased-array coil was applied to obtain high resolution MR images of the hip. Three-mm-thick fast spin-echo images were obtained in seven hips. Images with a pelvic coil enhanced delineation of acetabular labrum and articular cartilage more clearly than those with a body coil or flexible-surface coil. The use of a pelvic coil in imaging of the hip may be of diagnostic value because of its superior delineation. (author)

  5. Detection of hypercholesterolemia using hyperspectral imaging of human skin

    Science.gov (United States)

    Milanic, Matija; Bjorgan, Asgeir; Larsson, Marcus; Strömberg, Tomas; Randeberg, Lise L.

    2015-07-01

    Hypercholesterolemia is characterized by high blood levels of cholesterol and is associated with increased risk of atherosclerosis and cardiovascular disease. Xanthelasma is a subcutaneous lesion appearing in the skin around the eyes. Xanthelasma is related to hypercholesterolemia. Identifying micro-xanthelasma can thereforeprovide a mean for early detection of hypercholesterolemia and prevent onset and progress of disease. The goal of this study was to investigate spectral and spatial characteristics of hypercholesterolemia in facial skin. Optical techniques like hyperspectral imaging (HSI) might be a suitable tool for such characterization as it simultaneously provides high resolution spatial and spectral information. In this study a 3D Monte Carlo model of lipid inclusions in human skin was developed to create hyperspectral images in the spectral range 400-1090 nm. Four lesions with diameters 0.12-1.0 mm were simulated for three different skin types. The simulations were analyzed using three algorithms: the Tissue Indices (TI), the two layer Diffusion Approximation (DA), and the Minimum Noise Fraction transform (MNF). The simulated lesions were detected by all methods, but the best performance was obtained by the MNF algorithm. The results were verified using data from 11 volunteers with known cholesterol levels. The face of the volunteers was imaged by a LCTF system (400- 720 nm), and the images were analyzed using the previously mentioned algorithms. The identified features were then compared to the known cholesterol levels of the subjects. Significant correlation was obtained for the MNF algorithm only. This study demonstrates that HSI can be a promising, rapid modality for detection of hypercholesterolemia.

  6. Equivalent physical models and formulation of equivalent source layer in high-resolution EEG imaging

    International Nuclear Information System (INIS)

    Yao Dezhong; He Bin

    2003-01-01

    In high-resolution EEG imaging, both equivalent dipole layer (EDL) and equivalent charge layer (ECL) assumed to be located just above the cortical surface have been proposed as high-resolution imaging modalities or as intermediate steps to estimate the epicortical potential. Presented here are the equivalent physical models of these two equivalent source layers (ESL) which show that the strength of EDL is proportional to the surface potential of the layer when the outside of the layer is filled with an insulator, and that the strength of ECL is the normal current of the layer when the outside is filled with a perfect conductor. Based on these equivalent physical models, closed solutions of ECL and EDL corresponding to a dipole enclosed by a spherical layer are given. These results provide the theoretical basis of ESL applications in high-resolution EEG mapping

  7. Equivalent physical models and formulation of equivalent source layer in high-resolution EEG imaging

    Energy Technology Data Exchange (ETDEWEB)

    Yao Dezhong [School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu City, 610054, Sichuan Province (China); He Bin [The University of Illinois at Chicago, IL (United States)

    2003-11-07

    In high-resolution EEG imaging, both equivalent dipole layer (EDL) and equivalent charge layer (ECL) assumed to be located just above the cortical surface have been proposed as high-resolution imaging modalities or as intermediate steps to estimate the epicortical potential. Presented here are the equivalent physical models of these two equivalent source layers (ESL) which show that the strength of EDL is proportional to the surface potential of the layer when the outside of the layer is filled with an insulator, and that the strength of ECL is the normal current of the layer when the outside is filled with a perfect conductor. Based on these equivalent physical models, closed solutions of ECL and EDL corresponding to a dipole enclosed by a spherical layer are given. These results provide the theoretical basis of ESL applications in high-resolution EEG mapping.

  8. Reconfigurable Hardware for Compressing Hyperspectral Image Data

    Science.gov (United States)

    Aranki, Nazeeh; Namkung, Jeffrey; Villapando, Carlos; Kiely, Aaron; Klimesh, Matthew; Xie, Hua

    2010-01-01

    High-speed, low-power, reconfigurable electronic hardware has been developed to implement ICER-3D, an algorithm for compressing hyperspectral-image data. The algorithm and parts thereof have been the topics of several NASA Tech Briefs articles, including Context Modeler for Wavelet Compression of Hyperspectral Images (NPO-43239) and ICER-3D Hyperspectral Image Compression Software (NPO-43238), which appear elsewhere in this issue of NASA Tech Briefs. As described in more detail in those articles, the algorithm includes three main subalgorithms: one for computing wavelet transforms, one for context modeling, and one for entropy encoding. For the purpose of designing the hardware, these subalgorithms are treated as modules to be implemented efficiently in field-programmable gate arrays (FPGAs). The design takes advantage of industry- standard, commercially available FPGAs. The implementation targets the Xilinx Virtex II pro architecture, which has embedded PowerPC processor cores with flexible on-chip bus architecture. It incorporates an efficient parallel and pipelined architecture to compress the three-dimensional image data. The design provides for internal buffering to minimize intensive input/output operations while making efficient use of offchip memory. The design is scalable in that the subalgorithms are implemented as independent hardware modules that can be combined in parallel to increase throughput. The on-chip processor manages the overall operation of the compression system, including execution of the top-level control functions as well as scheduling, initiating, and monitoring processes. The design prototype has been demonstrated to be capable of compressing hyperspectral data at a rate of 4.5 megasamples per second at a conservative clock frequency of 50 MHz, with a potential for substantially greater throughput at a higher clock frequency. The power consumption of the prototype is less than 6.5 W. The reconfigurability (by means of reprogramming) of

  9. Lensless high-resolution photoacoustic imaging scanner for in vivo skin imaging

    Science.gov (United States)

    Ida, Taiichiro; Iwazaki, Hideaki; Omuro, Toshiyuki; Kawaguchi, Yasushi; Tsunoi, Yasuyuki; Kawauchi, Satoko; Sato, Shunichi

    2018-02-01

    We previously launched a high-resolution photoacoustic (PA) imaging scanner based on a unique lensless design for in vivo skin imaging. The design, imaging algorithm and characteristics of the system are described in this paper. Neither an optical lens nor an acoustic lens is used in the system. In the imaging head, four sensor elements are arranged quadrilaterally, and by checking the phase differences for PA waves detected with these four sensors, a set of PA signals only originating from a chromophore located on the sensor center axis is extracted for constructing an image. A phantom study using a carbon fiber showed a depth-independent horizontal resolution of 84.0 ± 3.5 µm, and the scan direction-dependent variation of PA signals was about ± 20%. We then performed imaging of vasculature phantoms: patterns of red ink lines with widths of 100 or 200 μm formed in an acrylic block co-polymer. The patterns were visualized with high contrast, showing the capability for imaging arterioles and venues in the skin. Vasculatures in rat burn models and healthy human skin were also clearly visualized in vivo.

  10. HIGH-RESOLUTION TOPOGRAPHY OF MERCURY FROM MESSENGER ORBITAL STEREO IMAGING – THE SOUTHERN HEMISPHERE QUADRANGLES

    Directory of Open Access Journals (Sweden)

    F. Preusker

    2018-04-01

    Full Text Available We produce high-resolution (222 m/grid element Digital Terrain Models (DTMs for Mercury using stereo images from the MESSENGER orbital mission. We have developed a scheme to process large numbers, typically more than 6000, images by photogrammetric techniques, which include, multiple image matching, pyramid strategy, and bundle block adjustments. In this paper, we present models for map quadrangles of the southern hemisphere H11, H12, H13, and H14.

  11. Advances in high-resolution imaging--techniques for three-dimensional imaging of cellular structures.

    Science.gov (United States)

    Lidke, Diane S; Lidke, Keith A

    2012-06-01

    A fundamental goal in biology is to determine how cellular organization is coupled to function. To achieve this goal, a better understanding of organelle composition and structure is needed. Although visualization of cellular organelles using fluorescence or electron microscopy (EM) has become a common tool for the cell biologist, recent advances are providing a clearer picture of the cell than ever before. In particular, advanced light-microscopy techniques are achieving resolutions below the diffraction limit and EM tomography provides high-resolution three-dimensional (3D) images of cellular structures. The ability to perform both fluorescence and electron microscopy on the same sample (correlative light and electron microscopy, CLEM) makes it possible to identify where a fluorescently labeled protein is located with respect to organelle structures visualized by EM. Here, we review the current state of the art in 3D biological imaging techniques with a focus on recent advances in electron microscopy and fluorescence super-resolution techniques.

  12. Infrared hyperspectral imaging miniaturized for UAV applications

    Science.gov (United States)

    Hinnrichs, Michele; Hinnrichs, Bradford; McCutchen, Earl

    2017-02-01

    Pacific Advanced Technology (PAT) has developed an infrared hyperspectral camera, both MWIR and LWIR, small enough to serve as a payload on a miniature unmanned aerial vehicles. The optical system has been integrated into the cold-shield of the sensor enabling the small size and weight of the sensor. This new and innovative approach to infrared hyperspectral imaging spectrometer uses micro-optics and will be explained in this paper. The micro-optics are made up of an area array of diffractive optical elements where each element is tuned to image a different spectral region on a common focal plane array. The lenslet array is embedded in the cold-shield of the sensor and actuated with a miniature piezo-electric motor. This approach enables rapid infrared spectral imaging with multiple spectral images collected and processed simultaneously each frame of the camera. This paper will present our optical mechanical design approach which results in an infrared hyper-spectral imaging system that is small enough for a payload on a mini-UAV or commercial quadcopter. Also, an example of how this technology can easily be used to quantify a hydrocarbon gas leak's volume and mass flowrates. The diffractive optical elements used in the lenslet array are blazed gratings where each lenslet is tuned for a different spectral bandpass. The lenslets are configured in an area array placed a few millimeters above the focal plane and embedded in the cold-shield to reduce the background signal normally associated with the optics. We have developed various systems using a different number of lenslets in the area array. Depending on the size of the focal plane and the diameter of the lenslet array will determine the spatial resolution. A 2 x 2 lenslet array will image four different spectral images of the scene each frame and when coupled with a 512 x 512 focal plane array will give spatial resolution of 256 x 256 pixel each spectral image. Another system that we developed uses a 4 x 4

  13. Vascular channels in metacarpophalangeal joints : a comparative histologic and high-resolution imaging study

    NARCIS (Netherlands)

    Scharmga, A.; Keller, K.K.; Peters, M.; van Tubergen, A.; van den Bergh, J.P.W.; van Rietbergen, B.; Weijers, R.; Loeffen, D.; Hauge, E.M.; Geusens, P.P.M.M.

    2017-01-01

    We evaluated whether cortical interruptions classified as vascular channel (VC) on high-resolution peripheral quantitative computed tomography (HR-pQCT) could be confirmed by histology. We subsequently evaluated the image characteristics of histologically identified VCs on matched single and

  14. Refinement procedure for the image alignment in high-resolution electron tomography

    International Nuclear Information System (INIS)

    Houben, L.; Bar Sadan, M.

    2011-01-01

    High-resolution electron tomography from a tilt series of transmission electron microscopy images requires an accurate image alignment procedure in order to maximise the resolution of the tomogram. This is the case in particular for ultra-high resolution where even very small misalignments between individual images can dramatically reduce the fidelity of the resultant reconstruction. A tomographic-reconstruction based and marker-free method is proposed, which uses an iterative optimisation of the tomogram resolution. The method utilises a search algorithm that maximises the contrast in tomogram sub-volumes. Unlike conventional cross-correlation analysis it provides the required correlation over a large tilt angle separation and guarantees a consistent alignment of images for the full range of object tilt angles. An assessment based on experimental reconstructions shows that the marker-free procedure is competitive to the reference of marker-based procedures at lower resolution and yields sub-pixel accuracy even for simulated high-resolution data. -- Highlights: → Alignment procedure for electron tomography based on iterative tomogram contrast optimisation. → Marker-free, independent of object, little user interaction. → Accuracy competitive with fiducial marker methods and suited for high-resolution tomography.

  15. High resolution imaging of dielectric surfaces with an evanescent field optical microscope

    NARCIS (Netherlands)

    van Hulst, N.F.; Segerink, Franciscus B.; Bölger, B.

    1992-01-01

    An evanescent field optical microscope (EFOM) is presented which employs frustrated total internal reflection o­n a localized scale by scanning a dielectric tip in close proximity to a sample surface. High resolution images of dielectric gratings and spheres containing both topographic and

  16. Hyperspectral imaging for non-contact analysis of forensic traces

    NARCIS (Netherlands)

    Edelman, G. J.; Gaston, E.; van Leeuwen, T. G.; Cullen, P. J.; Aalders, M. C. G.

    2012-01-01

    Hyperspectral imaging (HSI) integrates conventional imaging and spectroscopy, to obtain both spatial and spectral information from a specimen. This technique enables investigators to analyze the chemical composition of traces and simultaneously visualize their spatial distribution. HSI offers

  17. Dental caries imaging using hyperspectral stimulated Raman scattering microscopy

    Science.gov (United States)

    Wang, Zi; Zheng, Wei; Jian, Lin; Huang, Zhiwei

    2016-03-01

    We report the development of a polarization-resolved hyperspectral stimulated Raman scattering (SRS) imaging technique based on a picosecond (ps) laser-pumped optical parametric oscillator system for label-free imaging of dental caries. In our imaging system, hyperspectral SRS images (512×512 pixels) in both fingerprint region (800-1800 cm-1) and high-wavenumber region (2800-3600 cm-1) are acquired in minutes by scanning the wavelength of OPO output, which is a thousand times faster than conventional confocal micro Raman imaging. SRS spectra variations from normal enamel to caries obtained from the hyperspectral SRS images show the loss of phosphate and carbonate in the carious region. While polarization-resolved SRS images at 959 cm-1 demonstrate that the caries has higher depolarization ratio. Our results demonstrate that the polarization resolved-hyperspectral SRS imaging technique developed allows for rapid identification of the biochemical and structural changes of dental caries.

  18. Research on hyperspectral dynamic scene and image sequence simulation

    Science.gov (United States)

    Sun, Dandan; Liu, Fang; Gao, Jiaobo; Sun, Kefeng; Hu, Yu; Li, Yu; Xie, Junhu; Zhang, Lei

    2016-10-01

    This paper presents a simulation method of hyperspectral dynamic scene and image sequence for hyperspectral equipment evaluation and target detection algorithm. Because of high spectral resolution, strong band continuity, anti-interference and other advantages, in recent years, hyperspectral imaging technology has been rapidly developed and is widely used in many areas such as optoelectronic target detection, military defense and remote sensing systems. Digital imaging simulation, as a crucial part of hardware in loop simulation, can be applied to testing and evaluation hyperspectral imaging equipment with lower development cost and shorter development period. Meanwhile, visual simulation can produce a lot of original image data under various conditions for hyperspectral image feature extraction and classification algorithm. Based on radiation physic model and material characteristic parameters this paper proposes a generation method of digital scene. By building multiple sensor models under different bands and different bandwidths, hyperspectral scenes in visible, MWIR, LWIR band, with spectral resolution 0.01μm, 0.05μm and 0.1μm have been simulated in this paper. The final dynamic scenes have high real-time and realistic, with frequency up to 100 HZ. By means of saving all the scene gray data in the same viewpoint image sequence is obtained. The analysis results show whether in the infrared band or the visible band, the grayscale variations of simulated hyperspectral images are consistent with the theoretical analysis results.

  19. Using hyperspectral imaging technology to identify diseased tomato leaves

    Science.gov (United States)

    Li, Cuiling; Wang, Xiu; Zhao, Xueguan; Meng, Zhijun; Zou, Wei

    2016-11-01

    In the process of tomato plants growth, due to the effect of plants genetic factors, poor environment factors, or disoperation of parasites, there will generate a series of unusual symptoms on tomato plants from physiology, organization structure and external form, as a result, they cannot grow normally, and further to influence the tomato yield and economic benefits. Hyperspectral image usually has high spectral resolution, not only contains spectral information, but also contains the image information, so this study adopted hyperspectral imaging technology to identify diseased tomato leaves, and developed a simple hyperspectral imaging system, including a halogen lamp light source unit, a hyperspectral image acquisition unit and a data processing unit. Spectrometer detection wavelength ranged from 400nm to 1000nm. After hyperspectral images of tomato leaves being captured, it was needed to calibrate hyperspectral images. This research used spectrum angle matching method and spectral red edge parameters discriminant method respectively to identify diseased tomato leaves. Using spectral red edge parameters discriminant method produced higher recognition accuracy, the accuracy was higher than 90%. Research results have shown that using hyperspectral imaging technology to identify diseased tomato leaves is feasible, and provides the discriminant basis for subsequent disease control of tomato plants.

  20. Recent applications of hyperspectral imaging in microbiology.

    Science.gov (United States)

    Gowen, Aoife A; Feng, Yaoze; Gaston, Edurne; Valdramidis, Vasilis

    2015-05-01

    Hyperspectral chemical imaging (HSI) is a broad term encompassing spatially resolved spectral data obtained through a variety of modalities (e.g. Raman scattering, Fourier transform infrared microscopy, fluorescence and near-infrared chemical imaging). It goes beyond the capabilities of conventional imaging and spectroscopy by obtaining spatially resolved spectra from objects at spatial resolutions varying from the level of single cells up to macroscopic objects (e.g. foods). In tandem with recent developments in instrumentation and sampling protocols, applications of HSI in microbiology have increased rapidly. This article gives a brief overview of the fundamentals of HSI and a comprehensive review of applications of HSI in microbiology over the past 10 years. Technical challenges and future perspectives for these techniques are also discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Self-triggered image intensifier tube for high-resolution UHECR imaging detector

    CERN Document Server

    Sasaki, M; Jobashi, M

    2003-01-01

    The authors have developed a self-triggered image intensifier tube with high-resolution imaging capability. An image detected by a first image intensifier tube as an electrostatic lens with a photocathode diameter of 100 mm is separated by a half-mirror into a path for CCD readout (768x494 pixels) and a fast control to recognize and trigger the image. The proposed system provides both a high signal-to-noise ratio to improve single photoelectron detection and excellent spatial resolution between 207 and 240 mu m rendering this device a potentially essential tool for high-energy physics and astrophysics experiments, as well as high-speed photography. When combined with a 1-arcmin resolution optical system with 50 deg. field-of-view proposed by the present authors, the observation of ultra high-energy cosmic rays and high-energy neutrinos using this device is expected, leading to revolutionary progress in particle astrophysics as a complementary technique to traditional astronomical observations at multiple wave...

  2. Dried fruits quality assessment by hyperspectral imaging

    Science.gov (United States)

    Serranti, Silvia; Gargiulo, Aldo; Bonifazi, Giuseppe

    2012-05-01

    Dried fruits products present different market values according to their quality. Such a quality is usually quantified in terms of freshness of the products, as well as presence of contaminants (pieces of shell, husk, and small stones), defects, mould and decays. The combination of these parameters, in terms of relative presence, represent a fundamental set of attributes conditioning dried fruits humans-senses-detectable-attributes (visual appearance, organolectic properties, etc.) and their overall quality in terms of marketable products. Sorting-selection strategies exist but sometimes they fail when a higher degree of detection is required especially if addressed to discriminate between dried fruits of relatively small dimensions and when aiming to perform an "early detection" of pathogen agents responsible of future moulds and decays development. Surface characteristics of dried fruits can be investigated by hyperspectral imaging (HSI). In this paper, specific and "ad hoc" applications addressed to propose quality detection logics, adopting a hyperspectral imaging (HSI) based approach, are described, compared and critically evaluated. Reflectance spectra of selected dried fruits (hazelnuts) of different quality and characterized by the presence of different contaminants and defects have been acquired by a laboratory device equipped with two HSI systems working in two different spectral ranges: visible-near infrared field (400-1000 nm) and near infrared field (1000-1700 nm). The spectra have been processed and results evaluated adopting both a simple and fast wavelength band ratio approach and a more sophisticated classification logic based on principal component (PCA) analysis.

  3. MULTI-SCALE SEGMENTATION OF HIGH RESOLUTION REMOTE SENSING IMAGES BY INTEGRATING MULTIPLE FEATURES

    Directory of Open Access Journals (Sweden)

    Y. Di

    2017-05-01

    Full Text Available Most of multi-scale segmentation algorithms are not aiming at high resolution remote sensing images and have difficulty to communicate and use layers’ information. In view of them, we proposes a method of multi-scale segmentation of high resolution remote sensing images by integrating multiple features. First, Canny operator is used to extract edge information, and then band weighted distance function is built to obtain the edge weight. According to the criterion, the initial segmentation objects of color images can be gained by Kruskal minimum spanning tree algorithm. Finally segmentation images are got by the adaptive rule of Mumford–Shah region merging combination with spectral and texture information. The proposed method is evaluated precisely using analog images and ZY-3 satellite images through quantitative and qualitative analysis. The experimental results show that the multi-scale segmentation of high resolution remote sensing images by integrating multiple features outperformed the software eCognition fractal network evolution algorithm (highest-resolution network evolution that FNEA on the accuracy and slightly inferior to FNEA on the efficiency.

  4. Three-dimensional true FISP for high-resolution imaging of the whole brain

    International Nuclear Information System (INIS)

    Schmitz, B.; Hagen, T.; Reith, W.

    2003-01-01

    While high-resolution T1-weighted sequences, such as three-dimensional magnetization-prepared rapid gradient-echo imaging, are widely available, there is a lack of an equivalent fast high-resolution sequence providing T2 contrast. Using fast high-performance gradient systems we show the feasibility of three-dimensional true fast imaging with steady-state precession (FISP) to fill this gap. We applied a three-dimensional true-FISP protocol with voxel sizes down to 0.5 x 0.5 x 0.5 mm and acquisition times of approximately 8 min on a 1.5-T Sonata (Siemens, Erlangen, Germany) magnetic resonance scanner. The sequence was included into routine brain imaging protocols for patients with cerebrospinal-fluid-related intracranial pathology. Images from 20 patients and 20 healthy volunteers were evaluated by two neuroradiologists with respect to diagnostic image quality and artifacts. All true-FISP scans showed excellent imaging quality free of artifacts in patients and volunteers. They were valuable for the assessment of anatomical and pathologic aspects of the included patients. High-resolution true-FISP imaging is a valuable adjunct for the exploration and neuronavigation of intracranial pathologies especially if cerebrospinal fluid is involved. (orig.)

  5. Gas scintillation glass GEM detector for high-resolution X-ray imaging and CT

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, T., E-mail: fujiwara-t@aist.go.jp [Research Institute for Measurement and Analytical Instrumentation, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); Mitsuya, Y. [Nuclear Professional School, The University of Tokyo, Tokai, Naka, Ibaraki 319-1188 (Japan); Fushie, T. [Radiment Lab. Inc., Setagaya, Tokyo 156-0044 (Japan); Murata, K.; Kawamura, A.; Koishikawa, A. [XIT Co., Naruse, Machida, Tokyo 194-0045 (Japan); Toyokawa, H. [Research Institute for Measurement and Analytical Instrumentation, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); Takahashi, H. [Institute of Engineering Innovation, School of Engineering, The University of Tokyo, Bunkyo, Tokyo 113-8654 (Japan)

    2017-04-01

    A high-spatial-resolution X-ray-imaging gaseous detector has been developed with a single high-gas-gain glass gas electron multiplier (G-GEM), scintillation gas, and optical camera. High-resolution X-ray imaging of soft elements is performed with a spatial resolution of 281 µm rms and an effective area of 100×100 mm. In addition, high-resolution X-ray 3D computed tomography (CT) is successfully demonstrated with the gaseous detector. It shows high sensitivity to low-energy X-rays, which results in high-contrast radiographs of objects containing elements with low atomic numbers. In addition, the high yield of scintillation light enables fast X-ray imaging, which is an advantage for constructing CT images with low-energy X-rays.

  6. Rearranging the lenslet array of the compact passive interference imaging system with high resolution

    Science.gov (United States)

    Liu, Gang; Wen, Desheng; Song, Zongxi

    2017-10-01

    With the development of aeronautics and astronautics, higher resolution requirement of the telescope was necessary. However, the increase in resolution of conventional telescope required larger apertures, whose size, weight and power consumption could be prohibitively expensive. This limited the further development of the telescope. This paper introduced a new imaging technology using interference—Compact Passive Interference Imaging Technology with High Resolution, and proposed a rearranging method for the arrangement of the lenslet array to obtain continuously object spatial frequency.

  7. High-Resolution Imaging of K2 Planet Host Stars and the Effect of Stellar Companions

    Science.gov (United States)

    Jasmine Gonzales, Erica; Ciardi, David; Crossfield, Ian; K2 Team

    2018-01-01

    Our K2 planetary candidate follow-up program has obtained high-resolution adaptive optics (AO) imaging of K2 targets in Campaigns 5-8. We observed nearly 200 systems and find that roughly 20% of these systems have nearby (TESS mission. In addition, the pixel size of TESS will be larger than Kepler and thus AO imaging will be even more important to uncovering otherwise unknown compaions contributing to photometric measurements.

  8. A novel strategy to access high resolution DICOM medical images based on JPEG2000 interactive protocol

    Science.gov (United States)

    Tian, Yuan; Cai, Weihua; Sun, Jianyong; Zhang, Jianguo

    2008-03-01

    The demand for sharing medical information has kept rising. However, the transmission and displaying of high resolution medical images are limited if the network has a low transmission speed or the terminal devices have limited resources. In this paper, we present an approach based on JPEG2000 Interactive Protocol (JPIP) to browse high resolution medical images in an efficient way. We designed and implemented an interactive image communication system with client/server architecture and integrated it with Picture Archiving and Communication System (PACS). In our interactive image communication system, the JPIP server works as the middleware between clients and PACS servers. Both desktop clients and wireless mobile clients can browse high resolution images stored in PACS servers via accessing the JPIP server. The client can only make simple requests which identify the resolution, quality and region of interest and download selected portions of the JPEG2000 code-stream instead of downloading and decoding the entire code-stream. After receiving a request from a client, the JPIP server downloads the requested image from the PACS server and then responds the client by sending the appropriate code-stream. We also tested the performance of the JPIP server. The JPIP server runs stably and reliably under heavy load.

  9. High-Resolution Remote Sensing Image Building Extraction Based on Markov Model

    Science.gov (United States)

    Zhao, W.; Yan, L.; Chang, Y.; Gong, L.

    2018-04-01

    With the increase of resolution, remote sensing images have the characteristics of increased information load, increased noise, more complex feature geometry and texture information, which makes the extraction of building information more difficult. To solve this problem, this paper designs a high resolution remote sensing image building extraction method based on Markov model. This method introduces Contourlet domain map clustering and Markov model, captures and enhances the contour and texture information of high-resolution remote sensing image features in multiple directions, and further designs the spectral feature index that can characterize "pseudo-buildings" in the building area. Through the multi-scale segmentation and extraction of image features, the fine extraction from the building area to the building is realized. Experiments show that this method can restrain the noise of high-resolution remote sensing images, reduce the interference of non-target ground texture information, and remove the shadow, vegetation and other pseudo-building information, compared with the traditional pixel-level image information extraction, better performance in building extraction precision, accuracy and completeness.

  10. VizieR Online Data Catalog: KOIs companions from high-resolution imaging (Hirsch+, 2017)

    Science.gov (United States)

    Hirsch, L. A.; Ciardi, D. R.; Howard, A. W.; Everett, M. E.; Furlan, E.; Saylors, M.; Horch, E. P.; Howell, S. B.; Teske, J.; Marcy, G. W.

    2017-07-01

    We report on 176 close (<2'') stellar companions detected with high-resolution imaging near 170 hosts of Kepler Objects of Interest (KOIs). Our sample consists of 170 stellar hosts of Kepler Objects of Interest (KOIs) observed with various high-resolution imaging campaigns. This sample was drawn from the overall sample of KOI stars observed with high-resolution imaging, described in the imaging compilation paper by Furlan et al. 2017 (Cat. J/AJ/153/71). We choose targets for this study by requiring that at least one companion was detected within 2'', and that the companion was detected in two or more filters, providing color information. We choose the 2'' separation limit to include all companions falling on the same Kepler pixel as the primary KOI host star. Furlan et al. 2017 (Cat. J/AJ/153/71) details the observations and measured differential magnitudes (Δm=m2-m1) for stars with high-resolution imaging, including our target systems. Each companion within 2'' must have at least two measured Δm values from the full set of filters used for follow-up observations, in order to be included in our sample. These filters include J-band, H-band, and K-band from adaptive optics imaging from the Keck/NIRC2, Palomar/PHARO, Lick/IRCAL, and MMT/Aries instruments; 562, 692 and 880nm filters from the Differential Speckle Survey Instrument (DSSI) at the Gemini North and WIYN telescopes; i and z bands from the AstraLux lucky imaging campaign at the Calar Alto 2.2m telescope; and LP600 and i bands from Palomar/RoboAO. We also include seeing-limited observations in the U-, B-, and V-bands from the UBV survey (Everett et al.) and "secure" detections (noise probability <10%) in the J-band from the UKIRT Kepler field survey. (3 data files).

  11. Metric Learning for Hyperspectral Image Segmentation

    Science.gov (United States)

    Bue, Brian D.; Thompson, David R.; Gilmore, Martha S.; Castano, Rebecca

    2011-01-01

    We present a metric learning approach to improve the performance of unsupervised hyperspectral image segmentation. Unsupervised spatial segmentation can assist both user visualization and automatic recognition of surface features. Analysts can use spatially-continuous segments to decrease noise levels and/or localize feature boundaries. However, existing segmentation methods use tasks-agnostic measures of similarity. Here we learn task-specific similarity measures from training data, improving segment fidelity to classes of interest. Multiclass Linear Discriminate Analysis produces a linear transform that optimally separates a labeled set of training classes. The defines a distance metric that generalized to a new scenes, enabling graph-based segmentation that emphasizes key spectral features. We describe tests based on data from the Compact Reconnaissance Imaging Spectrometer (CRISM) in which learned metrics improve segment homogeneity with respect to mineralogical classes.

  12. INTERACTIVE CHANGE DETECTION USING HIGH RESOLUTION REMOTE SENSING IMAGES BASED ON ACTIVE LEARNING WITH GAUSSIAN PROCESSES

    Directory of Open Access Journals (Sweden)

    H. Ru

    2016-06-01

    Full Text Available Although there have been many studies for change detection, the effective and efficient use of high resolution remote sensing images is still a problem. Conventional supervised methods need lots of annotations to classify the land cover categories and detect their changes. Besides, the training set in supervised methods often has lots of redundant samples without any essential information. In this study, we present a method for interactive change detection using high resolution remote sensing images with active learning to overcome the shortages of existing remote sensing image change detection techniques. In our method, there is no annotation of actual land cover category at the beginning. First, we find a certain number of the most representative objects in unsupervised way. Then, we can detect the change areas from multi-temporal high resolution remote sensing images by active learning with Gaussian processes in an interactive way gradually until the detection results do not change notably. The artificial labelling can be reduced substantially, and a desirable detection result can be obtained in a few iterations. The experiments on Geo-Eye1 and WorldView2 remote sensing images demonstrate the effectiveness and efficiency of our proposed method.

  13. A High-resolution Multi-wavelength Simultaneous Imaging System with Solar Adaptive Optics

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Changhui; Zhu, Lei; Gu, Naiting; Rao, Xuejun; Zhang, Lanqiang; Bao, Hua; Kong, Lin; Guo, Youming; Zhong, Libo; Ma, Xue’an; Li, Mei; Wang, Cheng; Zhang, Xiaojun; Fan, Xinlong; Chen, Donghong; Feng, Zhongyi; Wang, Xiaoyun; Wang, Zhiyong, E-mail: gunaiting@ioe.ac.cn [The Key Laboratory on Adaptive Optics, Chinese Academy of Sciences, P.O. Box 350, Shuangliu, Chengdu 610209, Sichuan (China)

    2017-10-01

    A high-resolution multi-wavelength simultaneous imaging system from visible to near-infrared bands with a solar adaptive optics system, in which seven imaging channels, including the G band (430.5 nm), the Na i line (589 nm), the H α line (656.3 nm), the TiO band (705.7 nm), the Ca ii IR line (854.2 nm), the He i line (1083 nm), and the Fe i line (1565.3 nm), are chosen, is developed to image the solar atmosphere from the photosphere layer to the chromosphere layer. To our knowledge, this is the solar high-resolution imaging system with the widest spectral coverage. This system was demonstrated at the 1 m New Vaccum Solar Telescope and the on-sky high-resolution observational results were acquired. In this paper, we will illustrate the design and performance of the imaging system. The calibration and the data reduction of the system are also presented.

  14. A Novel, Aqueous Surface Treatment To Thermally Stabilize High Resolution Positive Photoresist Images*

    Science.gov (United States)

    Grunwald, John J.; Spencer, Allen C.

    1986-07-01

    The paper describes a new approach to thermally stabilize the already imaged profile of high resolution positive photoresists such as ULTRAMAC" PR-914. ***XD-4000, an aqueous emulsion of a blend of fluorine-bearing compounds is spun on top of the developed, positive photoresist-imaged wafer, and baked. This allows the photoresist to withstand temperatures up to at least 175 deg. C. while essentially maintaining vertical edge profiles. Also, adverse effects of "outgassing" in harsh environments, ie., plasma and ion implant are greatly minimized by allowing the high resolution imaged photoresist to be post-baked at "elevated" temperatures. Another type of product that accomplishes the same effect is ***XD-4005, an aqueous emulsion of a high temperature-resistant polymer. While the exact mechanism is yet to be identified, it is postulated that absorption of the "polymeric" species into the "skin" of the imaged resist forms a temperature resistant "envelope", thereby allowing high resolution photoresists to also serve in a "high temperature" mode, without reticulation, or other adverse effects due to thermal degradation. SEM's are presented showing imaged ULTRAMAC" PR-914 and ULTRAMAC" **EPA-914 geometries coated with XD-4000 or XD-4005 and followed by plasma etched oxide,polysilicon and aluminum. Selectivity ratios are compared with and without the novel treatment and are shown to be significantly better with the treatment. The surface-treated photoresist for thermal resistance remains easily strippable in solvent-based or plasma media, unlike photoresists that have undergone "PRIST" or other gaseous thermal stabilization methods.

  15. Processing of hyperspectral medical images applications in dermatology using Matlab

    CERN Document Server

    Koprowski, Robert

    2017-01-01

    This book presents new methods of analyzing and processing hyperspectral medical images, which can be used in diagnostics, for example for dermatological images. The algorithms proposed are fully automatic and the results obtained are fully reproducible. Their operation was tested on a set of several thousands of hyperspectral images and they were implemented in Matlab. The presented source code can be used without licensing restrictions. This is a valuable resource for computer scientists, bioengineers, doctoral students, and dermatologists interested in contemporary analysis methods.

  16. In-utero three dimension high resolution fetal brain diffusion tensor imaging.

    Science.gov (United States)

    Jiang, Shuzhou; Xue, Hui; Counsell, Serena; Anjari, Mustafa; Allsop, Joanna; Rutherford, Mary; Rueckert, Daniel; Hajnal, Joseph V

    2007-01-01

    We present a methodology to achieve 3D high resolution in-utero fetal brain DTI that shows excellent ADC as well as promising FA maps. After continuous DTI scanning to acquire a repeated series of parallel slices with 15 diffusion directions, image registration is used to realign the images to correct for fetal motion. Once aligned, the diffusion images are treated as irregularly sampled data where each voxel is associated with an appropriately rotated diffusion direction, and used to estimate the diffusion tensor on a regular grid. The method has been tested successful on eight fetuses and has been validated on adults imaged at 1.5T.

  17. Hyperspectral image compressing using wavelet-based method

    Science.gov (United States)

    Yu, Hui; Zhang, Zhi-jie; Lei, Bo; Wang, Chen-sheng

    2017-10-01

    Hyperspectral imaging sensors can acquire images in hundreds of continuous narrow spectral bands. Therefore each object presented in the image can be identified from their spectral response. However, such kind of imaging brings a huge amount of data, which requires transmission, processing, and storage resources for both airborne and space borne imaging. Due to the high volume of hyperspectral image data, the exploration of compression strategies has received a lot of attention in recent years. Compression of hyperspectral data cubes is an effective solution for these problems. Lossless compression of the hyperspectral data usually results in low compression ratio, which may not meet the available resources; on the other hand, lossy compression may give the desired ratio, but with a significant degradation effect on object identification performance of the hyperspectral data. Moreover, most hyperspectral data compression techniques exploits the similarities in spectral dimensions; which requires bands reordering or regrouping, to make use of the spectral redundancy. In this paper, we explored the spectral cross correlation between different bands, and proposed an adaptive band selection method to obtain the spectral bands which contain most of the information of the acquired hyperspectral data cube. The proposed method mainly consist three steps: First, the algorithm decomposes the original hyperspectral imagery into a series of subspaces based on the hyper correlation matrix of the hyperspectral images between different bands. And then the Wavelet-based algorithm is applied to the each subspaces. At last the PCA method is applied to the wavelet coefficients to produce the chosen number of components. The performance of the proposed method was tested by using ISODATA classification method.

  18. A survey of landmine detection using hyperspectral imaging

    Science.gov (United States)

    Makki, Ihab; Younes, Rafic; Francis, Clovis; Bianchi, Tiziano; Zucchetti, Massimo

    2017-02-01

    Hyperspectral imaging is a trending technique in remote sensing that finds its application in many different areas, such as agriculture, mapping, target detection, food quality monitoring, etc. This technique gives the ability to remotely identify the composition of each pixel of the image. Therefore, it is a natural candidate for the purpose of landmine detection, thanks to its inherent safety and fast response time. In this paper, we will present the results of several studies that employed hyperspectral imaging for the purpose of landmine detection, discussing the different signal processing techniques used in this framework for hyperspectral image processing and target detection. Our purpose is to highlight the progresses attained in the detection of landmines using hyperspectral imaging and to identify possible perspectives for future work, in order to achieve a better detection in real-time operation mode.

  19. Pyramidal Watershed Segmentation Algorithm for High-Resolution Remote Sensing Images Using Discrete Wavelet Transforms

    Directory of Open Access Journals (Sweden)

    K. Parvathi

    2009-01-01

    Full Text Available The watershed transformation is a useful morphological segmentation tool for a variety of grey-scale images. However, over segmentation and under segmentation have become the key problems for the conventional algorithm. In this paper, an efficient segmentation method for high-resolution remote sensing image analysis is presented. Wavelet analysis is one of the most popular techniques that can be used to detect local intensity variation and hence the wavelet transformation is used to analyze the image. Wavelet transform is applied to the image, producing detail (horizontal, vertical, and diagonal and Approximation coefficients. The image gradient with selective regional minima is estimated with the grey-scale morphology for the Approximation image at a suitable resolution, and then the watershed is applied to the gradient image to avoid over segmentation. The segmented image is projected up to high resolutions using the inverse wavelet transform. The watershed segmentation is applied to small subset size image, demanding less computational time. We have applied our new approach to analyze remote sensing images. The algorithm was implemented in MATLAB. Experimental results demonstrated the method to be effective.

  20. High resolution Cerenkov light imaging of induced positron distribution in proton therapy

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Seiichi, E-mail: s-yama@met.nagoya-u.ac.jp; Fujii, Kento; Morishita, Yuki; Okumura, Satoshi; Komori, Masataka [Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, Aichi 461-8673 (Japan); Toshito, Toshiyuki [Department of Proton Therapy Physics, Nagoya Proton Therapy Center, Nagoya City West Medical Center, Aichi 462-8508 (Japan)

    2014-11-01

    Purpose: In proton therapy, imaging of the positron distribution produced by fragmentation during or soon after proton irradiation is a useful method to monitor the proton range. Although positron emission tomography (PET) is typically used for this imaging, its spatial resolution is limited. Cerenkov light imaging is a new molecular imaging technology that detects the visible photons that are produced from high-speed electrons using a high sensitivity optical camera. Because its inherent spatial resolution is much higher than PET, the authors can measure more precise information of the proton-induced positron distribution with Cerenkov light imaging technology. For this purpose, they conducted Cerenkov light imaging of induced positron distribution in proton therapy. Methods: First, the authors evaluated the spatial resolution of our Cerenkov light imaging system with a {sup 22}Na point source for the actual imaging setup. Then the transparent acrylic phantoms (100 × 100 × 100 mm{sup 3}) were irradiated with two different proton energies using a spot scanning proton therapy system. Cerenkov light imaging of each phantom was conducted using a high sensitivity electron multiplied charge coupled device (EM-CCD) camera. Results: The Cerenkov light’s spatial resolution for the setup was 0.76 ± 0.6 mm FWHM. They obtained high resolution Cerenkov light images of the positron distributions in the phantoms for two different proton energies and made fused images of the reference images and the Cerenkov light images. The depths of the positron distribution in the phantoms from the Cerenkov light images were almost identical to the simulation results. The decay curves derived from the region-of-interests (ROIs) set on the Cerenkov light images revealed that Cerenkov light images can be used for estimating the half-life of the radionuclide components of positrons. Conclusions: High resolution Cerenkov light imaging of proton-induced positron distribution was possible. The

  1. High resolution Cerenkov light imaging of induced positron distribution in proton therapy

    International Nuclear Information System (INIS)

    Yamamoto, Seiichi; Fujii, Kento; Morishita, Yuki; Okumura, Satoshi; Komori, Masataka; Toshito, Toshiyuki

    2014-01-01

    Purpose: In proton therapy, imaging of the positron distribution produced by fragmentation during or soon after proton irradiation is a useful method to monitor the proton range. Although positron emission tomography (PET) is typically used for this imaging, its spatial resolution is limited. Cerenkov light imaging is a new molecular imaging technology that detects the visible photons that are produced from high-speed electrons using a high sensitivity optical camera. Because its inherent spatial resolution is much higher than PET, the authors can measure more precise information of the proton-induced positron distribution with Cerenkov light imaging technology. For this purpose, they conducted Cerenkov light imaging of induced positron distribution in proton therapy. Methods: First, the authors evaluated the spatial resolution of our Cerenkov light imaging system with a 22 Na point source for the actual imaging setup. Then the transparent acrylic phantoms (100 × 100 × 100 mm 3 ) were irradiated with two different proton energies using a spot scanning proton therapy system. Cerenkov light imaging of each phantom was conducted using a high sensitivity electron multiplied charge coupled device (EM-CCD) camera. Results: The Cerenkov light’s spatial resolution for the setup was 0.76 ± 0.6 mm FWHM. They obtained high resolution Cerenkov light images of the positron distributions in the phantoms for two different proton energies and made fused images of the reference images and the Cerenkov light images. The depths of the positron distribution in the phantoms from the Cerenkov light images were almost identical to the simulation results. The decay curves derived from the region-of-interests (ROIs) set on the Cerenkov light images revealed that Cerenkov light images can be used for estimating the half-life of the radionuclide components of positrons. Conclusions: High resolution Cerenkov light imaging of proton-induced positron distribution was possible. The authors

  2. An improved image alignment procedure for high-resolution transmission electron microscopy.

    Science.gov (United States)

    Lin, Fang; Liu, Yan; Zhong, Xiaoyan; Chen, Jianghua

    2010-06-01

    Image alignment is essential for image processing methods such as through-focus exit-wavefunction reconstruction and image averaging in high-resolution transmission electron microscopy. Relative image displacements exist in any experimentally recorded image series due to the specimen drifts and image shifts, hence image alignment for correcting the image displacements has to be done prior to any further image processing. The image displacement between two successive images is determined by the correlation function of the two relatively shifted images. Here it is shown that more accurate image alignment can be achieved by using an appropriate aperture to filter the high-frequency components of the images being aligned, especially for a crystalline specimen with little non-periodic information. For the image series of crystalline specimens with little amorphous, the radius of the filter aperture should be as small as possible, so long as it covers the innermost lattice reflections. Testing with an experimental through-focus series of Si[110] images, the accuracies of image alignment with different correlation functions are compared with respect to the error functions in through-focus exit-wavefunction reconstruction based on the maximum-likelihood method. Testing with image averaging over noisy experimental images from graphene and carbon-nanotube samples, clear and sharp crystal lattice fringes are recovered after applying optimal image alignment. Copyright 2010 Elsevier Ltd. All rights reserved.

  3. Refinement procedure for the image alignment in high-resolution electron tomography.

    Science.gov (United States)

    Houben, L; Bar Sadan, M

    2011-01-01

    High-resolution electron tomography from a tilt series of transmission electron microscopy images requires an accurate image alignment procedure in order to maximise the resolution of the tomogram. This is the case in particular for ultra-high resolution where even very small misalignments between individual images can dramatically reduce the fidelity of the resultant reconstruction. A tomographic-reconstruction based and marker-free method is proposed, which uses an iterative optimisation of the tomogram resolution. The method utilises a search algorithm that maximises the contrast in tomogram sub-volumes. Unlike conventional cross-correlation analysis it provides the required correlation over a large tilt angle separation and guarantees a consistent alignment of images for the full range of object tilt angles. An assessment based on experimental reconstructions shows that the marker-free procedure is competitive to the reference of marker-based procedures at lower resolution and yields sub-pixel accuracy even for simulated high-resolution data. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Automated Segmentation of High-Resolution Photospheric Images of Active Regions

    Science.gov (United States)

    Yang, Meng; Tian, Yu; Rao, Changhui

    2018-02-01

    Due to the development of ground-based, large-aperture solar telescopes with adaptive optics (AO) resulting in increasing resolving ability, more accurate sunspot identifications and characterizations are required. In this article, we have developed a set of automated segmentation methods for high-resolution solar photospheric images. Firstly, a local-intensity-clustering level-set method is applied to roughly separate solar granulation and sunspots. Then reinitialization-free level-set evolution is adopted to adjust the boundaries of the photospheric patch; an adaptive intensity threshold is used to discriminate between umbra and penumbra; light bridges are selected according to their regional properties from candidates produced by morphological operations. The proposed method is applied to the solar high-resolution TiO 705.7-nm images taken by the 151-element AO system and Ground-Layer Adaptive Optics prototype system at the 1-m New Vacuum Solar Telescope of the Yunnan Observatory. Experimental results show that the method achieves satisfactory robustness and efficiency with low computational cost on high-resolution images. The method could also be applied to full-disk images, and the calculated sunspot areas correlate well with the data given by the National Oceanic and Atmospheric Administration (NOAA).

  5. A fast and automatic mosaic method for high-resolution satellite images

    Science.gov (United States)

    Chen, Hongshun; He, Hui; Xiao, Hongyu; Huang, Jing

    2015-12-01

    We proposed a fast and fully automatic mosaic method for high-resolution satellite images. First, the overlapped rectangle is computed according to geographical locations of the reference and mosaic images and feature points on both the reference and mosaic images are extracted by a scale-invariant feature transform (SIFT) algorithm only from the overlapped region. Then, the RANSAC method is used to match feature points of both images. Finally, the two images are fused into a seamlessly panoramic image by the simple linear weighted fusion method or other method. The proposed method is implemented in C++ language based on OpenCV and GDAL, and tested by Worldview-2 multispectral images with a spatial resolution of 2 meters. Results show that the proposed method can detect feature points efficiently and mosaic images automatically.

  6. High-resolution Ceres Low Altitude Mapping Orbit Atlas derived from Dawn Framing Camera images

    Science.gov (United States)

    Roatsch, Th.; Kersten, E.; Matz, K.-D.; Preusker, F.; Scholten, F.; Jaumann, R.; Raymond, C. A.; Russell, C. T.

    2017-06-01

    The Dawn spacecraft Framing Camera (FC) acquired over 31,300 clear filter images of Ceres with a resolution of about 35 m/pxl during the eleven cycles in the Low Altitude Mapping Orbit (LAMO) phase between December 16 2015 and August 8 2016. We ortho-rectified the images from the first four cycles and produced a global, high-resolution, uncontrolled photomosaic of Ceres. This global mosaic is the basis for a high-resolution Ceres atlas that consists of 62 tiles mapped at a scale of 1:250,000. The nomenclature used in this atlas was proposed by the Dawn team and was approved by the International Astronomical Union (IAU). The full atlas is available to the public through the Dawn Geographical Information System (GIS) web page [http://dawngis.dlr.de/atlas] and will become available through the NASA Planetary Data System (PDS) (http://pdssbn.astro.umd.edu/).

  7. Advances in hyperspectral remote sensing I: The visible Fourier transform hyperspectral imager

    Directory of Open Access Journals (Sweden)

    J. Bruce Rafert

    2015-05-01

    Full Text Available We discuss early hyperspectral research and development activities during the 1990s that led to the deployment of aircraft and satellite payloads whose heritage was based on the use of visible, spatially modulated, imaging Fourier transform spectrometers, beginning with early experiments at the Florida Institute of Technology, through successful launch and deployment of the Visible Fourier Transform Hyperspectral Imager on MightySat II.1 on 19 July 2000. In addition to a brief chronological overview, we also discuss several of the most interesting optical engineering challenges that were addressed over this timeframe, present some as-yet un-exploited features of field-widened (slit-less SMIFTS instruments, and present some images from ground-based, aircraft-based and satellite-based instruments that helped provide the impetus for the proliferation and development of entire new families of instruments and countless new applications for hyperspectral imaging.

  8. State-of-the-art of small animal imaging with high-resolution SPECT

    International Nuclear Information System (INIS)

    Nikolaus, S.; Wirrwar, A.; Antke, C.; Kley, K.; Mueller, H.W.

    2005-01-01

    During the recent years, in vivo imaging of small animals using SPECT has become of growing relevance. Along with the development of dedicated high-resolution small animal SPECT cameras, an increasing number of conventional clinical scanners has been equipped with single or multipinhole collimators. This paper reviews the small animal tomographs, which are operating at present and compares their performance characteristics. Furthermore, we describe the in vivo imaging studies, which have been performed so far with the individual scanners and survey current approaches to optimize molecular imaging with small animal SPECT. (orig.)

  9. High resolution neutron imaging of water in the polymer electrolyte fuel cell membrane

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, Partha P [Los Alamos National Laboratory; Makundan, Rangachary [Los Alamos National Laboratory; Spendelow, Jacob S [Los Alamos National Laboratory; Borup, Rodney L [Los Alamos National Laboratory; Hussey, D S [NIST; Jacobson, D L [NIST; Arif, M [NIST

    2009-01-01

    Water transport in the ionomeric membrane, typically Nafion{reg_sign}, has profound influence on the performance of the polymer electrolyte fuel cell, in terms of internal resistance and overall water balance. In this work, high resolution neutron imaging of the Nafion{reg_sign} membrane is presented in order to measure water content and through-plane gradients in situ under disparate temperature and humidification conditions.

  10. Visualization of intracranial vessel anatomy using high resolution MRI and a simple image fusion technique

    International Nuclear Information System (INIS)

    Nasel, C.

    2005-01-01

    A new technique for fusion and 3D viewing of high resolution magnetic resonance (MR) angiography and morphological MR sequences is reported. Scanning and image fusion was possible within 20 min on a standard 1.5 T MR-scanner. The procedure was successfully performed in 10 consecutive cases with excellent visualization of wall and luminal aspects of the intracranial segments of the internal carotid artery, the vertebrobasilar system and the anterior, middle and posterior cerebral artery

  11. Visualization of intracranial vessel anatomy using high resolution MRI and a simple image fusion technique

    Energy Technology Data Exchange (ETDEWEB)

    Nasel, C. [Division of Neuroradiology, Department of Radiology, Medical University of Vienna, Waehringerguertel 18-20, A-1090 Vienna (Austria)]. E-mail: christian.nasel@perfusion.at

    2005-04-01

    A new technique for fusion and 3D viewing of high resolution magnetic resonance (MR) angiography and morphological MR sequences is reported. Scanning and image fusion was possible within 20 min on a standard 1.5 T MR-scanner. The procedure was successfully performed in 10 consecutive cases with excellent visualization of wall and luminal aspects of the intracranial segments of the internal carotid artery, the vertebrobasilar system and the anterior, middle and posterior cerebral artery.

  12. Tablet disintegration studied by high-resolution real-time magnetic resonance imaging.

    OpenAIRE

    Quodbach, J.; Moussavi, A.; Tammer, R.; Frahm, J.; Kleinebudde, P.

    2014-01-01

    The present work employs recent advances in high-resolution real-time magnetic resonance imaging (MRI) to investigate the disintegration process of tablets containing disintegrants. A temporal resolution of 75 ms and a spatial resolution of 80 x 80 m with a section thickness of only 600 m were achieved. The histograms of MRI videos were quantitatively analyzed with MATLAB. The mechanisms of action of six commercially available disintegrants, the influence of relative tablet density, and the i...

  13. Upconversion applied for mid-IR hyperspectral image acquisition

    DEFF Research Database (Denmark)

    Tidemand-Lichtenberg, Peter; Kehlet, Louis Martinus; Sanders, Nicolai Højer

    2015-01-01

    Different schemes for upconversion mid-IR hyperspectral imaging is implemented and compared in terms of spectral coverage, spectral resolution, speed and noise. Phasematch scanning and scanning of the object within the field of view is considered....

  14. Hyperspectral image classification based on local binary patterns and PCANet

    Science.gov (United States)

    Yang, Huizhen; Gao, Feng; Dong, Junyu; Yang, Yang

    2018-04-01

    Hyperspectral image classification has been well acknowledged as one of the challenging tasks of hyperspectral data processing. In this paper, we propose a novel hyperspectral image classification framework based on local binary pattern (LBP) features and PCANet. In the proposed method, linear prediction error (LPE) is first employed to select a subset of informative bands, and LBP is utilized to extract texture features. Then, spectral and texture features are stacked into a high dimensional vectors. Next, the extracted features of a specified position are transformed to a 2-D image. The obtained images of all pixels are fed into PCANet for classification. Experimental results on real hyperspectral dataset demonstrate the effectiveness of the proposed method.

  15. Parallel Hyperspectral Image Processing on Distributed Multi-Cluster Systems

    NARCIS (Netherlands)

    Liu, F.; Seinstra, F.J.; Plaza, A.J.

    2011-01-01

    Computationally efficient processing of hyperspectral image cubes can be greatly beneficial in many application domains, including environmental modeling, risk/hazard prevention and response, and defense/security. As individual cluster computers often cannot satisfy the computational demands of

  16. Band Subset Selection for Hyperspectral Image Classification

    Directory of Open Access Journals (Sweden)

    Chunyan Yu

    2018-01-01

    Full Text Available This paper develops a new approach to band subset selection (BSS for hyperspectral image classification (HSIC which selects multiple bands simultaneously as a band subset, referred to as simultaneous multiple band selection (SMMBS, rather than one band at a time sequentially, referred to as sequential multiple band selection (SQMBS, as most traditional band selection methods do. In doing so, a criterion is particularly developed for BSS that can be used for HSIC. It is a linearly constrained minimum variance (LCMV derived from adaptive beamforming in array signal processing which can be used to model misclassification errors as the minimum variance. To avoid an exhaustive search for all possible band subsets, two numerical algorithms, referred to as sequential (SQ and successive (SC algorithms are also developed for LCMV-based SMMBS, called SQ LCMV-BSS and SC LCMV-BSS. Experimental results demonstrate that LCMV-based BSS has advantages over SQMBS.

  17. Hyperspectral Image Classification Using Discriminative Dictionary Learning

    International Nuclear Information System (INIS)

    Zongze, Y; Hao, S; Kefeng, J; Huanxin, Z

    2014-01-01

    The hyperspectral image (HSI) processing community has witnessed a surge of papers focusing on the utilization of sparse prior for effective HSI classification. In sparse representation based HSI classification, there are two phases: sparse coding with an over-complete dictionary and classification. In this paper, we first apply a novel fisher discriminative dictionary learning method, which capture the relative difference in different classes. The competitive selection strategy ensures that atoms in the resulting over-complete dictionary are the most discriminative. Secondly, motivated by the assumption that spatially adjacent samples are statistically related and even belong to the same materials (same class), we propose a majority voting scheme incorporating contextual information to predict the category label. Experiment results show that the proposed method can effectively strengthen relative discrimination of the constructed dictionary, and incorporating with the majority voting scheme achieve generally an improved prediction performance

  18. RELATIVE ORIENTATION AND MODIFIED PIECEWISE EPIPOLAR RESAMPLING FOR HIGH RESOLUTION SATELLITE IMAGES

    Directory of Open Access Journals (Sweden)

    K. Gong

    2017-05-01

    Full Text Available High resolution, optical satellite sensors are boosted to a new era in the last few years, because satellite stereo images at half meter or even 30cm resolution are available. Nowadays, high resolution satellite image data have been commonly used for Digital Surface Model (DSM generation and 3D reconstruction. It is common that the Rational Polynomial Coefficients (RPCs provided by the vendors have rough precision and there is no ground control information available to refine the RPCs. Therefore, we present two relative orientation methods by using corresponding image points only: the first method will use quasi ground control information, which is generated from the corresponding points and rough RPCs, for the bias-compensation model; the second method will estimate the relative pointing errors on the matching image and remove this error by an affine model. Both methods do not need ground control information and are applied for the entire image. To get very dense point clouds, the Semi-Global Matching (SGM method is an efficient tool. However, before accomplishing the matching process the epipolar constraints are required. In most conditions, satellite images have very large dimensions, contrary to the epipolar geometry generation and image resampling, which is usually carried out in small tiles. This paper also presents a modified piecewise epipolar resampling method for the entire image without tiling. The quality of the proposed relative orientation and epipolar resampling method are evaluated, and finally sub-pixel accuracy has been achieved in our work.

  19. High-Resolution 3T MR Imaging of the Triangular Fibrocartilage Complex.

    Science.gov (United States)

    von Borstel, Donald; Wang, Michael; Small, Kirstin; Nozaki, Taiki; Yoshioka, Hiroshi

    2017-01-10

    This study is intended as a review of 3Tesla (T) magnetic resonance (MR) imaging of the triangular fibrocartilage complex (TFCC). The recent advances in MR imaging, which includes high field strength magnets, multi-channel coils, and isotropic 3-dimensional (3D) sequences have enabled the visualization of precise TFCC anatomy with high spatial and contrast resolution. In addition to the routine wrist protocol, there are specific techniques used to optimize 3T imaging of the wrist; including driven equilibrium sequence (DRIVE), parallel imaging, and 3D imaging. The coil choice for 3T imaging of the wrist depends on a number of variables, and the proper coil design selection is critical for high-resolution wrist imaging with high signal and contrast-to-noise ratio. The TFCC is a complex structure and is composed of the articular disc (disc proper), the triangular ligament, the dorsal and volar radioulnar ligaments, the meniscus homologue, the ulnar collateral ligament (UCL), the extensor carpi ulnaris (ECU) tendon sheath, and the ulnolunate and ulnotriquetral ligaments. The Palmer classification categorizes TFCC lesions as traumatic (type 1) or degenerative (type 2). In this review article, we present clinical high-resolution MR images of normal TFCC anatomy and TFCC injuries with this classification system.

  20. Computerized tomography using high resolution X-ray imaging system with a microfocus source

    International Nuclear Information System (INIS)

    Zaprazny, Z.; Korytar, D.; Konopka, P.; Ac, V.; Bielecki, J.

    2011-01-01

    In recent years there is an effort to image an internal structure of an object by using not only conventional 2D X-ray radiography but also using high resolution 3D tomography which is based on reconstruction of multiple 2D projections at various angular positions of the object. We have previously reported [1] the development and basic parameters of a high resolution x-ray imaging system with a microfocus source. We report the recent progress using this high resolution X-ray laboratory system in this work. These first findings show that our system is particularly suitable for light weight and nonmetallic objects such as biological objects, plastics, wood, paper, etc. where phase contrast helps to increase the visibility of the finest structures of the object. Phase-contrast X-ray Computerized Tomography is of our special interest because it is an emerging imaging technique that can be implemented at third generation synchrotron radiation sources and also in laboratory conditions using a microfocus X-ray tube or beam conditioning optics. (authors)

  1. Multi-Sensor Fusion of Infrared and Electro-Optic Signals for High Resolution Night Images

    Directory of Open Access Journals (Sweden)

    Victor Lawrence

    2012-07-01

    Full Text Available Electro-optic (EO image sensors exhibit the properties of high resolution and low noise level at daytime, but they do not work in dark environments. Infrared (IR image sensors exhibit poor resolution and cannot separate objects with similar temperature. Therefore, we propose a novel framework of IR image enhancement based on the information (e.g., edge from EO images, which improves the resolution of IR images and helps us distinguish objects at night. Our framework superimposing/blending the edges of the EO image onto the corresponding transformed IR image improves their resolution. In this framework, we adopt the theoretical point spread function (PSF proposed by Hardie et al. for the IR image, which has the modulation transfer function (MTF of a uniform detector array and the incoherent optical transfer function (OTF of diffraction-limited optics. In addition, we design an inverse filter for the proposed PSF and use it for the IR image transformation. The framework requires four main steps: (1 inverse filter-based IR image transformation; (2 EO image edge detection; (3 registration; and (4 blending/superimposing of the obtained image pair. Simulation results show both blended and superimposed IR images, and demonstrate that blended IR images have better quality over the superimposed images. Additionally, based on the same steps, simulation result shows a blended IR image of better quality when only the original IR image is available.

  2. FFT-enhanced IHS transform method for fusing high-resolution satellite images

    Science.gov (United States)

    Ling, Y.; Ehlers, M.; Usery, E.L.; Madden, M.

    2007-01-01

    Existing image fusion techniques such as the intensity-hue-saturation (IHS) transform and principal components analysis (PCA) methods may not be optimal for fusing the new generation commercial high-resolution satellite images such as Ikonos and QuickBird. One problem is color distortion in the fused image, which causes visual changes as well as spectral differences between the original and fused images. In this paper, a fast Fourier transform (FFT)-enhanced IHS method is developed for fusing new generation high-resolution satellite images. This method combines a standard IHS transform with FFT filtering of both the panchromatic image and the intensity component of the original multispectral image. Ikonos and QuickBird data are used to assess the FFT-enhanced IHS transform method. Experimental results indicate that the FFT-enhanced IHS transform method may improve upon the standard IHS transform and the PCA methods in preserving spectral and spatial information. ?? 2006 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS).

  3. High-resolution fiber-optic microendoscopy for in situ cellular imaging.

    Science.gov (United States)

    Pierce, Mark; Yu, Dihua; Richards-Kortum, Rebecca

    2011-01-11

    Many biological and clinical studies require the longitudinal study and analysis of morphology and function with cellular level resolution. Traditionally, multiple experiments are run in parallel, with individual samples removed from the study at sequential time points for evaluation by light microscopy. Several intravital techniques have been developed, with confocal, multiphoton, and second harmonic microscopy all demonstrating their ability to be used for imaging in situ. With these systems, however, the required infrastructure is complex and expensive, involving scanning laser systems and complex light sources. Here we present a protocol for the design and assembly of a high-resolution microendoscope which can be built in a day using off-the-shelf components for under US$5,000. The platform offers flexibility in terms of image resolution, field-of-view, and operating wavelength, and we describe how these parameters can be easily modified to meet the specific needs of the end user. We and others have explored the use of the high-resolution microendoscope (HRME) in in vitro cell culture, in excised and living animal tissues, and in human tissues in vivo. Users have reported the use of several different fluorescent contrast agents, including proflavine, benzoporphyrin-derivative monoacid ring A (BPD-MA), and fluoroscein, all of which have received full, or investigational approval from the FDA for use in human subjects. High-resolution microendoscopy, in the form described here, may appeal to a wide range of researchers working in the basic and clinical sciences. The technique offers an effective and economical approach which complements traditional benchtop microscopy, by enabling the user to perform high-resolution, longitudinal imaging in situ.

  4. Unmixing hyperspectral images using Markov random fields

    International Nuclear Information System (INIS)

    Eches, Olivier; Dobigeon, Nicolas; Tourneret, Jean-Yves

    2011-01-01

    This paper proposes a new spectral unmixing strategy based on the normal compositional model that exploits the spatial correlations between the image pixels. The pure materials (referred to as endmembers) contained in the image are assumed to be available (they can be obtained by using an appropriate endmember extraction algorithm), while the corresponding fractions (referred to as abundances) are estimated by the proposed algorithm. Due to physical constraints, the abundances have to satisfy positivity and sum-to-one constraints. The image is divided into homogeneous distinct regions having the same statistical properties for the abundance coefficients. The spatial dependencies within each class are modeled thanks to Potts-Markov random fields. Within a Bayesian framework, prior distributions for the abundances and the associated hyperparameters are introduced. A reparametrization of the abundance coefficients is proposed to handle the physical constraints (positivity and sum-to-one) inherent to hyperspectral imagery. The parameters (abundances), hyperparameters (abundance mean and variance for each class) and the classification map indicating the classes of all pixels in the image are inferred from the resulting joint posterior distribution. To overcome the complexity of the joint posterior distribution, Markov chain Monte Carlo methods are used to generate samples asymptotically distributed according to the joint posterior of interest. Simulations conducted on synthetic and real data are presented to illustrate the performance of the proposed algorithm.

  5. Registration-based approach for reconstruction of high-resolution in utero fetal MR brain images.

    Science.gov (United States)

    Rousseau, Francois; Glenn, Orit A; Iordanova, Bistra; Rodriguez-Carranza, Claudia; Vigneron, Daniel B; Barkovich, James A; Studholme, Colin

    2006-09-01

    This paper describes a novel approach to forming high-resolution MR images of the human fetal brain. It addresses the key problem of fetal motion by proposing a registration-refined compounding of multiple sets of orthogonal fast two-dimensional MRI slices, which are currently acquired for clinical studies, into a single high-resolution MRI volume. A robust multiresolution slice alignment is applied iteratively to the data to correct motion of the fetus that occurs between two-dimensional acquisitions. This is combined with an intensity correction step and a super-resolution reconstruction step, to form a single high isotropic resolution volume of the fetal brain. Experimental validation on synthetic image data with known motion types and underlying anatomy, together with retrospective application to sets of clinical acquisitions, are included. Results indicate that this method promises a unique route to acquiring high-resolution MRI of the fetal brain in vivo allowing comparable quality to that of neonatal MRI. Such data provide a highly valuable window into the process of normal and abnormal brain development, which is directly applicable in a clinical setting.

  6. High-resolution 3D laser imaging based on tunable fiber array link

    Science.gov (United States)

    Zhao, Sisi; Ruan, Ningjuan; Yang, Song

    2017-10-01

    Airborne photoelectric reconnaissance system with the bore sight down to the ground is an important battlefield situational awareness system, which can be used for reconnaissance and surveillance of complex ground scene. Airborne 3D imaging Lidar system is recognized as the most potential candidates for target detection under the complex background, and is progressing in the directions of high resolution, long distance detection, high sensitivity, low power consumption, high reliability, eye safe and multi-functional. However, the traditional 3D laser imaging system has the disadvantages of lower imaging resolutions because of the small size of the existing detector, and large volume. This paper proposes a high resolution laser 3D imaging technology based on the tunable optical fiber array link. The echo signal is modulated by a tunable optical fiber array link and then transmitted to the focal plane detector. The detector converts the optical signal into electrical signals which is given to the computer. Then, the computer accomplishes the signal calculation and image restoration based on modulation information, and then reconstructs the target image. This paper establishes the mathematical model of tunable optical fiber array signal receiving link, and proposes the simulation and analysis of the affect factors on high density multidimensional point cloud reconstruction.

  7. Myocardial Infarction Area Quantification using High-Resolution SPECT Images in Rats

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Luciano Fonseca Lemos de [Divisão de Cardiologia, Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Mejia, Jorge [Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, SP (Brazil); Carvalho, Eduardo Elias Vieira de; Lataro, Renata Maria; Frassetto, Sarita Nasbine [Divisão de Cardiologia, Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Fazan, Rubens Jr.; Salgado, Hélio Cesar [Departamento de Fisiologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Galvis-Alonso, Orfa Yineth [Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, SP (Brazil); Simões, Marcus Vinícius, E-mail: msimoes@fmrp.usp.br [Divisão de Cardiologia, Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil)

    2013-07-15

    Imaging techniques enable in vivo sequential assessment of the morphology and function of animal organs in experimental models. We developed a device for high-resolution single photon emission computed tomography (SPECT) imaging based on an adapted pinhole collimator. To determine the accuracy of this system for quantification of myocardial infarct area in rats. Thirteen male Wistar rats (250 g) underwent experimental myocardial infarction by occlusion of the left coronary artery. After 4 weeks, SPECT images were acquired 1.5 hours after intravenous injection of 555 MBq of 99mTc-Sestamibi. The tomographic reconstruction was performed by using specially developed software based on the Maximum Likelihood algorithm. The analysis of the data included the correlation between the area of perfusion defects detected by scintigraphy and extent of myocardial fibrosis assessed by histology. The images showed a high target organ/background ratio with adequate visualization of the left ventricular walls and cavity. All animals presenting infarction areas were correctly identified by the perfusion images. There was no difference of the infarct area as measured by SPECT (21.1 ± 21.2%) and by histology (21.7 ± 22.0%; p=0.45). There was a strong correlation between individual values of the area of infarction measured by these two methods. The developed system presented adequate spatial resolution and high accuracy for the detection and quantification of myocardial infarction areas, consisting in a low cost and versatile option for high-resolution SPECT imaging of small rodents.

  8. High resolution through-the-wall radar image based on beamspace eigenstructure subspace methods

    Science.gov (United States)

    Yoon, Yeo-Sun; Amin, Moeness G.

    2008-04-01

    Through-the-wall imaging (TWI) is a challenging problem, even if the wall parameters and characteristics are known to the system operator. Proper target classification and correct imaging interpretation require the application of high resolution techniques using limited array size. In inverse synthetic aperture radar (ISAR), signal subspace methods such as Multiple Signal Classification (MUSIC) are used to obtain high resolution imaging. In this paper, we adopt signal subspace methods and apply them to the 2-D spectrum obtained from the delay-andsum beamforming image. This is in contrast to ISAR, where raw data, in frequency and angle, is directly used to form the estimate of the covariance matrix and array response vector. Using beams rather than raw data has two main advantages, namely, it improves the signal-to-noise ratio (SNR) and can correctly image typical indoor extended targets, such as tables and cabinets, as well as point targets. The paper presents both simulated and experimental results using synthesized and real data. It compares the performance of beam-space MUSIC and Capon beamformer. The experimental data is collected at the test facility in the Radar Imaging Laboratory, Villanova University.

  9. Laser radar cross-section estimation from high-resolution image data.

    Science.gov (United States)

    Osche, G R; Seeber, K N; Lok, Y F; Young, D S

    1992-05-10

    A methodology for the estimation of ladar cross sections from high-resolution image data of geometrically complex targets is presented. Coherent CO(2) laser radar was used to generate high-resolution amplitude imagery of a UC-8 Buffalo test aircraft at a range of 1.3 km at nine different aspect angles. The average target ladar cross section was synthesized from these data and calculated to be sigma(T) = 15.4 dBsm, which is similar to the expected microwave radar cross sections. The aspect angle dependence of the cross section shows pronounced peaks at nose on and broadside, which are also in agreement with radar results. Strong variations in both the mean amplitude and the statistical distributions of amplitude with the aspect angle have also been observed. The relative mix of diffuse and specular returns causes significant deviations from a simple Lambertian or Swerling II target, especially at broadside where large normal surfaces are present.

  10. High resolution measurement of the velocity profiles of channel flows using the particle image velocimetry technique

    International Nuclear Information System (INIS)

    Nor Azizi Mohamed

    2000-01-01

    The high resolution velocity profiles of a uniform steady channel flow and a flow beneath waves were obtained using the particle image velocimetry (PIV) technique. The velocity profiles for each flow were calculated for both components. It is shown that the profiles obtained are very precise, displaying the point velocities from a few millimeters from the bottom of the channel up to the water surface across the water depth. In the case of the wave-induced flow, the profiles are shown under the respective wave phases and given in a plane representation. High resolution measurement of point velocities in a flow is achievable using PIV and invaluable when applied to a complex flow. (Author)

  11. 3D high-resolution radar imaging of small body interiors

    Science.gov (United States)

    Sava, Paul; Asphaug, Erik

    2017-10-01

    Answering fundamental questions about the origin and evolution of small planetary bodies hinges on our ability to image their interior structure in detail and at high resolution (Asphaug, 2009). We often infer internal structure from surface observations, e.g. that comet 67P/Churyumov-Gerasimenko is a primordial agglomeration of cometesimals (Massironi et al., 2015). However, the interior structure is not easily accessible without systematic imaging using, e.g., radar transmission and reflection data, as suggested by the CONSERT experiment on Rosetta. Interior imaging depends on observations from multiple viewpoints, as in medical tomography.We discuss radar imaging using methodology adapted from terrestrial exploration seismology (Sava et al., 2015). We primarily focus on full wavefield methods that facilitate high quality imaging of small body interiors characterized by complex structure and large contrasts of physical properties. We consider the case of a monostatic system (co-located transmitters and receivers) operated at two frequency bands, centered around 5 and 15 MHz, from a spacecraft in slow polar orbit around a spinning comet nucleus. Assuming that the spin period is significantly (e.g. 5x) faster than the orbital period, this configuration allows repeated views from multiple directions (Safaeinili et al., 2002)Using realistic numerical experiments, we argue that (1) the comet/asteroid imaging problem is intrinsically 3D and conventional SAR methodology does not satisfy imaging, sampling and resolution requirements; (2) imaging at different frequency bands can provide information about internal surfaces (through migration) and internal volumes (through tomography); (3) interior imaging can be accomplished progressively as data are being acquired through successive orbits around the studied object; (4) imaging resolution can go beyond the apparent radar frequency band by deconvolution of the point-spread-function characterizing the imaging system; and (5

  12. Ultra-High-Resolution Computed Tomography of the Lung: Image Quality of a Prototype Scanner

    Science.gov (United States)

    Kakinuma, Ryutaro; Moriyama, Noriyuki; Muramatsu, Yukio; Gomi, Shiho; Suzuki, Masahiro; Nagasawa, Hirobumi; Kusumoto, Masahiko; Aso, Tomohiko; Muramatsu, Yoshihisa; Tsuchida, Takaaki; Tsuta, Koji; Maeshima, Akiko Miyagi; Tochigi, Naobumi; Watanabe, Shun-ichi; Sugihara, Naoki; Tsukagoshi, Shinsuke; Saito, Yasuo; Kazama, Masahiro; Ashizawa, Kazuto; Awai, Kazuo; Honda, Osamu; Ishikawa, Hiroyuki; Koizumi, Naoya; Komoto, Daisuke; Moriya, Hiroshi; Oda, Seitaro; Oshiro, Yasuji; Yanagawa, Masahiro; Tomiyama, Noriyuki; Asamura, Hisao

    2015-01-01

    Purpose The image noise and image quality of a prototype ultra-high-resolution computed tomography (U-HRCT) scanner was evaluated and compared with those of conventional high-resolution CT (C-HRCT) scanners. Materials and Methods This study was approved by the institutional review board. A U-HRCT scanner prototype with 0.25 mm x 4 rows and operating at 120 mAs was used. The C-HRCT images were obtained using a 0.5 mm x 16 or 0.5 mm x 64 detector-row CT scanner operating at 150 mAs. Images from both scanners were reconstructed at 0.1-mm intervals; the slice thickness was 0.25 mm for the U-HRCT scanner and 0.5 mm for the C-HRCT scanners. For both scanners, the display field of view was 80 mm. The image noise of each scanner was evaluated using a phantom. U-HRCT and C-HRCT images of 53 images selected from 37 lung nodules were then observed and graded using a 5-point score by 10 board-certified thoracic radiologists. The images were presented to the observers randomly and in a blinded manner. Results The image noise for U-HRCT (100.87 ± 0.51 Hounsfield units [HU]) was greater than that for C-HRCT (40.41 ± 0.52 HU; P < .0001). The image quality of U-HRCT was graded as superior to that of C-HRCT (P < .0001) for all of the following parameters that were examined: margins of subsolid and solid nodules, edges of solid components and pulmonary vessels in subsolid nodules, air bronchograms, pleural indentations, margins of pulmonary vessels, edges of bronchi, and interlobar fissures. Conclusion Despite a larger image noise, the prototype U-HRCT scanner had a significantly better image quality than the C-HRCT scanners. PMID:26352144

  13. Ultra-High-Resolution Computed Tomography of the Lung: Image Quality of a Prototype Scanner.

    Directory of Open Access Journals (Sweden)

    Ryutaro Kakinuma

    Full Text Available The image noise and image quality of a prototype ultra-high-resolution computed tomography (U-HRCT scanner was evaluated and compared with those of conventional high-resolution CT (C-HRCT scanners.This study was approved by the institutional review board. A U-HRCT scanner prototype with 0.25 mm x 4 rows and operating at 120 mAs was used. The C-HRCT images were obtained using a 0.5 mm x 16 or 0.5 mm x 64 detector-row CT scanner operating at 150 mAs. Images from both scanners were reconstructed at 0.1-mm intervals; the slice thickness was 0.25 mm for the U-HRCT scanner and 0.5 mm for the C-HRCT scanners. For both scanners, the display field of view was 80 mm. The image noise of each scanner was evaluated using a phantom. U-HRCT and C-HRCT images of 53 images selected from 37 lung nodules were then observed and graded using a 5-point score by 10 board-certified thoracic radiologists. The images were presented to the observers randomly and in a blinded manner.The image noise for U-HRCT (100.87 ± 0.51 Hounsfield units [HU] was greater than that for C-HRCT (40.41 ± 0.52 HU; P < .0001. The image quality of U-HRCT was graded as superior to that of C-HRCT (P < .0001 for all of the following parameters that were examined: margins of subsolid and solid nodules, edges of solid components and pulmonary vessels in subsolid nodules, air bronchograms, pleural indentations, margins of pulmonary vessels, edges of bronchi, and interlobar fissures.Despite a larger image noise, the prototype U-HRCT scanner had a significantly better image quality than the C-HRCT scanners.

  14. High-resolution MR imaging of urethra for incontinence by means of intracavitary surface coils

    International Nuclear Information System (INIS)

    Yang, A.; Mostwin, J.L.; Genadry, R.; Yang, S.S.

    1991-01-01

    Urinary incontinence is a major medical problem affecting millions of older women. This paper demonstrates the use of dynamic MR imaging in noninvasive quantification of prolapse in all three pelvic compartments. In this exhibit we use high-resolution MR imaging with intracavity (intravaginal, intrarectal) and surface/intracavitary coils to diagnose intrinsic urethral pathology that prevents opening (dysuria) or coaptation (incontinence). Normal anatomy, congenital anatomy (pelvic floor defects, hypoplasia), acquired anatomy (periurethral cyst/divertivulum, tumor, hypertrophy), and operative failure as causes of incontinence (postoperative scarring, misplacement/dehiscence of sutures and flaps) are shown. We demonstrate a novel method for MR cine voiding cystourethrography. Technical factors and applications are discussed

  15. Improved Scanners for Microscopic Hyperspectral Imaging

    Science.gov (United States)

    Mao, Chengye

    2009-01-01

    Improved scanners to be incorporated into hyperspectral microscope-based imaging systems have been invented. Heretofore, in microscopic imaging, including spectral imaging, it has been customary to either move the specimen relative to the optical assembly that includes the microscope or else move the entire assembly relative to the specimen. It becomes extremely difficult to control such scanning when submicron translation increments are required, because the high magnification of the microscope enlarges all movements in the specimen image on the focal plane. To overcome this difficulty, in a system based on this invention, no attempt would be made to move either the specimen or the optical assembly. Instead, an objective lens would be moved within the assembly so as to cause translation of the image at the focal plane: the effect would be equivalent to scanning in the focal plane. The upper part of the figure depicts a generic proposed microscope-based hyperspectral imaging system incorporating the invention. The optical assembly of this system would include an objective lens (normally, a microscope objective lens) and a charge-coupled-device (CCD) camera. The objective lens would be mounted on a servomotor-driven translation stage, which would be capable of moving the lens in precisely controlled increments, relative to the camera, parallel to the focal-plane scan axis. The output of the CCD camera would be digitized and fed to a frame grabber in a computer. The computer would store the frame-grabber output for subsequent viewing and/or processing of images. The computer would contain a position-control interface board, through which it would control the servomotor. There are several versions of the invention. An essential feature common to all versions is that the stationary optical subassembly containing the camera would also contain a spatial window, at the focal plane of the objective lens, that would pass only a selected portion of the image. In one version

  16. Feasibility analysis of high resolution tissue image registration using 3-D synthetic data

    Directory of Open Access Journals (Sweden)

    Yachna Sharma

    2011-01-01

    Full Text Available Background: Registration of high-resolution tissue images is a critical step in the 3D analysis of protein expression. Because the distance between images (~4-5μm thickness of a tissue section is nearly the size of the objects of interest (~10-20μm cancer cell nucleus, a given object is often not present in both of two adjacent images. Without consistent correspondence of objects between images, registration becomes a difficult task. This work assesses the feasibility of current registration techniques for such images. Methods: We generated high resolution synthetic 3-D image data sets emulating the constraints in real data. We applied multiple registration methods to the synthetic image data sets and assessed the registration performance of three techniques (i.e., mutual information (MI, kernel density estimate (KDE method [1], and principal component analysis (PCA at various slice thicknesses (with increments of 1μm in order to quantify the limitations of each method. Results: Our analysis shows that PCA, when combined with the KDE method based on nuclei centers, aligns images corresponding to 5μm thick sections with acceptable accuracy. We also note that registration error increases rapidly with increasing distance between images, and that the choice of feature points which are conserved between slices improves performance. Conclusions: We used simulation to help select appropriate features and methods for image registration by estimating best-case-scenario errors for given data constraints in histological images. The results of this study suggest that much of the difficulty of stained tissue registration can be reduced to the problem of accurately identifying feature points, such as the center of nuclei.

  17. Fast high-resolution MR imaging using the snapshot-FLASH MR sequence

    International Nuclear Information System (INIS)

    Matthaei, D.; Haase, A.; Henrich, D.; Duhmke, E.

    1990-01-01

    Snapshot, fast low-angle short (FLASH) MR imaging using an accelerated FLASH-MR sequence provides MR images with measuring times far below 1 second. The short TE of this sequence prevents susceptibility artifacts in gradient-echo imaging. In this paper variations of the sequence are shown that provide high resolution images with T1-weighted IR, T2-weighted SE, and chemical shift (CHESS) contrast sequences. METHODS AND MATERIALS: A whole-body 2-T system (Bruker-Medizintechnik) were used in combination with a 60-cm gradient system (providing gradient strength of 5 mT/m) to study healthy volunteers. The measuring time for a 256 x 256 image matrix was 800 msec. This sequence has been used in combination with T1-weighted IR, T2-weighted SE, and CHESS variations

  18. Automatic Centerline Extraction of Coverd Roads by Surrounding Objects from High Resolution Satellite Images

    Science.gov (United States)

    Kamangir, H.; Momeni, M.; Satari, M.

    2017-09-01

    This paper presents an automatic method to extract road centerline networks from high and very high resolution satellite images. The present paper addresses the automated extraction roads covered with multiple natural and artificial objects such as trees, vehicles and either shadows of buildings or trees. In order to have a precise road extraction, this method implements three stages including: classification of images based on maximum likelihood algorithm to categorize images into interested classes, modification process on classified images by connected component and morphological operators to extract pixels of desired objects by removing undesirable pixels of each class, and finally line extraction based on RANSAC algorithm. In order to evaluate performance of the proposed method, the generated results are compared with ground truth road map as a reference. The evaluation performance of the proposed method using representative test images show completeness values ranging between 77% and 93%.

  19. Phase contrast enhanced high resolution X-ray imaging and tomography of soft tissue

    International Nuclear Information System (INIS)

    Jakubek, Jan; Granja, Carlos; Dammer, Jiri; Hanus, Robert; Holy, Tomas; Pospisil, Stanislav; Tykva, Richard; Uher, Josef; Vykydal, Zdenek

    2007-01-01

    A tabletop system for digital high resolution and high sensitivity X-ray micro-radiography has been developed for small-animal and soft-tissue imaging. The system is based on a micro-focus X-ray tube and the semiconductor hybrid position sensitive Medipix2 pixel detector. Transmission radiography imaging, conventionally based only on absorption, is enhanced by exploiting phase-shift effects induced in the X-ray beam traversing the sample. Phase contrast imaging is realized by object edge enhancement. DAQ is done by a novel fully integrated USB-based readout with online image generation. Improved signal reconstruction techniques make use of advanced statistical data analysis, enhanced beam hardening correction and direct thickness calibration of individual pixels. 2D and 3D micro-tomography images of several biological samples demonstrate the applicability of the system for biological and medical purposes including in-vivo and time dependent physiological studies in the life sciences

  20. A low-cost, high-resolution, video-rate imaging optical radar

    Energy Technology Data Exchange (ETDEWEB)

    Sackos, J.T.; Nellums, R.O.; Lebien, S.M.; Diegert, C.F. [Sandia National Labs., Albuquerque, NM (United States); Grantham, J.W.; Monson, T. [Air Force Research Lab., Eglin AFB, FL (United States)

    1998-04-01

    Sandia National Laboratories has developed a unique type of portable low-cost range imaging optical radar (laser radar or LADAR). This innovative sensor is comprised of an active floodlight scene illuminator and an image intensified CCD camera receiver. It is a solid-state device (no moving parts) that offers significant size, performance, reliability, and simplicity advantages over other types of 3-D imaging sensors. This unique flash LADAR is based on low cost, commercially available hardware, and is well suited for many government and commercial uses. This paper presents an update of Sandia`s development of the Scannerless Range Imager technology and applications, and discusses the progress that has been made in evolving the sensor into a compact, low, cost, high-resolution, video rate Laser Dynamic Range Imager.

  1. Hierarchical graph-based segmentation for extracting road networks from high-resolution satellite images

    Science.gov (United States)

    Alshehhi, Rasha; Marpu, Prashanth Reddy

    2017-04-01

    Extraction of road networks in urban areas from remotely sensed imagery plays an important role in many urban applications (e.g. road navigation, geometric correction of urban remote sensing images, updating geographic information systems, etc.). It is normally difficult to accurately differentiate road from its background due to the complex geometry of the buildings and the acquisition geometry of the sensor. In this paper, we present a new method for extracting roads from high-resolution imagery based on hierarchical graph-based image segmentation. The proposed method consists of: 1. Extracting features (e.g., using Gabor and morphological filtering) to enhance the contrast between road and non-road pixels, 2. Graph-based segmentation consisting of (i) Constructing a graph representation of the image based on initial segmentation and (ii) Hierarchical merging and splitting of image segments based on color and shape features, and 3. Post-processing to remove irregularities in the extracted road segments. Experiments are conducted on three challenging datasets of high-resolution images to demonstrate the proposed method and compare with other similar approaches. The results demonstrate the validity and superior performance of the proposed method for road extraction in urban areas.

  2. High resolution in-vivo imaging of skin with full field optical coherence tomography

    Science.gov (United States)

    Dalimier, E.; Bruhat, Alexis; Grieve, K.; Harms, F.; Martins, F.; Boccara, C.

    2014-03-01

    Full-field OCT (FFOCT) has the ability to provide en-face images with a very good axial sectioning as well as a very high transverse resolution (about 1 microns in all directions). Therefore it offers the possibility to visualize biological tissues with very high resolution both on the axial native view, and on vertical reconstructed sections. Here we investigated the potential dermatological applications of in-vivo skin imaging with FFOCT. A commercial FFOCT device was adapted for the in-vivo acquisition of stacks of images on the arm, hand and finger. Several subjects of different benign and pathological skin conditions were tested. The images allowed measurement of the stratum corneum and epidermis thicknesses, measurement of the stratum corneum refractive index, size measurement and count of the keratinocytes, visualization of the dermal-epidermal junction, and visualization of the melanin granules and of the melanocytes. Skins with different pigmentations could be discriminated and skin pathologies such as eczema could be identified. The very high resolution offered by FFOCT both on axial native images and vertical reconstructed sections allows for the visualization and measurement of a set of parameters useful for cosmetology and dermatology. In particular, FFOCT is a potential tool for the understanding and monitoring of skin hydration and pigmentation, as well as skin inflammation.

  3. High-resolution x-ray imaging using a structured scintillator

    Energy Technology Data Exchange (ETDEWEB)

    Hormozan, Yashar, E-mail: hormozan@kth.se; Sychugov, Ilya; Linnros, Jan [Materials and Nano Physics, School of Information and Communication Technology, KTH Royal Institute of Technology, Electrum 229, Kista, Stockholm SE-16440 (Sweden)

    2016-02-15

    Purpose: In this study, the authors introduce a new generation of finely structured scintillators with a very high spatial resolution (a few micrometers) compared to conventional scintillators, yet maintaining a thick absorbing layer for improved detectivity. Methods: Their concept is based on a 2D array of high aspect ratio pores which are fabricated by ICP etching, with spacings (pitches) of a few micrometers, on silicon and oxidation of the pore walls. The pores were subsequently filled by melting of powdered CsI(Tl), as the scintillating agent. In order to couple the secondary emitted photons of the back of the scintillator array to a CCD device, having a larger pixel size than the pore pitch, an open optical microscope with adjustable magnification was designed and implemented. By imaging a sharp edge, the authors were able to calculate the modulation transfer function (MTF) of this finely structured scintillator. Results: The x-ray images of individually resolved pores suggest that they have been almost uniformly filled, and the MTF measurements show the feasibility of a few microns spatial resolution imaging, as set by the scintillator pore size. Compared to existing techniques utilizing CsI needles as a structured scintillator, their results imply an almost sevenfold improvement in resolution. Finally, high resolution images, taken by their detector, are presented. Conclusions: The presented work successfully shows the functionality of their detector concept for high resolution imaging and further fabrication developments are most likely to result in higher quantum efficiencies.

  4. Influence of seismic diffraction for high-resolution imaging: applications in offshore Malaysia

    Science.gov (United States)

    Bashir, Yasir; Ghosh, Deva Prasad; Sum, Chow Weng

    2018-04-01

    Small-scale geological discontinuities are not easy to detect and image in seismic data, as these features represent themselves as diffracted rather than reflected waves. However, the combined reflected and diffracted image contains full wave information and is of great value to an interpreter, for instance enabling the identification of faults, fractures, and surfaces in built-up carbonate. Although diffraction imaging has a resolution below the typical seismic wavelength, if the wavelength is much smaller than the width of the discontinuity then interference effects can be ignored, as they would not play a role in generating the seismic diffractions. In this paper, by means of synthetic examples and real data, the potential of diffraction separation for high-resolution seismic imaging is revealed and choosing the best method for preserving diffraction are discussed. We illustrate the accuracy of separating diffractions using the plane-wave destruction (PWD) and dip frequency filtering (DFF) techniques on data from the Sarawak Basin, a carbonate field. PWD is able to preserve the diffraction more intelligently than DFF, which is proven in the results by the model and real data. The final results illustrate the effectiveness of diffraction separation and possible imaging for high-resolution seismic data of small but significant geological features.

  5. Fusion of shallow and deep features for classification of high-resolution remote sensing images

    Science.gov (United States)

    Gao, Lang; Tian, Tian; Sun, Xiao; Li, Hang

    2018-02-01

    Effective spectral and spatial pixel description plays a significant role for the classification of high resolution remote sensing images. Current approaches of pixel-based feature extraction are of two main kinds: one includes the widelyused principal component analysis (PCA) and gray level co-occurrence matrix (GLCM) as the representative of the shallow spectral and shape features, and the other refers to the deep learning-based methods which employ deep neural networks and have made great promotion on classification accuracy. However, the former traditional features are insufficient to depict complex distribution of high resolution images, while the deep features demand plenty of samples to train the network otherwise over fitting easily occurs if only limited samples are involved in the training. In view of the above, we propose a GLCM-based convolution neural network (CNN) approach to extract features and implement classification for high resolution remote sensing images. The employment of GLCM is able to represent the original images and eliminate redundant information and undesired noises. Meanwhile, taking shallow features as the input of deep network will contribute to a better guidance and interpretability. In consideration of the amount of samples, some strategies such as L2 regularization and dropout methods are used to prevent over-fitting. The fine-tuning strategy is also used in our study to reduce training time and further enhance the generalization performance of the network. Experiments with popular data sets such as PaviaU data validate that our proposed method leads to a performance improvement compared to individual involved approaches.

  6. SPMK AND GRABCUT BASED TARGET EXTRACTION FROM HIGH RESOLUTION REMOTE SENSING IMAGES

    Directory of Open Access Journals (Sweden)

    W. Cui

    2016-06-01

    Full Text Available Target detection and extraction from high resolution remote sensing images is a basic and wide needed application. In this paper, to improve the efficiency of image interpretation, we propose a detection and segmentation combined method to realize semi-automatic target extraction. We introduce the dense transform color scale invariant feature transform (TC-SIFT descriptor and the histogram of oriented gradients (HOG & HSV descriptor to characterize the spatial structure and color information of the targets. With the k-means cluster method, we get the bag of visual words, and then, we adopt three levels’ spatial pyramid (SP to represent the target patch. After gathering lots of different kinds of target image patches from many high resolution UAV images, and using the TC-SIFT-SP and the multi-scale HOG & HSV feature, we constructed the SVM classifier to detect the target. In this paper, we take buildings as the targets. Experiment results show that the target detection accuracy of buildings can reach to above 90%. Based on the detection results which are a series of rectangle regions of the targets. We select the rectangle regions as candidates for foreground and adopt the GrabCut based and boundary regularized semi-auto interactive segmentation algorithm to get the accurate boundary of the target. Experiment results show its accuracy and efficiency. It can be an effective way for some special targets extraction.

  7. Spmk and Grabcut Based Target Extraction from High Resolution Remote Sensing Images

    Science.gov (United States)

    Cui, Weihong; Wang, Guofeng; Feng, Chenyi; Zheng, Yiwei; Li, Jonathan; Zhang, Yi

    2016-06-01

    Target detection and extraction from high resolution remote sensing images is a basic and wide needed application. In this paper, to improve the efficiency of image interpretation, we propose a detection and segmentation combined method to realize semi-automatic target extraction. We introduce the dense transform color scale invariant feature transform (TC-SIFT) descriptor and the histogram of oriented gradients (HOG) & HSV descriptor to characterize the spatial structure and color information of the targets. With the k-means cluster method, we get the bag of visual words, and then, we adopt three levels' spatial pyramid (SP) to represent the target patch. After gathering lots of different kinds of target image patches from many high resolution UAV images, and using the TC-SIFT-SP and the multi-scale HOG & HSV feature, we constructed the SVM classifier to detect the target. In this paper, we take buildings as the targets. Experiment results show that the target detection accuracy of buildings can reach to above 90%. Based on the detection results which are a series of rectangle regions of the targets. We select the rectangle regions as candidates for foreground and adopt the GrabCut based and boundary regularized semi-auto interactive segmentation algorithm to get the accurate boundary of the target. Experiment results show its accuracy and efficiency. It can be an effective way for some special targets extraction.

  8. STUDY ON HIGH RESOLUTION MEMBRANE-BASED DIFFRACTIVE OPTICAL IMAGING ON GEOSTATIONARY ORBIT

    Directory of Open Access Journals (Sweden)

    J. Jiao

    2017-05-01

    Full Text Available Diffractive optical imaging technology provides a new way to realize high resolution earth observation on geostationary orbit. There are a lot of benefits to use the membrane-based diffractive optical element in ultra-large aperture optical imaging system, including loose tolerance, light weight, easy folding and unfolding, which make it easy to realize high resolution earth observation on geostationary orbit. The implementation of this technology also faces some challenges, including the configuration of the diffractive primary lens, the development of high diffraction efficiency membrane-based diffractive optical elements, and the correction of the chromatic aberration of the diffractive optical elements. Aiming at the configuration of the diffractive primary lens, the “6+1” petal-type unfold scheme is proposed, which consider the compression ratio, the blocking rate and the development complexity. For high diffraction efficiency membrane-based diffractive optical element, a self-collimating method is proposed. The diffraction efficiency is more than 90 % of the theoretical value. For the chromatic aberration correction problem, an optimization method based on schupmann is proposed to make the imaging spectral bandwidth in visible light band reach 100 nm. The above conclusions have reference significance for the development of ultra-large aperture diffractive optical imaging system.

  9. A flexible and accurate digital volume correlation method applicable to high-resolution volumetric images

    Science.gov (United States)

    Pan, Bing; Wang, Bo

    2017-10-01

    Digital volume correlation (DVC) is a powerful technique for quantifying interior deformation within solid opaque materials and biological tissues. In the last two decades, great efforts have been made to improve the accuracy and efficiency of the DVC algorithm. However, there is still a lack of a flexible, robust and accurate version that can be efficiently implemented in personal computers with limited RAM. This paper proposes an advanced DVC method that can realize accurate full-field internal deformation measurement applicable to high-resolution volume images with up to billions of voxels. Specifically, a novel layer-wise reliability-guided displacement tracking strategy combined with dynamic data management is presented to guide the DVC computation from slice to slice. The displacements at specified calculation points in each layer are computed using the advanced 3D inverse-compositional Gauss-Newton algorithm with the complete initial guess of the deformation vector accurately predicted from the computed calculation points. Since only limited slices of interest in the reference and deformed volume images rather than the whole volume images are required, the DVC calculation can thus be efficiently implemented on personal computers. The flexibility, accuracy and efficiency of the presented DVC approach are demonstrated by analyzing computer-simulated and experimentally obtained high-resolution volume images.

  10. High-Resolution Imaging System (HiRIS) based on H9500 PSPMT

    International Nuclear Information System (INIS)

    Trotta, C.; Massari, R.; Trinci, G.; Palermo, N.; Boccalini, S.; Scopinaro, F.; Soluri, A.

    2008-01-01

    The H8500 PhotoMultiplier Tube (PMT) from Hamamatsu has been used in the last years to assemble several scintigraphic devices in order to achieve high-resolution gamma cameras. If the detector is coupled to discrete scintillator with millimetric pixel size, the resulting charge distribution that emerges is not properly sampled by its anodes (6x6 mm 2 ). The new position sensitive PMT H9500, with its 3x3 mm 2 anodes, allows a better charge distribution sampling, improving both spatial resolution and linearity of the system. In this paper, we investigate the imaging performances of the H9500 PMT coupled with a CsI(Tl) array having 1 mm pixel size and compare the results with the same scintillator coupled with H8500 PMT. A portable imaging system named HiRIS (High-Resolution Imaging System) was then realized using a miniaturized readout electronic. Thanks to its lightness, it can be easily used in Medical Imaging. We used HiRIS, together with a rotating system, to carry out a tomographic reconstruction of the biodistribution of a radiopharmaceutical in rats

  11. Study on High Resolution Membrane-Based Diffractive Optical Imaging on Geostationary Orbit

    Science.gov (United States)

    Jiao, J.; Wang, B.; Wang, C.; Zhang, Y.; Jin, J.; Liu, Z.; Su, Y.; Ruan, N.

    2017-05-01

    Diffractive optical imaging technology provides a new way to realize high resolution earth observation on geostationary orbit. There are a lot of benefits to use the membrane-based diffractive optical element in ultra-large aperture optical imaging system, including loose tolerance, light weight, easy folding and unfolding, which make it easy to realize high resolution earth observation on geostationary orbit. The implementation of this technology also faces some challenges, including the configuration of the diffractive primary lens, the development of high diffraction efficiency membrane-based diffractive optical elements, and the correction of the chromatic aberration of the diffractive optical elements. Aiming at the configuration of the diffractive primary lens, the "6+1" petal-type unfold scheme is proposed, which consider the compression ratio, the blocking rate and the development complexity. For high diffraction efficiency membrane-based diffractive optical element, a self-collimating method is proposed. The diffraction efficiency is more than 90 % of the theoretical value. For the chromatic aberration correction problem, an optimization method based on schupmann is proposed to make the imaging spectral bandwidth in visible light band reach 100 nm. The above conclusions have reference significance for the development of ultra-large aperture diffractive optical imaging system.

  12. Time-optimized high-resolution readout-segmented diffusion tensor imaging.

    Directory of Open Access Journals (Sweden)

    Gernot Reishofer

    Full Text Available Readout-segmented echo planar imaging with 2D navigator-based reacquisition is an uprising technique enabling the sampling of high-resolution diffusion images with reduced susceptibility artifacts. However, low signal from the small voxels and long scan times hamper the clinical applicability. Therefore, we introduce a regularization algorithm based on total variation that is applied directly on the entire diffusion tensor. The spatially varying regularization parameter is determined automatically dependent on spatial variations in signal-to-noise ratio thus, avoiding over- or under-regularization. Information about the noise distribution in the diffusion tensor is extracted from the diffusion weighted images by means of complex independent component analysis. Moreover, the combination of those features enables processing of the diffusion data absolutely user independent. Tractography from in vivo data and from a software phantom demonstrate the advantage of the spatially varying regularization compared to un-regularized data with respect to parameters relevant for fiber-tracking such as Mean Fiber Length, Track Count, Volume and Voxel Count. Specifically, for in vivo data findings suggest that tractography results from the regularized diffusion tensor based on one measurement (16 min generates results comparable to the un-regularized data with three averages (48 min. This significant reduction in scan time renders high resolution (1 × 1 × 2.5 mm(3 diffusion tensor imaging of the entire brain applicable in a clinical context.

  13. High-resolution ultrasound imaging and noninvasive optoacoustic monitoring of blood variables in peripheral blood vessels

    Science.gov (United States)

    Petrov, Irene Y.; Petrov, Yuriy; Prough, Donald S.; Esenaliev, Rinat O.

    2011-03-01

    Ultrasound imaging is being widely used in clinics to obtain diagnostic information non-invasively and in real time. A high-resolution ultrasound imaging platform, Vevo (VisualSonics, Inc.) provides in vivo, real-time images with exceptional resolution (up to 30 microns) using high-frequency transducers (up to 80 MHz). Recently, we built optoacoustic systems for probing radial artery and peripheral veins that can be used for noninvasive monitoring of total hemoglobin concentration, oxyhemoglobin saturation, and concentration of important endogenous and exogenous chromophores (such as ICG). In this work we used the high-resolution ultrasound imaging system Vevo 770 for visualization of the radial artery and peripheral veins and acquired corresponding optoacoustic signals from them using the optoacoustic systems. Analysis of the optoacoustic data with a specially developed algorithm allowed for measurement of blood oxygenation in the blood vessels as well as for continuous, real-time monitoring of arterial and venous blood oxygenation. Our results indicate that: 1) the optoacoustic technique (unlike pure optical approaches and other noninvasive techniques) is capable of accurate peripheral venous oxygenation measurement; and 2) peripheral venous oxygenation is dependent on skin temperature and local hemodynamics. Moreover, we performed for the first time (to the best of our knowledge) a comparative study of optoacoustic arterial oximetry and a standard pulse oximeter in humans and demonstrated superior performance of the optoacoustic arterial oximeter, in particular at low blood flow.

  14. Automatic Detection of Changes on Mars Surface from High-Resolution Orbital Images

    Science.gov (United States)

    Sidiropoulos, Panagiotis; Muller, Jan-Peter

    2017-04-01

    Over the last 40 years Mars has been extensively mapped by several NASA and ESA orbital missions, generating a large image dataset comprised of approximately 500,000 high-resolution images (of citizen science can be employed for training and verification it is unsuitable for planetwide systematic change detection. In this work, we introduce a novel approach in planetary image change detection, which involves a batch-mode automatic change detection pipeline that identifies regions that have changed. This is tested in anger, on tens of thousands of high-resolution images over the MC11 quadrangle [5], acquired by CTX, HRSC, THEMIS-VIS and MOC-NA instruments [1]. We will present results which indicate a substantial level of activity in this region of Mars, including instances of dynamic natural phenomena that haven't been cataloged in the planetary science literature before. We will demonstrate the potential and usefulness of such an automatic approach in planetary science change detection. Acknowledgments: The research leading to these results has received funding from the STFC "MSSL Consolidated Grant" ST/K000977/1 and partial support from the European Union's Seventh Framework Programme (FP7/2007-2013) under iMars grant agreement n° 607379. References: [1] P. Sidiropoulos and J. - P. Muller (2015) On the status of orbital high-resolution repeat imaging of Mars for the observation of dynamic surface processes. Planetary and Space Science, 117: 207-222. [2] O. Aharonson, et al. (2003) Slope streak formation and dust deposition rates on Mars. Journal of Geophysical Research: Planets, 108(E12):5138 [3] A. McEwen, et al. (2011) Seasonal flows on warm martian slopes. Science, 333 (6043): 740-743. [4] S. Byrne, et al. (2009) Distribution of mid-latitude ground ice on mars from new impact craters. Science, 325(5948):1674-1676. [5] K. Gwinner, et al (2016) The High Resolution Stereo Camera (HRSC) of Mars Express and its approach to science analysis and mapping for Mars and

  15. Three dimensional imaging of damage in structural materials using high resolution micro-tomography

    Energy Technology Data Exchange (ETDEWEB)

    Buffiere, J.-Y. [GEMPPM UMR CNRS 5510, INSA Lyon, 20 Av. A. Einstein, 69621 Villeurbanne Cedex (France)]. E-mail: jean-yves.buffiere@insa-lyon.fr; Proudhon, H. [GEMPPM UMR CNRS 5510, INSA Lyon, 20 Av. A. Einstein, 69621 Villeurbanne Cedex (France); Ferrie, E. [GEMPPM UMR CNRS 5510, INSA Lyon, 20 Av. A. Einstein, 69621 Villeurbanne Cedex (France); Ludwig, W. [GEMPPM UMR CNRS 5510, INSA Lyon, 20 Av. A. Einstein, 69621 Villeurbanne Cedex (France); Maire, E. [GEMPPM UMR CNRS 5510, INSA Lyon, 20 Av. A. Einstein, 69621 Villeurbanne Cedex (France); Cloetens, P. [ESRF Grenoble (France)

    2005-08-15

    This paper presents recent results showing the ability of high resolution synchrotron X-ray micro-tomography to image damage initiation and development during mechanical loading of structural metallic materials. First, the initiation, growth and coalescence of porosities in the bulk of two metal matrix composites have been imaged at different stages of a tensile test. Quantitative data on damage development has been obtained and related to the nature of the composite matrix. Second, three dimensional images of fatigue crack have been obtained in situ for two different Al alloys submitted to fretting and/or uniaxial in situ fatigue. The analysis of those images shows the strong interaction of the cracks with the local microstructure and provides unique experimental data for modelling the behaviour of such short cracks.

  16. Three dimensional imaging of damage in structural materials using high resolution micro-tomography

    International Nuclear Information System (INIS)

    Buffiere, J.-Y.; Proudhon, H.; Ferrie, E.; Ludwig, W.; Maire, E.; Cloetens, P.

    2005-01-01

    This paper presents recent results showing the ability of high resolution synchrotron X-ray micro-tomography to image damage initiation and development during mechanical loading of structural metallic materials. First, the initiation, growth and coalescence of porosities in the bulk of two metal matrix composites have been imaged at different stages of a tensile test. Quantitative data on damage development has been obtained and related to the nature of the composite matrix. Second, three dimensional images of fatigue crack have been obtained in situ for two different Al alloys submitted to fretting and/or uniaxial in situ fatigue. The analysis of those images shows the strong interaction of the cracks with the local microstructure and provides unique experimental data for modelling the behaviour of such short cracks

  17. High-resolution real-time sonography and MR imaging in assessment of osteocartilaginous exostoses

    International Nuclear Information System (INIS)

    Prayer, L.M.; Kropej, D.H.; Wimberger, D.M.; Wurnig, C.F.; Kramer, J.; Kainberger, F.M.; Braun, O.H.; Ritschl, P.W.; Imhof, H.

    1991-01-01

    High-resolution real-time ultrasonography (US) and MR imaging, using both spin-echo (SE) and gradient-echo (GE) sequences, were performed prospectively in 14 patients with solitary osteocartilaginous exostoses to assess cartilage cap thickness and bursa formation. Results were compared to surgical and histopathologic findings in all cases. Both US and MR imaging were useful in evaluating exostotic cartilage cap thickness, which is supposed to be the most reliable sign of malignant transformation. Hyaline cartilage matrix had distinctive features in US and MR imaging caused by its specific histologic composition. The formation of bursae over the protruding exostoses, which results in pain and clinically could raise the suspicion of growth and malignant transformation, was demonstrated best using GE sequences. MR imaging was thus superior to US in the detection of bursa formation. (orig.)

  18. High resolution photoacoustic imaging of microvasculature in normal and cancerous bladders

    Science.gov (United States)

    Xie, Zhixing; Roberts, William; Carson, Paul L.; Liu, Xiaojun; Tao, Chao; Wang, Xueding

    2013-03-01

    We explored the potential of an emerging laser-based technology, photoacoustic imaging (PAI), for bladder cancer diagnosis through high resolution imaging of microvasculature in the interior bladder tissues. Images of ex vivo canine bladders demonstrated the excellent ability of PAI to map three-dimensional microvasculature in optically scattering bladder tissues. By comparing the results from human bladder specimens affected by cancer to those from the normal control, the feasibility of PAI in differentiating malignant from benign bladder tissues was explored. The reported distinctive morphometric characteristics of tumor microvasculature can be seen in the images from cancer samples, suggesting that PAI may allow in vivo assessment of neoangiogenesis that is closely associated with bladder cancer generation and progression. By presenting subsurface morphological and physiological information in bladder tissues, PAI, when performed in a similar way to that in conventional endoscopy, provides an opportunity for improved diagnosis, staging and treatment guidance of bladder cancer.

  19. High-resolution real-time sonography and MR imaging in assessment of osteocartilaginous exostoses

    Energy Technology Data Exchange (ETDEWEB)

    Prayer, L.M.; Kropej, D.H.; Wimberger, D.M.; Wurnig, C.F.; Kramer, J.; Kainberger, F.M.; Braun, O.H.; Ritschl, P.W.; Imhof, H. (Vienna Univ. (Austria). Depts. of Radiology, Orthopedic Surgery, Pathology, and the MR Inst.)

    1991-09-01

    High-resolution real-time ultrasonography (US) and MR imaging, using both spin-echo (SE) and gradient-echo (GE) sequences, were performed prospectively in 14 patients with solitary osteocartilaginous exostoses to assess cartilage cap thickness and bursa formation. Results were compared to surgical and histopathologic findings in all cases. Both US and MR imaging were useful in evaluating exostotic cartilage cap thickness, which is supposed to be the most reliable sign of malignant transformation. Hyaline cartilage matrix had distinctive features in US and MR imaging caused by its specific histologic composition. The formation of bursae over the protruding exostoses, which results in pain and clinically could raise the suspicion of growth and malignant transformation, was demonstrated best using GE sequences. MR imaging was thus superior to US in the detection of bursa formation. (orig.).

  20. High resolution satellite image indexing and retrieval using SURF features and bag of visual words

    Science.gov (United States)

    Bouteldja, Samia; Kourgli, Assia

    2017-03-01

    In this paper, we evaluate the performance of SURF descriptor for high resolution satellite imagery (HRSI) retrieval through a BoVW model on a land-use/land-cover (LULC) dataset. Local feature approaches such as SIFT and SURF descriptors can deal with a large variation of scale, rotation and illumination of the images, providing, therefore, a better discriminative power and retrieval efficiency than global features, especially for HRSI which contain a great range of objects and spatial patterns. Moreover, we combine SURF and color features to improve the retrieval accuracy, and we propose to learn a category-specific dictionary for each image category which results in a more discriminative image representation and boosts the image retrieval performance.

  1. Illumination invariant feature point matching for high-resolution planetary remote sensing images

    Science.gov (United States)

    Wu, Bo; Zeng, Hai; Hu, Han

    2018-03-01

    Despite its success with regular close-range and remote-sensing images, the scale-invariant feature transform (SIFT) algorithm is essentially not invariant to illumination differences due to the use of gradients for feature description. In planetary remote sensing imagery, which normally lacks sufficient textural information, salient regions are generally triggered by the shadow effects of keypoints, reducing the matching performance of classical SIFT. Based on the observation of dual peaks in a histogram of the dominant orientations of SIFT keypoints, this paper proposes an illumination-invariant SIFT matching method for high-resolution planetary remote sensing images. First, as the peaks in the orientation histogram are generally aligned closely with the sub-solar azimuth angle at the time of image collection, an adaptive suppression Gaussian function is tuned to level the histogram and thereby alleviate the differences in illumination caused by a changing solar angle. Next, the suppression function is incorporated into the original SIFT procedure for obtaining feature descriptors, which are used for initial image matching. Finally, as the distribution of feature descriptors changes after anisotropic suppression, and the ratio check used for matching and outlier removal in classical SIFT may produce inferior results, this paper proposes an improved matching procedure based on cross-checking and template image matching. The experimental results for several high-resolution remote sensing images from both the Moon and Mars, with illumination differences of 20°-180°, reveal that the proposed method retrieves about 40%-60% more matches than the classical SIFT method. The proposed method is of significance for matching or co-registration of planetary remote sensing images for their synergistic use in various applications. It also has the potential to be useful for flyby and rover images by integrating with the affine invariant feature detectors.

  2. High-resolution three-dimensional imaging and analysis of rock falls in Yosemite valley, California

    Science.gov (United States)

    Stock, Gregory M.; Bawden, G.W.; Green, J.K.; Hanson, E.; Downing, G.; Collins, B.D.; Bond, S.; Leslar, M.

    2011-01-01

    We present quantitative analyses of recent large rock falls in Yosemite Valley, California, using integrated high-resolution imaging techniques. Rock falls commonly occur from the glacially sculpted granitic walls of Yosemite Valley, modifying this iconic landscape but also posing signifi cant potential hazards and risks. Two large rock falls occurred from the cliff beneath Glacier Point in eastern Yosemite Valley on 7 and 8 October 2008, causing minor injuries and damaging structures in a developed area. We used a combination of gigapixel photography, airborne laser scanning (ALS) data, and ground-based terrestrial laser scanning (TLS) data to characterize the rock-fall detachment surface and adjacent cliff area, quantify the rock-fall volume, evaluate the geologic structure that contributed to failure, and assess the likely failure mode. We merged the ALS and TLS data to resolve the complex, vertical to overhanging topography of the Glacier Point area in three dimensions, and integrated these data with gigapixel photographs to fully image the cliff face in high resolution. Three-dimensional analysis of repeat TLS data reveals that the cumulative failure consisted of a near-planar rock slab with a maximum length of 69.0 m, a mean thickness of 2.1 m, a detachment surface area of 2750 m2, and a volume of 5663 ?? 36 m3. Failure occurred along a surfaceparallel, vertically oriented sheeting joint in a clear example of granitic exfoliation. Stress concentration at crack tips likely propagated fractures through the partially attached slab, leading to failure. Our results demonstrate the utility of high-resolution imaging techniques for quantifying far-range (>1 km) rock falls occurring from the largely inaccessible, vertical rock faces of Yosemite Valley, and for providing highly accurate and precise data needed for rock-fall hazard assessment. ?? 2011 Geological Society of America.

  3. ANALYSIS OF THE RADIOMETRIC RESPONSE OF ORANGE TREE CROWN IN HYPERSPECTRAL UAV IMAGES

    Directory of Open Access Journals (Sweden)

    N. N. Imai

    2017-10-01

    Full Text Available High spatial resolution remote sensing images acquired by drones are highly relevant data source in many applications. However, strong variations of radiometric values are difficult to correct in hyperspectral images. Honkavaara et al. (2013 presented a radiometric block adjustment method in which hyperspectral images taken from remotely piloted aerial systems – RPAS were processed both geometrically and radiometrically to produce a georeferenced mosaic in which the standard Reflectance Factor for the nadir is represented. The plants crowns in permanent cultivation show complex variations since the density of shadows and the irradiance of the surface vary due to the geometry of illumination and the geometry of the arrangement of branches and leaves. An evaluation of the radiometric quality of the mosaic of an orange plantation produced using images captured by a hyperspectral imager based on a tunable Fabry-Pérot interferometer and applying the radiometric block adjustment method, was performed. A high-resolution UAV based hyperspectral survey was carried out in an orange-producing farm located in Santa Cruz do Rio Pardo, state of São Paulo, Brazil. A set of 25 narrow spectral bands with 2.5 cm of GSD images were acquired. Trend analysis was applied to the values of a sample of transects extracted from plants appearing in the mosaic. The results of these trend analysis on the pixels distributed along transects on orange tree crown showed the reflectance factor presented a slightly trend, but the coefficients of the polynomials are very small, so the quality of mosaic is good enough for many applications.

  4. Michelson Interferometer for Global High-Resolution Thermospheric Imaging (MIGHTI): Monolithic Interferometer Design and Test

    Science.gov (United States)

    Harlander, John M.; Englert, Christoph R.; Brown, Charles M.; Marr, Kenneth D.; Miller, Ian J.; Zastera, Vaz; Bach, Bernhard W.; Mende, Stephen B.

    2017-10-01

    The design and laboratory tests of the interferometers for the Michelson Interferometer for Global High-resolution Thermospheric Imaging (MIGHTI) instrument which measures thermospheric wind and temperature for the NASA-sponsored Ionospheric Connection (ICON) Explorer mission are described. The monolithic interferometers use the Doppler Asymmetric Spatial Heterodyne (DASH) Spectroscopy technique for wind measurements and a multi-element photometer approach to measure thermospheric temperatures. The DASH technique and overall optical design of the MIGHTI instrument are described in an overview followed by details on the design, element fabrication, assembly, laboratory tests and thermal control of the interferometers that are the heart of MIGHTI.

  5. High-resolution imaging and target designation through clouds or smoke

    Science.gov (United States)

    Perry, Michael D.

    2003-01-01

    A method and system of combining gated intensifiers and advances in solid-state, short-pulse laser technology, compact systems capable of producing high resolution (i.e., approximately less than 20 centimeters) optical images through a scattering medium such as dense clouds, fog, smoke, etc. may be achieved from air or ground based platforms. Laser target designation through a scattering medium is also enabled by utilizing a short pulse illumination laser and a relatively minor change to the detectors on laser guided munitions.

  6. Change Detection in High-Resolution Remote Sensing Images Using Levene-Test and Fuzzy Evaluation

    Science.gov (United States)

    Wang, G. H.; Wang, H. B.; Fan, W. F.; Liu, Y.; Liu, H. J.

    2018-04-01

    High-resolution remote sensing images possess complex spatial structure and rich texture information, according to these, this paper presents a new method of change detection based on Levene-Test and Fuzzy Evaluation. It first got map-spots by segmenting two overlapping images which had been pretreated, extracted features such as spectrum and texture. Then, changed information of all map-spots which had been treated by the Levene-Test were counted to obtain the candidate changed regions, hue information (H component) was extracted through the IHS Transform and conducted change vector analysis combined with the texture information. Eventually, the threshold was confirmed by an iteration method, the subject degrees of candidate changed regions were calculated, and final change regions were determined. In this paper experimental results on multi-temporal ZY-3 high-resolution images of some area in Jiangsu Province show that: Through extracting map-spots of larger difference as the candidate changed regions, Levene-Test decreases the computing load, improves the precision of change detection, and shows better fault-tolerant capacity for those unchanged regions which are of relatively large differences. The combination of Hue-texture features and fuzzy evaluation method can effectively decrease omissions and deficiencies, improve the precision of change detection.

  7. Computational high-resolution heart phantoms for medical imaging and dosimetry simulations

    Energy Technology Data Exchange (ETDEWEB)

    Gu Songxiang; Kyprianou, Iacovos [Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD (United States); Gupta, Rajiv, E-mail: songxiang.gu@fda.hhs.gov, E-mail: rgupta1@partners.org, E-mail: iacovos.kyprianou@fda.hhs.gov [Massachusetts General Hospital, Boston, MA (United States)

    2011-09-21

    Cardiovascular disease in general and coronary artery disease (CAD) in particular, are the leading cause of death worldwide. They are principally diagnosed using either invasive percutaneous transluminal coronary angiograms or non-invasive computed tomography angiograms (CTA). Minimally invasive therapies for CAD such as angioplasty and stenting are rendered under fluoroscopic guidance. Both invasive and non-invasive imaging modalities employ ionizing radiation and there is concern for deterministic and stochastic effects of radiation. Accurate simulation to optimize image quality with minimal radiation dose requires detailed, gender-specific anthropomorphic phantoms with anatomically correct heart and associated vasculature. Such phantoms are currently unavailable. This paper describes an open source heart phantom development platform based on a graphical user interface. Using this platform, we have developed seven high-resolution cardiac/coronary artery phantoms for imaging and dosimetry from seven high-quality CTA datasets. To extract a phantom from a coronary CTA, the relationship between the intensity distribution of the myocardium, the ventricles and the coronary arteries is identified via histogram analysis of the CTA images. By further refining the segmentation using anatomy-specific criteria such as vesselness, connectivity criteria required by the coronary tree and image operations such as active contours, we are able to capture excellent detail within our phantoms. For example, in one of the female heart phantoms, as many as 100 coronary artery branches could be identified. Triangular meshes are fitted to segmented high-resolution CTA data. We have also developed a visualization tool for adding stenotic lesions to the coronaries. The male and female heart phantoms generated so far have been cross-registered and entered in the mesh-based Virtual Family of phantoms with matched age/gender information. Any phantom in this family, along with user

  8. High resolution reconstruction of PET images using the iterative OSEM algorithm

    International Nuclear Information System (INIS)

    Doll, J.; Bublitz, O.; Werling, A.; Haberkorn, U.; Semmler, W.; Adam, L.E.; Pennsylvania Univ., Philadelphia, PA; Brix, G.

    2004-01-01

    Aim: Improvement of the spatial resolution in positron emission tomography (PET) by incorporation of the image-forming characteristics of the scanner into the process of iterative image reconstruction. Methods: All measurements were performed at the whole-body PET system ECAT EXACT HR + in 3D mode. The acquired 3D sinograms were sorted into 2D sinograms by means of the Fourier rebinning (FORE) algorithm, which allows the usage of 2D algorithms for image reconstruction. The scanner characteristics were described by a spatially variant line-spread function (LSF), which was determined from activated copper-64 line sources. This information was used to model the physical degradation processes in PET measurements during the course of 2D image reconstruction with the iterative OSEM algorithm. To assess the performance of the high-resolution OSEM algorithm, phantom measurements performed at a cylinder phantom, the hotspot Jaszczack phantom, and the 3D Hoffmann brain phantom as well as different patient examinations were analyzed. Results: Scanner characteristics could be described by a Gaussian-shaped LSF with a full-width at half-maximum increasing from 4.8 mm at the center to 5.5 mm at a radial distance of 10.5 cm. Incorporation of the LSF into the iteration formula resulted in a markedly improved resolution of 3.0 and 3.5 mm, respectively. The evaluation of phantom and patient studies showed that the high-resolution OSEM algorithm not only lead to a better contrast resolution in the reconstructed activity distributions but also to an improved accuracy in the quantification of activity concentrations in small structures without leading to an amplification of image noise or even the occurrence of image artifacts. Conclusion: The spatial and contrast resolution of PET scans can markedly be improved by the presented image restauration algorithm, which is of special interest for the examination of both patients with brain disorders and small animals. (orig.)

  9. Statistical dynamic image reconstruction in state-of-the-art high-resolution PET

    International Nuclear Information System (INIS)

    Rahmim, Arman; Cheng, J-C; Blinder, Stephan; Camborde, Maurie-Laure; Sossi, Vesna

    2005-01-01

    Modern high-resolution PET is now more than ever in need of scrutiny into the nature and limitations of the imaging modality itself as well as image reconstruction techniques. In this work, we have reviewed, analysed and addressed the following three considerations within the particular context of state-of-the-art dynamic PET imaging: (i) the typical average numbers of events per line-of-response (LOR) are now (much) less than unity (ii) due to the physical and biological decay of the activity distribution, one requires robust and efficient reconstruction algorithms applicable to a wide range of statistics and (iii) the computational considerations in dynamic imaging are much enhanced (i.e., more frames to be stored and reconstructed). Within the framework of statistical image reconstruction, we have argued theoretically and shown experimentally that the sinogram non-negativity constraint (when using the delayed-coincidence and/or scatter-subtraction techniques) is especially expected to result in an overestimation bias. Subsequently, two schemes are considered: (a) subtraction techniques in which an image non-negativity constraint has been imposed and (b) implementation of random and scatter estimates inside the reconstruction algorithms, thus enabling direct processing of Poisson-distributed prompts. Both techniques are able to remove the aforementioned bias, while the latter, being better conditioned theoretically, is able to exhibit superior noise characteristics. We have also elaborated upon and verified the applicability of the accelerated list-mode image reconstruction method as a powerful solution for accurate, robust and efficient dynamic reconstructions of high-resolution data (as well as a number of additional benefits in the context of state-of-the-art PET)

  10. Multimodal adaptive optics for depth-enhanced high-resolution ophthalmic imaging

    Science.gov (United States)

    Hammer, Daniel X.; Mujat, Mircea; Iftimia, Nicusor V.; Lue, Niyom; Ferguson, R. Daniel

    2010-02-01

    We developed a multimodal adaptive optics (AO) retinal imager for diagnosis of retinal diseases, including glaucoma, diabetic retinopathy (DR), age-related macular degeneration (AMD), and retinitis pigmentosa (RP). The development represents the first ever high performance AO system constructed that combines AO-corrected scanning laser ophthalmoscopy (SLO) and swept source Fourier domain optical coherence tomography (SSOCT) imaging modes in a single compact clinical prototype platform. The SSOCT channel operates at a wavelength of 1 μm for increased penetration and visualization of the choriocapillaris and choroid, sites of major disease activity for DR and wet AMD. The system is designed to operate on a broad clinical population with a dual deformable mirror (DM) configuration that allows simultaneous low- and high-order aberration correction. The system also includes a wide field line scanning ophthalmoscope (LSO) for initial screening, target identification, and global orientation; an integrated retinal tracker (RT) to stabilize the SLO, OCT, and LSO imaging fields in the presence of rotational eye motion; and a high-resolution LCD-based fixation target for presentation to the subject of stimuli and other visual cues. The system was tested in a limited number of human subjects without retinal disease for performance optimization and validation. The system was able to resolve and quantify cone photoreceptors across the macula to within ~0.5 deg (~100-150 μm) of the fovea, image and delineate ten retinal layers, and penetrate to resolve targets deep into the choroid. In addition to instrument hardware development, analysis algorithms were developed for efficient information extraction from clinical imaging sessions, with functionality including automated image registration, photoreceptor counting, strip and montage stitching, and segmentation. The system provides clinicians and researchers with high-resolution, high performance adaptive optics imaging to help

  11. Computational high-resolution heart phantoms for medical imaging and dosimetry simulations

    International Nuclear Information System (INIS)

    Gu Songxiang; Kyprianou, Iacovos; Gupta, Rajiv

    2011-01-01

    Cardiovascular disease in general and coronary artery disease (CAD) in particular, are the leading cause of death worldwide. They are principally diagnosed using either invasive percutaneous transluminal coronary angiograms or non-invasive computed tomography angiograms (CTA). Minimally invasive therapies for CAD such as angioplasty and stenting are rendered under fluoroscopic guidance. Both invasive and non-invasive imaging modalities employ ionizing radiation and there is concern for deterministic and stochastic effects of radiation. Accurate simulation to optimize image quality with minimal radiation dose requires detailed, gender-specific anthropomorphic phantoms with anatomically correct heart and associated vasculature. Such phantoms are currently unavailable. This paper describes an open source heart phantom development platform based on a graphical user interface. Using this platform, we have developed seven high-resolution cardiac/coronary artery phantoms for imaging and dosimetry from seven high-quality CTA datasets. To extract a phantom from a coronary CTA, the relationship between the intensity distribution of the myocardium, the ventricles and the coronary arteries is identified via histogram analysis of the CTA images. By further refining the segmentation using anatomy-specific criteria such as vesselness, connectivity criteria required by the coronary tree and image operations such as active contours, we are able to capture excellent detail within our phantoms. For example, in one of the female heart phantoms, as many as 100 coronary artery branches could be identified. Triangular meshes are fitted to segmented high-resolution CTA data. We have also developed a visualization tool for adding stenotic lesions to the coronaries. The male and female heart phantoms generated so far have been cross-registered and entered in the mesh-based Virtual Family of phantoms with matched age/gender information. Any phantom in this family, along with user

  12. STUDY ON BUILDING EXTRACTION FROM HIGH-RESOLUTION IMAGES USING MBI

    Directory of Open Access Journals (Sweden)

    Z. Ding

    2018-04-01

    Full Text Available Building extraction from high resolution remote sensing images is a hot research topic in the field of photogrammetry and remote sensing. However, the diversity and complexity of buildings make building extraction methods still face challenges in terms of accuracy, efficiency, and so on. In this study, a new building extraction framework based on MBI and combined with image segmentation techniques, spectral constraint, shadow constraint, and shape constraint is proposed. In order to verify the proposed method, worldview-2, GF-2, GF-1 remote sensing images covered Xiamen Software Park were used for building extraction experiments. Experimental results indicate that the proposed method improve the original MBI significantly, and the correct rate is over 86 %. Furthermore, the proposed framework reduces the false alarms by 42 % on average compared to the performance of the original MBI.

  13. High resolution iridocorneal angle imaging system by axicon lens assisted gonioscopy

    Science.gov (United States)

    Perinchery, Sandeep Menon; Shinde, Anant; Fu, Chan Yiu; Jeesmond Hong, Xun Jie; Baskaran, Mani; Aung, Tin; Murukeshan, Vadakke Matham

    2016-07-01

    Direct visualization and assessment of the iridocorneal angle (ICA) region with high resolution is important for the clinical evaluation of glaucoma. However, the current clinical imaging systems for ICA do not provide sufficient structural details due to their poor resolution. The key challenges in achieving high quality ICA imaging are its location in the anterior region of the eye and the occurrence of total internal reflection due to refractive index difference between cornea and air. Here, we report an indirect axicon assisted gonioscopy imaging probe with white light illumination. The illustrated results with this probe shows significantly improved visualization of structures in the ICA including TM region, compared to the current available tools. It could reveal critical details of ICA and expected to aid management by providing information that is complementary to angle photography and gonioscopy.

  14. Ribbon scanning confocal for high-speed high-resolution volume imaging of brain.

    Directory of Open Access Journals (Sweden)

    Alan M Watson

    Full Text Available Whole-brain imaging is becoming a fundamental means of experimental insight; however, achieving subcellular resolution imagery in a reasonable time window has not been possible. We describe the first application of multicolor ribbon scanning confocal methods to collect high-resolution volume images of chemically cleared brains. We demonstrate that ribbon scanning collects images over ten times faster than conventional high speed confocal systems but with equivalent spectral and spatial resolution. Further, using this technology, we reconstruct large volumes of mouse brain infected with encephalitic alphaviruses and demonstrate that regions of the brain with abundant viral replication were inaccessible to vascular perfusion. This reveals that the destruction or collapse of large regions of brain micro vasculature may contribute to the severe disease caused by Venezuelan equine encephalitis virus. Visualization of this fundamental impact of infection would not be possible without sampling at subcellular resolution within large brain volumes.

  15. Simulation of high-resolution X-ray microscopic images for improved alignment

    International Nuclear Information System (INIS)

    Song Xiangxia; Zhang Xiaobo; Liu Gang; Cheng Xianchao; Li Wenjie; Guan Yong; Liu Ying; Xiong Ying; Tian Yangchao

    2011-01-01

    The introduction of precision optical elements to X-ray microscopes necessitates fine realignment to achieve optimal high-resolution imaging. In this paper, we demonstrate a numerical method for simulating image formation that facilitates alignment of the source, condenser, objective lens, and CCD camera. This algorithm, based on ray-tracing and Rayleigh-Sommerfeld diffraction theory, is applied to simulate the X-ray microscope beamline U7A of National Synchrotron Radiation Laboratory (NSRL). The simulations and imaging experiments show that the algorithm is useful for guiding experimental adjustments. Our alignment simulation method is an essential tool for the transmission X-ray microscope (TXM) with optical elements and may also be useful for the alignment of optical components in other modes of microscopy.

  16. Tip radius preservation for high resolution imaging in amplitude modulation atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, Jorge R., E-mail: jorge.rr@cea.cu [Instituto de Ciencia de Materiales de Madrid, Sor Juana Inés de la Cruz 3, Canto Blanco, 28049 Madrid, España (Spain)

    2014-07-28

    The acquisition of high resolution images in atomic force microscopy (AFM) is correlated to the cantilever's tip shape, size, and imaging conditions. In this work, relative tip wear is quantified based on the evolution of a direct experimental observable in amplitude modulation atomic force microscopy, i.e., the critical amplitude. We further show that the scanning parameters required to guarantee a maximum compressive stress that is lower than the yield/fracture stress of the tip can be estimated via experimental observables. In both counts, the optimized parameters to acquire AFM images while preserving the tip are discussed. The results are validated experimentally by employing IgG antibodies as a model system.

  17. Experience of modeling relief of impact lunar crater Aitken based on high-resolution orbital images

    Science.gov (United States)

    Mukhametshin, Ch R.; Semenov, A. A.; Shpekin, M. I.

    2018-05-01

    The paper presents the author’s results of modeling the relief of lunar Aitken crater on the basis of high-resolution orbital images. The images were taken in the frame of the “Apollo” program in 1971-1972 and delivered to the Earth by crews of “Apollo-15” and “Apollo-17”. The authors used the images obtained by metric and panoramic cameras. The main result is the careful study of the unusual features of Aitken crater on models created by the authors with the computer program, developed by “Agisoft Photoscan”. The paper shows what possibilities are opened with 3D models in the study of the structure of impact craters on the Moon. In particular, for the first time, the authors managed to show the structure of the glacier-like tongue in Aitken crater, which is regarded as one of the promising areas of the Moon for the forthcoming expeditions.

  18. High resolution depth reconstruction from monocular images and sparse point clouds using deep convolutional neural network

    Science.gov (United States)

    Dimitrievski, Martin; Goossens, Bart; Veelaert, Peter; Philips, Wilfried

    2017-09-01

    Understanding the 3D structure of the environment is advantageous for many tasks in the field of robotics and autonomous vehicles. From the robot's point of view, 3D perception is often formulated as a depth image reconstruction problem. In the literature, dense depth images are often recovered deterministically from stereo image disparities. Other systems use an expensive LiDAR sensor to produce accurate, but semi-sparse depth images. With the advent of deep learning there have also been attempts to estimate depth by only using monocular images. In this paper we combine the best of the two worlds, focusing on a combination of monocular images and low cost LiDAR point clouds. We explore the idea that very sparse depth information accurately captures the global scene structure while variations in image patches can be used to reconstruct local depth to a high resolution. The main contribution of this paper is a supervised learning depth reconstruction system based on a deep convolutional neural network. The network is trained on RGB image patches reinforced with sparse depth information and the output is a depth estimate for each pixel. Using image and point cloud data from the KITTI vision dataset we are able to learn a correspondence between local RGB information and local depth, while at the same time preserving the global scene structure. Our results are evaluated on sequences from the KITTI dataset and our own recordings using a low cost camera and LiDAR setup.

  19. Hyperspectral forest monitoring and imaging implications

    Science.gov (United States)

    Goodenough, David G.; Bannon, David

    2014-05-01

    The forest biome is vital to the health of the earth. Canada and the United States have a combined forest area of 4.68 Mkm2. The monitoring of these forest resources has become increasingly complex. Hyperspectral remote sensing can provide a wealth of improved information products to land managers to make more informed decisions. Research in this area has demonstrated that hyperspectral remote sensing can be used to create more accurate products for forest inventory (major forest species), forest health, foliar biochemistry, biomass, and aboveground carbon. Operationally there is a requirement for a mix of airborne and satellite approaches. This paper surveys some methods and results in hyperspectral sensing of forests and discusses the implications for space initiatives with hyperspectral sensing

  20. Feasibility of fabricating personalized 3D-printed bone grafts guided by high-resolution imaging

    Science.gov (United States)

    Hong, Abigail L.; Newman, Benjamin T.; Khalid, Arbab; Teter, Olivia M.; Kobe, Elizabeth A.; Shukurova, Malika; Shinde, Rohit; Sipzner, Daniel; Pignolo, Robert J.; Udupa, Jayaram K.; Rajapakse, Chamith S.

    2017-03-01

    Current methods of bone graft treatment for critical size bone defects can give way to several clinical complications such as limited available bone for autografts, non-matching bone structure, lack of strength which can compromise a patient's skeletal system, and sterilization processes that can prevent osteogenesis in the case of allografts. We intend to overcome these disadvantages by generating a patient-specific 3D printed bone graft guided by high-resolution medical imaging. Our synthetic model allows us to customize the graft for the patients' macro- and microstructure and correct any structural deficiencies in the re-meshing process. These 3D-printed models can presumptively serve as the scaffolding for human mesenchymal stem cell (hMSC) engraftment in order to facilitate bone growth. We performed highresolution CT imaging of a cadaveric human proximal femur at 0.030-mm isotropic voxels. We used these images to generate a 3D computer model that mimics bone geometry from micro to macro scale represented by STereoLithography (STL) format. These models were then reformatted to a format that can be interpreted by the 3D printer. To assess how much of the microstructure was replicated, 3D-printed models were re-imaged using micro-CT at 0.025-mm isotropic voxels and compared to original high-resolution CT images used to generate the 3D model in 32 sub-regions. We found a strong correlation between 3D-printed bone volume and volume of bone in the original images used for 3D printing (R2 = 0.97). We expect to further refine our approach with additional testing to create a viable synthetic bone graft with clinical functionality.

  1. High-Resolution 3 T MR Microscopy Imaging of Arterial Walls

    International Nuclear Information System (INIS)

    Sailer, Johannes; Rand, Thomas; Berg, Andreas; Sulzbacher, Irene; Peloschek, P.; Hoelzenbein, Thomas; Lammer, Johannes

    2006-01-01

    Purpose. To achieve a high spatial resolution in MR imaging that allows for clear visualization of anatomy and even histology and documentation of plaque morphology in in vitro samples from patients with advanced atherosclerosis. A further objective of our study was to evaluate whether T2-weighted high-resolution MR imaging can provide accurate classification of atherosclerotic plaque according to a modified American Heart Association classification. Methods. T2-weighted images of arteries were obtained in 13 in vitro specimens using a 3 T MR unit (Medspec 300 Avance/Bruker, Ettlingen, Germany) combined with a dedicated MR microscopy system. Measurement parameters were: T2-weighted sequences with TR 3.5 sec, TE 15-120 msec; field of view (FOV) 1.4 x 1.4; NEX 8; matrix 192; and slice thickness 600 μm. MR measurements were compared with corresponding histologic sections. Results. We achieved excellent spatial and contrast resolution in all specimens. We found high agreement between MR images and histology with regard to the morphology and extent of intimal proliferations in all but 2 specimens. We could differentiate fibrous caps and calcifications from lipid plaque components based on differences in signal intensity in order to differentiate hard and soft atheromatous plaques. Hard plaques with predominantly intimal calcifications were found in 7 specimens, and soft plaques with a cholesterol/lipid content in 5 cases. In all specimens, hemorrhage or thrombus formation, and fibrotic and hyalinized tissue could be detected on both MR imaging and histopathology. Conclusion. High-resolution, high-field MR imaging of arterial walls demonstrates the morphologic features, volume, and extent of intimal proliferations with high spatial and contrast resolution in in vitro specimens and can differentiate hard and soft plaques

  2. Efficient methodologies for system matrix modelling in iterative image reconstruction for rotating high-resolution PET

    Energy Technology Data Exchange (ETDEWEB)

    Ortuno, J E; Kontaxakis, G; Rubio, J L; Santos, A [Departamento de Ingenieria Electronica (DIE), Universidad Politecnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid (Spain); Guerra, P [Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid (Spain)], E-mail: juanen@die.upm.es

    2010-04-07

    A fully 3D iterative image reconstruction algorithm has been developed for high-resolution PET cameras composed of pixelated scintillator crystal arrays and rotating planar detectors, based on the ordered subsets approach. The associated system matrix is precalculated with Monte Carlo methods that incorporate physical effects not included in analytical models, such as positron range effects and interaction of the incident gammas with the scintillator material. Custom Monte Carlo methodologies have been developed and optimized for modelling of system matrices for fast iterative image reconstruction adapted to specific scanner geometries, without redundant calculations. According to the methodology proposed here, only one-eighth of the voxels within two central transaxial slices need to be modelled in detail. The rest of the system matrix elements can be obtained with the aid of axial symmetries and redundancies, as well as in-plane symmetries within transaxial slices. Sparse matrix techniques for the non-zero system matrix elements are employed, allowing for fast execution of the image reconstruction process. This 3D image reconstruction scheme has been compared in terms of image quality to a 2D fast implementation of the OSEM algorithm combined with Fourier rebinning approaches. This work confirms the superiority of fully 3D OSEM in terms of spatial resolution, contrast recovery and noise reduction as compared to conventional 2D approaches based on rebinning schemes. At the same time it demonstrates that fully 3D methodologies can be efficiently applied to the image reconstruction problem for high-resolution rotational PET cameras by applying accurate pre-calculated system models and taking advantage of the system's symmetries.

  3. MWIR hyperspectral imaging with the MIDAS instrument

    Science.gov (United States)

    Honniball, Casey I.; Wright, Rob; Lucey, Paul G.

    2017-02-01

    Hyperspectral imaging (HSI) in the Mid-Wave InfraRed (MWIR, 3-5 microns) can provide information on a variety of science applications from determining the chemical composition of lava lakes on Jupiter's moon Io, to investigating the amount of carbon liberated into the Earth's atmosphere during a wildfire. The limited signal available in the MWIR presents technical challenges to achieving high signal-to-noise ratios, and therefore it is typically necessary to cryogenically cool MWIR instruments. With recent improvements in microbolometer technology and emerging interferometric techniques, we have shown that uncooled microbolometers coupled with a Sagnac interferometer can achieve high signal-to-noise ratios for long-wave infrared HSI. To explore if this technique can be applied to the MWIR, this project, with funding from NASA, has built the Miniaturized Infrared Detector of Atmospheric Species (MIDAS). Standard characterization tests are used to compare MIDAS against a cryogenically cooled photon detector to evaluate the MIDAS instruments' ability to quantify gas concentrations. Atmospheric radiative transfer codes are in development to explore the limitations of MIDAS and identify the range of science objectives that MIDAS will most likely excel at. We will simulate science applications with gas cells filled with varying gas concentrations and varying source temperatures to verify our results from lab characterization and our atmospheric modeling code.

  4. Resolving Mixed Algal Species in Hyperspectral Images

    Directory of Open Access Journals (Sweden)

    Mehrube Mehrubeoglu

    2013-12-01

    Full Text Available We investigated a lab-based hyperspectral imaging system’s response from pure (single and mixed (two algal cultures containing known algae types and volumetric combinations to characterize the system’s performance. The spectral response to volumetric changes in single and combinations of algal mixtures with known ratios were tested. Constrained linear spectral unmixing was applied to extract the algal content of the mixtures based on abundances that produced the lowest root mean square error. Percent prediction error was computed as the difference between actual percent volumetric content and abundances at minimum RMS error. Best prediction errors were computed as 0.4%, 0.4% and 6.3% for the mixed spectra from three independent experiments. The worst prediction errors were found as 5.6%, 5.4% and 13.4% for the same order of experiments. Additionally, Beer-Lambert’s law was utilized to relate transmittance to different volumes of pure algal suspensions demonstrating linear logarithmic trends for optical property measurements.

  5. Secure and Efficient Transmission of Hyperspectral Images for Geosciences Applications

    Science.gov (United States)

    Carpentieri, Bruno; Pizzolante, Raffaele

    2017-12-01

    Hyperspectral images are acquired through air-borne or space-borne special cameras (sensors) that collect information coming from the electromagnetic spectrum of the observed terrains. Hyperspectral remote sensing and hyperspectral images are used for a wide range of purposes: originally, they were developed for mining applications and for geology because of the capability of this kind of images to correctly identify various types of underground minerals by analysing the reflected spectrums, but their usage has spread in other application fields, such as ecology, military and surveillance, historical research and even archaeology. The large amount of data obtained by the hyperspectral sensors, the fact that these images are acquired at a high cost by air-borne sensors and that they are generally transmitted to a base, makes it necessary to provide an efficient and secure transmission protocol. In this paper, we propose a novel framework that allows secure and efficient transmission of hyperspectral images, by combining a reversible invisible watermarking scheme, used in conjunction with digital signature techniques, and a state-of-art predictive-based lossless compression algorithm.

  6. Semantic labeling of high-resolution aerial images using an ensemble of fully convolutional networks

    Science.gov (United States)

    Sun, Xiaofeng; Shen, Shuhan; Lin, Xiangguo; Hu, Zhanyi

    2017-10-01

    High-resolution remote sensing data classification has been a challenging and promising research topic in the community of remote sensing. In recent years, with the rapid advances of deep learning, remarkable progress has been made in this field, which facilitates a transition from hand-crafted features designing to an automatic end-to-end learning. A deep fully convolutional networks (FCNs) based ensemble learning method is proposed to label the high-resolution aerial images. To fully tap the potentials of FCNs, both the Visual Geometry Group network and a deeper residual network, ResNet, are employed. Furthermore, to enlarge training samples with diversity and gain better generalization, in addition to the commonly used data augmentation methods (e.g., rotation, multiscale, and aspect ratio) in the literature, aerial images from other datasets are also collected for cross-scene learning. Finally, we combine these learned models to form an effective FCN ensemble and refine the results using a fully connected conditional random field graph model. Experiments on the ISPRS 2-D Semantic Labeling Contest dataset show that our proposed end-to-end classification method achieves an overall accuracy of 90.7%, a state-of-the-art in the field.

  7. A high-resolution photoelectron imaging and theoretical study of CP- and C2P.

    Science.gov (United States)

    Czekner, Joseph; Cheung, Ling Fung; Johnson, Eric L; Fortenberry, Ryan C; Wang, Lai-Sheng

    2018-01-28

    The discovery of interstellar anions has been a milestone in astrochemistry. In the search for new interstellar anions, CP - and C 2 P - are viable candidates since their corresponding neutrals have already been detected astronomically. However, scarce data exist for these negatively charged species. Here we report the electron affinities of CP and C 2 P along with the vibrational frequencies of their anions using high-resolution photoelectron imaging. These results along with previous spectroscopic data of the neutral species are used further to benchmark very accurate quartic force field quantum chemical methods that are applied to CP, CP - , C 2 P, and two electronic states of C 2 P - . The predicted electron affinities, vibrational frequencies, and rotational constants are in excellent agreement with the experimental data. The electron affinities of CP (2.8508 ± 0.0007 eV) and C 2 P (2.6328 ± 0.0006 eV) are measured accurately and found to be quite high, suggesting that the CP - and C 2 P - anions are thermodynamically stable and possibly observable. The current study suggests that the combination of high-resolution photoelectron imaging and quantum chemistry can be used to determine accurate molecular constants for exotic radical species of astronomical interest.

  8. High resolution MR imaging of bladder cancer: new criteria for determining depth of wall invasion

    International Nuclear Information System (INIS)

    Suh, Chang Hae; Kressel, Herbert Y

    1993-01-01

    To establish new criteria to determine the depth of bladder cancer as well as to obtain the findings of each stage of bladder cancer we reviewed high resolution MR images of 18 bladder cancer patients including seven cases (26%) with superficial bladder wall invasion. All MR scans were done before biopsy or surgery. Multiple layers of the bladder wall (inner black, middle white, outer black) were demonstrated in 11 cases out of a total 18 cases. Thickening of the middle layer caused by tumor infiltration or edema of lamina propria was seen in 8 of 12 patients with stage T2 or greater, and was suggestive of superficial muscle invasion when multiple layers were demonstrated. Disruption of outer layer (as well as inner layer) and external protrusion of tumor itself were indicative of perivesical invasion. When multiple layers were not demonstrated, the depth of tumor invasion could not be judged. High resolution MR imaging can depict submucosal invasion, muscle invasion, and perivesical invasion secondary to bladder cancer

  9. Rapid Target Detection in High Resolution Remote Sensing Images Using Yolo Model

    Science.gov (United States)

    Wu, Z.; Chen, X.; Gao, Y.; Li, Y.

    2018-04-01

    Object detection in high resolution remote sensing images is a fundamental and challenging problem in the field of remote sensing imagery analysis for civil and military application due to the complex neighboring environments, which can cause the recognition algorithms to mistake irrelevant ground objects for target objects. Deep Convolution Neural Network(DCNN) is the hotspot in object detection for its powerful ability of feature extraction and has achieved state-of-the-art results in Computer Vision. Common pipeline of object detection based on DCNN consists of region proposal, CNN feature extraction, region classification and post processing. YOLO model frames object detection as a regression problem, using a single CNN predicts bounding boxes and class probabilities in an end-to-end way and make the predict faster. In this paper, a YOLO based model is used for object detection in high resolution sensing images. The experiments on NWPU VHR-10 dataset and our airport/airplane dataset gain from GoogleEarth show that, compare with the common pipeline, the proposed model speeds up the detection process and have good accuracy.

  10. Molecular imaging: High-resolution detectors for early diagnosis and therapy monitoring of breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Garibaldi, F. [Istituto Superiore di Sanita and INFN-gr. Sanita-Rome (Italy)]. E-mail: Franco.garibaldi@iss.infn.it; Cisbani, E. [Istituto Superiore di Sanita and INFN-gr. Sanita-Rome (Italy); Colilli, S. [Istituto Superiore di Sanita and INFN-gr. Sanita-Rome (Italy); Cusanno, F. [Istituto Superiore di Sanita and INFN-gr. Sanita-Rome (Italy); Fratoni, R. [Istituto Superiore di Sanita and INFN-gr. Sanita-Rome (Italy); Giuliani, F. [Istituto Superiore di Sanita and INFN-gr. Sanita-Rome (Italy); Gricia, M. [Istituto Superiore di Sanita and INFN-gr. Sanita-Rome (Italy); Lucentini, M. [Istituto Superiore di Sanita and INFN-gr. Sanita-Rome (Italy); Fratoni, R. [Istituto Superiore di Sanita and INFN-gr. Sanita-Rome (Italy); Lo Meo, S. [Istituto Superiore di Sanita and INFN-gr. Sanita-Rome (Italy); Magliozzi, M.L. [Istituto Superiore di Sanita and INFN-gr. Sanita-Rome (Italy); Santanvenere, F. [Istituto Superiore di Sanita and INFN-gr. Sanita-Rome (Italy); Cinti, M.N. [University La Sapienza, Rome (Italy); Pani, R. [University La Sapienza, Rome (Italy); Pellegrini, R. [University La Sapienza, Rome (Italy); Simonetti, G. [University Tor Vergata, Rome (Italy); Schillaci, O. [University Tor Vergata, Rome (Italy); Del Vecchio, S. [CNR Napoli, Naples (Italy); Salvatore, M. [CNR Napoli, Naples (Italy); Majewski, S. [Jefferson Lab, Newport News, VA (United States); Lanza, R.C. [Massachusetts Institute of Technology, Cambridge, MA (United States); De Vincentis, G. [University La Sapienza, Rome (Italy); Scopinaro, F. [University La Sapienza, Rome (Italy)

    2006-12-20

    Dedicated high-resolution detectors are required for detection of small cancerous breast tumours by molecular imaging with radionuclides. Absorptive collimation is normally applied in imaging single photon emitters, but it results in a strong reduction in detection efficiency. Systems based on electronic collimation are complex and expensive. For these reasons simulations and measurements have been performed to design optimised dedicated high-resolution mini gamma camera. Critical parameters are contrast and signal-to-noise ratio (SNR). Intrinsic performance (spatial resolution, pixel identification, and response linearity and uniformity) were first optimised. Pixellated scintillator arrays (NaI(Tl)) of different pixel size were coupled to arrays of PSPMTs with different anode pad dimensions (6x6 mm{sup 2} and 3x3 mm{sup 2}). Detectors having a field of view (FOV) of 100x100 mm{sup 2} and 150x200 mm{sup 2} were designed and built. The electronic system allows read out of all the anode pad signals. The collimation technique was then considered and limits of coded aperture option were studied. Preliminary results are presented.

  11. Animals In Synchrotrons: Overcoming Challenges For High-Resolution, Live, Small-Animal Imaging

    International Nuclear Information System (INIS)

    Donnelley, Martin; Parsons, David; Morgan, Kaye; Siu, Karen

    2010-01-01

    Physiological studies in small animals can be complicated, but the complexity is increased dramatically when performing live-animal synchrotron X-ray imaging studies. Our group has extensive experience in high-resolution live-animal imaging at the Japanese SPring-8 synchrotron, primarily examining airways in two-dimensions. These experiments normally image an area of 1.8 mmx1.2 mm at a pixel resolution of 0.45 μm and are performed with live, intact, anaesthetized mice.There are unique challenges in this experimental setting. Importantly, experiments must be performed in an isolated imaging hutch not specifically designed for small-animal imaging. This requires equipment adapted to remotely monitor animals, maintain their anesthesia, and deliver test substances while collecting images. The horizontal synchrotron X-ray beam has a fixed location and orientation that limits experimental flexibility. The extremely high resolution makes locating anatomical regions-of-interest slow and can result in a high radiation dose, and at this level of magnification small animal movements produce motion-artifacts that can render acquired images unusable. Here we describe our experimental techniques and how we have overcome several challenges involved in performing live mouse synchrotron imaging.Experiments have tested different mouse strains, with hairless strains minimizing overlying skin and hair artifacts. Different anesthetics have also be trialed due to the limited choices available at SPring-8. Tracheal-intubation methods have been refined and controlled-ventilation is now possible using a specialized small-animal ventilator. With appropriate animal restraint and respiratory-gating, motion-artifacts have been minimized. The animal orientation (supine vs. head-high) also appears to affect animal physiology, and can alter image quality. Our techniques and image quality at SPring-8 have dramatically improved and in the near future we plan to translate this experience to the

  12. Direct microCT imaging of non-mineralized connective tissues at high resolution.

    Science.gov (United States)

    Naveh, Gili R S; Brumfeld, Vlad; Dean, Mason; Shahar, Ron; Weiner, Steve

    2014-01-01

    The 3D imaging of soft tissues in their native state is challenging, especially when high resolution is required. An X-ray-based microCT is, to date, the best choice for high resolution 3D imaging of soft tissues. However, since X-ray attenuation of soft tissues is very low, contrasting enhancement using different staining materials is needed. The staining procedure, which also usually involves tissue fixation, causes unwanted and to some extent unknown tissue alterations. Here, we demonstrate that a method that enables 3D imaging of soft tissues without fixing and staining using an X-ray-based bench-top microCT can be applied to a variety of different tissues. With the sample mounted in a custom-made loading device inside a humidity chamber, we obtained soft tissue contrast and generated 3D images of fresh, soft tissues with a resolution of 1 micron voxel size. We identified three critical conditions which make it possible to image soft tissues: humidified environment, mechanical stabilization of the sample and phase enhancement. We demonstrate the capability of the technique using different specimens: an intervertebral disc, the non-mineralized growth plate, stingray tessellated radials (calcified cartilage) and the collagenous network of the periodontal ligament. Since the scanned specimen is fresh an interesting advantage of this technique is the ability to scan a specimen under load and track the changes of the different structures. This method offers a unique opportunity for obtaining valuable insights into 3D structure-function relationships of soft tissues.

  13. Hyperspectral imaging using the single-pixel Fourier transform technique

    Science.gov (United States)

    Jin, Senlin; Hui, Wangwei; Wang, Yunlong; Huang, Kaicheng; Shi, Qiushuai; Ying, Cuifeng; Liu, Dongqi; Ye, Qing; Zhou, Wenyuan; Tian, Jianguo

    2017-03-01

    Hyperspectral imaging technology is playing an increasingly important role in the fields of food analysis, medicine and biotechnology. To improve the speed of operation and increase the light throughput in a compact equipment structure, a Fourier transform hyperspectral imaging system based on a single-pixel technique is proposed in this study. Compared with current imaging spectrometry approaches, the proposed system has a wider spectral range (400-1100 nm), a better spectral resolution (1 nm) and requires fewer measurement data (a sample rate of 6.25%). The performance of this system was verified by its application to the non-destructive testing of potatoes.

  14. Hyperspectral imaging of the microscale distribution and dynamics of microphytobenthos in intertidal sediments

    KAUST Repository

    Chennu, Arjun; Fä rber, Paul; Volkenborn, Nils; Alnajjar, Mohammad Ahmad; Janssen, Felix; de Beer, Dirk; Polerecky, Lubos

    2013-01-01

    We describe a novel, field-deployable hyperspectral imaging system, called Hypersub, that allows noninvasive in situ mapping of the microphytobenthos (MPB) biomass distribution with a high spatial (sub-millimeter) and temporal (minutes) resolution over areas of 1 × 1 m. The biomass is derived from a log-transformed and near-infrared corrected reflectance hyperspectral index, which exhibits a linear relationship (R2 > 0.97) with the chlorophyll a (Chl a) concentration in the euphotic zone of the sediment and depends on the sediment grain size. Deployments of the system revealed that due to factors such as sediment topography, bioturbation, and grazing, the distribution of MPB in intertidal sediments is remarkably heterogeneous, with Chl a concentrations varying laterally by up to 400% of the average value over a distance of 1 cm. Furthermore, due to tidal cycling and diel light variability, MPB concentrations in the top 1 mm of sediments are very dynamic, changing by 40–80% over a few hours due to vertical migration. We argue that the high-resolution hyperspectral imaging method overcomes the inadequate resolution of traditional methods based on sedimentary Chl a extraction, and thus helps improve our understanding of the processes that control benthic primary production in coastal sediments.

  15. Hyperspectral imaging of the microscale distribution and dynamics of microphytobenthos in intertidal sediments

    KAUST Repository

    Chennu, Arjun

    2013-10-03

    We describe a novel, field-deployable hyperspectral imaging system, called Hypersub, that allows noninvasive in situ mapping of the microphytobenthos (MPB) biomass distribution with a high spatial (sub-millimeter) and temporal (minutes) resolution over areas of 1 × 1 m. The biomass is derived from a log-transformed and near-infrared corrected reflectance hyperspectral index, which exhibits a linear relationship (R2 > 0.97) with the chlorophyll a (Chl a) concentration in the euphotic zone of the sediment and depends on the sediment grain size. Deployments of the system revealed that due to factors such as sediment topography, bioturbation, and grazing, the distribution of MPB in intertidal sediments is remarkably heterogeneous, with Chl a concentrations varying laterally by up to 400% of the average value over a distance of 1 cm. Furthermore, due to tidal cycling and diel light variability, MPB concentrations in the top 1 mm of sediments are very dynamic, changing by 40–80% over a few hours due to vertical migration. We argue that the high-resolution hyperspectral imaging method overcomes the inadequate resolution of traditional methods based on sedimentary Chl a extraction, and thus helps improve our understanding of the processes that control benthic primary production in coastal sediments.

  16. High-resolution MR imaging of the knee at 3 T

    Energy Technology Data Exchange (ETDEWEB)

    Niitsu, M.; Nakai, T.; Ikeda, K.; Tang, G.Y.; Yoshioka, H.; Itai, Y. [Tsukuba Univ., Ibaraki (Japan). Dept. of Radiology

    2000-07-01

    In order to examine the practical feasibility of using a 3.0-T MR unit to obtain high-quality, high-resolution images of the knee joint, one human cadaveric and 5 porcine knees were imaged with the 3.0-T unit. Sets of T1-weighted spin echo images were obtained with in-plane resolution of 0.195x0.39 mm and an acquisition time of approximately 5 min. Two porcine knees were also imaged with the 1.0-T unit with an identical imaging protocol and the signal-to-noise (S/N) ratios were measured on images at 3 T and 1 T. The 3-T MR system provided detailed delineation of the knees. Deep layers of the medial collateral ligament and associated fine fibers beneath the medial and lateral collateral ligament were demarcated. We observed precise demonstration of the tibial attachment of the anterior cruciate ligament, irregularity of the meniscal free edge, and conjoint tendon formation together with the lateral collateral ligament and the biceps femoris tendon. Compared to the 1-T unit, the S/N ratio with the 3-T unit was increased by a factor of 1.39 to 1.72. Due to the potential advantage of obtaining detailed images, the 3-T MR system suggests a practical utility for fine demonstration of the knee morphology.

  17. High-resolution MR imaging of the knee at 3 T

    International Nuclear Information System (INIS)

    Niitsu, M.; Nakai, T.; Ikeda, K.; Tang, G.Y.; Yoshioka, H.; Itai, Y.

    2000-01-01

    In order to examine the practical feasibility of using a 3.0-T MR unit to obtain high-quality, high-resolution images of the knee joint, one human cadaveric and 5 porcine knees were imaged with the 3.0-T unit. Sets of T1-weighted spin echo images were obtained with in-plane resolution of 0.195x0.39 mm and an acquisition time of approximately 5 min. Two porcine knees were also imaged with the 1.0-T unit with an identical imaging protocol and the signal-to-noise (S/N) ratios were measured on images at 3 T and 1 T. The 3-T MR system provided detailed delineation of the knees. Deep layers of the medial collateral ligament and associated fine fibers beneath the medial and lateral collateral ligament were demarcated. We observed precise demonstration of the tibial attachment of the anterior cruciate ligament, irregularity of the meniscal free edge, and conjoint tendon formation together with the lateral collateral ligament and the biceps femoris tendon. Compared to the 1-T unit, the S/N ratio with the 3-T unit was increased by a factor of 1.39 to 1.72. Due to the potential advantage of obtaining detailed images, the 3-T MR system suggests a practical utility for fine demonstration of the knee morphology

  18. Application of ultra-fast high-resolution gated-image intensifiers to laser fusion studies

    International Nuclear Information System (INIS)

    Lieber, A.J.; Benjamin, R.F.; Sutphin, H.D.; McCall, G.H.

    1975-01-01

    Gated-image intensifiers for fast framing have found high utility in laser-target interaction studies. X-ray pinhole camera photographs which can record asymmetries of laser-target interactions have been instrumental in further system design. High-resolution high-speed x-ray images of laser irradiated targets are formed using pinhole optics and electronically amplified by proximity focused channelplate intensifiers before being recorded on film. Spectral resolution is obtained by filtering. In these applications shutter duration is determined by source duration. Electronic gating serves to reduce background thereby enhancing signal-to-noise ratio. Cameras are used to view the self light of the interaction but may also be used for shadowgraphs. Sources for shadowgraphs may be sequenced to obtain a series of pictures with effective rates of 10 10 frame/s. Multiple aperatures have been used to obtain stereo x-ray views, yielding three dimensional information about the interactions. (author)

  19. Utilizing boron nitride sheets as thin supports for high resolution imaging of nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yimin A; Kirkland, Angus I; Schaeffel, Franziska; Porfyrakis, Kyriakos; Young, Neil P; Briggs, G Andrew D; Warner, Jamie H, E-mail: Jamie.warner@materials.ox.ac.uk [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom)

    2011-05-13

    We demonstrate the use of thin BN sheets as supports for imaging nanocrystals using low voltage (80 kV) aberration-corrected high resolution transmission electron microscopy. This provides an alternative to the previously utilized 2D crystal supports of graphene and graphene oxide. A simple chemical exfoliation method is applied to get few layer boron nitride (BN) sheets with micrometer-sized dimensions. This generic approach of using BN sheets as supports is shown by depositing Mn doped ZnSe nanocrystals directly onto the BN sheets and resolving the atomic structure from both the ZnSe nanocrystals and the BN support. Phase contrast images reveal moire patterns of interference between the beams diffracted by the nanocrystals and the BN substrate that are used to determine the relative orientation of the nanocrystals with respect to the BN sheets and interference lattice planes. Double diffraction is observed and has been analyzed.

  20. Fine-pitch glass GEM for high-resolution X-ray imaging

    International Nuclear Information System (INIS)

    Fujiwara, T.; Toyokawa, H.; Mitsuya, Y.

    2016-01-01

    We have developed a fine-pitch glass gas electron multiplier (G-GEM) for high-resolution X-ray imaging. The fine-pitch G-GEM is made of a 400 μm thick photo-etchable glass substrate with 150 μm pitch holes. It is fabricated using the same wet etching technique as that for the standard G-GEM. In this work, we present the experimental results obtained with a single fine-pitch G-GEM with a 50 × 50 mm 2 effective area. We recorded an energy resolution of 16.2% and gas gain up to 5,500 when the detector was irradiated with 5.9 keV X-rays. We present a 50 × 50 mm 2 X-ray radiograph image acquired with a scintillation gas and optical readout system.

  1. Utilizing boron nitride sheets as thin supports for high resolution imaging of nanocrystals

    International Nuclear Information System (INIS)

    Wu, Yimin A; Kirkland, Angus I; Schaeffel, Franziska; Porfyrakis, Kyriakos; Young, Neil P; Briggs, G Andrew D; Warner, Jamie H

    2011-01-01

    We demonstrate the use of thin BN sheets as supports for imaging nanocrystals using low voltage (80 kV) aberration-corrected high resolution transmission electron microscopy. This provides an alternative to the previously utilized 2D crystal supports of graphene and graphene oxide. A simple chemical exfoliation method is applied to get few layer boron nitride (BN) sheets with micrometer-sized dimensions. This generic approach of using BN sheets as supports is shown by depositing Mn doped ZnSe nanocrystals directly onto the BN sheets and resolving the atomic structure from both the ZnSe nanocrystals and the BN support. Phase contrast images reveal moire patterns of interference between the beams diffracted by the nanocrystals and the BN substrate that are used to determine the relative orientation of the nanocrystals with respect to the BN sheets and interference lattice planes. Double diffraction is observed and has been analyzed.

  2. Arrested Development: High-Resolution Imaging of Foveal Morphology in Albinism

    Science.gov (United States)

    McAllister, John T.; Dubis, Adam M.; Tait, Diane M.; Ostler, Shawn; Rha, Jungtae; Stepien, Kimberly E.; Summers, C. Gail; Carroll, Joseph

    2010-01-01

    Albinism, an inherited disorder of melanin biosynthesis, disrupts normal retinal development, with foveal hypoplasia as one of the more commonly associated ocular phenotypes. However the cellular integrity of the fovea in albinism is not well understood – there likely exist important anatomical differences that underlie phenotypic variability within the disease and that also may affect responsiveness to therapeutic intervention. Here, using spectral domain optical coherence tomography (SD-OCT) and adaptive optics (AO) retinal imaging, we obtained high-resolution images of the foveal region in six individuals with albinism. We provide a quantitative analysis of cone density and outer segment elongation demonstrating that foveal cone specialization is variable in albinism. In addition, our data reveal a continuum of foveal pit morphology, roughly aligning with schematics of normal foveal development based on post-mortem analyses. Different albinism subtypes, genetic mutations, and constitutional pigment background likely play a role in determining the degree of foveal maturation. PMID:20149815

  3. Approaching bathymetry estimation from high resolution multispectral satellite images using a neuro-fuzzy technique

    Science.gov (United States)

    Corucci, Linda; Masini, Andrea; Cococcioni, Marco

    2011-01-01

    This paper addresses bathymetry estimation from high resolution multispectral satellite images by proposing an accurate supervised method, based on a neuro-fuzzy approach. The method is applied to two Quickbird images of the same area, acquired in different years and meteorological conditions, and is validated using truth data. Performance is studied in different realistic situations of in situ data availability. The method allows to achieve a mean standard deviation of 36.7 cm for estimated water depths in the range [-18, -1] m. When only data collected along a closed path are used as a training set, a mean STD of 45 cm is obtained. The effect of both meteorological conditions and training set size reduction on the overall performance is also investigated.

  4. High-Resolution Gamma-Ray Imaging Measurements Using Externally Segmented Germanium Detectors

    Science.gov (United States)

    Callas, J.; Mahoney, W.; Skelton, R.; Varnell, L.; Wheaton, W.

    1994-01-01

    Fully two-dimensional gamma-ray imaging with simultaneous high-resolution spectroscopy has been demonstrated using an externally segmented germanium sensor. The system employs a single high-purity coaxial detector with its outer electrode segmented into 5 distinct charge collection regions and a lead coded aperture with a uniformly redundant array (URA) pattern. A series of one-dimensional responses was collected around 511 keV while the system was rotated in steps through 180 degrees. A non-negative, linear least-squares algorithm was then employed to reconstruct a 2-dimensional image. Corrections for multiple scattering in the detector, and the finite distance of source and detector are made in the reconstruction process.

  5. Technetium-99m high resolution tomographic imaging in the thyroid gland diseases

    Energy Technology Data Exchange (ETDEWEB)

    Reitblat, A; Ben-Horin, C [Barzilai Nedical Center, Ashkelon (Israel)

    1996-12-01

    In the experiments with the thyroid phantom and first studies of patients with hyperthyroidism it was proved that in combining SPECT imaging technique and high resolution ability of pinhole collimator (commonly used for conventional scintigraphy of the thyroid) it is possible to obtain quantitative information concerning the structure and unhomogenities of the thyroid tissue , not available tom the planar imaging. The following applications of the the method are expected: 1) Estimation of the thyroid dimensions and volume for the accurate dosimetry of the following Iodine-131 - therapy. 2) Determination of the location of the thyroid in the neck , occurrences of the retrotracheal, retrolaryngeal and retrostemal extension of the goiter. 3) Estimation of the structure and unhomogenities of the thyroid gland . 4) Locations and dimensions of cold nodules in the thyroid tissue . Some of these applications are illustrated in our studies of the patients with different thyroid gland diseases (authors).

  6. MR imaging of the pulmonary vasculature: Cine and high-resolution techniques

    International Nuclear Information System (INIS)

    Gefter, W.B.; Hatabu, H.; Kressel, H.Y.; Axel, L.; Lenkinski, R.E.; Schiebler, M.L.; Dougherty, L.; Douglas, P.S.; Reichek, N.

    1987-01-01

    Pulmonary vessels were evaluated on 43 cine examinations (12 normals, 31 with cardiopulmonary diseases) at 1.5 T (General Electric). Arteries and veins could be differentiated by characteristic intensity fluctuations in 90%. Abnormal patterns were observed with elevated left atrial pressure, pulmonary hypertension, pulmonic stenosis, and mitral regurgitation. A small arteriovenous malformation was identified. Approaches to high-resolution imaging included surface coils, 24-cm field of view, and 256 x 256 matrix. Spin-echo (SE) sequences gated in systole or diastole, and GRASS with and without breath-holding were evaluated. Surface-coil SE diastolic images (4 NEX) visualized sixth- and seventh-generation vessels. Breath-hold GRASS showed fifth- and sixth-generation vessels without respiratory artifact. These are promising techniques for displaying the pulmonary circulation

  7. Markerless 3D Head Tracking for Motion Correction in High Resolution PET Brain Imaging

    DEFF Research Database (Denmark)

    Olesen, Oline Vinter

    relying on markers. Data-driven motion correction is problematic due to the physiological dynamics. Marker-based tracking is potentially unreliable, and it is extremely hard to validate when the tracking information is correct. The motion estimation is essential for proper motion correction of the PET......This thesis concerns application specific 3D head tracking. The purpose is to improve motion correction in position emission tomography (PET) brain imaging through development of markerless tracking. Currently, motion correction strategies are based on either the PET data itself or tracking devices...... images. Incorrect motion correction can in the worst cases result in wrong diagnosis or treatment. The evolution of a markerless custom-made structured light 3D surface tracking system is presented. The system is targeted at state-of-the-art high resolution dedicated brain PET scanners with a resolution...

  8. Hyperspectral Imaging Sensors and the Marine Coastal Zone

    Science.gov (United States)

    Richardson, Laurie L.

    2000-01-01

    Hyperspectral imaging sensors greatly expand the potential of remote sensing to assess, map, and monitor marine coastal zones. Each pixel in a hyperspectral image contains an entire spectrum of information. As a result, hyperspectral image data can be processed in two very different ways: by image classification techniques, to produce mapped outputs of features in the image on a regional scale; and by use of spectral analysis of the spectral data embedded within each pixel of the image. The latter is particularly useful in marine coastal zones because of the spectral complexity of suspended as well as benthic features found in these environments. Spectral-based analysis of hyperspectral (AVIRIS) imagery was carried out to investigate a marine coastal zone of South Florida, USA. Florida Bay is a phytoplankton-rich estuary characterized by taxonomically distinct phytoplankton assemblages and extensive seagrass beds. End-member spectra were extracted from AVIRIS image data corresponding to ground-truth sample stations and well-known field sites. Spectral libraries were constructed from the AVIRIS end-member spectra and used to classify images using the Spectral Angle Mapper (SAM) algorithm, a spectral-based approach that compares the spectrum, in each pixel of an image with each spectrum in a spectral library. Using this approach different phytoplankton assemblages containing diatoms, cyanobacteria, and green microalgae, as well as benthic community (seagrasses), were mapped.

  9. A clinical gamma camera-based pinhole collimated system for high resolution small animal SPECT imaging

    Energy Technology Data Exchange (ETDEWEB)

    Mejia, J.; Galvis-Alonso, O.Y., E-mail: mejia_famerp@yahoo.com.b [Faculdade de Medicina de Sao Jose do Rio Preto (FAMERP), SP (Brazil). Dept. de Biologia Molecular; Castro, A.A. de; Simoes, M.V. [Faculdade de Medicina de Sao Jose do Rio Preto (FAMERP), SP (Brazil). Dept. de Clinica Medica; Leite, J.P. [Universidade de Sao Paulo (FMRP/USP), Ribeirao Preto, SP (Brazil). Fac. de Medicina. Dept. de Neurociencias e Ciencias do Comportamento; Braga, J. [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil). Div. de Astrofisica

    2010-11-15

    The main objective of the present study was to upgrade a clinical gamma camera to obtain high resolution tomographic images of small animal organs. The system is based on a clinical gamma camera to which we have adapted a special-purpose pinhole collimator and a device for positioning and rotating the target based on a computer-controlled step motor. We developed a software tool to reconstruct the target's three-dimensional distribution of emission from a set of planar projections, based on the maximum likelihood algorithm. We present details on the hardware and software implementation. We imaged phantoms and heart and kidneys of rats. When using pinhole collimators, the spatial resolution and sensitivity of the imaging system depend on parameters such as the detector-to-collimator and detector-to-target distances and pinhole diameter. In this study, we reached an object voxel size of 0.6 mm and spatial resolution better than 2.4 and 1.7 mm full width at half maximum when 1.5- and 1.0-mm diameter pinholes were used, respectively. Appropriate sensitivity to study the target of interest was attained in both cases. Additionally, we show that as few as 12 projections are sufficient to attain good quality reconstructions, a result that implies a significant reduction of acquisition time and opens the possibility for radiotracer dynamic studies. In conclusion, a high resolution single photon emission computed tomography (SPECT) system was developed using a commercial clinical gamma camera, allowing the acquisition of detailed volumetric images of small animal organs. This type of system has important implications for research areas such as Cardiology, Neurology or Oncology. (author)

  10. Mapping of Geographically Isolated Wetlands of Western Siberia Using High Resolution Space Images

    Science.gov (United States)

    Dyukarev, E.; Pologova, N.; Dyukarev, A.; Lane, C.; Autrey, B. C.

    2014-12-01

    Using the remote sensing data for integrated study of natural objects is actual for investigation of difficult to access areas of West Siberia. The research of this study focuses on determining the extent and spectral signatures of isolated wetlands within Ob-Tom Interfluve area using Landsat and Quickbird space images. High-resolution space images were carefully examined and wetlands were manually delineated. Wetlands have clear visible signs at the high resolution space images. 567 wetlands were recognized as isolated wetlands with the area about 10 000 ha (of 2.5% of the study area). Isolated wetlands with area less 2 ha are the most frequent. Half of the total amount of wetlands has area less than 6.4 ha. The largest isolated wetland occupies 797 ha, and only 5% have area more than 50 ha. The Landsat 7 ETM+ data were used for analysis of vegetation structure and spectral characteristics of wetlands. The masked isolated wetlands image was classified into 12 land cover classes using ISODATA unsupervised classification. The attribution of unsupervised classification results allowed us to clearly recognize 7 types of wetlands: tall, low and sparse ryams (Pine-Shrub-Sphagnum community), open wetlands with shrub, moss or sedge cover, and open water objects. Analysis of spectral profiles for all classes has shown that Landsat spectral bands 4 and 5 have higher variability. These bands allow to separate wetland classed definitely. Accuracy assessment of isolated wetland map shows a good agreement with expert field data. The work was supported by grants ISTC № 4079.

  11. Imaging of dopamine transporters in rats using high-resolution pinhole single-photon emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Booij, Jan; Bruin, Kora de; Habraken, Jan B.A. [Department of Nuclear Medicine, F2N, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam (Netherlands); Voorn, Pieter [Department of Anatomy, Vrije Universiteit Medical Center, Amsterdam (Netherlands)

    2002-09-01

    To date, the vast majority of investigations on the dopaminergic system in small animals have been in vitro studies. In comparison with in vitro studies, single-photon emission tomography (SPET) or positron emission tomography (PET) imaging of the dopaminergic system in small animals has the advantage of permitting repeated studies within the same group of animals. Dopamine transporter imaging is a valuable non-invasive tool with which to investigate the integrity of dopaminergic neurons. The purpose of this study was to investigate the feasibility of assessing dopamine transporter density semi-quantitatively in rats using a recently developed high-resolution pinhole SPET system. This system was built exclusively for imaging of small animals. In this unique single-pinhole system, the animal rotates instead of the collimated detector. The system has proven to have a high spatial resolution. We performed SPET imaging with [{sup 123}I]FP-CIT to quantify striatal dopamine transporters in rat brain. In all seven studied control rats, symmetrical striatal binding to dopamine transporters was seen 2 h after injection of the radiotracer, with striatal-to-cerebellar binding ratios of approximately 3.5. In addition, test/retest variability of the striatal-to-cerebellar binding ratios was studied and found to be 14.5%. Finally, in unilaterally 6-hydroxydopamine-lesioned rats, striatal binding was only visible on the non-lesioned side. Quantitative analysis revealed that striatal-to-cerebellar SPET ratios were significantly lower on the lesioned (mean binding ratio 2.2{+-}0.2) than on the non-lesioned (mean ratio 3.1{+-}0.4) side. The preliminary results of this study indicate that semi-quantitative assessment of striatal dopamine transporter density using our recently developed high-resolution single-pinhole SPET system is feasible in living rat brain. (orig.)

  12. High-Resolution 7T MR Imaging of the Motor Cortex in Amyotrophic Lateral Sclerosis.

    Science.gov (United States)

    Cosottini, M; Donatelli, G; Costagli, M; Caldarazzo Ienco, E; Frosini, D; Pesaresi, I; Biagi, L; Siciliano, G; Tosetti, M

    2016-03-01

    Amyotrophic lateral sclerosis is a progressive motor neuron disorder that involves degeneration of both upper and lower motor neurons. In patients with amyotrophic lateral sclerosis, pathologic studies and ex vivo high-resolution MR imaging at ultra-high field strength revealed the co-localization of iron and activated microglia distributed in the deep layers of the primary motor cortex. The aims of the study were to measure the cortical thickness and evaluate the distribution of iron-related signal changes in the primary motor cortex of patients with amyotrophic lateral sclerosis as possible in vivo biomarkers of upper motor neuron impairment. Twenty-two patients with definite amyotrophic lateral sclerosis and 14 healthy subjects underwent a high-resolution 2D multiecho gradient-recalled sequence targeted on the primary motor cortex by using a 7T scanner. Image analysis consisted of the visual evaluation and quantitative measurement of signal intensity and cortical thickness of the primary motor cortex in patients and controls. Qualitative and quantitative MR imaging parameters were correlated with electrophysiologic and laboratory data and with clinical scores. Ultra-high field MR imaging revealed atrophy and signal hypointensity in the deep layers of the primary motor cortex of patients with amyotrophic lateral sclerosis with a diagnostic accuracy of 71%. Signal hypointensity of the deep layers of the primary motor cortex correlated with upper motor neuron impairment (r = -0.47; P amyotrophic lateral sclerosis. Cortical thinning and signal hypointensity of the deep layers of the primary motor cortex could constitute a marker of upper motor neuron impairment in patients with amyotrophic lateral sclerosis. © 2016 by American Journal of Neuroradiology.

  13. Global Monitoring of Mountain Glaciers Using High-Resolution Spotlight Imaging from the International Space Station

    Science.gov (United States)

    Donnellan, A.; Green, J. J.; Bills, B. G.; Goguen, J.; Ansar, A.; Knight, R. L.; Hallet, B.; Scambos, T. A.; Thompson, L. G.; Morin, P. J.

    2013-12-01

    Mountain glaciers around the world are retreating rapidly, contributing about 20% to present-day sea level rise. Numerous studies have shown that mountain glaciers are sensitive to global environmental change. Temperate-latitude glaciers and snowpack provide water for over 1 billion people. Glaciers are a resource for irrigation and hydroelectric power, but also pose flood and avalanche hazards. Accurate mass balance assessments have been made for only 280 glaciers, yet there are over 130,000 in the World Glacier Inventory. The rate of glacier retreat or advance can be highly variable, is poorly sampled, and inadequately understood. Liquid water from ice front lakes, rain, melt, or sea water and debris from rocks, dust, or pollution interact with glacier ice often leading to an amplification of warming and further melting. Many mountain glaciers undergo rapid and episodic events that greatly change their mass balance or extent but are sparsely documented. Events include calving, outburst floods, opening of crevasses, or iceberg motion. Spaceborne high-resolution spotlight optical imaging provides a means of clarifying the relationship between the health of mountain glaciers and global environmental change. Digital elevation models (DEMs) can be constructed from a series of images from a range of perspectives collected by staring at a target during a satellite overpass. It is possible to collect imagery for 1800 targets per month in the ×56° latitude range, construct high-resolution DEMs, and monitor changes in high detail over time with a high-resolution optical telescope mounted on the International Space Station (ISS). Snow and ice type, age, and maturity can be inferred from different color bands as well as distribution of liquid water. Texture, roughness, albedo, and debris distribution can be estimated by measuring bidirectional reflectance distribution functions (BRDF) and reflectance intensity as a function of viewing angle. The non-sun-synchronous orbit

  14. High-resolution magnetic resonance imaging of diurnal variations in rheumatoid arthritis

    International Nuclear Information System (INIS)

    Nicholas, R.S.

    2000-09-01

    This thesis describes work that uses high-resolution magnetic resonance imaging (MRI) to give an insight into the aetiology of rheumatoid arthritis (RA) with particular reference to characterising diurnal changes in joint stiffness in the metacarpophalangeal (MCP) joints. The study was performed on a targeted 1.1 T MRI scanner using specialised sequences, including 3-dimensional gradient-echo, magnetisation transfer (MT) and multiple gradient-echo. These enabled tissue-dependent parameters such as MT ratio, effective transverse relaxation time (T 2 *) and proton density (ρ) to be made. Preliminary reproducibility studies of the MRI measurements showed that MT ratio could be measured in vivo to an accuracy of better than 8%. This variation is due to repositioning errors and physiological changes. Equivalent variations in T 2 * and p were 23% and 16% respectively; these poorer figures were contributed to errors in fitting the data to an exponential curve. An MRI study monitoring the diurnal variation of stiffness in RA demonstrated better characterisation of the disease state using MT and T 2 * maps compared to standard gradient-echo imaging. Features associated with arthritis such as bone erosions and cysts were found in the control group and an MT age dependence was measured in the soft tissue on the superior margin of the joint. This region also exhibited a diurnal variation in MT ratio for the patient group. The interaction between this region of tissue and other structures (e.g. the sheath of extensor tendon) within the joint could be a possible cause of joint stiffness. An incidental finding of this study was that Ritchie joint score also showed a diurnal variation. This study has demonstrated that MRI can be used to make reproducible measurements of the diurnal variations in RA. The indication is that the soft tissues in the superior aspect of the joint may be responsible for the symptom of joint stiffness in the MCP joints and future studies should be

  15. Fast and accurate denoising method applied to very high resolution optical remote sensing images

    Science.gov (United States)

    Masse, Antoine; Lefèvre, Sébastien; Binet, Renaud; Artigues, Stéphanie; Lassalle, Pierre; Blanchet, Gwendoline; Baillarin, Simon

    2017-10-01

    Restoration of Very High Resolution (VHR) optical Remote Sensing Image (RSI) is critical and leads to the problem of removing instrumental noise while keeping integrity of relevant information. Improving denoising in an image processing chain implies increasing image quality and improving performance of all following tasks operated by experts (photo-interpretation, cartography, etc.) or by algorithms (land cover mapping, change detection, 3D reconstruction, etc.). In a context of large industrial VHR image production, the selected denoising method should optimized accuracy and robustness with relevant information and saliency conservation, and rapidity due to the huge amount of data acquired and/or archived. Very recent research in image processing leads to a fast and accurate algorithm called Non Local Bayes (NLB) that we propose to adapt and optimize for VHR RSIs. This method is well suited for mass production thanks to its best trade-off between accuracy and computational complexity compared to other state-of-the-art methods. NLB is based on a simple principle: similar structures in an image have similar noise distribution and thus can be denoised with the same noise estimation. In this paper, we describe in details algorithm operations and performances, and analyze parameter sensibilities on various typical real areas observed in VHR RSIs.

  16. [Diagnostic value of high-resolution computed tomography imaging in congenital inner ear malformations].

    Science.gov (United States)

    Sun, Xiaowei; Ding, Yuanping; Zhang, Jianji; Chen, Ying; Xu, Anting; Dou, Fenfen; Zhang, Zihe

    2007-02-01

    To observe the inner ear structure with volume rendering (VR) reconstruction and to evaluate the role of high-resolution computed tomography (HRCT) in congenital inner ear malformations. HRCT scanning was performed in 10 patients (20 ears) without ear disease (control group) and 7 patients (11 ears) with inner ear malformations (IEM group) and the original data was processed with VR reconstruction. The inner ear osseous labyrinth structure in the images generated by these techniques was observed respectively in the normal ears and malformation ears. The inner ear osseous labyrinth structure and the relationship was displayed clearly in VR imaging in the control group,meanwhile, characters and degree of malformed structure were also displayed clearly in the IEA group. Of seven patients (11 ears) with congenital inner ear malformations, the axial, MPR and VR images can display the site and degree in 9 ears. VR images were superior to the axial images in displaying the malformations in 2 ears with the small lateral semicircular canal malformations. The malformations included Mondini deformity (7 ears), vestibular and semicircular canal malformations (3 ears), vestibular aqueduct dilate (7 ears, of which 6 ears accompanied by other malformations) , the internal auditory canal malformation (2 ears, all accompanied by other malformations). HRCT can display the normal structure of bone inner ear through high quality VR reconstructions. VR images can also display the site and degree of the malformations three-dimensionally and intuitively. HRCT is valuable in diagnosing the inner ear malformation.

  17. High Resolution Near Real Time Image Processing and Support for MSSS Modernization

    Science.gov (United States)

    Duncan, R. B.; Sabol, C.; Borelli, K.; Spetka, S.; Addison, J.; Mallo, A.; Farnsworth, B.; Viloria, R.

    2012-09-01

    This paper describes image enhancement software applications engineering development work that has been performed in support of Maui Space Surveillance System (MSSS) Modernization. It also includes R&D and transition activity that has been performed over the past few years with the objective of providing increased space situational awareness (SSA) capabilities. This includes Air Force Research Laboratory (AFRL) use of an FY10 Dedicated High Performance Investment (DHPI) cluster award -- and our selection and planned use for an FY12 DHPI award. We provide an introduction to image processing of electro optical (EO) telescope sensors data; and a high resolution image enhancement and near real time processing and summary status overview. We then describe recent image enhancement applications development and support for MSSS Modernization, results to date, and end with a discussion of desired future development work and conclusions. Significant improvements to image processing enhancement have been realized over the past several years, including a key application that has realized more than a 10,000-times speedup compared to the original R&D code -- and a greater than 72-times speedup over the past few years. The latest version of this code maintains software efficiency for post-mission processing while providing optimization for image processing of data from a new EO sensor at MSSS. Additional work has also been performed to develop low latency, near real time processing of data that is collected by the ground-based sensor during overhead passes of space objects.

  18. New optical sensor systems for high-resolution satellite, airborne and terrestrial imaging systems

    Science.gov (United States)

    Eckardt, Andreas; Börner, Anko; Lehmann, Frank

    2007-10-01

    The department of Optical Information Systems (OS) at the Institute of Robotics and Mechatronics of the German Aerospace Center (DLR) has more than 25 years experience with high-resolution imaging technology. The technology changes in the development of detectors, as well as the significant change of the manufacturing accuracy in combination with the engineering research define the next generation of spaceborne sensor systems focusing on Earth observation and remote sensing. The combination of large TDI lines, intelligent synchronization control, fast-readable sensors and new focal-plane concepts open the door to new remote-sensing instruments. This class of instruments is feasible for high-resolution sensor systems regarding geometry and radiometry and their data products like 3D virtual reality. Systemic approaches are essential for such designs of complex sensor systems for dedicated tasks. The system theory of the instrument inside a simulated environment is the beginning of the optimization process for the optical, mechanical and electrical designs. Single modules and the entire system have to be calibrated and verified. Suitable procedures must be defined on component, module and system level for the assembly test and verification process. This kind of development strategy allows the hardware-in-the-loop design. The paper gives an overview about the current activities at DLR in the field of innovative sensor systems for photogrammetric and remote sensing purposes.

  19. High resolution 3D confocal microscope imaging of volcanic ash particles.

    Science.gov (United States)

    Wertheim, David; Gillmore, Gavin; Gill, Ian; Petford, Nick

    2017-07-15

    We present initial results from a novel high resolution confocal microscopy study of the 3D surface structure of volcanic ash particles from two recent explosive basaltic eruptions, Eyjafjallajökull (2010) and Grimsvötn (2011), in Iceland. The majority of particles imaged are less than 100μm in size and include PM 10 s, known to be harmful to humans if inhaled. Previous studies have mainly used 2D microscopy to examine volcanic particles. The aim of this study was to test the potential of 3D laser scanning confocal microscopy as a reliable analysis tool for these materials and if so to what degree high resolution surface and volume data could be obtained that would further aid in their classification. First results obtained using an Olympus LEXT scanning confocal microscope with a ×50 and ×100 objective lens are highly encouraging. They reveal a range of discrete particle types characterised by sharp or concave edges consistent with explosive formation and sudden rupture of magma. Initial surface area/volume ratios are given that may prove useful in subsequent modelling of damage to aircraft engines and human tissue where inhalation has occurred. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. High-resolution US and MR imaging of peroneal tendon injuries.

    Science.gov (United States)

    Taljanovic, Mihra S; Alcala, Jennifer N; Gimber, Lana H; Rieke, Joshua D; Chilvers, Margaret M; Latt, L Daniel

    2015-01-01

    Injuries of the peroneal tendon complex are common and should be considered in every patient who presents with chronic lateral ankle pain. These injuries occur as a result of trauma (including ankle sprains), in tendons with preexisting tendonopathy, and with repetitive microtrauma due to instability. The peroneus brevis and peroneus longus tendons are rarely torn simultaneously. Several anatomic variants, including a flat or convex fibular retromalleolar groove, hypertrophy of the peroneal tubercle at the lateral aspect of the calcaneus, an accessory peroneus quartus muscle, a low-lying peroneus brevis muscle belly, and an os peroneum, may predispose to peroneal tendon injuries. High-resolution 1.5-T and 3-T magnetic resonance (MR) imaging with use of dedicated extremity coils and high-resolution ultrasonography (US) with high-frequency linear transducers and dynamic imaging are proved to adequately depict the peroneal tendons for evaluation and can aid the orthopedic surgeon in injury management. An understanding of current treatment approaches for partial- and full-thickness peroneal tendon tears, subluxation and dislocation of these tendons with superior peroneal retinaculum (SPR) injuries, intrasheath subluxations, and peroneal tendonopathy and tenosynovitis can help physicians achieve a favorable outcome. Patients with low functional demands do well with conservative treatment, while those with high functional demands may benefit from surgery if nonsurgical treatment is unsuccessful. Radiologists should recognize the normal anatomy and specific pathologic conditions of the peroneal tendons at US and MR imaging and understand the various treatment options for peroneal tendon and SPR superior peroneal retinaculum injuries. Online supplemental material is available for this article. RSNA, 2015

  1. High-resolution imaging and near-infrared spectroscopy of penumbral decay

    Science.gov (United States)

    Verma, M.; Denker, C.; Balthasar, H.; Kuckein, C.; Rezaei, R.; Sobotka, M.; Deng, N.; Wang, H.; Tritschler, A.; Collados, M.; Diercke, A.; Manrique, S. J. González

    2018-06-01

    Aims: Combining high-resolution spectropolarimetric and imaging data is key to understanding the decay process of sunspots as it allows us to scrutinize the velocity and magnetic fields of sunspots and their surroundings. Methods: Active region NOAA 12597 was observed on 2016 September 24 with the 1.5-meter GREGOR solar telescope using high-spatial-resolution imaging as well as imaging spectroscopy and near-infrared (NIR) spectropolarimetry. Horizontal proper motions were estimated with local correlation tracking, whereas line-of-sight (LOS) velocities were computed with spectral line fitting methods. The magnetic field properties were inferred with the "Stokes Inversions based on Response functions" (SIR) code for the Si I and Ca I NIR lines. Results: At the time of the GREGOR observations, the leading sunspot had two light bridges indicating the onset of its decay. One of the light bridges disappeared, and an elongated, dark umbral core at its edge appeared in a decaying penumbral sector facing the newly emerging flux. The flow and magnetic field properties of this penumbral sector exhibited weak Evershed flow, moat flow, and horizontal magnetic field. The penumbral gap adjacent to the elongated umbral core and the penumbra in that penumbral sector displayed LOS velocities similar to granulation. The separating polarities of a new flux system interacted with the leading and central part of the already established active region. As a consequence, the leading spot rotated 55° clockwise over 12 h. Conclusions: In the high-resolution observations of a decaying sunspot, the penumbral filaments facing the flux emergence site contained a darkened area resembling an umbral core filled with umbral dots. This umbral core had velocity and magnetic field properties similar to the sunspot umbra. This implies that the horizontal magnetic fields in the decaying penumbra became vertical as observed in flare-induced rapid penumbral decay, but on a very different time-scale.

  2. Colorectal cancer detection by hyperspectral imaging using fluorescence excitation scanning

    Science.gov (United States)

    Leavesley, Silas J.; Deal, Joshua; Hill, Shante; Martin, Will A.; Lall, Malvika; Lopez, Carmen; Rider, Paul F.; Rich, Thomas C.; Boudreaux, Carole W.

    2018-02-01

    Hyperspectral imaging technologies have shown great promise for biomedical applications. These techniques have been especially useful for detection of molecular events and characterization of cell, tissue, and biomaterial composition. Unfortunately, hyperspectral imaging technologies have been slow to translate to clinical devices - likely due to increased cost and complexity of the technology as well as long acquisition times often required to sample a spectral image. We have demonstrated that hyperspectral imaging approaches which scan the fluorescence excitation spectrum can provide increased signal strength and faster imaging, compared to traditional emission-scanning approaches. We have also demonstrated that excitation-scanning approaches may be able to detect spectral differences between colonic adenomas and adenocarcinomas and normal mucosa in flash-frozen tissues. Here, we report feasibility results from using excitation-scanning hyperspectral imaging to screen pairs of fresh tumoral and nontumoral colorectal tissues. Tissues were imaged using a novel hyperspectral imaging fluorescence excitation scanning microscope, sampling a wavelength range of 360-550 nm, at 5 nm increments. Image data were corrected to achieve a NIST-traceable flat spectral response. Image data were then analyzed using a range of supervised and unsupervised classification approaches within ENVI software (Harris Geospatial Solutions). Supervised classification resulted in >99% accuracy for single-patient image data, but only 64% accuracy for multi-patient classification (n=9 to date), with the drop in accuracy due to increased false-positive detection rates. Hence, initial data indicate that this approach may be a viable detection approach, but that larger patient sample sizes need to be evaluated and the effects of inter-patient variability studied.

  3. Multichannel High Resolution Wide Swath SAR Imaging for Hypersonic Air Vehicle with Curved Trajectory

    Directory of Open Access Journals (Sweden)

    Rui Zhou

    2018-01-01

    Full Text Available Synthetic aperture radar (SAR equipped on the hypersonic air vehicle in near space has many advantages over the conventional airborne SAR. However, its high-speed maneuvering characteristics with curved trajectory result in serious range migration, and exacerbate the contradiction between the high resolution and wide swath. To solve this problem, this paper establishes the imaging geometrical model matched with the flight trajectory of the hypersonic platform and the multichannel azimuth sampling model based on the displaced phase center antenna (DPCA technology. Furthermore, based on the multichannel signal reconstruction theory, a more efficient spectrum reconstruction model using discrete Fourier transform is proposed to obtain the azimuth uniform sampling data. Due to the high complexity of the slant range model, it is difficult to deduce the processing algorithm for SAR imaging. Thus, an approximate range model is derived based on the minimax criterion, and the optimal second-order approximate coefficients of cosine function are obtained using the two-population coevolutionary algorithm. On this basis, aiming at the problem that the traditional Omega-K algorithm cannot compensate the residual phase with the difficulty of Stolt mapping along the range frequency axis, this paper proposes an Exact Transfer Function (ETF algorithm for SAR imaging, and presents a method of range division to achieve wide swath imaging. Simulation results verify the effectiveness of the ETF imaging algorithm.

  4. Multichannel High Resolution Wide Swath SAR Imaging for Hypersonic Air Vehicle with Curved Trajectory.

    Science.gov (United States)

    Zhou, Rui; Sun, Jinping; Hu, Yuxin; Qi, Yaolong

    2018-01-31

    Synthetic aperture radar (SAR) equipped on the hypersonic air vehicle in near space has many advantages over the conventional airborne SAR. However, its high-speed maneuvering characteristics with curved trajectory result in serious range migration, and exacerbate the contradiction between the high resolution and wide swath. To solve this problem, this paper establishes the imaging geometrical model matched with the flight trajectory of the hypersonic platform and the multichannel azimuth sampling model based on the displaced phase center antenna (DPCA) technology. Furthermore, based on the multichannel signal reconstruction theory, a more efficient spectrum reconstruction model using discrete Fourier transform is proposed to obtain the azimuth uniform sampling data. Due to the high complexity of the slant range model, it is difficult to deduce the processing algorithm for SAR imaging. Thus, an approximate range model is derived based on the minimax criterion, and the optimal second-order approximate coefficients of cosine function are obtained using the two-population coevolutionary algorithm. On this basis, aiming at the problem that the traditional Omega-K algorithm cannot compensate the residual phase with the difficulty of Stolt mapping along the range frequency axis, this paper proposes an Exact Transfer Function (ETF) algorithm for SAR imaging, and presents a method of range division to achieve wide swath imaging. Simulation results verify the effectiveness of the ETF imaging algorithm.

  5. HIGH RESOLUTION 36 GHz IMAGING OF THE SUPERNOVA REMNANT OF SN 1987A

    International Nuclear Information System (INIS)

    Potter, T. M.; Staveley-Smith, L.; Zanardo, G.; Ng, C.-Y.; Gaensler, B. M.; Ball, Lewis; Kesteven, M. J.; Manchester, R. N.; Tzioumis, A. K.

    2009-01-01

    The aftermath of supernova (SN) 1987A continues to provide spectacular insights into the interaction between an SN blastwave and its circumstellar environment. We here present 36 GHz observations from the Australia Telescope Compact Array of the radio remnant of SN 1987A. These new images, taken in 2008 April and 2008 October, substantially extend the frequency range of an ongoing monitoring and imaging program conducted between 1.4 and 20 GHz. Our 36.2 GHz images have a diffraction-limited angular resolution of 0.''3-0.''4, which covers the gap between high resolution, low dynamic range VLBI images of the remnant and low resolution, high dynamic range images at frequencies between 1 and 20 GHz. The radio morphology of the remnant at 36 GHz is an elliptical ring with enhanced emission on the eastern and western sides, similar to that seen previously at lower frequencies. Model fits to the data in the Fourier domain show that the emitting region is consistent with a thick inclined torus of mean radius 0.''85, and a 2008 October flux density of 27 ± 6 mJy at 36.2 GHz. The spectral index for the remnant at this epoch, determined between 1.4 GHz and 36.2 GHz, is α = -0.83. There is tentative evidence for an unresolved central source with flatter spectral index.

  6. A Saliency Guided Semi-Supervised Building Change Detection Method for High Resolution Remote Sensing Images

    Directory of Open Access Journals (Sweden)

    Bin Hou

    2016-08-01

    Full Text Available Characterizations of up to date information of the Earth’s surface are an important application providing insights to urban planning, resources monitoring and environmental studies. A large number of change detection (CD methods have been developed to solve them by utilizing remote sensing (RS images. The advent of high resolution (HR remote sensing images further provides challenges to traditional CD methods and opportunities to object-based CD methods. While several kinds of geospatial objects are recognized, this manuscript mainly focuses on buildings. Specifically, we propose a novel automatic approach combining pixel-based strategies with object-based ones for detecting building changes with HR remote sensing images. A multiresolution contextual morphological transformation called extended morphological attribute profiles (EMAPs allows the extraction of geometrical features related to the structures within the scene at different scales. Pixel-based post-classification is executed on EMAPs using hierarchical fuzzy clustering. Subsequently, the hierarchical fuzzy frequency vector histograms are formed based on the image-objects acquired by simple linear iterative clustering (SLIC segmentation. Then, saliency and morphological building index (MBI extracted on difference images are used to generate a pseudo training set. Ultimately, object-based semi-supervised classification is implemented on this training set by applying random forest (RF. Most of the important changes are detected by the proposed method in our experiments. This study was checked for effectiveness using visual evaluation and numerical evaluation.

  7. High-resolution magnetic resonance imaging of arthritic pathology in the rat knee

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, T.A. (Herchel Smith Lab. for Medicinal Chemistry, Cambridge Univ. (United Kingdom)); Everett, J.R. (Smith Kline Beecham Pharmaceuticals, Betchworth (United Kingdom)); Hall, L.D. (Herchel Smith Lab. for Medicinal Chemistry, Cambridge Univ. (United Kingdom)); Harper, G.P. (Smith Kline Beecham Pharmaceuticals, Welwyn (United Kingdom)); Hodgson, R.J. (Herchel Smith Lab. for Medicinal Chemistry, Cambridge Univ. (United Kingdom)); James, M.F. (Smith Kline Beecham Pharmaceuticals, Harlow (United Kingdom)); Watson, P.J. (Herchel Smith Lab. for Medicinal Chemistry, Cambridge Univ. (United Kingdom))

    1994-08-01

    High-resolution magnetic resonance imaging (MRI) has been used to visualise the changes that occur in both soft tissue and bone during antigen-induced, monoarticular arthritis (AIMA) of the rat knee. Extensive optimisation studies were performed in order to minimise the time of the experiments and to maximise both the signal-to-noise ratio and the contrast in the MR images. The study was cross-sectional rather than longitudinal and at each of the 13 time points studied during the progression of the disease, corresponding X-radiographs and histological sections were obtained. Interpretation of the spin echo MR images was aided by the use of chemical shift-selective imaging, magnetisation transfer contrast and relaxation time experiments, as well as by correlation with the histology and X-radiography data. The MR images clearly show invasion of the synovium by an inflammatory pannus which spreads over the articular cartilage and invades the bone, leading to erosion and later remodelling. Two distinct types of bony erosion were observed: focal erosions, especially at the margins of the joint, and subchondral erosions. It is concluded that MRI provides a sensitive, non-invasive method for investigating both early-stage inflammatory changes and late-stage bony changes in the knee joints of the arthritic rat. (orig.)

  8. Statistical list-mode image reconstruction for the high resolution research tomograph

    International Nuclear Information System (INIS)

    Rahmim, A; Lenox, M; Reader, A J; Michel, C; Burbar, Z; Ruth, T J; Sossi, V

    2004-01-01

    We have investigated statistical list-mode reconstruction applicable to a depth-encoding high resolution research tomograph. An image non-negativity constraint has been employed in the reconstructions and is shown to effectively remove the overestimation bias introduced by the sinogram non-negativity constraint. We have furthermore implemented a convergent subsetized (CS) list-mode reconstruction algorithm, based on previous work (Hsiao et al 2002 Conf. Rec. SPIE Med. Imaging 4684 10-19; Hsiao et al 2002 Conf. Rec. IEEE Int. Symp. Biomed. Imaging 409-12) on convergent histogram OSEM reconstruction. We have demonstrated that the first step of the convergent algorithm is exactly equivalent (unlike the histogram-mode case) to the regular subsetized list-mode EM algorithm, while the second and final step takes the form of additive updates in image space. We have shown that in terms of contrast, noise as well as FWHM width behaviour, the CS algorithm is robust and does not result in limit cycles. A hybrid algorithm based on the ordinary and the convergent algorithms is also proposed, and is shown to combine the advantages of the two algorithms (i.e. it is able to reach a higher image quality in fewer iterations while maintaining the convergent behaviour), making the hybrid approach a good alternative to the ordinary subsetized list-mode EM algorithm

  9. Advances in the staging of renal cell carcinoma with high-resolution imaging

    International Nuclear Information System (INIS)

    Hallscheidt, P.; Noeldge, G.; Schawo, S.; Kauffmann, G.; Palmowski, M.; Bartling, S.; Pfitzenmaier, J.

    2007-01-01

    Modern imaging modalities such as computed tomography (CT) and magnetic resonance imaging (MRI) allow high-resolution imaging of the abdomen. Modern scanners made high temporal as well as high spatial resolution available. Therapeutic approaches to the treatment of renal cell carcinoma have been improved over the recent years. Besides conventional and open laparoscopic tumor nephrectomy and nephron sparing, surgical approaches such as local tumor cryotherapy and radiofrequency ablation (RF) are ablative modalities and are used increasingly. Improved anesthesiological methods and new surgical approaches also allow curative treatment in extended tumors. Prerequisites for preoperative imaging modalities include visualization of the kidney tumor as well as its staging. Tumor-related infiltration of the renal pelvis or invasion of the perinephric fat and the renal hilus has to be excluded prior to nephron sparing surgery. In cases with extended tumors with infiltration of the inferior vena cava, it is necessary to visualize the exact extension of the tumor growth towards the right atrium in the vena cava. The radiologist should be informed about the diagnostic possibilities and limitations of the imaging modalities of CT and MRI in order to support the urologist in the planning and performance of surgical therapeutical approaches. (orig.)

  10. In vivo high-resolution 3D photoacoustic imaging of superficial vascular anatomy

    International Nuclear Information System (INIS)

    Zhang, E Z; Laufer, J G; Beard, P C; Pedley, R B

    2009-01-01

    The application of a photoacoustic imaging instrument based upon a Fabry-Perot polymer film ultrasound sensor to imaging the superficial vasculature is described. This approach provides a backward mode-sensing configuration that has the potential to overcome the limitations of current piezoelectric based detection systems used in superficial photoacoustic imaging. The system has been evaluated by obtaining non-invasive images of the vasculature in human and mouse skin as well as mouse models of human colorectal tumours. These studies showed that the system can provide high-resolution 3D images of vascular structures to depths of up to 5 mm. It is considered that this type of instrument may find a role in the clinical assessment of conditions characterized by changes in the vasculature such as skin tumours and superficial soft tissue damage due to burns, wounds or ulceration. It may also find application in the characterization of small animal cancer models where it is important to follow the tumour vasculature over time in order to study its development and/or response to therapy.

  11. High resolution x-ray lensless imaging by differential holographic encoding

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, D.; Guizar-Sicairos, M.; Wu, B.; Scherz, A.; Acremann, Y.; Tylisczcak, T.; Fischer, P.; Friedenberger, N.; Ollefs, K.; Farle, M.; Fienup, J. R.; Stohr, J.

    2009-11-02

    X-ray free electron lasers (X-FEL{sub s}) will soon offer femtosecond pulses of laterally coherent x-rays with sufficient intensity to record single-shot coherent scattering patterns for nanoscale imaging. Pulse trains created by splitand-delay techniques even open the door for cinematography on unprecedented nanometer length and femtosecond time scales. A key to real space ultrafast motion pictures is fast and reliable inversion of the recorded reciprocal space scattering patterns. Here we for the first time demonstrate in the x-ray regime the power of a novel technique for lensless high resolution imaging, previously suggested by Guizar-Sicairos and Fienup termed holography with extended reference by autocorrelation linear differential operation, HERALD0. We have achieved superior resolution over conventional x-ray Fourier transform holography (FTH) without sacrifices in SNR or significant increase in algorithmic complexity. By combining images obtained from individual sharp features on an extended reference, we further show that the resolution can be even extended beyond the reference fabrication limits. Direct comparison to iterative phase retrieval image reconstruction and images recorded with stateof- the-art zone plate microscopes is presented. Our results demonstrate the power of HERALDO as a favorable candidate for robust inversion of single-shot coherent scattering patterns.

  12. High-Resolution X-Ray Lensless Imaging by Differential Holographic Encoding

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Diling [Stanford Univ., CA (United States). Dept. of Applied Physics; SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Inst. for Material and Energy Science; Guizar-Sicairos, Manuel [Univ. of Rochester, NY (United States). Inst. of Optics; Wu, Benny [Stanford Univ., CA (United States). Dept. of Applied Physics; SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Inst. for Material and Energy Science; Scherz, Andreas [SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Inst. for Material and Energy Science; Acremann, Yves [SLAC National Accelerator Lab., Menlo Park, CA (United States). Photon Ultrafast Laser Science and Engineering Inst. (PULSE); Tyliszczak, Tolek [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS); Fischer, Peter [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Center for X-ray Optics; Friedenberger, Nina [Universitat Duisburg-Essen (Germany). Dept. of Physics and Center for Nanointegration Duisburg-Essen (CeNIDE); Ollefs, Katharina [Universitat Duisburg-Essen (Germany). Dept. of Physics and Center for Nanointegration Duisburg-Essen (CeNIDE); Farle, Michael [Universitat Duisburg-Essen (Germany). Dept. of Physics and Center for Nanointegration Duisburg-Essen (CeNIDE); Fienup, James R. [Univ. of Rochester, NY (United States). Inst. of Optics; Stöhr, Joachim [SLAC National Accelerator Lab., Menlo Park, CA (United States). Linac Coherent Light Source (LCLS)

    2010-07-01

    X-ray free electron lasers (X-FELs) will soon offer femtosecond pulses of laterally coherent x-rays with sufficient intensity to record single-shot coherent scattering patterns for nanoscale imaging. Pulse trains created by split and- delay techniques even open the door for cinematography on unprecedented nanometer length and femtosecond time scales. A key to real space ultrafast motion pictures is fast and reliable inversion of the recorded reciprocal space scattering patterns. Here we for the first time demonstrate in the x-ray regime the power of a novel technique for lensless high resolution imaging, previously suggested by Guizar-Sicairos and Fienup termed holography with extended reference by autocorrelation linear differential operation, HERALD0. We have achieved superior resolution over conventional x-ray Fourier transform holography (FTH) without sacrifices in SNR or significant increase in algorithmic complexity. By combining images obtained from individual sharp features on an extended reference, we further show that the resolution can be even extended beyond the reference fabrication limits. Direct comparison to iterative phase retrieval image reconstruction and images recorded with state of-the-art zone plate microscopes is presented. Our results demonstrate the power of HERALDO as a favorable candidate for robust inversion of single-shot coherent scattering patterns.

  13. In vivo high-resolution 3D photoacoustic imaging of superficial vascular anatomy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, E Z; Laufer, J G; Beard, P C [Department of Medical Physics and Bioengineering, University College London, Gower Street, London, WC1E 6BT (United Kingdom); Pedley, R B [UCL Cancer Institute, Paul O' Gorman Building, University College London, 72 Huntley St, London WC1E 6BT (United Kingdom)

    2009-02-21

    The application of a photoacoustic imaging instrument based upon a Fabry-Perot polymer film ultrasound sensor to imaging the superficial vasculature is described. This approach provides a backward mode-sensing configuration that has the potential to overcome the limitations of current piezoelectric based detection systems used in superficial photoacoustic imaging. The system has been evaluated by obtaining non-invasive images of the vasculature in human and mouse skin as well as mouse models of human colorectal tumours. These studies showed that the system can provide high-resolution 3D images of vascular structures to depths of up to 5 mm. It is considered that this type of instrument may find a role in the clinical assessment of conditions characterized by changes in the vasculature such as skin tumours and superficial soft tissue damage due to burns, wounds or ulceration. It may also find application in the characterization of small animal cancer models where it is important to follow the tumour vasculature over time in order to study its development and/or response to therapy.

  14. Relating speech production to tongue muscle compressions using tagged and high-resolution magnetic resonance imaging

    Science.gov (United States)

    Xing, Fangxu; Ye, Chuyang; Woo, Jonghye; Stone, Maureen; Prince, Jerry

    2015-03-01

    The human tongue is composed of multiple internal muscles that work collaboratively during the production of speech. Assessment of muscle mechanics can help understand the creation of tongue motion, interpret clinical observations, and predict surgical outcomes. Although various methods have been proposed for computing the tongue's motion, associating motion with muscle activity in an interdigitated fiber framework has not been studied. In this work, we aim to develop a method that reveals different tongue muscles' activities in different time phases during speech. We use fourdimensional tagged magnetic resonance (MR) images and static high-resolution MR images to obtain tongue motion and muscle anatomy, respectively. Then we compute strain tensors and local tissue compression along the muscle fiber directions in order to reveal their shortening pattern. This process relies on the support from multiple image analysis methods, including super-resolution volume reconstruction from MR image slices, segmentation of internal muscles, tracking the incompressible motion of tissue points using tagged images, propagation of muscle fiber directions over time, and calculation of strain in the line of action, etc. We evaluated the method on a control subject and two postglossectomy patients in a controlled speech task. The normal subject's tongue muscle activity shows high correspondence with the production of speech in different time instants, while both patients' muscle activities show different patterns from the control due to their resected tongues. This method shows potential for relating overall tongue motion to particular muscle activity, which may provide novel information for future clinical and scientific studies.

  15. High-resolution magnetic resonance imaging of arthritic pathology in the rat knee

    International Nuclear Information System (INIS)

    Carpenter, T.A.; Everett, J.R.; Hall, L.D.; Harper, G.P.; Hodgson, R.J.; James, M.F.; Watson, P.J.

    1994-01-01

    High-resolution magnetic resonance imaging (MRI) has been used to visualise the changes that occur in both soft tissue and bone during antigen-induced, monoarticular arthritis (AIMA) of the rat knee. Extensive optimisation studies were performed in order to minimise the time of the experiments and to maximise both the signal-to-noise ratio and the contrast in the MR images. The study was cross-sectional rather than longitudinal and at each of the 13 time points studied during the progression of the disease, corresponding X-radiographs and histological sections were obtained. Interpretation of the spin echo MR images was aided by the use of chemical shift-selective imaging, magnetisation transfer contrast and relaxation time experiments, as well as by correlation with the histology and X-radiography data. The MR images clearly show invasion of the synovium by an inflammatory pannus which spreads over the articular cartilage and invades the bone, leading to erosion and later remodelling. Two distinct types of bony erosion were observed: focal erosions, especially at the margins of the joint, and subchondral erosions. It is concluded that MRI provides a sensitive, non-invasive method for investigating both early-stage inflammatory changes and late-stage bony changes in the knee joints of the arthritic rat. (orig.)

  16. Pinhole SPECT: high resolution imaging of brain tumours in small laboratory animals

    International Nuclear Information System (INIS)

    Franceschim, M.; Bokulic, T.; Kusic, Z.; Strand, S.E.; Erlandsson, K.

    1994-01-01

    The performance properties of pinhole SPECT and the application of this technology to evaluate radionuclide uptake in brain in small laboratory animals were investigated. System sensitivity and spatial resolution measurements of a rotating scintillation camera system were made for a low energy pinhole collimator equipped with 2.0 mm aperture pinhole insert. Projection data were acquired at 4 degree increments over 360 degrees in the step and shoot mode using a 4.5 cm radius of rotation. Pinhole planar and SPECT imaging were obtained to evaluate regional uptake of Tl-201, Tc-99m-MIBI, Tc-99m-HMPAO and Tc-99m-DTPA in tumor and control regions of the brain in a primary brain tumor model in Fisher 344 rats. Pinhole SPECT images were reconstructed using a modified cone- beam algorithm developed from a two dimensional fan-beam filtered backprojection algorithm. The reconstructed transaxial resolution of 2.8 FWHM and system sensitivity of 0.086 c/s/kBq with the 2.0 mm pinhole collimator aperture were measured. Tumor to non-tumor uptake ratios at 19-28 days post tumor cell inoculation varied by a factor > 20:1 on SPECT images. Pinhole SPECT provides an important new approach for performing high resolution imaging: the resolution properties of pinhole SPECT are superior to those which have been achieved with conventional SPECT or PET imaging technologies. (author)

  17. A Method of Road Extraction from High-resolution Remote Sensing Images Based on Shape Features

    Directory of Open Access Journals (Sweden)

    LEI Xiaoqi

    2016-02-01

    Full Text Available Road extraction from high-resolution remote sensing image is an important and difficult task.Since remote sensing images include complicated information,the methods that extract roads by spectral,texture and linear features have certain limitations.Also,many methods need human-intervention to get the road seeds(semi-automatic extraction,which have the great human-dependence and low efficiency.The road-extraction method,which uses the image segmentation based on principle of local gray consistency and integration shape features,is proposed in this paper.Firstly,the image is segmented,and then the linear and curve roads are obtained by using several object shape features,so the method that just only extract linear roads are rectified.Secondly,the step of road extraction is carried out based on the region growth,the road seeds are automatic selected and the road network is extracted.Finally,the extracted roads are regulated by combining the edge information.In experiments,the images that including the better gray uniform of road and the worse illuminated of road surface were chosen,and the results prove that the method of this study is promising.

  18. High Resolution SAR Imaging Employing Geometric Features for Extracting Seismic Damage of Buildings

    Science.gov (United States)

    Cui, L. P.; Wang, X. P.; Dou, A. X.; Ding, X.

    2018-04-01

    Synthetic Aperture Radar (SAR) image is relatively easy to acquire but difficult for interpretation. This paper probes how to identify seismic damage of building using geometric features of SAR. The SAR imaging geometric features of buildings, such as the high intensity layover, bright line induced by double bounce backscattering and dark shadow is analysed, and show obvious differences texture features of homogeneity, similarity and entropy in combinatorial imaging geometric regions between the un-collapsed and collapsed buildings in airborne SAR images acquired in Yushu city damaged by 2010 Ms7.1 Yushu, Qinghai, China earthquake, which implicates a potential capability to discriminate collapsed and un-collapsed buildings from SAR image. Study also shows that the proportion of highlight (layover & bright line) area (HA) is related to the seismic damage degree, thus a SAR image damage index (SARDI), which related to the ratio of HA to the building occupation are of building in a street block (SA), is proposed. While HA is identified through feature extraction with high-pass and low-pass filtering of SAR image in frequency domain. A partial region with 58 natural street blocks in the Yushu City are selected as study area. Then according to the above method, HA is extracted, SARDI is then calculated and further classified into 3 classes. The results show effective through validation check with seismic damage classes interpreted artificially from post-earthquake airborne high resolution optical image, which shows total classification accuracy 89.3 %, Kappa coefficient 0.79 and identical to the practical seismic damage distribution. The results are also compared and discussed with the building damage identified from SAR image available by other authors.

  19. High resolution neurography of the brachial plexus by 3 Tesla magnetic resonance imaging.

    Science.gov (United States)

    Cejas, C; Rollán, C; Michelin, G; Nogués, M

    2016-01-01

    The study of the structures that make up the brachial plexus has benefited particularly from the high resolution images provided by 3T magnetic resonance scanners. The brachial plexus can have mononeuropathies or polyneuropathies. The mononeuropathies include traumatic injuries and trapping, such as occurs in thoracic outlet syndrome due to cervical ribs, prominent transverse apophyses, or tumors. The polyneuropathies include inflammatory processes, in particular chronic inflammatory demyelinating polyneuropathy, Parsonage-Turner syndrome, granulomatous diseases, and radiation neuropathy. Vascular processes affecting the brachial plexus include diabetic polyneuropathy and the vasculitides. This article reviews the anatomy of the brachial plexus and describes the technique for magnetic resonance neurography and the most common pathologic conditions that can affect the brachial plexus. Copyright © 2016 SERAM. Published by Elsevier España, S.L.U. All rights reserved.

  20. High-resolution, in vivo magnetic resonance imaging of Drosophila at 18.8 Tesla.

    Directory of Open Access Journals (Sweden)

    Brian Null

    Full Text Available High resolution MRI of live Drosophila was performed at 18.8 Tesla, with a field of view less than 5 mm, and administration of manganese or gadolinium-based contrast agents. This study demonstrates the feasibility of MR methods for imaging the fruit fly Drosophila with an NMR spectrometer, at a resolution relevant for undertaking future studies of the Drosophila brain and other organs. The fruit fly has long been a principal model organism for elucidating biology and disease, but without capabilities like those of MRI. This feasibility marks progress toward the development of new in vivo research approaches in Drosophila without the requirement for light transparency or destructive assays.

  1. Implementation and performance of an optical motion tracking system for high resolution brain PET imaging

    Science.gov (United States)

    Lopresti, B. J.; Russo, A.; Jones, W. F.; Fisher, T.; Crouch, D. G.; Altenburger, D. E.; Townsend, D. W.

    1999-12-01

    Head motion during PET scanning is widely regarded as a source of image degradation and resolution loss. Recent improvements in the spatial resolution of state-of-the-art tomographs may be compromised by patient motion during scanning, as these high resolution data will be increasingly susceptible to smaller movements of the head. The authors have developed an opto-electronic motion tracking system based on commercially-available technology that is capable of very accurate real-time measurements of the position and orientation of the patient's head. These positions are transformed to the reference frame of the PET scanner, and could potentially be used to provide motion correction of list-mode emission data on an event-by-event basis.

  2. Tablet disintegration studied by high-resolution real-time magnetic resonance imaging.

    Science.gov (United States)

    Quodbach, Julian; Moussavi, Amir; Tammer, Roland; Frahm, Jens; Kleinebudde, Peter

    2014-01-01

    The present work employs recent advances in high-resolution real-time magnetic resonance imaging (MRI) to investigate the disintegration process of tablets containing disintegrants. A temporal resolution of 75 ms and a spatial resolution of 80 × 80 µm with a section thickness of only 600 µm were achieved. The histograms of MRI videos were quantitatively analyzed with MATLAB. The mechanisms of action of six commercially available disintegrants, the influence of relative tablet density, and the impact of disintegrant concentration were examined. Crospovidone seems to be the only disintegrant acting by a shape memory effect, whereas the others mainly swell. A higher relative density of tablets containing croscarmellose sodium leads to a more even distribution of water within the tablet matrix but hardly impacts the disintegration kinetics. Increasing the polacrilin potassium disintegrant concentration leads to a quicker and more thorough disintegration process. Real-time MRI emerges as valuable tool to visualize and investigate the process of tablet disintegration.

  3. Extended SWIR imaging sensors for hyperspectral imaging applications

    Science.gov (United States)

    Weber, A.; Benecke, M.; Wendler, J.; Sieck, A.; Hübner, D.; Figgemeier, H.; Breiter, R.

    2016-05-01

    AIM has developed SWIR modules including FPAs based on liquid phase epitaxy (LPE) grown MCT usable in a wide range of hyperspectral imaging applications. Silicon read-out integrated circuits (ROIC) provide various integration and readout modes including specific functions for spectral imaging applications. An important advantage of MCT based detectors is the tunable band gap. The spectral sensitivity of MCT detectors can be engineered to cover the extended SWIR spectral region up to 2.5μm without compromising in performance. AIM developed the technology to extend the spectral sensitivity of its SWIR modules also into the VIS. This has been successfully demonstrated for 384x288 and 1024x256 FPAs with 24μm pitch. Results are presented in this paper. The FPAs are integrated into compact dewar cooler configurations using different types of coolers, like rotary coolers, AIM's long life split linear cooler MCC030 or extreme long life SF100 Pulse Tube cooler. The SWIR modules include command and control electronics (CCE) which allow easy interfacing using a digital standard interface. The development status and performance results of AIM's latest MCT SWIR modules suitable for hyperspectral systems and applications will be presented.

  4. Exploring image data assimilation in the prospect of high-resolution satellite oceanic observations

    Science.gov (United States)

    Durán Moro, Marina; Brankart, Jean-Michel; Brasseur, Pierre; Verron, Jacques

    2017-07-01

    Satellite sensors increasingly provide high-resolution (HR) observations of the ocean. They supply observations of sea surface height (SSH) and of tracers of the dynamics such as sea surface salinity (SSS) and sea surface temperature (SST). In particular, the Surface Water Ocean Topography (SWOT) mission will provide measurements of the surface ocean topography at very high-resolution (HR) delivering unprecedented information on the meso-scale and submeso-scale dynamics. This study investigates the feasibility to use these measurements to reconstruct meso-scale features simulated by numerical models, in particular on the vertical dimension. A methodology to reconstruct three-dimensional (3D) multivariate meso-scale scenes is developed by using a HR numerical model of the Solomon Sea region. An inverse problem is defined in the framework of a twin experiment where synthetic observations are used. A true state is chosen among the 3D multivariate states which is considered as a reference state. In order to correct a first guess of this true state, a two-step analysis is carried out. A probability distribution of the first guess is defined and updated at each step of the analysis: (i) the first step applies the analysis scheme of a reduced-order Kalman filter to update the first guess probability distribution using SSH observation; (ii) the second step minimizes a cost function using observations of HR image structure and a new probability distribution is estimated. The analysis is extended to the vertical dimension using 3D multivariate empirical orthogonal functions (EOFs) and the probabilistic approach allows the update of the probability distribution through the two-step analysis. Experiments show that the proposed technique succeeds in correcting a multivariate state using meso-scale and submeso-scale information contained in HR SSH and image structure observations. It also demonstrates how the surface information can be used to reconstruct the ocean state below

  5. Accelerated high-resolution 3D magnetic resonance spectroscopic imaging in the brain At 7 T

    International Nuclear Information System (INIS)

    Hangel, G.

    2015-01-01

    With the announcement of the first series of magnetic resonance (MR) scanners with a field strength of 7 Tesla (T) intended for clinical practice, the development of high-performance sequences for higher field strengths has gained importance. Magnetic resonance spectroscopic imaging (MRSI) in the brain currently offers the unique ability to spatially resolve the distribution of multiple metabolites simultaneously. Its big diagnostic potential could be applied to many clinical protocols, for example the assessment of tumour treatment or progress of Multiple Sclerosis. Moving to ultra-high fields like 7 T has the main benefits of increased signal-to-noise ratio (SNR) and improved spectral quality, but brings its own challenges due to stronger field inhomogeneities. Necessary for a robust, flexible and useful MRSI sequence in the brain are high resolutions, shortened measurement times, the possibility for 3D-MRSI and the suppression of spectral contamination by trans-cranial lipids. This thesis addresses these limitations and proposes Hadamard spectroscopic imaging (HSI) as solution for multi-slice MRSI, the application of generalized autocalibrating partially parallel acquisition (GRAPPA) and spiral trajectories for measurement acceleration, non-selective inversion recovery (IR) lipid-suppression as well as combinations of these methods. Further, the optimisation of water suppression for 7 T systems and the acquisition of ultra-high resolution (UHR)-MRSI are discussed. In order to demonstrate the clinical feasibility of these approaches, MRSI measurement results of a glioma patient are presented. The discussion of the obtained results in the context of the state-of-art in 7 T MRSI in the brain, possible future applications as well as potential further improvements of the MRSI sequences conclude this thesis. (author) [de

  6. Learning Low Dimensional Convolutional Neural Networks for High-Resolution Remote Sensing Image Retrieval

    Directory of Open Access Journals (Sweden)

    Weixun Zhou

    2017-05-01

    Full Text Available Learning powerful feature representations for image retrieval has always been a challenging task in the field of remote sensing. Traditional methods focus on extracting low-level hand-crafted features which are not only time-consuming but also tend to achieve unsatisfactory performance due to the complexity of remote sensing images. In this paper, we investigate how to extract deep feature representations based on convolutional neural networks (CNNs for high-resolution remote sensing image retrieval (HRRSIR. To this end, several effective schemes are proposed to generate powerful feature representations for HRRSIR. In the first scheme, a CNN pre-trained on a different problem is treated as a feature extractor since there are no sufficiently-sized remote sensing datasets to train a CNN from scratch. In the second scheme, we investigate learning features that are specific to our problem by first fine-tuning the pre-trained CNN on a remote sensing dataset and then proposing a novel CNN architecture based on convolutional layers and a three-layer perceptron. The novel CNN has fewer parameters than the pre-trained and fine-tuned CNNs and can learn low dimensional features from limited labelled images. The schemes are evaluated on several challenging, publicly available datasets. The results indicate that the proposed schemes, particularly the novel CNN, achieve state-of-the-art performance.

  7. DSP accelerator for the wavelet compression/decompression of high- resolution images

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, M.A.; Gleason, S.S.; Jatko, W.B.

    1993-07-23

    A Texas Instruments (TI) TMS320C30-based S-Bus digital signal processing (DSP) module was used to accelerate a wavelet-based compression and decompression algorithm applied to high-resolution fingerprint images. The law enforcement community, together with the National Institute of Standards and Technology (NISI), is adopting a standard based on the wavelet transform for the compression, transmission, and decompression of scanned fingerprint images. A two-dimensional wavelet transform of the input image is computed. Then spatial/frequency regions are automatically analyzed for information content and quantized for subsequent Huffman encoding. Compression ratios range from 10:1 to 30:1 while maintaining the level of image quality necessary for identification. Several prototype systems were developed using SUN SPARCstation 2 with a 1280 {times} 1024 8-bit display, 64-Mbyte random access memory (RAM), Tiber distributed data interface (FDDI), and Spirit-30 S-Bus DSP-accelerators from Sonitech. The final implementation of the DSP-accelerated algorithm performed the compression or decompression operation in 3.5 s per print. Further increases in system throughput were obtained by adding several DSP accelerators operating in parallel.

  8. A New Approach to Urban Road Extraction Using High-Resolution Aerial Image

    Directory of Open Access Journals (Sweden)

    Jianhua Wang

    2016-07-01

    Full Text Available Road information is fundamental not only in the military field but also common daily living. Automatic road extraction from a remote sensing images can provide references for city planning as well as transportation database and map updating. However, owing to the spectral similarity between roads and impervious structures, the current methods solely using spectral characteristics are often ineffective. By contrast, the detailed information discernible from the high-resolution aerial images enables road extraction with spatial texture features. In this study, a knowledge-based method is established and proposed; this method incorporates the spatial texture feature into urban road extraction. The spatial texture feature is initially extracted by the local Moran’s I, and the derived texture is added to the spectral bands of image for image segmentation. Subsequently, features like brightness, standard deviation, rectangularity, aspect ratio, and area are selected to form the hypothesis and verification model based on road knowledge. Finally, roads are extracted by applying the hypothesis and verification model and are post-processed based on the mathematical morphology. The newly proposed method is evaluated by conducting two experiments. Results show that the completeness, correctness, and quality of the results could reach approximately 94%, 90% and 86% respectively, indicating that the proposed method is effective for urban road extraction.

  9. Tomographic Small-Animal Imaging Using a High-Resolution Semiconductor Camera

    Science.gov (United States)

    Kastis, GA; Wu, MC; Balzer, SJ; Wilson, DW; Furenlid, LR; Stevenson, G; Barber, HB; Barrett, HH; Woolfenden, JM; Kelly, P; Appleby, M

    2015-01-01

    We have developed a high-resolution, compact semiconductor camera for nuclear medicine applications. The modular unit has been used to obtain tomographic images of phantoms and mice. The system consists of a 64 x 64 CdZnTe detector array and a parallel-hole tungsten collimator mounted inside a 17 cm x 5.3 cm x 3.7 cm tungsten-aluminum housing. The detector is a 2.5 cm x 2.5 cm x 0.15 cm slab of CdZnTe connected to a 64 x 64 multiplexer readout via indium-bump bonding. The collimator is 7 mm thick, with a 0.38 mm pitch that matches the detector pixel pitch. We obtained a series of projections by rotating the object in front of the camera. The axis of rotation was vertical and about 1.5 cm away from the collimator face. Mouse holders were made out of acrylic plastic tubing to facilitate rotation and the administration of gas anesthetic. Acquisition times were varied from 60 sec to 90 sec per image for a total of 60 projections at an equal spacing of 6 degrees between projections. We present tomographic images of a line phantom and mouse bone scan and assess the properties of the system. The reconstructed images demonstrate spatial resolution on the order of 1–2 mm. PMID:26568676

  10. The Generalized Gamma-DBN for High-Resolution SAR Image Classification

    Directory of Open Access Journals (Sweden)

    Zhiqiang Zhao

    2018-06-01

    Full Text Available With the increase of resolution, effective characterization of synthetic aperture radar (SAR image becomes one of the most critical problems in many earth observation applications. Inspired by deep learning and probability mixture models, a generalized Gamma deep belief network (g Γ-DBN is proposed for SAR image statistical modeling and land-cover classification in this work. Specifically, a generalized Gamma-Bernoulli restricted Boltzmann machine (gΓB-RBM is proposed to capture high-order statistical characterizes from SAR images after introducing the generalized Gamma distribution. After stacking the g Γ B-RBM and several standard binary RBMs in a hierarchical manner, a gΓ-DBN is constructed to learn high-level representation of different SAR land-covers. Finally, a discriminative neural network is constructed by adding an additional predict layer for different land-covers over the constructed deep structure. Performance of the proposed approach is evaluated via several experiments on some high-resolution SAR image patch sets and two large-scale scenes which are captured by ALOS PALSAR-2 and COSMO-SkyMed satellites respectively.

  11. AUTOMATED DETECTION OF OIL DEPOTS FROM HIGH RESOLUTION IMAGES: A NEW PERSPECTIVE

    Directory of Open Access Journals (Sweden)

    A. O. Ok

    2015-03-01

    Full Text Available This paper presents an original approach to identify oil depots from single high resolution aerial/satellite images in an automated manner. The new approach considers the symmetric nature of circular oil depots, and it computes the radial symmetry in a unique way. An automated thresholding method to focus on circular regions and a new measure to verify circles are proposed. Experiments are performed on six GeoEye-1 test images. Besides, we perform tests on 16 Google Earth images of an industrial test site acquired in a time series manner (between the years 1995 and 2012. The results reveal that our approach is capable of detecting circle objects in very different/difficult images. We computed an overall performance of 95.8% for the GeoEye-1 dataset. The time series investigation reveals that our approach is robust enough to locate oil depots in industrial environments under varying illumination and environmental conditions. The overall performance is computed as 89.4% for the Google Earth dataset, and this result secures the success of our approach compared to a state-of-the-art approach.

  12. High-resolution dynamic pressure sensor array based on piezo-phototronic effect tuned photoluminescence imaging.

    Science.gov (United States)

    Peng, Mingzeng; Li, Zhou; Liu, Caihong; Zheng, Qiang; Shi, Xieqing; Song, Ming; Zhang, Yang; Du, Shiyu; Zhai, Junyi; Wang, Zhong Lin

    2015-03-24

    A high-resolution dynamic tactile/pressure display is indispensable to the comprehensive perception of force/mechanical stimulations such as electronic skin, biomechanical imaging/analysis, or personalized signatures. Here, we present a dynamic pressure sensor array based on pressure/strain tuned photoluminescence imaging without the need for electricity. Each sensor is a nanopillar that consists of InGaN/GaN multiple quantum wells. Its photoluminescence intensity can be modulated dramatically and linearly by small strain (0-0.15%) owing to the piezo-phototronic effect. The sensor array has a high pixel density of 6350 dpi and exceptional small standard deviation of photoluminescence. High-quality tactile/pressure sensing distribution can be real-time recorded by parallel photoluminescence imaging without any cross-talk. The sensor array can be inexpensively fabricated over large areas by semiconductor product lines. The proposed dynamic all-optical pressure imaging with excellent resolution, high sensitivity, good uniformity, and ultrafast response time offers a suitable way for smart sensing, micro/nano-opto-electromechanical systems.

  13. Real-time progressive hyperspectral image processing endmember finding and anomaly detection

    CERN Document Server

    Chang, Chein-I

    2016-01-01

    The book covers the most crucial parts of real-time hyperspectral image processing: causality and real-time capability. Recently, two new concepts of real time hyperspectral image processing, Progressive Hyperspectral Imaging (PHSI) and Recursive Hyperspectral Imaging (RHSI). Both of these can be used to design algorithms and also form an integral part of real time hyperpsectral image processing. This book focuses on progressive nature in algorithms on their real-time and causal processing implementation in two major applications, endmember finding and anomaly detection, both of which are fundamental tasks in hyperspectral imaging but generally not encountered in multispectral imaging. This book is written to particularly address PHSI in real time processing, while a book, Recursive Hyperspectral Sample and Band Processing: Algorithm Architecture and Implementation (Springer 2016) can be considered as its companion book. Includes preliminary background which is essential to those who work in hyperspectral ima...

  14. Computationally-optimized bone mechanical modeling from high-resolution structural images.

    Directory of Open Access Journals (Sweden)

    Jeremy F Magland

    Full Text Available Image-based mechanical modeling of the complex micro-structure of human bone has shown promise as a non-invasive method for characterizing bone strength and fracture risk in vivo. In particular, elastic moduli obtained from image-derived micro-finite element (μFE simulations have been shown to correlate well with results obtained by mechanical testing of cadaveric bone. However, most existing large-scale finite-element simulation programs require significant computing resources, which hamper their use in common laboratory and clinical environments. In this work, we theoretically derive and computationally evaluate the resources needed to perform such simulations (in terms of computer memory and computation time, which are dependent on the number of finite elements in the image-derived bone model. A detailed description of our approach is provided, which is specifically optimized for μFE modeling of the complex three-dimensional architecture of trabecular bone. Our implementation includes domain decomposition for parallel computing, a novel stopping criterion, and a system for speeding up convergence by pre-iterating on coarser grids. The performance of the system is demonstrated on a dual quad-core Xeon 3.16 GHz CPUs equipped with 40 GB of RAM. Models of distal tibia derived from 3D in-vivo MR images in a patient comprising 200,000 elements required less than 30 seconds to converge (and 40 MB RAM. To illustrate the system's potential for large-scale μFE simulations, axial stiffness was estimated from high-resolution micro-CT images of a voxel array of 90 million elements comprising the human proximal femur in seven hours CPU time. In conclusion, the system described should enable image-based finite-element bone simulations in practical computation times on high-end desktop computers with applications to laboratory studies and clinical imaging.

  15. High resolution X-ray fluorescence imaging for a microbeam radiation therapy treatment planning system

    Science.gov (United States)

    Chtcheprov, Pavel; Inscoe, Christina; Burk, Laurel; Ger, Rachel; Yuan, Hong; Lu, Jianping; Chang, Sha; Zhou, Otto

    2014-03-01

    Microbeam radiation therapy (MRT) uses an array of high-dose, narrow (~100 μm) beams separated by a fraction of a millimeter to treat various radio-resistant, deep-seated tumors. MRT has been shown to spare normal tissue up to 1000 Gy of entrance dose while still being highly tumoricidal. Current methods of tumor localization for our MRT treatments require MRI and X-ray imaging with subject motion and image registration that contribute to the measurement error. The purpose of this study is to develop a novel form of imaging to quickly and accurately assist in high resolution target positioning for MRT treatments using X-ray fluorescence (XRF). The key to this method is using the microbeam to both treat and image. High Z contrast media is injected into the phantom or blood pool of the subject prior to imaging. Using a collimated spectrum analyzer, the region of interest is scanned through the MRT beam and the fluorescence signal is recorded for each slice. The signal can be processed to show vascular differences in the tissue and isolate tumor regions. Using the radiation therapy source as the imaging source, repositioning and registration errors are eliminated. A phantom study showed that a spatial resolution of a fraction of microbeam width can be achieved by precision translation of the mouse stage. Preliminary results from an animal study showed accurate iodine profusion, confirmed by CT. The proposed image guidance method, using XRF to locate and ablate tumors, can be used as a fast and accurate MRT treatment planning system.

  16. Design and development of a high resolution animal SPECT scanner dedicated for rat and mouse imaging

    International Nuclear Information System (INIS)

    Sajedi, Salar; Zeraatkar, Navid; Moji, Vahideh; Farahani, Mohammad Hossein; Sarkar, Saeed; Arabi, Hossein; Teymoorian, Behnoosh; Ghafarian, Pardis; Rahmim, Arman; Reza Ay, Mohammad

    2014-01-01

    A dedicated small-animal SPECT system, HiReSPECT, was designed and developed to provide a high resolution molecular imaging modality in response to growing research demands. HiReSPECT is a dual-head system mounted on a rotating gantry. The detection system is based on pixelated CsI(Na) scintillator crystals coupled to two Hamamatsu H8500 Position Sensitive Photomultiplier Tubes in each head. Also, a high resolution parallel-hole collimator is applied to every head. The dimensions of each head are 50 mm×100 mm, enabling sufficient transaxial and axial fields-of-view (TFOV and AFOV), respectively, for coverage of the entire mouse in single-bed position imaging. However, a 50 mm TFOV is not sufficient for transaxial coverage of rats. To address this, each head can be rotated by 90 degrees in order to align the larger dimension of the heads with the short body axis, allowing tomographic data acquisition for rats. An innovative non-linear recursive filter was used for signal processing/detection. Resolution recovery was also embedded in the modified Maximum-Likelihood Expectation Maximization (MLEM) image reconstruction code to compensate for Collimator-Detector Response (CDR). Moreover, an innovative interpolation algorithm was developed to speed up the reconstruction code. The planar spatial resolution at the head surface and the image spatial resolutions were 1.7 mm and 1.2–1.6 mm, respectively. The measurements followed by post-processing showed that the observed count rate at 20% count loss is about 42 kcps. The system sensitivity at the collimator surface for heads 1 and 2 were 1.32 cps/µCi and 1.25 cps/µCi, respectively. The corresponding values were 1.18 cps/µCi and 1.02 cps/µCi at 8 cm distance from the collimator surfaces. In addition, whole-body scans of mice demonstrated appropriate imaging capability of the HiReSPECT

  17. Analysis of hyperspectral fluorescence images for poultry skin tumor inspection

    Science.gov (United States)

    Kong, Seong G.; Chen, Yud-Ren; Kim, Intaek; Kim, Moon S.

    2004-02-01

    We present a hyperspectral fluorescence imaging system with a fuzzy inference scheme for detecting skin tumors on poultry carcasses. Hyperspectral images reveal spatial and spectral information useful for finding pathological lesions or contaminants on agricultural products. Skin tumors are not obvious because the visual signature appears as a shape distortion rather than a discoloration. Fluorescence imaging allows the visualization of poultry skin tumors more easily than reflectance. The hyperspectral image samples obtained for this poultry tumor inspection contain 65 spectral bands of fluorescence in the visible region of the spectrum at wavelengths ranging from 425 to 711 nm. The large amount of hyperspectral image data is compressed by use of a discrete wavelet transform in the spatial domain. Principal-component analysis provides an effective compressed representation of the spectral signal of each pixel in the spectral domain. A small number of significant features are extracted from two major spectral peaks of relative fluorescence intensity that have been identified as meaningful spectral bands for detecting tumors. A fuzzy inference scheme that uses a small number of fuzzy rules and Gaussian membership functions successfully detects skin tumors on poultry carcasses. Spatial-filtering techniques are used to significantly reduce false positives.

  18. High Resolution/High Fidelity Seismic Imaging and Parameter Estimation for Geological Structure and Material Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Ru-Shan Wu; Xiao-Bi Xie

    2008-06-08

    Our proposed work on high resolution/high fidelity seismic imaging focused on three general areas: (1) development of new, more efficient, wave-equation-based propagators and imaging conditions, (2) developments towards amplitude-preserving imaging in the local angle domain, in particular, imaging methods that allow us to estimate the reflection as a function of angle at a layer boundary, and (3) studies of wave inversion for local parameter estimation. In this report we summarize the results and progress we made during the project period. The report is divided into three parts, totaling 10 chapters. The first part is on resolution analysis and its relation to directional illumination analysis. The second part, which is composed of 6 chapters, is on the main theme of our work, the true-reflection imaging. True-reflection imaging is an advanced imaging technology which aims at keeping the image amplitude proportional to the reflection strength of the local reflectors or to obtain the reflection coefficient as function of reflection-angle. There are many factors which may influence the image amplitude, such as geometrical spreading, transmission loss, path absorption, acquisition aperture effect, etc. However, we can group these into two categories: one is the propagator effect (geometric spreading, path losses); the other is the acquisition-aperture effect. We have made significant progress in both categories. We studied the effects of different terms in the true-amplitude one-way propagators, especially the terms including lateral velocity variation of the medium. We also demonstrate the improvements by optimizing the expansion coefficients in different terms. Our research also includes directional illumination analysis for both the one-way propagators and full-wave propagators. We developed the fast acquisition-aperture correction method in the local angle-domain, which is an important element in the true-reflection imaging. Other developments include the super

  19. Water Extraction in High Resolution Remote Sensing Image Based on Hierarchical Spectrum and Shape Features

    International Nuclear Information System (INIS)

    Li, Bangyu; Zhang, Hui; Xu, Fanjiang

    2014-01-01

    This paper addresses the problem of water extraction from high resolution remote sensing images (including R, G, B, and NIR channels), which draws considerable attention in recent years. Previous work on water extraction mainly faced two difficulties. 1) It is difficult to obtain accurate position of water boundary because of using low resolution images. 2) Like all other image based object classification problems, the phenomena of ''different objects same image'' or ''different images same object'' affects the water extraction. Shadow of elevated objects (e.g. buildings, bridges, towers and trees) scattered in the remote sensing image is a typical noise objects for water extraction. In many cases, it is difficult to discriminate between water and shadow in a remote sensing image, especially in the urban region. We propose a water extraction method with two hierarchies: the statistical feature of spectral characteristic based on image segmentation and the shape feature based on shadow removing. In the first hierarchy, the Statistical Region Merging (SRM) algorithm is adopted for image segmentation. The SRM includes two key steps: one is sorting adjacent regions according to a pre-ascertained sort function, and the other one is merging adjacent regions based on a pre-ascertained merging predicate. The sort step is done one time during the whole processing without considering changes caused by merging which may cause imprecise results. Therefore, we modify the SRM with dynamic sort processing, which conducts sorting step repetitively when there is large adjacent region changes after doing merging. To achieve robust segmentation, we apply the merging region with six features (four remote sensing image bands, Normalized Difference Water Index (NDWI), and Normalized Saturation-value Difference Index (NSVDI)). All these features contribute to segment image into region of object. NDWI and NSVDI are discriminate between water and

  20. High-resolution imaging of cellular processes across textured surfaces using an indexed-matched elastomer.

    Science.gov (United States)

    Ravasio, Andrea; Vaishnavi, Sree; Ladoux, Benoit; Viasnoff, Virgile

    2015-03-01

    Understanding and controlling how cells interact with the microenvironment has emerged as a prominent field in bioengineering, stem cell research and in the development of the next generation of in vitro assays as well as organs on a chip. Changing the local rheology or the nanotextured surface of substrates has proved an efficient approach to improve cell lineage differentiation, to control cell migration properties and to understand environmental sensing processes. However, introducing substrate surface textures often alters the ability to image cells with high precision, compromising our understanding of molecular mechanisms at stake in environmental sensing. In this paper, we demonstrate how nano/microstructured surfaces can be molded from an elastomeric material with a refractive index matched to the cell culture medium. Once made biocompatible, contrast imaging (differential interference contrast, phase contrast) and high-resolution fluorescence imaging of subcellular structures can be implemented through the textured surface using an inverted microscope. Simultaneous traction force measurements by micropost deflection were also performed, demonstrating the potential of our approach to study cell-environment interactions, sensing processes and cellular force generation with unprecedented resolution. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  1. High-resolution non-destructive three-dimensional imaging of integrated circuits

    Science.gov (United States)

    Holler, Mirko; Guizar-Sicairos, Manuel; Tsai, Esther H. R.; Dinapoli, Roberto; Müller, Elisabeth; Bunk, Oliver; Raabe, Jörg; Aeppli, Gabriel

    2017-03-01

    Modern nanoelectronics has advanced to a point at which it is impossible to image entire devices and their interconnections non-destructively because of their small feature sizes and the complex three-dimensional structures resulting from their integration on a chip. This metrology gap implies a lack of direct feedback between design and manufacturing processes, and hampers quality control during production, shipment and use. Here we demonstrate that X-ray ptychography—a high-resolution coherent diffractive imaging technique—can create three-dimensional images of integrated circuits of known and unknown designs with a lateral resolution in all directions down to 14.6 nanometres. We obtained detailed device geometries and corresponding elemental maps, and show how the devices are integrated with each other to form the chip. Our experiments represent a major advance in chip inspection and reverse engineering over the traditional destructive electron microscopy and ion milling techniques. Foreseeable developments in X-ray sources, optics and detectors, as well as adoption of an instrument geometry optimized for planar rather than cylindrical samples, could lead to a thousand-fold increase in efficiency, with concomitant reductions in scan times and voxel sizes.

  2. Wake-based ship route estimation in high-resolution SAR images

    Science.gov (United States)

    Graziano, M. Daniela; Rufino, Giancarlo; D'Errico, Marco

    2014-10-01

    This paper presents a novel algorithm for wake detection in Synthetic Aperture Radar images of the sea. The algorithm has been conceived as part of a ship traffic monitoring system, in charge of ship detection validation and to estimate ship route features, such as heading and ground speed. In addition, it has been intended to be adequate for inclusion in an automatic procedure without human operator supervision. The algorithm exploits the Radon transform to identify the images ship wake on the basis of the well known theoretical characteristics of the wakes' geometry and components, that are the turbulent wake, the narrow-V wakes, and the Kelvin arms, as well as the typical appearance of such components in Synthetic Aperture Radar images of the sea as bright or dark linear feature. Examples of application to high-resolution X-band Synthetic Aperture Radar products (COSMOSkymed and TerraSAR-X) are reported, both for wake detection and ship route estimation, showing the achieved quality and reliability of wake detection, adequacy to automatic procedures, as well as speed measure accuracy.

  3. S-CNN-BASED SHIP DETECTION FROM HIGH-RESOLUTION REMOTE SENSING IMAGES

    Directory of Open Access Journals (Sweden)

    R. Zhang

    2016-06-01

    Full Text Available Reliable ship detection plays an important role in both military and civil fields. However, it makes the task difficult with high-resolution remote sensing images with complex background and various types of ships with different poses, shapes and scales. Related works mostly used gray and shape features to detect ships, which obtain results with poor robustness and efficiency. To detect ships more automatically and robustly, we propose a novel ship detection method based on the convolutional neural networks (CNNs, called SCNN, fed with specifically designed proposals extracted from the ship model combined with an improved saliency detection method. Firstly we creatively propose two ship models, the “V” ship head model and the “||” ship body one, to localize the ship proposals from the line segments extracted from a test image. Next, for offshore ships with relatively small sizes, which cannot be efficiently picked out by the ship models due to the lack of reliable line segments, we propose an improved saliency detection method to find these proposals. Therefore, these two kinds of ship proposals are fed to the trained CNN for robust and efficient detection. Experimental results on a large amount of representative remote sensing images with different kinds of ships with varied poses, shapes and scales demonstrate the efficiency and robustness of our proposed S-CNN-Based ship detector.

  4. Random Access Memories: A New Paradigm for Target Detection in High Resolution Aerial Remote Sensing Images.

    Science.gov (United States)

    Zou, Zhengxia; Shi, Zhenwei

    2018-03-01

    We propose a new paradigm for target detection in high resolution aerial remote sensing images under small target priors. Previous remote sensing target detection methods frame the detection as learning of detection model + inference of class-label and bounding-box coordinates. Instead, we formulate it from a Bayesian view that at inference stage, the detection model is adaptively updated to maximize its posterior that is determined by both training and observation. We call this paradigm "random access memories (RAM)." In this paradigm, "Memories" can be interpreted as any model distribution learned from training data and "random access" means accessing memories and randomly adjusting the model at detection phase to obtain better adaptivity to any unseen distribution of test data. By leveraging some latest detection techniques e.g., deep Convolutional Neural Networks and multi-scale anchors, experimental results on a public remote sensing target detection data set show our method outperforms several other state of the art methods. We also introduce a new data set "LEarning, VIsion and Remote sensing laboratory (LEVIR)", which is one order of magnitude larger than other data sets of this field. LEVIR consists of a large set of Google Earth images, with over 22 k images and 10 k independently labeled targets. RAM gives noticeable upgrade of accuracy (an mean average precision improvement of 1% ~ 4%) of our baseline detectors with acceptable computational overhead.

  5. Comet Shoemaker-Levy 9/Jupiter collision observed with a high resolution speckle imaging system

    Energy Technology Data Exchange (ETDEWEB)

    Gravel, D. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    During the week of July 16, 1994, comet Shoemaker-Levy 9, broken into 20 plus pieces by tidal forces on its last orbit, smashed into the planet Jupiter, releasing the explosive energy of 500 thousand megatons. A team of observers from LLNL used the LLNL Speckle Imaging Camera mounted on the University of California`s Lick Observatory 3 Meter Telescope to capture continuous sequences of planet images during the comet encounter. Post processing with the bispectral phase reconstruction algorithm improves the resolution by removing much of the blurring due to atmospheric turbulence. High resolution images of the planet surface showing the aftermath of the impact are probably the best that were obtained from any ground-based telescope. We have been looking at the regions of the fragment impacts to try to discern any dynamic behavior of the spots left on Jupiter`s cloud tops. Such information can lead to conclusions about the nature of the comet and of Jupiter`s atmosphere. So far, the Hubble Space Telescope has observed expanding waves from the G impact whose mechanism is enigmatic since they appear to be too slow to be sound waves and too fast to be gravity waves, given the present knowledge of Jupiter`s atmosphere. Some of our data on the G and L impact region complements the Hubble observations but, so far, is inconclusive about spot dynamics.

  6. High-resolution non-destructive three-dimensional imaging of integrated circuits.

    Science.gov (United States)

    Holler, Mirko; Guizar-Sicairos, Manuel; Tsai, Esther H R; Dinapoli, Roberto; Müller, Elisabeth; Bunk, Oliver; Raabe, Jörg; Aeppli, Gabriel

    2017-03-15

    Modern nanoelectronics has advanced to a point at which it is impossible to image entire devices and their interconnections non-destructively because of their small feature sizes and the complex three-dimensional structures resulting from their integration on a chip. This metrology gap implies a lack of direct feedback between design and manufacturing processes, and hampers quality control during production, shipment and use. Here we demonstrate that X-ray ptychography-a high-resolution coherent diffractive imaging technique-can create three-dimensional images of integrated circuits of known and unknown designs with a lateral resolution in all directions down to 14.6 nanometres. We obtained detailed device geometries and corresponding elemental maps, and show how the devices are integrated with each other to form the chip. Our experiments represent a major advance in chip inspection and reverse engineering over the traditional destructive electron microscopy and ion milling techniques. Foreseeable developments in X-ray sources, optics and detectors, as well as adoption of an instrument geometry optimized for planar rather than cylindrical samples, could lead to a thousand-fold increase in efficiency, with concomitant reductions in scan times and voxel sizes.

  7. High resolution mapping of urban areas using SPOT-5 images and ancillary data

    Directory of Open Access Journals (Sweden)

    Elif Sertel

    2015-08-01

    Full Text Available This research aims to propose new rule sets to be used for object based classification of SPOT-5 images to accurately create detailed urban land cover/use maps. In addition to SPOT-5 satellite images, Normalized Difference Vegetation Index (NDVI and Normalized Difference Water Index (NDWI maps, cadastral maps, Openstreet maps, road maps and Land Cover maps, were also integrated into classification to increase the accuracy of resulting maps. Gaziantep city, one of the highly populated cities of Turkey with different landscape patterns was selected as the study area. Different rule sets involving spectral, spatial and geometric characteristics were developed to be used for object based classification of 2.5 m resolution Spot-5 satellite images to automatically create urban map of the region. Twenty different land cover/use classes obtained from European Urban Atlas project were applied and an automatic classification approach was suggested for high resolution urban map creation and updating. Integration of different types of data into the classification decision tree increased the performance and accuracy of the suggested approach. The accuracy assessment results illustrated that with the usage of newly proposed rule set algorithms in object-based classification, urban areas represented with seventeen different sub-classes could be mapped with 94 % or higher overall accuracy.

  8. Rule-based land cover classification from very high-resolution satellite image with multiresolution segmentation

    Science.gov (United States)

    Haque, Md. Enamul; Al-Ramadan, Baqer; Johnson, Brian A.

    2016-07-01

    Multiresolution segmentation and rule-based classification techniques are used to classify objects from very high-resolution satellite images of urban areas. Custom rules are developed using different spectral, geometric, and textural features with five scale parameters, which exploit varying classification accuracy. Principal component analysis is used to select the most important features out of a total of 207 different features. In particular, seven different object types are considered for classification. The overall classification accuracy achieved for the rule-based method is 95.55% and 98.95% for seven and five classes, respectively. Other classifiers that are not using rules perform at 84.17% and 97.3% accuracy for seven and five classes, respectively. The results exploit coarse segmentation for higher scale parameter and fine segmentation for lower scale parameter. The major contribution of this research is the development of rule sets and the identification of major features for satellite image classification where the rule sets are transferable and the parameters are tunable for different types of imagery. Additionally, the individual objectwise classification and principal component analysis help to identify the required object from an arbitrary number of objects within images given ground truth data for the training.

  9. A research of road centerline extraction algorithm from high resolution remote sensing images

    Science.gov (United States)

    Zhang, Yushan; Xu, Tingfa

    2017-09-01

    Satellite remote sensing technology has become one of the most effective methods for land surface monitoring in recent years, due to its advantages such as short period, large scale and rich information. Meanwhile, road extraction is an important field in the applications of high resolution remote sensing images. An intelligent and automatic road extraction algorithm with high precision has great significance for transportation, road network updating and urban planning. The fuzzy c-means (FCM) clustering segmentation algorithms have been used in road extraction, but the traditional algorithms did not consider spatial information. An improved fuzzy C-means clustering algorithm combined with spatial information (SFCM) is proposed in this paper, which is proved to be effective for noisy image segmentation. Firstly, the image is segmented using the SFCM. Secondly, the segmentation result is processed by mathematical morphology to remover the joint region. Thirdly, the road centerlines are extracted by morphology thinning and burr trimming. The average integrity of the centerline extraction algorithm is 97.98%, the average accuracy is 95.36% and the average quality is 93.59%. Experimental results show that the proposed method in this paper is effective for road centerline extraction.

  10. Implementation of a high-resolution workstation for primary diagnosis of projection radiography images

    Science.gov (United States)

    Good, Walter F.; Herron, John M.; Maitz, Glenn S.; Gur, David; Miller, Stephen L.; Straub, William H.; Fuhrman, Carl R.

    1990-08-01

    We designed and implemented a high-resolution video workstation as the central hardware component in a comprehensive multi-project program comparing the use of digital and film modalities. The workstation utilizes a 1.8 GByte real-time disk (RCI) capable of storing 400 full-resolution images and two Tektronix (GMA251) display controllers with 19" monitors (GMA2O2). The display is configured in a portrait format with a resolution of 1536 x 2048 x 8 bit, and operates at 75 Hz in a noninterlaced mode. Transmission of data through a 12 to 8 bit lookup table into the display controllers occurs at 20 MBytes/second (.35 seconds per image). The workstation allows easy use of brightness (level) and contrast (window) to be manipulated with a trackball, and various processing options can be selected using push buttons. Display of any of the 400 images is also performed at 20MBytes/sec (.35 sec/image). A separate text display provides for the automatic display of patient history data and for a scoring form through which readers can interact with the system by means of a computer mouse. In addition, the workstation provides for the randomization of cases and for the immediate entry of diagnostic responses into a master database. Over the past year this workstation has been used for over 10,000 readings in diagnostic studies related to 1) image resolution; 2) film vs. soft display; 3) incorporation of patient history data into the reading process; and 4) usefulness of image processing.

  11. A flexible coil array for high resolution magnetic resonance imaging at 7 Tesla

    International Nuclear Information System (INIS)

    Kriegl, R.

    2015-01-01

    Magnetic resonance imaging (MRI), among other imaging techniques, has become a major backbone of modern medical diagnostics. MRI enables the non-invasive combined, identification of anatomical structures, functional and chemical properties, especially in soft tissues. Nonetheless, applications requiring very high spatial and/or temporal resolution are often limited by the available signal-to-noise ratio (SNR) in MR experiments. Since first clinical applications, image quality in MRI has been constantly improved by applying one or several of the following strategies: increasing the static magnetic field strength, improvement of the radiofrequency (RF) detection system, development of specialized acquisition sequences and optimization of image reconstruction techniques. This work is concerned with the development of highly sensitive RF detection systems for biomedical ultra-high field MRI. In particular, auto-resonant RF coils based on transmission line technology are investigated. These resonators may be fabricated on flexible substrate which enables form-fitting of the RF detector to the target anatomy, leading to a significant SNR gain. The main objective of this work is the development of a flexible RF coil array for high-resolution MRI on a human whole-body 7 T MR scanner. With coil arrays, the intrinsically high SNR of small surface coils may be exploited for an extended field of view. Further, parallel imaging techniques are accessible with RF array technology, allowing acceleration of the image acquisition. Secondly, in this PhD project a novel design for transmission line resonators is developed, that brings an additional degree of freedom in geometric design and enables the fabrication of large multi-turn resonators for high field MR applications. This thesis describes the development, successful implementation and evaluation of novel, mechanically flexible RF devices by analytical and 3D electromagnetic simulations, in bench measurements and in MRI

  12. Topography improvements in MEMS DMs for high-contrast, high-resolution imaging, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This project will develop and demonstrate an innovative microfabrication process to substantially improve the surface quality achievable in high-resolution...

  13. HIGH-RESOLUTION IMAGING OF THE ATLBS REGIONS: THE RADIO SOURCE COUNTS

    Energy Technology Data Exchange (ETDEWEB)

    Thorat, K.; Subrahmanyan, R.; Saripalli, L.; Ekers, R. D., E-mail: kshitij@rri.res.in [Raman Research Institute, C. V. Raman Avenue, Sadashivanagar, Bangalore 560080 (India)

    2013-01-01

    The Australia Telescope Low-brightness Survey (ATLBS) regions have been mosaic imaged at a radio frequency of 1.4 GHz with 6'' angular resolution and 72 {mu}Jy beam{sup -1} rms noise. The images (centered at R.A. 00{sup h}35{sup m}00{sup s}, decl. -67 Degree-Sign 00'00'' and R.A. 00{sup h}59{sup m}17{sup s}, decl. -67 Degree-Sign 00'00'', J2000 epoch) cover 8.42 deg{sup 2} sky area and have no artifacts or imaging errors above the image thermal noise. Multi-resolution radio and optical r-band images (made using the 4 m CTIO Blanco telescope) were used to recognize multi-component sources and prepare a source list; the detection threshold was 0.38 mJy in a low-resolution radio image made with beam FWHM of 50''. Radio source counts in the flux density range 0.4-8.7 mJy are estimated, with corrections applied for noise bias, effective area correction, and resolution bias. The resolution bias is mitigated using low-resolution radio images, while effects of source confusion are removed by using high-resolution images for identifying blended sources. Below 1 mJy the ATLBS counts are systematically lower than the previous estimates. Showing no evidence for an upturn down to 0.4 mJy, they do not require any changes in the radio source population down to the limit of the survey. The work suggests that automated image analysis for counts may be dependent on the ability of the imaging to reproduce connecting emission with low surface brightness and on the ability of the algorithm to recognize sources, which may require that source finding algorithms effectively work with multi-resolution and multi-wavelength data. The work underscores the importance of using source lists-as opposed to component lists-and correcting for the noise bias in order to precisely estimate counts close to the image noise and determine the upturn at sub-mJy flux density.

  14. Detecting brain tumor in pathological slides using hyperspectral imaging.

    Science.gov (United States)

    Ortega, Samuel; Fabelo, Himar; Camacho, Rafael; de la Luz Plaza, María; Callicó, Gustavo M; Sarmiento, Roberto

    2018-02-01

    Hyperspectral imaging (HSI) is an emerging technology for medical diagnosis. This research work presents a proof-of-concept on the use of HSI data to automatically detect human brain tumor tissue in pathological slides. The samples, consisting of hyperspectral cubes collected from 400 nm to 1000 nm, were acquired from ten different patients diagnosed with high-grade glioma. Based on the diagnosis provided by pathologists, a spectral library of normal and tumor tissues was created and processed using three different supervised classification algorithms. Results prove that HSI is a suitable technique to automatically detect high-grade tumors from pathological slides.

  15. Bread Water Content Measurement Based on Hyperspectral Imaging

    DEFF Research Database (Denmark)

    Liu, Zhi; Møller, Flemming

    2011-01-01

    Water content is one of the most important properties of the bread for tasting assesment or store monitoring. Traditional bread water content measurement methods mostly are processed manually, which is destructive and time consuming. This paper proposes an automated water content measurement...... for bread quality based on near-infrared hyperspectral imaging against the conventional manual loss-in-weight method. For this purpose, the hyperspectral components unmixing technology is used for measuring the water content quantitatively. And the definition on bread water content index is presented...

  16. Objective Color Classification of Ecstasy Tablets by Hyperspectral Imaging

    NARCIS (Netherlands)

    Edelman, Gerda; Lopatka, Martin; Aalders, Maurice

    2013-01-01

    The general procedure followed in the examination of ecstasy tablets for profiling purposes includes a color description, which depends highly on the observers' perception. This study aims to provide objective quantitative color information using visible hyperspectral imaging. Both self-manufactured

  17. Recent Advances in Techniques for Hyperspectral Image Processing

    Science.gov (United States)

    Plaza, Antonio; Benediktsson, Jon Atli; Boardman, Joseph W.; Brazile, Jason; Bruzzone, Lorenzo; Camps-Valls, Gustavo; Chanussot, Jocelyn; Fauvel, Mathieu; Gamba, Paolo; Gualtieri, Anthony; hide

    2009-01-01

    Imaging spectroscopy, also known as hyperspectral imaging, has been transformed in less than 30 years from being a sparse research tool into a commodity product available to a broad user community. Currently, there is a need for standardized data processing techniques able to take into account the special properties of hyperspectral data. In this paper, we provide a seminal view on recent advances in techniques for hyperspectral image processing. Our main focus is on the design of techniques able to deal with the highdimensional nature of the data, and to integrate the spatial and spectral information. Performance of the discussed techniques is evaluated in different analysis scenarios. To satisfy time-critical constraints in specific applications, we also develop efficient parallel implementations of some of the discussed algorithms. Combined, these parts provide an excellent snapshot of the state-of-the-art in those areas, and offer a thoughtful perspective on future potentials and emerging challenges in the design of robust hyperspectral imaging algorithms

  18. Hyperspectral Imaging of Forest Resources: The Malaysian Experience

    Science.gov (United States)

    Mohd Hasmadi, I.; Kamaruzaman, J.

    2008-08-01

    Remote sensing using satellite and aircraft images are well established technology. Remote sensing application of hyperspectral imaging, however, is relatively new to Malaysian forestry. Through a wide range of wavelengths hyperspectral data are precisely capable to capture narrow bands of spectra. Airborne sensors typically offer greatly enhanced spatial and spectral resolution over their satellite counterparts, and able to control experimental design closely during image acquisition. The first study using hyperspectral imaging for forest inventory in Malaysia were conducted by Professor Hj. Kamaruzaman from the Faculty of Forestry, Universiti Putra Malaysia in 2002 using the AISA sensor manufactured by Specim Ltd, Finland. The main objective has been to develop methods that are directly suited for practical tropical forestry application at the high level of accuracy. Forest inventory and tree classification including development of single spectral signatures have been the most important interest at the current practices. Experiences from the studies showed that retrieval of timber volume and tree discrimination using this system is well and some or rather is better than other remote sensing methods. This article reviews the research and application of airborne hyperspectral remote sensing for forest survey and assessment in Malaysia.

  19. a Hyperspectral Image Classification Method Using Isomap and Rvm

    Science.gov (United States)

    Chang, H.; Wang, T.; Fang, H.; Su, Y.

    2018-04-01

    Classification is one of the most significant applications of hyperspectral image processing and even remote sensing. Though various algorithms have been proposed to implement and improve this application, there are still drawbacks in traditional classification methods. Thus further investigations on some aspects, such as dimension reduction, data mining, and rational use of spatial information, should be developed. In this paper, we used a widely utilized global manifold learning approach, isometric feature mapping (ISOMAP), to address the intrinsic nonlinearities of hyperspectral image for dimension reduction. Considering the impropriety of Euclidean distance in spectral measurement, we applied spectral angle (SA) for substitute when constructed the neighbourhood graph. Then, relevance vector machines (RVM) was introduced to implement classification instead of support vector machines (SVM) for simplicity, generalization and sparsity. Therefore, a probability result could be obtained rather than a less convincing binary result. Moreover, taking into account the spatial information of the hyperspectral image, we employ a spatial vector formed by different classes' ratios around the pixel. At last, we combined the probability results and spatial factors with a criterion to decide the final classification result. To verify the proposed method, we have implemented multiple experiments with standard hyperspectral images compared with some other methods. The results and different evaluation indexes illustrated the effectiveness of our method.

  20. Infrared hyperspectral upconversion imaging using spatial object translation

    DEFF Research Database (Denmark)

    Kehlet, Louis Martinus; Sanders, Nicolai Højer; Tidemand-Lichtenberg, Peter

    2015-01-01

    In this paper hyperspectral imaging in the mid-infrared wavelength region is realised using nonlinear frequency upconversion. The infrared light is converted to the near-infrared region for detection with a Si-based CCD camera. The object is translated in a predefined grid by motorized actuators...

  1. DEM GENERATION FROM HIGH RESOLUTION SATELLITE IMAGES THROUGH A NEW 3D LEAST SQUARES MATCHING ALGORITHM

    Directory of Open Access Journals (Sweden)

    T. Kim

    2012-09-01

    Full Text Available Automated generation of digital elevation models (DEMs from high resolution satellite images (HRSIs has been an active research topic for many years. However, stereo matching of HRSIs, in particular based on image-space search, is still difficult due to occlusions and building facades within them. Object-space matching schemes, proposed to overcome these problem, often are very time consuming and critical to the dimensions of voxels. In this paper, we tried a new least square matching (LSM algorithm that works in a 3D object space. The algorithm starts with an initial height value on one location of the object space. From this 3D point, the left and right image points are projected. The true height is calculated by iterative least squares estimation based on the grey level differences between the left and right patches centred on the projected left and right points. We tested the 3D LSM to the Worldview images over 'Terrassa Sud' provided by the ISPRS WG I/4. We also compared the performance of the 3D LSM with the correlation matching based on 2D image space and the correlation matching based on 3D object space. The accuracy of the DEM from each method was analysed against the ground truth. Test results showed that 3D LSM offers more accurate DEMs over the conventional matching algorithms. Results also showed that 3D LSM is sensitive to the accuracy of initial height value to start the estimation. We combined the 3D COM and 3D LSM for accurate and robust DEM generation from HRSIs. The major contribution of this paper is that we proposed and validated that LSM can be applied to object space and that the combination of 3D correlation and 3D LSM can be a good solution for automated DEM generation from HRSIs.

  2. Automatic cortical surface reconstruction of high-resolution T1 echo planar imaging data.

    Science.gov (United States)

    Renvall, Ville; Witzel, Thomas; Wald, Lawrence L; Polimeni, Jonathan R

    2016-07-01

    Echo planar imaging (EPI) is the method of choice for the majority of functional magnetic resonance imaging (fMRI), yet EPI is prone to geometric distortions and thus misaligns with conventional anatomical reference data. The poor geometric correspondence between functional and anatomical data can lead to severe misplacements and corruption of detected activation patterns. However, recent advances in imaging technology have provided EPI data with increasing quality and resolution. Here we present a framework for deriving cortical surface reconstructions directly from high-resolution EPI-based reference images that provide anatomical models exactly geometric distortion-matched to the functional data. Anatomical EPI data with 1mm isotropic voxel size were acquired using a fast multiple inversion recovery time EPI sequence (MI-EPI) at 7T, from which quantitative T1 maps were calculated. Using these T1 maps, volumetric data mimicking the tissue contrast of standard anatomical data were synthesized using the Bloch equations, and these T1-weighted data were automatically processed using FreeSurfer. The spatial alignment between T2(⁎)-weighted EPI data and the synthetic T1-weighted anatomical MI-EPI-based images was improved compared to the conventional anatomical reference. In particular, the alignment near the regions vulnerable to distortion due to magnetic susceptibility differences was improved, and sampling of the adjacent tissue classes outside of the cortex was reduced when using cortical surface reconstructions derived directly from the MI-EPI reference. The MI-EPI method therefore produces high-quality anatomical data that can be automatically segmented with standard software, providing cortical surface reconstructions that are geometrically matched to the BOLD fMRI data. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Dual-conjugate adaptive optics for wide-field high-resolution retinal imaging.

    Science.gov (United States)

    Thaung, Jörgen; Knutsson, Per; Popovic, Zoran; Owner-Petersen, Mette

    2009-03-16

    We present analysis and preliminary laboratory testing of a real-time dual-conjugate adaptive optics (DCAO) instrument for ophthalmology that will enable wide-field high resolution imaging of the retina in vivo. The setup comprises five retinal guide stars (GS) and two deformable mirrors (DM), one conjugate to the pupil and one conjugate to a plane close to the retina. The DCAO instrument has a closed-loop wavefront sensing wavelength of 834 nm and an imaging wavelength of 575 nm. It incorporates an array of collimator lenses to spatially filter the light from all guide stars using one adjustable iris, and images the Hartmann patterns of multiple reference sources on a single detector. Zemax simulations were performed at 834 nm and 575 nm with the Navarro 99 and the Liou- Brennan eye models. Two correction alternatives were evaluated; conventional single conjugate AO (SCAO, using one GS and a pupil DM) and DCAO (using multiple GS and two DM). Zemax simulations at 575 nm based on the Navarro 99 eye model show that the diameter of the corrected field of view for diffraction-limited imaging (Strehl >or= 0.8) increases from 1.5 deg with SCAO to 6.5 deg using DCAO. The increase for the less stringent condition of a wavefront error of 1 rad or less (Strehl >or= 0.37) is from 3 deg with SCAO to approximately 7.4 deg using DCAO. Corresponding results for the Liou-Brennan eye model are 3.1 deg (SCAO) and 8.2 deg (DCAO) for Strehl >or= 0.8, and 4.8 deg (SCAO) and 9.6 deg (DCAO) for Strehl >or= 0.37. Potential gain in corrected field of view with DCAO is confirmed both by laboratory experiments on a model eye and by preliminary in vivo imaging of a human eye. (c) 2009 Optical Society of America

  4. The High Resolution Imaging Science Experiment (HiRISE) during MRO's Primary Science Phase (PSP)

    Science.gov (United States)

    McEwen, A.S.; Banks, M.E.; Baugh, N.; Becker, K.; Boyd, A.; Bergstrom, J.W.; Beyer, R.A.; Bortolini, E.; Bridges, N.T.; Byrne, S.; Castalia, B.; Chuang, F.C.; Crumpler, L.S.; Daubar, I.; Davatzes, A.K.; Deardorff, D.G.; DeJong, A.; Alan, Delamere W.; Dobrea, E.N.; Dundas, C.M.; Eliason, E.M.; Espinoza, Y.; Fennema, A.; Fishbaugh, K.E.; Forrester, T.; Geissler, P.E.; Grant, J. A.; Griffes, J.L.; Grotzinger, J.P.; Gulick, V.C.; Hansen, C.J.; Herkenhoff, K. E.; Heyd, R.; Jaeger, W.L.; Jones, D.; Kanefsky, B.; Keszthelyi, L.; King, R.; Kirk, R.L.; Kolb, K.J.; Lasco, J.; Lefort, A.; Leis, R.; Lewis, K.W.; Martinez-Alonso, S.; Mattson, S.; McArthur, G.; Mellon, M.T.; Metz, J.M.; Milazzo, M.P.; Milliken, R.E.; Motazedian, T.; Okubo, C.H.; Ortiz, A.; Philippoff, A.J.; Plassmann, J.; Polit, A.; Russell, P.S.; Schaller, C.; Searls, M.L.; Spriggs, T.; Squyres, S. W.; Tarr, S.; Thomas, N.; Thomson, B.J.; Tornabene, L.L.; Van Houten, C.; Verba, C.; Weitz, C.M.; Wray, J.J.

    2010-01-01

    The High Resolution Imaging Science Experiment (HiRISE) on the Mars Reconnaissance Orbiter (MRO) acquired 8 terapixels of data in 9137 images of Mars between October 2006 and December 2008, covering ???0.55% of the surface. Images are typically 5-6 km wide with 3-color coverage over the central 20% of the swath, and their scales usually range from 25 to 60 cm/pixel. Nine hundred and sixty stereo pairs were acquired and more than 50 digital terrain models (DTMs) completed; these data have led to some of the most significant science results. New methods to measure and correct distortions due to pointing jitter facilitate topographic and change-detection studies at sub-meter scales. Recent results address Noachian bedrock stratigraphy, fluvially deposited fans in craters and in or near Valles Marineris, groundwater flow in fractures and porous media, quasi-periodic layering in polar and non-polar deposits, tectonic history of west Candor Chasma, geometry of clay-rich deposits near and within Mawrth Vallis, dynamics of flood lavas in the Cerberus Palus region, evidence for pyroclastic deposits, columnar jointing in lava flows, recent collapse pits, evidence for water in well-preserved impact craters, newly discovered large rayed craters, and glacial and periglacial processes. Of particular interest are ongoing processes such as those driven by the wind, impact cratering, avalanches of dust and/or frost, relatively bright deposits on steep gullied slopes, and the dynamic seasonal processes over polar regions. HiRISE has acquired hundreds of large images of past, present and potential future landing sites and has contributed to scientific and engineering studies of those sites. Warming the focal-plane electronics prior to imaging has mitigated an instrument anomaly that produces bad data under cold operating conditions. ?? 2009 Elsevier Inc.

  5. High-resolution electron microscope image analysis approach for superconductor YBa2Cu3O7-x

    International Nuclear Information System (INIS)

    Xu, J.; Lu, F.; Jia, C.; Hua, Z.

    1991-01-01

    In this paper, an HREM (High-resolution electron microscope) image analysis approach has been developed. The image filtering, segmentation and particles extraction based on gray-scale mathematical morphological operations, are performed on the original HREM image. The final image is a pseudocolor image, with the background removed, relatively uniform brightness, filtered slanting elongation, regular shape for every kind of particle, and particle boundaries that no longer touch each other so that the superconducting material structure can be shown clearly

  6. Hyperspectral small animal fluorescence imaging: spectral selection imaging

    Science.gov (United States)

    Leavesley, Silas; Jiang, Yanan; Patsekin, Valery; Hall, Heidi; Vizard, Douglas; Robinson, J. Paul

    2008-02-01

    Molecular imaging is a rapidly growing area of research, fueled by needs in pharmaceutical drug-development for methods for high-throughput screening, pre-clinical and clinical screening for visualizing tumor growth and drug targeting, and a growing number of applications in the molecular biology fields. Small animal fluorescence imaging employs fluorescent probes to target molecular events in vivo, with a large number of molecular targeting probes readily available. The ease at which new targeting compounds can be developed, the short acquisition times, and the low cost (compared to microCT, MRI, or PET) makes fluorescence imaging attractive. However, small animal fluorescence imaging suffers from high optical scattering, absorption, and autofluorescence. Much of these problems can be overcome through multispectral imaging techniques, which collect images at different fluorescence emission wavelengths, followed by analysis, classification, and spectral deconvolution methods to isolate signals from fluorescence emission. We present an alternative to the current method, using hyperspectral excitation scanning (spectral selection imaging), a technique that allows excitation at any wavelength in the visible and near-infrared wavelength range. In many cases, excitation imaging may be more effective at identifying specific fluorescence signals because of the higher complexity of the fluorophore excitation spectrum. Because the excitation is filtered and not the emission, the resolution limit and image shift imposed by acousto-optic tunable filters have no effect on imager performance. We will discuss design of the imager, optimizing the imager for use in small animal fluorescence imaging, and application of spectral analysis and classification methods for identifying specific fluorescence signals.

  7. Parallel exploitation of a spatial-spectral classification approach for hyperspectral images on RVC-CAL

    Science.gov (United States)

    Lazcano, R.; Madroñal, D.; Fabelo, H.; Ortega, S.; Salvador, R.; Callicó, G. M.; Juárez, E.; Sanz, C.

    2017-10-01

    Hyperspectral Imaging (HI) assembles high resolution spectral information from hundreds of narrow bands across the electromagnetic spectrum, thus generating 3D data cubes in which each pixel gathers the spectral information of the reflectance of every spatial pixel. As a result, each image is composed of large volumes of data, which turns its processing into a challenge, as performance requirements have been continuously tightened. For instance, new HI applications demand real-time responses. Hence, parallel processing becomes a necessity to achieve this requirement, so the intrinsic parallelism of the algorithms must be exploited. In this paper, a spatial-spectral classification approach has been implemented using a dataflow language known as RVCCAL. This language represents a system as a set of functional units, and its main advantage is that it simplifies the parallelization process by mapping the different blocks over different processing units. The spatial-spectral classification approach aims at refining the classification results previously obtained by using a K-Nearest Neighbors (KNN) filtering process, in which both the pixel spectral value and the spatial coordinates are considered. To do so, KNN needs two inputs: a one-band representation of the hyperspectral image and the classification results provided by a pixel-wise classifier. Thus, spatial-spectral classification algorithm is divided into three different stages: a Principal Component Analysis (PCA) algorithm for computing the one-band representation of the image, a Support Vector Machine (SVM) classifier, and the KNN-based filtering algorithm. The parallelization of these algorithms shows promising results in terms of computational time, as the mapping of them over different cores presents a speedup of 2.69x when using 3 cores. Consequently, experimental results demonstrate that real-time processing of hyperspectral images is achievable.

  8. Fourier Transform Near Infrared Microspectroscopy, Infrared Chemical Imaging, High-Resolution Nuclear Magnetic Resonance and Fluorescence Microspectroscopy Detection of Single Cancer Cells and Single Viral Particles

    CERN Document Server

    Baianu,I C; Hofmann, N E; Korban, S S; Lozano, P; You, T

    2004-01-01

    Single Cancer Cells from Human tumors are being detected and imaged by Fourier Transform Infrared (FT-IR), Fourier Transform Near Infrared (FT-NIR)Hyperspectral Imaging and Fluorescence Correlation Microspectroscopy. The first FT-NIR chemical, microscopic images of biological systems approaching one micron resolution are here reported. Chemical images obtained by FT-NIR and FT-IR Microspectroscopy are also presented for oil in soybean seeds and somatic embryos under physiological conditions. FT-NIR spectra of oil and proteins were obtained for volumes as small as two cubic microns. Related, HR-NMR analyses of oil contents in somatic embryos as well as 99% accurate calibrations are also presented here with nanoliter precision. Such high-resolution, 400 MHz H-1 NMR analyses allowed the selection of mutagenized embryos with higher oil content (e.g. >~20%) compared to the average levels in non-mutagenized control embryos. Moreover, developmental changes in single soybean seeds and/or somatic embryos may be monito...

  9. Longitudinal assessment of mouse renal injury using high-resolution anatomic and magnetization transfer MR imaging.

    Science.gov (United States)

    Wang, Feng; Jiang, Rosie; Takahashi, Keiko; Gore, John; Harris, Raymond C; Takahashi, Takamune; Quarles, C Chad

    2014-11-01

    The purpose of this study is to evaluate the utility of high-resolution non-invasive endogenous high-field MRI methods for the longitudinal structural and quantitative assessments of mouse kidney disease using the model of unilateral ureter obstruction (UUO). T1-weighted, T2-weighted and magnetization transfer (MT) imaging protocols were optimized to improve the regional contrast in mouse kidney. Conventional T1 and T2 weighted images were collected in UUO mice on day 0 (~3h), day 1, day 3 and day 6 after injury, on a 7 T small animal MRI system. Cortical and medullary thickness, corticomedullary contrast and Magnetization Transfer Ratio (MTR) were assessed longitudinally. Masson trichrome staining was used to histologically assess changes in tissue microstructure. Over the course of UUO progression there were significant (prenal cortical and medullary atrophy, cortical-medullary differentiation and MTR changes provide an endogenous, non-invasive and quantitative evaluation of renal morphology and tissue composition during UUO progression. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Evaluation of carotid stenosis with axial high-resolution black-blood MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    U-King-Im, Jean M.; Trivedi, Rikin A.; Sala, Evis; Graves, Martin J.; Gaskarth, Mathew; Higgins, Nicholas J.; Cross, Justin C.; Coulden, Richard A.; Antoun, Nagui M.; Gillard, Jonathan H. [University Department of Radiology, Addenbrooke' s Hospital, CB2 2QQ, Cambridge (United Kingdom); Hollingworth, William [Department of Radiology, University of Washington, 98103, Seattle, WA (United States); Kirkpatrick, Peter J. [Academic Department of Neurosurgery, Addenbrooke' s Hospital, CB2 2QQ, Cambridge (United Kingdom)

    2004-07-01

    High-resolution axial black-blood MR imaging (BB MRI) has been shown to be able to characterise carotid plaque morphology. The aim of this study was to explore the accuracy of this technique in quantifying the severity of carotid stenosis. A prospective study of 54 patients with symptomatic carotid disease was conducted, comparing BB MRI to the gold standard, conventional digital subtraction X-ray angiography (DSA). The BB MRI sequence was a fast-spin echo acquisition (TE=42 ms, ETL=24, field of view = 100 x 100 mm, slice thickness = 3.0 mm) at 1.5 T using a custom-built phased-array coil. Linear measurements of luminal and outer carotid wall diameter were made directly from the axial BB MRI slices by three independent blinded readers and stenosis was calculated according to European Carotid Surgery Trial (ECST) criteria. There was good agreement between BB MRI and DSA (intraclass correlation = 0.83). Inter-observer agreement was good (average kappa = 0.77). BB MRI was accurate for detection of severe stenosis ({>=}80%) with sensitivity and specificity of 87 and 81%, respectively. Eight cases of ''DSA-defined'' moderate stenosis were overestimated as severe by BB MRI and this may be related to non-circular lumens. Axial imaging with BB MRI could potentially be used to provide useful information about severity of carotid stenosis. (orig.)

  11. HIGH RESOLUTION SEAMLESS DOM GENERATION OVER CHANG'E-5 LANDING AREA USING LROC NAC IMAGES

    Directory of Open Access Journals (Sweden)

    K. Di

    2018-04-01

    Full Text Available Chang’e-5, China’s first sample return lunar mission, will be launched in 2019, and the planned landing area is near Mons Rümker in Oceanus Procellarum. High-resolution and high-precision mapping of the landing area is of great importance for supporting scientific analysis and safe landing. This paper proposes a systematic method for large area seamless digital orthophoto map (DOM generation, and presents the mapping result of Chang’e-5 landing area using over 700 LROC NAC images. The developed method mainly consists of two stages of data processing: stage 1 includes subarea block adjustment with rational function model (RFM and seamless subarea DOM generation; stage 2 includes whole area adjustment through registration of the subarea DOMs with thin plate spline model and seamless DOM mosaicking. The resultant seamless DOM coves a large area (20° longitude × 4° latitude and is tied to the widely used reference DEM – SLDEM2015. As a result, the RMS errors of the tie points are all around half pixel in image space, indicating a high internal precision; the RMS errors of the control points are about one grid cell size of SLDEM2015, indicating that the resultant DOM is tied to SLDEM2015 well.

  12. High Resolution Seamless Dom Generation Over CHANG'E-5 Landing Area Using Lroc Nac Images

    Science.gov (United States)

    Di, K.; Jia, M.; Xin, X.; Liu, B.; Liu, Z.; Peng, M.; Yue, Z.

    2018-04-01

    Chang'e-5, China's first sample return lunar mission, will be launched in 2019, and the planned landing area is near Mons Rümker in Oceanus Procellarum. High-resolution and high-precision mapping of the landing area is of great importance for supporting scientific analysis and safe landing. This paper proposes a systematic method for large area seamless digital orthophoto map (DOM) generation, and presents the mapping result of Chang'e-5 landing area using over 700 LROC NAC images. The developed method mainly consists of two stages of data processing: stage 1 includes subarea block adjustment with rational function model (RFM) and seamless subarea DOM generation; stage 2 includes whole area adjustment through registration of the subarea DOMs with thin plate spline model and seamless DOM mosaicking. The resultant seamless DOM coves a large area (20° longitude × 4° latitude) and is tied to the widely used reference DEM - SLDEM2015. As a result, the RMS errors of the tie points are all around half pixel in image space, indicating a high internal precision; the RMS errors of the control points are about one grid cell size of SLDEM2015, indicating that the resultant DOM is tied to SLDEM2015 well.

  13. Fluorescent-protein stabilization and high-resolution imaging of cleared, intact mouse brains.

    Directory of Open Access Journals (Sweden)

    Martin K Schwarz

    Full Text Available In order to observe and quantify long-range neuronal connections in intact mouse brain by light microscopy, it is first necessary to clear the brain, thus suppressing refractive-index variations. Here we describe a method that clears the brain and preserves the signal from proteinaceous fluorophores using a pH-adjusted non-aqueous index-matching medium. Successful clearing is enabled through the use of either 1-propanol or tert-butanol during dehydration whilst maintaining a basic pH. We show that high-resolution fluorescence imaging of entire, structurally intact juvenile and adult mouse brains is possible at subcellular resolution, even following many months in clearing solution. We also show that axonal long-range projections that are EGFP-labelled by modified Rabies virus can be imaged throughout the brain using a purpose-built light-sheet fluorescence microscope. To demonstrate the viability of the technique, we determined a detailed map of the monosynaptic projections onto a target cell population in the lateral entorhinal cortex. This example demonstrates that our method permits the quantification of whole-brain connectivity patterns at the subcellular level in the uncut brain.

  14. High resolution magnetic resonance imaging of urethral anatomy in continent nulliparous pregnant women

    International Nuclear Information System (INIS)

    Preyer, Oliver; Brugger, Peter C.; Laml, Thomas; Hanzal, Engelbert; Prayer, Daniela; Umek, Wolfgang

    2011-01-01

    Introduction: To quantify the distribution of morphologic appearances of urethral anatomy and measure variables of urethral sphincter anatomy in continent, nulliparous, pregnant women by high resolution magnetic resonance imaging (MRI). Materials and methods: We studied fifteen women during their first pregnancy. We defined and quantified bladder neck and urethral morphology on axial and sagittal MR images from healthy, continent women. Results: The mean (±standard deviation) total transverse urethral diameter, anterior–posterior diameter, unilateral striated sphincter muscle thickness, and striated sphincter length were 15 ± 2 mm (range: 12–19 mm), 15 ± 2 mm (range: 11–20 mm), 2 ± 1 mm (range: 1–4 mm), and 13 ± 3 mm (range: 9–18 mm) respectively. The mean (±standard deviation) total urethral length on sagittal scans was 22 ± 3 mm (range: 17.6–26.4 mm). Discussion: Advances in MR technique combined with anatomical and histological findings will provide an insight to understand how changes in urethral anatomy might affect the continence mechanisms in pregnant and non-pregnant, continent or incontinent individuals.

  15. A novel high resolution, high sensitivity SPECT detector for molecular imaging of cardiovascular diseases

    Science.gov (United States)

    Cusanno, F.; Argentieri, A.; Baiocchi, M.; Colilli, S.; Cisbani, E.; De Vincentis, G.; Fratoni, R.; Garibaldi, F.; Giuliani, F.; Gricia, M.; Lucentini, M.; Magliozzi, M. L.; Majewski, S.; Marano, G.; Musico, P.; Musumeci, M.; Santavenere, F.; Torrioli, S.; Tsui, B. M. W.; Vitelli, L.; Wang, Y.

    2010-05-01

    Cardiovascular diseases are the most common cause of death in western countries. Understanding the rupture of vulnerable atherosclerotic plaques and monitoring the effect of innovative therapies of heart failure is of fundamental importance. A flexible, high resolution, high sensitivity detector system for molecular imaging with radionuclides on small animal models has been designed for this aim. A prototype has been built using tungsten pinhole and LaBr3(Ce) scintillator coupled to Hamamatsu Flat Panel PMTs. Compact individual-channel readout has been designed, built and tested. Measurements with phantoms as well as pilot studies on mice have been performed, the results show that the myocardial perfusion in mice can be determined with sufficient precision. The detector will be improved replacing the Hamamatsu Flat Panel with Silicon Photomultipliers (SiPMs) to allow integration of the system with MRI scanners. Application of LaBr3(Ce) scintillator coupled to photosensor with high photon detection efficiency and excellent energy resolution will allow dual-label imaging to monitor simultaneously the cardiac perfusion and the molecular targets under investigation during the heart therapy.

  16. Breast MR imaging: correlation of high resolution dynamic MR findings with prognostic factors

    International Nuclear Information System (INIS)

    Lee, Shin Ho; Cho, Nariya; Chung, Hye Kyung; Kim, Seung Ja; Cho, Kyung Soo; Moon, Woo Kyung; Cho, Joo Hee

    2005-01-01

    We wanted to correlate the kinetic and morphologic MR findings of invasive breast cancer with the classical and molecular prognostic factors. Eighty-seven patients with invasive ductal carcinoma NOS underwent dynamic MR imaging at 1.5 T, and with using the T1-weighted 3D FLASH technique. The morphologic findings (shape, margin, internal enhancement of the mass or the enhancement distribution and the internal enhancement of any non-mass lesion) and the kinetic findings (the initial phase and the delayed phase of the time-signal. Intensity curve) were interpreted using a ACR BI-RADS-MRI lexicon. We correlate MR findings with histopathologic prognostic factors (tumor size, lymph node status and tumor grade) and the immunohistochemically detected biomarkers (ER, PR, ρ 53, c-erbB-2, EGFR and Ki-67). Univariate and multivariate statistical analyses were than performed. Among the MR findings, a spiculated margin, rim enhancement and washout were significantly correlated with the prognostic factors. A spiculated margin was independently associated with the established predictors of a good prognosis (a lower histologic and nuclear grade, positive ER and PR) and rim enhancement was associated with a poor prognosis (a higher histologic and nuclear grade, negative ER and PR). Wash out was a independent predictor of Ki-67 activity. Some of the findings of high resolution dynamic MR imaging were associated with the prognostic factors, and these findings may predict the prognosis of breast cancer

  17. A Color-Texture-Structure Descriptor for High-Resolution Satellite Image Classification

    Directory of Open Access Journals (Sweden)

    Huai Yu

    2016-03-01

    Full Text Available Scene classification plays an important role in understanding high-resolution satellite (HRS remotely sensed imagery. For remotely sensed scenes, both color information and texture information provide the discriminative ability in classification tasks. In recent years, substantial performance gains in HRS image classification have been reported in the literature. One branch of research combines multiple complementary features based on various aspects such as texture, color and structure. Two methods are commonly used to combine these features: early fusion and late fusion. In this paper, we propose combining the two methods under a tree of regions and present a new descriptor to encode color, texture and structure features using a hierarchical structure-Color Binary Partition Tree (CBPT, which we call the CTS descriptor. Specifically, we first build the hierarchical representation of HRS imagery using the CBPT. Then we quantize the texture and color features of dense regions. Next, we analyze and extract the co-occurrence patterns of regions based on the hierarchical structure. Finally, we encode local descriptors to obtain the final CTS descriptor and test its discriminative capability using object categorization and scene classification with HRS images. The proposed descriptor contains the spectral, textural and structural information of the HRS imagery and is also robust to changes in illuminant color, scale, orientation and contrast. The experimental results demonstrate that the proposed CTS descriptor achieves competitive classification results compared with state-of-the-art algorithms.

  18. High-resolution multi-band imaging for validation and characterization of small Kepler planets

    International Nuclear Information System (INIS)

    Everett, Mark E.; Silva, David R.; Barclay, Thomas; Howell, Steve B.; Ciardi, David R.; Horch, Elliott P.; Crepp, Justin R.

    2015-01-01

    High-resolution ground-based optical speckle and near-infrared adaptive optics images are taken to search for stars in close angular proximity to host stars of candidate planets identified by the NASA Kepler Mission. Neighboring stars are a potential source of false positive signals. These stars also blend into Kepler light curves, affecting estimated planet properties, and are important for an understanding of planets in multiple star systems. Deep images with high angular resolution help to validate candidate planets by excluding potential background eclipsing binaries as the source of the transit signals. A study of 18 Kepler Object of Interest stars hosting a total of 28 candidate and validated planets is presented. Validation levels are determined for 18 planets against the likelihood of a false positive from a background eclipsing binary. Most of these are validated at the 99% level or higher, including five newly validated planets in two systems: Kepler-430 and Kepler-431. The stellar properties of the candidate host stars are determined by supplementing existing literature values with new spectroscopic characterizations. Close neighbors of seven of these stars are examined using multi-wavelength photometry to determine their nature and influence on the candidate planet properties. Most of the close neighbors appear to be gravitationally bound secondaries, while a few are best explained as closely co-aligned field stars. Revised planet properties are derived for each candidate and validated planet, including cases where the close neighbors are the potential host stars.

  19. A Multi-stage Method to Extract Road from High Resolution Satellite Image

    International Nuclear Information System (INIS)

    Zhijian, Huang; Zhang, Jinfang; Xu, Fanjiang

    2014-01-01

    Extracting road information from high-resolution satellite images is complex and hardly achieves by exploiting only one or two modules. This paper presents a multi-stage method, consisting of automatic information extraction and semi-automatic post-processing. The Multi-scale Enhancement algorithm enlarges the contrast of human-made structures with the background. The Statistical Region Merging segments images into regions, whose skeletons are extracted and pruned according to geometry shape information. Setting the start and the end skeleton points, the shortest skeleton path is constructed as a road centre line. The Bidirectional Adaptive Smoothing technique smoothens the road centre line and adjusts it to right position. With the smoothed line and its average width, a Buffer algorithm reconstructs the road region easily. Seen from the last results, the proposed method eliminates redundant non-road regions, repairs incomplete occlusions, jumps over complete occlusions, and reserves accurate road centre lines and neat road regions. During the whole process, only a few interactions are needed

  20. Hyperspectral imaging in medicine: image pre-processing problems and solutions in Matlab.

    Science.gov (United States)

    Koprowski, Robert

    2015-11-01

    The paper presents problems and solutions related to hyperspectral image pre-processing. New methods of preliminary image analysis are proposed. The paper shows problems occurring in Matlab when trying to analyse this type of images. Moreover, new methods are discussed which provide the source code in Matlab that can be used in practice without any licensing restrictions. The proposed application and sample result of hyperspectral image analysis. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Median filters as a tool to determine dark noise thresholds in high resolution smartphone image sensors for scientific imaging

    Science.gov (United States)

    Igoe, Damien P.; Parisi, Alfio V.; Amar, Abdurazaq; Rummenie, Katherine J.

    2018-01-01

    An evaluation of the use of median filters in the reduction of dark noise in smartphone high resolution image sensors is presented. The Sony Xperia Z1 employed has a maximum image sensor resolution of 20.7 Mpixels, with each pixel having a side length of just over 1 μm. Due to the large number of photosites, this provides an image sensor with very high sensitivity but also makes them prone to noise effects such as hot-pixels. Similar to earlier research with older models of smartphone, no appreciable temperature effects were observed in the overall average pixel values for images taken in ambient temperatures between 5 °C and 25 °C. In this research, hot-pixels are defined as pixels with intensities above a specific threshold. The threshold is determined using the distribution of pixel values of a set of images with uniform statistical properties associated with the application of median-filters of increasing size. An image with uniform statistics was employed as a training set from 124 dark images, and the threshold was determined to be 9 digital numbers (DN). The threshold remained constant for multiple resolutions and did not appreciably change even after a year of extensive field use and exposure to solar ultraviolet radiation. Although the temperature effects' uniformity masked an increase in hot-pixel occurrences, the total number of occurrences represented less than 0.1% of the total image. Hot-pixels were removed by applying a median filter, with an optimum filter size of 7 × 7; similar trends were observed for four additional smartphone image sensors used for validation. Hot-pixels were also reduced by decreasing image resolution. The method outlined in this research provides a methodology to characterise the dark noise behavior of high resolution image sensors for use in scientific investigations, especially as pixel sizes decrease.

  2. The first high resolution image of coronal gas in a starbursting cool core cluster

    Science.gov (United States)

    Johnson, Sean

    2017-08-01

    Galaxy clusters represent a unique laboratory for directly observing gas cooling and feedback due to their high masses and correspondingly high gas densities and temperatures. Cooling of X-ray gas observed in 1/3 of clusters, known as cool-core clusters, should fuel star formation at prodigious rates, but such high levels of star formation are rarely observed. Feedback from active galactic nuclei (AGN) is a leading explanation for the lack of star formation in most cool clusters, and AGN power is sufficient to offset gas cooling on average. Nevertheless, some cool core clusters exhibit massive starbursts indicating that our understanding of cooling and feedback is incomplete. Observations of 10^5 K coronal gas in cool core clusters through OVI emission offers a sensitive means of testing our understanding of cooling and feedback because OVI emission is a dominant coolant and sensitive tracer of shocked gas. Recently, Hayes et al. 2016 demonstrated that synthetic narrow-band imaging of OVI emission is possible through subtraction of long-pass filters with the ACS+SBC for targets at z=0.23-0.29. Here, we propose to use this exciting new technique to directly image coronal OVI emitting gas at high resolution in Abell 1835, a prototypical starbursting cool-core cluster at z=0.252. Abell 1835 hosts a strong cooling core, massive starburst, radio AGN, and at z=0.252, it offers a unique opportunity to directly image OVI at hi-res in the UV with ACS+SBC. With just 15 orbits of ACS+SBC imaging, the proposed observations will complete the existing rich multi-wavelength dataset available for Abell 1835 to provide new insights into cooling and feedback in clusters.

  3. Tiger Stripes and Cassini ISS High-Resolution Imaging of Enceladus

    Science.gov (United States)

    Helfenstein, Paul; Denk, T.; Giese, B.; McEwen, A. S.; Neukum, G.; Perry, J.; Porco, C. C.; Thomas, P. C.; Turtle, E.; Verbiscer, A.; Veverka, J.

    2008-09-01

    Deciphering the mechanisms of Enceladus’ plumes is one of the most important and challenging tasks for planetary science. Cassini has provided a wealth of data by remote and in-situ data collection, but fundamental details of the vents and their context remain elusive. Three flybys of Enceladus by Cassini in 2008, on August 11 (altitude: 50km), October 9 (30km), and October 31 (200 km) are designed to further our knowledge of Enceladus’ geology and geophysics. Anticipated data include images as good as 7 m/pixel of parts of the geologically active South Polar Terrain (SPT). We targeted six different known eruption sites (Spitale and Porco 2007, Nature 449, 695-697) along Cairo Sulcus, Baghdad Suclus, and Damascus Sulcus, as well as non-active portions of the the "tiger stripes" and bright grooved terrain in between. On each of the three flybys we also plan contiguous ISS broadband multi-spectral mosaics of the entire SPT region so that we can search for volcanically and tectonically driven temporal changes and construct detailed digital terrain maps. Previous images of the tiger stripes and other rift systems on Enceladus resolve geomorphic structures on hundred meter scales or larger. Within those resolution limits, tiger stripes are morphologically distinguished most strongly from comparably sized young looking rifts elsewhere on Enceladus by their prominent upturned flanks, the muted appearance of their surface relief, and their relative absence of distinct cliff faces, probably of solid ice along scarps. The anticipated new high-resolution images will provide critical structural details needed to identify the extent to which unique attributes of tiger stripes are caused by mantling by plume fallout, tectonic deformation, seismic disruption, or perhaps thermal processes. Here, we present a first analysis of the August 11 close flyby images.

  4. Cadastral Resurvey using High Resolution Satellite Ortho Image - challenges: A case study in Odisha, India

    Science.gov (United States)

    Parida, P. K.; Sanabada, M. K.; Tripathi, S.

    2014-11-01

    Advancements in satellite sensor technology enabling capturing of geometrically accurate images of earth's surface coupled with DGPS/ETS and GIS technology holds the capability of large scale mapping of land resources at cadastral level. High Resolution Satellite Images depict field bunds distinctly. Thus plot parcels are to be delineated from cloud free ortho-images and obscured/difficult areas are to be surveyed using DGPS and ETS. The vector datasets thus derived through RS/DGPS/ETS survey are to be integrated in GIS environment to generate the base cadastral vector datasets for further settlement/title confirmation activities. The objective of this paper is to illustrate the efficacy of a hybrid methodology employed in Pitambarpur Sasana village under Digapahandi Tahasil of Ganjam district, as a pilot project, particularly in Odisha scenario where the land parcel size is very small. One of the significant observations of the study is matching of Cadastral map area i.e. 315.454 Acres, the image map area i.e. 314.887 Acres and RoR area i.e. 313.815 Acre. It was revealed that 79 % of plots derived by high-tech survey method show acceptable level of accuracy despite the fact that the mode of area measurement by ground and automated method has significant variability. The variations are more in case of Government lands, Temple/Trust lands, Common Property Resources and plots near to river/nalas etc. The study indicates that the adopted technology can be extended to other districts and cadastral resurvey and updating work can be done for larger areas of the country using this methodology.

  5. Biofouling patterns in spacer filled channels: High resolution imaging for characterization of heterogeneous biofilms

    KAUST Repository

    Staal, Marc

    2017-08-15

    Biofilms develop in heterogeneous patterns at a µm scale up to a cm scale, and patterns become more pronounced when biofilms develop under complex hydrodynamic flow regimes. Spatially heterogeneous biofilms are especially known in spiral wound reverse osmosis (RO) and nanofiltration (NF) membrane filtration systems used for desalination and wastewater reuse to produce high quality (drinking) water. These spiral wound membrane modules contain mesh-like spacer structures used to create an intermembrane space and improve water mixing. Spacers create inhomogeneous water flow patterns resulting in zones favouring biofilm growth, possibly leading to biofouling thus hampering water production. Oxygen sensing planar optodes were used to visualize variations in oxygen decrease rates (ODR). ODR is an indication of biofilm activity. In this study, ODR images of multiple repetitive spacer areas in a membrane fouling simulator were averaged to produce high resolution, low noise ODR images. Averaging 40 individual spacer areas improved the ODR distribution image significantly and allowed comparison of biofilm patterning over a spacer structure at different positions in an RO filter. This method clearly showed that most active biofilm accumulated on and in direct vicinity of the spacer. The averaging method was also used to calculate the deviation of ODR patterning from individual spacer areas to the average ODR pattern, proposing a new approach to determine biofilm spatial heterogeneity. This study showed that the averaging method can be applied and that the improved, averaged ODR images can be used as an analytical, in-situ, non-destructive method to assess and quantify the effect of membrane installation operational parameters or different spacer geometries on biofilm development in spiral wound membrane systems characterized by complex hydrodynamic conditions.

  6. Use of high resolution satellite images for monitoring of earthquakes and volcano activity.

    Science.gov (United States)

    Arellano-Baeza, Alonso A.

    Our studies have shown that the strain energy accumulation deep in the Earth's crust that precedes a strong earthquake can be detected by applying a lineament extraction technique to the high-resolution multispectral satellite images. A lineament is a straight or a somewhat curved feature in a satellite image, which it is possible to detect by a special processing of images based on directional filtering and or Hough transform. We analyzed tens of earthquakes occurred in the Pacific coast of the South America with the Richter scale magnitude ˜4.5, using ASTER/TERRA multispectral satellite images for detection and analysis of changes in the system of lineaments previous to a strong earthquake. All events were located in the regions with small seasonal variations and limited vegetation to facilitate the tracking of features associated with the seismic activity only. It was found that the number and orientation of lineaments changed significantly about one month before an earthquake approximately, and a few months later the system returns to its initial state. This effect increases with the earthquake magnitude. It also was shown that the behavior of lineaments associated to the volcano seismic activity is opposite to that obtained previously for earthquakes. This discrepancy can be explained assuming that in the last case the main reason of earthquakes is compression and accumulation of strength in the Earth's crust due to subduction of tectonic plates, whereas in the first case we deal with the inflation of a volcano edifice due to elevation of pressure and magma intrusion. The results obtained made it possible to include this research as a part of scientific program of Chilean Remote Sensing Satellite mission to be launched in 2010.

  7. Content-Based High-Resolution Remote Sensing Image Retrieval via Unsupervised Feature Learning and Collaborative Affinity Metric Fusion

    Directory of Open Access Journals (Sweden)

    Yansheng Li

    2016-08-01

    Full Text Available With the urgent demand for automatic management of large numbers of high-resolution remote sensing images, content-based high-resolution remote sensing image retrieval (CB-HRRS-IR has attracted much research interest. Accordingly, this paper proposes a novel high-resolution remote sensing image retrieval approach via multiple feature representation and collaborative affinity metric fusion (IRMFRCAMF. In IRMFRCAMF, we design four unsupervised convolutional neural networks with different layers to generate four types of unsupervised features from the fine level to the coarse level. In addition to these four types of unsupervised features, we also implement four traditional feature descriptors, including local binary pattern (LBP, gray level co-occurrence (GLCM, maximal response 8 (MR8, and scale-invariant feature transform (SIFT. In order to fully incorporate the complementary information among multiple features of one image and the mutual information across auxiliary images in the image dataset, this paper advocates collaborative affinity metric fusion to measure the similarity between images. The performance evaluation of high-resolution remote sensing image retrieval is implemented on two public datasets, the UC Merced (UCM dataset and the Wuhan University (WH dataset. Large numbers of experiments show that our proposed IRMFRCAMF can significantly outperform the state-of-the-art approaches.

  8. High Resolution Depth-Resolved Imaging From Multi-Focal Images for Medical Ultrasound

    DEFF Research Database (Denmark)

    Diamantis, Konstantinos; Dalgarno, Paul A.; Greenaway, Alan H.

    2015-01-01

    An ultrasound imaging technique providing subdiffraction limit axial resolution for point sources is proposed. It is based on simultaneously acquired multi-focal images of the same object, and on the image metric of sharpness. The sharpness is extracted by image data and presents higher values...... calibration curves combined with the use of a maximum-likelihood algorithm is then able to estimate, with high precision, the depth location of any emitter fron each single image. Estimated values are compared with the ground truth demonstrating that an accuracy of 28.6 µm (0.13λ) is achieved for a 4 mm depth...

  9. Improving high resolution retinal image quality using speckle illumination HiLo imaging.

    Science.gov (United States)

    Zhou, Xiaolin; Bedggood, Phillip; Metha, Andrew

    2014-08-01

    Retinal image quality from flood illumination adaptive optics (AO) ophthalmoscopes is adversely affected by out-of-focus light scatter due to the lack of confocality. This effect is more pronounced in small eyes, such as that of rodents, because the requisite high optical power confers a large dioptric thickness to the retina. A recently-developed structured illumination microscopy (SIM) technique called HiLo imaging has been shown to reduce the effect of out-of-focus light scatter in flood illumination microscopes and produce pseudo-confocal images with significantly improved image quality. In this work, we adopted the HiLo technique to a flood AO ophthalmoscope and performed AO imaging in both (physical) model and live rat eyes. The improvement in image quality from HiLo imaging is shown both qualitatively and quantitatively by using spatial spectral analysis.

  10. ISDoT: in situ decellularization of tissues for high-resolution imaging and proteomic analysis of native extracellular matrix

    DEFF Research Database (Denmark)

    Mayorca-Guiliani, Alejandro E.; Madsen, Chris D.; Cox, Thomas R.

    2017-01-01

    The extracellular matrix (ECM) is a master regulator of cellular phenotype and behavior. It has a crucial role in both normal tissue homeostasis and disease pathology. Here we present a fast and efficient approach to enhance the study of ECM composition and structure. Termed in situ...... decellularization of tissues (ISDoT), it allows whole organs to be decellularized, leaving native ECM architecture intact. These three-dimensional decellularized tissues can be studied using high-resolution fluorescence and second harmonic imaging, and can be used for quantitative proteomic interrogation of the ECM....... Our method is superior to other methods tested in its ability to preserve the structural integrity of the ECM, facilitate high-resolution imaging and quantitatively detect ECM proteins. In particular, we performed high-resolution sub-micron imaging of matrix topography in normal tissue and over...

  11. Detection of Thermal Erosion Gullies from High-Resolution Images Using Deep Learning

    Science.gov (United States)

    Huang, L.; Liu, L.; Jiang, L.; Zhang, T.; Sun, Y.

    2017-12-01

    Thermal erosion gullies, one type of thermokarst landforms, develop due to thawing of ice-rich permafrost. Mapping the location and extent of thermal erosion gullies can help understand the spatial distribution of thermokarst landforms and their temporal evolution. Remote sensing images provide an effective way for mapping thermokarst landforms, especially thermokarst lakes. However, thermal erosion gullies are challenging to map from remote sensing images due to their small sizes and significant variations in geometric/radiometric properties. It is feasible to manually identify these features, as a few previous studies have carried out. However manual methods are labor-intensive, therefore, cannot be used for a large study area. In this work, we conduct automatic mapping of thermal erosion gullies from high-resolution images by using Deep Learning. Our study area is located in Eboling Mountain (Qinghai, China). Within a 6 km2 peatland area underlain by ice-rich permafrost, at least 20 thermal erosional gullies are well developed. The image used is a 15-cm-resolution Digital Orthophoto Map (DOM) generated in July 2016. First, we extracted 14 gully patches and ten non-gully patches as training data. And we performed image augmentation. Next, we fine-tuned the pre-trained model of DeepLab, a deep-learning algorithm for semantic image segmentation based on Deep Convolutional Neural Networks. Then, we performed inference on the whole DOM and obtained intermediate results in forms of polygons for all identified gullies. At last, we removed misidentified polygons based on a few pre-set criteria on the size and shape of each polygon. Our final results include 42 polygons. Validated against field measurements using GPS, most of the gullies are detected correctly. There are 20 false detections due to the small number and low quality of training images. We also found three new gullies that missed in the field observations. This study shows that (1) despite a challenging

  12. Image Quality Assessment of High-Resolution Satellite Images with Mtf-Based Fuzzy Comprehensive Evaluation Method

    Science.gov (United States)

    Wu, Z.; Luo, Z.; Zhang, Y.; Guo, F.; He, L.

    2018-04-01

    A Modulation Transfer Function (MTF)-based fuzzy comprehensive evaluation method was proposed in this paper for the purpose of evaluating high-resolution satellite image quality. To establish the factor set, two MTF features and seven radiant features were extracted from the knife-edge region of image patch, which included Nyquist, MTF0.5, entropy, peak signal to noise ratio (PSNR), average difference, edge intensity, average gradient, contrast and ground spatial distance (GSD). After analyzing the statistical distribution of above features, a fuzzy evaluation threshold table and fuzzy evaluation membership functions was established. The experiments for comprehensive quality assessment of different natural and artificial objects was done with GF2 image patches. The results showed that the calibration field image has the highest quality scores. The water image has closest image quality to the calibration field, quality of building image is a little poor than water image, but much higher than farmland image. In order to test the influence of different features on quality evaluation, the experiment with different weights were tested on GF2 and SPOT7 images. The results showed that different weights correspond different evaluating effectiveness. In the case of setting up the weights of edge features and GSD, the image quality of GF2 is better than SPOT7. However, when setting MTF and PSNR as main factor, the image quality of SPOT7 is better than GF2.

  13. High-resolution nondestructive testing of multilayer dielectric materials using wideband microwave synthetic aperture radar imaging

    Science.gov (United States)

    Kim, Tae Hee; James, Robin; Narayanan, Ram M.

    2017-04-01

    Fiber Reinforced Polymer or Plastic (FRP) composites have been rapidly increasing in the aerospace, automotive and marine industry, and civil engineering, because these composites show superior characteristics such as outstanding strength and stiffness, low weight, as well as anti-corrosion and easy production. Generally, the advancement of materials calls for correspondingly advanced methods and technologies for inspection and failure detection during production or maintenance, especially in the area of nondestructive testing (NDT). Among numerous inspection techniques, microwave sensing methods can be effectively used for NDT of FRP composites. FRP composite materials can be produced using various structures and materials, and various defects or flaws occur due to environmental conditions encountered during operation. However, reliable, low-cost, and easy-to-operate NDT methods have not been developed and tested. FRP composites are usually produced as multilayered structures consisting of fiber plate, matrix and core. Therefore, typical defects appearing in FRP composites are disbondings, delaminations, object inclusions, and certain kinds of barely visible impact damages. In this paper, we propose a microwave NDT method, based on synthetic aperture radar (SAR) imaging algorithms, for stand-off imaging of internal delaminations. When a microwave signal is incident on a multilayer dielectric material, the reflected signal provides a good response to interfaces and transverse cracks. An electromagnetic wave model is introduced to delineate interface widths or defect depths from the reflected waves. For the purpose of numerical analysis and simulation, multilayered composite samples with various artificial defects are assumed, and their SAR images are obtained and analyzed using a variety of high-resolution wideband waveforms.

  14. Image-based motion compensation for high-resolution extremities cone-beam CT

    Science.gov (United States)

    Sisniega, A.; Stayman, J. W.; Cao, Q.; Yorkston, J.; Siewerdsen, J. H.; Zbijewski, W.

    2016-03-01

    Purpose: Cone-beam CT (CBCT) of the extremities provides high spatial resolution, but its quantitative accuracy may be challenged by involuntary sub-mm patient motion that cannot be eliminated with simple means of external immobilization. We investigate a two-step iterative motion compensation based on a multi-component metric of image sharpness. Methods: Motion is considered with respect to locally rigid motion within a particular region of interest, and the method supports application to multiple locally rigid regions. Motion is estimated by maximizing a cost function with three components: a gradient metric encouraging image sharpness, an entropy term that favors high contrast and penalizes streaks, and a penalty term encouraging smooth motion. Motion compensation involved initial coarse estimation of gross motion followed by estimation of fine-scale displacements using high resolution reconstructions. The method was evaluated in simulations with synthetic motion (1-4 mm) applied to a wrist volume obtained on a CMOS-based CBCT testbench. Structural similarity index (SSIM) quantified the agreement between motion-compensated and static data. The algorithm was also tested on a motion contaminated patient scan from dedicated extremities CBCT. Results: Excellent correction was achieved for the investigated range of displacements, indicated by good visual agreement with the static data. 10-15% improvement in SSIM was attained for 2-4 mm motions. The compensation was robust against increasing motion (4% decrease in SSIM across the investigated range, compared to 14% with no compensation). Consistent performance was achieved across a range of noise levels. Significant mitigation of artifacts was shown in patient data. Conclusion: The results indicate feasibility of image-based motion correction in extremities CBCT without the need for a priori motion models, external trackers, or fiducials.

  15. A data model and database for high-resolution pathology analytical image informatics

    Directory of Open Access Journals (Sweden)

    Fusheng Wang

    2011-01-01

    Full Text Available Background: The systematic analysis of imaged pathology specimens often results in a vast amount of morphological information at both the cellular and sub-cellular scales. While microscopy scanners and computerized analysis are capable of capturing and analyzing data rapidly, microscopy image data remain underutilized in research and clinical settings. One major obstacle which tends to reduce wider adoption of these new technologies throughout the clinical and scientific communities is the challenge of managing, querying, and integrating the vast amounts of data resulting from the analysis of large digital pathology datasets. This paper presents a data model, which addresses these challenges, and demonstrates its implementation in a relational database system. Context: This paper describes a data model, referred to as Pathology Analytic Imaging Standards (PAIS, and a database implementation, which are designed to support the data management and query requirements of detailed characterization of micro-anatomic morphology through many interrelated analysis pipelines on whole-slide images and tissue microarrays (TMAs. Aims: (1 Development of a data model capable of efficiently representing and storing virtual slide related image, annotation, markup, and feature information. (2 Development of a database, based on the data model, capable of supporting queries for data retrieval based on analysis and image metadata, queries for comparison of results from different analyses, and spatial queries on segmented regions, features, and classified objects. Settings and Design: The work described in this paper is motivated by the challenges associated with characterization of micro-scale features for comparative and correlative analyses involving whole-slides tissue images and TMAs. Technologies for digitizing tissues have advanced significantly in the past decade. Slide scanners are capable of producing high-magnification, high-resolution images from whole

  16. A data model and database for high-resolution pathology analytical image informatics.

    Science.gov (United States)

    Wang, Fusheng; Kong, Jun; Cooper, Lee; Pan, Tony; Kurc, Tahsin; Chen, Wenjin; Sharma, Ashish; Niedermayr, Cristobal; Oh, Tae W; Brat, Daniel; Farris, Alton B; Foran, David J; Saltz, Joel

    2011-01-01

    The systematic analysis of imaged pathology specimens often results in a vast amount of morphological information at both the cellular and sub-cellular scales. While microscopy scanners and computerized analysis are capable of capturing and analyzing data rapidly, microscopy image data remain underutilized in research and clinical settings. One major obstacle which tends to reduce wider adoption of these new technologies throughout the clinical and scientific communities is the challenge of managing, querying, and integrating the vast amounts of data resulting from the analysis of large digital pathology datasets. This paper presents a data model, which addresses these challenges, and demonstrates its implementation in a relational database system. This paper describes a data model, referred to as Pathology Analytic Imaging Standards (PAIS), and a database implementation, which are designed to support the data management and query requirements of detailed characterization of micro-anatomic morphology through many interrelated analysis pipelines on whole-slide images and tissue microarrays (TMAs). (1) Development of a data model capable of efficiently representing and storing virtual slide related image, annotation, markup, and feature information. (2) Development of a database, based on the data model, capable of supporting queries for data retrieval based on analysis and image metadata, queries for comparison of results from different analyses, and spatial queries on segmented regions, features, and classified objects. The work described in this paper is motivated by the challenges associated with characterization of micro-scale features for comparative and correlative analyses involving whole-slides tissue images and TMAs. Technologies for digitizing tissues have advanced significantly in the past decade. Slide scanners are capable of producing high-magnification, high-resolution images from whole slides and TMAs within several minutes. Hence, it is becoming

  17. Image Fusion-Based Land Cover Change Detection Using Multi-Temporal High-Resolution Satellite Images

    Directory of Open Access Journals (Sweden)

    Biao Wang

    2017-08-01

    Full Text Available Change detection is usually treated as a problem of explicitly detecting land cover transitions in satellite images obtained at different times, and helps with emergency response and government management. This study presents an unsupervised change detection method based on the image fusion of multi-temporal images. The main objective of this study is to improve the accuracy of unsupervised change detection from high-resolution multi-temporal images. Our method effectively reduces change detection errors, since spatial displacement and spectral differences between multi-temporal images are evaluated. To this end, a total of four cross-fused images are generated with multi-temporal images, and the iteratively reweighted multivariate alteration detection (IR-MAD method—a measure for the spectral distortion of change information—is applied to the fused images. In this experiment, the land cover change maps were extracted using multi-temporal IKONOS-2, WorldView-3, and GF-1 satellite images. The effectiveness of the proposed method compared with other unsupervised change detection methods is demonstrated through experimentation. The proposed method achieved an overall accuracy of 80.51% and 97.87% for cases 1 and 2, respectively. Moreover, the proposed method performed better when differentiating the water area from the vegetation area compared to the existing change detection methods. Although the water area beneath moderate and sparse vegetation canopy was captured, vegetation cover and paved regions of the water body were the main sources of omission error, and commission errors occurred primarily in pixels of mixed land use and along the water body edge. Nevertheless, the proposed method, in conjunction with high-resolution satellite imagery, offers a robust and flexible approach to land cover change mapping that requires no ancillary data for rapid implementation.

  18. Synthesis and electroplating of high resolution insulated carbon nanotube scanning probes for imaging in liquid solutions.

    Science.gov (United States)

    Roberts, N A; Noh, J H; Lassiter, M G; Guo, S; Kalinin, S V; Rack, P D

    2012-04-13

    High resolution and isolated scanning probe microscopy (SPM) is in demand for continued development of energy storage and conversion systems involving chemical reactions at the nanoscale as well as an improved understanding of biological systems. Carbon nanotubes (CNTs) have large aspect ratios and, if leveraged properly, can be used to develop high resolution SPM probes. Isolation of SPM probes can be achieved by depositing a dielectric film and selectively etching at the apex of the probe. In this paper the fabrication of a high resolution and isolated SPM tip is demonstrated using electron beam induced etching of a dielectric film deposited onto an SPM tip with an attached CNT at the apex.

  19. Expressway deformation mapping using high-resolution TerraSAR-X images

    KAUST Repository

    Shi, Xuguo

    2014-01-27

    Monitoring deformation of linear infrastructures such as expressway and railway caused by natural processes or anthropogenic activities is a vital task to ensure the safety of human lives and properties. Interferometric Synthetic Aperture Radar (InSAR) has been widely recognized as an effective technology to carry out large-area surface deformation mapping. However, its application in linear infrastructure deformation monitoring has not been intensively studied till now. In this article, a modified Small BAseline Subset (SBAS) method is proposed to retrieve the deformation patterns of the expressway. In our method, only the point-like targets identified on the expressway were kept in our analysis, and two complementary subsets of interferograms were formed to better separate the signals of height error and deformation from inteferometric phase observations. We successfully applied this method with multitemporal high-resolution TerraSAR-X images to retrieve the spatialoral pattern of surface deformation along the Beian-Heihe expressway that is located in island-permafrost areas and threatened by geohazards. © 2014 Taylor & Francis.

  20. High resolution imaging of impacted CFRP composites with a fiber-optic laser-ultrasound scanner

    Directory of Open Access Journals (Sweden)

    Ivan Pelivanov

    2016-06-01

    Full Text Available Damage induced in polymer composites by various impacts must be evaluated to predict a component’s post-impact strength and residual lifetime, especially when impacts occur in structures related to human safety (in aircraft, for example. X-ray tomography is the conventional standard to study an internal structure with high resolution. However, it is of little use when the impacted area cannot be extracted from a structure. In addition, X-ray tomography is expensive and time-consuming. Recently, we have demonstrated that a kHz-rate laser-ultrasound (LU scanner is very efficient both for locating large defects and evaluating the material structure. Here, we show that high-quality images of damage produced by the LU scanner in impacted carbon-fiber reinforced polymer (CFRP composites are similar to those produced by X-ray tomograms; but they can be obtained with only single-sided access to the object under study. Potentially, the LU method can be applied to large components in-situ.

  1. High resolution imaging of impacted CFRP composites with a fiber-optic laser-ultrasound scanner.

    Science.gov (United States)

    Pelivanov, Ivan; Ambroziński, Łukasz; Khomenko, Anton; Koricho, Ermias G; Cloud, Gary L; Haq, Mahmoodul; O'Donnell, Matthew

    2016-06-01

    Damage induced in polymer composites by various impacts must be evaluated to predict a component's post-impact strength and residual lifetime, especially when impacts occur in structures related to human safety (in aircraft, for example). X-ray tomography is the conventional standard to study an internal structure with high resolution. However, it is of little use when the impacted area cannot be extracted from a structure. In addition, X-ray tomography is expensive and time-consuming. Recently, we have demonstrated that a kHz-rate laser-ultrasound (LU) scanner is very efficient both for locating large defects and evaluating the material structure. Here, we show that high-quality images of damage produced by the LU scanner in impacted carbon-fiber reinforced polymer (CFRP) composites are similar to those produced by X-ray tomograms; but they can be obtained with only single-sided access to the object under study. Potentially, the LU method can be applied to large components in-situ.

  2. First field test of NAPL detection with high resolution borehole seismic imaging

    International Nuclear Information System (INIS)

    Geller, Jil T.; Peterson, John E.; Williams, Kenneth H.; Ajo-Franklin, Jonathan B.; Majer, Ernest L.

    2002-01-01

    The purpose of this field test is to evaluate the detectability of NAPLs by high resolution tomographic borehole seismic imaging. The site is a former Department of Energy (DOE) manufacturing facility in Pinellas County, Florida. Cross-hole seismic and radar measurements were made in a shallow aquifer contaminated with non-aqueous phase liquids (NAPLs). Cone penetration test (CPT) and induction logging were performed for lithology and conductivity, respectively. The main challenge is to distinguish fluid phase heterogeneities from anomalies arising from geologic structure. Our approach is to compare measurements between locations of known contamination with a nearby uncontaminated location of similar lithology where differences in signal transmission may be attributed to fluid phase changes. The CPT data show similar lithologic structure at the locations both within and outside the NAPL-contaminated area. Zones of low seismic amplitude at about 7 m depth appear more extensive in the NAPL-contaminated area. These zones may be the result of fluid phase heterogeneities (NAPL or gas), or they may be due to the lithology, i.e. attenuating nature of the layer itself, or the transition between two distinct layers. The presence of lithologic contrasts, specifically from higher permeability sands to lower permeability silts and clays, also indicate potential locations of NAPL, as they could be flow barriers to downward NAPL migration

  3. Expressway deformation mapping using high-resolution TerraSAR-X images

    KAUST Repository

    Shi, Xuguo; Liao, Mingsheng; Wang, Teng; Zhang, Lu; Shan, Wei; Wang, Chunjiao

    2014-01-01

    Monitoring deformation of linear infrastructures such as expressway and railway caused by natural processes or anthropogenic activities is a vital task to ensure the safety of human lives and properties. Interferometric Synthetic Aperture Radar (InSAR) has been widely recognized as an effective technology to carry out large-area surface deformation mapping. However, its application in linear infrastructure deformation monitoring has not been intensively studied till now. In this article, a modified Small BAseline Subset (SBAS) method is proposed to retrieve the deformation patterns of the expressway. In our method, only the point-like targets identified on the expressway were kept in our analysis, and two complementary subsets of interferograms were formed to better separate the signals of height error and deformation from inteferometric phase observations. We successfully applied this method with multitemporal high-resolution TerraSAR-X images to retrieve the spatialoral pattern of surface deformation along the Beian-Heihe expressway that is located in island-permafrost areas and threatened by geohazards. © 2014 Taylor & Francis.

  4. Michelson Interferometer for Global High-Resolution Thermospheric Imaging (MIGHTI): Instrument Design and Calibration

    Science.gov (United States)

    Englert, Christoph R.; Harlander, John M.; Brown, Charles M.; Marr, Kenneth D.; Miller, Ian J.; Stump, J. Eloise; Hancock, Jed; Peterson, James Q.; Kumler, Jay; Morrow, William H.; Mooney, Thomas A.; Ellis, Scott; Mende, Stephen B.; Harris, Stewart E.; Stevens, Michael H.; Makela, Jonathan J.; Harding, Brian J.; Immel, Thomas J.

    2017-10-01

    The Michelson Interferometer for Global High-resolution Thermospheric Imaging (MIGHTI) instrument was built for launch and operation on the NASA Ionospheric Connection Explorer (ICON) mission. The instrument was designed to measure thermospheric horizontal wind velocity profiles and thermospheric temperature in altitude regions between 90 km and 300 km, during day and night. For the wind measurements it uses two perpendicular fields of view pointed at the Earth's limb, observing the Doppler shift of the atomic oxygen red and green lines at 630.0 nm and 557.7 nm wavelength. The wavelength shift is measured using field-widened, temperature compensated Doppler Asymmetric Spatial Heterodyne (DASH) spectrometers, employing low order échelle gratings operating at two different orders for the different atmospheric lines. The temperature measurement is accomplished by a multichannel photometric measurement of the spectral shape of the molecular oxygen A-band around 762 nm wavelength. For each field of view, the signals of the two oxygen lines and the A-band are detected on different regions of a single, cooled, frame transfer charge coupled device (CCD) detector. On-board calibration sources are used to periodically quantify thermal drifts, simultaneously with observing the atmosphere. The MIGHTI requirements, the resulting instrument design and the calibration are described.

  5. High-resolution MR imaging for dental impressions: a feasibility study.

    Science.gov (United States)

    Boldt, Julian; Rottner, Kurt; Schmitter, Marc; Hopfgartner, Andreas; Jakob, Peter; Richter, Ernst-Jürgen; Tymofiyeva, Olga

    2018-04-01

    Magnetic resonance imaging is an emerging technology in dental medicine. While low-resolution MRI has especially provided means to examine the temporomandibular joint due to its anatomic inaccessibility, it was the goal of this study to assess whether high-resolution MRI is capable of delivering a dataset sufficiently precise enough to serve as digital impression of human teeth. An informed and consenting patient in need of dental restoration with fixed partial dentures was chosen as subject. Two prepared teeth were measured using MRI and the dataset subjected to mathematical processing before Fourier transformation. After reconstruction, a 3D file was generated which was fed into an existing industry standard CAD/CAM process. A framework for a fixed dental prosthesis was digitally modeled and manufactured by laser-sintering. The fit in situ was found to be acceptable by current clinical standards, which allowed permanent placement of the fixed prosthesis. Using a clinical whole-body MR scanner with the addition of custom add-on hardware, contrast enhancement, and data post-processing, resolution and signal-to-noise ratio were sufficiently achieved to allow fabrication of a dental restoration in an acquisition time comparable to the setting time of common dental impression materials. Furthermore, the measurement was well tolerated. The herein described method can be regarded as proof of principle that MRI is a promising option for digital impressions when fixed partial dentures are required.

  6. Quantitative accuracy of serotonergic neurotransmission imaging with high-resolution 123I SPECT

    International Nuclear Information System (INIS)

    Kuikka, J.T.

    2004-01-01

    Aim: Serotonin transporter (SERT) imaging can be used to study the role of regional abnormalities of neurotransmitter release in various mental disorders and to study the mechanism of action of therapeutic drugs or drugs' abuse. We examine the quantitative accuracy and reproducibility that can be achieved with high-resolution SPECT of serotonergic neurotransmission. Method: Binding potential (BP) of 123 I labeled tracer specific for midbrain SERT was assessed in 20 healthy persons. The effects of scatter, attenuation, partial volume, misregistration and statistical noise were estimated using phantom and human studies. Results: Without any correction, BP was underestimated by 73%. The partial volume error was the major component in this underestimation whereas the most critical error for the reproducibility was misplacement of region of interest (ROI). Conclusion: The proper ROI registration, the use of the multiple head gamma camera with transmission based scatter correction introduce more relevant results. However, due to the small dimensions of the midbrain SERT structures and poor spatial resolution of SPECT, the improvement without the partial volume correction is not great enough to restore the estimate of BP to that of the true one. (orig.) [de

  7. High-resolution synchrotron imaging shows that root hairs influence rhizosphere soil structure formation.

    Science.gov (United States)

    Koebernick, Nicolai; Daly, Keith R; Keyes, Samuel D; George, Timothy S; Brown, Lawrie K; Raffan, Annette; Cooper, Laura J; Naveed, Muhammad; Bengough, Anthony G; Sinclair, Ian; Hallett, Paul D; Roose, Tiina

    2017-10-01

    In this paper, we provide direct evidence of the importance of root hairs on pore structure development at the root-soil interface during the early stage of crop establishment. This was achieved by use of high-resolution (c. 5 μm) synchrotron radiation computed tomography (SRCT) to visualise both the structure of root hairs and the soil pore structure in plant-soil microcosms. Two contrasting genotypes of barley (Hordeum vulgare), with and without root hairs, were grown for 8 d in microcosms packed with sandy loam soil at 1.2 g cm -3 dry bulk density. Root hairs were visualised within air-filled pore spaces, but not in the fine-textured soil regions. We found that the genotype with root hairs significantly altered the porosity and connectivity of the detectable pore space (> 5 μm) in the rhizosphere, as compared with the no-hair mutants. Both genotypes showed decreasing pore space between 0.8 and 0.1 mm from the root surface. Interestingly the root-hair-bearing genotype had a significantly greater soil pore volume-fraction at the root-soil interface. Effects of pore structure on diffusion and permeability were estimated to be functionally insignificant under saturated conditions when simulated using image-based modelling. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  8. Use of high-resolution satellite images for detection of geothermal reservoirs

    Science.gov (United States)

    Arellano-Baeza, A. A.

    2012-12-01

    Chile has an enormous potential to use the geothermal resources for electric energy generation. The main geothermal fields are located in the Central Andean Volcanic Chain in the North, between the Central valley and the border with Argentina in the center, and in the fault system Liquiñe-Ofqui in the South of the country. High resolution images from the LANDSAT and ASTER satellites have been used to delineate the geological structures related to the Calerias geothermal field located at the northern end of the Southern Volcanic Zone of Chile and Puchuldiza geothermal field located in the Region of Tarapaca. It was done by applying the lineament extraction technique developed by author. These structures have been compared with the distribution of main geological structures obtained in the fields. It was found that the lineament density increases in the areas of the major heat flux indicating that the lineament analysis could be a power tool for the detection of faults and joint zones associated to the geothermal fields.

  9. A Chandra High-Resolution X-ray Image of Centaurus A.

    Science.gov (United States)

    Kraft; Forman; Jones; Kenter; Murray; Aldcroft; Elvis; Evans; Fabbiano; Isobe; Jerius; Karovska; Kim; Prestwich; Primini; Schwartz; Schreier; Vikhlinin

    2000-03-01

    We present first results from a Chandra X-Ray Observatory observation of the radio galaxy Centaurus A with the High-Resolution Camera. All previously reported major sources of X-ray emission including the bright nucleus, the jet, individual point sources, and diffuse emission are resolved or detected. The spatial resolution of this observation is better than 1&arcsec; in the center of the field of view and allows us to resolve X-ray features of this galaxy not previously seen. In particular, we resolve individual knots of emission in the inner jet and diffuse emission between the knots. All of the knots are diffuse at the 1&arcsec; level, and several exhibit complex spatial structure. We find the nucleus to be extended by a few tenths of an arcsecond. Our image also suggests the presence of an X-ray counterjet. Weak X-ray emission from the southwest radio lobe is also seen, and we detect 63 pointlike galactic sources (probably X-ray binaries and supernova remnants) above a luminosity limit of approximately 1.7x1037 ergs s-1.

  10. High-resolution mechanical imaging of glioblastoma by multifrequency magnetic resonance elastography.

    Directory of Open Access Journals (Sweden)

    Kaspar-Josche Streitberger

    Full Text Available OBJECTIVE: To generate high-resolution maps of the viscoelastic properties of human brain parenchyma for presurgical quantitative assessment in glioblastoma (GB. METHODS: Twenty-two GB patients underwent routine presurgical work-up supplemented by additional multifrequency magnetic resonance elastography. Two three-dimensional viscoelastic parameter maps, magnitude |G*|, and phase angle φ of the complex shear modulus were reconstructed by inversion of full wave field data in 2-mm isotropic resolution at seven harmonic drive frequencies ranging from 30 to 60 Hz. RESULTS: Mechanical brain maps confirmed that GB are composed of stiff and soft compartments, resulting in high intratumor heterogeneity. GB could be easily differentiated from healthy reference tissue by their reduced viscous behavior quantified by φ (0.37±0.08 vs. 0.58±0.07. |G*|, which in solids more relates to the material's stiffness, was significantly reduced in GB with a mean value of 1.32±0.26 kPa compared to 1.54±0.27 kPa in healthy tissue (P = 0.001. However, some GB (5 of 22 showed increased stiffness. CONCLUSION: GB are generally less viscous and softer than healthy brain parenchyma. Unrelated to the morphology-based contrast of standard magnetic resonance imaging, elastography provides an entirely new neuroradiological marker and contrast related to the biomechanical properties of tumors.

  11. High-resolution imaging of ultracold fermions in microscopically tailored optical potentials

    International Nuclear Information System (INIS)

    Zimmermann, B; Mueller, T; Meineke, J; Esslinger, T; Moritz, H

    2011-01-01

    We report on the local probing and preparation of an ultracold Fermi gas on the length scale of one micrometer, i.e. of the order of the Fermi wavelength. The essential tool of our experimental setup is a pair of identical, high-resolution microscope objectives. One of the microscope objectives allows local imaging of the trapped Fermi gas of 6 Li atoms with a maximum resolution of 660 nm, while the other enables the generation of arbitrary optical dipole potentials on the same length scale. Employing a two-dimensional (2D) acousto-optical deflector, we demonstrate the formation of several trapping geometries, including a tightly focused single optical dipole trap, a 4x4 site 2D optical lattice and an 8 site ring lattice configuration. Furthermore, we show the ability to load and detect a small number of atoms in these trapping potentials. A site separation down to one micrometer in combination with the low mass of 6 Li results in tunneling rates that are sufficiently large for the implementation of Hubbard models with the designed geometries.

  12. CEST ANALYSIS: AUTOMATED CHANGE DETECTION FROM VERY-HIGH-RESOLUTION REMOTE SENSING IMAGES

    Directory of Open Access Journals (Sweden)

    M. Ehlers

    2012-08-01

    was tested with high-resolution satellite images of the crisis areas of Darfur (Sudan. CEST results are compared with a number of standard algorithms for automated change detection such as image difference, image ratioe, principal component analysis, delta cue technique and post classification change detection. The new combined method shows superior results averaging between 45% and 15% improvement in accuracy.

  13. Biologically-inspired data decorrelation for hyper-spectral imaging

    Directory of Open Access Journals (Sweden)

    Ghita Ovidiu

    2011-01-01

    Full Text Available Abstract Hyper-spectral data allows the construction of more robust statistical models to sample the material properties than the standard tri-chromatic color representation. However, because of the large dimensionality and complexity of the hyper-spectral data, the extraction of robust features (image descriptors is not a trivial issue. Thus, to facilitate efficient feature extraction, decorrelation techniques are commonly applied to reduce the dimensionality of the hyper-spectral data with the aim of generating compact and highly discriminative image descriptors. Current methodologies for data decorrelation such as principal component analysis (PCA, linear discriminant analysis (LDA, wavelet decomposition (WD, or band selection methods require complex and subjective training procedures and in addition the compressed spectral information is not directly related to the physical (spectral characteristics associated with the analyzed materials. The major objective of this article is to introduce and evaluate a new data decorrelation methodology using an approach that closely emulates the human vision. The proposed data decorrelation scheme has been employed to optimally minimize the amount of redundant information contained in the highly correlated hyper-spectral bands and has been comprehensively evaluated in the context of non-ferrous material classification

  14. Manifold regularization for sparse unmixing of hyperspectral images.

    Science.gov (United States)

    Liu, Junmin; Zhang, Chunxia; Zhang, Jiangshe; Li, Huirong; Gao, Yuelin

    2016-01-01

    Recently, sparse unmixing has been successfully applied to spectral mixture analysis of remotely sensed hyperspectral images. Based on the assumption that the observed image signatures can be expressed in the form of linear combinations of a number of pure spectral signatures known in advance, unmixing of each mixed pixel in the scene is to find an optimal subset of signatures in a very large spectral library, which is cast into the framework of sparse regression. However, traditional sparse regression models, such as collaborative sparse regression , ignore the intrinsic geometric structure in the hyperspectral data. In this paper, we propose a novel model, called manifold regularized collaborative sparse regression , by introducing a manifold regularization to the collaborative sparse regression model. The manifold regularization utilizes a graph Laplacian to incorporate the locally geometrical structure of the hyperspectral data. An algorithm based on alternating direction method of multipliers has been developed for the manifold regularized collaborative sparse regression model. Experimental results on both the simulated and real hyperspectral data sets have demonstrated the effectiveness of our proposed model.

  15. Fast algorithm for exploring and compressing of large hyperspectral images

    DEFF Research Database (Denmark)

    Kucheryavskiy, Sergey

    2011-01-01

    A new method for calculation of latent variable space for exploratory analysis and dimension reduction of large hyperspectral images is proposed. The method is based on significant downsampling of image pixels with preservation of pixels’ structure in feature (variable) space. To achieve this, in...... can be used first of all for fast compression of large data arrays with principal component analysis or similar projection techniques....

  16. High-resolution magnetic resonance imaging of rotator cuff tears using a microscopy coil. Noninvasive detection without intraarticular contrast material

    International Nuclear Information System (INIS)

    Hitachi, Shin; Takase, Kei; Higano, Shuichi; Takahashi, Shoki; Tanaka, Minoru; Tojo, Yuichi; Tabata, Shiro; Majima, Kazuhiro

    2011-01-01

    The aim of this study was to evaluate the feasibility of high-resolution magnetic resonance imaging (MRI) using a microscopy coil for the diagnosis of rotator cuff tears by comparing the method to conventional MRI and MRI arthrography. A total of 68 shoulders were prospectively studied using a 1.5-T MRI unit. Conventional MRI scans were obtained with a surface coil and high-resolution MRI scans with a microscopy coil. MRI arthrography was performed in 28 shoulders using a surface coil. MRI evaluation of tears of rotator cuff tendons was compared with arthroscopic findings and surgical results. The surgery revealed 40 full-thickness tears, 13 partial-thickness tears, and 15 intact cuffs. In all, 35 (88%) full-thickness tears were correctly diagnosed on conventional MRI and 40 (100%) on high-resolution MRI. MR arthrography delineated 11 of 12 (92%) full-thickness tears. Altogether, 5 (38%) of the partial-thickness tears were detected on conventional MRI, and 12 (92%) were clearly demonstrated on high-resolution MRI. MRI arthrography depicted three (60%) of five partial-thickness tears. High-resolution MRI showed higher sensitivity than conventional MRI (P<0.05) and had values equivalent to those of MRI arthrography for diagnosing partial-thickness tears. High-resolution MRI with a microscopy coil is a feasible, noninvasive technique for diagnosing rotator cuff tears. (author)

  17. Detection of Lettuce Discoloration Using Hyperspectral Reflectance Imaging.

    Science.gov (United States)

    Mo, Changyeun; Kim, Giyoung; Lim, Jongguk; Kim, Moon S; Cho, Hyunjeong; Cho, Byoung-Kwan

    2015-11-20

    Rapid visible/near-infrared (VNIR) hyperspectral imaging methods, employing both a single waveband algorithm and multi-spectral algorithms, were developed in order to discrimination between sound and discolored lettuce. Reflectance spectra for sound and discolored lettuce surfaces were extracted from hyperspectral reflectance images obtained in the 400-1000 nm wavelength range. The optimal wavebands for discriminating between discolored and sound lettuce surfaces were determined using one-way analysis of variance. Multi-spectral imaging algorithms developed using ratio and subtraction functions resulted in enhanced classification accuracy of above 99.9% for discolored and sound areas on both adaxial and abaxial lettuce surfaces. Ratio imaging (RI) and subtraction imaging (SI) algorithms at wavelengths of 552/701 nm and 557-701 nm, respectively, exhibited better classification performances compared to results obtained for all possible two-waveband combinations. These results suggest that hyperspectral reflectance imaging techniques can potentially be used to discriminate between discolored and sound fresh-cut lettuce.

  18. Resolution-recovery-embedded image reconstruction for a high-resolution animal SPECT system.

    Science.gov (United States)

    Zeraatkar, Navid; Sajedi, Salar; Farahani, Mohammad Hossein; Arabi, Hossein; Sarkar, Saeed; Ghafarian, Pardis; Rahmim, Arman; Ay, Mohammad Reza

    2014-11-01

    The small-animal High-Resolution SPECT (HiReSPECT) is a dedicated dual-head gamma camera recently designed and developed in our laboratory for imaging of murine models. Each detector is composed of an array of 1.2 × 1.2 mm(2) (pitch) pixelated CsI(Na) crystals. Two position-sensitive photomultiplier tubes (H8500) are coupled to each head's crystal. In this paper, we report on a resolution-recovery-embedded image reconstruction code applicable to the system and present the experimental results achieved using different phantoms and mouse scans. Collimator-detector response functions (CDRFs) were measured via a pixel-driven method using capillary sources at finite distances from the head within the field of view (FOV). CDRFs were then fitted by independent Gaussian functions. Thereafter, linear interpolations were applied to the standard deviation (σ) values of the fitted Gaussians, yielding a continuous map of CDRF at varying distances from the head. A rotation-based maximum-likelihood expectation maximization (MLEM) method was used for reconstruction. A fast rotation algorithm was developed to rotate the image matrix according to the desired angle by means of pre-generated rotation maps. The experiments demonstrated improved resolution utilizing our resolution-recovery-embedded image reconstruction. While the full-width at half-maximum (FWHM) radial and tangential resolution measurements of the system were over 2 mm in nearly all positions within the FOV without resolution recovery, reaching around 2.5 mm in some locations, they fell below 1.8 mm everywhere within the FOV using the resolution-recovery algorithm. The noise performance of the system was also acceptable; the standard deviation of the average counts per voxel in the reconstructed images was 6.6% and 8.3% without and with resolution recovery, respectively. Copyright © 2014 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  19. Comparing Individual Tree Segmentation Based on High Resolution Multispectral Image and Lidar Data

    Science.gov (United States)

    Xiao, P.; Kelly, M.; Guo, Q.

    2014-12-01

    This study compares the use of high-resolution multispectral WorldView images and high density Lidar data for individual tree segmentation. The application focuses on coniferous and deciduous forests in the Sierra Nevada Mountains. The tree objects are obtained in two ways: a hybrid region-merging segmentation method with multispectral images, and a top-down and bottom-up region-growing method with Lidar data. The hybrid region-merging method is used to segment individual tree from multispectral images. It integrates the advantages of global-oriented and local-oriented region-merging strategies into a unified framework. The globally most-similar pair of regions is used to determine the starting point of a growing region. The merging iterations are constrained within the local vicinity, thus the segmentation is accelerated and can reflect the local context. The top-down region-growing method is adopted in coniferous forest to delineate individual tree from Lidar data. It exploits the spacing between the tops of trees to identify and group points into a single tree based on simple rules of proximity and likely tree shape. The bottom-up region-growing method based on the intensity and 3D structure of Lidar data is applied in deciduous forest. It segments tree trunks based on the intensity and topological relationships of the points, and then allocate other points to exact tree crowns according to distance. The accuracies for each method are evaluated with field survey data in several test sites, covering dense and sparse canopy. Three types of segmentation results are produced: true positive represents a correctly segmented individual tree, false negative represents a tree that is not detected and assigned to a nearby tree, and false positive represents that a point or pixel cluster is segmented as a tree that does not in fact exist. They respectively represent correct-, under-, and over-segmentation. Three types of index are compared for segmenting individual tree

  20. EUV high resolution imager on-board solar orbiter: optical design and detector performances

    Science.gov (United States)

    Halain, J. P.; Mazzoli, A.; Rochus, P.; Renotte, E.; Stockman, Y.; Berghmans, D.; BenMoussa, A.; Auchère, F.

    2017-11-01

    The EUV high resolution imager (HRI) channel of the Extreme Ultraviolet Imager (EUI) on-board Solar Orbiter will observe the solar atmospheric layers at 17.4 nm wavelength with a 200 km resolution. The HRI channel is based on a compact two mirrors off-axis design. The spectral selection is obtained by a multilayer coating deposited on the mirrors and by redundant Aluminum filters rejecting the visible and infrared light. The detector is a 2k x 2k array back-thinned silicon CMOS-APS with 10 μm pixel pitch, sensitive in the EUV wavelength range. Due to the instrument compactness and the constraints on the optical design, the channel performance is very sensitive to the manufacturing, alignments and settling errors. A trade-off between two optical layouts was therefore performed to select the final optical design and to improve the mirror mounts. The effect of diffraction by the filter mesh support and by the mirror diffusion has been included in the overall error budget. Manufacturing of mirror and mounts has started and will result in thermo-mechanical validation on the EUI instrument structural and thermal model (STM). Because of the limited channel entrance aperture and consequently the low input flux, the channel performance also relies on the detector EUV sensitivity, readout noise and dynamic range. Based on the characterization of a CMOS-APS back-side detector prototype, showing promising results, the EUI detector has been specified and is under development. These detectors will undergo a qualification program before being tested and integrated on the EUI instrument.

  1. Detection of Aspens Using High Resolution Aerial Laser Scanning Data and Digital Aerial Images

    Directory of Open Access Journals (Sweden)

    Kalle Eerikäinen

    2008-08-01

    Full Text Available The aim was to use high resolution Aerial Laser Scanning (ALS data and aerial images to detect European aspen (Populus tremula L. from among other deciduous trees. The field data consisted of 14 sample plots of 30 m × 30 m size located in the Koli National Park in the North Karelia, Eastern Finland. A Canopy Height Model (CHM was interpolated from the ALS data with a pulse density of 3.86/m2, low-pass filtered using Height-Based Filtering (HBF and binarized to create the mask needed to separate the ground pixels from the canopy pixels within individual areas. Watershed segmentation was applied to the low-pass filtered CHM in order to create preliminary canopy segments, from which the non-canopy elements were extracted to obtain the final canopy segmentation, i.e. the ground mask was analysed against the canopy mask. A manual classification of aerial images was employed to separate the canopy segments of deciduous trees from those of coniferous trees. Finally, linear discriminant analysis was applied to the correctly classified canopy segments of deciduous trees to classify them into segments belonging to aspen and those belonging to other deciduous trees. The independent variables used in the classification were obtained from the first pulse ALS point data. The accuracy of discrimination between aspen and other deciduous trees was 78.6%. The independent variables in the classification function were the proportion of vegetation hits, the standard deviation of in pulse heights, accumulated intensity at the 90th percentile and the proportion of laser points reflected at the 60th height percentile. The accuracy of classification corresponded to the validation results of earlier ALS-based studies on the classification of individual deciduous trees to tree species.

  2. Imaging the Danish Chalk Group with high resolution, 3-component seismics

    Science.gov (United States)

    Kammann, J.; Rasmussen, S. L.; Nielsen, L.; Malehmir, A.; Stemmerik, L.

    2016-12-01

    The Chalk Group in the Danish Basin forms important reservoirs to hydrocarbons as well as water resources, and it has been subject to several seismic studies to determine e.g. structural elements, deposition and burial history. This study focuses on the high quality seismic response of a survey acquired with an accelerated 45 kg weight drop and 3-component MEMS-based sensors and additional wireless vertical-type sensors. The 500 m long profile was acquired during one day close to a chalk quarry and chalk cliffs of the Stevns peninsula in eastern Denmark where the well-known K-T (Cretaceous-Tertiary) boundary and different chalk lithologies are well-exposed. With this simple and fast procedure we were able to achieve deep P-wave penetration to the base of the Chalk Group at about 900 m depth. Additionally, the CMP-processed seismic image of the vertical component stands out by its high resolution. Sedimentary features are imaged in the near-surface Danian, as well as in the deeper Maastrichtian and Upper Campanian parts of the Chalk Group. Integration with borehole data suggests that changes in composition, in particular clay content, correlate with changes in reflectivity of the seismic data set. While the pure chalk in the Maastrichtian deposits shows rather low reflectivity, succession enriched in clay appear to be more reflective. The integration of the mentioned methods gives the opportunity to connect changes in facies to the elastic response of the Chalk Group in its natural environmental conditions.

  3. High resolution seismic tomography imaging of Ireland with quarry blast data

    Science.gov (United States)

    Arroucau, P.; Lebedev, S.; Bean, C. J.; Grannell, J.

    2017-12-01

    Local earthquake tomography is a well established tool to image geological structure at depth. That technique, however, is difficult to apply in slowly deforming regions, where local earthquakes are typically rare and of small magnitude, resulting in sparse data sampling. The natural earthquake seismicity of Ireland is very low. That due to quarry and mining blasts, on the other hand, is high and homogeneously distributed. As a consequence, and thanks to the dense and nearly uniform coverage achieved in the past ten years by temporary and permanent broadband seismological stations, the quarry blasts offer an alternative approach for high resolution seismic imaging of the crust and uppermost mantle beneath Ireland. We detected about 1,500 quarry blasts in Ireland and Northern Ireland between 2011 and 2014, for which we manually picked more than 15,000 P- and 20,000 S-wave first arrival times. The anthropogenic, explosive origin of those events was unambiguously assessed based on location, occurrence time and waveform characteristics. Here, we present a preliminary 3D tomographic model obtained from the inversion of 3,800 P-wave arrival times associated with a subset of 500 events observed in 2011, using FMTOMO tomographic code. Forward modeling is performed with the Fast Marching Method (FMM) and the inverse problem is solved iteratively using a gradient-based subspace inversion scheme after careful selection of damping and smoothing regularization parameters. The results illuminate the geological structure of Ireland from deposit to crustal scale in unprecedented detail, as demonstrated by sensitivity analysis, source relocation with the 3D velocity model and comparisons with surface geology.

  4. Isotope specific resolution recovery image reconstruction in high resolution PET imaging

    OpenAIRE

    Kotasidis Fotis A.; Kotasidis Fotis A.; Angelis Georgios I.; Anton-Rodriguez Jose; Matthews Julian C.; Reader Andrew J.; Reader Andrew J.; Zaidi Habib; Zaidi Habib; Zaidi Habib

    2014-01-01

    Purpose: Measuring and incorporating a scanner specific point spread function (PSF) within image reconstruction has been shown to improve spatial resolution in PET. However due to the short half life of clinically used isotopes other long lived isotopes not used in clinical practice are used to perform the PSF measurements. As such non optimal PSF models that do not correspond to those needed for the data to be reconstructed are used within resolution modeling (RM) image reconstruction usuall...

  5. Hyperspectral image reconstruction using RGB color for foodborne pathogen detection on agar plates

    Science.gov (United States)

    Yoon, Seung-Chul; Shin, Tae-Sung; Park, Bosoon; Lawrence, Kurt C.; Heitschmidt, Gerald W.

    2014-03-01

    This paper reports the latest development of a color vision technique for detecting colonies of foodborne pathogens grown on agar plates with a hyperspectral image classification model that was developed using full hyperspectral data. The hyperspectral classification model depended on reflectance spectra measured in the visible and near-infrared spectral range from 400 and 1,000 nm (473 narrow spectral bands). Multivariate regression methods were used to estimate and predict hyperspectral data from RGB color values. The six representative non-O157 Shiga-toxin producing Eschetichia coli (STEC) serogroups (O26, O45, O103, O111, O121, and O145) were grown on Rainbow agar plates. A line-scan pushbroom hyperspectral image sensor was used to scan 36 agar plates grown with pure STEC colonies at each plate. The 36 hyperspectral images of the agar plates were divided in half to create training and test sets. The mean Rsquared value for hyperspectral image estimation was about 0.98 in the spectral range between 400 and 700 nm for linear, quadratic and cubic polynomial regression models and the detection accuracy of the hyperspectral image classification model with the principal component analysis and k-nearest neighbors for the test set was up to 92% (99% with the original hyperspectral images). Thus, the results of the study suggested that color-based detection may be viable as a multispectral imaging solution without much loss of prediction accuracy compared to hyperspectral imaging.

  6. High-throughput optical system for HDES hyperspectral imager

    Science.gov (United States)

    Václavík, Jan; Melich, Radek; Pintr, Pavel; Pleštil, Jan

    2015-01-01

    Affordable, long-wave infrared hyperspectral imaging calls for use of an uncooled FPA with high-throughput optics. This paper describes the design of the optical part of a stationary hyperspectral imager in a spectral range of 7-14 um with a field of view of 20°×10°. The imager employs a push-broom method made by a scanning mirror. High throughput and a demand for simplicity and rigidity led to a fully refractive design with highly aspheric surfaces and off-axis positioning of the detector array. The design was optimized to exploit the machinability of infrared materials by the SPDT method and a simple assemblage.

  7. High-resolution imaging of magnetic fields using scanning superconducting quantum interference device (SQUID) microscopy

    Science.gov (United States)

    Fong de Los Santos, Luis E.

    Development of a scanning superconducting quantum interference device (SQUID) microscope system with interchangeable sensor configurations for imaging magnetic fields of room-temperature (RT) samples with sub-millimeter resolution. The low-critical-temperature (Tc) niobium-based monolithic SQUID sensor is mounted in the tip of a sapphire rod and thermally anchored to the cryostat helium reservoir. A 25 mum sapphire window separates the vacuum space from the RT sample. A positioning mechanism allows adjusting the sample-to-sensor spacing from the top of the Dewar. I have achieved a sensor-to-sample spacing of 100 mum, which could be maintained for periods of up to 4 weeks. Different SQUID sensor configurations are necessary to achieve the best combination of spatial resolution and field sensitivity for a given magnetic source. For imaging thin sections of geological samples, I used a custom-designed monolithic low-Tc niobium bare SQUID sensor, with an effective diameter of 80 mum, and achieved a field sensitivity of 1.5 pT/Hz1/2 and a magnetic moment sensitivity of 5.4 x 10-18 Am2/Hz1/2 at a sensor-to-sample spacing of 100 mum in the white noise region for frequencies above 100 Hz. Imaging action currents in cardiac tissue requires higher field sensitivity, which can only be achieved by compromising spatial resolution. I developed a monolithic low-Tc niobium multiloop SQUID sensor, with sensor sizes ranging from 250 mum to 1 mm, and achieved sensitivities of 480 - 180 fT/Hz1/2 in the white noise region for frequencies above 100 Hz, respectively. For all sensor configurations, the spatial resolution was comparable to the effective diameter and limited by the sensor-to-sample spacing. Spatial registration allowed us to compare high-resolution images of magnetic fields associated with action currents and optical recordings of transmembrane potentials to study the bidomain nature of cardiac tissue or to match petrography to magnetic field maps in thin sections of

  8. High-Resolution Imaging of Axial Volcano, Juan de Fuca ridge.

    Science.gov (United States)

    Arnulf, A. F.; Harding, A. J.; Kent, G. M.

    2014-12-01

    To date, seismic experiments have been key in our understanding of the internal structure of volcanic systems. However, most experiments, especially subaerial-based, are often restricted to refraction geometries with limited numbers of sources and receivers, and employ smoothing constraints required by tomographic inversions that produce smoothed and blurry images with spatial resolutions well below the length scale of important features that define these magmatic systems. Taking advantage of the high density of sources and receivers from multichannel seismic (MCS) data should, in principle, allow detailed images of velocity and reflectivity to be recovered. Unfortunately, the depth of mid-ocean ridges has the detrimental effect of concealing critical velocity information behind the seafloor reflection, preventing first arrival travel-time tomographic approaches from imaging the shallowest and most heterogeneous part of the crust. To overcome the limitations of the acquisition geometry, here we are using an innovative multistep approach. We combine a synthetic ocean bottom experiment (SOBE), 3-D traveltime tomography, 2D elastic full waveform and a reverse time migration (RTM) formalism, and present one of the most detailed imagery to date of a massive and complex magmatic system beneath Axial seamount, an active submarine volcano that lies at the intersection of the Juan de Fuca ridge and the Cobb-Eickelberg seamount chain. We present high-resolution images along 12 seismic lines that span the volcano. We refine the extent/volume of the main crustal magma reservoir that lies beneath the central caldera. We investigate the extent, volume and physical state of a secondary magma body present to the southwest and study its connections with the main magma reservoir. Additionally, we present a 3D tomographic model of the entire volcano that reveals a subsiding caldera floor that provides a near perfect trap for the ponding of lava flows, supporting a "trapdoor

  9. The challenges of analysing blood stains with hyperspectral imaging

    Science.gov (United States)

    Kuula, J.; Puupponen, H.-H.; Rinta, H.; Pölönen, I.

    2014-06-01

    Hyperspectral imaging is a potential noninvasive technology for detecting, separating and identifying various substances. In the forensic and military medicine and other CBRNE related use it could be a potential method for analyzing blood and for scanning other human based fluids. For example, it would be valuable to easily detect whether some traces of blood are from one or more persons or if there are some irrelevant substances or anomalies in the blood. This article represents an experiment of separating four persons' blood stains on a white cotton fabric with a SWIR hyperspectral camera and FT-NIR spectrometer. Each tested sample includes standardized 75 _l of 100 % blood. The results suggest that on the basis of the amount of erythrocytes in the blood, different people's blood might be separable by hyperspectral analysis. And, referring to the indication given by erythrocytes, there might be a possibility to find some other traces in the blood as well. However, these assumptions need to be verified with wider tests, as the number of samples in the study was small. According to the study there also seems to be several biological, chemical and physical factors which affect alone and together on the hyperspectral analyzing results of blood on fabric textures, and these factors need to be considered before making any further conclusions on the analysis of blood on various materials.

  10. Isotope specific resolution recovery image reconstruction in high resolution PET imaging

    NARCIS (Netherlands)

    Kotasidis, Fotis A.; Angelis, Georgios I.; Anton-Rodriguez, Jose; Matthews, Julian C.; Reader, Andrew J.; Zaidi, Habib

    Purpose: Measuring and incorporating a scanner-specific point spread function (PSF) within image reconstruction has been shown to improve spatial resolution in PET. However, due to the short half-life of clinically used isotopes, other long-lived isotopes not used in clinical practice are used to

  11. Comparison of the image quality between volumetric and conventional high-resolution CT with 64-slice row CT

    International Nuclear Information System (INIS)

    Gao Yanli; Zhang Lei; Zhao Xia; Ma Min; Zhai Renyou

    2008-01-01

    Objective: To compare the image quality between volumetric high-resolution CT (VHRCT) and conventional high-resolution CT (CHRCT), and investigate the feasibility of VHRCT. Methods: Catphan 412 phantom was scanned with protocols of CHRCT and VHRCT on a set of GE Lightspeed VCT. The spatial-resolution (LP/cm), noise (standard deviation in an ROI) and radiation close (CTDI) were recorded for each CT scan. Difference of noise between CHRCT and VHRCT were evaluated by paired t test. In clinical study, 32 patients were scanned with VHRCT and CHRCT protocols. The image quality of CHRCT and VHRCT was rated and compared. The quality difference between CHRCT and VHRCT was assessed by Wilcoxon paired signed rank sum test. Results: In phantom study, the in-plane spatial-resolution of both VHRCT and CHRCT was 11 LP/cm for axial images and 12 LP/cm for coronal reformatted images. The noise of VHRCT and CHRCT was (69.18±2.77)HU and (54.62±2.12) HU respectively (t=-15.929, P 0.05). The quality assessment scores of VHRCT coronal reformatted images and CHRCT coronal reformatted images were 3.05 and 1.88 respectively with significant difference (Z= -5.088, P<0.01). Conclusion: The image quality of VHRCT cross-sectional image is similar to that of CHRCT. Multiplanar images with high resolution of VHRCT are recommended. The radiation dose of VHRCT remains to be optimized. (authors)

  12. Study on the Coastline Change of Jiaozhou Bay Based on High Resolution Remote Sensing Image

    Science.gov (United States)

    Zhu, H.; Xing, B.; Ni, S.; Wei, P.

    2018-05-01

    In recent years, with the rapid development of the Jiaozhou Bay area of Qingdao, the influence of human activities on the coastline of Jiaozhou Bay is becoming more and more serious. Based on the high resolution remote sensing image data of 10 periods from 2001 to 2017 in the Jiaozhou Bay area, and combined with the data of on-the-spot survey and expert knowledge, this paper have completed the interpretation and extraction of coastline data of each year, and analyzed the distribution, size, rate of change, and trend of the increase and decrease of the coastal area of Jiaozhou Bay in different time periods, combined with the economic construction and the marine hydrodynamic environment of the region to analyze the reasons for the change of the coastline of Jiaozhou Bay. The results show that the increase and reduction of the coastal area of Jiaozhou Bay was mainly affected by human activities such as sea reclamation and marine aquaculture, resulting in a gradual change in the rate of increase and decrease with human development. For coastal advance part,2001-2013, the average increase rate on the coastal area of Jiaozhou Bay was 2.30 km2/a, showing a trend of rapid growth, 2013-2017 the average increase rate of 0.53 km2/a, and the growth rate slowed down. For coastal retreat part, 2001-2013, the average decrease rate was 2.58 × 10-3 km2/a. 2013-2014, the decrease rate reached a peak value of 1.11 km2/a. 2014-2017, the average decrease rate was 0.14 km2/a. The decrease rate shows a trend of increasing first and then slowing down.

  13. High-resolution MR imaging of periarterial edema associated with biological inflammation in spontaneous carotid dissection

    Energy Technology Data Exchange (ETDEWEB)

    Naggara, Olivier; Marsico, Rodolpho; Meder, Jean-Francois; Oppenheim, Catherine [Paris-Descartes University, Department of Neuroradiology, Paris (France); Touze, Emmanuel; Mas, Jean-Louis [Paris-Descartes University, Department of Neurology, Paris (France); Leclerc, Xavier; Pruvo, Jean-Pierre [University Hospital Roger Salengro, Department of Neuroradiology, Lille (France); Nguyen, Thanh [Boston University Medical Center, Department of Neurology, Neurosurgery, and Radiology, Boston, MA (United States)

    2009-09-15

    It has been suggested that spontaneous cervical carotid artery dissection (sCAD) may result from arterial inflammation. Periarterial edema (PAE), occasionally described in the vicinity of the mural hematoma in patients with sCAD, may support this hypothesis. Using cervical high-resolution magnetic resonance imaging, three readers, blinded to the mechanism of carotid artery dissection, searched for PAE, defined as periarterial T2-hyperintensity and T1-hypointensity, in 29 consecutive CAD patients categorized as spontaneous CAD (sCAD, n = 18) or traumatic CAD (tCAD, n = 11; i.e., major head or neck trauma within 2 weeks before the clinical onset). The relationships between PAE, inflammatory biological markers, history of infection and CAD mechanism were explored. Multiple CADs (n = 8) were found only in sCAD patients. Compared with tCAD, patients with sCAD were more likely to have a recent history of infection (OR = 12.5 [{sub 95%}CI = 1.3-119], p = 0.03), PAE (83% vs. 27%; OR = 13.3 [{sub 95%}CI = 2.2-82.0], p = 0.005) and to have elevated CRP (OR = 6.1 [{sub 95%}CI = 1.2-32.1], p = 0.0002) or ESR (OR = 8.8 [{sub 95%}CI = 1.5-50.1], p = 0.002) values. Interobserver agreement was 0.84 or higher for PAE identification. sCAD was associated with PAE and biological inflammation. Our results support the hypothesis of an underlying arterial inflammation in sCAD. (orig.)

  14. High-resolution MR imaging of periarterial edema associated with biological inflammation in spontaneous carotid dissection

    International Nuclear Information System (INIS)

    Naggara, Olivier; Marsico, Rodolpho; Meder, Jean-Francois; Oppenheim, Catherine; Touze, Emmanuel; Mas, Jean-Louis; Leclerc, Xavier; Pruvo, Jean-Pierre; Nguyen, Thanh

    2009-01-01

    It has been suggested that spontaneous cervical carotid artery dissection (sCAD) may result from arterial inflammation. Periarterial edema (PAE), occasionally described in the vicinity of the mural hematoma in patients with sCAD, may support this hypothesis. Using cervical high-resolution magnetic resonance imaging, three readers, blinded to the mechanism of carotid artery dissection, searched for PAE, defined as periarterial T2-hyperintensity and T1-hypointensity, in 29 consecutive CAD patients categorized as spontaneous CAD (sCAD, n = 18) or traumatic CAD (tCAD, n = 11; i.e., major head or neck trauma within 2 weeks before the clinical onset). The relationships between PAE, inflammatory biological markers, history of infection and CAD mechanism were explored. Multiple CADs (n = 8) were found only in sCAD patients. Compared with tCAD, patients with sCAD were more likely to have a recent history of infection (OR = 12.5 [ 95% CI = 1.3-119], p = 0.03), PAE (83% vs. 27%; OR = 13.3 [ 95% CI = 2.2-82.0], p = 0.005) and to have elevated CRP (OR = 6.1 [ 95% CI = 1.2-32.1], p = 0.0002) or ESR (OR = 8.8 [ 95% CI = 1.5-50.1], p = 0.002) values. Interobserver agreement was 0.84 or higher for PAE identification. sCAD was associated with PAE and biological inflammation. Our results support the hypothesis of an underlying arterial inflammation in sCAD. (orig.)

  15. Using high-resolution radar images to determine vegetation cover for soil erosion assessments.

    Science.gov (United States)

    Bargiel, D; Herrmann, S; Jadczyszyn, J

    2013-07-30

    Healthy soils are crucial for human well-being. Because soils are threatened worldwide, politicians recognize the need for soil protection. For example, the European Commission has launched the Thematic Strategy for Soil Protection, which requests the European member states to identify high risk areas for soil degradation. Most states use the Universal Soil Loss Equation (USLE) to assess soil erosion risk at the national scale. The USLE includes different factors, one of them is the vegetation cover and management factor (C factor). Modern satellite-based radar sensors now provide highly accurate vegetation cover data, enabling opportunities to improve the accuracy of the C factor. The presented study proves the suitability for C factor determination based on a multi-temporal classification of high-resolution radar images. Further USLE factors were derived from existing data sources (meteorological data, soil maps, digital elevation model) to conduct an USLE-based soil erosion assessment. The resulting map illustrates a qualitative assessment for soil erosion risk within a plot of about 7*12 km in an agricultural region in Poland that is very susceptible to soil erosion processes. A high erosion risk of more than 10 tonnes per ha and year was assessed to occur on 13.6% (646 ha) of the agricultural areas within the investigated plot. Further 7.8% (372 ha) of agricultural land is threaten by a medium risk of 5-10 tonnes per ha and year. Such a spatial information about areas of high or medium soil erosion risk are crucial for the development of strategies for the protection of soils. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. In vivo skin moisturizing measurement by high-resolution 3 Tesla magnetic resonance imaging.

    Science.gov (United States)

    Mesrar, J; Ognard, J; Garetier, M; Chechin, D; Misery, L; Ben Salem, D

    2017-08-01

    Magnetic resonance imaging (MRI) is rarely used for the exploration of skin, even if studies have validated both feasibility of skin MRI and its interest for anatomical, physiological, and biochemical study of the skin. The purpose of this study is to explore moisturizing of the different skin layers using 3-T scan. An MRI of the heel's skin was performed using a 23 mm coil diameter on a 3T scan with a FFE (Fast Field Echo) 3D T1-weighted sequence and a TSE (Turbo Spin Echo) calculation T2-weighted sequence (pixels size of respectively 60 and 70 μm). This study was conducted on 35 healthy volunteers, who were scanned before applying moisturizer topic and 1 h after applying it. Region of interest in the stratum corneum, the epidermis and the dermis were generated on the T2 mapping. The thickness of each layer was measured. The T1 sequence allowed accurate cross-examination repositioning to ensure the comparability of the measurements. Among the 35 cases, two were excluded from the analysis because of movement artifacts. Measurements before and after moisturizer topic application displayed a T2 increase of 48.94% (P < 0.0001) in the stratum corneum and of 5.45% (P < 0.0001) in the epidermis yet without significant difference in the dermis. There was no significant link between the thickness of the stratum corneum and the T2 increase. However, there was a strong correlation between the thickness of the stratum corneum and the thickness of the epidermis (P < 0.001; rhô=0.72). High-resolution MRI allows fine exploration of anatomical and physiological properties of the skin and can further be used to extend the studies of skin hydration. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Detecting and locating light atoms from high-resolution STEM images : The quest for a single optimal design

    NARCIS (Netherlands)

    Gonnissen, J; De Backer, A; den Dekker, A.J.; Sijbers, J.; Van Aert, S.

    2016-01-01

    In the present paper, the optimal detector design is investigated for both detecting and locating light atoms from high resolution scanning transmission electron microscopy (HR STEM) images. The principles of detection theory are used to quantify the probability of error for the detection of

  18. High-resolution endoscopy plus chromoendoscopy or narrow-band imaging in Barrett's esophagus: a prospective randomized crossover study

    NARCIS (Netherlands)

    Kara, M. A.; Peters, F. P.; Rosmolen, W. D.; Krishnadath, K. K.; ten Kate, F. J.; Fockens, P.; Bergman, J. J. G. H.

    2005-01-01

    Background and study aims: High-resolution endoscopy (HRE) may improve the detection of early neoplasia in Barrett's esophagus. Indigo carmine chromoendoscopy (ICc) and narrow-band imaging (NBI) may be useful techniques to complement HRE. The aim of this study was to compare HRE-ICC with HrE-NBI for

  19. Position sensitive detection coupled to high-resolution time-of-flight mass spectrometry: Imaging for molecular beam deflection experiments

    International Nuclear Information System (INIS)

    Abd El Rahim, M.; Antoine, R.; Arnaud, L.; Barbaire, M.; Broyer, M.; Clavier, Ch.; Compagnon, I.; Dugourd, Ph.; Maurelli, J.; Rayane, D.

    2004-01-01

    We have developed and tested a high-resolution time-of-flight mass spectrometer coupled to a position sensitive detector for molecular beam deflection experiments. The major achievement of this new spectrometer is to provide a three-dimensional imaging (X and Y positions and time-of-flight) of the ion packet on the detector, with a high acquisition rate and a high resolution on both the mass and the position. The calibration of the experimental setup and its application to molecular beam deflection experiments are discussed

  20. A Satellite-Based Imaging Instrumentation Concept for Hyperspectral Thermal Remote Sensing.

    Science.gov (United States)

    Udelhoven, Thomas; Schlerf, Martin; Segl, Karl; Mallick, Kaniska; Bossung, Christian; Retzlaff, Rebecca; Rock, Gilles; Fischer, Peter; Müller, Andreas; Storch, Tobias; Eisele, Andreas; Weise, Dennis; Hupfer, Werner; Knigge, Thiemo

    2017-07-01

    This paper describes the concept of the hyperspectral Earth-observing thermal infrared (TIR) satellite mission HiTeSEM (High-resolution Temperature and Spectral Emissivity Mapping). The scientific goal is to measure specific key variables from the biosphere, hydrosphere, pedosphere, and geosphere related to two global problems of significant societal relevance: food security and human health. The key variables comprise land and sea surface radiation temperature and emissivity, surface moisture, thermal inertia, evapotranspiration, soil minerals and grain size components, soil organic carbon, plant physiological variables, and heat fluxes. The retrieval of this information requires a TIR imaging system with adequate spatial and spectral resolutions and with day-night following observation capability. Another challenge is the monitoring of temporally high dynamic features like energy fluxes, which require adequate revisit time. The suggested solution is a sensor pointing concept to allow high revisit times for selected target regions (1-5 days at off-nadir). At the same time, global observations in the nadir direction are guaranteed with a lower temporal repeat cycle (>1 month). To account for the demand of a high spatial resolution for complex targets, it is suggested to combine in one optic (1) a hyperspectral TIR system with ~75 bands at 7.2-12.5 µm (instrument NEDT 0.05 K-0.1 K) and a ground sampling distance (GSD) of 60 m, and (2) a panchromatic high-resolution TIR-imager with two channels (8.0-10.25 µm and 10.25-12.5 µm) and a GSD of 20 m. The identified science case requires a good correlation of the instrument orbit with Sentinel-2 (maximum delay of 1-3 days) to combine data from the visible and near infrared (VNIR), the shortwave infrared (SWIR) and TIR spectral regions and to refine parameter retrieval.

  1. A Satellite-Based Imaging Instrumentation Concept for Hyperspectral Thermal Remote Sensing

    Directory of Open Access Journals (Sweden)

    Thomas Udelhoven

    2017-07-01

    Full Text Available This paper describes the concept of the hyperspectral Earth-observing thermal infrared (TIR satellite mission HiTeSEM (High-resolution Temperature and Spectral Emissivity Mapping. The scientific goal is to measure specific key variables from the biosphere, hydrosphere, pedosphere, and geosphere related to two global problems of significant societal relevance: food security and human health. The key variables comprise land and sea surface radiation temperature and emissivity, surface moisture, thermal inertia, evapotranspiration, soil minerals and grain size components, soil organic carbon, plant physiological variables, and heat fluxes. The retrieval of this information requires a TIR imaging system with adequate spatial and spectral resolutions and with day-night following observation capability. Another challenge is the monitoring of temporally high dynamic features like energy fluxes, which require adequate revisit time. The suggested solution is a sensor pointing concept to allow high revisit times for selected target regions (1–5 days at off-nadir. At the same time, global observations in the nadir direction are guaranteed with a lower temporal repeat cycle (>1 month. To account for the demand of a high spatial resolution for complex targets, it is suggested to combine in one optic (1 a hyperspectral TIR system with ~75 bands at 7.2–12.5 µm (instrument NEDT 0.05 K–0.1 K and a ground sampling distance (GSD of 60 m, and (2 a panchromatic high-resolution TIR-imager with two channels (8.0–10.25 µm and 10.25–12.5 µm and a GSD of 20 m. The identified science case requires a good correlation of the instrument orbit with Sentinel-2 (maximum delay of 1–3 days to combine data from the visible and near infrared (VNIR, the shortwave infrared (SWIR and TIR spectral regions and to refine parameter retrieval.

  2. Hyperspectral optical imaging of two different species of lepidoptera

    Directory of Open Access Journals (Sweden)

    Vukusic Pete

    2011-01-01

    Full Text Available Abstract In this article, we report a hyperspectral optical imaging application for measurement of the reflectance spectra of photonic structures that produce structural colors with high spatial resolution. The measurement of the spectral reflectance function is exemplified in the butterfly wings of two different species of Lepidoptera: the blue iridescence reflected by the nymphalid Morpho didius and the green iridescence of the papilionid Papilio palinurus. Color coordinates from reflectance spectra were calculated taking into account human spectral sensitivity. For each butterfly wing, the observed color is described by a characteristic color map in the chromaticity diagram and spreads over a limited volume in the color space. The results suggest that variability in the reflectance spectra is correlated with different random arrangements in the spatial distribution of the scales that cover the wing membranes. Hyperspectral optical imaging opens new ways for the non-invasive study and classification of different forms of irregularity in structural colors.

  3. Portable multiwire proportional chamber imaging system for high resolution 125I imaging

    International Nuclear Information System (INIS)

    Lazewatsky, J.L.; Lanza, R.C.; Murray, B.W.; Bolon, C.; Burns, R.E.; Szulc, M.

    1976-01-01

    A dedicated multiwire proportional chamber system designed to image 125 I labeled venous thrombi is described. The chamber is filled with a Kr-Co 2 gas mixture at one atmosphere pressure and utilizes an externally mounted delay line readout. A pair of crossed x-ray grids form a collimator which yields an optimum system efficiency of 3.1 x 10 -4 for a fixed spatial resolution of 0.74 cm. The chamber is further designed to be lightweight and portable for in-hospital use

  4. Design and image-quality performance of high resolution CMOS-based X-ray imaging detectors for digital mammography

    Science.gov (United States)

    Cha, B. K.; Kim, J. Y.; Kim, Y. J.; Yun, S.; Cho, G.; Kim, H. K.; Seo, C.-W.; Jeon, S.; Huh, Y.

    2012-04-01

    In digital X-ray imaging systems, X-ray imaging detectors based on scintillating screens with electronic devices such as charge-coupled devices (CCDs), thin-film transistors (TFT), complementary metal oxide semiconductor (CMOS) flat panel imagers have been introduced for general radiography, dental, mammography and non-destructive testing (NDT) applications. Recently, a large-area CMOS active-pixel sensor (APS) in combination with scintillation films has been widely used in a variety of digital X-ray imaging applications. We employed a scintillator-based CMOS APS image sensor for high-resolution mammography. In this work, both powder-type Gd2O2S:Tb and a columnar structured CsI:Tl scintillation screens with various thicknesses were fabricated and used as materials to convert X-ray into visible light. These scintillating screens were directly coupled to a CMOS flat panel imager with a 25 × 50 mm2 active area and a 48 μm pixel pitch for high spatial resolution acquisition. We used a W/Al mammographic X-ray source with a 30 kVp energy condition. The imaging characterization of the X-ray detector was measured and analyzed in terms of linearity in incident X-ray dose, modulation transfer function (MTF), noise-power spectrum (NPS) and detective quantum efficiency (DQE).

  5. A high-resolution optical imaging system for obtaining the serial transverse section images of biologic tissue

    Science.gov (United States)

    Wu, Li; Zhang, Bin; Wu, Ping; Liu, Qian; Gong, Hui

    2007-05-01

    A high-resolution optical imaging system was designed and developed to obtain the serial transverse section images of the biologic tissue, such as the mouse brain, in which new knife-edge imaging technology, high-speed and high-sensitive line-scan CCD and linear air bearing stages were adopted and incorporated with an OLYMPUS microscope. The section images on the tip of the knife-edge were synchronously captured by the reflection imaging in the microscope while cutting the biologic tissue. The biologic tissue can be sectioned at interval of 250 nm with the same resolution of the transverse section images obtained in x and y plane. And the cutting job can be automatically finished based on the control program wrote specially in advance, so we save the mass labor of the registration of the vast images data. In addition, by using this system a larger sample can be cut than conventional ultramicrotome so as to avoid the loss of the tissue structure information because of splitting the tissue sample to meet the size request of the ultramicrotome.

  6. Classification of maize kernels using NIR hyperspectral imaging

    DEFF Research Database (Denmark)

    Williams, Paul; Kucheryavskiy, Sergey V.

    2016-01-01

    NIR hyperspectral imaging was evaluated to classify maize kernels of three hardness categories: hard, medium and soft. Two approaches, pixel-wise and object-wise, were investigated to group kernels according to hardness. The pixel-wise classification assigned a class to every pixel from individual...... and specificity of 0.95 and 0.93). Both feature extraction methods can be recommended for classification of maize kernels on production scale....

  7. A high resolution IR/visible imaging system for the W7-X limiter

    International Nuclear Information System (INIS)

    Wurden, G. A.; Dunn, J. P.; Stephey, L. A.; Biedermann, C.; Jakubowski, M. W.; Gamradt, M.

    2016-01-01

    A high-resolution imaging system, consisting of megapixel mid-IR and visible cameras along the same line of sight, has been prepared for the new W7-X stellarator and was operated during Operational Period 1.1 to view one of the five inboard graphite limiters. The radial line of sight, through a large diameter (184 mm clear aperture) uncoated sapphire window, couples a direct viewing 1344 × 784 pixel FLIR SC8303HD camera. A germanium beam-splitter sends visible light to a 1024 × 1024 pixel Allied Vision Technologies Prosilica GX1050 color camera. Both achieve sub-millimeter resolution on the 161 mm wide, inertially cooled, segmented graphite tiles. The IR and visible cameras are controlled via optical fibers over full Camera Link and dual GigE Ethernet (2 Gbit/s data rates) interfaces, respectively. While they are mounted outside the cryostat at a distance of 3.2 m from the limiter, they are close to a large magnetic trim coil and require soft iron shielding. We have taken IR data at 125 Hz to 1.25 kHz frame rates and seen that surface temperature increases in excess of 350 °C, especially on leading edges or defect hot spots. The IR camera sees heat-load stripe patterns on the limiter and has been used to infer limiter power fluxes (∼1–4.5 MW/m"2), during the ECRH heating phase. IR images have also been used calorimetrically between shots to measure equilibrated bulk tile temperature, and hence tile energy inputs (in the range of 30 kJ/tile with 0.6 MW, 6 s heating pulses). Small UFO’s can be seen and tracked by the FLIR camera in some discharges. The calibrated visible color camera (100 Hz frame rate) has also been equipped with narrow band C-III and H-alpha filters, to compare with other diagnostics, and is used for absolute particle flux determination from the limiter surface. Sometimes, but not always, hot-spots in the IR are also seen to be bright in C-III light.

  8. A high resolution IR/visible imaging system for the W7-X limiter

    Energy Technology Data Exchange (ETDEWEB)

    Wurden, G. A., E-mail: wurden@lanl.gov; Dunn, J. P. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Stephey, L. A. [University of Wisconsin, Madison, Wisconsin 53706 (United States); Biedermann, C.; Jakubowski, M. W.; Gamradt, M. [Max Planck Institut für Plasma Physik, Wendelsteinstrasse 1, 17491 Greifswald (Germany)

    2016-11-15

    A high-resolution imaging system, consisting of megapixel mid-IR and visible cameras along the same line of sight, has been prepared for the new W7-X stellarator and was operated during Operational Period 1.1 to view one of the five inboard graphite limiters. The radial line of sight, through a large diameter (184 mm clear aperture) uncoated sapphire window, couples a direct viewing 1344 × 784 pixel FLIR SC8303HD camera. A germanium beam-splitter sends visible light to a 1024 × 1024 pixel Allied Vision Technologies Prosilica GX1050 color camera. Both achieve sub-millimeter resolution on the 161 mm wide, inertially cooled, segmented graphite tiles. The IR and visible cameras are controlled via optical fibers over full Camera Link and dual GigE Ethernet (2 Gbit/s data rates) interfaces, respectively. While they are mounted outside the cryostat at a distance of 3.2 m from the limiter, they are close to a large magnetic trim coil and require soft iron shielding. We have taken IR data at 125 Hz to 1.25 kHz frame rates and seen that surface temperature increases in excess of 350 °C, especially on leading edges or defect hot spots. The IR camera sees heat-load stripe patterns on the limiter and has been used to infer limiter power fluxes (∼1–4.5 MW/m{sup 2}), during the ECRH heating phase. IR images have also been used calorimetrically between shots to measure equilibrated bulk tile temperature, and hence tile energy inputs (in the range of 30 kJ/tile with 0.6 MW, 6 s heating pulses). Small UFO’s can be seen and tracked by the FLIR camera in some discharges. The calibrated visible color camera (100 Hz frame rate) has also been equipped with narrow band C-III and H-alpha filters, to compare with other diagnostics, and is used for absolute particle flux determination from the limiter surface. Sometimes, but not always, hot-spots in the IR are also seen to be bright in C-III light.

  9. Classification of Hyperspectral Images Using Kernel Fully Constrained Least Squares